Sample records for human skin causing

  1. Scabies

    MedlinePlus

    Scabies is an easily-spread skin disease caused by a very small mite. ... Human scabies; Sarcoptes scabiei ... The mites that cause scabies burrow into the skin and lay their eggs. ... do not spread human scabies. It is also not very likely for ...

  2. Immune Cell-Supplemented Human Skin Model for Studying Fungal Infections.

    PubMed

    Kühbacher, Andreas; Sohn, Kai; Burger-Kentischer, Anke; Rupp, Steffen

    2017-01-01

    Human skin is a niche for various fungal species which either colonize the surface of this tissue as commensals or, primarily under conditions of immunosuppression, invade the skin and cause infection. Here we present a method for generation of a human in vitro skin model supplemented with immune cells of choice. This model represents a complex yet amenable tool to study molecular mechanisms of host-fungi interactions at human skin.

  3. [Mites as a cause of zoonoses in human beings].

    PubMed

    Beck, Wieland; Pfister, Kurt

    2006-01-01

    Different mite species occurring in animals may infest humans temporarily. Such agents should be considered a possible cause of erythemateous and sometimes pruritic skin reactions of unclear origin. Pseudoscabies is a common problem in occupationally exposed humans, e.g. farmers, veterinarians or pet owners. Those selflimiting dermatoses may often be misdiagnosed. Several species including Sarcoptes scabiei, Notoedres cati, Cheyletiella spp., Dermanyssus gallinae, Ornithonyssus bacoti, Ophionyssus natricis and Neotrombicula autumnalis may infest human skin, causing symptoms.

  4. Human bites (image)

    MedlinePlus

    Human bites present a high risk of infection. Besides the bacteria which can cause infection, there is ... the wound extends below the skin. Anytime a human bite has broken the skin, seek medical attention.

  5. 40 CFR 721.1150 - Substituted polyglycidyl ben-zena-mine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... found to cause cancer, reproductive effects, kidney and liver effects in laboratory animals, and allergic reactions in humans; that this substance is a severe skin and eye irritant; and that the use of.... They have also caused allergic reactions in humans. —Prevent all contact with skin, eyes, and clothing...

  6. 40 CFR 721.1150 - Substituted polyglycidyl ben-zena-mine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... found to cause cancer, reproductive effects, kidney and liver effects in laboratory animals, and allergic reactions in humans; that this substance is a severe skin and eye irritant; and that the use of.... They have also caused allergic reactions in humans. —Prevent all contact with skin, eyes, and clothing...

  7. 40 CFR 721.1150 - Substituted polyglycidyl ben-zena-mine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... found to cause cancer, reproductive effects, kidney and liver effects in laboratory animals, and allergic reactions in humans; that this substance is a severe skin and eye irritant; and that the use of.... They have also caused allergic reactions in humans. —Prevent all contact with skin, eyes, and clothing...

  8. [Development of alternative to animal experiment in evaluation of skin irritation caused by alcohol-based hand rubs].

    PubMed

    Yamamoto, Nobuyuki; Miyamoto, Koji; Katoh, Masakazu

    2010-08-01

    Alcohol-based hand rubs are widely used for infection control in clinical practice. However, it is known that frequent use of the alcohol-based hand rubs may cause skin irritation. To predict the skin irritation in human, animal experiments are quite useful. Especially, the Draize Test using rabbits is suitable for this purpose because their skin is highly sensitive. On the other hand, the development of alternative to animal experiments is important not only from the viewpoint of ethical aspects but also from the efficient research and development. Reconstructed human epidermis (RhE) was developed as a human skin equivalent model in vitro, and has been applied to the evaluation of skin irritation. But the RhE has not been utilized for the evaluation of alcohol-based hand rubs because of the high skin permeability and cytotoxicity of alcohols. The aim of this study was to develop a new method using the RhE in evaluation of skin irritation caused by alcohol-based hand rubs. The authors propose an experimental technique named "Skin model blowing method (SMBM)" consisting of the sequential procedure as follows; applying small amount of testing sample on RhE, blow-dry, post incubation, and cell viability measurement. According to the SMBM, the skin irritation caused by alcohol-based hand rubs could be evaluated under the similar condition of their actual use. It was found that a high correlation existed between the cell viability obtained from SMBM and the skin irritation index in rabbit which had been reported previously.

  9. 2-Chloroethyl ethyl sulfide causes microvesication and inflammation-related histopathological changes in male hairless mouse skin

    PubMed Central

    Jain, Anil K.; Tewari-Singh, Neera; Orlicky, David J.; White, Carl W; Agarwal, Rajesh

    2011-01-01

    Sulfur mustard (HD) is a vesicating agent that has been used as a chemical warfare agent in a number of conflicts, posing a major threat in both military conflict and chemical terrorism situations. Currently, we lack effective therapies to rescue skin injuries by HD, in part, due to the lack of appropriate animal models, which are required for conducting laboratory studies to evaluate the therapeutic efficacy of promising agents that could potentially be translated in to real HD-caused skin injury. To address this challenge, the present study was designed to assess whether microvesication could be achieved in mouse skin by an HD analog 2-chloroethyl ethyl sulfide (CEES) exposure; notably, microvesication is a key component of HD skin injury in humans. We found that skin exposure of male SKH-1 hairless mice to CEES caused epidermal-dermal separation indicating microvesication. In other studies, CEES exposure also caused an increase in skin bi-fold thickness, wet/dry weight ratio, epidermal thickness, apoptotic cell death, cell proliferation, and infiltration of macrophages, mast cells and neutrophils in male SKH-1 hairless mouse skin. Taken together, these results establish CEES-induced microvesication and inflammation-related histopathological changes in mouse skin, providing a potentially relevant laboratory model for developing effective countermeasures against HD skin injury in humans. PMID:21295104

  10. MHY1485 ameliorates UV-induced skin cell damages via activating mTOR-Nrf2 signaling.

    PubMed

    Yang, Bo; Xu, Qiu-Yun; Guo, Chun-Yan; Huang, Jin-Wen; Wang, Shu-Mei; Li, Yong-Mei; Tu, Ying; He, Li; Bi, Zhi-Gang; Ji, Chao; Cheng, Bo

    2017-02-21

    Ultra Violet (UV)-caused skin cell damage is a main cause of skin cancer. Here, we studied the activity of MHY1485, a mTOR activator, in UV-treated skin cells. In primary human skin keratinocytes, HaCaT keratinocytes and human skin fibroblasts, MHY1485 ameliorated UV-induced cell death and apoptosis. mTOR activation is required for MHY1485-induced above cytoprotective actions. mTOR kinase inhibitors (OSI-027, AZD-8055 and AZD-2014) or mTOR shRNA knockdown almost abolished MHY1485-induced cytoprotection. Further, MHY1485 treatment in skin cells activated mTOR downstream NF-E2-related factor 2 (Nrf2) signaling, causing Nrf2 Ser-40 phosphorylation, stabilization/upregulation and nuclear translocation, as well as mRNA expression of Nrf2-dictated genes. Contrarily, Nrf2 knockdown or S40T mutation almost nullified MHY1485-induced cytoprotection. MHY1485 suppressed UV-induced reactive oxygen species production and DNA single strand breaks in skin keratinocytes and fibroblasts. Together, we conclude that MHY1485 inhibits UV-induced skin cell damages via activating mTOR-Nrf2 signaling.

  11. Histologic Changes Caused by Application of Lewisite Analogs to Mouse Skin and Human Skin Xenografts

    DTIC Science & Technology

    1985-01-01

    CLASSIICATION OF THIS PAGE (Nh..1 DO&a Eatat1d UNCLAS8inED S6CURmTV CLASSISCATION OP THIS PA•r(em Daf EMo* skin grafts : 1) epidermal cellular nuclear...microscopy. Under light microscopy, we observed the following changes In PDA-treated human skin grafts : I) epidermal cellular nuclear degeneration (apparent...needed. (Oe such model is ti-e human skin grafted athymic nude mouse (4,5). This animal model was recently established at LAIR. PhenyLdichLoroarsine (PDA

  12. Malondialdehyde-Derived Epitopes In Human Skin Result From Acute Exposure To Solar UV And Occur In Nonmelanoma Skin Cancer Tissue

    PubMed Central

    Williams, Joshua D.; Bermudez, Yira; Park, Sophia L.; Stratton, Steven P.; Uchida, Koji; Hurst, Craig A.; Wondrak, Georg T.

    2014-01-01

    Cutaneous exposure to solar ultraviolet radiation (UVR) is a causative factor in photoaging and photocarcinogenesis. In human skin, oxidative stress is widely considered a key mechanism underlying the detrimental effects of acute and chronic UVR exposure. The lipid peroxidation product malondialdehyde (MDA) accumulates in tissue under conditions of increased oxidative stress, and the occurrence of MDA-derived protein epitopes, including dihydropyridine-lysine (DHP), has recently been substantiated in human skin. Here we demonstrate for the first time that acute exposure to sub-apoptogenic doses of solar simulated UV light (SSL) causes the formation of free MDA and protein-bound MDA-derived epitopes in cultured human HaCaT keratinocytes and healthy human skin. Immunohistochemical staining revealed that acute exposure to SSL is sufficient to cause an almost twenty-fold increase in general MDA- and specific DHP-epitope content in human skin. When compared to dose-matched solar simulated UVA, complete SSL was more efficient generating both free MDA and MDA-derived epitopes. Subsequent tissue microarray (TMA) analysis revealed the prevalence of MDA- and DHP-epitopes in nonmelanoma skin cancer (NMSC). In squamous cell carcinoma tissue, both MDA- and DHP-epitopes were increased more than three-fold as compared to adjacent normal tissue. Taken together, these date demonstrate the occurrence of MDA-derived epitopes in both solar UVR-exposed healthy human skin and NMSC TMA tissue; however, the potential utility of these epitopes as novel biomarkers of cutaneous photodamage and a functional role in the process of skin photocarcinogenesis remain to be explored. PMID:24584085

  13. A pilot study of the photoprotective effect of almond phytochemicals in a 3D human skin equivalent

    USDA-ARS?s Scientific Manuscript database

    UV exposure causes oxidative stress, inflammation, erythema, and skin cancer. Alpha-Tocopherol (AT) and polyphenols (AP) present in almonds may serve as photoprotectants. Our objectives were to assess the feasibility of using a 3D human skin equivalent (HSE) in photoprotectant research and to deter...

  14. MHY1485 ameliorates UV-induced skin cell damages via activating mTOR-Nrf2 signaling

    PubMed Central

    Yang, Bo; Xu, Qiu-Yun; Guo, Chun-Yan; Huang, Jin-Wen; Wang, Shu-Mei; Li, Yong-Mei; Tu, Ying; He, Li; Bi, Zhi-Gang; Ji, Chao; Cheng, Bo

    2017-01-01

    Ultra Violet (UV)-caused skin cell damage is a main cause of skin cancer. Here, we studied the activity of MHY1485, a mTOR activator, in UV-treated skin cells. In primary human skin keratinocytes, HaCaT keratinocytes and human skin fibroblasts, MHY1485 ameliorated UV-induced cell death and apoptosis. mTOR activation is required for MHY1485-induced above cytoprotective actions. mTOR kinase inhibitors (OSI-027, AZD-8055 and AZD-2014) or mTOR shRNA knockdown almost abolished MHY1485-induced cytoprotection. Further, MHY1485 treatment in skin cells activated mTOR downstream NF-E2-related factor 2 (Nrf2) signaling, causing Nrf2 Ser-40 phosphorylation, stabilization/upregulation and nuclear translocation, as well as mRNA expression of Nrf2-dictated genes. Contrarily, Nrf2 knockdown or S40T mutation almost nullified MHY1485-induced cytoprotection. MHY1485 suppressed UV-induced reactive oxygen species production and DNA single strand breaks in skin keratinocytes and fibroblasts. Together, we conclude that MHY1485 inhibits UV-induced skin cell damages via activating mTOR-Nrf2 signaling. PMID:28061443

  15. The use of nanoencapsulation to decrease human skin irritation caused by capsaicinoids

    PubMed Central

    Contri, Renata V; Frank, Luiza A; Kaiser, Moacir; Pohlmann, Adriana R; Guterres, Silvia S

    2014-01-01

    Capsaicin, a topical analgesic used in the treatment of chronic pain, has irritant properties that frequently interrupt its use. In this work, the effect of nanoencapsulation of the main capsaicinoids (capsaicin and dihydrocapsaicin) on skin irritation was tested in humans. Skin tolerance of a novel vehicle composed of chitosan hydrogel containing nonloaded nanocapsules (CH-NC) was also evaluated. The chitosan hydrogel containing nanoencapsulated capsaicinoids (CH-NC-CP) did not cause skin irritation, as measured by an erythema probe and on a visual scale, while a formulation containing free capsaicinoids (chitosan gel with hydroalcoholic solution [CH-ET-CP]) and a commercially available capsaicinoids formulation caused skin irritation. Thirty-one percent of volunteers reported slight irritation one hour after application of CH-NC-CP, while moderate (46% [CH-ET-CP] and 23% [commercial product]) and severe (8% [CH-ET-CP] and 69% [commercial product]) irritation were described for the formulations containing free capsaicinoids. When CH-NC was applied to the skin, erythema was not observed and only 8% of volunteers felt slight irritation, which demonstrates the utility of the novel vehicle. A complementary in vitro skin permeation study showed that permeation of capsaicinoids through an epidermal human membrane was reduced but not prevented by nanoencapsulation. PMID:24611011

  16. The effect of capsaicin application on mast cells in normal human skin.

    PubMed

    Bunker, C B; Cerio, R; Bull, H A; Evans, J; Dowd, P M; Foreman, J C

    1991-05-01

    Peptides released from sensory nerves during an axon reflex are thought to cause mast cell degranulation, histamine (Hi) release and Hi-induced vasodilatation leading to the flare of the triple response. Capsaicin stimulates peptide release from sensory neurones and causes flare in vivo but does not cause Hi release from mast cells in vitro. The effects of capsaicin on mast cell degranulation in human skin in vivo has been studied by histological examination of skin biopsies after topical capsicin (1%) treatment of stratum corneum-denuded forearm in four volunteers. The results show a significant reduction in the visible numbers of mast cells and the appearance of degranulated mast cells ghosts in the skin six hours after capsaicin application. Since capsaicin itself does not release Hi from mast cells, these data suggest that capsaicin-induced release of peptides from neurones could cause mast cell degranulation.

  17. Beyond spaghetti and meatballs: skin diseases associated with the Malassezia yeasts.

    PubMed

    Levin, Nikki A

    2009-01-01

    Malassezia are common lipid-dependent fungi that grow on the sebaceous areas of human skin, including the face, scalp, and upper trunk. Although Malassezia are a part of the normal human skin flora, they may also cause or exacerbate several skin diseases, including tinea versicolor, Pityrosporum folliculitis, and seborrheic dermatitis. Topical antifungals are the mainstay of treating Malassezia-related diseases. Chronic prophylaxis is often required to prevent recurrences.

  18. Near-infrared Hyperspectral Reflectance Imaging for Early Detection of Sour Skin Disease in Vidalia Sweet Onions

    USDA-ARS?s Scientific Manuscript database

    Sour skin is a major onion disease caused by the bacterium Burkholderia cepacia (B. cepacia). It not only causes substantial economic loss from diseased onions but also could lead to pulmonary infection in humans. It is critical to prevent onions infected by sour skin from entering storage rooms or ...

  19. Nevirapine bioactivation and covalent binding in the skin.

    PubMed

    Sharma, Amy M; Klarskov, Klaus; Uetrecht, Jack

    2013-03-18

    Nevirapine (NVP) treatment is associated with serious skin rashes that appear to be immune-mediated. We previously developed a rat model of this skin rash that is immune-mediated and is very similar to the rash in humans. Treatment of rats with the major NVP metabolite, 12-OH-NVP, also caused the rash. Most idiosyncratic drug reactions are caused by reactive metabolites; 12-OH-NVP forms a benzylic sulfate, which was detected in the blood of animals treated with NVP or 12-OH-NVP. This sulfate is presumably formed in the liver; however, the skin also has significant sulfotransferase activity. In this study, we used a serum against NVP to detect covalent binding in the skin of rats. There was a large artifact band in immunoblots of whole skin homogenates that interfered with detection of covalent binding; however, when the skin was separated into dermal and epidermal fractions, covalent binding was clearly present in the epidermis, which is also the location of sulfotransferases. In contrast to rats, treatment of mice with NVP did not result in covalent binding in the skin or skin rash. Although the reaction of 12-OH-NVP sulfate with nucleophiles such as glutathione is slow, incubation of this sulfate with homogenized human and rat skin led to extensive covalent binding. Incubations of 12-OH-NVP with the soluble fraction from a 9,000g centrifugation (S9) of rat or human skin homogenate in the presence of 3'-phosphoadenosine-5'-phosphosulfate (PAPS) produced extensive covalent binding, but no covalent binding was detected with mouse skin S9, which suggests that the reason mice do not develop a rash is that they lack the required sulfotransferase. This is the first study to report covalent binding of NVP to rat and human skin. These data provide strong evidence that covalent binding of NVP in the skin is due to 12-OH-NVP sulfate, which is likely responsible for NVP-induced skin rash. Sulfation may represent a bioactivation pathway for other drugs that cause a skin rash.

  20. Malondialdehyde-derived epitopes in human skin result from acute exposure to solar UV and occur in nonmelanoma skin cancer tissue.

    PubMed

    Williams, Joshua D; Bermudez, Yira; Park, Sophia L; Stratton, Steven P; Uchida, Koji; Hurst, Craig A; Wondrak, Georg T

    2014-03-05

    Cutaneous exposure to solar ultraviolet radiation (UVR) is a causative factor in photoaging and photocarcinogenesis. In human skin, oxidative stress is widely considered a key mechanism underlying the detrimental effects of acute and chronic UVR exposure. The lipid peroxidation product malondialdehyde (MDA) accumulates in tissue under conditions of increased oxidative stress, and the occurrence of MDA-derived protein epitopes, including dihydropyridine-lysine (DHP), has recently been substantiated in human skin. Here we demonstrate for the first time that acute exposure to sub-apoptogenic doses of solar simulated UV light (SSL) causes the formation of free MDA and protein-bound MDA-derived epitopes in cultured human HaCaT keratinocytes and healthy human skin. Immunohistochemical staining revealed that acute exposure to SSL is sufficient to cause an almost twenty-fold increase in general MDA- and specific DHP-epitope content in human skin. When compared to dose-matched solar simulated UVA, complete SSL was more efficient generating both free MDA and MDA-derived epitopes. Subsequent tissue microarray (TMA) analysis revealed the prevalence of MDA- and DHP-epitopes in nonmelanoma skin cancer (NMSC). In squamous cell carcinoma tissue, both MDA- and DHP-epitopes were increased more than threefold as compared to adjacent normal tissue. Taken together, these date demonstrate the occurrence of MDA-derived epitopes in both solar UVR-exposed healthy human skin and NMSC TMA tissue; however, the potential utility of these epitopes as novel biomarkers of cutaneous photodamage and a functional role in the process of skin photocarcinogenesis remain to be explored. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. 40 CFR 156.70 - Precautionary statements for human hazards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., dermal, inhalation toxicity) Irritation effects (skin and eye) Sensitizer (There are no categories of... or spray mist]. Do not get in eyes, on skin, or on clothing. [Front panel first aid statement required.] Corrosive, causes eye and skin damage [or skin irritation]. Do not get in eyes on skin, or on...

  2. 40 CFR 156.70 - Precautionary statements for human hazards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., dermal, inhalation toxicity) Irritation effects (skin and eye) Sensitizer (There are no categories of... or spray mist]. Do not get in eyes, on skin, or on clothing. [Front panel first aid statement required.] Corrosive, causes eye and skin damage [or skin irritation]. Do not get in eyes on skin, or on...

  3. Outdoor post-mortem bite injuries by Tapinoma nigerrimum (Hymenoptera, Formicidae) on a human corpse: Case report.

    PubMed

    Bonacci, Teresa; Vercillo, Vannio

    2015-07-01

    Ants are among the insects that colonize exposed human and animal corpses during the early stage of decomposition. In Calabria, Italy (as well as in other countries), Formicidae have been observed preying on immature stages of Diptera and other insects, as well as causing irregular scalloped areas of superficial skin loss on human corpses and animal carcasses. We present a case of injuries on a human corpse caused by ant feeding. The macroscopic appearance is described and the results of a histochemical investigation of the skin lesions caused by worker ants are reported for the first time. The investigation was carried out on the fresh corpse of a 53-year-old man discovered in a rural area of Cosenza province (Calabria, southern Italy). Numerous irregular areas of superficial skin loss caused by the ant Tapinoma nigerrimum (Nylander 1856) (Hymenoptera, Formicidae) were observed on the body surface, inflicted very early in the post-mortem period. Because the classification of lesions is of crucial importance for forensic investigations, the macroscopic appearance and distribution pattern of the lesions on the corpse are illustrated. The histochemical investigation of the damaged skin explains, for the first time, the mechanism of production of the lesions. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  4. Estimating the probability that the Taser directly causes human ventricular fibrillation.

    PubMed

    Sun, H; Haemmerich, D; Rahko, P S; Webster, J G

    2010-04-01

    This paper describes the first methodology and results for estimating the order of probability for Tasers directly causing human ventricular fibrillation (VF). The probability of an X26 Taser causing human VF was estimated using: (1) current density near the human heart estimated by using 3D finite-element (FE) models; (2) prior data of the maximum dart-to-heart distances that caused VF in pigs; (3) minimum skin-to-heart distances measured in erect humans by echocardiography; and (4) dart landing distribution estimated from police reports. The estimated mean probability of human VF was 0.001 for data from a pig having a chest wall resected to the ribs and 0.000006 for data from a pig with no resection when inserting a blunt probe. The VF probability for a given dart location decreased with the dart-to-heart horizontal distance (radius) on the skin surface.

  5. PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    EPA Science Inventory

    Plasmid DNA damage caused by methylated arsenicals, ascorbic acid and human liver ferritin.

    Arsenic causes cancer in human skin, urinary bladder, lung, liver and kidney and is a significant world-wide public health problem. Although the metabolism of inorganic arsenic is ...

  6. Nutraceuticals for Skin Care: A Comprehensive Review of Human Clinical Studies.

    PubMed

    Pérez-Sánchez, Almudena; Barrajón-Catalán, Enrique; Herranz-López, María; Micol, Vicente

    2018-03-24

    The skin is the body's largest organ, it participates in sensitivity and offers protection against microorganisms, chemicals and ultraviolet (UV) radiation. Consequently, the skin may suffer alterations such as photo-ageing, immune dysfunction and inflammation which may significantly affect human health. Nutraceuticals represent a promising strategy for preventing, delaying, or minimising premature ageing of the skin and also to alleviate certain skin disorders. Among them, bioactive peptides and oligosaccharides, plant polyphenols, carotenoids, vitamins and polyunsaturated fatty acids are the most widely used ingredients. Supplementation with these products has shown evidence of having an effect on the signs of ageing and protection against UV radiation ageing in several human trials. In this review, the most relevant human studies on skin nutraceuticals are evaluated and the statistical resolution, biological relevance of their results, and, the trial protocols are discussed. In conclusion, quality and rigorousness of the trials must be improved to build credible scientific evidence for skin nutraceuticals and to establish a cause-effect relationship between the ingredients the beneficial effects for the skin.

  7. The cutaneous ecosystem: the roles of the skin microbiome in health and its association with inflammatory skin conditions in humans and animals.

    PubMed

    Rodrigues Hoffmann, Aline

    2017-02-01

    Inhabiting a sterile world is no longer an acceptable or desirable concept. Recent studies developed in the microbiome field have unveiled complex microbial populations inhabiting the skin, digestive, respiratory and reproductive tracts. Microbiome studies have opened new venues to explore the human and animal second genome, its functions and its importance in maintaining health. The composition of the skin microbiome varies across different body sites and across individuals, being influenced by different host habits, including for instance age, sex, diet, hygiene and lifestyle. Exposure to a diverse skin microbiome is now considered to be a key component in immune regulation, and imbalances in these microbial populations are being associated with human and animal skin inflammatory disorders. We have learned that in several skin conditions, there is a significant alteration in the diversity and composition of the microbiota colonizing the skin. For instance, in human and animal patients with atopic dermatitis, dysbiosis of the skin microbiota results in lower diversity of microbial populations. Whether these altered microbial populations are the cause or the effect of inflammatory skin conditions seen in humans and animals are still under investigation, but there is no doubt that the microbiome has an important role in maintaining skin health. This review focuses on the most current studies describing the skin microbiome in humans and animals, its role in modulating the immune system, and its association with human and animal skin diseases. © 2017 ESVD and ACVD.

  8. UVA phototransduction drives early melanin synthesis in human melanocytes.

    PubMed

    Wicks, Nadine L; Chan, Jason W; Najera, Julia A; Ciriello, Jonathan M; Oancea, Elena

    2011-11-22

    Exposure of human skin to solar ultraviolet radiation (UVR), a powerful carcinogen [1] comprising ~95% ultraviolet A (UVA) and ~5% ultraviolet B (UVB) at the Earth's surface, promotes melanin synthesis in epidermal melanocytes [2, 3], which protects skin from DNA damage [4, 5]. UVB causes DNA lesions [6] that lead to transcriptional activation of melanin-producing enzymes, resulting in delayed skin pigmentation within days [7]. In contrast, UVA causes primarily oxidative damage [8] and leads to immediate pigment darkening (IPD) within minutes, via an unknown mechanism [9, 10]. No receptor protein directly mediating phototransduction in skin has been identified. Here we demonstrate that exposure of primary human epidermal melanocytes (HEMs) to UVA causes calcium mobilization and early melanin synthesis. Calcium responses were abolished by treatment with G protein or phospholipase C (PLC) inhibitors or by depletion of intracellular calcium stores. We show that the visual photopigment rhodopsin [11] is expressed in HEMs and contributes to UVR phototransduction. Upon UVR exposure, significant melanin production was measured within one hour; cellular melanin continued to increase in a retinal- and calcium-dependent manner up to 5-fold after 24 hr. Our findings identify a novel UVA-sensitive signaling pathway in melanocytes that leads to calcium mobilization and melanin synthesis and may underlie the mechanism of IPD in human skin. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. 40 CFR 157.22 - When required.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... irritation persisting for 21 days or more; (5) The pesticide is corrosive to the skin (causes tissue destruction into the dermis and/or scarring) or causes severe skin irritation (severe erythema or edema) at 72 hours; or (6) The pesticide or device has such characteristics that, based upon human toxicological data...

  10. Automation Diagnosis of Skin Disease in Humans using Dempster-Shafer Method

    NASA Astrophysics Data System (ADS)

    Khairina, Dyna Marisa; Hatta, Heliza Rahmania; Rustam; Maharani, Septya

    2018-02-01

    Skin disease is an infectious disease that is common in people of all ages. Disorders of the skin often occur because there are factors, among others, are climate, environment, shelter, unhealthy living habits, allergies and others. Skin diseases in Indonesia are mostly caused by bacterial, fungal, parasitic, and allergies. The objective of the research is to diagnose skin diseases in humans by using the method of making decision tree then performing the search by forward chaining and calculating the probability value of Dempster-Shafer method. The results of research in the form of an automated system that can resemble an expert in diagnosing skin disease accurately and can help in overcoming the problem of skin diseases.

  11. 8,12;8,20-diepoxy-8,14-secopregnane glycosides from roots of Asclepias tuberosa and their effect on proliferation of human skin fibroblasts.

    PubMed

    Warashina, Tsutomu; Umehara, Kaoru; Miyase, Toshio; Noro, Tadataka

    2011-10-01

    A pregnane glycoside fraction from the roots of Asclepias tuberosa L. caused normal human skin fibroblasts to proliferate. This fraction contained 21 pregnane glycosides whose structures were established using NMR spectroscopic analysis and chemical evidence. The aglycones of most of these compounds were identified as 8,12;8,20-diepoxy-8,14-secopregnanes, such as tuberogenin or 5,6-didehydrotuberogenin, the same aglycones as constituents of the aerial parts of this plant. Some of these compounds also caused proliferation of skin fibroblasts. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. A Role for Human Skin Mast Cells in Dengue Virus Infection and Systemic Spread.

    PubMed

    Troupin, Andrea; Shirley, Devon; Londono-Renteria, Berlin; Watson, Alan M; McHale, Cody; Hall, Alex; Hartstone-Rose, Adam; Klimstra, William B; Gomez, Gregorio; Colpitts, Tonya M

    2016-12-01

    Dengue virus (DENV) is a mosquito-borne flavivirus that causes serious global human disease and mortality. Skin immune cells are an important component of initial DENV infection and systemic spread. Here, we show that mast cells are a target of DENV in human skin and that DENV infection of skin mast cells induces degranulation and alters cytokine and growth factor expression profiles. Importantly, to our knowledge, we also demonstrate for the first time that DENV localizes within secretory granules in infected skin mast cells. In addition, DENV within extracellular granules was infectious in vitro and in vivo, trafficking through lymph to draining lymph nodes in mice. We demonstrate an important role for human skin mast cells in DENV infection and identify a novel mechanism for systemic spread of DENV infection from the initial peripheral mosquito injection site. Copyright © 2016 by The American Association of Immunologists, Inc.

  13. [Animal mite-induced epizoonoses and their significance in dermatology].

    PubMed

    Beck, W

    1996-10-01

    Different mite species may infest humans temporarily; such arthropods should be considered a possible cause of pruritic skin reactions of unclear origin. Pseudo-scabies is a common problem. This self-limiting dermatosis may often be misdiagnosed. Several mite species including Sarcoptes scabiei var. canis, Sarcoptes scabiei var. bovis, Notoedres cati, Cheyletiella yasguri, Cheyletiella blakei, Dermanyssus gallinae and Ophionyssus natricis may infest human skin, causing symptoms. Other less common animal mites, Neotrombicula autumnalis and foodstuff mites are also discussed.

  14. The relationship between skin function, barrier properties, and body-dependent factors.

    PubMed

    Dąbrowska, A K; Spano, F; Derler, S; Adlhart, C; Spencer, N D; Rossi, R M

    2018-05-01

    Skin is a multilayer interface between the body and the environment, responsible for many important functions, such as temperature regulation, water transport, sensation, and protection from external triggers. This paper provides an overview of principal factors that influence human skin and describes the diversity of skin characteristics, its causes and possible consequences. It also discusses limitations in the barrier function of the skin, describing mechanisms of absorption. There are a number of in vivo investigations focusing on the diversity of human skin characteristics with reference to barrier properties and body-dependent factors. Skin properties vary among individuals of different age, gender, ethnicity, and skin types. In addition, skin characteristics differ depending on the body site and can be influenced by the body-mass index and lifestyle. Although one of the main functions of the skin is to act as a barrier, absorption of some substances remains possible. Various factors can alter human skin properties, which can be reflected in skin function and the quality of everyday life. Skin properties and function are strongly interlinked. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. UV-B-Induced Erythema in Human Skin: The Circadian Clock Is Ticking.

    PubMed

    Sarkar, Soumyadeep; Gaddameedhi, Shobhan

    2018-02-01

    Acute exposure of skin to UV-B causes DNA damage and sunburn erythema in both mice and humans. Previous studies documented time-of-day-related differences in sunburn responses after UV-B exposure in mice. Because humans are diurnal and mice are nocturnal, the circadian rhythm in human skin was hypothesized to be in opposite phase to the rhythm in mice. A study by Nikkola et al. demonstrates that humans are more prone to sunburn erythema after evening exposure to solar UV-B radiation as compared with morning exposure. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Reconstitution of full‐thickness skin by microcolumn grafting

    PubMed Central

    Wang, Ying; Vuong, Linh N.; Fisher, Jeremy M.; Farinelli, William A.; Anderson, R. Rox

    2016-01-01

    Abstract In addition to providing a physical barrier, skin also serves a diverse range of physiological functions through different specialized resident cell types/structures, including melanocytes (pigmentation and protection against ultraviolet radiation), Langerhans cells (adaptive immunity), fibroblasts (maintaining extracellular matrix, paracrine regulation of keratinocytes), sweat glands (thermoregulation) and hair follicles (hair growth, sensation and a stem cell reservoir). Restoration of these functional elements has been a long‐standing challenge in efforts to engineer skin tissue, while autologous skin grafting is limited by the scarcity of donor site skin and morbidity caused by skin harvesting. We demonstrate an alternative approach of harvesting and then implanting μm‐scale, full‐thickness columns of human skin tissue, which can be removed from a donor site with minimal morbidity and no scarring. Fresh human skin microcolumns were used to reconstitute skin in wounds on immunodeficient mice. The restored skin recapitulated many key features of normal human skin tissue, including epidermal architecture, diverse skin cell populations, adnexal structures and sweat production in response to cholinergic stimulation. These promising preclinical results suggest that harvesting and grafting of microcolumns may be useful for reconstituting fully functional skin in human wounds, without donor site morbidity. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd. PMID:27296503

  17. Metabolically Competent Human Skin Models: Activation and Genotoxicity of Benzo[a]pyrene

    PubMed Central

    Henkler, Frank

    2013-01-01

    The polycyclic aromatic hydrocarbon (PAH) benzo[a]pyrene (BP) is metabolized into a complex pattern of BP derivatives, among which the ultimate carcinogen (+)-anti-BP-7,8-diol-9,10-epoxide (BPDE) is formed to certain extents. Skin is frequently in contact with PAHs and data on the metabolic capacity of skin tissue toward these compounds are inconclusive. We compared BP metabolism in excised human skin, commercially available in vitro 3D skin models and primary 2D skin cell cultures, and analyzed the metabolically catalyzed occurrence of seven different BP follow-up products by means of liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). All models investigated were competent to metabolize BP, and the metabolic profiles generated by ex vivo human skin and skin models were remarkably similar. Furthermore, the genotoxicity of BP and its derivatives was monitored in these models via comet assays. In a full-thickness skin, equivalent BP-mediated genotoxic stress was generated via keratinocytes. Cultured primary keratinocytes revealed a level of genotoxicity comparable with that of direct exposure to 50–100nM of BPDE. Our data demonstrate that the metabolic capacity of human skin ex vivo, as well as organotypic human 3D skin models toward BP, is sufficient to cause significant genotoxic stress and thus cutaneous bioactivation may potentially contribute to mutations that ultimately lead to skin cancer. PMID:23148024

  18. Chemically induced skin carcinogenesis: Updates in experimental models (Review)

    PubMed Central

    NEAGU, MONICA; CARUNTU, CONSTANTIN; CONSTANTIN, CAROLINA; BODA, DANIEL; ZURAC, SABINA; SPANDIDOS, DEMETRIOS A.; TSATSAKIS, ARISTIDIS M.

    2016-01-01

    Skin cancer is one of the most common malignancies affecting humans worldwide, and its incidence is rapidly increasing. The study of skin carcinogenesis is of major interest for both scientific research and clinical practice and the use of in vivo systems may facilitate the investigation of early alterations in the skin and of the mechanisms involved, and may also lead to the development of novel therapeutic strategies for skin cancer. This review outlines several aspects regarding the skin toxicity testing domain in mouse models of chemically induced skin carcinogenesis. There are important strain differences in view of the histological type, development and clinical evolution of the skin tumor, differences reported decades ago and confirmed by our hands-on experience. Using mouse models in preclinical testing is important due to the fact that, at the molecular level, common mechanisms with human cutaneous tumorigenesis are depicted. These animal models resemble human skin cancer development, in that genetic changes caused by carcinogens and pro-inflammatory cytokines, and simultaneous inflammation sustained by pro-inflammatory cytokines and chemokines favor tumor progression. Drugs and environmental conditions can be tested using these animal models. keeping in mind the differences between human and rodent skin physiology. PMID:26986013

  19. Coral Dermatitis or Infectious Dermatitis: Report of a Case of Staphylococcus Aureus Infection of Skin After Scuba Diving

    PubMed Central

    2018-01-01

    Skin lesion which develops after deep sea diving is termed as coral dermatitis. The corals are known to produce a toxic substance which when comes in to contact with human skin may elicit hypersensitive reactions. Most previous reports highlight the allergic reactions caused by deep sea diving. This is a rare case of staphylococcal skin infection in a second-year medical student caused by Staphylococcus aureus; he reported a history of deep sea diving before being presented to the hospital with skin rashes. This case highlights the importance of considering infectious aetiology in cases of coral dermatitis. PMID:29666774

  20. Nutraceuticals for Skin Care: A Comprehensive Review of Human Clinical Studies

    PubMed Central

    Pérez-Sánchez, Almudena; Micol, Vicente

    2018-01-01

    The skin is the body’s largest organ, it participates in sensitivity and offers protection against microorganisms, chemicals and ultraviolet (UV) radiation. Consequently, the skin may suffer alterations such as photo-ageing, immune dysfunction and inflammation which may significantly affect human health. Nutraceuticals represent a promising strategy for preventing, delaying, or minimising premature ageing of the skin and also to alleviate certain skin disorders. Among them, bioactive peptides and oligosaccharides, plant polyphenols, carotenoids, vitamins and polyunsaturated fatty acids are the most widely used ingredients. Supplementation with these products has shown evidence of having an effect on the signs of ageing and protection against UV radiation ageing in several human trials. In this review, the most relevant human studies on skin nutraceuticals are evaluated and the statistical resolution, biological relevance of their results, and, the trial protocols are discussed. In conclusion, quality and rigorousness of the trials must be improved to build credible scientific evidence for skin nutraceuticals and to establish a cause-effect relationship between the ingredients the beneficial effects for the skin. PMID:29587342

  1. In vivo confocal Raman spectroscopic analysis of the effects of IR radiation in the stratum corneum of human skin (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rajasekaran, Ramu; Bergamo Lopes, Monica; Magrini, Taciana D.; Figueira Lopes Cançado, Ana Clara; Abrahao Martin, Airton

    2017-02-01

    Stratum Corneum is the outer covering of the body, which serves as a barrier to infection. The composition of the skin changes withexternal environmental factors, such as temperature, sun irradiation, air pollutants, chemical hazards, as well as other factors.Solar radiation,especially IR radiation is being used as medicine for wound healing processes, in cosmetology, in physiotherapy and warming of muscles. Also, it was reported that the IR radiation produces free radicals and the excess production of free radicals causes irreversible damages. It has been reported that heat may be transmitted by IR radiation, which results in raised skin temperature and the chronic heat exposure of human skin may cause alterations. Erythema igne is one such disease known to be caused by chronic heat exposure. Many techniques have been adopted for monitoring the changes in the skin, which includes the tape stripping and biopsy as the primary methodology. However, these in vitro techniques are invasive, time consuming, and may not provide the actual information as in in vivo conditions. Confocal Raman spectroscopy,which is non-invasive and real time was considered as a potential tool for the in vivo analysis of the distribution and characteristics of different metabolic conditions and their variations of the skin. In this regard, we aimed at in vivo characterization of the IR induced changes in the stratum corneum of human volunteers. The results of Raman spectral signatures with respect to the control and IR exposed skin will be discussed.

  2. Thermal analysis of epidermal electronic devices integrated with human skin considering the effects of interfacial thermal resistance

    NASA Astrophysics Data System (ADS)

    Li, Yuhang; Zhang, Jianpeng; Xing, Yufeng; Song, Jizhou

    2018-05-01

    Epidermal electronic devices (EEDs) have similar mechanical properties as those of human skin such that they can be integrated with human skin for potential applications in monitoring of human vital signs for diagnostic, therapeutic or surgical functions. Thermal management is critical for EEDs in these applications since excessive heating may cause discomfort. Comprehensive analytical studies, finite element analysis and experiments are carried out to study the effects of interfacial thermal resistance between EEDs and human skin on thermal properties of the EED/skin system in this paper. The coupling between the Fourier heat transfer in EEDs and the bio-heat transfer in human skin is accounted in the analytical model based on the transfer matrix method to give accurate predictions on temperatures, which agree well with finite element analysis and experimental measurements. It is shown that the maximum temperature increase of the EED for the case of imperfect bonding between EED and skin is much higher than that of perfect bonding. These results may help the design of EEDs in bi-integrated applications and suggest a valuable route to evaluate the bonding condition between EEDs and biological tissues.

  3. 12-OH-nevirapine sulfate, formed in the skin, is responsible for nevirapine-induced skin rash.

    PubMed

    Sharma, Amy M; Novalen, Maria; Tanino, Tadatoshi; Uetrecht, Jack P

    2013-05-20

    Nevirapine (NVP) treatment is associated with a significant incidence of skin rash in humans, and it also causes a similar immune-mediated skin rash in Brown Norway (BN) rats. We have shown that the sulfate of a major oxidative metabolite, 12-OH-NVP, covalently binds in the skin. The fact that the sulfate metabolite is responsible for covalent binding in the skin does not prove that it is responsible for the rash. We used various inhibitors of sulfation to test whether this reactive sulfate is responsible for the skin rash. Salicylamide (SA), which depletes 3'-phosphoadenosine-5'-phosphosulfate (PAPS) in the liver, significantly decreased 12-OH-NVP sulfate in the blood, but it did not prevent covalent binding in the skin or the rash. Topical application of 1-phenyl-1-hexanol, a sulfotransferase inhibitor, prevented covalent binding in the skin as well as the rash, but only where it was applied. In vitro incubations of 12-OH-NVP with PAPS and cytosolic fractions from the skin of rats or from human skin also led to covalent binding that was inhibited by 1-phenyl-1-hexanol. Incubation of 12-OH-NVP with PAPS and sulfotransferase 1A1*1, a human isoform that is present in the skin, also led to covalent binding, and this binding was also inhibited by 1-phenyl-1-hexanol. We conclude that salicylamide did not deplete PAPS in the skin and was unable to prevent covalent binding or the rash, while topical 1-phenyl-1-hexanol inhibited sulfation of 12-OH-NVP in the skin and did prevent covalent binding and the rash. These results provide definitive evidence that 12-OH-NVP sulfate formed in skin is responsible for NVP-induced skin rashes. Sulfotransferase is one of the few metabolic enzymes with significant activity in the skin, and it may be responsible for the bioactivation of other drugs that cause skin rashes.

  4. Determining the Location of DNA Modification and Mutation Caused by UVB Light in Skin Cancer

    DTIC Science & Technology

    2013-09-01

    we obtain cleavage patterns consistent with the administered UV dosage and that sequencing libraries generated for both yeast and human cells show...understanding the mutations they cause. 15. SUBJECT TERMS UV DNA modification, HeLa cells, Skin Cancer 16. SECURITY CLASSIFICATION OF: 17...of mutations that are caused by UV light in cells and correlate them to modification frequencies. Understanding the initial chemical changes

  5. Length Is Associated with Pain: Jellyfish with Painful Sting Have Longer Nematocyst Tubules than Harmless Jellyfish.

    PubMed

    Kitatani, Ryuju; Yamada, Mayu; Kamio, Michiya; Nagai, Hiroshi

    2015-01-01

    A large number of humans are stung by jellyfish all over the world. The stings cause acute pain followed by persistent pain and local inflammation. Harmful jellyfish species typically cause strong pain, whereas harmless jellyfish cause subtle or no pain. Jellyfish sting humans by injecting a tubule, contained in the nematocyst, the stinging organ of jellyfish. The tubule penetrates into the skin leading to venom injection. The detailed morphology of the nematocyst tubule and molecular structure of the venom in the nematocyst has been reported; however, the mechanism responsible for the difference in pain that is caused by harmful and harmless jellyfish sting has not yet been explored or explained. Therefore, we hypothesized that differences in the length of the nematocyst tubule leads to different degrees of epithelial damage. The initial acute pain might be generated by penetration of the tubule, which stimulates pain receptor neurons, whilst persistent pain might be caused by injection of venom into the epithelium. To test this hypothesis we compared the lengths of discharged nematocyst tubules from harmful and harmless jellyfish species and evaluated their ability to penetrate human skin. The results showed that the harmful jellyfish species, Chrysaora pacifica, Carybdea brevipedalia, and Chironex yamaguchii, causing moderate to severe pain, have nematocyst tubules longer than 200 μm, compared with a jellyfish species that cause little or no pain, Aurelia aurita. The majority of the tubules of harmful jellyfishes, C. yamaguchii and C. brevipedalia, were sufficiently long to penetrate the human epidermis and physically stimulate the free nerve endings of Aδ pain receptor fibers around plexuses to cause acute pain and inject the venom into the human skin epithelium to cause persistent pain and inflammation.

  6. Windowless ultrasound photoacoustic cell for in vivo mid-IR spectroscopy of human epidermis: Low interference by changes of air pressure, temperature, and humidity caused by skin contact opens the possibility for a non-invasive monitoring of glucose in the interstitial fluid

    NASA Astrophysics Data System (ADS)

    Pleitez, Miguel A.; Lieblein, Tobias; Bauer, Alexander; Hertzberg, Otto; von Lilienfeld-Toal, Hermann; Mäntele, Werner

    2013-08-01

    The application of a novel open, windowless cell for the photoacoustic infrared spectroscopy of human skin is described. This windowless cavity is tuned for optimum performance in the ultrasound range between 50 and 60 kHz. In combination with an external cavity tunable quantum cascade laser emitting in the range from ˜1000 cm-1 to 1245 cm-1, this approach leads to high signal-to-noise-ratio (SNR) for mid-infrared spectra of human skin. This opens the possibility to measure in situ the absorption spectrum of human epidermis in the mid-infrared region at high SNR in a few (˜5) seconds. Rapid measurement of skin spectra greatly reduces artifacts arising from movements. As compared to closed resonance cells, the windowless cell exhibits the advantage that the influence of air pressure variations, temperature changes, and air humidity buildup that are caused by the contact of the cell to the skin surface can be minimized. We demonstrate here that this approach can be used for continuous and non-invasive monitoring of the glucose level in human epidermis, and thus may form the basis for a non-invasive monitoring of the glucose level for diabetes patients.

  7. Reconstitution of full-thickness skin by microcolumn grafting.

    PubMed

    Tam, Joshua; Wang, Ying; Vuong, Linh N; Fisher, Jeremy M; Farinelli, William A; Anderson, R Rox

    2017-10-01

    In addition to providing a physical barrier, skin also serves a diverse range of physiological functions through different specialized resident cell types/structures, including melanocytes (pigmentation and protection against ultraviolet radiation), Langerhans cells (adaptive immunity), fibroblasts (maintaining extracellular matrix, paracrine regulation of keratinocytes), sweat glands (thermoregulation) and hair follicles (hair growth, sensation and a stem cell reservoir). Restoration of these functional elements has been a long-standing challenge in efforts to engineer skin tissue, while autologous skin grafting is limited by the scarcity of donor site skin and morbidity caused by skin harvesting. We demonstrate an alternative approach of harvesting and then implanting μm-scale, full-thickness columns of human skin tissue, which can be removed from a donor site with minimal morbidity and no scarring. Fresh human skin microcolumns were used to reconstitute skin in wounds on immunodeficient mice. The restored skin recapitulated many key features of normal human skin tissue, including epidermal architecture, diverse skin cell populations, adnexal structures and sweat production in response to cholinergic stimulation. These promising preclinical results suggest that harvesting and grafting of microcolumns may be useful for reconstituting fully functional skin in human wounds, without donor site morbidity. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd.

  8. RNase 7 participates in cutaneous innate control of Corynebacterium amycolatum.

    PubMed

    Walter, Stephanie; Rademacher, Franziska; Kobinger, Nicole; Simanski, Maren; Gläser, Regine; Harder, Jürgen

    2017-10-24

    Nondiphtheria corynebacteria are typical members of the skin microbiota. However, in addition to being harmless inhabitants of healthy skin commensal skin-derived corynebacteria such as C. amycolatum occasionally also cause infections. This suggests that human skin must harbor adequate mechanisms to control the growth of corynebacteria on the skin surface. Here we show that keratinocytes are able to detect the presence of C. amycolatum leading to the epidermal growth factor receptor (EGFR)-dependent induction of the antimicrobial protein RNase 7. C. amycolatum-mediated induction of RNase 7 was also confirmed in a human 3D skin equivalent. The functional relevance of these findings was demonstrated by potent antimicrobial activity of RNase 7 against C. amycolatum and C. xerosis. In addition, the capacity of human stratum corneum to restrict the growth of C. amycolatum was significantly attenuated when RNase 7 was inactivated by a specific RNase 7-neutralizing antibody. Taken together, the interaction of RNase 7 with C. amycolatum indicates that RNase 7 may function as important effector molecule to control the growth of corynebacteria on human skin.

  9. Generation of 3D Skin Equivalents Fully Reconstituted from Human Induced Pluripotent Stem Cells (iPSCs)

    PubMed Central

    Guo, Zongyou; Liu, Liang; Higgins, Claire A.; Christiano, Angela M.

    2013-01-01

    Recent generation of patient-specific induced pluripotent stem cells (PS-iPSCs) provides significant advantages for cell- and gene-based therapy. Establishment of iPSC-based therapy for skin diseases requires efficient methodology for differentiating iPSCs into both keratinocytes and fibroblasts, the major cellular components of the skin, as well as the reconstruction of skin structures using these iPSC-derived skin components. We previously reported generation of keratinocytes from human iPSCs for use in the treatment of recessive dystrophic epidermolysis bullosa (RDEB) caused by mutations in the COL7A1 gene. Here, we developed a protocol for differentiating iPSCs into dermal fibroblasts, which also produce type VII collagen and therefore also have the potential to treat RDEB. Moreover, we generated in vitro 3D skin equivalents composed exclusively human iPSC-derived keratinocytes and fibroblasts for disease models and regenerative therapies for skin diseases, first demonstrating that iPSCs can provide the basis for modeling a human organ derived entirely from two different types of iPSC-derived cells. PMID:24147053

  10. Two-wavelength Raman detector for noninvasive measurements of carotenes and lycopene in human skin

    NASA Astrophysics Data System (ADS)

    Ermakov, Igor V.; Ermakova, Maia R.; Gellermann, Werner

    2005-04-01

    Carotenoids are an important part of the antioxidant system in human skin. Carotenoid molecules, provided by fruits and vegetables, are potent free radical quenchers that accumulate in the body. If not balanced by carotenoids and other antioxidants, free radicals may cause premature skin aging, oxidative cell damage, and even skin cancers. As carotenoids depletion may predispose a person to cancer or other disease, rapid and noninvasive measurement of carotenoid level in skin may be of preventive or diagnostic help. At the very least, such measurement can be used to obtain a biomarker for healthy levels of fruit and vegetable consumption. Recently we have developed noninvasive optical technique based on Raman spectroscopy. In this paper we describe compact optical detector for clinical applications that utilizes two-wavelength excitation. It selectively measures the two most prominent skin carotenoids found in the human skin, lycopene and carotenes. According to the medical literature, these two compounds may play different roles in the human body and be part of different tissue defense mechanisms. Dual-wavelength Raman measurements reveal significant differences in the carotenoid composition of different subjects.

  11. Enhancement of human skin facial revitalization by moringa leaf extract cream.

    PubMed

    Ali, Atif; Akhtar, Naveed; Chowdhary, Farzana

    2014-05-01

    Solar ultraviolet exposure is the main cause of skin damage by initiation of reactive oxygen species (ROS) leading to skin collagen imperfection and eventually skin roughness. This can be reduced by proper revitalization of skin enhancing younger and healthier appearance. To evaluate the skin facial revitalization effect of a cream formulation containing the Moringa oleifera leaf extract on humans. Active cream containing 3% of the concentrated extract of moringa leaves was developed by entrapping in the inner aqueous phase of cream. Base contained no extract. Skin revitalizing parameters, i.e. surface, volume, texture parameters and surface evaluation of the living skin (SELS) were assessed comparatively after application of the base and active cream on human face using Visioscan(®) VC 98 for a period of 3 months. Surface values were increased by the base and decreased by the active cream. Effects produced for the base and active cream were significant and insignificant, respectively, as observed in the case of surface. Unlike the base, the active cream showed significant effects on skin volume, texture parameters (energy, variance and contrast) and SELS, SEr (skin roughness), SEsc (skin scaliness), SEsm (skin smoothness), and SEw (skin wrinkles) parameters. The results suggested that moringa cream enhances skin revitalization effect and supports anti-aging skin effects.

  12. Enhancement of human skin facial revitalization by moringa leaf extract cream

    PubMed Central

    Akhtar, Naveed; Chowdhary, Farzana

    2014-01-01

    Introduction Solar ultraviolet exposure is the main cause of skin damage by initiation of reactive oxygen species (ROS) leading to skin collagen imperfection and eventually skin roughness. This can be reduced by proper revitalization of skin enhancing younger and healthier appearance. Aim To evaluate the skin facial revitalization effect of a cream formulation containing the Moringa oleifera leaf extract on humans. Material and methods Active cream containing 3% of the concentrated extract of moringa leaves was developed by entrapping in the inner aqueous phase of cream. Base contained no extract. Skin revitalizing parameters, i.e. surface, volume, texture parameters and surface evaluation of the living skin (SELS) were assessed comparatively after application of the base and active cream on human face using Visioscan® VC 98 for a period of 3 months. Results Surface values were increased by the base and decreased by the active cream. Effects produced for the base and active cream were significant and insignificant, respectively, as observed in the case of surface. Unlike the base, the active cream showed significant effects on skin volume, texture parameters (energy, variance and contrast) and SELS, SEr (skin roughness), SEsc (skin scaliness), SEsm (skin smoothness), and SEw (skin wrinkles) parameters. Conclusions The results suggested that moringa cream enhances skin revitalization effect and supports anti-aging skin effects. PMID:25097471

  13. 40 CFR 721.1150 - Substituted polyglycidyl ben-zena-mine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... following information: WARNING: CONTACT WITH SKIN AND EYES IS HARMFUL —Severe skin and eye irritant.... They have also caused allergic reactions in humans. —Prevent all contact with skin, eyes, and clothing... water. FIRST AID: —In case of eye contact, immediately flush with plenty of water and get immediate...

  14. 21 CFR 700.16 - Use of aerosol cosmetic products containing zirconium.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... indicates that certain zirconium compounds have caused human skin granulomas and toxic effects in the lungs... deep portions of the lungs of users. The lung is an organ, like skin, subject to the development of granulomas. Unlike the skin, the lung will not reveal the presence of granulomatous changes until they have...

  15. Molecular basis of human body odour formation: insights deduced from corynebacterial genome sequences.

    PubMed

    Barzantny, H; Brune, I; Tauch, A

    2012-02-01

    During the past few decades, there has been an increased interest in the essential role of commensal skin bacteria in human body odour formation. It is now generally accepted that skin bacteria cause body odour by biotransformation of sweat components secreted in the human axillae. Especially, aerobic corynebacteria have been shown to contribute strongly to axillary malodour, whereas other human skin residents seem to have little influence. Analysis of odoriferous sweat components has shown that the major odour-causing substances in human sweat include steroid derivatives, short volatile branched-chain fatty acids and sulphanylalkanols. In this mini-review, we describe the molecular basis of the four most extensively studied routes of human body odour formation, while focusing on the underlying enzymatic processes. Considering the previously reported role of β-oxidation in odour formation, we analysed the genetic repertoire of eight Corynebacterium species concerning fatty acid metabolism. We particularly focused on the metabolic abilities of the lipophilic axillary isolate Corynebacterium jeikeium K411. © 2011 The Authors. ICS © 2011 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  16. The barrier function of organotypic non-melanoma skin cancer models.

    PubMed

    Zoschke, Christian; Ulrich, Martina; Sochorová, Michaela; Wolff, Christopher; Vávrová, Kateřina; Ma, Nan; Ulrich, Claas; Brandner, Johanna M; Schäfer-Korting, Monika

    2016-07-10

    Non-melanoma skin cancer (NMSC) is the most frequent human cancer with continuously rising incidences worldwide. Herein, we investigated the molecular basis for the impaired skin barrier function of organotypic NMSC models. We unraveled disturbed epidermal differentiation by reflectance confocal microscopy and histopathological evaluation. While the presence of claudin-4 and occludin were distinctly reduced, zonula occludens protein-1 was more wide-spread, and claudin-1 was heterogeneously distributed within the NMSC models compared with normal reconstructed human skin. Moreover, the cancer altered stratum corneum lipid packing and profile with decreased cholesterol content, increased phospholipid amount, and altered ceramide subclasses. These alterations contributed to increased surface pH and to 1.5 to 2.6-fold enhanced caffeine permeability of the NMSC models. Three topical applications of ingenol mebutate gel (0.015%) caused abundant epidermal cell necrosis, decreased Ki-67 indices, and increased lactate dehydrogenase activity. Taken together, our study provides new biological insights into the microenvironment of organotypic NMSC models, improves the understanding of the disease model by revealing causes for impaired skin barrier function in NMSC models at the molecular level, and fosters human cell-based approaches in preclinical drug evaluation. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The phosphatase inhibitor menadione (vitamin K3) protects cells from EGFR inhibition by erlotinib and cetuximab.

    PubMed

    Perez-Soler, Roman; Zou, Yiyu; Li, Tianhong; Ling, Yi He

    2011-11-01

    Skin toxicity is the main side effect of epidermal growth factor receptor (EGFR) inhibitors, often leading to dose reduction or discontinuation. We hypothesized that phosphatase inhibition in the skin keratinocytes may prevent receptor dephosphorylation caused by EGFR inhibitors and be used as a new potential strategy for the prevention or treatment of this side effect. Menadione (Vitamin K3) was used as the prototype compound to test our hypothesis. HaCat human skin keratinocyte cells and A431 human squamous carcinoma cells were used. EGFR inhibition was measured by Western blotting and immunofluorescence. Phosphatase inhibition and reactive oxygen species (ROS) generation were measured by standard ELISA and fluorescence assays. Menadione caused significant and reversible EGFR activation in a dose-dependent manner starting at nontoxic concentrations. EGFR activation by menadione was associated with reversible protein tyrosine phosphatase inhibition, which seemed to be mediated by ROS generation as exposure to antioxidants prevented both menadione-induced ROS generation and phosphatase inhibition. Short-term coincubation of cells with nontoxic concentrations of menadione and the EGFR inhibitors erlotinib or cetuximab prevented EGFR dephosphorylation. Seventy-two-hour coincubation of cells with the highest nontoxic concentration of menadione and erlotinib provided for a fourfold cell growth inhibitory protection in HaCat human keratinocyte cells. Menadione at nontoxic concentrations causes EGFR activation and prevents EGFR dephosphorylation by erlotinib and cetuximab. This effect seems to be mediated by ROS generation and secondary phosphatase inhibition. Mild oxidative stress in skin keratinocytes by topical menadione may protect the skin from the toxicity secondary to EGFR inhibitors without causing cytotoxicity. ©2011 AACR

  18. Airborne polycyclic aromatic hydrocarbons trigger human skin cells aging through aryl hydrocarbon receptor.

    PubMed

    Qiao, Yuan; Li, Qiang; Du, Hong-Yang; Wang, Qiao-Wei; Huang, Ye; Liu, Wei

    2017-07-01

    Accumulating evidence suggests that polycyclic aromatic hydrocarbons (PAH) which adsorbed on the surface of ambient air particulate matters (PM), are the major toxic compound to cause cardiovascular and respiratory diseases, even cancer. However, its detrimental effects on human skin cell remain unclear. Here, we demonstrated that SRM1649b, a reference urban dust material of PAH, triggers human skin cells aging through cell cycle arrest, cell growth inhibition and apoptosis. Principally, SRM1649b facilitated Aryl hydrocarbon receptor (AhR) translocated into nucleus, subsequently activated ERK/MAPK signaling pathway, and upregulated aging-related genes expression. Most important, we found that AhR antagonist efficiently revert the aging of skin cells. Thus our novel findings firstly revealed the mechanism of skin aging under PAH contamination and provided potential strategy for clinical application. Copyright © 2017. Published by Elsevier Inc.

  19. Scytalidium dimidiatum and Lecythophora hoffmannii: unusual causes of fungal infections in a patient with AIDS.

    PubMed Central

    Marriott, D J; Wong, K H; Aznar, E; Harkness, J L; Cooper, D A; Muir, D

    1997-01-01

    Immunocompromised patients are susceptible to infections by fungi that seldom cause disease in humans. We describe a human immunodeficiency virus-infected patient who had simultaneous infections with two fungi which are rare causes of serious infection: Lecythophora hoffmannii, causing chronic sinusitis, and Scytalidium dimidiatum, causing skin lesions, lymphangitis, and lymphadenitis. The clinical and pathologic findings are discussed. PMID:9350765

  20. An Assessment of Normalized Difference Skin Index Robustness in Aquatic Environments

    DTIC Science & Technology

    2014-03-27

    Index NDSI Normalized Difference Skin Index NDVI Normalized Difference Vegetation Index NIR Near-Infrared SAR Search and Rescue SERG Sensors... Vegetation and water-bearing objects with high scatter tend to have NDSI values similar to human skin , potentially causing false positives in certain...AN ASSESSMENT OF NORMALIZED DIFFERENCE SKIN INDEX ROBUSTNESS IN AQUATIC ENVIRONMENTS THESIS Alice W. Chan, First Lieutenant, USAF AFIT-ENG-14-M-17

  1. The Nrf2-inducers tanshinone I and dihydrotanshinone protect human skin cells and reconstructed human skin against solar simulated UV☆

    PubMed Central

    Tao, Shasha; Justiniano, Rebecca; Zhang, Donna D.; Wondrak, Georg T.

    2013-01-01

    Exposure to solar ultraviolet (UV) radiation is a causative factor in skin photocarcinogenesis and photoaging, and an urgent need exists for improved strategies for skin photoprotection. The redox-sensitive transcription factor Nrf2 (nuclear factor-E2-related factor 2), a master regulator of the cellular antioxidant defense against environmental electrophilic insult, has recently emerged as an important determinant of cutaneous damage from solar UV, and the concept of pharmacological activation of Nrf2 has attracted considerable attention as a novel approach to skin photoprotection. In this study, we examined feasibility of using tanshinones, a novel class of phenanthrenequinone-based cytoprotective Nrf2 inducers derived from the medicinal plant Salvia miltiorrhiza, for protection of cultured human skin cells and reconstructed human skin against solar simulated UV. Using a dual luciferase reporter assay in human Hs27 dermal fibroblasts pronounced transcriptional activation of Nrf2 by four major tanshinones [tanshinone I (T-I), dihydrotanshinone (DHT), tanshinone IIA (T-II-A) and cryptotanshinone (CT)] was detected. In fibroblasts, the more potent tanshinones T-I and DHT caused a significant increase in Nrf2 protein half-life via blockage of ubiquitination, ultimately resulting in upregulated expression of cytoprotective Nrf2 target genes (GCLC, NQO1) with the elevation of cellular glutathione levels. Similar tanshinone-induced changes were also observed in HaCaT keratinocytes. T-I and DHT pretreatment caused significant suppression of skin cell death induced by solar simulated UV and riboflavin-sensitized UVA. Moreover, feasibility of tanshinone-based cutaneous photoprotection was tested employing a human skin reconstruct exposed to solar simulated UV (80 mJ/cm2 UVB; 1.53 J/cm2 UVA). The occurrence of markers of epidermal solar insult (cleaved procaspase 3, pycnotic nuclei, eosinophilic cytoplasm, acellular cavities) was significantly attenuated in DHT-treated reconstructs that displayed increased immunohistochemical staining for Nrf2 and γ-GCS together with the elevation of total glutathione levels. Taken together, our data suggest the feasibility of achieving tanshinone-based cutaneous Nrf2-activation and photoprotection. PMID:24273736

  2. Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus.

    PubMed

    Harris, Reid N; Brucker, Robert M; Walke, Jenifer B; Becker, Matthew H; Schwantes, Christian R; Flaherty, Devon C; Lam, Brianna A; Woodhams, Douglas C; Briggs, Cheryl J; Vredenburg, Vance T; Minbiole, Kevin P C

    2009-07-01

    Emerging infectious diseases threaten human and wildlife populations. Altered ecological interactions between mutualistic microbes and hosts can result in disease, but an understanding of interactions between host, microbes and disease-causing organisms may lead to management strategies to affect disease outcomes. Many amphibian species in relatively pristine habitats are experiencing dramatic population declines and extinctions due to the skin disease chytridiomycosis, which is caused by the chytrid fungus Batrachochytrium dendrobatidis. Using a randomized, replicated experiment, we show that adding an antifungal bacterial species, Janthinobacterium lividum, found on several species of amphibians to the skins of the frog Rana muscosa prevented morbidity and mortality caused by the pathogen. The bacterial species produces the anti-chytrid metabolite violacein, which was found in much higher concentrations on frog skins in the treatments where J. lividum was added. Our results show that cutaneous microbes are a part of amphibians' innate immune system, the microbial community structure on frog skins is a determinant of disease outcome and altering microbial interactions on frog skins can prevent a lethal disease outcome. A bioaugmentation strategy may be an effective management tool to control chytridiomycosis in amphibian survival assurance colonies and in nature.

  3. In vivo investigation of the efficiency of a nanoparticle-emulsion containing polihexanide on the human skin.

    PubMed

    Ulmer, M; Patzelt, A; Vergou, T; Richter, H; Müller, G; Kramer, A; Sterry, W; Czaika, V; Lademann, J

    2013-06-01

    Skin antisepsis is a key element for the prevention of surgical site infections, as well as for infections after injection and punctures. Recent investigations have shown that about 25% of the resident bacterial flora of the human skin resides within the hair follicle. These findings strongly suggest that the skin appendages play the role of a bacterial reservoir. The bacteria within the hair follicles therefore may be the cause of endogenous germ repopulation after skin antisepsis, highlighting the need for new antiseptic formulations that can sufficiently penetrate into the hair follicles. Various experiments have found that nano-sized particles as well as oil-in-water emulsions are efficient carriers for substances into the hair follicles. In the present study, we investigated the in vivo antiseptic potential of the particle-associated and aqueous polihexanide on the human skin by monitoring bacterial growth after antisepsis over a period of 2.5h. The experiments suggest that the use of a particle-bound antiseptic can achieve a better and longer lasting antisepsis of the human skin than in non-particulate form. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Human Atopic Dermatitis Skin-derived T Cells can Induce a Reaction in Mouse Keratinocytes in vivo.

    PubMed

    Martel, B C; Blom, L; Dyring-Andersen, B; Skov, L; Thestrup-Pedersen, K; Skov, S; Skak, K; Poulsen, L K

    2015-08-01

    In atopic dermatitis (AD), the inflammatory response between skin-infiltrating T cells and keratinocytes is fundamental to the development of chronic lesional eczema. The aim of this study was to investigate whether skin-derived T cells from AD patients could induce an inflammatory response in mice through keratinocyte activation and consequently cause the development of eczematous lesions. Punch biopsies of the lesional skin from AD patients were used to establish skin-derived T cell cultures, which were transferred to NOD.Cg-Prkd(scid) Il2rg(tm1Sug) /JicTac (NOG) mice. We found that the subcutaneous injection of the human AD skin-derived T cells resulted in the migration of the human T cells from subcutis to the papillary dermis followed by the development of erythema and oedema in the mouse skin. Furthermore, the human T cells induced a transient proliferative response in the mouse keratinocytes shown as increased numbers of Ki-67(+) keratinocytes and increased epidermal thickness. Out of six established AD skin-derived T cell cultures, two were superior at inducing a skin reaction in the mice, and these cultures were found to contain >10% CCR10(+) T cells compared to <2% for the other cultures. In comparison, blood-derived in vitro-differentiated Th2 cells only induced a weak response in a few of the mice. Thus, we conclude that human AD skin-derived T cells can induce a reaction in the mouse skin through the induction of a proliferative response in the mouse keratinocytes. © 2015 The Foundation for the Scandinavian Journal of Immunology.

  5. Antimelanogenic Efficacy of Melasolv (3,4,5-Trimethoxycinnamate Thymol Ester) in Melanocytes and Three-Dimensional Human Skin Equivalent.

    PubMed

    Lee, John Hwan; Lee, Eun-Soo; Bae, Il-Hong; Hwang, Jeong-Ah; Kim, Se-Hwa; Kim, Dae-Yong; Park, Nok-Hyun; Rho, Ho Sik; Kim, Yong Jin; Oh, Seong-Geun; Lee, Chang Seok

    2017-01-01

    Excessive melanogenesis often causes unaesthetic hyperpigmentation. In a previous report, our group introduced a newly synthesized depigmentary agent, Melasolv™ (3,4,5-trimethoxycinnamate thymol ester). In this study, we demonstrated the significant whitening efficacy of Melasolv using various melanocytes and human skin equivalents as in vitro experimental systems. The depigmentary effect of Melasolv was tested in melan-a cells (immortalized normal murine melanocytes), α-melanocyte-stimulating hormone (α-MSH)-stimulated B16 murine melanoma cells, primary normal human melanocytes (NHMs), and human skin equivalent (MelanoDerm). The whitening efficacy of Melasolv was further demonstrated by photography, time-lapse microscopy, Fontana-Masson (F&M) staining, and 2-photon microscopy. Melasolv significantly inhibited melanogenesis in the melan-a and α-MSH-stimulated B16 cells. In human systems, Melasolv also clearly showed a whitening effect in NHMs and human skin equivalent, reflecting a decrease in melanin content. F&M staining and 2-photon microscopy revealed that Melasolv suppressed melanin transfer into multiple epidermal layers from melanocytes as well as melanin synthesis in human skin equivalent. Our study showed that Melasolv clearly exerts a whitening effect on various melanocytes and human skin equivalent. These results suggest the possibility that Melasolv can be used as a depigmentary agent to treat pigmentary disorders as well as an active ingredient in cosmetics to increase whitening efficacy. © 2017 S. Karger AG, Basel.

  6. Observation of temperature trace, induced by changing of temperature inside the human body, on the human body skin using commercially available IR camera

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2015-05-01

    As it is well-known, application of the passive THz camera for the security problems is very promising way. It allows seeing concealed object without contact with a person and this camera is non-dangerous for a person. In previous papers, we demonstrate new possibility of the passive THz camera using for a temperature difference observing on the human skin if this difference is caused by different temperatures inside the body. For proof of validity of our statement we make the similar physical experiment using the IR camera. We show a possibility of temperature trace on human body skin, caused by changing of temperature inside the human body due to water drinking. We use as a computer code that is available for treatment of images captured by commercially available IR camera, manufactured by Flir Corp., as well as our developed computer code for computer processing of these images. Using both codes we demonstrate clearly changing of human body skin temperature induced by water drinking. Shown phenomena are very important for the detection of forbidden samples and substances concealed inside the human body using non-destructive control without X-rays using. Early we have demonstrated such possibility using THz radiation. Carried out experiments can be used for counter-terrorism problem solving. We developed original filters for computer processing of images captured by IR cameras. Their applications for computer processing of images results in a temperature resolution enhancing of cameras.

  7. Silibinin inhibits ultraviolet B radiation-induced DNA-damage and apoptosis by enhancing interleukin-12 expression in JB6 cells and SKH-1 hairless mouse skin.

    PubMed

    Narayanapillai, Sreekanth; Agarwal, Chapla; Deep, Gagan; Agarwal, Rajesh

    2014-06-01

    Recent studies have demonstrated silibinin efficacy against ultraviolet B (UVB)-induced skin carcinogenesis via different mechanisms in cell lines and animal models; however, its role in regulating interleukin-12 (IL-12), an immunomodulatory cytokine that reduces UVB-induced DNA damage and apoptosis, is not known. Here, we report that UVB irradiation causes caspase 3 and PARP cleavage and apoptosis, and addition of recombinant IL-12 or silibinin immediately after UVB significantly protects UVB-induced apoptosis in JB6 cells. IL-12 antibody-mediated blocking of IL-12 activity compromised the protective effects of both IL-12 and silibinin. Both silibinin and IL-12 also accelerated the repair of UVB-caused cyclobutane-pyrimidine dimers (CPDs) in JB6 cells. Additional studies confirmed that indeed silibinin causes a significant increase in IL-12 levels in UVB-irradiated JB6 cells as well as in mouse skin epidermis, and that similar to cell-culture findings, silibinin topical application immediately after UVB exposure causes a strong protection against UVB-induced TUNEL positive cells in epidermis possibly through a significantly accelerated repair of UVB-caused CPDs. Together, these findings for the first time provide an important insight regarding the pharmacological mechanism wherein silibinin induces endogenous IL-12 in its efficacy against UVB-caused skin damages. In view of the fact that an enhanced endogenous IL-12 level could effectively remove UVB-caused DNA damage and associated skin cancer, our findings suggest that the use of silibinin in UVB-damaged human skin would also be a practical and translational strategy to manage solar radiation-caused skin damages as well as skin cancer. © 2013 Wiley Periodicals, Inc.

  8. Pistacia lentiscus fruit oil reduces oxidative stress in human skin explants caused by hydrogen peroxide.

    PubMed

    Ben Khedir, S; Moalla, D; Jardak, N; Mzid, M; Sahnoun, Z; Rebai, T

    2016-10-01

    We investigated the efficacy of Pistacia lentiscus fruit oil (PLFO) for protecting human skin from damage due to oxidative stress. PLFO contains natural antioxidants including polyphenols, sterols and tocopherols. We compared the antioxidant potential of PLFO with extra virgin olive oil (EVOO). Explants of healthy adult human skin were grown in culture with either PLFO or EVOO before adding hydrogen peroxide (H 2 O 2 ). We also used cultured skin explants to investigate the effects of PLFO on lipid oxidation and depletion of endogenous antioxidant defense enzymes including glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) one day after 2 h exposure to H 2 O 2 . We found that PLFO scavenged radicals and protected skin against oxidative injury. PLFO exhibited greater antioxidant and free radical scavenging activity than EVOO. Skin explants treated with PLFO inhibited H 2 O 2 induced MDA formation by inhibition of lipid oxidation. In addition, the oil inhibited H 2 O 2 induced depletion of antioxidant defense enzymes including GPx, SOD and CAT. We found that treatment with PLFO repaired skin damage owing to its antioxidant properties.

  9. Tinea corporis caused by Trichophyton equinum in a rider and review of the literature.

    PubMed

    Veraldi, Stefano; Genovese, Giovanni; Peano, Andrea

    2018-02-01

    Trichophyton equinum is a zoophilic dermatophyte usually causing ringworm in horses. Cases of skin infections in humans are very rare. CASE REPORT : ​We describe a case of tinea corporis caused by T. equinum on a buttock of a rider who often rode bareback with short trousers. Although T. equinum was considered in the past as a strict zoophilic dermatophyte, our case report confirms that it can cause dermatophytoses also in humans. A review of epidemiological and clinical features of human infections caused by T. equinum is presented.

  10. Chronic sun damage and the perception of age, health and attractiveness.

    PubMed

    Matts, Paul J; Fink, Bernhard

    2010-04-01

    Young and healthy-looking skin is a feature that is universally admired and considered attractive among humans. However, as we age, skin condition deteriorates due to a variety of intrinsic and extrinsic factors determined not only by genetics and physiological health but also by behaviour and lifestyle choice. As regards the latter, cumulative, repeated exposure to solar ultraviolet radiation (UVR) is linked intrinsically to the induction of specific types of skin cancer and the expression of cutaneous damage markers responsible for the majority of the visible signs of skin ageing. Here we review empirical evidence for skin-specific effects of chronic UVR exposure and relate it to perception of visible skin condition. In contrast to other dermatological accounts, we stress an evolutionary psychology context in understanding the significance of age-related changes in visible skin condition in human social cognition and interaction. We suggest that the "marriage" of the scientific fields of skin biology and evolutionary psychology provides a modern, powerful framework for investigating the causes, mechanisms and perception of chronic sun damage of skin, as it explains the human obsession with a youthful and healthy appearance. Hence, it may be that these insights bring true emotional impetus to the adoption of sun protection strategies, which could conceivably impact skin cancer rates in coming years.

  11. In vivo imaging of microvascular changes in inflammatory human skin induced by tape stripping and mosquito saliva using optical microangiography

    NASA Astrophysics Data System (ADS)

    Baran, Utku; Choi, Woo J.; Wang, Ruikang K.

    2015-03-01

    Tape stripping on human skin induces mechanical disruptions of the epidermal barrier that lead to minor skin inflammation which leads to temporary changes in microvasculature. On the other hand, when mosquitoes probe the skin for blood feeding, they inject saliva in dermal tissue. Mosquito saliva is known to exert various biological activities, such as dermal mast cell degranulation, leading to fluid extravasation and neutrophil influx. This inflammatory response remain longer than the tape stripping caused inflammation. In this study, we demonstrate the capabilities of swept-source optical coherence tomography (OCT) in detecting in vivo microvascular response of inflammatory human skin. Optical microangiography (OMAG), noninvasive volumetric microvasculature in vivo imaging method, has been used to track the vascular responses after tape stripping and mosquito bite. Vessel density has been quantified and used to correlate with the degree of skin irritation. The proved capability of OMAG technique in visualizing the microvasculature network under inflamed skin condition can play an important role in clinical trials of treatment and diagnosis of inflammatory skin disorders as well as studying mosquito bite's perception by the immune system and its role in parasite transmission.

  12. Examining Merkel Cell Polyomavirus Minor Capsid Proteins | Center for Cancer Research

    Cancer.gov

    Merkel cell polyomavirus (MCV or MCPyV) is a recently discovered member of the viral family Polyomaviridae. It is a skin-dwelling polyomavirus species that appears to cause a rare but highly lethal form of skin cancer called Merkel cell carcinoma (MCC). Despite MCC being uncommon, chronic MCV infection of human skin is widespread, and most infected people have no known

  13. Phototoxicity of phenylenediamine hair dye chemicals in Salmonella typhimurium TA102 and human skin keratinocytes.

    PubMed

    Mosley-Foreman, Charity; Choi, Jaehwa; Wang, Shuguang; Yu, Hongtao

    2008-12-01

    Phenylenediamines (PD) are dye precursors used to manufacture hair dyes. The three PDs, 1,2-,1,3-, and 1,4-PD and three chlorinated PDs, 4-chloro-1,2-PD, 4-chloro-1,3-PD, and 4,5-dichloro-1,2-PD were studied for their mutagenic effect in Salmonella typhimurium TA 102, cytotoxicity in human skin keratinocyte cells, and for DNA cleavage. The results show that all six compounds are not toxic/mutagenic in TA 102 bacteria or skin cells, and do not cause DNA cleavage in PhiX 174 phage DNA. If the same tests are carried out by exposing them to light irradiation concurrently, all three chlorinated PDs cause mutation in TA 102 bacteria and single strand cleavage in PhiX174 phage DNA. This indicates that chlorination of the PDs makes these compounds more photochemically active and produces reactive species that cause DNA damage and mutation. For the photocytotoxicity test in skin cells, it appears there is no such structure-activity relationship. Two chlorinated PDs and two non-chlorinated PDs are cytotoxic at a fairly high concentration (1000microM) upon exposure to light irradiation.

  14. The cause of death in smallpox: an examination of the pathology record.

    PubMed

    Martin, David Barrett

    2002-07-01

    Because the cause of death in smallpox remains controversial, the human pathology record was examined. The surviving case series of smallpox pathology in humans as well as other review articles from English language journals written during the last 200 years were reviewed. The skin lesions in smallpox developed as a result of viral damage and inflammation. Secondary bacterial infection did not occur until the scabs started shedding. During the papular stage of skin eruption, a secondary viremia caused focal lesions in the pharynx, larynx, tongue, trachea, and esophagus in descending frequency. The virus also caused potentially lethal interstitial pneumonitis as well as tubulointerstitial nephritis. The cytopathic effects of smallpox cause death. The data did not support previously promulgated theories attributing death to a bacterial sepsis syndrome seeded from the pustules or immune complex deposition. In a future outbreak, antibiotic therapy would minimally influence mortality.

  15. The chromene sargachromanol E inhibits ultraviolet A-induced ageing of skin in human dermal fibroblasts.

    PubMed

    Kim, J-A; Ahn, B-N; Kong, C-S; Kim, S-K

    2013-05-01

    Skin ageing is influenced by environmental factors such as ultraviolet (UV) radiation. The effects of UV radiation on skin functions should be investigated using human in vitro models to understand the mechanisms of skin ageing. Additionally, marine algae provide a valuable source for identifying and extracting biologically active substances. In this study, sargachromanol E was isolated from a marine brown alga, Sargassum horneri, and its inhibitory effect on skin ageing was investigated using UVA-irradiated dermal fibroblasts. Formation of intracellular reactive oxygen species (ROS), lipid peroxidation and protein oxidation induced by UVA irradiation were investigated in UVA-irradiated human dermal fibroblasts. The levels of matrix metalloproteinases (MMPs) were determined by reverse-transcriptase polymerase chain reaction and Western blot analysis. Sargachromanol E did not exhibit any significant cytotoxicity or phototoxicity in UVA-exposed dermal fibroblasts. Additionally, sargachromanol E suppressed intracellular formation of ROS, membrane protein oxidation, lipid peroxidation and expression of collagenases such as MMP-1, MMP-2 and MMP-9, all of which are caused by UVA exposure. It was further found that these inhibitions were related to an increase in the expression of the tissue inhibitor of metalloproteinase (TIMP) genes, TIMP1 and TIMP2. Moreover, we have shown that the transcriptional activation of activator protein 1 (AP-1) signalling caused by UVA irradiation was inhibited by treatment with sargachromanol E. This study suggests that UVA irradiation modulates MMP expression via the transcriptional activation of AP-1 signalling, whereas treatment with sargachromanol E protected cell damage caused by UVA irradiation. © 2013 The Authors. BJD © 2013 British Association of Dermatologists.

  16. Mechanical allodynia in human glabrous skin mediated by low-threshold cutaneous mechanoreceptors with unmyelinated fibres.

    PubMed

    Nagi, Saad S; Mahns, David A

    2013-11-01

    We recently showed that C-tactile fibres (CTs) in human hairy skin (anterior leg) mediate crossover between innocuous touch and noxious touch, i.e. mechanical allodynia. Although there is no evidence for existence of a phenotypically identical class of CTs in human glabrous skin, the 'qualia' of affective stimuli are comparable across skin types. In 42 healthy subjects, muscle pain was induced by infusing hypertonic saline (5 %) into flexor carpi ulnaris muscle. Concurrently, sinusoidal vibration (200 Hz-200 μm) was applied to glabrous skin of little finger. The neural substrate of allodynia was determined by employing conduction blocks of myelinated (ulnar nerve compression) and unmyelinated (low-dose intra-dermal anaesthesia) fibres. In order to compare the expression of allodynia across spinal segments and skin types, vibration was also applied to glabrous skin of index finger and hairy skin of dorsal forearm. In addition, high-precision brushing stimuli were applied at speeds of 1.0 and 3.0 cm s(-1) to digital glabrous skin with absent myelinated fibres. During muscle pain, vibration caused a significant and reproducible increase in pain (allodynia). This effect persisted during blockade of myelinated fibres, but was abolished by inactivation of unmyelinated cutaneous fibres. The vibration-evoked effects were found to be comparable across spinal segments and skin types. Furthermore, brushing produced a near-identical expression of C-fibre-mediated allodynia. Prior to induction and upon cessation of muscle pain, vibration and brushing were reported as non-painful. Based on these results, we postulate that a functional homologue of the CTs (hairy skin) mediates allodynia in human glabrous skin.

  17. Efficacy of Glutathione in Ameliorating Sulfur Mustard Analog-Induced Toxicity in Cultured Skin Epidermal Cells and in SKH-1 Mouse Skin In Vivo

    PubMed Central

    Tewari-Singh, Neera; Agarwal, Chapla; Huang, Jie; Day, Brian J.; White, Carl W.

    2011-01-01

    Exposure to chemical warfare agent sulfur mustard (HD) is reported to cause GSH depletion, which plays an important role in HD-linked oxidative stress and skin injury. Using the HD analog 2-chloroethyl ethyl sulfide (CEES), we evaluated the role of GSH and its efficacy in ameliorating CEES-caused skin injury. Using mouse JB6 and human HaCaT epidermal keratinocytes, we observed both protective and therapeutic effects of exogenous GSH (1 or 10 mM) in attenuating a CEES-caused decrease in cell viability and DNA synthesis, as well as S and G2M phase arrest in cell cycle progression. However, the protective effect of GSH was stronger than its ability to reverse CEES-induced cytotoxic effect. The observed effect of GSH could be associated with an increase in intracellular GSH levels after its treatment before or after CEES exposure, which strongly depleted cellular GSH levels. N-Acetyl cysteine, a GSH precursor, also showed both protective and therapeutic effects against CEES-caused cytotoxicity. Buthionine sulfoximine, which reduces cellular GSH levels, caused an increased CEES cytotoxicity in both JB6 and HaCaT cells. In further studies translating GSH effects in cell culture, pretreatment of mice with 300 mg/kg GSH via oral gavage 1 h before topical application of CEES resulted in significant protection against CEES-caused increase in skin bifold and epidermal thickness, apoptotic cell death, and myeloperoxidase activity, which could be associated with increased skin GSH levels. Together, these results highlight GSH efficacy in ameliorating CEES-caused skin injury and further support the need for effective antioxidant countermeasures against skin injury by HD exposure. PMID:20974699

  18. Efficacy of glutathione in ameliorating sulfur mustard analog-induced toxicity in cultured skin epidermal cells and in SKH-1 mouse skin in vivo.

    PubMed

    Tewari-Singh, Neera; Agarwal, Chapla; Huang, Jie; Day, Brian J; White, Carl W; Agarwal, Rajesh

    2011-02-01

    Exposure to chemical warfare agent sulfur mustard (HD) is reported to cause GSH depletion, which plays an important role in HD-linked oxidative stress and skin injury. Using the HD analog 2-chloroethyl ethyl sulfide (CEES), we evaluated the role of GSH and its efficacy in ameliorating CEES-caused skin injury. Using mouse JB6 and human HaCaT epidermal keratinocytes, we observed both protective and therapeutic effects of exogenous GSH (1 or 10 mM) in attenuating a CEES-caused decrease in cell viability and DNA synthesis, as well as S and G(2)M phase arrest in cell cycle progression. However, the protective effect of GSH was stronger than its ability to reverse CEES-induced cytotoxic effect. The observed effect of GSH could be associated with an increase in intracellular GSH levels after its treatment before or after CEES exposure, which strongly depleted cellular GSH levels. N-Acetyl cysteine, a GSH precursor, also showed both protective and therapeutic effects against CEES-caused cytotoxicity. Buthionine sulfoximine, which reduces cellular GSH levels, caused an increased CEES cytotoxicity in both JB6 and HaCaT cells. In further studies translating GSH effects in cell culture, pretreatment of mice with 300 mg/kg GSH via oral gavage 1 h before topical application of CEES resulted in significant protection against CEES-caused increase in skin bifold and epidermal thickness, apoptotic cell death, and myeloperoxidase activity, which could be associated with increased skin GSH levels. Together, these results highlight GSH efficacy in ameliorating CEES-caused skin injury and further support the need for effective antioxidant countermeasures against skin injury by HD exposure.

  19. [Effect of long-wave ultraviolet light (UV-A) and medium-wave ultraviolet rays (UV-B) on human skin. Critical comparison].

    PubMed

    Raab, W

    1980-04-15

    When discussing the effects of ultraviolet radiation on human skin, one should carefully distinguish between the long wave ultraviolet light (UV-A) and the short wave radiations (UV-B and UV-C). Ultraviolet A induces immediate pigmentation but, if high energies are applied, a permanent pigmentation is elicited. This type of ultraviolet A-induced pigmentation has been called "spontaneous" pigmentation as no erythematous reaction is necessary to induce or accelerate melanine formation. Ultraviolet B provokes erythema and consecutive pigmentation. Upon chronic exposure, ultraviolet B causes the wellknown actinic damage of the skin and even provokes carcinoma. With exposures to the sunlight (global radiation), one should be most careful. The public must be informed extensively about the dangers of excessive sunbaths. The use of artificial "suns" with spectra between 260 and 400 nm is limited as it may cause the same type of damage as the global radiation. An exact schedule for use of artificial lamps is strongly recommended. After one cycle of exposures, an interruption is necessary until the next cycle of irradiations may start. Upon continual use for tanning of the skin, artificial lamps may provoke irreversible damage of the skin. Radiation sources with emission spectra of wavelengths between 315 and 400 nm exclusively are well suited for the induction of skin pigmentation (cosmetic use). Potent radiation such as UVASUN systems provoke a "pleasant" permanent pigmentation after exposures for less than one hour. The use of ultraviolet A (UV-A) does not carry any risk for the human skin.

  20. Kaposi Sarcoma

    MedlinePlus

    Kaposi sarcoma (KS) is a cancer that causes patches of abnormal tissue to grow under the skin, in the lining of ... of cancer cells, blood vessels, and blood cells. KS is caused by infection with human herpesvirus-8 ( ...

  1. A preliminary study of differentially expressed genes in expanded skin and normal skin: implications for adult skin regeneration.

    PubMed

    Yang, Mei; Liang, Yimin; Sheng, Lingling; Shen, Guoxiong; Liu, Kai; Gu, Bin; Meng, Fanjun; Li, Qingfeng

    2011-03-01

    In adults, severely damaged skin heals by scar formation and cannot regenerate to the original skin structure. However, tissue expansion is an exception, as normal skin regenerates under the mechanical stretch resulting from tissue expansion. This technique has been used clinically for defect repair and organ reconstruction for decades. However, the phenomenon of adult skin regeneration during tissue expansion has caused little attention, and the mechanism of skin regeneration during tissue expansion has not been fully understood. In this study, microarray analysis was performed on expanded human skin and normal human skin. Significant difference was observed in 77 genes, which suggest a network of several integrated cascades, including cytokines, extracellular, cytoskeletal, transmembrane molecular systems, ion or ion channels, protein kinases and transcriptional systems, is involved in the skin regeneration during expansion. Among these, the significant expression of some regeneration related genes, such as HOXA5, HOXB2 and AP1, was the first report in tissue expansion. Data in this study suggest a list of candidate genes, which may help to elucidate the fundamental mechanism of skin regeneration during tissue expansion and which may have implications for postnatal skin regeneration and therapeutic interventions in wound healing.

  2. Human platelet gel supernatant inactivates opportunistic wound pathogens on skin.

    PubMed

    Edelblute, Chelsea M; Donate, Amy L; Hargrave, Barbara Y; Heller, Loree C

    2015-01-01

    Activation of human platelets produces a gel-like substance referred to as platelet rich plasma or platelet gel. Platelet gel is used clinically to promote wound healing; it also exhibits antimicrobial properties that may aid in the healing of infected wounds. The purpose of this study was to quantify the efficacy of human platelet gel against the opportunistic bacterial wound pathogens Acinetobacter baumannii, Pseudomonas aeruginosa, and Staphylococcus aureus on skin. These opportunistic pathogens may exhibit extensive antibiotic resistance, necessitating the development of alternative treatment options. The antimicrobial efficacy of platelet gel supernatants was quantified using an in vitro broth dilution assay, an ex vivo inoculated skin assay, and in an in vivo skin decontamination assay. Human platelet gel supernatants were highly bactericidal against A. baumannii and moderately but significantly bactericidal against S. aureus in vitro and in the ex vivo skin model. P. aeruginosa was not inactivated in vitro; a low but significant inactivation level was observed ex vivo. These supernatants were quite effective at inactivating a model organism on skin in vivo. These results suggest application of platelet gel has potential clinical applicability, not only in the acceleration of wound healing, but also against relevant bacteria causing wound infections.

  3. Coniosporium epidermidis sp. nov., a new species from human skin

    PubMed Central

    Li, D. M.; de Hoog, G.S.; Saunte, D.M. Lindhardt; van den Ende, A.H.G. Gerrits; Chen, X. R.

    2008-01-01

    Coniosporium epidermidis sp. nov. is described from a superficial skin lesion with blackish discolouration in an 80-yr-old Chinese patient. The species produces dark, thick-walled, inflated, reluctantly liberating arthroconidia without longitudinal septa. Sequences of the ribosomal operon, as well as of the translation elongation factor 1-α support its novelty. The species is found in a lineage basal to the order Chaetothyriales, amidst relatives from rock, but also species repeatedly isolated from human skin and nails and eventually causing mild cutaneous infections. Coniosporium epidermidis is consistently found on humans, either asymptomatic or symptomatic. The species indicates a change of life style towards human pathogenicity, which is a recurrent type of ecology in derived Chaetothyriales. Superficial and cutaneous infection by melanized fungi is a new category in dermatology. PMID:19287535

  4. Germline NLRP1 Mutations Cause Skin Inflammatory and Cancer Susceptibility Syndromes via Inflammasome Activation.

    PubMed

    Zhong, Franklin L; Mamaï, Ons; Sborgi, Lorenzo; Boussofara, Lobna; Hopkins, Richard; Robinson, Kim; Szeverényi, Ildikó; Takeichi, Takuya; Balaji, Reshmaa; Lau, Aristotle; Tye, Hazel; Roy, Keya; Bonnard, Carine; Ahl, Patricia J; Jones, Leigh Ann; Baker, Paul J; Lacina, Lukas; Otsuka, Atsushi; Fournie, Pierre R; Malecaze, François; Lane, E Birgitte; Akiyama, Masashi; Kabashima, Kenji; Connolly, John E; Masters, Seth L; Soler, Vincent J; Omar, Salma Samir; McGrath, John A; Nedelcu, Roxana; Gribaa, Moez; Denguezli, Mohamed; Saad, Ali; Hiller, Sebastian; Reversade, Bruno

    2016-09-22

    Inflammasome complexes function as key innate immune effectors that trigger inflammation in response to pathogen- and danger-associated signals. Here, we report that germline mutations in the inflammasome sensor NLRP1 cause two overlapping skin disorders: multiple self-healing palmoplantar carcinoma (MSPC) and familial keratosis lichenoides chronica (FKLC). We find that NLRP1 is the most prominent inflammasome sensor in human skin, and all pathogenic NLRP1 mutations are gain-of-function alleles that predispose to inflammasome activation. Mechanistically, NLRP1 mutations lead to increased self-oligomerization by disrupting the PYD and LRR domains, which are essential in maintaining NLRP1 as an inactive monomer. Primary keratinocytes from patients experience spontaneous inflammasome activation and paracrine IL-1 signaling, which is sufficient to cause skin inflammation and epidermal hyperplasia. Our findings establish a group of non-fever inflammasome disorders, uncover an unexpected auto-inhibitory function for the pyrin domain, and provide the first genetic evidence linking NLRP1 to skin inflammatory syndromes and skin cancer predisposition. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. [Therapeutic effect of human mesenchymal stem cells in skin after radiation damage].

    PubMed

    Bensidhoum, Morad; Gobin, Stéphanie; Chapel, Alain; Lemaitre, Gilles; Bouet, Stéphan; Waksman, Gilles; Thierry, Dominique; Martin, Michèle T

    2005-01-01

    Over 50% of all cancer patients presently receive radiotherapy at one stage in their treatment course. Inevitably skin is one of the most frequently damaged tissue due to its localization and constant turn-over. Our present goal is to reduce radiation-induced complications in human skin through stem cell therapy, particulary in human epidermis. Mesenchymal Stem Cells (MSCs) have been shown to be multipotent cells able to engraft in many tissues after injury. Herein, we isolated human MSCs and tested their capability to improve skin wound healing after irradiation. This potential was assessed in NOD/SCID mice which received 30 Gy locally on the thigh. This dose caused within 3 weeks local epidermis necrosis which was repaired within 13 weeks. MSCs were intravenously injected in irradiated mice 24 hours after exposure. Clinical scoring throughout 6 weeks gave indications that human MSCs reduced the extent of damage and accelerated the wound healing process. We show by quantitative qPCR and histological studies the presence of human MSCs derived cells into the scar. Human MSCs homed to the damaged skin and participated to the wound healing process. These results open prospects for cellular therapy by MSCs in irradiated epithelial tissues and could be extended to the whole general field of cutaneous cicatrization, particularly after burns.

  6. In vitro Dermal Absorption of Hydroquinone: Protocol Validation and Applicability on Illegal Skin-Whitening Cosmetics.

    PubMed

    Desmedt, Bart; Ates, Gamze; Courselle, Patricia; De Beer, Jacques O; Rogiers, Vera; Hendrickx, Benoit; Deconinck, Eric; De Paepe, Kristien

    2016-01-01

    In Europe, hydroquinone is a forbidden cosmetic ingredient. It is, however, still abundantly used because of its effective skin-whitening properties. The question arises as to whether the quantities of hydroquinone used become systemically available and may cause damage to human health. Dermal absorption studies can provide this information. In the EU, dermal absorption has to be assessed in vitro since the Cosmetic Regulation 1223/2009/EC forbids the use of animals. To obtain human-relevant data, a Franz diffusion cell protocol was validated using human skin. The results obtained were comparable to those from a multicentre validation study. The protocol was applied to hydroquinone and the dermal absorption ranged between 31 and 44%, which is within the range of published in vivo human values. This shows that a well-validated in vitro dermal absorption study using human skin provides relevant human data. The validated protocol was used to determine the dermal absorption of illegal skin-whitening cosmetics containing hydroquinone. All samples gave high dermal absorption values, rendering them all unsafe for human health. These results add to our knowledge of illegal cosmetics on the EU market, namely that they exhibit a negative toxicological profile and are likely to induce health problems. © 2017 S. Karger AG, Basel.

  7. Mutations in SULT2B1 Cause Autosomal-Recessive Congenital Ichthyosis in Humans.

    PubMed

    Heinz, Lisa; Kim, Gwang-Jin; Marrakchi, Slaheddine; Christiansen, Julie; Turki, Hamida; Rauschendorf, Marc-Alexander; Lathrop, Mark; Hausser, Ingrid; Zimmer, Andreas D; Fischer, Judith

    2017-06-01

    Ichthyoses are a clinically and genetically heterogeneous group of genodermatoses associated with abnormal scaling of the skin over the whole body. Mutations in nine genes are known to cause non-syndromic forms of autosomal-recessive congenital ichthyosis (ARCI). However, not all genetic causes for ARCI have been discovered to date. Using whole-exome sequencing (WES) and multigene panel screening, we identified 6 ARCI-affected individuals from three unrelated families with mutations in Sulfotransferase family 2B member 1 (SULT2B1), showing their causative association with ARCI. Cytosolic sulfotransferases form a large family of enzymes that are involved in the synthesis and metabolism of several steroids in humans. We identified four distinct mutations including missense, nonsense, and splice site mutations. We demonstrated the loss of SULT2B1 expression at RNA and protein levels in keratinocytes from individuals with ARCI by functional analyses. Furthermore, we succeeded in reconstructing the morphologic skin alterations in a 3D organotypic tissue culture model with SULT2B1-deficient keratinocytes and fibroblasts. By thin layer chromatography (TLC) of extracts from these organotypic cultures, we could show the absence of cholesterol sulfate, the metabolite of SULT2B1, and an increased level of cholesterol, indicating a disturbed cholesterol metabolism of the skin upon loss-of-function mutation in SULT2B1. In conclusion, our study reveals an essential role for SULT2B1 in the proper development of healthy human skin. Mutation in SULT2B1 leads to an ARCI phenotype via increased proliferation of human keratinocytes, thickening of epithelial layers, and altered epidermal cholesterol metabolism. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  8. Raman spectroscopic analysis of the increase of the carotenoid antioxidant concentration in human skin after a 1-week diet with ecological eggs

    NASA Astrophysics Data System (ADS)

    Hesterberg, Karoline; Lademann, Jürgen; Patzelt, Alexa; Sterry, Wolfram; Darvin, Maxim E.

    2009-03-01

    Skin aging is mainly caused by the destructive action of free radicals, produced by the UV light of the sun. The human skin has developed a protection system against these highly reactive molecules in the form of the antioxidative potential. Carotenoids are one of the main components of the antioxidants of the human skin. From former studies, it is known that skin aging is reduced in individuals with high levels of carotenoids. Because most of the antioxidants cannot be produced by the human organism, they must be up taken by nutrition. Using noninvasive Raman spectroscopic measurements it is demonstrated that not only fruits and vegetables but also eggs contain high concentrations of antioxidants including carotenoids, which are even doubled in the case of ecological eggs. After a 1-week diet with ecological eggs performed by six volunteers, it is found that the concentration of the carotenoids in the skin of the volunteers increased by approx. 20%. Our study does not intend to recommend exorbitant egg consumption, as eggs also contain harmful cholesterol. But in the case of egg consumption, ecological eggs from hens kept on pasture should be preferred to also receive a benefit for the skin.

  9. The skin reservoir of sulphur mustard.

    PubMed

    Hattersley, I J; Jenner, J; Dalton, C; Chilcott, R P; Graham, J S

    2008-09-01

    Studies of the percutaneous reservoir of sulphur mustard (HD) formed during absorption carried out during WWI and WWII are inconclusive. More recent studies have indicated that a significant amount of unreacted HD remains in human epidermal membranes during percutaneous penetration studies in vitro. The present study investigated the nature and persistence of the HD reservoir formed during in vitro penetration studies using dermatomed slices of human and pig skin (0.5mm thick). Amounts of (14)C-HD that (a) penetrated, (b) remained on the surface, (c) were extractable from and (d) remained in the skin after extraction were estimated by liquid scintillation counting (confirmed using GC-MS analysis). The results demonstrated that there is a reservoir of HD in human and pig skin for up to 24 h after contamination of the skin surface in vitro with liquid agent. At least some of this reservoir could be extracted with acetonitrile, and the amounts of extracted and unextracted HD exceed the amount required to produce injury in vivo by at least 20 fold. The study demonstrated the presence of a reservoir whether the skin was covered (occluded) or left open to the air (unoccluded). The study concluded that the extractable reservoir was significant in terms of the amount of HD required to induce a vesicant response in human skin. The extractable reservoir was at least 20 times the amount required per cm(2) estimated to cause a response in all of the human population, as defined by studies carried out in human volunteers during the 1940s.

  10. 77 FR 27591 - Labeling and Effectiveness Testing; Sunscreen Drug Products for Over-the-Counter Human Use; Delay...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ... products containing specified active ingredients and marketed without approved applications. It also amends... certain OTC sunscreen products containing specified active ingredients and marketed without approved... risk of skin cancer and early skin aging caused by the sun. If the timeline for implementation...

  11. Changes in hydration of the stratum corneum are the most suitable indicator to evaluate the irritation of surfactants on the skin.

    PubMed

    Fujimura, T; Shimotoyodome, Y; Nishijima, T; Sugata, K; Taguchi, H; Moriwaki, S

    2017-02-01

    Irritancy levels of surfactants on human skin have not been clarified completely. The relationships between skin damage and changes of skin properties caused by various surfactants were investigated using non-invasive measurements. Aqueous solutions of seven kinds of anionic, non-ionic, and amphoteric surfactants were exposed to the inside of forearm skin of 20 human subjects in two separate studies using the cup method. Hydration of the stratum corneum (SC), transepidermal water loss (TEWL), pH, skin surface roughness, and contents of the SC were measured before and after one exposure and after five and nine consecutive exposures to various surfactants. The discontinuation ratio of subjects for testing in each surfactant was determined by skin irritation symptoms and was defined as the degree of skin damage. Significant changes were observed only in hydration, TEWL, and natural moisturizing factors (NMF) content in the SC following surfactant exposure. A significant correlation was observed between the discontinuation ratio of each surfactant and the changes of hydration, TEWL, and NMF. Especially, the change of SC hydration showed an excellent correlation with the discontinuation ratio both for single (r = 0.942, P < 0.001) and for chronic exposures (r = 0.934, P < 0.001). Our results indicate that the change of hydration of the SC is equivalent to the skin damage caused by surfactants, and therefore is the most suitable indicator to evaluate the irritation of surfactants on the skin. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Pathogenic Cx31 is un/misfolded to cause skin abnormality via a Fos/JunB-mediated mechanism.

    PubMed

    Tang, Chengyuan; Chen, Xiang; Chi, Jingwei; Yang, Dawei; Liu, Shu; Liu, Mujun; Pan, Qian; Fan, Jianbing; Wang, Danling; Zhang, Zhuohua

    2015-11-01

    Mutations in connexin-31 (Cx31) are associated with multiple human diseases, including familial erythrokeratodermia variabilis (EKV). The pathogenic mechanism of EKV-associated Cx31 mutants remains largely elusive. Here, we show that EKV-pathogenic Cx31 mutants are un/misfolded and temperature sensitive. In Drosophila, expression of pathogenic Cx31, but not wild-type Cx31, causes depigmentation and degeneration of ommatidia that are rescued by expression of either dBip or dHsp70. Ectopic expression of Cx31 in mouse skin results in skin abnormalities resembling human EKV. The affected tissues show remarkable disrupted gap junction formation and significant upregulation of chaperones Bip and Hsp70 as well as AP-1 proteins c-Fos and JunB, in addition to molecular signatures of skin diseases. Consistently, c-Fos, JunB, Bip and Hsp70 are strikingly higher in keratinocytes of EKV patients than their matched control individuals. Furthermore, a druggable AP-1 inhibitory small molecule suppresses skin phenotype and pathological abnormalities of transgenic Cx31 mice. The study suggests that Cx31 mutant proteins are un/misfolded to cause EKV likely via an AP-1-mediated mechanism and identifies a small molecule with therapeutic potential of the disease. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Infusion pressure and pain during microneedle injection into skin of human subjects.

    PubMed

    Gupta, Jyoti; Park, Sohyun S; Bondy, Brian; Felner, Eric I; Prausnitz, Mark R

    2011-10-01

    Infusion into skin using hollow microneedles offers an attractive alternative to hypodermic needle injections. However, the fluid mechanics and pain associated with injection into skin using a microneedle have not been studied in detail before. Here, we report on the effect of microneedle insertion depth into skin, partial needle retraction, fluid infusion flow rate and the co-administration of hyaluronidase on infusion pressure during microneedle-based saline infusion, as well as on associated pain in human subjects. Infusion of up to a few hundred microliters of fluid required pressures of a few hundred mmHg, caused little to no pain, and showed weak dependence on infusion parameters. Infusion of larger volumes up to 1 mL required pressures up to a few thousand mmHg, but still usually caused little pain. In general, injection of larger volumes of fluid required larger pressures and application of larger pressures caused more pain, although other experimental parameters also played a significant role. Among the intradermal microneedle groups, microneedle length had little effect; microneedle retraction lowered infusion pressure but increased pain; lower flow rate reduced infusion pressure and kept pain low; and use of hyaluronidase also lowered infusion pressure and kept pain low. We conclude that microneedles offer a simple method to infuse fluid into the skin that can be carried out with little to no pain. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Bacillus anthracis (image)

    MedlinePlus

    ... aerobic spore-forming bacterium that causes disease in humans and animals. The bacteria is found in two forms: cutaneous anthrax and inhalation anthrax. Cutaneous anthrax is an infection of the skin caused by direct contact with the bacterium. Inhalation ...

  15. An ultrasonic technique to measure the depth of burn wounds in humans

    NASA Astrophysics Data System (ADS)

    Yost, William T.; Cantrell, John H.; Hanna, Pamela D.

    1991-06-01

    Whenever ultrasound encounters discontinuity in its medium of propagation, some energy is reflected from the interface. Such reflections or echoes occur when incident energy encounters the front skin, viable/necrotic, and dermis/fat skin tissue interfaces. It was shown that the most probable cause of the viable/necrotic interface is the uncoiling of collagen in the necrotic tissue, which can cause a reflection at the viable/necrotic interface of approximately 10 percent of the wave amplitude, and is approximately the same as that from the other two interfaces noted. The instrument, still in the prototype stage, was designed to detect the various reflections from within the skin layer. It is shown that, by studying the timing between the various echoes, one can use ultrasound as an aid in diagnosing the depth of burned skin tissue in humans. The instrument is a 60-MHz A-scan unit, modified to more easily identify the echoes occurring within the short time interval during which the reflections are received from the skin layers. A high frequency unit was selected so that various transducers could be utilized to optimize the system. Signal conditioning circuits were modified and added to provide an adequate display of the principle reflections expected. The unit was successful in studying burned tissue in pigs and was recently used to study burn wounds in humans. Measurement techniques and preliminary results are presented.

  16. An ultrasonic technique to measure the depth of burn wounds in humans

    NASA Technical Reports Server (NTRS)

    Yost, William T.; Cantrell, John H.; Hanna, Pamela D.

    1991-01-01

    Whenever ultrasound encounters discontinuity in its medium of propagation, some energy is reflected from the interface. Such reflections or echoes occur when incident energy encounters the front skin, viable/necrotic, and dermis/fat skin tissue interfaces. It was shown that the most probable cause of the viable/necrotic interface is the uncoiling of collagen in the necrotic tissue, which can cause a reflection at the viable/necrotic interface of approximately 10 percent of the wave amplitude, and is approximately the same as that from the other two interfaces noted. The instrument, still in the prototype stage, was designed to detect the various reflections from within the skin layer. It is shown that, by studying the timing between the various echoes, one can use ultrasound as an aid in diagnosing the depth of burned skin tissue in humans. The instrument is a 60-MHz A-scan unit, modified to more easily identify the echoes occurring within the short time interval during which the reflections are received from the skin layers. A high frequency unit was selected so that various transducers could be utilized to optimize the system. Signal conditioning circuits were modified and added to provide an adequate display of the principle reflections expected. The unit was successful in studying burned tissue in pigs and was recently used to study burn wounds in humans. Measurement techniques and preliminary results are presented.

  17. Hydrophobicity and biofilm formation of lipophilic skin corynebacteria.

    PubMed

    Kwaszewska, Anna K; Brewczyńska, Anna; Szewczyk, Eligia M

    2006-01-01

    Lipophilic corynebacteria isolated as natural flora of human skin were examined. Among 119 assayed strains 94% presented a hydrophobic cell surface and 75.6% were able to form biofilms. These attributes, as well as aggregation in liquid media, were statistically connected with each other and promote the developing of biofilms on solid surfaces. This was characteristic of all the lipophilic Corynebacterium species found on human skin that were examined in this study. C. jeikeium and CDC group G2 strains dominated in this population, and they could be responsible for investigated features in the whole lipophilic skin bacterial population. These two groups are the most common coryneform bacteria isolated from nosocomial infections and these attributes most likely promote them to cause opportunistic infections.

  18. Physiological and Molecular Effects of in vivo and ex vivo Mild Skin Barrier Disruption.

    PubMed

    Pfannes, Eva K B; Weiss, Lina; Hadam, Sabrina; Gonnet, Jessica; Combardière, Béhazine; Blume-Peytavi, Ulrike; Vogt, Annika

    2018-01-01

    The success of topically applied treatments on skin relies on the efficacy of skin penetration. In order to increase particle or product penetration, mild skin barrier disruption methods can be used. We previously described cyanoacrylate skin surface stripping as an efficient method to open hair follicles, enhance particle penetration, and activate Langerhans cells. We conducted ex vivo and in vivo measurements on human skin to characterize the biological effect and quantify barrier disruption-related inflammation on a molecular level. Despite the known immunostimulatory effects, this barrier disruption and hair follicle opening method was well accepted and did not result in lasting changes of skin physiological parameters, cytokine production, or clinical side effects. Only in ex vivo human skin did we find a discrete increase in IP-10, TGF-β, IL-8, and GM-CSF mRNA. The data underline the safety profile of this method and demonstrate that the procedure per se does not cause substantial inflammation or skin damage, which is also of interest when applied to non-invasive sampling of biomarkers in clinical trials. © 2018 S. Karger AG, Basel.

  19. Oxidative Damage to RPA Limits the Nucleotide Excision Repair Capacity of Human Cells.

    PubMed

    Guven, Melisa; Brem, Reto; Macpherson, Peter; Peacock, Matthew; Karran, Peter

    2015-11-01

    Nucleotide excision repair (NER) protects against sunlight-induced skin cancer. Defective NER is associated with photosensitivity and a high skin cancer incidence. Some clinical treatments that cause photosensitivity can also increase skin cancer risk. Among these, the immunosuppressant azathioprine and the fluoroquinolone antibiotics ciprofloxacin and ofloxacin interact with UVA radiation to generate reactive oxygen species that diminish NER capacity by causing protein damage. The replication protein A (RPA) DNA-binding protein has a pivotal role in DNA metabolism and is an essential component of NER. The relationship between protein oxidation and NER inhibition was investigated in cultured human cells expressing different levels of RPA. We show here that RPA is limiting for NER and that oxidative damage to RPA compromises NER capability. Our findings reveal that cellular RPA is surprisingly vulnerable to oxidation, and we identify oxidized forms of RPA that are associated with impaired NER. The vulnerability of NER to inhibition by oxidation provides a connection between cutaneous photosensitivity, protein damage, and increased skin cancer risk. Our findings emphasize that damage to DNA repair proteins, as well as to DNA itself, is likely to be an important contributor to skin cancer risk.

  20. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes

    NASA Astrophysics Data System (ADS)

    Miyamoto, Akihito; Lee, Sungwon; Cooray, Nawalage Florence; Lee, Sunghoon; Mori, Mami; Matsuhisa, Naoji; Jin, Hanbit; Yoda, Leona; Yokota, Tomoyuki; Itoh, Akira; Sekino, Masaki; Kawasaki, Hiroshi; Ebihara, Tamotsu; Amagai, Masayuki; Someya, Takao

    2017-09-01

    Thin-film electronic devices can be integrated with skin for health monitoring and/or for interfacing with machines. Minimal invasiveness is highly desirable when applying wearable electronics directly onto human skin. However, manufacturing such on-skin electronics on planar substrates results in limited gas permeability. Therefore, it is necessary to systematically investigate their long-term physiological and psychological effects. As a demonstration of substrate-free electronics, here we show the successful fabrication of inflammation-free, highly gas-permeable, ultrathin, lightweight and stretchable sensors that can be directly laminated onto human skin for long periods of time, realized with a conductive nanomesh structure. A one-week skin patch test revealed that the risk of inflammation caused by on-skin sensors can be significantly suppressed by using the nanomesh sensors. Furthermore, a wireless system that can detect touch, temperature and pressure is successfully demonstrated using a nanomesh with excellent mechanical durability. In addition, electromyogram recordings were successfully taken with minimal discomfort to the user.

  1. Molecular mechanisms of UVB-induced senescence of dermal fibroblasts and its relevance for photoaging of the human skin.

    PubMed

    Cavinato, Maria; Jansen-Dürr, Pidder

    2017-08-01

    Due to its ability to cross the epidermis and reach the upper dermis where it causes cumulative DNA damage and increased oxidative stress, UVB is considered the most harmful component of sunlight to the skin. The consequences of chronic exposition to UVB are related to photoaging and photocarcinogenesis. There are limitations to the study of human skin aging and for this reason the use of models is required. Human dermal fibroblasts submitted to mild and repeated doses of UVB are considered a versatile model to study UVB effects in the process of skin photoaging, which depends on the accumulation of senescent cells, in particular in the dermis. Here we provide updated information about the current model of UVB-induced senescence with special emphasis on the process of protein quality control. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. HSP27 as a biomarker for predicting skin irritation in human skin and reconstructed organotypic skin model.

    PubMed

    Chen, Hongxia; Li, Shuhua; Meng, Tian; Zhang, Lei; Dai, Taoli; Xiang, Qi; Su, Zhijian; Zhang, Qihao; Huang, Yadong

    2014-04-21

    In vitro alternative tests aiming at replacing the traditional animal test for predicting the irritant potential of chemicals have been developed, but the assessing parameters or endpoints are still not sufficient. To discover novel endpoints for skin irritation responses, 2DE-based proteomics was used to analyze the protein expression in human skin exposed to sodium lauryl sulfate (SLS) following the test protocol of the European Centre for the Validation of Alternative Methods (ECVAM) in the present study. HSP27 was up-regulated most significantly among the eight identified proteins, consistent with our previous reports. Acid and basic chemicals were applied on human skin for further validation and results showed that the up-regulated expression of HSP27 was induced in 24h after the exposure. Skin-equivalent constructed with fibroblasts, basement membrane and keratinocytes was used to investigate the potential of HSP27 as a biomarker or additional endpoint for the hazard assessment of skin irritation. Our skin-equivalent (Reconstructed Organotypic Skin Model, ROSM) had excellent epidermal differentiation and was suitable for the skin irritation test. HSP27 also displayed an up-regulated expression in the ROSM in 24h after the irritants exposure for 15min. All these results suggest that HSP27 may represent a potential marker or additional endpoint for the hazard assessment of skin irritation caused by chemical products. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Optical clearing of human skin for the enhancement of optical imaging of proximal interphalangeal joints

    NASA Astrophysics Data System (ADS)

    Kolesnikova, Ekaterina A.; Kolesnikov, Aleksandr S.; Zabarylo, Urszula; Minet, Olaf; Genina, Elina A.; Bashkatov, Alexey N.; Tuchin, Valery V.

    2014-01-01

    We are proposing a new method for enhancement of optical imaging of proximal interphalangeal (PIP) joints in humans at skin using optical clearing technique. A set of illuminating laser diodes with the wavelengths 670, 820, and 904 nm were used as a light source. The laser diodes, monochromatic digital CCD camera and specific software allowed for detection of the finger joint image in a transillumination mode. The experiments were carried out in vivo with human fingers. Dehydrated glycerol and hand cream with urea (5%) were used as optical clearing agents (OCAs). The contrast of the obtained images was analyzed to determine the effect of the OCA. It was found that glycerol application to the human skin during 60 min caused the decrease of contrast in 1.4 folds for 670 nm and the increase of contrast in 1.5 and 1.7 folds for 820 nm and 904 nm, respectively. At the same time, the hand cream application to the human skin during 60 min caused the decrease of contrast in 1.1 folds for 670 nm and the increase of contrast in 1.3 and 1.1 folds for 820 nm and 904 nm, respectively. The results have shown that glycerol and the hand cream with 5% urea allow for obtaining of more distinct image of finger joint in the NIR. Obtained data can be used for development of optical diagnostic methods of rheumatoid arthritis.

  4. Essential Role of RAB27A in Determining Constitutive Human Skin Color

    PubMed Central

    Yoshida-Amano, Yasuko; Hachiya, Akira; Ohuchi, Atsushi; Kobinger, Gary P.; Kitahara, Takashi; Takema, Yoshinori; Fukuda, Mitsunori

    2012-01-01

    Human skin color is predominantly determined by melanin produced in melanosomes within melanocytes and subsequently distributed to keratinocytes. There are many studies that have proposed mechanisms underlying ethnic skin color variations, whereas the processes involved from melanin synthesis in melanocytes to the transfer of melanosomes to keratinocytes are common among humans. Apart from the activities in the melanogenic rate-limiting enzyme, tyrosinase, in melanocytes and the amounts and distribution patterns of melanosomes in keratinocytes, the abilities of the actin-associated factors in charge of melanosome transport within melanocytes also regulate pigmentation. Mutations in genes encoding melanosome transport-related molecules, such as MYO5A, RAB27A and SLAC-2A, have been reported to cause a human pigmentary disease known as Griscelli syndrome, which is associated with diluted skin and hair color. Thus we hypothesized that process might play a role in modulating skin color variations. To address that hypothesis, the correlations of expression of RAB27A and its specific effector, SLAC2-A, to melanogenic ability were evaluated in comparison with tyrosinase, using human melanocytes derived from 19 individuals of varying skin types. Following the finding of the highest correlation in RAB27A expression to the melanogenic ability, darkly-pigmented melanocytes with significantly higher RAB27A expression were found to transfer significantly more melanosomes to keratinocytes than lightly-pigmented melanocytes in co-culture and in human skin substitutes (HSSs) in vivo, resulting in darker skin color in concert with the difference observed in African-descent and Caucasian skins. Additionally, RAB27A knockdown by a lentivirus-derived shRNA in melanocytes concomitantly demonstrated a significantly reduced number of transferred melanosomes to keratinocytes in co-culture and a significantly diminished epidermal melanin content skin color intensity (ΔL* = 4.4) in the HSSs. These data reveal the intrinsically essential role of RAB27A in human ethnic skin color determination and provide new insights for the fundamental understanding of regulatory mechanisms underlying skin pigmentation. PMID:22844437

  5. Merkel cell polyomavirus and Merkel cell carcinoma.

    PubMed

    DeCaprio, James A

    2017-10-19

    Merkel cell polyomavirus (MCPyV) causes the highly aggressive and relatively rare skin cancer known as Merkel cell carcinoma (MCC). MCPyV also causes a lifelong yet relatively innocuous infection and is one of 14 distinct human polyomaviruses species. Although polyomaviruses typically do not cause illness in healthy individuals, several can cause catastrophic diseases in immunocompromised hosts. MCPyV is the only polyomavirus clearly associated with human cancer. How MCPyV causes MCC and what oncogenic events must transpire to enable this virus to cause MCC is the focus of this essay.This article is part of the themed issue 'Human oncogenic viruses'. © 2017 The Author(s).

  6. COMPARATIVE GENOTOXIC RESPONSES TO ARSENITE IN GUINEA PIG, MOUSE, RAT AND HUMAN LYMPHOCYTES

    EPA Science Inventory

    Comparative genotoxic responses to arsenite in guinea pig, mouse, rat and human
    lymphocytes.

    Inorganic arsenic is a known human carcinogen causing skin, lung, and bladder cancer following chronic exposures. Yet, long-term laboratory animal carcinogenicity studies have ...

  7. 2016 Arte Poster Competition First Place Winner: Circadian Rhythm and UV-Induced Skin Damage: An In Vivo Study.

    PubMed

    Guan, Linna; Suggs, Amanda; Ahsanuddin, Sayeeda; Tarrillion, Madeline; Selph, Jacqueline; Lam, Minh; Baron, Elma

    2016-09-01

    Exposure of the skin to ultraviolet (UV) irradiation causes many detrimental effects through mechanisms related to oxidative stress and DNA damage. Excessive oxidative stress can cause apoptosis and cellular dysfunction of epidermal cells leading to cellular senescence and connective tissue degradation. Direct and indirect damage to DNA predisposes the skin to cancer formation. Chronic UV exposure also leads to skin aging manifested as wrinkling, loss of skin tone, and decreased resilience. Fortunately, human skin has several natural mechanisms for combating UV-induced damage. The mechanisms operate on a diurnal rhythm, a cycle that repeats approximately every 24 hours. It is known that the circadian rhythm is involved in many skin physiologic processes, including water regulation and epidermal stem cell function. This study evaluated whether UV damage and the skin's natural mechanisms of inflammation and repair are also affected by circadian rhythm. We looked at UV-induced erythema on seven human subjects irradiated with simulated solar radiation in the morning (at 08:00 h) versus in the afternoon (at 16:00 h). Our data suggest that the same dose of UV radiation induces significantly more inflammation in the morning than in the afternoon. Changes in protein expression relevant to DNA damage, such as xeroderma pigmentosum, complementation group A (XPA), and cyclobutane pyrimidine dimers (CPD) from skin biopsies correlated with our clinical results. Both XPA and CPD levels were higher after the morning UV exposure compared with the afternoon exposure.

    J Drugs Dermatol. 2016;15(9):1124-1130.

  8. Wounding-Induced Manifestations of Type 1 Neurofibromatosis

    DTIC Science & Technology

    1999-10-01

    No. 86-23, Revised 1985). X For the protection of human subjects, the investigator(s) adhered to policies of applicable Federal Law 45 CFR 46. SX_ In...understood how mutations at the NFl locus in specific skin cell type(s) cause these NFl skin manifestations, a role for the NF1 gene product...injures the skin and induces a wound-healing response (Scribner, 1978). Riccardi hypothesized a role for injury in pigmentation defects and tumor

  9. Protective effect of pomegranate derived products on UVB-mediated damage in human reconstituted skin

    PubMed Central

    Afaq, Farrukh; Zaid, Mohammad Abu; Khan, Naghma; Dreher, Mark; Mukhtar, Hasan

    2010-01-01

    Solar ultraviolet (UV) radiation, particularly its UVB (290-320 nm) component, is the primary cause of many adverse biological effects including photoaging and skin cancer. UVB radiation causes DNA damage, protein oxidation and induces matrix metalloproteinases (MMPs). Photochemoprevention via the use of botanical antioxidants in affording protection to human skin against UVB damage is receiving increasing attention. Pomegranate, from the tree Punica granatum contains anthocyanins and hydrolyzable tannins and possesses strong anti-oxidant and anti-tumor promoting properties. In this study, we determined the effect of pomegranate derived products POMx juice, POMx extract and pomegranate oil (POMo) against UVB-mediated damage using reconstituted human skin (EpiDerm™ FT-200). EpiDerm was treated with POMx juice (1-2 μl/0.1 ml/well), POMx extract (5-10 μg/0.1 ml/well), and POMo (1-2 μl/0.1 ml/well) for 1 h prior to UVB (60 mJ/cm2) irradiation and was harvested 12 h post-UVB to assess protein oxidation, markers of DNA damage and photoaging by western blot analysis and immunohistochemistry. Pretreatment of Epiderm with pomegranate derived products resulted in inhibition of UVB-induced (i) cyclobutane pyrimidine dimers, (ii) 8-dihydro-2′-deoxyguanosine, (iii) protein oxidation, and (iv) PCNA protein expression. We also found that pretreatment of Epiderm with pomegranate derived products resulted in inhibition of UVB-induced (i) collagenase (MMP-1), (ii) gelatinase (MMP-2, MMP-9), (iii) stromelysin (MMP-3), (iv) marilysin (MMP-7), (v) elastase (MMP-12), and (vi) tropoelastin. Gelatin zymography revealed that pomegranate derived products inhibited UVB-induced MMP-2 and MMP-9 activities. Pomegranate derived products also caused a decrease in UVB-induced protein expression of c-Fos and phosphorylation of c-Jun. Collectively, these results suggest that all three pomegranate derived products may be useful against UVB-induced damage to human skin. PMID:19320737

  10. Determining the Location of DNA Modification and Mutation Caused by UVB Light in Skin Cancer

    DTIC Science & Technology

    2015-09-01

    Award Number: W81XWH-12-1-0333 TITLE: Determining the Location of DNA Modification and Mutation Caused by UVB Light in Skin Cancer PRINCIPAL...COVERED 15 Aug 2012 – 14 Aug 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-12-1-0333 Determining the Location of DNA Modification and Mutation ...sequencing libraries generated for both yeast and human cells show pyrimidine bias on the 5’ end, indicating that we are sequencing the dimers

  11. Evaluation of carotenoids and reactive oxygen species in human skin after UV irradiation: a critical comparison between in vivo and ex vivo investigations.

    PubMed

    Meinke, Martina C; Müller, Robert; Bechtel, Anne; Haag, Stefan F; Darvin, Maxim E; Lohan, Silke B; Ismaeel, Fakher; Lademann, Jürgen

    2015-03-01

    UV irradiation is one of the most harmful exogenous factors for the human skin. In addition to the development of erythema, free radicals, that is reactive oxygen species (ROS), are induced under its influence and promote the development of oxidative stress in the skin. Several techniques are available for determining the effect of UV irradiation. Resonance Raman spectroscopy (RRS) measures the reduction of the carotenoid concentration, while electron paramagnetic resonance (EPR) spectroscopy enables the analysis of the production of free radicals. Depending on the method, the skin parameters are analysed in vivo or ex vivo. This study provides a critical comparison between in vivo and ex vivo investigations on the ROS formation and carotenoid depletion caused by UV irradiation in human skin. The oxygen content of tissue was also determined. It was shown that the antioxidant status measured in the skin samples in vivo and ex vivo was different. The depletion in the carotenoid concentration in vivo exceeded the value determined ex vivo by a factor of about 1.5, and the radical formation after UV irradiation was significantly greater in vivo by a factor of 3.5 than that measured in excised human skin, which can be explained by the lack of oxygen ex vivo. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. NIH Human Microbiome Project defines normal bacterial makeup of the body

    Cancer.gov

    Microbes inhabit just about every part of the human body, living on the skin, in the gut, and up the nose. Sometimes they cause sickness, but most of the time, microorganisms live in harmony with their human hosts, providing vital functions essential for

  13. Intense THz pulses cause H2AX phosphorylation and activate DNA damage response in human skin tissue

    PubMed Central

    Titova, Lyubov V.; Ayesheshim, Ayesheshim K.; Golubov, Andrey; Fogen, Dawson; Rodriguez-Juarez, Rocio; Hegmann, Frank A.; Kovalchuk, Olga

    2013-01-01

    Recent emergence and growing use of terahertz (THz) radiation for medical imaging and public security screening raise questions on reasonable levels of exposure and health consequences of this form of electromagnetic radiation. In particular, picosecond-duration THz pulses have shown promise for novel diagnostic imaging techniques. However, the effects of THz pulses on human cells and tissues thus far remain largely unknown. We report on the investigation of the biological effects of pulsed THz radiation on artificial human skin tissues. We observe that exposure to intense THz pulses for ten minutes leads to a significant induction of H2AX phosphorylation, indicating that THz pulse irradiation may cause DNA damage in exposed skin tissue. At the same time, we find a THz-pulse-induced increase in the levels of several proteins responsible for cell-cycle regulation and tumor suppression, suggesting that DNA damage repair mechanisms are quickly activated. Furthermore, we find that the cellular response to pulsed THz radiation is significantly different from that induced by exposure to UVA (400 nm). PMID:23577291

  14. Intense THz pulses cause H2AX phosphorylation and activate DNA damage response in human skin tissue.

    PubMed

    Titova, Lyubov V; Ayesheshim, Ayesheshim K; Golubov, Andrey; Fogen, Dawson; Rodriguez-Juarez, Rocio; Hegmann, Frank A; Kovalchuk, Olga

    2013-04-01

    Recent emergence and growing use of terahertz (THz) radiation for medical imaging and public security screening raise questions on reasonable levels of exposure and health consequences of this form of electromagnetic radiation. In particular, picosecond-duration THz pulses have shown promise for novel diagnostic imaging techniques. However, the effects of THz pulses on human cells and tissues thus far remain largely unknown. We report on the investigation of the biological effects of pulsed THz radiation on artificial human skin tissues. We observe that exposure to intense THz pulses for ten minutes leads to a significant induction of H2AX phosphorylation, indicating that THz pulse irradiation may cause DNA damage in exposed skin tissue. At the same time, we find a THz-pulse-induced increase in the levels of several proteins responsible for cell-cycle regulation and tumor suppression, suggesting that DNA damage repair mechanisms are quickly activated. Furthermore, we find that the cellular response to pulsed THz radiation is significantly different from that induced by exposure to UVA (400 nm).

  15. Chyawanprash, a formulation of traditional Ayurvedic medicine, shows a protective effect on skin photoaging in hairless mice.

    PubMed

    Takauji, Yuki; Morino, Kyoko; Miki, Kensuke; Hossain, Mohammad; Ayusawa, Dai; Fujii, Michihiko

    2016-11-01

    Chronic exposure to ultraviolet (UV) radiation induces skin photoaging (premature skin aging). UV irradiation generates reactive oxygen species (ROS), which are shown to play a pivotal role in skin photoaging. Ayurveda is a holistic traditional medical system, and Chyawanprash is one of the most popular formulations in Ayurveda. Since maintenance of the function and appearance of skin is important, we examined whether Chyawanprash has a protective effect on skin photoaging. To examine the effect of Chyawanprash on skin photoaging, hairless mice were administered with Chyawanprash in drinking water for 3 weeks, and then repeatedly exposed to ultraviolet light B (UVB) irradiation (225 or 450 mJ/cm 2 ) to induce skin photoaging. To further examine the function of Chyawanprash, its effects were examined in cells cultured in vitro. Chyawanprash was added in culture medium, and examined for the effect on the growth of human keratinocytes, and for the ability to eliminate ROS which generated by paraquat (50 μmol/L) in HeLa cells. UVB irradiation caused symptoms such as rough skin, erythema, and edema on the skin in hairless mice, but administration of Chyawanprash relieved these symptoms. Further, Chyawanprash significantly suppressed epidermal thickening, a typical marker of skin photoaging, in mice. We then analyzed the effect of Chyawanprash in human cells in culture, and found that Chyawanprash enhanced the growth of human keratinocytes, and efficiently eliminated ROS, which are causally involved in skin photoaging, in HeLa cells. These findings suggested that Chyawanprash may have beneficial effects on slowing skin photoaging.

  16. Human health effects of ozone reduction

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Modification of the stratosphere, such as a reduction in its equilibrium ozone content, could produce direct and indirect effects on human health. The direct hazard to humans would be caused by an increase in the cumulative amount of UV radiation reaching the earth's surface in the range of 285 to 340 nm, encompassing the UV-B or erythemal wavelength region of 280 to 320 nm. Exposing the susceptible human population to an increased total UV dosage of shorter wavelengths could increase skin cancer incidence. Although effects would be delayed by decades, for each 1% decrease in ozone the expected increase in skin cancer incidence would be on the order of 2%.

  17. Discovery of a New Human Polyomavirus Associated with Trichodysplasia Spinulosa in an Immunocompromized Patient

    PubMed Central

    van der Meijden, Els; Janssens, René W. A.; Lauber, Chris; Bouwes Bavinck, Jan Nico; Gorbalenya, Alexander E.; Feltkamp, Mariet C. W.

    2010-01-01

    The Polyomaviridae constitute a family of small DNA viruses infecting a variety of hosts. In humans, polyomaviruses can cause infections of the central nervous system, urinary tract, skin, and possibly the respiratory tract. Here we report the identification of a new human polyomavirus in plucked facial spines of a heart transplant patient with trichodysplasia spinulosa, a rare skin disease exclusively seen in immunocompromized patients. The trichodysplasia spinulosa-associated polyomavirus (TSV) genome was amplified through rolling-circle amplification and consists of a 5232-nucleotide circular DNA organized similarly to known polyomaviruses. Two putative “early” (small and large T antigen) and three putative “late” (VP1, VP2, VP3) genes were identified. The TSV large T antigen contains several domains (e.g. J-domain) and motifs (e.g. HPDKGG, pRb family-binding, zinc finger) described for other polyomaviruses and potentially involved in cellular transformation. Phylogenetic analysis revealed a close relationship of TSV with the Bornean orangutan polyomavirus and, more distantly, the Merkel cell polyomavirus that is found integrated in Merkel cell carcinomas of the skin. The presence of TSV in the affected patient's skin was confirmed by newly designed quantitative TSV-specific PCR, indicative of a viral load of 105 copies per cell. After topical cidofovir treatment, the lesions largely resolved coinciding with a reduction in TSV load. PCR screening demonstrated a 4% prevalence of TSV in an unrelated group of immunosuppressed transplant recipients without apparent disease. In conclusion, a new human polyomavirus was discovered and identified as the possible cause of trichodysplasia spinulosa in immunocompromized patients. The presence of TSV also in clinically unaffected individuals suggests frequent virus transmission causing subclinical, probably latent infections. Further studies have to reveal the impact of TSV infection in relation to other populations and diseases. PMID:20686659

  18. Necrotizing cellulitis with multiple abscesses on the leg caused by Serratia marcescens.

    PubMed

    Hau, Estelle; Bouaziz, Jean-David; Lafaurie, Matthieu; Saussine, Anne; Masson, Vincent; Rausky, Jonathan; Bagot, Martine; Guibal, Fabien

    2016-03-01

    Serratia marcescens is an unusual cause of severe skin infection initially described in immunocompromised patients. We report a case of necrotizing cellulitis of the leg caused by S marcescens in a 68-year-old woman with diabetes mellitus and a history of chronic lymphoedema of the leg. We reviewed the literature and found 49 cases of severe skin infections from S marcescens that included 20 cases of necrotizing fasciitis (NF) as well as 29 cases of severe skin infections without NF (non-NF cases). Patients were immunocompromised in 59% to 70% of cases. The mortality rate was high in NF cases (60%) versus non-NF cases (3%). Surgery was required in 95% of NF cases and in 24% of non-NF cases. The other clinical manifestations of S marcescens skin infection reported in the literature included disseminated papular eruptions in patients infected with human immunodeficiency virus with folliculitis on the trunk. Serratia marcescens is naturally resistant to amoxicillin alone and amoxicillin associated with clavulanic acid. Broad-spectrum antibiotics are indicated to treat S marcescens skin infections, and surgery should be promptly considered in cases of severe skin infections if appropriate antibiotic therapy does not lead to rapid improvement.

  19. The Effect of Maternal Thyroid Disorders (Hypothyroidism and Hyperthyroidism) During Pregnancy and Lactation on Skin Development in Wistar Rat Newborns

    PubMed Central

    Amerion, Maryam; Tahajjodi, Somayye; Hushmand, Zahra; Mahdavi Shahri, Nasser; Nikravesh, Mohammad Reza; Jalali, Mahdi

    2013-01-01

    Objective(s): Previous studies have shown that thyroid hormones are necessary for normal development of many organs and because of the importance of skin as the largest and the most important organ in human body protection in spite of external environment, the study of thyroid hormones effects on skin development is considerable. In this survey we have tried to study the effects of maternal hypothyroidism on skin development in fetus during pregnancy and lactation by immunohistochemistry technique. Materials and Methods: Rats were divided into 4 groups, hypothyroids, hyperthyroids, hypothyroids are treated with levothyroxin and a control group. The rat mothers were exposed to PTU with 50 mg/lit dosage and levothyroxin with 1 mg/lit dosage and PTU and levothyroxin simultaneously and with the same dosage respectively in hypothyroid, hyperthyroid and treated hypothyroids with levothyroxin groups. After 14 days, blood sample was taken from mothers, and if thyroid hormones level had change well, mating was allowed. After pregnancy and delivery, 1th day dorsal skin (as the sample for pregnancy assay) and 10th day skin (as for lactation assay) was used for immunohystochemical and morphometric studies. Results: In this study it was observed that maternal hypothyroidism during pregnancy and lactation causes significant increase in laminin expression, in most areas of skin, and maternal hyperthyroidism during pregnancy and lactation causes significant decrease in laminin expression. Also significant decrease was observed in hair follicles number and epidermis thickness in hypothyroidism groups. Conclusion: This study showed maternal hypothyroidism causes significant decrease in epidermis thickness and hair follicles number and it causes less hair in fetus. Also maternal hypothyroidism causes large changes in laminin expression in different parts of skin. At the same time,maternal hyperthyroidism causes opposite results. In fact, thyroid hormones regulate laminin expression negatively which means increase in thyroid hormone level, decreases laminin expression. So changes in thyroid hormones level can influence skin development significantly. PMID:23826487

  20. Intense THz pulses down-regulate genes associated with skin cancer and psoriasis: a new therapeutic avenue?

    PubMed Central

    Titova, Lyubov V.; Ayesheshim, Ayesheshim K.; Golubov, Andrey; Rodriguez-Juarez, Rocio; Woycicki, Rafal; Hegmann, Frank A.; Kovalchuk, Olga

    2013-01-01

    Terahertz (THz) radiation lies between the infrared and microwave regions of the electromagnetic spectrum and is non-ionizing. We show that exposure of artificial human skin tissue to intense, picosecond-duration THz pulses affects expression levels of numerous genes associated with non-melanoma skin cancers, psoriasis and atopic dermatitis. Genes affected by intense THz pulses include nearly half of the epidermal differentiation complex (EDC) members. EDC genes, which are mapped to the chromosomal human region 1q21, encode for proteins that partake in epidermal differentiation and are often overexpressed in conditions such as psoriasis and skin cancer. In nearly all the genes differentially expressed by exposure to intense THz pulses, the induced changes in transcription levels are opposite to disease-related changes. The ability of intense THz pulses to cause concerted favorable changes in the expression of multiple genes implicated in inflammatory skin diseases and skin cancers suggests potential therapeutic applications of intense THz pulses. PMID:23917523

  1. Palladium nanoparticles exposure: Evaluation of permeation through damaged and intact human skin.

    PubMed

    Larese Filon, Francesca; Crosera, Matteo; Mauro, Marcella; Baracchini, Elena; Bovenzi, Massimo; Montini, Tiziano; Fornasiero, Paolo; Adami, Gianpiero

    2016-07-01

    The intensified use of palladium nanoparticles (PdNPs) in many chemical reactions, jewellery, electronic devices, in car catalytic converters and in biomedical applications lead to a significant increase in palladium exposure. Pd can cause allergic contact dermatitis when in contact with the skin. However, there is still a lack of toxicological data related to nano-structured palladium and information on human cutaneous absorption. In fact, PdNPs, can be absorbed through the skin in higher amounts than bulk Pd because NPs can release more ions. In our study, we evaluated the absorption of PdNPs, with a size of 10.7 ± 2.8 nm, using intact and damaged human skin in Franz cells. 0.60 mg cm(-2) of PdNPs were applied on skin surface for 24 h. Pd concentrations in the receiving solutions at the end of experiments were 0.098 ± 0.067 μg cm(-2) and 1.06 ± 0.44 μg cm(-2) in intact skin and damaged skin, respectively. Pd flux permeation after 24 h was 0.005 ± 0.003 μg cm(-2) h(-1) and 0.057 ± 0.030 μg cm(-2) h(-1) and lag time 4.8 ± 1.7 and 4.2 ± 3.6 h, for intact and damaged skin respectively. This study indicates that Pd can penetrate human skin. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Photoprotective Potential of Penta-O-Galloyl-β-DGlucose by Targeting NF-κB and MAPK Signaling in UVB Radiation-Induced Human Dermal Fibroblasts and Mouse Skin.

    PubMed

    Kim, Byung-Hak; Choi, Mi Sun; Lee, Hyun Gyu; Lee, Song-Hee; Noh, Kum Hee; Kwon, Sunho; Jeong, Ae Jin; Lee, Haeri; Yi, Eun Hee; Park, Jung Youl; Lee, Jintae; Joo, Eun Young; Ye, Sang-Kyu

    2015-11-01

    Exposure of the skin to ultraviolet radiation can cause skin damage with various pathological changes including inflammation. In the present study, we identified the skin-protective activity of 1,2,3,4,6-penta-O-galloyl-β-D-glucose (pentagalloyl glucose, PGG) in ultraviolet B (UVB) radiation-induced human dermal fibroblasts and mouse skin. PGG exhibited antioxidant activity with regard to intracellular reactive oxygen species (ROS) generation as well as ROS and reactive nitrogen species (RNS) scavenging. Furthermore, PGG exhibited anti-inflammatory activity, inhibiting the activation of nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling, resulting in inhibition of the expression of pro-inflammatory mediators. Topical application of PGG followed by chronic exposure to UVB radiation in the dorsal skin of hairless mice resulted in a significant decrease in the progression of inflammatory skin damages, leading to inhibited activation of NF-κB signaling and expression of pro-inflammatory mediators. The present study demonstrated that PGG protected from skin damage induced by UVB radiation, and thus, may be a potential candidate for the prevention of environmental stimuli-induced inflammatory skin damage.

  3. Betapapillomaviruses: innocent bystanders or causes of skin cancer.

    PubMed

    Feltkamp, Mariet C W; de Koning, Maurits N C; Bavinck, Jan Nico Bouwes; Ter Schegget, Jan

    2008-12-01

    Human papillomaviruses (HPV) are found in almost all squamous epithelia where they can cause hyperproliferative disease of mucosa and skin. Mucosal HPV types, such as HPV6 and HPV16, are known to cause anogenital warts and dysplasia or neoplasia, respectively. These HPV types have been studied extensively, and for some of them recently preventive vaccines have become available. Although HPV that populate the skin were the first identified HPV types, knowledge of the pathogenicity of HPV in the cornified epithelia stayed behind. What the majority of cutaneous HPV types do, for instance those belonging to the beta genus (betaPV), is largely unknown. As the number of reports that describe epidemiological associations between markers of betaPV infection and skin cancer gradually increases, the need for basic knowledge about these viruses grows as well. This review aims to picture what is currently known about betaPV with respect to infection, transmission and transformation, in order to envisage their potential role in cutaneous carcinogenesis.

  4. Fluorescence detection and photodynamic activity of endogenous protoporphyrin in human skin

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Rueck, Angelika C.; Schneckenburger, Herbert

    1992-07-01

    Human skin shows a strong autofluorescence in the red spectral region with main peaks around 600, 620, and 640 nm caused by the porphyrin production of the gram positive lipophile skin bacterium Propionibacterium acnes. Irradiation of these bacteria reduces the integral fluorescence intensity and induces the formation of photoproducts with fluorescence bands around 670 nm and decay times of about 1 and 5 ns. The photoproduct formation is connected with an increased absorption in the red spectral region. The endogenous fluorescent porphyrins act as photosensitizers. Photodestruction of Propionibacteria acnes by visible light appears therefore to be a promising therapy. The photodynamic activity of the photoproducts was lower than that of protoporphyrin IX.

  5. Stressed out mitochondria: the role of mitochondria in ageing and cancer focussing on strategies and opportunities in human skin.

    PubMed

    Tulah, Asif S; Birch-Machin, Mark A

    2013-09-01

    Mitochondrial DNA damage has been used as a successful and unique biomarker of tissue stress. A valuable example of this is sun damage in human skin which leads to ageing and skin cancer. The skin is constantly exposed to the harmful effects of sunlight, such as ultraviolet radiation, which causes it to age with observable characteristic features as well as clinical precancerous lesions and skin cancer. Formation of free radicals by the sun's harmful rays which contribute to oxidative stress has been linked to the induction of deletions and mutations in the mitochondrial DNA. These markers of mitochondrial DNA damage have been proposed to contribute to the mechanisms of ageing in many tissues including skin and are associated with many diseases including cancer. In this article we highlight the role of this important organelle in ageing and cancer with particular emphasis on experimental strategies in the skin. Copyright © 2012 © Elsevier B.V. and Mitochondria Research Society. All rights reserved. Published by Elsevier B.V. All rights reserved.

  6. New approach to predict photoallergic potentials of chemicals based on murine local lymph node assay.

    PubMed

    Maeda, Yosuke; Hirosaki, Haruka; Yamanaka, Hidenori; Takeyoshi, Masahiro

    2018-05-23

    Photoallergic dermatitis, caused by pharmaceuticals and other consumer products, is a very important issue in human health. However, S10 guidelines of the International Conference on Harmonization do not recommend the existing prediction methods for photoallergy because of their low predictability in human cases. We applied local lymph node assay (LLNA), a reliable, quantitative skin sensitization prediction test, to develop a new photoallergy prediction method. This method involves a three-step approach: (1) ultraviolet (UV) absorption analysis; (2) determination of no observed adverse effect level for skin phototoxicity based on LLNA; and (3) photoallergy evaluation based on LLNA. Photoallergic potential of chemicals was evaluated by comparing lymph node cell proliferation among groups treated with chemicals with minimal effect levels of skin sensitization and skin phototoxicity under UV irradiation (UV+) or non-UV irradiation (UV-). A case showing significant difference (P < .05) in lymph node cell proliferation rates between UV- and UV+ groups was considered positive for photoallergic reaction. After testing 13 chemicals, seven human photoallergens tested positive and the other six, with no evidence of causing photoallergic dermatitis or UV absorption, tested negative. Among these chemicals, both doxycycline hydrochloride and minocycline hydrochloride were tetracycline antibiotics with different photoallergic properties, and the new method clearly distinguished between the photoallergic properties of these chemicals. These findings suggested high predictability of our method; therefore, it is promising and effective in predicting human photoallergens. Copyright © 2018 John Wiley & Sons, Ltd.

  7. Refinement of a thermal threshold probe to prevent burns.

    PubMed

    Dixon, M J; Taylor, P M; Slingsby, L C; Murrell, J C

    2016-02-01

    Thermal threshold testing is commonly used for pain research. The stimulus may cause burning and merits prevention. Thermal probe modifications hypothesized to reduce burning were evaluated for practicality and effect. Studies were conducted on two humans and eight cats. Unmodified probe 0 was tested on two humans and promising modifications were also evaluated on cats. Probe 1 incorporated rapid cooling after threshold was reached: probe 1a used a Peltier system and probe 1b used water cooling. Probe 2 released skin contact immediately after threshold. Probe 3 (developed in the light of evidence of 'hot spots' in probe 0) incorporated reduced thermal mass and even heating across the skin contact area. Human skin was heated to 48℃ (6℃ above threshold) and the resulting burn was evaluated using area of injury and a simple descriptive scale (SDS). Probe 1a cooled the skin but required further heat dissipation, excessive power, was not 'fail-safe' and was inappropriate for animal mounting. Probe 1b caused less damage than no cooling (27 ± 13 and 38 ± 11 mm(2) respectively, P = 0.0266; median SDS 1.5 and 4 respectively, P = 0.0317) but was cumbersome. Probe 2 was unwieldy and was not evaluated further. Probe 3 produced even heating without blistering in humans. With probe 3 in cats, after opioid treatment, thermal threshold reached cut-out (55℃) on 24 occasions, exceeded 50℃ in a further 32 tests and exceeded 48℃ in the remainder. No skin damage was evident immediately after testing and mild hyperaemia in three cats at 2-3 days resolved rapidly. Probe 3 appeared to be suitable for thermal threshold testing. © The Author(s) 2015.

  8. UV irradiation-induced methionine oxidation in human skin keratins: Mass spectrometry-based non-invasive proteomic analysis.

    PubMed

    Lee, Seon Hwa; Matsushima, Keita; Miyamoto, Kohei; Oe, Tomoyuki

    2016-02-05

    Ultraviolet (UV) radiation is the major environmental factor that causes oxidative skin damage. Keratins are the main constituents of human skin and have been identified as oxidative target proteins. We have recently developed a mass spectrometry (MS)-based non-invasive proteomic methodology to screen oxidative modifications in human skin keratins. Using this methodology, UV effects on methionine (Met) oxidation in human skin keratins were investigated. The initial screening revealed that Met(259), Met(262), and Met(296) in K1 keratin were the most susceptible oxidation sites upon UVA (or UVB) irradiation of human tape-stripped skin. Subsequent liquid chromatography/electrospray ionization-MS and tandem MS analyses confirmed amino acid sequences and oxidation sites of tryptic peptides D(290)VDGAYMTK(298) (P1) and N(258)MQDMVEDYR(267) (P2). The relative oxidation levels of P1 and P2 increased in a time-dependent manner upon UVA irradiation. Butylated hydroxytoluene was the most effective antioxidant for artifactual oxidation of Met residues. The relative oxidation levels of P1 and P2 after UVA irradiation for 48 h corresponded to treatment with 100mM hydrogen peroxide for 15 min. In addition, Met(259) was oxidized by only UVA irradiation. The Met sites identified in conjunction with the current proteomic methodology can be used to evaluate skin damage under various conditions of oxidative stress. We demonstrated that the relative Met oxidation levels in keratins directly reflected UV-induced damages to human tape-stripped skin. Human skin proteins isolated by tape stripping were analyzed by MS-based non-invasive proteomic methodology. Met(259), Met(262), and Met(296) in K1 keratin were the most susceptible oxidation sites upon UV irradiation. Met(259) was oxidized by only UVA irradiation. Quantitative LC/ESI-SRM/MS analyses confirmed a time-dependent increase in the relative oxidation of target peptides (P1 and P2) containing these Met residues, upon UVA irradiation of isolated human skin. The relative oxidation levels of P1 and P2 along with the current proteomic methodology could be applied to the assessment of oxidative stress levels in skin after exposure to sunlight. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Bacterial diversity in Buruli ulcer skin lesions: Challenges in the clinical microbiome analysis of a skin disease.

    PubMed

    Van Leuvenhaege, Chloé; Vandelannoote, Koen; Affolabi, Dissou; Portaels, Françoise; Sopoh, Ghislain; de Jong, Bouke C; Eddyani, Miriam; Meehan, Conor J

    2017-01-01

    Buruli ulcer (BU) is an infectious disease caused by Mycobacterium ulcerans and considered the third most prevalent mycobacterial disease in humans. Secondary bacterial infections in open BU lesions are the main cause of pain, delayed healing and systemic illness, resulting in prolonged hospital stay. Thus, understanding the diversity of bacteria, termed the microbiome, in these open lesions is important for proper treatment. However, adequately studying the human microbiome in a clinical setting can prove difficult when investigating a neglected tropical skin disease due to its rarity and the setting. Using 16S rRNA sequencing, we determined the microbial composition of 5 BU lesions, 3 non-BU lesions and 3 healthy skin samples. Although no significant differences in diversity were found between BU and non-BU lesions, the former were characterized by an increase of Bacteroidetes compared to the non-BU wounds and the BU lesions also contained significantly more obligate anaerobes. With this molecular-based study, we were also able to detect bacteria that were missed by culture-based methods in previous BU studies. Our study suggests that BU may lead to changes in the skin bacterial community within the lesions. However, in order to determine if such changes hold true across all BU cases and are either a cause or consequence of a specific wound environment, further microbiome studies are necessary. Such skin microbiome analysis requires large sample sizes and lesions from the same body site in many patients, both of which can be difficult for a rare disease. Our study proposes a pipeline for such studies and highlights several drawbacks that must be considered if microbiome analysis is to be utilized for neglected tropical diseases.

  10. The human skin as a sub-THz receiver - Does 5G pose a danger to it or not?

    PubMed

    Betzalel, Noa; Ben Ishai, Paul; Feldman, Yuri

    2018-05-01

    In the interaction of microwave radiation and human beings, the skin is traditionally considered as just an absorbing sponge stratum filled with water. In previous works, we showed that this view is flawed when we demonstrated that the coiled portion of the sweat duct in upper skin layer is regarded as a helical antenna in the sub-THz band. Experimentally we showed that the reflectance of the human skin in the sub-THz region depends on the intensity of perspiration, i.e. sweat duct's conductivity, and correlates with levels of human stress (physical, mental and emotional). Later on, we detected circular dichroism in the reflectance from the skin, a signature of the axial mode of a helical antenna. The full ramifications of what these findings represent in the human condition are still unclear. We also revealed correlation of electrocardiography (ECG) parameters to the sub-THz reflection coefficient of human skin. In a recent work, we developed a unique simulation tool of human skin, taking into account the skin multi-layer structure together with the helical segment of the sweat duct embedded in it. The presence of the sweat duct led to a high specific absorption rate (SAR) of the skin in extremely high frequency band. In this paper, we summarize the physical evidence for this phenomenon and consider its implication for the future exploitation of the electromagnetic spectrum by wireless communication. Starting from July 2016 the US Federal Communications Commission (FCC) has adopted new rules for wireless broadband operations above 24 GHz (5 G). This trend of exploitation is predicted to expand to higher frequencies in the sub-THz region. One must consider the implications of human immersion in the electromagnetic noise, caused by devices working at the very same frequencies as those, to which the sweat duct (as a helical antenna) is most attuned. We are raising a warning flag against the unrestricted use of sub-THz technologies for communication, before the possible consequences for public health are explored. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Differentiation-induced skin cancer suppression by FOS, p53, and TACE/ADAM17

    PubMed Central

    Guinea-Viniegra, Juan; Zenz, Rainer; Scheuch, Harald; Jiménez, María; Bakiri, Latifa; Petzelbauer, Peter; Wagner, Erwin F.

    2012-01-01

    Squamous cell carcinomas (SCCs) are heterogeneous and aggressive skin tumors for which innovative, targeted therapies are needed. Here, we identify a p53/TACE pathway that is negatively regulated by FOS and show that the FOS/p53/TACE axis suppresses SCC by inducing differentiation. We found that epidermal Fos deletion in mouse tumor models or pharmacological FOS/AP-1 inhibition in human SCC cell lines induced p53 expression. Epidermal cell differentiation and skin tumor suppression were caused by a p53-dependent transcriptional activation of the metalloprotease TACE/ADAM17 (TNF-α–converting enzyme), a previously unknown p53 target gene that was required for NOTCH1 activation. Although half of cutaneous human SCCs display p53-inactivating mutations, restoring p53/TACE activity in mouse and human skin SCCs induced tumor cell differentiation independently of the p53 status. We propose FOS/AP-1 inhibition or p53/TACE reactivating strategies as differentiation-inducing therapies for SCCs. PMID:22772468

  12. Studying the effects of the heat stress on the various layers of human skin using damage function

    NASA Astrophysics Data System (ADS)

    Aijaz, Mir; Khanday, M. A.

    2016-03-01

    This paper develops a model to identify the effects of thermal stress on temperature distribution and damage in human dermal regions. The design and selection of the model takes into account many factors effecting the temperature distribution of skin, e.g., thermal conductance, perfusion, metabolic heat generation and thermal protective capabilities of the skin. The transient temperature distribution within the region is simulated using a two-dimensional finite element model of the Pennes’ bioheat equation. The relationship between temperature and time is integrated to view the damage caused to human skin by using Henriques’ model Henriques, F. C., Arch. Pathol. 43 (1947) 489-502]. The Henriques’ damage model is found to be more desirable for use in predicting the threshold of thermal damage. This work can be helpful in both emergency medicines as well as to plastic surgeon in deciding upon a course of action for the treatment of different burn injuries.

  13. Evaluation of cultured human dermal- and dermo-epidermal substitutes focusing on extracellular matrix components: Comparison of protein and RNA analysis.

    PubMed

    Oostendorp, Corien; Meyer, Sarah; Sobrio, Monia; van Arendonk, Joyce; Reichmann, Ernst; Daamen, Willeke F; van Kuppevelt, Toin H

    2017-05-01

    Treatment of full-thickness skin defects with split-thickness skin grafts is generally associated with contraction and scar formation and cellular skin substitutes have been developed to improve skin regeneration. The evaluation of cultured skin substitutes is generally based on qualitative parameters focusing on histology. In this study we focused on quantitative evaluation to provide a template for comparison of human bio-engineered skin substitutes between clinical and/or research centers, and to supplement histological data. We focused on extracellular matrix proteins since these components play an important role in skin regeneration. As a model we analyzed the human dermal substitute denovoDerm and the dermo-epidermal skin substitute denovoSkin. The quantification of the extracellular matrix proteins type III collagen and laminin 5 in tissue homogenates using western blotting analysis and ELISA was not successful. The same was true for assaying lysyl oxidase, an enzyme involved in crosslinking of matrix molecules. As an alternative, gene expression levels were measured using qPCR. Various RNA isolation procedures were probed. The gene expression profile for specific dermal and epidermal genes could be measured reliably and reproducibly. Differences caused by changes in the cell culture conditions could easily be detected. The number of cells in the skin substitutes was measured using the PicoGreen dsDNA assay, which was found highly quantitative and reproducible. The (dis) advantages of assays used for quantitative evaluation of skin substitutes are discussed. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  14. Genistein and daidzein stimulate hyaluronic acid production in transformed human keratinocyte culture and hairless mouse skin.

    PubMed

    Miyazaki, Kouji; Hanamizu, Tomoko; Iizuka, Ryoko; Chiba, Katsuyoshi

    2002-01-01

    We examined the effects of the soy isoflavones genistein (Gen) and daidzein (Dai) on the production of hyaluronic acid (HA) in a transformed human keratinocyte culture and in hairless mouse skin following topical application for 2 weeks. Gen and Dai, but not the glycosides thereof, significantly enhanced the production of HA in vitro and in vivo. Histochemistry using an HA-binding protein revealed that topical Gen and estradiol raised both the density and intensity of HA staining, which was abundant in the murine dermis. It is suggested that Gen and Dai are not released from their respective glycosides in culture or murine skin. Moreover, topical Gen and Dai may prevent and improve the cutaneous alterations caused by the loss of HA in skin. Copyright 2002 S. Karger AG, Basel

  15. Characterizing Facial Skin Ageing in Humans: Disentangling Extrinsic from Intrinsic Biological Phenomena

    PubMed Central

    Trojahn, Carina; Dobos, Gabor; Lichterfeld, Andrea; Blume-Peytavi, Ulrike; Kottner, Jan

    2015-01-01

    Facial skin ageing is caused by intrinsic and extrinsic mechanisms. Intrinsic ageing is highly related to chronological age. Age related skin changes can be measured using clinical and biophysical methods. The aim of this study was to evaluate whether and how clinical characteristics and biophysical parameters are associated with each other with and without adjustment for chronological age. Twenty-four female subjects of three age groups were enrolled. Clinical assessments (global facial skin ageing, wrinkling, and sagging), and biophysical measurements (roughness, colour, skin elasticity, and barrier function) were conducted at both upper cheeks. Pearson's correlations and linear regression models adjusted for age were calculated. Most of the measured parameters were correlated with chronological age (e.g., association with wrinkle score, r = 0.901) and with each other (e.g., residual skin deformation and wrinkle score, r = 0.606). After statistical adjustment for age, only few associations remained (e.g., mean roughness (R z) and luminance (L *),  β = −0.507, R 2 = 0.377). Chronological age as surrogate marker for intrinsic ageing has the most important influence on most facial skin ageing signs. Changes in skin elasticity, wrinkling, sagging, and yellowness seem to be caused by additional extrinsic ageing. PMID:25767806

  16. A case of stranded Indo-Pacific bottlenose dolphin (Tursiops aduncus) with lobomycosis-like skin lesions in Kinko-wan, Kagoshima, Japan.

    PubMed

    Tajima, Yuko; Sasaki, Kyoko; Kashiwagi, Nobuyuki; Yamada, Tadasu K

    2015-08-01

    Lobomycosis is a chronic fungal disease caused by the etiologic agent, Lacazia loboi, in the skin and subcutaneous tissues in humans and dolphins in tropical and transitional tropical climates. An Indo-Pacific bottlenose dolphin (Tursiops aduncus) stranded in Kagoshima, Japan, had severe skin lesions characterized by granulomatous reactions and hyperkeratosis that were similar to those of the lobomycosis, but no fungal organism was observed in the skin lesion. In this paper, we report a stranded Indo-Pacific bottlenose dolphin with lobomycosis-like lesions based on pathological examinations in Japan.

  17. A case of stranded Indo-Pacific bottlenose dolphin (Tursiops aduncus) with lobomycosis-like skin lesions in Kinko-wan, Kagoshima, Japan

    PubMed Central

    TAJIMA, Yuko; SASAKI, Kyoko; KASHIWAGI, Nobuyuki; YAMADA, Tadasu K.

    2015-01-01

    Lobomycosis is a chronic fungal disease caused by the etiologic agent, Lacazia loboi, in the skin and subcutaneous tissues in humans and dolphins in tropical and transitional tropical climates. An Indo-Pacific bottlenose dolphin (Tursiops aduncus) stranded in Kagoshima, Japan, had severe skin lesions characterized by granulomatous reactions and hyperkeratosis that were similar to those of the lobomycosis, but no fungal organism was observed in the skin lesion. In this paper, we report a stranded Indo-Pacific bottlenose dolphin with lobomycosis-like lesions based on pathological examinations in Japan. PMID:25866402

  18. Epithelioid sarcoma of the thumb associated with hydrazine fuel exposure: a case report.

    PubMed

    Helmers, Scott; Ruland, Robert T; Jacob, Lionel N

    2004-01-01

    Hydrazine fuels are commonly used propellants for missiles and tactical jet aircraft used by the U.S. Air Force and the National Aeronautical and Space Administration. Hydrazine fuels are known to cause cancer after respiratory exposure or ingestion in laboratory animals and humans. Although hydrazine is known to cause skin irritation, there are no published reports describing cancer developing after cutaneous exposure to hydrazine in humans. Hydrazine is known to cause cancer in animals after skin exposure and is used to induce angiosarcomas in mice after cutaneous exposure. We present a case of an epithelioid sarcoma developing in the thumb of a patient after repeated exposure to hydrazine fuel. We hypothesize that the epithelioid sarcoma is a consequence of cutaneous exposure to hydrazine fuel. Continued efforts to develop less toxic alternative fuels and increased personal protection from occupational exposure are highly recommended.

  19. Evidence that two alkyl ester quaternary ammonium compounds lack substantial human skin-sensitizing potential.

    PubMed

    Jowsey, Ian R; Kligman, Albert M; White, Ian R; Goossens, An; Basketter, David A

    2007-03-01

    Alkyl ester quaternary ammonium compounds (ester quats) are used extensively in fabric rinse conditioners. It is important to document in the literature the outcome of historical studies that were performed to assess the risk of adverse skin effects associated with their use. (1) To document the outcomes of historical studies performed to evaluate the skin sensitizing potential of two ester quats (the di-[hardened tallow fatty acid] ester of 2,3-dihydroxypropyl-trimethyl ammonium chloride [HEQ] and the dialkyl ester of triethanol ammonium methyl sulfate [TEA-Quat]) and (2) to demonstrate that these ester quats lack marked skin-sensitizing potential in humans, such that they do not present a risk of contact allergy for consumers who use fabric rinse conditioners. Each material was assessed in the human maximization test in a panel of 25 volunteers. Diagnostic patch testing was also performed with each material in a population of 239 patients undergoing routine patch testing for suspected allergic contact dermatitis. These data are also considered in the context of an exposure-based quantitative risk assessment. Neither HEQ nor TEA-Quat was found to cause skin sensitization under the conditions of the human maximization test. No evidence of contact allergy to the materials was found among the relatively small population assessed by diagnostic patch testing. This study provides evidence that HEQ and TEA-Quat lack substantial skin-sensitizing potential in humans. Taken together with similar data for other ester quats, it suggests that compounds in this class are unlikely to be significant human contact allergens.

  20. Ultrathin epidermal strain sensor based on an elastomer nanosheet with an inkjet-printed conductive polymer

    NASA Astrophysics Data System (ADS)

    Tetsu, Yuma; Yamagishi, Kento; Kato, Akira; Matsumoto, Yuya; Tsukune, Mariko; Kobayashi, Yo; Fujie, Masakatsu G.; Takeoka, Shinji; Fujie, Toshinori

    2017-08-01

    To minimize the interference that skin-contact strain sensors cause natural skin deformation, physical conformability to the epidermal structure is critical. Here, we developed an ultrathin strain sensor made from poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) inkjet-printed on a polystyrene-polybutadiene-polystyrene (SBS) nanosheet. The sensor, whose total thickness and gauge factor were ˜1 µm and 0.73 ± 0.10, respectively, deeply conformed to the epidermal structure and successfully detected the small skin strain (˜2%) while interfering minimally with the natural deformation of the skin. Such an epidermal strain sensor will open a new avenue for precisely detecting the motion of human skin and artificial soft-robotic skin.

  1. Keratin 1 maintains skin integrity and participates in an inflammatory network in skin through interleukin-18.

    PubMed

    Roth, Wera; Kumar, Vinod; Beer, Hans-Dietmar; Richter, Miriam; Wohlenberg, Claudia; Reuter, Ursula; Thiering, Sören; Staratschek-Jox, Andrea; Hofmann, Andrea; Kreusch, Fatima; Schultze, Joachim L; Vogl, Thomas; Roth, Johannes; Reichelt, Julia; Hausser, Ingrid; Magin, Thomas M

    2012-11-15

    Keratin 1 (KRT1) and its heterodimer partner keratin 10 (KRT10) are major constituents of the intermediate filament cytoskeleton in suprabasal epidermis. KRT1 mutations cause epidermolytic ichthyosis in humans, characterized by loss of barrier integrity and recurrent erythema. In search of the largely unknown pathomechanisms and the role of keratins in barrier formation and inflammation control, we show here that Krt1 is crucial for maintenance of skin integrity and participates in an inflammatory network in murine keratinocytes. Absence of Krt1 caused a prenatal increase in interleukin-18 (IL-18) and the S100A8 and S100A9 proteins, accompanied by a barrier defect and perinatal lethality. Depletion of IL-18 partially rescued Krt1(-/-) mice. IL-18 release was keratinocyte-autonomous, KRT1 and caspase-1 dependent, supporting an upstream role of KRT1 in the pathology. Finally, transcriptome profiling revealed a Krt1-mediated gene expression signature similar to atopic eczema and psoriasis, but different from Krt5 deficiency and epidermolysis bullosa simplex. Our data suggest a functional link between KRT1 and human inflammatory skin diseases.

  2. Changes in Bacteria Induce Inflammatory Skin Diseases | Center for Cancer Research

    Cancer.gov

    Atopic dermatitis (AD) is a chronic inflammatory skin disease that manifests as dry skin with a relentless itch and eczema. AD is considered an allergic disease in which the skin inflammation manifests in response to chronic exposure to contact allergens. However, identification of a responsible allergen is uncommon. Meanwhile, analyses have demonstrated that the surface of the human body is colonized by large numbers of diverse bacteria. This observation has led researchers to examine the roles these bacteria play in healthy and diseased skin. In a variety of genetic and chronic inflammatory skin diseases, including in patients with AD or with cancer who receive epidermal growth factor receptor (EGFR) inhibitors, Staphylococcus aureus and Corynebacterium species are the predominant bacteria isolated from the skin. However, the cause-and-effect relationship between this microbial imbalance and skin inflammation has not been determined.

  3. Interleukin-17 inhibitors. A new era in treatment of psoriasis and other skin diseases.

    PubMed

    Wasilewska, Agnieszka; Winiarska, Marta; Olszewska, Małgorzata; Rudnicka, Lidia

    2016-08-01

    Psoriasis is a chronic skin disease caused by the excessive secretion of inflammatory cytokines. Available therapeutic options include biologic drugs such as tumor necrosis factor alpha inhibitors and interleukin 12/23 (IL-12/23) inhibitors. The recent discovery of IL-17, which contributes to development of psoriasis, opened new possibilities for further treatment modalities. Currently, one anti-IL17 biological agent is approved for the treatment - a fully human monoclonal antibody that targets IL-17A (secukinumab). Further clinical trials, including a humanized IgG4 specific for IL-17 (ixekizumab) and a fully human antibody that targets the IL-17 receptor A (brodalumab).

  4. 40 CFR 161.340 - Toxicology data requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... an organophosphate, or a metabolite or degradation product thereof which causes acetyl cholinesterase... involves purposeful dermal application to, or prolonged exposure of, human skin. (6) Required if use may... supoort products intended for non-food uses if significant exposure of human females of child bearing age...

  5. Modeling Human Exposure Risk to Nontuberculous Mycobacteria in Central North Carolina

    EPA Science Inventory

    Nontuberculous mycobacteria (NTM) are a broad group of soil-and water-borne bacteria. Some species are pathogenic and may cause serious infections in the lungs, soft tissues, bones and skin. Infections in humans are associated with environmental exposures to contaminated soil, ae...

  6. Proteomic Analysis of Arsenic-Induced Oxidative Stress in Human Epidermal Keratinocytes

    EPA Science Inventory

    Chronic exposure to inorganic arsenic (IAs) has been associated with the development of several human cancers, including those found in the skin, lung, urinary bladder, liver, prostate and kidney. The precise mechanisms by which arsenic causes cancer are unknown. Defining the mod...

  7. Antimicrobial wash with Trans-cinnamaldehyde nanoemulsion reduces Campylobacter jejuni on chicken skin

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni is a major foodborne pathogen that causes severe enteritis in humans largely due to consumption of contaminated poultry products. Reducing C. jejuni contamination on chicken carcasses would reduce subsequent human infections. This study investigated the efficacy of Trans-cinnama...

  8. The human Cx26-D50A and Cx26-A88V mutations causing keratitis-ichthyosis-deafness syndrome display increased hemichannel activity

    PubMed Central

    Mhaske, Pallavi V.; Levit, Noah A.; Li, Leping; Wang, Hong-Zhan; Lee, Jack R.; Shuja, Zunaira; Brink, Peter R.

    2013-01-01

    Mutations in the human gene encoding connexin 26 (Cx26 or GJB2) cause either nonsyndromic deafness or syndromic deafness associated with skin diseases. That distinct clinical disorders can be caused by different mutations within the same gene suggests that different channel activities influence the ear and skin. Here we use three different expression systems to examine the functional characteristics of two Cx26 mutations causing either mild (Cx26-D50A) or lethal (Cx26-A88V) keratitis-ichthyosis-deafness (KID) syndrome. In either cRNA-injected Xenopus oocytes, transfected HeLa cells, or transfected primary human keratinocytes, we show that both Cx26-D50A and Cx26-A88V form active hemichannels that significantly increase membrane current flow compared with wild-type Cx26. This increased membrane current accelerated cell death in low extracellular calcium solutions and was not due to increased mutant protein expression. Elevated mutant hemichannel currents could be blocked by increased extracellular calcium concentration. These results show that these two mutations exhibit a shared gain of functional activity and support the hypothesis that increased hemichannel activity is a common feature of human Cx26 mutations responsible for KID syndrome. PMID:23447037

  9. Combination of 4-hydroxyanisole and all-trans retinoic acid produces synergistic skin depigmentation in swine.

    PubMed

    Nair, X; Parab, P; Suhr, L; Tramposch, K M

    1993-08-01

    A combination of 4-hydroxyanisole (4HA) and all-trans retinoic acid (TRA) was found to synergistically cause moderate to complete depigmentation of Yucatan swine skin. Two hyperpigmentation models were used: Natural dark-skinned swine, a potential model for melasma-like disorders, and ultraviolet light-stimulated hyperpigmentation, a model of solar lentigines. Test materials were applied twice daily, 5 d/week, to dorsal flank skin. Application sites were graded at weekly intervals for skin color using a 0 to 4 grading scale. After 8 weeks of treatment of naturally dark swine skin, a combination of 2% 4HA and 0.01% TRA produced grade 2 hypopigmentation (definite but moderate hypopigmentation). In contrast, 2% 4HA alone or 0.01% TRA alone did not produce significant hypopigmentation. After cessation of treatment, the 4HA/TRA-treated sites reverted to normal color within 7-12 weeks. The 4HA/TRA combination completely reversed the hyperpigmentation induced by ultraviolet light after 8 weeks of treatment. In vitro skin-penetration studies using hairless mouse and human skin show that skin penetration of 4HA was not significantly affected by adding 0.01% TRA. These data suggest that the observed synergy is not due to enhanced bioavailability of 4HA. We have demonstrated that combining low concentrations of 4HA and TRA results in effective skin lightening without causing irreversible depigmentation and with minimal local skin irritation.

  10. Co-trimoxazole

    MedlinePlus

    ... cannot digest the nutrients needed for good health); human immunodeficiency virus (HIV) infection; porphyria (an inherited blood disease that may cause skin or nervous system problems); thyroid disease; or glucose-6-phosphate dehydrogenase ( ...

  11. Incremental Contributions of FbaA and Other Impetigo-Associated Surface Proteins to Fitness and Virulence of a Classical Group A Streptococcal Skin Strain.

    PubMed

    Rouchon, Candace N; Ly, Anhphan T; Noto, John P; Luo, Feng; Lizano, Sergio; Bessen, Debra E

    2017-11-01

    Group A streptococci (GAS) are highly prevalent human pathogens whose primary ecological niche is the superficial epithelial layers of the throat and/or skin. Many GAS strains with a strong tendency to cause pharyngitis are distinct from strains that tend to cause impetigo; thus, genetic differences between them may confer host tissue-specific virulence. In this study, the FbaA surface protein gene was found to be present in most skin specialist strains but largely absent from a genetically related subset of pharyngitis isolates. In an Δ fbaA mutant constructed in the impetigo strain Alab49, loss of FbaA resulted in a slight but significant decrease in GAS fitness in a humanized mouse model of impetigo; the Δ fbaA mutant also exhibited decreased survival in whole human blood due to phagocytosis. In assays with highly sensitive outcome measures, Alab49ΔfbaA was compared to other isogenic mutants lacking virulence genes known to be disproportionately associated with classical skin strains. FbaA and PAM (i.e., the M53 protein) had additive effects in promoting GAS survival in whole blood. The pilus adhesin tip protein Cpa promoted Alab49 survival in whole blood and appears to fully account for the antiphagocytic effect attributable to pili. The finding that numerous skin strain-associated virulence factors make slight but significant contributions to virulence underscores the incremental contributions to fitness of individual surface protein genes and the multifactorial nature of GAS-host interactions. Copyright © 2017 American Society for Microbiology.

  12. The roles of vitamin D and cutaneous vitamin D production in human evolution and health.

    PubMed

    Jablonski, Nina G; Chaplin, George

    2018-03-29

    Most of the vitamin D necessary for the maintenance of human health and successful reproduction is made in the skin under the influence of a narrow portion of the electromagnetic spectrum emitted from the sun, namely ultraviolet B radiation (UVB). During the course of human evolution, skin pigmentation has evolved to afford protection against high levels of UVR while still permitting cutaneous production of vitamin D. Similar pigmentation phenotypes evolved repeatedly as the result of independent genetic events when isolated human populations dispersed into habitats of extremely low or high UVB. The gradient of skin color seen in modern human populations is evidence of the operation of two clines, one favoring photoprotection near the equator, the other favoring vitamin D production nearer the poles. Through time, human adaptations to different solar regimes have become more cultural than biological. Rapid human migrations, increasing urbanization, and changes in lifestyle have created mismatches between skin pigmentation and environmental conditions leading to vitamin D deficiency. The prevalence and significance for health of vitamin D deficiencies, and the definition of optimal levels of vitamin D in the bloodstream are subjects of intense research and debate, but two of the causes of vitamin D deficiency - lack of sun exposure and abandonment of vitamin D rich foods in the diet - are traceable to changes in human lifestyles accompanying urbanization in prehistory. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Beneficial modulation from a high-purity caviar-derived homogenate on chronological skin aging.

    PubMed

    Marotta, Francesco; Polimeni, Ascanio; Solimene, Umberto; Lorenzetti, Aldo; Minelli, Emilio; Jain, Shalini; Rastmanesh, Reza; Sedriep, Sonia; Soresi, Vincenzo

    2012-04-01

    This study tested the activity of LD-1227, which contains a caviar-derived homogenate added with coenzyme Q(10) (CoQ(10))-selenium component (CaviarLieri(®), Lab-Dom, Switzerland), in aged human skin and its potential role on skin mitochondria function. Human dermal fibroblasts were obtained from healthy donors over 70 years old and treated with LD-1227 for 72 hr. As compared to baseline, LD-1227 caused a robust (>67%) collagen type I synthesis (p<0.001) and decreased fibronectin synthesis (p<0.05) with significant fibronectin messenger RNA (mRNA) downregulation (p<0.05, r=0.78). A significant collagen mRNA overexpression occurred with LD-1227 treatment (p<0.05). Mitochondria cytosolic adenosine triphosphate (ATP) level decreased in aged skin samples (p<0.05 vs. young control), but this phenomenon was reversed by LD-1227 (p<0.01). These data show that LD-1227 may modify the extracellular matrix milieu in aged skin and also beneficially affect mitochondrial function.

  14. The skin is a significant but overlooked anatomical reservoir for vector-borne African trypanosomes

    PubMed Central

    Capewell, Paul; Cren-Travaillé, Christelle; Marchesi, Francesco; Johnston, Pamela; Clucas, Caroline; Benson, Robert A; Gorman, Taylor-Anne; Calvo-Alvarez, Estefania; Crouzols, Aline; Jouvion, Grégory; Jamonneau, Vincent; Weir, William; Stevenson, M Lynn; O'Neill, Kerry; Cooper, Anneli; Swar, Nono-raymond Kuispond; Bucheton, Bruno; Ngoyi, Dieudonné Mumba; Garside, Paul

    2016-01-01

    The role of mammalian skin in harbouring and transmitting arthropod-borne protozoan parasites has been overlooked for decades as these pathogens have been regarded primarily as blood-dwelling organisms. Intriguingly, infections with low or undetected blood parasites are common, particularly in the case of Human African Trypanosomiasis caused by Trypanosoma brucei gambiense. We hypothesise, therefore, the skin represents an anatomic reservoir of infection. Here we definitively show that substantial quantities of trypanosomes exist within the skin following experimental infection, which can be transmitted to the tsetse vector, even in the absence of detectable parasitaemia. Importantly, we demonstrate the presence of extravascular parasites in human skin biopsies from undiagnosed individuals. The identification of this novel reservoir requires a re-evaluation of current diagnostic methods and control policies. More broadly, our results indicate that transmission is a key evolutionary force driving parasite extravasation that could further result in tissue invasion-dependent pathology. DOI: http://dx.doi.org/10.7554/eLife.17716.001 PMID:27653219

  15. Irradiation of skin with visible light induces reactive oxygen species and matrix-degrading enzymes.

    PubMed

    Liebel, Frank; Kaur, Simarna; Ruvolo, Eduardo; Kollias, Nikiforos; Southall, Michael D

    2012-07-01

    Daily skin exposure to solar radiation causes cells to produce reactive oxygen species (ROS), which are a primary factor in skin damage. Although the contribution of the UV component to skin damage has been established, few studies have examined the effects of non-UV solar radiation on skin physiology. Solar radiation comprises <10% of UV, and thus the purpose of this study was to examine the physiological response of skin to visible light (400-700 nm). Irradiation of human skin equivalents with visible light induced production of ROS, proinflammatory cytokines, and matrix metalloproteinase (MMP)-1 expression. Commercially available sunscreens were found to have minimal effects on reducing visible light-induced ROS, suggesting that UVA/UVB sunscreens do not protect the skin from visible light-induced responses. Using clinical models to assess the generation of free radicals from oxidative stress, higher levels of free radical activity were found after visible light exposure. Pretreatment with a photostable UVA/UVB sunscreen containing an antioxidant combination significantly reduced the production of ROS, cytokines, and MMP expression in vitro, and decreased oxidative stress in human subjects after visible light irradiation. Taken together, these findings suggest that other portions of the solar spectrum aside from UV, particularly visible light, may also contribute to signs of premature photoaging in skin.

  16. Visible lesion thresholds and model predictions for Q-switched 1318-nm and 1540-nm laser exposures to porcine skin

    NASA Astrophysics Data System (ADS)

    Zohner, Justin J.; Schuster, Kurt J.; Chavey, Lucas J.; Stolarski, David J.; Kumru, Semih S.; Rockwell, Benjamin A.; Thomas, Robert J.; Cain, Clarence P.

    2006-02-01

    Skin damage thresholds were measured and compared with theoretical predictions using a skin thermal model for near-IR laser pulses at 1318 nm and 1540 nm. For the 1318-nm data, a Q-switched, 50-ns pulse with a spot size of 5 mm was applied to porcine skin and the damage thresholds were determined at 1 hour and 24 hours postexposure using Probit analysis. The same analysis was conducted for a Q-switched, 30-ns pulse at 1540 nm with a spot size of 5 mm. The Yucatan mini-pig was used as the skin model for human skin due to its similarity to pigmented human skin. The ED 50 for these skin exposures at 24 hours postexposure was 10.5 J/cm2 for the 1318-nm exposures, and 6.1 J/cm2 for the 1540-nm exposures. These results were compared to thermal model predictions. We show that the thermal model fails to account for the ED 50 values observed. A brief discussion of the possible causes of this discrepancy is presented. These thresholds are also compared with previously published skin minimum visible lesion (MVL) thresholds and with the ANSI Standard's MPE for 1318-nm lasers at 50 ns and 1540-nm lasers at 30 ns.

  17. IL-23 induced in keratinocytes by endogenous TLR4 ligands polarizes dendritic cells to drive IL-22 responses to skin immunization

    PubMed Central

    Yoon, Juhan; Oyoshi, Michiko K.; Hoff, Sabine; Chervonsky, Alexander; Oppenheim, Joost J.; Rosenstiel, Philip

    2016-01-01

    Atopic dermatitis (AD) is a Th2-dominated inflammatory skin disease characterized by epidermal thickening. Serum levels of IL-22, a cytokine known to induce keratinocyte proliferation, are elevated in AD, and Th22 cells infiltrate AD skin lesions. We show that application of antigen to mouse skin subjected to tape stripping, a surrogate for scratching, induces an IL-22 response that drives epidermal hyperplasia and keratinocyte proliferation in a mouse model of skin inflammation that shares many features of AD. DC-derived IL-23 is known to act on CD4+ T cells to induce IL-22 production. However, the mechanisms that drive IL-23 production by skin DCs in response to cutaneous sensitization are not well understood. We demonstrate that IL-23 released by keratinocytes in response to endogenous TLR4 ligands causes skin DCs, which selectively express IL-23R, to up-regulate their endogenous IL-23 production and drive an IL-22 response in naive CD4+ T cells that mediates epidermal thickening. We also show that IL-23 is released in human skin after scratching and polarizes human skin DCs to drive an IL-22 response, supporting the utility of IL-23 and IL-22 blockade in AD. PMID:27551155

  18. Human Adipose Mesenchymal Cells Inhibit Melanocyte Differentiation and the Pigmentation of Human Skin via Increased Expression of TGF-β1.

    PubMed

    Klar, Agnes S; Biedermann, Thomas; Michalak, Katarzyna; Michalczyk, Teresa; Meuli-Simmen, Claudia; Scherberich, Arnaud; Meuli, Martin; Reichmann, Ernst

    2017-12-01

    There is accumulating evidence that interactions between epidermal melanocytes and stromal cells play an important role in the regulation of skin pigmentation. In this study we established a pigmented dermo-epidermal skin model, melDESS, of human origin to investigate the effects of distinct stromal cells on melanogenesis. melDESS is a complex, clinically relevant skin equivalent composed of an epidermis containing both melanocytes and keratinocytes. Its dermal compartment consists either of adipose tissue-derived stromal cells, dermal fibroblasts (Fbs), or a mixture of both cell types. These skin substitutes were transplanted for 5 weeks on the backs of immuno-incompetent rats and analyzed. Gene expression and Western blot analyses showed a significantly higher expression of transforming growth factor-β1 by adipose tissue-derived stromal cells compared with dermal Fbs. In addition, we showed that melanocytes responded to the increased levels of transforming growth factor-β1 by down-regulating the expression of key melanogenic enzymes such as tyrosinase. This caused decreased melanin synthesis and, consequently, greatly reduced pigmentation of melDESS. The conclusions are of utmost clinical relevance, namely that adipose tissue-derived stromal cells derived from the hypodermis fail to appropriately interact with epidermal melanocytes, thus preventing the sustainable restoration of the patient's native skin color in bioengineered skin grafts. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Molecular basis of retinol anti-ageing properties in naturally aged human skin in vivo.

    PubMed

    Shao, Y; He, T; Fisher, G J; Voorhees, J J; Quan, T

    2017-02-01

    Retinoic acid has been shown to improve the aged-appearing skin. However, less is known about the anti-ageing effects of retinol (ROL, vitamin A), a precursor of retinoic acid, in aged human skin in vivo. This study aimed to investigate the molecular basis of ROL anti-ageing properties in naturally aged human skin in vivo. Sun-protected buttock skin (76 ± 6 years old, n = 12) was topically treated with 0.4% ROL and its vehicle for 7 days. The effects of topical ROL on skin epidermis and dermis were evaluated by immunohistochemistry, in situ hybridization, Northern analysis, real-time RT-PCR and Western analysis. Collagen fibrils nanoscale structure and surface topology were analysed by atomic force microscopy. Topical ROL shows remarkable anti-ageing effects through three major types of skin cells: epidermal keratinocytes, dermal endothelial cells and fibroblasts. Topical ROL significantly increased epidermal thickness by stimulating keratinocytes proliferation and upregulation of c-Jun transcription factor. In addition to epidermal changes, topical ROL significantly improved dermal extracellular matrix (ECM) microenvironment; increasing dermal vascularity by stimulating endothelial cells proliferation and ECM production (type I collagen, fibronectin and elastin) by activating dermal fibroblasts. Topical ROL also stimulates TGF-β/CTGF pathway, the major regulator of ECM homeostasis, and thus enriched the deposition of ECM in aged human skin in vivo. 0.4% topical ROL achieved similar results as seen with topical retinoic acid, the biologically active form of ROL, without causing noticeable signs of retinoid side effects. 0.4% topical ROL shows remarkable anti-ageing effects through improvement of the homeostasis of epidermis and dermis by stimulating the proliferation of keratinocytes and endothelial cells, and activating dermal fibroblasts. These data provide evidence that 0.4% topical ROL is a promising and safe treatment to improve the naturally aged human skin. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  20. It is all in the face: carotenoid skin coloration loses attractiveness outside the face.

    PubMed

    Lefevre, C E; Ewbank, M P; Calder, A J; von dem Hagen, E; Perrett, D I

    2013-01-01

    Recently, the importance of skin colour for facial attractiveness has been recognized. In particular, dietary carotenoid-induced skin colour has been proposed as a signal of health and therefore attractiveness. While perceptual results are highly consistent, it is currently not clear whether carotenoid skin colour is preferred because it poses a cue to current health condition in humans or whether it is simply seen as a more aesthetically pleasing colour, independently of skin-specific signalling properties. Here, we tested this question by comparing attractiveness ratings of faces to corresponding ratings of meaningless scrambled face images matching the colours and contrasts found in the face. We produced sets of face and non-face stimuli with either healthy (high-carotenoid coloration) or unhealthy (low-carotenoid coloration) colour and asked participants for attractiveness ratings. Results showed that, while for faces increased carotenoid coloration significantly improved attractiveness, there was no equivalent effect on perception of scrambled images. These findings are consistent with a specific signalling system of current condition through skin coloration in humans and indicate that preferences are not caused by sensory biases in observers.

  1. Dermatophyte and non dermatophyte fungi in Riyadh City, Saudi Arabia

    PubMed Central

    Khaled, Jamal M.; Golah, Hammed A; Khalel, Abdulla S.; Alharbi, Naiyf S.; Mothana, Ramzi A.

    2015-01-01

    Background Dermatophytes are a scientific label for a group of three genera (Microsporum, Epidermophyton and Trichophyton) of fungus that causes skin disease in animals and humans. Conventional methods for identification of these fungi are rapid and simple but are not accurate comparing to molecular methods. Objective This study aimed to isolate human pathogenic dermatophytes which cause dermatophytosis in Riyadh City, Saudi Arabia and to identify these fungi by using conventional and molecular methods. Methods The study was conducted in Medical Complex, Riyadh and King Saud University. Samples of infected skin, hairs and nails were collected from 112 patients. Diagnosis of skin infections, direct microscopic test, isolation and identification of dermatophytes by conventional and molecular methods were carried out. Results The results indicated that the tinea capitis infection had the highest prevalence among the patients (22.3%) while Tinea barbae had the lowest. In this study the identified dermatophyte isolates belong to nine species as Trichophyton violaceum, Trichophyton verrucosum, Trichophyton rubrum, Trichophyton mentagrophytes, Trichophyton schoenleinii, Trichophyton concentricum, Microsporum canis, Microsporum audouinii and Epidermophyton floccosum which cause skin infections were isolated during this study. Non dermatophyte isolates included 5 isolates from Aspergillus spp. 4 isolates from Acremonium potronii and 15 isolates from Candida spp. M. canis were the most common species (25% of isolated dermatophytes). Out of the 52 dermatophyte isolates identified by conventional methods, there were 45 isolates identified by the molecular method. Conclusions The results concluded that approximately M. canis caused a quarter of dermatophyte cases, tinea capitis infection was prevalent and the molecular method was more accurate than conventional methods. PMID:26288566

  2. Regulation of 1-alpha, 25-dihydroxyvitamin D3 on interleukin-6 and interleukin-8 induced by sulfur mustard (HD) on human skin cells.

    PubMed

    Arroyo, Carmen M; Kan, Robert K; Burman, Damon L; Kahler, David W; Nelson, Marian R; Corun, Charlene M; Guzman, Juanita J; Broomfield, Clarence A

    2003-05-01

    The regulatory effects of the active form of vitamin D, 1-alpha, 25-dihydroxyvitamin D3 (1-alpha, 25 (OH)2D3) were assessed on the cytokine and chemokine secretion induced by sulfur mustard on human skin fibroblasts and human epidermal keratinocytes. Stimulation of human skin fibroblasts with sulfur mustard (10(-4) M for 24 hr at 37 degrees ) resulted in approximately a 5 times increase in the secretion of interleukin-6 and over a 10 times increase for interleukin-8, which was inhibited by 1-alpha, 25 (OH)2D3, at

  3. Loss of kindlin-1, a human homolog of the Caenorhabditis elegans actin-extracellular-matrix linker protein UNC-112, causes Kindler syndrome.

    PubMed

    Siegel, Dawn H; Ashton, Gabrielle H S; Penagos, Homero G; Lee, James V; Feiler, Heidi S; Wilhelmsen, Kirk C; South, Andrew P; Smith, Frances J D; Prescott, Alan R; Wessagowit, Vesarat; Oyama, Noritaka; Akiyama, Masashi; Al Aboud, Daifullah; Al Aboud, Khalid; Al Githami, Ahmad; Al Hawsawi, Khalid; Al Ismaily, Abla; Al-Suwaid, Raouf; Atherton, David J; Caputo, Ruggero; Fine, Jo-David; Frieden, Ilona J; Fuchs, Elaine; Haber, Richard M; Harada, Takashi; Kitajima, Yasuo; Mallory, Susan B; Ogawa, Hideoki; Sahin, Sedef; Shimizu, Hiroshi; Suga, Yasushi; Tadini, Gianluca; Tsuchiya, Kikuo; Wiebe, Colin B; Wojnarowska, Fenella; Zaghloul, Adel B; Hamada, Takahiro; Mallipeddi, Rajeev; Eady, Robin A J; McLean, W H Irwin; McGrath, John A; Epstein, Ervin H

    2003-07-01

    Kindler syndrome is an autosomal recessive disorder characterized by neonatal blistering, sun sensitivity, atrophy, abnormal pigmentation, and fragility of the skin. Linkage and homozygosity analysis in an isolated Panamanian cohort and in additional inbred families mapped the gene to 20p12.3. Loss-of-function mutations were identified in the FLJ20116 gene (renamed "KIND1" [encoding kindlin-1]). Kindlin-1 is a human homolog of the Caenorhabditis elegans protein UNC-112, a membrane-associated structural/signaling protein that has been implicated in linking the actin cytoskeleton to the extracellular matrix (ECM). Thus, Kindler syndrome is, to our knowledge, the first skin fragility disorder caused by a defect in actin-ECM linkage, rather than keratin-ECM linkage.

  4. Nuclear microprobe investigation of the penetration of ultrafine zinc oxide into intact and tape-stripped human skin

    NASA Astrophysics Data System (ADS)

    Szikszai, Z.; Kertész, Zs.; Bodnár, E.; Major, I.; Borbíró, I.; Kiss, Á. Z.; Hunyadi, J.

    2010-06-01

    Ultrafine metal oxides, such as titanium dioxide and zinc oxide are widely used in cosmetic and health products like sunscreens. These oxides are potent UV filters and the small particle size makes the product more transparent compared to formulations containing coarser particles. In the present work the penetration of ultrafine zinc oxide into intact and tape-stripped human skin was investigated using nuclear microprobe techniques, such as proton induced X-ray spectroscopy and scanning transmission ion microscopy. Our results indicate that the penetration of ultrafine zinc oxide, in a hydrophobic basis gel with 48 h application time, is limited to the stratum corneum layer of the intact skin. Removing the stratum corneum partially or entirely by tape-stripping did not cause the penetration of the particles into the deeper dermal layers; the zinc particles remained on the surface of the skin.

  5. Parameters effects study on pulse laser for the generation of surface acoustic waves in human skin detection applications

    NASA Astrophysics Data System (ADS)

    Li, Tingting; Fu, Xing; Dorantes-Gonzalez, Dante J.; Chen, Kun; Li, Yanning; Wu, Sen

    2015-10-01

    Laser-induced Surface Acoustic Waves (LSAWs) has been promisingly and widely used in recent years due to its rapid, high accuracy and non-contact evaluation potential of layered and thin film materials. For now, researchers have applied this technology on the characterization of materials' physical parameters, like Young's Modulus, density, and Poisson's ratio; or mechanical changes such as surface cracks and skin feature like a melanoma. While so far, little research has been done on providing practical guidelines on pulse laser parameters to best generate SAWs. In this paper finite element simulations of the thermos-elastic process based on human skin model for the generation of LSAWs were conducted to give the effects of pulse laser parameters have on the generated SAWs. And recommendations on the parameters to generate strong SAWs for detection and surface characterization without cause any damage to skin are given.

  6. On skin expansion.

    PubMed

    Pamplona, Djenane C; Velloso, Raquel Q; Radwanski, Henrique N

    2014-01-01

    This article discusses skin expansion without considering cellular growth of the skin. An in vivo analysis was carried out that involved expansion at three different sites on one patient, allowing for the observation of the relaxation process. Those measurements were used to characterize the human skin of the thorax during the surgical process of skin expansion. A comparison between the in vivo results and the numerical finite elements model of the expansion was used to identify the material elastic parameters of the skin of the thorax of that patient. Delfino's constitutive equation was chosen to model the in vivo results. The skin is considered to be an isotropic, homogeneous, hyperelastic, and incompressible membrane. When the skin is extended, such as with expanders, the collagen fibers are also extended and cause stiffening in the skin, which results in increasing resistance to expansion or further stretching. We observed this phenomenon as an increase in the parameters as subsequent expansions continued. The number and shape of the skin expanders used in expansions were also studied, both mathematically and experimentally. The choice of the site where the expansion should be performed is discussed to enlighten problems that can lead to frustrated skin expansions. These results are very encouraging and provide insight into our understanding of the behavior of stretched skin by expansion. To our knowledge, this study has provided results that considerably improve our understanding of the behavior of human skin under expansion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Immunosuppressive macrolides of the type FK 506: a novel class of topical agents for treatment of skin diseases?

    PubMed

    Meingassner, J G; Stütz, A

    1992-06-01

    The immunosuppressive macrolide antibiotics FK 506 and rapamycin were tested for topical activity in experimental allergic contact dermatitis of farm pigs. This species was used because pig skin, in comparison to rodent skin, resembles human skin more closely. For comparison, cyclosporine A (CyA), which is orally but not topically active in patients with skin disease, dexamethasone, and clobetasol propionate were used. Treatment was performed twice, 30 min and 6 h after elicitation of challenge reaction. Topical application of 0.4 to 0.04% FK 506 caused a pronounced inhibition of inflammatory skin reactions of hypersensitivity to dinitrofluorobenzene. The treatment response was similar to the activity of 0.13% clobetasole. Dexamethasone (1.2%) was less active than clobetasol. In contrast, rapamycin and CyA were inactive at concentrations of 1.2 and 10%, respectively. Because the pig data on corticosteroids and cyclosporine A are in agreement with clinical findings, these studies indicate that immunosuppressive macrolides of the type FK 506 may be useful drugs for the topical treatment of human skin diseases that respond to local corticosteroids and oral treatment with cyclosporine A.

  8. Towards in vivo breast skin characterization using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Batista, Ana; Uchugonova, Aisada; Breunig, Hans Georg; König, Karsten

    2017-02-01

    Breast cancer, the most common type of cancer in women worldwide, as well as its treatment (e.g. radiation therapy) can affect the human skin. Multiphoton imaging could provide new insights into these skin alterations non-invasively and with high-resolution. As a preparation for a later investigation involving patients, areas of the breast and forearm skin of healthy volunteers were imaged using the clinically certified multiphoton imaging tomograph MPTflex based on endogenous skin autofluorescence and second-harmonic signals. Depth-resolved image stacks were acquired in consecutive weeks to explore the influence of hormonal variations on the skin properties. Both breasts were considered and up to three different areas were imaged per session. Acquisition parameters were optimized to minimize artifacts caused by breathing-motion. As a first result, skin properties, such as the epidermal thickness, appear to be influenced by hormonal variations.

  9. Soft, Conformal Bioelectronics for a Wireless Human-Wheelchair Interface

    PubMed Central

    Mishra, Saswat; Norton, James J. S.; Lee, Yongkuk; Lee, Dong Sup; Agee, Nicolas; Chen, Yanfei; Chun, Youngjae; Yeo, Woon-Hong

    2017-01-01

    There are more than 3 million people in the world whose mobility relies on wheelchairs. Recent advancement on engineering technology enables more intuitive, easy-to-use rehabilitation systems. A human-machine interface that uses non-invasive, electrophysiological signals can allow a systematic interaction between human and devices; for example, eye movement-based wheelchair control. However, the existing machine-interface platforms are obtrusive, uncomfortable, and often cause skin irritations as they require a metal electrode affixed to the skin with a gel and acrylic pad. Here, we introduce a bioelectronic system that makes dry, conformal contact to the skin. The mechanically comfortable sensor records high-fidelity electrooculograms, comparable to the conventional gel electrode. Quantitative signal analysis and infrared thermographs show the advantages of the soft biosensor for an ergonomic human-machine interface. A classification algorithm with an optimized set of features shows the accuracy of 94% with five eye movements. A Bluetooth-enabled system incorporating the soft bioelectronics demonstrates a precise, hands-free control of a robotic wheelchair via electrooculograms. PMID:28152485

  10. TNF-alpha Expression Patterns as Potential Molecular Biomarker for Human Skin Cells Exposed to Vesicant Chemical Warfare Agents: Sulfur Mustard (HD) and Lewisite (L)

    DTIC Science & Technology

    2004-01-01

    First World War. It was Sabourin et al., 2000). Skin injuries caused by called Hun Stoffe by the Allies and given the HD are complex and involve... Sabourin et al., 2000, Kan et al., 2003) sup- port the involvement of TNF-cx in animal models such as mouse skin and hairless guinea References pigs... Sabourin CLK. Petrali JP. Casillas RP. Alteration in inflamma- Pharmacol Toxicol. 2003:92:20 4 -13. tory cytokine gene expression in sulfur mustard exposed

  11. Albinism

    MedlinePlus

    ... in this article? Understanding Albinism Eyesight and Albinism Skin Precautions What Causes Albinism? How Is It Treated? What's Life Like for Teens With Albinism? Print Understanding Albinism Humans, animals, and even plants can have albinism, a condition ...

  12. Collembola are Unlikely to Cause Human Dermatitis

    PubMed Central

    Lim, CSH; Lim, SL; Chew, FT; Ong, TC; Deharveng, L

    2009-01-01

    There have been several unconfirmed case reports of dermatitis caused by Collembola (springtails). We recently investigated two nurses with dermatitis suspected to be caused by Drepanura Schött (Collembola: Entomobryidae). IgE antibodies to Collembola proteins were not detected in sera from the nurses and skin tests with the Collembola extract and crushed whole Collembola were negative in both the nurses and volunteers. This study suggests that the springtail Drepanura may not cause human dermatitis and that other organisms and organic matter that are also found in the moist environment inhabited by Collembola might instead be responsible. PMID:19611235

  13. Protective effects of citrus and rosemary extracts on UV-induced damage in skin cell model and human volunteers.

    PubMed

    Pérez-Sánchez, A; Barrajón-Catalán, E; Caturla, N; Castillo, J; Benavente-García, O; Alcaraz, M; Micol, V

    2014-07-05

    Ultraviolet radiation absorbed by the epidermis is the major cause of various cutaneous disorders, including photoaging and skin cancers. Although topical sunscreens may offer proper skin protection, dietary plant compounds may significantly contribute to lifelong protection of skin health, especially when unconsciously sun UV exposed. A combination of rosemary and citrus bioflavonoids extracts was used to inhibit UV harmful effects on human HaCaT keratinocytes and in human volunteers after oral intake. Survival of HaCaT cells after UVB radiation was higher in treatments using the combination of extracts than in those performed with individual extracts, indicating potential synergic effects. The combination of extracts also decreased UVB-induced intracellular radical oxygen species (ROS) and prevented DNA damage in HaCaT cells by comet assay and decreased chromosomal aberrations in X-irradiated human lymphocytes. The oral daily consumption of 250 mg of the combination by human volunteers revealed a significant minimal erythema dose (MED) increase after eight weeks (34%, p<0.05). Stronger protection was achieved after 12 weeks (56%, p<0.01). The combination of citrus flavonoids and rosemary polyphenols and diterpenes may be considered as an ingredient for oral photoprotection. Their mechanism of action may deserve further attention. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Monte Carlo simulation of reflection spectra of random multilayer media strongly scattering and absorbing light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meglinskii, I V

    2001-12-31

    The reflection spectra of a multilayer random medium - the human skin - strongly scattering and absorbing light are numerically simulated. The propagation of light in the medium and the absorption spectra are simulated by the stochastic Monte Carlo method, which combines schemes for calculations of real photon trajectories and the statistical weight method. The model takes into account the inhomogeneous spatial distribution of blood vessels, water, and melanin, the degree of blood oxygenation, and the hematocrit index. The attenuation of the incident radiation caused by reflection and refraction at Fresnel boundaries of layers inside the medium is also considered.more » The simulated reflection spectra are compared with the experimental reflection spectra of the human skin. It is shown that a set of parameters that was used to describe the optical properties of skin layers and their possible variations, despite being far from complete, is nevertheless sufficient for the simulation of the reflection spectra of the human skin and their quantitative analysis. (laser applications and other topics in quantum electronics)« less

  15. In-Vivo Human Skin to Textiles Friction Measurements

    NASA Astrophysics Data System (ADS)

    Pfarr, Lukas; Zagar, Bernhard

    2017-10-01

    We report on a measurement system to determine highly reliable and accurate friction properties of textiles as needed for example as input to garment simulation software. Our investigations led to a set-up that allows to characterize not just textile to textile but also textile to in-vivo human skin tribological properties and thus to fundamental knowledge about genuine wearer interaction in garments. The method of test conveyed in this paper is measuring concurrently and in a highly time resolved manner the normal force as well as the resulting shear force caused by a friction subject intending to slide out of the static friction regime and into the dynamic regime on a test bench. Deeper analysis of various influences is enabled by extending the simple model following Coulomb's law for rigid body friction to include further essential parameters such as contact force, predominance in the yarn's orientation and also skin hydration. This easy-to-use system enables to measure reliably and reproducibly both static and dynamic friction for a variety of friction partners including human skin with all its variability there might be.

  16. Photoproduct formation of endogeneous protoporphyrin and its photodynamic activity

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Schneckenburger, Herbert; Rueck, Angelika C.; Auchter, S.

    1991-11-01

    Human skin shows a strong autofluorescence in the red spectral region caused on the porphyrin production of the Gram positive lipophile skin bacterium Propionibacterium acnes. Irradiation of these bacteria reduces the integral fluorescence intensity and induces the formation of fluorescent photoproducts. The fluorescence band at around 670 nm and the decay times of around 1 ns and 5 ns are typical for protoporphyrin products. The photoproduct formation is connected with an increased absorption in the red spectral region. However the photodynamic activity of these photoproducts determined by scattering measurements on human erythrocytes is lower than that of protoporphyrin IX. 1:

  17. Salidroside suppresses solar ultraviolet-induced skin inflammation by targeting cyclooxygenase-2.

    PubMed

    Wu, Dan; Yuan, Ping; Ke, Changshu; Xiong, Hua; Chen, Jingwen; Guo, Jinguang; Lu, Mingmin; Ding, Yanyan; Fan, Xiaoming; Duan, Qiuhong; Shi, Fei; Zhu, Feng

    2016-05-03

    Solar ultraviolet (SUV) irradiation causes skin disorders such as inflammation, photoaging, and carcinogenesis. Cyclooxygenase-2 (COX-2) plays a key role in SUV-induced skin inflammation, and targeting COX-2 may be a strategy to prevent skin disorders. In this study, we found that the expression of COX-2, phosphorylation of p38 or JNKs were increased in human solar dermatitis tissues and SUV-irradiated human skin keratinocyte HaCaT cells and mouse epidermal JB6 Cl41 cells. Knocking down COX-2 inhibited the production of prostaglandin E2 (PGE2), the phosphorylation of p38 or JNKs in SUV-irradiated cells, which indicated that COX-2 is not only the key enzyme for PGs synthesis, but also an upstream regulator of p38 or JNKs after SUV irradiation. The virtual ligand screening assay was used to search for natural drugs in the Chinese Medicine Database, and indicated that salidroside might be a COX-2 inhibitor. Molecule modeling indicated that salidroside can directly bind with COX-2, which was proved by in vitro pull-down binding assay. Ex vivo studies showed that salidroside has no toxicity to cells, and inhibits the production of PGE2, phosphorylation of p38 or JNKs, and secretion of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) caused by SUV irradiation. In vivo studies demonstrated that salidroside attenuates the skin inflammation induced by SUV. In brief, our data provided the evidences for the protective role of salidroside against SUV-induced inflammation by targeting COX-2, and salidroside might be a promising drug for the treatment of SUV-induced skin inflammation.

  18. Catalytic Antioxidant Aeol 10150 Treatment Ameliorates Sulfur Mustard Analog 2-Chloroethyl Ethyl Sulfide Associated Cutaneous Toxic Effects

    PubMed Central

    Tewari-Singh, Neera; Inturi, Swetha; Jain, Anil K.; Agarwal, Chapla; Orlicky, David J; White, Carl W.; Agarwal, Rajesh; Day, Brian J.

    2014-01-01

    Our previous studies and other published reports with the chemical warfare agent sulfur mustard (SM) and its analog 2-chloroethyl ethyl sulfide (CEES) have indicated a role of oxidative stress in skin injuries caused by these vesicating agents. We examined the effects of the catalytic antioxidant AEOL 10150 in attenuation of CEES-induced toxicity in our established skin injury models (skin epidermal cells and SKH-1 hairless mice) to validate the role of oxidative stress in the pathophysiology of mustard vesicating agents. Treatment of mouse epidermal JB6 and human HaCaT cells with AEOL 10150 (50 μM) 1 h post CEES exposure resulted in significant (p<0.05) reversal of CEES-induced decreases in both cell viability and DNA synthesis. Similarly, AEOL 10150 treatment 1 h after CEES exposure attenuated CEES-induced DNA damage in these cells. Similar AEOL 10150 treatments also caused significant (p<0.05) reversal of CEES-induced decreases in cell viability in normal human epidermal keratinocytes. Cytoplasmic and mitochondrial reactive oxygen species measurements showed that AEOL 10150 treatment drastically ameliorated the CEES-induced oxidative stress in both JB6 and HaCaT cells. Based on AEOL 10150 pharmacokinetic studies in SKH-1 mouse skin, mice were treated with topical formulation plus subcutaneous (injection; 5 mg/kg) AEOL 10150, 1 h after CEES (4 mg/mouse) exposure and every 4 h thereafter for 12 h. This AEOL 10150 treatment regimen resulted in over 50% (p<0.05) reversal in CEES-induced skin bi-fold and epidermal thickness, myeloperoxidase activity, and DNA oxidation in mouse skin. Results from this study demonstrate potential therapeutic efficacy of AEOL 10150 against CEES-mediated cutaneous lesions supporting AEOL 10150 as a medical countermeasure against SM-induced skin injuries. PMID:24815113

  19. The tryptophan-derived endogenous arylhydrocarbon receptor ligand 6-formylindolo[3,2-b]carbazole (FICZ) is a nanomolar UVA-photosensitizer in epidermal keratinocytes

    PubMed Central

    Williams, Joshua D.; Cabello, Christopher M.; Qiao, Shuxi; Wondrak, Georg T.

    2014-01-01

    Endogenous UVA-chromophores may act as sensitizers of oxidative stress underlying cutaneous photoaging and photocarcinogenesis, but the molecular identity of non-DNA key chromophores displaying UVA-driven photodyamic activity in human skin remains largely undefined. Here we report that 6-formylindolo[3,2-b]carbazole (FICZ), a tryptophan photoproduct and endogenous high affinity aryl hydrocarbon receptor (AhR) agonist, acts as a nanomolar photosensitizer potentiating UVA-induced oxidative stress irrespective of AhR ligand activity. In human HaCaT and primary epidermal keratinocytes, photodynamic induction of apoptosis was elicited by the combined action of solar simulated UVA and FICZ, whereas exposure to the isolated action of UVA or FICZ did not impair viability. In a human epidermal tissue reconstruct, FICZ/UVA-cotreatment caused pronounced phototoxicity inducing keratinocyte cell death, and FICZ photodynamic activity was also substantiated in a murine skin exposure model. Array analysis revealed pronounced potentiation of cellular heat shock, ER stress, and oxidative stress response gene expression observed only upon FICZ/UVA-cotreatment. FICZ photosensitization caused intracellular oxidative stress, and comet analysis revealed introduction of formamidopyrimidine-DNA glycosylase (FPG)-sensitive oxidative DNA lesions suppressible by antioxidant cotreatment. Taken together, our data demonstrate that the endogenous AhR ligand FICZ displays nanomolar photodynamic activity representing a molecular mechanism of UVA-induced photooxidative stress potentially operative in human skin. PMID:25431849

  20. Ultra-weak photon emission as a non-invasive tool for monitoring of oxidative processes in the epidermal cells of human skin: comparative study on the dorsal and the palm side of the hand.

    PubMed

    Rastogi, Anshu; Pospísil, Pavel

    2010-08-01

    All living organisms emit spontaneous ultra-weak photon emission as a result of cellular metabolic processes. Exposure of living organisms to exogenous factors results in oxidative processes and enhancement in ultra-weak photon emission. Here, hydrogen peroxide (H(2)O(2)), as a strongly oxidizing molecule, was used to induce oxidative processes and enhance ultra-weak photon emission in human hand skin. The presented work intends to compare both spontaneous and peroxide-induced ultra-weak photon emission from the epidermal cells on the dorsal and the palm side of the hand. A highly sensitive photomultiplier tube and a charge-coupled device camera were used to detect ultra-weak photon emission from human hand skin. Spontaneous ultra-weak photon emission from the epidermal cells on the dorsal side of the hand was 4 counts/s. Topical application of 500 mM H(2)O(2) to the dorsal side of the hand caused enhancement in ultra-weak photon emission to 40 counts/s. Interestingly, both spontaneous and peroxide-induced ultra-weak photon emission from the epidermal cells on the palm side of the hand were observed to increase twice their values, i.e. 8 and 80 counts/s, respectively. Similarly, the two-dimensional image of ultra-weak photon emission observed after topical application of H(2)O(2) to human skin reveals that photon emission from the palm side exceeds the photon emission from the dorsal side of the hand. The results presented indicate that the ultra-weak photon emission originating from the epidermal cells on the dorsal and the palm side of the hand is related to the histological structure of the human hand skin. Ultra-weak photon emission is shown as a non-destructive technique for monitoring of oxidative processes in the epidermal cells of the human hand skin and as a diagnostic tool for skin diseases.

  1. Sulfur mustard analog, 2-chloroethyl ethyl sulfide-induced skin injury involves DNA damage and induction of inflammatory mediators, in part via oxidative stress, in SKH-1 hairless mouse skin

    PubMed Central

    Jain, Anil K.; Tewari-Singh, Neera; Gu, Mallikarjuna; Inturi, Swetha; White, Carl W.; Agarwal, Rajesh

    2011-01-01

    Bifunctional alkyalating agent, Sulfur mustard (SM)-caused cutaneous injury is characterized by inflammation and delayed blistering. Our recent studies demonstrated that 2-chloroethyl ethyl sulfide (CEES), a monofunctional analog of SM that can be used in laboratory settings, induces oxidative stress. This could be the major cause of the activation of Akt/MAP kinase and AP1/NF-κB pathways that are linked to the inflammation and microvesication, and histopathological alterations in SKH-1 hairless mouse skin. To further establish a link between CEES-induced DNA damage and signaling pathways and inflammatory responses, skin samples from mice exposed to 2 or 4 mg CEES for 9–48 h were subjected to molecular analysis. Our results show a strong CEES-induced phosphorylation of H2A.X and an increase in COX-2, iNOS, and MMP-9 levels, indicating the involvement of DNA damage and inflammation in CEES-caused skin injury in male and female mice. Since, our recent studies showed reduction in CEES-induced inflammatory responses by glutathione (GSH), we further assessed the role of oxidative stress in CEES-caused DNA damage and the induction of inflammatory molecules. Oral GSH (300mg/kg) administration 1 h before CEES exposure attenuated the increase in both CEES-induced H2A.X phosphorylation (59%) as well as expression of COX-2 (68%), iNOS (53%) and MMP-9 (54%). Collectively, our results indicate that CEES-induced skin injuries involve DNA damage and an induction of inflammatory mediators, at least in part via oxidative stress. This study could help in identifying countermeasures that alone or in combination, can target the unveiled pathways for reducing skin injuries in humans by SM. PMID:21722719

  2. Topical Sandalwood Oil for Common Warts.

    PubMed

    Haque, Malika; Coury, Daniel L

    2018-01-01

    The purpose of this study was to evaluate the effectiveness of sandalwood oil for cutaneous viral warts caused by human papillomavirus. Sandalwood oil was applied topically twice daily for 12 weeks to cutaneous warts on any area of the body. Data collected at each visit included measurement of wart size, photograph of the warts, and documentation of treatment compliance and any adverse reactions. Ten subjects were enrolled and received treatment. At the end of the study, 8 of 10 (80%) had complete resolution of all treated warts. The remaining 2 subjects had improvement rated as moderate (25% to >90%). There were no complaints of skin irritation, erythema, itching, peeling of skin or scarring, pain or discomfort, or other adverse events reported. Sandalwood oil appears to be effective in the painless treatment of cutaneous warts caused by human papillomavirus.

  3. Systemic fungal infections in patients with human inmunodeficiency virus.

    PubMed

    Rodríguez-Cerdeira, C; Arenas, R; Moreno-Coutiño, G; Vásquez, E; Fernández, R; Chang, P

    2014-01-01

    Histoplasmosis is a systemic infection caused by the dimorphic fungus Histoplasma capsulatum. In immunocompromised patients, primary pulmonary infection can spread to the skin and meninges. Clinical manifestations appear in patients with a CD4(+) lymphocyte count of less than 150 cells/μL. Coccidioidomycosis is a systemic mycosis caused by Coccidioides immitis and Coccidioides posadasii. It can present as diffuse pulmonary disease or as a disseminated form primarily affecting the central nervous system, the bones, and the skin. Cryptococcosis is caused by Cryptococcus neoformans (var. neoformans and var. grubii) and Cryptococcus gattii, which are members of the Cryptococcus species complex and have 5 serotypes: A, B, C, D, and AD. It is a common opportunistic infection in patients with human immunodeficiency virus (HIV)/AIDS, even those receiving antiretroviral therapy. Histopathologic examination and culture of samples from any suspicious lesions are essential for the correct diagnosis of systemic fungal infections in patients with HIV/AIDS. Copyright © 2011 Elsevier España, S.L. and AEDV. All rights reserved.

  4. Recombinant Human Acidic Fibroblast Growth Factor (aFGF) Expressed in Nicotiana benthamiana Potentially Inhibits Skin Photoaging.

    PubMed

    Ha, Jang-Ho; Kim, Ha-Neul; Moon, Ki-Beom; Jeon, Jae-Heung; Jung, Dai-Hyun; Kim, Su-Jung; Mason, Hugh S; Shin, Seo-Yeon; Kim, Hyun-Soon; Park, Kyung-Mok

    2017-07-01

    Responding to the need for recombinant acidic fibroblast growth factor in the pharmaceutical and cosmetic industries, we established a scalable expression system for recombinant human aFGF using transient and a DNA replicon vector expression in Nicotiana benthamiana . Recombinant human-acidic fibroblast growth factor was recovered following Agrobacterium infiltration of N. benthamiana . The optimal time point at which to harvest recombinant human acidic fibroblast growth factor expressing leaves was found to be 4 days post-infiltration, before necrosis was evident. Commassie-stained SDS-PAGE gels of His-tag column eluates, concentrated using a 10 000 molecular weight cut-off column, showed an intense band at the expected molecular weight for recombinant human acidic fibroblast growth factor. An immunoblot confirmed that this band was recombinant human acidic fibroblast growth factor. Up to 10 µg recombinant human-acidic fibroblast growth factor/g of fresh leaves were achieved by a simple affinity purification protocol using protein extract from the leaves of agroinfiltrated N. benthamiana . The purified recombinant human acidic fibroblast growth factor improved the survival rate of UVB-irradiated HaCaT and CCD-986sk cells approximately 89 and 81 %, respectively. N. benthamiana -derived recombinant human acidic fibroblast growth factor showed similar effects on skin cell proliferation and UVB protection compared to those of Escherichia coli -derived recombinant human acidic fibroblast growth factor. Additionally, N. benthamiana- derived recombinant human acidic fibroblast growth factor increased type 1 procollagen synthesis up to 30 % as well as reduced UVB-induced intracellular reactive oxygen species generation in fibroblast (CCD-986sk) cells.UVB is a well-known factor that causes various types of skin damage and premature aging. Therefore, the present study demonstrated that N. benthamiana -derived recombinant human acidic fibroblast growth factor effectively protects skin cell from UVB, suggesting its potential use as a cosmetic or therapeutic agent against skin photoaging. Georg Thieme Verlag KG Stuttgart · New York.

  5. The Methoxyflavonoid Isosakuranetin Suppresses UV-B-Induced Matrix Metalloproteinase-1 Expression and Collagen Degradation Relevant for Skin Photoaging.

    PubMed

    Jung, Hana; Lee, Eunjoo H; Lee, Tae Hoon; Cho, Man-Ho

    2016-09-01

    Solar ultraviolet (UV) radiation is a main extrinsic factor for skin aging. Chronic exposure of the skin to UV radiation causes the induction of matrix metalloproteinases (MMPs), such as MMP-1, and consequently results in alterations of the extracellular matrix (ECM) and skin photoaging. Flavonoids are considered as potent anti-photoaging agents due to their UV-absorbing and antioxidant properties and inhibitory activity against UV-mediated MMP induction. To identify anti-photoaging agents, in the present study we examined the preventative effect of methoxyflavonoids, such as sakuranetin, isosakuranetin, homoeriodictyol, genkwanin, chrysoeriol and syringetin, on UV-B-induced skin photo-damage. Of the examined methoxyflavonoids, pretreatment with isosakuranetin strongly suppressed the UV-B-mediated induction of MMP-1 in human keratinocytes in a concentration-dependent manner. Isosakuranetin inhibited UV-B-induced phosphorylation of mitogen-activated protein kinase (MAPK) signaling components, ERK1/2, JNK1/2 and p38 proteins. This result suggests that the ERK1/2 kinase pathways likely contribute to the inhibitory effects of isosakuranetin on UV-induced MMP-1 production in human keratinocytes. Isosakuranetin also prevented UV-B-induced degradation of type-1 collagen in human dermal fibroblast cells. Taken together, our findings suggest that isosakuranetin has the potential for development as a protective agent for skin photoaging through the inhibition of UV-induced MMP-1 production and collagen degradation.

  6. Nuclear microprobe investigation of the penetration of ultrafine zinc oxide into human skin affected by atopic dermatitis

    NASA Astrophysics Data System (ADS)

    Szikszai, Z.; Kertész, Zs.; Bodnár, E.; Borbíró, I.; Angyal, A.; Csedreki, L.; Furu, E.; Szoboszlai, Z.; Kiss, Á. Z.; Hunyadi, J.

    2011-10-01

    Skin penetration is one of the potential routes for nanoparticles to gain access into the human body. Ultrafine metal oxides, such as titanium dioxide and zinc oxide are widely used in cosmetic and health products like sunscreens. These oxides are potent UV filters and the particle size smaller than 200 nm makes the product more transparent compared to formulations containing coarser particles. The present study continues the work carried out in the frame of the NANODERM: “Quality of skin as a barrier to ultrafine particles” European project and complements our previous investigations on human skin with compromised barrier function. Atopic dermatitis (a type of eczema) is an inflammatory, chronically relapsing, non-contagious skin disease. It is very common in children but may occur at any age. The exact cause of atopic dermatitis is unknown, but is likely due to a combination of impaired barrier function together with a malfunction in the body's immune system. In this study, skin samples were obtained from two patients suffering from atopic dermatitis. Our results indicate that the ultrafine zinc oxide particles, in a hydrophobic basis gel with an application time of 2 days or 2 weeks, have penetrated deeply into the stratum corneum in these patients. On the other hand, penetration into the stratum spinosum was not observed even in the case of the longer application time.

  7. Discrimination of skin sensitizers from non-sensitizers by interleukin-1α and interleukin-6 production on cultured human keratinocytes.

    PubMed

    Jung, Daun; Che, Jeong-Hwan; Lim, Kyung-Min; Chun, Young-Jin; Heo, Yong; Seok, Seung Hyeok

    2016-09-01

    In vitro testing methods for classifying sensitizers could be valuable alternatives to in vivo sensitization testing using animal models, such as the murine local lymph node assay (LLNA) and the guinea pig maximization test (GMT), but there remains a need for in vitro methods that are more accurate and simpler to distinguish skin sensitizers from non-sensitizers. Thus, the aim of our study was to establish an in vitro assay as a screening tool for detecting skin sensitizers using the human keratinocyte cell line, HaCaT. HaCaT cells were exposed to 16 relevant skin sensitizers and 6 skin non-sensitizers. The highest dose used was the dose causing 75% cell viability (CV75) that we determined by an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. The levels of extracellular production of interleukin-1α (IL-1α) and IL-6 were measured. The sensitivity of IL-1α was 63%, specificity was 83% and accuracy was 68%. In the case of IL-6, sensitivity: 69%, specificity: 83% and accuracy: 73%. Thus, this study suggests that measuring extracellular production of pro-inflammatory cytokines IL-1α and IL-6 by human HaCaT cells may potentially classify skin sensitizers from non-sensitizers. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Tumors of the skin and soft tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weller, R.E.

    1991-10-01

    The majority of the body surface is covered by the skin. Many internal disorders are reflected in the condition of the skin. One of the major functions of the skin is protection of the other organ systems from a variety of environmental insults. In this role, the skin itself is exposed to factors that can ultimately cause chronic diseases and cancer. Since it is relatively easy to recognize skin abnormalities, most skin cancers are brought to professional attention sooner than other types of cancer. However, due to the close resemblance between many skin neoplasms and noncancerous dermatologic disorders, these neoplasmsmore » may be mistreated for months or even years. In veterinary oncology, as in human medicine, most cancers can be effectively treated or cured following an accurate diagnosis. Once diagnosed, skin neoplasms should be aggressively treated. If causal factors are known, exposure to these factors should be limited through removal of the agent (for chemical carcinogens) or limiting exposure to the agent (for other carcinogens such as sunlight). 10 tabs. (MHB)« less

  9. Loss of corneodesmosin leads to severe skin barrier defect, pruritus, and atopy: unraveling the peeling skin disease.

    PubMed

    Oji, Vinzenz; Eckl, Katja-Martina; Aufenvenne, Karin; Nätebus, Marc; Tarinski, Tatjana; Ackermann, Katharina; Seller, Natalia; Metze, Dieter; Nürnberg, Gudrun; Fölster-Holst, Regina; Schäfer-Korting, Monika; Hausser, Ingrid; Traupe, Heiko; Hennies, Hans Christian

    2010-08-13

    Generalized peeling skin disease is an autosomal-recessive ichthyosiform erythroderma characterized by lifelong patchy peeling of the skin. After genome-wide linkage analysis, we have identified a homozygous nonsense mutation in CDSN in a large consanguineous family with generalized peeling skin, pruritus, and food allergies, which leads to a complete loss of corneodesmosin. In contrast to hypotrichosis simplex, which can be associated with specific dominant CDSN mutations, peeling skin disease is characterized by a complete loss of CDSN expression. The skin phenotype is consistent with a recent murine Cdsn knockout model. Using three-dimensional human skin models, we demonstrate that lack of corneodesmosin causes an epidermal barrier defect supposed to account for the predisposition to atopic diseases, and we confirm the role of corneodesmosin as a decisive epidermal adhesion molecule. Therefore, peeling skin disease will represent a new model disorder for atopic diseases, similarly to Netherton syndrome and ichthyosis vulgaris in the recent past.

  10. Loss of Corneodesmosin Leads to Severe Skin Barrier Defect, Pruritus, and Atopy: Unraveling the Peeling Skin Disease

    PubMed Central

    Oji, Vinzenz; Eckl, Katja-Martina; Aufenvenne, Karin; Nätebus, Marc; Tarinski, Tatjana; Ackermann, Katharina; Seller, Natalia; Metze, Dieter; Nürnberg, Gudrun; Fölster-Holst, Regina; Schäfer-Korting, Monika; Hausser, Ingrid; Traupe, Heiko; Hennies, Hans Christian

    2010-01-01

    Generalized peeling skin disease is an autosomal-recessive ichthyosiform erythroderma characterized by lifelong patchy peeling of the skin. After genome-wide linkage analysis, we have identified a homozygous nonsense mutation in CDSN in a large consanguineous family with generalized peeling skin, pruritus, and food allergies, which leads to a complete loss of corneodesmosin. In contrast to hypotrichosis simplex, which can be associated with specific dominant CDSN mutations, peeling skin disease is characterized by a complete loss of CDSN expression. The skin phenotype is consistent with a recent murine Cdsn knockout model. Using three-dimensional human skin models, we demonstrate that lack of corneodesmosin causes an epidermal barrier defect supposed to account for the predisposition to atopic diseases, and we confirm the role of corneodesmosin as a decisive epidermal adhesion molecule. Therefore, peeling skin disease will represent a new model disorder for atopic diseases, similarly to Netherton syndrome and ichthyosis vulgaris in the recent past. PMID:20691404

  11. Genetics of Host Response to Leishmania tropica in Mice – Different Control of Skin Pathology, Chemokine Reaction, and Invasion into Spleen and Liver

    PubMed Central

    Grekov, Igor; Volkova, Valeriya; Vojtíšková, Jarmila; Slapničková, Martina; Kurey, Iryna; Sohrabi, Yahya; Svobodová, Milena; Demant, Peter; Lipoldová, Marie

    2012-01-01

    Background Leishmaniasis is a disease caused by protozoan parasites of genus Leishmania. The frequent involvement of Leishmania tropica in human leishmaniasis has been recognized only recently. Similarly as L. major, L. tropica causes cutaneous leishmaniasis in humans, but can also visceralize and cause systemic illness. The relationship between the host genotype and disease manifestations is poorly understood because there were no suitable animal models. Methods We studied susceptibility to L. tropica, using BALB/c-c-STS/A (CcS/Dem) recombinant congenic (RC) strains, which differ greatly in susceptibility to L. major. Mice were infected with L. tropica and skin lesions, cytokine and chemokine levels in serum, and parasite numbers in organs were measured. Principal Findings Females of BALB/c and several RC strains developed skin lesions. In some strains parasites visceralized and were detected in spleen and liver. Importantly, the strain distribution pattern of symptoms caused by L. tropica was different from that observed after L. major infection. Moreover, sex differently influenced infection with L. tropica and L. major. L. major-infected males exhibited either higher or similar skin pathology as females, whereas L. tropica-infected females were more susceptible than males. The majority of L. tropica-infected strains exhibited increased levels of chemokines CCL2, CCL3 and CCL5. CcS-16 females, which developed the largest lesions, exhibited a unique systemic chemokine reaction, characterized by additional transient early peaks of CCL3 and CCL5, which were not present in CcS-16 males nor in any other strain. Conclusion Comparison of L. tropica and L. major infections indicates that the strain patterns of response are species-specific, with different sex effects and largely different host susceptibility genes. PMID:22679519

  12. Two Cases of Peritonitis Caused by Kocuria marina in Patients Undergoing Continuous Ambulatory Peritoneal Dialysis▿

    PubMed Central

    Lee, Ja Young; Kim, Si Hyun; Jeong, Haeng Soon; Oh, Seung Hwan; Kim, Hye Ran; Kim, Yeong Hoon; Lee, Jeong Nyeo; Kook, Joong-Ki; Kho, Weon-Gyu; Bae, Il Kwon; Shin, Jeong Hwan

    2009-01-01

    Kocuria spp. are members of the Micrococcaceae family that are frequently found in the environment and on human skin. Few human infections have been reported. We describe what appear to be the first two cases of Kocuria marina peritonitis in patients undergoing continuous ambulatory peritoneal dialysis. PMID:19692561

  13. [Climatic change and skin: diagnostic and therapeutic challenges].

    PubMed

    Llamas-Velasco, M; García-Díez, A

    2010-06-01

    Scientifics are warning us about a global warming tendency and diminished rainfalls. Quantity, causes and human activity influence remain controversial. Warming could increase prevalence of some cutaneous pathology. Sensible skin and skin xerosis would be more prevalent if relative humidity decreases. Alterations of skin barrier;s function would increase seriousness and prevalence of atopic dermatitis. Furthermore, the higher UVB proportion reaching Earth's surface, in conjunction with increased sunbathing population habits, will increase cutaneous cancer and photoaging rates without a correct photoprotection. Also, habitats of some infectious diseases; vectors are changing. The facing of these problems will be a real challenge for the dermatologist, who will have a very important role on prevention, diagnoses and early treatment of them.

  14. Investigation of the effect of hydration on dermal collagen in ex vivo human skin tissue using second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Samatham, Ravikant; Wang, Nicholas K.; Jacques, Steven L.

    2016-02-01

    Effect of hydration on the dermal collagen structure in human skin was investigated using second harmonic generation microscopy. Dog ears from the Mohs micrographic surgery department were procured for the study. Skin samples with subject aged between 58-90 years old were used in the study. Three dimensional Multiphoton (Two-photon and backward SHG) control data was acquired from the skin samples. After the control measurement, the skin tissue was either soaked in deionized water for 2 hours (Hydration) or kept at room temperature for 2 hours (Desiccation), and SHG data was acquired. The data was normalized for changes in laser power and detector gain. The collagen signal per unit volume from the dermis was calculated. The desiccated skin tissue gave higher backward SHG compared to respective control tissue, while hydration sample gave a lower backward SHG. The collagen signal decreased with increase in hydration of the dermal collagen. Hydration affected the packing of the collagen fibrils causing a change in the backward SHG signal. In this study, the use of multiphoton microscopy to study the effect of hydration on dermal structure was demonstrated in ex vivo tissue.

  15. Photoprotection beyond ultraviolet radiation--effective sun protection has to include protection against infrared A radiation-induced skin damage.

    PubMed

    Schroeder, P; Calles, C; Benesova, T; Macaluso, F; Krutmann, J

    2010-01-01

    Solar radiation is well known to damage human skin, for example by causing premature skin ageing (i.e. photoageing). We have recently learned that this damage does not result from ultraviolet (UV) radiation alone, but also from longer wavelengths, in particular near-infrared radiation (IRA radiation, 760-1,440 nm). IRA radiation accounts for more than one third of the solar energy that reaches human skin. While infrared radiation of longer wavelengths (IRB and IRC) does not penetrate deeply into the skin, more than 65% of the shorter wavelength (IRA) reaches the dermis. IRA radiation has been demonstrated to alter the collagen equilibrium of the dermal extracellular matrix in at least two ways: (a) by leading to an increased expression of the collagen-degrading enzyme matrix metalloproteinase 1, and (b) by decreasing the de novo synthesis of the collagen itself. IRA radiation exposure therefore induces similar biological effects to UV radiation, but the underlying mechanisms are substantially different, specifically, the cellular response to IRA irradiation involves the mitochondrial electron transport chain. Effective sun protection requires specific strategies to prevent IRA radiation-induced skin damage. 2010 S. Karger AG, Basel.

  16. Feasibility Study on a Microwave-Based Sensor for Measuring Hydration Level Using Human Skin Models

    PubMed Central

    Brendtke, Rico; Wiehl, Michael; Groeber, Florian; Schwarz, Thomas; Walles, Heike; Hansmann, Jan

    2016-01-01

    Tissue dehydration results in three major types of exsiccosis—hyper-, hypo-, or isonatraemia. All three types entail alterations of salt concentrations leading to impaired biochemical processes, and can finally cause severe morbidity. The aim of our study was to demonstrate the feasibility of a microwave-based sensor technology for the non-invasive measurement of the hydration status. Electromagnetic waves at high frequencies interact with molecules, especially water. Hence, if a sample contains free water molecules, this can be detected in a reflected microwave signal. To develop the sensor system, human three-dimensional skin equivalents were instituted as a standardized test platform mimicking reproducible exsiccosis scenarios. Therefore, skin equivalents with a specific hydration and density of matrix components were generated and microwave measurements were performed. Hydration-specific spectra allowed deriving the hydration state of the skin models. A further advantage of the skin equivalents was the characterization of the impact of distinct skin components on the measured signals to investigate mechanisms of signal generation. The results demonstrate the feasibility of a non-invasive microwave-based hydration sensor technology. The sensor bears potential to be integrated in a wearable medical device for personal health monitoring. PMID:27046226

  17. Feasibility Study on a Microwave-Based Sensor for Measuring Hydration Level Using Human Skin Models.

    PubMed

    Brendtke, Rico; Wiehl, Michael; Groeber, Florian; Schwarz, Thomas; Walles, Heike; Hansmann, Jan

    2016-01-01

    Tissue dehydration results in three major types of exsiccosis--hyper-, hypo-, or isonatraemia. All three types entail alterations of salt concentrations leading to impaired biochemical processes, and can finally cause severe morbidity. The aim of our study was to demonstrate the feasibility of a microwave-based sensor technology for the non-invasive measurement of the hydration status. Electromagnetic waves at high frequencies interact with molecules, especially water. Hence, if a sample contains free water molecules, this can be detected in a reflected microwave signal. To develop the sensor system, human three-dimensional skin equivalents were instituted as a standardized test platform mimicking reproducible exsiccosis scenarios. Therefore, skin equivalents with a specific hydration and density of matrix components were generated and microwave measurements were performed. Hydration-specific spectra allowed deriving the hydration state of the skin models. A further advantage of the skin equivalents was the characterization of the impact of distinct skin components on the measured signals to investigate mechanisms of signal generation. The results demonstrate the feasibility of a non-invasive microwave-based hydration sensor technology. The sensor bears potential to be integrated in a wearable medical device for personal health monitoring.

  18. Human Effector Memory T Helper Cells Engage with Mouse Macrophages and Cause Graft-versus-Host-Like Pathology in Skin of Humanized Mice Used in a Nonclinical Immunization Study.

    PubMed

    Sundarasetty, Balasai; Volk, Valery; Theobald, Sebastian J; Rittinghausen, Susanne; Schaudien, Dirk; Neuhaus, Vanessa; Figueiredo, Constanca; Schneider, Andreas; Gerasch, Laura; Mucci, Adele; Moritz, Thomas; von Kaisenberg, Constantin; Spineli, Loukia M; Sewald, Katherina; Braun, Armin; Weigt, Henning; Ganser, Arnold; Stripecke, Renata

    2017-06-01

    Humanized mice engrafted with human hematopoietic stem cells and developing functional human T-cell adaptive responses are in critical demand to test human-specific therapeutics. We previously showed that humanized mice immunized with long-lived induced-dendritic cells loaded with the pp65 viral antigen (iDCpp65) exhibited a faster development and maturation of T cells. Herein, we evaluated these effects in a long-term (36 weeks) nonclinical model using two stem cell donors to assess efficacy and safety. Relative to baseline, iDCpp65 immunization boosted the output of effector memory CD4 + T cells in peripheral blood and lymph nodes. No weight loss, human malignancies, or systemic graft-versus-host (GVH) disease were observed. However, for one reconstitution cohort, some mice immunized with iDCpp65 showed GVH-like signs on the skin. Histopathology analyses of the inflamed skin revealed intrafollicular and perifollicular human CD4 + cells near F4/80 + mouse macrophages around hair follicles. In spleen, CD4 + cells formed large clusters surrounded by mouse macrophages. In plasma, high levels of human T helper 2-type inflammatory cytokines were detectable, which activated in vitro the STAT5 pathway of murine macrophages. Despite this inflammatory pattern, human CD8 + T cells from mice with GVH reacted against the pp65 antigen in vitro. These results uncover a dynamic cross-species interaction between human memory T cells and mouse macrophages in the skin and lymphatic tissues of humanized mice. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  19. Fluorescein permeability and electrical resistance of human skin during low frequency ultrasound application.

    PubMed

    Cancel, Limary M; Tarbell, John M; Ben-Jebria, Abdellaziz

    2004-09-01

    Transdermal drug delivery offers an alternative to injections and oral medication but is limited by the low skin permeability of most drugs. The use of low-frequency ultrasound over long periods of time, typically over an hour, has been shown to enhance skin permeability, a phenomenon referred to as sonophoresis. In this study, we investigated the effects of short time sonication of human skin at 20 kHz and at variable intensities and duty cycles on the dynamics of fluorescein transport across the skin (permeability) as well as the changes in the skin's structural integrity (electrical resistance). We found that a short application of ultrasound enhanced the transport of fluorescein across human skin by a factor in the range of 2-9 for full thickness skin samples and by a factor in the range of 2-28 000 for heat-stripped stratum corneum samples (however, samples with very high (10(3)) enhancement were likely to have been damaged by ultrasound). The electrical resistance of the skin decreased by an average of 20% for full thickness samples and 58% for stratum corneum samples. Increasing the duty cycle from 10 to 60% caused a significant increase in permeability enhancement from 2.3 to 9.1, and an increase in intensity from 8 to 23 mW cm(-2) induced a significant increase in permeability enhancement from 2 to 7.4, indicating a clear dependence of the permeability on both duty cycle and intensity. The increase in solute flux upon ultrasound exposure was immediate, demonstrating for the first time the fast response dynamics of sonophoretic enhancement. In addition, a quantitative analysis of the thermal and convective dispersion effects associated with ultrasound application showed that each contributes significantly to the overall permeability enhancement observed.

  20. In Vivo Assessment of Printed Microvasculature in a Bilayer Skin Graft to Treat Full-Thickness Wounds

    PubMed Central

    Yanez, Maria; Rincon, Julio; Dones, Aracely; De Maria, Carmelo; Gonzales, Raoul

    2015-01-01

    Chronic wounds such as diabetic foot ulcers and venous leg ulcers are common problems in people suffering from type 2 diabetes. These can cause pain, and nerve damage, eventually leading to foot or leg amputation. These types of wounds are very difficult to treat and sometimes take months or even years to heal because of many possible complications during the process. Allogeneic skin grafting has been used to improve wound healing, but the majority of grafts do not survive several days after being implanted. We have been studying the behavior of fibroblasts and keratinocytes in engineered capillary-like endothelial networks. A dermo-epidermal graft has been implanted in an athymic nude mouse model to assess the integration with the host tissue as well as the wound healing process. To build these networks into a skin graft, a modified inkjet printer was used, which allowed the deposit of human microvascular endothelial cells. Neonatal human dermal fibroblast cells and neonatal human epidermal keratinocytes were manually mixed in the collagen matrix while endothelial cells printed. A full-thickness wound was created at the top of the back of athymic nude mice and the area was covered by the bilayered graft. Mice of the different groups were followed until completion of the specified experimental time line, at which time the animals were humanely euthanized and tissue samples were collected. Wound contraction improved by up to 10% when compared with the control groups. Histological analysis showed the neoskin having similar appearance to the normal skin. Both layers, dermis and epidermis, were present with thicknesses resembling normal skin. Immunohistochemistry analysis showed favorable results proving survival of the implanted cells, and confocal images showed the human cells' location in the samples that were collocated with the bilayer printed skin graft. PMID:25051339

  1. In vivo assessment of printed microvasculature in a bilayer skin graft to treat full-thickness wounds.

    PubMed

    Yanez, Maria; Rincon, Julio; Dones, Aracely; De Maria, Carmelo; Gonzales, Raoul; Boland, Thomas

    2015-01-01

    Chronic wounds such as diabetic foot ulcers and venous leg ulcers are common problems in people suffering from type 2 diabetes. These can cause pain, and nerve damage, eventually leading to foot or leg amputation. These types of wounds are very difficult to treat and sometimes take months or even years to heal because of many possible complications during the process. Allogeneic skin grafting has been used to improve wound healing, but the majority of grafts do not survive several days after being implanted. We have been studying the behavior of fibroblasts and keratinocytes in engineered capillary-like endothelial networks. A dermo-epidermal graft has been implanted in an athymic nude mouse model to assess the integration with the host tissue as well as the wound healing process. To build these networks into a skin graft, a modified inkjet printer was used, which allowed the deposit of human microvascular endothelial cells. Neonatal human dermal fibroblast cells and neonatal human epidermal keratinocytes were manually mixed in the collagen matrix while endothelial cells printed. A full-thickness wound was created at the top of the back of athymic nude mice and the area was covered by the bilayered graft. Mice of the different groups were followed until completion of the specified experimental time line, at which time the animals were humanely euthanized and tissue samples were collected. Wound contraction improved by up to 10% when compared with the control groups. Histological analysis showed the neoskin having similar appearance to the normal skin. Both layers, dermis and epidermis, were present with thicknesses resembling normal skin. Immunohistochemistry analysis showed favorable results proving survival of the implanted cells, and confocal images showed the human cells' location in the samples that were collocated with the bilayer printed skin graft.

  2. UVA irradiation of human skin vasodilates arterial vasculature and lowers blood pressure independently of nitric oxide synthase.

    PubMed

    Liu, Donald; Fernandez, Bernadette O; Hamilton, Alistair; Lang, Ninian N; Gallagher, Julie M C; Newby, David E; Feelisch, Martin; Weller, Richard B

    2014-07-01

    The incidence of hypertension and cardiovascular disease (CVD) correlates with latitude and rises in winter. The molecular basis for this remains obscure. As nitric oxide (NO) metabolites are abundant in human skin, we hypothesized that exposure to UVA may mobilize NO bioactivity into the circulation to exert beneficial cardiovascular effects independently of vitamin D. In 24 healthy volunteers, irradiation of the skin with two standard erythemal doses of UVA lowered blood pressure (BP), with concomitant decreases in circulating nitrate and rises in nitrite concentrations. Unexpectedly, acute dietary intervention aimed at modulating systemic nitrate availability had no effect on UV-induced hemodynamic changes, indicating that cardiovascular effects were not mediated via direct utilization of circulating nitrate. UVA irradiation of the forearm caused increased blood flow independently of NO synthase (NOS) activity, suggesting involvement of pre-formed cutaneous NO stores. Confocal fluorescence microscopy studies of human skin pre-labeled with the NO-imaging probe diaminofluorescein 2 diacetate revealed that UVA-induced NO release occurs in a NOS-independent, dose-dependent manner, with the majority of the light-sensitive NO pool in the upper epidermis. Collectively, our data provide mechanistic insights into an important function of the skin in modulating systemic NO bioavailability, which may account for the latitudinal and seasonal variations of BP and CVD.

  3. In vivo THz imaging of human skin: Accounting for occlusion effects.

    PubMed

    Sun, Qiushuo; Parrott, Edward P J; He, Yuezhi; Pickwell-MacPherson, Emma

    2018-02-01

    In vivo terahertz (THz) imaging of human skin needs to be done in reflection geometry due to the high attenuation of THz light by water in the skin. To aid the measurement procedure, there is typically an imaging window onto which the patient places the area of interest. The window enables better pulse alignment and helps keep the patient correctly positioned during the measurement. In this paper, we demonstrate how the occlusion caused by the skin contact with the imaging window during the measurement affects the THz response. By studying both rapid point measurements and imaging over an area of a human volar forearm, we find that even 5 seconds of occlusion affects the THz response. As the occlusion time increases, the skin surface water content increases, resulting in the reduction of the amplitude of the reflected THz pulse, especially in the first 3 minutes. Furthermore, it was found that the refractive index of the volar forearm increased by 10% to 15% after 20 minutes of occlusion. In this work, we examine and propose a model for the occlusion effects due to the quartz window with a view to compensating for its influence. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. An Aspartic Protease of the Scabies Mite Sarcoptes scabiei Is Involved in the Digestion of Host Skin and Blood Macromolecules

    PubMed Central

    Mahmood, Wajahat; Viberg, Linda T.; Fischer, Katja; Walton, Shelley F.; Holt, Deborah C.

    2013-01-01

    Background Scabies is a disease of worldwide significance, causing considerable morbidity in both humans and other animals. The scabies mite Sarcoptes scabiei burrows into the skin of its host, obtaining nutrition from host skin and blood. Aspartic proteases mediate a range of diverse and essential physiological functions such as tissue invasion and migration, digestion, moulting and reproduction in a number of parasitic organisms. We investigated whether aspartic proteases may play role in scabies mite digestive processes. Methodology/Principle Findings We demonstrated the presence of aspartic protease activity in whole scabies mite extract. We then identified a scabies mite aspartic protease gene sequence and produced recombinant active enzyme. The recombinant scabies mite aspartic protease was capable of digesting human haemoglobin, serum albumin, fibrinogen and fibronectin, but not collagen III or laminin. This is consistent with the location of the scabies mites in the upper epidermis of human skin. Conclusions/Significance The development of novel therapeutics for scabies is of increasing importance given the evidence of emerging resistance to current treatments. We have shown that a scabies mite aspartic protease plays a role in the digestion of host skin and serum molecules, raising the possibility that interference with the function of the enzyme may impact on mite survival. PMID:24244770

  5. Nonsense variant in COL7A1 causes recessive dystrophic epidermolysis bullosa in Central Asian Shepherd dogs.

    PubMed

    Niskanen, Julia; Dillard, Kati; Arumilli, Meharji; Salmela, Elina; Anttila, Marjukka; Lohi, Hannes; Hytönen, Marjo K

    2017-01-01

    A rare hereditary mechanobullous disorder called epidermolysis bullosa (EB) causes blistering in the skin and the mucosal membranes. To date, nineteen EB-related genes have been discovered in human and other species. We describe here a novel EB variant in dogs. Two newborn littermates of Central Asian Shepherd dogs with severe signs of skin blistering were brought to a veterinary clinic and euthanized due to poor prognosis. In post-mortem examination, the puppies were shown to have findings in the skin and the mucosal membranes characteristic of EB. A whole-genome sequencing of one of the affected puppies was performed to identify the genetic cause. The resequencing data were filtered under a recessive model against variants from 31 other dog genomes, revealing a homozygous case-specific nonsense variant in one of the known EB-causing genes, COL7A1 (c.4579C>T, p.R1527*). The variant results in a premature stop codon and likely absence of the functional protein in the basement membrane of the skin in the affected dogs. This was confirmed by immunohistochemistry using a COL7A1 antibody. Additional screening of the variant indicated full penetrance and breed specificity at ~28% carrier frequency. In summary, this study reveals a novel COL7A1 variant causing recessive dystrophic EB and provides a genetic test for the eradication of the disease from the breed.

  6. Ultraviolet Radiation-Induced Skin Aging: The Role of DNA Damage and Oxidative Stress in Epidermal Stem Cell Damage Mediated Skin Aging

    PubMed Central

    Panich, Uraiwan; Sittithumcharee, Gunya; Rathviboon, Natwarath

    2016-01-01

    Skin is the largest human organ. Skin continually reconstructs itself to ensure its viability, integrity, and ability to provide protection for the body. Some areas of skin are continuously exposed to a variety of environmental stressors that can inflict direct and indirect damage to skin cell DNA. Skin homeostasis is maintained by mesenchymal stem cells in inner layer dermis and epidermal stem cells (ESCs) in the outer layer epidermis. Reduction of skin stem cell number and function has been linked to impaired skin homeostasis (e.g., skin premature aging and skin cancers). Skin stem cells, with self-renewal capability and multipotency, are frequently affected by environment. Ultraviolet radiation (UVR), a major cause of stem cell DNA damage, can contribute to depletion of stem cells (ESCs and mesenchymal stem cells) and damage of stem cell niche, eventually leading to photoinduced skin aging. In this review, we discuss the role of UV-induced DNA damage and oxidative stress in the skin stem cell aging in order to gain insights into the pathogenesis and develop a way to reduce photoaging of skin cells. PMID:27148370

  7. Gelatin coated electrodes allow prolonged bioelectronic measurements

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Silver electrodes treated with an anodizing electrolyte containing gelatin are used for long term monitoring of bioelectronic potentials in humans. The electrodes do not interact with perspiration, cause skin irritation, or promote the growth of bacteria.

  8. Less-lethal hybrid ammunition wounds: a forensic assessment introducing bullet-skin-bone entity.

    PubMed

    de Freminville, Humbert; Prat, Nicolas; Rongieras, Frederic; Voiglio, Eric J

    2010-09-01

    Agencies all around the world now use less-lethal weapons with homogeneous missiles such as bean bag or rubber bullets. Contusions and sometimes significant morbidity have been reported. This study focuses on wounds caused by hybrid ammunition with the pathologists' flap-by-flap procedure. Twenty-four postmortem human subjects were used, and lesions caused on frontal, temporal, sternal, and left tibial regions by a 40-mm hybrid ammunition (33 g weight) were evaluated on various distance range. The 50% risk of fractures occurred at 79.2 m/sec on the forehead, 72.9 m/sec on the temporal, 72.5 m/sec on the sternum, and 76.7 m/sec on the tibia. Skin lesions were not predictors of bone fracture. There was no correlation between soft and bone tissue observed lesions and impact velocity (correlated to distance range). Lesions observed with hybrid ammunition were the result of bullet-skin-bone entity as the interaction of the projectile on skin and bone tissues.

  9. Bringing skin assessments to life using human patient simulation: an emphasis on cancer prevention and early detection.

    PubMed

    Kuhrik, Marilee; Seckman, Christy; Kuhrik, Nancy; Ahearn, Tina; Ercole, Patrick

    2011-12-01

    Skin cancer is the most common cancer in the United States, with about 1,000,000 people developing the disease each year. The incidence of melanoma has rapidly increased in young white women between the ages of 15-34 over the last three decades. While melanoma accounts for approximately 3% of skin cancers, it causes more than 75% of skin cancer deaths. Thorough skin assessments and awareness of new or changing appearance of skin lesions are critical to early detection and treatment of skin cancer, as well as teaching sun-protective behaviors. Educators created a novel approach to "bring to life" skin cancer assessment skills to promote awareness of prevention and early detection of skin cancer using moulage in a human patient simulation lab. Through the use of moulage-like lesions, simulated patients were evaluated and taught skin cancer prevention and early detection principles by baccalaureate nursing students. The average age of study participants (n = 104) was 26.50 years. The majority of responders were female. At the end of the lab, students' average responses to an evaluation based on program goals were very positive. Anecdotal comments affirmed positive student perceptions of their simulation experience. Data analyses indicated item means were consistently higher for upper-division students. The age and gender of students who participated in this study align with the NCI statistics on age and gender of the population with increased incidence of melanoma.

  10. Identification of Borrelia protein candidates in mouse skin for potential diagnosis of disseminated Lyme borreliosis.

    PubMed

    Grillon, Antoine; Westermann, Benoît; Cantero, Paola; Jaulhac, Benoît; Voordouw, Maarten J; Kapps, Delphine; Collin, Elody; Barthel, Cathy; Ehret-Sabatier, Laurence; Boulanger, Nathalie

    2017-12-01

    In vector-borne diseases, the skin plays an essential role in the transmission of vector-borne pathogens between the vertebrate host and blood-feeding arthropods and in pathogen persistence. Borrelia burgdorferi sensu lato is a tick-borne bacterium that causes Lyme borreliosis (LB) in humans. This pathogen may establish a long-lasting infection in its natural vertebrate host where it can persist in the skin and some other organs. Using a mouse model, we demonstrate that Borrelia targets the skin regardless of the route of inoculation, and can persist there at low densities that are difficult to detect via qPCR, but that were infective for blood-feeding ticks. Application of immunosuppressive dermocorticoids at 40 days post-infection (PI) significantly enhanced the Borrelia population size in the mouse skin. We used non-targeted (Ge-LC-MS/MS) and targeted (SRM-MS) proteomics to detect several Borrelia-specific proteins in the mouse skin at 40 days PI. Detected Borrelia proteins included flagellin, VlsE and GAPDH. An important problem in LB is the lack of diagnosis methods capable of detecting active infection in humans suffering from disseminated LB. The identification of Borrelia proteins in skin biopsies may provide new approaches for assessing active infection in disseminated manifestations.

  11. Activation of Peroxisome Proliferator-Activated Receptor Alpha Improves Aged and UV-Irradiated Skin by Catalase Induction.

    PubMed

    Shin, Mi Hee; Lee, Se-Rah; Kim, Min-Kyoung; Shin, Chang-Yup; Lee, Dong Hun; Chung, Jin Ho

    2016-01-01

    Peroxisome proliferator-activated receptor alpha (PPARα) is a nuclear hormone receptor involved in the transcriptional regulation of lipid metabolism, fatty acid oxidation, and glucose homeostasis. Its activation stimulates antioxidant enzymes such as catalase, whose expression is decreased in aged human skin. Here we investigated the expression of PPARα in aged and ultraviolet (UV)-irradiated skin, and whether PPARα activation can modulate expressions of matrix metalloproteinase (MMP)-1 and procollagen through catalase regulation. We found that PPARα mRNA level was significantly decreased in intrinsically aged and photoaged human skin as well as in UV-irradiated skin. A PPARα activator, Wy14643, inhibited UV-induced increase of MMP-1 and decrease of procollagen expression and caused marked increase in catalase expression. Furthermore, production of reactive oxygen species (ROS) was suppressed by Wy14643 in UV-irradiated and aged dermal fibroblasts, suggesting that the PPARα activation-induced upregulation of catalase leads to scavenging of ROS produced due to UV irradiation or aging. PPARα knockdown decreased catalase expression and abolished the beneficial effects of Wy14643. Topical application of Wy14643 on hairless mice restored catalase activity and prevented MMP-13 and inflammatory responses in skin. Our findings indicate that PPARα activation triggers catalase expression and ROS scavenging, thereby protecting skin from UV-induced damage and intrinsic aging.

  12. Dermal damage promoted by repeated low-level UV-A1 exposure despite tanning response in human skin.

    PubMed

    Wang, Frank; Smith, Noah R; Tran, Bao Anh Patrick; Kang, Sewon; Voorhees, John J; Fisher, Gary J

    2014-04-01

    Solar UV irradiation causes photoaging, characterized by fragmentation and reduced production of type I collagen fibrils that provide strength to skin. Exposure to UV-B irradiation (280-320 nm) causes these changes by inducing matrix metalloproteinase 1 and suppressing type I collagen synthesis. The role of UV-A irradiation (320-400 nm) in promoting similar molecular alterations is less clear yet important to consider because it is 10 to 100 times more abundant in natural sunlight than UV-B irradiation and penetrates deeper into the dermis than UV-B irradiation. Most (approximately 75%) of solar UV-A irradiation is composed of UV-A1 irradiation (340-400 nm), which is also the primary component of tanning beds. To evaluate the effects of low levels of UV-A1 irradiation, as might be encountered in daily life, on expression of matrix metalloproteinase 1 and type I procollagen (the precursor of type I collagen). In vivo biochemical analyses were conducted after UV-A1 irradiation of normal human skin at an academic referral center. Participants included 22 healthy individuals without skin disease. Skin pigmentation was measured by a color meter (chromometer) under the L* variable (luminescence), which ranges from 0 (black) to 100 (white). Gene expression in skin samples was assessed by real-time polymerase chain reaction. Lightly pigmented human skin (L* >65) was exposed up to 4 times (1 exposure/d) to UV-A1 irradiation at a low dose (20 J/cm2), mimicking UV-A levels from strong sun exposure lasting approximately 2 hours. A single exposure to low-dose UV-A1 irradiation darkened skin slightly and did not alter matrix metalloproteinase 1 or type I procollagen gene expression. With repeated low-dose UV-A1 irradiation, skin darkened incrementally with each exposure. Despite this darkening, 2 or more exposures to low-dose UV-A1 irradiation significantly induced matrix metalloproteinase 1 gene expression, which increased progressively with successive exposures. Repeated UV-A1 exposures did not suppress type I procollagen expression. A limited number of low-dose UV-A1 exposures, as commonly experienced in daily life, potentially promotes photoaging by affecting breakdown, rather than synthesis, of collagen. Progressive skin darkening in response to repeated low-dose UV-A1 exposures in lightly pigmented individuals does not prevent UV-A1-induced collagenolytic changes. Therefore, for optimal protection against skin damage, sunscreen formulations should filter all UV wavelengths, including UV-A1 irradiation.

  13. The pain of altruism.

    PubMed

    Finlay, Barbara L; Syal, Supriya

    2014-12-01

    Sociality and cooperation are benefits to human cultures but may carry unexpected costs. We suggest that both the human experience of pain and the expression of distress may result from many causes not experienced as painful in our close primate relatives, because human ancestors motivated to ask for help survived in greater numbers than either the thick-skinned or the stoic. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. An unusual autopsy case of lethal hypothermia exacerbated by body lice-induced severe anemia.

    PubMed

    Nara, Akina; Nagai, Hisashi; Yamaguchi, Rutsuko; Makino, Yohsuke; Chiba, Fumiko; Yoshida, Ken-ichi; Yajima, Daisuke; Iwase, Hirotaro

    2016-05-01

    Pediculus humanus humanus (known as body lice) are commonly found in the folds of clothes, and can cause skin disorders when they feed on human blood, resulting in an itching sensation. Body lice are known as vectors of infectious diseases, including typhus, recurrent fever, and trench fever. An infestation with blood-sucking body lice induces severe cutaneous pruritus, and this skin disorder is known as "vagabond's disease." A body lice infestation is sometimes complicated with iron deficiency anemia. In the present case, a man in his late 70s died of lethal hypothermia in the outdoors during the winter season. The case history and autopsy findings revealed that the cause of the lethal hypothermia was iron deficiency anemia, which was associated with a prolonged infestation of blood-sucking body lice. Also, he had vagabond's disease because the skin on his body was abnormal and highly pigmented. This is an unusual autopsy case since the body lice contributed to the cause of the death.

  15. Contactless physiological signals extraction based on skin color magnification

    NASA Astrophysics Data System (ADS)

    Suh, Kun Ha; Lee, Eui Chul

    2017-11-01

    Although the human visual system is not sufficiently sensitive to perceive blood circulation, blood flow caused by cardiac activity makes slight changes on human skin surfaces. With advances in imaging technology, it has become possible to capture these changes through digital cameras. However, it is difficult to obtain clear physiological signals from such changes due to its fineness and noise factors, such as motion artifacts and camera sensing disturbances. We propose a method for extracting physiological signals with improved quality from skin colored-videos recorded with a remote RGB camera. The results showed that our skin color magnification method reveals the hidden physiological components remarkably in the time-series signal. A Korea Food and Drug Administration-approved heart rate monitor was used for verifying the resulting signal synchronized with the actual cardiac pulse, and comparisons of signal peaks showed correlation coefficients of almost 1.0. In particular, our method can be an effective preprocessing before applying additional postfiltering techniques to improve accuracy in image-based physiological signal extractions.

  16. Simulation of laser propagation through a three-layer human skin model in the spectral range from 1000 to 1900 nm.

    PubMed

    Nasouri, Babak; Murphy, Thomas E; Berberoglu, Halil

    2014-01-01

    For understanding the mechanisms of low-level laser/light therapy (LLLT), accurate knowledge of light interaction with tissue is necessary. We present a three-dimensional, multilayer reduced-variance Monte Carlo simulation tool for studying light penetration and absorption in human skin. Local profiles of light penetration and volumetric absorption were calculated for uniform as well as Gaussian profile beams with different spreads over the spectral range from 1000 to 1900 nm. The results showed that lasers within this wavelength range could be used to effectively and safely deliver energy to specific skin layers as well as achieve large penetration depths for treating deep tissues, without causing skin damage. In addition, by changing the beam profile from uniform to Gaussian, the local volumetric dosage could increase as much as three times for otherwise similar lasers. We expect that this tool along with the results presented will aid researchers in selecting wavelength and laser power in LLLT.

  17. Simulation of laser propagation through a three-layer human skin model in the spectral range from 1000 to 1900 nm

    NASA Astrophysics Data System (ADS)

    Nasouri, Babak; Murphy, Thomas E.; Berberoglu, Halil

    2014-07-01

    For understanding the mechanisms of low-level laser/light therapy (LLLT), accurate knowledge of light interaction with tissue is necessary. We present a three-dimensional, multilayer reduced-variance Monte Carlo simulation tool for studying light penetration and absorption in human skin. Local profiles of light penetration and volumetric absorption were calculated for uniform as well as Gaussian profile beams with different spreads over the spectral range from 1000 to 1900 nm. The results showed that lasers within this wavelength range could be used to effectively and safely deliver energy to specific skin layers as well as achieve large penetration depths for treating deep tissues, without causing skin damage. In addition, by changing the beam profile from uniform to Gaussian, the local volumetric dosage could increase as much as three times for otherwise similar lasers. We expect that this tool along with the results presented will aid researchers in selecting wavelength and laser power in LLLT.

  18. The Potential of Plant Phenolics in Prevention and Therapy of Skin Disorders

    PubMed Central

    Działo, Magdalena; Mierziak, Justyna; Korzun, Urszula; Preisner, Marta; Szopa, Jan; Kulma, Anna

    2016-01-01

    Phenolic compounds constitute a group of secondary metabolites which have important functions in plants. Besides the beneficial effects on the plant host, phenolic metabolites (polyphenols) exhibit a series of biological properties that influence the human in a health-promoting manner. Evidence suggests that people can benefit from plant phenolics obtained either by the diet or through skin application, because they can alleviate symptoms and inhibit the development of various skin disorders. Due to their natural origin and low toxicity, phenolic compounds are a promising tool in eliminating the causes and effects of skin aging, skin diseases, and skin damage, including wounds and burns. Polyphenols also act protectively and help prevent or attenuate the progression of certain skin disorders, both embarrassing minor problems (e.g., wrinkles, acne) or serious, potentially life-threatening diseases such as cancer. This paper reviews the latest reports on the potential therapy of skin disorders through treatment with phenolic compounds, considering mostly a single specific compound or a combination of compounds in a plant extract. PMID:26901191

  19. The Potential of Plant Phenolics in Prevention and Therapy of Skin Disorders.

    PubMed

    Działo, Magdalena; Mierziak, Justyna; Korzun, Urszula; Preisner, Marta; Szopa, Jan; Kulma, Anna

    2016-02-18

    Phenolic compounds constitute a group of secondary metabolites which have important functions in plants. Besides the beneficial effects on the plant host, phenolic metabolites (polyphenols) exhibit a series of biological properties that influence the human in a health-promoting manner. Evidence suggests that people can benefit from plant phenolics obtained either by the diet or through skin application, because they can alleviate symptoms and inhibit the development of various skin disorders. Due to their natural origin and low toxicity, phenolic compounds are a promising tool in eliminating the causes and effects of skin aging, skin diseases, and skin damage, including wounds and burns. Polyphenols also act protectively and help prevent or attenuate the progression of certain skin disorders, both embarrassing minor problems (e.g., wrinkles, acne) or serious, potentially life-threatening diseases such as cancer. This paper reviews the latest reports on the potential therapy of skin disorders through treatment with phenolic compounds, considering mostly a single specific compound or a combination of compounds in a plant extract.

  20. Rejuvenation of aged pig facial skin by transplanting allogeneic granulocyte colony-stimulating factor-induced peripheral blood stem cells from a young pig.

    PubMed

    Harn, Horng-Jyh; Huang, Mao-Hsuan; Huang, Chi-Ting; Lin, Po-Cheng; Yen, Ssu-Yin; Chou, Yi-Wen; Ho, Tsung-Jung; Chu, Hen-Yi; Chiou, Tzyy-Wen; Lin, Shinn-Zong

    2013-01-01

    Following a stroke, the administration of stem cells that have been treated with granulocyte colony-stimulating factor (GCSF) can ameliorate functional deficits in both rats and humans. It is not known, however, whether the application of GCSF-mobilized peripheral blood stem cells (PBSCs) to human skin can function as an antiaging treatment. We used a Lanyu pig (Sus scrofa) model, since compared with rodents, the structure of a pig's skin is very similar to human skin, to provide preliminary data on whether these cells can exert antiaging effects over a short time frame. GCSF-mobilized PBSCs from a young male Lanyu pig (5 months) were injected intradermally into the cheek skin of aged female Lanyu pigs, and tissues before and after the cell injections were compared to determine whether this treatment caused skin rejuvenation. Increased levels of collagen, elastin, hyaluronic acid, and the hyaluronic acid receptor CD44 were observed in both dermal and subcutaneous layers following the injection of PBSCs. In addition, the treated skin tissue was tighter and more elastic than adjacent control regions of aged skin tissue. In the epidermal layer, PBSC injection altered the levels of both involucrin and integrin, indicating an increased rate of epidermal cell renewal as evidenced by reductions in both cornified cells and cells of the spinous layers and increases in the number of dividing cells within the basal layer. We found that the exogenous PBSCs, visualized using fluorescence in situ hybridization, were located primarily in hair follicles and adjacent tissues. In summary, PBSC injection restored young skin properties in the skin of aged (90 months) pigs. On the basis of our preliminary data, we conclude that intradermal injection of GCSF-mobilized PBSCs from a young pig can rejuvenate the skin in aged pigs.

  1. [Dermatitis in cats and humans caused by Cheyletiella mites reported in Iceland.].

    PubMed

    Skirnisson, K; Olafsson, J H; Finnsdottir, H

    1997-01-01

    Cheyletiella mites (Acarina) are ectoparasites that infest cats, dogs and rabbits in many countries of the world. Upon contact with infested animals the mites may temporarily produce grouped, erythematous macules on the skin of humans which rapidly develop a central, vesicular papule. These signs are most often found on the arms and the trunk. Recently these typical signs were observed on the skin of the members of two different Icelandic families which both kept a Persian cat. An examination for ectoparasites on the cats revealed that both were infested by Cheyletiellaparasitovorax. It is unknown how and when the parasite was transmitted to Iceland.

  2. Vehicle and enhancer effects on human skin penetration of aminophylline from cream formulations: evaluation in vivo.

    PubMed

    Wang, Lai-Hao; Wang, Chia-Chen; Kuo, Su-Ching

    2007-01-01

    The effects of four essential oils (rosemary, ylang, lilacin, and peppermint oils), and three plant oils (jojoba oil, corn germ oil, and olive oil) on the permeation of aminophylline were studied using human skin. The permeation effects of these oils were compared with those of three chemical penetration enhancers. Although all oils enhanced the permeation of aminophylline, their effects were less than that of ethanol. Jojoba oil was found to be the most active, causing about a 32% peak height decrease of N-H bending absorbances in comparison with the control, while peppermint, lilacin, rosemary, and ylang oils caused 28%, 24%, 18%, and 12% peak height decreases, respectively. Microemulsions containing 10% jojoba oil and 30% corn germ oil were found to be superior vehicles for the percutaneous absorption of aminophylline. Comparision with results obtained from high-performance liquid chromatography shows good agreement.

  3. Skin colour changes during experimentally-induced sickness.

    PubMed

    Henderson, Audrey J; Lasselin, Julie; Lekander, Mats; Olsson, Mats J; Powis, Simon J; Axelsson, John; Perrett, David I

    2017-02-01

    Skin colour may be an important cue to detect sickness in humans but how skin colour changes with acute sickness is currently unknown. To determine possible colour changes, 22 healthy Caucasian participants were injected twice, once with lipopolysaccharide (LPS, at a dose of 2ng/kg body weight) and once with placebo (saline), in a randomised cross-over design study. Skin colour across 3 arm and 3 face locations was recorded spectrophotometrically over a period of 8h in terms of lightness (L ∗ ), redness (a ∗ ) and yellowness (b ∗ ) in a manner that is consistent with human colour perception. In addition, carotenoid status was assessed as we predicted that a decrease it skin yellowness would reflect a drop in skin carotenoids. We found an early change in skin colouration 1-3h post LPS injection with facial skin becoming lighter and less red whilst arm skin become darker but also less red and less yellow. The LPS injection also caused a drop in plasma carotenoids from 3h onwards. However, the timing of the carotenoid changes was not consistent with the skin colour changes suggesting that other mechanisms, such as a reduction of blood perfusion, oxygenation or composition. This is the first experimental study characterising skin colour associated with acute illness, and shows that changes occur early in the development of the sickness response. Colour changes may serve as a cue to health, prompting actions from others in terms of care-giving or disease avoidance. Specific mechanisms underlying these colour changes require further investigation. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Synergistic efficacy of salicylic acid with a penetration enhancer on human skin monitored by OCT and diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, Qingliang; Dai, Cuixia; Fan, Shanhui; Lv, Jing; Nie, Liming

    2016-10-01

    Salicylic acid (SA) has been frequently used as a facial chemical peeling agent (FCPA) in various cosmetics for facial rejuvenation and dermatological treatments in the clinic. However, there is a tradeoff between therapeutic effectiveness and possible adverse effects caused by this agent for cosmetologists. To optimize the cosmetic efficacy with minimal concentration, we proposed a chemical permeation enhancer (CPE) azone to synergistically work with SA on human skin in vivo. The optical properties of human skin after being treated with SA alone and SA combined with azone (SA@azone) were successively investigated by diffuse reflectance spectroscopy (DRS) and optical coherence tomography (OCT). Our results revealed that as the SA concentration increased, the light reflectance decreased and the absorption increased. We also found that SA@azone exhibited a synergistic effect on enhancing light penetration and OCT imaging depth. We demonstrated that the combination of DRS and OCT techniques could be used as a noninvasive, rapid and accurate measurement method to monitor the subtle changes of skin tissue after treatment with FCPA and CPE. The approach will greatly benefit the development of clinical cosmetic surgery, dermatosis diagnosis and therapeutic effect inspection in related biomedical studies.

  5. The Unique Molecular Signatures of Contact Dermatitis and Implications for Treatment.

    PubMed

    Leonard, Alexandra; Guttman-Yassky, Emma

    2018-05-12

    Irritant contact dermatitis (ICD) and allergic contact dermatitis (ACD) are common skin disorders that are characterized by inflammation, oozing, crusting, and pruritus. Atopic dermatitis (AD) is an inflammatory skin disease characterized by immune and barrier abnormalities and is additionally a risk factor for acquiring ICD and ACD. New work on allergic sensitization to common allergens (e.g., nickel and fragrance) in human skin has shown that different allergens have distinct molecular fingerprinting. For example, nickel promotes strong Th1/Th17 polarization, whereas fragrance allergy causes Th2/Th22 skewing, which is similar to the phenotype of AD. While ACD has previously been considered to be constant across all allergens, largely based on mouse models involving strong sensitizers, these new data suggest that ACD differs mechanistically according to allergen. Further, ACD in the setting of concurrent AD shows a different and attenuated phenotype as compared to healthy individuals with ACD, which influences the way AD patients respond to vaccination and other treatment modalities. As in contact sensitization, skin challenged by food patch testing shows that common food allergens (e.g., peanut and barley) also cause distinct immune polarizations in the skin. Additionally, house dust mite reactions in human skin have been profiled to show unique Th2, Th9, and Th17/22 activation as compared to controls, which are similar to the phenotype of psoriasis and contact responses to nickel. Given this information, ACD patients should be treated based on their unique allergen polarity. Refined understanding of the molecular behavior of contact dermatitis and related diseases translates to improved methods of inducing tolerance in sensitized allergic patients, such as with targeted drug therapy and epicutaneous immunotherapy.

  6. The Human Papillomavirus Type 16 E6 Gene Alone Is Sufficient To Induce Carcinomas in Transgenic Animals

    PubMed Central

    Song, Shiyu; Pitot, Henry C.; Lambert, Paul F.

    1999-01-01

    High-risk human papillomaviruses (HPVs) are the causative agents of certain human cancers. HPV type 16 (HPV16) is the papillomavirus most frequently associated with cervical cancer in women. The E6 and E7 genes of HPV are expressed in cells derived from these cancers and can transform cells in tissue culture. Animal experiments have demonstrated that E6 and E7 together cause tumors. We showed previously that E6 and E7 together or E7 alone could induce skin tumors in mice when these genes were expressed in the basal epithelia of the skin. In this study, we investigated the role that the E6 gene plays in carcinogenesis. We generated K14E6 transgenic mice, in which the HPV16 E6 gene was directed in its expression by the human keratin 14 promoter (hK14) to the basal layer of the epidermis. We found that E6 induced cellular hyperproliferation and epidermal hyperplasia and caused skin tumors in adult mice. Interestingly, the tumors derived from E6 were mostly malignant, as opposed to the tumors from E7 mice, which were mostly benign. This result leads us to hypothesize that E6 may contribute differently than E7 to HPV-associated carcinogenesis; whereas E7 primarily contributes to the early stages of carcinogenesis that lead to the formation of benign tumors, E6 primarily contributes to the late stages of carcinogenesis that lead to malignancy. PMID:10364340

  7. How Does Chronic Cigarette Smoke Exposure Affect Human Skin? A Global Proteomics Study in Primary Human Keratinocytes.

    PubMed

    Rajagopalan, Pavithra; Nanjappa, Vishalakshi; Raja, Remya; Jain, Ankit P; Mangalaparthi, Kiran K; Sathe, Gajanan J; Babu, Niraj; Patel, Krishna; Cavusoglu, Nükhet; Soeur, Jeremie; Pandey, Akhilesh; Roy, Nita; Breton, Lionel; Chatterjee, Aditi; Misra, Namita; Gowda, Harsha

    2016-11-01

    Cigarette smoking has been associated with multiple negative effects on human skin. Long-term physiological effects of cigarette smoke are through chronic and not acute exposure. Molecular alterations due to chronic exposure to cigarette smoke remain unclear. Primary human skin keratinocytes chronically exposed to cigarette smoke condensate (CSC) showed a decreased wound-healing capacity with an increased expression of NRF2 and MMP9. Using quantitative proteomics, we identified 4728 proteins, of which 105 proteins were overexpressed (≥2-fold) and 41 proteins were downregulated (≤2-fold) in primary skin keratinocytes chronically exposed to CSC. We observed an alteration in the expression of several proteins involved in maintenance of epithelial barrier integrity, including keratin 80 (5.3 fold, p value 2.5 × 10 -7 ), cystatin A (3.6-fold, p value 3.2 × 10 -3 ), and periplakin (2.4-fold, p value 1.2 × 10 -8 ). Increased expression of proteins associated with skin hydration, including caspase 14 (2.2-fold, p value 4.7 × 10 -2 ) and filaggrin (3.6-fold, p value 5.4 × 10 -7 ), was also observed. In addition, we report differential expression of several proteins, including adipogenesis regulatory factor (2.5-fold, p value 1.3 × 10 -3 ) and histone H1.0 (2.5-fold, p value 6.3 × 10 -3 ) that have not been reported earlier. Bioinformatics analyses demonstrated that proteins differentially expressed in response to CSC are largely related to oxidative stress, maintenance of skin integrity, and anti-inflammatory responses. Importantly, treatment with vitamin E, a widely used antioxidant, could partially rescue adverse effects of CSC exposure in primary skin keratinocytes. The utility of antioxidant-based new dermatological formulations in delaying or preventing skin aging and oxidative damages caused by chronic cigarette smoke exposure warrants further clinical investigations and multi-omics research.

  8. Detection of advanced glycation end products (AGEs) on human skin by in vivo confocal Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Martin, A. A.; Pereira, L.; Ali, S. M.; Pizzol, C. D.; Tellez, C. A.; Favero, P. P.; Santos, L.; da Silva, V. V.; Praes, C. E. O.

    2016-03-01

    The aging process involves the reduction in the production of the major components of skin tissue. During intrinsic aging and photoaging processes, in dermis of human skin, fibroblasts become senescent and have decreased activity, which produce low levels of collagen. Moreover, there is accumulation of advanced glycation end products (AGEs). AGEs have incidence in the progression of age-related diseases, principally in diabetes mellitus and in Alzheimer's diseases. AGEs causes intracellular damage and/or apoptosis leading to an increase of the free radicals, generating a crosslink with skin proteins and oxidative stress. The aim of this study is to detect AGEs markers on human skin by in vivo Confocal Raman spectroscopy. Spectra were obtained by using a Rivers Diagnostic System, 785 nm laser excitation and a CCD detector from the skin surface down to 120 μm depth. We analyzed the confocal Raman spectra of the skin dermis of 30 women volunteers divided into 3 groups: 10 volunteers with diabetes mellitus type II, 65-80 years old (DEW); 10 young healthy women, 20-33 years old (HYW); and 10 elderly healthy women, 65-80 years old (HEW). Pentosidine and glucosepane were the principally identified AGEs in the hydroxyproline and proline Raman spectral region (1000-800 cm-1), in the 1.260-1.320 cm-1 region assignable to alpha-helical amide III modes, and in the Amide I region. Pentosidine and glucosepane calculated vibrational spectra were performed through Density Functional Theory using the B3LYP functional with 3-21G basis set. Difference between the Raman spectra of diabetic elderly women and healthy young women, and between healthy elderly women and healthy young women were also obtained with the purpose of identifying AGEs Raman bands markers. AGEs peaks and collagen changes have been identified and used to quantify the glycation process in human skin.

  9. Xenobiotic-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models.

    PubMed

    Oesch, F; Fabian, E; Guth, K; Landsiedel, R

    2014-12-01

    The exposure of the skin to medical drugs, skin care products, cosmetics, and other chemicals renders information on xenobiotic-metabolizing enzymes (XME) in the skin highly interesting. Since the use of freshly excised human skin for experimental investigations meets with ethical and practical limitations, information on XME in models comes in the focus including non-human mammalian species and in vitro skin models. This review attempts to summarize the information available in the open scientific literature on XME in the skin of human, rat, mouse, guinea pig, and pig as well as human primary skin cells, human cell lines, and reconstructed human skin models. The most salient outcome is that much more research on cutaneous XME is needed for solid metabolism-dependent efficacy and safety predictions, and the cutaneous metabolism comparisons have to be viewed with caution. Keeping this fully in mind at least with respect to some cutaneous XME, some models may tentatively be considered to approximate reasonable closeness to human skin. For dermal absorption and for skin irritation among many contributing XME, esterase activity is of special importance, which in pig skin, some human cell lines, and reconstructed skin models appears reasonably close to human skin. With respect to genotoxicity and sensitization, activating XME are not yet judgeable, but reactive metabolite-reducing XME in primary human keratinocytes and several reconstructed human skin models appear reasonably close to human skin. For a more detailed delineation and discussion of the severe limitations see the "Overview and Conclusions" section in the end of this review.

  10. Dermatoses associated with mites other than Sarcoptes.

    PubMed

    Ken, Kimberly M; Shockman, Solomon C; Sirichotiratana, Melissa; Lent, Megan P; Wilson, Morgan L

    2014-09-01

    Mites are arthropods of the subclass Acari (Acarina). Although Sarcoptes is the mite most commonly recognized as a cause of human skin disease in the United States, numerous other mite-associated dermatoses have been described, and merit familiarity on the part of physicians treating skin disease. This review discusses several non-scabies mites and their associated diseases, including Demodex, chiggers, Cheyletiella, bird mites, grain itch, oak leaf itch, grocer's itch, tropical rat mite, snake mite, and Psoroptes.

  11. Mini Review - Phenolics for skin photo-aging.

    PubMed

    Ali, Atif

    2017-07-01

    Photo-aging is one of the foremost problems caused by generation of reactive oxygen species when skin is exposed on UV irradiation. In view of that, generation of reactive oxygen species intermingle with proteins, DNA, saccharides and fatty acids triggering oxidative mutilation and effects are in the appearance of distressed cell metabolism, morphological and ultra-structural changes, mistreat on the routes and revisions in the demarcation, propagation and skin apoptosis living cells which leads to photo-aging. Plant phenolics are universally found in both edible and inedible plants and have extended substantial interest as photo-protective for human skin due to their antioxidant activities. The objective of this review is to highlight the use of plant phenolics for their antioxidant activities against photo-aging.

  12. Animal, Microbial, and Fungal Borne Skin Pathology in the Mountain Wilderness: A Review.

    PubMed

    Brandenburg, William E; Levandowski, William; Califf, Tom; Manly, Cory; Levandowski, Cecilia Blair

    2017-06-01

    Mountains are home to numerous organisms known to cause skin disease. Bites, stings, poisons, chemicals, toxins, trauma, and infections all contribute to this end. Numerous plants, animals, fungi, bacteria, viruses, and protozoa are responsible. This paper aims to review skin illness and injury sustained from organisms in the mountains of North America. Other factors such as increased ultraviolet radiation, temperature extremes, and decreasing atmospheric pressure along with human physiologic parameters, which contribute to disease severity, will also be discussed. After reading this review, one should feel more comfortable identifying potentially harmful organisms, as well as diagnosing, treating, and preventing organism-inflicted skin pathology sustained in the high country. Copyright © 2017 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  13. UV clothing and skin cancer.

    PubMed

    Tarbuk, Anita; Grancarić, Ana Marija; Situm, Mirna; Martinis, Mladen

    2010-04-01

    Skin cancer incidence in Croatia is steadily increasing in spite of public and governmental permanently measurements. It is clear that will soon become a major public health problem. The primary cause of skin cancer is believed to be a long exposure to solar ultraviolet (UV) radiation. The future designers of UV protective materials should be able to block totally the ultraviolet radiation. The aim of this paper is to present results of measurements concerning UV protecting ability of garments and sun-screening textiles using transmission spectrophotometer Cary 50 Solarscreen (Varian) according to AS/NZS 4399:1996; to show that standard clothing materials are not always adequate to prevent effect of UV radiation to the human skin; and to suggest the possibilities for its improvement for this purpose.

  14. A novel image-based BRDF measurement system and its application to human skin

    NASA Astrophysics Data System (ADS)

    Bintz, Jeffrey R.; Mendenhall, Michael J.; Marciniak, Michael A.; Butler, Samuel D.; Lloyd, James Tommy

    2016-09-01

    Human skin detection is an important first step in search and rescue (SAR) scenarios. Previous research performed human skin detection through an application specific camera system that ex- ploits the spectral properties of human skin at two visible and two near-infrared (NIR) wavelengths. The current theory assumes human skin is diffuse; however, it is observed that human skin exhibits specular and diffuse reflectance properties. This paper presents a novel image-based bidirectional reflectance distribution function (BRDF) measurement system, and applies it to the collection of human skin BRDF. The system uses a grid projecting laser and a novel signal processing chain to extract the surface normal from each grid location. Human skin BRDF measurements are shown for a variety of melanin content and hair coverage at the four spectral channels needed for human skin detection. The NIR results represent a novel contribution to the existing body of human skin BRDF measurements.

  15. A New Skin Tensiometer Device: Computational Analyses To Understand Biodynamic Excisional Skin Tension Lines.

    PubMed

    Paul, Sharad P; Matulich, Justin; Charlton, Nick

    2016-07-25

    One of the problems in planning cutaneous surgery is that human skin is anisotropic, or directionally dependent. Indeed, skin tension varies between individuals and at different body sites. Many a surgeon has tried to design different devices to measure skin tension to help plan excisional surgery, or to understand wound healing. However, many of the devices have been beset with problems due to many confounding variables - differences in technical ability, material (sutures) used and variability between different users. We describe the development of a new skin tensiometer that overcomes many historical technical issues. A new skin tension measuring device is presented here. It was designed to be less user-dependent, more reliable and usable on different bodily sites. The design and computational optimizations are discussed. Our skin tensiometer has helped understand the differences between incisional and excisional skin lines. Langer, who pioneered the concept of skin tension lines, created incisional lines that differ from lines caused by forces that need to be overcome when large wounds are closed surgically (excisional tension). The use of this innovative device has led to understanding of skin biomechanics and best excisional skin tension (BEST) lines.

  16. A New Skin Tensiometer Device: Computational Analyses To Understand Biodynamic Excisional Skin Tension Lines

    PubMed Central

    Paul, Sharad P.; Matulich, Justin; Charlton, Nick

    2016-01-01

    One of the problems in planning cutaneous surgery is that human skin is anisotropic, or directionally dependent. Indeed, skin tension varies between individuals and at different body sites. Many a surgeon has tried to design different devices to measure skin tension to help plan excisional surgery, or to understand wound healing. However, many of the devices have been beset with problems due to many confounding variables - differences in technical ability, material (sutures) used and variability between different users. We describe the development of a new skin tensiometer that overcomes many historical technical issues. A new skin tension measuring device is presented here. It was designed to be less user-dependent, more reliable and usable on different bodily sites. The design and computational optimizations are discussed. Our skin tensiometer has helped understand the differences between incisional and excisional skin lines. Langer, who pioneered the concept of skin tension lines, created incisional lines that differ from lines caused by forces that need to be overcome when large wounds are closed surgically (excisional tension). The use of this innovative device has led to understanding of skin biomechanics and best excisional skin tension (BEST) lines. PMID:27453542

  17. Fermentable metabolite of Zymomonas mobilis controls collagen reduction in photoaging skin by improving TGF-beta/Smad signaling suppression.

    PubMed

    Tanaka, Hiroshi; Yamaba, Hiroyuki; Kosugi, Nobuhiko; Mizutani, Hiroshi; Nakata, Satoru

    2008-04-01

    Solar ultraviolet (UV) irradiation causes damages on human skin and premature skin aging (photoaging). UV-induced reduction of type I collagen in dermis is widely considered primarily induction of wrinkled appearance of photoaging skin. Type I procollagen synthesis is reduced under UV irradiation by blocking transforming growth factor-beta (TGF-beta)/Smad signaling; more specifically, it is down-regulation of TGF-beta type II receptor (T beta RII). Therefore, preventing UV-induced loss of T beta RII results decreased type I collagen reduction in photoaging skin. Zymomonas mobilis is an alcohol fermentable, gram-negative facultative anaerobic bacterium whose effect on skin tissue is scarcely studied. We investigated the protective effects of fermentable metabolite of Z. mobilis (FM of Z. mobilis) against reduction of type I procollagen synthesis of UV-induced down-regulation of T beta RII in human dermal fibroblasts FM of Z. mobilis was obtained from lyophilization of bacterium culture supernatant. The levels of T beta RII and type I procollagen mRNA in human dermal fibroblasts were measured by quantitative real-time RT-PCR, and T beta RII protein levels were assayed by western blotting. T beta RII, type I procollagen, and type I collagen proteins in human dermal fibroblasts or hairless mouse skin were detected by immunostaining. FM of Z. mobilis inhibited down regulation of T beta RII mRNA, and protein levels in UVB irradiated human dermal fibroblasts consequently recover reduced type I procollagen synthesis. These results indicate UVB irradiation inhibits type I procollagen synthesis by suppression of TGF-beta/Smad signaling pathway, and FM of Z. mobilis has inhibitory effect on UVB-induced reduction of type I procollagen synthesis. While short period UVB irradiation decreased both T beta RII and type I procollagen protein levels in hairless mouse skin, topical application of FM of Z. mobilis prevented this decrease. Wrinkle formation in hairless mouse skin surface was accelerated by continuous 5 month UVB irradiation along with a reduction of type I collagen in the dermis, but this change was prevented by topical application of FM of Z. mobilis. From this experimental data, it is suggested that FM of Z. mobilis is effective for suppression of wrinkle formation in photoaging skin by inhibition of type I procollagen synthesis reduction.

  18. Avian Schistosomes and Outbreaks of Cercarial Dermatitis

    PubMed Central

    Mikeš, Libor; Lichtenbergová, Lucie; Skála, Vladimír; Soldánová, Miroslava; Brant, Sara Vanessa

    2015-01-01

    SUMMARY Cercarial dermatitis (swimmer's itch) is a condition caused by infective larvae (cercariae) of a species-rich group of mammalian and avian schistosomes. Over the last decade, it has been reported in areas that previously had few or no cases of dermatitis and is thus considered an emerging disease. It is obvious that avian schistosomes are responsible for the majority of reported dermatitis outbreaks around the world, and thus they are the primary focus of this review. Although they infect humans, they do not mature and usually die in the skin. Experimental infections of avian schistosomes in mice show that in previously exposed hosts, there is a strong skin immune reaction that kills the schistosome. However, penetration of larvae into naive mice can result in temporary migration from the skin. This is of particular interest because the worms are able to migrate to different organs, for example, the lungs in the case of visceral schistosomes and the central nervous system in the case of nasal schistosomes. The risk of such migration and accompanying disorders needs to be clarified for humans and animals of interest (e.g., dogs). Herein we compiled the most comprehensive review of the diversity, immunology, and epidemiology of avian schistosomes causing cercarial dermatitis. PMID:25567226

  19. Orf virus IL-10 reduces monocyte, dendritic cell and mast cell recruitment to inflamed skin.

    PubMed

    Bennett, Jared R; Lateef, Zabeen; Fleming, Stephen B; Mercer, Andrew A; Wise, Lyn M

    2016-02-02

    Orf virus (ORFV) is a zoonotic parapoxvirus that causes pustular dermatitis of sheep, and occasionally humans. Despite causing sustained infections, ORFV induces only a transient increase in pro-inflammatory signalling and the trafficking of innate immune cells within the skin seems to be impaired. An explanation for this tempered response to ORFV infection may lie in its expression of a homolog of the anti-inflammatory cytokine, interleukin (IL)-10. Using a murine model in which inflammation was induced by bacterial lipopolysaccharide, we examined the effects of the ORFV-IL-10 protein on immune cell trafficking to and from the skin. ORFV-IL-10 limited the recruitment of blood-derived Gr-1(int)/CD11b(int) monocytes, CD11c(+ve)/MHC-II(+ve) dendritic cells and c-kit(+ve)/FcεR1(+ve) mature mast cells into inflamed skin. ORFV-IL-10 also suppressed the activation of CD11c(+ve)/MHC-II(+ve) dendritic cells within the skin, reducing their trafficking to the draining lymph node. These findings suggest that expression of IL-10 by ORFV may contribute to the impaired trafficking of innate immune cells within infected skin. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. [Study of skin retraction applied to the treatment of skin tumors. Mapping of the human body].

    PubMed

    Dumas, P; Benatar, M; Cardot-Leccia, N; Lebreton, E; Chignon-Sicard, B

    2012-04-01

    Skin, the main organ of the human body, is equipped with own biomechanical characteristics, highly variable depending on intra-individual factors (location, weight status, dermatological diseases…) and interindividual (age, sex…). Despite some recent cutometric studies, our review of the literature shows that there is no currently reliable analytical model representing the biomechanical behavior of the skin. Yet, this is a central issue in dermatology surgery, especially in the treatment of skin tumors, for the proper observance of surgical margins. We studied prospectively on 75 resection specimens (about 71 patient(s)), for the treatment of skin lesions tumor suspicious or known malignant or benign. Room dimensions were measured before and 5 minutes after excision, leading us to calculate a ratio of retraction of the skin surface. This retraction was correlated with age, gender, tumor type, and anatomic location of the site of excision. The power of retraction of the skin varies significantly by region of the body. It is maximum in the upper limb (hand excluded) and in the cervical region. At the cephalic region, skin of the ear and periorbital skin have capacities of important early retraction. Unlike the lower limb (foot excluded), the back skin of the nose and face appear to be a minimum of shrinkage. Age also seems to change on that capacity shrinkage, sex would have no influence. Our study confirms the variations in the ability of skin retraction based on a number of factors. In dermato-oncology, that power retraction could cause significant differences between clinical surgical margins and final pathologist margins. We believe it must be taken into account by the couple surgeon-pathologist, especially in the context of invasive and/or recurrent tumors. Copyright © 2012. Published by Elsevier SAS.

  1. Histopathological detection of entry and exit holes in human skin wounds caused by firearms.

    PubMed

    Baptista, Marcus Vinícius; d'Ávila, Solange C G P; d'Ávila, Antônio Miguel M P

    2014-07-01

    The judiciary needs forensic medicine to determine the difference between an entry hole and an exit hole in human skin caused by firearms for civilian use. This important information would be most useful if a practical and accurate method could be done with low-cost and minimal technological resources. Both macroscopic and microscopic analyses were performed on skin lesions caused by firearm projectiles, to establish histological features of 14 entry holes and 14 exit holes. Microscopically, in the abrasion area macroscopically observed, there were signs of burns (sub-epidermal cracks and keratinocyte necrosis) in the entrance holes in all cases. These signs were not found in three exit holes which showed an abrasion collar, nor in other exit holes. Some other microscopic features not found in every case were limited either to entry holes, such as cotton fibres, grease deposits, or tattooing in the dermis, or to exit holes, such as adipose tissue, bone or muscle tissue in the dermis. Coagulative necrosis of keratinocytes and sub-epidermal cracks are characteristic of entry holes. Despite the small sample size, it can be safely inferred that this is an important microscopic finding, among others less consistently found, to define an entry hole in questionable cases. Copyright © 2014 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  2. Large-scale expansion of human skin-derived precursor cells (hSKPs) in stirred suspension bioreactors.

    PubMed

    Surrao, Denver C; Boon, Kathryn; Borys, Breanna; Sinha, Sarthak; Kumar, Ranjan; Biernaskie, Jeff; Kallos, Michael S

    2016-12-01

    Human skin-derived precursor cells (hSKPs) are multipotent adult stem cells found in the dermis of human skin. Incorporation of hSKPs into split-thickness skin grafts (STSGs), the current gold standard to treat severe burns or tissue resections, has been proposed as a treatment option to enhance skin wound healing and tissue function. For this approach to be clinically viable substantial quantities of hSKPs are required, which is the rate-limiting step, as only a few thousand hSKPs can be isolated from an autologous skin biopsy without causing donor site morbidity. In order to produce sufficient quantities of clinically viable cells, we have developed a bioprocess capable of expanding hSKPs as aggregates in stirred suspension bioreactors (SSBs). In this study, we found hSKPs from adult donors to expand significantly more (P < 0.05) at 60 rpm in SSBs than in static cultures. Furthermore, the utility of the SSBs, at 60 rpm is demonstrated by serial passaging of hSKPs from a small starting population, which can be isolated from an autologous skin biopsy without causing donor site morbidity. At 60 rpm, aggregates were markedly smaller and did not experience oxygen diffusional limitations, as seen in hSKPs cultured at 40 rpm. While hSKPs also grew at 80 rpm (0.74 Pa) and 100 rpm (1 Pa), they produced smaller aggregates due to high shear stress. The pH of the media in all the SSBs was closer to biological conditions and significantly different (P < 0.05) from static cultures, which recorded acidic pH conditions. The nutrient concentrations of the media in all the SSBs and static cultures did not drop below acceptable limits. Furthermore, there was no significant build-up of waste products to limit hSKP expansion in the SSBs. In addition, hSKP markers were maintained in the 60 rpm SSB as demonstrated by immunocytochemistry. This method of growing hSKPs in a batch culture at 60 rpm in a SSB represents an important first step in developing an automated bioprocess to produce substantial numbers of clinically viable hSKPs aimed at regenerating the dermis to improve healing of severe skin wounds. Biotechnol. Bioeng. 2016;113: 2725-2738. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Chemoprevention of skin cancer by grape constituent resveratrol: relevance to human disease?

    PubMed

    Aziz, Moammir Hasan; Reagan-Shaw, Shannon; Wu, Jianqiang; Longley, B Jack; Ahmad, Nihal

    2005-07-01

    According to the World Cancer Report, skin cancer constitutes approximately 30% of all newly diagnosed cancers in the world, and solar ultraviolet (UV) radiation (particularly, its UVB component; 290-320 nm) is an established cause of approximately 90% of skin cancers. The available options have proven to be inadequate for the management of skin cancers. Therefore, there is an urgent need to develop mechanism-based novel approaches for prevention/therapy of skin cancer. In this study, we evaluated the chemopreventive effects of resveratrol against UVB radiation-mediated skin tumorigenesis in the SKH-1 hairless mouse model. For our studies, we used a UVB initiation-promotion protocol in which the control mice were subjected to chronic UVB exposure (180 mJ/cm2, twice weekly, for 28 weeks). The experimental animals received either a pretreatment (30 min before each UVB) or post-treatment (5 min after UVB) of resveratrol (25 or 50 micro mole/0.2 ml acetone/mouse). The mice were followed for skin tumorigenesis and were killed at 24 h after the last UVB exposure, for further studies. The topical application of skin with resveratrol (both pre- and post- treatment) resulted in a highly significant 1) inhibition in tumor incidence, and 2) delay in the onset of tumorigenesis. Interestingly, the post-treatment of resveratrol was found to impart equal protection than the pretreatment; suggesting that resveratrol-mediated responses may not be sunscreen effects. Because Survivin is a critical regulator of survival/death of cells, and its overexpression has been implicated in several cancers, we evaluated its involvement in chemoprevention of UVB-mediated skin carcinogenesis by resveratrol. Our data demonstrated a significant 1) up-regulation of Survivin (both at protein- and mRNA- levels), 2) up-regulation of phospho-Survivin protein, and 3) down-regulation of proapoptotic Smac/DIABLO protein in skin tumors; whereas treatment with resveratrol resulted in the attenuation of these responses. Our study also suggests that resveratrol enhanced apoptosis in UVB-exposure-mediated skin tumors. Our study, for the first time, demonstrated that 1) resveratrol imparts strong chemopreventive effects against UVB exposure-mediated skin carcinogenesis (relevant to human skin cancers), and 2) the chemopreventive effects of resveratrol may, at least in part, be mediated via modulations in Survivin and other associated events. On the basis of our work, it is conceivable to design resveratrol-containing emollient or patch, as well as sunscreen and skin-care products for prevention of skin cancer and other conditions, which are believed to be caused by UV radiation.

  4. Molecular mechanisms of green tea polyphenols with protective effects against skin photoaging.

    PubMed

    Roh, Eunmiri; Kim, Jong-Eun; Kwon, Jung Yeon; Park, Jun Seong; Bode, Ann M; Dong, Zigang; Lee, Ki Won

    2017-05-24

    Whereas green tea has historically been consumed in high quantities in Northeast Asia, its popularity is also increasing in many Western countries. Green tea is an abundant source of plant polyphenols exhibiting numerous effects that are potentially beneficial for human health. Accumulating evidence suggests that green tea polyphenols confer protective effects on the skin against ultraviolet (UV) irradiation-induced acceleration of skin aging, involving antimelanogenic, antiwrinkle, antioxidant, and anti-inflammatory effects as well as prevention of immunosuppression. Melanin pigmentation in the skin is a major defense mechanism against UV irradiation, but pigmentation abnormalities such as melasma, freckles, senile lentigines, and other forms of melanin hyperpigmentation can also cause serious health and aesthetic issues. Furthermore, UV irradiation initiates the degradation of fibrillar collagen and elastic fibers, promoting the process of skin aging through deep wrinkle formation and loss of tissue elasticity. UV irradiation-induced formation of free radicals also contributes to accelerated photoaging. Additionally, immunosuppression caused by UV irradiation plays an important role in photoaging and skin carcinogenesis. In this review, we summarize the current literature regarding the antimelanogenic, antiwrinkle, antioxidant, and immunosuppression preventive mechanisms of green tea polyphenols that have been demonstrated to protect against UV irradiation-stimulated skin photoaging, and gauge the quality of evidence supporting the need for clinical studies using green tea polyphenols as anti-photoaging agents in novel cosmeceuticals.

  5. Absorption of the nerve agent VX (O-ethyl-S-[2(di-isopropylamino)ethyl] methyl phosphonothioate) through pig, human and guinea pig skin in vitro.

    PubMed

    Dalton, Christopher H; Hattersley, Ian J; Rutter, Stephen J; Chilcott, Robert P

    2006-12-01

    The physico-chemical properties of VX make the skin the most likely route of absorption into the human body. The development of effective medical countermeasures against such percutaneous threat agents relies on the use of appropriate animal models, as the inherent toxicity of nerve agents precludes the use of human volunteers. Previous studies have characterised the mechanism of nerve agent toxicity in rodent models, however, it is generally accepted that one of the most appropriate animal models for human skin absorption is the domestic pig. The purpose of the present study was to measure and compare the skin absorption kinetics of VX in vitro using pig, human and guinea pig skin to highlight any potential species differences in skin permeability. When undiluted VX was applied directly to the skin, the permeability of guinea pig skin was approximately 7-fold greater than human skin. There was no significant difference in the permeability of pig and human skin. When VX diluted with isopropyl alcohol was applied to the skin, the permeability of guinea pig skin was approximately 4-fold greater than human skin. There was no significant difference in the permeability of pig and human skin. From this data it may be inferred that dermatomed, abdominal pig skin is an appropriate model for the human skin absorption of VX.

  6. Molecular and Pathogenic Characterization of Borrelia burgdorferi Sensu Lato Isolates from Spain

    PubMed Central

    Escudero, Raquel; Barral, Marta; Pérez, Azucena; Vitutia, M. Mar; García-Pérez, Ana L.; Jiménez, Santos; Sellek, Ricela E.; Anda, Pedro

    2000-01-01

    Fifteen Borrelia burgdorferi sensu lato isolates from questing ticks and skin biopsy specimens from erythema migrans patients in three different areas of Spain were characterized. Four different genospecies were found (nine Borrelia garinii, including the two human isolates, three B. burgdorferi sensu stricto, two B. valaisiana, and one B. lusitaniae), showing a diverse spectrum of B. burgdorferi sensu lato species. B. garinii isolates were highly variable in terms of pulsed-field gel electrophoresis pattern and OspA serotype, with four of the seven serotypes described. One of the human isolates was OspA serotype 5, the same found in four of seven tick isolates. The second human isolate was OspA serotype 3, which was not present in ticks from the same area. Seven B. garinii isolates were able to disseminate through the skin of C3H/HeN mice and to cause severe inflammation of joints. One of the two B. valaisiana isolates also caused disease in mice. Only one B. burgdorferi sensu stricto isolate was recovered from the urinary bladder. One isolate each of B. valaisiana and B. lusitaniae were not able to disseminate through the skin of mice or to infect internal organs. In summary, there is substantial diversity in the species and in the pathogenicity of B. burgdorferi sensu lato in areas in northern Spain where Lyme disease is endemic. PMID:11060064

  7. Human herpes virus type 6 can cause skin lesions at the BCG inoculation site similar to Kawasaki Disease.

    PubMed

    Kakisaka, Yosuke; Ohara, Tomoichiro; Katayama, Saori; Suzuki, Tasuku; Sasai, Shu; Hino-Fukuyo, Naomi; Kure, Shigeo

    2012-12-01

    Kawasaki Disease (KD) is acute, febrile, multisystem vasculitis of early childhood, the detailed mechanism of which is still unclear. Skin symptoms occur in KD, such as edema of the hands and feet with subsequent desquamation and redness at the inoculation site of bacillus Calmette-Guerin (BCG). The change at the BCG inoculation site has been considered as a specific feature of KD, although its mechanism is not fully understood. We present an 11-month-old boy who developed fever with redness of the BCG site due to infection with human herpes virus type 6 (HHV6). At the age of 3 months, the patient received BCG. His fever remitted 7 days after the onset of skin redness, with sequential desquamation at the BCG site and extremities, which is not a common feature of HHV6 infection that typically lasts for 3 days. The final diagnosis was exanthema subitum. Characteristically, the HHV6 infection in our patient appeared to be associated with the invigoration of the T cell system, as represented by the elevated serum levels of soluble interleukin-2 receptor (3,490 U/ml vs. normal range 145-519 U/ml). This patient clearly showed redness and crusting at the BCG inoculation site, suggesting that HHV6 infection might cause skin changes similar to those of KD via an unknown mechanism. In addition, we suggest that the activation of the T cell system may account for the skin lesions in KD, characterized by redness and subsequent crusting of the BCG inoculation site and desquamation of the extremities.

  8. Hyperspectral imaging of bruised skin

    NASA Astrophysics Data System (ADS)

    Randeberg, Lise L.; Baarstad, Ivar; Løke, Trond; Kaspersen, Peter; Svaasand, Lars O.

    2006-02-01

    Bruises can be important evidence in legal medicine, for example in cases of child abuse. Optical techniques can be used to discriminate and quantify the chromophores present in bruised skin, and thereby aid dating of an injury. However, spectroscopic techniques provide only average chromophore concentrations for the sampled volume, and contain little information about the spatial chromophore distribution in the bruise. Hyperspectral imaging combines the power of imaging and spectroscopy, and can provide both spectroscopic and spatial information. In this study a hyperspectral imaging system developed by Norsk Elektro Optikk AS was used to measure the temporal development of bruised skin in a human volunteer. The bruises were inflicted by paintball bullets. The wavelength ranges used were 400 - 1000 nm (VNIR) and 900 - 1700 nm (SWIR), and the spectral sampling intervals were 3.7 and 5 nm, respectively. Preliminary results show good spatial discrimination of the bruised areas compared to normal skin. Development of a white spot can be seen in the central zone of the bruises. This central white zone was found to resemble the shape of the object hitting the skin, and is believed to develop in areas where the impact caused vessel damage. These results show that hyperspectral imaging is a promising technique to evaluate the temporal and spatial development of bruises on human skin.

  9. Protective and therapeutic effects of fucoxanthin against sunburn caused by UV irradiation.

    PubMed

    Matsui, Mio; Tanaka, Kosuke; Higashiguchi, Naoki; Okawa, Hisato; Yamada, Yoichi; Tanaka, Ken; Taira, Soichiro; Aoyama, Tomoko; Takanishi, Misaki; Natsume, Chika; Takakura, Yuuki; Fujita, Norihisa; Hashimoto, Takeshi; Fujita, Takashi

    2016-09-01

    Mild exposure to ultraviolet (UV) radiation is also harmful and hazardous to the skin and often causes a photosensitivity disorder accompanied by sunburn. To understand the action of UV on the skin we performed a microarray analysis to isolate UV-sensitive genes. We show here that UV irradiation promoted sunburn and downregulated filaggrin (Flg); fucoxanthin (FX) exerted a protective effect. In vitro analysis showed that UV irradiation of human dermal fibroblasts caused production of intracellular reactive oxygen species (ROS) without cellular toxicity. ROS production was diminished by N-acetylcysteine (NAC) or FX, but not by retinoic acid (RA). In vivo analysis showed that UV irradiation caused sunburn and Flg downregulation, and that FX, but not NAC, RA or clobetasol, exerted a protective effect. FX stimulated Flg promoter activity in a concentration-dependent manner. Flg promoter deletion and chromatin immunoprecipitation analysis showed that caudal type homeo box transcription factor 1 (Cdx1) was a key factor for Flg induction. Cdx1 was also downregulated in UV-exposed skin. Therefore, our data suggested that the protective effects of FX against UV-induced sunburn might be exerted by promotion of skin barrier formation through induction of Flg, unrelated to quenching of ROS or an RA-like action. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  10. Bacterial community variation in human body habitats across space and time.

    PubMed

    Costello, Elizabeth K; Lauber, Christian L; Hamady, Micah; Fierer, Noah; Gordon, Jeffrey I; Knight, Rob

    2009-12-18

    Elucidating the biogeography of bacterial communities on the human body is critical for establishing healthy baselines from which to detect differences associated with diseases. To obtain an integrated view of the spatial and temporal distribution of the human microbiota, we surveyed bacteria from up to 27 sites in seven to nine healthy adults on four occasions. We found that community composition was determined primarily by body habitat. Within habitats, interpersonal variability was high, whereas individuals exhibited minimal temporal variability. Several skin locations harbored more diverse communities than the gut and mouth, and skin locations differed in their community assembly patterns. These results indicate that our microbiota, although personalized, varies systematically across body habitats and time; such trends may ultimately reveal how microbiome changes cause or prevent disease.

  11. Bacterial Community Variation in Human Body Habitats Across Space and Time

    PubMed Central

    Costello, Elizabeth K.; Lauber, Christian L.; Hamady, Micah; Fierer, Noah; Gordon, Jeffrey I.; Knight, Rob

    2010-01-01

    Elucidating the biogeography of bacterial communities on the human body is critical for establishing healthy baselines from which to detect differences associated with diseases. To obtain an integrated view of the spatial and temporal distribution of the human microbiota, we surveyed bacteria from up to 27 sites in 7–9 healthy adults on four occasions. We found that community composition was determined primarily by body habitat. Within habitats, interpersonal variability was high, while individuals exhibited minimal temporal variability. Several skin locations harbored more diverse communities than the gut and mouth, and skin locations differed in their community assembly patterns. These results indicate that our microbiota, although personalized, varies systematically across body habitats and time: such trends may ultimately reveal how microbiome changes cause or prevent disease. PMID:19892944

  12. Clinical system model for monitoring the physiological status of jaundice by extracting bilirubin components from skin diffuse reflectance spectra

    NASA Astrophysics Data System (ADS)

    Kumar, Alla S.; Clark, Joseph; Beyette, Fred R., Jr.

    2009-02-01

    Neonatal jaundice is a medical condition which occurs in newborns as a result of an imbalance between the production and elimination of bilirubin. The excess bilirubin in the blood stream diffuses into the surrounding tissue leading to a yellowing of the skin. As the bilirubin levels rise in the blood stream, there is a continuous exchange between the extra vascular bilirubin and bilirubin in the blood stream. Exposure to phototherapy alters the concentration of bilirubin in the vascular and extra vascular regions by causing bilirubin in the skin layers to be broken down. Thus, the relative concentration of extra vascular bilirubin is reduced leading to a diffusion of bilirubin out of the vascular region. Diffuse reflectance spectra from human skin contains physiological and structural information of the skin and nearby tissue. A diffuse reflectance spectrum must be captured before and after blanching in order to isolate the intravascular and extra vascular bilirubin. A new mathematical model is proposed with extra vascular bilirubin concentration taken into consideration along with other optical parameters in defining the diffuse reflectance spectrum from human skin. A nonlinear optimization algorithm has been adopted to extract the optical properties (including bilirubin concentration) from the skin reflectance spectrum. The new system model and nonlinear algorithm have been combined to enable extraction of Bilirubin concentrations within an average error of 10%.

  13. Activation of Peroxisome Proliferator-Activated Receptor Alpha Improves Aged and UV-Irradiated Skin by Catalase Induction

    PubMed Central

    Shin, Mi Hee; Lee, Se-Rah; Kim, Min-Kyoung; Shin, Chang-Yup

    2016-01-01

    Peroxisome proliferator-activated receptor alpha (PPARα) is a nuclear hormone receptor involved in the transcriptional regulation of lipid metabolism, fatty acid oxidation, and glucose homeostasis. Its activation stimulates antioxidant enzymes such as catalase, whose expression is decreased in aged human skin. Here we investigated the expression of PPARα in aged and ultraviolet (UV)-irradiated skin, and whether PPARα activation can modulate expressions of matrix metalloproteinase (MMP)-1 and procollagen through catalase regulation. We found that PPARα mRNA level was significantly decreased in intrinsically aged and photoaged human skin as well as in UV-irradiated skin. A PPARα activator, Wy14643, inhibited UV-induced increase of MMP-1 and decrease of procollagen expression and caused marked increase in catalase expression. Furthermore, production of reactive oxygen species (ROS) was suppressed by Wy14643 in UV-irradiated and aged dermal fibroblasts, suggesting that the PPARα activation-induced upregulation of catalase leads to scavenging of ROS produced due to UV irradiation or aging. PPARα knockdown decreased catalase expression and abolished the beneficial effects of Wy14643. Topical application of Wy14643 on hairless mice restored catalase activity and prevented MMP-13 and inflammatory responses in skin. Our findings indicate that PPARα activation triggers catalase expression and ROS scavenging, thereby protecting skin from UV-induced damage and intrinsic aging. PMID:27611371

  14. Proposed shade guide for human facial skin and lip: a pilot study.

    PubMed

    Wee, Alvin G; Beatty, Mark W; Gozalo-Diaz, David J; Kim-Pusateri, Seungyee; Marx, David B

    2013-08-01

    Currently, no commercially available facial shade guide exists in the United States for the fabrication of facial prostheses. The purpose of this study was to measure facial skin and lip color in a human population sample stratified by age, gender, and race. Clustering analysis was used to determine optimal color coordinates for a proposed facial shade guide. Participants (n=119) were recruited from 4 racial/ethnic groups, 5 age groups, and both genders. Reflectance measurements of participants' noses and lower lips were made by using a spectroradiometer and xenon arc lamp with a 45/0 optical configuration. Repeated measures ANOVA (α=.05), to identify skin and lip color differences, resulting from race, age, gender, and location, and a hierarchical clustering analysis, to identify clusters of skin colors) were used. Significant contributors to L*a*b* facial color were race and facial location (P<.01). b* affected all factors (P<.05). Age affected only b* (P<.001), while gender affected only L* (P<.05) and b* (P<.05). Analyses identified 5 clusters of skin color. The study showed that skin color caused by age and gender primarily occurred within the yellow-blue axis. A significant lightness difference between gender groups was also found. Clustering analysis identified 5 distinct skin shade tabs. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  15. Skin temperature increase mediated by wearable, long duration, low-intensity therapeutic ultrasound

    NASA Astrophysics Data System (ADS)

    Langer, Matthew D.; Huang, Wenyi; Ghanem, Angi; Guo, Yuan; Lewis, George K.

    2017-03-01

    One of the safety concerns with the delivery of therapeutic ultrasound is overheating of the transducer-skin interface due to poor or improper coupling. The objective of this research was to define a model that could be used to calculate the heating in the skin as a result of a novel, wearable long-duration ultrasound device. This model was used to determine that the maximum heating in the skin remained below the minimum threshold necessary to cause thermal injury over multiple hours of use. In addition to this model data, a human clinical study used wire thermocouples on the skin surface to measure heating characteristics during treatment with the sustained ultrasound system. Parametric analysis of the model determined that the maximum temperature increase is at the surface of the skin ranged from 40-41.8° C when perfusion was taken into account. The clinical data agreed well with the model predictions. The average steady state temperature observed across all 44 subjects was 40°C. The maximum temperature observed was less than 44° C, which is clinically safe for over 5 hours of human skin contact. The resultant clinical temperature data paired well with the model data suggesting the model can be used for future transducer and ultrasound system design simulation. As a result, the device was validated for thermal safety for typical users and use conditions.

  16. [Furuncular myiasis caused by Dermatobia hominis. Fortuitous diagnosis on extemporaneous macroscopic analysis of an excised cutaneous nodule].

    PubMed

    Hirsch, G; Jeandel, R; Biechler, M; Boivin, J-F; Hillion, B

    2015-12-01

    Furuncular myiasis is a parasitic disease caused by the development of human botfly larva in the skin. It affects people living in tropical countries and travelers returning from these countries and concerns a number of medical specialties. One form of treatment involves surgical extraction of the parasites. We report the case of a 47-year-old man returning from Guyana presenting two furuncle-like nodules of the skin on the right buttock and on the right shoulder blade. Extemporaneous intraoperative macroscopic examination of the buttock nodule resulted in diagnosis of myiasis caused by the human botfly, Dermatobia hominis. The diagnosis of furuncular myiasis is made primarily on clinical grounds and should be suspected on observation of an abscess in subjects returning from a tropical region. It is consequently rare to find D. hominis in biopsy specimens. In the present case, macroscopic examination showed an extremely rare image of the edge of the intact larva in a longitudinal cut, which to our knowledge has never been published to date. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  17. 21 CFR 524.1465 - Mupirocin.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.1465 Mupirocin. (a... bacterial infections of the skin, including superficial pyoderma, caused by susceptible strains of...

  18. 21 CFR 524.1465 - Mupirocin.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.1465 Mupirocin. (a... bacterial infections of the skin, including superficial pyoderma, caused by susceptible strains of...

  19. 21 CFR 524.1465 - Mupirocin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.1465 Mupirocin. (a... bacterial infections of the skin, including superficial pyoderma, caused by susceptible strains of...

  20. 21 CFR 524.1465 - Mupirocin.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.1465 Mupirocin. (a... bacterial infections of the skin, including superficial pyoderma, caused by susceptible strains of...

  1. Catalytic antioxidant AEOL 10150 treatment ameliorates sulfur mustard analog 2-chloroethyl ethyl sulfide-associated cutaneous toxic effects.

    PubMed

    Tewari-Singh, Neera; Inturi, Swetha; Jain, Anil K; Agarwal, Chapla; Orlicky, David J; White, Carl W; Agarwal, Rajesh; Day, Brian J

    2014-07-01

    Our previous studies and other published reports on the chemical warfare agent sulfur mustard (SM) and its analog 2-chloroethyl ethyl sulfide (CEES) have indicated a role of oxidative stress in skin injuries caused by these vesicating agents. We examined the effects of the catalytic antioxidant AEOL 10150 in the attenuation of CEES-induced toxicity using our established skin injury models (skin epidermal cells and SKH-1 hairless mice) to validate the role of oxidative stress in the pathophysiology of mustard vesicating agents. Treatment of mouse epidermal JB6 and human HaCaT cells with AEOL 10150 (50μM) 1h post-CEES exposure resulted in significant (p < 0.05) reversal of CEES-induced decreases in both cell viability and DNA synthesis. Similarly, AEOL 10150 treatment 1h after CEES exposure attenuated CEES-induced DNA damage in these cells. Similar AEOL 10150 treatments also caused significant (p < 0.05) reversal of CEES-induced decreases in cell viability in normal human epidermal keratinocytes. Cytoplasmic and mitochondrial reactive oxygen species measurements showed that AEOL 10150 treatment drastically ameliorated the CEES-induced oxidative stress in both JB6 and HaCaT cells. Based on AEOL 10150 pharmacokinetic studies in SKH-1 mouse skin, mice were treated with a topical formulation plus subcutaneous injection (5mg/kg) of AEOL 10150 1h after CEES (4mg/mouse) exposure and every 4h thereafter for 12h. This AEOL 10150 treatment regimen resulted in over 50% (p < 0.05) reversal of CEES-induced skin bi-fold and epidermal thickness, myeloperoxidase activity, and DNA oxidation in mouse skin. Results from this study demonstrate the potential therapeutic efficacy of AEOL 10150 against CEES-mediated cutaneous lesions, supporting AEOL 10150 as a medical countermeasure against SM-induced skin injuries. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Disseminated Prototheca wickerhamii infection with arthritis and tenosynovitis.

    PubMed

    Pascual, Joan S; Balos, Lucia L; Baer, Alan N

    2004-09-01

    Achloric algae of the Prototheca species are a rare cause of infection in humans. These infections are usually localized to the skin, olecranon bursae, and tendon sheaths of the hands and wrists. Our patient with acquired immunodeficiency syndrome and a chronic Prototheca wickerhamii skin infection of the hand developed tenosynovitis and arthritis of his ankle in the setting of a documented algemia. This is the first reported case of protothecal arthritis and tenosynovitis resulting from hematogenous dissemination. The reported musculoskeletal manifestations of protothecal infections are reviewed.

  3. The beneficial effects of honeybee-venom serum on facial wrinkles in humans

    PubMed Central

    Han, Sang Mi; Hong, In Phyo; Woo, Soon Ok; Chun, Sung Nam; Park, Kwan Kyu; Nicholls, Young Mee; Pak, Sok Cheon

    2015-01-01

    Facial wrinkles are an undesirable outcome caused by extrinsic photodamage and intrinsic aging processes. Currently, no effective strategies are known to prevent facial wrinkles. We assessed the beneficial effects of bee-venom serum on the clinical signs of aging skin. Our results show that bee-venom serum treatment clinically improved facial wrinkles by decreasing total wrinkle area, total wrinkle count, and average wrinkle depth. Therefore, bee-venom serum may be effective for the improvement of skin wrinkles. PMID:26491274

  4. Pig and guinea pig skin as surrogates for human in vitro penetration studies: a quantitative review.

    PubMed

    Barbero, Ana M; Frasch, H Frederick

    2009-02-01

    Both human and animal skin in vitro models are used to predict percutaneous penetration in humans. The objective of this review is a quantitative comparison of permeability and lag time measurements between human and animal skin, including an evaluation of the intra and inter species variability. We limit our focus to domestic pig and rodent guinea pig skin as surrogates for human skin, and consider only studies in which both animal and human penetration of a given chemical were measured jointly in the same lab. When the in vitro permeability of pig and human skin were compared, the Pearson product moment correlation coefficient (r) was 0.88 (P<0.0001), with an intra species average coefficient of variation of skin permeability of 21% for pig and 35% for human, and an inter species average coefficient of variation of 37% for the set of studied compounds (n=41). The lag times of pig skin and human skin did not correlate (r=0.35, P=0.26). When the in vitro permeability of guinea pig and human skin were compared, r=0.96 (P<0.0001), with an average intra species coefficient of variation of 19% for guinea pig and 24% for human, and an inter species coefficient of variation of permeability of 41% for the set of studied compounds (n=15). Lag times of guinea pig and human skin correlated (r=0.90, P<0.0001, n=12). When permeability data was not reported a factor of difference (FOD) of animal to human skin was calculated for pig skin (n=50) and guinea pig skin (n=25). For pig skin, 80% of measurements fell within the range 0.3

  5. Mixed Infection Caused by Two Species of Fusarium in a Human Immunodeficiency Virus-Positive Patient

    PubMed Central

    Guarro, Josep; Nucci, Marcio; Akiti, Tiyomi; Gené, Josepa

    2000-01-01

    We report on a case of mixed infection caused by two species of Fusarium in a human immunodeficiency virus-positive patient with lymphoma who was neutropenic due to chemotherapy. The patient showed the typical signs of a disseminated fusarial infection, with Fusarium solani isolated from skin lesions and F. verticillioides isolated from blood. The report discusses how difficult it is to make an accurate diagnosis when an immunosuppressed patient is infected with more than one fungal species, especially when the species are morphologically very similar. PMID:10970404

  6. Effect of chemical permeation enhancers on stratum corneum barrier lipid organizational structure and interferon alpha permeability.

    PubMed

    Moghadam, Shadi H; Saliaj, Evi; Wettig, Shawn D; Dong, Chilbert; Ivanova, Marina V; Huzil, J Torin; Foldvari, Marianna

    2013-06-03

    The outermost layer of the skin, known as the stratum corneum (SC), is composed of dead corneocytes embedded in an intercellular lipid matrix consisting of ceramides, free fatty acids, and cholesterol. The high level of organization within this matrix protects the body by limiting the permeation of most compounds through the skin. While essential for its protective functions, the SC poses a significant barrier for the delivery of topically applied pharmaceutical agents. Chemical permeation enhancers (CPEs) can increase delivery of small drug compounds into the skin by interacting with the intercellular lipids through physical processes including extraction, fluidization, increased disorder, and phase separation. However, it is not clear whether these same mechanisms are involved in delivery of biotherapeutic macromolecules, such as proteins. Here we describe the effect of three categories of CPEs {solvents [ethanol, propylene glycol, diethylene glycol monoethyl ether (transcutol), oleic acid], terpenes [menthol, nerol, camphor, methyl salicylate], and surfactants [Tween 80, SDS, benzalkonium chloride, polyoxyl 40 hydrogenated castor oil (Cremophor RH40), didecyldimethylammonium bromide (DDAB), didecyltrimethylammonium bromide (DTAB)]} on the lipid organizational structure of human SC as determined by X-ray scattering studies. Small- and wide-angle X-ray scattering studies were conducted to correlate the degree of structural changes and hydrocarbon chain packing in SC lipids caused by these various classes of CPEs to the extent of permeation of interferon alpha-2b (IFNα), a 19 kDa protein drug, into human skin. With the exception of solvents, propylene glycol and ethanol, all classes of CPEs caused increased disordering of lamellar and lateral packing of lipids. We observed that the highest degree of SC lipid disordering was caused by surfactants (especially SDS, DDAB, and DTAB) followed by terpenes, such as nerol. Interestingly, in vitro skin permeation studies indicated that, in most cases, absorption of IFNα was low and that an increase in SC lipid disorder does not correspond to an increase in IFNα absorption.

  7. Activation of Nrf2 in keratinocytes causes chloracne (MADISH)-like skin disease in mice

    PubMed Central

    Schäfer, Matthias; Willrodt, Ann-Helen; Kurinna, Svitlana; Link, Andrea S; Farwanah, Hany; Geusau, Alexandra; Gruber, Florian; Sorg, Olivier; Huebner, Aaron J; Roop, Dennis R; Sandhoff, Konrad; Saurat, Jean-Hilaire; Tschachler, Erwin; Schneider, Marlon R; Langbein, Lutz; Bloch, Wilhelm; Beer, Hans-Dietmar; Werner, Sabine

    2014-01-01

    The transcription factor Nrf2 is a key regulator of the cellular stress response, and pharmacological Nrf2 activation is a promising strategy for skin protection and cancer prevention. We show here that prolonged Nrf2 activation in keratinocytes causes sebaceous gland enlargement and seborrhea in mice due to upregulation of the growth factor epigen, which we identified as a novel Nrf2 target. This was accompanied by thickening and hyperkeratosis of hair follicle infundibula. These abnormalities caused dilatation of infundibula, hair loss, and cyst development upon aging. Upregulation of epigen, secretory leukocyte peptidase inhibitor (Slpi), and small proline-rich protein 2d (Sprr2d) in hair follicles was identified as the likely cause of infundibular acanthosis, hyperkeratosis, and cyst formation. These alterations were highly reminiscent to the phenotype of chloracne/“metabolizing acquired dioxin-induced skin hamartomas” (MADISH) patients. Indeed, SLPI, SPRR2, and epigen were strongly expressed in cysts of MADISH patients and upregulated by dioxin in human keratinocytes in an NRF2-dependent manner. These results identify novel Nrf2 activities in the pilosebaceous unit and point to a role of NRF2 in MADISH pathogenesis. PMID:24503019

  8. Scabies mites alter the skin microbiome and promote growth of opportunistic pathogens in a porcine model.

    PubMed

    Swe, Pearl M; Zakrzewski, Martha; Kelly, Andrew; Krause, Lutz; Fischer, Katja

    2014-01-01

    The resident skin microbiota plays an important role in restricting pathogenic bacteria, thereby protecting the host. Scabies mites (Sarcoptes scabiei) are thought to promote bacterial infections by breaching the skin barrier and excreting molecules that inhibit host innate immune responses. Epidemiological studies in humans confirm increased incidence of impetigo, generally caused by Staphylococcus aureus and Streptococcus pyogenes, secondary to the epidermal infestation with the parasitic mite. It is therefore possible that mite infestation could alter the healthy skin microbiota making way for the opportunistic pathogens. A longitudinal study to test this hypothesis in humans is near impossible due to ethical reasons. In a porcine model we generated scabies infestations closely resembling the disease manifestation in humans and investigated the scabies associated changes in the skin microbiota over the course of a mite infestation. In a 21 week trial, skin scrapings were collected from pigs infected with S. scabies var. suis and scabies-free control animals. A total of 96 skin scrapings were collected before, during infection and after acaricide treatment, and analyzed by bacterial 16S rDNA tag-encoded FLX-titanium amplicon pyrosequencing. We found significant changes in the epidermal microbiota, in particular a dramatic increase in Staphylococcus correlating with the onset of mite infestation in animals challenged with scabies mites. This increase persisted beyond treatment from mite infection and healing of skin. Furthermore, the staphylococci population shifted from the commensal S. hominis on the healthy skin prior to scabies mite challenge to S. chromogenes, which is increasingly recognized as being pathogenic, coinciding with scabies infection in pigs. In contrast, all animals in the scabies-free cohort remained relatively free of Staphylococcus throughout the trial. This is the first experimental in vivo evidence supporting previous assumptions that establishment of pathogens follow scabies infection. Our findings provide an explanation for a biologically important aspect of the disease pathogenesis. The methods developed from this pig trial will serve as a guide to analyze human clinical samples. Studies building on this will offer implications for development of novel intervention strategies against the mites and the secondary infections.

  9. Scabies Mites Alter the Skin Microbiome and Promote Growth of Opportunistic Pathogens in a Porcine Model

    PubMed Central

    Swe, Pearl M.; Zakrzewski, Martha; Kelly, Andrew; Krause, Lutz; Fischer, Katja

    2014-01-01

    Background The resident skin microbiota plays an important role in restricting pathogenic bacteria, thereby protecting the host. Scabies mites (Sarcoptes scabiei) are thought to promote bacterial infections by breaching the skin barrier and excreting molecules that inhibit host innate immune responses. Epidemiological studies in humans confirm increased incidence of impetigo, generally caused by Staphylococcus aureus and Streptococcus pyogenes, secondary to the epidermal infestation with the parasitic mite. It is therefore possible that mite infestation could alter the healthy skin microbiota making way for the opportunistic pathogens. A longitudinal study to test this hypothesis in humans is near impossible due to ethical reasons. In a porcine model we generated scabies infestations closely resembling the disease manifestation in humans and investigated the scabies associated changes in the skin microbiota over the course of a mite infestation. Methodology/Principal Findings In a 21 week trial, skin scrapings were collected from pigs infected with S. scabies var. suis and scabies-free control animals. A total of 96 skin scrapings were collected before, during infection and after acaricide treatment, and analyzed by bacterial 16S rDNA tag-encoded FLX-titanium amplicon pyrosequencing. We found significant changes in the epidermal microbiota, in particular a dramatic increase in Staphylococcus correlating with the onset of mite infestation in animals challenged with scabies mites. This increase persisted beyond treatment from mite infection and healing of skin. Furthermore, the staphylococci population shifted from the commensal S. hominis on the healthy skin prior to scabies mite challenge to S. chromogenes, which is increasingly recognized as being pathogenic, coinciding with scabies infection in pigs. In contrast, all animals in the scabies-free cohort remained relatively free of Staphylococcus throughout the trial. Conclusions/Significance This is the first experimental in vivo evidence supporting previous assumptions that establishment of pathogens follow scabies infection. Our findings provide an explanation for a biologically important aspect of the disease pathogenesis. The methods developed from this pig trial will serve as a guide to analyze human clinical samples. Studies building on this will offer implications for development of novel intervention strategies against the mites and the secondary infections. PMID:24875186

  10. Mitochondrial gene expression changes in cultured human skin cells following simulated sunlight irradiation.

    PubMed

    Kelly, J; Murphy, J E

    2018-02-01

    Exposure of skin to simulated sunlight irradiation (SSI) has being extensively researched and shown to be the main cause for changes in the skin including changes in cellular function and generation of reactive oxygen species (ROS). This oxidative stress can subsequently exert downstream effects and the subcellular compartments most affected by this oxidative stress are mitochondria. The importance of functional mitochondrial morphology is apparent as morphological defects are related to many human diseases including diabetes mellitus, liver disease, neurodegenerative diseases, aging and cancer. The main objective of this study was to evaluate solar radiation-induced changes in mitochondrial gene expression in human skin cells using a Q-Sun solar simulator to deliver a close match to the intensity of summer sunlight. Spontaneously immortalised human skin epidermal keratinocytes (HaCaT) and Human Dermal Fibroblasts (HDFn) were divided into two groups. Group A were irradiated once and Group B twice 7days apart; following irradiation, mitochondrial gene expression was evaluated 1, 4 and 7days post primary exposure for group A and 1, 4, 7 and 14days post-secondary exposure for group B. Both the epidermal and dermal cells displayed significant reduced expression of the genes analysed for mitochondrial morphology and function; however, epidermal cells displayed this reduction post SSI earlier then dermal cells at multiple time points. The data presented here reinforces the fact that epidermal cells, while displaying a heightened sensitivity to sunlight, are less prone to changes in gene expression, while dermal cells, which appear to be more resilient are possibly more prone to genomic instability and mitochondrial damage. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. IL-17 suppresses immune effector functions in human papillomavirus-associated epithelial hyperplasia.

    PubMed

    Gosmann, Christina; Mattarollo, Stephen R; Bridge, Jennifer A; Frazer, Ian H; Blumenthal, Antje

    2014-09-01

    Persistent infection with high-risk human papillomaviruses (HPV) causes epithelial hyperplasia that can progress to cancer and is thought to depend on immunosuppressive mechanisms that prevent viral clearance by the host. IL-17 is a cytokine with diverse functions in host defense and in the pathology of autoimmune disorders, chronic inflammatory diseases, and cancer. We analyzed biopsies from patients with HPV-associated cervical intraepithelial neoplasia grade 2/3 and murine skin displaying HPV16 E7 protein-induced epithelial hyperplasia, which closely models hyperplasia in chronic HPV lesions. Expression of IL-17 and IL-23, a major inducer of IL-17, was elevated in both human HPV-infected and murine E7-expressing lesions. Using a skin-grafting model, we demonstrated that IL-17 in HPV16 E7 transgenic skin grafts inhibited effective host immune responses against the graft. IL-17 was produced by CD3(+) T cells, predominantly CD4(+) T cells in human, and CD4(+) and γδ T cells in mouse hyperplastic lesions. IL-23 and IL-1β, but not IL-18, induced IL-17 production in E7 transgenic skin. Together, these findings demonstrate an immunosuppressive role for IL-17 in HPV-associated epithelial hyperplasia and suggest that blocking IL-17 in persistent viral infection may promote antiviral immunity and prevent progression to cancer. Copyright © 2014 by The American Association of Immunologists, Inc.

  12. Systemic depletion of macrophages in the subacute phase of wound healing reduces hypertrophic scar formation.

    PubMed

    Zhu, Zhensen; Ding, Jie; Ma, Zengshuan; Iwashina, Takashi; Tredget, Edward E

    2016-07-01

    Hypertrophic scars are caused by trauma or burn injuries to the deep dermis and can cause cosmetic disfigurement and psychological issues. Studies suggest that M2-like macrophages are pro-fibrotic and contribute to hypertrophic scar formation. A previous study from our lab showed that M2 macrophages were present in developing hypertrophic scar tissues in vivo at 3-4 weeks after wounding. In this study, the effect of systemic macrophage depletion on scar formation was explored at subacute phase of wound healing. Thirty-six athymic nude mice that received human skin transplants were randomly divided into macrophage depletion group and control group. The former received intraperitoneal injections of clodronate liposomes while the controls received sterile saline injections on day 7, 10, and 13 postgrafting. Wound area, scar thickness, collagen abundance and collagen bundle structure, mast cell infiltration, myofibroblast formation, M1, and M2 macrophages together with gene expression of M1 and M2 related factors in the grafted skin were investigated at 2, 4, and 8 weeks postgrafting. The transplanted human skin from the control group developed contracted, elevated, and thickened scars while the grafted skin from the depletion group healed with significant less contraction and elevation. Significant reductions in myofibroblast number, collagen synthesis, and hypertrophic fiber morphology as well as mast cell infiltration were observed in the depletion group compared to the control group. Macrophage depletion significantly reduced M1 and M2 macrophage number in the depletion group 2 weeks postgrafting as compared to the control group. These findings suggest that systemic macrophage depletion in subacute phase of wound healing reduces scar formation, which provides evidence for the pro-fibrotic role of macrophages in fibrosis of human skin as well as insight into the potential benefits of specifically depleting M2 macrophages in vivo. © 2016 by the Wound Healing Society.

  13. The Microbiota of the Human Skin.

    PubMed

    Egert, Markus; Simmering, Rainer

    2016-01-01

    The aim of this chapter is to sum up important progress in the field of human skin microbiota research that was achieved over the last years.The human skin is one of the largest and most versatile organs of the human body. Owing to its function as a protective interface between the largely sterile interior of the human body and the highly microbially contaminated outer environment, it is densely colonized with a diverse and active microbiota. This skin microbiota is of high importance for human health and well-being. It is implicated in several severe skin diseases and plays a major role in wound infections. Many less severe, but negatively perceived cosmetic skin phenomena are linked with skin microbes, too. In addition, skin microorganisms, in particular on the human hands, are crucial for the field of hygiene research. Notably, apart from being only a potential source of disease and contamination, the skin microbiota also contributes to the protective functions of the human skin in many ways. Finally, the analysis of structure and function of the human skin microbiota is interesting from a basic, evolutionary perspective on human microbe interactions.Key questions in the field of skin microbiota research deal with (a) a deeper understanding of the structure (species inventory) and function (physiology) of the healthy human skin microbiota in space and time, (b) the distinction of resident and transient skin microbiota members, (c) the distinction of beneficial skin microorganisms from microorganisms or communities with an adverse or sickening effect on their hosts, (d) factors shaping the skin microbiota and its functional role in health and disease, (e) strategies to manipulate the skin microbiota for therapeutic reasons.

  14. Elastin hydrolysate derived from fish enhances proliferation of human skin fibroblasts and elastin synthesis in human skin fibroblasts and improves the skin conditions.

    PubMed

    Shiratsuchi, Eri; Nakaba, Misako; Yamada, Michio

    2016-03-30

    Recent studies have shown that certain peptides significantly improve skin conditions, such as skin elasticity and the moisture content of the skin of healthy woman. This study aimed to investigate the effects of elastin hydrolysate on human skin. Proliferation and elastin synthesis were evaluated in human skin fibroblasts exposed to elastin hydrolysate and proryl-glycine (Pro-Gly), which is present in human blood after elastin hydrolysate ingestion. We also performed an ingestion test with elastin hydrolysate in humans and evaluated skin condition. Elastin hydrolysate and Pro-Gly enhanced the proliferation of fibroblasts and elastin synthesis. Maximal proliferation response was observed at 25 ng mL(-1) Pro-Gly. Ingestion of elastin hydrolysate improved skin condition, such as elasticity, number of wrinkles, and blood flow. Elasticity improved by 4% in the elastin hydrolysate group compared with 2% in the placebo group. Therefore, elastin hydrolysate activates human skin fibroblasts and has beneficial effects on skin conditions. © 2015 Society of Chemical Industry.

  15. Breathable and Stretchable Temperature Sensors Inspired by Skin.

    PubMed

    Chen, Ying; Lu, Bingwei; Chen, Yihao; Feng, Xue

    2015-06-22

    Flexible electronics attached to skin for healthcare, such as epidermal electronics, has to struggle with biocompatibility and adapt to specified environment of skin with respect to breath and perspiration. Here, we report a strategy for biocompatible flexible temperature sensors, inspired by skin, possessing the excellent permeability of air and high quality of water-proof by using semipermeable film with porous structures as substrate. We attach such temperature sensors to underarm and forearm to measure the axillary temperature and body surface temperature respectively. The volunteer wears such sensors for 24 hours with two times of shower and the in vitro test shows no sign of maceration or stimulation to the skin. Especially, precise temperature changes on skin surface caused by flowing air and water dropping are also measured to validate the accuracy and dynamical response. The results show that the biocompatible temperature sensor is soft and breathable on the human skin and has the excellent accuracy compared to mercury thermometer. This demonstrates the possibility and feasibility of fully using the sensors in long term body temperature sensing for medical use as well as sensing function of artificial skin for robots or prosthesis.

  16. The Frequency Spectral Properties of Electrode-Skin Contact Impedance on Human Head and Its Frequency-Dependent Effects on Frequency-Difference EIT in Stroke Detection from 10Hz to 1MHz.

    PubMed

    Yang, Lin; Dai, Meng; Xu, Canhua; Zhang, Ge; Li, Weichen; Fu, Feng; Shi, Xuetao; Dong, Xiuzhen

    2017-01-01

    Frequency-difference electrical impedance tomography (fdEIT) reconstructs frequency-dependent changes of a complex impedance distribution. It has a potential application in acute stroke detection because there are significant differences in impedance spectra between stroke lesions and normal brain tissues. However, fdEIT suffers from the influences of electrode-skin contact impedance since contact impedance varies greatly with frequency. When using fdEIT to detect stroke, it is critical to know the degree of measurement errors or image artifacts caused by contact impedance. To our knowledge, no study has systematically investigated the frequency spectral properties of electrode-skin contact impedance on human head and its frequency-dependent effects on fdEIT used in stroke detection within a wide frequency band (10 Hz-1 MHz). In this study, we first measured and analyzed the frequency spectral properties of electrode-skin contact impedance on 47 human subjects' heads within 10 Hz-1 MHz. Then, we quantified the frequency-dependent effects of contact impedance on fdEIT in stroke detection in terms of the current distribution beneath the electrodes and the contact impedance imbalance between two measuring electrodes. The results showed that the contact impedance at high frequencies (>100 kHz) significantly changed the current distribution beneath the electrode, leading to nonnegligible errors in boundary voltages and artifacts in reconstructed images. The contact impedance imbalance at low frequencies (<1 kHz) also caused significant measurement errors. We conclude that the contact impedance has critical frequency-dependent influences on fdEIT and further studies on reducing such influences are necessary to improve the application of fdEIT in stroke detection.

  17. Lemon balm extract (Melissa officinalis, L.) promotes melanogenesis and prevents UVB-induced oxidative stress and DNA damage in a skin cell model.

    PubMed

    Pérez-Sánchez, Almudena; Barrajón-Catalán, Enrique; Herranz-López, María; Castillo, Julián; Micol, Vicente

    2016-11-01

    Solar ultraviolet (UV) radiation is one of the main causes of a variety of cutaneous disorders, including photoaging and skin cancer. Its UVB component (280-315nm) leads to oxidative stress and causes inflammation, DNA damage, p53 induction and lipid and protein oxidation. Recently, an increase in the use of plant polyphenols with antioxidant and anti-inflammatory properties has emerged to protect human skin against the deleterious effects of sunlight. This study evaluates the protective effects of lemon balm extract (LBE) (Melissa Officinalis, L) and its main phenolic compound rosmarinic acid (RA) against UVB-induced damage in human keratinocytes. The LBE composition was determined by HPLC analysis coupled to photodiode array detector and ion trap mass spectrometry with electrospray ionization (HPLC-DAD-ESI-IT-MS/MS). Cell survival, ROS generation and DNA damage were determined upon UVB irradiation in the presence of LBE. The melanogenic capacity of LBE was also determined. RA and salvianolic acid derivatives were the major compounds, but caffeic acid and luteolin glucuronide were also found in LBE. LBE and RA significantly increased the survival of human keratinocytes upon UVB radiation, but LBE showed a stronger effect. LBE significantly decreased UVB-induced intracellular ROS production. Moreover, LBE reduced UV-induced DNA damage and the DNA damage response (DDR), which were measured as DNA strand breaks in the comet assay and histone H2AX activation, respectively. Finally, LBE promoted melanogenesis in the cell model. These results suggest that LBE may be considered as a candidate for the development of oral/topical photoprotective ingredients against UVB-induced skin damage. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. The Frequency Spectral Properties of Electrode-Skin Contact Impedance on Human Head and Its Frequency-Dependent Effects on Frequency-Difference EIT in Stroke Detection from 10Hz to 1MHz

    PubMed Central

    Zhang, Ge; Li, Weichen; Fu, Feng; Shi, Xuetao; Dong, Xiuzhen

    2017-01-01

    Frequency-difference electrical impedance tomography (fdEIT) reconstructs frequency-dependent changes of a complex impedance distribution. It has a potential application in acute stroke detection because there are significant differences in impedance spectra between stroke lesions and normal brain tissues. However, fdEIT suffers from the influences of electrode-skin contact impedance since contact impedance varies greatly with frequency. When using fdEIT to detect stroke, it is critical to know the degree of measurement errors or image artifacts caused by contact impedance. To our knowledge, no study has systematically investigated the frequency spectral properties of electrode-skin contact impedance on human head and its frequency-dependent effects on fdEIT used in stroke detection within a wide frequency band (10 Hz-1 MHz). In this study, we first measured and analyzed the frequency spectral properties of electrode-skin contact impedance on 47 human subjects’ heads within 10 Hz-1 MHz. Then, we quantified the frequency-dependent effects of contact impedance on fdEIT in stroke detection in terms of the current distribution beneath the electrodes and the contact impedance imbalance between two measuring electrodes. The results showed that the contact impedance at high frequencies (>100 kHz) significantly changed the current distribution beneath the electrode, leading to nonnegligible errors in boundary voltages and artifacts in reconstructed images. The contact impedance imbalance at low frequencies (<1 kHz) also caused significant measurement errors. We conclude that the contact impedance has critical frequency-dependent influences on fdEIT and further studies on reducing such influences are necessary to improve the application of fdEIT in stroke detection. PMID:28107524

  19. Climate change and skin.

    PubMed

    Balato, N; Ayala, F; Megna, M; Balato, A; Patruno, C

    2013-02-01

    Global climate appears to be changing at an unprecedented rate. Climate change can be caused by several factors that include variations in solar radiation received by earth, oceanic processes (such as oceanic circulation), plate tectonics, and volcanic eruptions, as well as human-induced alterations of the natural world. Many human activities, such as the use of fossil fuel and the consequent accumulation of greenhouse gases in the atmosphere, land consumption, deforestation, industrial processes, as well as some agriculture practices are contributing to global climate change. Indeed, many authors have reported on the current trend towards global warming (average surface temperature has augmented by 0.6 °C over the past 100 years), decreased precipitation, atmospheric humidity changes, and global rise in extreme climatic events. The magnitude and cause of these changes and their impact on human activity have become important matters of debate worldwide, representing climate change as one of the greatest challenges of the modern age. Although many articles have been written based on observations and various predictive models of how climate change could affect social, economic and health systems, only few studies exist about the effects of this change on skin physiology and diseases. However, the skin is the most exposed organ to environment; therefore, cutaneous diseases are inclined to have a high sensitivity to climate. For example, global warming, deforestation and changes in precipitation have been linked to variations in the geographical distribution of vectors of some infectious diseases (leishmaniasis, lyme disease, etc) by changing their spread, whereas warm and humid environment can also encourage the colonization of the skin by bacteria and fungi. The present review focuses on the wide and complex relationship between climate change and dermatology, showing the numerous factors that are contributing to modify the incidence and the clinical pattern of many dermatoses.

  20. Pre-slaughter, slaughter and post-slaughter defects of skins and hides at the Sheba Tannery and Leather Industry, Tigray region, northern Ethiopia.

    PubMed

    Kahsay, Tesfay; Negash, Guesh; Hagos, Yohannes; Hadush, Birhanu

    2015-08-21

    Skins and hides are perishable resources that can be damaged by parasitic diseases and human error, which result in downgrading or rejection. This study was conducted to identify defect types and to determine their prevalence in pickled sheep and wet blue goat skins and wet blue hides. Each selected skin or hide was examined for defects in natural light and the defects were graded according to established quality criteria in Ethiopian standard manuals. Major defects were captured by digital photography. The major pre-slaughter defects included scratches (64.2%), cockle (ekek) (32.8%), wounds or scars (12.6%), lesions from pox or lumpy skin disease (6.1%), poor substance (5%), branding marks (2.3%) and tick bites (1.5%). The presence of grain scratches in wet blue hides (76.3%) was significantly higher than in pickled sheep (67.2%) and wet blue goat (59.1%) skins. The major slaughter defects included flay cuts or scores, holes, poor pattern and vein marks, with a higher occurrence in wet blue goat skins (28.7%; P < 0.001) than in wet blue hides (22.8%) and pickled sheep skins (11.1%). The most prevalent postslaughter defects were grain cracks (14.9%), hide beetle damage (8%), damage caused by heat or putrefaction (3.7%) and machine-induced defects (0.5%). Grain cracks (27.04%) and hide beetle damage (13.9%) in wet blue goat skins were significantly more common than in wet blue hides and pickled sheep skins. These defects cause depreciation in the value of the hides and skins. Statistically significant (P < 0.001) higher rejection rates were recorded for wet blue hides (82.9%) than for pickled sheep skins (18.3%) and wet blue goat skins (8.5%). Improved animal health service delivery, effective disease control strategies and strong collaboration between stakeholders are suggested to enhance the quality of skins and hides.

  1. Effect of β-agonist on the dexamethasone-induced expression of aromatase by the human monocyte cells

    PubMed Central

    Ohno, Shuji; Wachi, Hiroshi

    2017-01-01

    Emerging evidence suggests that sex steroids are important for human skin health. In particular, estrogen improves skin thickness, elasticity and moisture of older women. The major source of circulating estrogen is the ovary; however, local estrogen synthesis and secretion have important roles in, for example, bone metabolism and breast cancer development. We hypothesized that infiltrated peripheral monocytes are one of the sources of estrogen in skin tissues. We also hypothesized that, during atopic dermatitis under stress, a decline in the hypothalamus–pituitary–adrenal axis (HPA) and facilitation of the (hypothalamus)–sympathetic–adrenomedullary system (SAM) attenuates estrogen secretion from monocytes. Based on this hypothesis, we tested aromatase expression in the human peripheral monocyte-derived cell line THP-1 in response to the synthetic glucocorticoid dexamethasone (Dex), the synthetic β-agonist isoproterenol (Iso) and the β-antagonist propranolol (Pro). Dex mimics glucocorticoid secreted during excitation of the HPA, and Iso mimics catecholamine secreted during excitation of the SAM. We found that aromatase activity and the CYP19A1 gene transcript were both upregulated in THP-1 cells in the presence of Dex. Addition of Iso induced their downregulation and further addition of Pro rescued aromatase expression. These results may suggest that attenuation of estrogen secretion from peripheral monocytes could be a part of the pathology of stress-caused deterioration of atopic dermatitis. Further examination using an in vitro human skin model including THP-1 cells might be a valuable tool for investigating the therapeutic efficacy and mechanism of estrogen treatment for skin health. PMID:28126832

  2. Effect of β-agonist on the dexamethasone-induced expression of aromatase by the human monocyte cells.

    PubMed

    Watanabe, Masatada; Ohno, Shuji; Wachi, Hiroshi

    2017-02-01

    Emerging evidence suggests that sex steroids are important for human skin health. In particular, estrogen improves skin thickness, elasticity and moisture of older women. The major source of circulating estrogen is the ovary; however, local estrogen synthesis and secretion have important roles in, for example, bone metabolism and breast cancer development. We hypothesized that infiltrated peripheral monocytes are one of the sources of estrogen in skin tissues. We also hypothesized that, during atopic dermatitis under stress, a decline in the hypothalamus-pituitary-adrenal axis (HPA) and facilitation of the (hypothalamus)-sympathetic-adrenomedullary system (SAM) attenuates estrogen secretion from monocytes. Based on this hypothesis, we tested aromatase expression in the human peripheral monocyte-derived cell line THP-1 in response to the synthetic glucocorticoid dexamethasone (Dex), the synthetic β-agonist isoproterenol (Iso) and the β-antagonist propranolol (Pro). Dex mimics glucocorticoid secreted during excitation of the HPA, and Iso mimics catecholamine secreted during excitation of the SAM. We found that aromatase activity and the CYP19A1 gene transcript were both upregulated in THP-1 cells in the presence of Dex. Addition of Iso induced their downregulation and further addition of Pro rescued aromatase expression. These results may suggest that attenuation of estrogen secretion from peripheral monocytes could be a part of the pathology of stress-caused deterioration of atopic dermatitis. Further examination using an in vitro human skin model including THP-1 cells might be a valuable tool for investigating the therapeutic efficacy and mechanism of estrogen treatment for skin health. © 2017 The authors.

  3. Human innate lymphoid cells (ILCs) in filarial infections.

    PubMed

    Bonne-Année, S; Nutman, T B

    2018-02-01

    Filarial infections are characteristically chronic and can cause debilitating diseases governed by parasite-induced innate and adaptive immune responses. Filarial parasites traverse or establish niches in the skin (migrating infective larvae), in nonmucosal tissues (adult parasite niche) and in the blood or skin (circulating microfilariae) where they intersect with the host immune response. While several studies have demonstrated that filarial parasites and their antigens can modulate myeloid cells (monocyte, macrophage and dendritic cell subsets), T- and B-lymphocytes and skin resident cell populations, the role of innate lymphoid cells during filarial infections has only recently emerged. Despite the identification and characterization of innate lymphoid cells (ILCs) in murine helminth infections, little is actually known about the role of human ILCs during parasitic infections. The focus of this review will be to highlight the composition of ILCs in the skin, lymphatics and blood; where the host-parasite interaction is well-defined and to examine the role of ILCs during filarial infections. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  4. The effects of alcohol at three simulated aircraft cabin conditions.

    DOT National Transportation Integrated Search

    1968-09-01

    In a study of 54 human subjects using three alcohol consumption levels and three simulated cabin conditions it was found that alcohol caused an increase in heart rate and an increase in skin temperature. Internal body temperature was lower with alcoh...

  5. 21 CFR 522.56 - Amikacin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.56 Amikacin. (a... Escherichia coli and Proteus spp. and skin and soft tissue infections caused by susceptible strains of...

  6. 21 CFR 520.370 - Cefpodoxime tablets.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.370 Cefpodoxime tablets. (a.... For the treatment of skin infections (wounds and abscesses) caused by susceptible strains of...

  7. 21 CFR 522.46 - Alfaprostol.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.46 Alfaprostol. (a... the skin and can cause abortion and/or bronchial spasms. Women of childbearing age, asthmatics, and...

  8. 21 CFR 522.56 - Amikacin.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.56 Amikacin. (a... of Escherichia coli and Proteus spp. and skin and soft tissue infections caused by susceptible...

  9. 21 CFR 522.56 - Amikacin.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.56 Amikacin. (a... of Escherichia coli and Proteus spp. and skin and soft tissue infections caused by susceptible...

  10. Exposure to Cobalt Causes Transcriptomic and Proteomic Changes in Two Rat Liver Derived Cell Lines

    DTIC Science & Technology

    2013-12-01

    although contact with cobalt can cause dermatitis [16]. While cobalt is known to cause adverse health effects, the exact mechanism of action remains...animals and humans through various exposure routes. Cobalt can enter the body through respiration, ingestion, or contact with the skin. The adverse...concentration on the liver, kidney and heart in mice. Orthop Surg 2: 134–140. 16. Schwartz L PS (1945) Allergic dermatitis due to metallic cobalt. Journal

  11. Confocal Raman spectroscopy: In vivo biochemical changes in the human skin by topical formulations under UV radiation.

    PubMed

    Tosato, M G; Orallo, D E; Ali, S M; Churio, M S; Martin, A A; Dicelio, L

    2015-12-01

    A new approach to the study of the effects on human skin of mycosporine-like amino acids (MAAs) and gadusol (Gad) incorporated in polymer gel is proposed in this work. The depth profile and photoprotector effects of Pluronic F127® gels containing each of the natural actives were evaluated by in vivo confocal Raman spectroscopy aiming at the analysis of the biochemical changes on human skin. Hierarchical cluster analysis (HCA) showed that the data corresponding to different depths of the skin, from surface to 4 μm, and from 6 to 16 μm, remained in the same cluster. In vivo Raman spectra, classified into five different layers of epidermis according to their similarities, indicated that the amount of Gad gel increased by about 26% in the outermost layer of the stratum corneum (SC) and that MAAs gel at 2 μm depth was 103.4% higher than in the outermost layer of the SC. Variations in the SC of urocanic acid at 1490-1515 cm(-1) and 1652 cm(-1) and histidine at 1318 cm(-1) were calculated, before and after UV exposure with or without gels. With the application of gels the vibrational modes that correspond to lipids in trans conformation (1063 and 1128 cm(-1)) increased with respect to normal skin, whereas gauche conformation (1085 cm(-1)) disappeared. Our studies suggest that gels protected the skin against the stress of the natural defense mechanism caused by high levels of UV exposure. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Arsenic contamination of groundwater: a review of sources, prevalence, health risks, and strategies for mitigation.

    PubMed

    Shankar, Shiv; Shanker, Uma; Shikha

    2014-01-01

    Arsenic contamination of groundwater in different parts of the world is an outcome of natural and/or anthropogenic sources, leading to adverse effects on human health and ecosystem. Millions of people from different countries are heavily dependent on groundwater containing elevated level of As for drinking purposes. As contamination of groundwater, poses a serious risk to human health. Excessive and prolonged exposure of inorganic As with drinking water is causing arsenicosis, a deteriorating and disabling disease characterized by skin lesions and pigmentation of the skin, patches on palm of the hands and soles of the feet. Arsenic poisoning culminates into potentially fatal diseases like skin and internal cancers. This paper reviews sources, speciation, and mobility of As and global overview of groundwater As contamination. The paper also critically reviews the As led human health risks, its uptake, metabolism, and toxicity mechanisms. The paper provides an overview of the state-of-the-art knowledge on the alternative As free drinking water and various technologies (oxidation, coagulation flocculation, adsorption, and microbial) for mitigation of the problem of As contamination of groundwater.

  13. Arsenic Contamination of Groundwater: A Review of Sources, Prevalence, Health Risks, and Strategies for Mitigation

    PubMed Central

    Shikha

    2014-01-01

    Arsenic contamination of groundwater in different parts of the world is an outcome of natural and/or anthropogenic sources, leading to adverse effects on human health and ecosystem. Millions of people from different countries are heavily dependent on groundwater containing elevated level of As for drinking purposes. As contamination of groundwater, poses a serious risk to human health. Excessive and prolonged exposure of inorganic As with drinking water is causing arsenicosis, a deteriorating and disabling disease characterized by skin lesions and pigmentation of the skin, patches on palm of the hands and soles of the feet. Arsenic poisoning culminates into potentially fatal diseases like skin and internal cancers. This paper reviews sources, speciation, and mobility of As and global overview of groundwater As contamination. The paper also critically reviews the As led human health risks, its uptake, metabolism, and toxicity mechanisms. The paper provides an overview of the state-of-the-art knowledge on the alternative As free drinking water and various technologies (oxidation, coagulation flocculation, adsorption, and microbial) for mitigation of the problem of As contamination of groundwater. PMID:25374935

  14. Malassezia skin diseases in humans.

    PubMed

    Difonzo, E M; Faggi, E; Bassi, A; Campisi, E; Arunachalam, M; Pini, G; Scarfì, F; Galeone, M

    2013-12-01

    Although Malassezia yeasts are a part of the normal microflora, under certain conditions they can cause superficial skin infection, such as pityriasis versicolor (PV) and Malassezia folliculitis. Moreover the yeasts of the genus Malassezia have been associated with seborrheic dermatitis and dandruff, atopic dermatitis, psoriasis, and, less commonly, with confluent and reticulated papillomatosis, onychomycosis, and transient acantholytic dermatosis. The study of the clinical role of Malassezia species has been surrounded by controversy due to the relative difficulty in isolation, cultivation, and identification. This review focuses on the clinical, mycologic, and immunologic aspects of the various skin diseases associated with Malassezia. Moreover, since there exists little information about the epidemiology and ecology of Malassezia species in the Italian population and the clinical significance of these species is not fully distinguished, we will report data about a study we carried out. The aim of our study was the isolation and the identification of Malassezia species in PV-affected skin and non-affected skin in patients with PV and in clinically healthy individuals without any Malassezia associated skin disease.

  15. Skin-resident memory CD4+ T cells enhance protection against Leishmania major infection.

    PubMed

    Glennie, Nelson D; Yeramilli, Venkata A; Beiting, Daniel P; Volk, Susan W; Weaver, Casey T; Scott, Phillip

    2015-08-24

    Leishmaniasis causes a significant disease burden worldwide. Although Leishmania-infected patients become refractory to reinfection after disease resolution, effective immune protection has not yet been achieved by human vaccines. Although circulating Leishmania-specific T cells are known to play a critical role in immunity, the role of memory T cells present in peripheral tissues has not been explored. Here, we identify a population of skin-resident Leishmania-specific memory CD4+ T cells. These cells produce IFN-γ and remain resident in the skin when transplanted by skin graft onto naive mice. They function to recruit circulating T cells to the skin in a CXCR3-dependent manner, resulting in better control of the parasites. Our findings are the first to demonstrate that CD4+ TRM cells form in response to a parasitic infection, and indicate that optimal protective immunity to Leishmania, and thus the success of a vaccine, may depend on generating both circulating and skin-resident memory T cells. © 2015 Glennie et al.

  16. Skin-resident memory CD4+ T cells enhance protection against Leishmania major infection

    PubMed Central

    Glennie, Nelson D.; Yeramilli, Venkata A.; Beiting, Daniel P.; Volk, Susan W.; Weaver, Casey T.

    2015-01-01

    Leishmaniasis causes a significant disease burden worldwide. Although Leishmania-infected patients become refractory to reinfection after disease resolution, effective immune protection has not yet been achieved by human vaccines. Although circulating Leishmania-specific T cells are known to play a critical role in immunity, the role of memory T cells present in peripheral tissues has not been explored. Here, we identify a population of skin-resident Leishmania-specific memory CD4+ T cells. These cells produce IFN-γ and remain resident in the skin when transplanted by skin graft onto naive mice. They function to recruit circulating T cells to the skin in a CXCR3-dependent manner, resulting in better control of the parasites. Our findings are the first to demonstrate that CD4+ TRM cells form in response to a parasitic infection, and indicate that optimal protective immunity to Leishmania, and thus the success of a vaccine, may depend on generating both circulating and skin-resident memory T cells. PMID:26216123

  17. In vitro dermal absorption of pyrethroid pesticides in human and rat skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Michael F., E-mail: hughes.michaelf@epa.go; Edwards, Brenda C.

    2010-07-15

    Dermal exposure to pyrethroid pesticides can occur during manufacture and application. This study examined the in vitro dermal absorption of pyrethroids using rat and human skin. Dermatomed skin from adult male Long Evans rats or human cadavers was mounted in flow-through diffusion cells, and radiolabeled bifenthrin, deltamethrin or cis-permethrin was applied in acetone to the skin. Fractions of receptor fluid were collected every 4 h. At 24 h, the skins were washed with soap and water to remove unabsorbed chemical. The skin was then solubilized. Two additional experiments were performed after washing the skin; the first was tape-stripping the skinmore » and the second was the collection of receptor fluid for an additional 24 h. Receptor fluid, skin washes, tape strips and skin were analyzed for radioactivity. For rat skin, the wash removed 53-71% of the dose and 26-43% remained in the skin. The cumulative percentage of the dose at 24 h in the receptor fluid ranged from 1 to 5%. For human skin, the wash removed 71-83% of the dose and 14-25% remained in the skin. The cumulative percentage of the dose at 24 h in the receptor fluid was 1-2%. Tape-stripping removed 50-56% and 79-95% of the dose in rat and human skin, respectively, after the wash. From 24-48 h, 1-3% and about 1% of the dose diffused into the receptor fluid of rat and human skin, respectively. The pyrethroids bifenthrin, deltamethrin and cis-permethrin penetrated rat and human skin following dermal application in vitro. However, a skin wash removed 50% or more of the dose from rat and human skin. Rat skin was more permeable to the pyrethroids than human skin. Of the dose in skin, 50% or more was removed by tape-stripping, suggesting that permeation of pyrethroids into viable tissue could be impeded. The percentage of the dose absorbed into the receptor fluid was considerably less than the dose in rat and human skin. Therefore, consideration of the skin type used and fractions analyzed are important when using in vitro dermal absorption data for risk assessment.« less

  18. Prediction of percutaneous absorption in human using three-dimensional human cultured epidermis LabCyte EPI-MODEL.

    PubMed

    Hikima, Tomohiro; Kaneda, Noriaki; Matsuo, Kyouhei; Tojo, Kakuji

    2012-01-01

    The objective of this study is to establish a relationship of the skin penetration parameters between the three-dimensional cultured human epidermis LabCyte EPI-MODEL (LabCyte) and hairless mouse (HLM) skin penetration in vitro and to predict the skin penetration and plasma concentration profile in human. The skin penetration experiments through LabCyte and HLM skin were investigated using 19 drugs that have a different molecular weight and lipophilicity. The penetration flux for LabCyte reached 30 times larger at maximum than that for HLM skin. The human data can be estimated from the in silico approach with the diffusion coefficient (D), the partition coefficient (K) and the skin surface concentration (C) of drugs by assuming the bi-layer skin model for both LabCyte and HLM skin. The human skin penetration of β-estradiol, prednisolone, testosterone and ethynylestradiol was well agreed between the simulated profiles and in vitro experimental data. Plasma concentration profiles of β-estradiol in human were also simulated and well agreed with the clinical data. The present alternative method may decrease human or animal skin experiment for in vitro skin penetration.

  19. Reconstruction of living bilayer human skin equivalent utilizing human fibrin as a scaffold.

    PubMed

    Mazlyzam, A L; Aminuddin, B S; Fuzina, N H; Norhayati, M M; Fauziah, O; Isa, M R; Saim, L; Ruszymah, B H I

    2007-05-01

    Our aim of this study was to develop a new methodology for constructing a bilayer human skin equivalent to create a more clinical compliance skin graft composite for the treatment of various skin defects. We utilized human plasma derived fibrin as the scaffold for the development of a living bilayer human skin equivalent: fibrin-fibroblast and fibrin-keratinocyte (B-FF/FK SE). Skin cells from six consented patients were culture-expanded to passage 1. For B-FF/FK SE formation, human fibroblasts were embedded in human fibrin matrix and subsequently another layer of human keratinocytes in human fibrin matrix was stacked on top. The B-FF/FK SE was then transplanted to athymic mice model for 4 weeks to evaluate its regeneration and clinical performance. The in vivo B-FF/FK SE has similar properties as native human skin by histological analysis and expression of basal Keratin 14 gene in the epidermal layer and Collagen type I gene in the dermal layer. Electron microscopy analysis of in vivo B-FF/FK SE showed well-formed and continuous epidermal-dermal junction. We have successfully developed a technique to engineer living bilayer human skin equivalent using human fibrin matrix. The utilization of culture-expanded human skin cells and fibrin matrix from human blood will allow a fully autologous human skin equivalent construction.

  20. Silver deposition and tissue staining associated with wound dressings containing silver.

    PubMed

    Walker, Michael; Cochrane, Christine A; Bowler, Philip G; Parsons, David; Bradshaw, Peter

    2006-01-01

    Argyria is the general term used to denote a clinical condition in which excessive administration and deposition of silver causes a permanent irreversible gray-blue discoloration of the skin or mucous membranes. The amount of discoloration usually depends on the route of silver delivery (ie, oral or topical administration) along with the body's ability to absorb and excrete the administered silver compound. Argyria is accepted as a rare dermatosis but once silver particles are deposited, they remain immobile and may accumulate during the aging process. Topical application of silver salts (eg, silver nitrate solution) may lead to transient skin staining. To investigate their potential to cause skin staining, two silver-containing dressings (Hydrofiber and nanocrystalline) were applied to human skin samples taken from electively amputated lower limbs. The potential for skin discoloration was assayed using atomic absorption spectroscopy. When the dressings were hydrated with water, a significantly higher amount of silver was released from the nanocrystalline dressing compared to the Hydrofiber dressing (P <0.005), which resulted in approximately 30 times more silver deposition. In contrast, when saline was used as the hydration medium, the release rates were low for both dressings and not significantly different (silver deposition was minimal). Controlling the amount of silver released from silver-containing dressings should help reduce excessive deposition of silver into wound tissue and minimize skin staining.

  1. Serological survey of dogs from Egypt for antibodies to Leishmania spp.

    USDA-ARS?s Scientific Manuscript database

    Leishmaniasis is an insect-transmitted parasitic disease with worldwide distribution. Leishmania spp. infections cause a broad spectrum of clinical signs ranging from skin lesions to fatal visceral disease. Dogs are a major reservoir host for visceral leishmaniasis in humans. Leishmaniasis is endemi...

  2. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Fenster, Ariel E.; And Others

    1988-01-01

    Identifies a technique using methylene blue and glucose to explain a genetically related enzyme shortage causing blue skin in humans. Offers a laser technique to study solubility of silver salts of chloride and chromate. Encourages the use of models and class participation in the study of chirality and enantiomers. (ML)

  3. Human Characteristics and Measures in Systems Design

    DTIC Science & Technology

    2003-01-01

    Electrodermal Skin conductance Field/lab $ * activity and electrode response EKG/ECG Electrocardiogram ECG electrodes- Field/la:h $ * HR, HRV Heart rate...illumination, motion, etc.). It may also be caused by psychological pressures (e.g., anxiety , anger/hostility, the "fight or flight" syndrome, threat

  4. Erbb2 up-regulation of ADAM12 expression accelerates skin cancer progression.

    PubMed

    Rao, Velidi H; Vogel, Kristen; Yanagida, Jodi K; Marwaha, Nitin; Kandel, Amrit; Trempus, Carol; Repertinger, Susan K; Hansen, Laura A

    2015-10-01

    Solar ultraviolet (UV) radiation can cause severe damage to the skin and is the primary cause of most skin cancer. UV radiation causes DNA damage leading to mutations and also activates the Erbb2/HER2 receptor through indirect mechanisms involving reactive oxygen species. We hypothesized that Erbb2 activation accelerates the malignant progression of UV-induced skin cancer. Following the induction of benign squamous papillomas by UV exposure of v-ras(Ha) transgenic Tg.AC mice, mice were treated topically with the Erbb2 inhibitor AG825 and tumor progression monitored. AG825 treatment reduced tumor volume, increased tumor regression, and delayed the development of malignant squamous cell carcinoma (SCC). Progression to malignancy was associated with increased Erbb2 and ADAM12 (A Disintegin And Metalloproteinase 12) transcripts and protein, while inhibition of Erbb2 blocked the increase in ADAM12 message upon malignant progression. Similarly, human SCC and SCC cell lines had increased ADAM12 protein and transcripts when compared to normal controls. To determine whether Erbb2 up-regulation of ADAM12 contributed to malignant progression of skin cancer, Erbb2 expression was modulated in cultured SCC cells using forced over-expression or siRNA targeting, demonstrating up-regulation of ADAM12 by Erbb2. Furthermore, ADAM12 transfection or siRNA targeting revealed that ADAM12 increased both the migration and invasion of cutaneous SCC cells. Collectively, these results suggest Erbb2 up-regulation of ADAM12 as a novel mechanism contributing to the malignant progression of UV-induced skin cancer. Inhibition of Erbb2/HER2 reduced tumor burden, increased tumor regression, and delayed the progression of benign skin tumors to malignant SCC in UV-exposed mice. Inhibition of Erbb2 suppressed the increase in metalloproteinase ADAM12 expression in skin tumors, which in turn increased migration and tumor cell invasiveness. © 2014 Wiley Periodicals, Inc.

  5. Galectin-3 Is a Target for Proteases Involved in the Virulence of Staphylococcus aureus.

    PubMed

    Elmwall, Jonas; Kwiecinski, Jakub; Na, Manli; Ali, Abukar Ahmed; Osla, Veronica; Shaw, Lindsey N; Wang, Wanzhong; Sävman, Karin; Josefsson, Elisabet; Bylund, Johan; Jin, Tao; Welin, Amanda; Karlsson, Anna

    2017-07-01

    Staphylococcus aureus is a major cause of skin and soft tissue infection. The bacterium expresses four major proteases that are emerging as virulence factors: aureolysin (Aur), V8 protease (SspA), staphopain A (ScpA), and staphopain B (SspB). We hypothesized that human galectin-3, a β-galactoside-binding lectin involved in immune regulation and antimicrobial defense, is a target for these proteases and that proteolysis of galectin-3 is a novel immune evasion mechanism. Indeed, supernatants from laboratory strains and clinical isolates of S. aureus caused galectin-3 degradation. Similar proteolytic capacities were found in Staphylococcus epidermidis isolates but not in Staphylococcus saprophyticus Galectin-3-induced activation of the neutrophil NADPH oxidase was abrogated by bacterium-derived proteolysis of galectin-3, and SspB was identified as the major protease responsible. The impact of galectin-3 and protease expression on S. aureus virulence was studied in a murine skin infection model. In galectin-3 +/+ mice, SspB-expressing S. aureus caused larger lesions and resulted in higher bacterial loads than protease-lacking bacteria. No such difference in bacterial load or lesion size was detected in galectin-3 -/- mice, which overall showed smaller lesion sizes than the galectin-3 +/+ animals. In conclusion, the staphylococcal protease SspB inactivates galectin-3, abrogating its stimulation of oxygen radical production in human neutrophils and increasing tissue damage during skin infection. Copyright © 2017 American Society for Microbiology.

  6. Tegumentary leishmaniasis and coinfections other than HIV

    PubMed Central

    Kaye, Paul M.; Adaui, Vanessa; Polman, Katja; Llanos-Cuentas, Alejandro; Dujardin, Jean-Claude; Boelaert, Marleen

    2018-01-01

    Background Tegumentary leishmaniasis (TL) is a disease of skin and/or mucosal tissues caused by Leishmania parasites. TL patients may concurrently carry other pathogens, which may influence the clinical outcome of TL. Methodology and principal findings This review focuses on the frequency of TL coinfections in human populations, interactions between Leishmania and other pathogens in animal models and human subjects, and implications of TL coinfections for clinical practice. For the purpose of this review, TL is defined as all forms of cutaneous (localised, disseminated, or diffuse) and mucocutaneous leishmaniasis. Human immunodeficiency virus (HIV) coinfection, superinfection with skin bacteria, and skin manifestations of visceral leishmaniasis are not included. We searched MEDLINE and other databases and included 73 records: 21 experimental studies in animals and 52 studies about human subjects (mainly cross-sectional and case studies). Several reports describe the frequency of Trypanosoma cruzi coinfection in TL patients in Argentina (about 41%) and the frequency of helminthiasis in TL patients in Brazil (15% to 88%). Different hypotheses have been explored about mechanisms of interaction between different microorganisms, but no clear answers emerge. Such interactions may involve innate immunity coupled with regulatory networks that affect quality and quantity of acquired immune responses. Diagnostic problems may occur when concurrent infections cause similar lesions (e.g., TL and leprosy), when different pathogens are present in the same lesions (e.g., Leishmania and Sporothrix schenckii), or when similarities between phylogenetically close pathogens affect accuracy of diagnostic tests (e.g., serology for leishmaniasis and Chagas disease). Some coinfections (e.g., helminthiasis) appear to reduce the effectiveness of antileishmanial treatment, and drug combinations may cause cumulative adverse effects. Conclusions and significance In patients with TL, coinfection is frequent, it can lead to diagnostic errors and delays, and it can influence the effectiveness and safety of treatment. More research is needed to unravel how coinfections interfere with the pathogenesis of TL. PMID:29494584

  7. Expression of proliferative and inflammatory markers in a full-thickness human skin equivalent following exposure to the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide

    PubMed Central

    Black, Adrienne T.; Hayden, Patrick J.; Casillas, Robert P.; Heck, Diane E.; Gerecke, Donald R.; Sinko, Patrick J.; Laskin, Debra L.; Laskin, Jeffrey D.

    2010-01-01

    Sulfur mustard is a potent vesicant that induces inflammation, edema and blistering following dermal exposure. To assess molecular mechanisms mediating these responses, we analyzed the effects of the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide, on EpiDerm-FT™, a commercially available full-thickness human skin equivalent. CEES (100–1000 μM) caused a concentration-dependent increase in pyknotic nuclei and vacuolization in basal keratinocytes; at high concentrations (300–1000 μM), CEES also disrupted keratin filament architecture in the stratum corneum. This was associated with time-dependent increases in expression of proliferating cell nuclear antigen, a marker of cell proliferation, and poly(ADP-ribose) polymerase (PARP) and phosphorylated histone H2AX, markers of DNA damage. Concentration- and time-dependent increases in mRNA and protein expression of eicosanoid biosynthetic enzymes including COX-2, 5-lipoxygenase, microsomal PGE2 synthases, leukotriene (LT) A4 hydrolase and LTC4 synthase were observed in CEES-treated skin equivalents, as well as in antioxidant enzymes, glutathione S-transferases A1–2 (GSTA1–2), GSTA3 and GSTA4. These data demonstrate that CEES induces rapid cellular damage, cytotoxicity and inflammation in full-thickness skin equivalents. These effects are similar to human responses to vesicants in vivo and suggest that the full thickness skin equivalent is a useful in vitro model to characterize the biological effects of mustards and to develop potential therapeutics. PMID:20840853

  8. Expression of proliferative and inflammatory markers in a full-thickness human skin equivalent following exposure to the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide.

    PubMed

    Black, Adrienne T; Hayden, Patrick J; Casillas, Robert P; Heck, Diane E; Gerecke, Donald R; Sinko, Patrick J; Laskin, Debra L; Laskin, Jeffrey D

    2010-12-01

    Sulfur mustard is a potent vesicant that induces inflammation, edema and blistering following dermal exposure. To assess molecular mechanisms mediating these responses, we analyzed the effects of the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide, on EpiDerm-FT™, a commercially available full-thickness human skin equivalent. CEES (100-1000 μM) caused a concentration-dependent increase in pyknotic nuclei and vacuolization in basal keratinocytes; at high concentrations (300-1000 μM), CEES also disrupted keratin filament architecture in the stratum corneum. This was associated with time-dependent increases in expression of proliferating cell nuclear antigen, a marker of cell proliferation, and poly(ADP-ribose) polymerase (PARP) and phosphorylated histone H2AX, markers of DNA damage. Concentration- and time-dependent increases in mRNA and protein expression of eicosanoid biosynthetic enzymes including COX-2, 5-lipoxygenase, microsomal PGE₂ synthases, leukotriene (LT) A₄ hydrolase and LTC₄ synthase were observed in CEES-treated skin equivalents, as well as in antioxidant enzymes, glutathione S-transferases A1-2 (GSTA1-2), GSTA3 and GSTA4. These data demonstrate that CEES induces rapid cellular damage, cytotoxicity and inflammation in full-thickness skin equivalents. These effects are similar to human responses to vesicants in vivo and suggest that the full thickness skin equivalent is a useful in vitro model to characterize the biological effects of mustards and to develop potential therapeutics. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Ablation of human skin mast cells in situ by lysosomotropic agents.

    PubMed

    Hagforsen, Eva; Paivandy, Aida; Lampinen, Maria; Weström, Simone; Calounova, Gabriela; Melo, Fabio R; Rollman, Ola; Pejler, Gunnar

    2015-07-01

    Mast cells are known to have a detrimental impact on numerous types of inflammatory skin diseases such as contact dermatitis, atopic eczema and cutaneous mastocytosis. Regimens that dampen skin mast cell-mediated activities can thus offer an attractive therapeutic option under such circumstances. As mast cells are known to secrete a large array of potentially pathogenic compounds, both from preformed stores in secretory lysosomes (granules) and after de novo synthesis, mere inhibition of degranulation or interference with individual mast cell mediators may not be sufficient to provide an effective blockade of harmful mast cell activities. An alternative strategy may therefore be to locally reduce skin mast cell numbers. Here, we explored the possibility of using lysosomotropic agents for this purpose, appreciating the fact that mast cell granules contain bioactive compounds prone to trigger apoptosis if released into the cytosolic compartment. Based on this principle, we show that incubation of human skin punch biopsies with the lysosomotropic agents siramesine or Leu-Leu methyl ester preferably ablated the mast cell population, without causing any gross adverse effects on the skin morphology. Subsequent analysis revealed that mast cells treated with lysosomotropic agents predominantly underwent apoptotic rather than necrotic cell death. In summary, this study raises the possibility of using lysosomotropic agents as a novel approach to targeting deleterious mast cell populations in cutaneous mastocytosis and other skin disorders negatively influenced by mast cells. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Borago officinalis L. attenuates UVB-induced skin photodamage via regulation of AP-1 and Nrf2/ARE pathway in normal human dermal fibroblasts and promotion of collagen synthesis in hairless mice.

    PubMed

    Seo, Seul A; Park, Bom; Hwang, Eunson; Park, Sang-Yong; Yi, Tae-Hoo

    2018-07-01

    Ultraviolet B (UVB) irradiation is regarded as the main cause of skin photodamage. After exposure to UVB irradiation, collagen degradation is accelerated by upregulation of matrix metalloproteinases (MMPs), and collagen synthesis is decreased via downregulation of transforming growth factor (TGF)-β1 signaling. Borago officinalis L. (BO) is an annual herb with medicinal and culinary applications. Although BO has been demonstrated to have antioxidant and anti-inflammatory activities, its potential anti-photoaging effects have not been examined. In this study, we examined the protective effects of BO against skin photodamage in UVB-exposed normal human dermal fibroblasts (NHDFs) in vitro and hairless mice in vivo. BO downregulated the expression of MMP-1, MMP-3, and IL-6, and enhanced TGF-β1 by modulating activator protein (AP-1) and nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) signaling in UVB-irradiated NHDFs. We also found that dietary BO reduced wrinkle formation, epidermal thickness, and erythema in UVB-exposed skin. Moreover, skin hydration and collagen synthesis were improved by dietary BO treatment. Our results demonstrate that BO can be used in functional foods, cosmetic products, and medicines for prevention and treatment of UVB-induced skin photodamage. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Atmospheric skin aging-Contributors and inhibitors.

    PubMed

    McDaniel, David; Farris, Patricia; Valacchi, Giuseppe

    2018-04-01

    Cutaneous aging is a complex biological process consisting of 2 elements: intrinsic aging, which is primarily determined by genetics, and extrinsic aging, which is largely caused by atmospheric factors, such as exposure to sunlight and air pollution, and lifestyle choices, such as diet and smoking. The role of the solar spectrum, comprised of ultraviolet light, specifically UVB (290-320 nm) and UVA (320-400) in causing skin damage, including skin cancers, has been well documented. In recent years, the contribution of visible light (400-700 nm) and infrared radiation (above 800 nm) in causing skin damage, similar to the photodamage caused by UV light, is also being elucidated. In addition, other atmospheric factors such as air pollution (smog, ozone, particulate matter, etc.) have been implicated in premature skin aging. The skin damage caused by environmental exposure is largely attributable to a complex cascade of reactions inside the skin initiated by the generation of reactive oxygen species (ROS), which causes oxidative damage to cellular components such as proteins, lipids, and nucleic acids. These damaged skin cells initiate inflammatory responses leading to the eventual damage manifested in chronically exposed skin. Novel therapeutic strategies to combat ROS species generation are being developed to prevent the skin damage caused by atmospheric factors. In addition to protecting skin from solar radiation using sunscreens, other approaches using topically applied ingredients, particularly antioxidants that penetrate the skin and protect the skin from within, have also been well documented. This review summarizes current knowledge of atmospheric aggressors, including UVA, UVB, visible light, infrared radiation (IR), and ozone on skin damage, and proposes new avenues for future research in the prevention and treatment of premature skin aging caused by such atmospheric factors. New therapeutic modalities currently being developed are also discussed. © 2018 Wiley Periodicals, Inc.

  12. Host- and microbe determinants that may influence the success of S. aureus colonization

    PubMed Central

    Johannessen, Mona; Sollid, Johanna E.; Hanssen, Anne-Merethe

    2012-01-01

    Staphylococcus aureus may cause serious skin and soft tissue infections, deep abscesses, endocarditis, osteomyelitis, pneumonia, and sepsis. S. aureus persistently colonizes 25–30% of the adult human population, and S. aureus carriers have an increased risk for infections caused by the bacterium. The major site of colonization is the nose, i.e., the vestibulum nasi, which is covered with ordinary skin and hair follicles. Several host and microbe determinants are assumed to be associated with colonization. These include the presence and expression level of bacterial adhesins, which can adhere to various proteins in the extracellular matrix or on the cellular surface of human skin. The host expresses several antimicrobial peptides and lipids. The level of β-defensin 3, free sphingosine, and cis-6-hexadecenoic acid are found to be associated with nasal carriage of S. aureus. Other host factors are certain polymorphisms in Toll-like receptor 2, mannose-binding lectin, C-reactive protein, glucocorticoid-, and vitamin D receptor. Additional putative determinants for carriage include genetic variation and expression of microbial surface components recognizing adhesive matrix molecules and their interaction partners, as well as variation among humans in the ability of recognizing and responding appropriately to the bacteria. Moreover, the available microflora may influence the success of S. aureus colonization. In conclusion, colonization is a complex interplay between the bacteria and its host. Several bacterial and host factors are involved, and an increased molecular understanding of these are needed. PMID:22919647

  13. Host- and microbe determinants that may influence the success of S. aureus colonization.

    PubMed

    Johannessen, Mona; Sollid, Johanna E; Hanssen, Anne-Merethe

    2012-01-01

    Staphylococcus aureus may cause serious skin and soft tissue infections, deep abscesses, endocarditis, osteomyelitis, pneumonia, and sepsis. S. aureus persistently colonizes 25-30% of the adult human population, and S. aureus carriers have an increased risk for infections caused by the bacterium. The major site of colonization is the nose, i.e., the vestibulum nasi, which is covered with ordinary skin and hair follicles. Several host and microbe determinants are assumed to be associated with colonization. These include the presence and expression level of bacterial adhesins, which can adhere to various proteins in the extracellular matrix or on the cellular surface of human skin. The host expresses several antimicrobial peptides and lipids. The level of β-defensin 3, free sphingosine, and cis-6-hexadecenoic acid are found to be associated with nasal carriage of S. aureus. Other host factors are certain polymorphisms in Toll-like receptor 2, mannose-binding lectin, C-reactive protein, glucocorticoid-, and vitamin D receptor. Additional putative determinants for carriage include genetic variation and expression of microbial surface components recognizing adhesive matrix molecules and their interaction partners, as well as variation among humans in the ability of recognizing and responding appropriately to the bacteria. Moreover, the available microflora may influence the success of S. aureus colonization. In conclusion, colonization is a complex interplay between the bacteria and its host. Several bacterial and host factors are involved, and an increased molecular understanding of these are needed.

  14. Avian schistosomes and outbreaks of cercarial dermatitis.

    PubMed

    Horák, Petr; Mikeš, Libor; Lichtenbergová, Lucie; Skála, Vladimír; Soldánová, Miroslava; Brant, Sara Vanessa

    2015-01-01

    Cercarial dermatitis (swimmer's itch) is a condition caused by infective larvae (cercariae) of a species-rich group of mammalian and avian schistosomes. Over the last decade, it has been reported in areas that previously had few or no cases of dermatitis and is thus considered an emerging disease. It is obvious that avian schistosomes are responsible for the majority of reported dermatitis outbreaks around the world, and thus they are the primary focus of this review. Although they infect humans, they do not mature and usually die in the skin. Experimental infections of avian schistosomes in mice show that in previously exposed hosts, there is a strong skin immune reaction that kills the schistosome. However, penetration of larvae into naive mice can result in temporary migration from the skin. This is of particular interest because the worms are able to migrate to different organs, for example, the lungs in the case of visceral schistosomes and the central nervous system in the case of nasal schistosomes. The risk of such migration and accompanying disorders needs to be clarified for humans and animals of interest (e.g., dogs). Herein we compiled the most comprehensive review of the diversity, immunology, and epidemiology of avian schistosomes causing cercarial dermatitis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. The consequences for human health of stratospheric ozone depletion in association with other environmental factors.

    PubMed

    Lucas, R M; Norval, M; Neale, R E; Young, A R; de Gruijl, F R; Takizawa, Y; van der Leun, J C

    2015-01-01

    Due to the implementation of the Montreal Protocol, which has limited, and is now probably reversing, the depletion of the stratospheric ozone layer, only modest increases in solar UV-B radiation at the surface of the Earth have occurred. For many fair-skinned populations, changing behaviour with regard to exposure to the sun over the past half century - more time in the sun, less clothing cover (more skin exposed), and preference for a tan - has probably contributed more to greater levels of exposure to UV-B radiation than ozone depletion. Exposure to UV-B radiation has both adverse and beneficial effects on human health. This report focuses on an assessment of the evidence regarding these outcomes that has been published since our previous report in 2010. The skin and eyes are the organs exposed to solar UV radiation. Excessive solar irradiation causes skin cancer, including cutaneous malignant melanoma and the non-melanoma skin cancers, basal cell carcinoma and squamous cell carcinoma, and contributes to the development of other rare skin cancers such as Merkel cell carcinoma. Although the incidence of melanoma continues to increase in many countries, in some locations, primarily those with strong sun protection programmes, incidence has stabilised or decreased over the past 5 years, particularly in younger age-groups. However, the incidence of non-melanoma skin cancers is still increasing in most locations. Exposure of the skin to the sun also induces systemic immune suppression that may have adverse effects on health, such as through the reactivation of latent viral infections, but also beneficial effects through suppression of autoimmune reactivity. Solar UV-B radiation damages the eyes, causing cataracts and pterygium. UV-B irradiation of the skin is the main source of vitamin D in many geographic locations. Vitamin D plays a critical role in the maintenance of calcium homeostasis in the body; severe deficiency causes the bone diseases, rickets in children and osteomalacia in adults. Although many studies have implicated vitamin D deficiency in a wide range of diseases, such as cancer and cardiovascular disease, more recent evidence is less compelling, with meta-analyses of supplementation trials failing to show a beneficial effect on the health outcomes that have been tested. It continues to be difficult to provide public health messages to guide safe exposure to the sun that are accurate, simple, and can be used by people with different skin types, in different locations, and for different times of the year or day. There is increasing interest in relating sun protection messages to the UV Index. Current sun protection strategies are outlined and assessed. Climatic factors affect the amount of UV radiation received by the skin and eyes, separately from the effect of ozone depletion. For example, cloud cover can decrease or increase the intensity of UV radiation at Earth's surface and warmer temperatures and changes in precipitation patterns may alter the amount of time people spend outdoors and their choice of clothing. The combination of changes in climate and UV radiation may affect the number of pathogenic microorganisms in surface waters, and could have an impact on food security through effects on plant and aquatic systems. It remains difficult to quantify these effects and their possible importance for human health.

  16. Human scalp permeability to the chemical warfare agent VX.

    PubMed

    Rolland, P; Bolzinger, M-A; Cruz, C; Briançon, S; Josse, D

    2011-12-01

    The use of chemical warfare agents such as VX in terrorism act might lead to contamination of the civilian population. Human scalp decontamination may require appropriate products and procedures. Due to ethical reasons, skin decontamination studies usually involve in vitro skin models, but human scalp skin samples are uncommon and expensive. The purpose of this study was to characterize the in vitro permeability to VX of human scalp, and to compare it with (a) human abdominal skin, and (b) pig skin from two different anatomic sites: ear and skull roof, in order to design a relevant model. Based on the VX skin permeation kinetics and distribution, we demonstrated that (a) human scalp was significantly more permeable to VX than abdominal skin and (b) pig-ear skin was the most relevant model to predict the in vitro human scalp permeability. Our results indicated that the follicular pathway significantly contributed to the skin absorption of VX through human scalp. In addition, the hair follicles and the stratum corneum significantly contributed to the formation of a skin reservoir for VX. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Melanin distribution in human epidermis affords localized protection against DNA photodamage and concurs with skin cancer incidence difference in extreme phototypes.

    PubMed

    Fajuyigbe, Damilola; Lwin, Su M; Diffey, Brian L; Baker, Richard; Tobin, Desmond J; Sarkany, Robert P E; Young, Antony R

    2018-02-02

    Epidermal DNA damage, especially to the basal layer, is an established cause of keratinocyte cancers (KCs). Large differences in KC incidence (20- to 60-fold) between white and black populations are largely attributable to epidermal melanin photoprotection in the latter. The cyclobutane pyrimidine dimer (CPD) is the most mutagenic DNA photolesion; however, most studies suggest that melanin photoprotection against CPD is modest and cannot explain the considerable skin color-based differences in KC incidence. Along with melanin quantity, solar-simulated radiation-induced CPD assessed immediately postexposure in the overall epidermis and within 3 epidermal zones was compared in black West Africans and fair Europeans. Melanin in black skin protected against CPD by 8.0-fold in the overall epidermis and by 59.0-, 16.5-, and 5.0-fold in the basal, middle, and upper epidermis, respectively. Protection was related to the distribution of melanin, which was most concentrated in the basal layer of black skin. These results may explain, at least in part, the considerable skin color differences in KC incidence. These data suggest that a DNA protection factor of at least 60 is necessary in sunscreens to reduce white skin KC incidence to a level that is comparable with that of black skin.-Fajuyigbe, D., Lwin, S. M., Diffey, B. L., Baker, R., Tobin, D. J., Sarkany, R. P. E., Young, A. R. Melanin distribution in human epidermis affords localized protection against DNA photodamage and concurs with skin cancer incidence difference in extreme phototypes.

  18. Tattooing of skin results in transportation and light-induced decomposition of tattoo pigments--a first quantification in vivo using a mouse model.

    PubMed

    Engel, Eva; Vasold, Rudolf; Santarelli, Francesco; Maisch, Tim; Gopee, Neera V; Howard, Paul C; Landthaler, Michael; Bäumler, Wolfgang

    2010-01-01

    Millions of people are tattooed with inks that contain azo pigments. The pigments contained in tattoo inks are manufactured for other uses with no established history of safe use in humans and are injected into the skin at high densities (2.5 mg/cm(2)). Tattoo pigments disseminate after tattooing throughout the human body and although some may photodecompose at the injection site by solar or laser light exposure, the extent of transport or photodecomposition under in vivo conditions remains currently unknown. We investigated the transport and photodecomposition of the widely used tattoo Pigment Red 22 (PR 22) following tattooing into SKH-1 mice. The pigment was extracted quantitatively at different times after tattooing. One day after tattooing, the pigment concentration was 186 microg/cm(2) skin. After 42 days, the amount of PR 22 in the skin has decreased by about 32% of the initial value. Exposure of the tattooed skin, 42 days after tattooing, to laser light reduced the amount of PR 22 by about 51% as compared to skin not exposed to laser light. A part of this reduction is as a result of photodecomposition of PR 22 as shown by the detection of corresponding hazardous aromatic amines. Irradiation with solar radiation simulator for 32 days caused a pigment reduction of about 60% and we again assume pigment decomposition in the skin. This study is the first quantitative estimate of the amount of tattoo pigments transported from the skin into the body or decomposed by solar or laser radiation.

  19. Development of a Skin Burn Predictive Model adapted to Laser Irradiation

    NASA Astrophysics Data System (ADS)

    Sonneck-Museux, N.; Scheer, E.; Perez, L.; Agay, D.; Autrique, L.

    2016-12-01

    Laser technology is increasingly used, and it is crucial for both safety and medical reasons that the impact of laser irradiation on human skin can be accurately predicted. This study is mainly focused on laser-skin interactions and potential lesions (burns). A mathematical model dedicated to heat transfers in skin exposed to infrared laser radiations has been developed. The model is validated by studying heat transfers in human skin and simultaneously performing experimentations an animal model (pig). For all experimental tests, pig's skin surface temperature is recorded. Three laser wavelengths have been tested: 808 nm, 1940 nm and 10 600 nm. The first is a diode laser producing radiation absorbed deep within the skin. The second wavelength has a more superficial effect. For the third wavelength, skin is an opaque material. The validity of the developed models is verified by comparison with experimental results (in vivo tests) and the results of previous studies reported in the literature. The comparison shows that the models accurately predict the burn degree caused by laser radiation over a wide range of conditions. The results show that the important parameter for burn prediction is the extinction coefficient. For the 1940 nm wavelength especially, significant differences between modeling results and literature have been observed, mainly due to this coefficient's value. This new model can be used as a predictive tool in order to estimate the amount of injury induced by several types (couple power-time) of laser aggressions on the arm, the face and on the palm of the hand.

  20. Comparison of primary human fibroblasts and keratinocytes with immortalized cell lines regarding their sensitivity to sodium dodecyl sulfate in a neutral red uptake cytotoxicity assay.

    PubMed

    Olschläger, Veronika; Schrader, Andreas; Hockertz, Stefan

    2009-01-01

    Cell lines present a valuable tool for in vitro assessment of skin damage caused by application of cosmeticals or pharmaceuticals. They form a reproducible test system under controllable test conditions and, in many cases, can be used as alternatives to animal testing in order to assess the compatibility of drugs or cosmetics and human skin. Yet, it can not necessarily be assumed that the behavior of cultured cells, when treated with different substances, is exactly consistent with the behavior of cells being part of a live organism. Becoming immortal, cells exhibit changes in genotype and/or phenotype, possibly resulting in modified reactions to external influences. Therefore, to obtain results close to in vivo studies, it seems apparent to use primary cells for testing that have not yet undergone any modifications. To compare the properties of primary fibroblasts (Normal Human Dermal Fibroblasts, NHDF) and primary keratinocytes (Normal Human Epidermal Keratinocytes, NHEK) with those of immortal cell lines (3T3 (ACC 173) Swiss albino mouse fibroblasts and HaCaT (human, adult, low calcium, high temperature, human adult skin keratinocytes) cells), their sensitivities in cytotoxicity assays have been assessed. While both fibroblast cell cultures showed similar sensitivities towards sodium dodecyl sulfate (SDS), primary keratinocytes died at SDS concentrations about three times lower than the immortal HaCaT cells.

  1. Possibility of passive THz camera using for a temperature difference observing of objects placed inside the human body

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.; Kuchik, Igor E.

    2014-06-01

    As it is well-known, application of the passive THz camera for the security problems is very promising way. It allows seeing concealed object without contact with a person and this camera is non-dangerous for a person. We demonstrate new possibility of the passive THz camera using for a temperature difference observing on the human skin if this difference is caused by different temperatures inside the body. We discuss some physical experiments, in which a person drinks hot, and warm, and cold water and he eats. After computer processing of images captured by passive THz camera TS4 we may see the pronounced temperature trace on skin of the human body. For proof of validity of our statement we make the similar physical experiment using the IR camera. Our investigation allows to increase field of the passive THz camera using for the detection of objects concealed in the human body because the difference in temperature between object and parts of human body will be reflected on the human skin. However, modern passive THz cameras have not enough resolution in a temperature to see this difference. That is why, we use computer processing to enhance the camera resolution for this application. We consider images produced by THz passive cameras manufactured by Microsemi Corp., and ThruVision Corp.

  2. TCDD induces dermal accumulation of keratinocyte-derived matrix metalloproteinase-10 in an organotypic model of human skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Abrew, K. Nadira; Thomas-Virnig, Christina L.; Rasmussen, Cathy A.

    2014-05-01

    The epidermis of skin is the first line of defense against the environment. A three dimensional model of human skin was used to investigate tissue-specific phenotypes induced by the environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Continuous treatment of organotypic cultures of human keratinocytes with TCDD resulted in intracellular spaces between keratinocytes of the basal and immediately suprabasal layers as well as thinning of the basement membrane, in addition to the previously reported hyperkeratinization. These tissue remodeling events were preceded temporally by changes in expression of the extracellular matrix degrading enzyme, matrix metalloproteinase-10 (MMP-10). In organotypic cultures MMP-10 mRNA and protein were highlymore » induced following TCDD treatment. Q-PCR and immunoblot results from TCDD-treated monolayer cultures, as well as indirect immunofluorescence and immunoblot analysis of TCDD-treated organotypic cultures, showed that MMP-10 was specifically contributed by the epidermal keratinocytes but not the dermal fibroblasts. Keratinocyte-derived MMP-10 protein accumulated over time in the dermal compartment of organotypic cultures. TCDD-induced epidermal phenotypes in organotypic cultures were attenuated by the keratinocyte-specific expression of tissue inhibitor of metalloproteinase-1, a known inhibitor of MMP-10. These studies suggest that MMP-10 and possibly other MMP-10-activated MMPs are responsible for the phenotypes exhibited in the basement membrane, the basal keratinocyte layer, and the cornified layer of TCDD-treated organotypic cultures. Our studies reveal a novel mechanism by which the epithelial–stromal microenvironment is altered in a tissue-specific manner thereby inducing structural and functional pathology in the interfollicular epidermis of human skin. - Highlights: • TCDD causes hyperkeratosis and basement membrane changes in a model of human skin. • TCDD induces MMP-10 expression in organotypic cultures of human keratinocytes. • Keratinocyte-expressed MMP-10 accumulates in the dermal compartment. • Keratinocyte K14 promoter-driven TIMP-1 expression ablates TCDD-induced phenotypes.« less

  3. Comparative study of carotenoids, catalase and radical formation in human and animal skin.

    PubMed

    Haag, S F; Bechtel, A; Darvin, M E; Klein, F; Groth, N; Schäfer-Korting, M; Bittl, R; Lademann, J; Sterry, W; Meinke, M C

    2010-01-01

    Animal skin is widely used in dermatological free radical research. Porcine ear skin is a well-studied substitute for human skin. The use of bovine udder skin is rare but its high carotenoid content makes it particularly appropriate for studying the redox state of the skin. Yet, information on the suitability of animal skin for the study of external hazard effects on the redox state of human skin has been lacking. In this study, we investigated the activity of the antioxidant enzyme catalase and the carotenoid content defining the redox status as well as UV-induced radical formation of human, porcine ear and bovine udder skin ex vivo. In human skin only low levels of radical formation were detected following UV irradiation, whereas bovine skin contains the highest amount of carotenoids but the lowest amount of catalase. Porcine ear skin does not exhibit a carotenoid signal but its catalase activity is close to human skin. Therefore, radical formation can neither be correlated to the amount of catalase nor to the amount of carotenoids in the skin. All skin types can be used for electron paramagnetic resonance-based detection of radicals, but porcine skin was found to be the most suitable type. Copyright 2010 S. Karger AG, Basel.

  4. Acute prurigo simplex in humans caused by pigeon lice.

    PubMed

    Stolf, Hamilton Ometto; Reis, Rejane d'Ávila; Espósito, Ana Cláudia Cavalcante; Haddad Júnior, Vidal

    2018-03-01

    Pigeon lice are insects that feed on feathers of these birds; their life cycle includes egg, nymph and adult and they may cause dermatoses in humans. Four persons of the same family, living in an urban area, presented with widespread intensely pruritic erythematous papules. A great number of lice were seen in their house, which moved from a nest of pigeons located on the condenser of the air-conditioning to the dormitory of one of the patients. Even in urban environments, dermatitis caused by parasites of birds is a possibility in cases of acute prurigo simplex. Pigeon lice are possible etiological agents of this kind of skin eruption, although they are often neglected, even by dermatologists.

  5. Acute prurigo simplex in humans caused by pigeon lice*

    PubMed Central

    Stolf, Hamilton Ometto; Reis, Rejane d'Ávila; Espósito, Ana Cláudia Cavalcante; Haddad Júnior, Vidal

    2018-01-01

    Pigeon lice are insects that feed on feathers of these birds; their life cycle includes egg, nymph and adult and they may cause dermatoses in humans. Four persons of the same family, living in an urban area, presented with widespread intensely pruritic erythematous papules. A great number of lice were seen in their house, which moved from a nest of pigeons located on the condenser of the air-conditioning to the dormitory of one of the patients. Even in urban environments, dermatitis caused by parasites of birds is a possibility in cases of acute prurigo simplex. Pigeon lice are possible etiological agents of this kind of skin eruption, although they are often neglected, even by dermatologists. PMID:29723376

  6. The identification and classification of skin irritation hazard by a human patch test.

    PubMed

    Basketter, D A; Whittle, E; Griffiths, H A; York, M

    1994-08-01

    There exist various regulatory instruments the purpose of which is to ensure that the intrinsic toxic hazards associated with substances and preparations are identified. In the context of identification of skin irritation potential, the method is normally the Draize test. Guidance notes provided by the OECD and the EEC expect that corrosive substances will have been screened out by a variety of methods. Substances or preparations which cause a sufficient degree of skin irritation will be classified as skin irritants. The primary motivation behind the present work was to introduce the concept that it is possible to assess the hazard potential of a substance or preparation to produce skin irritation in a human study. In the example presented here, 20% sodium lauryl sulfate (SLS) has been chosen as the positive control. With the protocol currently devised, occluded patch treatment with 20% SLS for up to 4 hr produces an irritant response in just over half of the panel. An irritant response is taken as a clinically evident and significant increase in erythema, oedema or dryness--a minimum of a+ reaction on the ICDRG scale. At such a level of response with the positive control (both in terms of intensity and in proportion of the panel), it is then possible to judge and/or to determine statistically, whether the test material has produced a level of skin irritation which is similar to, greater, or lower than the positive control. In this way a human patch test protocol can form a fundamental component of a strategy for the replacement of animals in determination of skin irritation and corrosion potential. By use of a careful and progressive protocol and by comparison of test data against a positive control it is both possible and practical to classify substances and preparations in terms of their skin irritation potential using that endpoint in the species of concern, man.

  7. Cobalt Oxide Nanoparticles: Behavior towards Intact and Impaired Human Skin and Keratinocytes Toxicity

    PubMed Central

    Mauro, Marcella; Crosera, Matteo; Pelin, Marco; Florio, Chiara; Bellomo, Francesca; Adami, Gianpiero; Apostoli, Piero; De Palma, Giuseppe; Bovenzi, Massimo; Campanini, Marco; Larese Filon, Francesca

    2015-01-01

    Skin absorption and toxicity on keratinocytes of cobalt oxide nanoparticles (Co3O4NPs) have been investigated. Co3O4NPs are commonly used in industrial products and biomedicine. There is evidence that these nanoparticles can cause membrane damage and genotoxicity in vitro, but no data are available on their skin absorption and cytotoxicity on keratinocytes. Two independent 24 h in vitro experiments were performed using Franz diffusion cells, using intact (experiment 1) and needle-abraded human skin (experiment 2). Co3O4NPs at a concentration of 1000 mg/L in physiological solution were used as donor phase. Cobalt content was evaluated by Inductively Coupled–Mass Spectroscopy. Co permeation through the skin was demonstrated after 24 h only when damaged skin protocol was used (57 ± 38 ng·cm−2), while no significant differences were shown between blank cells (0.92 ± 0.03 ng cm−2) and those with intact skin (1.08 ± 0.20 ng·cm−2). To further investigate Co3O4NPs toxicity, human-derived HaCaT keratinocytes were exposed to Co3O4NPs and cytotoxicity evaluated by MTT, Alamarblue® and propidium iodide (PI) uptake assays. The results indicate that a long exposure time (i.e., seven days) was necessary to induce a concentration-dependent cell viability reduction (EC50 values: 1.3 × 10−4 M, 95% CL = 0.8–1.9 × 10−4 M, MTT essay; 3.7 × 10−5 M, 95% CI = 2.2–6.1 × 10−5 M, AlamarBlue® assay) that seems to be associated to necrotic events (EC50 value: 1.3 × 10−4 M, 95% CL = 0.9–1.9 × 10−4 M, PI assay). This study demonstrated that Co3O4NPs can penetrate only damaged skin and is cytotoxic for HaCat cells after long term exposure. PMID:26193294

  8. Two-dimensional auto-correlation analysis and Fourier-transform analysis of second-harmonic-generation image for quantitative analysis of collagen fiber in human facial skin

    NASA Astrophysics Data System (ADS)

    Ogura, Yuki; Tanaka, Yuji; Hase, Eiji; Yamashita, Toyonobu; Yasui, Takeshi

    2018-02-01

    We compare two-dimensional auto-correlation (2D-AC) analysis and two-dimensional Fourier transform (2D-FT) for evaluation of age-dependent structural change of facial dermal collagen fibers caused by intrinsic aging and extrinsic photo-aging. The age-dependent structural change of collagen fibers for female subjects' cheek skin in their 20s, 40s, and 60s were more noticeably reflected in 2D-AC analysis than in 2D-FT analysis. Furthermore, 2D-AC analysis indicated significantly higher correlation with the skin elasticity measured by Cutometer® than 2D-AC analysis. 2D-AC analysis of SHG image has a high potential for quantitative evaluation of not only age-dependent structural change of collagen fibers but also skin elasticity.

  9. Substrate adaptation of Trichophyton rubrum secreted endoproteases.

    PubMed

    Chen, Jian; Yi, Jinling; Liu, Li; Yin, Songchao; Chen, Rongzhang; Li, Meirong; Ye, Congxiu; Zhang, Yu-qing; Lai, Wei

    2010-02-01

    Trichophyton rubrum is the most common pathogen caused the dermatophytosis of nail and skin in human. The secreted proteases were considered to be the most important virulence factors. However, the substrates adaptation of T. rubrum secreted proteases is largely unknown. For the first time, we use the keratins from human nail and skin stratum corneum as the growth medium to investigate the different expression patterns of T. rubrum secreted endoproteases genes. During grow in both keratin-containing media SUB7 and MEP2 were the highest expressed gene in each family. These results indicated that SUB7 and MEP2 may be the dominant endoproteases secreted by T. rubrum during host infection and the other proteases may play a supplementary role. The direct comparison of T. rubrum grown on skin and nail medium showed different substrate favorite of secreted endoproteases. The genes MEP2, SUB5, SUB2 and SUB3 were more active during growth in skin medium, possibly these proteases have a higher affinity for skin original keratins. While the structures of SUB1, SUB4, and MEP4 maybe more suitable for the degradation of nail original keratins. This work presents useful molecular details for further understanding the pathogenesis of secreted proteases and the wide adaptation of T. rubrum.

  10. Xenobiotica-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models.

    PubMed

    Oesch, F; Fabian, E; Landsiedel, Robert

    2018-06-18

    Studies on the metabolic fate of medical drugs, skin care products, cosmetics and other chemicals intentionally or accidently applied to the human skin have become increasingly important in order to ascertain pharmacological effectiveness and to avoid toxicities. The use of freshly excised human skin for experimental investigations meets with ethical and practical limitations. Hence information on xenobiotic-metabolizing enzymes (XME) in the experimental systems available for pertinent studies compared with native human skin has become crucial. This review collects available information of which-taken with great caution because of the still very limited data-the most salient points are: in the skin of all animal species and skin-derived in vitro systems considered in this review cytochrome P450 (CYP)-dependent monooxygenase activities (largely responsible for initiating xenobiotica metabolism in the organ which provides most of the xenobiotica metabolism of the mammalian organism, the liver) are very low to undetectable. Quite likely other oxidative enzymes [e.g. flavin monooxygenase, COX (cooxidation by prostaglandin synthase)] will turn out to be much more important for the oxidative xenobiotic metabolism in the skin. Moreover, conjugating enzyme activities such as glutathione transferases and glucuronosyltransferases are much higher than the oxidative CYP activities. Since these conjugating enzymes are predominantly detoxifying, the skin appears to be predominantly protected against CYP-generated reactive metabolites. The following recommendations for the use of experimental animal species or human skin in vitro models may tentatively be derived from the information available to date: for dermal absorption and for skin irritation esterase activity is of special importance which in pig skin, some human cell lines and reconstructed skin models appears reasonably close to native human skin. With respect to genotoxicity and sensitization reactive-metabolite-reducing XME in primary human keratinocytes and several reconstructed human skin models appear reasonably close to human skin. For a more detailed delineation and discussion of the severe limitations see the Conclusions section in the end of this review.

  11. Human age and skin physiology shape diversity and abundance of Archaea on skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moissl-Eichinger, Christine; Probst, Alexander J.; Birarda, Giovanni

    The human skin microbiome acts as an important barrier protecting our body from pathogens and other environmental influences. Recent investigations have provided evidence that Archaea are a constant but highly variable component of the human skin microbiome, yet factors that determine their abundance changes are unknown. Here, we tested the hypothesis that the abundance of archaea on human skin is influenced by human age and skin physiology by quantitative PCR of 51 different skin samples taken from human subjects of various age. Our results reveal that archaea are more abundant in human subjects either older than 60 years or youngermore » than 12 years as compared to middle-aged human subjects. These results, together with results obtained from spectroscopy analysis, allowed us gain first insights into a potential link of lower sebum levels and lipid content and thus reduced skin moisture with an increase in archaeal signatures. In conclusion, amplicon sequencing of selected samples revealed the prevalence of specific eury- and mainly thaumarchaeal taxa, represented by a core archaeome of the human skin.« less

  12. Human age and skin physiology shape diversity and abundance of Archaea on skin

    DOE PAGES

    Moissl-Eichinger, Christine; Probst, Alexander J.; Birarda, Giovanni; ...

    2017-06-22

    The human skin microbiome acts as an important barrier protecting our body from pathogens and other environmental influences. Recent investigations have provided evidence that Archaea are a constant but highly variable component of the human skin microbiome, yet factors that determine their abundance changes are unknown. Here, we tested the hypothesis that the abundance of archaea on human skin is influenced by human age and skin physiology by quantitative PCR of 51 different skin samples taken from human subjects of various age. Our results reveal that archaea are more abundant in human subjects either older than 60 years or youngermore » than 12 years as compared to middle-aged human subjects. These results, together with results obtained from spectroscopy analysis, allowed us gain first insights into a potential link of lower sebum levels and lipid content and thus reduced skin moisture with an increase in archaeal signatures. In conclusion, amplicon sequencing of selected samples revealed the prevalence of specific eury- and mainly thaumarchaeal taxa, represented by a core archaeome of the human skin.« less

  13. Efficacy of Peracetic acid and Zinc in reducing Campylobacter jejuni on chicken skin

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni is a leading cause of bacterial foodborne disease in humans worldwide, largely associated with the consumption of contaminated poultry products. With increasing consumer demand for natural and minimally processed foods, the use of Generally Recognized as Safe status antimicrobia...

  14. AN UPDATE ON SOME ARSENIC PROJECTS AT THE UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

    EPA Science Inventory

    ABSTRACT Exposure to arsenic (As) has been reported to cause many adverse health effects in humans, including internal and skin cancers, vascular, neurological and dermal manifestations. Some Offices of the US Environmental Protection Agency (EPA) deal with As and selected activ...

  15. Anti-wrinkle effects of a tuna heart H2O fraction on Hs27 human fibroblasts.

    PubMed

    Kim, Young-Min; Jung, Hee-Jin; Choi, Jae-Sue; Nam, Taek-Jeong

    2016-01-01

    With the increase in life expectancy, there is also growing interest in anti-aging treatments and technologies. The development of anti-aging functional drugs for the skin, and foods from natural sources, may offer solutions to this global matter. Aging involves structural, functional and biochemical changes that occur throughout cells and bodily tissues; the amount of hormones secreted from of all human organs, including the skin, decreases over time. Matrix metalloproteinase (MMP) genes (MMP-1 and -8) play an important role in the aging of skin fibroblasts. For example, an increased MMP expression causes accelerated aging and the degradation of skin elasticity-related genes. In the present study, we examined the anti-wrinkle effects of tuna heart extract which are mediated through the inhibition of MMPs in skin cells. Generally, tuna contains high concentrations of selenium and antioxidants, which serve to remove free radicals, and is known to delay skin and body aging. In addition, unsaturated fatty acids in tuna help to maintain the natural glossy look of skin, and increase skin elasticity, providing moisture for dry skin. A recent study confirmed the various bio-effects of boiled tuna extract and muscle. However, bioactivity studies using tuna heart are limited. Thus, in the present study, we obtained extracts and fractions of tuna heart, and examined their effects on Hs27 human fibroblast proliferation using an MTS assay. In addition, we measured procollagen type 1 levels and elastase activity, and performed β-galactosidase staining. We then measured the expression levels of phosphatidylinositol 3-kinase/Akt and MMP-related genes by western blot analysis and RT-PCR. Our results revealed that tuna heart extract decreased MMP expression by upregulating tissue inhibitors of metalloproteinase-1 (TIMP-1) and decreasing elastase activity, thus exerting anti-aging and anti-wrinkle effects by increasing collagen synthesis and promoting skin fibroblast proliferation. Thus, our data suggest that tuna heart (TH)-H2O fractions exert anti-wrinkle effects on Hs27 cells.

  16. Inhibition of Propionibacterium acnes lipase activity by the antifungal agent ketoconazole.

    PubMed

    Unno, Mizuki; Cho, Otomi; Sugita, Takashi

    2017-01-01

    The common skin disease acne vulgaris is caused by Propionibacterium acnes. A lipase secreted by this microorganism metabolizes sebum and the resulting metabolites evoke inflammation in human skin. The antifungal drug ketoconazole inhibits P. acnes lipase activity. We previously showed that the drug also inhibits the growth of P. acnes. Thus, ketoconazole may serve as an alternative treatment for acne vulgaris, which is important because the number of antibiotic-resistant P. acnes strains has been increasing. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  17. The top skin-associated genes: a comparative analysis of human and mouse skin transcriptomes.

    PubMed

    Gerber, Peter Arne; Buhren, Bettina Alexandra; Schrumpf, Holger; Homey, Bernhard; Zlotnik, Albert; Hevezi, Peter

    2014-06-01

    The mouse represents a key model system for the study of the physiology and biochemistry of skin. Comparison of skin between mouse and human is critical for interpretation and application of data from mouse experiments to human disease. Here, we review the current knowledge on structure and immunology of mouse and human skin. Moreover, we present a systematic comparison of human and mouse skin transcriptomes. To this end, we have recently used a genome-wide database of human gene expression to identify genes highly expressed in skin, with no, or limited expression elsewhere - human skin-associated genes (hSAGs). Analysis of our set of hSAGs allowed us to generate a comprehensive molecular characterization of healthy human skin. Here, we used a similar database to generate a list of mouse skin-associated genes (mSAGs). A comparative analysis between the top human (n=666) and mouse (n=873) skin-associated genes (SAGs) revealed a total of only 30.2% identity between the two lists. The majority of shared genes encode proteins that participate in structural and barrier functions. Analysis of the top functional annotation terms revealed an overlap for morphogenesis, cell adhesion, structure, and signal transduction. The results of this analysis, discussed in the context of published data, illustrate the diversity between the molecular make up of skin of both species and grants a probable explanation, why results generated in murine in vivo models often fail to translate into the human.

  18. Evaluation of a Silicone Membrane as an Alternative to Human Skin for Determining Skin Permeation Parameters of Chemical Compounds.

    PubMed

    Uchida, Takashi; Yakumaru, Masafumi; Nishioka, Keisuke; Higashi, Yoshihiro; Sano, Tomohiko; Todo, Hiroaki; Sugibayashi, Kenji

    2016-01-01

    We evaluated the effectiveness of a silicone membrane as an alternative to human skin using the skin permeation parameters of chemical compounds. An in vitro permeation study using 15 model compounds was conducted, and permeation parameters comprising permeability coefficient (P), diffusion parameter (DL(-2)), and partition parameter (KL) were calculated from each permeation profile. Significant correlations were obtained in log P, log DL(-2), and log KL values between the silicone membrane and human skin. DL(-2) values of model compounds, except flurbiprofen, in the silicone membrane were independent of the lipophilicity of the model compounds and were 100-fold higher than those in human skin. For antipyrine and caffeine, which are hydrophilic, KL values in the silicone membrane were 100-fold lower than those in human skin, and P values, calculated as the product of a DL(-2) and KL, were similar. For lipophilic compounds, such as n-butyl paraben and flurbiprofen, KL values for silicone were similar to or 10-fold higher than those in human skin, and P values for silicone were 100-fold higher than those in human skin. Furthermore, for amphiphilic compounds with log Ko/w values from 0.5 to 3.5, KL values in the silicone membrane were 10-fold lower than those in human skin, and P values for silicone were 10-fold higher than those in human skin. The silicone membrane was useful as a human skin alternative in an in vitro skin permeation study. However, depending on the lipophilicity of the model compounds, some parameters may be over- or underestimated.

  19. Preparation of Artificial Skin that Mimics Human Skin Surface and Mechanical Properties.

    PubMed

    Shimizu, Rana; Nonomura, Yoshimune

    2018-01-01

    We have developed an artificial skin that mimics the morphological and mechanical properties of human skin. The artificial skin comprises a polyurethane block possessing a microscopically rough surface. We evaluated the tactile sensations when skin-care cream was applied to the artificial skin. Many subjects perceived smooth, moist, and soft feels during the application process. Cluster analysis showed that these characteristic tactile feels are similar to those when skin-care cream is applied to real human skin. Contact angle analysis showed that an oil droplet spread smoothly on the artificial skin surface, which occurred because there were many grooves several hundred micrometers in width on the skin surface. In addition, when the skin-care cream was applied, the change in frictional force during the dynamic friction process increased. These wetting and frictional properties are important factors controlling the similarity of artificial skin to real human skin.

  20. Age-related differences in human skin proteoglycans.

    PubMed

    Carrino, David A; Calabro, Anthony; Darr, Aniq B; Dours-Zimmermann, Maria T; Sandy, John D; Zimmermann, Dieter R; Sorrell, J Michael; Hascall, Vincent C; Caplan, Arnold I

    2011-02-01

    Previous work has shown that versican, decorin and a catabolic fragment of decorin, termed decorunt, are the most abundant proteoglycans in human skin. Further analysis of versican indicates that four major core protein species are present in human skin at all ages examined from fetal to adult. Two of these are identified as the V0 and V1 isoforms, with the latter predominating. The other two species are catabolic fragments of V0 and V1, which have the amino acid sequence DPEAAE as their carboxyl terminus. Although the core proteins of human skin versican show no major age-related differences, the glycosaminoglycans (GAGs) of adult skin versican are smaller in size and show differences in their sulfation pattern relative to those in fetal skin versican. In contrast to human skin versican, human skin decorin shows minimal age-related differences in its sulfation pattern, although, like versican, the GAGs of adult skin decorin are smaller than those of fetal skin decorin. Analysis of the catabolic fragments of decorin from adult skin reveals the presence of other fragments in addition to decorunt, although the core proteins of these additional decorin catabolic fragments have not been identified. Thus, versican and decorin of human skin show age-related differences, versican primarily in the size and the sulfation pattern of its GAGs and decorin in the size of its GAGs. The catabolic fragments of versican are detected at all ages examined, but appear to be in lower abundance in adult skin compared with fetal skin. In contrast, the catabolic fragments of decorin are present in adult skin, but are virtually absent from fetal skin. Taken together, these data suggest that there are age-related differences in the catabolism of proteoglycans in human skin. These age-related differences in proteoglycan patterns and catabolism may play a role in the age-related changes in the physical properties and injury response of human skin.

  1. Combined multimodal photoacoustic tomography, optical coherence tomography (OCT) and OCT based angiography system for in vivo imaging of multiple skin disorders in human(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Mengyang; Chen, Zhe; Sinz, Christoph; Rank, Elisabet; Zabihian, Behrooz; Zhang, Edward Z.; Beard, Paul C.; Kittler, Harald; Drexler, Wolfgang

    2017-02-01

    All optical photoacoustic tomography (PAT) using a planar Fabry-Perot interferometer polymer film sensor has been demonstrated for in vivo human palm imaging with an imaging penetration depth of 5 mm. The relatively larger vessels in the superficial plexus and the vessels in the dermal plexus are visible in PAT. However, due to both resolution and sensitivity limits, all optical PAT cannot reveal the smaller vessels such as capillary loops and venules. Melanin absorption also sometimes causes difficulties in PAT to resolve vessels. Optical coherence tomography (OCT) based angiography, on the other hand, has been proven suitable for microvasculature visualization in the first couple millimeters in human. In our work, we combine an all optical PAT system with an OCT system featuring a phase stable akinetic swept source. This multimodal PAT/OCT/OCT-angiography system provides us co-registered human skin vasculature information as well as the structural information of cutaneous. The scanning units of the sub-systems are assembled into one probe, which is then mounted onto a portable rack. The probe and rack design gives six degrees of freedom, allowing the multimodal optical imaging probe to access nearly all regions of human body. Utilizing this probe, we perform imaging on patients with various skin disorders as well as on healthy controls. Fused PAT/OCT-angiography volume shows the complete blood vessel network in human skin, which is further embedded in the morphology provided by OCT. A comparison between the results from the disordered regions and the normal regions demonstrates the clinical translational value of this multimodal optical imaging system in dermatology.

  2. Resveratrol-Enriched Rice Attenuates UVB-ROS-Induced Skin Aging via Downregulation of Inflammatory Cascades.

    PubMed

    Subedi, Lalita; Lee, Taek Hwan; Wahedi, Hussain Mustatab; Baek, So-Hyeon; Kim, Sun Yeou

    2017-01-01

    The skin is the outermost protective barrier between the internal and external environments in humans. Chronic exposure to ultraviolet (UV) radiation is a major cause of skin aging. UVB radiation penetrates the skin and induces ROS production that activates three major skin aging cascades: matrix metalloproteinase- (MMP-) 1-mediated aging; MAPK-AP-1/NF- κ B-TNF- α /IL-6, iNOS, and COX-2-mediated inflammation-induced aging; and p53-Bax-cleaved caspase-3-cytochrome C-mediated apoptosis-induced aging. These mechanisms are collectively responsible for the wrinkling and photoaging characteristic of UVB-induced skin aging. There is an urgent requirement for a treatment that not only controls these pathways to prevent skin aging but also avoids the adverse effects often encountered when applying bioactive compounds in concentrated doses. In this study, we investigated the efficacy of genetically modified normal edible rice (NR) that produces the antiaging compound resveratrol (R) as a treatment for skin aging. This resveratrol-enriched rice (RR) overcomes the drawbacks of R and enhances its antiaging potential by controlling the abovementioned three major pathways of skin aging. RR does not exhibit the toxicity of R alone and promisingly downregulates the pathways underlying UVB-ROS-induced skin aging. These findings advocate the use of RR as a nutraceutical for antiaging purposes.

  3. The remote sensing of mental stress from the electromagnetic reflection coefficient of human skin in the sub-THz range.

    PubMed

    Safrai, Eli; Ishai, Paul Ben; Caduff, Andreas; Puzenko, Alexander; Polsman, Alexander; Agranat, Aharon J; Feldman, Yuri

    2012-07-01

    Recent work has demonstrated that the reflection coefficient of human skin in the frequency range from 95 to 110 GHz (W band) mirrors the temporal relaxation of stress induced by physical exercise. In this work, we extend these findings to show that in the event of a subtle trigger to stress, such as mental activity, a similar picture of response emerges. Furthermore, the findings are extended to cover not only the W band (75-110 GHz), but also the frequency band from 110 to 170 GHz (D band). We demonstrate that mental stress, induced by the Stroop effect and recorded by the galvanic skin response (GSR), can be correlated to the reflection coefficient in the aforementioned frequency bands. Intriguingly, a light physical stress caused by repeated hand gripping clearly showed an elevated stress level in the GSR signal, but was largely unnoted in the reflection coefficient in the D band. The implication of this observation requires further validation. Copyright © 2011 Wiley Periodicals, Inc.

  4. Breathable and Stretchable Temperature Sensors Inspired by Skin

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Lu, Bingwei; Chen, Yihao; Feng, Xue

    2015-06-01

    Flexible electronics attached to skin for healthcare, such as epidermal electronics, has to struggle with biocompatibility and adapt to specified environment of skin with respect to breath and perspiration. Here, we report a strategy for biocompatible flexible temperature sensors, inspired by skin, possessing the excellent permeability of air and high quality of water-proof by using semipermeable film with porous structures as substrate. We attach such temperature sensors to underarm and forearm to measure the axillary temperature and body surface temperature respectively. The volunteer wears such sensors for 24 hours with two times of shower and the in vitro test shows no sign of maceration or stimulation to the skin. Especially, precise temperature changes on skin surface caused by flowing air and water dropping are also measured to validate the accuracy and dynamical response. The results show that the biocompatible temperature sensor is soft and breathable on the human skin and has the excellent accuracy compared to mercury thermometer. This demonstrates the possibility and feasibility of fully using the sensors in long term body temperature sensing for medical use as well as sensing function of artificial skin for robots or prosthesis.

  5. Breathable and Stretchable Temperature Sensors Inspired by Skin

    PubMed Central

    Chen, Ying; Lu, Bingwei; Chen, Yihao; Feng, Xue

    2015-01-01

    Flexible electronics attached to skin for healthcare, such as epidermal electronics, has to struggle with biocompatibility and adapt to specified environment of skin with respect to breath and perspiration. Here, we report a strategy for biocompatible flexible temperature sensors, inspired by skin, possessing the excellent permeability of air and high quality of water-proof by using semipermeable film with porous structures as substrate. We attach such temperature sensors to underarm and forearm to measure the axillary temperature and body surface temperature respectively. The volunteer wears such sensors for 24 hours with two times of shower and the in vitro test shows no sign of maceration or stimulation to the skin. Especially, precise temperature changes on skin surface caused by flowing air and water dropping are also measured to validate the accuracy and dynamical response. The results show that the biocompatible temperature sensor is soft and breathable on the human skin and has the excellent accuracy compared to mercury thermometer. This demonstrates the possibility and feasibility of fully using the sensors in long term body temperature sensing for medical use as well as sensing function of artificial skin for robots or prosthesis. PMID:26095941

  6. Modeling AEC—New Approaches to Study Rare Genetic Disorders

    PubMed Central

    Koch, Peter J.; Dinella, Jason; Fete, Mary; Siegfried, Elaine C.; Koster, Maranke I.

    2015-01-01

    Ankyloblepharon-ectodermal defects-cleft lip/palate (AEC) syndrome is a rare monogenetic disorder that is characterized by severe abnormalities in ectoderm-derived tissues, such as skin and its appendages. A major cause of morbidity among affected infants is severe and chronic skin erosions. Currently, supportive care is the only available treatment option for AEC patients. Mutations in TP63, a gene that encodes key regulators of epidermal development, are the genetic cause of AEC. However, it is currently not clear how mutations in TP63 lead to the various defects seen in the patients’ skin. In this review, we will discuss current knowledge of the AEC disease mechanism obtained by studying patient tissue and genetically engineered mouse models designed to mimic aspects of the disorder. We will then focus on new approaches to model AEC, including the use of patient cells and stem cell technology to replicate the disease in a human tissue culture model. The latter approach will advance our understanding of the disease and will allow for the development of new in vitro systems to identify drugs for the treatment of skin erosions in AEC patients. Further, the use of stem cell technology, in particular induced pluripotent stem cells (iPSC), will enable researchers to develop new therapeutic approaches to treat the disease using the patient’s own cells (autologous keratinocyte transplantation) after correction of the disease-causing mutations. PMID:24665072

  7. Loss-of-function mutations in CAST cause peeling skin, leukonychia, acral punctate keratoses, cheilitis, and knuckle pads.

    PubMed

    Lin, Zhimiao; Zhao, Jiahui; Nitoiu, Daniela; Scott, Claire A; Plagnol, Vincent; Smith, Frances J D; Wilson, Neil J; Cole, Christian; Schwartz, Mary E; McLean, W H Irwin; Wang, Huijun; Feng, Cheng; Duo, Lina; Zhou, Eray Yihui; Ren, Yali; Dai, Lanlan; Chen, Yulan; Zhang, Jianguo; Xu, Xun; O'Toole, Edel A; Kelsell, David P; Yang, Yong

    2015-03-05

    Calpastatin is an endogenous specific inhibitor of calpain, a calcium-dependent cysteine protease. Here we show that loss-of-function mutations in calpastatin (CAST) are the genetic causes of an autosomal-recessive condition characterized by generalized peeling skin, leukonychia, acral punctate keratoses, cheilitis, and knuckle pads, which we propose to be given the acronym PLACK syndrome. In affected individuals with PLACK syndrome from three families of different ethnicities, we identified homozygous mutations (c.607dup, c.424A>T, and c.1750delG) in CAST, all of which were predicted to encode truncated proteins (p.Ile203Asnfs∗8, p.Lys142∗, and p.Val584Trpfs∗37). Immunohistochemistry shows that staining of calpastatin is reduced in skin from affected individuals. Transmission electron microscopy revealed widening of intercellular spaces with chromatin condensation and margination in the upper stratum spinosum in lesional skin, suggesting impaired intercellular adhesion as well as keratinocyte apoptosis. A significant increase of apoptotic keratinocytes was also observed in TUNEL assays. In vitro studies utilizing siRNA-mediated CAST knockdown revealed a role for calpastatin in keratinocyte adhesion. In summary, we describe PLACK syndrome, as a clinical entity of defective epidermal adhesion, caused by loss-of-function mutations in CAST. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  8. Paracoccidioides brasiliensis interacts with dermal dendritic cells and keratinocytes in human skin and oral mucosa lesions.

    PubMed

    Silva, Wellington Luiz Ferreira da; Pagliari, Carla; Duarte, Maria Irma Seixas; Sotto, Mirian N

    2016-05-01

    Paracoccidioidomycosis (PCM) is a systemic disease caused by the fungus Paracoccidioides brasiliensis and Paracoccidioides lutzii. In PCM the skin and oral mucosa are often affected. Dendritic cells and keratinocytes of the integument play a role in innate and adaptive immune response against pathogens, due to their function as antigen presenting cells. Aiming to verify the interaction of P. brasiliensis with these cell populations, we studied 52 skin and 47 oral mucosa samples taken from patients with proven diagnosis of PCM. The biopsies were subjected to immunohistochemical and/or immunofluorescence staining with anti-factor XIIIa (marker of dermal dendrocytes), anti-CD207 (marker of mature Langerhans cells), anti-pan cytokeratins (AE1-AE3) and anti-P. brasiliensis antibodies. Analyses with confocal laser microscopy were also performed for better visualization of the interaction between keratinocytes and the fungi. In sum, 42% of oral mucosa samples displayed yeast forms in Factor XIIIa dermal dendrocytes cytoplasm. Langerhans cells in skin and oral mucosa samples did not show yeast cells in their cytoplasm. In sum, 54% of skin and 60% of mucosal samples displayed yeast cells in the cytoplasm of keratinocytes. The parasitism of keratinocytes may represent a possible mechanism of evasion of the fungus to local immune mechanisms. Factor XIIIa dendrocytes and keratinocytes may be acting as antigen-presenting cells to fulfill the probably impaired function of Langerhans cells in skin and oral mucosa of human PCM. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Regulation of Hsp27 and Hsp70 expression in human and mouse skin construct models by caveolae following exposure to the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Adrienne T.; Hayden, Patrick J.; Casillas, Robert P.

    Dermal exposure to the vesicant sulfur mustard causes marked inflammation and tissue damage. Basal keratinocytes appear to be a major target of sulfur mustard. In the present studies, mechanisms mediating skin toxicity were examined using a mouse skin construct model and a full-thickness human skin equivalent (EpiDerm-FT{sup TM}). In both systems, administration of the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide (CEES, 100-1000 {mu}M) at the air surface induced mRNA and protein expression of heat shock proteins 27 and 70 (Hsp27 and Hsp70). CEES treatment also resulted in increased expression of caveolin-1, the major structural component of caveolae. Immunohistochemistry revealedmore » that Hsp27, Hsp70 and caveolin-1 were localized in basal and suprabasal layers of the epidermis. Caveolin-1 was also detected in fibroblasts in the dermal component of the full thickness human skin equivalent. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that Hsp27 and Hsp70 were localized in caveolae. Treatment of mouse keratinocytes with filipin III or methyl-{beta}-cyclodextrin, which disrupt caveolar structure, markedly suppressed CEES-induced Hsp27 and Hsp70 mRNA and protein expression. CEES treatment is known to activate JNK and p38 MAP kinases; in mouse keratinocytes, inhibition of these enzymes suppressed CEES-induced expression of Hsp27 and Hsp70. These data suggest that MAP kinases regulate Hsp 27 and Hsp70; moreover, caveolae-mediated regulation of heat shock protein expression may be important in the pathophysiology of vesicant-induced skin toxicity.« less

  10. Age-related changes in cyclic phosphatidic acid-induced hyaluronic acid synthesis in human fibroblasts.

    PubMed

    Sano, Katsura; Gotoh, Mari; Dodo, Kyoko; Tajima, Noriaki; Shimizu, Yoshibumi; Murakami-Murofushi, Kimiko

    2018-01-01

    Hyaluronic acid is a major component of the extracellular matrix, which is important for skin hydration. As aging brings skin dehydration, we aimed to clarify the mRNA expression of hyaluronic acid-related proteins in human skin fibroblasts from donors of various ages (range 0.7-69 years). Previously, we reported that cyclic phosphatidic acid (cPA), a unique phospholipid mediator, stimulated the expression of HAS2 and increased hyaluronic acid synthesis in human skin fibroblasts (donor age: 3 days). In this study, we measured the mRNA expression of hyaluronic acid-related proteins: hyaluronan synthase (HAS) 1-3, hyaluronidase-1, -2, and hyaluronic acid-binding protein (versican). In addition, we tested whether cPA could increase hyaluronic acid synthesis in skin fibroblasts derived from donors of various ages. The expression of HAS1, 3, hyaluronidase-1, and -2 did not change with aging. However, the mRNA expression of versican decreased with aging. Although it is thought that the amount of hyaluronic acid in the dermis decreases with aging, the mRNA expression of HAS2 was increased. But the amount of hyaluronic acid secreted by fibroblasts did not increase with aging. This suggests that the activity and/or protein expression of HAS2 decrease with aging. Furthermore, we observed that cPA caused the increase of hyaluronic acid synthesis at any age, and this effect was increased with aging. These results suggest that aging made the fibroblasts more sensitive to cPA treatment. Therefore, cPA represents a suitable candidate for the health maintenance and improvement of the skin by increasing the level of hyaluronic acid in the dermis.

  11. Regulation of Hsp27 and Hsp70 expression in human and mouse skin construct models by caveolae following exposure to the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide

    PubMed Central

    Black, Adrienne T.; Hayden, Patrick J.; Casillas, Robert P.; Heck, Diane E.; Gerecke, Donald R.; Sinko, Patrick J.; Laskin, Debra L.; Laskin, Jeffrey D.

    2012-01-01

    Dermal exposure to the vesicant sulfur mustard causes marked inflammation and tissue damage. Basal keratinocytes appear to be a major target of sulfur mustard. In the present studies, mechanisms mediating skin toxicity were examined using a mouse skin construct model and a full-thickness human skin equivalent (EpiDerm-FTTM). In both systems, administration of the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide (CEES, 100–1000 µM) at the air surface induced mRNA and protein expression of heat shock proteins 27 and 70 (Hsp27 and Hsp70). CEES treatment also resulted in increased expression of caveolin-1, the major structural component of caveolae. Immunohistochemistry revealed that Hsp27, Hsp70 and caveolin-1 were localized in basal and suprabasal layers of the epidermis. Caveolin-1 was also detected in fibroblasts in the dermal component of the full thickness human skin equivalent. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that Hsp27 and Hsp70 were localized in caveolae. Treatment of mouse keratinocytes with filipin III or methyl-β-cyclodextrin, which disrupt caveolar structure, markedly suppressed CEES-induced Hsp27 and Hsp70 mRNA and protein expression. CEES treatment is known to activate JNK and p38 MAP kinases; in mouse keratinocytes, inhibition of these enzymes suppressed CEES-induced expression of Hsp27 and Hsp70. These data suggest that MAP kinases regulate Hsp 27 and Hsp70; moreover, caveolae-mediated regulation of heat shock protein expression may be important in the pathophysiology of vesicant-induced skin toxicity. PMID:21457723

  12. Regulation of Hsp27 and Hsp70 expression in human and mouse skin construct models by caveolae following exposure to the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide.

    PubMed

    Black, Adrienne T; Hayden, Patrick J; Casillas, Robert P; Heck, Diane E; Gerecke, Donald R; Sinko, Patrick J; Laskin, Debra L; Laskin, Jeffrey D

    2011-06-01

    Dermal exposure to the vesicant sulfur mustard causes marked inflammation and tissue damage. Basal keratinocytes appear to be a major target of sulfur mustard. In the present studies, mechanisms mediating skin toxicity were examined using a mouse skin construct model and a full-thickness human skin equivalent (EpiDerm-FT™). In both systems, administration of the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide (CEES, 100-1000μM) at the air surface induced mRNA and protein expression of heat shock proteins 27 and 70 (Hsp27 and Hsp70). CEES treatment also resulted in increased expression of caveolin-1, the major structural component of caveolae. Immunohistochemistry revealed that Hsp27, Hsp70 and caveolin-1 were localized in basal and suprabasal layers of the epidermis. Caveolin-1 was also detected in fibroblasts in the dermal component of the full thickness human skin equivalent. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that Hsp27 and Hsp70 were localized in caveolae. Treatment of mouse keratinocytes with filipin III or methyl-β-cyclodextrin, which disrupt caveolar structure, markedly suppressed CEES-induced Hsp27 and Hsp70 mRNA and protein expression. CEES treatment is known to activate JNK and p38 MAP kinases; in mouse keratinocytes, inhibition of these enzymes suppressed CEES-induced expression of Hsp27 and Hsp70. These data suggest that MAP kinases regulate Hsp 27 and Hsp70; moreover, caveolae-mediated regulation of heat shock protein expression may be important in the pathophysiology of vesicant-induced skin toxicity. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Oxidative Stress in Aging Human Skin

    PubMed Central

    Rinnerthaler, Mark; Bischof, Johannes; Streubel, Maria Karolin; Trost, Andrea; Richter, Klaus

    2015-01-01

    Oxidative stress in skin plays a major role in the aging process. This is true for intrinsic aging and even more for extrinsic aging. Although the results are quite different in dermis and epidermis, extrinsic aging is driven to a large extent by oxidative stress caused by UV irradiation. In this review the overall effects of oxidative stress are discussed as well as the sources of ROS including the mitochondrial ETC, peroxisomal and ER localized proteins, the Fenton reaction, and such enzymes as cyclooxygenases, lipoxygenases, xanthine oxidases, and NADPH oxidases. Furthermore, the defense mechanisms against oxidative stress ranging from enzymes like superoxide dismutases, catalases, peroxiredoxins, and GSH peroxidases to organic compounds such as L-ascorbate, α-tocopherol, beta-carotene, uric acid, CoQ10, and glutathione are described in more detail. In addition the oxidative stress induced modifications caused to proteins, lipids and DNA are discussed. Finally age-related changes of the skin are also a topic of this review. They include a disruption of the epidermal calcium gradient in old skin with an accompanying change in the composition of the cornified envelope. This modified cornified envelope also leads to an altered anti-oxidative capacity and a reduced barrier function of the epidermis. PMID:25906193

  14. Protective effect of Schizandrin B against damage of UVB irradiated skin cells depend on inhibition of inflammatory pathways.

    PubMed

    Gao, Chenguang; Chen, Hong; Niu, Cong; Hu, Jie; Cao, Bo

    2017-01-02

    Schizandrin B is extracted from Schisandra chinensis (Turcz.) Baill. This study evaluated the photoprotective effect of Schizandrin B on oxidative stress injury of the skin caused by UVB-irradiation and the molecular mechanism of the photoprotective effect of Schizandrin B, and we firstly found that Schizandrin B could block Cox-2, IL-6 and IL-18 signal pathway to protect damage of skin cells given by UVB-irradiation. In the research, we found that Schizandrin B can attenuate the UVB-induced toxicity on keratinocytes and dermal fibroblasts in human body, and can outstandingly eliminated intracellular ROS produced by UVB-irradiation. These results demonstrate that Schizandrin B can regulate the function of decreasing intracellular SOD's activity and increasing the expression level of MDA in HaCaT cells result from the guidance of UVB, and it markedly reduced the production of inflammatory factors such as Cox-2, IL-6 or IL-18, decreased the expression level of MMP-1, and interdicted degradation process of collagens in UVB-radiated cells. Therefore, skin keratinocytes can be effectively protected from UVB-radiated damage by Schizandrin B, and UVB-irradiation caused inflammatory responses can be inhibited by attenuating process of ROS generating.

  15. [Scabies as an occupational disease].

    PubMed

    Lukács, J; Schliemann, S; Elsner, P

    2015-03-01

    Scabies is an infectious skin disease caused by the human itch mite (Sarcoptes scabiei var. hominis). It is mainly transmitted by direct skin-to-skin contact. The spread of scabies can cause major difficulties in healthcare institutions, particularly in residential homes for the elderly. The disease is characterized by intense nocturnal itching, erythematous papules arranged in a linear order, and scratching resulting in excoriations. The diagnosis is confirmed by identification of the mite or by finding one or more mite tunnels in the skin. An individually occurring case does not need to be reported. If two or more cases occur in the same institution, the company physician and the appropriate public health department are to be informed in Germany. In case of a suspected scabies infection in medical personnel due to exposure in their work setting, medical notification to the statutory occupational accidents' insurance (Nr. 3101) is to be issued in accordance with § 202, Volume VII of the German Social Code. First line treatment is topical therapy with 5 % permethrin. If scabies control is required in an institution, systemic treatment with ivermectin may be considered. In the case of a scabies outbreak, all patients, contact persons, and staff must be treated simultaneously.

  16. An Allelic Series of Trp63 Mutations Defines TAp63 as a Modifier of EEC Syndrome

    PubMed Central

    Lindahl, Emma Vernersson; Garcia, Elvin L.; Mills, Alea A.

    2014-01-01

    Human Ectrodactyly, Ectodermal dysplasia, Clefting (EEC) syndrome is an autosomal dominant developmental disorder defined by limb deformities, skin defects, and craniofacial clefting. Although associated with heterozygous missense mutations in TP63, the genetic basis underlying the variable expressivity and incomplete penetrance of EEC is unknown. Here we show that mice heterozygous for an allele encoding the Trp63 p.Arg318His mutation, which corresponds to the human TP63 p.Arg279His mutation found in patients with EEC, have features of human EEC. Using an allelic series, we discovered that whereas clefting and skin defects are caused by loss of Trp63 function, limb anomalies are due to gain- and/or dominant-negative effects of Trp63. Furthermore, we identify TAp63 as a strong modifier of EEC-associated phenotypes with regard to both penetrance and expressivity. PMID:23775923

  17. Archaea on Human Skin

    PubMed Central

    Probst, Alexander J.; Auerbach, Anna K.; Moissl-Eichinger, Christine

    2013-01-01

    The recent era of exploring the human microbiome has provided valuable information on microbial inhabitants, beneficials and pathogens. Screening efforts based on DNA sequencing identified thousands of bacterial lineages associated with human skin but provided only incomplete and crude information on Archaea. Here, we report for the first time the quantification and visualization of Archaea from human skin. Based on 16 S rRNA gene copies Archaea comprised up to 4.2% of the prokaryotic skin microbiome. Most of the gene signatures analyzed belonged to the Thaumarchaeota, a group of Archaea we also found in hospitals and clean room facilities. The metabolic potential for ammonia oxidation of the skin-associated Archaea was supported by the successful detection of thaumarchaeal amoA genes in human skin samples. However, the activity and possible interaction with human epithelial cells of these associated Archaea remains an open question. Nevertheless, in this study we provide evidence that Archaea are part of the human skin microbiome and discuss their potential for ammonia turnover on human skin. PMID:23776475

  18. Epidemiological profile of nonmelanoma skin cancer in renal transplant recipients: experience of a referral center*

    PubMed Central

    Ferreira, Flávia Regina; Ogawa, Marilia Marufuji; Nascimento, Luiz Fernando Costa; Tomimori, Jane

    2014-01-01

    BACKGROUND Nonmelanoma skin cancer is the most common form of cancer in humans and also the malignant disease that is increasingly common among kidney transplant recipients. OBJECTIVE To determine the epidemiological characteristics of renal transplant recipients with nonmelanoma skin cancer seen at a referral transplantation center. METHODS Cross-sectional descriptive study with renal transplant recipients presenting nonmelanoma skin cancer, treated at a transplantation referral center between 08/01/2004 and 08/31/2009. Analyzed variables were: gender, age, skin phototype, occupational and recreational sun exposure, use of photoprotection, personal and family history of non-melanoma skin cancer, clinical type and location, time between transplantation and the appearance of the first nonmelanoma skin cancer, occurrence of viral warts, timing of transplantation, type of donor, cause of kidney failure, previous transplants, comorbidities, pre-transplant dialysis, type and duration of dialysis. RESULTS 64 subjects were included. Males - 71.9%; low skin phototypes (up to Fitzpatrick III) - 89%; mean age - 57.0 years - and mean age at transplant - 47.3 years; sun exposure - 67.2% occupational - and 64.1% recreational; photoprotection - 78.2% (although only 34.4% in a regular manner); squamous cell carcinoma - 67.2%; squamous cell carcinoma/basal cell carcinoma ratio - 2:1; personal history of nonmelanoma skin cancer - 25% - and family history - 10.9%; location at photoexposed area - 98.4%; average latency time between transplantation and first nonmelanoma skin cancer appearance - 78.3 months; viral warts (HPV) after transplant - 53.1%; average timing of transplantation - 115.5 months; living donor - 64.1%; triple regimen (antirejection) - 73.2%; comorbidities - 92.2%; pre-transplant dialysis - 98.4%; hemodialysis - 71.7%; average duration of dialysis - 39.1 months; previous transplants - 3.1%; hypertension as cause of renal failure - 46.9%. CONCLUSION This study allowed the epidemiological characterization of a population of kidney transplant recipients with nonmelanoma skin cancer. PMID:25184913

  19. Geographical and genospecies distribution of Borrelia burgdorferi sensu lato DNA detected in humans in the USA.

    PubMed

    Clark, Kerry L; Leydet, Brian F; Threlkeld, Clifford

    2014-05-01

    The present study investigated the cause of illness in human patients primarily in the southern USA with suspected Lyme disease based on erythema migrans-like skin lesions and/or symptoms consistent with early localized or late disseminated Lyme borreliosis. The study also included some patients from other states throughout the USA. Several PCR assays specific for either members of the genus Borrelia or only for Lyme group Borrelia spp. (Borrelia burgdorferi sensu lato), and DNA sequence analysis, were used to identify Borrelia spp. DNA in blood and skin biopsy samples from human patients. B. burgdorferi sensu lato DNA was found in both blood and skin biopsy samples from patients residing in the southern states and elsewhere in the USA, but no evidence of DNA from other Borrelia spp. was detected. Based on phylogenetic analysis of partial flagellin (flaB) gene sequences, strains that clustered separately with B. burgdorferi sensu stricto, Borrelia americana or Borrelia andersonii were associated with Lyme disease-like signs and symptoms in patients from the southern states, as well as from some other areas of the country. Strains most similar to B. burgdorferi sensu stricto and B. americana were found most commonly and appeared to be widely distributed among patients residing throughout the USA. The study findings suggest that human cases of Lyme disease in the southern USA may be more common than previously recognized and may also be caused by more than one species of B. burgdorferi sensu lato. This study provides further evidence that B. burgdorferi sensu stricto is not the only species associated with signs and/or symptoms consistent with Lyme borreliosis in the USA.

  20. Rickettsia sibirica mongolitimonae Infection, France, 2010-2014.

    PubMed

    Angelakis, Emmanouil; Richet, Herve; Raoult, Didier

    2016-05-01

    To further characterize human infections caused by Rickettsia sibirica mongolitimonae, we tested skin biopsy and swab samples and analyzed clinical, epidemiologic, and diagnostic characteristics of patients with a rickettsiosis. The most common (38%) indigenous species was R. sibirica mongolitimonae. Significantly more cases of R. sibirica mongolitimonae infection occurred during spring and summer.

  1. 40 CFR 721.1150 - Substituted polyglycidyl ben-zena-mine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... They have also caused allergic reactions in humans. —Prevent all contact with skin, eyes, and clothing...-impervious clothing before re-use. —Wash thoroughly after handling and before eating, drinking, or smoking. STORAGE INSTRUCTIONS: —Keep closure tight and upright to prevent leakage. —Keep container closed during...

  2. Facts, Fiction, and Figures of the "Sarcoptes Scabiei" Infection

    ERIC Educational Resources Information Center

    Orrico, Josephine A.; Krause-Parello, Cheryl A.

    2010-01-01

    Today scabies, an ectoparasitic skin disease caused by the mite "Sarcoptes scabiei" variety "hominis", is estimated to infect over 300 million humans worldwide. Scabies most frequently occurs among children and young adults. Outbreaks in child care facilities and schools are common. Scabies affects all socioeconomic classes and races. Students…

  3. Prevention of Dengue fever through plant based mosquito repellent Clausena dentata (Willd.) M. Roem (Family: Rutaceae) essential oil against Aedes aegypti l. (Diptera: Culicidae) mosquito.

    PubMed

    Rajkumar, S; Jebanesan, A

    2010-03-01

    Plant based repellent against mosquito borne diseases are used recently because synthetic repellents cause side effects like breathing problem, eye irritation, head ache, cough, etc. The use of natural products for dengue control would protect the environment, reduce dependence on expensive synthetic repellents and also generate local employment. Essential oil was isolated by steam distillation which was used against the bites of Aedes aegypti and duration of protection period was assessed. Skin-irritant potential test was also conducted on 25 healthy volunteers by using four-point scale. The increase in the concentrations of essential oil increased the mean protection time against the bites of Aedes aegypti. The lowest mean protection time was 180.0 min for 2.5% and highest time of 255.0 min for 10%. The mean score of zero for skin-irritant potential test for all the concentrations indicated that the essential oil did not cause irritation to human skin. Results indicated that the use of plant based repellent for the control of dengue fever would replace the currently used synthetic repellents which causes many side effects.

  4. Sunlight Has Cardiovascular Benefits Independently of Vitamin D.

    PubMed

    Weller, Richard B

    2016-01-01

    High blood pressure (BP) is the leading risk factor for disability adjusted life years lost globally. Epidemiological data show a correlation between increased sun exposure and reduced population BP and cardiovascular mortality. Individuals with high serum vitamin D levels are at reduced risk of hypertension, cardiovascular disease and metabolic syndrome, yet multiple trial data show that oral vitamin D supplementation has no effect on these endpoints. Sunlight is a risk factor for skin cancers, but no link has been shown with increased all-cause mortality. Cohort studies from Scandinavia show a dose-dependent fall in mortality with increased sun-seeking behaviour. Skin contains significant stores of nitrogen oxides, which can be converted to NO by UV radiation and exported to the systemic circulation. Human studies show that this pathway can cause arterial vasodilatation and reduced BP. Murine studies suggest the same mechanism may reduce metabolic syndrome. Sunlight has beneficial effects on cardiovascular risk factors independently of vitamin D. All-cause mortality should be the primary determinant of public health messages. Sunlight is a risk factor for skin cancer, but sun avoidance may carry more of a cost than benefit for overall good health. © 2016 S. Karger AG, Basel.

  5. Report - Most common body parts infected with scabies in children and its control.

    PubMed

    Khatoon, Nasira; Khan, Aly; Azmi, M Arshad; Khan, Adnan; Shaukat, S Shahid

    2016-09-01

    Scabies a skin disease caused by mite Sarcoptes scabiei is common in Pakistan and spreads mostly where there is frequent skin to skin contact. In the present study children belonging to four age groups 0-3 years, 4-6 years, 7-9 years and 10-12 years attending Baqai Institute and Hospital Gadap from June-September 2013 were examined. The association between scabies of different human parts and age for boys was significant (p<0.01), while for girls it was highly significant (p<0.001). The most frequent body parts infected with scabies lesions were hands, head and feet. Oral ivermectin was effective antiscabietic for children as it was easy to administer and had good patient acceptability.

  6. [Temperature sensitivity and the indicators of respiration in humans in the normal state and during local cooling].

    PubMed

    Kozyreva, T V; Simonova, T G

    1991-01-01

    The examination has shown that people who have many cold spots on the forearm possess high ventilation volume and breathing frequency and low value of oxygen utilization. These facts can evidence for the effect of cold skin receptors on the respiratory patterns. The skin temperature, at which the maximal cooling-induced changes of respiratory parameters are observed depends on the dynamic activity of cold skin thermoreceptors: the greater number of cold spots in the hand and forearm, the lesser cooling is necessary to cause the maximal increase of oxygen consumption and change of respiratory volume. The latter increased in the case of hand cooling and decreased in the case of the forearm cooling.

  7. Safety assessment of near infrared light emitting diodes for diffuse optical measurements

    PubMed Central

    Bozkurt, Alper; Onaral, Banu

    2004-01-01

    Background Near infrared (NIR) light has been used widely to monitor important hemodynamic parameters in tissue non-invasively. Pulse oximetry, near infrared spectroscopy, and diffuse optical tomography are examples of such NIR light-based applications. These and other similar applications employ either lasers or light emitting diodes (LED) as the source of the NIR light. Although the hazards of laser sources have been addressed in regulations, the risk of LED sources in such applications is still unknown. Methods Temperature increase of the human skin caused by near infrared LED has been measured by means of in-vivo and in-vitro experiments. Effects of the conducted and radiated heat in the temperature increase have been analyzed separately. Results Elevations in skin temperature up to 10°C have been observed. The effect of radiated heat due to NIR absorption is low – less than 0.5°C – since emitted light power is comparable to the NIR part of sunlight. The conducted heat due to semiconductor junction of the LED can cause temperature increases up to 9°C. It has been shown that adjusting operational parameters by amplitude modulating or time multiplexing the LED decreases the temperature increase of the skin significantly. Conclusion In this study, we demonstrate that the major risk source of the LED in direct contact with skin is the conducted heat of the LED semiconductor junction, which may cause serious skin burns. Adjusting operational parameters by amplitude modulating or time multiplexing the LED can keep the LED within safe temperature ranges. PMID:15035670

  8. Hollow agarose microneedle with silver coating for intradermal surface-enhanced Raman measurements: a skin-mimicking phantom study

    NASA Astrophysics Data System (ADS)

    Yuen, Clement; Liu, Quan

    2015-06-01

    Human intradermal components contain important clinical information beneficial to the field of immunology and disease diagnosis. Although microneedles have shown great potential to act as probes to break the human skin barrier for the minimally invasive measurement of intradermal components, metal microneedles that include stainless steel could cause the following problems: (1) sharp waste production, and (2) contamination due to reuse of microneedles especially in developing regions. In this study, we fabricate agarose microneedles coated with a layer of silver (Ag) and demonstrate their use as a probe for the realization of intradermal surface-enhanced Raman scattering measurements in a set of skin-mimicking phantoms. The Ag-coated agarose microneedle quantifies a range of glucose concentrations from 5 to 150 mM inside the skin phantoms with a root-mean-square error of 5.1 mM within 10 s. The needle is found enlarged by 53.9% after another 6 min inside the phantom. The shape-changing capability of this agarose microneedle ensures that the reuse of these microneedles is impossible, thus avoiding sharp waste production and preventing needle contamination, which shows the great potential for safe and effective needle-based measurements.

  9. Salubrinal protects human skin fibroblasts against UVB-induced cell death by blocking endoplasmic reticulum (ER) stress and regulating calcium homeostasis.

    PubMed

    Ji, Chao; Yang, Bo; Huang, Shu-Ying; Huang, Jin-Wen; Cheng, Bo

    2017-12-02

    The role of UVB in skin photo damages has been widely reported. Overexposure to UVB will induce severe DNA damages in epidermal cells and cause most cytotoxic symptoms. In the present study, we tested the potential activity of salubrinal, a selective inhibitor of Eukaryotic Initiation Factor 2 (eIF2) -alpha phosphatase, against UV-induced skin cell damages. We first exposed human fibroblasts to UVB radiation and evaluated the cytosolic Ca 2+ level as well as the induction of ER stress. We found that UVB radiation induced the depletion of ER Ca 2+ and increased the expression of ER stress marker including phosphorylated PERK, CHOP, and phosphorylated IRE1α. We then determined the effects of salubrinal in skin cell death induced by UVB radiation. We observed that cells pre-treated with salubrinal had a higher survival rate compared to cells treated with UVB alone. Pre-treatment with salubrinal successfully re-established the ER function and Ca 2+ homeostasis. Our results suggest that salubrinal can be a potential therapeutic agents used in preventing photoaging and photo damages. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Development and Characterisation of a Human Chronic Skin Wound Cell Line-Towards an Alternative for Animal Experimentation.

    PubMed

    Caley, Matthew; Wall, Ivan B; Peake, Matthew; Kipling, David; Giles, Peter; Thomas, David W; Stephens, Phil

    2018-03-27

    Background : Chronic skin wounds are a growing financial burden for healthcare providers, causing discomfort/immobility to patients. Whilst animal chronic wound models have been developed to allow for mechanistic studies and to develop/test potential therapies, such systems are not good representations of the human chronic wound state. As an alternative, human chronic wound fibroblasts (CWFs) have permitted an insight into the dysfunctional cellular mechanisms that are associated with these wounds. However, such cells strains have a limited replicative lifespan and therefore a limited reproducibility/usefulness. Objectives : To develop/characterise immortalised cell lines of CWF and patient-matched normal fibroblasts (NFs). Methods and Results : Immortalisation with human telomerase resulted in both CWF and NF proliferating well beyond their replicative senescence end-point (respective cell strains senesced as normal). Gene expression analysis demonstrated that, whilst proliferation-associated genes were up-regulated in the cell lines (as would be expected), the immortalisation process did not significantly affect the disease-specific genotype. Immortalised CWF (as compared to NF) also retained a distinct impairment in their wound repopulation potential (in line with CWF cell strains). Conclusions : These novel CWF cell lines are a credible animal alternative and could be a valuable research tool for understanding both the aetiology of chronic skin wounds and for therapeutic pre-screening.

  11. Effect of whole-body and local heating on cutaneous vasoconstrictor responses in humans

    NASA Technical Reports Server (NTRS)

    Wilson, Thad E.; Cui, Jian; Crandall, Craig G.

    2002-01-01

    Animal studies suggest that alpha-adrenergic-mediated vasoconstriction is compromised during whole-body heating. The purpose of this study was to identify whether whole-body heating and/or local surface heating reduce cutaneous alpha-adrenergic vasoconstrictor responsiveness in human skin. Protocol I: Six subjects were exposed to neutral skin temperature (i.e., 34 degrees C), whole-body heating, and local heating of forearm skin to increase skin blood flow to the same relative magnitude as that observed during whole-body heating. Protocol II: In eight subjects forearm skin was locally heated to 34, 37, 40, and 42 degrees C. During both protocols, alpha-adrenergic vasoconstrictor responsiveness was assessed by local delivery of norepinephrine (NE) via intradermal microdialysis. Skin blood flow was continuously monitored over each microdialysis membrane via laser-Doppler flowmetry. In protocol I, whole-body and local heating caused similar increases in cutaneous vascular conductance (CVC). The EC50 (log NE dose) of the dose-response curves for both whole body (-4.2 +/- 0.1 M) and local heating (-4.7 +/- 0.4 M) were significantly greater (i.e., high dose required to cause 50% reduction in CVC) relative to neutral skin temperature (- 5.6 +/- 0.0 M; P<0.05 for both). In both local and whole-body heated conditions CVC did not return to pre-heating values even at the highest dose of NE. In protocol II, calculated EC50 for 34, 37, 40, and 42 degrees C local heating was - 5.5 +/- 0.4, -4.6 +/- 0.3, -4.5 +/- 0.3, - 4.2 +/- 0.4 M, respectively. Statistical analyses revealed that the EC50 for 37,40 and 42 degrees C were significantly greater than the EC50 for 34 degrees C. These results indicate that even during administration of high concentrations of NE, alpha-adrenergic vasoconstriction does not fully compensate for local heating and whole-body heating induced vasodilatation in young, healthy subjects. Moreover, these data suggest that elevated local temperatures, above 37 degrees C, and whole-body heating similarly attenuate cutaneous alpha-adrenergic vasoconstriction responsiveness.

  12. Comparison of the effect of fatty alcohols on the permeation of melatonin between porcine and human skin.

    PubMed

    Andega, S; Kanikkannan, N; Singh, M

    2001-11-09

    Melatonin (MT) is a hormone secreted by the pineal gland that plays an important role in the regulation of the circadian sleep-wake cycle. It would be advantageous to administer MT using a transdermal delivery system for the treatment of sleep disorders such as delayed sleep syndrome, jet lag in travelers, cosmonauts and shift workers. The porcine skin has been found to have similar morphological and functional characteristics as human skin. The elastic fibres in the dermis, enzyme pattern of the epidermis, epidermal tissue turnover time, keratinous proteins and thickness of epidermis of porcine skin are similar to human skin. However, the fat deposition and vascularisation of the cutaneous glands of porcine skin are different from human skin. In addition, porcine skin has been found to have a close permeability character to human skin. However, the comparative effect of chemical penetration enhancers on the permeation of drugs between porcine and human skin has not been reported. The purpose of this study was to compare the effect of fatty alcohols on the permeability of porcine and human skin using MT as a model compound. The effect of saturated fatty alcohols (octanol, nonanol, decanol, undecanol, lauryl alcohol, tridecanol, myristyl alcohol) and unsaturated fatty alcohols (oleyl alcohol, linoleyl alcohol, linolenyl alcohol) at 5% concentration was tested across dermatomed porcine and human skin. Our studies showed a parabolic relationship between the carbon chain length of saturated fatty alcohols and permeation enhancement of MT with both porcine and human skin. Maximum permeation of MT was observed when fatty alcohol carbon chain length was 10. In general, as the level of unsaturation increased from one to two double bonds, there was an increase in the permeation of MT both in porcine and human skin. However, a decrease in the permeation was observed with three double bonds. Regression analysis using the steady state flux data showed a significant positive correlation between porcine and human skin for saturated fatty alcohols (r(2)=0.8868, P=0.0005). However, though a positive correlation was observed between the porcine and human skin (r(2)=0.8638), the correlation was statistically insignificant (P=0.0706). The static diffusion cell system employed in this study has major artifact compared to a flow through system. In conclusion, the permeability of porcine skin to MT in the presence of saturated and unsaturated fatty alcohols was qualitatively similar to human skin but quantitatively different with some fatty alcohols.

  13. The catecholamines strike back. What NO does not do.

    PubMed

    Joyner, Michael J; Casey, Darren P

    2009-10-01

    The discovery of endothelial-derived relaxing factor, and later nitric oxide (NO), as a biologically active substance led to intense focus on the vascular endothelium as a major site of physiological regulation and pathophysiological dysfunction. NO is clearly a potent vasodilator and plays a key role in establishing both whole body and regional "vascular tone". In this context, skeletal muscle and human skin have the remarkable capacity to increase their blood flow 50-100-fold and this increase is caused almost exclusively by local vasodilation. In general, the mechanisms responsible for these vasodilator phenomena have been poorly understood. In the early 1990s, investigators started to ask if NO might explain the "unexplained" vasodilator responses seen in skeletal muscle and skin. They also asked how "NO tone" interacted with "sympathetic tone" and whether NO can override the vasoconstrictor responses normally generated when sympathetic nerves release norepinephrine. Surprisingly, it was found that NO plays only a modest (non-obligatory) role in exercise hyperemia, reactive hyperemia and the neurally mediated rise in skin blood flow during whole body heat stress. By contrast, NO plays a major role in the skeletal muscle vasodilator responses to mental stress and the skin dilator responses to local heating. In animals, but not humans, NO can limit the ability of the sympathetic nerves to cause vasoconstriction in exercising muscles. Thus the role of NO in two of the most extreme dilator responses seen in nature is limited and in muscle the sympathetic nerves can restrain the dilation to defend arterial blood pressure.

  14. Occupational Criteria for Chemical Agent VX

    DTIC Science & Technology

    1988-09-01

    nervous system in mild exposures may include tension, anxiety, jitteriness, restlessness, m insomnia , or excessive dreaming. Higher exposures may cause ...toxic substance which can cause death at very low doses. It is both an inhalation and a skin contact hazard. Despite its low vapor m pressure, a...hen and cat can a syndrome similar to that in humans be induced (Gordon et al. 1983, Johnson 1975a). Abou-Donia (1981) states that potent cholin

  15. Do We Know What Causes Melanoma Skin Cancer?

    MedlinePlus

    ... Skin Cancer Causes, Risk Factors, and Prevention What Causes Melanoma Skin Cancer? Many risk factors for melanoma have been found, ... it’s not always clear exactly how they might cause cancer. For example, while most moles never turn into ...

  16. Expression of IL-22 in the Skin Causes Th2-Biased Immunity, Epidermal Barrier Dysfunction and Pruritus via Stimulating Epithelial Th2 Cytokines and the GRP Pathway

    PubMed Central

    Lou, Hongfei; Lu, Jingning; Choi, Eun Byul; Oh, Min Hee; Jeong, Mingeum; Barmettler, Sara; Zhu, Zhou; Zheng, Tao

    2017-01-01

    Increased expression of Th22 cytokine IL-22 is a characteristic finding in atopic dermatitis (AD). However, the specific role of IL-22 in the pathogenesis of AD in vivo has yet to be elucidated. Consistent with observations in human AD, IL-22 was significantly increased in the AD skin of mice after epicutaneous sensitization to house dust mite allergen. Utilizing a skin-specific inducible transgenic system, we show here that expression of IL-22 in the skin of mice caused an AD-like phenotype characterized by chronic pruritic dermatitis associated with Th2-biased local and systemic immune responses, down-regulation of Epidermal Differentiation Complex genes and enhanced dermatitis upon epicutaneous allergen exposure. IL-22 potently induced the expression of gastrin-releasing peptide (GRP), a neuropeptide pruritogen, in dermal immune cells and sensory afferents and in their skin-innervating sensory neurons. IL-22 also differentially up-regulated the expression of GRP receptor (GRPR) on keratinocytes of AD skin. The number of GRP+ cells in the skin correlated with the AD severity and the intensity of pruritus. IL-22 directly upregulated the expression of epithelial-derived type 2 cytokines (TSLP and IL-33) and GRP in primary keratinocytes. Furthermore, GRP not only strongly induced TSLP but also increased the expression IL-33 and GRPR synergistically with IL-22. Importantly, we found that the expression of GRP was strikingly increased in the skin of patients with AD. These results indicate that IL-22 plays important pathogenic roles in the initiation and development of AD, in part through inducing keratinocyte production of type 2 cytokines and activation of the GRP/GRPR pathway. PMID:28228560

  17. Skin Fungi from Colonization to Infection.

    PubMed

    de Hoog, Sybren; Monod, Michel; Dawson, Tom; Boekhout, Teun; Mayser, Peter; Gräser, Yvonne

    2017-07-01

    Humans are exceptional among vertebrates in that their living tissue is directly exposed to the outside world. In the absence of protective scales, feathers, or fur, the skin has to be highly effective in defending the organism against the gamut of opportunistic fungi surrounding us. Most (sub)cutaneous infections enter the body by implantation through the skin barrier. On intact skin, two types of fungal expansion are noted: (A) colonization by commensals, i.e., growth enabled by conditions prevailing on the skin surface without degradation of tissue, and (B) infection by superficial pathogens that assimilate epidermal keratin and interact with the cellular immune system. In a response-damage framework, all fungi are potentially able to cause disease, as a balance between their natural predilection and the immune status of the host. For this reason, we will not attribute a fixed ecological term to each species, but rather describe them as growing in a commensal state (A) or in a pathogenic state (B).

  18. Daily Consumption of a Fruit and Vegetable Smoothie Alters Facial Skin Color

    PubMed Central

    Tan, Kok Wei; Graf, Brigitte A.; Mitra, Soma R.; Stephen, Ian D.

    2015-01-01

    Consumption of dietary carotenoids or carotenoid supplements can alter the color (yellowness) of human skin through increased carotenoid deposition in the skin. As fruit and vegetables are the main dietary sources of carotenoids, skin yellowness may be a function of regular fruit and vegetable consumption. However, most previous studies have used tablets or capsules to supplement carotenoid intake, and less is known of the impact of increased fruit and vegetable consumption on skin color. Here, we examined skin color changes in an Asian population (Malaysian Chinese ethnicity) over a six week dietary intervention with a carotenoid-rich fruit smoothie. Eighty one university students (34 males, 47 females; mean age 20.48) were assigned randomly to consuming either a fruit smoothie (intervention group) or mineral water (control group) daily for six weeks. Participants’ skin yellowness (CIELab b*), redness (a*) and luminance (L*) were measured at baseline, twice during the intervention period and at a two-week follow-up, using a handheld reflectance spectrophotometer. Results showed a large increment in skin yellowness (p<0.001) and slight increment in skin redness (p<0.001) after 4 weeks of intervention for participants in the intervention group. Skin yellowness and skin redness remained elevated at the two week follow up measurement. In conclusion, intervention with a carotenoid-rich fruit smoothie is associated with increased skin redness and yellowness in an Asian population. Changes in the reflectance spectrum of the skin suggest that this color change was caused by carotenoid deposition in the skin. PMID:26186449

  19. Daily Consumption of a Fruit and Vegetable Smoothie Alters Facial Skin Color.

    PubMed

    Tan, Kok Wei; Graf, Brigitte A; Mitra, Soma R; Stephen, Ian D

    2015-01-01

    Consumption of dietary carotenoids or carotenoid supplements can alter the color (yellowness) of human skin through increased carotenoid deposition in the skin. As fruit and vegetables are the main dietary sources of carotenoids, skin yellowness may be a function of regular fruit and vegetable consumption. However, most previous studies have used tablets or capsules to supplement carotenoid intake, and less is known of the impact of increased fruit and vegetable consumption on skin color. Here, we examined skin color changes in an Asian population (Malaysian Chinese ethnicity) over a six week dietary intervention with a carotenoid-rich fruit smoothie. Eighty one university students (34 males, 47 females; mean age 20.48) were assigned randomly to consuming either a fruit smoothie (intervention group) or mineral water (control group) daily for six weeks. Participants' skin yellowness (CIELab b*), redness (a*) and luminance (L*) were measured at baseline, twice during the intervention period and at a two-week follow-up, using a handheld reflectance spectrophotometer. Results showed a large increment in skin yellowness (p<0.001) and slight increment in skin redness (p<0.001) after 4 weeks of intervention for participants in the intervention group. Skin yellowness and skin redness remained elevated at the two week follow up measurement. In conclusion, intervention with a carotenoid-rich fruit smoothie is associated with increased skin redness and yellowness in an Asian population. Changes in the reflectance spectrum of the skin suggest that this color change was caused by carotenoid deposition in the skin.

  20. Multiple-reflection model of human skin and estimation of pigment concentrations

    NASA Astrophysics Data System (ADS)

    Ohtsuki, Rie; Tominaga, Shoji; Tanno, Osamu

    2012-07-01

    We describe a new method for estimating the concentrations of pigments in the human skin using surface spectral reflectance. We derive an equation that expresses the surface spectral reflectance of the human skin. First, we propose an optical model of the human skin that accounts for the stratum corneum. We also consider the difference between the scattering coefficient of the epidermis and that of the dermis. We then derive an equation by applying the Kubelka-Munk theory to an optical model of the human skin. Unlike a model developed in a recent study, the present equation considers pigments as well as multiple reflections and the thicknesses of the skin layers as factors that affect the color of the human skin. In two experiments, we estimate the pigment concentrations using the measured surface spectral reflectances. Finally, we confirm the feasibility of the concentrations estimated by the proposed method by evaluating the estimated pigment concentrations in the skin.

  1. Humanized Mouse Model of Skin Inflammation Is Characterized by Disturbed Keratinocyte Differentiation and Influx of IL-17A Producing T Cells

    PubMed Central

    de Oliveira, Vivian L.; Keijsers, Romy R. M. C.; van de Kerkhof, Peter C. M.; Seyger, Marieke M. B.; Fasse, Esther; Svensson, Lars; Latta, Markus; Norsgaard, Hanne; Labuda, Tord; Hupkens, Pieter; van Erp, Piet E. J.; Joosten, Irma; Koenen, Hans J. P. M.

    2012-01-01

    Humanized mouse models offer a challenging possibility to study human cell function in vivo. In the huPBL-SCID-huSkin allograft model human skin is transplanted onto immunodeficient mice and allowed to heal. Thereafter allogeneic human peripheral blood mononuclear cells are infused intra peritoneally to induce T cell mediated inflammation and microvessel destruction of the human skin. This model has great potential for in vivo study of human immune cells in (skin) inflammatory processes and for preclinical screening of systemically administered immunomodulating agents. Here we studied the inflammatory skin response of human keratinocytes and human T cells and the concomitant systemic human T cell response. As new findings in the inflamed human skin of the huPBL-SCID-huSkin model we here identified: 1. Parameters of dermal pathology that enable precise quantification of the local skin inflammatory response exemplified by acanthosis, increased expression of human β-defensin-2, Elafin, K16, Ki67 and reduced expression of K10 by microscopy and immunohistochemistry. 2. Induction of human cytokines and chemokines using quantitative real-time PCR. 3. Influx of inflammation associated IL-17A-producing human CD4+ and CD8+ T cells as well as immunoregulatory CD4+Foxp3+ cells using immunohistochemistry and -fluorescence, suggesting that active immune regulation is taking place locally in the inflamed skin. 4. Systemic responses that revealed activated and proliferating human CD4+ and CD8+ T cells that acquired homing marker expression of CD62L and CLA. Finally, we demonstrated the value of the newly identified parameters by showing significant changes upon systemic treatment with the T cell inhibitory agents cyclosporine-A and rapamycin. In summary, here we equipped the huPBL-SCID-huSkin humanized mouse model with relevant tools not only to quantify the inflammatory dermal response, but also to monitor the peripheral immune status. This combined approach will gain our understanding of the dermal immunopathology in humans and benefit the development of novel therapeutics for controlling inflammatory skin diseases. PMID:23094018

  2. Scales

    MedlinePlus

    Skin flaking; Scaly skin; Papulosquamous disorders ... Scales may be caused by dry skin, certain inflammatory skin conditions, or infections. Examples of disorders that can cause scales include: Eczema Fungal infections such as ringworm , tinea versicolor ...

  3. Cutaneous human papillomavirus types detected on the surface of male external genital lesions: A case series within the HPV Infection in Men Study

    PubMed Central

    Pierce Campbell, Christine M.; Messina, Jane L.; Stoler, Mark H.; Jukic, Drazen M.; Tommasino, Massimo; Gheit, Tarik; Rollison, Dana E.; Sichero, Laura; Sirak, Bradley A.; Ingles, Donna J.; Abrahamsen, Martha; Lu, Beibei; Villa, Luisa L.; Lazcano-Ponce, Eduardo; Giuliano, Anna R.

    2013-01-01

    Background Cutaneous human papillomaviruses (HPVs) may be associated with cutaneous epithelial lesions and non-melanoma skin cancers. No study has systematically evaluated the presence of genus beta [β]-HPV in male genital skin or external genital lesions (EGLs). Objectives To examine cutaneous β-HPV types detected on the surface of EGLs in men and describe their presence prior to EGL development. Study design A retrospective case series was conducted among 69 men with pathologically confirmed EGLs (n=72) who participated in the HPV Infection in Men Study. Archived exfoliated cells collected from the surface of each EGL and normal genital skin specimens 6–12 months preceding EGL development were tested for β-HPV DNA using a type-specific multiplex genotyping assay. Results β-HPV DNA was detected on 61.1% of all EGLs, with types 38 (16.7%), 5 (15.3%), and 12 (12.5%) most commonly identified. HPV prevalence differed across pathological diagnoses, with the largest number of β-HPV types detected on condylomas. Most β-HPV types were detected on normal genital skin prior to EGL development, though the prevalence was lower on EGLs compared to preceding normal genital skin. Conclusions EGLs and the normal genital skin of men harbor a large number of β-HPV types; however, it appears that β-HPVs are unrelated to EGL development in men. Despite evidence to support a causal role in skin carcinogenesis at UVR-exposed sites, cutaneous HPV appears unlikely to cause disease at the UVR-unexposed genitals. PMID:24210970

  4. Suitability of frequency modulated thermal wave imaging for skin cancer detection-A theoretical prediction.

    PubMed

    Bhowmik, Arka; Repaka, Ramjee; Mulaveesala, Ravibabu; Mishra, Subhash C

    2015-07-01

    A theoretical study on the quantification of surface thermal response of cancerous human skin using the frequency modulated thermal wave imaging (FMTWI) technique has been presented in this article. For the first time, the use of the FMTWI technique for the detection and the differentiation of skin cancer has been demonstrated in this article. A three dimensional multilayered skin has been considered with the counter-current blood vessels in individual skin layers along with different stages of cancerous lesions based on geometrical, thermal and physical parameters available in the literature. Transient surface thermal responses of melanoma during FMTWI of skin cancer have been obtained by integrating the heat transfer model for biological tissue along with the flow model for blood vessels. It has been observed from the numerical results that, flow of blood in the subsurface region leads to a substantial alteration on the surface thermal response of the human skin. The alteration due to blood flow further causes a reduction in the performance of the thermal imaging technique during the thermal evaluation of earliest melanoma stages (small volume) compared to relatively large volume. Based on theoretical study, it has been predicted that the method is suitable for detection and differentiation of melanoma with comparatively large volume than the earliest development stages (small volume). The study has also performed phase based image analysis of the raw thermograms to resolve the different stages of melanoma volume. The phase images have been found to be clearly individuate the different development stages of melanoma compared to raw thermograms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Skin Diseases: Cross-section of human skin

    MedlinePlus

    Skip Navigation Bar Home Current Issue Past Issues Skin Diseases Cross-section of human skin Past Issues / Fall 2008 Table of Contents For ... Logical Images, Inc. I n the areas of skin health and skin diseases, the NIH's National Institute ...

  6. Robust Lentiviral Gene Delivery But Limited Transduction Capacity of Commonly Used Adeno-Associated Viral Serotypes in Xenotransplanted Human Skin.

    PubMed

    Jakobsen, Maria; Askou, Anne Louise; Stenderup, Karin; Rosada, Cecilia; Dagnæs-Hansen, Frederik; Jensen, Thomas G; Corydon, Thomas J; Mikkelsen, Jacob Giehm; Aagaard, Lars

    2015-08-01

    Skin is an easily accessible organ, and therapeutic gene transfer to skin remains an attractive alternative for the treatment of skin diseases. Although we have previously documented potent lentiviral gene delivery to human skin, vectors based on adeno-associated virus (AAV) rank among the most promising gene delivery tools for in vivo purposes. Thus, we compared the potential usefulness of various serotypes of recombinant AAV vectors and lentiviral vectors for gene transfer to human skin in a xenotransplanted mouse model. Vector constructs encoding firefly luciferase were packaged in AAV capsids of serotype 1, 2, 5, 6, 8, and 9 and separately administered by intradermal injection in human skin transplants. For all serotypes, live bioimaging demonstrated low levels of transgene expression in the human skin graft, and firefly luciferase expression was observed primarily in neighboring tissue outside of the graft. In contrast, gene delivery by intradermally injected lentiviral vectors was efficient and led to extensive and persistent firefly luciferase expression within the human skin graft only. The study demonstrates the limited capacity of single-stranded AAV vectors of six commonly used serotypes for gene delivery to human skin in vivo.

  7. Robust Lentiviral Gene Delivery But Limited Transduction Capacity of Commonly Used Adeno-Associated Viral Serotypes in Xenotransplanted Human Skin

    PubMed Central

    Jakobsen, Maria; Askou, Anne Louise; Stenderup, Karin; Rosada, Cecilia; Dagnæs-Hansen, Frederik; Jensen, Thomas G.; Corydon, Thomas J.; Mikkelsen, Jacob Giehm; Aagaard, Lars

    2015-01-01

    Skin is an easily accessible organ, and therapeutic gene transfer to skin remains an attractive alternative for the treatment of skin diseases. Although we have previously documented potent lentiviral gene delivery to human skin, vectors based on adeno-associated virus (AAV) rank among the most promising gene delivery tools for in vivo purposes. Thus, we compared the potential usefulness of various serotypes of recombinant AAV vectors and lentiviral vectors for gene transfer to human skin in a xenotransplanted mouse model. Vector constructs encoding firefly luciferase were packaged in AAV capsids of serotype 1, 2, 5, 6, 8, and 9 and separately administered by intradermal injection in human skin transplants. For all serotypes, live bioimaging demonstrated low levels of transgene expression in the human skin graft, and firefly luciferase expression was observed primarily in neighboring tissue outside of the graft. In contrast, gene delivery by intradermally injected lentiviral vectors was efficient and led to extensive and persistent firefly luciferase expression within the human skin graft only. The study demonstrates the limited capacity of single-stranded AAV vectors of six commonly used serotypes for gene delivery to human skin in vivo. PMID:26204415

  8. A Human Model of Small Fiber Neuropathy to Study Wound Healing

    PubMed Central

    Illigens, Ben M. W.; Gibbons, Christopher H.

    2013-01-01

    The aim of this study was to develop a human model of acute wound healing that isolated the effects of small fiber neuropathy on the healing process. Twenty-five healthy subjects had the transient receptor vanilloid 1 agonist capsaicin and placebo creams topically applied to contralateral areas on the skin of the thigh for 48 hours. Subjects had shallow (1.2 millimeter) and deep (>3 millimeter) punch skin biopsies from each thigh on days 1 and 14. Biopsy wound healing was monitored photographically until closure. Intra-epidermal and sweat-gland nerve fiber densities were measured for each biopsy. Shallow wounds in capsaicin-treated sites healed more slowly than in placebo treated skin with biopsies taken on day 1 (P<0.001) and day 14 (P<0.001). Deep biopsies in the capsaicin and placebo areas healed at similar rates at both time points. Nerve fiber densities were reduced only in capsaicin treated regions (P<0.01). In conclusion, topical application of capsaicin causes a small fiber neuropathy and is associated with a delay in healing of shallow, but not deep wounds. This novel human model may prove valuable in the study of wound healing in patients with neuropathy. PMID:23382960

  9. Resveratrol induces human keratinocyte damage via the activation of class III histone deacetylase, Sirt1.

    PubMed

    Lee, Ju-Hee; Kim, Jin-Shang; Park, Sang-Youel; Lee, You-Jin

    2016-01-01

    Human skin diseases are various and induce chronic inflammatory disorders, including psoriasis, atopic dermatitis and certain forms of ichthyosis. Psoriasis is a chronic inflammatory skin disease characterized by circumscribed, red, thickened plaques. Regulation of the balance between growth, differentiation and death is critical to keratinocytes; when altered, epidermal keratinocytes undergo hyperproliferation, abnormal differentiation and inflammatory infiltration. In the present study, we focused on the effects of resveratrol, found in red wine and peanuts, on the cell death of keratinocytes. We additionally studied the mechanism of resveratrol on Sirt1, a class III histone deacetylase, and Akt phosphorylation. Resveratrol caused apoptosis and increased Sirt1 expression in human HaCaT keratinocytes, following a decrease in the p62 protein level. Inhibition of Sirt1 by Sirt1 inhibitor restored cell viability and protein levels. Furthermore, we showed that resveratrol-induced Sirt1 blocked Akt phosphorylation. The present results indicated that resveratrol inhibited the Akt pathways by inducing Sirt1, thus leading to cell death. These data suggest that resveratrol-mediated activation of Sirt1 histone deacetylase may be a potential therapeutic target for skin diseases including psoriasis.

  10. A human model of small fiber neuropathy to study wound healing.

    PubMed

    Illigens, Ben M W; Gibbons, Christopher H

    2013-01-01

    The aim of this study was to develop a human model of acute wound healing that isolated the effects of small fiber neuropathy on the healing process. Twenty-five healthy subjects had the transient receptor vanilloid 1 agonist capsaicin and placebo creams topically applied to contralateral areas on the skin of the thigh for 48 hours. Subjects had shallow (1.2 millimeter) and deep (>3 millimeter) punch skin biopsies from each thigh on days 1 and 14. Biopsy wound healing was monitored photographically until closure. Intra-epidermal and sweat-gland nerve fiber densities were measured for each biopsy. Shallow wounds in capsaicin-treated sites healed more slowly than in placebo treated skin with biopsies taken on day 1 (P<0.001) and day 14 (P<0.001). Deep biopsies in the capsaicin and placebo areas healed at similar rates at both time points. Nerve fiber densities were reduced only in capsaicin treated regions (P<0.01). In conclusion, topical application of capsaicin causes a small fiber neuropathy and is associated with a delay in healing of shallow, but not deep wounds. This novel human model may prove valuable in the study of wound healing in patients with neuropathy.

  11. Chemical ecology of interactions between human skin microbiota and mosquitoes.

    PubMed

    Verhulst, Niels O; Takken, Willem; Dicke, Marcel; Schraa, Gosse; Smallegange, Renate C

    2010-10-01

    Microbiota on the human skin plays a major role in body odour production. The human microbial and chemical signature displays a qualitative and quantitative correlation. Genes may influence the chemical signature by shaping the composition of the microbiota. Recent studies on human skin microbiota, using 16S rRNA gene sequencing, found a high inter- and intrapersonal variation in bacterial species on the human skin, which is relatively stable over time. Human body odours mediate the attraction of mosquitoes to their blood hosts. Odours produced by skin microbiota are attractive to mosquitoes as shown by in vitro studies, and variation in bacterial species on the human skin may explain the variation in mosquito attraction between humans. Detailed knowledge of the ecology and genetics of human skin microbiota is needed in order to unravel the evolutionary mechanisms that underlie the interactions between mosquitoes and their hosts. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  12. Optimization of a murine and human tissue model to recapitulate dermal and pulmonary features of systemic sclerosis

    PubMed Central

    Watanabe, Tomoya; Mlakar, Logan; Heywood, Jonathan; Malaab, Maya; Hoffman, Stanley

    2017-01-01

    The murine bleomycin (BLM)-induced fibrosis model is the most widely used in systemic sclerosis (SSc) studies. It has been reported that systemic delivery of BLM via continuous diffusion from subcutaneously implanted osmotic minipumps can cause fibrosis of the skin, lungs, and other internal organs. However, the mouse strain, dosage of BLM, administration period, and additional important features differ from one report to the next. In this study, by employing the pump model in C57BL/6J mice, we show a dose-dependent increase in lung fibrosis by day 28 and a transient increase in dermal thickness. Dermal thickness and the level of collagen in skin treated with high-dose BLM was significantly higher than in skin treated with low dose BLM or vehicle. A reduction in the thickness of the adipose layer was noted in both high and low dose groups at earlier time points suggesting that the loss of the fat layer precedes the onset of fibrosis. High-dose BLM also induced dermal fibrosis and increased expression of fibrosis-associated genes ex vivo in human skin, thus confirming and extending the in vivo findings, and demonstrating that a human organ culture model can be used to assess the effect of BLM on skin. In summary, our findings suggest that the BLM pump model is an attractive model to analyze the underlying mechanisms of fibrosis and test the efficacy of potential therapies. However, the choice of mouse strain, duration of BLM administration and dose must be carefully considered when using this model. PMID:28651005

  13. Optimization of a murine and human tissue model to recapitulate dermal and pulmonary features of systemic sclerosis.

    PubMed

    Watanabe, Tomoya; Nishimoto, Tetsuya; Mlakar, Logan; Heywood, Jonathan; Malaab, Maya; Hoffman, Stanley; Feghali-Bostwick, Carol

    2017-01-01

    The murine bleomycin (BLM)-induced fibrosis model is the most widely used in systemic sclerosis (SSc) studies. It has been reported that systemic delivery of BLM via continuous diffusion from subcutaneously implanted osmotic minipumps can cause fibrosis of the skin, lungs, and other internal organs. However, the mouse strain, dosage of BLM, administration period, and additional important features differ from one report to the next. In this study, by employing the pump model in C57BL/6J mice, we show a dose-dependent increase in lung fibrosis by day 28 and a transient increase in dermal thickness. Dermal thickness and the level of collagen in skin treated with high-dose BLM was significantly higher than in skin treated with low dose BLM or vehicle. A reduction in the thickness of the adipose layer was noted in both high and low dose groups at earlier time points suggesting that the loss of the fat layer precedes the onset of fibrosis. High-dose BLM also induced dermal fibrosis and increased expression of fibrosis-associated genes ex vivo in human skin, thus confirming and extending the in vivo findings, and demonstrating that a human organ culture model can be used to assess the effect of BLM on skin. In summary, our findings suggest that the BLM pump model is an attractive model to analyze the underlying mechanisms of fibrosis and test the efficacy of potential therapies. However, the choice of mouse strain, duration of BLM administration and dose must be carefully considered when using this model.

  14. Mitochondrial tolerance to single and repeat exposure to simulated sunlight in human epidermal and dermal skin cells.

    PubMed

    Kelly, J; Murphy, J E J

    2016-12-01

    Sunlight represents the primary threat to mitochondrial integrity in skin given the unique nature of the mitochondrial genome and its proximity to the electron transport chain. The accumulation of mitochondrial DNA (mtDNA) mutations is a key factor in many human pathologies and this is linked to key roles of mitochondrial function in terms of energy production and cell regulation. The main objective of this study was to evaluate solar radiation induced changes in mitochondrial integrity, function and dynamics in human skin cells using a Q-Sun solar simulator to deliver a close match to the intensity of summer sunlight. Spontaneously immortalised human skin epidermal keratinocytes (HaCaT) and Human Dermal Fibroblasts (HDFn) were divided into two groups. Group A were irradiated once and Group B twice 7days apart and evaluated using cell survival, viability and mitochondrial membrane potential (MMP) and mass at 1, 4 and 7days post one exposure for Group A and 1, 4, 7 and 14days post second exposure for Group B. Viability and survival of HaCaT and HDFn cells decreased after repeat exposure to Simulated Sunlight Irradiation (SSI) with no recovery. HDFn cells showed no loss in MMP after one or two exposures to SSI compared to HaCaT cells which showed a periodic loss of MMP after one exposure with a repeat exposure causing a dramatic decrease from which cells did not recover. Mitochondrial Mass in exposed HDFn cells was consistent with control after one or two exposures to SSI; however mitochondrial mass was significantly decreased in HaCaT cells. Data presented here suggests that mitochondria in epidermal cells are more sensitive to sunlight damage compared to mitochondria in dermal cells, despite their origin, confirming a skin layer specific sensitivity to sunlight, but not as expected. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Sarcoptes scabiei Mites Modulate Gene Expression in Human Skin Equivalents

    PubMed Central

    Morgan, Marjorie S.; Arlian, Larry G.; Markey, Michael P.

    2013-01-01

    The ectoparasitic mite, Sarcoptes scabiei that burrows in the epidermis of mammalian skin has a long co-evolution with its hosts. Phenotypic studies show that the mites have the ability to modulate cytokine secretion and expression of cell adhesion molecules in cells of the skin and other cells of the innate and adaptive immune systems that may assist the mites to survive in the skin. The purpose of this study was to identify genes in keratinocytes and fibroblasts in human skin equivalents (HSEs) that changed expression in response to the burrowing of live scabies mites. Overall, of the more than 25,800 genes measured, 189 genes were up-regulated >2-fold in response to scabies mite burrowing while 152 genes were down-regulated to the same degree. HSEs differentially expressed large numbers of genes that were related to host protective responses including those involved in immune response, defense response, cytokine activity, taxis, response to other organisms, and cell adhesion. Genes for the expression of interleukin-1α (IL-1α) precursor, IL-1β, granulocyte/macrophage-colony stimulating factor (GM-CSF) precursor, and G-CSF precursor were up-regulated 2.8- to 7.4-fold, paralleling cytokine secretion profiles. A large number of genes involved in epithelium development and keratinization were also differentially expressed in response to live scabies mites. Thus, these skin cells are directly responding as expected in an inflammatory response to products of the mites and the disruption of the skin’s protective barrier caused by burrowing. This suggests that in vivo the interplay among these skin cells and other cell types, including Langerhans cells, dendritic cells, lymphocytes and endothelial cells, is responsible for depressing the host’s protective response allowing these mites to survive in the skin. PMID:23940705

  16. Poly herbal formulation with anti-elastase and anti-oxidant properties for skin anti-aging.

    PubMed

    Kalyana Sundaram, Induja; Sarangi, Deepika Deeptirekha; Sundararajan, Vignesh; George, Shinomol; Sheik Mohideen, Sahabudeen

    2018-01-29

    Skin forms an important part of human innate immune system. Wrinkles, thinning and roughening of skin are some of the symptoms that affect the skin as it ages. Reactive oxygen species induced oxidative stress plays a major role in skin aging by modulating the elastase enzyme level in the skin. Extrinsic factors that affect skin aging such as UV radiation can also cause malignant melanoma. Here we selected four medicinal plant materials, namely, leaves of Nyctanthes arbor-tristis, unripe and ripe Aegle marmelos fruit pulp and the terminal meristem of Musa paradisiaca flower and investigated their anti-aging properties and cytotoxicity in vitro individually as well as in a poly herbal formulation containing the four plant extracts in different ratios. The phytochemical contents of the plant extracts were investigated for radical scavenging activity and total reducing power. Based upon its anti-oxidant properties, a poly herbal formulation containing leaves of Nyctanthes arbor-tristis, unripe and ripe fruit pulp of Aegle marmelos, and the terminal meristem of Musa paradisiaca flower in the ratio 6:2:1:1 (Poly Herbal Formulation 1) and 1:1:1:1 (Poly Herbal Formulation 2), respectively were formulated. It has been observed that the Poly Herbal Formulation 1 was more potent than Poly Herbal Formulation 2 due to better anti-oxidant and anti-elastase activities in NIH3T3 fibroblast cells. In addition Poly Herbal formulation 1 also had better anti-cancer activity in human malignant melanoma cells. Based on these results these beneficial plant extracts were identified for its potential application as an anti-aging agent in skin creams as well as an anti-proliferation compound against cancer cells.

  17. Pre-vascularization Enhances Therapeutic Effects of Human Mesenchymal Stem Cell Sheets in Full Thickness Skin Wound Repair.

    PubMed

    Chen, Lei; Xing, Qi; Zhai, Qiyi; Tahtinen, Mitchell; Zhou, Fei; Chen, Lili; Xu, Yingbin; Qi, Shaohai; Zhao, Feng

    2017-01-01

    Split thickness skin graft (STSG) implantation is one of the standard therapies for full thickness wound repair when full thickness autologous skin grafts (FTG) or skin flap transplants are inapplicable. Combined transplantation of STSG with dermal substitute could enhance its therapeutic effects but the results remain unsatisfactory due to insufficient blood supply at early stages, which causes graft necrosis and fibrosis. Human mesenchymal stem cell (hMSC) sheets are capable of accelerating the wound healing process. We hypothesized that pre-vascularized hMSC sheets would further improve regeneration by providing more versatile angiogenic factors and pre-formed microvessels. In this work, in vitro cultured hMSC cell sheets (HCS) and pre-vascularized hMSC cell sheets (PHCS) were implanted in a rat full thickness skin wound model covered with an autologous STSG. Results demonstrated that the HCS and the PHCS implantations significantly reduced skin contraction and improved cosmetic appearance relative to the STSG control group. The PHCS group experienced the least hemorrhage and necrosis, and lowest inflammatory cell infiltration. It also induced the highest neovascularization in early stages, which established a robust blood micro-circulation to support grafts survival and tissue regeneration. Moreover, the PHCS grafts preserved the largest amount of skin appendages, including hair follicles and sebaceous glands, and developed the smallest epidermal thickness. The superior therapeutic effects seen in PHCS groups were attributed to the elevated presence of growth factors and cytokines in the pre-vascularized cell sheet, which exerted a beneficial paracrine signaling during wound repair. Hence, the strategy of combining STSG with PHCS implantation appears to be a promising approach in regenerative treatment of full thickness skin wounds.

  18. Spatial cues serving the tactile directional sensibility of the human forearm.

    PubMed Central

    Norrsell, U; Olausson, H

    1994-01-01

    1. Tactile directional sensibility is considered to rely on the parallel processing of direction-contingent sensory data that depend on skin stretching caused by friction, and spatial cues that vary with time. A temperature-controlled airstream stimulus that prevented the activation of stretch receptors was used to investigate directional sensibility for the skin of the forearm. 2. The dependence on contact load and distance of movement was determined for normal subjects with a two-alternative forced-choice method. Testing was performed under two conditions, elbow bent or straight. Bracing the skin by straightening the arm did not alter the accuracy of the directional sensibility, in contrast to previous findings with stimuli that caused friction. 3. The accuracy of directional sensibility was correlated linearly to the logarithm of the distance of movement of the air jet. No correlation was found between accuracy and contact load, unlike findings with stimuli that cause friction. 4. Measurements were made with different subjects to determine the threshold distance at constant load. On average, subjects were able to distinguish direction with movements of < or = 8 mm. This acuity is sharper than has been reported with static stimuli. There was no correlation between subjects' threshold distances for judging direction and spatial acuity measured with absolute point localization. 5. The ability to distinguish direction was poor for the airstream stimulus compared with stimuli causing frictional contact with hairy skin. Nevertheless, the present findings are consistent with the suggestion that cutaneous spatial acuity is better for dynamic than for static stimuli. Images Figure 1 PMID:7965863

  19. Near-infrared thermo-optical response of the localized reflectance of intact diabetic and nondiabetic human skin.

    PubMed

    Yeh, Shu-Jen; Khalil, Omar S; Hanna, Charles F; Kantor, Stanislaw

    2003-07-01

    We observed a difference in the thermal response of localized reflectance signal of human skin between type 2 diabetics and nondiabetics. We investigated the use of this thermo-optical behavior as the basis for a noninvasive method for the determination of the diabetic status of a subject. We used a two-site temperature differential method, which is predicated upon the measurement of localized reflectance from two areas on the surface of the skin. Each of these areas is subjected to a different thermal perturbation. The response of localized reflectance to temperature perturbation was measured and used in a classification algorithm. We used a discriminant function to classify subjects as diabetic or nondiabetic. In a prediction set of twenty-four noninvasive tests collected from six diabetic and six nondiabetic subjects, the sensitivity ranged between 73 and 100%, and the specificity ranged between 75 and 100%, depending on the thermal conditions and the probe-skin contact time. The difference in the thermo-optical response of the skin of the two groups is explained in terms of a difference in the response of cutaneous microcirculation, which is manifested as a difference in the near-infrared light absorption. Another factor is the difference in the temperature response of the scattering coefficient between the two groups, which may be caused by cutaneous structural differences induced by nonenzymatic glycation of skin protein fibers, and possibly by the difference in blood cell aggregation. (c) 2003 Society of Photo-Optical Instrumentation Engineers.

  20. The Environment and the Microbial Ecology of Human Skin

    PubMed Central

    McBride, Mollie E.; Duncan, W. Christopher; Knox, J. M.

    1977-01-01

    Microbial flora of the skin of three human population groups representing different natural environments was examined quantitatively and qualitatively to determine whether environmental differences in temperature and humidity can influence the microbial flora of normal skin. Five anatomical skin sites - hands, back, axillae, groin, and feet - were sampled from 10 subjects working in a high-humidity, high-temperature environment, 10 subjects from a low-temperature, high-humidity environment, and 10 subjects working in a moderate-temperature and low-humidity environment. Bacterial populations were significantly larger from the back, axillae, and feet in individuals from the high-temperature and high-humidity environment as compared to the moderate-temperature, low-humidity environment. High humidity and low temperature had no significant effect on total populations, but this group showed a higher frequency of isolation of fungi, and gram-negative bacteria from the back and feet. Although there was an indication that increase in the environmental humidity could result in an increased frequency of isolation of gram-negative bacteria, there was no evidence that an increase in either temperature or humidity altered the relative proportions of gram-negative bacteria in the predominantly gram-positive microbial flora found on normal skin. It was concluded that, although climatic changes may cause fluctation in microbial populations from certain sites, they are not a major influence on the ecology of the microbial flora of normal skin in the natural environment. The variables introduced by studying individuals in their natural environment and the influence of these on the results are discussed. PMID:16345214

  1. Time course pathogenesis of sulphur mustard-induced skin lesions in mouse model.

    PubMed

    Lomash, Vinay; Jadhav, Sunil E; Vijayaraghavan, Rajagopalan; Pant, Satish C

    2013-08-01

    Sulphur mustard (SM) is a bifunctional alkylating agent that causes cutaneous blistering in humans and animals. In this study, we have presented closer views on pathogenesis of SM-induced skin injury in a mouse model. SM diluted in acetone was applied once dermally at a dose of 5 or 10 mg/kg to Swiss albino mice. Skin was dissected out at 0, 1, 3, 6, 12, 24, 48, 72 and 168 hours, post-SM exposure for studying histopathological changes and immunohistochemistry of inflammatory-reparative biomarkers, namely, transforming growth factor alpha (TGF-α), fibroblast growth factor (FGF), endothelial nitric oxide synthase (eNOS) and interlukin 6 (IL-6). Histopathological changes were similar to other mammalian species and basal cell damage resembled the histopathological signs observed with vesication in human skin. Inflammatory cell recruitment at the site of injury was supported by differential expressions of IL-6 at various stages. Time-dependent expressions of eNOS played pivotal roles in all the events of wound healing of SM-induced skin lesions. TGF-α and FGF were strongly associated with keratinocyte migration, re-epithelialisation, angiogenesis, fibroblast proliferation and cell differentiation. Furthermore, quantification of the tissue leukocytosis and DNA damage along with semiquantitative estimation of re-epithelialisation, fibroplasia and neovascularisation on histomorphologic scale could be efficiently used for screening the efficacy of orphan drugs against SM-induced skin injury. © 2012 The Authors. International Wound Journal © 2012 John Wiley & Sons Ltd and Medicalhelplines.com Inc.

  2. An approach for development of alternative test methods based on mechanisms of skin irritation.

    PubMed

    Osborne, R; Perkins, M A

    1994-02-01

    Recent advances in techniques for culture of human skin cells have led to their potential for use as in vitro models for skin irritation testing to augment or replace existing rabbit skin patch tests. Our work is directed towards the development of cultured human skin cells, together with endpoints that can be linked to in vivo mechanisms of skin irritation, as in vitro models for prediction of human skin irritation, and for study of mechanisms of contact irritant dermatitis. Three types of commercial human skin cell cultures have been evaluated, epidermal keratinocytes and partially or fully cornified keratinocyte-dermal fibroblast co-cultures. Human epidermal keratinocyte cultures (Clonetics) were treated with product ingredients and formulations, and the extent of cell damage was assessed by incorporation of the vital dye neutral red. Cell damage correlated with human skin patch data for ingredient chemicals with the exception of acids and alkalis, but did not correlate with skin irritation to surfactant-containing product formulations. Cultures of human skin equivalents were evaluated as potential models for measurement of responses to test materials that could not be measured in the keratinocyte/neutral red assay. We developed a battery of in vitro endpoints to measure responses to prototype ingredients and formulations in human epidermal keratinocyte-dermal fibroblast co-cultures grown on a nylon mesh ('Skin2' from Advanced Tissue Sciences) or on a collagen gel ('Testskin' from Organogenesis). The endpoints measure cytotoxicity (neutral red and MTT vital dye staining, lactate dehydrogenase and N-acetyl glucosaminidase release, glucose utilization) and inflammatory mediator (prostaglandin E2) release. Initial experiments indicate a promising correlation between responses of the Skin2 model to prototype surfactants and in vivo human skin irritation. The responses of Testskin cultures to acids and alkalis help to prove the concept that a topical application model can measure responses to these materials. These results suggest that human skin cell models can provide useful systems for preclinical skin irritation assessments, as alternatives to rabbits, for at least certain classes of test substances.

  3. Genetic Analysis of Mice Skin Exposed by Hyper-Gravity

    NASA Astrophysics Data System (ADS)

    Takahashi, Rika; Terada, Masahiro; Seki, Masaya; Higashibata, Akira; Majima, Hideyuki J.; Ohira, Yoshinobu; Mukai, Chiaki; Ishioka, Noriaki

    2013-02-01

    In the space environment, physiological alterations, such as low bone density, muscle weakness and decreased immunity, are caused by microgravity and cosmic radiation. On the other hand, it is known that the leg muscles are hypertrophy by 2G-gravity. An understanding of the effects on human body from microgravity to hyper-gravity is very important. Recently, the Japan Aerospace Exploration Agency (JAXA) has started a project to detect the changes on gene expression and mineral metabolism caused by microgravity by analyzing the hair of astronauts who stay in the international Space Station (ISS) for a long time. From these results of human hair’s research, the genetic effects of human hair roots by microgravity will become clear. However, it is unclear how the gene expression of hair roots was effected by hypergravity. Therefore, in this experiment, we analyzed the effect on mice skin contained hair roots by comparing microgravity or hypergravity exposed mice. The purpose of this experiment is to evaluate the genetic effects on mice skin by microgravity or 2G-gravity. The samples were taken from mice exposed to space flight (FL) or hypergravity environment (2G) for 3-months, respectively. The extracted and amplified RNA from these mice skin was used to DNA microarray analysis. in this experiment, we analyzed the effect of gravity by using mice skin contained hair roots, which exposed space (FL) and hyper-gravity (2G) for 3 months and each control. By DNA microarray analysis, we found the common 98 genes changed in both FL and 2G. Among these 98 genes, the functions and pathways were identified by Gene Ontology (GO) analysis and Ingenuity Pathways Analysis (IPA) software. Next, we focused the one of the identified pathways and compared the effects on each molecules in this pathways by the different environments, such as FL and 2G. As the results, we could detect some interesting molecules, which might be depended on the gravity levels. In addition, to investigate the relationships between genes and protein expression, the proteome analysis was performed. From the result of 2-dimentional electrophoresis, we could detect the some different spots between FL and 2G. These identifications are now in progress using by MALDI-TOF-MS/MS. These results suggested that many genes or proteins on the mice skin might be effected by the different gravity levels.

  4. Anti-inflammaging and antiglycation activity of a novel botanical ingredient from African biodiversity (Centevita™)

    PubMed Central

    Maramaldi, Giada; Togni, Stefano; Franceschi, Federico; Lati, Elian

    2014-01-01

    Purpose The aim of this study was to investigate the topical efficacy of a new purified extract from Madagascar, Gotu Kola (Centella asiatica [L.] Urban), both on human explants and on human volunteers, in relation to skin wrinkling and skin protection against ultraviolet light exposure. The extract, with a peculiar content of biologically active molecules, was investigated as a novel anti-inflammaging and antiglycation agent. Its typical terpenes, known as collagen synthesis promoters, represent at least 45% of the extract. It also contains a polyphenolic fraction cooperating to the observed properties. Methods C. asiatica purified extract was assayed on human skin explants maintained alive, and several parameters were evaluated. Among the most relevant, the thymine dimerization was evaluated by immunostaining. Malondialdehyde formation was evaluated as free-radical scavenging marker by enzyme-linked immunosorbent assay. The expression of interleukin-1α was observed by enzyme-linked immunosorbent assay as well. The product was further evaluated as an antiglycation agent, being glycation quantified by the advanced glycation product carboxymethyl lysine. C. asiatica purified extract was also evaluated as an antiwrinkling agent in a single-blind, placebo-controlled study. Formulated in a simple oil-in-water emulsion, the extent of wrinkling was assessed by skin replicas, skin firmness, skin elasticity, and collagen density measurements. Results C. asiatica purified extract could protect DNA from ultraviolet light-induced damage, decreasing the thymine photodimerization by over 28% (P<0.05). A reduced (26%, P<0.01) expression of interleukin-1α was also observed, supporting its anti-inflammatory potential. C. asiatica purified extract showed in vitro a total inhibition of carboxymethyl lysine formation induced by the glycating agent methylglyoxal. A clear epidermal densification of collagen network in the papillary dermis was observed. These in vitro data have been confirmed by clinical results. Conclusion These results qualify C. asiatica purified extract as an antiaging ingredient, addressing skin damage caused by inflammaging and glycation by relying on the synergy of triterpens and polyphenolics. PMID:24376360

  5. Anti-inflammaging and antiglycation activity of a novel botanical ingredient from African biodiversity (Centevita™).

    PubMed

    Maramaldi, Giada; Togni, Stefano; Franceschi, Federico; Lati, Elian

    2014-01-01

    The aim of this study was to investigate the topical efficacy of a new purified extract from Madagascar, Gotu Kola (Centella asiatica [L.] Urban), both on human explants and on human volunteers, in relation to skin wrinkling and skin protection against ultraviolet light exposure. The extract, with a peculiar content of biologically active molecules, was investigated as a novel anti-inflammaging and antiglycation agent. Its typical terpenes, known as collagen synthesis promoters, represent at least 45% of the extract. It also contains a polyphenolic fraction cooperating to the observed properties. C. asiatica purified extract was assayed on human skin explants maintained alive, and several parameters were evaluated. Among the most relevant, the thymine dimerization was evaluated by immunostaining. Malondialdehyde formation was evaluated as free-radical scavenging marker by enzyme-linked immunosorbent assay. The expression of interleukin-1α was observed by enzyme-linked immunosorbent assay as well. The product was further evaluated as an antiglycation agent, being glycation quantified by the advanced glycation product carboxymethyl lysine. C. asiatica purified extract was also evaluated as an antiwrinkling agent in a single-blind, placebo-controlled study. Formulated in a simple oil-in-water emulsion, the extent of wrinkling was assessed by skin replicas, skin firmness, skin elasticity, and collagen density measurements. C. asiatica purified extract could protect DNA from ultraviolet light-induced damage, decreasing the thymine photodimerization by over 28% (P<0.05). A reduced (26%, P<0.01) expression of interleukin-1α was also observed, supporting its anti-inflammatory potential. C. asiatica purified extract showed in vitro a total inhibition of carboxymethyl lysine formation induced by the glycating agent methylglyoxal. A clear epidermal densification of collagen network in the papillary dermis was observed. These in vitro data have been confirmed by clinical results. These results qualify C. asiatica purified extract as an antiaging ingredient, addressing skin damage caused by inflammaging and glycation by relying on the synergy of triterpens and polyphenolics.

  6. About possibility of temperature trace observing on the human skin using commercially available IR camera

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.; Shestakov, Ivan L.; Blednov, Roman G.

    2016-09-01

    One of urgent security problems is a detection of objects placed inside the human body. Obviously, for safety reasons one cannot use X-rays for such object detection widely and often. Three years ago, we have demonstrated principal possibility to see a temperature trace, induced by food eating or water drinking, on the human body skin by using a passive THz camera. However, this camera is very expensive. Therefore, for practice it will be very convenient if one can use the IR camera for this purpose. In contrast to passive THz camera using, the IR camera does not allow to see the object under clothing, if an image, produced by this camera, is used directly. Of course, this is a big disadvantage for a security problem solution based on the IR camera using. To overcome this disadvantage we develop novel approach for computer processing of IR camera images. It allows us to increase a temperature resolution of IR camera as well as increasing of human year effective susceptibility. As a consequence of this, a possibility for seeing of a human body temperature changing through clothing appears. We analyze IR images of a person, which drinks water and eats chocolate. We follow a temperature trace on human body skin, caused by changing of temperature inside the human body. Some experiments were made with measurements of a body temperature covered by T-shirt. Shown results are very important for the detection of forbidden objects, cancelled inside the human body, by using non-destructive control without using X-rays.

  7. Potential Factors Enabling Human Body Colonization by Animal Streptococcus dysgalactiae subsp. equisimilis Strains.

    PubMed

    Ciszewski, Marcin; Szewczyk, Eligia M

    2017-05-01

    Streptococcus dysgalactiae subsp. equisimilis (SDSE) is a pyogenic, Lancefield C or G streptococcal pathogen. Until recently, it has been considered as an exclusive animal pathogen. Nowadays, it is responsible for both animal infections in wild animals, pets, and livestock and human infections often clinically similar to the ones caused by group A streptococcus (Streptococcus pyogenes). The risk of zoonotic infection is the most significant in people having regular contact with animals, such as veterinarians, cattlemen, and farmers. SDSE is also prevalent on skin of healthy dogs, cats, and horses, which pose a risk also to people having contact with companion animals. The main aim of this study was to evaluate if there are features differentiating animal and human SDSE isolates, especially in virulence factors involved in the first stages of pathogenesis (adhesion and colonization). Equal groups of human and animal SDSE clinical strains were obtained from superficial infections (skin, wounds, abscesses). The presence of five virulence genes (prtF1, prtF2, lmb, cbp, emm type) was evaluated, as well as ability to form bacterial biofilm and produce BLIS (bacteriocin-like inhibitory substances) which are active against human skin microbiota. The study showed that the presence of genes coding for fibronectin-binding protein and M protein, as well as BLIS activity inhibiting the growth of Corynebacterium spp. strains might constitute the virulence factors which are necessary to colonize human organism, whereas they are not crucial in animal infections. Those virulence factors might be horizontally transferred from human streptococci to animal SDSE strains, enabling their ability to colonize human organism.

  8. Epidermal Rac1 regulates the DNA damage response and protects from UV-light-induced keratinocyte apoptosis and skin carcinogenesis

    PubMed Central

    Deshmukh, Jayesh; Pofahl, Ruth; Haase, Ingo

    2017-01-01

    Non-melanoma skin cancer (NMSC) is the most common type of cancer. Increased expression and activity of Rac1, a small Rho GTPase, has been shown previously in NMSC and other human cancers; suggesting that Rac1 may function as an oncogene in skin. DMBA/TPA skin carcinogenesis studies in mice have shown that Rac1 is required for chemically induced skin papilloma formation. However, UVB radiation by the sun, which causes DNA damage, is the most relevant cause for NMSC. A potential role of Rac1 in UV-light-induced skin carcinogenesis has not been investigated so far. To investigate this, we irradiated mice with epidermal Rac1 deficiency (Rac1-EKO) and their controls using a well-established protocol for long-term UV-irradiation. Most of the Rac1-EKO mice developed severe skin erosions upon long-term UV-irradiation, unlike their controls. These skin erosions in Rac1-EKO mice healed subsequently. Surprisingly, we observed development of squamous cell carcinomas (SCCs) within the UV-irradiation fields. This shows that the presence of Rac1 in the epidermis protects from UV-light-induced skin carcinogenesis. Short-term UV-irradiation experiments revealed increased UV-light-induced apoptosis of Rac1-deficient epidermal keratinocytes in vitro as well as in vivo. Further investigations using cyclobutane pyrimidine dimer photolyase transgenic mice revealed that the observed increase in UV-light-induced keratinocyte apoptosis in Rac1-EKO mice is DNA damage dependent and correlates with caspase-8 activation. Furthermore, Rac1-deficient keratinocytes showed reduced levels of p53, γ-H2AX and p-Chk1 suggesting an attenuated DNA damage response upon UV-irradiation. Taken together, our data provide direct evidence for a protective role of Rac1 in UV-light-induced skin carcinogenesis and keratinocyte apoptosis probably through regulating mechanisms of the DNA damage response and repair pathways. PMID:28277539

  9. Epidermal Rac1 regulates the DNA damage response and protects from UV-light-induced keratinocyte apoptosis and skin carcinogenesis.

    PubMed

    Deshmukh, Jayesh; Pofahl, Ruth; Haase, Ingo

    2017-03-09

    Non-melanoma skin cancer (NMSC) is the most common type of cancer. Increased expression and activity of Rac1, a small Rho GTPase, has been shown previously in NMSC and other human cancers; suggesting that Rac1 may function as an oncogene in skin. DMBA/TPA skin carcinogenesis studies in mice have shown that Rac1 is required for chemically induced skin papilloma formation. However, UVB radiation by the sun, which causes DNA damage, is the most relevant cause for NMSC. A potential role of Rac1 in UV-light-induced skin carcinogenesis has not been investigated so far. To investigate this, we irradiated mice with epidermal Rac1 deficiency (Rac1-EKO) and their controls using a well-established protocol for long-term UV-irradiation. Most of the Rac1-EKO mice developed severe skin erosions upon long-term UV-irradiation, unlike their controls. These skin erosions in Rac1-EKO mice healed subsequently. Surprisingly, we observed development of squamous cell carcinomas (SCCs) within the UV-irradiation fields. This shows that the presence of Rac1 in the epidermis protects from UV-light-induced skin carcinogenesis. Short-term UV-irradiation experiments revealed increased UV-light-induced apoptosis of Rac1-deficient epidermal keratinocytes in vitro as well as in vivo. Further investigations using cyclobutane pyrimidine dimer photolyase transgenic mice revealed that the observed increase in UV-light-induced keratinocyte apoptosis in Rac1-EKO mice is DNA damage dependent and correlates with caspase-8 activation. Furthermore, Rac1-deficient keratinocytes showed reduced levels of p53, γ-H2AX and p-Chk1 suggesting an attenuated DNA damage response upon UV-irradiation. Taken together, our data provide direct evidence for a protective role of Rac1 in UV-light-induced skin carcinogenesis and keratinocyte apoptosis probably through regulating mechanisms of the DNA damage response and repair pathways.

  10. An Interesting Case Report of Hematohidrosis.

    PubMed

    Jayaraman, Anu Rita; Kannan, P; Jayanthini, V

    2017-01-01

    Hematohidrosis or hematidrosis is a rare condition in which a human being sweats blood. Psychogenic cause is found to be the most frequent cause among other causes such as systemic disease and vicarious menstruation. This is a case report of a 10-year-old girl with oozing of blood from intact skin of scalp. Underlying intense fear secondary to psychosocial stressor was identified and a provisional diagnosis of mixed anxiety and depressive disorder was made. Pharmacotherapy and psychotherapy were followed by complete remission. It was inferred from this experience that hematohidrosis is a treatable condition if the underlying cause is correctly identified.

  11. A COL7A1 Mutation Causes Dystrophic Epidermolysis Bullosa in Rotes Höhenvieh Cattle

    PubMed Central

    Menoud, Annie; Welle, Monika; Tetens, Jens; Lichtner, Peter; Drögemüller, Cord

    2012-01-01

    We identified a congenital mechanobullous skin disorder in six calves on a single farm of an endangered German cattle breed in 2010. The condition presented as a large loss of skin distal to the fetlocks and at the mucosa of the muzzle. All affected calves were euthanized on humane grounds due to the severity, extent and progression of the skin and oral lesions. Examination of skin samples under light microscopy revealed detachment of the epidermis from the dermis at the level of the dermo epidermal junction, leading to the diagnosis of a subepidermal bullous dermatosis such as epidermolysis bullosa. The pedigree was consistent with monogenic autosomal recessive inheritance. We localized the causative mutation to an 18 Mb interval on chromosome 22 by homozygosity mapping. The COL7A1 gene encoding collagen type VII alpha 1 is located within this interval and COL7A1 mutations have been shown to cause inherited dystrophic epidermolysis bullosa (DEB) in humans. A SNP in the bovine COL7A1 exon 49 (c.4756C>T) was perfectly associated with the observed disease. The homozygous mutant T/T genotype was exclusively present in affected calves and their parents were heterozygous C/T confirming the assumed recessive mode of inheritance. All known cases and genotyped carriers were related to a single cow, which is supposed to be the founder animal. The mutant T allele was absent in 63 animals from 24 cattle breeds. The identified mutation causes a premature stop codon which leads to a truncated protein representing a complete loss of COL7A1 function (p.R1586*). We thus have identified a candidate causative mutation for this genetic disease using only three cases to unravel its molecular basis. Selection against this mutation can now be used to eliminate the mutant allele from the Rotes Höhenvieh breed. PMID:22715415

  12. Age-dependent increase in ortho-tyrosine and methionine sulfoxide in human skin collagen is not accelerated in diabetes. Evidence against a generalized increase in oxidative stress in diabetes.

    PubMed Central

    Wells-Knecht, M C; Lyons, T J; McCance, D R; Thorpe, S R; Baynes, J W

    1997-01-01

    The glycoxidation products Nepsilon-(carboxymethyl)lysine and pentosidine increase in skin collagen with age and at an accelerated rate in diabetes. Their age-adjusted concentrations in skin collagen are correlated with the severity of diabetic complications. To determine the relative roles of increased glycation and/or oxidation in the accelerated formation of glycoxidation products in diabetes, we measured levels of amino acid oxidation products, distinct from glycoxidative modifications of amino acids, as independent indicators of oxidative stress and damage to collagen in aging and diabetes. We show that ortho-tyrosine and methionine sulfoxide are formed in concert with Nepsilon-(carboxymethyl)lysine and pentosidine during glycoxidation of collagen in vitro, and that they also increase with age in human skin collagen. The age-adjusted levels of these oxidized amino acids in collagen was the same in diabetic and nondiabetic subjects, arguing that diabetes per se does not cause an increase in oxidative stress or damage to extracellular matrix proteins. These results provide evidence for an age-dependent increase in oxidative damage to collagen and support previous conclusions that the increase in glycoxidation products in skin collagen in diabetes can be explained by the increase in glycemia alone, without invoking a generalized, diabetes-dependent increase in oxidative stress. PMID:9259583

  13. Ultrasonic Stimulation of Mouse Skin Reverses the Healing Delays in Diabetes and Aging by Activation of Rac1.

    PubMed

    Roper, James A; Williamson, Rosalind C; Bally, Blandine; Cowell, Christopher A M; Brooks, Rebecca; Stephens, Phil; Harrison, Andrew J; Bass, Mark D

    2015-11-01

    Chronic skin-healing defects are one of the leading challenges to lifelong well-being, affecting 2-5% of populations. Chronic wound formation is linked to age and diabetes and frequently leads to major limb amputation. Here we identify a strategy to reverse fibroblast senescence and improve healing rates. In healthy skin, fibronectin activates Rac1 in fibroblasts, causing migration into the wound bed, and driving wound contraction. We discover that mechanical stimulation of the skin with ultrasound can overturn healing defects by activating a calcium/CamKinaseII/Tiam1/Rac1 pathway that substitutes for fibronectin-dependent signaling and promotes fibroblast migration. Treatment of diabetic and aged mice recruits fibroblasts to the wound bed and reduces healing times by 30%, restoring healing rates to those observed in young, healthy animals. Ultrasound treatment is equally effective in rescuing the healing defects of animals lacking fibronectin receptors, and can be blocked by pharmacological inhibition of the CamKinaseII pathway. Finally, we discover that the migration defects of fibroblasts from human venous leg ulcer patients can be reversed by ultrasound, demonstrating that the approach is applicable to human chronic samples. By demonstrating that this alternative Rac1 pathway can substitute for that normally operating in the skin, we identify future opportunities for management of chronic wounds.

  14. Feasibility of Human Skin Grafts on an Isolated but Accessible Vascular Supply on Athymic Rats as a System to Study Percutaneous Penetration and Cutaneous Injury.

    DTIC Science & Technology

    1983-11-01

    HUMAN SKIN GRAFTS ON AN ISOLATED BUT ACCESSIBLE VASCULAR SUPPLY ON ATHYMIC RATS AS A SYSTEM TO STUDY PERCUTANEOUS PENETRATION AND CUTANEOUS INJURY...RECIPIENT’S CATALOG NUMBER 4. TITLE (aend Subtitle) S. TYPE OF REPORT & PERIOD COVERED Feasibility of Human Skin Grafts on an Isolated Annual report...Human skin graft on athymic rat Human skin model to study percutaneous penetration and cutaneous injury 20. ABSTRACT (Contiue an reverse *ftb it

  15. Thermal inactivation of Salmonella Typhimurium on dressed chicken skin previously exposed to acidified sodium chlorite or carvacrol

    USDA-ARS?s Scientific Manuscript database

    Salmonella is a leading cause of foodborne illness, and live poultry is a main reservoir of this pathogen. Cross-contamination and transportation of contaminated poultry meat act as an important vehicle of Salmonella infections in humans. In this study, we assessed the effect of two antimicrobials:...

  16. RECENT ADVANCES IN ARSENIC CARCINOGENESIS: MODES OF ACTION, ANIMAL MODEL SYSTEMS AND METHYLATED ARSENIC METABOLITES

    EPA Science Inventory


    Abstract:

    Recent advances in our knowledge of arsenic carcinogenesis include the development of rat or mouse models for all human organs in which inorganic arsenic is known to cause cancer -skin, lung, urinary bladder, liver and kidney. Tumors can be produced from eit...

  17. Disruption of the Arabidopsis CGI-58 homologue produces Chanarin-Dorfman-like lipodystrophy in plants

    USDA-ARS?s Scientific Manuscript database

    CGI-58 is the defective gene in the human neutral lipid storage disease called Chanarin-Dorfman syndrome. This disorder causes intracellular lipid droplets to accumulate in nonadipose tissues, such as skin and blood cells. Here, disruption of the homologous CGI-58 gene in Arabidopsis thaliana result...

  18. 21 CFR 524.1484b - Neomycin, isoflupredone, tetracaine, and myristyl-gamma-picolinium powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.1484b Neomycin, isoflupredone, tetracaine, and myristyl-gamma.... For the treatment or as adjunctive therapy of certain ear and skin conditions caused by or associated...

  19. Resveratrol-Enriched Rice Attenuates UVB-ROS-Induced Skin Aging via Downregulation of Inflammatory Cascades

    PubMed Central

    Lee, Taek Hwan; Wahedi, Hussain Mustatab; Baek, So-Hyeon

    2017-01-01

    The skin is the outermost protective barrier between the internal and external environments in humans. Chronic exposure to ultraviolet (UV) radiation is a major cause of skin aging. UVB radiation penetrates the skin and induces ROS production that activates three major skin aging cascades: matrix metalloproteinase- (MMP-) 1-mediated aging; MAPK-AP-1/NF-κB-TNF-α/IL-6, iNOS, and COX-2-mediated inflammation-induced aging; and p53-Bax-cleaved caspase-3-cytochrome C-mediated apoptosis-induced aging. These mechanisms are collectively responsible for the wrinkling and photoaging characteristic of UVB-induced skin aging. There is an urgent requirement for a treatment that not only controls these pathways to prevent skin aging but also avoids the adverse effects often encountered when applying bioactive compounds in concentrated doses. In this study, we investigated the efficacy of genetically modified normal edible rice (NR) that produces the antiaging compound resveratrol (R) as a treatment for skin aging. This resveratrol-enriched rice (RR) overcomes the drawbacks of R and enhances its antiaging potential by controlling the abovementioned three major pathways of skin aging. RR does not exhibit the toxicity of R alone and promisingly downregulates the pathways underlying UVB-ROS-induced skin aging. These findings advocate the use of RR as a nutraceutical for antiaging purposes. PMID:28900534

  20. A flexible skin piloerection monitoring sensor

    NASA Astrophysics Data System (ADS)

    Kim, Jaemin; Seo, Dae Geon; Cho, Young-Ho

    2014-06-01

    We have designed, fabricated, and tested a capacitive-type flexible micro sensor for measurement of the human skin piloerection arisen from sudden emotional and environmental change. The present skin piloerection monitoring methods are limited in objective and quantitative measurement by physical disturbance stimulation to the skin due to bulky size and heavy weight of measuring devices. The proposed flexible skin piloerection monitoring sensor is composed of 3 × 3 spiral coplanar capacitor array using conductive polymer for having high capacitive density and thin enough thickness to be attached to human skin. The performance of the skin piloerection monitoring sensor is characterized using the artificial bump, representing human skin goosebump; thus, resulting in the sensitivity of -0.00252%/μm and the nonlinearity of 25.9% for the artificial goosebump deformation in the range of 0-326 μm. We also verified successive human skin piloerection having 3.5 s duration on the subject's dorsal forearms, thus resulting in the capacitance change of -6.2 fF and -9.2 fF for the piloerection intensity of 145 μm and 194 μm, respectively. It is demonstrated experimentally that the proposed sensor is capable to measure the human skin piloerection objectively and quantitatively, thereby suggesting the quantitative evaluation method of the qualitative human emotional status for cognitive human-machine interfaces applications.

  1. Prolonged fever and splenic lesions caused by Malassezia restricta in an immunocompromised patient.

    PubMed

    de St Maurice, Annabelle; Frangoul, Haydar; Coogan, Alice; Williams, John V

    2014-12-01

    Malassezia species are commonly found on human skin as commensals but can cause invasive infections in premature infants and immunocompromised hosts. Due to their fastidious growth, diagnosis of Malassezia infections can prove challenging. Molecular techniques can aid in diagnosis and treatment of invasive infections. We describe the case of a pediatric oncology patient with splenic lesions secondary to Malassezia restricta. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Topical stabilized retinol treatment induces the expression of HAS genes and HA production in human skin in vitro and in vivo.

    PubMed

    Li, Wen-Hwa; Wong, Heng-Kuan; Serrano, José; Randhawa, Manpreet; Kaur, Simarna; Southall, Michael D; Parsa, Ramine

    2017-05-01

    Skin Aging manifests primarily with wrinkles, dyspigmentations, texture changes, and loss of elasticity. During the skin aging process, there is a loss of moisture and elasticity in skin resulting in loss of firmness finally leading to skin sagging. The key molecule involved in skin moisture is hyaluronic acid (HA), which has a significant water-binding capacity. HA levels in skin decline with age resulting in decrease in skin moisture, which may contribute to loss of firmness. Clinical trials have shown that topically applied ROL effectively reduces wrinkles and helps retain youthful appearance. In the current study, ROL was shown to induce HA production and stimulates the gene expression of all three forms of hyaluronic acid synthases (HAS) in normal human epidermal keratinocytes monolayer cultures. Moreover, in human skin equivalent tissues and in human skin explants, topical treatment of tissues with a stabilized-ROL formulation significantly induced the gene expression of HAS mRNA concomitant with an increased HA production. Finally, in a vehicle-controlled human clinical study, histochemical analysis confirmed increased HA accumulation in the epidermis in ROL-treated human skin as compared to vehicle. These results show that ROL increases skin expression of HA, a significant contributing factor responsible for wrinkle formation and skin moisture, which decrease during aging. Taken together with the activity to increase collagen, elastin, and cell proliferation, these studies establish that retinol provides multi-functional activity for photodamaged skin.

  3. [The clinical use of cryopreserved human skin allografts for transplantation].

    PubMed

    Martínez-Flores, Francisco; Chacón-Gómez, María; Madinaveitia-Villanueva, Juan Antonio; Barrera-Lopez, Araceli; Aguirre-Cruz, Lucinda; Querevalu-Murillo, Walter

    2015-01-01

    The biological recovery of human skin allografts is the gold standard for preservation in Skin Banks. However, there is no worldwide consensus about specific allocation criteria for preserved human skin allografts with living cells. A report is presented on the results of 5 years of experience of using human skin allografts in burned patient in the Skin and Tissue Bank at the "Instituto Nacional de Rehabilitacion" The human skin allografts were obtained from multi-organ donors. processed and preserved at -80 °C for 12 months. Allocation criteria were performed according to blood type match, clinical history, and burned body surface. Up to now, the Skin and Tissue Bank at 'Instituto Nacional de Rehabilitacion" has processed and recovered 125,000 cm(2) of human skin allografts. It has performed 34 surgical implants on 21 burned patients. The average of burn body surface was 59.2%. More than two-thirds (67.7%) of recipients of skin allografts were matched of the same to type blood of the donor, and 66.6% survived after 126 days hospital stay. It is proposed to consider recipient's blood group as allocation criteria to assign tissue; and use human skin allografts on patiens affected with burns over 30% of body surface (according the "rule of the 9"). Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  4. Sunlight and Skin Cancer: Lessons from the Immune System

    PubMed Central

    Ullrich, Stephen E.

    2009-01-01

    The ultraviolet (UV) radiation in sunlight induces skin cancer development. Skin cancer is the most common form of human neoplasia. Estimates suggest that in excess of 1.5 million new cases of skin cancer (www.cancer.org/statistics) will be diagnosed in the United States this year Fortunately, because of their highly visible location, skin cancers are more rapidly diagnosed and more easily treated than other types of cancer. Be that as it may, approximately 10,000 Americans a year die from skin cancer, and the cost of treating skin cancer in the United States (both melanoma and non-melanoma skin cancer) is estimated to be in excess of $2.9 billion a year. In addition to causing skin cancer, UV radiation is also immune suppressive. In fact, data from studies with both experimental animals and biopsy proven skin cancer patients suggest that there is an association between the immune suppressive effects of UV radiation and its carcinogenic potential. Recent studies in my laboratory have focused on understanding the initial molecular events that induce immune suppression. We made two novel observations: First UV-induced keratinocyte-derived platelet activating factor plays a role in the induction of immune suppression. Second, cis-urocanic acid, a skin derived immunosuppressive compound mediates immune suppression by binding to serotonin receptors on target cells. Recent findings suggest that blocking the binding of these compounds to their receptors not only inhibits UV-induced immune suppression but it also interferes with skin cancer induction. PMID:17443748

  5. Report of two paediatric cases of central line infections caused by species of the genus Kocuria

    PubMed Central

    Hamula, Camille L.; Dingle, Tanis C.

    2016-01-01

    Introduction: Species of the genus Kocuria are Gram-positive cocci of the family Micrococcacceae that are ubiquitous in the environment and part of the normal skin and oral flora in humans. A paucity of cases have been reported of Kocuria as human pathogens and there are currently no evidence-based guidelines for managing these uncommon infections. Case presentation: We present two paediatric cases of central line infections with species of the genus Kocuria that required line removal despite antimicrobial therapy. Conclusion: Species of the genus Kocuria are uncommon human pathogens that have rarely been reported to cause opportunistic infections in both adult and paediatric populations. The cases presented here add to the growing body of literature documenting the pathogenicity of these organisms and the possible need for line removal to achieve clinical cure in central line-associated bacteraemia caused by species of the genus Kocuria. PMID:28348760

  6. 3D bioprinting of functional human skin: production and in vivo analysis.

    PubMed

    Cubo, Nieves; Garcia, Marta; Del Cañizo, Juan F; Velasco, Diego; Jorcano, Jose L

    2016-12-05

    Significant progress has been made over the past 25 years in the development of in vitro-engineered substitutes that mimic human skin, either to be used as grafts for the replacement of lost skin, or for the establishment of in vitro human skin models. In this sense, laboratory-grown skin substitutes containing dermal and epidermal components offer a promising approach to skin engineering. In particular, a human plasma-based bilayered skin generated by our group, has been applied successfully to treat burns as well as traumatic and surgical wounds in a large number of patients in Spain. There are some aspects requiring improvements in the production process of this skin; for example, the relatively long time (three weeks) needed to produce the surface required to cover an extensive burn or a large wound, and the necessity to automatize and standardize a process currently performed manually. 3D bioprinting has emerged as a flexible tool in regenerative medicine and it provides a platform to address these challenges. In the present study, we have used this technique to print a human bilayered skin using bioinks containing human plasma as well as primary human fibroblasts and keratinocytes that were obtained from skin biopsies. We were able to generate 100 cm 2 , a standard P100 tissue culture plate, of printed skin in less than 35 min (including the 30 min required for fibrin gelation). We have analysed the structure and function of the printed skin using histological and immunohistochemical methods, both in 3D in vitro cultures and after long-term transplantation to immunodeficient mice. In both cases, the generated skin was very similar to human skin and, furthermore, it was indistinguishable from bilayered dermo-epidermal equivalents, handmade in our laboratories. These results demonstrate that 3D bioprinting is a suitable technology to generate bioengineered skin for therapeutical and industrial applications in an automatized manner.

  7. Differential susceptibility of primary cultured human skin cells to hypericin PDT in an in vitro model.

    PubMed

    Popovic, A; Wiggins, T; Davids, L M

    2015-08-01

    Skin cancer is the most common cancer worldwide, and its incidence rate in South Africa is increasing. Photodynamic therapy (PDT) has been shown to be an effective treatment modality, through topical administration, for treatment of non-melanoma skin cancers. Our group investigates hypericin-induced PDT (HYP-PDT) for the treatment of both non-melanoma and melanoma skin cancers. However, a prerequisite for effective cancer treatments is efficient and selective targeting of the tumoral cells with minimal collateral damage to the surrounding normal cells, as it is well established that cancer therapies have bystander effects on normal cells in the body, often causing undesirable side effects. The aim of this study was to investigate the cellular and molecular effects of HYP-PDT on normal primary human keratinocytes (Kc), melanocytes (Mc) and fibroblasts (Fb) in an in vitro tissue culture model which represented both the epidermal and dermal cellular compartments of human skin. Cell viability analysis revealed a differential cytotoxic response to a range of HYP-PDT doses in all the human skin cell types, showing that Fb (LD50=1.75μM) were the most susceptible to HYP-PDT, followed by Mc (LD50=3.5μM) and Kc (LD50>4μM HYP-PDT) These results correlated with the morphological analysis which displayed distinct morphological changes in Fb and Mc, 24h post treatment with non-lethal (1μM) and lethal (3μM) doses of HYP-PDT, but the highest HYP-PDT doses had no effect on Kc morphology. Fluorescent microscopy displayed cytoplasmic localization of HYP in all the 3 skin cell types and additionally, HYP was excluded from the nuclei in all the cell types. Intracellular ROS levels measured in Fb at 3μM HYP-PDT, displayed a significant 3.8 fold (p<0.05) increase in ROS, but no significant difference in ROS levels occurred in Mc or Kc. Furthermore, 64% (p<0.005) early apoptotic Fb and 20% (p<0.05) early apoptotic Mc were evident; using fluorescence activated cell sorting (FACS), 24h post 3μM HYP-PDT. These results depict a differential response to HYP-PDT by different human skin cells thus highlighting the efficacy and indeed, the potential bystander effect of if administered in vivo. This study contributes toward our knowledge of the cellular response of the epidermis to photodynamic therapies and will possibly enhance the efficacy of future photobiological treatments. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Materials used to simulate physical properties of human skin.

    PubMed

    Dąbrowska, A K; Rotaru, G-M; Derler, S; Spano, F; Camenzind, M; Annaheim, S; Stämpfli, R; Schmid, M; Rossi, R M

    2016-02-01

    For many applications in research, material development and testing, physical skin models are preferable to the use of human skin, because more reliable and reproducible results can be obtained. This article gives an overview of materials applied to model physical properties of human skin to encourage multidisciplinary approaches for more realistic testing and improved understanding of skin-material interactions. The literature databases Web of Science, PubMed and Google Scholar were searched using the terms 'skin model', 'skin phantom', 'skin equivalent', 'synthetic skin', 'skin substitute', 'artificial skin', 'skin replica', and 'skin model substrate.' Articles addressing material developments or measurements that include the replication of skin properties or behaviour were analysed. It was found that the most common materials used to simulate skin are liquid suspensions, gelatinous substances, elastomers, epoxy resins, metals and textiles. Nano- and micro-fillers can be incorporated in the skin models to tune their physical properties. While numerous physical skin models have been reported, most developments are research field-specific and based on trial-and-error methods. As the complexity of advanced measurement techniques increases, new interdisciplinary approaches are needed in future to achieve refined models which realistically simulate multiple properties of human skin. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Melanin and blood concentration in human skin studied by multiple regression analysis: experiments

    NASA Astrophysics Data System (ADS)

    Shimada, M.; Yamada, Y.; Itoh, M.; Yatagai, T.

    2001-09-01

    Knowledge of the mechanism of human skin colour and measurement of melanin and blood concentration in human skin are needed in the medical and cosmetic fields. The absorbance spectrum from reflectance at the visible wavelength of human skin increases under several conditions such as a sunburn or scalding. The change of the absorbance spectrum from reflectance including the scattering effect does not correspond to the molar absorption spectrum of melanin and blood. The modified Beer-Lambert law is applied to the change in the absorbance spectrum from reflectance of human skin as the change in melanin and blood is assumed to be small. The concentration of melanin and blood was estimated from the absorbance spectrum reflectance of human skin using multiple regression analysis. Estimated concentrations were compared with the measured one in a phantom experiment and this method was applied to in vivo skin.

  10. Reflectance-based skin detection in the short wave infrared band and its application to video

    NASA Astrophysics Data System (ADS)

    Langston, Tye

    2016-10-01

    Robust reflectance-based skin detection is a potentially powerful tool for security and search and rescue applications, especially when applied to video. However, to be useful it must be able to account for the variations of human skin, as well as other items in the environment that could cause false detections. This effort focused on identifying a robust skin detection scheme that is appropriate for video application. Skin reflectance was modeled to identify unique skin features and compare them to potential false positive materials. Based on these comparisons, specific wavelength bands were selected and different combinations of two and three optical filters were used for actively identifying skin, as well as identifying and removing potential false positive materials. One wavelength combination (1072/1250 nm) was applied to video using both single- and dual-camera configurations based on its still image performance, as well as its appropriateness for video application. There are several important factors regarding the extension of still image skin detection to video, including light available for detection (solar irradiance and reflectance intensity), overall intensity differences between different optical filters, optical component light loss, frame rate, time lag when switching between filters, image coregistration, and camera auto gain behavior.

  11. Skin Cancer (Including Melanoma)—Patient Version

    Cancer.gov

    Skin cancer is the most common type of cancer. The main types of skin cancer are squamous cell carcinoma, basal cell carcinoma, and melanoma. Most deaths from skin cancer are caused by melanoma. Start here to find information on skin cancer treatment, causes and prevention, screening, research, and statistics.

  12. Analysis of statistical properties of laser speckles, forming in skin and mucous of colon: potential application in laser surgery

    NASA Astrophysics Data System (ADS)

    Rubtsov, Vladimir; Kapralov, Sergey; Chalyk, Iuri; Ulianova, Onega; Ulyanov, Sergey

    2013-02-01

    Statistical properties of laser speckles, formed in skin and mucous of colon have been analyzed and compared. It has been demonstrated that first and second order statistics of "skin" speckles and "mucous" speckles are quite different. It is shown that speckles, formed in mucous, are not Gaussian one. Layered structure of colon mucous causes formation of speckled biospeckles. First- and second- order statistics of speckled speckles have been reviewed in this paper. Statistical properties of Fresnel and Fraunhofer doubly scattered and cascade speckles are described. Non-gaussian statistics of biospeckles may lead to high localization of intensity of coherent light in human tissue during the laser surgery. Way of suppression of highly localized non-gaussian speckles is suggested.

  13. Pollen Allergies in Humans and their Dogs, Cats and Horses: Differences and Similarities.

    PubMed

    Jensen-Jarolim, Erika; Einhorn, Lukas; Herrmann, Ina; Thalhammer, Johann G; Panakova, Lucia

    2015-01-01

    Both humans and their most important domestic animals harbor IgE and a similar IgE receptor repertoire and expression pattern. The same cell types are also involved in the triggering or regulation of allergies, such as mast cells, eosinophils or T-regulatory cells. Translational clinical studies in domestic animals could therefore help cure animal allergies and at the same time gather knowledge relevant to human patients. Dogs, cats and horses may spontaneously and to different extents develop immediate type symptoms to pollen allergens. The skin, nasal and bronchial reactions, as well as chronic skin lesions due to pollen are in principle comparable to human patients. Pollen of various species most often causes allergic rhinitis in human patients, whereas in dogs it elicits predominantly eczematous lesions (canine atopic dermatitis), in horses recurrent airway obstruction or hives as well as pruritic dermatitis, and in cats bronchial asthma and so-called cutaneous reactive patterns (eosinophilic granuloma complex, head and neck pruritus, symmetric self-induced alopecia). In human allergy-specific IgE detection, skin tests or other allergen provocation tests should be completed. In contrast, in animals IgE and dermal tests are regarded as equally important and may even replace each other. However, for practical and economic reasons intradermal tests are most commonly performed in a specialized practice. As in humans, in dogs, cats and horses allergen immunotherapy leads to significant improvement of the clinical symptoms. The collected evidence suggests that canines, felines and equines, with their spontaneous allergies, are attractive model patients for translational studies.

  14. Development of a specific polymerase chain reaction assay for the detection of Basidiobolus.

    PubMed

    Gómez-Muñoz, María Teresa; Fernández-Barredo, Salceda; Martínez-Díaz, Rafael Alberto; Pérez-Gracia, María Teresa; Ponce-Gordo, Francisco

    2012-01-01

    The etiology of chronic diarrhea is complex in humans and animals. It is always necessary to evaluate a list of differential diagnosis, including bacteria, protozoa and fungi. Basidiobolomycosis is a fungal disease reported sporadically worldwide, mainly caused by B. ranarum, a frequent organism found in soil or in the intestine and skin of lizards and frogs. It is an opportunistic pathogen that causes infections characterized by granulomatous lesions in the subcutaneous tissues as well as in the intestinal wall in humans and animals. In this work we have developed a PCR technique to differentiate Basidiobolus from other causes of intestinal disease in dogs and humans. To test the specificity of the PCR assay we included closely related organisms, common intestinal microbiota and pathogenic organisms, such as Aspergillus, Candida, Cryptosporidium, Escherichia, Giardia, Mucor, Proteus, Rhizopus and Salmonella. Pythium insidiosum, which cause clinically similar disease in dogs but require a different treatment. Only Basidiobolus was positive to the PCR assay.

  15. Responses of brain and non-brain endothelial cells to meningitis-causing Escherichia coli K1.

    PubMed

    Paul-Satyaseela, Maneesh; Xie, Yi; Di Cello, Francescopaolo; Kim, Kwang Sik

    2006-03-31

    Bacterial interaction with specific host tissue may contribute to its propensity to cause an infection in a particular site. In this study, we examined whether meningitis-causing Escherichia coli K1 interaction with human brain microvascular endothelial cells, which constitute the blood-brain barrier, differed from its interaction with non-brain endothelial cells derived from skin and umbilical cord. We showed that E. coli K1 association was significantly greater with human brain microvascular endothelial cells than with non-brain endothelial cells. In addition, human brain microvascular endothelial cells maintained their morphology and intercellular junctional resistance in response to E. coli K1. In contrast, non-brain endothelial cells exhibited decreased transendothelial electrical resistance and detachment from the matrix upon exposure to E. coli K1. These different responses of brain and non-brain endothelial cells to E. coli K1 may form the basis of E. coli K1's propensity to cause meningitis.

  16. Fourier transform Raman spectroscopic studies of human and animal skins

    NASA Astrophysics Data System (ADS)

    Barry, Brian W.; Edwards, Howell G.; Williams, Adrian C.

    1994-01-01

    The stratum corneum is the outermost layer of the skin and provides the principal barrier for the ingress of chemicals and environmental toxins into human and animal tissues. However, human skin has several advantages for the administration of therapeutic agents (transdermal drug delivery), but problems occur with the supply, storage, and biohazardous nature of human tissue. Hence, alternative animal tissues have been prepared to model drug diffusion across human skin but the molecular basis for comparison is lacking. Here, FT-Raman spectra of mammalian (human and pig) and reptilian (snake) skins have been obtained and the structural dissimilarities are correlated with drug diffusion studies across the tissues.

  17. Ambient humidity and the skin: the impact of air humidity in healthy and diseased states.

    PubMed

    Goad, N; Gawkrodger, D J

    2016-08-01

    Humidity, along with other climatic factors such as temperature and ultraviolet radiation, can have an important impact on the skin. Limited data suggest that external humidity influences the water content of the stratum corneum. An online literature search was conducted through Pub-Med using combinations of the following keywords: skin, skin disease, humidity, dermatoses, dermatitis, eczema, and mist. Publications included in this review were limited to (i) studies in humans or animals, (ii) publications showing relevance to the field of dermatology, (iii) studies published in English and (iv) publications discussing humidity as an independent influence on skin function. Studies examining environmental factors as composite influences on skin health are only included where the impact of humidity on the skin is also explored in isolation of other environmental factors. A formal systematic review was not feasible for this topic due to the heterogeneity of the available research. Epidemiological studies indicated an increase in eczema with low internal (indoors) humidity and an increase in eczema with external high humidity. Other studies suggest that symptoms of dry skin appear with low humidity internal air-conditioned environments. Murine studies determined that low humidity caused a number of changes in the skin, including the impairment of the desquamation process. Studies in humans demonstrated a reduction in transepidermal water loss (TEWL) (a measure of the integrity of the skin's barrier function) with low humidity, alterations in the water content in the stratum corneum, decreased skin elasticity and increased roughness. Intervention with a humidifying mist increased the water content of the stratum corneum. Conversely, there is some evidence that low humidity conditions can actually improve the barrier function of the skin. Ambient relative humidity has an impact on a range of parameters involved in skin health but the literature is inconclusive. Further studies are needed to better delineate the interactions that can occur in normal and diseased states. Therapeutic measures might be forthcoming especially for skin diseases such as eczema, which are regarded as being characterized by 'skin dryness'. Further research examining the interaction between different environmental exposures thought to impact the skin, and indeed the interplay between genetic, environmental and immunological influences, are required. © 2016 European Academy of Dermatology and Venereology.

  18. A UV-Independent Topical Small-Molecule Approach for Melanin Production in Human Skin.

    PubMed

    Mujahid, Nisma; Liang, Yanke; Murakami, Ryo; Choi, Hwan Geun; Dobry, Allison S; Wang, Jinhua; Suita, Yusuke; Weng, Qing Yu; Allouche, Jennifer; Kemeny, Lajos V; Hermann, Andrea L; Roider, Elisabeth M; Gray, Nathanael S; Fisher, David E

    2017-06-13

    The presence of dark melanin (eumelanin) within human epidermis represents one of the strongest predictors of low skin cancer risk. Topical rescue of eumelanin synthesis, previously achieved in "redhaired" Mc1r-deficient mice, demonstrated significant protection against UV damage. However, application of a topical strategy for human skin pigmentation has not been achieved, largely due to the greater barrier function of human epidermis. Salt-inducible kinase (SIK) has been demonstrated to regulate MITF, the master regulator of pigment gene expression, through its effects on CRTC and CREB activity. Here, we describe the development of small-molecule SIK inhibitors that were optimized for human skin penetration, resulting in MITF upregulation and induction of melanogenesis. When topically applied, pigment production was induced in Mc1r-deficient mice and normal human skin. These findings demonstrate a realistic pathway toward UV-independent topical modulation of human skin pigmentation, potentially impacting UV protection and skin cancer risk. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Protective effect of red orange extract supplementation against UV-induced skin damages: photoaging and solar lentigines.

    PubMed

    Puglia, Carmelo; Offerta, Alessia; Saija, Antonella; Trombetta, Domenico; Venera, Cardile

    2014-06-01

    Exposure of the skin to solar ultraviolet (UV) radiations causes important oxidative damages that result in clinical and hystopathological changes, contributing to premature skin aging. Hyperpigmented lesions, also known as age spots, are one of the most visible alterations in skin photoaging. Skin is naturally equipped with antioxidant systems against UV-induced ROS generation; however, these antioxidant defenses are not completely efficient during exposure to sunlight. Oral antioxidants are able to counteract the harmful effects of UV radiation and to strengthen the physiological skin antioxidant defenses. The present study was performed to evaluate the in vivo skin photo-protecting and anti-aging effects of a red orange (Citrus sinensis varieties Moro, Tarocco and Sanguinello) extract supplementation. Previous studies showed that red orange extracts possess strong in vitro free radical scavenging/antioxidant activity and photo-protective effects on human skin. The photo-protective effects of red orange extract intake against UV-induced skin erythema and melanin production in solar lentigo was evaluated on healthy volunteers by an objective instrumental method (reflectance spectrophotometry). Data obtained from in vivo studies showed that supplementation of red orange extract (100 mg/daily) for 15 days brought a significant reduction in the UV-induced skin erythema degree. Moreover, skin age spots pigmentation (melanin content) decreased from 27% to 7% when subjects were exposed to solar lamp during red orange extract supplementation. Red orange extract intake can strengthen physiological antioxidant skin defenses, protecting skin from the damaging processes involved in photo-aging and leading to an improvement in skin appearance and pigmentation. © 2014 Wiley Periodicals, Inc.

  20. Determining the velocity required for skin perforation by fragment simulating projectiles: a systematic review.

    PubMed

    Breeze, John; Clasper, J C

    2013-12-01

    Explosively propelled fragments are the most common cause of injury to soldiers on current operations. Researchers desire models to predict their injurious effects so as to refine methods of potential protection. Well validated physical and numerical models based on the penetration of standardised fragment simulating projectiles (FSPs) through muscle exist but not for skin, thereby reducing the utility of such models. A systematic review of the literature was undertaken using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses methodology to identify all open source information quantifying the effects of postmortem human subject (PMHS) and animal skin on the retardation of metallic projectiles. Projectile sectional density (mass over presented cross-sectional area) was compared with the velocity required for skin perforation or penetration, with regard to skin origin (animal vs PMHS), projectile shape (sphere vs cylinder) and skin backing (isolated skin vs that backed by muscle). 17 original experimental studies were identified, predominantly using skin from the thigh. No statistical difference in the velocity required for skin perforation with regard to skin origin or projectile shape was found. A greater velocity was required to perforate intact skin on a whole limb than isolated skin alone (p<0.05). An empirical relationship describing the velocity required to perforate skin by metallic FSPs of a range of sectional densities was generated. Skin has a significant effect on the retardation of FSPs, necessitating its incorporation in future injury models. Perforation algorithms based on animal and PMHS skin can be used interchangeably as well as spheres and cylinders of matching sectional density. Future numerical simulations for skin perforation must match the velocity for penetration and also require experimental determination of mechanical skin properties, such as tensile strength, strain and elasticity at high strain rates.

  1. An anisotropic, hyperelastic model for skin: experimental measurements, finite element modelling and identification of parameters for human and murine skin.

    PubMed

    Groves, Rachel B; Coulman, Sion A; Birchall, James C; Evans, Sam L

    2013-02-01

    The mechanical characteristics of skin are extremely complex and have not been satisfactorily simulated by conventional engineering models. The ability to predict human skin behaviour and to evaluate changes in the mechanical properties of the tissue would inform engineering design and would prove valuable in a diversity of disciplines, for example the pharmaceutical and cosmetic industries, which currently rely upon experiments performed in animal models. The aim of this study was to develop a predictive anisotropic, hyperelastic constitutive model of human skin and to validate this model using laboratory data. As a corollary, the mechanical characteristics of human and murine skin have been compared. A novel experimental design, using tensile tests on circular skin specimens, and an optimisation procedure were adopted for laboratory experiments to identify the material parameters of the tissue. Uniaxial tensile tests were performed along three load axes on excised murine and human skin samples, using a single set of material parameters for each skin sample. A finite element model was developed using the transversely isotropic, hyperelastic constitutive model of Weiss et al. (1996) and was embedded within a Veronda-Westmann isotropic material matrix, using three fibre families to create anisotropic behaviour. The model was able to represent the nonlinear, anisotropic behaviour of the skin well. Additionally, examination of the optimal material coefficients and the experimental data permitted quantification of the mechanical differences between human and murine skin. Differences between the skin types, most notably the extension of the skin at low load, have highlighted some of the limitations of murine skin as a biomechanical model of the human tissue. The development of accurate, predictive computational models of human tissue, such as skin, to reduce, refine or replace animal models and to inform developments in the medical, engineering and cosmetic fields, is a significant challenge but is highly desirable. Concurrent advances in computer technology and our understanding of human physiology must be utilised to produce more accurate and accessible predictive models, such as the finite element model described in this study. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Skin sensitization potency of methyl methacrylate in the local lymph node assay: comparisons with guinea-pig data and human experience.

    PubMed

    Betts, Catherine J; Dearman, Rebecca J; Heylings, Jon R; Kimber, Ian; Basketter, David A

    2006-09-01

    There is compelling evidence that contact allergens differ substantially (by 4 or 5 orders of magnitude) with respect to their inherent skin-sensitizing potency. Relative potency can now be measured effectively using the mouse local lymph node assay (LLNA) and such data form the basis of risk assessment and risk management strategies. Such determinations also facilitate distinctions being drawn between the prevalence of skin sensitization to a particular contact allergen and inherent potency. The distinction is important because chemicals that are implicated as common causes of contact allergy are not necessarily potent sensitizers. One example is provided by nickel that is undoubtedly a common cause of allergic contact dermatitis, but is a comparatively weak sensitizer in predictive tests. In an attempt to explore other examples of contact allergens where there may exist a discrepancy between prevalence and potency, we describe here analyses conducted with methyl methacrylate (MMA). Results of LLNA studies have been interpreted in the context of historical clinical data on occupational allergic contact dermatitis associated with exposure to MMA.

  3. The effect of LED-light action on microbial colony forming ability of several species of staphylococcus

    NASA Astrophysics Data System (ADS)

    Tuchina, Elena S.; Permyakova, Natalia F.; Tuchin, Valery V.

    2007-05-01

    Photodynamic therapy (PDT) now is widespread for treatment of the various skin infections caused by Propionibacterium acnes or Staphylococcii spp. We used PDT for influence on opportunistic microflora of human skin presented by Staphylococcus hominis, S. warnery, S. epidermidis S. aureus 209 P, S. aureus 69. Species S. epidermidis, S. aureus 209 P, S. hominis to some extent reduced colonies forming ability under action of dual wavelength LED-light (442 nm and 597 nm). For species S. warnery, S. aureus 69 the increase in CFU number under action of light relative to control was characteristic. Our experiments have shown, that phototherapy can be used for treatment of diseases associated with S. aureus 209 P. The doze 8 J/cm2 caused reduction in CFU of this species on 40% relative to control.

  4. Overexpression of Wnt5a in mouse epidermis causes no psoriasis phenotype but an impairment of hair follicle anagen development.

    PubMed

    Zhu, Xuming; Wu, Yumei; Huang, Sixia; Chen, Yingwei; Tao, Yixin; Wang, Yushu; He, Shigang; Shen, Sanbing; Wu, Ji; Guo, Xizhi; Li, Baojie; He, Lin; Ma, Gang

    2014-12-01

    Increased Wnt5a expression has been observed in psoriatic plaques. However, whether Wnt5a overexpression directly causes psoriasis is unknown. In this study, we generated transgenic (TG) mice with epidermal Wnt5a overexpression under the control of the human K14 promoter. The skin of Wnt5a TG mice was not psoriatic, but characterized with normal proliferation and homeostasis of epidermis. Instead, these TG mice displayed impaired hair follicle transition from telogen to anagen, most likely due to impaired canonical Wnt signalling. These results suggest that increased Wnt5a expression alone is inadequate to induce psoriasis in the skin and possible involvement of Wnt5a in hair follicle cycling. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. The impact of urban particulate pollution on skin barrier function and the subsequent drug absorption.

    PubMed

    Pan, Tai-Long; Wang, Pei-Wen; Aljuffali, Ibrahim A; Huang, Chi-Ting; Lee, Chiang-Wen; Fang, Jia-You

    2015-04-01

    Ambient particulate matters (PMs) are known as inducers that adversely affect a variety of human organs. In this study, we aimed to evaluate the influence of PMs on the permeation of drugs and sunscreens via the skin. The role of skin-barrier properties such as the stratum corneum (SC) and tight junctions (TJs) during the delivery process was explored. This work was conducted using both in vitro and in vivo experiments in pigs to check the responses of the skin to PMs. PMs primarily containing heavy metals (1648a) and polycyclic aromatic hydrocarbons (PAHs, 1649b) were employed to treat the skin. According to the transepidermal water loss (TEWL), 1649b but not 1648a significantly disrupted the SC integrity by 2-fold compared to the PBS control. The immunohistochemistry (IHC) of cytokeratin, filaggrin, and E-cadherin exhibited that 1649b mildly damaged TJs. The cytotoxicity of keratinocytes and skin fibroblasts caused by 1649b was stronger than that caused by 1648a. The 1649b elicited apoptosis via caspase-3 activation. The proteomic profiles showed that PMs upregulated Annexin A2 by >5-fold, which can be a biomarker of PM-induced barrier disruption. We found that the skin uptake of ascorbic acid, an extremely hydrophilic drug, was increased from 74 to 112 μg/g by 1649b treatment. The extremely lipophilic drug tretinoin also showed a 2.6-fold increase of skin accumulation. Oxybenzone and dextran absorption was not affected by PMs. The in vivo dye distribution visualized by fluorescence microscopy had indicated that 1649b intervention promoted permeant partitioning into SC. Caution should be taken in exposing the skin to airborne dust due to its ability to reduce barrier function and increase the risk of drug overabsorption, although this effect was not very marked. Copyright © 2015 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Aging changes in skin

    MedlinePlus

    ... can cause rashes, skin lesions , and other skin changes, even if you have no other symptoms. Keep skin moist with lotions and other moisturizers. DO NOT use soaps that are heavily perfumed. Bath oils are not recommended because they can cause you ...

  7. An in vitro method for detecting chemical sensitization using human reconstructed skin models and its applicability to cosmetic, pharmaceutical, and medical device safety testing.

    PubMed

    McKim, James M; Keller, Donald J; Gorski, Joel R

    2012-12-01

    Chemical sensitization is a serious condition caused by small reactive molecules and is characterized by a delayed type hypersensitivity known as allergic contact dermatitis (ACD). Contact with these molecules via dermal exposure represent a significant concern for chemical manufacturers. Recent legislation in the EU has created the need to develop non-animal alternative methods for many routine safety studies including sensitization. Although most of the alternative research has focused on pure chemicals that possess reasonable solubility properties, it is important for any successful in vitro method to have the ability to test compounds with low aqueous solubility. This is especially true for the medical device industry where device extracts must be prepared in both polar and non-polar vehicles in order to evaluate chemical sensitization. The aim of this research was to demonstrate the functionality and applicability of the human reconstituted skin models (MatTek Epiderm(®) and SkinEthic RHE) as a test system for the evaluation of chemical sensitization and its potential use for medical device testing. In addition, the development of the human 3D skin model should allow the in vitro sensitization assay to be used for finished product testing in the personal care, cosmetics, and pharmaceutical industries. This approach combines solubility, chemical reactivity, cytotoxicity, and activation of the Nrf2/ARE expression pathway to identify and categorize chemical sensitizers. Known chemical sensitizers representing extreme/strong-, moderate-, weak-, and non-sensitizing potency categories were first evaluated in the skin models at six exposure concentrations ranging from 0.1 to 2500 µM for 24 h. The expression of eight Nrf2/ARE, one AhR/XRE and two Nrf1/MRE controlled gene were measured by qRT-PCR. The fold-induction at each exposure concentration was combined with reactivity and cytotoxicity data to determine the sensitization potential. The results demonstrated that both the MatTek and SkinEthic models performed in a manner consistent with data previously reported with the human keratinocyte (HaCaT) cell line. The system was tested further by evaluating chemicals known to be associated with the manufacture of medical devices. In all cases, the human skin models performed as well or better than the HaCaT cell model previously evaluated. In addition, this study identifies a clear unifying trigger that controls both the Nrf2/ARE pathway and essential biochemical events required for the development of ACD. Finally, this study has demonstrated that by utilizing human reconstructed skin models, it is possible to evaluate non-polar extracts from medical devices and low solubility finished products.

  8. 3D imaging of cleared human skin biopsies using light-sheet microscopy: A new way to visualize in-depth skin structure.

    PubMed

    Abadie, S; Jardet, C; Colombelli, J; Chaput, B; David, A; Grolleau, J-L; Bedos, P; Lobjois, V; Descargues, P; Rouquette, J

    2018-05-01

    Human skin is composed of the superimposition of tissue layers of various thicknesses and components. Histological staining of skin sections is the benchmark approach to analyse the organization and integrity of human skin biopsies; however, this approach does not allow 3D tissue visualization. Alternatively, confocal or two-photon microscopy is an effective approach to perform fluorescent-based 3D imaging. However, owing to light scattering, these methods display limited light penetration in depth. The objectives of this study were therefore to combine optical clearing and light-sheet fluorescence microscopy (LSFM) to perform in-depth optical sectioning of 5 mm-thick human skin biopsies and generate 3D images of entire human skin biopsies. A benzyl alcohol and benzyl benzoate solution was used to successfully optically clear entire formalin fixed human skin biopsies, making them transparent. In-depth optical sectioning was performed with LSFM on the basis of tissue-autofluorescence observations. 3D image analysis of optical sections generated with LSFM was performed by using the Amira ® software. This new approach allowed us to observe in situ the different layers and compartments of human skin, such as the stratum corneum, the dermis and epidermal appendages. With this approach, we easily performed 3D reconstruction to visualise an entire human skin biopsy. Finally, we demonstrated that this method is useful to visualise and quantify histological anomalies, such as epidermal hyperplasia. The combination of optical clearing and LSFM has new applications in dermatology and dermatological research by allowing 3D visualization and analysis of whole human skin biopsies. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Is the current public health message on UV exposure correct?

    PubMed Central

    Lucas, Robyn M.; Repacholi, Mike H.; McMichael, Anthony J.

    2006-01-01

    Current sun safety messages stress the importance of sun protection in avoiding the consequences of excessive exposure to ultraviolet radiation (UVR), such as skin cancers, cataracts and other eye diseases, and viral infections caused by UV-induced immunosuppression. However, adequate exposure to UVR has an important role in human health, primarily through UV-induced production of vitamin D, a hormone essential to bone health. Vitamin D insufficiency may be associated with increased risks of some cancers, autoimmune diseases and mental health disorders such as schizophrenia. Here, we review the evolution of current sun exposure practices and sun-safe messages and consider not only the benefits, but also the detrimental effects that such messages may have. UVR-induced vitamin D production can be inhibited by factors such as deep skin pigmentation, indoor lifestyles, older age, sun avoidance behaviours and clothing habits that limit skin exposure, with deleterious consequences for health. There is some early evidence that sun-safe messages are beginning to cause a decrease in skin cancer rates in young people. After the widespread promotion of sun safety, it may now be appropriate to refine public health messages to take better account of variations between groups and their susceptibility to the dangers and benefits of sun exposure. PMID:16799733

  10. Xeroderma pigmentosum: diagnostic procedures, interdisciplinary patient care, and novel therapeutic approaches.

    PubMed

    Lehmann, Janin; Schubert, Steffen; Emmert, Steffen

    2014-10-01

    Xeroderma pigmentosum (XP) is an autosomal recessive disease, caused by a gene defect in the nucleotide-excision-repair (NER) pathway or in translesional DNA synthesis. At the age of eight, patients already develop their first skin cancers due to this DNA repair defect. In contrast, in the Caucasian population the first tumor formation in UV exposed skin regions occurs at a mean age of 60. The clinical picture among patients suffering from XP is highly diverse and includes signs of accelerated skin aging, and UV-induced skin cancers, as well as ophthalmologic and neurological symptoms. Patients should therefore receive interdisciplinary care. This includes dermatologists, ophthalmologists, ENT specialists, neurologists, and human geneticists. Patients with XP are clinically diagnosed, but this may be supported by molecular-genetic and functional analyses. These analyses allow pinpointing the exact disease-causing gene defect (complementation group assignment, detection of the type and location of the mutation within the gene). The resulting information is already relevant to predict the course of disease and symptoms and probably will be utilized for individualized therapeutic approaches in the future. Recently, enhanced repair of UV photolesions in xeroderma pigmentosum group C cells induced by translational readthrough of premature termination codons by certain antibiotics could be demonstrated. © 2014 Deutsche Dermatologische Gesellschaft (DDG). Published by John Wiley & Sons Ltd.

  11. A study of facial wrinkles improvement effect of veratric acid from cauliflower mushroom through photo-protective mechanisms against UVB irradiation.

    PubMed

    Lee, Kyung-Eun; Park, Ji-Eun; Jung, Eunsun; Ryu, Jahyun; Kim, Youn Joon; Youm, Jong-Kyung; Kang, Seunghyun

    2016-04-01

    Solar ultraviolet (UV) irradiation is a primary cause of premature skin aging that is closely associated with the degradation of collagens caused by up-regulation of matrix metalloproteinases (MMPs) or a decrease in collagen synthesis. The phenolic veratric acid (VA, 3,4-dimethoxybenzoic acid) is one of the major benzoic acid derivatives from fruits, vegetables and medicinal mushrooms. VA has been reported to have anti-inflammatory, anti-oxidant and photo-protective effects. In this study, anti-photoaging effects were investigated through the photo-protective mechanisms of VA against UV irradiation in human dermal fibroblasts and the reconstructed human epidermal model. We used reverse transcription-polymerase chain reaction, Western blot analysis, hematoxylin and eosin staining (H&E) and immunohistochemistry assays. Finally, we further investigated the clinical effects of VA on facial wrinkle improvements in humans. Our results demonstrate that VA attenuated the expression of MMPs, increased cell proliferation, type Ι procollagen, tissue inhibitors of metalloproteinases, and filaggrin against UV radiation; however, has no effect on improvement expressions of elastic fiber. In addition, treatment with cream containing VA improved facial wrinkles in a clinical trial. These findings indicate that VA improves wrinkle formation by modulating MMPs, collagens and epidermal layer integrity, suggesting its potential use in UV-induced premature skin aging.

  12. Plasma Sterilization: New Epoch in Medical Textiles

    NASA Astrophysics Data System (ADS)

    Senthilkumar, P.; Arun, N.; Vigneswaran, C.

    2015-04-01

    Clothing is perceived to be second skin to the human body since it is in close contact with the human skin most of the times. In hospitals, use of textile materials in different forms and sterilization of these materials is an essential requirement for preventing spread of germs. The need for appropriate disinfection and sterilization techniques is of paramount importance. There has been a continuous demand for novel sterilization techniques appropriate for use on various textile materials as the existing sterilization techniques suffer from various technical and economical drawbacks. Plasma sterilization is the alternative method, which is friendlier and more effective on the wide spectrum of prokaryotic and eukaryotic microorganisms. Basically, the main inactivation factors for cells exposed to plasma are heat, UV radiation and various reactive species. Plasma exposure can kill micro-organisms on a surface in addition to removing adsorbed monolayer of surface contaminants. Advantages of plasma surface treatment are removal of contaminants from the surface, change in the surface energy and sterilization of the surface. Plasma sterilization aims to kill and/or remove all micro-organisms which may cause infection of humans or animals, or which can cause spoilage of foods or other goods. This review paper emphasizes necessity for sterilization, essentials of sterilization, mechanism of plasma sterilization and the parameters influencing it.

  13. Mutations in FOXC2 in humans (lymphoedema distichiasis syndrome) cause lymphatic dysfunction on dependency.

    PubMed

    Mellor, Russell H; Tate, Naomi; Stanton, Anthony W B; Hubert, Charlotte; Mäkinen, Taija; Smith, Alberto; Burnand, Kevin G; Jeffery, Steve; Levick, J Rodney; Mortimer, Peter S

    2011-01-01

    Human lymphoedema distichiasis syndrome (LDS) results from germline mutations in transcription factor FOXC2. In a mouse model, lack of lymphatic and venous valves is observed plus abnormal smooth muscle cell recruitment to initial lymphatics. We investigated the mechanism of lymphoedema in humans with FOXC2 mutations, specifically the effect of gravitational forces on dermal lymphatic function. We performed (1) quantitative fluorescence microlymphangiography (FML) on the skin of the forearm (non-swollen region) at heart level, and the foot (swollen region) below heart level (dependent) and then at heart level, and (2) immunohistochemical staining of microlymphatics in forearm and foot skin biopsies, using antibodies to podoplanin, LYVE-1 and smooth muscle actin. FML revealed a marked reduction in fluid uptake by initial lymphatics in the LDS foot during dependency, yet normal uptake (similar to controls) in the same foot at heart level and in LDS forearms. In control subjects, dependency did not impair initial lymphatic filling. Immunohistochemical microlymphatic density in forearm and foot did not differ between LDS and controls. FOXC2 mutations cause a functional failure of dermal initial lymphatics during gravitational stress (dependency), but not hypoplasia. The results reveal a pathophysiological mechanism contributing to swelling in LDS. Copyright © 2011 S. Karger AG, Basel.

  14. [Spontaneous models of human diseases in dogs: ichthyoses as an example].

    PubMed

    André, Catherine; Grall, Anaïs; Guaguere, Éric; Thomas, Anne; Galibert, Francis

    2013-06-01

    Ichthyoses encompass a heterogeneous group of genodermatoses characterized by abnormal desquamation over the entire body due to defects of the terminal differentiation of keratinocytes and desquamation, which occur in the upper layer of the epidermis. Even though in humans more than 40 genes have already been identified, the genetic causes of several forms remain unknown and are difficult to identify in Humans. Strikingly, several purebred dogs are also affected by specific forms of ichthyoses. In the Golden retriever dog breed, an autosomal recessive form of ichthyosis, resembling human autosomal recessive congenital ichthyoses, has recently been diagnosed with a high incidence. We first characterized the disease occurring in the golden retriever breed and collected cases and controls. A genome-wide association study on 40 unrelated Golden retriever dogs, using the canine 49.000 SNPs (single nucleotide polymorphisms) array (Affymetrix v2), followed by statistical analyses and candidate gene sequencing, allowed to identify the causal mutation in the lipase coding PNPLA1 gene (patatin-like phospholipase domain-containing protein). Screening for alterations in the human ortholog gene in 10 autosomal recessive congenital ichthyoses families, for which no genetic cause has been identified thus far, allowed to identify two recessive mutations in the PNPLA1 protein in two families. This collaborative work between "human" and "canine" geneticists, practicians, histopathologists, biochemists and electron microscopy experts not only allowed to identify, in humans, an eighth gene for autosomal recessive congenital ichthyoses, but also allowed to highlight the function of this as-yet-unknown skin specific lipase in the lipid metabolism of the skin barrier. For veterinary medicine and breeding practices, a genetic test has been developed. These findings illustrate the importance of the discovery of relevant human orthologous canine genetic diseases, whose causes can be tracked in dog breeds more easily than in humans. Indeed, due to the selection and breeding practices applied to purebred dogs, the dog constitutes a unique species for unravelling phenotype/genotype relationships and providing new insights into human genetic diseases. This work paves the way for the identification of rare gene variants in humans that may be responsible for other keratinisation and epidermal barrier defects.

  15. Macrolide, lincosamide, and streptogramin B resistance in lipophilic Corynebacteria inhabiting healthy human skin.

    PubMed

    Szemraj, Magdalena; Kwaszewska, Anna; Pawlak, Renata; Szewczyk, Eligia M

    2014-10-01

    Corynebacteria exist as part of human skin microbiota. However, under some circumstances, they can cause opportunistic infections. The subject of the study was to examine the macrolide-lincosamide-streptogramin B (MLSB) antibiotic resistance in 99 lipophilic strains of Corynebacterium genus isolated from the skin of healthy men. Over 70% of the tested strains were resistant to erythromycin and clindamycin. All of which demonstrated a constitutive type of MLSB resistance mechanism. In all strains, there were being investigated the erm(A), erm(B), erm(C), erm(X), lin(A), msr(A), and mph(C) genes that could be responsible for the different types of resistance to marcolides, lincosamides, and streptogramin B. In all strains with the MLSB resistance phenotype, the erm(X) gene was detected. None of the other tested genes were discovered. Strains harboring the erm(X) gene were identified using a phenotypic method based on numerous biological and biochemical tests. Identification of the chosen strains was compared with the results of API Coryne, MALDI-TOF MS, and 16S rDNA sequencing methods. Only 7 out of the 23 investigated resistant strains provided successful results in all the used methods, showing that identification of this group of bacteria is still a great challenge. The MLSB resistance mechanism was common in most frequently isolated from healthy human skin Corynebacterium tuberculostearicum and Corynebacterium jeikeium strains. This represents a threat as these species are also commonly described as etiological factors of opportunistic infections.

  16. Ultra-violet B (UVB)-induced skin cell death occurs through a cyclophilin D intrinsic signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Chao; Yang, Bo; Yang, Zhi

    Highlights: Black-Right-Pointing-Pointer UVB radiated skin keratinocytes show cyclophilin D (Cyp-D) upregulation. Black-Right-Pointing-Pointer NAC inhibits UVB induced Cyp-D expression, while H{sub 2}O{sub 2} facilitates it. Black-Right-Pointing-Pointer Cyp-D-deficient cells are significantly less susceptible to UVB induced cell death. Black-Right-Pointing-Pointer Over-expression of Cyp-D causes spontaneous keratinocytes cell death. -- Abstract: UVB-induced skin cell damage involves the opening of mitochondrial permeability transition pore (mPTP), which leads to both apoptotic and necrotic cell death. Cyclophilin D (Cyp-D) translocation to the inner membrane of mitochondrion acts as a key component to open the mPTP. Our Western-Blot results in primary cultured human skin keratinocytes and in HaCaTmore » cell line demonstrated that UVB radiation and hydrogen peroxide (H{sub 2}O{sub 2}) induced Cyp-D expression, which was inhibited by anti-oxidant N-acetyl cysteine (NAC). We created a stable Cyp-D deficiency skin keratinocytes by expressing Cyp-D-shRNA through lentiviral infection. Cyp-D-deficient cells were significantly less susceptible than their counterparts to UVB- or H{sub 2}O{sub 2}-induced cell death. Further, cyclosporine A (Cs-A), a Cyp-D inhibitor, inhibited UVB- or H{sub 2}O{sub 2}-induced keratinocytes cell death. Reversely, over-expression of Cyp-D in primary keratinocytes caused spontaneous keratinocytes cell death. These results suggest Cyp-D's critical role in UVB/oxidative stress-induced skin cell death.« less

  17. The alternative complement component factor B regulates UV-induced oedema, systemic suppression of contact and delayed hypersensitivity, and mast cell infiltration into the skin.

    PubMed

    Byrne, Scott N; Hammond, Kirsten J L; Chan, Carling Y-Y; Rogers, Linda J; Beaugie, Clare; Rana, Sabita; Marsh-Wakefield, Felix; Thurman, Joshua M; Halliday, Gary M

    2015-04-01

    Ultraviolet (UV) wavelengths in sunlight are the prime cause of skin cancer in humans with both the UVA and UVB wavebands making a contribution to photocarcinogenesis. UV has many different biological effects on the skin that contribute to carcinogenesis, including suppression of adaptive immunity, sunburn and altering the migration of mast cells into and away from irradiated skin. Many molecular mechanisms have been identified as contributing to skin responses to UV. Recently, using gene set enrichment analysis of microarray data, we identified the alternative complement pathway with a central role for factor B (fB) in UVA-induced immunosuppression. In the current study we used mice genetically deficient in fB (fB-/- mice) to study the functional role of the alternative complement pathway in skin responses to UV. We found that fB is required for not only UVA but also UVB-induced immunosuppression and solar-simulated UV induction of the oedemal component of sunburn. Factor B-/- mice had a larger number of resident skin mast cells than control mice, but unlike the controls did not respond to UV by increasing mast cell infiltration into the skin. This study provides evidence for a function role for fB in skin responses to UV radiation. Factor B regulates UVA and UVB induced immunosuppression, UV induced oedema and mast cell infiltration into the skin. The alternative complement pathway is therefore an important regulator of skin responses to UV.

  18. Three-Dimensional In Vitro Skin and Skin Cancer Models Based on Human Fibroblast-Derived Matrix.

    PubMed

    Berning, Manuel; Prätzel-Wunder, Silke; Bickenbach, Jackie R; Boukamp, Petra

    2015-09-01

    Three-dimensional in vitro skin and skin cancer models help to dissect epidermal-dermal and tumor-stroma interactions. In the model presented here, normal human dermal fibroblasts isolated from adult skin self-assembled into dermal equivalents with their specific fibroblast-derived matrix (fdmDE) over 4 weeks. The fdmDE represented a complex human extracellular matrix that was stabilized by its own heterogeneous collagen fiber meshwork, largely resembling a human dermal in vivo architecture. Complemented with normal human epidermal keratinocytes, the skin equivalent (fdmSE) thereof favored the establishment of a well-stratified and differentiated epidermis and importantly allowed epidermal regeneration in vitro for at least 24 weeks. Moreover, the fdmDE could be used to study the features of cutaneous skin cancer. Complementing fdmDE with HaCaT cells in different stages of malignancy or tumor-derived cutaneous squamous cell carcinoma cell lines, the resulting skin cancer equivalents (fdmSCEs) recapitulated the respective degree of tumorigenicity. In addition, the fdmSCE invasion phenotypes correlated with their individual degree of tissue organization, disturbance in basement membrane organization, and presence of matrix metalloproteinases. Together, fdmDE-based models are well suited for long-term regeneration of normal human epidermis and, as they recapitulate tumor-specific growth, differentiation, and invasion profiles of cutaneous skin cancer cells, also provide an excellent human in vitro skin cancer model.

  19. Progress and prospects for L2-based human papillomavirus vaccines

    PubMed Central

    Jiang, Rosie T; Schellenbacher, Christina; Chackerian, Bryce; Roden, Richard B.S.

    2016-01-01

    Summary Human papillomavirus (HPV) is a worldwide public health problem, particularly in resource-limited countries. Fifteen high-risk genital HPV types are sexually transmitted and cause 5% of all cancers worldwide, primarily cervical, anogenital and oropharyngeal carcinomas. Skin HPV types are generally associated with benign disease, but a subset is linked to non-melanoma skin cancer. Licensed HPV vaccines based on virus-like particles (VLPs) derived from L1 major capsid antigen of key high risk HPVs are effective at preventing these infections but do not cover cutaneous types and are not therapeutic. Vaccines targeting L2 minor capsid antigen, some using capsid display, adjuvant and fusions with early HPV antigens or Toll-like receptor agonists, are in development to fill these gaps. Progress and challenges with L2-based vaccines are summarized. PMID:26901354

  20. Skin-on-a-chip model simulating inflammation, edema and drug-based treatment

    PubMed Central

    Wufuer, Maierdanjiang; Lee, GeonHui; Hur, Woojune; Jeon, Byoungjun; Kim, Byung Jun; Choi, Tae Hyun; Lee, SangHoon

    2016-01-01

    Recent advances in microfluidic cell cultures enable the construction of in vitro human skin models that can be used for drug toxicity testing, disease study. However, current in vitro skin model have limitations to emulate real human skin due to the simplicity of model. In this paper, we describe the development of ‘skin-on-a-chip’ to mimic the structures and functional responses of the human skin. The proposed model consists of 3 layers, on which epidermal, dermal and endothelial components originated from human, were cultured. The microfluidic device was designed for co-culture of human skin cells and each layer was separated by using porous membranes to allow interlayer communication. Skin inflammation and edema were induced by applying tumor necrosis factor alpha on dermal layer to demonstrate the functionality of the system. The expression levels of proinflammatory cytokines were analyzed to illustrate the feasibility. In addition, we evaluated the efficacy of therapeutic drug testing model using our skin chip. The function of skin barrier was evaluated by staining tight junctions and measuring a permeability of endothelium. Our results suggest that the skin-on-a-chip model can potentially be used for constructing in vitro skin disease models or for testing the toxicity of cosmetics or drugs. PMID:27869150

  1. Development and Characterisation of a Human Chronic Skin Wound Cell Line—Towards an Alternative for Animal Experimentation

    PubMed Central

    Wall, Ivan B.; Peake, Matthew; Kipling, David; Giles, Peter; Thomas, David W.

    2018-01-01

    Background: Chronic skin wounds are a growing financial burden for healthcare providers, causing discomfort/immobility to patients. Whilst animal chronic wound models have been developed to allow for mechanistic studies and to develop/test potential therapies, such systems are not good representations of the human chronic wound state. As an alternative, human chronic wound fibroblasts (CWFs) have permitted an insight into the dysfunctional cellular mechanisms that are associated with these wounds. However, such cells strains have a limited replicative lifespan and therefore a limited reproducibility/usefulness. Objectives: To develop/characterise immortalised cell lines of CWF and patient-matched normal fibroblasts (NFs). Methods and Results: Immortalisation with human telomerase resulted in both CWF and NF proliferating well beyond their replicative senescence end-point (respective cell strains senesced as normal). Gene expression analysis demonstrated that, whilst proliferation-associated genes were up-regulated in the cell lines (as would be expected), the immortalisation process did not significantly affect the disease-specific genotype. Immortalised CWF (as compared to NF) also retained a distinct impairment in their wound repopulation potential (in line with CWF cell strains). Conclusions: These novel CWF cell lines are a credible animal alternative and could be a valuable research tool for understanding both the aetiology of chronic skin wounds and for therapeutic pre-screening. PMID:29584680

  2. Anethole prevents hydrogen peroxide-induced apoptosis and collagen metabolism alterations in human skin fibroblasts.

    PubMed

    Galicka, Anna; Krętowski, Rafał; Nazaruk, Jolanta; Cechowska-Pasko, Marzanna

    2014-09-01

    The collagen metabolism alterations triggered by reactive oxygen species are involved in the development of various connective tissue diseases and skin aging. This study was designed to examine whether (E)-anethole possesses a protective effect on H2O2-induced alterations in collagen metabolism as well as whether it can prevent apoptosis in human skin fibroblasts. In cells treated with 300 µM H₂O₂, a decrease in collagen biosynthesis of 54% was observed. Pretreatment of cells with 0.5 µM anethole for 1 h completely prevented this alteration. Changes at the protein level positively correlated with alterations of type I collagen mRNA expression. We have shown that H2O2 caused increase in the activity of MMP-2 and MMP-9 as well as that an increase in MMP-2 activity can contribute to the 8% decrease in the amount of collagen secreted into the medium. The most efficient suppression of these changes was observed in the presence of 0.5 µM of anethole. At 10 µM, in addition to suppression, an inhibitory effect of anethole on MMP-9 activity was documented. Additionally, the 60% H₂O₂-induced decrease in cell viability was suppressed by 1 µM of anethole and a 4-fold increase in cell apoptosis was suppressed by 0.5 µM of anethole. Our results suggest that anethole, which is a small lipophilic and non-toxic molecule with the ability to prevent H₂O₂-induced collagen metabolism alterations and apoptosis in human skin fibroblasts, would prove useful in the development of effective agents in pharmacotherapy of oxidative stress-related skin diseases.

  3. Development of an artificial neural network model for risk assessment of skin sensitization using human cell line activation test, direct peptide reactivity assay, KeratinoSens™ and in silico structure alert parameter.

    PubMed

    Hirota, Morihiko; Ashikaga, Takao; Kouzuki, Hirokazu

    2018-04-01

    It is important to predict the potential of cosmetic ingredients to cause skin sensitization, and in accordance with the European Union cosmetic directive for the replacement of animal tests, several in vitro tests based on the adverse outcome pathway have been developed for hazard identification, such as the direct peptide reactivity assay, KeratinoSens™ and the human cell line activation test. Here, we describe the development of an artificial neural network (ANN) prediction model for skin sensitization risk assessment based on the integrated testing strategy concept, using direct peptide reactivity assay, KeratinoSens™, human cell line activation test and an in silico or structure alert parameter. We first investigated the relationship between published murine local lymph node assay EC3 values, which represent skin sensitization potency, and in vitro test results using a panel of about 134 chemicals for which all the required data were available. Predictions based on ANN analysis using combinations of parameters from all three in vitro tests showed a good correlation with local lymph node assay EC3 values. However, when the ANN model was applied to a testing set of 28 chemicals that had not been included in the training set, predicted EC3s were overestimated for some chemicals. Incorporation of an additional in silico or structure alert descriptor (obtained with TIMES-M or Toxtree software) in the ANN model improved the results. Our findings suggest that the ANN model based on the integrated testing strategy concept could be useful for evaluating the skin sensitization potential. Copyright © 2017 John Wiley & Sons, Ltd.

  4. The effects of hyaluronan and its fragments on lipid models exposed to UV irradiation.

    PubMed

    Trommer, Hagen; Wartewig, Siegfried; Böttcher, Rolf; Pöppl, Andreas; Hoentsch, Joachim; Ozegowski, Jörg H; Neubert, Reinhard H H

    2003-03-26

    The effects of hyaluronan and its degradation products on irradiation-induced lipid peroxidation were investigated. Liposomal skin lipid models with increasing complexity were used. Hyaluronan and its fragments were able to reduce the amount of lipid peroxidation secondary products quantified by the thiobarbituric acid (TBA) assay. The qualitative changes were studied by mass spectrometry. To elucidate the nature of free radical involvement electron paramagnetic resonance (EPR) studies were carried out. The influence of hyaluronan and its fragments on the concentration of hydroxyl radicals generated by the Fenton system was examined using the spin trapping technique. Moreover, the mucopolysaccharide's ability to react with stable radicals was checked. The quantification assay of 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH) showed no concentration changes of the stable radical caused by hyaluronan. Hyaluronan was found to exhibit prooxidative effects in the Fenton assay in a concentration dependent manner. A transition metal chelation was proposed as a mechanism of this behavior. Considering human skin and its constant exposure to UV light and oxygen and an increased pool of iron in irradiated skin the administration of hyaluronan or its fragments in cosmetic formulations or sunscreens could be helpful for the protection of the human skin. Copyright 2003 Elsevier Science B.V.

  5. Insertion Testing of Polyethylene Glycol Microneedle Array into Cultured Human Skin with Biaxial Tension

    NASA Astrophysics Data System (ADS)

    Takano, Naoki; Tachikawa, Hiroto; Miyano, Takaya; Nishiyabu, Kazuaki

    Aiming at the practical use of polyethylene glycol (PEG) microneedles for transdermal drug delivery system (DDS), a testing apparatus for their insertion into cultured human skin has been developed. To simulate the variety of conditions of human skin, biaxial tension can be applied to the cultured human skin. An adopted testing scheme to apply and control the biaxial tension is similar to the deep-draw forming technique. An attention was also paid to the short-time setup of small, thin and wet cultured skin. One dimensional array with four needles was inserted and influence of tension was discussed. It was found that tension, deflection of skin during insertion and original curvature of skin are the important parameters for microneedles array design.

  6. Molecular effects of fractional ablative erbium:YAG laser treatment with multiple stacked pulses on standardized human three-dimensional organotypic skin models.

    PubMed

    Schmitt, Laurenz; Amann, P M; Marquardt, Y; Heise, R; Czaja, K; Gerber, P A; Steiner, T; Hölzle, F; Baron, Jens Malte

    2017-05-01

    The molecular changes in gene expression following ablative laser treatment of skin lesions, such as atrophic scars and UV-damaged skin, are not completely understood. A standardized in vitro model of human skin, to study the effects of laser treatment on human skin, has been recently developed. Therefore, the aim of the investigation was to examine morphological and molecular changes caused by fractional ablative erbium:YAG laser treatment on an in vitro full-thickness 3D standardized organotypic model of human skin. A fractional ablative erbium:YAG laser was used to irradiate organotypic human 3D models. Laser treatments were performed at four different settings using a variety of stacked pulses with similar cumulative total energy fluence (60 J/cm 2 ). Specimens were harvested at specified time points and real-time PCR (qRT-PCR) and microarray studies were performed. Frozen sections were examined histologically. Three days after erbium:YAG laser treatment, a significantly increased mRNA expression of matrix metalloproteinases and their inhibitors (MMP1, MMP2, MMP3, TIMP1, and TIMP2), chemokines (CXCL1, CXCL2, CXCL5, and CXCL6), and cytokines such as IL6, IL8, and IL24 could be detected. qRT-PCR studies confirmed the enhanced mRNA expression of IL6, IL8, IL24, CXCLs, and MMPs. In contrast, the mRNA expression of epidermal differentiation markers, such as keratin-associated protein 4, filaggrin, filaggrin 2, and loricrin, and antimicrobial peptides (S100A7A, S100A9, and S100A12) as well as CASP14, DSG2, IL18, and IL36β was reduced. Four different settings with similar cumulative doses have been tested (N10%, C10%, E10%, and W25%). These laser treatments resulted in different morphological changes and effects on gene regulations. Longer pulse durations (1000 μs) especially had the strongest impact on gene expression and resulted in an upregulation of genes, such as collagen-1A2, collagen-5A2, and collagen-6A2, as well as FGF2. Histologically, all treatment settings resulted in a complete regeneration of the epidermis 3 days after irradiation. Fractional ablative erbium:YAG laser treatment with a pulse stacking technique resulted in histological alterations and shifts in the expression of various genes related to epidermal differentiation, inflammation, and dermal remodeling depending on the treatment setting applied. A standardized in vitro 3D model of human skin proved to be a useful tool for exploring the effects of various laser settings both on skin morphology and gene expression during wound healing. It provides novel data on the gene expression and microscopic architecture of the exposed skin. This may enhance our understanding of laser treatment at a molecular level.

  7. Properties of pressure-sensitive adhesive tapes with soft adhesives to human skin and their mechanism.

    PubMed

    Tokumura, Fumio; Homma, Takeyasu; Tomiya, Toshiki; Kobayashi, Yuko; Matsuda, Tetsuaki

    2007-05-01

    The use of soft adhesives in the manufacture of pressure-sensitive adhesive tapes has recently increased. The dermal peeling force of adhesive tapes with soft adhesives was studied. Four kinds of adhesive tapes with adhesives of different softness were made, by adding varying amounts of isopropyl myristate as a softener. The tapes were applied on the flexor side of the forearm of six healthy male volunteers. The dermal peeling force, the amount of stripped corneocytes, the level of pain when the tapes were removed and the degree of penetration of adhesives into the sulcus cutis (skin furrows) were evaluated at 1 and 24 h after application of the tapes. Furthermore, a skin model panel (a sulcus cutis and crista cutis model panel) and a crista cutis model panel were constructed from a general stainless-steel panel, and the peeling force of the tapes against the model panels was measured. As the softness of adhesives increased, the peeling force against a general stainless-steel panel with a flat surface decreased, although the peeling force against human skin did not significantly change. The amount of stripped corneocytes on the removed tapes and the level of pain when the tapes were removed decreased with the increase in softness of the adhesives. These results suggest that adhesive tapes with soft adhesives that contain isopropyl myristate as a softener are suitable for the skin. Furthermore, the degree of penetration of adhesive into the sulcus cutis increased as the softness of adhesives increased. Upon evaluation of the peeling force against the model panels, as the softness of adhesives increased, there was a slight decrease in the peeling force against the skin model panel, while there was a remarkable decrease in the peeling force against the crista cutis model panel. These results suggest that the lack of change in the dermal peeling force as the softness of adhesives increased was caused by penetration of soft adhesive into the sulcus cutis, and that the decrease in the amount of stripped corneocytes was caused by a decrease in the peeling force against the crista cutis, which consists of corneocytes mainly removed by the tapes.

  8. In vitro and in vivo assessment of the effect of Laurus novocanariensis oil and essential oil in human skin.

    PubMed

    Viciolle, E; Castilho, P; Rosado, C

    2012-12-01

    Laurus novocanariensis is an endemic plant from the Madeira Island forest that derives a fatty oil, with a strong spicy odour, from its berries that has been used for centuries in traditional medicine to treat skin ailments. This work aimed to investigate the effect of the application of both the oil and its essential oil on normal skin, to assess their safety and potential benefits. Diffusion studies with Franz cells using human epidermal membranes were conducted. The steady-state fluxes of two model molecules through untreated skin were compared with those obtained after a 2-h pre-treatment with either the oil or the essential oil. Additionally, eleven volunteers participated in the in vivo study that was conducted on the forearm and involved daily application of the oil for 5 days. Measurements were performed every day in the treated site with bioengineering methods that measure erythema, irritation and loss of barrier function. Slightly higher steady-state fluxes were observed for both the lipophilic and the hydrophilic molecule when the epidermal membranes were pre-treated. Nevertheless, such differences had no statistical significance, which seems to confirm that neither the oil nor the essential oil impaired the epidermal barrier. Results collected with the Chromameter, the Laser Doppler Flowmeter and the visual scoring are in agreement with those established in the in vitro study. They indicate that the repeated application of the oil did not cause erythema, because the results observed in the first day of the study were maintained throughout the week. Application of the oil did not affect the skin barrier function, because the transepidermal water loss remained constant throughout the study. The stratum corneum hydration was slightly reduced on days 4 and 5. This work shows that both the oil and the essential oil were well tolerated by the skin and did not cause significant barrier impairment or irritation. © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  9. Kocuria kristinae infection during adalimumab treatment.

    PubMed

    Kolikonda, Murali K; Jayakumar, Priyanga; Sriramula, Srividya; Lippmann, Steven

    2017-03-01

    A common inhabitant of skin, the Kocuria kristinae of the Micrococcaceae family, has gained attention in recent years because it can induce pathology in humans. Reported is a Kocuria kristinae-caused abdominal abscess in a patient treated for rheumatoid arthritis with adalimumab. The tumor necrosis factor (TNF) inhibitor drugs are known to cause various bacterial, viral, and fungal infections. This is the first known case where an opportunistic infection with Kocuria has presented with an abdominal abscess in an immunocompromised individual who is on long term TNF inhibitors.

  10. Human skin volatiles: a review.

    PubMed

    Dormont, Laurent; Bessière, Jean-Marie; Cohuet, Anna

    2013-05-01

    Odors emitted by human skin are of great interest to biologists in many fields; applications range from forensic studies to diagnostic tools, the design of perfumes and deodorants, and the ecology of blood-sucking insect vectors of human disease. Numerous studies have investigated the chemical composition of skin odors, and various sampling methods have been used for this purpose. The literature shows that the chemical profile of skin volatiles varies greatly among studies, and the use of different sampling procedures is probably responsible for some of these variations. To our knowledge, this is the first review focused on human skin volatile compounds. We detail the different sampling techniques, each with its own set of advantages and disadvantages, which have been used for the collection of skin odors from different parts of the human body. We present the main skin volatile compounds found in these studies, with particular emphasis on the most frequently studied body regions, axillae, hands, and feet. We propose future directions for promising experimental studies on odors from human skin, particularly in relation to the chemical ecology of blood-sucking insects.

  11. Dual functional bioactive-peptide, AIMP1-derived peptide (AdP), for anti-aging.

    PubMed

    Kim, Jina; Kang, Sujin; Kwon, HanJin; Moon, HoSang; Park, Min Chul

    2018-06-19

    Human skin aging is caused by several factors, such as UV irradiation, stress, hormone, and pollution. Wrinkle formation and skin pigmentation are representative features of skin aging. Although EGF and arbutin are used as anti-wrinkle and skin whitening agents, respectively, they have adverse effects on skin. When more cosmeceutical ingredients are added to cosmetic product, adverse effects are also accumulated. For these reasons, multifunctional and safe cosmetic ingredients are in demand. The aim of the present study is to investigate the novel anti-aging agents, AIMP1-derived peptide (AdP, INCI name: sh-oligopeptide-5/sh-oligopeptide SP) for cosmetic products. To assess the anti-wrinkle effect of AdP, collagen type I synthesis and fibroblast proliferation were determined on human fibroblasts. The anti-wrinkle effect of AdP was examined by ELISA and cell titer glo assay. To assess the whitening, melanin content and tyrosinase activity were determined on melanocytes. The whitening effect of AdP was examined by melanin measurement and enzyme activity assay. The safety of AdP was determined by cytotoxicity and immunogenicity, CCK-8 and TNF-α ELISA assay, respectively. AdP treatment induced the collagen type I synthesis and fibroblast proliferation. Also, AdP treatment inhibited melanin synthesis by regulating tyrosinase activity. The anti-aging effect of AdP is more potent than EGF and albutin. AdP did not show adverse effects. These results show that AdP can be dual functional and safe cosmeceutical agent to prevent skin aging. © 2018 Wiley Periodicals, Inc.

  12. Feasibility of Human Skin Grafts on an Isolated But Accessible Vascular Supply on Athymic Rats as a System to Study Percutaneous Penetration and Cutaneous Injury.

    DTIC Science & Technology

    1986-04-01

    Ai87 466 FEASIBILITY OF HUMAN SKIN GRAFTS ON AN ISOLATED BUT / ACCESSIBLE VASCULAR 5 (U) UTAH UNIV SALT LAKE CITY SCHOOL OF MEDICINE 6 G KRUEGER APR...GOVT ACCESSION NO . RrCIPIcNTrS CATALOG NUMIER Feasibility of Human Skin Grafts on an Isolated 9 but Accessible Vascular Supply on Athymic Rats as...of the Skin Sandwich Flap....... . . . . . . . 35 Figure 15. Photograph of Hair Growth in a Human Split-Thickness Skin Graft on a Nude Rat

  13. Next generation human skin constructs as advanced tools for drug development.

    PubMed

    Abaci, H E; Guo, Zongyou; Doucet, Yanne; Jacków, Joanna; Christiano, Angela

    2017-11-01

    Many diseases, as well as side effects of drugs, manifest themselves through skin symptoms. Skin is a complex tissue that hosts various specialized cell types and performs many roles including physical barrier, immune and sensory functions. Therefore, modeling skin in vitro presents technical challenges for tissue engineering. Since the first attempts at engineering human epidermis in 1970s, there has been a growing interest in generating full-thickness skin constructs mimicking physiological functions by incorporating various skin components, such as vasculature and melanocytes for pigmentation. Development of biomimetic in vitro human skin models with these physiological functions provides a new tool for drug discovery, disease modeling, regenerative medicine and basic research for skin biology. This goal, however, has long been delayed by the limited availability of different cell types, the challenges in establishing co-culture conditions, and the ability to recapitulate the 3D anatomy of the skin. Recent breakthroughs in induced pluripotent stem cell (iPSC) technology and microfabrication techniques such as 3D-printing have allowed for building more reliable and complex in vitro skin models for pharmaceutical screening. In this review, we focus on the current developments and prevailing challenges in generating skin constructs with vasculature, skin appendages such as hair follicles, pigmentation, immune response, innervation, and hypodermis. Furthermore, we discuss the promising advances that iPSC technology offers in order to generate in vitro models of genetic skin diseases, such as epidermolysis bullosa and psoriasis. We also discuss how future integration of the next generation human skin constructs onto microfluidic platforms along with other tissues could revolutionize the early stages of drug development by creating reliable evaluation of patient-specific effects of pharmaceutical agents. Impact statement Skin is a complex tissue that hosts various specialized cell types and performs many roles including barrier, immune, and sensory functions. For human-relevant drug testing, there has been a growing interest in building more physiological skin constructs by incorporating different skin components, such as vasculature, appendages, pigment, innervation, and adipose tissue. This paper provides an overview of the strategies to build complex human skin constructs that can faithfully recapitulate human skin and thus can be used in drug development targeting skin diseases. In particular, we discuss recent developments and remaining challenges in incorporating various skin components, availability of iPSC-derived skin cell types and in vitro skin disease models. In addition, we provide insights on the future integration of these complex skin models with other organs on microfluidic platforms as well as potential readout technologies for high-throughput drug screening.

  14. Comparison of two methods for noninvasive determination of carotenoids in human and animal skin: Raman spectroscopy versus reflection spectroscopy.

    PubMed

    Darvin, Maxim E; Sandhagen, Carl; Koecher, Wolfgang; Sterry, Wolfram; Lademann, Juergen; Meinke, Martina C

    2012-07-01

    Based on compelling in vivo and in vitro studies on human skin, carotenoids are thought to be of great interest as powerful antioxidants acting to prevent free-radical-induced damages, including premature skin ageing and the development of skin diseases such as cancer. Among the available techniques that are suitable for noninvasive determination of carotenoids in human skin, are resonance Raman spectroscopy (RRS) and reflection spectroscopy (RS). For RS, a LED-based miniaturized spectroscopic system (MSS) was developed for noninvasive measurement of carotenoids in human skin. The optimization and subsequent calibration of the MSS was performed with the use of RRS. A strong correlation between the carotenoid concentration determined by the RS and for the RRS system was achieved for human skin in vivo (R = 0.88) and for bovine udder skin in vitro (R = 0.81). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Generation of Genetically Modified Organotypic Skin Cultures Using Devitalized Human Dermis.

    PubMed

    Li, Jingting; Sen, George L

    2015-12-14

    Organotypic cultures allow the reconstitution of a 3D environment critical for cell-cell contact and cell-matrix interactions which mimics the function and physiology of their in vivo tissue counterparts. This is exemplified by organotypic skin cultures which faithfully recapitulates the epidermal differentiation and stratification program. Primary human epidermal keratinocytes are genetically manipulable through retroviruses where genes can be easily overexpressed or knocked down. These genetically modified keratinocytes can then be used to regenerate human epidermis in organotypic skin cultures providing a powerful model to study genetic pathways impacting epidermal growth, differentiation, and disease progression. The protocols presented here describe methods to prepare devitalized human dermis as well as to genetically manipulate primary human keratinocytes in order to generate organotypic skin cultures. Regenerated human skin can be used in downstream applications such as gene expression profiling, immunostaining, and chromatin immunoprecipitations followed by high throughput sequencing. Thus, generation of these genetically modified organotypic skin cultures will allow the determination of genes that are critical for maintaining skin homeostasis.

  16. Screening Test for Shed Skin Cells by Measuring the Ratio of Human DNA to Staphylococcus epidermidis DNA.

    PubMed

    Nakanishi, Hiroaki; Ohmori, Takeshi; Hara, Masaaki; Takahashi, Shirushi; Kurosu, Akira; Takada, Aya; Saito, Kazuyuki

    2016-05-01

    A novel screening method for shed skin cells by detecting Staphylococcus epidermidis (S. epidermidis), which is a resident bacterium on skin, was developed. Staphylococcus epidermidis was detected using real-time PCR. Staphylococcus epidermidis was detected in all 20 human skin surface samples. Although not present in blood and urine samples, S. epidermidis was detected in 6 of 20 saliva samples, and 5 of 18 semen samples. The ratio of human DNA to S. epidermidisDNA was significantly smaller in human skin surface samples than in saliva and semen samples in which S. epidermidis was detected. Therefore, although skin cells could not be identified by detecting only S. epidermidis, they could be distinguished by measuring the S. epidermidis to human DNA ratio. This method could be applied to casework touch samples, which suggests that it is useful for screening whether skin cells and human DNA are present on potential evidentiary touch samples. © 2016 American Academy of Forensic Sciences.

  17. Evaluation of a human bio-engineered skin equivalent for drug permeation studies.

    PubMed

    Asbill, C; Kim, N; El-Kattan, A; Creek, K; Wertz, P; Michniak, B

    2000-09-01

    To test the barrier function of a bio-engineered human skin (BHS) using three model drugs (caffeine, hydrocortisone, and tamoxifen) in vitro. To investigate the lipid composition and microscopic structure of the BHS. The human skin substitute was composed of both epidermal and dermal layers, the latter having a bovine collagen matrix. The permeability of the BHS to three model drugs was compared to that obtained in other percutaneous testing models (human cadaver skin, hairless mouse skin, and EpiDerm). Lipid analysis of the BHS was performed by high performance thin layered chromatography. Histological evaluation of the BHS was performed using routine H&E staining. The BHS mimicked human skin in terms of lipid composition, gross ultrastructure, and the formation of a stratum corneum. However, the permeability of the BHS to caffeine, hydrocortisone, and tamoxifen was 3-4 fold higher than that of human cadaver skin. In summary, the results indicate that the BHS may be an acceptable in vitro model for drug permeability testing.

  18. Randomized controlled trial of oral omega-3 PUFA in solar-simulated radiation-induced suppression of human cutaneous immune responses.

    PubMed

    Pilkington, Suzanne M; Massey, Karen A; Bennett, Susan P; Al-Aasswad, Naser Mi; Roshdy, Khaled; Gibbs, Neil K; Friedmann, Peter S; Nicolaou, Anna; Rhodes, Lesley E

    2013-03-01

    Skin cancer is a major public health concern, and the majority of cases are caused by solar ultraviolet radiation (UVR) exposure, which suppresses skin immunity. Omega-3 (n-3) PUFAs protect against photoimmunosuppression and skin cancer in mice, but the impact in humans is unknown. We hypothesized that EPA-rich n-3 PUFA would abrogate photoimmunosuppression in humans. Therefore, a nutritional study was performed to assess the effect on UVR suppression of cutaneous cell-mediated immunity (CMI) reflected by nickel contact hypersensitivity (CHS). In a double-blind, randomized controlled study, 79 volunteers (nickel-allergic women, 22-60 y old, with phototype I or II) took 5 g n-3 PUFA-containing lipid (70% EPA plus 10% DHA) or a control lipid daily for 3 mo. After supplementation, nickel was applied to 3 skin sites preexposed on 3 consecutive days to 1.9, 3.8, or 7.6 J/cm(2) of solar-simulated radiation (SSR) and to 3 unexposed control sites. Nickel CHS responses were quantified after 72 h and the percentage of immunosuppression by SSR was calculated. Erythrocyte [red blood cell (RBC)] EPA was measured by using gas chromatography. SSR dose-related suppression of the nickel CHS response was observed in both groups. Photoimmunosuppression appeared less in the n-3 PUFA group than in the control group (not statistically significant [mean difference (95% CI): 6.9% (-2.1%, 15.9%)]). The difference was greatest at 3.8 J/cm(2) SSR [mean difference: 11% (95% CI: 0.5%, 21.4%)]. Postsupplementation RBC EPA was 4-fold higher in the n-3 PUFA group than in the control group (mean difference: 2.69% (95% CI: 2.23%, 3.14%), which confirmed the EPA bioavailability. Oral n-3 PUFAs appear to abrogate photoimmunosuppression in human skin, providing additional support for their chemopreventive role; verification of study findings is required. This trial was registered at clinicaltrials.gov as NCT01032343.

  19. Effect of fiber and dye degradation products (FDP) on burn wound healing.

    PubMed

    Knox, F S; Wachtel, T L; McCahan, G R; Knapp, S C

    1979-10-01

    Upon exposure to the thermal environment of an aircraft fire, many fire retardant fabrics off-gas fiber and dye degradation products (FDP). Condensation of these products on human skin raises questions concerning possible deleterious effects on burn wound healing. A porcine bioassay was used to study the physiological effects of FDP. Selected areas of living skin, protected by dyed aromatic polyamides and polybenzimidazole fabrics, were exposed to a thermal source adjusted to simulate a postcrash JP-4 fuel fire. Burn sites contaminated with FDP were evaluated by clinical observation ane to begin epithelialization, time to closure of an open wound, and the amount and type of cicatrix formation. The experiment showed that each fabric has unique off-gasing products. The greatest amount of FDP was deposited on the skin when the skin was covered by a single layer of shell fabric separated by a 6.35-mm air gap. The presence of an intervening cotton T-shirt decreased the amount of FDP deposited on the skin. We found no evidence that FDP caused alterations in wound healing.

  20. Validation of a Hybrid Microwave-Optical Monitor to Investigate Thermal Provocation in the Microvasculature.

    PubMed

    Al-Armaghany, Allann; Tong, Kenneth; Highton, David; Leung, Terence S

    2016-01-01

    We have previously developed a hybrid microwave-optical system to monitor microvascular changes in response to thermal provocation in muscle. The hybrid probe is capable of inducing deep heat from the skin surface using mild microwaves (1-3 W) and raises the tissue temperature by a few degrees Celsius. This causes vasodilation and the subsequent increase in blood volume is detected by the hybrid probe using near infrared spectroscopy. The hybrid probe is also equipped with a skin cooling system which lowers the skin temperature while allowing microwaves to warm up deeper tissues. The hybrid system can be used to assess the condition of the vasculature in response to thermal stimulation. In this validation study, thermal imaging has been used to assess the temperature distribution on the surface of phantoms and human calf, following microwave warming. The results show that the hybrid system is capable of changing the skin temperature with a combination of microwave warming and skin cooling. It can also detect thermal responses in terms of changes of oxy/deoxy-hemoglobin concentrations.

  1. Tegu (teiu) bite: report of human injury caused by a Teiidae lizard.

    PubMed

    Haddad, Vidal; Duarte, Marcelo R; Neto, Domingos Garrone

    2008-01-01

    Lizards of the Teiidae family are large reptiles measuring up to 2 meters long. If threatened, they can demonstrate aggressive behavior by whipping their tail and occasionally biting. Here, we report a severe injury following a Teiidae lizard bite on the right index finger of a human. There was significant soft tissue damage and an avulsion fracture of the distal phalanx. He was treated with conservative wound care and prophylactic antibiotics. He developed no evidence of secondary infection and underwent delayed skin grafting.

  2. [THE MICROSCOPIC ALGAE AS HUMAN PATHOGENS].

    PubMed

    Roman, Manuel Casal

    2014-01-01

    Some microscopic algae can cause different infectious diseases in humans, including skin, bone, and disseminated. These little-known emerging disease are more severe in immunocompromised patients. The confirmatory microbiological diagnosis must be done differential with yeast-like fungi that can be confused. Anti-fungal drugs and surgery, being quite frequent treatment failure have been used in the treatment. Given the increase of immunosuppression in the current medicine and new possibilities of microbiological diagnostics, it is logical that these diseases tend to increase, by which all physician should know them.

  3. Adaptation of human skin color in various populations.

    PubMed

    Deng, Lian; Xu, Shuhua

    2018-01-01

    Skin color is a well-recognized adaptive trait and has been studied extensively in humans. Understanding the genetic basis of adaptation of skin color in various populations has many implications in human evolution and medicine. Impressive progress has been made recently to identify genes associated with skin color variation in a wide range of geographical and temporal populations. In this review, we discuss what is currently known about the genetics of skin color variation. We enumerated several cases of skin color adaptation in global modern humans and archaic hominins, and illustrated why, when, and how skin color adaptation occurred in different populations. Finally, we provided a summary of the candidate loci associated with pigmentation, which could be a valuable reference for further evolutionary and medical studies. Previous studies generally indicated a complex genetic mechanism underlying the skin color variation, expanding our understanding of the role of population demographic history and natural selection in shaping genetic and phenotypic diversity in humans. Future work is needed to dissect the genetic architecture of skin color adaptation in numerous ethnic minority groups around the world, which remains relatively obscure compared with that of major continental groups, and to unravel the exact genetic basis of skin color adaptation.

  4. Rejuvenation of Gene Expression Pattern of Aged Human Skin by Broadband Light Treatment: A Pilot Study

    PubMed Central

    Chang, Anne Lynn S; Bitter, Patrick H; Qu, Kun; Lin, Meihong; Rapicavoli, Nicole A; Chang, Howard Y

    2013-01-01

    Studies in model organisms suggest that aged cells can be functionally rejuvenated, but whether this concept applies to human skin is unclear. Here we apply 3′-end sequencing for expression quantification (“3-seq”) to discover the gene expression program associated with human photoaging and intrinsic skin aging (collectively termed “skin aging”), and the impact of broadband light (BBL) treatment. We find that skin aging was associated with a significantly altered expression level of 2,265 coding and noncoding RNAs, of which 1,293 became “rejuvenated” after BBL treatment; i.e., they became more similar to their expression level in youthful skin. Rejuvenated genes (RGs) included several known key regulators of organismal longevity and their proximal long noncoding RNAs. Skin aging is not associated with systematic changes in 3′-end mRNA processing. Hence, BBL treatment can restore gene expression pattern of photoaged and intrinsically aged human skin to resemble young skin. In addition, our data reveal, to our knowledge, a previously unreported set of targets that may lead to new insights into the human skin aging process. PMID:22931923

  5. Assessment of the sensitizing potency of preservatives with chance of skin contact by the loose-fit coculture-based sensitization assay (LCSA).

    PubMed

    Sonnenburg, Anna; Schreiner, Maximilian; Stahlmann, Ralf

    2015-12-01

    Parabens, methylisothiazolinone (MI) and its derivative methylchloroisothiazolinone (MCI), are commonly used as preservatives in personal care products. They can cause hypersensitivity reactions of the human skin. We have tested a set of nine parabens, MI alone and in combination with MCI in the loose-fit coculture-based sensitization assay (LCSA). The coculture of primary human keratinocytes and allogenic dendritic cell-related cells (DC-rc) in this assay emulates the in vivo situation of the human skin. Sensitization potency of the test substances was assessed by flow cytometric analysis of the DC-rc maturation marker CD86. Determination of the concentration required to cause a half-maximal increase in CD86-expression (EC50sens) allowed a quantitative evaluation. The cytotoxicity of test substances as indicator for irritative potency was measured by 7-AAD (7-amino-actinomycin D) staining. Parabens exhibited weak (methyl-, ethyl-, propyl- and isopropylparaben) or strong (butyl-, isobutyl-, pentyl- and benzylparaben) effects, whereas phenylparaben was found to be a moderate sensitizer. Sensitization potencies of parabens correlated with side chain length. Due to a pronounced cytotoxicity, we could not estimate an EC50sens value for MI, whereas MI/MCI was classified as sensitizer and also showed cytotoxic effects. Parabens showed no (methyl- and ethylparaben) or weak irritative potencies (propyl-, isopropyl-, butyl-, isobutyl-, phenyl- and benzylparaben), only pentylparaben was rated to be irritative. Overall, we were able to demonstrate and compare the sensitizing potencies of parabens in this in vitro test. Furthermore, we showed an irritative potency for most of the preservatives. The data further support the usefulness of the LCSA for comparison of the sensitizing potencies of xenobiotics.

  6. Repeated subcutaneous administrations of krokodil causes skin necrosis and internal organs toxicity in Wistar rats: putative human implications.

    PubMed

    Alves, Emanuele Amorim; Brandão, Pedro; Neves, João Filipe; Cravo, Sara Manuela; Soares, José Xavier; Grund, Jean-Paul C; Duarte, José Alberto; Afonso, Carlos M M; Pereira Netto, Annibal Duarte; Carvalho, Félix; Dinis-Oliveira, Ricardo Jorge

    2017-05-01

    "Krokodil" is the street name for an impure homemade drug mixture used as a cheap substitute for heroin, containing desomorphine as the main opioid. Abscesses, gangrene, thrombophlebitis, limb ulceration and amputations, jaw osteonecrosis, skin discoloration, ulcers, skin infections, and bleeding are some of the typical reported signs in humans. This study aimed to understand the toxicity of krokodil using Wistar male rats as experimental model. Animals were divided into seven groups and exposed subcutaneously to NaCl 0.9% (control), krokodil mixture free of psychotropic substances (blank krokodil), pharmaceutical grade desomorphine 1 mg/kg, and four different concentrations of krokodil (containing 0.125, 0.25, 0.5, and 1 mg/kg of desomorphine) synthesized accordingly to a "domestic" protocol followed by people who inject krokodil (PWIK). Daily injections for five consecutive days were performed, and animals were sacrificed 24 hr after the last administration. Biochemical and histological analysis were carried out. It was shown that the continuous use of krokodil may cause injury at the injection area, with formation of necrotic zones. The biochemical results evidenced alterations on cardiac and renal biomarkers of toxicity, namely, creatine kinase, creatine kinase-MB, and uric acid. Significant alteration in levels of reduced and oxidized glutathione on kidney and heart suggested that oxidative stress may be involved in krokodil-mediated toxicity. Cardiac congestion was the most relevant finding of continuous krokodil administration. These findings contribute notably to comprehension of the local and systemic toxicological impact of this complex drug mixture on major organs and will hopefully be useful for the development of appropriate treatment strategies towards the human toxicological effects of krokodil. Copyright © 2017 John Wiley & Sons, Ltd.

  7. The human gene for alkaptonuria (AKU) maps to chromosome 3q

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janocha, S.; Wolz, W.; Grimm, T.

    1994-01-01

    Alkaptonuria (AKU; McKusick no. 203500) is a rare autosomal recessive disorder caused by the lack of homogentisic acid oxidase activity. Patients excrete large amounts of homogentisic acid in their urine and a black ochronotic pigment is deposited in their cartilage and collagenous tissues. Ochronosis is the predominant clinical complication of the disease leading to ochronotic arthropathy, dark urine, pigment changes of the skin, and other clinical features. A mutation causing alkaptonuria in the mouse has mapped to chromosome 16. Considering conserved synteny, the authors were able to map the human gene to chromosome 3q in six alkaptonuria pedigrees of Slovakmore » origin. 22 refs., 3 figs., 1 tab.« less

  8. [Prohibited substances in cosmetics: prospect of the toxicity of acrylamide].

    PubMed

    Shen, Minxue; Sun, Zhenqiu; Shi, Jingcheng; Hu, Ming; Hu, Jingxuan; Liu, Yanhong

    2012-04-01

    Prohibited substances in cosmetics refer to substances which must not be among the raw material ingredients of cosmetic products. These substances are absorbed mostly through skin, as well as via lung and gastrointestinal tract. Polyacrylamide is ubiquitously used in industry and its decomposition residue acrylamide (ACR) easily finds its way into cosmetic products. ACR can either be oxidized to epoxide glycidamide or conjugated with glutathione, hemoglobin or DNA; ultimately it is excreted in urine. ACR causes neurotoxicity, reproductive toxicity and tumors in rodents. Occupational exposure to ACR causes neurotoxicity in humans; however, epidemiological evidence have not unambiguously answered the question of whether ACR exposure can increase cancer risk for humans.

  9. The use of human chorionic gonadotropin (HCG) for penile reconstruction in bladder exstrophy and total epispadias patients.

    PubMed

    Makedonsky, I A

    2006-12-01

    The effect of intramuscular human chorionic gonadotropin (HCG) administration on penile enlargement before genital surgery, its influence on penile skin histology and testicular descent were investigated. We examined 45 male patients (median age, 8 months; range 3-28) with total epispadias and classic bladder exstrophy, combined with cryptorchidism. 30 patients were administered 250-500 IU HCG intramuscularly 2 times per week for 3 weeks before reconstructive surgery. Skin biopsies were obtained for human epidermal growth factor (EGF) and human epidermal growth factor receptor (Her2/neu) determination. Skin specimens of the prepuce of 18 circumcised patients were used as controls. Post treatment testicle position was evaluated. HCG caused a mean increase in penile length of 1.8 cm (p < 0.01) and in circumference of 1.2 cm (p < 0.05) as well as improved local vascularity in all patients. Compared to the controls, the penile skin of exstrophy/epispadias patients showed a significant decrease in the average amount per field of EGF and Her2/neu positive material (controls 81% [mean 79, SE 2.3] vs. 31% [mean 28, SE 3.6; p < 0.001]). Treatment with HCG led to an increase in average EGF and Her2/neu positive material by 10% (mean 8, SE 2; p < 0.05). The potential side effects of HCG treatment were monitored 3 to 6 months postoperatively. Basal testosterone and LH levels were obtained in patients before and during therapy and postoperatively. Testicular descent was achieved in 21 patients (70%). No significant side effects or complications were encountered in any of our patients. Mean EGF and Her2/neu values are decreased in the penile skin of exstrophy/epispadias patients. The use of preoperative HCG administration leads to an increase in EGF and Her2/neu values and significantly contributes to successful reconstruction in these patients, especially in cases with a paucity of penile skin and in patients who have undergone previous repairs. Temporary penile stimulation by HCG in patients with bladder exstrophy combined with cryptorchidism allows the penile operation to be carried out earlier and contributes to testicular descent while demonstrating negligible side effects.

  10. Clinically-Relevant Cutaneous Lesions by Nitrogen Mustard: Useful Biomarkers of Vesicants Skin Injury in SKH-1 Hairless and C57BL/6 Mice

    PubMed Central

    Tewari-Singh, Neera; Jain, Anil K.; Inturi, Swetha; White, Carl W.; Agarwal, Rajesh

    2013-01-01

    A paucity of clinically applicable biomarkers to screen therapies in laboratory is a limitation in the development of countermeasures against cutaneous injuries by chemical weapon, sulfur mustard (SM), and its analog nitrogen mustard (NM). Consequently, we assessed NM-caused progression of clinical cutaneous lesions; notably, skin injury with NM is comparable to SM. Exposure of SKH-1 hairless and C57BL/6 (haired) mice to NM (3.2 mg) for 12–120 h caused clinical sequelae of toxicity, including microblister formation, edema, erythema, altered pigmentation, wounding, xerosis and scaly dry skin. These toxic effects of NM were similar in both mouse strains, except that wounding and altered pigmentation at 12–24 h and appearance of dry skin at 24 and 72 h post-NM exposure were more pronounced in C57BL/6 compared to SKH-1 mice. Conversely, edema, erythema and microblister formation were more prominent in SKH-1 than C57BL/6 mice at 24–72 h after NM exposure. In addition, 40–60% mortality was observed following 120 h of NM exposure in the both mouse strains. Overall, these toxic effects of NM are comparable to those reported in humans and other animal species with SM, and thus represent clinically-relevant cutaneous injury endpoints in screening and optimization of therapies for skin injuries by vesicating agents. PMID:23826320

  11. Comparison of penetration and metabolism of [3H]diacetoxyscirpenol, [3H]verrucarin A and [3H]T-2 toxin in skin.

    PubMed

    Kemppainen, B W; Riley, R T; Biles-Thurlow, S

    1987-05-01

    The purpose of this research was to determine the rate of cutaneous penetration and metabolism of [3H]diacetoxyscirpenol (DAS) and [3H]verrucarin A (VCA) and compare these values to previously determined values for [3H]T-2 toxin (T-2), to compare the cutaneous penetration and metabolism of DAS in human and guinea-pig skin, and to compare the effects of dose and of two vehicles, methanol and dimethylsulphoxide (DMSO), on penetration rates. DAS or VCA was applied to the epidermal surface of excised skin, and the receptor fluid bathing the dermal surface was sampled periodically for 48 hr. Whether the applied dose (581 ng/cm2) was dissolved in methanol or DMSO, the rate of penetration through human skin was lower for VCA than for DAS or T-2, the rates for the two latter compounds being similar at this dose. Metabolism of DAS occurred during penetration through excised human skin and did not occur in the receptor fluid as a result of enzymes leaching out of the skin. VCA appeared to be metabolized by human skin, but this conclusion is tentative because of the relative instability of this compound. DAS penetrated significantly (P less than 0.05) faster through excised guinea-pig skin than through human skin. Metabolism of DAS was greater in human skin than in guinea-pig skin. When compared with methanol, DMSO increased the penetration of DAS and VCA by factors of between 7 and 52. At the low dose (79 ng/cm2) DAS penetrated human and guinea-pig skin significantly (P less than 0.05) faster than T-2 using either vehicle.

  12. Xenobiotic metabolism capacities of human skin in comparison with a 3D-epidermis model and keratinocyte-based cell culture as in vitro alternatives for chemical testing: phase II enzymes.

    PubMed

    Götz, Christine; Pfeiffer, Roland; Tigges, Julia; Ruwiedel, Karsten; Hübenthal, Ulrike; Merk, Hans F; Krutmann, Jean; Edwards, Robert J; Abel, Josef; Pease, Camilla; Goebel, Carsten; Hewitt, Nicola; Fritsche, Ellen

    2012-05-01

    The 7th Amendment to the EU Cosmetics Directive prohibits the use of animals in cosmetic testing for certain endpoints, such as genotoxicity. Therefore, skin in vitro models have to replace chemical testing in vivo. However, the metabolic competence neither of human skin nor of alternative in vitro models has so far been fully characterized, although skin is the first-pass organ for accidentally or purposely (cosmetics and pharmaceuticals) applied chemicals. Thus, there is an urgent need to understand the xenobiotic-metabolizing capacities of human skin and to compare these activities to models developed to replace animal testing. We have measured the activity of the phase II enzymes glutathione S-transferase, UDP-glucuronosyltransferase and N-acetyltransferase in ex vivo human skin, the 3D epidermal model EpiDerm 200 (EPI-200), immortalized keratinocyte-based cell lines (HaCaT and NCTC 2544) and primary normal human epidermal keratinocytes. We show that all three phase II enzymes are present and highly active in skin as compared to phase I. Human skin, therefore, represents a more detoxifying than activating organ. This work systematically compares the activities of three important phase II enzymes in four different in vitro models directly to human skin. We conclude from our studies that 3D epidermal models, like the EPI-200 employed here, are superior over monolayer cultures in mimicking human skin xenobiotic metabolism and thus better suited for dermatotoxicity testing. © 2012 John Wiley & Sons A/S.

  13. Induction of Skin-Derived Precursor Cells from Human Induced Pluripotent Stem Cells.

    PubMed

    Sugiyama-Nakagiri, Yoriko; Fujimura, Tsutomu; Moriwaki, Shigeru

    2016-01-01

    The generation of full thickness human skin from dissociated cells is an attractive approach not only for treating skin diseases, but also for treating many systemic disorders. However, it is currently not possible to obtain an unlimited number of skin dermal cells. The goal of this study was to develop a procedure to produce skin dermal stem cells from induced pluripotent stem cells (iPSCs). Skin-derived precursor cells (SKPs) were isolated as adult dermal precursors that could differentiate into both neural and mesodermal progenies and could reconstitute the dermis. Thus, we attempted to generate SKPs from iPSCs that could reconstitute the skin dermis. Human iPSCs were initially cultured with recombinant noggin and SB431542, an inhibitor of activin/nodal and TGFβ signaling, to induce neural crest progenitor cells. Those cells were then treated with SKP medium that included CHIR99021, a WNT signal activator. The induction efficacy from neural crest progenitor cells to SKPs was more than 97%. No other modifiers tested were able to induce those cells. Those human iPSC-derived SKPs (hiPSC-SKPs) showed a similar gene expression signature to SKPs isolated from human skin dermis. Human iPSC-SKPs differentiated into neural and mesodermal progenies, including adipocytes, skeletogenic cell types and Schwann cells. Moreover, they could be induced to follicular type keratinization when co-cultured with human epidermal keratinocytes. We here provide a new efficient protocol to create human skin dermal stem cells from hiPSCs that could contribute to the treatment of various skin disorders.

  14. Xenobiotic metabolism in human skin and 3D human skin reconstructs: a review.

    PubMed

    Gibbs, Sue; van de Sandt, Johannes J M; Merk, Hans F; Lockley, David J; Pendlington, Ruth U; Pease, Camilla K

    2007-12-01

    In this review, we discuss and compare studies of xenobiotic metabolism in both human skin and 3D human skin reconstructs. In comparison to the liver, the skin is a less studied organ in terms of characterising metabolic capability. While the skin forms the major protective barrier to environmental chemical exposure, it is also a potential target organ for adverse health effects. Occupational, accidental or intended-use exposure to toxic chemicals could result in acute or delayed injury to the skin (e.g. inflammation, allergy, cancer). Skin metabolism may play a role in the manifestation or amelioration of adverse effects via the topical route. Today, we have robust testing strategies to assess the potential for local skin toxicity of chemical exposure. Such methods (e.g. the local lymph node assay for assessing skin sensitisation; skin painting carcinogenicity studies) incorporate skin metabolism implicitly in the in vivo model system used. In light of recent European legislation (i.e. 7(th) Amendment to the Cosmetics Directive and Registration Evaluation and Authorisation of existing Chemicals (REACH)), non-animal approaches will be required to reduce and replace animal experiments for chemical risk assessment. It is expected that new models and approaches will need to account for skin metabolism explicitly, as the mechanisms of adverse effects in the skin are deconvoluted. 3D skin models have been proposed as a tool to use in new in vitro alternative approaches. In order to be able to use 3D skin models in this context, we need to understand their metabolic competency in relation to xenobiotic biotransformation and whether functional activity is representative of that seen in human skin.

  15. Acute Peritonitis Caused by Staphylococcus capitis in a Peritoneal Dialysis Patient.

    PubMed

    Basic-Jukic, Nikolina

    Acute peritonitis remains the most common complication of peritoneal dialysis (PD), with coagulase-negative staphylococci (CoNS) reported to account for more than 25% of peritonitis episodes (1). Staphylococcus capitis is a gram-positive, catalase-positive CoNS that was originally identified as a commensal on the skin of the human scalp (2). Advancement of microbiological technologies for bacterial identification enables diagnosis of previously unknown causes of acute peritonitis. This is the first reported case of acute peritonitis in a PD patient caused by S. capitis. Copyright © 2017 International Society for Peritoneal Dialysis.

  16. A Chemical-Medical Mystery: Gold Jewelry and Black Marks on Skin

    NASA Astrophysics Data System (ADS)

    Kebbekus, Barbara B.

    2000-10-01

    Gold jewelry at times makes a black mark or smudge on skin. This may be caused by abrasive powders on the skin (e.g. zinc oxide) but the phenomenon may also be caused by other skin conditions, possibly the presence of chloride ion, acidity, or sulfur-containing amino acids. Some anecdotal evidence is published, but properly designed studies to clarify the actual causes are not available.

  17. Focused ultrasound as a tool to input sensory information to humans (Review)

    NASA Astrophysics Data System (ADS)

    Gavrilov, L. R.; Tsirulnikov, E. M.

    2012-01-01

    This review is devoted to the analysis of studies and implementations related to the use of focused ultrasound for functional effects on neuroreceptor structures. Special attention was paid to the stimulation of neuroreceptor structures in order to input sensory information to humans. This branch of medical and physiological acoustics appeared in Russia in the early 1970s and was being efficiently developed up to the late 1980s. Then, due to lack of financial support, only individual researchers remained at this field and, as a result, we have no full- fledged theoretical research and practical implementations in this area yet. Many promising possibilities of using functional effects of focused ultrasound in medicine and physiology have remained unimplemented for a long time. However, new interesting ideas and approaches have appeared in recent years. Very recently, very questionable projects have been reported related to the use of ultrasound for targeted functional effects on the human brain performed in some laboratories. In this review, the stages of the development of scientific research devoted to the functional effects of focused ultrasound are described. By activating the neuroreceptor structures of the skin by means pulses of focused ultrasound, one can cause all the sensations perceived by human beings through the skin in everyday life, such as tactile sensations, thermal (heat and cold), tickling, itching, and various types of pain. Stimulation of the ear labyrinth of humans with normal hearing using amplitude-modulated ultrasound causes auditory sensations corresponding to an audio modulating signal (pure tones, music, speech, etc.). Activation of neuroreceptor structures by means of focused ultrasound is used for the diagnosis of various neurological and skin diseases, as well as hearing disorders. It has been shown that the activation is related to the mechanical action of ultrasound, for example, by the radiation force, as well as to the direct action of ultrasonic vibrations on nerve fibers. The action of the radiation force is promising for the realization of the possibility of blind and even deaf-and-blind people to perceive text information on a display using tactile sensations caused by ultrasound. Very different methods of using ultrasound for local stimulation of neuroreceptor structures are discussed in this review. Among them are practical methods that have been already tested in a clinic, as well as pretending to be sensational methods that are hardly feasible in the foreseeable future.

  18. Human Skin Is the Largest Epithelial Surface for Interaction with Microbes.

    PubMed

    Gallo, Richard L

    2017-06-01

    Human skin contains an abundant and diverse population of microbial organisms. Many of these microbes inhabit follicular structures of the skin. Furthermore, numerous studies have shown that the interaction of some members of the skin microbiome with host cells will result in changes in cell function. However, estimates of the potential for the microbiome to influence human health through skin have ignored the inner follicular surface, and therefore vastly underestimated the potential of the skin microbiome to have a systemic effect on the human body. By calculating the surface area of follicular and the interfollicular epithelial surface it is shown that skin provides a vast interface for interactions with the microbiome. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  19. The isolated perfused human skin flap model: A missing link in skin penetration studies?

    PubMed

    Ternullo, Selenia; de Weerd, Louis; Flaten, Gøril Eide; Holsæter, Ann Mari; Škalko-Basnet, Nataša

    2017-01-01

    Development of effective (trans)dermal drug delivery systems requires reliable skin models to evaluate skin drug penetration. The isolated perfused human skin flap remains metabolically active tissue for up to 6h during in vitro perfusion. We introduce the isolated perfused human skin flap as a close-to-in vivo skin penetration model. To validate the model's ability to evaluate skin drug penetration the solutions of a hydrophilic (calcein) and a lipophilic (rhodamine) fluorescence marker were applied. The skin flaps were perfused with modified Krebs-Henseleit buffer (pH7.4). Infrared technology was used to monitor perfusion and to select a well-perfused skin area for administration of the markers. Flap perfusion and physiological parameters were maintained constant during the 6h experiments and the amount of markers in the perfusate was determined. Calcein was detected in the perfusate, whereas rhodamine was not detectable. Confocal images of skin cross-sections shoved that calcein was uniformly distributed through the skin, whereas rhodamine accumulated in the stratum corneum. For comparison, the penetration of both markers was evaluated on ex vivo human skin, pig skin and cellophane membrane. The proposed perfused flap model enabled us to distinguish between the penetrations of the two markers and could be a promising close-to-in vivo tool in skin penetration studies and optimization of formulations destined for skin administration. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Human skin pigmentation as an adaptation to UV radiation

    PubMed Central

    Jablonski, Nina G.; Chaplin, George

    2010-01-01

    Human skin pigmentation is the product of two clines produced by natural selection to adjust levels of constitutive pigmentation to levels of UV radiation (UVR). One cline was generated by high UVR near the equator and led to the evolution of dark, photoprotective, eumelanin-rich pigmentation. The other was produced by the requirement for UVB photons to sustain cutaneous photosynthesis of vitamin D3 in low-UVB environments, and resulted in the evolution of depigmented skin. As hominins dispersed outside of the tropics, they experienced different intensities and seasonal mixtures of UVA and UVB. Extreme UVA throughout the year and two equinoctial peaks of UVB prevail within the tropics. Under these conditions, the primary selective pressure was to protect folate by maintaining dark pigmentation. Photolysis of folate and its main serum form of 5-methylhydrofolate is caused by UVR and by reactive oxygen species generated by UVA. Competition for folate between the needs for cell division, DNA repair, and melanogenesis is severe under stressful, high-UVR conditions and is exacerbated by dietary insufficiency. Outside of tropical latitudes, UVB levels are generally low and peak only once during the year. The populations exhibiting maximally depigmented skin are those inhabiting environments with the lowest annual and summer peak levels of UVB. Development of facultative pigmentation (tanning) was important to populations settling between roughly 23° and 46° , where levels of UVB varied strongly according to season. Depigmented and tannable skin evolved numerous times in hominin evolution via independent genetic pathways under positive selection. PMID:20445093

Top