Science.gov

Sample records for human small airway

  1. Human Lung Small Airway-on-a-Chip Protocol.

    PubMed

    Benam, Kambez H; Mazur, Marc; Choe, Youngjae; Ferrante, Thomas C; Novak, Richard; Ingber, Donald E

    2017-01-01

    Organs-on-chips are microfluidic cell culture devices created using microchip manufacturing techniques that contain hollow microchannels lined by living cells, which recreate specialized tissue-tissue interfaces, physical microenvironments, and vascular perfusion necessary to recapitulate organ-level physiology in vitro. Here we describe a protocol for fabrication, culture, and operation of a human lung "small airway-on-a-chip," which contains a differentiated, mucociliary bronchiolar epithelium exposed to air and an underlying microvascular endothelium that experiences fluid flow. First, microengineering is used to fabricate a multilayered microfluidic device that contains two parallel elastomeric microchannels separated by a thin rigid porous membrane; this requires less than 1 day to complete. Next, primary human airway bronchiolar epithelial cells isolated from healthy normal donors or patients with respiratory disease are cultured on the porous membrane within one microchannel while lung microvascular endothelial cells are cultured on the opposite side of the same membrane in the second channel to create a mucociliated epithelium-endothelium interface; this process take about 4-6 weeks to complete. Finally, culture medium containing neutrophils isolated from fresh whole human blood are flowed through the microvascular channel of the device to enable real-time analysis of capture and recruitment of circulating leukocytes by endothelium under physiological shear; this step requires less than 1 day to complete. The small airway-on-a-chip represents a new microfluidic tool to model complex and dynamic inflammatory responses of healthy and diseased lungs in vitro.

  2. Mechanisms of intrinsic force in small human airways.

    PubMed

    Wylam, Mark E; Xue, Ailing; Sieck, Gary C

    2012-04-15

    We quantified the magnitude and investigated mechanisms regulating intrinsic force (IF) in human airway smooth muscle (hASM). IF was identified by reducing extracellular calcium (Ca2+) concentration to nominally zero in freshly isolated isometrically mounted 2mm human bronchi. Our results show: (1) the magnitude of IF is ∼50% of the maximal total force elicited by acetylcholine (10(-5) M) and is epithelial independent, (2) IF can also be revealed by β-adrenergic activation (isoproterenol), non-specific cationic channel blockade (La3+) or L-type voltage gated Ca2+ channel blockade (nifedipine), (3) atropine, indomethacin, AA-861, or pyrilamine did not affect IF, (4) IF was reduced by the intracellular Ca2+ ([Ca2+]i) chelating agent BAPTA-AM, (5) ω-conotoxin had no effect on IF. In studies in cultured hASM cells nominally zero Ca2+ buffer and BAPTA-AM reduced [Ca2+]i but isoproterenol and nifedipine did not. Taken together these results indicate that rapid reduction of [Ca2+]i reveals a permissive relationship between extracellular Ca2+, [Ca2+]i and IF. However IF can be dissipated by mechanisms effecting Ca2+ sensitivity. We speculate that an increase of IF, a fundamental property of ASM, could be related to human airway clinical hyperresponsiveness and must be accounted for in in vitro studies of hASM. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Successful establishment of primary small airway cell cultures in human lung transplantation

    PubMed Central

    2009-01-01

    Background The study of small airway diseases such as post-transplant bronchiolitis obliterans syndrome (BOS) is hampered by the difficulty in assessing peripheral airway function either physiologically or directly. Our aims were to develop robust methods for sampling small airway epithelial cells (SAEC) and to establish submerged SAEC cultures for downstream experimentation. Methods SAEC were obtained at 62 post-transplant bronchoscopies in 26 patients using radiologically guided bronchial brushings. Submerged cell cultures were established and SAEC lineage was confirmed using expression of clara cell secretory protein (CCSP). Results The cell yield for SAEC (0.956 ± 0.063 × 106) was lower than for large airway cells (1.306 ± 0.077 × 106) but did not significantly impact on the culture establishment rate (79.0 ± 5.2% vs. 83.8 ± 4.7% p = 0.49). The presence of BOS significantly compromised culture success (independent of cell yield) for SAEC (odds ratio (95%CI) 0.067 (0.01-0.40)) but not LAEC (0.3 (0.05-1.9)). Established cultures were successfully passaged and expanded. Conclusion Primary SAEC can be successfully obtained from human lung transplant recipients and maintained in culture for downstream experimentation. This technique will facilitate the development of primary in vitro models for BOS and other diseases with a small airway component such as asthma, cystic fibrosis and COPD. PMID:19857270

  4. A role for M(2) and M(3) muscarinic receptors in the contraction of rat and human small airways.

    PubMed

    Brown, Stephanie M; Koarai, Akira; Sturton, Richard G; Nicholson, Andrew G; Barnes, Peter J; Donnelly, Louise E

    2013-02-28

    Large airway bronchoconstriction acts mainly through cholinergic pathways via muscarinic M3 receptors with some contribution from M2 receptors. By contrast, the mechanisms of small airway contraction are largely unknown. This study used precision cut lung slices to examine the role of muscarinic M2 and M3 receptors in the contractile response of rat and human small airways. In rat small airways, the M3 preferential antagonist, 4-DAMP, inhibited carbachol-mediated contraction (1×10(-6) M) more than that of the M2 selective antagonist, AF-DX116 (pIC50 values: 8.85±0.18 and 6.31±0.19, n=6-8 respectively). Tiotropium, inhibited the contractile response to carbachol with (pIC50: 9.86±0.07, n=6), but could not distinguish between M2 and M3 mediated effects. Similar experiments using human small airways with tiotropium and AF-DX116, gave a pIC50 of 10.35±0.05 and a pKB of 6.37±0.13, n=5 respectively. Therefore, M3 receptors play a key role in muscarinic contraction of small airways in both rats and humans but the effect of M2 receptors cannot be excluded. To investigate the role of M2 receptors, carbachol-induced contraction of small airways was performed in the presence and absence of a β2-agonist in order to elevate intracellular cAMP levels prior to contraction. Isoproterenol-induced relaxation was significantly increased by AF-DX116 (P<0.001) in rat small airways and by AF-DX116 (P<0.01), gallamine (P<0.05) and pertussis toxin (P<0.05) in human small airways. Taken together, these data suggest that cholinergic antagonism of muscarinic receptors in human and rat small airways inhibits airway contraction via direct inhibition of contraction through M3 receptors, and by M2 receptor mediated inhibition of relaxation. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Inhibition of PI3K promotes dilation of human small airways in a rho kinase‐dependent manner

    PubMed Central

    Koziol‐White, Cynthia J; Yoo, Edwin J; Cao, Gaoyuan; Zhang, Jie; Papanikolaou, Eleni; Pushkarsky, Ivan; Andrews, Adam; Himes, Blanca E; Damoiseaux, Robert D; Liggett, Stephen B; Di Carlo, Dino; Kurten, Richard C

    2016-01-01

    Background and Purpose Asthma manifests as a heterogeneous syndrome characterized by airway obstruction, inflammation and hyperresponsiveness (AHR). Although the molecular mechanisms remain unclear, activation of specific PI3K isoforms mediate inflammation and AHR. We aimed to determine whether inhibition of PI3Kδ evokes dilation of airways and to elucidate potential mechanisms. Experimental Approach Human precision cut lung slices from non‐asthma donors and primary human airway smooth muscle (HASM) cells from both non‐asthma and asthma donors were utilized. Phosphorylation of Akt, myosin phosphatase target subunit 1 (MYPT1) and myosin light chain (MLC) were assessed in HASM cells following either PI3K inhibitor or siRNA treatment. HASM relaxation was assessed by micro‐pattern deformation. Reversal of constriction of airways was assessed following stimulation with PI3K or ROCK inhibitors. Key Results Soluble inhibitors or PI3Kδ knockdown reversed carbachol‐induced constriction of human airways, relaxed agonist‐contracted HASM and inhibited pAkt, pMYPT1 and pMLC in HASM. Similarly, inhibition of Rho kinase also dilated human PCLS airways and suppressed pMYPT1 and pMLC. Baseline pMYPT1 was significantly elevated in HASM cells derived from asthma donors in comparison with non‐asthma donors. After desensitization of the β2‐adrenoceptors, a PI3Kδ inhibitor remained an effective dilator. In the presence of IL‐13, dilation by a β agonist, but not PI3K inhibitor, was attenuated. Conclusion and Implications PI3Kδ inhibitors act as dilators of human small airways. Taken together, these findings provide alternative approaches to the clinical management of airway obstruction in asthma. PMID:27352269

  6. Dung biomass smoke activates inflammatory signaling pathways in human small airway epithelial cells.

    PubMed

    McCarthy, Claire E; Duffney, Parker F; Gelein, Robert; Thatcher, Thomas H; Elder, Alison; Phipps, Richard P; Sime, Patricia J

    2016-12-01

    Animal dung is a biomass fuel burned by vulnerable populations who cannot afford cleaner sources of energy, such as wood and gas, for cooking and heating their homes. Exposure to biomass smoke is the leading environmental risk for mortality, with over 4,000,000 deaths each year worldwide attributed to indoor air pollution from biomass smoke. Biomass smoke inhalation is epidemiologically associated with pulmonary diseases, including chronic obstructive pulmonary disease (COPD), lung cancer, and respiratory infections, especially in low and middle-income countries. Yet, few studies have examined the mechanisms of dung biomass smoke-induced inflammatory responses in human lung cells. Here, we tested the hypothesis that dung biomass smoke causes inflammatory responses in human lung cells through signaling pathways involved in acute and chronic lung inflammation. Primary human small airway epithelial cells (SAECs) were exposed to dung smoke at the air-liquid interface using a newly developed, automated, and reproducible dung biomass smoke generation system. The examination of inflammatory signaling showed that dung biomass smoke increased the production of several proinflammatory cytokines and enzymes in SAECs through activation of the activator protein (AP)-1 and arylhydrocarbon receptor (AhR) but not nuclear factor-κB (NF-κB) pathways. We propose that the inflammatory responses of lung cells exposed to dung biomass smoke contribute to the development of respiratory diseases.

  7. Establishment and transformation of telomerase-immortalized human small airway epithelial cells by heavy ions

    NASA Astrophysics Data System (ADS)

    Zhao, Y. L.; Piao, C. Q.; Hei, T. K.

    Previous studies from this laboratory have identified a number of causally linked genes including the novel tumor suppressor Betaig-h3 that were differentially expressed in radiation induced tumorigenic BEP2D cells. To extend these studies using a genomically more stable bronchial cell line, we show here that ectopic expression of the catalytic subunit of telomerase (hTERT) in primary human small airway epithelial (SAE) cells resulted in the generation of several clonal cell lines that have been continuously in culture for more than 250 population doublings and are considered immortal. Comparably-treated control SAE cells infected with only the viral vector senesced after less than 10 population doublings. The immortalized clones demonstrated anchorage dependent growth and are non-tumorigenic in nude mice. These cells show no alteration in the p53 gene but a decrease in p16 expression. Exponentially growing SAEh cells were exposed to graded doses of 1 GeV/nucleon of 56Fe ions accelerated at the Brookhaven National Laboratory. Irradiated cells underwent gradual phenotypic alterations after extensive in vitro cultivation. Transformed cells developed through a series of successive steps before becoming anchorage independent in semisolid medium. These findings indicate that hTERT-immortalized cells, being diploid and chromosomal stable, should be a useful model in assessing mechanism of radiation carcinogenesis.

  8. Formoterol and salmeterol induce a similar degree of β2-adrenoceptor tolerance in human small airways but via different mechanisms

    PubMed Central

    Cooper, PR; Kurten, RC; Zhang, J; Nicholls, DJ; Dainty, IA; Panettieri, RA

    2011-01-01

    BACKGROUND AND PURPOSE Steroids prevent and reverse salbutamol-induced β2-adrenoceptor tolerance in human small airways. This study examines the effects of the long-acting β2 agonists (LABAs) formoterol and salmeterol, and the ability of budesonide to prevent desensitization. EXPERIMENTAL APPROACH Long-acting β2 agonists in the presence and absence of budesonide were incubated with human precision-cut lung slices containing small airways. Tolerance was deduced from measurements of reduced bronchodilator responses to isoprenaline and correlated with β2-adrenoceptor trafficking using a virally transduced, fluorescent-tagged receptor. The ability of the LABAs to protect airways against muscarinic-induced contraction was also assessed. KEY RESULTS Following a 12 h incubation, both formoterol and salmeterol attenuated isoprenaline-induced bronchodilatation to a similar degree and these effects were not reversible by washing. Pre-incubation with budesonide prevented the desensitization induced by formoterol, but not that induced by salmeterol. Formoterol also protected the airways from carbachol-induced bronchoconstriction to a greater extent than salmeterol. In the epithelial cells of small airways, incubation with formoterol promoted receptor internalization but this did not appear to occur following incubation with salmeterol. Budesonide inhibited the formoterol-induced reduction in plasma membrane β2-adrenoceptor fluorescence. CONCLUSIONS AND IMPLICATIONS Although both formoterol and salmeterol attenuate isoprenaline-induced bronchodilatation, they appear to induce β2-adrenoceptor tolerance via different mechanisms; formoterol, but not salmeterol, enhances receptor internalization. Budesonide protection against β2-adrenoceptor tolerance was correlated with the retention of receptor fluorescence on the plasma membrane, thereby suggesting a mechanism by which steroids alter β2-adrenoceptor function. PMID:21306583

  9. Prostaglandin E2 inhibits mast cell-dependent bronchoconstriction in human small airways through the E prostanoid subtype 2 receptor.

    PubMed

    Säfholm, Jesper; Manson, Martijn L; Bood, Johan; Delin, Ingrid; Orre, Ann-Charlotte; Bergman, Per; Al-Ameri, Mamdoh; Dahlén, Sven-Erik; Adner, Mikael

    2015-11-01

    Inhaled prostaglandin (PG) E2 might inhibit asthmatic responses, but the mechanisms involved remain undefined. We sought to characterize the direct and indirect effects of PGE2 on human small airways with particular reference to the receptors mediating the responses. Contraction and relaxation were studied in isolated human bronchi with an inner diameter of 1 mm or less. Low concentrations of PGE2 (0.01-1 μmol/L) relaxed the bronchi precontracted by histamine. The bronchodilator response was inhibited by the E prostanoid (EP) subtype 4 receptor antagonist ONO-AE3-208 but unaffected by the EP2 receptor antagonist PF-04418948. Higher concentrations of PGE2 (10-100 μmol/L) contracted the small airways. However, the TP receptor agonists U-46,619, PGF2α, and PGD2 were more potent than PGE2. Moreover, the bronchoconstrictor responses to PGE2 and all other tested prostanoids, including the EP1/EP3 receptor agonist 17-phenyl trinor PGE2 and the partial FP receptor agonist AL-8810, were uniformly abolished by the TP receptor antagonist SQ-29,548. In the presence of TP and EP4 antagonists, PGE2 inhibited the mast cell-mediated bronchoconstriction resulting from anti-IgE challenge. Measurement of the release of histamine and cysteinyl leukotrienes documented that this bronchoprotective action of PGE2 was mediated by the EP2 receptor, unrelated to bronchodilation, and increased with time of exposure. The pharmacology of PGE2 in isolated human small airways was different from its profile in animal models. This first demonstration of powerful EP2 receptor-mediated inhibition of IgE-dependent contractions in human airways introduces a new selective target for the treatment of asthma. This EP2 control of mast cell-mediated bronchoconstriction is presumably exaggerated in patients with aspirin-exacerbated respiratory disease. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  10. Native Small Airways Secrete Bicarbonate

    PubMed Central

    Quinton, Paul M.

    2014-01-01

    Since the discovery of Cl− impermeability in cystic fibrosis (CF) and the cloning of the responsible channel, CF pathology has been widely attributed to a defect in epithelial Cl− transport. However, loss of bicarbonate (HCO3−) transport also plays a major, possibly more critical role in CF pathogenesis. Even though HCO3− transport is severely affected in the native pancreas, liver, and intestines in CF, we know very little about HCO3− secretion in small airways, the principle site of morbidity in CF. We used a novel, mini-Ussing chamber system to investigate the properties of HCO3− transport in native porcine small airways (∼ 1 mm φ). We assayed HCO3− transport across small airway epithelia as reflected by the transepithelial voltage, conductance, and equivalent short-circuit current with bilateral 25-mM HCO3− plus 125-mM NaGlu Ringer’s solution in the presence of luminal amiloride (10 μM). Under these conditions, because no major transportable anions other than HCO3− were present, we took the equivalent short-circuit current to be a direct measure of active HCO3− secretion. Applying selective agonists and inhibitors, we show constitutive HCO3− secretion in small airways, which can be stimulated significantly by β-adrenergic– (cAMP) and purinergic (Ca2+) -mediated agonists, independently. These results indicate that two separate components for HCO3− secretion, likely via CFTR- and calcium-activated chloride channel–dependent processes, are physiologically regulated for likely roles in mucus clearance and antimicrobial innate defenses of small airways. PMID:24224935

  11. Oxidative stress in Nipah virus-infected human small airway epithelial cells

    PubMed Central

    Escaffre, Olivier; Halliday, Hailey; Borisevich, Viktoriya; Casola, Antonella

    2015-01-01

    Nipah virus (NiV) is a zoonotic emerging pathogen that can cause severe and often fatal respiratory disease in humans. The pathogenesis of NiV infection of the human respiratory tract remains unknown. Reactive oxygen species (ROS) produced by airway epithelial cells in response to viral infections contribute to lung injury by inducing inflammation and oxidative stress; however, the role of ROS in NiV-induced respiratory disease is unknown. To investigate whether NiV induces oxidative stress in human respiratory epithelial cells, we used oxidative stress markers and monitored antioxidant gene expression. We also used ROS scavengers to assess their role in immune response modulation. Oxidative stress was confirmed in infected cells and correlated with the reduction in antioxidant enzyme gene expression. Infected cells treated by ROS scavengers resulted in a significant decrease of the (F2)-8-isoprostane marker, inflammatory responses and virus replication. In conclusion, ROS are induced during NiV infection in human respiratory epithelium and contribute to the inflammatory response. Understanding how oxidative stress contributes to NiV pathogenesis is crucial for therapeutic development. PMID:26297489

  12. Lentiviral small hairpin RNA delivery reduces apical sodium channel activity in differentiated human airway epithelial cells.

    PubMed

    Aarbiou, Jamil; Copreni, Elena; Buijs-Offerman, Ruvalic M; van der Wegen, Pascal; Castellani, Stefano; Carbone, Annalucia; Tilesi, Francesca; Fradiani, Piera; Hiemstra, Pieter S; Yueksekdag, Guelnihal; Diana, Anna; Rosenecker, Joseph; Ascenzioni, Fiorentina; Conese, Massimo; Scholte, Bob J

    2012-12-01

    Epithelial sodium channel (ENaC) hyperactivity has been implicated in the pathogenesis of cystic fibrosis (CF) by dysregulation of fluid and electrolytes in the airways. In the present study, we show proof-of-principle for ENaC inhibition by lentiviral-mediated RNA interference. Immortalized normal (H441) and CF mutant (CFBE) airway cells, and differentiated human bronchial epithelial cells in air liquid interface culture (HBEC-ALI) were transduced with a vesicular stomatitis virus G glycoprotein pseudotyped lentiviral (LV) vector expressing a short hairpin RNA (shRNA) targeting the α subunit of ENaC (ENaCα), and a marker gene. Efficacy of ENaCα down-regulation was assayed by the real-time polymerase chain reaction (PCR), membrane potential assay, western blotting, short-circuit currents and fluid absorption. Off-target effects were investigated by a lab-on-a-chip quantitative PCR array. Transduction to near one hundred percentage efficiency of H441, CFBE and HBEC-ALI was achieved by the addition of the LV vector before differentiation and polarization. Transduction resulted in the inhibition of ENaCα mRNA and antigen expression, and a proportional decrease in ENaC-dependent short circuit current and fluid transport. No effect on transepithelial resistance or cAMP-induced secretion responses was observed in HBEC-ALI. The production of interferon α and pro-inflammatory cytokine mRNA, indicating Toll-like receptor 3 or RNA-induced silencing complex mediated off-target effects, was not observed in HBEC-ALI transduced with this vector. We have established a generic method for studying the effect of RNA interference in HBEC-ALI using standard lentiviral vectors. Down-regulation of ENaCα by lentiviral shRNA expression vectors as shown in the absence off-target effects has potential therapeutic value in the treatment of cystic fibrosis. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Electrical circuit models of the human respiratory system reflect small airway impairment measured by impulse oscillation (IOS).

    PubMed

    Goldman, Michael D; Nazeran, Homer; Ramos, Carlos; Toon, Emily; Oates, Katrina; Bilton, Diana; Meraz, Erika; Hafezi, Nazila; Diong, Bill

    2010-01-01

    The use of the forced oscillatory input impedance parameter, frequency-dependence of Resistance (fdR), to assess small airway impairment (SAI) has not been widely accepted due to concern about the effects of "upper airway shunt" on oscillometric resistance and low frequency reactance. On the other hand, recent medical studies suggest that low frequency reactance is a very sensitive index of treatment intervention directed at small airways. The present study was undertaken to analyze and compare Impulse Oscillometry (IOS) resistance and reactance data with model-derived indices of small airway function from two models of the respiratory impedance, one with, and the other without an element for upper airway shunt capacitance. Fifty six patients with stable chronic obstructive lung disease of varying severity due to Cystic Fibrosis (CF) and 21 patients with asthma were evaluated by IOS testing. IOS data were input into the augmented RIC (aRIC) model with an upper airway shunt capacitance, and the extended RIC (eRIC) model, without a shunt capacitance element. Model-derived indices were compared between the two models for CF patients separately from asthma patients. We conclude that IOS indices of SAI are modeled equally well with or without upper airway shunt capacitance, and do not seem to be dependent on upper airway shunt capacitance.

  14. Biologic Phenotyping of the Human Small Airway Epithelial Response to Cigarette Smoking

    PubMed Central

    Tilley, Ann E.; O'Connor, Timothy P.; Hackett, Neil R.; Strulovici-Barel, Yael; Salit, Jacqueline; Amoroso, Nancy; Zhou, Xi Kathy; Raman, Tina; Omberg, Larsson; Clark, Andrew; Mezey, Jason; Crystal, Ronald G.

    2011-01-01

    Background The first changes associated with smoking are in the small airway epithelium (SAE). Given that smoking alters SAE gene expression, but only a fraction of smokers develop chronic obstructive pulmonary disease (COPD), we hypothesized that assessment of SAE genome-wide gene expression would permit biologic phenotyping of the smoking response, and that a subset of healthy smokers would have a “COPD-like” SAE transcriptome. Methodology/Principal Findings SAE (10th–12th generation) was obtained via bronchoscopy of healthy nonsmokers, healthy smokers and COPD smokers and microarray analysis was used to identify differentially expressed genes. Individual responsiveness to smoking was quantified with an index representing the % of smoking-responsive genes abnormally expressed (ISAE), with healthy smokers grouped into “high” and “low” responders based on the proportion of smoking-responsive genes up- or down-regulated in each smoker. Smokers demonstrated significant variability in SAE transcriptome with ISAE ranging from 2.9 to 51.5%. While the SAE transcriptome of “low” responder healthy smokers differed from both “high” responders and smokers with COPD, the transcriptome of the “high” responder healthy smokers was indistinguishable from COPD smokers. Conclusion/Significance The SAE transcriptome can be used to classify clinically healthy smokers into subgroups with lesser and greater responses to cigarette smoking, even though these subgroups are indistinguishable by clinical criteria. This identifies a group of smokers with a “COPD-like” SAE transcriptome. PMID:21829517

  15. Coordinate Control of Expression of Nrf2-Modulated Genes in the Human Small Airway Epithelium Is Highly Responsive to Cigarette Smoking

    PubMed Central

    Hübner, Ralf-Harto; Schwartz, Jamie D; De Bishnu, P; Ferris, Barbara; Omberg, Larsson; Mezey, Jason G; Hackett, Neil R; Crystal, Ronald G

    2009-01-01

    Nuclear factor erythroid 2–related factor 2 (Nrf2) is an oxidant-responsive transcription factor known to induce detoxifying and antioxidant genes. Cigarette smoke, with its large oxidant content, is a major stress on the cells of small airway epithelium, which are vulnerable to oxidant damage. We assessed the role of cigarette smoke in activation of Nrf2 in the human small airway epithelium in vivo. Fiberoptic bronchoscopy was used to sample the small airway epithelium in healthy-nonsmoker and healthy-smoker, and gene expression was assessed using microarrays. Relative to nonsmokers, Nrf2 protein in the small airway epithelium of smokers was activated and localized in the nucleus. The human homologs of 201 known murine Nrf2-modulated genes were identified, and 13 highly smoking-responsive Nrf2-modulated genes were identified. Construction of an Nrf2 index to assess the expression levels of these 13 genes in the airway epithelium of smokers showed coordinate control, an observation confirmed by quantitative PCR. This coordinate level of expression of the 13 Nrf2-modulated genes was independent of smoking history or demographic parameters. The Nrf2 index was used to identify two novel Nrf2-modulated, smoking-responsive genes, pirin (PIR) and UDP glucuronosyltransferase 1-family polypeptide A4 (UGT1A4). Both genes were demonstrated to contain functional antioxidant response elements in the promoter region. These observations suggest that Nrf2 plays an important role in regulating cellular defenses against smoking in the highly vulnerable small airway epithelium cells, and that there is variability within the human population in the Nrf2 responsiveness to oxidant burden. PMID:19593404

  16. Reverse-phase phosphoproteome analysis of signaling pathways induced by Rift valley fever virus in human small airway epithelial cells.

    PubMed

    Popova, Taissia G; Turell, Michael J; Espina, Virginia; Kehn-Hall, Kylene; Kidd, Jessica; Narayanan, Aarthi; Liotta, Lance; Petricoin, Emanuel F; Kashanchi, Fatah; Bailey, Charles; Popov, Serguei G

    2010-11-03

    Rift valley fever virus (RVFV) infection is an emerging zoonotic disease endemic in many countries of sub-Saharan Africa and in Egypt. In this study we show that human small airway epithelial cells are highly susceptible to RVFV virulent strain ZH-501 and the attenuated strain MP-12. We used the reverse-phase protein arrays technology to identify phosphoprotein signaling pathways modulated during infection of cultured airway epithelium. ZH-501 infection induced activation of MAP kinases (p38, JNK and ERK) and downstream transcriptional factors [STAT1 (Y701), ATF2 (T69/71), MSK1 (S360) and CREB (S133)]. NF-κB phosphorylation was also increased. Activation of p53 (S15, S46) correlated with the increased levels of cleaved effector caspase-3, -6 and -7, indicating activation of the extrinsic apoptotic pathway. RVFV infection downregulated phosphorylation of a major anti-apoptotic regulator of survival pathways, AKT (S473), along with phosphorylation of FOX 01/03 (T24/31) which controls cell cycle arrest downstream from AKT. Consistent with this, the level of apoptosis inhibitor XIAP was decreased. However, the intrinsic apoptotic pathway marker, caspase-9, demonstrated only a marginal activation accompanied by an increased level of the inhibitor of apoptosome formation, HSP27. Concentration of the autophagy marker, LC3B, which often accompanies the pro-survival signaling, was decreased. Cumulatively, our analysis of RVFV infection in lung epithelium indicated a viral strategy directed toward the control of cell apoptosis through a number of transcriptional factors. Analyses of MP-12 titers in challenged cells in the presence of MAPK inhibitors indicated that activation of p38 represents a protective cell response while ERK activation controls viral replication.

  17. Cytoplasmic Irradiation Induces Metabolic Shift in Human Small Airway Epithelial Cells via Activation of Pim-1 Kinase.

    PubMed

    Wu, Jinhua; Zhang, Qin; Wuu, Yen-Ruh; Zou, Sirui; Hei, Tom K

    2017-04-01

    The unique cellular and molecular consequences of cytoplasmic damage caused by ionizing radiation were studied using a precision microbeam irradiator. Our results indicated that targeted cytoplasmic irradiation induced metabolic shift from an oxidative to glycolytic phenotype in human small airway epithelial cells (SAE). At 24 h postirradiation, there was an increase in the mRNA expression level of key glycolytic enzymes as well as lactate secretion in SAE cells. Using RNA-sequencing analysis to compare genes that were responsive to cytoplasmic versus nuclear irradiation, we found a glycolysis related gene, Pim-1, was significantly upregulated only in cytoplasmic irradiated SAE cells. Inhibition of Pim-1 activity using the selective pharmaceutic inhibitor Smi-4a significantly reduced the level of lactate production and glucose uptake after cytoplasmic irradiation. In addition, Pim-1 also inhibited AMPK activity, which is a well-characterized negative regulator of glycolysis. Distinct from the glycolysis induced by cytoplasmic irradiation, targeted nuclear irradiation also induced a transient and minimal increase in glycolysis that correlated with increased expression of Hif-1α. In an effort to explore the underline mechanism, we found that inhibition of mitochondria fission using the cell-permeable inhibitor mdivi-1 suppressed the induction of Pim-1, thus confirming Pim-1 upregulation as a downstream effect of mitochondrial dysfunction. Our data show and, for the first time, that cytoplasmic irradiation mediate expression level of Pim-1, which lead to glycolytic shift in SAE cells. Additionally, since glycolysis is frequently linked to cancer cell metabolism, our findings further suggest a role of cytoplasmic damage in promoting neoplastic changes.

  18. Small airways involvement in coal mine dust lung disease.

    PubMed

    Long, Joshua; Stansbury, Robert C; Petsonk, Edward L

    2015-06-01

    Inhalation of coal mine dust results in a spectrum of symptoms, dysfunction, and pathological changes in the respiratory tract that collectively have been labeled coal mine dust lung disease. Recent reports from periodic health surveillance among underground and surface coal miners in the United States have demonstrated an increasing prevalence and severity of dust diseases, and have also documented that some miners experience rapid disease progression. The coal macule is an inflammatory lesion associated with deposited dust, and occurs in the region of the most distal conducting airways and proximal respiratory bronchioles. Inflammatory changes in the small airways have long been recognized as the signature lung pathology among coal miners. Human and laboratory studies have suggested oxidant injury, and increased recruitment and activity of macrophages play important roles in dust-induced lung injury. However, the functional importance of the small airway changes was debated for many years. We reviewed published literature that documents a pervasive occurrence of both physiologic and structural abnormalities in small airways among coal miners and other workers exposed to airborne particulates. There is increasing evidence supporting an important association of abnormalities in the small peripheral airways with the development of respiratory symptoms, deficits in spirometry values, and accelerated declines in ventilatory lung function. Pathologic changes associated with mineral dust deposition in the small airways may be of particular importance in contemporary miners with rapidly progressive respiratory impairment.

  19. Modeling of inertial deposition in scaled models of rat and human nasal airways: Towards in vitro regional dosimetry in small animals

    SciTech Connect

    Xi, Jinxiang; Kim, JongWon; Si, Xiuhua A.; Corley, Richard A.; Zhou, Yue

    2016-09-01

    Rodents are routinely used in inhalation toxicology tests as human surrogates. However, in vitro dosimetry tests in rodent casts are still scarce due to small rodent airways and in vitro tests to quantify sub-regional dosimetry are still impractical. We hypothesized that for inertial particles whose deposition is dominated by airflow convection (Reynolds number) and particle inertia (Stokes number), the deposition should be similar among airway replicas of different scales if their Reynolds and Stokes numbers are kept the same. In this study, we aimed to (1) numerically test the hypothesis in three airway geometries: a USP induction port, a human nose model, and a Sprague-Dawley rat nose model, and (2) find the range of applicability of this hypothesis. Five variants of the USP and human nose models and three variants of the rat nose model were tested. Inhalation rates and particle sizes were scaled to match the Reynolds number and Stokes numbers. A low-Reynolds-number k–ω model was used to resolve the airflow and a Lagrangian tracking algorithm was used to simulate the particle transport and deposition. Statistical analysis of predicted doses was conducted using ANOVA. For normal inhalation rates and particle dia- meters ranging from 0.5 to 24 mm, the deposition differences between the life-size and scaled models are insignificant for all airway geometries considered (i.e., human nose, USP, and rat nose). Furthermore, the deposition patterns and exit particle profiles also look similar among scaled models. However, deposition rates and patterns start to deviate if inhalation rates are too low, or particle sizes are too large. For the rat nose, the threshold velocity was found to be 0.71 m/s and the threshold Froude number to be 50. Results of this study provide a theoretical foundation for sub-regional in vitro dosimetry tests in small animals and for interpretation of data from inter-species or intra-species with varying body sizes.

  20. Toxicological Assessment of CoO and La2O3 Metal Oxide Nanoparticles in Human Small Airway Epithelial Cells.

    PubMed

    Sisler, Jennifer D; Pirela, Sandra V; Shaffer, Justine; Mihalchik, Amy L; Chisholm, William P; Andrew, Michael E; Schwegler-Berry, Diane; Castranova, Vincent; Demokritou, Philip; Qian, Yong

    2016-04-01

    Cobalt monoxide (CoO) and lanthanum oxide (La2O3) nanoparticles are 2 metal oxide nanoparticles with different redox potentials according to their semiconductor properties. By utilizing these two nanoparticles, this study sought to determine how metal oxide nanoparticle's mode of toxicological action is related to their physio-chemical properties in human small airway epithelial cells (SAEC). We investigated cellular toxicity, production of superoxide radicals and alterations in gene expression related to oxidative stress, and cellular death at 6 and 24 h following exposure to CoO and La2O3(administered doses: 0, 5, 25, and 50 µg/ml) nanoparticles. CoO nanoparticles induced gene expression related to oxidative stress at 6 h. After characterizing the nanoparticles, transmission electron microscope analysis showed SAEC engulfed CoO and La2O3nanoparticles. CoO nanoparticles were toxic after 6 and 24 h of exposure to 25.0 and 50.0 µg/ml administered doses, whereas, La2O3nanoparticles were toxic only after 24 h using the same administered doses. Based upon the Volumetric Centrifugation Methodin vivoSedimentation, Diffusion, and Dosimetry, the dose of CoO and La2O3nanoparticles delivered at 6 and 24 h were determined to be: CoO: 1.25, 6.25, and 12.5 µg/ml; La2O3: 5, 25, and 50 µg/ml and CoO: 4, 20, and 40 µg/ml; and La2O3: 5, 25, 50 µg/ml, respectively. CoO nanoparticles produced more superoxide radicals and caused greater stimulation of total tyrosine and threonine phosphorylation at both 6 and 24 h when compared with La2O3nanoparticles. Taken together, these data provide evidence that different toxicological modes of action were involved in CoO and La2O3metal oxide nanoparticle-induced cellular toxicity.

  1. Toxicological Assessment of CoO and La2O3 Metal Oxide Nanoparticles in Human Small Airway Epithelial Cells

    PubMed Central

    Pirela, Sandra V.; Shaffer, Justine; Mihalchik, Amy L.; Chisholm, William P.; Andrew, Michael E.; Schwegler-Berry, Diane; Castranova, Vincent; Demokritou, Philip; Qian, Yong

    2016-01-01

    Cobalt monoxide (CoO) and lanthanum oxide (La2O3) nanoparticles are 2 metal oxide nanoparticles with different redox potentials according to their semiconductor properties. By utilizing these two nanoparticles, this study sought to determine how metal oxide nanoparticle’s mode of toxicological action is related to their physio-chemical properties in human small airway epithelial cells (SAEC). We investigated cellular toxicity, production of superoxide radicals and alterations in gene expression related to oxidative stress, and cellular death at 6 and 24 h following exposure to CoO and La2O3 (administered doses: 0, 5, 25, and 50 µg/ml) nanoparticles. CoO nanoparticles induced gene expression related to oxidative stress at 6 h. After characterizing the nanoparticles, transmission electron microscope analysis showed SAEC engulfed CoO and La2O3 nanoparticles. CoO nanoparticles were toxic after 6 and 24 h of exposure to 25.0 and 50.0 µg/ml administered doses, whereas, La2O3 nanoparticles were toxic only after 24 h using the same administered doses. Based upon the Volumetric Centrifugation Method in vivo Sedimentation, Diffusion, and Dosimetry, the dose of CoO and La2O3 nanoparticles delivered at 6 and 24 h were determined to be: CoO: 1.25, 6.25, and 12.5 µg/ml; La2O3: 5, 25, and 50 µg/ml and CoO: 4, 20, and 40 µg/ml; and La2O3: 5, 25, 50 µg/ml, respectively. CoO nanoparticles produced more superoxide radicals and caused greater stimulation of total tyrosine and threonine phosphorylation at both 6 and 24 h when compared with La2O3 nanoparticles. Taken together, these data provide evidence that different toxicological modes of action were involved in CoO and La2O3 metal oxide nanoparticle-induced cellular toxicity. PMID:26769336

  2. Techniques of assessing small airways dysfunction

    PubMed Central

    McNulty, William; Usmani, Omar S.

    2014-01-01

    The small airways are defined as those less than 2 mm in diameter. They are a major site of pathology in many lung diseases, not least chronic obstructive pulmonary disease (COPD) and asthma. The small airways are frequently involved early in the course of these diseases, with significant pathology demonstrable often before the onset of symptoms or changes in spirometry and imaging. Despite their importance, they have proven relatively difficult to study. This is in part due to their relative inaccessibility to biopsy and their small size which makes their imaging difficult. Traditional lung function tests may only become abnormal once there is a significant burden of disease within them. This has led to the term ‘the quiet zone’ of the lung. In recent years, more specialised tests have been developed which may detect these changes earlier, perhaps offering the possibility of earlier diagnosis and intervention. These tests are now moving from the realms of clinical research laboratories into routine clinical practice and are increasingly useful in the diagnosis and monitoring of respiratory diseases. This article gives an overview of small airways physiology and some of the routine and more advanced tests of airway function. PMID:26557240

  3. DEVELOPMENT OF THE SMALL AIRWAYS AND ALVEOLI FROM CHILDHOOD TO ADULT LUNG MEASURED BY AEROSOL-DERIVED AIRWAY MORPHOMETRY

    EPA Science Inventory

    Understanding the human development of pulmonary airspaces is important for calculating the dose from exposure to inhaled materials as a function of age. We have measured, in vivo, the airspace caliber of the small airways and alveoli by aerosol-derived airway morphometry (ADAM) ...

  4. DEVELOPMENT OF THE SMALL AIRWAYS AND ALVEOLI FROM CHILDHOOD TO ADULT LUNG MEASURED BY AEROSOL-DERIVED AIRWAY MORPHOMETRY

    EPA Science Inventory

    Understanding the human development of pulmonary airspaces is important for calculating the dose from exposure to inhaled materials as a function of age. We have measured, in vivo, the airspace caliber of the small airways and alveoli by aerosol-derived airway morphometry (ADAM) ...

  5. Human airway ciliary dynamics

    PubMed Central

    Thompson, Kristin; Knowles, Michael R.; Davis, C. William

    2013-01-01

    Airway cilia depend on precise changes in shape to transport the mucus gel overlying mucosal surfaces. The ciliary motion can be recorded in several planes using video microscopy. However, cilia are densely packed, and automated computerized systems are not available to convert these ciliary shape changes into forms that are useful for testing theoretical models of ciliary function. We developed a system for converting planar ciliary motions recorded by video microscopy into an empirical quantitative model, which is easy to use in validating mathematical models, or in examining ciliary function, e.g., in primary ciliary dyskinesia (PCD). The system we developed allows the manipulation of a model cilium superimposed over a video of beating cilia. Data were analyzed to determine shear angles and velocity vectors of points along the cilium. Extracted waveforms were used to construct a composite waveform, which could be used as a standard. Variability was measured as the mean difference in position of points on individual waveforms and the standard. The shapes analyzed were the end-recovery, end-effective, and fastest moving effective and recovery with mean (± SE) differences of 0.31(0.04), 0.25(0.06), 0.50(0.12), 0.50(0.10), μm, respectively. In contrast, the same measures for three different PCD waveforms had values far outside this range. PMID:23144323

  6. The human airway epithelial basal cell transcriptome.

    PubMed

    Hackett, Neil R; Shaykhiev, Renat; Walters, Matthew S; Wang, Rui; Zwick, Rachel K; Ferris, Barbara; Witover, Bradley; Salit, Jacqueline; Crystal, Ronald G

    2011-05-04

    The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population. Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the "human airway basal cell signature" as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels. The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of the stem/progenitor cells of the human airway epithelium.

  7. The Human Airway Epithelial Basal Cell Transcriptome

    PubMed Central

    Wang, Rui; Zwick, Rachel K.; Ferris, Barbara; Witover, Bradley; Salit, Jacqueline; Crystal, Ronald G.

    2011-01-01

    Background The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population. Methodology/Principal Findings Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the “human airway basal cell signature” as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels. Conclusion/Significance The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of the stem

  8. The morphology and morphometry of small airways disease (relevance to chronic obstructive pulmonary disease).

    PubMed Central

    Petty, T. L.; Silvers, G. W.; Stanford, R. E.

    1983-01-01

    The morphologic and morphometric characteristics of the small airways of the lung and their relationship to airflow as measured by forced expiratory volume in one second (FEV1) were determined in 37 excised human lungs. After fixation the lungs were graded as to the degree of emphysema and the degree of small airway pathology. The internal diameters of the small airways were measured and corrected for shrinkage during processing. The mean bronchiolar diameter was positively correlated with the % predicted FEV1 (p less than 0.001) and negatively correlated with the small airway fibrosis (p less than 0.01). We conclude that fibrosis of the small airways of the lung is associated with a decrease in airway dimension which is in turn correlated with decreased FEV1 in excised human lungs. PMID:7186226

  9. DEVELOPMENT OF THE SMALL AIRWAYS AND ALVEOLI FROM DHILDHOOD TO ADULT

    EPA Science Inventory

    Understanding the human development of pulmonary airspaces is important for calculating the dose from exposure to inhaled materials as a function of age. We have measured, in vivo, the airspace caliber of the small airways and alveoli by aerosol-derived airway morphometry (ADAM) ...

  10. DEVELOPMENT OF THE SMALL AIRWAYS AND ALVEOLI FROM DHILDHOOD TO ADULT

    EPA Science Inventory

    Understanding the human development of pulmonary airspaces is important for calculating the dose from exposure to inhaled materials as a function of age. We have measured, in vivo, the airspace caliber of the small airways and alveoli by aerosol-derived airway morphometry (ADAM) ...

  11. Dilemmas, Confusion, and Misconceptions Related to Small Airways Directed Therapy.

    PubMed

    Lavorini, Federico; Pedersen, Søren; Usmani, Omar S

    2017-06-01

    During the past decade, there has been increasing evidence that the small airways (ie, airways < 2 mm in internal diameter) contribute substantially to the pathophysiologic and clinical expression of asthma and COPD. The increased interest in small airways is, at least in part, a result of innovation in small-particle aerosol formulations that better target the distal lung and also advanced physiologic methods of assessing small airway responses. Increasing the precision of drug deposition may improve targeting of specific diseases or receptor locations, decrease airway drug exposure and adverse effects, and thereby increase the efficiency and effectiveness of inhaled drug delivery. The availability of small-particle aerosols of corticosteroids, bronchodilators, or their combination enables a higher total lung deposition and better peripheral lung penetration and provides added clinical benefit, compared with large-particle aerosol treatment. However, a number of questions remain unanswered about the pragmatic approach relevant for clinicians to consider the role of small airways directed therapy in the day-to-day management of asthma and COPD. We thus have tried to clarify the dilemmas, confusion, and misconceptions related to small airways directed therapy. To this end, we have reviewed all studies on small-particle aerosol therapy systematically to address the dilemmas, confusion, and misconceptions related to small airways directed therapy. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  12. Numerical analysis of respiratory flow patterns within human upper airway

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Liu, Yingxi; Sun, Xiuzhen; Yu, Shen; Gao, Fei

    2009-12-01

    A computational fluid dynamics (CFD) approach is used to study the respiratory airflow dynamics within a human upper airway. The airway model which consists of the airway from nasal cavity, pharynx, larynx and trachea to triple bifurcation is built based on the CT images of a healthy volunteer and the Weibel model. The flow characteristics of the whole upper airway are quantitatively described at any time level of respiratory cycle. Simulation results of respiratory flow show good agreement with the clinical measures, experimental and computational results in the literature. The air mainly passes through the floor of the nasal cavity in the common, middle and inferior nasal meatus. The higher airway resistance and wall shear stresses are distributed on the posterior nasal valve. Although the airways of pharynx, larynx and bronchi experience low shear stresses, it is notable that relatively high shear stresses are distributed on the wall of epiglottis and bronchial bifurcations. Besides, two-dimensional fluid-structure interaction models of normal and abnormal airways are built to discuss the flow-induced deformation in various anatomy models. The result shows that the wall deformation in normal airway is relatively small.

  13. Slowly Adapting Sensory Units Have More Receptors in Large Airways than in Small Airways in Rabbits.

    PubMed

    Liu, Jun; Song, Nana; Guardiola, Juan; Roman, Jesse; Yu, Jerry

    2016-01-01

    Sensory units of pulmonary slowly adapting receptors (SARs) are more active in large airways than in small airways. However, there is no explanation for this phenomenon. Although sensory structures in large airways resemble those in small airways, they are bigger and more complex. Possibly, a larger receptor provides greater surface area for depolarization, and thus has a lower activating threshold and/or a higher sensitivity to stretch, leading to more nerve electrical activities. Recently, a single sensory unit has been reported to contain multiple receptors. Therefore, sensory units in large airways may contain more SARs, which may contribute to high activities. To test this hypothesis, we used a double staining technique to identify sensory receptor sizes. We labeled the sensory structure with Na(+)/K(+)-ATPase antibodies and the myelin sheath with myelin basic protein (MBP) antibodies. A SAR can be defined as the end formation beyond MBP labeling. Thus, we are able to compare sizes of sensory structures and SARs in large (trachea and bronchi) vs. small (bronchioles <500 μm in diameter) airways in the rabbit. We found that even though the sensory structure was bigger in large airways than in small airways (3340 ± 223 vs. 1168 ± 103 μm(2); P < 0.0001), there was no difference in receptor sizes (349 ± 14 vs. 326 ± 16 μm(2); > 0.05). However, the sensory structure contains more SARs in large airways than in small airways (9.6 ± 0.6 vs. 3.6 ± 0.3; P < 0.0001). Thus, our data support the hypothesis that greater numbers of SARs in sensory units of large airways may contribute to higher activities.

  14. Slowly Adapting Sensory Units Have More Receptors in Large Airways than in Small Airways in Rabbits

    PubMed Central

    Liu, Jun; Song, Nana; Guardiola, Juan; Roman, Jesse; Yu, Jerry

    2016-01-01

    Sensory units of pulmonary slowly adapting receptors (SARs) are more active in large airways than in small airways. However, there is no explanation for this phenomenon. Although sensory structures in large airways resemble those in small airways, they are bigger and more complex. Possibly, a larger receptor provides greater surface area for depolarization, and thus has a lower activating threshold and/or a higher sensitivity to stretch, leading to more nerve electrical activities. Recently, a single sensory unit has been reported to contain multiple receptors. Therefore, sensory units in large airways may contain more SARs, which may contribute to high activities. To test this hypothesis, we used a double staining technique to identify sensory receptor sizes. We labeled the sensory structure with Na+/K+-ATPase antibodies and the myelin sheath with myelin basic protein (MBP) antibodies. A SAR can be defined as the end formation beyond MBP labeling. Thus, we are able to compare sizes of sensory structures and SARs in large (trachea and bronchi) vs. small (bronchioles <500 μm in diameter) airways in the rabbit. We found that even though the sensory structure was bigger in large airways than in small airways (3340 ± 223 vs. 1168 ± 103 μm2; P < 0.0001), there was no difference in receptor sizes (349 ± 14 vs. 326 ± 16 μm2; > 0.05). However, the sensory structure contains more SARs in large airways than in small airways (9.6 ± 0.6 vs. 3.6 ± 0.3; P < 0.0001). Thus, our data support the hypothesis that greater numbers of SARs in sensory units of large airways may contribute to higher activities. PMID:28018231

  15. Human airway epithelia express catalytically active NEU3 sialidase.

    PubMed

    Lillehoj, Erik P; Hyun, Sang Won; Feng, Chiguang; Zhang, Lei; Liu, Anguo; Guang, Wei; Nguyen, Chinh; Sun, Wenji; Luzina, Irina G; Webb, Tonya J; Atamas, Sergei P; Passaniti, Antonino; Twaddell, William S; Puché, Adam C; Wang, Lai-Xi; Cross, Alan S; Goldblum, Simeon E

    2014-05-01

    Sialic acids on glycoconjugates play a pivotal role in many biological processes. In the airways, sialylated glycoproteins and glycolipids are strategically positioned on the plasma membranes of epithelia to regulate receptor-ligand, cell-cell, and host-pathogen interactions at the molecular level. We now demonstrate, for the first time, sialidase activity for ganglioside substrates in human airway epithelia. Of the four known mammalian sialidases, NEU3 has a substrate preference for gangliosides and is expressed at mRNA and protein levels at comparable abundance in epithelia derived from human trachea, bronchi, small airways, and alveoli. In small airway and alveolar epithelia, NEU3 protein was immunolocalized to the plasma membrane, cytosolic, and nuclear subcellular fractions. Small interfering RNA-induced silencing of NEU3 expression diminished sialidase activity for a ganglioside substrate by >70%. NEU3 immunostaining of intact human lung tissue could be localized to the superficial epithelia, including the ciliated brush border, as well as to nuclei. However, NEU3 was reduced in subepithelial tissues. These results indicate that human airway epithelia express catalytically active NEU3 sialidase.

  16. Small particles disrupt postnatal airway development

    PubMed Central

    Lee, DongYoub; Wallis, Chris; Schelegle, Edward S.; Van Winkle, Laura S.; Plopper, Charles G.; Fanucchi, Michelle V.; Kumfer, Ben; Kennedy, Ian M.; Chan, Jackie K. W.

    2010-01-01

    Increasing numbers of epidemiologic studies associate air pollution exposure in children with decreased lung function development. The objective of this study was to examine the effects of exposure to combustion-generated fine [230 and 212 nm number mean aerodynamic particle diameter (NMAD)] to ultrafine (73 nm NMAD) particles differing in elemental (EC) and organic (OC) carbon content on postnatal airway development in rats. Neonatal Sprague-Dawley rats were exposed from postnatal day 7 through 25, and lung function and airway architecture were evaluated 81 days of age. In a separate group of rats, cell proliferation was examined after a single particle exposure at 7 days of age. Early life exposure to 73 nm high OC/EC particles altered distal airway architecture and resulted in subtle changes in lung mechanics. Early life exposure to 212 nm high OC/EC particles did not alter lung architecture but did alter lung mechanics in a manner suggestive of central airway changes. In contrast, early life exposure to 230 nm low OC/EC particles did not alter lung architecture or mechanics. A single 6-h exposure to 73 nm high OC/EC particle decreased airway cell proliferation, whereas 212 nm high OC/EC particles increased it and 230 nm low OC/EC particles did not. The early life exposure to ultrafine, high OC/EC particles results in persistent alterations in distal airway architecture that is characterized by an initial decrease in airway cell proliferation. PMID:20634362

  17. Pharmacological characterisation of the interaction between glycopyrronium bromide and indacaterol fumarate in human isolated bronchi, small airways and bronchial epithelial cells.

    PubMed

    Cazzola, Mario; Calzetta, Luigino; Puxeddu, Ermanno; Ora, Josuel; Facciolo, Francesco; Rogliani, Paola; Matera, Maria Gabriella

    2016-06-13

    Nowadays, there is a considerable gap in knowledge concerning the mechanism(s) by which long-acting β2-agonists (LABAs) and long-acting muscarinic antagonists (LAMAs) interact to induce bronchodilation. This study aimed to characterise the pharmacological interaction between glycopyrronium bromide and indacaterol fumarate and to identify the mechanism(s) leading to the bronchorelaxant effect of this interaction. The effects of glycopyrronium plus indacaterol on the contractile tone of medium and small human isolated bronchi were evaluated, and acetylcholine and cAMP concentrations were quantified. The interaction was assessed by Bliss Independence approach. Glycopyrronium plus indacaterol synergistically inhibited the bronchial tone (medium bronchi, +32.51 % ± 7.86 %; small bronchi, +28.46 % ± 5.35 %; P < 0.05 vs. additive effect). The maximal effect was reached 140 min post-administration. A significant (P < 0.05) synergistic effect was observed during 9 h post-administration on the cholinergic tone, but not on the histaminergic contractility. Co-administration of glycopyrronium and indacaterol reduced the release of acetylcholine from the epithelium but not from bronchi, and enhanced cAMP levels in bronchi and epithelial cells (P < 0.05 vs. control), an effect that was inhibited by the selective KCa(++) channel blocker iberiotoxin. The role of cAMP-dependent pathway was confirmed by the synergistic effect elicited by the adenylate cyclase activator forskolin on glycopyrronium (P < 0.05 vs. additive effect), but not on indacaterol (P > 0.05 vs. additive effect), with regard of the bronchial relaxant response and cAMP increase. Glycopyrronium/indacaterol co-administration leads to a synergistic improvement of bronchodilation by increasing cAMP concentrations in both airway smooth muscle and bronchial epithelium, and by decreasing acetylcholine release from the epithelium.

  18. Spontaneous pneumothorax in two cats with small airway disease.

    PubMed

    White, Heidi L; Rozanski, Elizabeth A; Tidwell, Amy S; Chan, Daniel L; Rush, John E

    2003-06-01

    Two adult domestic shorthair cats were examined because of pneumothorax. Neither had a history of trauma, and spontaneous pneumothorax secondary to small airway disease was diagnosed. In both cats, treatment consisted of thoracocentesis for evacuation of air and administration of anti-inflammatory agents. One cat had multiple episodes of pneumothorax and eventually died; the other had only a single episode of pneumothorax. Small airway disease should be considered as a potential underlying cause in cats that develop spontaneous pneumothorax. Additionally, the potential for pneumothorax should be considered in cats with small airway disease, particularly when clinical signs suddenly become much worse.

  19. Divers' lung function: small airways disease?

    PubMed Central

    Thorsen, E; Segadal, K; Kambestad, B; Gulsvik, A

    1990-01-01

    Pulmonary function was measured in 152 professional saturation divers and in a matched control group of 106 subjects. Static lung volumes, dynamic lung volumes and flows, transfer factor for carbon monoxide (T1CO), transfer volume per unit alveolar volume (KCO), delta-N2, and closing volume (CV) were measured and compared with reference values from recent Scandinavian studies, British submariners, and the European Community for Coal and Steel (ECCS) recommended reference values. Diving exposure was assessed as years of diving experience, total number of days in saturation and depth, and as the product of days in saturation and mean depth. Divers had significantly lower values for forced expired volume in one second (FEV1), FEV1/forced vital capacity (FVC) ratio, FEF25-75%, FEF75-85%, FEF50%, FEF75%, T1CO, and KCO compared with the controls and a significantly higher CV. There was a positive correlation between diving exposure and CV, whereas the other variables had negative correlations with diving exposure. Values for the control group were not different from the predictive values of Scandinavian reference studies or British submariners, although the ECCS standard predicted significantly lower values for the lung function variables both in divers and the control group. The pattern of the differences in lung function variables between the divers and controls is consistent with small airways dysfunction and with the transient changes in lung function found immediately after a single saturation dive. The association between reduced pulmonary function and previous diving exposure further indicates the presence of cumulative long term effects of diving on pulmonary function. PMID:2393630

  20. Degrees of reality: airway anatomy of high-fidelity human patient simulators and airway trainers.

    PubMed

    Schebesta, Karl; Hüpfl, Michael; Rössler, Bernhard; Ringl, Helmut; Müller, Michael P; Kimberger, Oliver

    2012-06-01

    Human patient simulators and airway training manikins are widely used to train airway management skills to medical professionals. Furthermore, these patient simulators are employed as standardized "patients" to evaluate airway devices. However, little is known about how realistic these patient simulators and airway-training manikins really are. This trial aimed to evaluate the upper airway anatomy of four high-fidelity patient simulators and two airway trainers in comparison with actual patients by means of radiographic measurements. The volume of the pharyngeal airspace was the primary outcome parameter. Computed tomography scans of 20 adult trauma patients without head or neck injuries were compared with computed tomography scans of four high-fidelity patient simulators and two airway trainers. By using 14 predefined distances, two cross-sectional areas and three volume parameters of the upper airway, the manikins' similarity to a human patient was assessed. The pharyngeal airspace of all manikins differed significantly from the patients' pharyngeal airspace. The HPS Human Patient Simulator (METI®, Sarasota, FL) was the most realistic high-fidelity patient simulator (6/19 [32%] of all parameters were within the 95% CI of human airway measurements). The airway anatomy of four high-fidelity patient simulators and two airway trainers does not reflect the upper airway anatomy of actual patients. This finding may impact airway training and confound comparative airway device studies.

  1. Effects of nitrogen-doped multi-walled carbon nanotubes compared to pristine multi-walled carbon nanotubes on human small airway epithelial cells

    PubMed Central

    Mihalchik, Amy L.; Ding, Weiqiang; Porter, Dale W.; McLoughlin, Colleen; Schwegler-Berry, Diane; Sisler, Jennifer D.; Stefaniak, Aleksandr B.; Snyder-Talkington, Brandi N.; Cruz-Silva, Rodolfo; Terrones, Mauricio; Tsuruoka, Shuji; Endo, Morinobu; Castranova, Vincent; Qian, Yong

    2015-01-01

    Nitrogen-doped multi-walled carbon nanotubes (ND-MWCNTs) are modified multi-walled carbon nanotubes (MWCNTs) with enhanced electrical properties that are used in a variety of applications, including fuel cells and sensors; however, the mode of toxic action of ND-MWCNT has yet to be fully elucidated. In the present study, we compared the interaction of ND-MWCNT or pristine MWCNT-7 with human small airway epithelial cells (SAEC) and evaluated their subsequent bioactive effects. Transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction suggested the presence of N-containing defects in the lattice of the nanotube. The ND-MWCNTs were determined to be 93.3% carbon, 3.8% oxygen, and 2.9% nitrogen. A dose–response cell proliferation assay showed that low doses of ND-MWCNT (1.2 mg/ml) or MWCNT-7 (0.1 mg/ml) increased cellular proliferation, while the highest dose of 120 mg/ml of either material decreased proliferation. ND-MWCNT and MWCNT-7 appeared to interact with SAEC at 6 h and were internalized by 24 h. ROS were elevated at 6 and 24 h in ND-MWCNT exposed cells, but only at 6 h in MWCNT-7 exposed cells. Significant alterations to the cell cycle were observed in SAEC exposed to either 1.2 mg/ml of ND-MWCNT or MWCNT-7 in a time and material-dependent manner, possibly suggesting potential damage or alterations to cell cycle machinery. Our results indicate that ND-MWCNT induce effects in SAEC over a time and dose-related manner which differ from MWCNT-7. Therefore, the physicochemical characteristics of the materials appear to alter their biological effects. PMID:25797581

  2. Effects of nitrogen-doped multi-walled carbon nanotubes compared to pristine multi-walled carbon nanotubes on human small airway epithelial cells.

    PubMed

    Mihalchik, Amy L; Ding, Weiqiang; Porter, Dale W; McLoughlin, Colleen; Schwegler-Berry, Diane; Sisler, Jennifer D; Stefaniak, Aleksandr B; Snyder-Talkington, Brandi N; Cruz-Silva, Rodolfo; Terrones, Mauricio; Tsuruoka, Shuji; Endo, Morinobu; Castranova, Vincent; Qian, Yong

    2015-07-03

    Nitrogen-doped multi-walled carbon nanotubes (ND-MWCNTs) are modified multi-walled carbon nanotubes (MWCNTs) with enhanced electrical properties that are used in a variety of applications, including fuel cells and sensors; however, the mode of toxic action of ND-MWCNT has yet to be fully elucidated. In the present study, we compared the interaction of ND-MWCNT or pristine MWCNT-7 with human small airway epithelial cells (SAEC) and evaluated their subsequent bioactive effects. Transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction suggested the presence of N-containing defects in the lattice of the nanotube. The ND-MWCNTs were determined to be 93.3% carbon, 3.8% oxygen, and 2.9% nitrogen. A dose-response cell proliferation assay showed that low doses of ND-MWCNT (1.2μg/ml) or MWCNT-7 (0.12μg/ml) increased cellular proliferation, while the highest dose of 120μg/ml of either material decreased proliferation. ND-MWCNT and MWCNT-7 appeared to interact with SAEC at 6h and were internalized by 24h. ROS were elevated at 6 and 24h in ND-MWCNT exposed cells, but only at 6h in MWCNT-7 exposed cells. Significant alterations to the cell cycle were observed in SAEC exposed to either 1.2μg/ml of ND-MWCNT or MWCNT-7 in a time and material-dependent manner, possibly suggesting potential damage or alterations to cell cycle machinery. Our results indicate that ND-MWCNT induce effects in SAEC over a time and dose-related manner which differ from MWCNT-7. Therefore, the physicochemical characteristics of the materials appear to alter their biological effects.

  3. Regional aerosol deposition in human upper airways

    SciTech Connect

    Swift, D.L.

    1992-11-01

    Laboratory experimental studies were carried out to investigate the factors influencing the deposition of aerosols ranging in size from 1 nm to 10 [mu]m in the human nasal, oral, pharyngeal and laryngeal airways. These experimental studies were performed in replicate upper airway physical models and in human volunteer subjects. New replicate models of the oral passage of an infant, the oral passage of an adult at two openings and the combined nasal and oral airways of an adult were constructed during the period, adding to the existing models of adult, child and infant nasal and oral airways models. Deposition studies in the adult oral and adult nasal models were performed under simulated cyclic flow conditions with 1 nm particles to compare with previously measured constant flow studies. Similar studies with inertial particles (1--10 [mu]m diameter) were performed with the adult nasal model; in both instances, results with cyclic flow were similar to constant flow results using a simple average flow rate based on inspiratory volume and time of inspiration. Human subject studies were performed with particle sizes 5--20 nm for nasal inspiration; preliminary analysis shows good agreement with model studies at several representative flow rates. Nasal inspiratory inertial deposition of 1--4 [mu]m diameter particles was measured in several adults as a function of airway dimensions; dimensional changes of the valve area by decongestion did not produce concomitant deposition changes.

  4. Prospective study of airway obstruction in a population with small airway disease.

    PubMed

    Marazzini, L; Pelosi, V; Vezzoli, F; Pennasi, R; Longhini, E

    1977-01-01

    In this paper, we discuss results showing an increase of bronchial obstruction due to exposure in an iron foundry. The research has been conducted in two steps: in the first, we selected a sample of 100 subjects, all working in the iron foundry, who were affected only by small airway obstruction. In a second step, 30 months later, 99 of these subjects were re-examined and the present airway condition determined. In 43 subjects we found abnormal results of the tests indicating total airway obstruction after the 30 months. After properly accounting for ageing, we found that even in the subsample of non-smokers a deterioration had occurred, showing an effective contribution of environmental pollution. The use of RV, MMEF, CV, DLCO for detecting small airway obstruction is evaluated. The combination of RV, MMEF and CV is the most efficient mosaic of tests for the selection of subjects with small airway obstruction (89%) and with high probability of developing total airway obstruction (44%).

  5. Three-dimensional segmentation and skeletonization to build an airway tree data structure for small animals.

    PubMed

    Chaturvedi, Ashutosh; Lee, Zhenghong

    2005-04-07

    Quantitative analysis of intrathoracic airway tree geometry is important for objective evaluation of bronchial tree structure and function. Currently, there is more human data than small animal data on airway morphometry. In this study, we implemented a semi-automatic approach to quantitatively describe airway tree geometry by using high-resolution computed tomography (CT) images to build a tree data structure for small animals such as rats and mice. Silicon lung casts of the excised lungs from a canine and a mouse were used for micro-CT imaging of the airway trees. The programming language IDL was used to implement a 3D region-growing threshold algorithm for segmenting out the airway lung volume from the CT data. Subsequently, a fully-parallel 3D thinning algorithm was implemented in order to complete the skeletonization of the segmented airways. A tree data structure was then created and saved by parsing through the skeletonized volume using the Python programming language. Pertinent information such as the length of all airway segments was stored in the data structure. This approach was shown to be accurate and efficient for up to six generations for the canine lung cast and ten generations for the mouse lung cast.

  6. Three-dimensional segmentation and skeletonization to build an airway tree data structure for small animals

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Ashutosh; Lee, Zhenghong

    2005-04-01

    Quantitative analysis of intrathoracic airway tree geometry is important for objective evaluation of bronchial tree structure and function. Currently, there is more human data than small animal data on airway morphometry. In this study, we implemented a semi-automatic approach to quantitatively describe airway tree geometry by using high-resolution computed tomography (CT) images to build a tree data structure for small animals such as rats and mice. Silicon lung casts of the excised lungs from a canine and a mouse were used for micro-CT imaging of the airway trees. The programming language IDL was used to implement a 3D region-growing threshold algorithm for segmenting out the airway lung volume from the CT data. Subsequently, a fully-parallel 3D thinning algorithm was implemented in order to complete the skeletonization of the segmented airways. A tree data structure was then created and saved by parsing through the skeletonized volume using the Python programming language. Pertinent information such as the length of all airway segments was stored in the data structure. This approach was shown to be accurate and efficient for up to six generations for the canine lung cast and ten generations for the mouse lung cast.

  7. Surface fluid absorption and secretion in small airways

    PubMed Central

    Shamsuddin, A K M; Quinton, P M

    2012-01-01

    Native small airways must remain wet enough to be pliable and support ciliary clearance, but dry enough to remain patent for gas flow. The airway epithelial lining must both absorb and secrete ions to maintain a critical level of fluid on its surface. Despite frequent involvement in lung diseases, the minuscule size has limited studies of peripheral airways. To meet this challenge, we used a capillary to construct an Ussing chamber (area <1 mm2) to measure electrolyte transport across small native airways (∼1 mm ø) from pig lung. Transepithelial potentials (Vt) were recorded in open circuit conditions while applying constant current pulses across the luminal surface of dissected airways to calculate transepithelial electrical conductance (Gt) and equivalent short circuit current () in the presence and absence of selected Na+ and Cl− transport inhibitors (amiloride, GlyH-101, Niflumic acid) and agonists (Forskolin + IBMX, UTP). Considered together the responses suggest an organ composed of both secreting and absorbing epithelia that constitutively and concurrently transport fluids into and out of the airway, i.e. in opposite directions. Since the epithelial lining of small airways is arranged in long, accordion-like rows of pleats and folds that run axially down the lumen, we surmise that cells within the pleats are mainly secretory while the cells of the folds are principally absorptive. This structural arrangement could provide local fluid transport from within the pleats toward the luminal folds that may autonomously regulate the local surface fluid volume for homeostasis while permitting acute responses to maintain clearance. PMID:22547637

  8. Small airway asthma therapy, challenges, and the future.

    PubMed

    Casale, Thomas B

    2003-02-01

    The clinical significance of small airway pathology makes these passages an important therapeutic target in asthma. Conventional chlorofluorocarbon-based formulations of inhaled corticosteroids for asthmatic inflammation produce aerosols with a relatively large particle size, and as such, offer poor access to the small airways. New corticosteroid formulations use hydrofluoroalkane propellants with a smaller average particle size, allowing better access to the distal lung. By extending the delivery of this medication to the peripheral lung and by increasing the efficiency of lung targeting, these new corticosteroid formulations provide more effective treatment at reduced drug doses.

  9. Transcellular thiocyanate transport by human airway epithelia.

    PubMed

    Fragoso, Miryam A; Fernandez, Vania; Forteza, Rosanna; Randell, Scott H; Salathe, Matthias; Conner, Gregory E

    2004-11-15

    Human airway mucosa synthesizes and secretes lactoperoxidase (LPO). As H(2)O(2) and thiocyanate (SCN(-)) are also present, a functional LPO antibacterial defence system exists in the airways. SCN(-) concentrations in several epithelial secretions are higher than in serum, although the mechanisms of transepithelial transport and accumulation in these secretions are unknown. To examine SCN(-) accumulation in secretions, human airway epithelial cells, re-differentiated at the air-liquid interface, were used in open-circuit conditions. [(14)C]SCN(-), in the basolateral medium, was transported across the epithelium and concentrated tenfold at the apical surface. Measurement of the transepithelial potential showed that the basolateral compartment was positive relative to the apical surface (13.7 +/- 1.8 mV) and therefore unfavourable for passive movement of SCN(-). Transport was dependent on basolateral [SCN(-)] and saturable (K(m,app) = 69 +/- 25 microM); was inhibited by increased apical [SCN(-)]; and was dependent on the presence of basolateral Na(+). Perchlorate (K(i,app) = 0.6 +/- 0.05 microM) and iodide (K(i,app) = 9 +/- 8 microM) in the basolateral medium reversibly inhibited transport, but furosemide did not. Iodide was also transported (K(m,app) = 111 +/- 69 microM). RT-PCR and immunohistochemistry confirmed expression of Na(+)-I(-) symporter (NIS) in the airways. SCN(-) transport was insensitive to apical disulphonic acid Cl(-) channel blockers, but sensitive to apical glibenclamide and arylaminobenzoates. Forskolin and dibutyryl cAMP increased transport. These data suggest SCN(-) transport may occur through basolateral NIS-mediated SCN(-) concentration inside cells, followed by release through an apical channel, perhaps cystic fibrosis transmembrane conductance regulator.

  10. Development of a realistic human airway model.

    PubMed

    Lizal, Frantisek; Elcner, Jakub; Hopke, Philip K; Jedelsky, Jan; Jicha, Miroslav

    2012-03-01

    Numerous models of human lungs with various levels of idealization have been reported in the literature; consequently, results acquired using these models are difficult to compare to in vivo measurements. We have developed a set of model components based on realistic geometries, which permits the analysis of the effects of subsequent model simplification. A realistic digital upper airway geometry except for the lack of an oral cavity has been created which proved suitable both for computational fluid dynamics (CFD) simulations and for the fabrication of physical models. Subsequently, an oral cavity was added to the tracheobronchial geometry. The airway geometry including the oral cavity was adjusted to enable fabrication of a semi-realistic model. Five physical models were created based on these three digital geometries. Two optically transparent models, one with and one without the oral cavity, were constructed for flow velocity measurements, two realistic segmented models, one with and one without the oral cavity, were constructed for particle deposition measurements, and a semi-realistic model with glass cylindrical airways was developed for optical measurements of flow velocity and in situ particle size measurements. One-dimensional phase doppler anemometry measurements were made and compared to the CFD calculations for this model and good agreement was obtained.

  11. Deposition of Graphene Nanoparticles in Human Upper Airways

    PubMed Central

    Su, Wei-Chung; Ku, Bon-Ki; Kulkarni, Pramod; Cheng, Yung Sung

    2016-01-01

    Graphene nanomaterials have attracted wide attention in recent years on their application to state-of-the-art technology due to their outstanding physical properties. On the other hand, the nanotoxicity of graphene materials also has rapidly become a serious concern especially in occupational health. Graphene materials inevitably could become airborne in the workplace during manufacturing processes. The inhalation and subsequent deposition of graphene nanoparticles in the human respiratory tract could potentially result in adverse health effects to exposed workers. Therefore, investigating the deposition of graphene nanoparticles in the human airways is considered essential for an integral graphene occupational health study. For this reason, this study carried out a series of airway replica deposition experiments to obtain original data of graphene nanoparticle airway deposition. In this study, size classified graphene nanoparticles were delivered into human airway replicas (both nasal and oral-to-lung airways). The deposition fraction and efficiency of graphene nanoparticle in the airway were obtained by a novel experimental approach. The experimental results acquired showed that the fractional deposition of graphene nanoparticles in airway sections studied were all less than 4%, and the deposition efficiencies in each airway section were generally lower than 0.03. These results implies that the majority of the graphene nanoparticles inhaled into the human respiratory tract could easily penetrate through the head airways as well as the upper part of the tracheobronchial airways and then transit down to the lower lung airways, where undesired biological responses might be induced. PMID:26317666

  12. Effects of Laser Printer–Emitted Engineered Nanoparticles on Cytotoxicity, Chemokine Expression, Reactive Oxygen Species, DNA Methylation, and DNA Damage: A Comprehensive in Vitro Analysis in Human Small Airway Epithelial Cells, Macrophages, and Lymphoblasts

    PubMed Central

    Pirela, Sandra V.; Miousse, Isabelle R.; Lu, Xiaoyan; Castranova, Vincent; Thomas, Treye; Qian, Yong; Bello, Dhimiter; Kobzik, Lester; Koturbash, Igor; Demokritou, Philip

    2015-01-01

    Background Engineered nanomaterials (ENMs) incorporated into toner formulations of printing equipment become airborne during consumer use. Although information on the complex physicochemical and toxicological properties of both toner powders and printer-emitted particles (PEPs) continues to grow, most toxicological studies have not used the actual PEPs but rather have primarily used raw toner powders, which are not representative of current exposures experienced at the consumer level during printing. Objectives We assessed the biological responses of a panel of human cell lines to PEPs. Methods Three physiologically relevant cell lines—small airway epithelial cells (SAECs), macrophages (THP-1 cells), and lymphoblasts (TK6 cells)—were exposed to PEPs at a wide range of doses (0.5–100 μg/mL) corresponding to human inhalation exposure durations at the consumer level of 8 hr or more. Following treatment, toxicological parameters reflecting distinct mechanisms were evaluated. Results PEPs caused significant membrane integrity damage, an increase in reactive oxygen species (ROS) production, and an increase in pro-inflammatory cytokine release in different cell lines at doses equivalent to exposure durations from 7.8 to 1,500 hr. Furthermore, there were differences in methylation patterns that, although not statistically significant, demonstrate the potential effects of PEPs on the overall epigenome following exposure. Conclusions The in vitro findings obtained in this study suggest that laser printer–emitted engineered nanoparticles may be deleterious to lung cells and provide preliminary evidence of epigenetic modifications that might translate to pulmonary disorders. Citation Pirela SV, Miousse IR, Lu X, Castranova V, Thomas T, Qian Y, Bello D, Kobzik L, Koturbash I, Demokritou P. 2016. Effects of laser printer–emitted engineered nanoparticles on cytotoxicity, chemokine expression, reactive oxygen species, DNA methylation, and DNA damage: a comprehensive in

  13. Electrolyte transport properties in distal small airways from cystic fibrosis pigs with implications for host defense.

    PubMed

    Li, Xiaopeng; Tang, Xiao Xiao; Vargas Buonfiglio, Luis G; Comellas, Alejandro P; Thornell, Ian M; Ramachandran, Shyam; Karp, Philip H; Taft, Peter J; Sheets, Kelsey; Abou Alaiwa, Mahmoud H; Welsh, Michael J; Meyerholz, David K; Stoltz, David A; Zabner, Joseph

    2016-04-01

    While pathological and clinical data suggest that small airways are involved in early cystic fibrosis (CF) lung disease development, little is known about how the lack of cystic fibrosis transmembrane conductance regulator (CFTR) function contributes to disease pathogenesis in these small airways. Large and small airway epithelia are exposed to different airflow velocities, temperatures, humidity, and CO2 concentrations. The cellular composition of these two regions is different, and small airways lack submucosal glands. To better understand the ion transport properties and impacts of lack of CFTR function on host defense function in small airways, we adapted a novel protocol to isolate small airway epithelial cells from CF and non-CF pigs and established an organotypic culture model. Compared with non-CF large airways, non-CF small airway epithelia cultures had higher Cl(-) and bicarbonate (HCO3 (-)) short-circuit currents and higher airway surface liquid (ASL) pH under 5% CO2 conditions. CF small airway epithelia were characterized by minimal Cl(-) and HCO3 (-) transport and decreased ASL pH, and had impaired bacterial killing compared with non-CF small airways. In addition, CF small airway epithelia had a higher ASL viscosity than non-CF small airways. Thus, the activity of CFTR is higher in the small airways, where it plays a role in alkalinization of ASL, enhancement of antimicrobial activity, and lowering of mucus viscosity. These data provide insight to explain why the small airways are a susceptible site for the bacterial colonization. Copyright © 2016 the American Physiological Society.

  14. Electrolyte transport properties in distal small airways from cystic fibrosis pigs with implications for host defense

    PubMed Central

    Tang, Xiao Xiao; Vargas Buonfiglio, Luis G.; Comellas, Alejandro P.; Thornell, Ian M.; Ramachandran, Shyam; Karp, Philip H.; Taft, Peter J.; Sheets, Kelsey; Abou Alaiwa, Mahmoud H.; Welsh, Michael J.; Stoltz, David A.; Zabner, Joseph

    2016-01-01

    While pathological and clinical data suggest that small airways are involved in early cystic fibrosis (CF) lung disease development, little is known about how the lack of cystic fibrosis transmembrane conductance regulator (CFTR) function contributes to disease pathogenesis in these small airways. Large and small airway epithelia are exposed to different airflow velocities, temperatures, humidity, and CO2 concentrations. The cellular composition of these two regions is different, and small airways lack submucosal glands. To better understand the ion transport properties and impacts of lack of CFTR function on host defense function in small airways, we adapted a novel protocol to isolate small airway epithelial cells from CF and non-CF pigs and established an organotypic culture model. Compared with non-CF large airways, non-CF small airway epithelia cultures had higher Cl− and bicarbonate (HCO3−) short-circuit currents and higher airway surface liquid (ASL) pH under 5% CO2 conditions. CF small airway epithelia were characterized by minimal Cl− and HCO3− transport and decreased ASL pH, and had impaired bacterial killing compared with non-CF small airways. In addition, CF small airway epithelia had a higher ASL viscosity than non-CF small airways. Thus, the activity of CFTR is higher in the small airways, where it plays a role in alkalinization of ASL, enhancement of antimicrobial activity, and lowering of mucus viscosity. These data provide insight to explain why the small airways are a susceptible site for the bacterial colonization. PMID:26801568

  15. Liquid plug propagation in flexible microchannels: A small airway model

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Fujioka, H.; Bian, S.; Torisawa, Y.; Huh, D.; Takayama, S.; Grotberg, J. B.

    2009-07-01

    In the present study, we investigate the effect of wall flexibility on the plug propagation and the resulting wall stresses in small airway models with experimental measurements and numerical simulations. Experimentally, a flexible microchannel was fabricated to mimic the flexible small airways using soft lithography. Liquid plugs were generated and propagated through the microchannels. The local wall deformation is observed instantaneously during plug propagation with the maximum increasing with plug speed. The pressure drop across the plug is measured and observed to increase with plug speed, and is slightly smaller in a flexible channel compared to that in a rigid channel. A computational model is then presented to model the steady plug propagation through a flexible channel corresponding to the middle plane in the experimental device. The results show qualitative agreements with experiments on wall shapes and pressure drops and the discrepancies bring up interesting questions on current field of modeling. The flexible wall deforms inward near the plug core region, the deformation and pressure drop across the plug increase with the plug speed. The wall deformation and resulting stresses vary with different longitudinal tensions, i.e., for large wall longitudinal tension, the wall deforms slightly, which causes decreased fluid stress and stress gradients on the flexible wall comparing to that on rigid walls; however, the wall stress gradients are found to be much larger on highly deformable walls with small longitudinal tensions. Therefore, in diseases such as emphysema, with more deformable airways, there is a high possibility of induced injuries on lining cells along the airways because of larger wall stresses and stress gradients.

  16. Regional aerosol deposition in human upper airways

    SciTech Connect

    Swift, D.L.

    1989-11-01

    During the report period significant progress on the quantitative understanding of regional upper airway deposition of airborne particle has been realized. Replicate models of the human upper airways obtained from post-mortem casting of the nasal, oral, pharyngeal, laryngeal and upper tracheal regions and in vivo magnetic resonance imaging (MRI) of the same regions of adults and children have been employed to determine the overall and local deposition characteristics of aerosols in the ultrafine (1--100 {mu}m diameter) and fine (0.8--12 {mu}m diameter) region. Studies have been carried out for both nasal and oral breathing during inspiratory and expiratory flow at constant flow rates representative of rest and states of exercise. The results of these investigations indicate that particles in the size range of unattached'' radon progeny (1--3 nm) are deposited in both the nasal and oral passages with high efficiency (60--80%) for both inspiration and expiration, with the nasal deposition being somewhat greater (5--10%) than oral deposition. The effect of flow rate on upper airway deposition for both pathways is not great; data analysis indicates that the deposition for all flow rates from 4--50 liters/minute can be grouped by plotting deposition vs Q-{sup 1/8}, where Q is flow rate, a far weaker dependency than observed for inertial deposition. Diffusional transport is the primary mechanism of deposition, and size dependence can be accounted for by plotting, deposition percent vs D{sup n} where D is particle diffusion coefficient and n ranges from 0.5--0.66. 2 refs.

  17. Functional small airways defence in symptomless cigarette smokers.

    PubMed Central

    Agnew, J E; Lopez-Vidriero, M T; Pavia, D; Clarke, S W

    1986-01-01

    Smoking induced changes in the secretory cells of bronchiolar epithelium by facilitating secretion of cross linked glycoprotein mucus may influence the efficiency of mucus-cilia coupling. The functional impact on mucociliary transport in small (peripheral) airways has been studied by comparing data on aerosol deposition and clearance from symptomless cigarette smokers (30 tests, 18 subjects) with data from age matched non-smokers (30 tests, 19 subjects). Gamma camera images, assessed in terms of a penetration index comparing peripheral with inner zone deposition, indicated closely similar initial deposition in the two groups. Alveolar deposition, however, assessed in terms of particle retention at 24 hours, was significantly (p less than 0.01) less in the smokers. Given the similarity of initial deposition, this implies that an increased proportion of small conducting airways are protected by mucociliary defence in the smokers' lungs. Clearance from conducting airways of the peripheral zone in tests with relatively high peripheral deposition (14 tests on smokers, and 12 on non-smokers) nevertheless proceeded at the same rate in smokers as in non-smokers. PMID:3787532

  18. Toll-like Receptor 7 Rapidly Relaxes Human Airways

    PubMed Central

    Scott, Gregory D.; Proskocil, Becky J.; Fryer, Allison D.; Jacoby, David B.; Kaufman, Elad H.

    2013-01-01

    Rationale: Toll-like receptors (TLRs) 7 and 8 detect respiratory virus single-stranded RNA and trigger an innate immune response. We recently described rapid TLR7-mediated bronchodilation in guinea pigs. Objectives: To characterize TLR7 expression and TLR7-induced airway relaxation in humans and in eosinophilic airway inflammation in guinea pigs. To evaluate the relaxant effects of other TLRs. Methods: Human airway smooth muscle strips were contracted with methacholine in vitro, and responses to TLR7 and TLR8 agonists were assessed. TLR7-mediated nitric oxide production was measured using a fluorescent indicator, and TLR7 expression was characterized using immunofluorescence. TLR7 signaling was also evaluated in ovalbumin-challenged guinea pigs. Measurements and Main Results: The TLR7 agonist imiquimod (R837) caused rapid dose-dependent relaxation of methacholine-contracted human airways in vitro. This was blocked by the TLR7 antagonist IRS661 and by inhibiting nitric oxide production but not by inhibiting prostaglandin production. TLR7 activation markedly increased fluorescence of a nitric oxide detector. TLR7 was expressed on airway nerves, but not airway smooth muscle, implicating airway nerves as the source of TLR7-induced nitric oxide production. TLR7-mediated relaxation persisted in inflamed guinea pigs airways in vivo. The TLR8 agonists polyuridylic acid and polyadenylic acid also relaxed human airways, and this was not blocked by the TLR7 antagonist or by blocking nitric oxide or prostaglandin production. No other TLRs relaxed the airways. Conclusions: TLR7 is expressed on airway nerves and mediates relaxation of human and animal airways through nitric oxide production. TLR7-mediated bronchodilation may be a new therapeutic strategy in asthma. PMID:23924358

  19. Small airway remodeling in acute respiratory distress syndrome: a study in autopsy lung tissue

    PubMed Central

    2011-01-01

    Introduction Airway dysfunction in patients with the Acute Respiratory Distress Syndrome (ARDS) is evidenced by expiratory flow limitation and dynamic hyperinflation. These functional alterations have been attributed to closure/obstruction of small airways. Airway morphological changes have been reported in experimental models of acute lung injury, characterized by epithelial necrosis and denudation in distal airways. To date, however, no study has focused on the morphological airway changes in lungs from human subjects with ARDS. The aim of this study is to evaluate structural and inflammatory changes in distal airways in ARDS patients. Methods We retrospectively studied autopsy lung tissue from subjects who died with ARDS and from control subjects who died of non pulmonary causes. Using image analysis, we quantified the extension of epithelial changes (normal, abnormal and denudated epithelium expressed as percentages of the total epithelium length), bronchiolar inflammation, airway wall thickness, and extracellular matrix (ECM) protein content in distal airways. The Student's t-test or the Mann-Whitney test was used to compare data between the ARDS and control groups. Bonferroni adjustments were used for multiple tests. The association between morphological and clinical data was analyzed by Pearson rank test. Results Thirty-one ARDS patients (A: PaO2/FiO2 ≤200, 45 ± 14 years, 16 males) and 11 controls (C: 52 ± 16 years, 7 males) were included in the study. ARDS airways showed a shorter extension of normal epithelium (A:32.9 ± 27.2%, C:76.7 ± 32.7%, P < 0.001), a larger extension of epithelium denudation (A:52.6 ± 35.2%, C:21.8 ± 32.1%, P < 0.01), increased airway inflammation (A:1(3), C:0(1), P = 0.03), higher airway wall thickness (A:138.7 ± 54.3 μm, C:86.4 ± 33.3 μm, P < 0.01), and higher airway content of collagen I, fibronectin, versican and matrix metalloproteinase-9 (MMP-9) compared to controls (P ≤0.03). The extension of normal epithelium

  20. Expression of ligands for Siglec-8 and Siglec-9 in human airways and airway cells

    PubMed Central

    Jia, Yi; Yu, Huifeng; Fernandes, Steve M.; Wei, Yadong; Gonzalez-Gil, Anabel; Motari, Mary G.; Vajn, Katarina; Stevens, Whitney W.; Peters, Anju T.; Bochner, Bruce S.; Kern, Robert C.; Schleimer, Robert P.; Schnaar, Ronald L.

    2015-01-01

    Background Balanced activation and inhibition of the immune system ensures pathogen clearance while avoiding hyperinflammation. Siglecs, sialic acid binding proteins found on subsets of immune cells, often inhibit inflammation: Siglec-8 on eosinophils and Siglec-9 on neutrophils engage sialoglycan ligands on airways to diminish ongoing inflammation. The identities of human siglec ligands and their expression during inflammation are largely unknown. Objective The histological distribution, expression and molecular characteristics of siglec ligands were explored in healthy and inflamed human upper airways and in a cellular model of airway inflammation. Methods Normal and chronically inflamed upper airway tissues were stained for siglec ligands. The ligands were extracted from normal and inflamed tissues and from human Calu-3 cells for quantitative analysis by siglec blotting and isolation by siglec capture. Results Siglec-8 ligands were expressed on a subpopulation of submucosal gland cells of human inferior turbinate, whereas Siglec-9 ligands were expressed more broadly (submucosal glands, epithelium, connective tissue); both were significantly upregulated in chronic rhinosinusitis patients. Human airway (Calu-3) cells expressed Siglec-9 ligands on mucin 5B under inflammatory control via the NF-κB pathway, and mucin 5B carried sialoglycan ligands of Siglec-9 on human upper airway tissue. Conclusion Inflammation results in upregulation of immune inhibitory Siglec-8 and Siglec-9 sialoglycan ligands on human airways. Siglec-9 ligands were upregulated via the NF-κB pathway resulting in their enhanced expression on mucin 5B. Siglec sialoglycan ligand expression in inflamed cells and tissues may contribute to the control of airway inflammation. PMID:25747723

  1. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer.

    PubMed

    Watkins, D Neil; Berman, David M; Burkholder, Scott G; Wang, Baolin; Beachy, Philip A; Baylin, Stephen B

    2003-03-20

    Embryonic signalling pathways regulate progenitor cell fates in mammalian epithelial development and cancer. Prompted by the requirement for sonic hedgehog (Shh) signalling in lung development, we investigated a role for this pathway in regeneration and carcinogenesis of airway epithelium. Here we demonstrate extensive activation of the hedgehog (Hh) pathway within the airway epithelium during repair of acute airway injury. This mode of Hh signalling is characterized by the elaboration and reception of the Shh signal within the epithelial compartment, and immediately precedes neuroendocrine differentiation. We reveal a similar pattern of Hh signalling in airway development during normal differentiation of pulmonary neuroendocrine precursor cells, and in a subset of small-cell lung cancer (SCLC), a highly aggressive and frequently lethal human tumour with primitive neuroendocrine features. These tumours maintain their malignant phenotype in vitro and in vivo through ligand-dependent Hh pathway activation. We propose that some types of SCLC might recapitulate a critical, Hh-regulated event in airway epithelial differentiation. This requirement for Hh pathway activation identifies a common lethal malignancy that may respond to pharmacological blockade of the Hh signalling pathway.

  2. Small airway impairment in moderate to severe asthmatics without significant proximal airway obstruction.

    PubMed

    Perez, Thierry; Chanez, Pascal; Dusser, Daniel; Devillier, Philippe

    2013-11-01

    Asthma is a disease characterized by inflammation which affects both proximal and distal airways. We evaluated the prevalence of small airway obstruction (SAO) in a group of clinically stable asthmatics with both normal forced expiratory volume in the first second (FEV1) and normal FEV1/forced vital capacity (FVC) and treated with an association of inhaled corticosteroids (ICSs) and long acting β2-agonists (LABAs). Clinical evaluation included the measurement of dyspnea, asthma control test and drug compliance. The prevalence of SAO was estimated by spirometry and plethysmography and defined by the presence of one or more of the following criteria: functional residual capacity (FRC) > 120% predicted (pred), residual volume (RV) > pred + 1.64 residual standard deviation (RSD), RV/total lung capacity (TLC) > pred + 1.64 RSD, forced expiratory flow (FEF)25-75% < pred - 1.64 RSD, FEF50% < pred - 1.64 RSD, slow vital capacity (SVC) - FVC > 10%. Among the 441 patients who were included, 222 had normal FEV1 and FEV1/FVC. At least one criteria of SAO was found in 115 (52%) mainly lung hyperinflation (39% based on high FRC, RV or RV/TLC) and more rarely distal airflow limitation (15% based on FEF25-75% or FEF50%) or expiratory trapping (10% based on increased SVC - FVC). In the patients with only SAO (no PAO), there was no relationship between SAO, asthma history and the scores of dyspnea, asthma control or drug compliance. These results suggest that in asthmatics with normal FEV1 and FEV1/FVC, treated with ICSs and LABAs, SAO is found in more than half of the patients indicating that the routinely used lung function tests can underestimate dysfunctions occurring in the small airways.

  3. Acute lung injury and persistent small airway disease in a rabbit model of chlorine inhalation.

    PubMed

    Musah, Sadiatu; Schlueter, Connie F; Humphrey, David M; Powell, Karen S; Roberts, Andrew M; Hoyle, Gary W

    2017-01-15

    Chlorine is a pulmonary toxicant to which humans can be exposed through accidents or intentional releases. Acute effects of chlorine inhalation in humans and animal models have been well characterized, but less is known about persistent effects of acute, high-level chlorine exposures. In particular, animal models that reproduce the long-term effects suggested to occur in humans are lacking. Here, we report the development of a rabbit model in which both acute and persistent effects of chlorine inhalation can be assessed. Male New Zealand White rabbits were exposed to chlorine while the lungs were mechanically ventilated. After chlorine exposure, the rabbits were extubated and were allowed to survive for up to 24h after exposure to 800ppm chlorine for 4min to study acute effects or up to 7days after exposure to 400ppm for 8min to study longer term effects. Acute effects observed 6 or 24h after inhalation of 800ppm chlorine for 4min included hypoxemia, pulmonary edema, airway epithelial injury, inflammation, altered baseline lung mechanics, and airway hyperreactivity to inhaled methacholine. Seven days after recovery from inhalation of 400ppm chlorine for 8min, rabbits exhibited mild hypoxemia, increased area of pressure-volume loops, and airway hyperreactivity. Lung histology 7days after chlorine exposure revealed abnormalities in the small airways, including inflammation and sporadic bronchiolitis obliterans lesions. Immunostaining showed a paucity of club and ciliated cells in the epithelium at these sites. These results suggest that small airway disease may be an important component of persistent respiratory abnormalities that occur following acute chlorine exposure. This non-rodent chlorine exposure model should prove useful for studying persistent effects of acute chlorine exposure and for assessing efficacy of countermeasures for chlorine-induced lung injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Deposition of graphene nanomaterial aerosols in human upper airways.

    PubMed

    Su, Wei-Chung; Ku, Bon Ki; Kulkarni, Pramod; Cheng, Yung Sung

    2016-01-01

    Graphene nanomaterials have attracted wide attention in recent years on their application to state-of-the-art technology due to their outstanding physical properties. On the other hand, the nanotoxicity of graphene materials also has rapidly become a serious concern especially in occupational health. Graphene naomaterials inevitably could become airborne in the workplace during manufacturing processes. The inhalation and subsequent deposition of graphene nanomaterial aerosols in the human respiratory tract could potentially result in adverse health effects to exposed workers. Therefore, investigating the deposition of graphene nanomaterial aerosols in the human airways is an indispensable component of an integral approach to graphene occupational health. For this reason, this study carried out a series of airway replica deposition experiments to obtain original experimental data for graphene aerosol airway deposition. In this study, graphene aerosols were generated, size classified, and delivered into human airway replicas (nasal and oral-to-lung airways). The deposition fraction and deposition efficiency of graphene aerosol in the airway replicas were obtained by a novel experimental approach. The experimental results acquired showed that the fractional deposition of graphene aerosols in airway sections studied were all less than 4%, and the deposition efficiency in each airway section was generally lower than 0.03. These results indicate that the majority of the graphene nanomaterial aerosols inhaled into the human respiratory tract could easily penetrate through the head airways as well as the upper part of the tracheobronchial airways and then transit down to the lower lung airways, where undesired biological responses might be induced.

  5. Cystic fibrosis lung disease starts in the small airways: can we treat it more effectively?

    PubMed

    Tiddens, Harm A W M; Donaldson, Scott H; Rosenfeld, Margaret; Paré, Peter D

    2010-02-01

    The aims of this article are to summarize existing knowledge regarding the pathophysiology of small airways disease in cystic fibrosis (CF), to speculate about additional mechanisms that might play a role, and to consider the available or potential options to treat it. In the first section, we review the evidence provided by pathologic, physiologic, and imaging studies suggesting that obstruction of small airways begins early in life and is progressive. In the second section we discuss how the relationships between CF transmembrane conductance regulator (CFTR), ion transport, the volume of the periciliary liquid layer and airway mucus might lead to defective mucociliary clearance in small airways. In addition, we discuss how chronic endobronchial bacterial infection and a chronic neutrophilic inflammatory response increase the viscosity of CF secretions and exacerbate the clearance problem. Next, we discuss how the mechanical properties of small airways could be altered early in the disease process and how remodeling can contribute to small airways disease. In the final section, we discuss how established therapies impact small airways disease and new directions that may lead to improvement in the treatment of small airways disease. We conclude that there are many reasons to believe that small airways play an important role in the pathophysiology of (early) CF lung disease. Therapy should be aimed to target the small airways more efficiently, especially with drugs that can correct the basic defect at an early stage of disease.

  6. Waterpipe smoking induces epigenetic changes in the small airway epithelium.

    PubMed

    Walters, Matthew S; Salit, Jacqueline; Ju, Jin Hyun; Staudt, Michelle R; Kaner, Robert J; Rogalski, Allison M; Sodeinde, Teniola B; Rahim, Riyaad; Strulovici-Barel, Yael; Mezey, Jason G; Almulla, Ahmad M; Sattar, Hisham; Mahmoud, Mai; Crystal, Ronald G

    2017-01-01

    Waterpipe (also called hookah, shisha, or narghile) smoking is a common form of tobacco use in the Middle East. Its use is becoming more prevalent in Western societies, especially among young adults as an alternative form of tobacco use to traditional cigarettes. While the risk to cigarette smoking is well documented, the risk to waterpipe smoking is not well defined with limited information on its health impact at the epidemiologic, clinical and biologic levels with respect to lung disease. Based on the knowledge that airway epithelial cell DNA methylation is modified in response to cigarette smoke and in cigarette smoking-related lung diseases, we assessed the impact of light-use waterpipe smoking on DNA methylation of the small airway epithelium (SAE) and whether changes in methylation were linked to the transcriptional output of the cells. Small airway epithelium was obtained from 7 nonsmokers and 7 light-use (2.6 ± 1.7 sessions/wk) waterpipe-only smokers. Genome-wide comparison of SAE DNA methylation of waterpipe smokers to nonsmokers identified 727 probesets differentially methylated (fold-change >1.5, p<0.05) representing 673 unique genes. Dominant pathways associated with these epigenetic changes include those linked to G-protein coupled receptor signaling, aryl hydrocarbon receptor signaling and xenobiotic metabolism signaling, all of which have been associated with cigarette smoking and lung disease. Of the genes differentially methylated, 11.3% exhibited a corresponding significant (p<0.05) change in gene expression with enrichment in pathways related to regulation of mRNA translation and protein synthesis (eIF2 signaling and regulation of eIF4 and p70S6K signaling). Overall, these data demonstrate that light-use waterpipe smoking is associated with epigenetic changes and related transcriptional modifications in the SAE, the cell population demonstrating the earliest pathologic abnormalities associated with chronic cigarette smoking.

  7. Waterpipe smoking induces epigenetic changes in the small airway epithelium

    PubMed Central

    Ju, Jin Hyun; Staudt, Michelle R.; Kaner, Robert J.; Rogalski, Allison M.; Sodeinde, Teniola B.; Rahim, Riyaad; Strulovici-Barel, Yael; Mezey, Jason G.; Almulla, Ahmad M.; Sattar, Hisham; Mahmoud, Mai; Crystal, Ronald G.

    2017-01-01

    Waterpipe (also called hookah, shisha, or narghile) smoking is a common form of tobacco use in the Middle East. Its use is becoming more prevalent in Western societies, especially among young adults as an alternative form of tobacco use to traditional cigarettes. While the risk to cigarette smoking is well documented, the risk to waterpipe smoking is not well defined with limited information on its health impact at the epidemiologic, clinical and biologic levels with respect to lung disease. Based on the knowledge that airway epithelial cell DNA methylation is modified in response to cigarette smoke and in cigarette smoking-related lung diseases, we assessed the impact of light-use waterpipe smoking on DNA methylation of the small airway epithelium (SAE) and whether changes in methylation were linked to the transcriptional output of the cells. Small airway epithelium was obtained from 7 nonsmokers and 7 light-use (2.6 ± 1.7 sessions/wk) waterpipe-only smokers. Genome-wide comparison of SAE DNA methylation of waterpipe smokers to nonsmokers identified 727 probesets differentially methylated (fold-change >1.5, p<0.05) representing 673 unique genes. Dominant pathways associated with these epigenetic changes include those linked to G-protein coupled receptor signaling, aryl hydrocarbon receptor signaling and xenobiotic metabolism signaling, all of which have been associated with cigarette smoking and lung disease. Of the genes differentially methylated, 11.3% exhibited a corresponding significant (p<0.05) change in gene expression with enrichment in pathways related to regulation of mRNA translation and protein synthesis (eIF2 signaling and regulation of eIF4 and p70S6K signaling). Overall, these data demonstrate that light-use waterpipe smoking is associated with epigenetic changes and related transcriptional modifications in the SAE, the cell population demonstrating the earliest pathologic abnormalities associated with chronic cigarette smoking. PMID:28273093

  8. Airway epithelial cell response to human metapneumovirus infection

    SciTech Connect

    Bao, X.; Liu, T.; Spetch, L.; Kolli, D.; Garofalo, R.P.; Casola, A.

    2007-11-10

    Human metapneumovirus (hMPV) is a major cause of lower respiratory tract infections (LRTIs) in infants, elderly and immunocompromised patients. In this study, we show that hMPV can infect in a similar manner epithelial cells representative of different tracts of the airways. hMPV-induced expression of chemokines IL-8 and RANTES in primary small alveolar epithelial cells (SAE) and in a human alveolar type II-like epithelial cell line (A549) was similar, suggesting that A549 cells can be used as a model to study lower airway epithelial cell responses to hMPV infection. A549 secreted a variety of CXC and CC chemokines, cytokines and type I interferons, following hMPV infection. hMPV was also a strong inducer of transcription factors belonging to nuclear factor (NF)-{kappa}B, interferon regulatory factors (IRFs) and signal transducers and activators of transcription (STATs) families, which are known to orchestrate the expression of inflammatory and immunomodulatory mediators.

  9. Secretory IgA Deficiency in Individual Small Airways Is Associated with Persistent Inflammation and Remodeling.

    PubMed

    Polosukhin, Vasiliy V; Richmond, Bradley W; Du, Rui-Hong; Cates, Justin M; Wu, Pingsheng; Nian, Hui; Massion, Pierre P; Ware, Lorraine B; Lee, Jae Woo; Kononov, Alexey V; Lawson, William E; Blackwell, Timothy S

    2017-04-15

    Maintenance of a surface immune barrier is important for homeostasis in organs with mucosal surfaces that interface with the external environment; however, the role of the mucosal immune system in chronic lung diseases is incompletely understood. We examined the relationship between secretory IgA (SIgA) on the mucosal surface of small airways and parameters of inflammation and airway wall remodeling in chronic obstructive pulmonary disease (COPD). We studied 1,104 small airways (<2 mm in diameter) from 50 former smokers with COPD and 39 control subjects. Small airways were identified on serial tissue sections and examined for epithelial morphology, SIgA, bacterial DNA, nuclear factor-κB activation, neutrophil and macrophage infiltration, and airway wall thickness. Morphometric evaluation of small airways revealed increased mean airway wall thickness and inflammatory cell counts in lungs from patients with COPD compared with control subjects, whereas SIgA level on the mucosal surface was decreased. However, when small airways were classified as SIgA intact or SIgA deficient, we found that pathologic changes were localized almost exclusively to SIgA-deficient airways, regardless of study group. SIgA-deficient airways were characterized by (1) abnormal epithelial morphology, (2) invasion of bacteria across the apical epithelial barrier, (3) nuclear factor-κB activation, (4) accumulation of macrophages and neutrophils, and (5) fibrotic remodeling of the airway wall. Our findings support the concept that localized, acquired SIgA deficiency in individual small airways of patients with COPD allows colonizing bacteria to cross the epithelial barrier and drive persistent inflammation and airway wall remodeling, even after smoking cessation.

  10. Automated measurement of pulmonary emphysema and small airway remodeling in cigarette smoke-exposed mice.

    PubMed

    Laucho-Contreras, Maria E; Taylor, Katherine L; Mahadeva, Ravi; Boukedes, Steve S; Owen, Caroline A

    2015-01-16

    COPD is projected to be the third most common cause of mortality world-wide by 2020((1)). Animal models of COPD are used to identify molecules that contribute to the disease process and to test the efficacy of novel therapies for COPD. Researchers use a number of models of COPD employing different species including rodents, guinea-pigs, rabbits, and dogs((2)). However, the most widely-used model is that in which mice are exposed to cigarette smoke. Mice are an especially useful species in which to model COPD because their genome can readily be manipulated to generate animals that are either deficient in, or over-express individual proteins. Studies of gene-targeted mice that have been exposed to cigarette smoke have provided valuable information about the contributions of individual molecules to different lung pathologies in COPD((3-5)). Most studies have focused on pathways involved in emphysema development which contributes to the airflow obstruction that is characteristic of COPD. However, small airway fibrosis also contributes significantly to airflow obstruction in human COPD patients((6)), but much less is known about the pathogenesis of this lesion in smoke-exposed animals. To address this knowledge gap, this protocol quantifies both emphysema development and small airway fibrosis in smoke-exposed mice. This protocol exposes mice to CS using a whole-body exposure technique, then measures respiratory mechanics in the mice, inflates the lungs of mice to a standard pressure, and fixes the lungs in formalin. The researcher then stains the lung sections with either Gill's stain to measure the mean alveolar chord length (as a readout of emphysema severity) or Masson's trichrome stain to measure deposition of extracellular matrix (ECM) proteins around small airways (as a readout of small airway fibrosis). Studies of the effects of molecular pathways on both of these lung pathologies will lead to a better understanding of the pathogenesis of COPD.

  11. Region-based geometric modelling of human airways and arterial vessels.

    PubMed

    Ding, Songlin; Ye, Yong; Tu, Jiyuan; Subic, Aleksandar

    2010-03-01

    Anatomically precise geometric models of human airways and arterial vessels play a critical role in the analysis of air and blood flows in human bodies. The established geometric modelling methods become invalid when the model consists of bronchioles or small vessels. This paper presents a new method for reconstructing the entire airway tree and carotid vessels from point clouds obtained from CT or MR images. A novel layer-by-layer searching algorithm has been developed to recognize branches of the airway tree and arterial vessels from the point clouds. Instead of applying uniform accuracy to all branches regardless of the number of available points, the surface patches on each branch are constructed adaptively based on the number of available elemental points, which leads to the elimination of distortions occurring at small bronchi and vessels.

  12. The Diacetyl-exposed Human Airway Epithelial Secretome: New Insights Into Flavoring Induced Airways Disease.

    PubMed

    Brass, David M; Gwinn, William M; Valente, Ashlee M; Kelly, Francine L; Brinkley, Christie D; Nagler, Andrew E; Moseley, M Arthur; Morgan, Daniel L; Palmer, Scott M; Foster, Matthew W

    2017-03-01

    Bronchiolitis obliterans (BO) is an increasingly important lung disease characterized by fibroproliferative airway lesions and decrements in lung function. Occupational exposure to the artificial food flavoring ingredient diacetyl, commonly used to impart a buttery flavor to microwave popcorn, has been associated with BO development. In the occupational setting, diacetyl vapor is first encountered by the airway epithelium. To better understand the effects of diacetyl vapor on the airway epithelium we used an unbiased proteomic approach to characterize both the apical and basolateral secretomes of air liquid interface cultures of primary human airway epithelial cells from four unique donors after exposure to an occupationally relevant ~1100 ppm of diacetyl vapor or PBS as a control on alternating days. Basolateral and apical supernatants collected 48 hours after the third exposure were analyzed using one-dimensional liquid chromatography tandem mass spectrometry. Paired t-tests adjusted for multiple comparisons were used to assess differential expression between diacetyl and PBS exposure. Of the significantly differentially expressed proteins identified, 61 were unique to the apical secretome, 81 were unique to the basolateral secretome and there were an additional 11 present in both. Pathway enrichment analysis using publicly available databases reveals that proteins associated with matrix remodeling including degradation, assembly and new matrix organization were over-represented in the data sets. Similarly, protein modifiers of epidermal growth factor receptor signaling were significantly altered. The ordered changes in protein expression suggest that the airway epithelial response to diacetyl may contribute to BO pathogenesis.

  13. Chest Wall Strapping. An Old Physiology Experiment with New Relevance to Small Airways Diseases

    PubMed Central

    Schmidt, Gregory A.; Brower, Roy G.

    2014-01-01

    Chest wall strapping (CWS) induces breathing at low lung volumes. Mild to moderate obesity can lead to similar changes in lung volumes, due to chest wall and abdominal restriction. Chest wall strapping is also conceptually similar to a mismatch between significantly oversized donor lungs transplanted into a recipient with a smaller chest cavity. Chest wall strapping increases lung elastic recoil, reduces pulmonary compliance, and substantially increases maximal expiratory flows. The interactions between elastic properties of the lung parenchyma and small airways are critical for pulmonary function. Chest wall strapping lowers residual volume and closing volume, likely from the interdependence between increased elastic recoil and airways, leading to greater radial distending forces on small airways and small airway dilation. Chronic obstructive pulmonary disease (COPD) and chronic rejection of the transplanted lung, bronchiolitis obliterans syndrome (BOS), are primarily diseases of the small airways, and are characterized by progressive obstruction and subsequent loss of small airways. In COPD, higher body mass index (BMI) (conceptually like being more tightly strapped) is associated with lower lung volumes, increased airway conductance, and lower risk of progression to emphysema or death. Likewise, in lung transplantation, oversized donor lungs have been linked to higher expiratory airflows, lower risk of bronchiolitis obliterans syndrome, and improved survival. This article reviews the physiology of chest wall strapping and explores how it could enhance the understanding or even the treatment of small airway diseases, such as COPD and bronchiolitis obliterans syndrome. PMID:25172621

  14. Mechanics of airflow in the human nasal airways.

    PubMed

    Doorly, D J; Taylor, D J; Schroter, R C

    2008-11-30

    The mechanics of airflow in the human nasal airways is reviewed, drawing on the findings of experimental and computational model studies. Modelling inevitably requires simplifications and assumptions, particularly given the complexity of the nasal airways. The processes entailed in modelling the nasal airways (from defining the model, to its production and, finally, validating the results) is critically examined, both for physical models and for computational simulations. Uncertainty still surrounds the appropriateness of the various assumptions made in modelling, particularly with regard to the nature of flow. New results are presented in which high-speed particle image velocimetry (PIV) and direct numerical simulation are applied to investigate the development of flow instability in the nasal cavity. These illustrate some of the improved capabilities afforded by technological developments for future model studies. The need for further improvements in characterising airway geometry and flow together with promising new methods are briefly discussed.

  15. Thick airway surface liquid volume and weak mucin expression in pendrin-deficient human airway epithelia

    PubMed Central

    Lee, Hyun Jae; Yoo, Jee Eun; Namkung, Wan; Cho, Hyung-Ju; Kim, Kyubo; Kang, Joo Wan; Yoon, Joo-Heon; Choi, Jae Young

    2015-01-01

    Pendrin is an anion exchanger whose mutations are known to cause hearing loss. However, recent data support the linkage between pendrin expression and airway diseases, such as asthma. To evaluate the role of pendrin in the regulation of the airway surface liquid (ASL) volume and mucin expression, we investigated the function and expression of pendrin and ion channels and anion exchangers. Human nasal epithelial cells were cultured from 16 deaf patients carrying pendrin mutations (DFNB4) and 17 controls. The cells were treated with IL-13 to induce mucus hypersecretion. Airway surface liquid thickness was measured and real-time polymerase chain reaction was performed targeting various transporters and MUC5AC. Anion exchanger activity was measured using a pH-sensitive fluorescent probe. Periodic acid-Schiff staining was performed on the cultured cells and inferior turbinate tissues. The ASL layer of the nasal epithelia from DFNB4 subjects was thicker than the controls, and the difference became more prominent following IL-13 stimulation. There was no difference in anion exchange activity after IL-13 treatment in the cells from DFNB4 patients, while it increased in the controls. Goblet cell metaplasia induced by IL-13 treatment seen in the controls was not observed in the DFNB4 cells. Furthermore, the periodic acid-Schiff staining-positive area was lesser in the inferior turbinate tissues from DFNB4 patients that those from controls. Pendrin plays a critical role in ASL volume regulation and mucin expression as pendrin-deficient airway epithelial cells are refractory to stimulation with IL-13. Specific blockers targeting pendrin in the airways may therefore have therapeutic potential in the treatment of allergic airway diseases. PMID:26243215

  16. Postexposure Application of Fas Receptor Small-Interfering RNA to Suppress Sulfur Mustard-Induced Apoptosis in Human Airway Epithelial Cells: Implication for a Therapeutic Approach

    DTIC Science & Technology

    2013-01-01

    pathogenic mechanisms, e.g., DNA damage, are initiated without much delay but the tissue injury is not seen until after a lag period of 12 to 24 hours...measured at 450 nm using a ThermoMax microplate reader (MDS Analytical Technologies, Sunnyvale, CA). The recombi - nant human FasL/TNFSF6 produced in CHO...alkylating form that reacts readily with cellular functional molecules (e.g., DNA , RNA, proteins, etc.) to initiate its toxic mecha- nisms. At body temperature

  17. Neoplastic-like transformation effect of single-walled and multi-walled carbon nanotubes compared to asbestos on human lung small airway epithelial cells

    PubMed Central

    Wang, Liying; Stueckle, Todd A.; Mishra, Anurag; Derk, Raymond; Meighan, Terence; Castranova, Vincent; Rojanasakul, Yon

    2015-01-01

    Accumulating evidence indicates that carbon nanotubes (CNTs) are biopersistent and can cause lung damage. With similar fibrous morphology and mode of exposure to asbestos, a known human carcinogen, growing concern has arisen for elevated risk of CNT-induced lung carcinogenesis; however, relatively little is known about the long-term carcinogenic effect of CNT. Neoplastic transformation is a key early event leading to carcinogenesis. We studied the ability of single- and multi-walled CNTs to induce neoplastic transformation of human lung epithelial cells compared to asbestos. Long-term (6-month) exposure of the cells to occupationally relevant concentrations of CNT in culture caused a neoplastic-like transformation phenotype as demonstrated by increased cell proliferation, anchorage-independent growth, invasion and angiogenesis. Whole-genome expression signature and protein expression analyses showed that single- and multi-walled CNTs shared similar signaling signatures which were distinct from asbestos. These results provide novel toxicogenomic information and suggest distinct particle-associated mechanisms of neoplasia promotion induced by CNTs and asbestos. PMID:23634900

  18. Oral airway flow dynamics in healthy humans.

    PubMed

    Amis, T C; O'Neill, N; Wheatley, J R

    1999-02-15

    1. Oral airway resistance (RO) is an important determinant of oro-nasal partitioning of airflow (e.g. during exercise and sleep); however, little is known of factors influencing its magnitude and measurement. 2. We developed a non-invasive standardized technique for measuring RO (based on a modification of posterior rhinomanometry) and examined inspiratory RO in 17 healthy male subjects (age, 36 +/- 2 years (mean +/- s.e.m.); height, 177 +/- 2 cm; weight, 83 +/- 3 kg). 3. Inspiratory RO (at 0.4 l s-1) was 0.86 +/- 0.23 cmH2O l-1 s-1 during resting mouthpiece breathing in the upright posture. RO was unaffected by assumption of the supine posture, tended to decrease with head and neck extension and increased to 1.22 +/- 0.19 cmH2O l-1 s-1 (n = 10 subjects, P < 0.01) with 40-45 deg of head and neck flexion. When breathing via a mouth-mask RO was 2.98 +/- 0.42 cmH2O l-1 s-1 (n = 7) and not significantly different from nasal airway resistance. 4. Thus, in awake healthy male subjects with constant jaw position, RO is unaffected by body posture but increases with modest degrees of head and neck flexion. This influence on upper airway patency may be important when oral route breathing is associated with alterations in head and neck position, e.g. during sleep.

  19. Temporal Monitoring of Differentiated Human Airway Epithelial Cells Using Microfluidics

    PubMed Central

    Blume, Cornelia; Reale, Riccardo; Held, Marie; Millar, Timothy M.; Collins, Jane E.; Davies, Donna E.; Morgan, Hywel; Swindle, Emily J.

    2015-01-01

    The airway epithelium is exposed to a variety of harmful agents during breathing and appropriate cellular responses are essential to maintain tissue homeostasis. Recent evidence has highlighted the contribution of epithelial barrier dysfunction in the development of many chronic respiratory diseases. Despite intense research efforts, the responses of the airway barrier to environmental agents are not fully understood, mainly due to lack of suitable in vitro models that recapitulate the complex in vivo situation accurately. Using an interdisciplinary approach, we describe a novel dynamic 3D in vitro model of the airway epithelium, incorporating fully differentiated primary human airway epithelial cells at the air-liquid interface and a basolateral microfluidic supply of nutrients simulating the interstitial flow observed in vivo. Through combination of the microfluidic culture system with an automated fraction collector the kinetics of cellular responses by the airway epithelium to environmental agents can be analysed at the early phases for the first time and with much higher sensitivity compared to common static in vitro models. Following exposure of primary differentiated epithelial cells to pollen we show that CXCL8/IL–8 release is detectable within the first 2h and peaks at 4–6h under microfluidic conditions, a response which was not observed in conventional static culture conditions. Such a microfluidic culture model is likely to have utility for high resolution temporal profiling of toxicological and pharmacological responses of the airway epithelial barrier, as well as for studies of disease mechanisms. PMID:26436734

  20. Deposition of thoron progeny in human head airways

    SciTech Connect

    Cheng, Yungsung; Su, Yinfong; Yeh, Hsuchi ); Swift, D.L. )

    1993-05-01

    Radon and thoron progeny are ultrafine particles in the size range of 1-200 nm, depending on whether or not they are attached to other aerosol particles. The diffusion coefficient of radon progeny is a critical parameter in determining its dynamics while airborne. Depending on their diffusion coefficient and the breathing pattern of the subject, ultrafine particles have been shown to deposit in the nasal or oral airways. Substantial deposition in the head airways reduces the amount of radioactivity that deposits in the tracheobronchial tree. Thus, for accurate dosimetric calculations, it is important to know the deposition fraction of radon progeny in the head airways. Several adult head airway models were used to study the radon progeny deposition in human nasal and oral airways. Radon-220 progeny ([sup 212]Pb) were used in the study. The particle size as measured by a graded screen diffusion battery was between 1.2 and 1.7 nm, indicating that the particles were molecular clusters. Deposition was measured by collecting filter samples before and after the model and gamma counting the [sup 212]Pb. Experiments were performed under the constant flow rates of 4-20 L/min. Deposition efficiencies were between 63% and 85% in the nasal airway and 48% and 78% in the oral airway. Previously reported deposition data in the same airway model for ultrafine particles between 4.6 and 200 nm and the deposition data of radon progeny were used to establish a turbulent deposition equation covering particle sizes from 1 to 200 nm, the entire size range for attached and unattached radon progeny. 23 refs., 10 figs., 6 tabs.

  1. The Contribution of Small Airway Obstruction to the Pathogenesis of Chronic Obstructive Pulmonary Disease.

    PubMed

    Hogg, James C; Paré, Peter D; Hackett, Tillie-Louise

    2017-04-01

    The hypothesis that the small conducting airways were the major site of obstruction to airflow in normal lungs was introduced by Rohrer in 1915 and prevailed until Weibel introduced a quantitative method of studying lung anatomy in 1963. Green repeated Rohrer's calculations using Weibels new data in 1965 and found that the smaller conducting airways offered very little resistance to airflow. This conflict was resolved by seminal experiments conducted by Macklem and Mead in 1967, which confirmed that a small proportion of the total lower airways resistance is attributable to small airways <2 mm in diameter. Shortly thereafter, Hogg, Macklem, and Thurlbeck used this technique to show that small airways become the major site of obstruction in lungs affected by emphysema. These and other observations led Mead to write a seminal editorial in 1970 that postulated the small airways are a silent zone within normal lungs where disease can accumulate over many years without being noticed. This review provides a progress report since the 1970s on methods for detecting chronic obstructive pulmonary disease, the structural nature of small airways' disease, and the cellular and molecular mechanisms that are thought to underlie its pathogenesis.

  2. Can breathing-like pressure oscillations reverse or prevent narrowing of small intact airways?

    PubMed Central

    Harvey, Brian C.; Parameswaran, Harikrishnan

    2015-01-01

    Periodic length fluctuations of airway smooth muscle during breathing are thought to modulate airway responsiveness in vivo. Recent animal and human intact airway studies have shown that pressure fluctuations simulating breathing can only marginally reverse airway narrowing and are ineffective at protecting against future narrowing. However, these previous studies were performed on relatively large (>5 mm diameter) airways, which are inherently stiffer than smaller airways for which a preponderance of airway constriction in asthma likely occurs. The goal of this study was to determine the effectiveness of breathing-like transmural pressure oscillations to reverse induced narrowing and/or protect against future narrowing of smaller, more compliant intact airways. We constricted smaller (luminal diameter = 2.92 ± 0.29 mm) intact airway segments twice with ACh (10−6 M), once while applying tidal-like pressure oscillations (5–15 cmH2O) before, during, and after inducing constriction (Pre + Post) and again while only imposing the tidal-like pressure oscillation after induced constriction (Post Only). Smaller airways were 128% more compliant than previously studied larger airways. This increased compliance translated into 196% more strain and 76% greater recovery (41 vs. 23%) because of tidal-like pressure oscillations. Larger pressure oscillations (5–25 cmH2O) caused more recovery (77.5 ± 16.5%). However, pressure oscillations applied before and during constriction resulted in the same steady-state diameter as when pressure oscillations were only applied after constriction. These data show that reduced straining of the airways before a challenge likely does not contribute to the emergence of airway hyperreactivity observed in asthma but may serve to sustain a given level of constriction. PMID:25953836

  3. Can breathing-like pressure oscillations reverse or prevent narrowing of small intact airways?

    PubMed

    Harvey, Brian C; Parameswaran, Harikrishnan; Lutchen, Kenneth R

    2015-07-01

    Periodic length fluctuations of airway smooth muscle during breathing are thought to modulate airway responsiveness in vivo. Recent animal and human intact airway studies have shown that pressure fluctuations simulating breathing can only marginally reverse airway narrowing and are ineffective at protecting against future narrowing. However, these previous studies were performed on relatively large (>5 mm diameter) airways, which are inherently stiffer than smaller airways for which a preponderance of airway constriction in asthma likely occurs. The goal of this study was to determine the effectiveness of breathing-like transmural pressure oscillations to reverse induced narrowing and/or protect against future narrowing of smaller, more compliant intact airways. We constricted smaller (luminal diameter = 2.92 ± 0.29 mm) intact airway segments twice with ACh (10(-6) M), once while applying tidal-like pressure oscillations (5-15 cmH2O) before, during, and after inducing constriction (Pre + Post) and again while only imposing the tidal-like pressure oscillation after induced constriction (Post Only). Smaller airways were 128% more compliant than previously studied larger airways. This increased compliance translated into 196% more strain and 76% greater recovery (41 vs. 23%) because of tidal-like pressure oscillations. Larger pressure oscillations (5-25 cmH2O) caused more recovery (77.5 ± 16.5%). However, pressure oscillations applied before and during constriction resulted in the same steady-state diameter as when pressure oscillations were only applied after constriction. These data show that reduced straining of the airways before a challenge likely does not contribute to the emergence of airway hyperreactivity observed in asthma but may serve to sustain a given level of constriction.

  4. Regional aerosol deposition in human upper airways. Final report

    SciTech Connect

    Swift, D.L.

    1997-11-01

    During the award period, a number of studies have been carried out related to the overall objective of the project which is to elucidate important factors which influence the upper airway deposition and dose of particles in the size range 0.5 nm - 10 {mu}m, such as particle size, breathing conditions, age, airway geometry, and mode of breathing. These studies are listed below. (1) A high voltage electrospray system was constructed to generate polydispersed 1-10 {mu}m diameter di-ethylhexyl sebacate aerosol for particle deposition studies in nasal casts and in human subjects. (2) The effect of nostril dimensions, nasal passage geometry, and nasal resistance on particle deposition efficiency in forty healthy, nonsmoking adults at a constant flowrate were studied. (3) The effect of nostril dimensions, nasal passage dimensions and nasal resistance on the percentage of particle deposition in the anterior 3 cm of the nasal passage of spontaneously breathing humans were studied. (4) The region of deposition of monodispersed aerosols were studied using replicate casts. (5) Ultrafine aerosol deposition using simulated breath holding path and natural path was compared. (6) An experimental technique was proposed and tested to measure the oral deposition of inhaled ultrafine particles. (7) We have calculated the total deposition fraction of ultrafine aerosols from 5 to 200 n in the extrathoracic airways and in the lung. (8) The deposition fraction of radon progeny in the head airways was studied using several head airway models.

  5. Computational Flow Modeling of Human Upper Airway Breathing

    NASA Astrophysics Data System (ADS)

    Mylavarapu, Goutham

    Computational modeling of biological systems have gained a lot of interest in biomedical research, in the recent past. This thesis focuses on the application of computational simulations to study airflow dynamics in human upper respiratory tract. With advancements in medical imaging, patient specific geometries of anatomically accurate respiratory tracts can now be reconstructed from Magnetic Resonance Images (MRI) or Computed Tomography (CT) scans, with better and accurate details than traditional cadaver cast models. Computational studies using these individualized geometrical models have advantages of non-invasiveness, ease, minimum patient interaction, improved accuracy over experimental and clinical studies. Numerical simulations can provide detailed flow fields including velocities, flow rates, airway wall pressure, shear stresses, turbulence in an airway. Interpretation of these physical quantities will enable to develop efficient treatment procedures, medical devices, targeted drug delivery etc. The hypothesis for this research is that computational modeling can predict the outcomes of a surgical intervention or a treatment plan prior to its application and will guide the physician in providing better treatment to the patients. In the current work, three different computational approaches Computational Fluid Dynamics (CFD), Flow-Structure Interaction (FSI) and Particle Flow simulations were used to investigate flow in airway geometries. CFD approach assumes airway wall as rigid, and relatively easy to simulate, compared to the more challenging FSI approach, where interactions of airway wall deformations with flow are also accounted. The CFD methodology using different turbulence models is validated against experimental measurements in an airway phantom. Two case-studies using CFD, to quantify a pre and post-operative airway and another, to perform virtual surgery to determine the best possible surgery in a constricted airway is demonstrated. The unsteady

  6. Regional aerosol deposition in human upper airways

    SciTech Connect

    Swift, D.L.

    1990-11-01

    During the current reporting period experimental studies of aerosol deposition in replicate NOPL airways have carried out. A replicate model of a 4 week old infant nasal passage was constructed from MR scans. The model completes the age range from newborn'' to 4 years, there now being one child model for 4 different ages. Deposition studies have been performed with unattached radon progeny aerosols in collaboration with ITRI, Albuquerque, NM and NRPB, Chilton, UK. Overall measurements have been performed in adult and child nasal airways indicating that the child nasal passage was slightly more efficient than the adult in removing 1 nm particles at corresponding flow rates. A similar weak dependence on flow rate was observed. Local deposition studies in an adult nasal model indicated predominant deposition in the anterior region during inspiratory flow, but measurable deposition was found throughout the model. The deposition pattern during expiration was reverse, greater deposition being observed in the posterior region. Local deposition studies of attached progeny aerosol size (100--200 nm) were performed in adult and child nasal models using technigas'' and a gamma scintillation camera. Similar to the unattached size, deposition occurred throughout the models, but was greater in the anterior region.

  7. The role of the small airways in the pathophysiology of asthma and chronic obstructive pulmonary disease.

    PubMed

    Bonini, Matteo; Usmani, Omar S

    2015-12-01

    Chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD), represent a major social and economic burden for worldwide health systems. During recent years, increasing attention has been directed to the role of small airways in respiratory diseases, and their exact contribution to the pathophysiology of asthma and COPD continues to be clarified. Indeed, it has been suggested that small airways play a distinct role in specific disease phenotypes. Besides providing information on small airways structure and diagnostic procedures, this review therefore aims to present updated and evidence-based findings on the role of small airways in the pathophysiology of asthma and COPD. Most of the available information derives from either pathological studies or review articles and there are few data on the natural history of small airways disease in the onset or progression of asthma and COPD. Comparisons between studies on the role of small airways are hard to draw because both asthma and COPD are highly heterogeneous conditions. Most studies have been performed in small population samples, and different techniques to characterize aspects of small airways function have been employed in order to assess inflammation and remodelling. Most methods of assessing small airways dysfunction have been largely confined to research purposes, but some data are encouraging, supporting the utilization of certain techniques into daily clinical practice, particularly for early-stage diseases, when subjects are often asymptomatic and routine pulmonary function tests may be within normal ranges. In this context further clinical trials and real-life feedback on large populations are desirable. © The Author(s), 2015.

  8. Transcriptional PROFILING OF MUCOCILIARY DIFFERENTIATION IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    When cultured at an air-liquid interface (ALI) in the appropriate medium, primary human airway epithelial cells form a polarized, pseudostratified epithelium composed of ciliated and mucus-secreting cells. This culture system provides a useful tool for the in vitro study of...

  9. Transcriptional PROFILING OF MUCOCILIARY DIFFERENTIATION IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    When cultured at an air-liquid interface (ALI) in the appropriate medium, primary human airway epithelial cells form a polarized, pseudostratified epithelium composed of ciliated and mucus-secreting cells. This culture system provides a useful tool for the in vitro study of...

  10. Hyperresponsiveness in the human nasal airway: new targets for the treatment of allergic airway disease.

    PubMed Central

    Turner, P J; Foreman, J C

    1999-01-01

    Allergic rhinitis is a condition which affects over 15% of the population in the United Kingdom. The pathological process involves two stages: nasal inflammation, and the development of nasal airway hyperresponsiveness (AHR) to allergen and a number of other stimuli. This results in the amplification of any subsequent allergic reaction, contributing to the chronic allergic state. A number of different hypotheses have been proposed to explain the underlying mechanism of AHR, including a role for eosinophil-derived proteins, free radicals and neuropeptides. While there may be a number of independent pathways which can result in AHR, evidence obtained from both animal models and in vivo experiments in humans indicate that some mediators may interact with one another, resulting in AHR. Further research into these interactions may open new avenues for the pharmacological treatment of chronic allergic rhinitis, and possibly other allergic airway diseases. PMID:10704051

  11. Characterizing adult human nasal airway dimensions

    SciTech Connect

    Guilmette, R.A.; Griffith, W.C.

    1994-11-01

    Respiratory tract models used in calculating radiation dose from exposure to inhaled radioactive aerosols have only recently focused attention on the importance of the nasal airways (NAs). Because the NAs are the first tissues of the respiratory tract available for aerosol deposition in normally nose-breathing people, any deposition of aerosol in this anatomical structure will reduce the amounts available to be deposited in the remainder of the respiratory tract. Thus, uncertainties in estimating the deposition fractions in the NAs will propagate throughout the remainder of the respiratory tract, creating errors in the calculated dose estimates. Additionally, there is evidence that the NAs are also at risk for induction of cancer from exposure to certain occupational aerosols such as wood dust, leather dust, chromium, and nickel. The purpose of this investigation was to conduct an anatomical study to assess the variabilities in NA dimensions.

  12. Small Airway Dysfunction and Abnormal Exercise Responses. A Study in Coal Miners.

    PubMed

    Petsonk, Edward L; Stansbury, Robert C; Beeckman-Wagner, Lu-Ann; Long, Joshua L; Wang, Mei Lin

    2016-07-01

    Coal mine dust exposure can cause symptoms and loss of lung function from multiple mechanisms, but the roles of each disease process are not fully understood. We investigated the implications of small airway dysfunction for exercise physiology among a group of workers exposed to coal mine dust. Twenty coal miners performed spirometry, first breathing air and then helium-oxygen, single-breath diffusing capacity, and computerized chest tomography, and then completed cardiopulmonary exercise testing. Six participants meeting criteria for small airway dysfunction were compared with 14 coal miners who did not. At submaximal workload, miners with small airway dysfunction used a higher proportion of their maximum voluntary ventilation and had higher ventilatory equivalents for both O2 and CO2. Regression modeling indicated that inefficient ventilation was significantly related to small airway dysfunction but not to FEV1 or diffusing capacity. At the end of exercise, miners with small airway dysfunction had 27% lower O2 consumption. Small airway abnormalities may be associated with important inefficiency of exercise ventilation. In dust-exposed individuals with only mild abnormalities on resting lung function tests or chest radiographs, cardiopulmonary exercise testing may be important in defining causes of exercise intolerance.

  13. Human Factors in Airway Facilities Maintenance: Development of a Prototype Outage Assessment Inventory

    DTIC Science & Technology

    1994-02-01

    DOTIFAAIAM-9415 Human Factors in Airway Facilities Maintenance: Office of Aviation Medicine Development of a Prototype Washington, D.C. 20591 Outage...ReportNo. 2. Gove entAccesson No. 3. RecPies Catuaog No. DOTIFAAIAM-94/5 4. Tie and SUlMS* 5. Repot Date Human Factors in Airway Facilities Maintenance...for. Program Office, Human Factors in Airway Facilities Maintenance, FAA Technical Center, Atlantic City, NJ. I. Abstract The airway facilities (AF

  14. Matching and anatomical labeling of human airway tree

    PubMed Central

    Tschirren, Juerg; McLennan, Geoffrey; Palágyi, Kálmán; Hoffman, Eric A.; Sonka, Milan

    2005-01-01

    Matching of corresponding branchpoints between two human airway trees, as well as assigning anatomical names to the segments and branchpoints of the human airway tree, are of significant interest for clinical applications and physiological studies. In the past these tasks were often performed manually due to the lack of automated algorithms that can tolerate false branches and anatomical variability typical for in vivo trees. In this paper we present algorithms that perform both matching of branchpoints and anatomical labeling of in vivo trees without any human intervention and within a short computing time. No hand-pruning of false branches is required. The results from the automated methods show a high degree of accuracy when validated against reference data provided by human experts. 92.9% of the verifiable branchpoint matches found by the computer agree with experts’ results. For anatomical labeling, 97.1% of the automatically assigned segment labels were found to be correct. PMID:16353371

  15. Exhaled particles as markers of small airway inflammation in subjects with asthma.

    PubMed

    Larsson, Per; Lärstad, Mona; Bake, Björn; Hammar, Oscar; Bredberg, Anna; Almstrand, Ann-Charlotte; Mirgorodskaya, Ekaterina; Olin, Anna-Carin

    2017-09-01

    Exhaled breath contains suspended particles of respiratory tract lining fluid from the small airways. The particles are formed when closed airways open during inhalation. We have developed a method called Particles in Exhaled air (PExA(®) ) to measure and sample these particles in the exhaled aerosol. Here, we use the PExA(®) method to study the effects of birch pollen exposure on the small airways of individuals with asthma and birch pollen allergy. We hypothesized that birch pollen-induced inflammation could change the concentrations of surfactant protein A and albumin in the respiratory tract lining fluid of the small airways and influence the amount of exhaled particles. The amount of exhaled particles was reduced after birch pollen exposure in subjects with asthma and birch pollen allergy, but no significant effect on the concentrations of surfactant protein A and albumin in exhaled particles was found. The reduction in the number of exhaled particles may be due to inflammation in the small airways, which would reduce their diameter and potentially reduce the number of small airways that open and close during inhalation and exhalation. © 2015 The Authors. Clinical Physiology and Functional Imaging published by John Wiley & Sons Ltd.

  16. DNA methylation is globally disrupted and associated with expression changes in chronic obstructive pulmonary disease small airways.

    PubMed

    Vucic, Emily A; Chari, Raj; Thu, Kelsie L; Wilson, Ian M; Cotton, Allison M; Kennett, Jennifer Y; Zhang, May; Lonergan, Kim M; Steiling, Katrina; Brown, Carolyn J; McWilliams, Annette; Ohtani, Keishi; Lenburg, Marc E; Sin, Don D; Spira, Avrum; Macaulay, Calum E; Lam, Stephen; Lam, Wan L

    2014-05-01

    DNA methylation is an epigenetic modification that is highly disrupted in response to cigarette smoke and involved in a wide spectrum of malignant and nonmalignant diseases, but surprisingly not previously assessed in small airways of patients with chronic obstructive pulmonary disease (COPD). Small airways are the primary sites of airflow obstruction in COPD. We sought to determine whether DNA methylation patterns are disrupted in small airway epithelia of patients with COPD, and evaluate whether changes in gene expression are associated with these disruptions. Genome-wide methylation and gene expression analysis were performed on small airway epithelial DNA and RNA obtained from the same patient during bronchoscopy, using Illumina's Infinium HM27 and Affymetrix's Genechip Human Gene 1.0 ST arrays. To control for known effects of cigarette smoking on DNA methylation, methylation and gene expression profiles were compared between former smokers with and without COPD matched for age, pack-years, and years of smoking cessation. Our results indicate that aberrant DNA methylation is (1) a genome-wide phenomenon in small airways of patients with COPD, and (2) associated with altered expression of genes and pathways important to COPD, such as the NF-E2-related factor 2 oxidative response pathway. DNA methylation is likely an important mechanism contributing to modulation of genes important to COPD pathology. Because these methylation events may underlie disease-specific gene expression changes, their characterization is a critical first step toward the development of epigenetic markers and an opportunity for developing novel epigenetic therapeutic interventions for COPD.

  17. On locating the obstruction in the human upper airway

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Elghobashi, S.

    2013-11-01

    The fluid dynamical properties of the air flow in the human upper airway (UA) are not fully understood at present due to the three-dimensional, patient-specific complex geometry of the airway, flow transition from laminar to turbulent and flow-structure interaction during the breathing cycle. One of the major challenges to surgeons is determining the location of the UA obstruction before performing corrective surgeries. It is quite difficult at present to experimentally measure the instantaneous velocity and pressure at specific points in the human airway. On the other hand, direct numerical simulation (DNS) can predict all the flow properties and resolve all its relevant length- and time-scales. We developed a DNS solver with lattice Boltzmann method (LBM), and used it to investigate the flow in two patient-specific UAs reconstructed from CT scan data. Inspiration and expiration flows through these two airways are studied and compared. Pressure gradient-time signals at different locations in the UAs are used to determine the location of the obstruction. This work was supported by the National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health (NIH).

  18. Similar matrix alterations in alveolar and small airway walls of COPD patients

    PubMed Central

    2014-01-01

    Background Remodelling in COPD has at least two dimensions: small airway wall thickening and destruction of alveolar walls. Recent studies indicate that there is some similarity between alveolar and small airway wall matrix remodelling. The aim of this study was to characterise and assess similarities in alveolar and small airway wall matrix remodelling, and TGF-β signalling in COPD patients of different GOLD stages. Methods Lung tissue sections of 14 smoking controls, 16 GOLD II and 19 GOLD IV patients were included and stained for elastin and collagens as well as hyaluronan, a glycosaminoglycan matrix component and pSMAD2. Results Elastin was significantly decreased in COPD patients not only in alveolar, but also in small airway walls. Interestingly, both collagen and hyaluronan were increased in alveolar as well as small airway walls. The matrix changes were highly comparable between GOLD stages, with collagen content in the alveolar wall increasing further in GOLD IV. A calculated remodelling index, defined as elastin divided over collagen and hyaluronan, was decreased significantly in GOLD II and further lowered in GOLD IV patients, suggesting that matrix component alterations are involved in progressive airflow limitation. Interestingly, there was a positive correlation present between the alveolar and small airway wall stainings of the matrix components, as well as for pSMAD2. No differences in pSMAD2 staining between controls and COPD patients were found. Conclusions In conclusion, remodelling in the alveolar and small airway wall in COPD is markedly similar and already present in moderate COPD. Notably, alveolar collagen and a remodelling index relate to lung function. PMID:24886452

  19. Effects of changes in osmolarity on isolated human airways.

    PubMed

    Jongejan, R C; De Jongste, J C; Raatgeep, R C; Bonta, I L; Kerrebijn, K F

    1990-04-01

    The effects of hypo- and hyperosmolarity on the function of isolated human airways were studied. Changes in osmolarity induced an increasing bronchoconstriction that was proportional to the magnitude of the change in osmolarity. Hypertonicity-induced airway narrowing resulted when buffer was made hypertonic with sodium chloride or mannitol but not with urea. The airways showed no tachyphylaxis to repetitive exposure to hypo- and hypertonic buffer of 200 and 600 mosM, respectively. The bronchoconstriction was not secondary to stimulation of H1 or leukotriene C4/D4 receptors or the release of prostaglandins in the preparation. The bronchoconstriction in hypotonic buffer was totally dependent on extracellular calcium, whereas in hypertonic buffer the bronchoconstriction seemed partially dependent on intracellular calcium release. Isoprenaline prevented the bronchoconstriction in hyper- or hypotonic buffer of 450 and 250 mosM but not in buffer of 600 and 150 mosM. It is concluded that hypo- and hypertonic buffers lead to bronchoconstriction via different mechanisms, which relate to influx of extracellular calcium in hyposmolar buffer and probably to release of calcium from intracellular stores in hypertonic buffer. In strongly hypertonic buffer, part of the bronchoconstriction may be due to osmotic shrinkage. The relevance of our data for the mechanism of bronchoconstriction after inhalation of hypo- or hypertonic saline depends on whether changes in osmolarity around the airway smooth muscle occur in asthmatics but not in normal subjects, and this has not yet been established.

  20. Contribution of air pollution to COPD and small airway dysfunction.

    PubMed

    Berend, Norbert

    2016-02-01

    Although in many Western countries levels of ambient air pollution have been improving with the setting of upper limits and better urban planning, air pollution in developing countries and particularly those with rapid industrialization has become a major global problem. Together with increased motor vehicle ownership and traffic congestion, there is a growing issue with airborne particles of respirable size. These particles are thought responsible for respiratory and cardiovascular effects and have also been implicated in cancer pathogenesis. The pathologic effects in the lung are mediated via inflammatory pathways and involve oxidative stress similar to cigarette smoking. These effects are seen in the peripheral airways where the smaller particle fractions are deposited and lead to airway remodelling. However, emphysema and loss of bronchioles seen with cigarette smoking have not been described with ambient air pollution, and there are few studies specifically looking at peripheral airway function. Definitive evidence of air pollution causing COPD is lacking and a different study design is required to link air pollution and COPD.

  1. CD38 and airway hyper-responsiveness: studies on human airway smooth muscle cells and mouse models.

    PubMed

    Guedes, Alonso G P; Deshpande, Deepak A; Dileepan, Mythili; Walseth, Timothy F; Panettieri, Reynold A; Subramanian, Subbaya; Kannan, Mathur S

    2015-02-01

    Asthma is an inflammatory disease in which altered calcium regulation, contractility, and airway smooth muscle (ASM) proliferation contribute to airway hyper-responsiveness and airway wall remodeling. The enzymatic activity of CD38, a cell-surface protein expressed in human ASM cells, generates calcium mobilizing second messenger molecules such as cyclic ADP-ribose. CD38 expression in human ASM cells is augmented by cytokines (e.g., TNF-α) that requires the activation of MAP kinases and the transcription factors, NF-κB and AP-1, and is post-transcriptionally regulated by miR-140-3p and miR-708 by binding to 3' Untranslated Region of CD38 as well as by modulating the activation of signaling mechanisms involved in its regulation. Mice deficient in Cd38 exhibit reduced airway responsiveness to inhaled methacholine relative to the response in wild-type mice. Intranasal challenge of Cd38-deficient mice with TNF-α or IL-13, or the environmental fungus Alternaria alternata, causes significantly attenuated methacholine responsiveness compared with wild-type mice, with comparable airway inflammation. Reciprocal bone marrow transfer studies revealed partial restoration of airway hyper-responsiveness to inhaled methacholine in the Cd38-deficient mice. These studies provide evidence for CD38 involvement in the development of airway hyper-responsiveness; a hallmark feature of asthma. Future studies aimed at drug discovery and delivery targeting CD38 expression and (or) activity are warranted.

  2. Long-term clearance from small airways in patients with chronic bronchitis: experimental and theoretical data.

    PubMed

    Svartengren, Magnus; Svartengren, Katharina; Europe, Eeva; Falk, Rolf; Hofmann, Werner; Sturm, Robert; Philipson, Klas; Camner, Per

    2004-01-01

    Long-term clearance (21 days) from small airways was studied in 9 patients with chronic bronchitis (CB), 65 +/- 10 (mean +/- SD) years, and was compared to 15 age-matched healthy subjects of 67 +/- 7 (mean +/- SD) years. Six of the CB patients were studied twice. All subjects inhaled monodisperse 6 microm Teflon particles labelled with 111In with an extremely slow inhalation flow, 0.05 L/s. With this inhalation technique, particles are deposited mainly in the small conducting airways. Lung retention was measured at 0 and 24 hours, and at 7, 14, and 21 days after inhalation. Lung retention at 24 hours (% of deposition) was highly reproducible for the CB patients, studied twice, but it was not significantly different from that found for healthy subjects and, furthermore, not related to airway resistance (Raw), nor FEV1% predicted. Both healthy subjects and CB patients showed significant clearance in the period between 24 hours and day 21. The mean retention were higher (P<.001) in CB patients, 90%, 89%, 87% of 24 hours retention at 7, 14, and 21 days, compared to 80%, 76%, 71% of 24 hours retention at 7, 14, and 21 days measurements for healthy subjects. Clearance after 24 hours (retention at 21 days) was significantly related to FEV1% predicted, but not Raw. Reduced FEV1% predicted values was associated with slower clearance rates. Model calculations were performed to estimate intrapulmonary deposition patterns. A limited effect was shown for airway dimension and uneven ventilation. The differences between healthy and CB patients were, however, limited. It is not possible to conclude whether the difference in clearance after 24 hours is an effect of change in regional deposition, or slower small airway clearance in diseased airways. This technique to target the smallest ciliated airways, using an extremely slow inhalation flow, provides new possibilities to investigate smallest airway function and drug delivery that merits further investigations.

  3. Transport and deposition of cohesive pharmaceutical powders in human airway

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Chu, Kaiwei; Yu, Aibing

    2017-06-01

    Pharmaceutical powders used in inhalation therapy are in the size range of 1-5 microns and are usually cohesive. Understanding the cohesive behaviour of pharmaceutical powders during their transportation in human airway is significant in optimising aerosol drug delivery and targeting. In this study, the transport and deposition of cohesive pharmaceutical powders in a human airway model is simulated by a well-established numerical model which combines computational fluid dynamics (CFD) and discrete element method (DEM). The van der Waals force, as the dominant cohesive force, is simulated and its influence on particle transport and deposition behaviour is discussed. It is observed that even for dilute particle flow, the local particle concentration in the oral to trachea region can be high and particle aggregation happens due to the van der Waals force of attraction. It is concluded that the deposition mechanism for cohesive pharmaceutical powders, on one hand, is dominated by particle inertial impaction, as proven by previous studies; on the other hand, is significantly affected by particle aggregation induced by van der Waals force. To maximum respiratory drug delivery efficiency, efforts should be made to avoid pharmaceutical powder aggregation in human oral-to-trachea airway.

  4. Regulation of human airway smooth muscle cell migration and relevance to asthma.

    PubMed

    Salter, Brittany; Pray, Cara; Radford, Katherine; Martin, James G; Nair, Parameswaran

    2017-08-16

    Airway remodelling is an important feature of asthma pathogenesis. A key structural change inherent in airway remodelling is increased airway smooth muscle mass. There is emerging evidence to suggest that the migration of airway smooth muscle cells may contribute to cellular hyperplasia, and thus increased airway smooth muscle mass. The precise source of these cells remains unknown. Increased airway smooth muscle mass may be collectively due to airway infiltration of myofibroblasts, neighbouring airway smooth muscle cells in the bundle, or circulating hemopoietic progenitor cells. However, the relative contribution of each cell type is not well understood. In addition, although many studies have identified pro and anti-migratory agents of airway smooth muscle cells, whether these agents can impact airway remodelling in the context of human asthma, remains to be elucidated. As such, further research is required to determine the exact mechanism behind airway smooth muscle cell migration within the airways, how much this contributes to airway smooth muscle mass in asthma, and whether attenuating this migration may provide a therapeutic avenue for asthma. In this review article, we will discuss the current evidence with respect to the regulation of airway smooth muscle cell migration in asthma.

  5. Fiber deposition in human upper airway model. Final report

    SciTech Connect

    Swift, D.L.

    1986-01-01

    The possibility that airborne fibers may behave differently than spherical particles in their deposition in the upper airways was examined. Deposition measurements were taken in a replicate model of the upper human airways above the larynx with well-characterized glass-fiber aerosols typical of glass fibers in normal use. The overall deposition of the aerosols in the nasal airways ranged from 10 to 90 percent. The deposition increased with flow rate and was somewhat higher with nasal-hair stimulant in the anterior vestibule. There was no dependency between the effect of fiber diameter and inertial theory, suggesting that interception is an important factor. Deposition occurred mainly anterior to the nasopharynx, equally divided between the vestibule and the turbinate region. The establishment of the anterior nasal region as the prime site for interception deposition was verified by the lack of significant deposition in the nasopharynx and larynx during nasal breathing. The authors conclude that the human nasal passage is able to remove a significant fraction of inhaled fibers, most of which will be physically cleared and others of which will be cleared to the gastro-intestinal tract. No long-term effect is expected from fibers deposited in the nasal region and cleared physically.

  6. Airflow and Particle Transport Through Human Airways: A Systematic Review

    NASA Astrophysics Data System (ADS)

    Kharat, S. B.; Deoghare, A. B.; Pandey, K. M.

    2017-08-01

    This paper describes review of the relevant literature about two phase analysis of air and particle flow through human airways. An emphasis of the review is placed on elaborating the steps involved in two phase analysis, which are Geometric modelling methods and Mathematical models. The first two parts describes various approaches that are followed for constructing an Airway model upon which analysis are conducted. Broad two categories of geometric modelling viz. Simplified modelling and Accurate modelling using medical scans are discussed briefly. Ease and limitations of simplified models, then examples of CT based models are discussed. In later part of the review different mathematical models implemented by researchers for analysis are briefed. Mathematical models used for Air and Particle phases are elaborated separately.

  7. Characterization of Side Population Cells from Human Airway Epithelium

    PubMed Central

    Hackett, Tillie-Louise; Shaheen, Furquan; Johnson, Andrew; Wadsworth, Samuel; Pechkovsky, Dmitri V.; Jacoby, David B.; Kicic, Anthony; Stick, Stephen M.; Knight, Darryl A.

    2010-01-01

    The airway epithelium is the first line of contact with the inhaled external environment and is continuously exposed to and injured by pollutants, allergens, and viruses. However, little is known about epithelial repair and in particular the identity and role of tissue resident stem/progenitor cells that may contribute to epithelial regeneration. The aims of the present study were to identify, isolate, and characterize side population (SP) cells in human tracheobronchial epithelium. Epithelial cells were obtained from seven nontransplantable healthy lungs and four asthmatic lungs by pronase digestion. SP cells were identified by verapamil-sensitive efflux of the DNA-binding dye Hoechst 33342. Using flow cytometry, CD45− SP, CD45+ SP, and non-SP cells were isolated and sorted. CD45− SP cells made up 0.12% ± 0.01% of the total epithelial cell population in normal airway but 4.1% ± 0.06% of the epithelium in asthmatic airways. All CD45− SP cells showed positive staining for epithelial-specific markers cytokeratin-5, E-cadherin, ZO-1, and p63. CD45− SP cells exhibited stable telomere length and increased colony-forming and proliferative potential, undergoing population expansion for at least 16 consecutive passages. In contrast with non-SP cells, fewer than 100 CD45− SP cells were able to generate a multilayered and differentiated epithelium in air-liquid interface culture. SP cells are present in human tracheobronchial epithelium, exhibit both short- and longterm proliferative potential, and are capable of generation of differentiated epithelium in vitro. The number of SP cells is significantly greater in asthmatic airways, providing evidence of dysregulated resident SP cells in the asthmatic epithelium. PMID:18653771

  8. Regional aerosol deposition in human upper airways

    SciTech Connect

    Swift, D.L.

    1991-11-01

    During the current report experimental studies of upper respiratory deposition of radon progeny aerosols and stimulant aerosols were carried out in replicate casts of nasal and oral passages of adults and children. Additionally, preliminary studies of nasal passage deposition of unattached Po{sup 218} particles was carried out in four human subjects. Data on nasal inspiratory deposition in replicate models of adults and infants from three collaborating laboratories were compared and a best-fit curve of deposition efficiency for both attached and unattached particles was obtained, showing excellent inter-laboratory agreement. This curve demonstrates that nasal inspiratory deposition of radon progeny is weakly dependent upon flow rate over physiologically realistic ranges of flow, does not show a significant age effect, and is relatively independent of nasal passage dimensions for a given age range. Improved replicate models of the human adult oral passage extending to the mid-trachea were constructed for medium and higher flow mouth breathing states; these models were used to assess the deposition of unattached Po{sup 218} particles during oronasal breathing in the oral passage and demonstrated lower deposition efficiency than the nasal passage. Measurements of both Po{sup 218} particle and attached fraction particle size deposition were performed in replicate nasal passage of a four week old infant. 5 refs., 1 fig.

  9. miR-146a regulates mechanotransduction and pressure-induced inflammation in small airway epithelium

    PubMed Central

    Huang, Yan; Crawford, Melissa; Higuita-Castro, Natalia; Nana-Sinkam, Patrick; Ghadiali, Samir N.

    2012-01-01

    Mechanical ventilation generates biophysical forces, including high transmural pressures, which exacerbate lung inflammation. This study sought to determine whether microRNAs (miRNAs) respond to this mechanical force and play a role in regulating mechanically induced inflammation. Primary human small airway epithelial cells (HSAEpCs) were exposed to 12 h of oscillatory pressure and/or the proinflammatory cytokine TNF-α. Experiments were also conducted after manipulating miRNA expression and silencing the transcription factor NF-κB or toll-like receptor proteins IRAK1 and TRAF6. NF-κB activation, IL-6/IL-8/IL-1β cytokine secretion, miRNA expression, and IRAK1/TRAF6 protein levels were monitored. A total of 12 h of oscillatory pressure and TNF-α resulted in a 5- to 7-fold increase in IL-6/IL-8 cytokine secretion, and oscillatory pressure also resulted in a time-dependent increase in IL-6/IL-8/IL-1β cytokine secretion. Pressure and TNF-α also resulted in distinct patterns of miRNA expression, with miR-146a being the most deregulated miRNA. Manipulating miR-146a expression altered pressure-induced cytokine secretion. Silencing of IRAK1 or TRAF6, confirmed targets of miR-146a, resulted in a 3-fold decrease in pressure-induced cytokine secretion. Cotransfection experiments demonstrate that miR-146a's regulation of pressure-induced cytokine secretion depends on its targeting of both IRAK1 and TRAF6. MiR-146a is a mechanosensitive miRNA that is rapidly up-regulated by oscillatory pressure and plays an important role in regulating mechanically induced inflammation in lung epithelia.—Huang, Y., Crawford, M., Higuita-Castro, N., Nana-Sinkam, P., Ghadiali, S. N. miR-146a regulates mechanotransduction and pressure-induced inflammation in small airway epithelium. PMID:22593544

  10. Numerical simulation of transitional flow in a human upper airway segment in the presence of uncertainty

    NASA Astrophysics Data System (ADS)

    Marxen, Olaf

    2011-11-01

    The flow in human airways may be laminar, transitional, or turbulent in different airway segments. Specifically, laminar-turbulent transition is believed to occur in the larynx or in the trachea. Present approaches to simulate such flows typically employ numerical methods solving the steady Reynolds-averaged Navier-Stokes equations. However, natural airway deformations or pathological obstructions such as tumors may generate recirculation zones and lead to highly unsteady flow features that are not well captured by these numerical methods. We perform direct numerical simulations of transitional flow through a pipe-like canonical geometry representative of an airway segment. The incompressible Navier-Stokes equations in conjunction with an immersed boundary method are solved to simulate the unsteady flow. In order to model perturbations present in the incoming flow, small-amplitude disturbances are forced to explicitly trigger flow instabilities. Time-dependent inflow profiles are applied to model the change in flow velocity during the breathing process. In order to account for natural variability during breathing, the inflow profile is treated as an uncertain function. Resulting uncertainty in the flow field is quantified using stochastic collocation.

  11. Cigarette smoke extract reduces VEGF in primary human airway epithelial cells.

    PubMed

    Thaikoottathil, J V; Martin, R J; Zdunek, J; Weinberger, A; Rino, J G; Chu, H W

    2009-04-01

    Reduced vascular endothelial growth factor (VEGF) has been reported in bronchoalveolar lavage fluid and lungs of severe emphysema patients. Airway epithelial cells (AEC) are exposed to various environmental insults like cigarette smoke and bacterial infections, but their direct effect on VEGF production in well-differentiated primary human AEC remains unclear. The current authors determined the effect of cigarette smoke extract (CSE) alone and in combination with Mycoplasma pneumoniae (Mp) on VEGF production in well-differentiated primary normal human bronchial epithelial (NHBE) and small airway epithelial cells (SAEC) in air-liquid interface cultures. Secretion and expression of VEGF were determined by ELISA and real-time RT-PCR, respectively. Cell growth, apoptosis, extracellular signal-regulated kinase (ERK)1/2 and protein kinase (PK)C signalling pathways were evaluated to further dissect VEGF regulation under CSE treatment. CSE significantly reduced VEGF secretion in NHBE and SAEC. In SAEC, Mp alone significantly increased the VEGF, while the presence of CSE attenuated Mp-induced VEGF production. While ERK inhibitor reduced VEGF secretion only in NHBE, a PKC inhibitor significantly decreased VEGF secretion in both NHBE and SAEC. In conclusion, direct cigarette smoke extract exposure significantly reduced vascular endothelial growth factor production in well-differentiated primary human airway epithelial cells, in part through modifying extracellular signal-regulated kinase 1/2 and protein kinase C signalling pathways.

  12. Pulmonary effects of expiratory-assisted small-lumen ventilation during upper airway obstruction in pigs.

    PubMed

    Ziebart, A; Garcia-Bardon, A; Kamuf, J; Thomas, R; Liu, T; Schad, A; Duenges, B; David, M; Hartmann, E K

    2015-10-01

    Novel devices for small-lumen ventilation may enable effective inspiration and expiratory ventilation assistance despite airway obstruction. In this study, we investigated a porcine model of complete upper airway obstruction. After ethical approval, we randomly assigned 13 anaesthetised pigs either to small-lumen ventilation following airway obstruction (n = 8) for 30 min, or to volume-controlled ventilation (sham setting, n = 5). Small-lumen ventilation enabled adequate gas exchange over 30 min. One animal died as a result of a tension pneumothorax in this setting. Redistribution of ventilation from dorsal to central compartments and significant impairment of the distribution of ventilation/perfusion occurred. Histopathology demonstrated considerable lung injury, predominantly through differences in the dorsal dependent lung regions. Small-lumen ventilation maintained adequate gas exchange in a porcine airway obstruction model. The use of this technique for 30 min by inexperienced clinicians was associated with considerable end-expiratory collapse leading to lung injury, and may also carry the risk of severe injury.

  13. Fluid and electrolyte transport by cultured human airway epithelia.

    PubMed Central

    Smith, J J; Welsh, M J

    1993-01-01

    An understanding of the fluid and electrolyte transport properties of any epithelium requires knowledge of the direction, rate, and regulation of fluid transport and the composition of the fluid. Although human airway epithelial likely play a key role in controlling the quantity and composition of the respiratory tract fluid, evidence for such a role is not available. To obtain such knowledge, we measured fluid and electrolyte transport by cultured human nasal epithelia. Under basal conditions we found that epithelia absorbed Na+ and fluid; both processes were inhibited by addition of amiloride to the mucosal surface. These data suggest that active Na+ absorption is responsible for fluid absorption. Interestingly, Na+ absorption was not accompanied by the net absorption of Cl-; some other anion accompanied Na+. The combination of cAMP agonists and mucosal amiloride stimulated the secretion of NaCl-rich fluid. But surprisingly, the response to cAMP agonists in the absence of amiloride showed substantial intersubject variability: cAMP stimulated fluid secretion across some epithelia, for others, cAMP stimulated fluid absorption. The explanation for the differences in response is uncertain, but we speculate that the magnitude of apical membrane Na+ conductance may modulate the direction of fluid transport in response to cAMP. We also found that airway epithelial secrete H+ and absorb K+ under basal conditions; both processes were inhibited by cAMP agonists. Because the H+/K(+)-ATPase inhibitor, SCH 28080, inhibited K+ absorption, an apical membrane H+/K(+)-ATPase may be at least partly responsible for K+ and H+ transport. However, H+/K+ exchange could not entirely account for the luminal acidification. The finding that cAMP agonists inhibited luminal acidification may be explained by the recent finding that cAMP increases apical HCO3- conductance. These results provide new insights into how the intact airway epithelium may modify the composition of the respiratory

  14. CT based computerized identification and analysis of human airways: A review

    SciTech Connect

    Pu Jiantao; Gu Suicheng; Liu Shusen; Zhu Shaocheng; Wilson, David; Siegfried, Jill M.; Gur, David

    2012-05-15

    As one of the most prevalent chronic disorders, airway disease is a major cause of morbidity and mortality worldwide. In order to understand its underlying mechanisms and to enable assessment of therapeutic efficacy of a variety of possible interventions, noninvasive investigation of the airways in a large number of subjects is of great research interest. Due to its high resolution in temporal and spatial domains, computed tomography (CT) has been widely used in clinical practices for studying the normal and abnormal manifestations of lung diseases, albeit there is a need to clearly demonstrate the benefits in light of the cost and radiation dose associated with CT examinations performed for the purpose of airway analysis. Whereas a single CT examination consists of a large number of images, manually identifying airway morphological characteristics and computing features to enable thorough investigations of airway and other lung diseases is very time-consuming and susceptible to errors. Hence, automated and semiautomated computerized analysis of human airways is becoming an important research area in medical imaging. A number of computerized techniques have been developed to date for the analysis of lung airways. In this review, we present a summary of the primary methods developed for computerized analysis of human airways, including airway segmentation, airway labeling, and airway morphometry, as well as a number of computer-aided clinical applications, such as virtual bronchoscopy. Both successes and underlying limitations of these approaches are discussed, while highlighting areas that may require additional work.

  15. CT based computerized identification and analysis of human airways: a review.

    PubMed

    Pu, Jiantao; Gu, Suicheng; Liu, Shusen; Zhu, Shaocheng; Wilson, David; Siegfried, Jill M; Gur, David

    2012-05-01

    As one of the most prevalent chronic disorders, airway disease is a major cause of morbidity and mortality worldwide. In order to understand its underlying mechanisms and to enable assessment of therapeutic efficacy of a variety of possible interventions, noninvasive investigation of the airways in a large number of subjects is of great research interest. Due to its high resolution in temporal and spatial domains, computed tomography (CT) has been widely used in clinical practices for studying the normal and abnormal manifestations of lung diseases, albeit there is a need to clearly demonstrate the benefits in light of the cost and radiation dose associated with CT examinations performed for the purpose of airway analysis. Whereas a single CT examination consists of a large number of images, manually identifying airway morphological characteristics and computing features to enable thorough investigations of airway and other lung diseases is very time-consuming and susceptible to errors. Hence, automated and semiautomated computerized analysis of human airways is becoming an important research area in medical imaging. A number of computerized techniques have been developed to date for the analysis of lung airways. In this review, we present a summary of the primary methods developed for computerized analysis of human airways, including airway segmentation, airway labeling, and airway morphometry, as well as a number of computer-aided clinical applications, such as virtual bronchoscopy. Both successes and underlying limitations of these approaches are discussed, while highlighting areas that may require additional work.

  16. Relating small airways to asthma control using impulse oscillometry in children

    PubMed Central

    Shi, Yixin; Aledia, Anna S.; Tatavoosian, Ahramahzd V.; Vijayalakshmi, Shruthi; Galant, Stanley P.; George, Steven C.

    2012-01-01

    Background Previous reports suggest that peripheral airways are associated with asthma control. Patient history, although subjective is used largely to assess asthma control in children because spirometry is many times normal. Impulse oscillometry (IOS) is an objective non-invasive measurement of lung function, which has the potential to examine independently both small and large airway obstruction. Objective To determine the utility of IOS in assessing asthma control in children. Methods Asthmatic and healthy children (6–17 yrs) were enrolled in the study. Spirometry and IOS (resistance at 5 and 20 Hz, R5 and R20, respectively, reactance at 5 Hz, X5, resonant frequency, Fres, and area under the reactance curve between 5 Hz and Fres, AX) were collected in triplicate before and after a bronchodilator was administered. The physicians were blinded to the IOS measurements and assessed asthma control using ATS guidelines. Results Small airway IOS measurements, including R5-20, X5, Fres and AX, of children with uncontrolled asthma (n=44) were significantly different from those of controlled asthmatic (n=57) and healthy (n=14) children, especially prior to the administration of a bronchodilator. However, there was no difference in large airway IOS (R20). No differences were found between controlled asthmatic and healthy children in any of the endpoints. ROC analysis showed cut-points for baseline R5-20 (1.5 cmH2O·L−1·s) and AX (9.5 cmH2O·L−1) that effectively discriminated controlled versus uncontrolled asthma (AUC=0.86 and 0.84), and correctly classified more than 80% of the population. Conclusion Uncontrolled asthma is associated with small airways dysfunction, and IOS may be a reliable non-invasive method to assess asthma control in children. PMID:22178635

  17. Staphylococcus aureus triggers nitric oxide production in human upper airway epithelium

    PubMed Central

    Carey, Ryan M.; Workman, Alan D.; Chen, Bei; Adappa, Nithin D.; Palmer, James N.; Kennedy, David W.; Lee, Robert J.; Cohen, Noam A.

    2016-01-01

    Background Nitric oxide (NO) is an important antibacterial defense molecule produced by upper airway (sinonasal) epithelial cells. We previously showed that a bitter taste receptor expressed in airway epithelium detects quorum-sensing molecules secreted by Gram-negative bacteria and subsequently triggers bactericidal NO production. We hypothesized that the upper airway epithelium may also be able to detect the Gram-positive aerobe Staphylococcus aureus and mount an NO response. Methods Human sinonasal air-liquid interface (ALI) cultures were treated with methicillin-resistant S. aureus (MRSA)-conditioned medium (CM), and NO production was measured using fluorescence imaging. Inhibitors of bitter taste receptor signaling were used to pharmacologically determine if this pathway was involved in the production of NO. Results A low-molecular-weight, heat, and protease-stabile product found in MRSA CM induced differential, NO synthase (NOS)-mediated NO production. This response varied markedly between individual patients. The MRSA-stimulated NO production was not dependent on 2 important components of bitter taste signaling: phospholipase C isoform β-2 or the transient receptor potential melastatin isoform 5 (TRPM5) ion channel. Conclusion This study shows that a S. aureus product elicits an NO-mediated innate defense response in human upper airway epithelium. The active bacterial product is likely a small, nonpeptide molecule that triggers a pathway independent of bitter taste receptors. Patient variation in the NO response to MRSA product(s), potentially due to genetic differences, might play a role in pathophysiology of Gram-positive upper respiratory infections and/or pathogenesis of chronic rhinosinusitis. PMID:26097237

  18. Vapor Dosimetry in the Nose and Upper Airways of Humans

    SciTech Connect

    Thrall, Karla D.

    2010-04-01

    A number of methodologies have been reported for measuring vapor uptake efficiencies in the upper respiratory tract of experimental animals (1). Hybrid computational fluid dynamic (CFD) and physiologically based pharmacokinetic (PBPK) models, as described by Frederick et al. (2) that incorporate information on the anatomy of both rats and humans have been used to improve interspecies dosimetric corrections for human health risk assessments. However, validation of these models requires sufficient experimental data, and robust data defining the role of the upper respiratory tract in modulating the absorption of gases and vapors in human volunteers, are lacking. A survey of the available literature shows a limited number of experimental studies to evaluate the dosimetry of vapors in the nose and upper airways of humans. The scarcity of literature data undoubtedly reflects the complication of conducting controlled studies in human volunteers, and with the exception of a few limited studies, little experimental data is available. This chapter will highlight studies specific for nasal dosimetry data from humans and briefly review modeling approaches for predictive extrapolations from animal data.

  19. Distal airways in humans: dynamic hyperpolarized 3He MR imaging--feasibility

    NASA Technical Reports Server (NTRS)

    Tooker, Angela C.; Hong, Kwan Soo; McKinstry, Erin L.; Costello, Philip; Jolesz, Ferenc A.; Albert, Mitchell S.

    2003-01-01

    Dynamic hyperpolarized helium 3 (3He) magnetic resonance (MR) imaging of the human airways is achieved by using a fast gradient-echo pulse sequence during inhalation. The resulting dynamic images show differential contrast enhancement of both distal airways and the lung periphery, unlike static hyperpolarized 3He MR images on which only the lung periphery is seen. With this technique, up to seventh-generation airway branching can be visualized. Copyright RSNA, 2003.

  20. Distal airways in humans: dynamic hyperpolarized 3He MR imaging--feasibility

    NASA Technical Reports Server (NTRS)

    Tooker, Angela C.; Hong, Kwan Soo; McKinstry, Erin L.; Costello, Philip; Jolesz, Ferenc A.; Albert, Mitchell S.

    2003-01-01

    Dynamic hyperpolarized helium 3 (3He) magnetic resonance (MR) imaging of the human airways is achieved by using a fast gradient-echo pulse sequence during inhalation. The resulting dynamic images show differential contrast enhancement of both distal airways and the lung periphery, unlike static hyperpolarized 3He MR images on which only the lung periphery is seen. With this technique, up to seventh-generation airway branching can be visualized. Copyright RSNA, 2003.

  1. Unsteady flow characteristics through a human nasal airway.

    PubMed

    Lee, Jong-Hoon; Na, Yang; Kim, Sung-Kyun; Chung, Seung-Kyu

    2010-07-31

    Time-dependent characteristics of the flow in a human nasal airway constructed from the CT image of a healthy volunteer were investigated using a computational fluid dynamics (CFD) technique. To capture the time-varying nature of the flow as well as pressure and temperature fields, the large eddy simulation (LES) technique instead of the RANS (Reynolds Averaged Navier-Stokes) approach was adopted. To make the present analysis more relevant to a real human breathing cycle, the flow was designed to be induced by the pressure difference and the time-varying pressure at the end of trachea was described to reproduce the flow rate data from the measurement. Comparison of the present results with those of typical steady simulations showed that the difference in flow characteristics is magnified in the expiration phase. This fact may suggest that the inertial effect associated with unsteady flow is more important during the expiration period. Also, the fact that the distribution of the flow rate in a given cross-section of the airway changes significantly with time implies the importance of unsteady data for clinical decision. The wall shear stress was found to have relatively high values at the locations near nasopharynx and larynx but the magnitude changes with time during the whole respiratory cycle. Analysis of the temperature field showed that most of the temperature change occurs in the nasal cavity when the air is incoming and thus, the nasal cavity acts as a very efficient heat exchanger during an inspiration period. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Computer simulation of fluid flow and particle diffusion within human upper airways system

    NASA Astrophysics Data System (ADS)

    Yu, Genqiang

    Computer simulation of air flow and particle transport phenomenon within the human upper respiratory system has important applications in inhalation toxicology, aerosol medicine delivery as well as basic medical science research. A three-dimensional physiologically realistic computer model of the human upper respiratory tract has been developed. The respiratory tract consists of nasal airways, oral airways, laryngeal airways and the first two generations of tracheobronchial airways. A rubber mold of the airway system was first cast from the impression of the human head airway teaching model. The rubber cast was sliced into 2mm-apart parallel pieces. The cross-sectional geometry of the sliced rubber pieces were then scanned into the computer to be stored as the digital information. A body-fitted three-dimensional curvilinear grid system and a multi-block method have been employed to mimic the complex head airway. A total of 280,000 grid node was used for the entire respiratory tract. Air flow patterns within the human upper airways are investigated by numerically solving the corresponding full Navier-Stokes equations using the flow simulation software CFX-F3D. Effects of human breath patterns on respiratory flow distribution and ultrafine particle deposition are investigated. Results of ultrafine particle deposition generated by computer simulation show reasonable agreements with the experimental measurements.

  3. Pulmonary iron overload in thalassemia major presenting as small airway disease.

    PubMed

    Ooi, G C; Khong, P L; Lam, W K; Trendell-Smith, N J; Tsang, K W T

    2002-01-01

    Lung function abnormalities that are associated with thalassemia major are variable with etiology that is yet undetermined. Some studies have suggested that pulmonary iron deposition is a probable cause for these lung defects although there has been no antemortem histopathological and radiological evidence for this. We report a case of thalassemia major with biopsy-proven pulmonary iron overload, in which thoracic high-resolution computed tomography revealed a morphological-functional correlation consistent with small airway disease.

  4. Spatial and Temporal Variation of Turbulence during Oscillatory Flow in Realistic Model Human Airways

    NASA Astrophysics Data System (ADS)

    Tanaka, Gaku; Hatori, Akihiro; Takano, Ryosuke

    Turbulence in the oscillatory flow in realistic model human central airways was measured by particle image velocimetry (PIV) to reveal the nature of turbulence in a lung. The transparent silicone model of multi-branching airways was fabricated from X-ray CT images by rapid prototyping. The multi-branching airways comprise trachea, and right and left bronchi, with airway diameters ranging from 14 to 2 mm, respectively. Experiments were performed for a Reynolds number from 1200 to 2200 and a Womersley number from 1.9 to 2.3 in the trachea. Results showed that spatial and temporal variations of turbulent intensity strongly depends on the airway geometry and on the phase of oscillatory flow, and that expiratory flow generates strong turbulence which explosively occurs in the entire cross-section especially in the right bronchi, whereas inspiratory flow generates relatively weak turbulence near the airway wall.

  5. Quality control in microarray assessment of gene expression in human airway epithelium

    PubMed Central

    Raman, Tina; O'Connor, Timothy P; Hackett, Neil R; Wang, Wei; Harvey, Ben-Gary; Attiyeh, Marc A; Dang, David T; Teater, Matthew; Crystal, Ronald G

    2009-01-01

    Background Microarray technology provides a powerful tool for defining gene expression profiles of airway epithelium that lend insight into the pathogenesis of human airway disorders. The focus of this study was to establish rigorous quality control parameters to ensure that microarray assessment of the airway epithelium is not confounded by experimental artifact. Samples (total n = 223) of trachea, large and small airway epithelium were collected by fiberoptic bronchoscopy of 144 individuals and hybridized to Affymetrix microarrays. The pre- and post-chip quality control (QC) criteria established, included: (1) RNA quality, assessed by RNA Integrity Number (RIN) ≥ 7.0; (2) cRNA transcript integrity, assessed by signal intensity ratio of GAPDH 3' to 5' probe sets ≤ 3.0; and (3) the multi-chip normalization scaling factor ≤ 10.0. Results Of the 223 samples, all three criteria were assessed in 191; of these 184 (96.3%) passed all three criteria. For the remaining 32 samples, the RIN was not available, and only the other two criteria were used; of these 29 (90.6%) passed these two criteria. Correlation coefficients for pairwise comparisons of expression levels for 100 maintenance genes in which at least one array failed the QC criteria (average Pearson r = 0.90 ± 0.04) were significantly lower (p < 0.0001) than correlation coefficients for pairwise comparisons between arrays that passed the QC criteria (average Pearson r = 0.97 ± 0.01). Inter-array variability was significantly decreased (p < 0.0001) among samples passing the QC criteria compared with samples failing the QC criteria. Conclusion Based on the aberrant maintenance gene data generated from samples failing the established QC criteria, we propose that the QC criteria outlined in this study can accurately distinguish high quality from low quality data, and can be used to delete poor quality microarray samples before proceeding to higher-order biological analyses and interpretation. PMID:19852842

  6. CORRELATES BETWEEN HUMAN LUNG INJURY AFTER PARTICLE EXPOSURE AND RECURRENT AIRWAY OBSTRUCTION IN THE HORSE

    EPA Science Inventory

    Characteristics of the clinical presentation, physiologic changes, and pathology of the human response to particulate matter (PM) are comparable to inflammatory airway disease (lAD) and recurrent airway obstruction (RAO)lheaves in the horse. Both present with symptoms of cough,...

  7. CORRELATES BETWEEN HUMAN LUNG INJURY AFTER PARTICLE EXPOSURE AND RECURRENT AIRWAY OBSTRUCTION IN THE HORSE

    EPA Science Inventory

    Characteristics of the clinical presentation, physiologic changes, and pathology of the human response to particulate matter (PM) are comparable to inflammatory airway disease (lAD) and recurrent airway obstruction (RAO)lheaves in the horse. Both present with symptoms of cough,...

  8. Smokers with emphysema and small airway disease on computed tomography have lower bone density.

    PubMed

    Pompe, Esther; de Jong, Pim A; van Rikxoort, Eva M; Gallardo Estrella, Leticia; de Jong, Werner U; Vliegenthart, Rozemarijn; Oudkerk, Matthijs; van der Aalst, Carlijn M; van Ginneken, Bram; Lammers, Jan-Willem J; Mohamed Hoesein, Firdaus Aa

    2016-01-01

    Osteoporosis is more common in patients with COPD and in smokers. The aim of this study was to assess whether measures of emphysema and airway disease on computed tomography (CT) were associated with lower bone density or vertebral fractures in smokers with and without COPD. For this purpose, we included participants from the NELSON lung cancer screening trial. Bone density was measured as Hounsfield Units in the first lumbar vertebra, and vertebral fractures were assessed semiquantitatively. The 15th percentile method (Perc15) was used to assess emphysema, and the airway lumen perimeter (Pi10) was used for airway wall thickness. Expiratory/inspiratory-ratiomean lung density (E/I-ratioMLD) was used as a measure for air trapping and tracheal index to assess tracheal deformity. Linear regression models and logistic regression models were used to assess associations between CT biomarkers, bone density, and presence of fractures. Exactly 1,093 male participants were eligible for analysis. Lower Perc15 and higher E/I-ratioMLD were significantly associated with lower bone density (b=-1.27, P=0.02 and b=-0.37, P=0.02, respectively). Pi10 and tracheal index were not associated with bone density changes. CT-derived biomarkers were not associated with fracture prevalence. Bone density is lower with increasing extent of emphysema and small airway disease but is not associated with large airway disease and tracheal deformity. This may indicate the necessity to measure bone density early in smokers with emphysema and air trapping to prevent vertebral fractures.

  9. Coronaviruses and the human airway: a universal system for virus-host interaction studies.

    PubMed

    Jonsdottir, Hulda R; Dijkman, Ronald

    2016-02-06

    Human coronaviruses (HCoVs) are large RNA viruses that infect the human respiratory tract. The emergence of both Severe Acute Respiratory Syndrome and Middle East Respiratory syndrome CoVs as well as the yearly circulation of four common CoVs highlights the importance of elucidating the different mechanisms employed by these viruses to evade the host immune response, determine their tropism and identify antiviral compounds. Various animal models have been established to investigate HCoV infection, including mice and non-human primates. To establish a link between the research conducted in animal models and humans, an organotypic human airway culture system, that recapitulates the human airway epithelium, has been developed. Currently, different cell culture systems are available to recapitulate the human airways, including the Air-Liquid Interface (ALI) human airway epithelium (HAE) model. Tracheobronchial HAE cultures recapitulate the primary entry point of human respiratory viruses while the alveolar model allows for elucidation of mechanisms involved in viral infection and pathogenesis in the alveoli. These organotypic human airway cultures represent a universal platform to study respiratory virus-host interaction by offering more detailed insights compared to cell lines. Additionally, the epidemic potential of this virus family highlights the need for both vaccines and antivirals. No commercial vaccine is available but various effective antivirals have been identified, some with potential for human treatment. These morphological airway cultures are also well suited for the identification of antivirals, evaluation of compound toxicity and viral inhibition.

  10. TNFα decreases mitochondrial movement in human airway smooth muscle.

    PubMed

    Delmotte, Philippe; Zavaletta, Vanessa A; Thompson, Michael A; Prakash, Y S; Sieck, Gary C

    2017-07-01

    In airway smooth muscle (ASM) cells, excitation-contraction coupling is accomplished via a cascade of events that connect an elevation of cytosolic Ca(2+) concentration ([Ca(2+)]cyt) with cross-bridge attachment and ATP-consuming mechanical work. Excitation-energy coupling is mediated by linkage of the elevation of [Ca(2+)]cyt to an increase in mitochondrial Ca(2+) concentration, which in turn stimulates ATP production. Proximity of mitochondria to the sarcoplasmic reticulum (SR) and plasma membrane is thought to be an important mechanism to facilitate mitochondrial Ca(2+) uptake. In this regard, mitochondrial movement in ASM cells may be key in establishing proximity. Mitochondria also move where ATP or Ca(2+) buffering is needed. Mitochondrial movement is mediated through interactions with the Miro-Milton molecular complex, which couples mitochondria to kinesin motors at microtubules. We examined mitochondrial movement in human ASM cells and hypothesized that, at basal [Ca(2+)]cyt levels, mitochondrial movement is necessary to establish proximity of mitochondria to the SR and that, during the transient increase in [Ca(2+)]cyt induced by agonist stimulation, mitochondrial movement is reduced, thereby promoting transient mitochondrial Ca(2+) uptake. We further hypothesized that airway inflammation disrupts basal mitochondrial movement via a reduction in Miro and Milton expression, thereby disrupting the ability of mitochondria to establish proximity to the SR and, thus, reducing transient mitochondrial Ca(2+) uptake during agonist activation. The reduced proximity of mitochondria to the SR may affect establishment of transient "hot spots" of higher [Ca(2+)]cyt at the sites of SR Ca(2+) release that are necessary for mitochondrial Ca(2+) uptake via the mitochondrial Ca(2+) uniporter. Copyright © 2017 the American Physiological Society.

  11. Association between Functional Small Airway Disease and FEV1 Decline in Chronic Obstructive Pulmonary Disease

    PubMed Central

    Bhatt, Surya P.; Soler, Xavier; Wang, Xin; Murray, Susan; Anzueto, Antonio R.; Beaty, Terri H.; Boriek, Aladin M.; Casaburi, Richard; Criner, Gerard J.; Diaz, Alejandro A.; Dransfield, Mark T.; Curran-Everett, Douglas; Galbán, Craig J.; Hoffman, Eric A.; Hogg, James C.; Kazerooni, Ella A.; Kim, Victor; Kinney, Gregory L.; Lagstein, Amir; Lynch, David A.; Make, Barry J.; Martinez, Fernando J.; Ramsdell, Joe W.; Reddy, Rishindra; Ross, Brian D.; Rossiter, Harry B.; Steiner, Robert M.; Strand, Matthew J.; van Beek, Edwin J. R.; Wan, Emily S.; Washko, George R.; Wells, J. Michael; Wendt, Chris H.; Wise, Robert A.; Silverman, Edwin K.; Crapo, James D.; Bowler, Russell P.

    2016-01-01

    Rationale: The small conducting airways are the major site of airflow obstruction in chronic obstructive pulmonary disease and may precede emphysema development. Objectives: We hypothesized a novel computed tomography (CT) biomarker of small airway disease predicts FEV1 decline. Methods: We analyzed 1,508 current and former smokers from COPDGene with linear regression to assess predictors of change in FEV1 (ml/yr) over 5 years. Separate models for subjects without and with airflow obstruction were generated using baseline clinical and physiologic predictors in addition to two novel CT metrics created by parametric response mapping (PRM), a technique pairing inspiratory and expiratory CT images to define emphysema (PRMemph) and functional small airways disease (PRMfSAD), a measure of nonemphysematous air trapping. Measurements and Main Results: Mean (SD) rate of FEV1 decline in ml/yr for GOLD (Global Initiative for Chronic Obstructive Lung Disease) 0–4 was as follows: 41.8 (47.7), 53.8 (57.1), 45.6 (61.1), 31.6 (43.6), and 5.1 (35.8), respectively (trend test for grades 1–4; P < 0.001). In multivariable linear regression, for participants without airflow obstruction, PRMfSAD but not PRMemph was associated with FEV1 decline (P < 0.001). In GOLD 1–4 participants, both PRMfSAD and PRMemph were associated with FEV1 decline (P < 0.001 and P = 0.001, respectively). Based on the model, the proportional contribution of the two CT metrics to FEV1 decline, relative to each other, was 87% versus 13% and 68% versus 32% for PRMfSAD and PRMemph in GOLD 1/2 and 3/4, respectively. Conclusions: CT-assessed functional small airway disease and emphysema are associated with FEV1 decline, but the association with functional small airway disease has greatest importance in mild-to-moderate stage chronic obstructive pulmonary disease where the rate of FEV1 decline is the greatest. Clinical trial registered with www.clinicaltrials.gov (NCT 00608764). PMID:26808615

  12. Evidence of improved small airways function after azithromycin treatment in diffuse panbronchiolitis.

    PubMed

    Hanon, Shane; Verbanck, Sylvia; Schuermans, Daniel; Vanden Berghe, Bram; Vanderhelst, Eef; Vincken, Walter

    2012-01-01

    A 67-year-old never-smoker was diagnosed with diffuse panbronchiolitis (DPB) and was started on 250 mg azithromycin twice weekly. Over a 16-month observation period, lung function was assessed monthly, including a dedicated small airways test, the multiple breath nitrogen washout (MBW) with indices S(cond) and S(acin) of ventilation heterogeneity at the level of the conductive and acinar air spaces, respectively. Baseline measurements indicated moderate airway obstruction, air trapping and considerable dysfunction of the small airways around the acinar entrance. Treatment resulted in excellent symptomatic improvement paralleled by marked improvements in FEV(1), FVC, RV/TLC, S(cond) and S(acin); by contrast, there were no consistent changes in FEF(75) or TL(CO). While improvements were such that S(cond) fell within normal limits after 5 months, S(acin) remained abnormal even after 16 months of treatment. This suggests a distinct acinar structural abnormality in DPB that cannot be reversed by azithromycin.

  13. Rapid decline in lung function in coal miners: evidence of disease in small airways.

    PubMed

    Stansbury, Robert C; Beeckman-Wagner, Lu-Ann F; Wang, Mei-Lin; Hogg, Jeffery P; Petsonk, Edward L

    2013-09-01

    Coal mine dust exposure can cause both pneumoconiosis and chronic airflow limitation. The contributions of various pathophysiologic mechanisms to dust-related lung function decrements remain unclear. Clinical and physiological findings were assessed for 15 underground coal miners who had demonstrated accelerated FEV1 losses (decliners) over 6-18 years. Decliners' findings were evaluated in comparison to a group of 11 miners who had shown relatively stable lung function (referents) during the same period. At follow-up examination, the decliners showed significantly greater mean airway resistance (10.47 vs. 6.78 cmH2 O/L/s; P = 0.05) and more air trapping (RV/TLC = 37.5 vs. 29.1%; P < 0.01) compared to the referents. Decliners also demonstrated more evidence of small airways dysfunction and tended to have more bronchospasm than the referent group. Total lung capacity, lung compliance, diffusing capacity, and chest radiography did not differ significantly between the two groups. After cessation of mine dust exposures, the decliners' mean rate of FEV1 loss normalized. In a series of working coal miners, accelerated lung function declines were associated with air trapping and evidence of small airways dysfunction. A preventive benefit from controlling dust exposures was suggested. Copyright © 2013 Wiley Periodicals, Inc.

  14. Rheumatoid arthritis and small airways function. Effects of disease activity, smoking, and alpha 1-antitrypsin deficiency.

    PubMed

    Mountz, J D; Turner, R A; Collins, R L; Gallup, K R; Semble, E L

    1984-07-01

    The sensitive pulmonary function tests of change in maximum expiratory flow (delta Vmax 50) and volume of isoflow were used to determine the effects of rheumatoid arthritis (RA), smoking, and alpha 1-antitrypsin deficiency phenotypes on peripheral airways. Patients were prospectively divided into 4 groups: 14 smokers with RA, 12 nonsmokers with RA, 11 smokers without RA, and 13 nonsmokers without RA. delta Vmax 50 was the most discriminating variable and demonstrated significant small airway obstructive disease in the first 3 groups, with an additive effect in the group of smokers with RA. An increased incidence of the alpha 1-antitrypsin-deficient MS phenotype was seen in the RA smoker group, and this phenotype was associated with severe pulmonary disease.

  15. Trachea Epithelium as a “Canary” for Cigarette Smoking-induced Biologic Phenotype of the Small Airway Epithelium*

    PubMed Central

    Turetz, Meredith L.; O’Connor, Timothy P.; Tilley, Ann E.; Strulovici-Barel, Yael; Salit, Jacqueline; Dang, David; Teater, Matthew; Mezey, Jason; Clark, Andrew G.; Crystal, Ronald G.

    2013-01-01

    The initial site of smoking-induced lung disease is the small airway epithelium, which is difficult and time consuming to sample by fiberoptic bronchoscopy. We developed a rapid, office-based procedure to obtain trachea epithelium without conscious sedation from healthy nonsmokers (n=26) and healthy smokers (n=19, 27 ± 15 pack-yr). Gene expression differences (fold-change >1.5, p<0.01, Benjamini-Hochberg correction) were assessed with Affymetrix microarrays. 1,057 probe sets were differentially expressed in healthy smokers vs nonsmokers, representing >500 genes. Trachea gene expression was compared to an independent group of small airway epithelial samples (n=23 healthy nonsmokers, n=19 healthy smokers, 25 ± 12 pack-yr). The trachea epithelium is more sensitive to smoking, responding with 3-fold more differentially-expressed genes than small airway epithelium. The trachea transcriptome paralleled the small airway epithelium, with 156 of 167 (93%) genes that are significantly upand down-regulated by smoking in the small airway epithelium showing similar direction and magnitude of response to smoking in the trachea. Trachea epithelium can be obtained without conscious sedation, representing a less invasive surrogate “canary” for smoking-induced changes in the small airway epithelium. This should prove useful in epidemiologic studies correlating gene expression with clinical outcome in assessing smoking-induced lung disease. PMID:20443905

  16. Small airways ventilation heterogeneity and hyperinflation in COPD: response to tiotropium bromide.

    PubMed

    Verbanck, Sylvia; Schuermans, Daniël; Vincken, Walter

    2007-01-01

    In chronic obstructive pulmonary disease (COPD) patients tiotropium bromide has been shown to improve forced expiratory volume in one second (FEV1) and inspiratory capacity (IC). We investigated whether the mechanism leading to these improvements is related to small airways ventilation heterogeneity, assessed by multiple breath washout tests. Forty stable tiotropium-free COPD patients (FEV1: 27%-78% predicted) were studied before and 90 min after administration of tiotropium bromide on visit0, and following 3 and 6 weeks of tiotropium bromide treatment (visit3wks, visit6wks). After study completion, COPD patients were classified into two subgroups according to degree of hyperinflation at visit0 (Hyp-, Hyp+). The Hyp+ group showed significant increases in trough (ie, pre-dose) FEV1 and IC after 3 and 6 weeks of tiotropium bromide, and the 90 min tiotropium bromide responses of FEV1 and IC were significant at visit0 (p < or = 0.001 for both) but not during subsequent visits. The Hyp- group showed significant FEV1 increases 90 min after tiotropium bromide on all three visits (all p < 0.005) but no sustained increase in trough values. In both COPD subgroups, the grossly abnormal ventilation heterogeneity barely showed any significant improvements with tiotropium bromide in the conductive airways (without changes in trough value) and no changes at all in the acinar airways. We conclude that the sustained improvements in trough IC and FEV1 with tiotropium bromide predominantly observed in COPD patients with considerable hyperinflation, are unrelated to small airways ventilation heterogeneity.

  17. Directed differentiation of airway epithelial cells of human bone marrow mesenchymal stem cells.

    PubMed

    Li, Jian-Dong

    2016-11-01

    The ability to generate lung and airway epithelial cells from human bone marrow mesenchymal stem cells (hBMSCs) would have applications in regenerative medicine, modeling of lung disease, drug screening, and studies of human lung development. In this research, hBMSCs were cultured in specialized airway epithelial cell growth media for differentiation of airway epithelial cells, including keratinocyte growth factor transferrin, bovine pituitary extract, epinephrine, triiodothyronine and retinoic acid. The surfactant protein C, a specific marker of type II pneumocytes, and its corresponding protein were demonstrated by immunofluorescence and western blotting after differentiation of airway epithelial cells, respectively. These cells were then transferred into an induced acute lung injury model. The results showed that the hBMSCs could induce differentiation in airway epithelial cells under the special conditions of the medium, the result for surfactant protein C was positive in differentiated airway epithelial cells using immunofluorescence and western blotting, and these cells were successfully colonized in the injured lung airway. In conclusion, our research shows that a population of airway epithelial cells can be specifically generated from hBMSCs and that induced cells may be allowed to participate in tissue repair.

  18. NEU1 sialidase expressed in human airway epithelia regulates epidermal growth factor receptor (EGFR) and MUC1 protein signaling.

    PubMed

    Lillehoj, Erik P; Hyun, Sang Won; Feng, Chiguang; Zhang, Lei; Liu, Anguo; Guang, Wei; Nguyen, Chinh; Luzina, Irina G; Atamas, Sergei P; Passaniti, Antonino; Twaddell, William S; Puché, Adam C; Wang, Lai-Xi; Cross, Alan S; Goldblum, Simeon E

    2012-03-09

    Epithelial cells (ECs) lining the airways provide a protective barrier between the external environment and the internal host milieu. These same airway epithelia express receptors that respond to danger signals and initiate repair programs. Because the sialylation state of a receptor can influence its function and is dictated in part by sialidase activity, we asked whether airway epithelia express catalytically active sialidase(s). Human primary small airway and A549 ECs expressed NEU1 sialidase at the mRNA and protein levels, and NEU1 accounted for >70% of EC sialidase activity. Blotting with Maackia amurensis and peanut agglutinin lectins established epidermal growth factor receptor (EGFR) and MUC1 as in vivo substrates for NEU1. NEU1 associated with EGFR and MUC1, and NEU1-EGFR association was regulated by EGF stimulation. NEU1 overexpression diminished EGF-stimulated EGFR Tyr-1068 autophosphorylation by up to 44% but enhanced MUC1-dependent Pseudomonas aeruginosa adhesion by 1.6-1.7-fold and flagellin-stimulated ERK1/2 activation by 1.7-1.9-fold. In contrast, NEU1 depletion increased EGFR activation (1.5-fold) and diminished MUC1-mediated bacterial adhesion (38-56%) and signaling (73%). These data indicate for the first time that human airway epithelia express catalytically active NEU1 sialidase that regulates EGFR- and MUC1-dependent signaling and bacterial adhesion. NEU1 catalytic activity may offer an additional level of regulation over the airway epithelial response to ligands, pathogens, and injurious stimuli.

  19. Generation of a human airway epithelium derived basal cell line with multipotent differentiation capacity

    PubMed Central

    2013-01-01

    Background As the multipotent progenitor population of the airway epithelium, human airway basal cells (BC) replenish the specialized differentiated cell populations of the mucociliated airway epithelium during physiological turnover and repair. Cultured primary BC divide a limited number of times before entering a state of replicative senescence, preventing the establishment of long-term replicating cultures of airway BC that maintain their original phenotype. Methods To generate an immortalized human airway BC cell line, primary human airway BC obtained by brushing the airway epithelium of healthy nonsmokers were infected with a retrovirus expressing human telomerase (hTERT). The resulting immortalized cell line was then characterized under non-differentiating and differentiating air-liquid interface (ALI) culture conditions using ELISA, TaqMan quantitative PCR, Western analysis, and immunofluorescent and immunohistochemical staining analysis for cell type specific markers. In addition, the ability of the cell line to respond to environmental stimuli under differentiating ALI culture was assessed. Results We successfully generated an immortalized human airway BC cell line termed BCi-NS1 via expression of hTERT. A single cell derived clone from the parental BCi-NS1 cells, BCi-NS1.1, retains characteristics of the original primary cells for over 40 passages and demonstrates a multipotent differentiation capacity into secretory (MUC5AC, MUC5B), goblet (TFF3), Clara (CC10) and ciliated (DNAI1, FOXJ1) cells on ALI culture. The cells can respond to external stimuli such as IL-13, resulting in alteration of the normal differentiation process. Conclusion Development of immortalized human airway BC that retain multipotent differentiation capacity over long-term culture should be useful in understanding the biology of BC, the response of BC to environmental stress, and as a target for assessment of pharmacologic agents. PMID:24298994

  20. Relating small airways to asthma control by using impulse oscillometry in children.

    PubMed

    Shi, Yixin; Aledia, Anna S; Tatavoosian, Ahramahzd V; Vijayalakshmi, Shruthi; Galant, Stanley P; George, Steven C

    2012-03-01

    Previous reports suggest that the peripheral airways are associated with asthma control. Patient history, although subjective, is used largely to assess asthma control in children because spirometric results are many times normal values. Impulse oscillometry (IOS) is an objective and noninvasive measurement of lung function that has the potential to examine independently both small- and large-airway obstruction. We sought to determine the utility of IOS in assessing asthma control in children. Asthmatic and healthy children (6-17 years) were enrolled in the study. Spirometric and IOS (resistance of the respiratory system at 5 Hz [R5] and 20 Hz [R20], reactance of the respiratory system at 5 Hz [X5], resonant frequency of reactance [Fres], and area under the reactance curve between 5 Hz and Fres [reactance area {AX}]) values were collected in triplicate before and after a bronchodilator was administered. The physicians were blinded to the IOS measurements and assessed asthma control using American Thoracic Society guidelines. Small-airway IOS measurements, including the difference of R5 and R20 [R5-20], X5, Fres, and AX, of children with uncontrolled asthma (n = 44) were significantly different from those of children with controlled asthma (n = 57) and healthy children (n = 14), especially before the administration of a bronchodilator. However, there was no difference in large-airway IOS values (R20). No differences were found between children with controlled asthma and healthy children in any of the end points. Receiver operating characteristic analysis showed cut points for baseline R5-20 (1.5 cm H(2)O · L(-1) · s) and AX (9.5 cm H(2)O · L(-1)) that effectively discriminated controlled versus uncontrolled asthma (area under the curve, 0.86 and 0.84) and correctly classified more than 80% of the population. Uncontrolled asthma is associated with small-airways dysfunction, and IOS might be a reliable and noninvasive method to assess asthma control in children

  1. Decreased expression of intelectin 1 in the human airway epithelium of smokers compared to nonsmokers.

    PubMed

    Carolan, Brendan J; Harvey, Ben-Gary; De, Bishnu P; Vanni, Holly; Crystal, Ronald G

    2008-10-15

    Lectins are innate immune defense proteins that recognize bacterial cell wall components. Based on the knowledge that cigarette smoking is associated with an increased risk of infections, we hypothesized that cigarette smoking may modulate the expression of lectin genes in airway epithelium. Affymetrix microarrays were used to survey the expression of lectin genes in large airway epithelium from nine nonsmokers and 20 healthy smokers and in small airway epithelium from 13 nonsmokers and 20 healthy smokers. There were no changes (>2-fold change; p < 0.05) in lectin gene expression among healthy smokers compared with nonsmokers except for down-regulation of intelectin 1, a lectin that binds to galactofuranosyl residues in bacterial cell walls (large airway epithelium, p < 0.01; small airway epithelium, p < 0.01). This was confirmed by TaqMan RT-PCR in both large (p < 0.05) and small airway epithelium (p < 0.02). Immunohistochemistry assessment of airway biopsies demonstrated that intelectin 1 was expressed in secretory cells, while Western analysis confirmed the decreased expression of intelectin 1 in airway epithelium of healthy smokers compared with healthy nonsmokers (p < 0.02). Finally, compared with healthy nonsmokers, intelectin 1 expression was also decreased in small airway epithelium of smokers with lone emphysema and normal spirometry (n = 13, p < 0.01) and smokers with established chronic obstructive pulmonary disease (n = 14, p < 0.01). In the context that intelectin 1 plays a role in defense against bacteria, its down-regulation in response to cigarette smoking is another example of the immunomodulatory effects of smoking on the immune system and may contribute to the increase in susceptibility to infections observed in smokers.

  2. Decreased Expression of Intelectin 1 in the Human Airway Epithelium of Smokers Compared to Nonsmokers*

    PubMed Central

    Carolan, Brendan J.; Harvey, Ben-Gary; De, Bishnu P.; Vanni, Holly; Crystal, Ronald G.

    2009-01-01

    Summary Lectins are innate immune defense proteins that recognize specific bacterial cell wall components. Based on the knowledge that cigarette smoking is associated with increased risk of bacterial infections, we hypothesized that cigarette smoking may modulate the expression of lectin genes in airway epithelium. Affymetrix microarrays were used to survey expression of lectin genes in large airway epithelium from 9 nonsmokers and 20 healthy smokers and in small airway epithelium from 13 nonsmokers and 20 healthy smokers. There were no changes (>2-fold change, p<0.05) in lectin gene expression among healthy smokers compared to nonsmokers except for a striking down regulation of intelectin 1, a lectin that binds to galactofuranosyl residues in the cell walls of bacteria (large airway epithelium, p<0.01; small airway epithelium, p<0.01). This was confirmed by TaqMan RT-PCR in both large (p<0.05) and small airway epithelium (p<0.02). Immunohistochemistry assessment of airway biopsies demonstrated that intelectin 1 was expressed in secretory cells, while Western analysis confirmed the decreased expression of intelectin 1 in airway epithelium of healthy smokers compared to healthy nonsmokers (p<0.02). Finally, compared to healthy nonsmokers, intelectin 1 expression was also decreased in small airway epithelium of smokers with lone emphysema with normal spirometry (n= 13, p<0.01) and smokers with established COPD (n= 14, p<0.01). In the context that intelectin 1 is an epithelial molecule that likely plays a role in defense against bacteria, its down regulation in response to cigarette smoking is another example of the immunomodulatory effects of smoking on the immune system and may contribute to the increase in susceptibility to infections observed in smokers, including those with COPD. PMID:18832735

  3. Tryptase does not alter transepithelial conductance or paracellular permeability in human airway epithelial cells.

    PubMed

    Chang, Eugene H; Lee, John H; Zabner, Joseph

    2010-01-01

    Cell tight junction proteins create a barrier between airway epithelial cells to limit paracellular transport from the apical to basolateral surface. This barrier can impede the entry of respiratory pathogens and toxins from the airway lumen into the systemic circulation. Mast cell-mediated inflammation in the human airway can cause a disruption of this barrier. Tryptase is one of the major mediators released by mast cells and has been studied extensively in diseases such as asthma, reflux, and sinusitis. We hypothesize that tryptase may play a role in airway paracellular permeability by disrupting the cell tight junction proteins. We tested this hypothesis by applying tryptase on the apical and basolateral surface to primary human airway epithelia grown in an air-liquid interface and measured changes in the transepithelial conductance and paracellular permeability of the membrane during short (every minute) and longer (over hours) time courses. We then immunostained the cell membranes for occludins and claudins to observe for changes in the structure of the tight junctions after tryptase application. Our data show that tryptase does not alter paracellular permeability in human airway cells over minutes or hours, and that tryptase does not alter the structure of the cell junction. Tryptase alone does not alter paracellular permeability in human airway cells. Tryptase may be altering the epithelial membrane independent of the cell tight junction pathway or other mast cell mediators may play a role in permeability.

  4. DEPOSITION DISTRICUTION AMONG THE PARALLEL PATHWAYS IN THE HUMAN LUNG CONDUCTING AIRWAY STRUCTURE.

    EPA Science Inventory

    DEPOSITION DISTRIBUTION AMONG THE PARALLEL PATHWAYS IN THE HUMAN LUNG CONDUCTING AIRWAY STRUCTURE. Chong S. Kim*, USEPA National Health and Environmental Effects Research Lab. RTP, NC 27711; Z. Zhang and C. Kleinstreuer, Department of Mechanical and Aerospace Engineering, North C...

  5. Detonation Nanodiamond Toxicity in Human Airway Epithelial Cells Is Modulated by Air Oxidation

    EPA Science Inventory

    Detonational nanodiamonds (DND), a nanomaterial with an increasing range of industrial and biomedical applications, have previously been shown to induce a pro-inflammatory response in cultured human airway epithelial cells (HAEC). We now show that surface modifications induced by...

  6. DEPOSITION DISTRICUTION AMONG THE PARALLEL PATHWAYS IN THE HUMAN LUNG CONDUCTING AIRWAY STRUCTURE.

    EPA Science Inventory

    DEPOSITION DISTRIBUTION AMONG THE PARALLEL PATHWAYS IN THE HUMAN LUNG CONDUCTING AIRWAY STRUCTURE. Chong S. Kim*, USEPA National Health and Environmental Effects Research Lab. RTP, NC 27711; Z. Zhang and C. Kleinstreuer, Department of Mechanical and Aerospace Engineering, North C...

  7. Detonation Nanodiamond Toxicity in Human Airway Epithelial Cells Is Modulated by Air Oxidation

    EPA Science Inventory

    Detonational nanodiamonds (DND), a nanomaterial with an increasing range of industrial and biomedical applications, have previously been shown to induce a pro-inflammatory response in cultured human airway epithelial cells (HAEC). We now show that surface modifications induced by...

  8. Paired inspiratory-expiratory chest CT scans to assess for small airways disease in COPD

    PubMed Central

    2013-01-01

    Background Gas trapping quantified on chest CT scans has been proposed as a surrogate for small airway disease in COPD. We sought to determine if measurements using paired inspiratory and expiratory CT scans may be better able to separate gas trapping due to emphysema from gas trapping due to small airway disease. Methods Smokers with and without COPD from the COPDGene Study underwent inspiratory and expiratory chest CT scans. Emphysema was quantified by the percent of lung with attenuation < −950HU on inspiratory CT. Four gas trapping measures were defined: (1) Exp−856, the percent of lung < −856HU on expiratory imaging; (2) E/I MLA, the ratio of expiratory to inspiratory mean lung attenuation; (3) RVC856-950, the difference between expiratory and inspiratory lung volumes with attenuation between −856 and −950 HU; and (4) Residuals from the regression of Exp−856 on percent emphysema. Results In 8517 subjects with complete data, Exp−856 was highly correlated with emphysema. The measures based on paired inspiratory and expiratory CT scans were less strongly correlated with emphysema. Exp−856, E/I MLA and RVC856-950 were predictive of spirometry, exercise capacity and quality of life in all subjects and in subjects without emphysema. In subjects with severe emphysema, E/I MLA and RVC856-950 showed the highest correlations with clinical variables. Conclusions Quantitative measures based on paired inspiratory and expiratory chest CT scans can be used as markers of small airway disease in smokers with and without COPD, but this will require that future studies acquire both inspiratory and expiratory CT scans. PMID:23566024

  9. Paired inspiratory-expiratory chest CT scans to assess for small airways disease in COPD.

    PubMed

    Hersh, Craig P; Washko, George R; Estépar, Raúl San José; Lutz, Sharon; Friedman, Paul J; Han, MeiLan K; Hokanson, John E; Judy, Philip F; Lynch, David A; Make, Barry J; Marchetti, Nathaniel; Newell, John D; Sciurba, Frank C; Crapo, James D; Silverman, Edwin K

    2013-04-08

    Gas trapping quantified on chest CT scans has been proposed as a surrogate for small airway disease in COPD. We sought to determine if measurements using paired inspiratory and expiratory CT scans may be better able to separate gas trapping due to emphysema from gas trapping due to small airway disease. Smokers with and without COPD from the COPDGene Study underwent inspiratory and expiratory chest CT scans. Emphysema was quantified by the percent of lung with attenuation < -950HU on inspiratory CT. Four gas trapping measures were defined: (1) Exp(-856), the percent of lung < -856HU on expiratory imaging; (2) E/I MLA, the ratio of expiratory to inspiratory mean lung attenuation; (3) RVC(856-950), the difference between expiratory and inspiratory lung volumes with attenuation between -856 and -950 HU; and (4) Residuals from the regression of Exp(-856) on percent emphysema. In 8517 subjects with complete data, Exp(-856) was highly correlated with emphysema. The measures based on paired inspiratory and expiratory CT scans were less strongly correlated with emphysema. Exp(-856), E/I MLA and RVC(856-950) were predictive of spirometry, exercise capacity and quality of life in all subjects and in subjects without emphysema. In subjects with severe emphysema, E/I MLA and RVC(856-950) showed the highest correlations with clinical variables. Quantitative measures based on paired inspiratory and expiratory chest CT scans can be used as markers of small airway disease in smokers with and without COPD, but this will require that future studies acquire both inspiratory and expiratory CT scans.

  10. A role for CCL28-CCR3 in T-cell homing to the human upper airway mucosa.

    PubMed

    Danilova, E; Skrindo, I; Gran, E; Hales, B J; Smith, W A; Jahnsen, J; Johansen, F E; Jahnsen, F L; Baekkevold, E S

    2015-01-01

    Lymphocyte recruitment to peripheral tissues is fundamental for immune surveillance and homeostasis, but the chemokines and chemokine receptors responsible for tissue-specific homing of T cells to the upper airway mucosa have not been determined. To address this, we analyzed the chemokines expressed in the normal human nasal mucosa and found that CCL28 is preferentially expressed at a high level on the lumenal face of vascular endothelial cells in the mucosa. Analysis of the cognate chemokine receptors revealed that close to 50% of the CD4(+) T cells in the human nasal mucosa expressed the CCL28 receptor CCR3, whereas CCR3 was hardly detectable on T cells in the small intestine and skin. In the circulation, CCR3(+) T cells comprised a small subset that did not express homing receptors to the intestine or skin. Moreover, depletion of CCR3(+)CD4(+) T cells abrogated the proliferative response of human blood CD4(+) T cells against the opportunistic nasopharyngeal pathogen Haemophilus influenzae, indicating that the CCR3(+)CD4(+) T-cell subset in the circulation contains antigen specificities relevant for the upper airways. Together, these findings indicate that CCL28-CCR3 interactions are involved in the homeostatic trafficking of CD4(+) T cells to the upper airways.

  11. Establishment of a Reverse Genetics System for Studying Human Bocavirus in Human Airway Epithelia

    PubMed Central

    Cheng, Fang; Luo, Yong; Shen, Weiran; Lei-Butters, Diana C. M.; Chen, Aaron Yun; Li, Yi; Tang, Liang; Söderlund-Venermo, Maria; Engelhardt, John F.; Qiu, Jianming

    2012-01-01

    Human bocavirus 1 (HBoV1) has been identified as one of the etiological agents of wheezing in young children with acute respiratory-tract infections. In this study, we have obtained the sequence of a full-length HBoV1 genome (including both termini) using viral DNA extracted from a nasopharyngeal aspirate of an infected patient, cloned the full-length HBoV1 genome, and demonstrated DNA replication, encapsidation of the ssDNA genome, and release of the HBoV1 virions from human embryonic kidney 293 cells. The HBoV1 virions generated from this cell line-based production system exhibits a typical icosahedral structure of approximately 26 nm in diameter, and is capable of productively infecting polarized primary human airway epithelia (HAE) from the apical surface. Infected HAE showed hallmarks of lung airway-tract injury, including disruption of the tight junction barrier, loss of cilia and epithelial cell hypertrophy. Notably, polarized HAE cultured from an immortalized airway epithelial cell line, CuFi-8 (originally derived from a cystic fibrosis patient), also supported productive infection of HBoV1. Thus, we have established a reverse genetics system and generated the first cell line-based culture system for the study of HBoV1 infection, which will significantly advance the study of HBoV1 replication and pathogenesis. PMID:22956907

  12. Grepafloxacin inhibits tumor necrosis factor-alpha-induced interleukin-8 expression in human airway epithelial cells.

    PubMed

    Hashimoto, S; Matsumoto, K; Gon, Y; Maruoka, S; Hayashi, S; Asai, Y; Machino, T; Horie, T

    2000-01-01

    We examined the effect of grepafloxacin (GPFX), a new fluoroquinolone antimicrobial agent, on interleukin-8 (IL-8) expression in tumor necrosis factor-alpha (TNF-alpha)-stimulated human airway epithelial cells (AEC). GPFX inhibited IL-8 protein production as well as mRNA expression in a concentration-dependent manner (2.5 - 25 micro g/ml), but the inhibition of IL-8 expression by corresponding concentrations of GPFX to serum and airway lining fluids was not complete. We discuss the modulatory effect of GPFX on IL-8 production in the context of its efficacy on controlling chronic airway inflammatory diseases.

  13. Computational Fluid Dynamics Modeling of Bacillus anthracis Spore Deposition in Rabbit and Human Respiratory Airways

    SciTech Connect

    Kabilan, Senthil; Suffield, Sarah R.; Recknagle, Kurtis P.; Jacob, Rick E.; Einstein, Daniel R.; Kuprat, Andrew P.; Carson, James P.; Colby, Sean M.; Saunders, James H.; Hines, Stephanie; Teeguarden, Justin G.; Straub, Tim M.; Moe, M.; Taft, Sarah; Corley, Richard A.

    2016-09-30

    Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditions using average species-specific minute volumes. The highest exposure concentration was modeled in the rabbit based upon prior acute inhalation studies. For comparison, human simulation was also conducted at the same concentration. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways compared to the human at the same air concentration of anthrax spores. As a result, higher particle deposition was predicted in the conducting airways and deep lung of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology.

  14. Regulation of xanthine dehydrogensase gene expression and uric acid production in human airway epithelial cells.

    PubMed

    Huff, Ryan D; Hsu, Alan C-Y; Nichol, Kristy S; Jones, Bernadette; Knight, Darryl A; Wark, Peter A B; Hansbro, Philip M; Hirota, Jeremy A

    2017-01-01

    The airway epithelium is a physical and immunological barrier that protects the pulmonary system from inhaled environmental insults. Uric acid has been detected in the respiratory tract and can function as an antioxidant or damage associated molecular pattern. We have demonstrated that human airway epithelial cells are a source of uric acid. Our hypothesis is that uric acid production by airway epithelial cells is induced by environmental stimuli associated with chronic respiratory diseases. We therefore examined how airway epithelial cells regulate uric acid production. Allergen and cigarette smoke mouse models were performed using house dust mite (HDM) and cigarette smoke exposure, respectively, with outcome measurements of lung uric acid levels. Primary human airway epithelial cells isolated from clinically diagnosed patients with asthma and chronic obstructive pulmonary disease (COPD) were grown in submerged cultures and compared to age-matched healthy controls for uric acid release. HBEC-6KT cells, a human airway epithelial cell line, were grown under submerged monolayer conditions for mechanistic and gene expression studies. HDM, but not cigarette smoke exposure, stimulated uric acid production in vivo and in vitro. Primary human airway epithelial cells from asthma, but not COPD patients, displayed elevated levels of extracellular uric acid in culture. In HBEC-6KT, production of uric acid was sensitive to the xanthine dehydrogenase (XDH) inhibitor, allopurinol, and the ATP Binding Cassette C4 (ABCC4) inhibitor, MK-571. Lastly, the pro-inflammatory cytokine combination of TNF-α and IFN-γ elevated extracellular uric acid levels and XDH gene expression in HBEC-6KT cells. Our results suggest that the active production of uric acid from human airway epithelial cells may be intrinsically altered in asthma and be further induced by pro-inflammatory cytokines.

  15. Predicted combustion product deposition in the human airway.

    PubMed

    Kaufman, J W; Scherer, P W; Yang, C C

    1996-12-31

    Fires involving modern polymeric materials produce toxic vapours and particles of widely varying composition and size depending on available oxygen and localized temperatures. Adverse health effects of inhaled combustion-generated particles depend on physiological interactions at the airway deposition site. The present work is a theoretical investigation into the importance of airway humidity and temperature profiles, initial particle size, particle size distribution and ionic concentration on airway particle deposition. A modified numerical model accounting for hygroscopic particle growth was used to predict airway deposition of 0.1-10.0 microm mass median aerodynamic diameter (MMAD) particles. Dynamic humidity profiles were generated with an unsteady state model of heat and water vapour transport. Results suggest that for hygroscopic particles < 2.0 microm, MMAD dynamic end-inspiratory humidity profiles produce up to 250% greater predicted nasopharyngeal deposition than steady state humidity profiles. Assuming combustion products are hygroscopic, these results also suggest that less pulmonary deposition will occur than previously predicted. In addition, higher upper airway concentrations of combustion products may have significant health consequences independent of pulmonary deposition patterns.

  16. Efficiency of airway heat and moisture exchangers in anesthetized humans.

    PubMed

    Bickler, P E; Sessler, D I

    1990-10-01

    The efficiencies of airway heat and moisture exchanging filters in reducing respiratory water losses and increasing airway temperatures during general anesthesia were studied in five tracheally intubated patients given isoflurane, nitrous oxide, and oxygen anesthesia during controlled ventilation. Filters (Humid-Vent Filter, Humid-Vent 1, Pall Conserve, Siemens 150, and ThermoVent 600) were placed between the Y-piece of the anesthesia circle system and the endotracheal tube for 40 min each. Airway temperature, esophageal temperature, and water loss (determined by weighing expired water collected in CaSO4) were measured every 10 min. All of the filters reached near-maximum efficiency in reducing water losses within 10 min. The Humid-Vent Filter and Siemens 150 filters were most efficient, the Pall Conserve and ThermoVent 600 less efficient. Airway temperature rapidly increased 2 degrees-8 degrees C during each trial. The more efficient the filter in conserving water, the greater the airway temperature. The respiratory heat conserved by these filters represents 5.5%-7.2% of the estimated total metabolic heat production during anesthesia in adults.

  17. Overexpression of farnesoid X receptor in small airways contributes to epithelial to mesenchymal transition and COX-2 expression in chronic obstructive pulmonary disease

    PubMed Central

    Chen, Bi; You, Wen-Jie; Xue, Shan; Qin, Hui; Zhao, Xu-Ji; Zhang, Miao; Liu, Xue-Qing; Zhu, Shu-Yang

    2016-01-01

    Background Epithelial-mesenchymal transition (EMT) and cyclooxygenase-2 (COX-2) contribute to airway remodelling and inflammation in chronic obstructive pulmonary disease (COPD). Recent data suggest that the farnesoid X receptor (FXR), a nuclear receptor traditionally considered as bile acid-activated receptor, is also expressed in non-classical bile acids target tissues with novel functions beyond regulating bile acid homeostasis. This study aimed to investigate the potential role of FXR in the development of COPD, as well as factors that affect FXR expression. Methods Expression of FXR, EMT biomarkers and COX-2 was examined by immunohistochemistry in lung tissues from non-smokers, smokers, and smokers with COPD. The role of FXR in TGF-β1-induced EMT and COX-2 expression in human bronchial epithelial (HBE) cells was evaluated in vitro. Factors regulating FXR expression were assessed in cultured HBE cells and a cigarette smoke-induced rat model of COPD. Results Expression of FXR, EMT markers and COX-2 was significantly elevated in small airway epithelium of COPD patients compared with controls. The staining scores of FXR in small airway epithelium were negatively related with FEV1% of predicted of smokers without and with COPD. FXR agonist GW4064 remarkably enhanced and FXR antagonist Z-Guggulsterone significantly inhibited EMT changes in TGF-β1-treated HBE cells. Both chenodeoxycholic acid (CDCA) and GW4064 increased COX-2 expression in HBE cells, whereas Z-Guggulsterone dramatically restrained CDCA-induced COX-2 expression. Finally, FXR expression is induced by IL-4 and IL-13 in HBE cells, as well as by cigarette smoke exposure in a rat model of COPD. Conclusions Overexpression of FXR in small airway may contribute to airway remodelling and inflammation in COPD by regulating EMT and COX-2 expression. PMID:28066584

  18. Small airway-centered granulomatosis caused by long-term exposure to polytetrafluoroethylene.

    PubMed

    Choi, Won-Il; Jung, Hye Ra; Shehu, Esmeralda; Rho, Byung Hak; Lee, Mi-Young; Kwon, Kun Young

    2014-06-01

    To date, there have been no reports of chronic pulmonary granulomatosis associated with exposure to polytetrafluoroethylene (PTFE). Here, we report three cases of small airway-centered granulomatous lesions in workers employed at facilities that apply coatings to pans and other utensils. The workers were repeatedly exposed to PTFE particles that were probably generated by the drying process when PTFE coatings are dried in a convection oven at high temperatures (380-420 °C). The duration of inhalational PTFE exposure was between 7 and 20 years. We found granulomatous lung lesions around the small airways in lung biopsy specimens obtained from the workers. Scanning electron microscopy/energy-dispersive x-ray spectroscopy analysis was performed focusing on areas where the PTFE particles were suspected to be located in macrophages. The scanning electron microscopy/energy-dispersive x-ray spectroscopy analyses revealed fluorine in the particles. Lung tissue samples from all cases were analyzed using a fully automated Fourier transform infrared spectrometer. Analysis of the spectrum extracted from the position of the foreign particles enabled precise identification of the foreign bodies as PTFE. Fourier transform infrared revealed that all of the lung tissue samples had bands at 1,202 to 1,148 cm(-1) and 1,202 to 1,146 cm(-1), which are characteristic of the asymmetric and symmetric stretching vibrations of the C-F bonds of PTFE. These cases suggest that recurrent inhalational exposure to PTFE particles causes chronic pulmonary granulomatosis.

  19. Polystyrene nanoparticles activate ion transport in human airway epithelial cells

    PubMed Central

    McCarthy, J; Gong, X; Nahirney, D; Duszyk, M; Radomski, MW

    2011-01-01

    Background Over the last decade, nanotechnology has provided researchers with new nanometer materials, such as nanoparticles, which have the potential to provide new therapies for many lung diseases. In this study, we investigated the acute effects of polystyrene nanoparticles on epithelial ion channel function. Methods Human submucosal Calu-3 cells that express cystic fibrosis transmembrane conductance regulator (CFTR) and baby hamster kidney cells engineered to express the wild-type CFTR gene were used to investigate the actions of negatively charged 20 nm polystyrene nanoparticles on short-circuit current in Calu-3 cells by Ussing chamber and single CFTR Clchannels alone and in the presence of known CFTR channel activators by using baby hamster kidney cell patches. Results Polystyrene nanoparticles caused sustained, repeatable, and concentration-dependent increases in short-circuit current. In turn, these short-circuit current responses were found to be biphasic in nature, ie, an initial peak followed by a plateau. EC50 values for peak and plateau short-circuit current responses were 1457 and 315.5 ng/mL, respectively. Short-circuit current was inhibited by diphenylamine-2-carboxylate, a CFTR Cl− channel blocker. Polystyrene nanoparticles activated basolateral K+ channels and affected Cl− and HCO3 − secretion. The mechanism of short-circuit current activation by polystyrene nanoparticles was found to be largely dependent on calcium-dependent and cyclic nucleotide-dependent phosphorylation of CFTR Cl− channels. Recordings from isolated inside-out patches using baby hamster kidney cells confirmed the direct activation of CFTR Cl− channels by the nanoparticles. Conclusion This is the first study to identify the activation of ion channels in airway cells after exposure to polystyrene-based nanomaterials. Thus, polystyrene nanoparticles cannot be considered as a simple neutral vehicle for drug delivery for the treatment of lung diseases, due to the fact

  20. EGF-Amphiregulin Interplay in Airway Stem/Progenitor Cells Links the Pathogenesis of Smoking-Induced Lesions in the Human Airway Epithelium

    PubMed Central

    Zuo, Wu-Lin; Yang, Jing; Gomi, Kazunori; Chao, IonWa; Crystal, Ronald G.; Shaykhiev, Renat

    2017-01-01

    The airway epithelium of cigarette smokers undergoes dramatic remodeling with hyperplasia of basal cells (BC) and mucus-producing cells, squamous metaplasia, altered ciliated cell differentiation and decreased junctional barrier integrity, relevant to chronic obstructive pulmonary disease and lung cancer. In this study, we show that epidermal growth factor receptor (EGFR) ligand amphiregulin (AREG) is induced by smoking in human airway epithelium as a result of epidermal growth factor (EGF)-driven squamous differentiation of airway BC stem/progenitor cells. In turn, AREG induced a unique EGFR activation pattern in human airway BC, distinct from that evoked by EGF, leading to BC- and mucous hyperplasia, altered ciliated cell differentiation and impaired barrier integrity. Further, AREG promoted its own expression and suppressed expression of EGF, establishing an autonomous self-amplifying signaling loop in airway BC relevant for promotion of EGF-independent hyperplastic phenotypes. Thus, EGF-AREG interplay in airway BC stem/progenitor cells is one of the mechanisms that mediates the interconnected pathogenesis of all major smoking-induced lesions in the human airway epithelium. PMID:27709733

  1. Human airway smooth muscle cells secrete amphiregulin via bradykinin/COX-2/PGE2, inducing COX-2, CXCL8, and VEGF expression in airway epithelial cells

    PubMed Central

    Knox, Alan J.

    2015-01-01

    Human airway smooth muscle cells (HASMC) contribute to asthma pathophysiology through an increased smooth muscle mass and elevated cytokine/chemokine output. Little is known about how HASMC and the airway epithelium interact to regulate chronic airway inflammation and remodeling. Amphiregulin is a member of the family of epidermal growth factor receptor (EGFR) agonists with cell growth and proinflammatory roles and increased expression in the lungs of asthma patients. Here we show that bradykinin (BK) stimulation of HASMC increases amphiregulin secretion in a mechanism dependent on BK-induced COX-2 expression, increased PGE2 output, and the stimulation of HASMC EP2 and EP4 receptors. Conditioned medium from BK treated HASMC induced CXCL8, VEGF, and COX-2 mRNA and protein accumulation in airway epithelial cells, which were blocked by anti-amphiregulin antibodies and amphiregulin siRNA, suggesting a paracrine effect of HASMC-derived amphiregulin on airway epithelial cells. Consistent with this, recombinant amphiregulin induced CXCL8, VEGF, and COX-2 in airway epithelial cells. Finally, we found that conditioned media from amphiregulin-stimulated airway epithelial cells induced amphiregulin expression in HASMC and that this was dependent on airway epithelial cell COX-2 activity. Our study provides evidence of a dynamic axis of interaction between HASMC and epithelial cells that amplifies CXCL8, VEGF, COX-2, and amphiregulin production. PMID:26047642

  2. The Expression of NOX4 in Smooth Muscles of Small Airway Correlates with the Disease Severity of COPD

    PubMed Central

    2016-01-01

    Airway smooth muscle (ASM) remodeling is a hallmark in chronic obstructive pulmonary disease (COPD), and nicotinamide-adenine dinucleotide phosphate (NADPH) oxidases (NOXs) produced reactive oxygen species (ROS) play a crucial role in COPD pathogenesis. In the present study, the expression of NOX4 and its correlation with the ASM hypertrophy/hyperplasia, clinical pulmonary functions, and the expression of transforming growth factor β (TGF-β) in the ASM of COPD small airways were investigated by semiquantitative morphological and/or immunohistochemistry staining methods. The results showed that an elevated expression of NOX4 and TGF-β, along with an increased volume of ASM mass, was found in the ASM of small airways in COPD patients. The abundance of NOX4 protein in the ASM was increased with disease severity and inversely correlated with the pulmonary functions in COPD patients. In addition, the expression of NOX4 and ASM marker α-SMA was colocalized, and the increased NOX4 expression was found to accompany an upregulated expression of TGF-β in the ASM of small airways of COPD lung. These results indicate that NOX4 may be a key regulator in ASM remodeling of small airway, in part through a mechanism interacting with TGF-β signaling in the pathogenesis of COPD, which warrants further investigation. PMID:27656649

  3. Small airway dysfunction by impulse oscillometry in asthmatic patients with normal forced expiratory volume in the 1st second values.

    PubMed

    Pisi, Roberta; Tzani, Panagiota; Aiello, Marina; Martinelli, Enrico; Marangio, Emilio; Nicolini, Gabriele; Olivieri, Dario; Chetta, Alfredo

    2013-01-01

    Small airways are relevant to the pathophysiology of asthma. We investigated whether in asthmatic patients with normal forced expiratory volume in the 1st second (FEV(1)) values, impulse oscillometry system (IOS), as a measure of small airway function, contributed additional information to spirometry either at baseline or after bronchodilator, and whether it was related to the disease control. The fall in resistance from 5 to 20 Hz (R5-R20) and reactance at 5 Hz (X5) by IOS and spirometry measures of small airway function (forced expiratory flow at 25-75% [FEF(25-75)] and forced vital capacity/slow inspiratory vital capacity [FVC/SVC]) at baseline and after 400 micrograms of salbutamol were prospectively measured in 33 asthmatic patients (18 women; age range, 18-66 years). Disease control was assessed by the Asthma Control Test (ACT). R5-R20 but not X5 values were significantly related to FEF(25-75) and FVC/SVC values (p < 0.05 for both correlations). When the bronchodilator response was assessed, no correlation was found among IOS and spirometry changes. ACT scores were related to R5-R20, FEF(25-75), and FVC/SVC values (p < 0.01 for all correlations). In asthmatic patients with normal FEV(1) values, R5-R20 values were related to spirometry measures of small airway function. However, when the bronchodilator response was assessed, IOS and spirometry provided quite different results. Moreover, small airway dysfunction, as assessed by IOS and spirometry, was associated with poor disease control and history of asthma exacerbations. The results of this study confirm the value of IOS, as an investigative tool, and suggest that in asthmatic patients with normal FEV(1) values and poor disease control, small airway function should be investigated.

  4. Small airway obstruction in COPD: new insights based on micro-CT imaging and MRI imaging.

    PubMed

    Hogg, James C; McDonough, John E; Suzuki, Masaru

    2013-05-01

    The increase in total cross-sectional area in the distal airways of the human lung enhances the mixing of each tidal breath with end-expiratory gas volume by slowing bulk flow and increasing gas diffusion. However, this transition also favors the deposition of airborne particulates in this region because they diffuse 600 times slower than gases. Furthermore, the persistent deposition of toxic airborne particulates stimulates a chronic inflammatory immune cell infiltration and tissue repair and remodeling process that increases the resistance in airways <2 mm in diameter four to 40-fold in COPD. This increase was originally attributed to lumen narrowing because it increases resistance in proportion to the change in lumen radius raised to the fourth power. In contrast, removal of one-half the number of tubes arranged in parallel is required to double their resistance, and approximately 90% need to be removed to explain the increase in resistance measured in COPD. However, recent reexamination of this problem based on micro-CT imaging indicates that terminal bronchioles are both narrowed and reduced to 10% of the control values in the centrilobular and 25% in the panlobular emphysematous phenotype of very severe (GOLD [Global Initiative for Chronic Obstructive Lung Disease] grade IV) COPD. These new data indicate that both narrowing and reduction in numbers of terminal bronchioles contribute to the rapid decline in FEV₁ that leads to severe airway obstruction in COPD. Moreover, the observation that terminal bronchiolar loss precedes the onset of emphysematous destruction suggests this destruction begins in the very early stages of COPD.

  5. Computational fluid dynamics modeling of Bacillus anthracis spore deposition in rabbit and human respiratory airways

    SciTech Connect

    Kabilan, S.; Suffield, S. R.; Recknagle, K. P.; Jacob, R. E.; Einstein, D. R.; Kuprat, A. P.; Carson, J. P.; Colby, S. M.; Saunders, J. H.; Hines, S. A.; Teeguarden, J. G.; Straub, T. M.; Moe, M.; Taft, S. C.; Corley, R. A.

    2016-09-01

    Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived respectively from computed tomography (CT) and µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation–exhalation breathing conditions using average species-specific minute volumes. Two different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the nasal sinus compared to the human at the same air concentration of anthrax spores. In contrast, higher spore deposition was predicted in the lower conducting airways of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology for deposition.

  6. Inducible nitric oxide synthase expression is reduced in cystic fibrosis murine and human airway epithelial cells.

    PubMed Central

    Kelley, T J; Drumm, M L

    1998-01-01

    It has been reported that exhaled nitric oxide levels are reduced in cystic fibrosis (CF) patients. We have examined the inducible isoform of nitric oxide synthase (iNOS) in the airways by immunostaining and found that iNOS is constitutively expressed in the airway epithelia of non-CF mouse and human tissues but essentially absent in the epithelium of CF airways. We explored potential consequences of lost iNOS expression and found that iNOS inhibition significantly increases mouse nasal trans-epithelial potential difference, and hindered the ability of excised mouse lungs to prevent growth of Pseudomonas aeruginosa. The absence of continuous nitric oxide production in epithelial cells of CF airways may play a role in two CF-associated characteristics: hyperabsorption of sodium and susceptibility to bacterial infections. PMID:9739054

  7. Quantifying nerve architecture in murine and human airways using three-dimensional computational mapping.

    PubMed

    Scott, Gregory D; Fryer, Allison D; Jacoby, David B

    2013-01-01

    The quantitative histological analysis of airway innervation using tissue sections is challenging because of the sparse and patchy distribution of nerves. Here we demonstrate a method using a computational approach to measure airway nerve architecture that will allow for more complete nerve quantification and the measurement of structural peripheral neuroplasticity in lung development and disease. We demonstrate how our computer analysis outperforms manual scoring in quantifying three-dimensional nerve branchpoints and lengths. In murine lungs, we detected airway epithelial nerves that have not been previously identified because of their patchy distribution, and we quantified their three-dimensional morphology using our computer mapping approach. Furthermore, we show the utility of this approach in bronchoscopic forceps biopsies of human airways, as well as the esophagus, colon, and skin.

  8. Innate immune response of human pluripotent stem cell-derived airway epithelium.

    PubMed

    McIntyre, Brendan A S; Kushwah, Rahul; Mechael, Rami; Shapovalova, Zoya; Alev, Cantas; Bhatia, Mickie

    2015-07-01

    The acquisition of innate immune response is requisite to having bona fide differentiation of airway epithelium. Procedures developed to differentiate lung airway from human pluripotent stem cells (hPSCs) have demonstrated anecdotal evidence for innate immune response, but an in-depth exploration of response levels is lacking. Herein, using an established method of airway epithelial generation from hPSCs, we show that hPSC-derived epithelial cells are able to up-regulate expression of TNFα, IL8 and IL1β in response to challenge with bacterial endotoxin LPS, but lack response from genes associated with innate immune response in other cell types. Further, stimulation of cells with TNF-α resulted in auto-induction of TNFα transcript, as well as cytokine responses of IL8 and IL1β. The demonstration of innate immune induction in hPSC-derived airway epithelia gives further strength to the functionality of in vitro protocols aimed at generating differentiated airway cells that can potentially be used in a translational setting. Finally, we propose that innate immune challenge of airway epithelium from human pluripotent stem cell sources be used as a robust validation of functional in vitro differentiation.

  9. Human airway organoid engineering as a step toward lung regeneration and disease modeling.

    PubMed

    Tan, Qi; Choi, Kyoung Moo; Sicard, Delphine; Tschumperlin, Daniel J

    2017-01-01

    Organoids represent both a potentially powerful tool for the study cell-cell interactions within tissue-like environments, and a platform for tissue regenerative approaches. The development of lung tissue-like organoids from human adult-derived cells has not previously been reported. Here we combined human adult primary bronchial epithelial cells, lung fibroblasts, and lung microvascular endothelial cells in supportive 3D culture conditions to generate airway organoids. We demonstrate that randomly-seeded mixed cell populations undergo rapid condensation and self-organization into discrete epithelial and endothelial structures that are mechanically robust and stable during long term culture. After condensation airway organoids generate invasive multicellular tubular structures that recapitulate limited aspects of branching morphogenesis, and require actomyosin-mediated force generation and YAP/TAZ activation. Despite the proximal source of primary epithelium used in the airway organoids, discrete areas of both proximal and distal epithelial markers were observed over time in culture, demonstrating remarkable epithelial plasticity within the context of organoid cultures. Airway organoids also exhibited complex multicellular responses to a prototypical fibrogenic stimulus (TGF-β1) in culture, and limited capacity to undergo continued maturation and engraftment after ectopic implantation under the murine kidney capsule. These results demonstrate that the airway organoid system developed here represents a novel tool for the study of disease-relevant cell-cell interactions, and establishes this platform as a first step toward cell-based therapy for chronic lung diseases based on de novo engineering of implantable airway tissues.

  10. Hydrofluoroalkane-134A beclomethasone or chlorofluorocarbon fluticasone: effect on small airways in poorly controlled asthma.

    PubMed

    Thongngarm, Torpong; Silkoff, Philip E; Kossack, William S; Nelson, Harold S

    2005-05-01

    Inflammation in asthma extends into the small airways (< 2 mm diameter). Most inhaled corticosteroids are suspensions with a particle size > 2 mm. Therefore, inflammation in the small airways of patients with asthma may not be adequately treated with these preparations. Some inhaled corticosteroids, on the other hand, are compounded with alcohol, resulting in a solution producing an aerosol that has a mean particle diameter of < 2 mm. This study was designed to compare the addition of equivalent amounts of two inhaled corticosteroids (one a suspension and one a solution) to the treatment of patients with asthma, which was uncontrolled despite treatment with moderate to high doses of inhaled corticosteroids and usually additional controller medications. The study was performed with 30 patients, > or = 18 years of age. Subjects were randomized in a single-blind fashion to receive, in addition to their current asthma therapy, either CFC-FP 220 microg each morning and 110 microg each evening (n = 10) or HFA-BDP 160 mcg twice daily (n = 20). Pre- and postbronchodilator spirometry, single breath nitrogen washout for closing volume and residual volume by plethysmography were assessed before and after 3 months of therapy. In the subjects who received HFA-BDP, the ratio of closing volume (CV) to vital capacity (VC) and residual volume (RV) decreased significantly (p = 0.0214 and 0.0433, respectively), whereas forced expiratory flow over 25-75% of the vital capacity (FEF25-75%), forced expiratory volume in 1 second (FEV1), and morning peak flow improved significantly (p = 0.0014, 0.0184, and 0.0321). Improvements from baseline of CV, CV/VC, and postbronchodilator FEF25-75%, were statistically significant in the HFA-BDP group compared with the CFC-FP group (p = 0.0049, 0.0194, and 0.0355, respectively). These preliminary findings suggest that the addition of HFA-BDP, compared with CFC-FP in patients with poorly controlled asthma despite receiving moderate to high doses of

  11. [Acute effect of ambient air pollution on small airway lung functions among school children in Shanghai].

    PubMed

    Zhang, L J; Guo, C Y; Xu, H H; Xu, D; Shen, X B; Du, X Y; Zhang, M H; Tan, J G; Zhang, J H; Dong, C Y; Qian, H L; Shi, Y W; Pan, M Z; Zhou, X D

    2017-02-10

    Objective: To study the acute effects of compound ambient air pollution on small airway lung functions among school children in Shanghai. Method: A longitudinal survey on lung functions was conducted among 233 school-children from three schools (A, B and C, located in innerring, mid-ring and outer-ring areas). Lung function test was performed once a week for 3 times respectively, among children in school A and B in Dec. 2013 and in school C in Dec. 2014. The fourth lung function test was tested in Jun. 2014 and May 2015 in the respective schools. Results: from the lung function would include items as: forced mid-expiratory flow at 25% of forced vital capacity (MEF(25%)), mid-expiratory flow at 50% of forced vital capacity (MEF(50%)), mid-expiratory flow at 75% of forced vital capacity (MEF(75%)) and mid-expiratory flow between 25% and 75% of the forced vital capacity (FEF(25%-75%)). Data regarding the daily air quality real-time of PM(2.5), PM(10), SO(2) and NO(2) in Dec. 2013, Dec. 2014, Jun. 2014 and May. 2015 from the three environmental monitoring spots and meteorological data from the Shanghai Meteorological Service system which were physically close to the three schools, were collected simultaneously. Linear mixed effect model was used to examine the levels of correlation between lung function indicators and ambient air pollutants. Results When confounding factors on meteorology and individuals were controlled, the lag effects and accumulated lag effects were found to have existed between the internal quarter rang (IQR) concentration of PM(2.5) and PM(10) in lag2 day and lag02 days, IQR concentration of SO(2) in lag02 day and IQR concentration of NO(2) lag0 day, when small airway lung functions like MEF(25%), MEF(50%), MEF(75%) and FEF(25%-75%)(P<0.05) were inspected. Results from the two air pollutants model analysis showed that SO(2) and NO(2) presenting interactive effects with PM(2.5), PM(10) and lag effects more significant than the individual SO(2) and

  12. Endotoxin responsiveness of human airway epithelia is limited by low expression of MD-2.

    PubMed

    Jia, Hong Peng; Kline, Joel N; Penisten, Andrea; Apicella, Michael A; Gioannini, Theresa L; Weiss, Jerrold; McCray, Paul B

    2004-08-01

    The expression of inducible antimicrobial peptides, such as human beta-defensin-2 (HBD-2) by epithelia, comprises a component of innate pulmonary defenses. We hypothesized that HBD-2 induction in airway epithelia is linked to pattern recognition receptors such as the Toll-like receptors (TLRs). We found that primary cultures of well-differentiated human airway epithelia express the mRNA for TLR-4, but little or no MD-2 mRNA, and display little HBD-2 expression in response to treatment with purified endotoxin +/- LPS binding protein (LBP) and soluble CD14. Expression of endogenous MD-2 by transduction of airway epithelial cells with an adenoviral vector encoding MD-2 or extracellular addition of recombinant MD-2 both increased the responses of airway epithelia to endotoxin + LBP and sCD14 by >100-fold, as measured by NF-kappaB-luciferase activity and HBD-2 mRNA expression. MD-2 mRNA could be induced in airway epithelia by exposure of these cells to specific bacterial or host products (e.g., killed Haemophilus influenzae, the P6 outer membrane protein from H. influenzae, or TNF-alpha + IFN-gamma). These findings suggest that MD-2, either coexpressed with TLR-4 or secreted when produced in excess of TLR-4 from neighboring cells, is required for airway epithelia to respond sensitively to endotoxin. The regulation of MD-2 expression in airway epithelia and pulmonary macrophages may serve as a means to modify endotoxin responsiveness in the airway.

  13. Characterization of Nipah virus infection in a model of human airway epithelial cells cultured at an air-liquid interface.

    PubMed

    Escaffre, Olivier; Borisevich, Viktoriya; Vergara, Leoncio A; Wen, Julie W; Long, Dan; Rockx, Barry

    2016-05-01

    Nipah virus (NiV) is an emerging paramyxovirus that can cause lethal respiratory illness in humans. No vaccine/therapeutic is currently licensed for humans. Human-to-human transmission was previously reported during outbreaks and NiV could be isolated from respiratory secretions, but the proportion of cases in Malaysia exhibiting respiratory symptoms was significantly lower than that in Bangladesh. Previously, we showed that primary human basal respiratory epithelial cells are susceptible to both NiV-Malaysia (M) and -Bangladesh (B) strains causing robust pro-inflammatory responses. However, the cells of the human respiratory epithelium that NiV targets are unknown and their role in NiV transmission and NiV-related lung pathogenesis is still poorly understood. Here, we characterized NiV infection of the human respiratory epithelium using a model of the human tracheal/bronchial (B-ALI) and small airway (S-ALI) epithelium cultured at an air-liquid interface. We show that NiV-M and NiV-B infect ciliated and secretory cells in B/S-ALI, and that infection of S-ALI, but not B-ALI, results in disruption of the epithelium integrity and host responses recruiting human immune cells. Interestingly, NiV-B replicated more efficiently in B-ALI than did NiV-M. These results suggest that the human tracheal/bronchial epithelium is favourable to NiV replication and shedding, while inducing a limited host response. Our data suggest that the small airways epithelium is prone to inflammation and lesions as well as constituting a point of virus entry into the pulmonary vasculature. The use of relevant models of the human respiratory tract, such as B/S-ALI, is critical for understanding NiV-related lung pathogenesis and identifying the underlying mechanisms allowing human-to-human transmission.

  14. SEASONAL EFFECTS OF ULTRAFINE, FINE, AND COARSE PARTICULATE MATTER (PM) ON HUMAN PRIMARY AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    SEASONAL EFFECTS OF ULTRAFINE, FINE, AND COARSE PARTICULATE MATTER (PM) ON HUMAN PRIMARY AIRWAY EPITHELIAL CELLS

    Exposure of humans to PM results in increased mortality and morbidity. Recent toxicology studies have shown a number of pathophysiological pulmonary and car...

  15. [Obstruction of the upper airways in humans and animal models].

    PubMed

    Schulz, R

    2010-07-01

    Obstructive sleep apnea (OSA) is caused by repetitive collapse of a narrow upper airway during sleep with the main risk factor being obesity. Apneas are followed by hypoxia, sympathetic activation, intrathoracic pressure swings and arousals. In most animal studies, only the cyclical pattern of hypoxia characteristic of OSA is simulated, however, more complex models have also been developed which additionally reflect the other pathophysiological changes associated with sleep-disordered breathing. These models have contributed to a deeper understanding of the cardiovascular and metabolic consequences of OSA. From other experiments the concept of the pharynx behaving like a collapsible tube, i. e. a Starling resistor, has emerged. Finally, the neurotransmitter modulation of upper airway muscle tone has been elucidated by using IN VIVO microdialysis of the caudal medulla of rats. It is hoped that findings from animal studies will in the future impact on the management of patients with OSA, in particular if they are non-compliant with CPAP therapy.

  16. Effect of inhaled 15-(s)-hydroxyeicosatetraenoic acid on tracheobronchial clearance in normal human airways.

    PubMed Central

    Lai, C K; Polosa, R; Pavia, D; Hasani, A; Agnew, J E; Clarke, S W; Holgate, S T

    1991-01-01

    15-(s)-Hydroxyeicosatetraenoic acid (15-HETE) is the predominant metabolite of arachidonic acid in normal and asthmatic human airways and a potent mucus secretagogue in canine and human airways. A study was carried out on the effect of inhaled 15-HETE on tracheobronchial clearance, measured for six hours by a radioaerosol technique, in 10 normal subjects. Subjects inhaled 80 nmol 15-HETE or the diluent (sodium phosphate buffer) on two occasions at least two weeks apart in a double blind and randomised fashion (20 minutes after radioaerosol inhalation. Tracheobronchial clearance after inhaled 15-HETE was almost identical to that after placebo for all measurements up to six hours. It is concluded that 15-HETE has no effect on tracheobronchial clearance in normal human airways and is unlikely to account for the impaired mucociliary clearance seen in asthma. PMID:1858085

  17. Autofluorescence multiphoton microscopy for visualization of tissue morphology and cellular dynamics in murine and human airways

    PubMed Central

    Kretschmer, Sarah; Pieper, Mario; Hüttmann, Gereon; Bölke, Torsten; Wollenberg, Barbara; Marsh, Leigh M; Garn, Holger; König, Peter

    2016-01-01

    The basic understanding of inflammatory airway diseases greatly benefits from imaging the cellular dynamics of immune cells. Current imaging approaches focus on labeling specific cells to follow their dynamics but fail to visualize the surrounding tissue. To overcome this problem, we evaluated autofluorescence multiphoton microscopy for following the motion and interaction of cells in the airways in the context of tissue morphology. Freshly isolated murine tracheae from healthy mice and mice with experimental allergic airway inflammation were examined by autofluorescence multiphoton microscopy. In addition, fluorescently labeled ovalbumin and fluorophore-labeled antibodies were applied to visualize antigen uptake and to identify specific cell populations, respectively. The trachea in living mice was imaged to verify that the ex vivo preparation reflects the in vivo situation. Autofluorescence multiphoton microscopy was also tested to examine human tissue from patients in short-term tissue culture. Using autofluorescence, the epithelium, underlying cells, and fibers of the connective tissue, as well as blood vessels, were identified in isolated tracheae. Similar structures were visualized in living mice and in the human airway tissue. In explanted murine airways, mobile cells were localized within the tissue and we could follow their migration, interactions between individual cells, and their phagocytic activity. During allergic airway inflammation, increased number of eosinophil and neutrophil granulocytes were detected that moved within the connective tissue and immediately below the epithelium without damaging the epithelial cells or connective tissues. Contacts between granulocytes were transient lasting 3 min on average. Unexpectedly, prolonged interactions between granulocytes and antigen-uptaking cells were observed lasting for an average of 13 min. Our results indicate that autofluorescence-based imaging can detect previously unknown immune cell

  18. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration.

    PubMed

    Liu, Wenrui; Kong, Hui; Zeng, Xiaoning; Wang, Jingjing; Wang, Zailiang; Yan, Xiaopei; Wang, Yanli; Xie, Weiping; Wang, Hong

    2015-08-15

    Chronic airway diseases are characterized by airway remodeling which is attributed partly to the proliferation and migration of airway smooth muscle cells (ASMCs). ATP-sensitive potassium (KATP) channels have been identified in ASMCs. Mount evidence has suggested that KATP channel openers can reduce airway hyperresponsiveness and alleviate airway remodeling. Opening K(+) channels triggers K(+) efflux, which leading to membrane hyperpolarization, preventing Ca(2+)entry through closing voltage-operated Ca(2+) channels. Intracellular Ca(2+) is the most important regulator of muscle contraction, cell proliferation and migration. K(+) efflux decreases Ca(2+) influx, which consequently influences ASMCs proliferation and migration. As a KATP channel opener, iptakalim (Ipt) has been reported to restrain the proliferation of pulmonary arterial smooth muscle cells (PASMCs) involved in vascular remodeling, while little is known about its impact on ASMCs. The present study was designed to investigate the effects of Ipt on human ASMCs and the mechanisms underlying. Results obtained from cell counting kit-8 (CCK-8), flow cytometry and 5-ethynyl-2'-deoxyuridine (EdU) incorporation showed that Ipt significantly inhibited platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation. ASMCs migration induced by PDGF-BB was also suppressed by Ipt in transwell migration and scratch assay. Besides, the phosphorylation of Ca(2+)/calmodulin-dependent kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (Akt), and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were as well alleviated by Ipt administration. Furthermore, we found that the inhibition of Ipt on the PDGF-BB-induced proliferation and migration in human ASMCs was blocked by glibenclamide (Gli), a selective KATP channel antagonist. These findings provide a strong evidence to support that Ipt antagonize the proliferating and migrating effects of PDGF-BB on

  19. s-Carboxymethylcysteine inhibits carbachol-induced constriction of epithelium-denuded rat and human airway preparations.

    PubMed

    Pavlovic, Dragan; Frieling, Helge; Usichenko, Taras; Nedeljkov, Vladimir; Nafissi, Thais; Lehmann, Christian; Aubier, Michel; Wendt, Michael

    2008-05-01

    1. The effects of s-carboxymethyl-L-cysteine (S-CMC), either administered orally to rats or incubated with tissue preparations from rats and humans, on isometric contractions of tracheal smooth muscle were investigated in the present study using an improved in vitro model of tracheal tube or ring preparations. The involvement of the tracheal epithelium in the observed effects was also investigated. 2. The experimental model permitted selective perfusion of the airway tube, luminal-IN or serosal-OUT, and measurement of airway smooth muscle contraction or relaxation in preparations with (+) or without (-) epithelium (Ep), excluding direct effects of airway mucus. 3. We found that oral pretreatment of rats with S-CMC (mixed with water; 200 mg/kg per day for 2 weeks), but not short pre-incubation of preparations in vitro (10(-3) mol/L S-CMC for 1 h), diminished the sensitivity of -Ep preparations to carbachol compared with controls (EC(50) (-log(10) mol/L) values: 5.5 +/- 0.1 vs 5.8 +/- 0.1, respectively, for IN perfusion (P < 0.005); 5.6 +/- 0.1 vs 5.9 +/- 0.1, respectively, for OUT perfusion (P < 0.005)), whereas the sensitivity of preparations to aminophylline was not affected. Normal sensitivity to carbachol stimulation was re-established if preparations were pre-incubated with capsaicin. 4. It was also found that longer pre-incubation (4 h) of ring-preparations of human bronchus with S-CMC (10(-5) mol/L) in vitro resulted in a diminished response to carbachol stimulation. 5. In conclusion, S-CMC had small inhibitory effects on the sensitivity of rat and human airway smooth muscle to carbachol, particularly in endothelium-denuded preparations. Whether the epithelium was responding to S-CMC by producing some contracting factor(s) requires further investigation.

  20. Vitamin D attenuates cytokine-induced remodeling in human fetal airway smooth muscle cells.

    PubMed

    Britt, Rodney D; Faksh, Arij; Vogel, Elizabeth R; Thompson, Michael A; Chu, Vivian; Pandya, Hitesh C; Amrani, Yassine; Martin, Richard J; Pabelick, Christina M; Prakash, Y S

    2015-06-01

    Asthma in the pediatric population remains a significant contributor to morbidity and increasing healthcare costs. Vitamin D3 insufficiency and deficiency have been associated with development of asthma. Recent studies in models of adult airway diseases suggest that the bioactive Vitamin D3 metabolite, calcitriol (1,25-dihydroxyvitamin D3 ; 1,25(OH)2 D3 ), modulates responses to inflammation; however, this concept has not been explored in developing airways in the context of pediatric asthma. We used human fetal airway smooth muscle (ASM) cells as a model of the early postnatal airway to explore how calcitriol modulates remodeling induced by pro-inflammatory cytokines. Cells were pre-treated with calcitriol and then exposed to TNFα or TGFβ for up to 72 h. Matrix metalloproteinase (MMP) activity, production of extracellular matrix (ECM), and cell proliferation were assessed. Calcitriol attenuated TNFα enhancement of MMP-9 expression and activity. Additionally, calcitriol attenuated TNFα and TGFβ-induced collagen III expression and deposition, and separately, inhibited proliferation of fetal ASM cells induced by either inflammatory mediator. Analysis of signaling pathways suggested that calcitriol effects in fetal ASM involve ERK signaling, but not other major inflammatory pathways. Overall, our data demonstrate that calcitriol can blunt multiple effects of TNFα and TGFβ in developing airway, and point to a potentially novel approach to alleviating structural changes in inflammatory airway diseases of childhood.

  1. Cortactin mediates elevated shear stress-induced mucin hypersecretion via actin polymerization in human airway epithelial cells.

    PubMed

    Liu, Chunyi; Li, Qi; Zhou, Xiangdong; Kolosov, Victor P; Perelman, Juliy M

    2013-12-01

    Mucus hypersecretion is a remarkable pathophysiological manifestation in airway obstructive diseases. These diseases are usually accompanied with elevated shear stress due to bronchoconstriction. Previous studies have reported that shear stress induces mucin5AC (MUC5AC) secretion via actin polymerization in cultured nasal epithelial cells. Furthermore, it is well known that cortactin, an actin binding protein, is a central mediator of actin polymerization. Therefore, we hypothesized that cortactin participates in MUC5AC hypersecretion induced by elevated shear stress via actin polymerization in cultured human airway epithelial cells. Compared with the relevant control groups, Src phosphorylation, cortactin phosphorylation, actin polymerization and MUC5AC secretion were significantly increased after exposure to elevated shear stress. Similar effects were found when pretreating the cells with jasplakinolide, and transfecting with wild-type cortactin. However, these effects were significantly attenuated by pretreating with Src inhibitor, cytochalasin D or transfecting cells with the specific small interfering RNA of cortactin. Collectively, these results suggest that elevated shear stress induces MUC5AC hypersecretion via tyrosine-phosphorylated cortactin-associated actin polymerization in cultured human airway epithelial cells.

  2. Regional aerosol deposition in human upper airways. Progress report, March 1, 1992--February 28, 1993

    SciTech Connect

    Swift, D.L.

    1992-11-01

    Laboratory experimental studies were carried out to investigate the factors influencing the deposition of aerosols ranging in size from 1 nm to 10 {mu}m in the human nasal, oral, pharyngeal and laryngeal airways. These experimental studies were performed in replicate upper airway physical models and in human volunteer subjects. New replicate models of the oral passage of an infant, the oral passage of an adult at two openings and the combined nasal and oral airways of an adult were constructed during the period, adding to the existing models of adult, child and infant nasal and oral airways models. Deposition studies in the adult oral and adult nasal models were performed under simulated cyclic flow conditions with 1 nm particles to compare with previously measured constant flow studies. Similar studies with inertial particles (1--10 {mu}m diameter) were performed with the adult nasal model; in both instances, results with cyclic flow were similar to constant flow results using a simple average flow rate based on inspiratory volume and time of inspiration. Human subject studies were performed with particle sizes 5--20 nm for nasal inspiration; preliminary analysis shows good agreement with model studies at several representative flow rates. Nasal inspiratory inertial deposition of 1--4 {mu}m diameter particles was measured in several adults as a function of airway dimensions; dimensional changes of the valve area by decongestion did not produce concomitant deposition changes.

  3. Effect of dexamethasone and ACC on bacteria-induced mucin expression in human airway mucosa.

    PubMed

    Hauber, Hans-Peter; Goldmann, Torsten; Vollmer, Ekkehard; Wollenberg, Barbara; Zabel, Peter

    2007-11-01

    Gram-negative bacteria can stimulate mucin production, but excessive mucus supports bacterial infection and consequently leads to airway obstruction. Therefore, the effect of dexamethasone (DEX) and the antioxidant acetyl-cysteine (ACC) on bacteria-induced mucus expression was investigated. Explanted human airway mucosa and mucoepidermoid cells (Calu-3) were stimulated with lipopolysaccharide (LPS) or PAM3 (a synthetic lipoprotein). DEX or ACC were added to either LPS- or PAM3-stimulated airway mucosa or Calu-3 cells. Mucin mRNA expression (MUC5AC) and total mucus glycoconjugates (mucin protein) were quantified using real-time PCR and periodic acid Schiff staining. LPS and PAM3 significantly increased mucin expression in airway mucosa and Calu-3 cells (P < 0.05). DEX alone had no significant effect on mucin expression in airway mucosa or Calu-3 cells (P > 0.05). In contrast, DEX significantly reduced LPS- and PAM3-induced mucin expression in explanted mucosal tissue and mucin expression in Calu-3 cells (P < 0.05). In explanted human airway mucosa ACC alone significantly increased mucin expression (P < 0.05). In contrast, ACC significantly decreased LPS- and PAM3-induced mucin expression (P < 0.05). In Calu-3 cells ACC alone had no significant effect on mucin expression (P > 0.05). ACC decreased LPS- and PAM3-induced mucin expression, but this effect was not significant (P > 0.05). These data suggest that DEX can effectively reduce bacteria-induced mucin expression in the airways. ACC alone may increase mucin expression in noninfected mucosa, but it decreased bacteria-induced mucin expression. Further studies are warranted to evaluate whether the effect of DEX or ACC is clinically relevant.

  4. Influenza virus budding from the tips of cellular microvilli in differentiated human airway epithelial cells.

    PubMed

    Kolesnikova, Larissa; Heck, Sonja; Matrosovich, Tatyana; Klenk, Hans-Dieter; Becker, Stephan; Matrosovich, Mikhail

    2013-05-01

    The epithelium of conducting airways represents the main target for influenza virus in mammals. However, the peculiarities of virus interactions with differentiated airway epithelial cells remain largely unknown. Here, influenza virus budding was studied in differentiated cultures of human tracheobronchial epithelial cells using transmission electron microscopy. Budding of spherical and filamentous virions was observed on the apical surfaces of cells with no association with cilia and secretory granules. Quantitative analysis of the distribution of viral buds on the cell surface indicated that the tips of the microvilli represented a prominent site of influenza virus budding in the human airway epithelium. As the microvilli of differentiated cells are involved in many fundamental cell functions, these data will prompt further studies on the biological significance of microvilli-associated budding for virus replication, transmission and pathogenicity.

  5. DEVELOPMENT OF THE HUMAN LUNG MEASURED BY AEROSOL-DERIVED AIRWAY MORPHEMETRY (ADAM).

    EPA Science Inventory

    We measured, in vivo, the airspace calibers of the small airways and alveoli by ADAM in the lungs of children of ages 6 to 18 years and adults aged 18 to 80 years. ADAM utilizes the gravitational settling time of inhaled monodisperse particles to infer the vertical distance to th...

  6. DEVELOPMENT OF THE HUMAN LUNG MEASURED BY AEROSOL-DERIVED AIRWAY MORPHEMETRY (ADAM).

    EPA Science Inventory

    We measured, in vivo, the airspace calibers of the small airways and alveoli by ADAM in the lungs of children of ages 6 to 18 years and adults aged 18 to 80 years. ADAM utilizes the gravitational settling time of inhaled monodisperse particles to infer the vertical distance to th...

  7. Insights into Group 2 Innate Lymphoid Cells in Human Airway Disease.

    PubMed

    Karta, Maya R; Broide, David H; Doherty, Taylor A

    2016-01-01

    Recent discoveries have led to the identification of a novel group of immune cells, the innate lymphoid cells (ILCs). The members of this group are divided into three subpopulations: ILC1s, ILC2s, and ILC3s. ILC2s produce Th2 cytokines, IL-4, IL-5, and IL-13, upon activation by epithelial cell-derived cytokines, lipid mediators (cysteinyl leukotrienes and prostaglandin D2), and TNF family member TL1A and promote structural and immune cell responses in the airways after antigen exposure. In addition, ILC2 function is also influenced by inducible T cell costimulator (ICOS)/ICOS-ligand (ICOS-L) interactions via direct contact between immune cells. The most common airway antigens are allergens and viruses which are highly linked to the induction of airway diseases with underlying type 2 inflammation including asthma and allergic rhinitis. Based on recent findings linking ILC2s and airway Th2 responses, there is intensive investigation into the role of ILC2s in human disease with the hope of a better understanding of the pathophysiology and the discovery of novel potential therapeutic targets. This review summarizes the recent advances made in elucidating ILC2 involvement in human Th2 airway disease.

  8. Heat Shock–Related Protein 20 Peptide Decreases Human Airway Constriction Downstream of β2-Adrenergic Receptor

    PubMed Central

    Banathy, Alex; Cheung-Flynn, Joyce; Goleniewska, Kasia; Boyd, Kelly L.; Newcomb, Dawn C.; Peebles, R. Stokes

    2016-01-01

    Severe bronchospasm refractory to β-agonists is a challenging aspect of asthma therapy, and novel therapeutics are needed. β-agonist–induced airway smooth muscle (ASM) relaxation is associated with increases in the phosphorylation of the small heat shock–related protein (HSP) 20. We hypothesized that a transducible phosphopeptide mimetic of HSP20 (P20 peptide) causes relaxation of human ASM (HASM) by interacting with target(s) downstream of the β2-adrenergic receptor (β2AR) pathway. The effect of the P20 peptide on ASM contractility was determined in human and porcine ASM using a muscle bath. The effect of the P20 peptide on filamentous actin dynamics and migration was examined in intact porcine ASM and cultured primary HASM cells. The efficacy of the P20 peptide in vivo on airway hyperresponsiveness (AHR) was determined in an ovalbumin (OVA) sensitization and challenge murine model of allergic airway inflammation. P20 peptide caused dose-dependent relaxation of carbachol-precontracted ASM and blocked carbachol-induced contraction. The β2AR inhibitor, (±)-1-[2,3-(dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(1-methylethyl)amino]-2-butanol hydrochloride (ICI 118,551), abrogated isoproterenol but not P20 peptide–mediated relaxation. The P20 peptide decreased filamentous actin levels in intact ASM, disrupted stress fibers, and inhibited platelet-derived growth factor–induced migration of HASM cells. The P20 peptide treatment reduced methacholine-induced AHR in OVA mice without affecting the inflammatory response. These results suggest that the P20 peptide decreased airway constriction and disrupted stress fibers through regulation of the actin cytoskeleton downstream of β2AR. Thus, the P20 peptide may be a potential therapeutic for asthma refractory to β-agonists. PMID:26909644

  9. Evaluation of airway resistance in primary small cell carcinoma of the trachea by MostGraph: a case study

    PubMed Central

    Hagiwara, Eri; Hayashi, Kentaro; Takahashi, Mai; Iida, Yuko; Hiranuma, Hisato; Nakagawa, Yoshiko; Hataoka, Tsukasa; Mizumura, Kenji; Maruoka, Shuichiro; Shimizu, Tetsuo; Takahashi, Noriaki; Hashimoto, Shu

    2016-01-01

    The case subject was a 58-year-old woman who presented to our hospital with a chief complaint of respiratory discomfort. Wheezing could be heard in both lungs; treatment was initiated with inhaled steroids for suspected bronchial asthma. However, 1 week later, the respiratory discomfort had not improved and the wheezing sound had progressed to the neck area. Upper airway obstruction was suspected; therefore, chest computed tomography (CT) was performed, revealing tracheal stenosis caused by a tumor in the upper airway. Because of the high risk of airway obstruction, tracheotomy and tracheal tumor resection were performed. Histopathological examination of the resected tumor revealed small cell lung cancer (SCLC); the stage was determined to be clinical stage IIIB (cT4N2M0), for which chemotherapy with two cycles of cisplatin plus etoposide followed by radiation therapy were administered. Pulmonary function testing revealed no change in the forced expiratory volume in 1 sec and flow volume (FV) curve before and after tumor resection, whereas airway resistance measured by MostGraph-01 showed a marked decrease following treatment. We believe that MostGraph-01 may be useful for measuring airway resistance and evaluating a tracheal tumor, and report a case using MostGraph-01. PMID:27621904

  10. Evaluation of airway resistance in primary small cell carcinoma of the trachea by MostGraph: a case study.

    PubMed

    Hagiwara, Eri; Gon, Yasuhiro; Hayashi, Kentaro; Takahashi, Mai; Iida, Yuko; Hiranuma, Hisato; Nakagawa, Yoshiko; Hataoka, Tsukasa; Mizumura, Kenji; Maruoka, Shuichiro; Shimizu, Tetsuo; Takahashi, Noriaki; Hashimoto, Shu

    2016-08-01

    The case subject was a 58-year-old woman who presented to our hospital with a chief complaint of respiratory discomfort. Wheezing could be heard in both lungs; treatment was initiated with inhaled steroids for suspected bronchial asthma. However, 1 week later, the respiratory discomfort had not improved and the wheezing sound had progressed to the neck area. Upper airway obstruction was suspected; therefore, chest computed tomography (CT) was performed, revealing tracheal stenosis caused by a tumor in the upper airway. Because of the high risk of airway obstruction, tracheotomy and tracheal tumor resection were performed. Histopathological examination of the resected tumor revealed small cell lung cancer (SCLC); the stage was determined to be clinical stage IIIB (cT4N2M0), for which chemotherapy with two cycles of cisplatin plus etoposide followed by radiation therapy were administered. Pulmonary function testing revealed no change in the forced expiratory volume in 1 sec and flow volume (FV) curve before and after tumor resection, whereas airway resistance measured by MostGraph-01 showed a marked decrease following treatment. We believe that MostGraph-01 may be useful for measuring airway resistance and evaluating a tracheal tumor, and report a case using MostGraph-01.

  11. TRANSPORT AND DEPOSITION OF NANO-SIZE PARTICLES IN THE UPPER HUMAN RESPIRATORY AIRWAYS

    EPA Science Inventory

    TRANSPORT AND DEPOSITION OF NANO-SIZE PARTICLES IN THE UPPER HUMAN RESPIRATORY AIRWAYS. Zhe Zhang*, Huawei Shi, Clement Kleinstreuer, Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910; Chong S. Kim, National Health and En...

  12. SIGNALING MECHANISMS IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES

    EPA Science Inventory

    SIGNALING MECHANISMS IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES
    Y.M. Kim, A.G. Lenz, R. Silbajoris, I. Jaspers and J.M. Samet. Department of Environmental Sciences and Engineering and Center for Environmental Medicine, University of North Carolina, ...

  13. DIESEL EXHAUST ACTIVATES REDOX-SENSITIVE TRANSCRIPTION FACTORS AND KINASES IN HUMAN AIRWAYS

    EPA Science Inventory

    Diesel exhaust (DE) is a major component of airborne particulate matter. In previous studies we have described the acute inflammatory response of the human airway to inhaled DE. This was characterized by neutrophil, mast cell, and lymphocyte infiltration into the bronchial mucosa...

  14. SIGNALING MECHANISMS IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES

    EPA Science Inventory

    SIGNALING MECHANISMS IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES
    Y.M. Kim, A.G. Lenz, R. Silbajoris, I. Jaspers and J.M. Samet. Department of Environmental Sciences and Engineering and Center for Environmental Medicine, University of North Carolina, ...

  15. Staphylococcus aureus Infection Reduces Nutrition Uptake and Nucleotide Biosynthesis in a Human Airway Epithelial Cell Line

    PubMed Central

    Gierok, Philipp; Harms, Manuela; Methling, Karen; Hochgräfe, Falko; Lalk, Michael

    2016-01-01

    The Gram positive opportunistic human pathogen Staphylococcus aureus induces a variety of diseases including pneumonia. S. aureus is the second most isolated pathogen in cystic fibrosis patients and accounts for a large proportion of nosocomial pneumonia. Inside the lung, the human airway epithelium is the first line in defence with regard to microbial recognition and clearance as well as regulation of the immune response. The metabolic host response is, however, yet unknown. To address the question of whether the infection alters the metabolome and metabolic activity of airway epithelial cells, we used a metabolomics approach. The nutrition uptake by the human airway epithelial cell line A549 was monitored over time by proton magnetic resonance spectroscopy (1H-NMR) and the intracellular metabolic fingerprints were investigated by gas chromatography and high performance liquid chromatography (GC-MS) and (HPLC-MS). To test the metabolic activity of the host cells, glutamine analogues and labelled precursors were applied after the infection. We found that A549 cells restrict uptake of essential nutrients from the medium after S. aureus infection. Moreover, the infection led to a shutdown of the purine and pyrimidine synthesis in the A549 host cell, whereas other metabolic routes such as the hexosamine biosynthesis pathway remained active. In summary, our data show that the infection with S. aureus negatively affects growth, alters the metabolic composition and specifically impacts the de novo nucleotide biosynthesis in this human airway epithelial cell model. PMID:27834866

  16. CULTURE CONDITIONS AFFECT HUMAN AIRWAY EPITHELIAL CELL RESPONSE TO DIESEL PARTICLE EXPOSURE IN VITRO

    EPA Science Inventory

    Diesel exhaust particles (DEP) are a ubiquitous ambient air contaminant that may contribute to the health effects of particulate matter inhalation. In vitro studies have shown that DEP exposure induces pro-inflammatory proteins in human airway epithelial cells (HAEC) with varying...

  17. TRANSPORT AND DEPOSITION OF NANO-SIZE PARTICLES IN THE UPPER HUMAN RESPIRATORY AIRWAYS

    EPA Science Inventory

    TRANSPORT AND DEPOSITION OF NANO-SIZE PARTICLES IN THE UPPER HUMAN RESPIRATORY AIRWAYS. Zhe Zhang*, Huawei Shi, Clement Kleinstreuer, Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910; Chong S. Kim, National Health and En...

  18. CULTURE CONDITIONS AFFECT HUMAN AIRWAY EPITHELIAL CELL RESPONSE TO DIESEL PARTICLE EXPOSURE IN VITRO

    EPA Science Inventory

    Diesel exhaust particles (DEP) are a ubiquitous ambient air contaminant that may contribute to the health effects of particulate matter inhalation. In vitro studies have shown that DEP exposure induces pro-inflammatory proteins in human airway epithelial cells (HAEC) with varying...

  19. DIESEL EXHAUST ACTIVATES REDOX-SENSITIVE TRANSCRIPTION FACTORS AND KINASES IN HUMAN AIRWAYS

    EPA Science Inventory

    Diesel exhaust (DE) is a major component of airborne particulate matter. In previous studies we have described the acute inflammatory response of the human airway to inhaled DE. This was characterized by neutrophil, mast cell, and lymphocyte infiltration into the bronchial mucosa...

  20. THE EFFECT OF SIZE FRACTIONED PARTICULATE MATTER ON HUMAN AIRWAY EPITHELIAL CELLS IN VITRO

    EPA Science Inventory

    THE EFFECT OF SIZE FRACTIONATED PARTICULATE MATTER ON HUMAN AIRWAY EPITHELIAL CELLS IN VITRO. LA Dailey1, C Sioutas2, JM Soukup1, S Becker1, RB Devlin1. 1National Health & Environmental Effects Research Laboratory, USEPA, RTP, NC,USA; 2USC, Civil & Environmental Engineering, LA, ...

  1. [Preoperatiove Airway Bacterial Colonization: the Missing Link between Non-small Cell Lung Cancer Following Lobectomy and Postoperative Pneumonia?

    PubMed

    Gao, Ke; Lai, Yutian; Huang, Jian; Wang, Yifan; Wang, Xiaowei; Che, Guowei

    2017-04-20

    Surgical procedure is the main method of treating lung cancer. Meanwhile, postoperative pneumonia (POP) is the major cause of perioperative mortality in lung cancer surgery. The preoperative pathogenic airway bacterial colonization is an independent risk factor causing postoperative pulmonary complications (PPC). This cross-sectional study aimed to explore the relationship between preoperative pathogenic airway bacterial colonization and POP in lung cancer and to identify the high-risk factors of preoperative pathogenic airway bacterial colonization. A total of 125 patients with non-small cell lung cancer (NSCLC) underwent thoracic surgery in six hospitals of Chengdu between May 2015 and January 2016. Preoperative pathogenic airway bacterial colonization was detected in all patients via fiber bronchoscopy. Patients' PPC, high-risk factors, clinical characteristics, and the serum surfactant protein D (SP-D) level were also analyzed. The incidence of preoperative pathogenic airway bacterial colonization among NSCLC patients was 15.2% (19/125). Up to 22 strains were identified in the colonization positive group, with Gram-negative bacteria being dominant (86.36%, 19/22). High-risk factors of pathogenic airway bacterial colonization were age (≥75 yr) and smoking index (≥400 cigarettes/year). PPC incidence was significantly higher in the colonization-positive group (42.11%, 8/19) than that in the colonization-negative group (16.04%, 17/106)(P=0.021). POP incidence was significantly higher in the colonization-positive group (26.32%, 5/19) than that in the colonization-negative group (6.60%, 7/106)(P=0.019). The serum SP-D level of patients in the colonization-positive group was remarkably higher than that in the colonization-negative group [(31.25±6.09) vs (28.17±5.23)](P=0.023). The incidence of preoperative pathogenic airway bacterial colonization among NSCLC patients with POP was 41.67% (5/12). This value was 3.4 times higher than that among the patients without

  2. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration

    SciTech Connect

    Liu, Wenrui; Kong, Hui; Zeng, Xiaoning; Wang, Jingjing; Wang, Zailiang; Yan, Xiaopei; Wang, Yanli; Xie, Weiping Wang, Hong

    2015-08-15

    Chronic airway diseases are characterized by airway remodeling which is attributed partly to the proliferation and migration of airway smooth muscle cells (ASMCs). ATP-sensitive potassium (K{sub ATP}) channels have been identified in ASMCs. Mount evidence has suggested that K{sub ATP} channel openers can reduce airway hyperresponsiveness and alleviate airway remodeling. Opening K{sup +} channels triggers K{sup +} efflux, which leading to membrane hyperpolarization, preventing Ca{sup 2+}entry through closing voltage-operated Ca{sup 2+} channels. Intracellular Ca{sup 2+} is the most important regulator of muscle contraction, cell proliferation and migration. K{sup +} efflux decreases Ca{sup 2+} influx, which consequently influences ASMCs proliferation and migration. As a K{sub ATP} channel opener, iptakalim (Ipt) has been reported to restrain the proliferation of pulmonary arterial smooth muscle cells (PASMCs) involved in vascular remodeling, while little is known about its impact on ASMCs. The present study was designed to investigate the effects of Ipt on human ASMCs and the mechanisms underlying. Results obtained from cell counting kit-8 (CCK-8), flow cytometry and 5-ethynyl-2′-deoxyuridine (EdU) incorporation showed that Ipt significantly inhibited platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation. ASMCs migration induced by PDGF-BB was also suppressed by Ipt in transwell migration and scratch assay. Besides, the phosphorylation of Ca{sup 2+}/calmodulin-dependent kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (Akt), and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were as well alleviated by Ipt administration. Furthermore, we found that the inhibition of Ipt on the PDGF-BB-induced proliferation and migration in human ASMCs was blocked by glibenclamide (Gli), a selective K{sub ATP} channel antagonist. These findings provide a strong evidence to support that Ipt

  3. Matriptase proteolytically activates influenza virus and promotes multicycle replication in the human airway epithelium.

    PubMed

    Beaulieu, Alexandre; Gravel, Émilie; Cloutier, Alexandre; Marois, Isabelle; Colombo, Éloïc; Désilets, Antoine; Verreault, Catherine; Leduc, Richard; Marsault, Éric; Richter, Martin V

    2013-04-01

    Influenza viruses do not encode any proteases and must rely on host proteases for the proteolytic activation of their surface hemagglutinin proteins in order to fuse with the infected host cells. Recent progress in the understanding of human proteases responsible for influenza virus hemagglutinin activation has led to the identification of members of the type II transmembrane serine proteases TMPRSS2 and TMPRSS4 and human airway trypsin-like protease; however, none has proved to be the sole enzyme responsible for hemagglutinin cleavage. In this study, we identify and characterize matriptase as an influenza virus-activating protease capable of supporting multicycle viral replication in the human respiratory epithelium. Using confocal microscopy, we found matriptase to colocalize with hemagglutinin at the apical surface of human epithelial cells and within endosomes, and we showed that the soluble form of the protease was able to specifically cleave hemagglutinins from H1 virus, but not from H2 and H3 viruses, in a broad pH range. We showed that small interfering RNA (siRNA) knockdown of matriptase in human bronchial epithelial cells significantly blocked influenza virus replication in these cells. Lastly, we provide a selective, slow, tight-binding inhibitor of matriptase that significantly reduces viral replication (by 1.5 log) of H1N1 influenza virus, including the 2009 pandemic virus. Our study establishes a three-pronged model for the action of matriptase: activation of incoming viruses in the extracellular space in its shed form, upon viral attachment or exit in its membrane-bound and/or shed forms at the apical surface of epithelial cells, and within endosomes by its membrane-bound form where viral fusion takes place.

  4. Matriptase Proteolytically Activates Influenza Virus and Promotes Multicycle Replication in the Human Airway Epithelium

    PubMed Central

    Beaulieu, Alexandre; Gravel, Émilie; Cloutier, Alexandre; Marois, Isabelle; Colombo, Éloïc; Désilets, Antoine; Verreault, Catherine; Leduc, Richard; Marsault, Éric

    2013-01-01

    Influenza viruses do not encode any proteases and must rely on host proteases for the proteolytic activation of their surface hemagglutinin proteins in order to fuse with the infected host cells. Recent progress in the understanding of human proteases responsible for influenza virus hemagglutinin activation has led to the identification of members of the type II transmembrane serine proteases TMPRSS2 and TMPRSS4 and human airway trypsin-like protease; however, none has proved to be the sole enzyme responsible for hemagglutinin cleavage. In this study, we identify and characterize matriptase as an influenza virus-activating protease capable of supporting multicycle viral replication in the human respiratory epithelium. Using confocal microscopy, we found matriptase to colocalize with hemagglutinin at the apical surface of human epithelial cells and within endosomes, and we showed that the soluble form of the protease was able to specifically cleave hemagglutinins from H1 virus, but not from H2 and H3 viruses, in a broad pH range. We showed that small interfering RNA (siRNA) knockdown of matriptase in human bronchial epithelial cells significantly blocked influenza virus replication in these cells. Lastly, we provide a selective, slow, tight-binding inhibitor of matriptase that significantly reduces viral replication (by 1.5 log) of H1N1 influenza virus, including the 2009 pandemic virus. Our study establishes a three-pronged model for the action of matriptase: activation of incoming viruses in the extracellular space in its shed form, upon viral attachment or exit in its membrane-bound and/or shed forms at the apical surface of epithelial cells, and within endosomes by its membrane-bound form where viral fusion takes place. PMID:23365447

  5. In vivo deposition of ultrafine aerosols in human nasal and oral airways

    SciTech Connect

    Yeh, Hsu-Chi; Swift, D.L.; Simpson, S.Q.

    1995-12-01

    The extrathoracic airways, including the nasal passage, oral passage, pharynx, and larynx, are the first targets for inhaled particles and provide an important defense for the lung. Understanding the deposition efficiency of the nasal and oral passages is therefore crucial for assessing doses of inhaled particles to the extrathoracic airways and the lung. Significant inter-subject variability in nasal deposition has been shown in recent studies by Rasmussen, T.R. et al, using 2.6 {mu}m particles in 10 human subjects and in our preliminary studies using 0.004-0.15 {mu}m particles in four adult volunteers. No oral deposition was reported in either of these studies. Reasons for the intersubject variations have been frequently attributed to the geometry of the nasal passages. The aims of the present study were to measure in vivo the nasal airway dimensions and the deposition of ultrafine aerosols in both the nasal and oral passages, and to determine the relationship between nasal airway dimensions and aerosol deposition. A statistical procedure incorporated with the diffusion theory was used to model the dimensional features of the nasal airways which may be responsible for the biological variability in particle deposition. In summary, we have correlated deposition of particles in the size range of 0.004 to 0.15 {mu}m with the nasal dimensions of each subject.

  6. Expression of IL-4/IL-13 receptors in differentiating human airway epithelial cells

    PubMed Central

    Martin, Linda D.; Stern, Randi; Laxman, Bharathi; Marroquin, Bertha A.

    2010-01-01

    IL-4 and IL-13 elicit several important responses in airway epithelium including chemokine secretion and mucous secretion that may contribute to airway inflammation, cell migration, and differentiation. These cytokines have overlapping but not identical effector profiles likely due to shared subunits in their receptor complexes. These receptors are variably described in epithelial cells, and the relative expression, localization, and function of these receptors in differentiated and repairing epithelial cells are not clear. We examined IL-4/IL-13 receptor expression and localization in primary airway epithelial cells collected from normal human lungs and grown under conditions yielding both undifferentiated and differentiated cells inclusive of basal, goblet, and ciliated cell phenotypes. Gene expression of the IL-4Rα, IL-2Rγc, IL-13Rα1, and IL-13Rα2 receptor subunits increased with differentiation, but different patterns of localization and protein abundance were seen for each subunit based on both differentiation and the cell subtypes present. Increased expression of receptor subunits observed in more differentiated cells was associated with more substantial functional responses to IL-4 stimulation including increased eotaxin-3 expression and accelerated migration after injury. We demonstrate substantial differences in IL-4/IL-13 receptor subunit expression and responsiveness to IL-4 based on the extent of airway epithelial cell differentiation and suggest that these differences may have functional consequences in airway inflammation. PMID:20729386

  7. Premature infants have impaired airway antiviral IFNγ responses to human metapneumovirus compared to respiratory syncytial virus

    PubMed Central

    Pancham, Krishna; Perez, Geovanny F.; Huseni, Shehlanoor; Jain, Amisha; Kurdi, Bassem; Rodriguez-Martinez, Carlos E.; Preciado, Diego; Rose, Mary C.; Nino, Gustavo

    2017-01-01

    BACKGROUND It is unknown why human metapneumovirus (HMPV) and respiratory syncytial virus (RSV) cause severe respiratory infection in children, particularly in premature infants. Our aim was to investigate if there are defective airway antiviral responses to these viruses in young children with history of prematurity. METHODS Nasal airway secretions were collected from 140 children ≤3 y old without detectable virus (n = 80) or with PCR-confirmed HMPV or RSV infection (n = 60). Nasal protein levels of IFNγ, CCL5/RANTES, IL-10, IL-4, and IL-17 were determined using a multiplex magnetic bead immunoassay. RESULTS Full-term children with HMPV and RSV infection had increased levels of nasal airway IFNγ, CCL5, and IL-10 along with an elevation in Th1 (IFNγ)/Th2 (IL-4) ratios, which is expected during antiviral responses. In contrast, HMPV-infected premature children (< 32 wk gestation) did not exhibit increased Th1/Th2 ratios or elevated nasal airway secretion of IFNγ, CCL5, and IL-10 relative to uninfected controls. CONCLUSION Our study is the first to demonstrate that premature infants have defective IFNγ, CCL5/RANTES, and IL-10 airway responses during HMPV infection and provides novel insights about the potential reason why HMPV causes severe respiratory disease in children with history of prematurity. PMID:26086642

  8. Continuous mucociliary transport by primary human airway epithelial cells in vitro

    PubMed Central

    Sears, Patrick R.; Yin, Wei-Ning

    2015-01-01

    Mucociliary clearance (MCC) is an important innate defense mechanism that continuously removes inhaled pathogens and particulates from the airways. Normal MCC is essential for maintaining a healthy respiratory system, and impaired MCC is a feature of many airway diseases, including both genetic (cystic fibrosis, primary ciliary dyskinesia) and acquired (chronic obstructive pulmonary disease, bronchiectasis) disorders. Research into the fundamental processes controlling MCC, therefore, has direct clinical application, but has been limited in part due to the difficulty of studying this complex multicomponent system in vitro. In this study, we have characterized a novel method that allows human airway epithelial cells to differentiate into a mucociliary epithelium that transports mucus in a continuous circular track. The mucociliary transport device allows the measurement and manipulation of all features of mucociliary transport in a controlled in vitro system. In this initial study, the effect of ciliary beat frequency and mucus concentration on the speed of mucociliary transport was investigated. PMID:25979076

  9. Characterization of human papillomavirus in airway papillomas by histologic and biochemical analysis.

    PubMed

    Glynn, M; Sanford, T; Hoover, L; Kinsey, W; Dobbs, L; Bruegger, D

    1999-11-01

    The role of human papillomavirus (HPV) in airway papillomas has been well defined in recent literature. The chronicity and recurrence of papillomas has been postulated to be a result of residual viral genome in tissue treated with standard laser techniques. Thirteen patients with airway papillomas were selected for study with polymerase chain reaction (PCR) methods to detect viral DNA. Specimens taken prior to laser therapy and specimens taken at laser margins were consistently positive for HPV DNA by PCR. The HPV DNA is apparently present in tissues after macroscopic disease has been ablated by laser techniques. Histologic analysis of laser biopsies demonstrated fragments of squamous epithelium with cytologic features of HPV infection. Laser treatment is ineffective in eradicating HPV-infected tissues from airway papillomas, and this finding supports the notion that recurrence is a product of HPV incorporated into tissue not ablated by laser irradiation. Specific methods, results, and clinical correlation will be discussed.

  10. Modeled deposition of fine particles in human airway in Beijing, China

    NASA Astrophysics Data System (ADS)

    Li, Xiaoying; Yan, Caiqing; Patterson, Regan F.; Zhu, Yujiao; Yao, Xiaohong; Zhu, Yifang; Ma, Shexia; Qiu, Xinghua; Zhu, Tong; Zheng, Mei

    2016-01-01

    This study aims to simulate depositions of size-segregated particles in human airway in Beijing, China during seasons when fine particulate matter concentrations are high (December 2011 and April 2012). Particle size distributions (5.6-560 nm, electrical mobility diameter) near a major road in Beijing were measured by the TSI Fast Mobility Particle Sizer (FMPS). The information of size distributions provided by FMPS was applied in the Multiple-Path Particle Dosimetry model (MPPD) to quantify number and mass depositions of particles in human airway including extrathoracic (ET), tracheobronchial (TB), and pulmonary (PUL) regions of exposed Chinese in Beijing. Our results show that under ambient conditions, particle number concentration (NC) deposition in PUL is the highest in the three major regions of human airway. The total particle NC deposition in human airway in winter is higher than that in spring, especially for ultrafine particles (1.8 times higher) while particle mass concentration (MC) deposition is higher in spring. Although particle MC in clean days are much lower than that in heavily polluted days, total particle NC deposition in human airway in clean days is comparable to that in heavily polluted days. NC deposition for nucleation mode particles (10-20 nm, aerodynamic diameter) in clean days is higher than that in heavily polluted days. MC deposition for accumulation mode particles (100-641 nm, aerodynamic diameter) in heavily polluted days is much higher than that in clean days, while that of nucleation mode is negligible. The temporal variation shows that the arithmetic mean and the median values of particle NC and MC depositions in the evening are both the highest, followed by morning and noon, and it is most likely due to increased contribution from traffic emissions.

  11. Glycoconjugate secretion in human airways in vitro: effects of epithelium removal.

    PubMed Central

    Sossé-Alaoui, H; Labat, C; Gorenne, I; Thomas de Montpreville, V; Bara, J; Brink, C

    1998-01-01

    The aim of this study was to examine glycoconjugate secretion in human airways with and without an epithelium. Glycoconjugate release in supernatants derived from human airways in vitro was determined using an ELISA assay with an anti-human mucin monoclonal antibody (MAb 3D3). This monoclonal antibody reacted strongly with Le(b) antigen but also recognized in vitro Le(a) and Le(y) determinants. In 11 of the 34 different lung samples (32%) studied the glycoconjugate levels were below the threshhold of detection for this assay. The mean basal secretion of glycoconjugates in human airways in vitro was 100+/-28 microg/g tissue (Period I; n = 23 different lung samples). The amount of glycoconjugate measured in the medium derived from human isolated bronchial ring preparations did not change under control conditions during the course of the experimental procedure (Period I; 128+/-46 microg/g tissue and Period II; 159 +/-48 microg/g tissue; n = 13 paired lung samples). In the supernatants of airway preparations with an intact epithelium the amount of glycoconjugates detected was 90+/-38 microg/g tissue (Period I; n = 12 different lung samples) and removal of the epithelium did not alter this basal glycoconjugate release (94+/-60 microg/g tissue: Period I, n = 8 different lung samples). The absence of the epithelial layer was confirmed by histological evaluation. Methacholine (100 microM) induced a 10- and four-fold increase in glycoconjugate release from airways with and without an epithelium, respectively. In contrast, in preparations with an epithelium, LTD4 (10 microM) and anti-IgE (dilution: 1/1000) did not cause an increase of glycoconjugate release. The methacholine difference between airways with and without an epithelium was not significantly different (P > 0.10). However, a treatment with atropine (100 microM) prevented the increase of glycoconjugate release in preparations with an epithelium. These data derived from a limited number of experiments suggest that

  12. Injury Induces Localized Airway Increases in Pro-Inflammatory Cytokines in Humans and Mice

    PubMed Central

    Jonker, Mark A.; Hermsen, Joshua L.; Gomez, F. Enrique; Sano, Yoshifumi

    2011-01-01

    Abstract Background Secretory immunoglobulin A (sIgA) increases in the airways of humans and mice after injury to protect against infection. The pro-inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 are linked molecularly to sIgA production and secretion and are required for sIgA increases in the airway after injury in a mouse model. We investigated the injury effect on airway and serum concentrations to determine the source of the cytokines involved in the airway IgA response. Methods In the first experiment, TNF-α, IL-1β, and IL-6 concentrations in bronchoalveolar lavage (BAL) fluid and serum obtained from 11 ventilated trauma patients within 30 h of admission were compared with those in eight elective surgical patients. In the second experiment, male ICR mice received no injury (n = 7) or injury with sham celiotomy and neck incisions (n = 8) with sacrifice of all animals at 8 h for BAL fluid and serum cytokine measurements by enzyme-linked immunosorbent assay. Results Injured patients had significantly higher BAL fluid and serum TNF-α, IL-1β, and IL-6 concentrations, with greater increases in the BAL fluid than in the serum. Injured mice had significantly increased BAL fluid concentrations of TNF-α, IL-1β, and IL-6 without significant changes in serum TNF-α or IL-1β. Serum IL-6 increased significantly. Conclusions Injury significantly increases human and mouse airway TNF-α, IL-1β, and IL-6. Increases are greater in the airway than in serum, implying a local rather than a systemic stress response to injury. PMID:21166596

  13. Extracellular acidification induces connective tissue growth factor production through proton-sensing receptor OGR1 in human airway smooth muscle cells

    SciTech Connect

    Matsuzaki, Shinichi; Ishizuka, Tamotsu; Yamada, Hidenori; Kamide, Yosuke; Hisada, Takeshi; Ichimonji, Isao; Aoki, Haruka; Yatomi, Masakiyo; Komachi, Mayumi; Tsurumaki, Hiroaki; Ono, Akihiro; Koga, Yasuhiko; Dobashi, Kunio; Mogi, Chihiro; Sato, Koichi; Tomura, Hideaki; Mori, Masatomo; Okajima, Fumikazu

    2011-10-07

    Highlights: {yields} The involvement of extracellular acidification in airway remodeling was investigated. {yields} Extracellular acidification alone induced CTGF production in human ASMCs. {yields} Extracellular acidification enhanced TGF-{beta}-induced CTGF production in human ASMCs. {yields} Proton-sensing receptor OGR1 was involved in acidic pH-stimulated CTGF production. {yields} OGR1 may play an important role in airway remodeling in asthma. -- Abstract: Asthma is characterized by airway inflammation, hyper-responsiveness and remodeling. Extracellular acidification is known to be associated with severe asthma; however, the role of extracellular acidification in airway remodeling remains elusive. In the present study, the effects of acidification on the expression of connective tissue growth factor (CTGF), a critical factor involved in the formation of extracellular matrix proteins and hence airway remodeling, were examined in human airway smooth muscle cells (ASMCs). Acidic pH alone induced a substantial production of CTGF, and enhanced transforming growth factor (TGF)-{beta}-induced CTGF mRNA and protein expression. The extracellular acidic pH-induced effects were inhibited by knockdown of a proton-sensing ovarian cancer G-protein-coupled receptor (OGR1) with its specific small interfering RNA and by addition of the G{sub q/11} protein-specific inhibitor, YM-254890, or the inositol-1,4,5-trisphosphate (IP{sub 3}) receptor antagonist, 2-APB. In conclusion, extracellular acidification induces CTGF production through the OGR1/G{sub q/11} protein and inositol-1,4,5-trisphosphate-induced Ca{sup 2+} mobilization in human ASMCs.

  14. Cell-to-Cell Contact and Nectin-4 Govern Spread of Measles Virus from Primary Human Myeloid Cells to Primary Human Airway Epithelial Cells

    PubMed Central

    Singh, Brajesh K.; Li, Ni; Mark, Anna C.; Mateo, Mathieu; Cattaneo, Roberto

    2016-01-01

    ABSTRACT Measles is a highly contagious, acute viral illness. Immune cells within the airways are likely first targets of infection, and these cells traffic measles virus (MeV) to lymph nodes for amplification and subsequent systemic dissemination. Infected immune cells are thought to return MeV to the airways; however, the mechanisms responsible for virus transfer to pulmonary epithelial cells are poorly understood. To investigate this process, we collected blood from human donors and generated primary myeloid cells, specifically, monocyte-derived macrophages (MDMs) and dendritic cells (DCs). MDMs and DCs were infected with MeV and then applied to primary cultures of well-differentiated airway epithelial cells from human donors (HAE). Consistent with previous results obtained with free virus, infected MDMs or DCs were incapable of transferring MeV to HAE when applied to the apical surface. Likewise, infected MDMs or DCs applied to the basolateral surface of HAE grown on small-pore (0.4-μm) support membranes did not transfer virus. In contrast, infected MDMs and DCs applied to the basolateral surface of HAE grown on large-pore (3.0-μm) membranes successfully transferred MeV. Confocal microscopy demonstrated that MDMs and DCs are capable of penetrating large-pore membranes but not small-pore membranes. Further, by using a nectin-4 blocking antibody or recombinant MeV unable to enter cells through nectin-4, we demonstrated formally that transfer from immune cells to HAE occurs in a nectin-4-dependent manner. Thus, both infected MDMs and DCs rely on cell-to-cell contacts and nectin-4 to efficiently deliver MeV to the basolateral surface of HAE. IMPORTANCE Measles virus spreads rapidly and efficiently in human airway epithelial cells. This rapid spread is based on cell-to-cell contact rather than on particle release and reentry. Here we posit that MeV transfer from infected immune cells to epithelial cells also occurs by cell-to-cell contact rather than through cell

  15. Fetal human airway smooth muscle cell production of leukocyte chemoattractants is differentially regulated by fluticasone.

    PubMed

    Pearson, Helen; Britt, Rodney D; Pabelick, Christine M; Prakash, Y S; Amrani, Yassine; Pandya, Hitesh C

    2015-12-01

    Adult human airway smooth muscle (ASM) produce cytokines involved in recruitment and survival of leukocytes within airway walls. Cytokine generation by adult ASM is glucocorticoid-sensitive. Whether developing lung ASM produces cytokines in a glucocorticoid-sensitive fashion is unknown. Cultured fetal human ASM cells stimulated with TNF-α (0-20 ng/ml) were incubated with TNF-α receptor-blocking antibodies, fluticasone (1 and 100 nm), or vehicle. Supernatants and cells were assayed for the production of CCL5, CXCL10, and CXCL8 mRNA and protein and glucocorticoid receptor phosphorylation. CCL5, CXCL10, and CXCL8 mRNA and protein production by fetal ASM cell was significantly and dose-dependently following TNF-α treatment. Cytokine mRNA and protein production were effectively blocked by TNF-α R1 and R2 receptor neutralizing antibodies but variably inhibited by fluticasone. TNF-α-induced TNF-R1 and R2 receptor mRNA expression was only partially attenuated by fluticasone. Glucocorticoid receptor phosphorylation at serine (Ser) 211 but not at Ser 226 was enhanced by fluticasone. Production of CCL5, CXCL10, and CXCL8 by fetal ASM appears to involve pathways that are both qualitatively and mechanistically distinct to those described for adult ASM. The findings imply developing ASM has potential to recruit leukocyte into airways and, therefore, of relevance to childhood airway diseases.

  16. Fetal human airway smooth muscle cell production of leukocyte chemoattractants is differentially regulated by fluticasone

    PubMed Central

    Pearson, Helen; Britt, Rodney D.; Pabelick, Christine M.; Prakash, Y.S.; Amrani, Yassine; Pandya, Hitesh C.

    2016-01-01

    Background Adult human airway smooth muscle (ASM) produce cytokines involved in recruitment and survival of leukocytes within airway walls. Cytokine generation by adult ASM is glucocorticoid-sensitive. Whether developing lung ASM produces cytokines in a glucocorticoid-sensitive fashion is unknown. Methods Cultured fetal human ASM cells stimulated with TNF-α (0–20 ng/ml) were incubated with TNF-α receptor-blocking antibodies, fluticasone (1 and 100 nm), or vehicle. Supernatants and cells were assayed for the production of CCL5, CXCL10, and CXCL8 mRNA and protein and glucocorticoid receptor phosphorylation. Results CCL5, CXCL10, and CXCL8 mRNA and protein production by fetal ASM cell was significantly and dose-dependently following TNF-α treatment. Cytokine mRNA and protein production were effectively blocked by TNF-α R1 and R2 receptor neutralizing antibodies but variably inhibited by fluticasone. TNF-α-induced TNF-R1 and R2 receptor mRNA expression was only partially attenuated by fluticasone. Glucocorticoid receptor phosphorylation at serine (Ser) 211 but not at Ser 226 was enhanced by fluticasone. Conclusion Production of CCL5, CXCL10, and CXCL8 by fetal ASM appears to involve pathways that are both qualitatively and mechanistically distinct to those described for adult ASM. The findings imply developing ASM has potential to recruit leukocyte into airways and, therefore, of relevance to childhood airway diseases. PMID:26331770

  17. Novel Effects of Azithromycin on Tight Junction Proteins in Human Airway Epithelia

    PubMed Central

    Asgrimsson, Valthor; Gudjonsson, Thorarinn; Gudmundsson, Gudmundur Hrafn; Baldursson, Olafur

    2006-01-01

    The macrolide antibiotic azithromycin improves lung function and prognosis among patients with cystic fibrosis or diffuse panbronchiolitis, independently of bacterial eradication. Anti-inflammatory effects have been implicated, but data from in vivo studies are scarce, and the link between abnormal electrolyte content in airway surface liquid and bronchial infections remains uncertain. In the present study, we treated human airway epithelia on filter supports with azithromycin and monitored transepithelial electrical resistance. We found that azithromycin increased transepithelial electrical resistance of airway epithelia in a dose-dependent manner. Immunocytochemistry and Western blotting showed that addition of azithromycin changed the locations of proteins in cell cultures and induced processing of the tight junction proteins claudin-1 and claudin-4, occludin, and junctional adhesion molecule-A. These effects were reversible, and no effect was seen when cells were treated with penicillin or erythromycin. The data indicate that azithromycin increases the transepithelial electrical resistance of human airway epithelia by changing the processing of tight junction proteins. The results are novel and may help explain the beneficial effects of azithromycin in patients with cystic fibrosis, diffuse panbronchiolitis, and community-acquired pneumonia. PMID:16641453

  18. Proteomic Analysis of Primary Human Airway Epithelial Cells Exposed to the Respiratory Toxicant Diacetyl.

    PubMed

    Foster, Matthew W; Gwinn, William M; Kelly, Francine L; Brass, David M; Valente, Ashlee M; Moseley, M Arthur; Thompson, J Will; Morgan, Daniel L; Palmer, Scott M

    2017-02-03

    Occupational exposures to the diketone flavoring agent, diacetyl, have been associated with bronchiolitis obliterans, a rare condition of airway fibrosis. Model studies in rodents have suggested that the airway epithelium is a major site of diacetyl toxicity, but the effects of diacetyl exposure upon the human airway epithelium are poorly characterized. Here we performed quantitative LC-MS/MS-based proteomics to study the effects of repeated diacetyl vapor exposures on 3D organotypic cultures of human primary tracheobronchial epithelial cells. Using a label-free approach, we quantified approximately 3400 proteins and 5700 phosphopeptides in cell lysates across four independent donors. Altered expression of proteins and phosphopeptides were suggestive of loss of cilia and increased squamous differentiation in diacetyl-exposed cells. These phenomena were confirmed by immunofluorescence staining of culture cross sections. Hyperphosphorylation and cross-linking of basal cell keratins were also observed in diacetyl-treated cells, and we used parallel reaction monitoring to confidently localize and quantify previously uncharacterized sites of phosphorylation in keratin 6. Collectively, these data identify numerous molecular changes in the epithelium that may be important to the pathogenesis of flavoring-induced bronchiolitis obliterans. More generally, this study highlights the utility of quantitative proteomics for the study of in vitro models of airway injury and disease.

  19. Rapid Expansion of Human Epithelial Stem Cells Suitable for Airway Tissue Engineering.

    PubMed

    Butler, Colin R; Hynds, Robert E; Gowers, Kate H C; Lee, Dani Do Hyang; Brown, James M; Crowley, Claire; Teixeira, Vitor H; Smith, Claire M; Urbani, Luca; Hamilton, Nicholas J; Thakrar, Ricky M; Booth, Helen L; Birchall, Martin A; De Coppi, Paolo; Giangreco, Adam; O'Callaghan, Christopher; Janes, Sam M

    2016-07-15

    Stem cell-based tracheal replacement represents an emerging therapeutic option for patients with otherwise untreatable airway diseases including long-segment congenital tracheal stenosis and upper airway tumors. Clinical experience demonstrates that restoration of mucociliary clearance in the lungs after transplantation of tissue-engineered grafts is critical, with preclinical studies showing that seeding scaffolds with autologous mucosa improves regeneration. High epithelial cell-seeding densities are required in regenerative medicine, and existing techniques are inadequate to achieve coverage of clinically suitable grafts. To define a scalable cell culture system to deliver airway epithelium to clinical grafts. Human respiratory epithelial cells derived from endobronchial biopsies were cultured using a combination of mitotically inactivated fibroblasts and Rho-associated protein kinase (ROCK) inhibition using Y-27632 (3T3+Y). Cells were analyzed by immunofluorescence, quantitative polymerase chain reaction, and flow cytometry to assess airway stem cell marker expression. Karyotyping and multiplex ligation-dependent probe amplification were performed to assess cell safety. Differentiation capacity was tested in three-dimensional tracheospheres, organotypic cultures, air-liquid interface cultures, and an in vivo tracheal xenograft model. Ciliary function was assessed in air-liquid interface cultures. 3T3-J2 feeder cells and ROCK inhibition allowed rapid expansion of airway basal cells. These cells were capable of multipotent differentiation in vitro, generating both ciliated and goblet cell lineages. Cilia were functional with normal beat frequency and pattern. Cultured cells repopulated tracheal scaffolds in a heterotopic transplantation xenograft model. Our method generates large numbers of functional airway basal epithelial cells with the efficiency demanded by clinical transplantation, suggesting its suitability for use in tracheal reconstruction.

  20. Rapid Expansion of Human Epithelial Stem Cells Suitable for Airway Tissue Engineering

    PubMed Central

    Gowers, Kate H. C.; Lee, Dani Do Hyang; Brown, James M.; Crowley, Claire; Teixeira, Vitor H.; Smith, Claire M.; Urbani, Luca; Hamilton, Nicholas J.; Thakrar, Ricky M.; Booth, Helen L.; Birchall, Martin A.; De Coppi, Paolo; Giangreco, Adam; O’Callaghan, Christopher

    2016-01-01

    Rationale: Stem cell–based tracheal replacement represents an emerging therapeutic option for patients with otherwise untreatable airway diseases including long-segment congenital tracheal stenosis and upper airway tumors. Clinical experience demonstrates that restoration of mucociliary clearance in the lungs after transplantation of tissue-engineered grafts is critical, with preclinical studies showing that seeding scaffolds with autologous mucosa improves regeneration. High epithelial cell–seeding densities are required in regenerative medicine, and existing techniques are inadequate to achieve coverage of clinically suitable grafts. Objectives: To define a scalable cell culture system to deliver airway epithelium to clinical grafts. Methods: Human respiratory epithelial cells derived from endobronchial biopsies were cultured using a combination of mitotically inactivated fibroblasts and Rho-associated protein kinase (ROCK) inhibition using Y-27632 (3T3+Y). Cells were analyzed by immunofluorescence, quantitative polymerase chain reaction, and flow cytometry to assess airway stem cell marker expression. Karyotyping and multiplex ligation-dependent probe amplification were performed to assess cell safety. Differentiation capacity was tested in three-dimensional tracheospheres, organotypic cultures, air–liquid interface cultures, and an in vivo tracheal xenograft model. Ciliary function was assessed in air–liquid interface cultures. Measurements and Main Results: 3T3-J2 feeder cells and ROCK inhibition allowed rapid expansion of airway basal cells. These cells were capable of multipotent differentiation in vitro, generating both ciliated and goblet cell lineages. Cilia were functional with normal beat frequency and pattern. Cultured cells repopulated tracheal scaffolds in a heterotopic transplantation xenograft model. Conclusions: Our method generates large numbers of functional airway basal epithelial cells with the efficiency demanded by clinical

  1. Ground truth and CT image model simulation for pathophysiological human airway system

    NASA Astrophysics Data System (ADS)

    Ortner, Margarete; Fetita, Catalin; Brillet, Pierre-Yves; Pr"teux, Françoise; Grenier, Philippe

    2010-02-01

    Recurrent problem in medical image segmentation and analysis, establishing a ground truth for assessment purposes is often difficult. Facing this problem, the scientific community orients its efforts towards the development of objective methods for evaluation, namely by building up or simulating the missing ground truth for analysis. This paper focuses on the case of human pulmonary airways and develops a method 1) to simulate the ground truth for different pathophysiological configurations of the bronchial tree as a mesh model, and 2) to generate synthetic 3D CT images of airways associated with the simulated ground truth. The airway model is here built up based on the information provided by a medial axis (describing bronchus shape, subdivision geometry and local radii), which is computed from real CT data to ensure realism and matching with a patient-specific morphology. The model parameters can be further on adjusted to simulate various pathophysiological conditions of the same patient (longitudinal studies). Based on the airway mesh model, a 3D image model is synthesized by simulating the CT acquisition process. The image realism is achieved by including textural features of the surrounding pulmonary tissue which are obtained by segmentation from the same original CT data providing the airway axis. By varying the scanning simulation parameters, several 3D image models can be generated for the same airway mesh ground truth. Simulation results for physiological and pathological configurations are presented and discussed, illustrating the interest of such a modeling process for designing computer-aided diagnosis systems or for assessing their sensitivity, mainly for follow-up studies in asthma and COPD.

  2. Validation of computational fluid dynamics methodology used for human upper airway flow simulations.

    PubMed

    Mylavarapu, Goutham; Murugappan, Shanmugam; Mihaescu, Mihai; Kalra, Maninder; Khosla, Sid; Gutmark, Ephraim

    2009-07-22

    An anatomically accurate human upper airway model was constructed from multiple magnetic resonance imaging axial scans. This model was used to conduct detailed Computational Fluid Dynamics (CFD) simulations during expiration, to investigate the fluid flow in the airway regions where obstruction could occur. An identical physical model of the same airway was built using stereo lithography. Pressure and velocity measurements were conducted in the physical model. Both simulations and experiments were performed at a peak expiratory flow rate of 200 L/min. Several different numerical approaches within the FLUENT commercial software framework were used in the simulations; unsteady Large Eddy Simulation (LES), steady Reynolds-Averaged Navier-Stokes (RANS) with two-equation turbulence models (i.e. k-epsilon, standard k-omega, and k-omega Shear Stress Transport (SST)) and with one-equation Spalart-Allmaras model. The CFD predictions of the average wall static pressures at different locations along the airway wall were favorably compared with the experimental data. Among all the approaches, standard k-omega turbulence model resulted in the best agreement with the static pressure measurements, with an average error of approximately 20% over all ports. The highest positive pressures were observed in the retroglossal regions below the epiglottis, while the lowest negative pressures were recorded in the retropalatal region. The latter is a result of the airflow acceleration in the narrow retropalatal region. The largest pressure drop was observed at the tip of the soft palate. This location has the smallest cross section of the airway. The good agreement between the computations and the experimental results suggest that CFD simulations can be used to accurately compute aerodynamic flow characteristics of the upper airway.

  3. Matched-Comparative Modeling of Normal and Diseased Human Airway Responses Using a Microengineered Breathing Lung Chip.

    PubMed

    Benam, Kambez H; Novak, Richard; Nawroth, Janna; Hirano-Kobayashi, Mariko; Ferrante, Thomas C; Choe, Youngjae; Prantil-Baun, Rachelle; Weaver, James C; Bahinski, Anthony; Parker, Kevin K; Ingber, Donald E

    2016-11-23

    Smoking represents a major risk factor for chronic obstructive pulmonary disease (COPD), but it is difficult to characterize smoke-induced injury responses under physiological breathing conditions in humans due to patient-to-patient variability. Here, we show that a small airway-on-a-chip device lined by living human bronchiolar epithelium from normal or COPD patients can be connected to an instrument that "breathes" whole cigarette smoke in and out of the chips to study smoke-induced pathophysiology in vitro. This technology enables true matched comparisons of biological responses by culturing cells from the same individual with or without smoke exposure. These studies led to identification of ciliary micropathologies, COPD-specific molecular signatures, and epithelial responses to smoke generated by electronic cigarettes. The smoking airway-on-a-chip represents a tool to study normal and disease-specific responses of the human lung to inhaled smoke across molecular, cellular and tissue-level responses in an organ-relevant context. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Hypoxia depresses nitric oxide output in the human nasal airways.

    PubMed

    Haight, J S; Qian, W; Daya, H; Chalmers, P; Zamel, N

    2000-03-01

    The role of oxygen in the nasal air on nasal nitric oxide (NO) output was studied in 13 adult volunteers. Nasal NO was measured while air containing oxygen (0%-100% in nitrogen) was aspirated through the nasal airway before and after the topical application of xylometazoline. The mean nasal NO output of the untreated nose was 507.8 +/- 161.9 nL/min (mean +/- SD) when 21% oxygen was aspirated through the nasal cavities in series and remained unaltered by 100% O2 (P = .79). Below 10% oxygen the reduction in nasal NO output correlated positively and significantly with the decrease in oxygen concentration (r2 = 0.14). NO output was 245.2 +/- 153.4 nL/min at 0% oxygen, a significant decline from 21% oxygen (P < .0001). Nasal vasoconstriction induced by xylometazoline and alterations in the blood oxygen content by a maximal breath-holding or breathing 100% oxygen did not alter nasal NO in hypoxia (P = .41). Nasal NO output is markedly depressed in hypoxia and is oxygen dependent at concentrations of less than 10%. Approximately 50% of nasally generated NO is produced from oxygen in nasal air or regulated by it.

  5. Inhaled Aerosol Distribution in Human Airways: A Scintigraphy-Guided Study in a 3D Printed Model.

    PubMed

    Verbanck, Sylvia; Ghorbaniasl, Ghader; Biddiscombe, Martyn F; Dragojlovic, Dusica; Ricks, Nathan; Lacor, Chris; Ilsen, Bart; de Mey, Johan; Schuermans, Daniel; Underwood, S Richard; Barnes, Peter J; Vincken, Walter; Usmani, Omar S

    2016-12-01

    While it is generally accepted that inertial impaction will lead to particle loss as aerosol is being carried into the pulmonary airways, most predictive aerosol deposition models adopt the hypothesis that the inhaled particles that remain airborne will distribute according to the gas flow distribution between airways downstream. Using a 3D printed cast of human airways, we quantified particle deposition and distribution and visualized their inhaled trajectory in the human lung. The human airway cast was exposed to 6 μm monodisperse, radiolabeled aerosol particles at distinct inhaled flow rates and imaged by scintigraphy in two perpendicular planes. In addition, we also imaged the distribution of aerosol beyond the airways into the five lung lobes. The experimental aerosol deposition patterns could be mimicked by computational fluid dynamic (CFD) simulation in the same 3D airway geometry. It was shown that for particles with a diameter of 6 μm inhaled at flows up to 60 L/min, the aerosol distribution over both lungs and the individual five lung lobes roughly followed the corresponding distributions of gas flow. While aerosol deposition was greater in the main bronchi of the left versus right lung, distribution of deposited and suspended particles toward the right lung exceeded that of the left lung. The CFD simulations also predict that for both 3 and 6 μm particles, aerosol distribution between lung units subtending from airways in generation 5 did not match gas distribution between these units and that this effect was driven by inertial impaction. We showed combined imaging experiments and CFD simulations to systematically study aerosol deposition patterns in human airways down to generation 5, where particle deposition could be spatially linked to the airway geometry. As particles are negotiating an increasing number of airways in subsequent branching generations, CFD predicts marked deviations of aerosol distribution with respect to ventilation

  6. Small is the new big: An overview of newer supraglottic airways for children

    PubMed Central

    Goyal, Rakhee

    2015-01-01

    Almost all supraglottic airways (SGAs) are now available in pediatric sizes. The availability of these smaller sizes, especially in the last five years has brought a marked change in the whole approach to airway management in children. SGAs are now used for laparoscopic surgeries, head and neck surgeries, remote anesthesia; and for ventilation during resuscitation. A large number of reports have described the use of SGAs in difficult airway situations, either as a primary or a rescue airway. Despite this expanded usage, there remains little evidence to support its usage in prolonged surgeries and in the intensive care unit. This article presents an overview of the current options available, suitability of one over the other and reviews the published data relating to each device. In this review, the author also addresses some of the general concerns regarding the use of SGAs and explores newer roles of their use in children. PMID:26702197

  7. Current Inhalers Deliver Very Small Doses to the Lower Tracheobronchial Airways: Assessment of Healthy and Constricted Lungs

    PubMed Central

    Walenga, Ross L.; Longest, P. Worth

    2015-01-01

    To evaluate the regional delivery of conventional aerosol medications, a new whole-lung computational fluid dynamics (CFD) modeling approach was applied for metered dose inhaler (MDI) and dry powder inhaler (DPI) aerosols delivered to healthy and constricted airways. The CFD approach included complete airways through the third respiratory bifurcation (B3) and applied the new stochastic individual pathway (SIP) modeling technique beyond B3 through the remainder of the conducting airways together with a new model of deposition in the alveolar region. Bronchiolar (B8-B15) deposition fraction (DF) values were low (~1%) for both MDI and DPI aerosols with the healthy geometry, while delivery to the constricted model was even lower, with DF values of 0.89% and 0.81% for the MDI and DPI, respectively. Calculating dose per unit-surface-area for the commercial MDI and DPI products resulted in approximately 10−3 μg/cm2 in the lower tracheobronchial (TB) region of B8-B15 and 10−4 μg/cm2 in the alveolar region. Across the lung, dose per unit-surface-area varied by 2 orders of magnitude, which increased to 4 orders of magnitude when the mouth-throat region was included. The MDI and DPI both provided very low drug dose per unit-surface-area to the small TB and alveolar airways. PMID:26852850

  8. Current Inhalers Deliver Very Small Doses to the Lower Tracheobronchial Airways: Assessment of Healthy and Constricted Lungs.

    PubMed

    Walenga, Ross L; Longest, P Worth

    2016-01-01

    To evaluate the regional delivery of conventional aerosol medications, a new whole-lung computational fluid dynamics modeling approach was applied for metered dose inhaler (MDI) and dry powder inhaler (DPI) aerosols delivered to healthy and constricted airways. The computational fluid dynamics approach included complete airways through the third respiratory bifurcation (B3) and applied the new stochastic individual pathway modeling technique beyond B3 through the remainder of the conducting airways together with a new model of deposition in the alveolar region. Bronchiolar (B8-B15) deposition fraction values were low (∼1%) for both MDI and DPI aerosols with the healthy geometry, whereas delivery to the constricted model was even lower, with deposition fraction values of 0.89% and 0.81% for the MDI and DPI, respectively. Calculating dose per unit surface area for the commercial MDI and DPI products resulted in approximately 10(-3) μg/cm(2) in the lower tracheobronchial region of B8-B15 and 10(-4) μg/cm(2) in the alveolar region. Across the lung, dose per unit surface area varied by 2 orders of magnitude, which increased to 4 orders of magnitude when the mouth-throat region was included. The MDI and DPI both provided very low drug dose per unit surface area to the small tracheobronchial and alveolar airways.

  9. Microarray gene expression analysis of the human airway in patients exposed to sulfur mustard.

    PubMed

    Najafi, Ali; Masoudi-Nejad, Ali; Imani Fooladi, Abbas Ali; Ghanei, Mostafa; Nourani, Mohamad Reza

    2014-08-01

    There is much data about the acute effects of sulfur mustard gas on humans, animals and cells. But less is known regarding the molecular basics of chronic complications in humans. Basically, mustard gas, as an alkylating agent, causes several chronic problems in the eyes, skin and more importantly in the pulmonary system which is the main cause of death. Although recent proteomic research has been carried out on bronchoalveolar lavage (BAL) and serum, but high-throughput transcriptomics have not yet been applied to chronic airway remodeling. This is the first cDNA-microarray report on the chronic human mustard lung disease, 25 years after exposure during the Iran-Iraq war. Microarray transcriptional profiling indicated that a total of 122 genes were significantly dysregulated in tissues located in the airway of patients. These genes are associated with the extracellular matrix components, apoptosis, stress response, inflammation and mucus secretion.

  10. [Pulmonary mechanics and small airways in patent ductus arteriosus and interventricular communication, in relation to pulmonary arterial flow and pressure].

    PubMed

    Martínez-Guerra, M L; Fernández-Bonetti, P; Peraza, C; Lupi-Herrera, E

    1982-01-01

    Eighteen patients with ventricular septal defect or patent ductus arteriosus were studied to investigate the effects of an increase of pulmonary hypertension. In general group II showed similar results as previously reported in patients with atrial septal defect without pulmonary hypertension. In group I, we found an increased frequency of functional abnormalities in the small airways. We do not have a definitive explanation for the origin of these differences.

  11. Measurements of intracellular calcium signals in polarized primary cultures of normal and cystic fibrosis human airway epithelia.

    PubMed

    Ribeiro, Carla M P

    2011-01-01

    The airways are continuously challenged by a variety of stimuli including bacteria, viruses, allergens, and inflammatory factors that act as agonists for G protein-coupled receptors (GPCR). Intracellular calcium (Ca(2+) (i)) mobilization in airway epithelia in response to extracellular stimuli regulates key airway innate defense functions, e.g., Ca(2+)-activated Cl(-) secretion, ciliary beating, mucin secretion, and inflammatory responses. Because Ca(2+) (i) mobilization in response to luminal stimuli is larger in CF vs. normal human airway epithelia, alterations in Ca(2+) (i) signals have been associated with the pathogenesis of CF airway disease. Hence, assessment of Ca(2+) (i) signaling has become an important area of CF research. This chapter will focus on measurements of cytoplasmic and mitochondrial Ca(2+) signals resulting from GPCR activation in polarized primary cultures of normal and CF human bronchial epithelia (HBE).

  12. Transport and Deposition of Welding Fume Agglomerates in a Realistic Human Nasal Airway.

    PubMed

    Tian, Lin; Inthavong, Kiao; Lidén, Göran; Shang, Yidan; Tu, Jiyuan

    2016-07-01

    Welding fume is a complex mixture containing ultra-fine particles in the nanometer range. Rather than being in the form of a singular sphere, due to the high particle concentration, welding fume particles agglomerate into long straight chains, branches, or other forms of compact shapes. Understanding the transport and deposition of these nano-agglomerates in human respiratory systems is of great interest as welding fumes are a known health hazard. The neurotoxin manganese (Mn) is a common element in welding fumes. Particulate Mn, either as soluble salts or oxides, that has deposited on the olfactory mucosa in human nasal airway is transported along the olfactory nerve to the olfactory bulb within the brain. If this Mn is further transported to the basal ganglia of the brain, it could accumulate at the part of the brain that is the focal point of its neurotoxicity. Accounting for various dynamic shape factors due to particle agglomeration, the current computational study is focused on the exposure route, the deposition pattern, and the deposition efficiency of the inhaled welding fume particles in a realistic human nasal cavity. Particular attention is given to the deposition pattern and deposition efficiency of inhaled welding fume agglomerates in the nasal olfactory region. For particles in the nanoscale, molecular diffusion is the dominant transport mechanism. Therefore, Brownian diffusion, hydrodynamic drag, Saffman lift force, and gravitational force are included in the model study. The deposition efficiencies for single spherical particles, two kinds of agglomerates of primary particles, two-dimensional planar and straight chains, are investigated for a range of primary particle sizes and a range of number of primary particles per agglomerate. A small fraction of the inhaled welding fume agglomerates is deposited on the olfactory mucosa, approximately in the range 0.1-1%, and depends on particle size and morphology. The strong size dependence of the deposition

  13. Cultured Human Airway Epithelial Cells (Calu-3): A Model of Human Respiratory Function, Structure, and Inflammatory Responses

    PubMed Central

    Zhu, Yan; Chidekel, Aaron; Shaffer, Thomas H.

    2010-01-01

    This article reviews the application of the human airway Calu-3 cell line as a respiratory model for studying the effects of gas concentrations, exposure time, biophysical stress, and biological agents on human airway epithelial cells. Calu-3 cells are grown to confluence at an air-liquid interface on permeable supports. To model human respiratory conditions and treatment modalities, monolayers are placed in an environmental chamber, and exposed to specific levels of oxygen or other therapeutic modalities such as positive pressure and medications to assess the effect of interventions on inflammatory mediators, immunologic proteins, and antibacterial outcomes. Monolayer integrity and permeability and cell histology and viability also measure cellular response to therapeutic interventions. Calu-3 cells exposed to graded oxygen concentrations demonstrate cell dysfunction and inflammation in a dose-dependent manner. Modeling positive airway pressure reveals that pressure may exert a greater injurious effect and cytokine response than oxygen. In experiments with pharmacological agents, Lucinactant is protective of Calu-3 cells compared with Beractant and control, and perfluorocarbons also protect against hyperoxia-induced airway epithelial cell injury. The Calu-3 cell preparation is a sensitive and efficient preclinical model to study human respiratory processes and diseases related to oxygen- and ventilator-induced lung injury. PMID:20948883

  14. Electronic cigarette liquid increases inflammation and virus infection in primary human airway epithelial cells.

    PubMed

    Wu, Qun; Jiang, Di; Minor, Maisha; Chu, Hong Wei

    2014-01-01

    The use of electronic cigarettes (e-cigarettes) is rapidly increasing in the United States, especially among young people since e-cigarettes have been perceived as a safer alternative to conventional tobacco cigarettes. However, the scientific evidence regarding the human health effects of e-cigarettes on the lung is extremely limited. The major goal of our current study is to determine if e-cigarette use alters human young subject airway epithelial functions such as inflammatory response and innate immune defense against respiratory viral (i.e., human rhinovirus, HRV) infection. We examined the effects of e-cigarette liquid (e-liquid) on pro-inflammatory cytokine (e.g., IL-6) production, HRV infection and host defense molecules (e.g., short palate, lung, and nasal epithelium clone 1, SPLUNC1) in primary human airway epithelial cells from young healthy non-smokers. Additionally, we examined the role of SPLUNC1 in lung defense against HRV infection using a SPLUNC1 knockout mouse model. We found that nicotine-free e-liquid promoted IL-6 production and HRV infection. Addition of nicotine into e-liquid further amplified the effects of nicotine-free e-liquid. Moreover, SPLUNC1 deficiency in mice significantly increased lung HRV loads. E-liquid inhibited SPLUNC1 expression in primary human airway epithelial cells. These findings strongly suggest the deleterious health effects of e-cigarettes in the airways of young people. Our data will guide future studies to evaluate the impact of e-cigarettes on lung health in human populations, and help inform the public about potential health risks of e-cigarettes.

  15. Isolated small airway reactivity during bronchoprovocation as a mechanism for respiratory symptoms in WTC dust-exposed community members.

    PubMed

    Berger, Kenneth I; Kalish, Samantha; Shao, Yongzhao; Marmor, Michael; Kazeros, Angeliki; Oppenheimer, Beno W; Chan, Yinny; Reibman, Joan; Goldring, Roberta M

    2016-09-01

    Small airway dysfunction occurs following WTC dust exposure, but its role in producing symptoms is unclear. Methacholine challenge (MCT) was used to assess the relationship between onset of respiratory symptoms and small airway abnormalities in 166 symptomatic WTC dust-exposed patients. Forced oscillation testing (FOT) and respiratory symptoms were assessed during MCT. FOT parameters included resistance at 5 and 20 Hz (R5 and R20 ) and the R5 minus R20 (R5-20 ). Baseline spirometry was normal in all (mean FEV1 100 + 13% predicted, mean FEV1 /FVC 80 + 4%). MCT revealed bronchial hyperreactivity by spirometry in 67 patients. An additional 24 patients became symptomatic despite minimal FEV1 change (<5%); symptom onset coincided with increased R5 and R5-20 (P > 0.001 vs. baseline). The dose-response of FOT (reactivity) was greater compared with subjects that remained asymptomatic (P < 0.05). FOT during MCT uncovered reactivity in small airways as a mechanism for respiratory symptoms in subjects with inhalational lung injury. Am. J. Ind. Med. 59:767-776, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Design, characterization and use of replicate human upper airways for radon dosimetry studies

    SciTech Connect

    Swift, D.L.; Cheng, Y.S.; Su, Y.F.; Yeh, H.C.

    1992-12-31

    The size distribution of inhaled radon progeny aerosols is a significant factor in dosimetry. The role of the airways above the trachea is an important determinant of the respiratory distribution of both attached and unattached progeny aerosols. In order to provide information on the effect of particle size and breathing conditions on the overall and local deposition, we have developed a method to produce a replicate airway model from an in vivo magnetic resonance imaging coronal scan. The model consists of a sandwich of methacrylate elements, each element having the thickness of the scan interval. The transition between successive scan outlines traced on the front and back surfaces of each element is handsculpted in the plastic. The hollow model of the nasal passages thus produced has been characterized both morphologically and fluid-mechanically and has a flow resistance typical of a normal adult. The model has several distinct advantages for studies of radon progeny aerosol deposition. After exposure to a radioaerosol (or to an aerosol of an otherwise measurable substance) the individual elements can be separated to determine local deposition. The dimensions of specific upper-airway regions can be changed by replacing a small number of elements. The model has been incorporated in an exposure system for determining overall nandregional deposition of aerosols whose median diameter is approximately 1.7 nm. Measurements at several flow rates are presented to demonstrate use of the model in radon dosimetry. The model should also be useful for determining the airway deposition of other environmental aerosols.

  17. In Vitro Modeling of RSV Infection and Cytopathogenesis in Well-Differentiated Human Primary Airway Epithelial Cells (WD-PAECs).

    PubMed

    Broadbent, Lindsay; Villenave, Remi; Guo-Parke, Hong; Douglas, Isobel; Shields, Michael D; Power, Ultan F

    2016-01-01

    The choice of model used to study human respiratory syncytial virus (RSV) infection is extremely important. RSV is a human pathogen that is exquisitely adapted to infection of human hosts. Rodent models, such as mice and cotton rats, are semi-permissive to RSV infection and do not faithfully reproduce hallmarks of RSV disease in humans. Furthermore, immortalized airway-derived cell lines, such as HEp-2, BEAS-2B, and A549 cells, are poorly representative of the complexity of the respiratory epithelium. The development of a well-differentiated primary pediatric airway epithelial cell models (WD-PAECs) allows us to simulate several hallmarks of RSV infection of infant airways. They therefore represent important additions to RSV pathogenesis modeling in human-relevant tissues. The following protocols describe how to culture and differentiate both bronchial and nasal primary pediatric airway epithelial cells and how to use these cultures to study RSV cytopathogenesis.

  18. Interleukin-4 and interleukin-13 cause barrier dysfunction in human airway epithelial cells

    PubMed Central

    Saatian, Bahman; Rezaee, Fariba; Desando, Samantha; Emo, Jason; Chapman, Tim; Knowlden, Sara; Georas, Steve N.

    2013-01-01

    Emerging evidence indicates that airway epithelial barrier function is compromised in asthma, a disease characterized by Th2-skewed immune response against inhaled allergens, but the mechanisms involved are not well understood. The purpose of this study was to investigate the effects of Th2-type cytokines on airway epithelial barrier function. 16HBE14o- human bronchial epithelial cells monolayers were grown on collagen coated Transwell inserts. The basolateral or apical surfaces of airway epithelia were exposed to human interleukin-4 (IL-4), IL-13, IL-25, IL-33, thymic stromal lymphopoietin (TSLP) alone or in combination at various concentrations and time points. We analyzed epithelial apical junctional complex (AJC) function by measuring transepithelial electrical resistance (TEER) and permeability to FITC-conjugated dextran over time. We analyzed AJC structure using immunofluorescence with antibodies directed against key junctional components including occludin, ZO-1, β-catenin and E-cadherin. Transepithelial resistance was significantly decreased after both basolateral and apical exposure to IL-4. Permeability to 3 kDa dextran was also increased in IL-4-exposed cells. Similar results were obtained with IL-13, but none of the innate type 2 cytokines examined (TSLP, IL-25 or IL-33) significantly affected barrier function. IL-4 and IL-13-induced barrier dysfunction was accompanied by reduced expression of membrane AJC components but not by induction of claudin- 2. Enhanced permeability caused by IL-4 was not affected by wortmannin, an inhibitor of PI3 kinase signaling, but was attenuated by a broad spectrum inhibitor of janus associated kinases. Our study indicates that IL-4 and IL-13 have disruptive effect on airway epithelial barrier function. Th2-cytokine induced epithelial barrier dysfunction may contribute to airway inflammation in allergic asthma. PMID:24665390

  19. Interleukin-4 and interleukin-13 cause barrier dysfunction in human airway epithelial cells.

    PubMed

    Saatian, Bahman; Rezaee, Fariba; Desando, Samantha; Emo, Jason; Chapman, Tim; Knowlden, Sara; Georas, Steve N

    2013-04-01

    Emerging evidence indicates that airway epithelial barrier function is compromised in asthma, a disease characterized by Th2-skewed immune response against inhaled allergens, but the mechanisms involved are not well understood. The purpose of this study was to investigate the effects of Th2-type cytokines on airway epithelial barrier function. 16HBE14o- human bronchial epithelial cells monolayers were grown on collagen coated Transwell inserts. The basolateral or apical surfaces of airway epithelia were exposed to human interleukin-4 (IL-4), IL-13, IL-25, IL-33, thymic stromal lymphopoietin (TSLP) alone or in combination at various concentrations and time points. We analyzed epithelial apical junctional complex (AJC) function by measuring transepithelial electrical resistance (TEER) and permeability to FITC-conjugated dextran over time. We analyzed AJC structure using immunofluorescence with antibodies directed against key junctional components including occludin, ZO-1, β-catenin and E-cadherin. Transepithelial resistance was significantly decreased after both basolateral and apical exposure to IL-4. Permeability to 3 kDa dextran was also increased in IL-4-exposed cells. Similar results were obtained with IL-13, but none of the innate type 2 cytokines examined (TSLP, IL-25 or IL-33) significantly affected barrier function. IL-4 and IL-13-induced barrier dysfunction was accompanied by reduced expression of membrane AJC components but not by induction of claudin- 2. Enhanced permeability caused by IL-4 was not affected by wortmannin, an inhibitor of PI3 kinase signaling, but was attenuated by a broad spectrum inhibitor of janus associated kinases. Our study indicates that IL-4 and IL-13 have disruptive effect on airway epithelial barrier function. Th2-cytokine induced epithelial barrier dysfunction may contribute to airway inflammation in allergic asthma.

  20. Effect of β-glucan on MUC4 and MUC5B expression in human airway epithelial cells.

    PubMed

    Kim, Yong-Dae; Bae, Chang Hoon; Song, Si-Youn; Choi, Yoon Seok

    2015-08-01

    β-Glucan is found in the cell walls of fungi, bacteria, and some plant tissues, and is detected by the innate immune system. Furthermore, this recognition is known to worsen respiratory symptoms in patients with allergic and inflammatory airway diseases. However, the means by which β-glucan affects the secretion of major mucins by human airway epithelial cells has not been elucidated. Therefore, in this study, the effect and signaling pathway of β-glucan on mucins MUC4 and MUC5B were investigated in human airway epithelial cells. In NCI-H292 cells and human normal nasal epithelial cells, the effect and signaling pathway of β-glucan on MUC4 and MUC5B expression were investigated using reverse transcriptase-polymerase chain reaction (RT-PCR), real-time PCR, enzyme immunoassay, and immunoblot analysis with specific inhibitors and small interfering RNA (siRNA). β-Glucan increased MUC4 and MUC5B expression and activated the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). SB203580 (a p38 MAPK inhibitor) and pyrrolidine dithiocarbamate (PDTC; a NF-κB inhibitor) inhibited β-glucan-induced MUC4 and MUC5B expression. In addition, siRNA knockdown of p38 MAPK blocked β-glucan-induced MUC4 and MUC5B mRNA expression and β-glucan-activated phosphorylation of NF-κB. Furthermore, Toll-like receptor 4 (TLR4) mRNA expression was increased by β-glucan, and siRNA knockdown of TLR4 blocked β-glucan-induced MUC4 and MUC5B mRNA expression and β-glucan-activated phosphorylation of p38 MAPK and NF-κB. These results demonstrate that in human airway epithelial cells β-glucan induces MUC4 and MUC5B expression via the TLR4-p38 MAPK-NF-κB signaling pathway. © 2015 ARS-AAOA, LLC.

  1. Exposure to Ozone Modulates Human Airway Protease/Antiprotease Balance Contributing to Increased Influenza A Infection

    PubMed Central

    Kesic, Matthew J.; Meyer, Megan; Bauer, Rebecca; Jaspers, Ilona

    2012-01-01

    Exposure to oxidant air pollution is associated with increased respiratory morbidities and susceptibility to infections. Ozone is a commonly encountered oxidant air pollutant, yet its effects on influenza infections in humans are not known. The greater Mexico City area was the primary site for the spring 2009 influenza A H1N1 pandemic, which also coincided with high levels of environmental ozone. Proteolytic cleavage of the viral membrane protein hemagglutinin (HA) is essential for influenza virus infectivity. Recent studies suggest that HA cleavage might be cell-associated and facilitated by the type II transmembrane serine proteases (TTSPs) human airway trypsin-like protease (HAT) and transmembrane protease, serine 2 (TMPRSS2), whose activities are regulated by antiproteases, such as secretory leukocyte protease inhibitor (SLPI). Based on these observations, we sought to determine how acute exposure to ozone may modulate cellular protease/antiprotease expression and function, and to define their roles in a viral infection. We utilized our in vitro model of differentiated human nasal epithelial cells (NECs) to determine the effects of ozone on influenza cleavage, entry, and replication. We show that ozone exposure disrupts the protease/antiprotease balance within the airway liquid. We also determined that functional forms of HAT, TMPRSS2, and SLPI are secreted from human airway epithelium, and acute exposure to ozone inversely alters their expression levels. We also show that addition of antioxidants significantly reduces virus replication through the induction of SLPI. In addition, we determined that ozone-induced cleavage of the viral HA protein is not cell-associated and that secreted endogenous proteases are sufficient to activate HA leading to a significant increase in viral replication. Our data indicate that pre-exposure to ozone disrupts the protease/antiprotease balance found in the human airway, leading to increased influenza susceptibility. PMID

  2. POU2AF1 Functions in the Human Airway Epithelium To Regulate Expression of Host Defense Genes.

    PubMed

    Zhou, Haixia; Brekman, Angelika; Zuo, Wu-Lin; Ou, Xuemei; Shaykhiev, Renat; Agosto-Perez, Francisco J; Wang, Rui; Walters, Matthew S; Salit, Jacqueline; Strulovici-Barel, Yael; Staudt, Michelle R; Kaner, Robert J; Mezey, Jason G; Crystal, Ronald G; Wang, Guoqing

    2016-04-01

    In the process of seeking novel lung host defense regulators by analyzing genome-wide RNA sequence data from normal human airway epithelium, we detected expression of POU domain class 2-associating factor 1 (POU2AF1), a known transcription cofactor previously thought to be expressed only in lymphocytes. Lymphocyte contamination of human airway epithelial samples obtained by bronchoscopy and brushing was excluded by immunohistochemistry staining, the observation of upregulation of POU2AF1 in purified airway basal stem/progenitor cells undergoing differentiation, and analysis of differentiating single basal cell clones. Lentivirus-mediated upregulation of POU2AF1 in airway basal cells induced upregulation of host defense genes, including MX1, IFIT3, IFITM, and known POU2AF1 downstream genes HLA-DRA, ID2, ID3, IL6, and BCL6. Interestingly, expression of these genes paralleled changes of POU2AF1 expression during airway epithelium differentiation in vitro, suggesting POU2AF1 helps to maintain a host defense tone even in pathogen-free condition. Cigarette smoke, a known risk factor for airway infection, suppressed POU2AF1 expression both in vivo in humans and in vitro in human airway epithelial cultures, accompanied by deregulation of POU2AF1 downstream genes. Finally, enhancing POU2AF1 expression in human airway epithelium attenuated the suppression of host defense genes by smoking. Together, these findings suggest a novel function of POU2AF1 as a potential regulator of host defense genes in the human airway epithelium.

  3. Effect of morphological variability on particle deposition in idealized human airways

    NASA Astrophysics Data System (ADS)

    Lin, Eleanor; Bernate, Jorge A.; Parada San Martin, Daniel A.; Makitani, Yuzo; Shaqfeh, Eric S. G.; Iaccarino, Gianluca

    2013-11-01

    This study is focused on the effects of variability in airway morphology on particle deposition in the lungs, which in turn impacts disease inception and drug delivery. We generated a parameterized geometry of the human airway derived from Lola: a realistic geometry obtained from CT scans (Zhang et al. J AEROSOL SCI 46, 34 (2012)). The upper airway geometry is parameterized using an elliptic model from Xi and Longest (ANN BIOMED ENG 35, 560 (2007)), with the glottis modified to a realistic triangular shape, based on measurements taken from Lola. The trachea and bronchi are generated using rules adapted from Kitaoka et al. (J Appl Physiol 87, 2207-2217 (1999)), with the first 3 generations closely matching those of Lola. We perform simulations corresponding to a full breathing cycle and illustrate the preferential deposition in each generation. In addition, we compared the deposition features in the idealized geometry to those from simulations in the original scanned airways. Perturbations are then applied to the parameterized geometry to study the effects of morphological variability on deposition patterns. This work is funded by the Army AHPCRC at Stanford.

  4. Isoform-Specific Regulation and Localization of the Coxsackie and Adenovirus Receptor in Human Airway Epithelia

    PubMed Central

    Excoffon, Katherine J. D. A.; Gansemer, Nicholas D.; Mobily, Matthew E.; Karp, Philip H.; Parekh, Kalpaj R.; Zabner, Joseph

    2010-01-01

    Adenovirus is an important respiratory pathogen. Adenovirus fiber from most serotypes co-opts the Coxsackie-Adenovirus Receptor (CAR) to bind and enter cells. However, CAR is a cell adhesion molecule localized on the basolateral membrane of polarized epithelia. Separation from the lumen of the airways by tight junctions renders airway epithelia resistant to inhaled adenovirus infection. Although a role for CAR in viral spread and egress has been established, the mechanism of initial respiratory infection remains controversial. CAR exists in several protein isoforms including two transmembrane isoforms that differ only at the carboxy-terminus (CAREx7 and CAREx8). We found low-level expression of the CAREx8 isoform in well-differentiated human airway epithelia. Surprisingly, in contrast to CAREx7, CAREx8 localizes to the apical membrane of epithelia where it augments adenovirus infection. Interestingly, despite sharing a similar class of PDZ-binding domain with CAREx7, CAREx8 differentially interacts with PICK1, PSD-95, and MAGI-1b. MAGI-1b appears to stoichiometrically regulate the degradation of CAREx8 providing a potential mechanism for the apical localization of CAREx8 in airway epithelial. In summary, apical localization of CAREx8 may be responsible for initiation of respiratory adenoviral infections and this localization appears to be regulated by interactions with PDZ-domain containing proteins. PMID:20361046

  5. Arsenic upregulates MMP-9 and inhibits wound repair in human airway epithelial cells.

    PubMed

    Olsen, Colin E; Liguori, Andrew E; Zong, Yue; Lantz, R Clark; Burgess, Jefferey L; Boitano, Scott

    2008-08-01

    As part of the innate immune defense, the polarized conducting lung epithelium acts as a barrier to keep particulates carried in respiration from underlying tissue. Arsenic is a metalloid toxicant that can affect the lung via inhalation or ingestion. We have recently shown that chronic exposure of mice or humans to arsenic (10-50 ppb) in drinking water alters bronchiolar lavage or sputum proteins consistent with reduced epithelial cell migration and wound repair in the airway. In this report, we used an in vitro model to examine effects of acute exposure of arsenic (15-290 ppb) on conducting airway lung epithelium. We found that arsenic at concentrations as low as 30 ppb inhibits reformation of the epithelial monolayer following scrape wounds of monolayer cultures. In an effort to understand functional contributions to epithelial wound repair altered by arsenic, we showed that acute arsenic exposure increases activity and expression of matrix metalloproteinase (MMP)-9, an important protease in lung function. Furthermore, inhibition of MMP-9 in arsenic-treated cells improved wound repair. We propose that arsenic in the airway can alter the airway epithelial barrier by restricting proper wound repair in part through the upregulation of MMP-9 by lung epithelial cells.

  6. FOXJ1 prevents cilia growth inhibition by cigarette smoke in human airway epithelium in vitro.

    PubMed

    Brekman, Angelika; Walters, Matthew S; Tilley, Ann E; Crystal, Ronald G

    2014-11-01

    Airway epithelium ciliated cells play a central role in clearing the lung of inhaled pathogens and xenobiotics, and cilia length and coordinated beating are important for airway clearance. Based on in vivo studies showing that the airway epithelium of healthy smokers has shorter cilia than that of healthy nonsmokers, we investigated the mechanisms involved in cigarette smoke-mediated inhibition of ciliogenesis by assessing normal human airway basal cell differentiation in air-liquid interface (ALI) cultures in the presence of nontoxic concentrations of cigarette smoke extract (CSE). Measurements of cilia length from Day 28 ALI cultures demonstrated that CSE exposure was associated with shorter cilia (P < 0.05), reproducing the effect of cigarette smoking on cilia length observed in vivo. This phenotype correlated with a broad CSE-mediated suppression of genes involved in cilia-related transcriptional regulation, intraflagellar transport, cilia motility, structural integrity, and basal body development but not of control genes or epithelial barrier integrity. The CSE-mediated inhibition of cilia growth could be prevented by lentivirus-mediated overexpression of FOXJ1, the major cilia-related transcription factor, which led to partial reversal of expression of cilia-related genes suppressed by CSE. Together, the data suggest that components of cigarette smoke are responsible for a broad suppression of genes involved in cilia growth, but, by stimulating ciliogenesis with the transcription factor FOXJ1, it may be possible to maintain close to normal cilia length despite the stress of cigarette smoking.

  7. Effects of cold dry air nasal stimulation on airway mucosal blood flow in humans.

    PubMed

    Le Merre, C; Isber, J; Chediak, A D; Wanner, A

    2003-10-01

    Several studies have demonstrated that nasal challenges can induce reflex responses in the respiratory system. Some authors have described bronchoconstriction and modification of the pattern of breathing following nasal challenges by irritants and cold air. We propose to determine the effect of nasal stimulation with cold dry air on airway mucosal blood flow (Qaw) in the proximal tracheal bronchial tree of healthy humans. Nine healthy subjects participated in the study. Baseline measurement Qaw, nasal airway resistance (NAR) and airway caliber by specific airways conductance (SGaw) were followed by nasal challenge with cold dry air. Qaw, NAR and Sgaw were determined after the challenge. In those subjects in which a significant decline in Qaw was recorded the protocol was repeated after pretreatment with nasal anesthesia using topical lidocaine. Cold dry air challenge produced a significant decrease in mean Qaw for the nine subjects and this response was abolished by pretreatment with nasal anesthesia using topical lidocaine. There was no significant change in Sgaw and NAR after the challenge and topical lidocaine anesthesia. Our data indicates that nasal stimulation with cold dry air leads to a reduction in Qaw and that this effect may be mediated by a nasal reflex.

  8. Substance P stimulates human airway submucosal gland secretion mainly via a CFTR-dependent process

    PubMed Central

    Choi, Jae Young; Khansaheb, Monal; Joo, Nam Soo; Krouse, Mauri E.; Robbins, Robert C.; Weill, David; Wine, Jeffrey J.

    2009-01-01

    Chronic bacterial airway infections are the major cause of mortality in cystic fibrosis (CF). Normal airway defenses include reflex stimulation of submucosal gland mucus secretion by sensory neurons that release substance P (SubP). CFTR is an anion channel involved in fluid secretion and mutated in CF; the role of CFTR in secretions stimulated by SubP is unknown. We used optical methods to measure SubP-mediated secretion from human submucosal glands in lung transplant tissue. Glands from control but not CF subjects responded to mucosal chili oil. Similarly, serosal SubP stimulated secretion in more than 60% of control glands but only 4% of CF glands. Secretion triggered by SubP was synergistic with vasoactive intestinal peptide and/or forskolin but not with carbachol; synergy was absent in CF glands. Pig glands demonstrated a nearly 10-fold greater response to SubP. In 10 of 11 control glands isolated by fine dissection, SubP caused cell volume loss, lumen expansion, and mucus flow, but in 3 of 4 CF glands, it induced lumen narrowing. Thus, in CF, the reduced ability of mucosal irritants to stimulate airway gland secretion via SubP may be another factor that predisposes the airways to infections. PMID:19381016

  9. Matrix metalloproteinase expression and activity in human airway smooth muscle cells

    PubMed Central

    Elshaw, Shona R; Henderson, Neil; Knox, Alan J; Watson, Susan A; Buttle, David J; Johnson, Simon R

    2004-01-01

    Airway remodelling is a feature of chronic asthma comprising smooth muscle hypertrophy and deposition of extracellular matrix (ECM) proteins. Matrix metalloproteinases (MMPs) breakdown ECM, are involved in tissue remodelling and have been implicated in airway remodelling. Although mesenchymal cells are an important source of MMPs, little data are available on airway smooth muscle (ASM) derived MMPs. We therefore investigated MMP and tissue inhibitor of metalloproteinase (TIMP) production and activity in human ASM cells.MMPs and TIMPs were examined using quantitative real-time RT–PCR, Western blotting, zymography and a quench fluorescence (QF) assay of total MMP activity.The most abundant MMPs were pro-MMP-2, pro- MMP-3, active MMP-3 and MT1-MMP. TIMP-1 and TIMP-2 expression was low in cell lysates but high in conditioned medium. High TIMP secretion was confirmed by the ability of ASM-conditioned medium to inhibit recombinant MMP-2 in a QF assay. Thrombin increased MMP activity by activation of pro-MMP-2 independent of the conventional smooth muscle thrombin receptors PAR 1 and 4.In conclusion, ASM cells express pro-MMP-2, pro and active MMP-3, MMP-9 and MT1-MMP. Unstimulated cells secrete excess TIMP 1 and 2, preventing proteolytic activity. MMP-2 can be activated by thrombin which may contribute to airway remodelling. PMID:15265805

  10. Arsenic Alters ATP-Dependent Ca2+ Signaling in Human Airway Epithelial Cell Wound Response

    PubMed Central

    Sherwood, Cara L.; Lantz, R. Clark; Burgess, Jefferey L.; Boitano, Scott

    2011-01-01

    Arsenic is a natural metalloid toxicant that is associated with occupational inhalation injury and contaminates drinking water worldwide. Both inhalation of arsenic and consumption of arsenic-tainted water are correlated with malignant and nonmalignant lung diseases. Despite strong links between arsenic and respiratory illness, underlying cell responses to arsenic remain unclear. We hypothesized that arsenic may elicit some of its detrimental effects on the airway through limitation of innate immune function and, specifically, through alteration of paracrine ATP (purinergic) Ca2+ signaling in the airway epithelium. We examined the effects of acute (24 h) exposure with environmentally relevant levels of arsenic (i.e., < 4μM as Na-arsenite) on wound-induced Ca2+ signaling pathways in human bronchial epithelial cell line (16HBE14o-). We found that arsenic reduces purinergic Ca2+ signaling in a dose-dependent manner and results in a reshaping of the Ca2+ signaling response to localized wounds. We next examined arsenic effects on two purinergic receptor types: the metabotropic P2Y and ionotropic P2X receptors. Arsenic inhibited both P2Y- and P2X-mediated Ca2+ signaling responses to ATP. Both inhaled and ingested arsenic can rapidly reach the airway epithelium where purinergic signaling is essential in innate immune functions (e.g., ciliary beat, salt and water transport, bactericide production, and wound repair). Arsenic-induced compromise of such airway defense mechanisms may be an underlying contributor to chronic lung disease. PMID:21357385

  11. Small airway oscillometry indices: Repeatability and bronchodilator responsiveness in young children.

    PubMed

    Knihtilä, Hanna; Kotaniemi-Syrjänen, Anne; Pelkonen, Anna S; Kalliola, Satu; Mäkelä, Mika J; Malmberg, Leo Pekka

    2017-08-18

    The impulse oscillometry (IOS) indices absolute and relative difference between respiratory resistance at 5 and 20 Hz (R5-20 and R5-20%, respectively) and the area under the reactance curve (AX) are postulated to reflect small airway function. Data on their cutoff values to evaluate bronchodilator responsiveness (BDR) or between-visit changes after interventions are limited in young children. We evaluated the BDR of 103 healthy children aged 2-7 years, who received either salbutamol (n = 84) or placebo (n = 19) in order to determine cutoff values for BDR of R5-20, R5-20%, and AX. We then determined the repeatability within and between two IOS measurements 7-14 days apart in young children aged 4-8 years with asthmatic symptoms (n = 43), including cutoff values for significant between-visit changes. The investigated IOS parameters showed marked BDR (fifth percentile cutoff of 75-110% of the baseline value) in healthy children, whereas no significant changes were seen after inhalation of placebo. The agreement within the triplicate IOS measurement was excellent (ICC > 0.80), and the agreement of results between visits was good (ICC > 0.60). A change in R5-20, R5-20%, and AX of 0.65, 1.08, and 0.84 z-scores, respectively, would exceed 95% confidence intervals for between-visit variability. We introduce cutoff values for BDR of R5-20, R5-20%, and AX, and their repeatability indices and cutoff limits for significant between-visit changes. These IOS parameters may show greater variability than the conventional IOS indices during follow-up, but the between-visit agreement remains good, providing potentially useful endpoints for monitoring lung function in young children. © 2017 Wiley Periodicals, Inc.

  12. Airflow modeling of steady inspiration in two realistic proximal airway trees reconstructed from human thoracic tomodensitometric images.

    PubMed

    Vial, Laurence; Perchet, Diane; Fodil, Redouane; Caillibotte, Georges; Fetita, Catalin; Prêteux, Françoise; Beigelman-Aubry, Catherine; Grenier, Philippe; Thiriet, Marc; Isabey, Daniel; Sbirlea-Apiou, Gabriela

    2005-08-01

    Detailed description of the flow field in human airways is highly important to better understand human breathing and provide a patient's customized diagnosis. An integrated numerical simulation platform is presently proposed in order to incorporate medical images into a numerical software to calculate flow field and to analyze it in terms of fluid dynamics. The platform was set up to compute steady inspiratory airflow in realistic human airways reconstructed from tomodensitometric medical images at resting breathing conditions. This morpho-functional simulation platform has been tested retrospectively with two CT-scanned patient airway morphological models: (i) a normal airway model (subject A) with no evidence of morphological alteration and (ii) a highly altered airway model (subject B) exhibiting a severe stenosis in the right main bronchus. First, various morphological aspects proper to each airway model are provided to show the performance and interest of the reconstruction method. Second, we describe the three-dimensional flow patterns associated to the global morphological features, which are mainly shared by the present realistic models and previous idealistic airway models. Finally, the flow characteristics associated to local morphological features specific to realistic airway models are discussed. The results demonstrate that the morpho-functional simulation platform is able to capture the main features of airway velocity patterns but also more specific airflow patterns which are related to customized patient morphological features such as laminar vortex formation. The present results suggest that the proposed airway functional imaging platform is adequate to provide most of functional information related to airflow and enable a patient to patient diagnosis.

  13. Generation of Distal Airway Epithelium from Multipotent Human Foregut Stem Cells.

    PubMed

    Hannan, Nicholas R F; Sampaziotis, Fotios; Segeritz, Charis-Patricia; Hanley, Neil A; Vallier, Ludovic

    2015-07-15

    Collectively, lung diseases are one of the largest causes of premature death worldwide and represent a major focus in the field of regenerative medicine. Despite significant progress, only few stem cell platforms are currently available for cell-based therapy, disease modeling, and drug screening in the context of pulmonary disorders. Human foregut stem cells (hFSCs) represent an advantageous progenitor cell type that can be used to amplify large quantities of cells for regenerative medicine applications and can be derived from any human pluripotent stem cell line. Here, we further demonstrate the application of hFSCs by generating a near homogeneous population of early pulmonary endoderm cells coexpressing NKX2.1 and FOXP2. These progenitors are then able to form cells that are representative of distal airway epithelium that express NKX2.1, GATA6, and cystic fibrosis transmembrane conductance regulator (CFTR) and secrete SFTPC. This culture system can be applied to hFSCs carrying the CFTR mutation Δf508, enabling the development of an in vitro model for cystic fibrosis. This platform is compatible with drug screening and functional validations of small molecules, which can reverse the phenotype associated with CFTR mutation. This is the first demonstration that multipotent endoderm stem cells can differentiate not only into both liver and pancreatic cells but also into lung endoderm. Furthermore, our study establishes a new approach for the generation of functional lung cells that can be used for disease modeling as well as for drug screening and the study of lung development.

  14. Organic electrochemical transistor array for recording transepithelial ion transport of human airway epithelial cells.

    PubMed

    Yao, Chunlei; Xie, Changyan; Lin, Peng; Yan, Feng; Huang, Pingbo; Hsing, I-Ming

    2013-12-03

    An organic electrochemical transistor array is integrated with human airway epithelial cells. This integration provides a novel method to couple transepithelial ion transport with electrical current. Activation and inhibition of transepithelial ion transport are readily detected with excellent time resolution. The organic electrochemical transistor array serves as a promising platform for physiological studies and drug testing. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Analysis of impulse oscillometric measures of lung function and respiratory system model parameters in small airway-impaired and healthy children over a 2-year period.

    PubMed

    Meraz, Erika G; Nazeran, Homer; Ramos, Carlos D; Nava, Pat; Diong, Bill; Goldman, Michael D; Goldman, Christine A

    2011-03-25

    Is Impulse Oscillometry System (IOS) a valuable tool to measure respiratory system function in Children? Asthma (A) is the most prevalent chronic respiratory disease in children. Therefore, early and accurate assessment of respiratory function is of tremendous clinical interest in diagnosis, monitoring and treatment of respiratory conditions in this subpopulation. IOS has been successfully used to measure lung function in children with a high degree of sensitivity and specificity to small airway impairments (SAI) and asthma. IOS measures of airway function and equivalent electrical circuit models of the human respiratory system have been developed to quantify the severity of these conditions. Previously, we have evaluated several known respiratory models based on the Mead's model and more parsimonious versions based on fitting IOS data known as extended RIC (eRIC) and augmented RIC (aRIC) models have emerged, which offer advantages over earlier models. IOS data from twenty-six children were collected and compared during pre-bronchodilation (pre-B) and post- bronchodilation (post-B) conditions over a period of 2 years. Are the IOS and model parameters capable of differentiating between healthy children and children with respiratory system distress? Children were classified into two main categories: Healthy (H) and Small Airway-Impaired (SAI). The IOS measures and respiratory model parameters analyzed differed consistently between H and SAI children. SAI children showed smaller trend of "growth" and larger trend of bronchodilator responses than H children.The two model parameters: peripheral compliance (Cp) and peripheral resistance (Rp) tracked IOS indices of small airway function well. Cp was a more sensitive index than Rp. Both eRIC and aRIC Cps and the IOS Reactance Area, AX, (also known as the "Goldman Triangle") showed good correlations. What are the most useful IOS and model parameters? In this work we demonstrate that IOS parameters such as resistance at 5 Hz

  16. Analysis of impulse oscillometric measures of lung function and respiratory system model parameters in small airway-impaired and healthy children over a 2-year period

    PubMed Central

    2011-01-01

    Background Is Impulse Oscillometry System (IOS) a valuable tool to measure respiratory system function in Children? Asthma (A) is the most prevalent chronic respiratory disease in children. Therefore, early and accurate assessment of respiratory function is of tremendous clinical interest in diagnosis, monitoring and treatment of respiratory conditions in this subpopulation. IOS has been successfully used to measure lung function in children with a high degree of sensitivity and specificity to small airway impairments (SAI) and asthma. IOS measures of airway function and equivalent electrical circuit models of the human respiratory system have been developed to quantify the severity of these conditions. Previously, we have evaluated several known respiratory models based on the Mead's model and more parsimonious versions based on fitting IOS data known as extended RIC (eRIC) and augmented RIC (aRIC) models have emerged, which offer advantages over earlier models. Methods IOS data from twenty-six children were collected and compared during pre-bronchodilation (pre-B) and post- bronchodilation (post-B) conditions over a period of 2 years. Results and Discussion Are the IOS and model parameters capable of differentiating between healthy children and children with respiratory system distress? Children were classified into two main categories: Healthy (H) and Small Airway-Impaired (SAI). The IOS measures and respiratory model parameters analyzed differed consistently between H and SAI children. SAI children showed smaller trend of "growth" and larger trend of bronchodilator responses than H children. The two model parameters: peripheral compliance (Cp) and peripheral resistance (Rp) tracked IOS indices of small airway function well. Cp was a more sensitive index than Rp. Both eRIC and aRIC Cps and the IOS Reactance Area, AX, (also known as the "Goldman Triangle") showed good correlations. Conclusions What are the most useful IOS and model parameters? In this work we

  17. Acute and Chronic Airway Disease After Human Respiratory Syncytial Virus Infection in Cotton Rats (Sigmodon hispidus).

    PubMed

    Grieves, Jessica L; Yin, Zhiwei; Durbin, Russell K; Durbin, Joan E

    2015-08-01

    Infection with respiratory syncytial virus (RSV) generally presents as a mild, upper airway disease in human patients but may cause severe lower airway disease in the very young and very old. Progress toward understanding the mechanisms of RSV pathogenesis has been hampered by a lack of relevant rodent models. Mice, the species most commonly used in RSV research, are resistant to upper respiratory infection and do not recapitulate the pattern of virus spread in the human host. To address the need for better rodent models of RSV infection, we have characterized the acute and chronic pathology of RSV infection of a relatively permissive host, cotton rats (Sigmodon hispidus). We demonstrate that virus delivered to the upper airway results in widespread RSV replication in the ciliated respiratory epithelial cells of the nasal cavity and, to a lesser extent, of the lung. Although acute inflammation is relatively mild and rapidly eliminated after viral clearance, chronic, eosinophilic lung pathology persists. These data support the use of cotton rats as a robust rodent model of human RSV disease, including the association between RSV pneumonia and subsequent development of allergic asthma.

  18. Acute and Chronic Airway Disease After Human Respiratory Syncytial Virus Infection in Cotton Rats (Sigmodon hispidus)

    PubMed Central

    Grieves, Jessica L; Yin, Zhiwei; Durbin, Russell K; Durbin, Joan E

    2015-01-01

    Infection with respiratory syncytial virus (RSV) generally presents as a mild, upper airway disease in human patients but may cause severe lower airway disease in the very young and very old. Progress toward understanding the mechanisms of RSV pathogenesis has been hampered by a lack of relevant rodent models. Mice, the species most commonly used in RSV research, are resistant to upper respiratory infection and do not recapitulate the pattern of virus spread in the human host. To address the need for better rodent models of RSV infection, we have characterized the acute and chronic pathology of RSV infection of a relatively permissive host, cotton rats (Sigmodon hispidus). We demonstrate that virus delivered to the upper airway results in widespread RSV replication in the ciliated respiratory epithelial cells of the nasal cavity and, to a lesser extent, of the lung. Although acute inflammation is relatively mild and rapidly eliminated after viral clearance, chronic, eosinophilic lung pathology persists. These data support the use of cotton rats as a robust rodent model of human RSV disease, including the association between RSV pneumonia and subsequent development of allergic asthma. PMID:26310461

  19. Comparative analysis of realistic CT-scan and simplified human airway models in airflow simulation.

    PubMed

    Johari, Nasrul Hadi; Osman, Kahar; Helmi, Nor Harris N; Abdul Kadir, Mohammed A Rafiq

    2015-01-01

    Efforts to model the human upper respiratory system have undergone many phases. Geometrical proximity to the realistic shape has been the subject of many research projects. In this study, three different geometries of the trachea and main bronchus were modelled, which were reconstructed from computed tomography (CT) scan images. The geometrical variations were named realistic, simplified and oversimplified. Realistic refers to the lifelike image taken from digital imaging and communications in medicine format CT scan images, simplified refers to the reconstructed image based on natural images without realistic details pertaining to the rough surfaces, and oversimplified describes the straight wall geometry of the airway. The characteristics of steady state flows with different flow rates were investigated, simulating three varied physical activities and passing through each model. The results agree with previous studies where simplified models are sufficient for providing comparable results for airflow in human airways. This work further suggests that, under most exercise conditions, the idealised oversimplified model is not favourable for simulating either airflow regimes or airflow with particle depositions. However, in terms of immediate analysis for the prediction of abnormalities of various dimensions of human airways, the oversimplified techniques may be used.

  20. Increased nitric oxide concentrations in the small airway of older normal subjects.

    PubMed

    Gelb, Arthur F; George, Steven C; Camacho, Fernando; Fraser, Christine; Flynn Taylor, Colleen; Shakkottai, Sreelakshmi

    2011-02-01

    There is a paucity of normal-age stratified data for fraction of exhaled nitric oxide (Feno). Our goal was to obtain normal data for large-airway nitric oxide flux (J'awno) and small-airway and/or alveolar nitric oxide concentration (Cano) in nonsmoking, healthy, adult subjects of various ages. In 106 normal volunteer subjects (60 women) aged 55 ± 20 years (mean ± SD), Feno (parts per billion [ppb]) was measured at 50, 100, 150, and 200 mL/s and J'awno (nL/s) and Cano (ppb) were calculated using a two-compartment model with correction for axial nitric oxide (NO) back diffusion. Fourteen older normal subjects were also treated with inhaled corticosteroid (540 μg budesonide bid) for 14 days. We studied 34 younger normal subjects (17 women) aged 18 to 39 years (younger), 26 middle-aged normal subjects (22 women) aged 40 to 59 years (middle-aged), and 46 older normal subjects (21 women) aged 60 to 86 years (older). Feno at 50 mL/s in the younger group was 21 (14-28) ppb (median, 1-3 interquartile); in the middle-aged group it was 22 (18-30) ppb, and in the older group it was 27 (21-33) ppb, (analysis of variance [ANOVA]) P = .02. For Feno, the younger vs older groups was (Mann-Whitney) P = .03, and Feno in the combined younger and middle-aged groups was 21 (15-29) ppb vs 27 (21-33) ppb, P = .006 for the older group. Corrected J'awno in the younger group was 1.5 (1.0-2.1) nL/s; in the middle-aged group it was 1.4 (1.0-2.0) nL/s, and in the older group it was 1.8 (1.2-2.4) nL/s, (ANOVA) P = .3. Corrected Cano in the younger group was 1.9 (0.8-3.0) ppb; in the middle-aged group it was 2.8 (0.8-5.1) ppb, and in the older group it was 3.9 (1.4-6.6) ppb, (ANOVA) P = .02. Cano in the younger vs older groups was P = .003, and the combined younger and middle-aged group result was 2.0 (0.8-3.8) vs 3.9 (1.4-6.6), P = .01 in the older group. There was no change in NO gas exchange with inhaled corticosteroids. In nonsmoking healthy subjects with normal spirometry, Feno at 50 m

  1. Upregulation of Gelatinases and Epithelial–Mesenchymal Transition in Small Airway Remodeling Associated with Chronic Exposure to Wood Smoke

    PubMed Central

    Zou, Yimin; Li, Shaoxing; Zou, Weifeng; Hu, Guoping; Zhou, Yumin; Peng, Gongyong; He, Fang; Li, Bing; Ran, Pixin

    2014-01-01

    Background Peribronchiolar fibrosis is an important feature of small airway remodeling (SAR) in cigarette smoke-induced COPD. The aim of this study was to investigate the role of gelatinases (MMP9, MMP2) and epithelial-mesenchymal transition (EMT) in SAR related to wood smoke (WS) exposure in a rat model. Methods Forty-eight female Sprague-Dawley rats were randomly divided into the WS group, the cigarette smoke (CS) group and the clean air control group. After 4 to 7 months of smoke exposure, lung tissues were examined with morphometric measurements, immunohistochemistry and Western blotting. Serum MMP9 and TIMP1 concentrations were detected by ELISA. In vitro, primary rat tracheal epithelial cells were stimulated with wood smoke condensate for 7 days. Results The COPD-like pathological alterations in rats exposed chronically to WS were similar to those exposed to CS; the area of collagen deposition was significantly increased in the small airway walls of those exposed to WS or CS for 7 months. The expression of gelatinases in rats induced by WS or CS exposure was markedly increased in whole lung tissue, and immunohistochemistry showed that MMP9, MMP2 and TIMP1 were primarily expressed in the airway epithelium. The serum levels of MMP9 and TIMP1 were significantly higher in rats secondary to WS or CS exposure. Few cells that double immunostained for E-cadherin and vimentin were observed in the airway subepithelium of rats exposed to WS for 7 months (only 3 of these 8 rats). In vitro, the expression of MMP9 and MMP2 proteins was upregulated in primary rat tracheal epithelial cells following exposure to wood smoke condensate for 7 days by Western blotting; positive immunofluorescent staining for vimentin and type I collagen was also observed. Conclusions These findings suggest that the upregulation of gelatinases and EMT might play a role in SAR in COPD associated with chronic exposure to wood smoke. PMID:24802298

  2. Numerical simulation of soft palate movement and airflow in human upper airway by fluid-structure interaction method

    NASA Astrophysics Data System (ADS)

    Sun, Xiuzhen; Yu, Chi; Wang, Yuefang; Liu, Yingxi

    2007-08-01

    In this paper, the authors present airflow field characteristics of human upper airway and soft palate movement attitude during breathing. On the basis of the data taken from the spiral computerized tomography images of a healthy person and a patient with Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS), three-dimensional models of upper airway cavity and soft palate are reconstructed by the method of surface rendering. Numerical simulation is performed for airflow in the upper airway and displacement of soft palate by fluid-structure interaction analysis. The reconstructed three-dimensional models precisely preserve the original configuration of upper airways and soft palate. The results of the pressure and velocity distributions in the airflow field are quantitatively determined, and the displacement of soft palate is presented. Pressure gradients of airway are lower for the healthy person and the airflow distribution is quite uniform in the case of free breathing. However, the OSAHS patient remarkably escalates both the pressure and velocity in the upper airway, and causes higher displacement of the soft palate. The present study is useful in revealing pathogenesis and quantitative mutual relationship between configuration and function of the upper airway as well as in diagnosing diseases related to anatomical structure and function of the upper airway.

  3. Deposition of aerosol particles and flow resistance in mathematical and experimental airway models.

    PubMed

    Kim, C S; Brown, L K; Lewars, G G; Sackner, M A

    1983-07-01

    Aerosol deposition and flow resistance in obstructed airways were determined from five mathematical and experimental airway models. The first three models were theoretical and based upon Weibel's symmetrical lung model with 1) uniform reduction of airway diameter in various groups of airway generations; 2) obstruction of a few major airways such that a severe uneven flow distribution occurs in the lung; 3) focal constriction of selected large airways. In model 3, an empirical formula was utilized to assess deposition and resistance in the constricted airways. The remaining two models were tested experimentally; 4) oscillation of a compliant wall in a straight tube and 5) two-phase gas-liquid flow utilizing human sputum in a rigid branching tube. In models 1, 2, and 3, airway resistance increased to a greater extent than did the increase of aerosol deposition except when small airways were obstructed in model 1. Here, the increase of aerosol deposition was slightly higher than the rise in airway resistance. A sharp increase of aerosol deposition with a minimal increase of flow resistance was demonstrated in models 4 and 5. These data indicate that aerosol deposition may be a more sensitive indicator of airway abnormalities than overall airway resistance in small airways obstruction, during oscillation of large and medium airway walls, and when excessive secretions within the airways move with a wave or slug motion.

  4. Human airway musculature on a chip: an in vitro model of allergic asthmatic bronchoconstriction and bronchodilation.

    PubMed

    Nesmith, Alexander Peyton; Agarwal, Ashutosh; McCain, Megan Laura; Parker, Kevin Kit

    2014-10-21

    Many potential new asthma therapies that show promise in the pre-clinical stage of drug development do not demonstrate efficacy during clinical trials. One factor contributing to this problem is the lack of human-relevant models of the airway that recapitulate the tissue-level structural and functional phenotypes of asthma. Hence, we sought to build a model of a human airway musculature on a chip that simulates healthy and asthmatic bronchoconstriction and bronchodilation in vitro by engineering anisotropic, laminar bronchial smooth muscle tissue on elastomeric thin films. In response to a cholinergic agonist, the muscle layer contracts and induces thin film bending, which serves as an in vitro analogue for bronchoconstriction. To mimic asthmatic inflammation, we exposed the engineered tissues to interleukin-13, which resulted in hypercontractility and altered relaxation in response to cholinergic challenge, similar to responses observed clinically in asthmatic patients as well as in studies with animal tissue. Moreover, we reversed asthmatic hypercontraction using a muscarinic antagonist and a β-agonist which are used clinically to relax constricted airways. Importantly, we demonstrated that targeting RhoA-mediated contraction using HA1077 decreased basal tone, prevented hypercontraction, and improved relaxation of the engineered tissues exposed to IL-13. These data suggest that we can recapitulate the structural and functional hallmarks of human asthmatic musculature on a chip, including responses to drug treatments for evaluation of safety and efficacy of new drugs. Further, our airway musculature on a chip provides an important tool for enabling mechanism-based search for new therapeutic targets through the ability to evaluate engineered muscle at the levels of protein expression, tissue structure, and tissue function.

  5. Adhesion of Streptococcus pneumoniae to human airway epithelial cells exposed to urban particulate matter.

    PubMed

    Mushtaq, Naseem; Ezzati, Majid; Hall, Lucinda; Dickson, Iain; Kirwan, Michael; Png, Ken M Y; Mudway, Ian S; Grigg, Jonathan

    2011-05-01

    Epidemiologic studies report an association between pneumonia and urban particulate matter (PM) less than 10 microns (μm) in aerodynamic diameter (PM(10)). Streptococcus pneumoniae is a common cause of bacterial pneumonia worldwide. To date, the mechanism whereby urban PM enhances vulnerability to S pneumoniae infection is unclear. Adhesion of S pneumoniae to host cells is a prerequisite for infection. Host-expressed proteins, including the receptor for platelet-activating factor (PAFR), are co-opted by S pneumoniae to adhere to lower airway epithelial cells. To define whether inhalable urban PM enhances the adhesion of S pneumoniae to airway epithelial cells. A549 cells were cultured with PM(10) from Leicester (United Kingdom [UK]) and PM(10) and PM less than 2.5 μm in aerodynamic diameter (PM(2.5)) from Accra (Ghana), then infected with S pneumoniae strain D39. Pneumococcal adhesion to human primary bronchial epithelial cells was also assessed. Bacterial adhesion was determined by quantitative culture and confocal microscopy. The role of oxidative stress was assessed by N-acetyl cysteine, and the role of PAFR was assessed by mRNA transcript level, receptor expression, and receptor blocking. PM(10) (UK) increased S pneumoniae adhesion to both A549 airway epithelial cells and human primary bronchial epithelial cells. PM(10) (Ghana) and PM(2.5) (Ghana) also increased adhesion. Culture of A549 cells by PM(10) (UK) increased PAFR mRNA transcript level and PAFR expression. PM(10) (UK)-stimulated adhesion to A549 cells was attenuated by a PAFR blocker and N-acetyl cysteine. Urban PM increases adhesion of S pneumoniae to human airway epithelial cells. PM-stimulated adhesion is mediated by oxidative stress and PAFR. Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  6. Epithelial mesenchymal transition (EMT) and non-small cell lung cancer (NSCLC): a mutual association with airway disease.

    PubMed

    Mahmood, Malik Quasir; Ward, Chris; Muller, Hans Konrad; Sohal, Sukhwinder Singh; Walters, Eugene Haydn

    2017-03-01

    NSCLC is a leading cause of morbidity and mortality worldwide. It includes adeno- and squamous cell carcinoma. In the background, COPD and smoking play a vital role in development of NSCLC. Local progression and metastasis of NSCLC has been associated with various mechanisms, but in particular by a process called epithelial mesenchymal transition (EMT), which is implicated in COPD pathogenesis. In this study, we have investigated whether expression of EGFR (activation marker) and S100A4, vimentin and N-cadherin (as EMT) is different both in central and leading edge of NSCLC and to what extent related to EMT activity of both small and large airways, stage and differentiation of NSCLC. We have investigated EMT biomarkers (S100A4, vimentin, and N-cadherin), an epithelial activation marker (EGFR) and a vascularity marker (Type-IV collagen) in surgically resected tissue from patients with NSCLC (adeno- and squamous cell carcinoma), and compared them with expression in the corresponding non-tumorous airways. EGFR, S100A4, vimentin, N-cadherin expression was higher in tumor cells located at the peripheral leading edge of NSCLC when compared with centrally located tumor cells of same subjects (P < 0.01). Type-IV collagen-expressing blood vessels were also more at the leading edge in comparison with central parts of NSCLC. EGFR and S100A4 expression was related to differentiation status (P < 0.05) and TNM stage (P < 0.05) of NSCLC. Moreover, EMT markers in the leading edge were significantly related to airway EMT activity, while peripheral edge vascularity of squamous cell carcinoma only was significantly related to large airway Rbm vascularity (P < 0.05). EGFR- and EMT-related protein expression was markedly high in the peripheral leading edge of NSCLCs and related to tumor characteristics associated with poor prognosis. The relationships between EMT-related tumor biomarker expression and those in the airway epithelium and Rbm provide a background for utility of

  7. Quantitative imaging of the human upper airway: instrument design and clinical studies

    NASA Astrophysics Data System (ADS)

    Leigh, M. S.; Armstrong, J. J.; Paduch, A.; Sampson, D. D.; Walsh, J. H.; Hillman, D. R.; Eastwood, P. R.

    2006-08-01

    Imaging of the human upper airway is widely used in medicine, in both clinical practice and research. Common imaging modalities include video endoscopy, X-ray CT, and MRI. However, no current modality is both quantitative and safe to use for extended periods of time. Such a capability would be particularly valuable for sleep research, which is inherently reliant on long observation sessions. We have developed an instrument capable of quantitative imaging of the human upper airway, based on endoscopic optical coherence tomography. There are no dose limits for optical techniques, and the minimally invasive imaging probe is safe for use in overnight studies. We report on the design of the instrument and its use in preliminary clinical studies, and we present results from a range of initial experiments. The experiments show that the instrument is capable of imaging during sleep, and that it can record dynamic changes in airway size and shape. This information is useful for research into sleep disorders, and potentially for clinical diagnosis and therapies.

  8. Action of N-acylated ambroxol derivatives on secretion of chloride ions in human airway epithelia.

    PubMed

    Yamada, Takahiro; Takemura, Yoshizumi; Niisato, Naomi; Mitsuyama, Etsuko; Iwasaki, Yoshinobu; Marunaka, Yoshinori

    2009-03-13

    We report the effects of new N-acylated ambroxol derivatives (TEI-588a, TEI-588b, TEI-589a, TEI-589b, TEI-602a and TEI-602b: a, aromatic amine-acylated derivative; b, aliphatic amine-acylated derivative) induced from ambroxol (a mucolytic agent to treat human lung diseases) on Cl(-) secretion in human submucosal serous Calu-3 cells under a Na(+)/K(+)/2Cl(-) cotransporter-1 (NKCC1)-mediated hyper-secreting condition. TEI-589a, TEI-589b and TEI-602a diminished hyper-secretion of Cl(-) by diminishing the activity of NKCC1 without blockade of apical Cl(-) channel (TEI-589a>TEI-602a>TEI-589b), while any other tested compounds including ambroxol had no effects on Cl(-) secretion. These indicate that the inhibitory action of an aromatic amine-acylated derivative on Cl(-) secretion is stronger that that of an aliphatic amine-acylated derivative, and that 3-(2,5-dimethyl)furoyl group has a strong action in inhibition of Cl(-) secretion than cyclopropanoyl group. We here indicate that TEI-589a, TEI-589b and TEI-602a reduce hyper-secretion to an appropriate level in the airway, providing a possibility that the compound can be an effective drug in airway obstructive diseases including COPD by reducing the airway resistance under a hyper-secreting condition.

  9. Effects of hexamethylene diisocyanate exposure on human airway epithelial cells: in vitro cellular and molecular studies.

    PubMed Central

    Wisnewski, Adam V; Liu, Qing; Miller, Jing-Jing; Magoski, Nadine; Redlich, Carrie A

    2002-01-01

    In this study we developed an in vitro exposure model to investigate the effects of hexamethylene diisocyanate (HDI) on human airway epithelial cells at the cellular and molecular level. We used immunofluorescence analysis (IFA) to visualize the binding and uptake of HDI by airway epithelial cell lines (A549 and NCI-NCI-H292) and microarray technology to identify HDI sensitive genes. By IFA, we observed that subcytotoxic concentrations of HDI form microscopic micelles that appear to be taken up by cells over a 3-hr period postexposure. Microarray analysis (4.6K genes) of parallel cultures identified four genes (thioredoxin reductase, dihydrodiol dehydrogenase, TG interacting factor, and stanniocalcin) whose mRNA levels were up-regulated after HDI exposure. Northern analysis was used to confirm that HDI increased message levels of these four genes and to further explore the dose dependence and kinetics of the response. The finding that HDI exposure increases thioredoxin reductase expression supports previous studies suggesting that HDI alters thiol-redox homeostasis, an important sensor of cellular stress. Another of the HDI-increased genes, a dihydrodiol dehydrogenase, encodes a protein previously shown to be specifically susceptible to HDI conjugation, and known to detoxify other hydrocarbons. Together, the data describe a novel approach for investigating the effects of HDI binding and uptake by human airway epithelial cells and begin to identify genes that may be involved in the acute response to exposure. PMID:12204825

  10. In Vitro Microfluidic Models of Mucus-Like Obstructions in Small Airways

    NASA Astrophysics Data System (ADS)

    Mulligan, Molly K.; Grotberg, James B.; Sznitman, Josué

    2012-11-01

    Liquid plugs can form in the lungs as a result of a host of different diseases, including cystic fibrosis and chronic obstructive pulmonary disease. The existence of such fluid obstructions have been found as far down in the bronchiole tree as the sixteenth generation, where bronchiole openings have diameters on the order of a hundred to a few hundred microns. Understanding the propagation of liquid plugs within the bifurcating branches of bronchiole airways is important because their presence in the lungs, and their rupture and break-up, can cause injury to the epithelial cells lining the airway walls as a result of high wall shear stresses. In particular, liquid plug rupture and break-up frequently occurs at airway bifurcations. Until present, however, experimental studies of liquid plugs have generally been restricted to Newtonian fluids that do not reflect the actual pseudoplastic properties of lung mucus. The present work attempts to uncover the propagation, rupture and break-up of mucus-like liquid plugs in the lower generations of the airway tree using microfluidic models. Our approach allows the dynamics of mucus-like plug break-up to be studied in real-time, in a one-to-one in vitro model, as a function of mucus rheology and bronchial tree geometry.

  11. Biochemical evidence for an ecto alkaline phosphodiesterase I in human airways.

    PubMed

    Picher, M; Boucher, R C

    2000-08-01

    Because dinucleotides are signaling molecules that can interact with cell surface receptors and regulate the rate of mucociliary clearance in lungs, we studied their metabolism by using human airway epithelial cells. A membrane-bound enzyme was detected on the mucosal surface of polarized epithelia that metabolized dinucleotides with a broad substrate specificity (diadenosine polyphosphates and diuridine polyphosphates [Up(n)U], n = 2 to 6). The enzymatic reaction yielded nucleoside monophosphates (NMP) and Np(n)(-)(1) (N = A or U), and was inhibited by nucleoside 5'-triphosphates (alpha,betamet adenosine triphosphate [ATP] > ATP >/= uridine triphosphate > guanidine triphosphate > cytidine triphosphate). The apparent Michaelis constant (K(m,app)) and apparent maximal velocity (V(max,app)) for [(3)H]Up(4)U were 22 +/- 4 microM and 0.24 +/- 0.05 nmoles. min(-)(1). cm(-)(2), respectively. Thymidine 5'-monophosphate p-nitrophenyl ester and adenosine diphosphate (ADP)- ribose, substrates of ecto alkaline phosphodiesterase I (PDE I) activities, were also hydrolyzed by the apical surface of airway epithelia. ADP-ribose competed with [(3)H]Up(4)U, with a K(i) of 23 +/- 3 microM. The metabolism of ADP-ribose and Ap(4)A was not affected by inhibitors of cyclic nucleotide phosphodiesterases (3-isobutyl-1-methylxanthine, Ro 20-1724, and 1,3-dipropyl-8-p-sulfophenylxanthine), but similarly inhibited by fluoride and N-ethylmaleimide. These results suggest that a PDE I is responsible for the hydrolysis of extracellular dinucleotides in human airways. The wide substrate specificity of PDE I suggests that it may be involved in several signaling events on the luminal surface of airway epithelia, including purinoceptor activation and cell surface protein ribosylation.

  12. Differential responses of human dendritic cells to metabolites from the oral/airway microbiome.

    PubMed

    Whiteson, K; Agrawal, S; Agrawal, A

    2017-02-14

    Small molecule metabolites that are produced or altered by host-associated microbial communities are emerging as significant immune response modifiers. However, there is a key gap in our knowledge of how oral microbial metabolites affect the immune response. Here, we examined the effects of metabolites from five bacterial strains found commonly in the oral/airway microbial communities of humans. The five strains, each isolated from cystic fibrosis patient sputum, were Pseudomonas aeruginosa FLR01 non-mucoid (P1) and FLR02 mucoid (P2) forms, Streptococcus pneumoniae (Sp), S. salivarius (Ss) and Rothia mucilaginosa (Rm). The effect of bacterial metabolites on dendritic cell (DC) activation, T cell priming and cytokine secretion was determined by exposing DCs to bacterial supernatants and individual metabolites of interest. Supernatants from P1 and P2 induced high levels of tumour necrosis factor (TNF)-α, interleukin (IL)-12 and IL-6 from DCs and primed T cells to secrete interferon (IFN)-γ, IL-22 compared to supernatants from Sp, Ss and Rm. Investigations into the composition of supernatants using gas chromatography-mass spectroscopy (GC-MS) revealed signature metabolites for each of the strains. Supernatants from P1 and P2 contained high levels of putrescine and glucose, while Sp and Ss contained high levels of 2,3-butanediol. The individual metabolites replicated the results of whole supernatants, although the magnitudes of their effects were reduced significantly. Altogether, our data demonstrate for the first time that the signature metabolites produced by different bacteria have different effects on DC functions. The identification of signature metabolites and their effects on the host immune system can provide mechanistic insights into diseases and may also be developed as biomarkers.

  13. Modulation of endocytic trafficking and apical stability of CFTR in primary human airway epithelial cultures

    PubMed Central

    Cholon, Deborah M.; O'Neal, Wanda K.; Randell, Scott H.; Riordan, John R.

    2010-01-01

    CFTR is a highly regulated apical chloride channel of epithelial cells that is mutated in cystic fibrosis (CF). In this study, we characterized the apical stability and intracellular trafficking of wild-type and mutant CFTR in its native environment, i.e., highly differentiated primary human airway epithelial (HAE) cultures. We labeled the apical pool of CFTR and subsequently visualized the protein in intracellular compartments. CFTR moved from the apical surface to endosomes and then efficiently recycled back to the surface. CFTR endocytosis occurred more slowly in polarized than in nonpolarized HAE cells or in a polarized epithelial cell line. The most common mutation in CF, ΔF508 CFTR, was rescued from endoplasmic reticulum retention by low-temperature incubation but transited from the apical membrane to endocytic compartments more rapidly and recycled less efficiently than wild-type CFTR. Incubation with small-molecule correctors resulted in ΔF508 CFTR at the apical membrane but did not restore apical stability. To stabilize the mutant protein at the apical membrane, we found that the dynamin inhibitor Dynasore and the cholesterol-extracting agent cyclodextrin dramatically reduced internalization of ΔF508, whereas the proteasomal inhibitor MG-132 completely blocked endocytosis of ΔF508. On examination of intrinsic properties of CFTR that may affect its apical stability, we found that N-linked oligosaccharides were not necessary for transport to the apical membrane but were required for efficient apical recycling and, therefore, influenced the turnover of surface CFTR. Thus apical stability of CFTR in its native environment is affected by properties of the protein and modulation of endocytic trafficking. PMID:20008117

  14. Growth and characterization of different human rhinovirus C types in three-dimensional human airway epithelia reconstituted in vitro

    SciTech Connect

    Tapparel, Caroline; Sobo, Komla; Constant, Samuel; Huang, Song; Van Belle, Sandra; Kaiser, Laurent

    2013-11-15

    New molecular diagnostic tools have recently allowed the discovery of human rhinovirus species C (HRV-C) that may be overrepresented in children with lower respiratory tract complications. Unlike HRV-A and HRV-B, HRV-C cannot be propagated in conventional immortalized cell lines and their biological properties have been difficult to study. Recent studies have described the successful amplification of HRV-C15, HRV-C11, and HRV-C41 in sinus mucosal organ cultures and in fully differentiated human airway epithelial cells. Consistent with these studies, we report that a panel of clinical HRV-C specimens including HRV-C2, HRV-C7, HRV-C12, HRV-C15, and HRV-C29 types were all capable of mediating productive infection in reconstituted 3D human primary upper airway epithelial tissues and that the virions enter and exit preferentially through the apical surface. Similar to HRV-A and HRV-B, our data support the acid sensitivity of HRV-C. We observed also that the optimum temperature requirement during HRV-C growth may be type-dependent. - Highlights: • A 3D human upper airway epithelia reconstituted in vitro supports HRV-C growth. • HRV-Cs enter and exit preferentially at the apical side of this ALI culture system. • HRV-Cs are acid sensitive. • Temperature sensitivity may be type-dependent for HRV-Cs.

  15. Directed Induction of Functional Multi-ciliated Cells in Proximal Airway Epithelial Spheroids from Human Pluripotent Stem Cells

    PubMed Central

    Konishi, Satoshi; Gotoh, Shimpei; Tateishi, Kazuhiro; Yamamoto, Yuki; Korogi, Yohei; Nagasaki, Tadao; Matsumoto, Hisako; Muro, Shigeo; Hirai, Toyohiro; Ito, Isao; Tsukita, Sachiko; Mishima, Michiaki

    2015-01-01

    Summary Multi-ciliated airway cells (MCACs) play a role in mucociliary clearance of the lung. However, the efficient induction of functional MCACs from human pluripotent stem cells has not yet been reported. Using carboxypeptidase M (CPM) as a surface marker of NKX2-1+-ventralized anterior foregut endoderm cells (VAFECs), we report a three-dimensional differentiation protocol for generating proximal airway epithelial progenitor cell spheroids from CPM+ VAFECs. These spheroids could be induced to generate MCACs and other airway lineage cells without alveolar epithelial cells. Furthermore, the directed induction of MCACs and of pulmonary neuroendocrine lineage cells was promoted by adding DAPT, a Notch pathway inhibitor. The induced MCACs demonstrated motile cilia with a “9 + 2” microtubule arrangement and dynein arms capable of beating and generating flow for mucociliary transport. This method is expected to be useful for future studies on human airway disease modeling and regenerative medicine. PMID:26724905

  16. Inhibitory effects of carbocisteine on type A seasonal influenza virus infection in human airway epithelial cells.

    PubMed

    Yamaya, Mutsuo; Nishimura, Hidekazu; Shinya, Kyoko; Hatachi, Yukimasa; Sasaki, Takahiko; Yasuda, Hiroyasu; Yoshida, Motoki; Asada, Masanori; Fujino, Naoya; Suzuki, Takaya; Deng, Xue; Kubo, Hiroshi; Nagatomi, Ryoichi

    2010-08-01

    Type A human seasonal influenza (FluA) virus infection causes exacerbations of bronchial asthma and chronic obstructive pulmonary disease (COPD). l-carbocisteine, a mucolytic agent, reduces the frequency of common colds and exacerbations in COPD. However, the inhibitory effects of l-carbocisteine on FluA virus infection are uncertain. We studied the effects of l-carbocisteine on FluA virus infection in airway epithelial cells. Human tracheal epithelial cells were pretreated with l-carbocisteine and infected with FluA virus (H(3)N(2)). Viral titers in supernatant fluids, RNA of FluA virus in the cells, and concentrations of proinflammatory cytokines in supernatant fluids, including IL-6, increased with time after infection. l-carbocisteine reduced viral titers in supernatant fluids, RNA of FluA virus in the cells, the susceptibility to FluA virus infection, and concentrations of cytokines induced by virus infection. The epithelial cells expressed sialic acid with an alpha2,6-linkage (SAalpha2,6Gal), a receptor for human influenza virus on the cells, and l-carbocisteine reduced the expression of SAalpha2,6Gal. l-carbocisteine reduced the number of acidic endosomes from which FluA viral RNA enters into the cytoplasm and reduced the fluorescence intensity from acidic endosomes. Furthermore, l-carbocisteine reduced NF-kappaB proteins including p50 and p65 in the nuclear extracts of the cells. These findings suggest that l-carbocisteine may inhibit FluA virus infection, partly through the reduced expression of the receptor for human influenza virus in the human airway epithelial cells via the inhibition of NF-kappaB and through increasing pH in endosomes. l-carbocisteine may reduce airway inflammation in influenza virus infection.

  17. Measurement of Flow Patterns and Dispersion in the Human Airways

    NASA Astrophysics Data System (ADS)

    Fresconi, Frank E.; Prasad, Ajay K.

    2006-03-01

    A detailed knowledge of the flow and dispersion within the human respiratory tract is desirable for numerous reasons. Both risk assessments of exposure to toxic particles in the environment and the design of medical delivery systems targeting both lung-specific conditions (asthma, cystic fibrosis, and chronic obstructive pulmonary disease (COPD)) and system-wide ailments (diabetes, cancer, hormone replacement) would profit from such an understanding. The present work features experimental efforts aimed at elucidating the fluid mechanics of the lung. Particle image velocimetry (PIV) and laser induced fluorescence (LIF) measurements of oscillatory flows were undertaken in anatomically accurate models (single and multi-generational) of the conductive region of the lung. PIV results captured primary and secondary velocity fields. LIF was used to determine the amount of convective dispersion across an individual generation of the lung.

  18. Computational model of soft tissues in the human upper airway.

    PubMed

    Pelteret, J-P V; Reddy, B D

    2012-01-01

    This paper presents a three-dimensional finite element model of the tongue and surrounding soft tissues with potential application to the study of sleep apnoea and of linguistics and speech therapy. The anatomical data was obtained from the Visible Human Project, and the underlying histological data was also extracted and incorporated into the model. Hyperelastic constitutive models were used to describe the material behaviour, and material incompressibility was accounted for. An active Hill three-element muscle model was used to represent the muscular tissue of the tongue. The neural stimulus for each muscle group was determined through the use of a genetic algorithm-based neural control model. The fundamental behaviour of the tongue under gravitational and breathing-induced loading is investigated. It is demonstrated that, when a time-dependent loading is applied to the tongue, the neural model is able to control the position of the tongue and produce a physiologically realistic response for the genioglossus.

  19. Structural features of the core proteins of human airway mucins ascertained by cDNA cloning.

    PubMed

    Porchet, N; Dufosse, J; Audie, J P; Duperat, V G; Perini, J M; Nguyen, V C; Degand, P; Aubert, J P

    1991-09-01

    Tracheobronchial secretions are one of the most important elements of the mucociliary system that protects the respiratory mucosa. They contain bronchial mucus, which is composed of a group of macromolecules secreted by the goblet cells of the epithelium and the submucosal glands. Bronchial mucins are the most characteristic molecules of this mucus. They form a group of complex, polydispersed O-linked glycoproteins containing sugars, which make up 80% of their weight. The protein core of human airway mucin has been difficult to sequence by traditional technologies because of its high content of serine and threonine residues linked to numerous oligosaccharide chains. We therefore prepared a lambda gt11 cDNA library from one sample of human tracheobronchial mucosa and screened this library with a polyclonal antibody directed against the apopeptides of human bronchial mucins. We obtained 20 positive clones that were sequenced. These sequences were classified into three different types. The use of the nucleotide probes from these clones in Northern blot analysis showed that the RNA messages were extremely polydispersed. At the current time, four of these probes allow us to map human tracheobronchial mucins genes to at least three different chromosomes. These results suggest that the peptide moiety of the human airway mucin is very heterogeneous.

  20. Flow in the human upper airway: work of breathing and the compliant soft palate and tongue

    NASA Astrophysics Data System (ADS)

    Jermy, Mark; Adams, Cletus; Aplin, Jonathan; Buchajczyk, Marcin; van Hove, Sibylle; Kabaliuk, Natalia; Geoghegan, Patrick; Cater, John

    2016-11-01

    The human upper airway (nasal cavity, pharynx and trachea) filters, heats and humidifies inspired air. Its pressure drop affects the work of breathing (WOB, energy expended to inspire and expire) to a degree which varies from person to person, and which is altered by breathing therapy devices. We report experimental studies using 3D printed models of the upper airway based on CT scans of single individuals (adult and paediatric), and average geometries based on PCA analysis of 150 individuals. Particle Image Velocimetry (PIV), gas concentration and pressure measurements, coupled with CFD simulation. These reveal the details of the washout of CO2 rich exhaled gas, the direction-dependent time-varying pressure drop, and the effect of high-flow nasal therapy (HFNT) on these phenomena. A 1D multi-compartment model is used to estimate the work of breathing. For the first time, soft (compliant) elements have been included in the model airways and show that the assumption of rigid tissue is acceptable for unassisted breathing, but unrealistic for therapy-assisted flows.

  1. A numerical study of heat and water vapor transfer in MDCT-based human airway models.

    PubMed

    Wu, Dan; Tawhai, Merryn H; Hoffman, Eric A; Lin, Ching-Long

    2014-10-01

    A three-dimensional (3D) thermo-fluid model is developed to study regional distributions of temperature and water vapor in three multi-detector row computed-tomography-based human airways with minute ventilations of 6, 15 and 30 L/min. A one-dimensional (1D) model is also solved to provide necessary initial and boundary conditions for the 3D model. Both 3D and 1D predicted temperature distributions agree well with available in vivo measurement data. On inspiration, the 3D cold high-speed air stream is split at the bifurcation to form secondary flows, with its cold regions biased toward the inner wall. The cold air flowing along the wall is warmed up more rapidly than the air in the lumen center. The repeated splitting pattern of air streams caused by bifurcations acts as an effective mechanism for rapid heat and mass transfer in 3D. This provides a key difference from the 1D model, where heating relies largely on diffusion in the radial direction, thus significantly affecting gradient-dependent variables, such as energy flux and water loss rate. We then propose the correlations for respective heat and mass transfer in the airways of up to 6 generations: [Formula: see text] and [Formula: see text], where Nu is the Nusselt number, Sh is the Sherwood number, Re is the branch Reynolds number, D a is the airway equivalent diameter, and [Formula: see text] is the tracheal equivalent diameter.

  2. Cigarette smoke-induced mitochondrial fragmentation and dysfunction in human airway smooth muscle.

    PubMed

    Aravamudan, Bharathi; Kiel, Alexander; Freeman, Michelle; Delmotte, Philippe; Thompson, Michael; Vassallo, Robert; Sieck, Gary C; Pabelick, Christina M; Prakash, Y S

    2014-05-01

    The balance between mitochondrial fission and fusion is crucial for mitochondria to perform its normal cellular functions. We hypothesized that cigarette smoke (CS) disrupts this balance and enhances mitochondrial dysfunction in the airway. In nonasthmatic human airway smooth muscle (ASM) cells, CS extract (CSE) induced mitochondrial fragmentation and damages their networked morphology in a concentration-dependent fashion, via increased expression of mitochondrial fission protein dynamin-related protein 1 (Drp1) and decreased fusion protein mitofusin (Mfn) 2. CSE effects on Drp1 vs. Mfn2 and mitochondrial network morphology involved reactive oxygen species (ROS), activation of extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), protein kinase C (PKC) and proteasome pathways, as well as transcriptional regulation via factors such as NF-κB and nuclear erythroid 2-related factor 2. Inhibiting Drp1 prevented CSE effects on mitochondrial networks and ROS generation, whereas blocking Mfn2 had the opposite, detrimental effect. In ASM from asmatic patients, mitochondria exhibited substantial morphological defects at baseline and showed increased Drp1 but decreased Mfn2 expression, with exacerbating effects of CSE. Overall, these results highlight the importance of mitochondrial networks and their regulation in the context of cellular changes induced by insults such as inflammation (as in asthma) or CS. Altered mitochondrial fission/fusion proteins have a further potential to influence parameters such as ROS and cell proliferation and apoptosis relevant to airway diseases.

  3. In vitro and in vivo effect of verapamil on human airway responsiveness to leukotriene D4.

    PubMed Central

    Roberts, J A; Giembycz, M A; Raeburn, D; Rodger, I W; Thomson, N C

    1986-01-01

    The mechanism by which leukotriene D4 (LTD4) induces airway narrowing in man is unclear. We have investigated this by examining the effect of the calcium channel blocker verapamil on the sensitivity of in vitro preparations of human bronchi to LTD4 and methacholine, and on the bronchoconstriction induced in normal subjects by these agonists in vivo. In vitro smooth muscle sensitivity was assessed by the concentration of LTD4 and methacholine causing a 50% of maximum contraction (EC50) and as the maximum tension generated. Verapamil did not alter baseline tension or the response to LTD4 but did inhibit contractile responses to methacholine. In vivo studies were performed in six normal subjects; they inhaled increasing concentrations of LTD4 (0.4-50 micrograms/ml) or methacholine (2-64 mg/ml). Airway responsiveness in vivo was expressed as the provocation concentration (PC) of agonist producing a 35% fall in specific airways conductance (PC35sGaw) and a 30% fall in flow at 30% of vital capacity (PC30 V30(p)). Verapamil did not alter baseline sGaw or V30(p). One subject did not respond to LTD4 on either day. In contrast to the in vitro results, verapamil produced a greater than 10 fold reduction in LTD4 induced bronchoconstriction, but had no effect on methacholine induced bronchoconstriction. These results suggest that in normal subjects bronchoconstriction induced by inhaled LTD4 is due to a combination of direct and indirect mechanisms. PMID:3518128

  4. A Numerical Study of Water Loss Rate Distributions in MDCT-based Human Airway Models

    PubMed Central

    Wu, Dan; Miyawaki, Shinjiro; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long

    2015-01-01

    Both three-dimensional (3D) and one-dimensional (1D) computational fluid dynamics (CFD) methods are applied to study regional water loss in three multi-detector row computed-tomography (MDCT)-based human airway models at the minute ventilations of 6, 15 and 30 L/min. The overall water losses predicted by both 3D and 1D models in the entire respiratory tract agree with available experimental measurements. However, 3D and 1D models reveal different regional water loss rate distributions due to the 3D secondary flows formed at bifurcations. The secondary flows cause local skewed temperature and humidity distributions on inspiration acting to elevate the local water loss rate; and the secondary flow at the carina tends to distribute more cold air to the lower lobes. As a result, the 3D model predicts that the water loss rate first increases with increasing airway generation, and then decreases as the air approaches saturation, while the 1D model predicts a monotonic decrease of water loss rate with increasing airway generation. Moreover, the 3D (or 1D) model predicts relatively higher water loss rates in lower (or upper) lobes. The regional water loss rate can be related to the non-dimensional wall shear stress (τ*) by the non-dimensional mass transfer coefficient (h0*) as h0* = 1.15 τ*0.272, R = 0.842. PMID:25869455

  5. A Numerical Study of Water Loss Rate Distributions in MDCT-Based Human Airway Models.

    PubMed

    Wu, Dan; Miyawaki, Shinjiro; Tawhai, Merryn H; Hoffman, Eric A; Lin, Ching-Long

    2015-11-01

    Both three-dimensional (3D) and one-dimensional (1D) computational fluid dynamics methods are applied to study regional water loss in three multi-detector row computed-tomography-based human airway models at the minute ventilations of 6, 15 and 30 L/min. The overall water losses predicted by both 3D and 1D models in the entire respiratory tract agree with available experimental measurements. However, 3D and 1D models reveal different regional water loss rate distributions due to the 3D secondary flows formed at bifurcations. The secondary flows cause local skewed temperature and humidity distributions on inspiration acting to elevate the local water loss rate; and the secondary flow at the carina tends to distribute more cold air to the lower lobes. As a result, the 3D model predicts that the water loss rate first increases with increasing airway generation, and then decreases as the air approaches saturation, while the 1D model predicts a monotonic decrease of water loss rate with increasing airway generation. Moreover, the 3D (or 1D) model predicts relatively higher water loss rates in lower (or upper) lobes. The regional water loss rate can be related to the non-dimensional wall shear stress (τ (*)) by the non-dimensional mass transfer coefficient (h 0 (*) ) as [Formula: see text].

  6. TNFα Affects Ciliary Beat Response to Increased Viscosity in Human Pediatric Airway Epithelium.

    PubMed

    González, Claudia; Droguett, Karla; Rios, Mariana; Cohen, Noam A; Villalón, Manuel

    2016-01-01

    In airway epithelium, mucociliary clearance (MCC) velocity depends on the ciliary beat frequency (CBF), and it is affected by mucus viscoelastic properties. Local inflammation induces secretion of cytokines (TNFα) that can alter mucus viscosity; however airway ciliated cells have an autoregulatory mechanism to prevent the collapse of CBF in response to increase in mucus viscosity, mechanism that is associated with an increment in intracellular Ca(+2) level ([Ca(2+)]i). We studied the effect of TNFα on the autoregulatory mechanism that regulates CBF in response to increased viscosity using dextran solutions, in ciliated cells cultured from human pediatric epithelial adenoid tissue. Cultures were treated with TNFα, before and after the viscous load was changed. TNFα treatment produced a significantly larger decrease in CBF in cultures exposed to dextran. Furthermore, an increment in [Ca(2+)]i was observed, which was significantly larger after TNFα treatment. In conclusion, although TNFα has deleterious effects on ciliated cells in response to maintaining CBF after increasing viscous loading, it has a positive effect, since increasing [Ca(2+)]i may prevent the MCC collapse. These findings suggest that augmented levels of TNFα associated with an inflammatory response of the nasopharyngeal epithelium may have dual effects that contribute to maintaining the effectiveness of MCC in the upper airways.

  7. Airways, vasculature, and interstitial tissue: anatomically informed computational modeling of human lungs for virtual clinical trials

    NASA Astrophysics Data System (ADS)

    Abadi, Ehsan; Sturgeon, Gregory M.; Agasthya, Greeshma; Harrawood, Brian; Hoeschen, Christoph; Kapadia, Anuj; Segars, W. P.; Samei, Ehsan

    2017-03-01

    This study aimed to model virtual human lung phantoms including both non-parenchymal and parenchymal structures. Initial branches of the non-parenchymal structures (airways, arteries, and veins) were segmented from anatomical data in each lobe separately. A volume-filling branching algorithm was utilized to grow the higher generations of the airways and vessels to the level of terminal branches. The diameters of the airways and vessels were estimated using established relationships between flow rates and diameters. The parenchyma was modeled based on secondary pulmonary lobule units. Polyhedral shapes with variable sizes were modeled, and the borders were assigned to interlobular septa. A heterogeneous background was added inside these units using a non-parametric texture synthesis algorithm which was informed by a high-resolution CT lung specimen dataset. A voxelized based CT simulator was developed to create synthetic helical CT images of the phantom with different pitch values. Results showed the progressive degradation in depiction of lung details with increased pitch. Overall, the enhanced lung models combined with the XCAT phantoms prove to provide a powerful toolset to perform virtual clinical trials in the context of thoracic imaging. Such trials, not practical using clinical datasets or simplistic phantoms, can quantitatively evaluate and optimize advanced imaging techniques towards patient-based care.

  8. Cigarette smoke-induced mitochondrial fragmentation and dysfunction in human airway smooth muscle

    PubMed Central

    Aravamudan, Bharathi; Kiel, Alexander; Freeman, Michelle; Delmotte, Philippe; Thompson, Michael; Vassallo, Robert; Sieck, Gary C.; Pabelick, Christina M.

    2014-01-01

    The balance between mitochondrial fission and fusion is crucial for mitochondria to perform its normal cellular functions. We hypothesized that cigarette smoke (CS) disrupts this balance and enhances mitochondrial dysfunction in the airway. In nonasthmatic human airway smooth muscle (ASM) cells, CS extract (CSE) induced mitochondrial fragmentation and damages their networked morphology in a concentration-dependent fashion, via increased expression of mitochondrial fission protein dynamin-related protein 1 (Drp1) and decreased fusion protein mitofusin (Mfn) 2. CSE effects on Drp1 vs. Mfn2 and mitochondrial network morphology involved reactive oxygen species (ROS), activation of extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), protein kinase C (PKC) and proteasome pathways, as well as transcriptional regulation via factors such as NF-κB and nuclear erythroid 2-related factor 2. Inhibiting Drp1 prevented CSE effects on mitochondrial networks and ROS generation, whereas blocking Mfn2 had the opposite, detrimental effect. In ASM from asmatic patients, mitochondria exhibited substantial morphological defects at baseline and showed increased Drp1 but decreased Mfn2 expression, with exacerbating effects of CSE. Overall, these results highlight the importance of mitochondrial networks and their regulation in the context of cellular changes induced by insults such as inflammation (as in asthma) or CS. Altered mitochondrial fission/fusion proteins have a further potential to influence parameters such as ROS and cell proliferation and apoptosis relevant to airway diseases. PMID:24610934

  9. TNFα Affects Ciliary Beat Response to Increased Viscosity in Human Pediatric Airway Epithelium

    PubMed Central

    Droguett, Karla; Rios, Mariana; Cohen, Noam A.

    2016-01-01

    In airway epithelium, mucociliary clearance (MCC) velocity depends on the ciliary beat frequency (CBF), and it is affected by mucus viscoelastic properties. Local inflammation induces secretion of cytokines (TNFα) that can alter mucus viscosity; however airway ciliated cells have an autoregulatory mechanism to prevent the collapse of CBF in response to increase in mucus viscosity, mechanism that is associated with an increment in intracellular Ca+2 level ([Ca2+]i). We studied the effect of TNFα on the autoregulatory mechanism that regulates CBF in response to increased viscosity using dextran solutions, in ciliated cells cultured from human pediatric epithelial adenoid tissue. Cultures were treated with TNFα, before and after the viscous load was changed. TNFα treatment produced a significantly larger decrease in CBF in cultures exposed to dextran. Furthermore, an increment in [Ca2+]i was observed, which was significantly larger after TNFα treatment. In conclusion, although TNFα has deleterious effects on ciliated cells in response to maintaining CBF after increasing viscous loading, it has a positive effect, since increasing [Ca2+]i may prevent the MCC collapse. These findings suggest that augmented levels of TNFα associated with an inflammatory response of the nasopharyngeal epithelium may have dual effects that contribute to maintaining the effectiveness of MCC in the upper airways. PMID:28025644

  10. Mechanical effects of obesity on airway responsiveness in otherwise healthy humans.

    PubMed

    Torchio, Roberto; Gobbi, Alessandro; Gulotta, Carlo; Dellacà, Raffaele; Tinivella, Marco; Hyatt, Robert E; Brusasco, Vito; Pellegrino, Riccardo

    2009-08-01

    We investigated whether obesity is associated with airway hyperresponsiveness in otherwise healthy humans and, if so, whether this correlates with a restrictive lung function pattern or a decreased number of sighs at rest and/or during walking. Lung function was studied before and after inhaling methacholine (MCh) in 41 healthy subjects with body mass index ranging from 20 to 56. Breathing pattern was assessed during a 60-min rest period and a 30-min walk. The dose of MCh that produced a 50% decrease in the maximum expiratory flow measured in a body plethysmograph (PD50MCh) was inversely correlated with body mass index (r2=0.32, P<0.001) and waist circumference (r2=0.25, P<0.001). Significant correlations with body mass index were also found with the maximum changes in respiratory resistance (r2=0.19, P<0.001) and reactance (r2=0.40, P<0.001) measured at 5 Hz. PD50MCh was also positively correlated with functional residual capacity (r2=0.56, P<0.001) and total lung capacity (r2=0.59, P<0.001) in men, but not in women. Neither PD50MCh nor body mass index correlated with number of sighs, average tidal volume, ventilation, or breathing frequency. In this study, airway hyperresponsiveness was significantly associated with obesity in otherwise healthy subjects. In obese men, but not in women, airway hyperresponsiveness was associated with the decreases in lung volumes.

  11. Arsenic Compromises Conducting Airway Epithelial Barrier Properties in Primary Mouse and Immortalized Human Cell Cultures

    PubMed Central

    Sherwood, Cara L.; Liguori, Andrew E.; Olsen, Colin E.; Lantz, R. Clark; Burgess, Jefferey L.; Boitano, Scott

    2013-01-01

    Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion, although the most common exposure is through contaminated drinking water. Lung effects reported from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As part of their role in innate immune function, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants frequently found in inspired air. We evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic {<4μM [~300 μg/L (ppb)] as NaAsO2} on airway epithelial barrier function and structure. In a primary mouse tracheal epithelial (MTE) cell model we found that both micromolar (3.9 μM) and submicromolar (0.8 μM) arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered patterns of localization of the transmembrane tight junction proteins claudin (Cl) Cl-1, Cl-4, Cl-7 and occludin at cell-cell contacts when compared with untreated controls. To better quantify arsenic-induced changes in tight junction transmembrane proteins we conducted arsenic exposure experiments with an immortalized human bronchial epithelial cell line (16HBE14o-). We found that arsenic exposure significantly increased the protein expression of Cl-4 and occludin as well as the mRNA levels of Cl-4 and Cl-7 in these cells. Additionally, arsenic exposure resulted in altered phosphorylation of occludin. In summary, exposure to environmentally relevant levels of arsenic can alter both the function and structure of airway epithelial barrier constituents. These changes likely contribute to the observed arsenic-induced loss in basic innate immune defense and increased infection in the airway. PMID:24349408

  12. Arsenic compromises conducting airway epithelial barrier properties in primary mouse and immortalized human cell cultures.

    PubMed

    Sherwood, Cara L; Liguori, Andrew E; Olsen, Colin E; Lantz, R Clark; Burgess, Jefferey L; Boitano, Scott

    2013-01-01

    Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion, although the most common exposure is through contaminated drinking water. Lung effects reported from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As part of their role in innate immune function, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants frequently found in inspired air. We evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic {<4μM [~300 μg/L (ppb)] as NaAsO2} on airway epithelial barrier function and structure. In a primary mouse tracheal epithelial (MTE) cell model we found that both micromolar (3.9 μM) and submicromolar (0.8 μM) arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered patterns of localization of the transmembrane tight junction proteins claudin (Cl) Cl-1, Cl-4, Cl-7 and occludin at cell-cell contacts when compared with untreated controls. To better quantify arsenic-induced changes in tight junction transmembrane proteins we conducted arsenic exposure experiments with an immortalized human bronchial epithelial cell line (16HBE14o-). We found that arsenic exposure significantly increased the protein expression of Cl-4 and occludin as well as the mRNA levels of Cl-4 and Cl-7 in these cells. Additionally, arsenic exposure resulted in altered phosphorylation of occludin. In summary, exposure to environmentally relevant levels of arsenic can alter both the function and structure of airway epithelial barrier constituents. These changes likely contribute to the observed arsenic-induced loss in basic innate immune defense and increased infection in the airway.

  13. Glucocorticoid Clearance and Metabolite Profiling in an In Vitro Human Airway Epithelium Lung Model.

    PubMed

    Rivera-Burgos, Dinelia; Sarkar, Ujjal; Lever, Amanda R; Avram, Michael J; Coppeta, Jonathan R; Wishnok, John S; Borenstein, Jeffrey T; Tannenbaum, Steven R

    2016-02-01

    The emergence of microphysiologic epithelial lung models using human cells in a physiologically relevant microenvironment has the potential to be a powerful tool for preclinical drug development and to improve predictive power regarding in vivo drug clearance. In this study, an in vitro model of the airway comprising human primary lung epithelial cells cultured in a microfluidic platform was used to establish a physiologic state and to observe metabolic changes as a function of glucocorticoid exposure. Evaluation of mucus production rate and barrier function, along with lung-specific markers, demonstrated that the lungs maintained a differentiated phenotype. Initial concentrations of 100 nM hydrocortisone (HC) and 30 nM cortisone (C) were used to evaluate drug clearance and metabolite production. Measurements made using ultra-high-performance liquid chromatography and high-mass-accuracy mass spectrometry indicated that HC metabolism resulted in the production of C and dihydrocortisone (diHC). When the airway model was exposed to C, diHC was identified; however, no conversion to HC was observed. Multicompartmental modeling was used to characterize the lung bioreactor data, and pharmacokinetic parameters, including elimination clearance and elimination half-life, were estimated. Polymerse chain reaction data confirmed overexpression of 11-β hydroxysteroid dehydrogenase 2 (11βHSD2) over 11βHSD1, which is biologically relevant to human lung. Faster metabolism was observed relative to a static model on elevated rates of C and diHC formation. Overall, our results demonstrate that this lung airway model has been successfully developed and could interact with other human tissues in vitro to better predict in vivo drug behavior.

  14. Glucocorticoid Clearance and Metabolite Profiling in an In Vitro Human Airway Epithelium Lung Model

    PubMed Central

    Rivera-Burgos, Dinelia; Sarkar, Ujjal; Lever, Amanda R.; Avram, Michael J.; Coppeta, Jonathan R.; Wishnok, John S.; Borenstein, Jeffrey T.

    2016-01-01

    The emergence of microphysiologic epithelial lung models using human cells in a physiologically relevant microenvironment has the potential to be a powerful tool for preclinical drug development and to improve predictive power regarding in vivo drug clearance. In this study, an in vitro model of the airway comprising human primary lung epithelial cells cultured in a microfluidic platform was used to establish a physiologic state and to observe metabolic changes as a function of glucocorticoid exposure. Evaluation of mucus production rate and barrier function, along with lung-specific markers, demonstrated that the lungs maintained a differentiated phenotype. Initial concentrations of 100 nM hydrocortisone (HC) and 30 nM cortisone (C) were used to evaluate drug clearance and metabolite production. Measurements made using ultra-high-performance liquid chromatography and high-mass-accuracy mass spectrometry indicated that HC metabolism resulted in the production of C and dihydrocortisone (diHC). When the airway model was exposed to C, diHC was identified; however, no conversion to HC was observed. Multicompartmental modeling was used to characterize the lung bioreactor data, and pharmacokinetic parameters, including elimination clearance and elimination half-life, were estimated. Polymerse chain reaction data confirmed overexpression of 11-β hydroxysteroid dehydrogenase 2 (11βHSD2) over 11βHSD1, which is biologically relevant to human lung. Faster metabolism was observed relative to a static model on elevated rates of C and diHC formation. Overall, our results demonstrate that this lung airway model has been successfully developed and could interact with other human tissues in vitro to better predict in vivo drug behavior. PMID:26586376

  15. Carbocisteine inhibits oxidant-induced apoptosis in cultured human airway epithelial cells.

    PubMed

    Yoshida, Motoki; Nakayama, Katsutoshi; Yasuda, Hiroyasu; Kubo, Hiroshi; Kuwano, Kazuyoshi; Arai, Hiroyuki; Yamaya, Mutsuo

    2009-09-01

    Increased oxidant levels have been associated with exacerbations of COPD, and L-carbocisteine, a mucolytic agent, reduces the frequency of exacerbations. The mechanisms underlying the inhibitory effects of L-carbocisteine on oxidant-induced COPD exacerbations were examined in an in vitro study of human airway epithelial cells. In order to examine the antioxidant effects of L-carbocisteine, human tracheal epithelial cells were treated with L-carbocisteine and exposed to hydrogen peroxide (H(2)O(2)). Cell apoptosis was assessed using a cell death detection ELISA, and the pathways leading to cell apoptosis were examined by measurement of caspase-3 and caspase-9 by western blot analysis with fluorescent detection. The proportion of apoptotic cells in human tracheal epithelium was increased in a concentration- and time-dependent manner, following exposure to H(2)O(2). Treatment with L-carbocisteine reduced the proportion of apoptotic cells. In contrast, H(2)O(2) did not increase the concentration of LDH in supernatants of epithelial cells. Exposure to H(2)O(2) activated caspase-3 and caspase-9, and L-carbocisteine inhibited the H(2)O(2)-induced activation of these caspases. L-carbocisteine activated Akt phosphorylation, which modulates caspase activation, and the inhibitors of Akt, LY294002 and wortmannin, significantly reversed the inhibitory effects of L-carbocisteine on H(2)O(2)-induced cell apoptosis. These findings suggest that in human airway epithelium, L-carbocisteine may inhibit cell damage induced by H(2)O(2) through the activation of Akt phosphorylation. L-carbocisteine may have antioxidant effects, as well as mucolytic activity, in inflamed airways.

  16. Control of Neurotransmission by NaV1.7 in Human, Guinea Pig, and Mouse Airway Parasympathetic Nerves.

    PubMed

    Kocmalova, Michaela; Kollarik, Marian; Canning, Brendan J; Ru, Fei; Adam Herbstsomer, R; Meeker, Sonya; Fonquerna, Silvia; Aparici, Monica; Miralpeix, Montserrat; Chi, Xian Xuan; Li, Baolin; Wilenkin, Ben; McDermott, Jeff; Nisenbaum, Eric; Krajewski, Jeffrey L; Undem, Bradley J

    2017-04-01

    Little is known about the neuronal voltage-gated sodium channels (NaVs) that control neurotransmission in the parasympathetic nervous system. We evaluated the expression of the α subunits of each of the nine NaVs in human, guinea pig, and mouse airway parasympathetic ganglia. We combined this information with a pharmacological analysis of selective NaV blockers on parasympathetic contractions of isolated airway smooth muscle. As would be expected from previous studies, tetrodotoxin potently blocked the parasympathetic responses in the airways of each species. Gene expression analysis showed that that NaV 1.7 was virtually the only tetrodotoxin-sensitive NaV1 gene expressed in guinea pig and human airway parasympathetic ganglia, where mouse ganglia expressed NaV1.1, 1.3, and 1.7. Using selective pharmacological blockers supported the gene expression results, showing that blocking NaV1.7 alone can abolish the responses in guinea pig and human bronchi, but not in mouse airways. To block the responses in mouse airways requires that NaV1.7 along with NaV1.1 and/or NaV1.3 is blocked. These results may suggest novel indications for NaV1.7-blocking drugs, in which there is an overactive parasympathetic drive, such as in asthma. The data also raise the potential concern of antiparasympathetic side effects for systemic NaV1.7 blockers.

  17. [Reconstruction of three-dimensional numerical model and numerical simulation of airflow in a human upper airway].

    PubMed

    Qian, Yu-mei; Chen, Li-ping; Wu, Ya-dong; Jiao, Ting

    2010-06-01

    To rapidly reconstruct a three-dimensional numerical model of the human upper airway and investigate the relationship between anatomical structures with airflow distribution by using the computational fluid dynamics. A three-dimensional model of the human upper airway was reconstructed based on computed tomographic images of a healthy volunteer's skull. Numerical simulation of the upper airway airflow was performed by using computational fluid dynamics (CFD) method. A three-dimensional model of the human upper airway including nasal cavity, pharynx and larynx was reconstructed rapidly. A detailed anatomical structure and velocity distribution characteristics of airflow was obtained and a large velocity gradient in nasal valve area, nasopharynx, up and downstream of epiglottis was found. The model has good simulation of upper airway. Numerical simulation results provide the basic trend of airflow of the upper respiratory tract.The numerical model meets the needs of computational fluid dynamics analysis, and provide data control and research foundation for pathologic upper airway airflow numerical simulation.

  18. Do cell junction protein mutations cause an airway phenotype in mice or humans?

    PubMed

    Chang, Eugene H; Pezzulo, Alejandro A; Zabner, Joseph

    2011-08-01

    Cell junction proteins connect epithelial cells to each other and to the basement membrane. Genetic mutations of these proteins can cause alterations in some epithelia leading to varied phenotypes such as deafness, renal disease, skin disorders, and cancer. This review examines if genetic mutations in these proteins affect the function of lung airway epithelia. We review cell junction proteins with examples of disease mutation phenotypes in humans and in mouse knockout models. We also review which of these genes are expressed in airway epithelium by microarray expression profiling and immunocytochemistry. Last, we present a comprehensive literature review to find the lung phenotype when cell junction and adhesion genes are mutated or subject to targeted deletion. We found that in murine models, targeted deletion of cell junction and adhesion genes rarely result in a lung phenotype. Moreover, mutations in these genes in humans have no obvious lung phenotype. Our research suggests that simply because a cell junction or adhesion protein is expressed in an organ does not imply that it will exhibit a drastic phenotype when mutated. One explanation is that because a functioning lung is critical to survival, redundancy in the system is expected. Therefore mutations in a single gene might be compensated by a related function of a similar gene product. Further studies in human and animal models will help us understand the overlap in the function of cell junction gene products. Finally, it is possible that the human lung phenotype is subtle and has not yet been described.

  19. Structure and function of airway surface layer of the human lungs & mobility of probe particles in complex fluids

    NASA Astrophysics Data System (ADS)

    Cai, Liheng

    Numerous infectious particles such as bacteria and pathogens are deposited on the airway surface of the human lungs during our daily breathing. To avoid infection the lung has evolved to develop a smart and powerful defense system called mucociliary clearance. The airway surface layer is a critical component of this mucus clearance system, which consists of two parts: (1) a mucus layer, that traps inhaled particles and transports them out of the lung by cilia-generated flow; and (2) a periciliary layer, that provides a favorable environment for ciliary beating and cell surface lubrication. For 75 years, it has been dogma that a single gel-like mucus layer, which is composed of secreted mucin glycoproteins, is transported over a "watery" periciliary layer. This one-gel model, however, does not explain fundamental features of the normal system, e.g. formation of a distinct mucus layer, nor accurately predict how the mucus clearance system fails in disease. In the first part of this thesis we propose a novel "Gel-on-Brush" model with a mucus layer (the "gel") and a "brush-like" periciliary layer, composed of mucins tethered to the luminal of airway surface, and supporting data accurately describes both the biophysical and cell biological bases for normal mucus clearance and its failure in disease. Our "Gel-on-Brush" model describes for the first time how and why mucus is efficiently cleared in health and unifies the pathogenesis of major human diseases, including cystic fibrosis and chronic obstructive pulmonary disease. It is expected that this "Gel-on-Brush" model of airway surface layer opens new directions for treatments of airway diseases. A dilemma regarding the function of mucus is that, although mucus traps any inhaled harmful particulates, it also poses a long-time problem for drug delivery: mobility of cargos carrying pharmaceutical agents is slowed down in mucus. The second part of this thesis aims to answer the question: can we theoretically understand the

  20. Highly Differentiated Human Airway Epithelial Cells: a Model to Study Host cell-parasite Interactions in Pertussis

    PubMed Central

    Guevara, Claudia; Zhang, Chengxian; Gaddy, Jennifer A.; Iqbal, Junaid; Guerra, Julio; Greenberg, David P.; Decker, Michael D.; Carbonetti, Nicholas; Starner, Timothy D.; McCray, Paul B.; Mooi, Frits R.

    2017-01-01

    Background Bordetella pertussis colonizes the human respiratory mucosa. Most studies on B. pertussis adherence have relied on cultured mammalian cells that lack key features present in differentiated human airway cells or on animal models that are not natural hosts of B. pertussis. The objectives of this work are to evaluate B. pertussis infection on highly differentiated human airway cells in vitro and to show the role of B. pertussis fimbriae in cell adherence. Methods Primary human airway epithelial (PHAE) cells from human bronchi and a human bronchial epithelial (HBE) cell line were grown in vitro under air-liquid interface conditions. Results PHAE and HBE cells infected with B. pertussis wild type strain revealed bacterial adherence to cell’s apical surface and bacterial induced cytoskeleton changes and cell detachment. Mutations in the major fimbrial subunits Fim2/3 or in the minor fimbrial adhesin subunit FimD affected B. pertussis adherence to predominantly HBE cells. This cell model recapitulates the morphologic features of the human airway infected by B. pertussis and confirms the role of fimbriae in B. pertussis adherence. Furthemore, HBE cells show that fimbrial subunits, and specifically FimD adhesin, are critical in B. pertussis adherence to airway cells. Conclusions The relevance of this model to study host-parasite interaction in pertussis lies in the striking physiologic and morphologic similarity between the PHAE and HBE cells and the human airway ciliated and goblet cells in vivo. These cells can proliferate in vitro, differentiate, and express the same genetic profile as human respiratory cells in vivo. PMID:26492208

  1. Bubble continuous positive airway pressure in a human immunodeficiency virus-infected infant

    PubMed Central

    McCollum, E. D.; Smith, A.; Golitko, C. L.

    2014-01-01

    SUMMARY World Health Organization-classified very severe pneumonia due to Pneumocystis jirovecii infection is recognized as a life-threatening condition in human immunodeficiency virus (HIV) infected infants. We recount the use of nasal bubble continuous positive airway pressure (BCPAP) in an HIV-infected African infant with very severe pneumonia and treatment failure due to suspected infection with P. jirovecii. We also examine the potential implications of BCPAP use in resource-poor settings with a high case index of acute respiratory failure due to HIV-related pneumonia, but limited access to mechanical ventilation. PMID:21396221

  2. Basal cells as stem cells of the mouse trachea and human airway epithelium

    PubMed Central

    Rock, Jason R.; Onaitis, Mark W.; Rawlins, Emma L.; Lu, Yun; Clark, Cheryl P.; Xue, Yan; Randell, Scott H.; Hogan, Brigid L. M.

    2009-01-01

    The pseudostratified epithelium of the mouse trachea and human airways contains a population of basal cells expressing Trp-63 (p63) and cytokeratins 5 (Krt5) and Krt14. Using a KRT5-CreERT2 transgenic mouse line for lineage tracing, we show that basal cells generate differentiated cells during postnatal growth and in the adult during both steady state and epithelial repair. We have fractionated mouse basal cells by FACS and identified 627 genes preferentially expressed in a basal subpopulation vs. non-BCs. Analysis reveals potential mechanisms regulating basal cells and allows comparison with other epithelial stem cells. To study basal cell behaviors, we describe a simple in vitro clonal sphere-forming assay in which mouse basal cells self-renew and generate luminal cells, including differentiated ciliated cells, in the absence of stroma. The transcriptional profile identified 2 cell-surface markers, ITGA6 and NGFR, which can be used in combination to purify human lung basal cells by FACS. Like those from the mouse trachea, human airway basal cells both self-renew and generate luminal daughters in the sphere-forming assay. PMID:19625615

  3. Genotypic and phenotypic diversity of the noncapsulated Haemophilus influenzae: adaptation and pathogenesis in the human airways.

    PubMed

    Garmendia, Junkal; Martí-Lliteras, Pau; Moleres, Javier; Puig, Carmen; Bengoechea, José A

    2012-12-01

    The human respiratory tract contains a highly adapted microbiota including commensal and opportunistic pathogens. Noncapsulated or nontypable Haemophilus influenzae (NTHi) is a human-restricted member of the normal airway microbiota in healthy carriers and an opportunistic pathogen in immunocompromised individuals. The duality of NTHi as a colonizer and as a symptomatic infectious agent is closely related to its adaptation to the host, which in turn greatly relies on the genetic plasticity of the bacterium and is facilitated by its condition as a natural competent. The variable genotype of NTHi accounts for its heterogeneous gene expression and variable phenotype, leading to differential host-pathogen interplay among isolates. Here we review our current knowledge of NTHi diversity in terms of genotype, gene expression, antigenic variation, and the phenotypes associated with colonization and pathogenesis. The potential benefits of NTHi diversity studies discussed herein include the unraveling of pathogenicity clues, the generation of tools to predict virulence from genomic data, and the exploitation of a unique natural system for the continuous monitoring of long-term bacterial evolution in human airways exposed to noxious agents. Finally, we highlight the challenge of monitoring both the pathogen and the host in longitudinal studies, and of applying comparative genomics to clarify the meaning of the vast NTHi genetic diversity and its translation to virulence phenotypes.

  4. Stochastic homeostasis in human airway epithelium is achieved by neutral competition of basal cell progenitors

    PubMed Central

    Teixeira, Vitor H; Nadarajan, Parthiban; Graham, Trevor A; Pipinikas, Christodoulos P; Brown, James M; Falzon, Mary; Nye, Emma; Poulsom, Richard; Lawrence, David; Wright, Nicholas A; McDonald, Stuart; Giangreco, Adam; Simons, Benjamin D; Janes, Sam M

    2013-01-01

    Lineage tracing approaches have provided new insights into the cellular mechanisms that support tissue homeostasis in mice. However, the relevance of these discoveries to human epithelial homeostasis and its alterations in disease is unknown. By developing a novel quantitative approach for the analysis of somatic mitochondrial mutations that are accumulated over time, we demonstrate that the human upper airway epithelium is maintained by an equipotent basal progenitor cell population, in which the chance loss of cells due to lineage commitment is perfectly compensated by the duplication of neighbours, leading to “neutral drift” of the clone population. Further, we show that this process is accelerated in the airways of smokers, leading to intensified clonal consolidation and providing a background for tumorigenesis. This study provides a benchmark to show how somatic mutations provide quantitative information on homeostatic growth in human tissues, and a platform to explore factors leading to dysregulation and disease. DOI: http://dx.doi.org/10.7554/eLife.00966.001 PMID:24151545

  5. ICAM-1-independent adhesion of neutrophils to phorbol ester-stimulated human airway epithelial cells.

    PubMed

    Celi, A; Cianchetti, S; Petruzzelli, S; Carnevali, S; Baliva, F; Giuntini, C

    1999-09-01

    Intercellular adhesion molecule-1 (ICAM-1) is the only inducible adhesion receptor for neutrophils identified in bronchial epithelial cells. We stimulated human airway epithelial cells with various agonists to evaluate whether ICAM-1-independent adhesion mechanisms could be elicited. Phorbol 12-myristate 13-acetate (PMA) stimulation of cells of the alveolar cell line A549 caused a rapid, significant increase in neutrophil adhesion from 11 +/- 3 to 49 +/- 7% (SE). A significant increase from 17 +/- 4 to 39 +/- 6% was also observed for neutrophil adhesion to PMA-stimulated human bronchial epithelial cells in primary culture. Although ICAM-1 expression was upregulated by PMA at late time points, it was not affected at 10 min when neutrophil adhesion was already clearly enhanced. Antibodies to ICAM-1 had no effect on neutrophil adhesion. In contrast, antibodies to the leukocyte integrin beta-chain CD18 totally inhibited the adhesion of neutrophils to PMA-stimulated epithelial cells. These results demonstrate that PMA stimulation of human airway epithelial cells causes an increase in neutrophil adhesion that is not dependent on ICAM-1 upregulation.

  6. Effect of loop diuretics on cholinergic neurotransmission in human airways in vitro.

    PubMed Central

    Verleden, G. M.; Pype, J. L.; Deneffe, G.; Demedts, M. G.

    1994-01-01

    BACKGROUND--Frusemide can inhibit various indirectly acting bronchoconstrictor stimuli in asthmatic patients. Both frusemide and bumetanide also modulate airway neurotransmission in some species but there are no data on the effect of loop diuretics on neurotransmission in man. An in vitro study was performed in human airways to investigate the possible neuromodulatory action of two loop diuretics, frusemide and bumetanide, and to elucidate whether a cyclooxygenase inhibitor such as indomethacin could modulate the effect of frusemide. The effect of acetazolamide, a carbonic anhydrase inhibitor, was also investigated. METHODS--Electrical field stimulation (EFS; 40 V, 0.5 ms, 0.5-32 Hz for 15 seconds) in human airways with or without epithelium was used to induce a cholinergic contraction (n = 5 in all experiments). Indomethacin was present throughout. After obtaining a control frequency-response curve, different concentrations of diuretic were added to the organ bath and another frequency-response curve was constructed. To determine whether the effect of the diuretic was prejunctional or postjunctional a cumulative concentration-response curve to exogenous acetylcholine (Ach, 0.3 mumol/l to 10 mmol/l) was constructed in the presence of a diuretic (frusemide 1 mmol/l or bumetanide 0.1 mmol/l) or its vehicle. In some experiments indomethacin was omitted from the organ bath to investigate the possible involvement of cyclooxygenase products. RESULTS--Both frusemide (10 mumol/l to 1 mmol/l) and bumetanide (1 mumol/l to 0.1 mmol/l) produced a concentration-dependent inhibition of the EFS-induced cholinergic contraction in human airways in vitro but only in epithelium denuded tissues. Frusemide (1 mmol/l) produced a maximum inhibition of 46.3% (SE 9.9%) at 0.5 Hz and bumetanide (0.1 mmol/l 39.6 (6.2)% at 0.5 Hz. Without indomethacin in the organ bath the frusemide-induced inhibition was enhanced at 4, 8, and 16 Hz, but bumetanide-induced inhibition was not enhanced at any

  7. Diversity of Human and Macaque Airway Immune Cells at Baseline and during Tuberculosis Infection.

    PubMed

    Silver, Richard F; Myers, Amy J; Jarvela, Jessica; Flynn, JoAnne; Rutledge, Tara; Bonfield, Tracey; Lin, Philana Ling

    2016-12-01

    Immune cells of the distal airways serve as "first responders" of host immunity to the airborne pathogen Mycobacterium tuberculosis (Mtb). Mtb infection of cynomolgus macaques recapitulates the range of human outcomes from clinically silent latent tuberculosis infection (LTBI) to active tuberculosis of various degrees of severity. To further advance the application of this model to human studies, we compared profiles of bronchoalveolar lavage (BAL) cells of humans and cynomolgus macaques before and after Mtb infection. A simple gating strategy effectively defined BAL T-cell and phagocyte populations in both species. BAL from Mtb-naive humans and macaques showed similar differential cell counts. BAL T cells of macaques were composed of fewer CD4(+)cells but more CD8(+) and CD4(+)CD8(+) double-positive cells than were BAL T cells of humans. The most common mononuclear phagocyte population in BAL of both species displayed coexpression of HLA-DR, CD206, CD11b, and CD11c; however, multiple phagocyte subsets displaying only some of these markers were observed as well. Macaques with LTBI displayed a marked BAL lymphocytosis that was not observed in humans with LTBI. In macaques, the prevalence of specific mononuclear phagocyte subsets in baseline BAL correlated with ultimate outcomes of Mtb infection (i.e., LTBI versus active disease). Overall, these findings demonstrate the comparability of studies of pulmonary immunity to Mtb in humans and macaques. They also indicate a previously undescribed complexity of airway mononuclear phagocyte populations that suggests further lines of investigation relevant to understanding the mechanisms of both protection from and susceptibility to the development of active tuberculosis within the lung.

  8. Bioaerosols from a Food Waste Composting Plant Affect Human Airway Epithelial Cell Remodeling Genes

    PubMed Central

    Chang, Ming-Wei; Lee, Chung-Ru; Hung, Hsueh-Fen; Teng, Kuo-Sheng; Huang, Hsin; Chuang, Chun-Yu

    2013-01-01

    The composting procedure in food waste plants generates airborne bioaerosols that have the potential to damage human airway epithelial cells. Persistent inflammation and repair responses induce airway remodeling and damage to the respiratory system. This study elucidated the expression changes of airway remodeling genes in human lung mucoepidermoid NCI-H292 cells exposed to bioaerosols from a composting plant. Different types of microorganisms were detectable in the composting plant, using the agar culture method. Real-time polymerase chain reaction was used to quantify the level of Aspergillus fumigatus and the profile of remodeling genes. The real-time PCR results indicated that the amount of A. fumigatus in the composting hall was less than 102 conidia. The endotoxins in the field bioaerosols were determined using a limulus amebocyte lysate test. The endotoxin levels depended on the type of particulate matter (PM), with coarse particles (2.5–10 μm) having higher endotoxin levels than did fine particles (0.5–2.5 μm). After exposure to the conditioned medium of field bioaerosol samples, NCI-H292 cells showed increased pro-inflammatory interleukin (IL)-6 release and activated epidermal growth factor receptor (EGFR), transforming growth factor (TGF)-β1 and cyclin-dependent kinase inhibitor 1 (p21WAF1/CIP1) gene expression, but not of matrix metallopeptidase (MMP)-9. Airborne endotoxin levels were higher inside the composting hall than they were in other areas, and they were associated with PM. This suggested that airborne bioaerosols in the composting plant contained endotoxins and microorganisms besides A. fumigatus that cause the inflammatory cytokine secretion and augment the expression of remodeling genes in NCI-H292 cells. It is thus necessary to monitor potentially hazardous materials from bioaerosols in food composting plants, which could affect the health of workers. PMID:24368426

  9. Dexamethasone and N-acetyl-cysteine attenuate Pseudomonas aeruginosa-induced mucus expression in human airways.

    PubMed

    Sprenger, Lisa; Goldmann, Torsten; Vollmer, Ekkehard; Steffen, Armin; Wollenberg, Barbara; Zabel, Peter; Hauber, Hans-Peter

    2011-04-01

    Infection with Pseudomonas aeruginosa (PA) induces mucus hypersecretion in airways. Therapeutic options to attenuate excessive mucus expression are sparse. To investigate the effect of steroids and N-acetyl-cysteine (NAC) on PA-induced mucus expression. Calu-3 cells and explanted human mucosa from the upper airways were stimulated with either PA, lipopolysaccharide from alginate producing PA (smooth, sPA-LPS) or non-alginate producing PA (rough, rPA-LPS). Dexamethasone (DEX) and NAC were added in different concentrations. Expression of mucin (MUC5AC) gene and mucin protein expression was quantified using PAS (periodic acids Schiff) staining and real time PCR. PA, sPA-LPS or rPA-LPS significantly induced mucin protein and MUC5AC gene expression in Calu-3 cells and explanted mucosal tissue (P < 0.05). Both DEX and NAC significantly decreased PA-, sPA-LPS- and rPA-LPS-induced mucin protein expression both in vitro and ex vivo (P < 0.05). A significant reduction was also observed for MUC5AC gene expression with the two agents (P < 0.05) except for sPA-LPS-induced mucin gene expression in vitro (P > 0.05). Our data show that both an anti-inflammatory drug (DEX) and an anti-oxidative agent (NAC) can attenuate PA-induced mucus expression in human airways. These results support the use of steroids and NAC in clinical practice to treat PA-induced mucus hypersecretion. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Persistence of Smoking-Induced Dysregulation of MiRNA Expression in the Small Airway Epithelium Despite Smoking Cessation

    PubMed Central

    Strulovici-Barel, Yael; Salit, Jacqueline; Staudt, Michelle R.; Ahmed, Joumana; Tilley, Ann E.; Yee-Levin, Jenny; Hollmann, Charleen; Harvey, Ben-Gary; Kaner, Robert J.; Mezey, Jason G.; Sridhar, Sriram; Pillai, Sreekumar G.; Hilton, Holly; Wolff, Gerhard; Bitter, Hans; Visvanathan, Sudha; Fine, Jay S.; Stevenson, Christopher S.; Crystal, Ronald G.

    2015-01-01

    Even after quitting smoking, the risk of the development of chronic obstructive pulmonary disease (COPD) and lung cancer remains significantly higher compared to healthy nonsmokers. Based on the knowledge that COPD and most lung cancers start in the small airway epithelium (SAE), we hypothesized that smoking modulates miRNA expression in the SAE linked to the pathogenesis of smoking-induced airway disease, and that some of these changes persist after smoking cessation. SAE was collected from 10th to 12th order bronchi using fiberoptic bronchoscopy. Affymetrix miRNA 2.0 arrays were used to assess miRNA expression in the SAE from 9 healthy nonsmokers and 10 healthy smokers, before and after they quit smoking for 3 months. Smoking status was determined by urine nicotine and cotinine measurement. There were significant differences in the expression of 34 miRNAs between healthy smokers and healthy nonsmokers (p<0.01, fold-change >1.5), with functions associated with lung development, airway epithelium differentiation, inflammation and cancer. After quitting smoking for 3 months, 12 out of the 34 miRNAs did not return to normal levels, with Wnt/β-catenin signaling pathway being the top identified enriched pathway of the target genes of the persistent dysregulated miRNAs. In the context that many of these persistent smoking-dependent miRNAs are associated with differentiation, inflammatory diseases or lung cancer, it is likely that persistent smoking-related changes in SAE miRNAs play a role in the subsequent development of these disorders. PMID:25886353

  11. ZN2+-INDUCED IL-8 EXPRESSION INVOLVES AP-1, JNK, AND ERK ACTIVITIES IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    Exposure to zinc-laden particulate matter (PM) in ambient and occupational settings has been associated with proinflammatory responses in the lung. IL-8 is an important proinflammatory cytokine in the human lung and is induced in human airway epithelial cells exposed to zin...

  12. ZN2+-INDUCED IL-8 EXPRESSION INVOLVES AP-1, JNK, AND ERK ACTIVITIES IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    Exposure to zinc-laden particulate matter (PM) in ambient and occupational settings has been associated with proinflammatory responses in the lung. IL-8 is an important proinflammatory cytokine in the human lung and is induced in human airway epithelial cells exposed to zin...

  13. Activation of influenza viruses by proteases from host cells and bacteria in the human airway epithelium.

    PubMed

    Böttcher-Friebertshäuser, Eva; Klenk, Hans-Dieter; Garten, Wolfgang

    2013-11-01

    Influenza is an acute infection of the respiratory tract, which affects each year millions of people. Influenza virus infection is initiated by the surface glycoprotein hemagglutinin (HA) through receptor binding and fusion of viral and endosomal membranes. HA is synthesized as a precursor protein and requires cleavage by host cell proteases to gain its fusion capacity. Although cleavage of HA is crucial for virus infectivity, little was known about relevant proteases in the human airways for a long time. Recent progress in the identification and characterization of HA-activating host cell proteases has been considerable however and supports the idea of targeting HA cleavage as a novel approach for influenza treatment. Interestingly, certain bacteria have been demonstrated to support HA activation either by secreting proteases that cleave HA or due to activation of cellular proteases and thereby may contribute to virus spread and enhanced pathogenicity. In this review, we give an overview on activation of influenza viruses by proteases from host cells and bacteria with the main focus on recent progress on HA cleavage by proteases HAT and TMPRSS2 in the human airway epithelium. In addition, we outline investigations of HA-activating proteases as potential drug targets for influenza treatment.

  14. Novel flow cytometry approach to identify bronchial epithelial cells from healthy human airways

    PubMed Central

    Maestre-Batlle, Danay; Pena, Olga M.; Hirota, Jeremy A.; Gunawan, Evelyn; Rider, Christopher F.; Sutherland, Darren; Alexis, Neil E.; Carlsten, Chris

    2017-01-01

    Sampling various compartments within the lower airways to examine human bronchial epithelial cells (HBEC) is essential for understanding numerous lung diseases. Conventional methods to identify HBEC in bronchoalveolar lavage (BAL) and wash (BW) have throughput limitations in terms of efficiency and ensuring adequate cell numbers for quantification. Flow cytometry can provide high-throughput quantification of cell number and function in BAL and BW samples, while requiring low cell numbers. To date, a flow cytometric method to identify HBEC recovered from lower human airway samples is unavailable. In this study we present a flow cytometric method identifying HBEC as CD45 negative, EpCAM/pan-cytokeratin (pan-CK) double-positive population after excluding debris, doublets and dead cells from the analysis. For validation, the HBEC panel was applied to primary HBEC resulting in 98.6% of live cells. In healthy volunteers, HBEC recovered from BAL (2.3% of live cells), BW (32.5%) and bronchial brushing samples (88.9%) correlated significantly (p = 0.0001) with the manual microscopy counts with an overall Pearson correlation of 0.96 across the three sample types. We therefore have developed, validated, and applied a flow cytometric method that will be useful to interrogate the role of the respiratory epithelium in multiple lung diseases. PMID:28165060

  15. Olfactory Receptors Modulate Physiological Processes in Human Airway Smooth Muscle Cells

    PubMed Central

    Kalbe, Benjamin; Knobloch, Jürgen; Schulz, Viola M.; Wecker, Christine; Schlimm, Marian; Scholz, Paul; Jansen, Fabian; Stoelben, Erich; Philippou, Stathis; Hecker, Erich; Lübbert, Hermann; Koch, Andrea; Hatt, Hanns; Osterloh, Sabrina

    2016-01-01

    Pathophysiological mechanisms in human airway smooth muscle cells (HASMCs) significantly contribute to the progression of chronic inflammatory airway diseases with limited therapeutic options, such as severe asthma and COPD. These abnormalities include the contractility and hyperproduction of inflammatory proteins. To develop therapeutic strategies, key pathological mechanisms, and putative clinical targets need to be identified. In the present study, we demonstrated that the human olfactory receptors (ORs) OR1D2 and OR2AG1 are expressed at the RNA and protein levels in HASMCs. Using fluorometric calcium imaging, specific agonists for OR2AG1 and OR1D2 were identified to trigger transient Ca2+ increases in HASMCs via a cAMP-dependent signal transduction cascade. Furthermore, the activation of OR2AG1 via amyl butyrate inhibited the histamine-induced contraction of HASMCs, whereas the stimulation of OR1D2 with bourgeonal led to an increase in cell contractility. In addition, OR1D2 activation induced the secretion of IL-8 and GM-CSF. Both effects were inhibited by the specific OR1D2 antagonist undecanal. We herein provide the first evidence to show that ORs are functionally expressed in HASMCs and regulate pathophysiological processes. Therefore, ORs might be new therapeutic targets for these diseases, and blocking ORs could be an auspicious strategy for the treatment of early-stage chronic inflammatory lung diseases. PMID:27540365

  16. Generation of novel AAV variants by directed evolution for improved CFTR delivery to human ciliated airway epithelium.

    PubMed

    Li, Wuping; Zhang, Liqun; Johnson, Jarrod S; Zhijian, Wu; Grieger, Joshua C; Ping-Jie, Xiao; Drouin, Lauren M; Agbandje-McKenna, Mavis; Pickles, Raymond J; Samulski, R Jude

    2009-12-01

    Recombinant adeno-associated virus (AAV) vectors expressing the cystic fibrosis transmembrane conductance regulator (CFTR) gene have been used to deliver CFTR to the airway epithelium of cystic fibrosis (CF) patients. However, no significant CFTR function has been demonstrated likely due to low transduction efficiencies of the AAV vectors. To improve AAV transduction efficiency for human airway epithelium (HAE), we generated a chimeric AAV library and performed directed evolution of AAV on an in vitro model of human ciliated airway epithelium. Two independent and novel AAV variants were identified that contained capsid components from AAV-1, AAV-6, and/or AAV-9. The transduction efficiencies of the two novel AAV variants for human ciliated airway epithelium were three times higher than that for AAV-6. The novel variants were then used to deliver CFTR to ciliated airway epithelium from CF patients. Here we show that our novel AAV variants, but not the parental, AAV provide sufficient CFTR delivery to correct the chloride ion transport defect to ~25% levels measured in non-CF cells. These results suggest that directed evolution of AAV on relevant in vitro models will enable further improvements in CFTR gene transfer efficiency and the development of an efficacious and safe gene transfer vector for CF lung disease.

  17. Generation of Novel AAV Variants by Directed Evolution for Improved CFTR Delivery to Human Ciliated Airway Epithelium

    PubMed Central

    Li, Wuping; Zhang, Liqun; Johnson, Jarrod S; Zhijian, Wu; Grieger, Joshua C; Ping-Jie, Xiao; Drouin, Lauren M; Agbandje-McKenna, Mavis; Pickles, Raymond J; Samulski, R Jude

    2009-01-01

    Recombinant adeno-associated virus (AAV) vectors expressing the cystic fibrosis transmembrane conductance regulator (CFTR) gene have been used to deliver CFTR to the airway epithelium of cystic fibrosis (CF) patients. However, no significant CFTR function has been demonstrated likely due to low transduction efficiencies of the AAV vectors. To improve AAV transduction efficiency for human airway epithelium (HAE), we generated a chimeric AAV library and performed directed evolution of AAV on an in vitro model of human ciliated airway epithelium. Two independent and novel AAV variants were identified that contained capsid components from AAV-1, AAV-6, and/or AAV-9. The transduction efficiencies of the two novel AAV variants for human ciliated airway epithelium were three times higher than that for AAV-6. The novel variants were then used to deliver CFTR to ciliated airway epithelium from CF patients. Here we show that our novel AAV variants, but not the parental, AAV provide sufficient CFTR delivery to correct the chloride ion transport defect to ~25% levels measured in non-CF cells. These results suggest that directed evolution of AAV on relevant in vitro models will enable further improvements in CFTR gene transfer efficiency and the development of an efficacious and safe gene transfer vector for CF lung disease. PMID:19603002

  18. Surfactant Driven Post-Deposition Spreading of Aerosols on Complex Aqueous Subphases. 2: Low Deposition Flux Representative of Aerosol Delivery to Small Airways.

    PubMed

    Sharma, Ramankur; Khanal, Amsul; Corcoran, Timothy E; Garoff, Stephen; Przybycien, Todd M; Tilton, Robert D

    2015-10-01

    Cystic fibrosis (CF) is associated with the accumulation of dehydrated mucus in the pulmonary airways. This alters ventilation and aerosol deposition patterns in ways that limit drug delivery to peripheral lung regions. We investigated the use of surfactant-based, self-dispersing aerosol carriers that produce surface tension gradients to drive two-dimensional transport of aerosolized medications via Marangoni flows after deposition on the airway surface liquid (ASL). We considered the post-deposition spreading of individual aerosol droplets and two-dimensional expansion of a field of aerosol droplets, when deposited at low fluxes that are representative of aerosol deposition in the small airways. We used physically entangled aqueous solutions of poly(acrylamide) or porcine gastric mucin as simple ASL mimics that adequately capture the full miscibility but slow penetration of entangled macromolecular chains of the ASL into the deposited drop. Surfactant formulations were prepared with aqueous solutions of nonionic tyloxapol or FS-3100 fluorosurfactant. Fluorescein dye served as a model "drug" tracer and to visualize the extent of post-deposition spreading. The surfactants not only enhanced post-deposition spreading of individual aerosol droplets due to localized Marangoni stresses, as previously observed with macroscopic drops, but they also produced large-scale Marangoni stresses that caused the deposited aerosol fields to expand into initially unexposed regions of the subphase. We show that the latter is the main mechanism for spreading drug over large distances when aerosol is deposited at low fluxes representative of the small airways. The large scale convective expansion of the aerosol field drives the tracer (drug mimic) over areas that would cover an entire airway generation or more, in peripheral airways, where sub-monolayer droplet deposition is expected during aerosol inhalation. The results suggest that aerosolized surfactant formulations may provide the

  19. Surfactant Driven Post-Deposition Spreading of Aerosols on Complex Aqueous Subphases. 2: Low Deposition Flux Representative of Aerosol Delivery to Small Airways

    PubMed Central

    Sharma, Ramankur; Khanal, Amsul; Corcoran, Timothy E.; Przybycien, Todd M.; Tilton, Robert D.

    2015-01-01

    Abstract Background: Cystic fibrosis (CF) is associated with the accumulation of dehydrated mucus in the pulmonary airways. This alters ventilation and aerosol deposition patterns in ways that limit drug delivery to peripheral lung regions. We investigated the use of surfactant-based, self-dispersing aerosol carriers that produce surface tension gradients to drive two-dimensional transport of aerosolized medications via Marangoni flows after deposition on the airway surface liquid (ASL). We considered the post-deposition spreading of individual aerosol droplets and two-dimensional expansion of a field of aerosol droplets, when deposited at low fluxes that are representative of aerosol deposition in the small airways. Methods: We used physically entangled aqueous solutions of poly(acrylamide) or porcine gastric mucin as simple ASL mimics that adequately capture the full miscibility but slow penetration of entangled macromolecular chains of the ASL into the deposited drop. Surfactant formulations were prepared with aqueous solutions of nonionic tyloxapol or FS-3100 fluorosurfactant. Fluorescein dye served as a model “drug” tracer and to visualize the extent of post-deposition spreading. Results: The surfactants not only enhanced post-deposition spreading of individual aerosol droplets due to localized Marangoni stresses, as previously observed with macroscopic drops, but they also produced large-scale Marangoni stresses that caused the deposited aerosol fields to expand into initially unexposed regions of the subphase. We show that the latter is the main mechanism for spreading drug over large distances when aerosol is deposited at low fluxes representative of the small airways. The large scale convective expansion of the aerosol field drives the tracer (drug mimic) over areas that would cover an entire airway generation or more, in peripheral airways, where sub-monolayer droplet deposition is expected during aerosol inhalation. Conclusions: The results suggest

  20. Prediction of localized aerosol deposition in a realistic replica of human airways using experimental data and numerical simulation

    NASA Astrophysics Data System (ADS)

    Lizal, Frantisek; Elcner, Jakub; Belka, Miloslav; Jedelsky, Jan; Jicha, Miroslav

    2016-11-01

    The presence of aerosol deposition hot-spots in human airways presumably contributes to development of various diseases. The overall aerosol deposition in human lungs can be predicted with sufficient accuracy nowadays. However, the prediction of localized aerosol deposition poses arduous challenge, namely in diseased lungs. Numerical simulation is considered to be a promising tool for the successful prediction. Yet, the validation of such simulations is difficult to perform, as not enough experimental data acquired using realistic airway replicas is available. This paper presents a first comparison of localized deposition measurement and simulation performed on the identical realistic geometry. The analysis indicates that both approaches yield similar results for low Reynolds number flows.

  1. Human airway epithelial cell culture to identify new respiratory viruses: coronavirus NL63 as a model.

    PubMed

    S Banach, Bridget; Orenstein, Jan M; Fox, Linda M; Randell, Scott H; Rowley, Anne H; Baker, Susan C

    2009-03-01

    Propagation of new human respiratory virus pathogens in established cell lines is hampered by a lack of predictability regarding cell line permissivity and by availability of suitable antibody reagents to detect infection in cell lines that do not exhibit significant cytopathic effect. Recently, molecular methods have been used to amplify and identify novel nucleic acid sequences directly from clinical samples, but these methods may be hampered by the quantity of virus present in respiratory secretions at different time points following the onset of infection. Human airway epithelial (HAE) cultures, which effectively mimic the human bronchial environment, allow for cultivation of a wide variety of human respiratory viral pathogens. The goal of the experiments described here was to determine if propagation and identification of a human respiratory virus may be achieved through inoculation of HAE cultures followed by whole transcriptome amplification (WTA) and sequence analysis. To establish proof-of-principle human coronavirus NL63 (HCoV-NL63) was evaluated, and the first visualization of HCoV-NL63 virus by transmission electron microscopy (TEM) is reported. Initial propagation of human respiratory secretions onto HAE cultures followed by TEM and WTA of culture supernatant may be a useful approach for visualization and detection of new human respiratory pathogens that have eluded identification by traditional approaches.

  2. A Computational Study of the Respiratory Airflow Characteristics in Normal and Obstructed Human Airways

    DTIC Science & Technology

    2014-01-01

    normal and three different obstructed airway geometries, consisting of symmetric, asym- metric, and random obstructions. Fig. 2 shows the geometric ...normal and obstructed airways Airway resistance is a measure of the opposition to the airflow caused by geometric properties, such as airway obstruction...pressure drops. Resistance values were dependent on the degree and geometric distribution of the obstruction sites. In the symmetric obstruction model

  3. Sustained calcium entry through P2X nucleotide receptor channels in human airway epithelial cells.

    PubMed

    Zsembery, Akos; Boyce, Amanda T; Liang, Lihua; Peti-Peterdi, János; Bell, P Darwin; Schwiebert, Erik M

    2003-04-11

    Purinergic receptor stimulation has potential therapeutic effects for cystic fibrosis (CF). Thus, we explored roles for P2Y and P2X receptors in stably increasing [Ca(2+)](i) in human CF (IB3-1) and non-CF (16HBE14o(-)) airway epithelial cells. Cytosolic Ca(2+) was measured by fluorospectrometry using the fluorescent dye Fura-2/AM. Expression of P2X receptor (P2XR) subtypes was assessed by immunoblotting and biotinylation. In IB3-1 cells, ATP and other P2Y agonists caused only a transient increase in [Ca(2+)](i) derived from intracellular stores in a Na(+)-rich environment. In contrast, ATP induced an increase in [Ca(2+)](i) that had transient and sustained components in a Na(+)-free medium; the sustained plateau was potentiated by zinc or increasing extracellular pH. Benzoyl-benzoyl-ATP, a P2XR-selective agonist, increased [Ca(2+)](i) only in Na(+)-free medium, suggesting competition between Na(+) and Ca(2+) through P2XRs. Biochemical evidence showed that the P2X(4) receptor is the major subtype shared by these airway epithelial cells. A role for store-operated Ca(2+) channels, voltage-dependent Ca(2+) channels, or Na(+)/Ca(2+) exchanger in the ATP-induced sustained Ca(2+) signal was ruled out. In conclusion, these data show that epithelial P2X(4) receptors serve as ATP-gated calcium entry channels that induce a sustained increase in [Ca(2+)](i). In airway epithelia, a P2XR-mediated Ca(2+) signal may have therapeutic benefit for CF.

  4. Test of the Starling resistor model in the human upper airway during sleep

    PubMed Central

    Genta, Pedro R.; Owens, Robert L.; Edwards, Bradley A.; Sands, Scott A.; Loring, Stephen H.; White, David P.; Jackson, Andrew C.; Pedersen, Ole F.; Butler, James P.

    2014-01-01

    The human pharyngeal airway during sleep is conventionally modeled as a Starling resistor. However, inspiratory flow often decreases with increasing effort (negative effort dependence, NED) rather than remaining fixed as predicted by the Starling resistor model. In this study, we tested a major prediction of the Starling resistor model—that the resistance of the airway upstream from the site of collapse remains fixed during flow limitation. During flow limitation in 24 patients with sleep apnea, resistance at several points along the pharyngeal airway was measured using a pressure catheter with multiple sensors. Resistance between the nose and the site of collapse (the upstream segment) was measured before and after the onset of flow limitation to determine whether the upstream dimensions remained fixed (as predicted by the Starling resistor model) or narrowed (a violation of the Starling resistor model). The upstream resistance from early to mid inspiration increased considerably during flow limitation (by 35 ± 41 cmH2O·liter−1·s−1, P < 0.001). However, there was a wide range of variability between patients, and the increase in upstream resistance was strongly correlated with the amount of NED (r = 0.75, P < 0.001). Therefore, patients with little NED exhibited little upstream narrowing (consistent with the Starling model), and patients with large NED exhibited large upstream narrowing (inconsistent with the Starling model). These findings support the idea that there is not a single model of pharyngeal collapse, but rather that different mechanisms may dominate in different patients. These differences could potentially be exploited for treatment selection. PMID:25324514

  5. Soluble guanylate cyclase modulators blunt hyperoxia effects on calcium responses of developing human airway smooth muscle.

    PubMed

    Britt, Rodney D; Thompson, Michael A; Kuipers, Ine; Stewart, Alecia; Vogel, Elizabeth R; Thu, James; Martin, Richard J; Pabelick, Christina M; Prakash, Y S

    2015-09-15

    Exposure to moderate hyperoxia in prematurity contributes to subsequent airway dysfunction and increases the risk of developing recurrent wheeze and asthma. The nitric oxide (NO)-soluble guanylate cyclase (sGC)-cyclic GMP (cGMP) axis modulates airway tone by regulating airway smooth muscle (ASM) intracellular Ca(2+) ([Ca(2+)]i) and contractility. However, the effects of hyperoxia on this axis in the context of Ca(2+)/contractility are not known. In developing human ASM, we explored the effects of novel drugs that activate sGC independent of NO on alleviating hyperoxia (50% oxygen)-induced enhancement of Ca(2+) responses to bronchoconstrictor agonists. Treatment with BAY 41-2272 (sGC stimulator) and BAY 60-2770 (sGC activator) increased cGMP levels during exposure to 50% O2. Although 50% O2 did not alter sGCα1 or sGCβ1 expression, BAY 60-2770 did increase sGCβ1 expression. BAY 41-2272 and BAY 60-2770 blunted Ca(2+) responses to histamine in cells exposed to 50% O2. The effects of BAY 41-2272 and BAY 60-2770 were reversed by protein kinase G inhibition. These novel data demonstrate that BAY 41-2272 and BAY 60-2770 stimulate production of cGMP and blunt hyperoxia-induced increases in Ca(2+) responses in developing ASM. Accordingly, sGC stimulators/activators may be a useful therapeutic strategy in improving bronchodilation in preterm infants.

  6. Flow and particle deposition patterns in a realistic human double bifurcation airway model.

    PubMed

    Choi, L T; Tu, J Y; Li, H F; Thien, F

    2007-02-01

    Velocity profiles, local deposition efficiencies (DE), and deposition patterns of aerosol particles in the first three generations (i.e., double bifurcations) of an airway model have been simulated numerically, in which the airway model was constructed from computed tomography (CT) scan data of real human tracheobronchial airways. Three steady inhalation conditions, 15, 30, and 60 L/min, were simulated and a range of micrometer particle sizes (1-20 mum diameter) were injected into the model. Results were then compared with experimental and other numerical results which had employed either similar model geometry or test conditions. The effects of inhalation conditions on velocity profiles and particle deposition were studied. The data indicated that the local deposition efficiencies in the first bifurcation increased with a rise in the Stokes number (St) within St range from 0.0004 to 0.7. Within the same St range, DE in the second bifurcations (both left and right) was dropped dramatically after St increased to 0.17. Also, the second bifurcation in the right side (B2.1, closer to first bifurcation than left side, B2.2) was found to show a much higher (almost double) DE than the left side. This may be due to the fact that the left main bronchus is longer and has greater angulation than the right main bronchus. Generally, the present simulation using a computational fluid dynamic (CFD) technique obtained concurrent results with subtle differences compared to other works. However, due to omission of larynx in the model, which is known to significantly modify airflow and hence particle deposition, the present model may only serve as the "stepping stone" to simulating and analyzing dose-response or inhalation risk assessment visually for clinical researchers.

  7. Tracing molecular and structural changes upon mucolysis with N-acetyl cysteine in human airway mucus.

    PubMed

    Vukosavljevic, Branko; Murgia, Xabier; Schwarzkopf, Konrad; Schaefer, Ulrich F; Lehr, Claus-Michael; Windbergs, Maike

    2017-07-11

    The conducting airways of the human lungs are lined by mucus, which lubricates the lung epithelium and provides a first-line protection against airborne threats. As a novel approach for visualization of the human mucus microstructure, we applied confocal Raman microscopy as a label-free and chemically selective technique. We were successfully able to chemically resolve the pulmonary surfactant from the mucus matrix and show its spatial distribution, as well as to visualize the structural changes within the freeze-dried mucus mesh upon chemical mucolysis. Subsequently, we performed rheological measurements before and after mucolysis and correlated morphology and chemical structure of the mucus with its rheological characteristics. These results do not only enrich the knowledge about the mucus microstructure, but can also, significantly contribute to rational development of future lung therapeutics. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. In vivo size and shape measurement of the human upper airway using endoscopic longrange optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Armstrong, Julian J.; Leigh, Matthew S.; Walton, Ian D.; Zvyagin, Andrei V.; Alexandrov, Sergey A.; Schwer, Stefan; Sampson, David D.; Hillman, David R.; Eastwood, Peter R.

    2003-07-01

    We describe a long-range optical coherence tomography system for size and shape measurement of large hollow organs in the human body. The system employs a frequency-domain optical delay line of a configuration that enables the combination of high-speed operation with long scan range. We compare the achievable maximum delay of several delay line configurations, and identify the configurations with the greatest delay range. We demonstrate the use of one such long-range delay line in a catheter-based optical coherence tomography system and present profiles of the human upper airway and esophagus in vivo with a radial scan range of 26 millimeters. Such quantitative upper airway profiling should prove valuable in investigating the pathophysiology of airway collapse during sleep (obstructive sleep apnea).

  9. Immunocompetent 3D model of human upper airway for disease modeling and in vitro drug evaluation.

    PubMed

    Harrington, Helen; Cato, Paul; Salazar, Fabian; Wilkinson, Malcolm; Knox, Alan; Haycock, John W; Rose, Felicity; Aylott, Jon W; Ghaemmaghami, Amir M

    2014-07-07

    The development of more complex in vitro models for the assessment of novel drugs and chemicals is needed because of the limited biological relevance of animal models to humans as well as ethical considerations. Although some human-cell-based assays exist, they are usually 2D, consist of single cell type, and have limited cellular and functional representation of the native tissue. In this study, we have used biomimetic porous electrospun scaffolds to develop an immunocompetent 3D model of the human respiratory tract comprised of three key cell types present in upper airway epithelium. The three cell types, namely, epithelial cells (providing a physical barrier), fibroblasts (extracellular matrix production), and dendritic cells (immune sensing), were initially grown on individual scaffolds and then assembled into the 3D multicell tissue model. The epithelial layer was cultured at the air-liquid interface for up to four weeks, leading to formation of a functional barrier as evidenced by an increase in transepithelial electrical resistance (TEER) and tight junction formation. The response of epithelial cells to allergen exposure was monitored by quantifying changes in TEER readings and by assessment of cellular tight junctions using immunostaining. It was found that epithelial cells cocultured with fibroblasts formed a functional epithelial barrier at a quicker rate than single cultures of epithelial cells and that the recovery from allergen exposure was also more rapid. Also, our data show that dendritic cells within this model remain viable and responsive to external stimulation as evidenced by their migration within the 3D construct in response to allergen challenge. This model provides an easy to assemble and physiologically relevant 3D model of human airway epithelium that can be used for studies aiming at better understanding lung biology, the cross-talk between immune cells, and airborne allergens and pathogens as well as drug delivery.

  10. Feasibility of a 3D human airway epithelial model to study respiratory absorption.

    PubMed

    Reus, Astrid A; Maas, Wilfred J M; Jansen, Harm T; Constant, Samuel; Staal, Yvonne C M; van Triel, Jos J; Kuper, C Frieke

    2014-03-01

    The respiratory route is an important portal for human exposure to a large variety of substances. Consequently, there is an urgent need for realistic in vitro strategies for evaluation of the absorption of airborne substances with regard to safety and efficacy assessment. The present study investigated feasibility of a 3D human airway epithelial model to study respiratory absorption, in particular to differentiate between low and high absorption of substances. Bronchial epithelial models (MucilAir™), cultured at the air-liquid interface, were exposed to eight radiolabeled model substances via the apical epithelial surface. Absorption was evaluated by measuring radioactivity in the apical compartment, the epithelial cells and the basolateral culture medium. Antipyrine, caffeine, naproxen and propranolol were highly transported across the epithelial cell layer (>5%), whereas atenolol, mannitol, PEG-400 and insulin were limitedly transported (<5%). Results indicate that the 3D human airway epithelial model used in this study is able to differentiate between substances with low and high absorption. The intra-experimental reproducibility of the results was considered adequate based on an average coefficient of variation (CV) of 15%. The inter-experimental reproducibility of highly absorbed compounds was in a similar range (CV of 15%), but this value was considerably higher for those compounds that were limitedly absorbed. No statistical significant differences between different donors and experiments were observed. The present study provides a simple method transposable in any lab, which can be used to rank the absorption of chemicals and pharmaceuticals, and is ready for further validation with respect to reproducibility and capacity of the method to predict respiratory transport in humans.

  11. TRPC3 regulates release of brain-derived neurotrophic factor from human airway smooth muscle.

    PubMed

    Vohra, Pawan K; Thompson, Michael A; Sathish, Venkatachalem; Kiel, Alexander; Jerde, Calvin; Pabelick, Christina M; Singh, Brij B; Prakash, Y S

    2013-12-01

    Exogenous brain-derived neurotrophic factor (BDNF) enhances Ca(2+) signaling and cell proliferation in human airway smooth muscle (ASM), especially with inflammation. Human ASM also expresses BDNF, raising the potential for autocrine/paracrine effects. The mechanisms by which ASM BDNF secretion occurs are not known. Transient receptor potential channels (TRPCs) regulate a variety of intracellular processes including store-operated Ca(2+) entry (SOCE; including in ASM) and secretion of factors such as cytokines. In human ASM, we tested the hypothesis that TRPC3 regulates BDNF secretion. At baseline, intracellular BDNF was present, and BDNF secretion was detectable by enzyme linked immunosorbent assay (ELISA) of cell supernatants or by real-time fluorescence imaging of cells transfected with GFP-BDNF vector. Exposure to the pro-inflammatory cytokine tumor necrosis factor-alpha (TNFα) (20ng/ml, 48h) or a mixture of allergens (ovalbumin, house dust mite, Alternaria, and Aspergillus extracts) significantly enhanced BDNF secretion and increased TRPC3 expression. TRPC3 knockdown (siRNA or inhibitor Pyr3; 10μM) blunted BDNF secretion, and prevented inflammation effects. Chelation of extracellular Ca(2+) (EGTA; 1mM) or intracellular Ca(2+) (BAPTA; 5μM) significantly reduced secreted BDNF, as did the knockdown of SOCE proteins STIM1 and Orai1 or plasma membrane caveolin-1. Functionally, secreted BDNF had autocrine effects suggested by phosphorylation of high-affinity tropomyosin-related kinase TrkB receptor, prevented by chelating extracellular BDNF with chimeric TrkB-Fc. These data emphasize the role of TRPC3 and Ca(2+) influx in the regulation of BDNF secretion by human ASM and the enhancing effects of inflammation. Given the BDNF effects on Ca(2+) and cell proliferation, BDNF secretion may contribute to altered airway structure and function in diseases such as asthma.

  12. Monocyte/macrophage-derived microparticles up-regulate inflammatory mediator synthesis by human airway epithelial cells.

    PubMed

    Cerri, Chiara; Chimenti, Daniele; Conti, Ilaria; Neri, Tommaso; Paggiaro, Pierluigi; Celi, Alessandro

    2006-08-01

    Cell-derived microparticles (MP) are membrane fragments shed by virtually all eukaryotic cells upon activation or during apoptosis that play a significant role in physiologically relevant processes, including coagulation and inflammation. We investigated whether MP derived from monocytes/macrophages have the potential to modulate human airway epithelial cell activation. Monocytes/macrophages were isolated from the buffy coats of blood donors by Ficoll gradient centrifugation, followed by overnight culture of the mononuclear cell fraction. Adherent cells were washed and incubated with the calcium ionophore, A23187, or with histamine. The MP-containing supernatant was incubated with cells of the human bronchial epithelial line BEAS-2B and of the human alveolar line A549. IL-8, MCP-1, and ICAM-1 production was assessed by ELISA and by RT-PCR. In some experiments, monocytes/macrophages were stained with the fluorescent lipid intercalating dye PKH67, and the supernatant was analyzed by FACS. Stimulation of monocytes/macrophages with A23187 caused the release of particles that retain their fluorescent lipid intercalating label, indicating that they are derived from cell membranes. Incubation with A549 and BEAS-2B cells up-regulate IL-8 synthesis. Ultrafiltration and ultracentrifugation of the material abolished the effect, indicating that particulate matter, rather than soluble molecules, is responsible for it. Up-regulation of MCP-1 and ICAM-1 was also demonstrated in A549 cells. Similar results were obtained with histamine. Our data show that human monocytes/macrophages release MP that have the potential to sustain the innate immunity of the airway epithelium, as well as to contribute to the pathogenesis of inflammatory diseases of the lungs through up-regulation of proinflammatory mediators.

  13. Human influenza is more effective than avian influenza at antiviral suppression in airway cells.

    PubMed

    Hsu, Alan Chen-Yu; Barr, Ian; Hansbro, Philip M; Wark, Peter A

    2011-06-01

    Airway epithelial cells are the initial site of infection with influenza viruses. The innate immune responses of airway epithelial cells to infection are important in limiting virus replication and spread. However, relatively little is known about the importance of this innate antiviral response to infection. Avian influenza viruses are a potential source of future pandemics; therefore, it is critical to examine the effectiveness of the host antiviral system to different influenza viruses. We used a human influenza (H3N2) and a low-pathogenic avian influenza (H11N9) to assess and compare the antiviral responses of Calu-3 cells. After infection, H3N2 replicated more effectively than the H11N9 in Calu-3 cells. This was not due to differential expression of sialic acid residues on Calu-3 cells, but was attributed to the interference of host antiviral responses by H3N2. H3N2 induced a delayed antiviral signaling and impaired type I and type III IFN induction compared with the H11N9. The gene encoding for nonstructural (NS) 1 protein was transfected into the bronchial epithelial cells (BECs), and the H3N2 NS1 induced a greater inhibition of antiviral responses compared with the H11N9 NS1. Although the low-pathogenic avian influenza virus was capable of infecting BECs, the human influenza virus replicated more effectively than avian influenza virus in BECs, and this was due to a differential ability of the two NS1 proteins to inhibit antiviral responses. This suggests that the subversion of human antiviral responses may be an important requirement for influenza viruses to adapt to the human host and cause disease.

  14. Wnt/β-Catenin Signaling Modulates Human Airway Sensitization Induced by β2-Adrenoceptor Stimulation

    PubMed Central

    Faisy, Christophe; Grassin-Delyle, Stanislas; Blouquit-Laye, Sabine; Brollo, Marion; Naline, Emmanuel; Chapelier, Alain; Devillier, Philippe

    2014-01-01

    Background Regular use of β2-agonists may enhance non-specific airway responsiveness. The wingless/integrated (Wnt) signaling pathways are responsible for several cellular processes, including airway inflammation and remodeling while cAMP–PKA cascade can activate the Wnt signaling. We aimed to investigate whether the Wnt signaling pathways are involved in the bronchial hyperresponsiveness induced by prolonged exposure to β2-adrenoceptor agonists in human isolated airways. Methods Bronchi were surgically removed from 44 thoracic surgery patients. After preparation, bronchial rings and primary cultures of bronchial epithelial cells were incubated with fenoterol (0.1 µM, 15 hours, 37°C), a β2-agonist with high intrinsic efficacy. The effects of inhibitors/blockers of Wnt signaling on the fenoterol-induced airway sensitization were examined and the impact of fenoterol exposure on the mRNA expression of genes interacting with Wnt signaling or cAMP–PKA cascade was assessed in complete bronchi and in cultured epithelial cells. Results Compared to paired controls, fenoterol-sensitization was abolished by inhibition/blockage of the Wnt/β-catenin signaling, especially the cell-surface LRP5/6 co-receptors or Fzd receptors (1 µM SFRP1 or 1 µM DKK1) and the nuclear recruitment of TCF/LEF transcriptions factors (0.3 µM FH535). Wnt proteins secretion did not seem to be involved in the fenoterol-induced sensitization since the mRNA expression of Wnt remained low after fenoterol exposure and the inactivator of Wnt secretion (1 µM IWP2) had no effect on the fenoterol-sensitization. Fenoterol exposure did not change the mRNA expression of genes regulating Wnt signaling or cAMP–PKA cascade. Conclusions Collectively, our pharmacological investigations indicate that fenoterol-sensitization is modulated by the inhibition/blockage of canonical Wnt/β-catenin pathway, suggesting a phenomenon of biased agonism in connection with the β2-adrenoceptor stimulation. Future

  15. Activation of eicosanoid metabolism in human airway epithelial cells by ozonolysis products of membrane fatty acids.

    PubMed

    Leikauf, G D; Zhao, Q; Zhou, S; Santrock, J

    1995-09-01

    Inhaled ozone can react with a variety of cellular macromolecules within the lung. Recent analyses of the chemistry of ozone reactions with unsaturated fatty acids, which are present in all membranes and in mucus in the airways, indicate that ozonolysis yields one aldehyde and one hydroxyhydroperoxide molecule for each molecule of ozone. The hydroxyhydroperoxide molecule is unstable in aqueous environments, and subsequently yields a second aldehyde and hydrogen peroxide. The structure of common unsaturated fatty acids is such that attack by ozone at the carbon-carbon double bonds will yield 3-, 6-, and 9-carbon saturated and unsaturated aldehydes and hydroxyhydroperoxide. This study examines the effects of ozonolysis products on eicosanoid metabolism in human airway epithelial cells. Eicosanoid biosynthesis is important in a wide array of pathophysiological responses in the airway, and the release of eicosanoids by the epithelial barrier is likely to be significant in diseases induced by environmental factors. Previously, we demonstrated that ozone can increase eicosanoid synthesis from airway epithelial cells exposed in vitro. Human exposures to concentrations of ozone below the current National Ambient Air Quality Standard (0.12 ppm, not to be exceeded for more than one hour once per year) also resulted in increased eicosanoids in bronchoalveolar lavage fluid. To determine whether ozonolysis products could activate eicosanoid release, we exposed human airway epithelial cells to 3-, 6-, and 9-carbon aldehydes, hydroxyhydroperoxides, and hydrogen peroxide. We measured (1) eicosanoid metabolism using high-performance liquid chromatography and radioimmunoassays, and (2) the effects of the aldehydes, hydroxyhydroperoxides, and hydrogen peroxide on cell lysis. Eicosanoid release increased after exposure to aldehyde; release induced by 9-carbon (nonanal) aldehyde was greater than that induced by the 6-carbon (hexanal) or 3-carbon (propanal) aldehydes

  16. Improvement in severe lower respiratory symptoms and small airway function in World Trade Center dust exposed community members.

    PubMed

    Caplan-Shaw, Caralee; Kazeros, Angeliki; Pradhan, Deepak; Berger, Kenneth; Goldring, Roberta; Zhao, Sibo; Liu, Mengling; Shao, Yongzhao; Fernandez-Beros, Maria Elena; Marmor, Michael; Levy-Carrick, Nomi; Rosen, Rebecca; Ferri, Lucia; Reibman, Joan

    2016-09-01

    Longitudinal assessment of lower respiratory symptoms (LRS) in community members with World Trade Center (WTC) exposures. Adult members of a treatment program with complete standardized visits were evaluated (n = 798). Association of demographic characteristics, mental health symptoms and lung function with trajectory of LRS between initial and monitoring visit was evaluated. Severe LRS were present in 70% at initial and 63% at monitoring visit. Initial severe LRS were associated with WTC dust cloud exposure and mental health symptoms. Spirometry measures were not associated with LRS severity or trajectory; improvement in LRS was associated with improved lung function measured with forced oscillometry techniques. Many community patients in a WTC treatment program had severe LRS associated with exposures and mental health symptoms. Improvement in LRS was associated with improvement in measures of small airway function. Am. J. Ind. Med. 59:777-787, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. The Effects of High Frequency Oscillatory Flow on Particles' Deposition in Upper Human Lung Airways

    NASA Astrophysics Data System (ADS)

    Bonifacio, Jeremy; Rahai, Hamid; Taherian, Shahab

    2016-11-01

    The effects of oscillatory inspiration on particles' deposition in upper airways of a human lung during inhalation/exhalation have been numerically investigated and results of flow characteristics, and particles' deposition pattern have been compared with the corresponding results without oscillation. The objective of the investigation was to develop an improved method for drug delivery for Asthma and COPD patients. Previous clinical investigations of using oral airway oscillations have shown enhanced expectoration in cystic fibrosis (CF) patients, when the frequency of oscillation was at 8 Hz with 9:1 inspiratory/expiratory (I:E) ratio. Other investigations on oscillatory ventilation had frequency range of 0.5 Hz to 2.5 Hz. In the present investigations, the frequency of oscillation was changed between 2 Hz to 10 Hz. The particles were injected at the inlet and particle velocity was equal to the inlet air velocity. One-way coupling of air and particles was assumed. Lagrangian phase model was used for transport and depositions of solid 2.5 micron diameter round particles with 1200 kg/m3 density. Preliminary results have shown enhanced PM deposition with oscillatory flow with lower frequency having a higher deposition rate Graduate Assistant.

  18. Oscillatory Flow in the Human Airways from the Mouth through Several Bronchial Generations

    NASA Astrophysics Data System (ADS)

    Banko, Andrew; Coletti, Filippo; Elkins, Chris; Eaton, John

    2014-11-01

    The time-varying flow is studied experimentally in an anatomically accurate model of the human airways from the mouth through the fourth to eighth generation of the bronchi. The airway geometry is obtained from the CT scan of a healthy adult male of normal height and build. The three-component, three-dimensional mean velocity field is obtained throughout the entire model using phase-locked magnetic resonance velocimetry. A pulsatile pump drives a sinusoidal waveform (inhalation and exhalation) with frequency and stroke-length such that the mean trachea Reynolds number at peak inspiration is Re = 4200 and the Womersley number is α = 7. This represents a regime of moderate exertion. Integral parameters are defined to quantify the degree of velocity profile non-uniformity (which correlates with axial dispersion) and secondary flow strength (which correlates with lateral dispersion). It is found that the streamwise momentum flux and secondary flow strength increase and decrease in proportion throughout most of the breathing cycle. On the other hand, the strength of secondary flows during the 10% of the breathing cycle surrounding flow reversal remains approximately half of that at peak inspiration while the streamwise momentum flux goes to zero. The strong and persistent secondary flows have important implications for dispersion of scalar or particulate contaminants in the lungs.

  19. Nicotinic acetylcholine receptor expression in human airway correlates with lung function.

    PubMed

    Lam, David Chi-Leung; Luo, Susan Yang; Fu, Kin-Hang; Lui, Macy Mei-Sze; Chan, Koon-Ho; Wistuba, Ignacio Ivans; Gao, Boning; Tsao, Sai-Wah; Ip, Mary Sau-Man; Minna, John Dorrance

    2016-02-01

    Nicotine and its derivatives, by binding to nicotinic acetylcholine receptors (nAChRs) on bronchial epithelial cells, can regulate cellular signaling and inflammatory processes. Delineation of nAChR subtypes and their responses to nicotine stimulation in bronchial epithelium may provide information for therapeutic targeting in smoking-related inflammation in the airway. Expression of nAChR subunit genes in 60 bronchial epithelial biopsies and immunohistochemical staining for the subcellular locations of nAChR subunit expression were evaluated. Seven human bronchial epithelial cell lines (HBECs) were exposed to nicotine in vitro for their response in nAChR subunit gene expression to nicotine exposure and removal. The relative normalized amount of expression of nAChR α4, α5, and α7 and immunohistochemical staining intensity of nAChR α4, α5, and β3 expression showed significant correlation with lung function parameters. Nicotine stimulation in HBECs resulted in transient increase in the levels of nAChR α5 and α6 but more sustained increase in nAChR α7 expression. nAChR expression in bronchial epithelium was found to correlate with lung function. Nicotine exposure in HBECs resulted in both short and longer term responses in nAChR subunit gene expression. These results gave insight into the potential of targeting nAChRs for therapy in smoking-related inflammation in the airway. Copyright © 2016 the American Physiological Society.

  20. Effects of cigarette smoke extract on human airway smooth muscle cells in COPD.

    PubMed

    Chen, Ling; Ge, Qi; Tjin, Gavin; Alkhouri, Hatem; Deng, Linghong; Brandsma, Corry-Anke; Adcock, Ian; Timens, Wim; Postma, Dirkje; Burgess, Janette K; Black, Judith L; Oliver, Brian G G

    2014-09-01

    We hypothesised that the response to cigarette smoke in airway smooth muscle (ASM) cells from smokers with chronic obstructive pulmonary disease (COPD) would be intrinsically different from smokers without COPD, producing greater pro-inflammatory mediators and factors relating to airway remodelling. ASM cells were obtained from smokers with or without COPD, and then stimulated with cigarette smoke extract (CSE) or transforming growth factor-β1. The production of chemokines and matrix metalloproteinases (MMPs) were measured by ELISA, and the deposition of collagens by extracellular matrix ELISA. The effects of CSE on cell attachment and wound healing were measured by toluidine blue attachment and cell tracker green wound healing assays. CSE increased the release of CXCL8 and CXCL1 from human ASM cells, and cells from smokers with COPD produced more CSE-induced CXCL1. The production of MMP-1, -3 and -10, and the deposition of collagen VIII alpha 1 (COL8A1) were increased by CSE, especially in the COPD group which had higher production of MMP-1 and deposition of COL8A1. CSE decreased ASM cell attachment and wound healing in the COPD group only. ASM cells from smokers with COPD were more sensitive to CSE stimulation, which may explain, in part, why some smokers develop COPD.

  1. Proteomic Analysis of Pure Human Airway Gland Mucus Reveals a Large Component of Protective Proteins

    PubMed Central

    Joo, Nam Soo; Evans, Idil Apak T.; Cho, Hyung-Ju; Park, Il-Ho; Engelhardt, John F.; Wine, Jeffrey J.

    2015-01-01

    Airway submucosal glands contribute to innate immunity and protect the lungs by secreting mucus, which is required for mucociliary clearance and which also contains antimicrobial, anti-inflammatory, anti-proteolytic and anti-oxidant proteins. We stimulated glands in tracheal trimmings from three lung donors and collected droplets of uncontaminated mucus as they formed at the gland orifices under an oil layer. We analyzed the mucus using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Analysis identified 5486 peptides and 441 proteins from across the 3 samples (269–319 proteins per subject). We focused on 269 proteins common to at least 2 0f 3 subjects, of which 102 (38%) had protective or innate immunity functions. While many of these have long been known to play such roles, for many others their cellular protective functions have only recently been appreciated in addition to their well-studied biologic functions (e.g. annexins, apolipoproteins, gelsolin, hemoglobin, histones, keratins, and lumican). A minority of the identified proteins are known to be secreted via conventional exocytosis, suggesting that glandular secretion occurs via multiple mechanisms. Two of the observed protective proteins, major vault protein and prohibitin, have not been observed in fluid from human epithelial cultures or in fluid from nasal or bronchoalveolar lavage. Further proteomic analysis of pure gland mucus may help clarify how healthy airways maintain a sterile environment. PMID:25706550

  2. Numerical investigation of transient transport and deposition of microparticles under unsteady inspiratory flow in human upper airways.

    PubMed

    Naseri, Arash; Shaghaghian, Sana; Abouali, Omid; Ahmadi, Goodarz

    2017-10-01

    In the present study, unsteady airflow patterns and particle deposition in healthy human upper airways were simulated. A realistic 3-D computational model of the upper airways including the vestibule to the end of the trachea was developed using a series of CT scan images of a healthy human. Unsteady simulations of the inhaled and exhaled airflow fields in the upper airway passages were performed by solving the Navier-Stokes and continuity equations for low breathing rates corresponding to low and moderate activities. The Lagrangian trajectory analysis approach was utilized to investigate the transient particle transport and deposition under cyclic breathing condition. Particles were released uniformly at the nostrils' entrance during the inhalation phase, and the total and regional depositions for various micro-particle sizes were evaluated. The transient particle deposition fractions for various regions of the human upper airways were compared with those obtained from the equivalent steady flow condition. The presented results revealed that the equivalent constant airflow simulation can approximately predict the total particle deposition during cyclic breathing in human upper airways. While the trends of steady and unsteady model predictions for local deposition were similar, there were noticeable differences in the predicted amount of deposition. In addition, it was shown that a steady simulation cannot properly predict some critical parameters, such as the penetration fraction. Finally, the presented results showed that using a detached nasal cavity (commonly used in earlier studies) for evaluation of total deposition fraction of particles in the nasal cavity was reasonably accurate for the steady flow simulations. However, in transient simulation for predicting the deposition fraction in a specific region, such as the nasal cavity, using the full airway system geometry becomes necessary. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Lung involvement in primary Sjögren's syndrome is mainly related to the small airway disease

    PubMed Central

    Papiris, S.; Maniati, M.; Constantopoulos, S.; Roussos, C.; Moutsopoulos, H.; Skopouli, F.

    1999-01-01

    inflammation, while interstitial inflammation coexisted in two patients.
CONCLUSION—The airway epithelia seem to be the main target of the inflammatory lesion of the lung in patients with primary Sjögren's syndrome. It seems to be common, subclinically leading to obstructive small airway physiological abnormalities.

 Keywords: small airway obstruction; computed tomography; autoimmune rheumatic disorders PMID:10343542

  4. Growth and characterization of different human rhinovirus C types in three-dimensional human airway epithelia reconstituted in vitro.

    PubMed

    Tapparel, Caroline; Sobo, Komla; Constant, Samuel; Huang, Song; Van Belle, Sandra; Kaiser, Laurent

    2013-11-01

    New molecular diagnostic tools have recently allowed the discovery of human rhinovirus species C (HRV-C) that may be overrepresented in children with lower respiratory tract complications. Unlike HRV-A and HRV-B, HRV-C cannot be propagated in conventional immortalized cell lines and their biological properties have been difficult to study. Recent studies have described the successful amplification of HRV-C15, HRV-C11, and HRV-C41 in sinus mucosal organ cultures and in fully differentiated human airway epithelial cells. Consistent with these studies, we report that a panel of clinical HRV-C specimens including HRV-C2, HRV-C7, HRV-C12, HRV-C15, and HRV-C29 types were all capable of mediating productive infection in reconstituted 3D human primary upper airway epithelial tissues and that the virions enter and exit preferentially through the apical surface. Similar to HRV-A and HRV-B, our data support the acid sensitivity of HRV-C. We observed also that the optimum temperature requirement during HRV-C growth may be type-dependent.

  5. CO-EXPOSURE OF HUMAN AIRWAY EPITHELIAL CELLS TO OZONE AND PARTICULATE MATTER: EFFECTS ON ARACHIDONIC ACID METABOLISM

    EPA Science Inventory

    Co-exposure of human airway epithelial cells to ozone and particulate matter: effects on arachidonic acid metabolism.

    D. Stamm1, L. Dailey2, M.C. Madden2
    1 University of North Carolina-Chapel Hill, School of Medicine
    2 U.S. EPA, ORD, NHEERL, HSD, Chapel Hill, NC, USA...

  6. CO-EXPOSURE OF HUMAN AIRWAY EPITHELIAL CELLS TO OZONE AND PARTICULATE MATTER: EFFECTS ON ARACHIDONIC ACID METABOLISM

    EPA Science Inventory

    Co-exposure of human airway epithelial cells to ozone and particulate matter: effects on arachidonic acid metabolism.

    D. Stamm1, L. Dailey2, M.C. Madden2
    1 University of North Carolina-Chapel Hill, School of Medicine
    2 U.S. EPA, ORD, NHEERL, HSD, Chapel Hill, NC, USA...

  7. ULTRAFINE CARBON PARTICLES INDUCE IL-8 EXPRESSION IN HUMAN AIRWAY EPITHELIAL CELLS THROUGH A POST-TRANSCRIPTIONAL MECHANISM

    EPA Science Inventory

    Ultrafine carbon particles induce IL-8 expression in human airway
    epithelial cells through a post-transcritpional mechanism
    Epidemiological studies suggest that ultrafine particles contribute to
    particulate matter (PM) - induced adverse health effects. IL-8 is an
    i...

  8. Research of transport and deposition of aerosol in human airway replica

    NASA Astrophysics Data System (ADS)

    Lizal, Frantisek; Jedelsky, Jan; Elcner, Jakub; Durdina, Lukas; Halasova, Tereza; Mravec, Filip; Jicha, Miroslav

    2012-04-01

    Growing concern about knowledge of aerosol transport in human lungs is caused by great potential of use of inhaled pharmaceuticals. Second substantial motive for the research is an effort to minimize adverse effects of particular matter emitted by traffic and industry on human health. We created model geometry of human lungs to 7th generation of branching. This model geometry was used for fabrication of two physical models. The first one is made from thin walled transparent silicone and it allows a measurement of velocity and size of aerosol particles by Phase Doppler Anemometry (PDA). The second one is fabricated by stereolithographic method and it is designed for aerosol deposition measurements. We provided a series of measurements of aerosol transport in the transparent model and we ascertained remarkable phenomena linked with lung flow. The results are presented in brief. To gather how this phenomena affects aerosol deposition in human lungs we used the second model and we developed a technique for deposition fraction and deposition efficiency assessment. The results confirmed that non-symmetric and complicated shape of human airways essentially affects transport and deposition of aerosol. The research will now focus on deeper insight in aerosol deposition.

  9. Monitoring the state of the human airways by analysis of respiratory sound

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.; Patterson, J. L. Jr

    1979-01-01

    A mechanism whereby sound is generated by the motion of vortices in the human lung is described. This mechanism is believed to be responsible for most of the sound which is generated both on inspiration and expiration in normal lungs. Mathematical expressions for the frequencies of sound generated, which depend only upon the axial flow velocity and diameters of the bronchi, are derived. This theory allows the location within the bronchial tree from which particular sounds emanate to be determined. Redistribution of pulmonary blood volume following transition from Earth gravity to the weightless state probably alters the caliber of certain airways and doubtless alters sound transmission properties of the lung. We believe that these changes can be monitored effectively and non-invasively by spectral analysis of pulmonary sound.

  10. Towards a clinical implementation of μOCT instrument for in vivo imaging of human airways

    NASA Astrophysics Data System (ADS)

    Leung, Hui Min; Cui, Dongyao; Ford, Timothy N.; Hyun, Daryl; Dong, Jing; Yin, Biwei; Birket, Susan E.; Solomon, George M.; Liu, Linbo; Rowe, Steven M.; Tearney, Guillermo J.

    2017-03-01

    High resolution micro-optical coherence tomography (µOCT) technology has been demonstrated to be useful for imaging respiratory epithelial functional microanatomy relevant to the study of pulmonary diseases such as cystic fibrosis and COPD. We previously reported the use of a benchtop μOCT imaging technology to image several relevant respiratory epithelial functional microanatomy at 40 fps and at lateral and axial resolutions of 2 and 1.3μm, respectively. We now present the development of a portable μOCT imaging system with comparable optical and imaging performance, which enables the μOCT technology to be translated to the clinic for in vivo imaging of human airways.

  11. Numerical investigation of airflow in an idealised human extra-thoracic airway: a comparison study

    PubMed Central

    Chen, Jie; Gutmark, Ephraim

    2013-01-01

    Large eddy simulation (LES) technique is employed to numerically investigate the airflow through an idealised human extra-thoracic airway under different breathing conditions, 10 l/min, 30 l/min, and 120 l/min. The computational results are compared with single and cross hot-wire measurements, and with time-averaged flow field computed by standard k-ω and k-ω-SST Reynolds averaged Navier-Stokes (RANS) models and the Lattice-Boltzmann method (LBM). The LES results are also compared to root-mean-square (RMS) flow field computed by the Reynolds stress model (RSM) and LBM. LES generally gives better prediction of the time-averaged flow field than RANS models and LBM. LES also provides better estimation of the RMS flow field than both the RSM and the LBM. PMID:23619907

  12. Collective motion of motile cilia: from human airways to model systems

    NASA Astrophysics Data System (ADS)

    Cicuta, Pietro; Feriani, Luigi; Chioccioli, Maurizio; Kotar, Jurij

    Mammalian airways are a fantastic playground of nonlinear phenomena, from the function of individual active filaments, to the emerging collective behaviour, to the rheology of the mucus solution surrounding cilia. We have been investigating the fundamental physics of this system through a variety of model system approaches, both experimental and computational. In the last year we have started measurements on living human cells, observing cilia shape during beating, and measuring speed and coherence of the collective dynamics. We report on significant differences in the collective motion in ciliated cell carpets from a variety of diseases, and we attempt to reconcile the collective dynamical phenotypes to the properties of individual filaments and the mechanics of the environment.

  13. Monitoring the state of the human airways by analysis of respiratory sound

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.; Patterson, J. L., Jr.

    1978-01-01

    A mechanism whereby sound is generated by the motion of vortices in the human lung is described. This mechanism is believed to be responsible for most of the sound which is generated both on inspiration and expiration in normal lungs. Mathematical expressions for the frequencies of sound generated, which depend only upon the axial flow velocity and diameters of the bronchi, are derived. This theory allows the location within the bronchial tree from which particular sounds emanate to be determined. Redistribution of pulmonary blood volume following transition from earth gravity to the weightless state probably alters the caliber of certain airways and doubtless alters sound transmission properties of the lung. We believe that these changes can be monitored effectively and non-invasively by spectral analysis of pulmonary sound.

  14. Monitoring the state of the human airways by analysis of respiratory sound

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.; Patterson, J. L. Jr

    1979-01-01

    A mechanism whereby sound is generated by the motion of vortices in the human lung is described. This mechanism is believed to be responsible for most of the sound which is generated both on inspiration and expiration in normal lungs. Mathematical expressions for the frequencies of sound generated, which depend only upon the axial flow velocity and diameters of the bronchi, are derived. This theory allows the location within the bronchial tree from which particular sounds emanate to be determined. Redistribution of pulmonary blood volume following transition from Earth gravity to the weightless state probably alters the caliber of certain airways and doubtless alters sound transmission properties of the lung. We believe that these changes can be monitored effectively and non-invasively by spectral analysis of pulmonary sound.

  15. Isotonic and hypertonic saline droplet deposition in a human upper airway model.

    PubMed

    Zhang, Zhe; Kleinstreuer, Clement; Kim, Chong S

    2006-01-01

    The evaporative and hygroscopic effects and deposition of isotonic and hypertonic saline droplets have been simulated from the mouth to the first four generations of the tracheobronchial tree under laminar-transitional-turbulent inspiratory flow conditions. Specifically, the local water vapor transport, droplet evaporation rate, and deposition fractions are analyzed. The effects of inhalation flow rates, thermodynamic air properties and NaCl-droplet concentrations of interest are discussed as well. The validated computer simulation results indicate that the increase of NaCl-solute concentration, increase of inlet relative humidity, or decrease of inlet air temperature may reduce water evaporation and increase water condensation at saline droplet surfaces, resulting in higher droplet depositions due to the increasing particle diameter and density. However, solute concentrations below 10% may not have a very pronounced effect on droplet deposition in the human upper airways.

  16. Computational simulation of temperature and velocity distribution in human upper respiratory airway during inhalation of hot air.

    PubMed

    Goodarzi-Ardakani, V; Taeibi-Rahni, M; Salimi, M R; Ahmadi, G

    2016-03-01

    The present study provides an accurate simulation of velocity and temperature distributions of inhalation thermal injury in a human upper airway, including vestibule, nasal cavity, paranasal sinuses, nasopharynx, oropharynx, larynx, and upper part of main bronchus. To this end, a series of CT scan images, taken from an adult woman, was used to construct a three dimensional model. The airway walls temperature was adjusted according to existing in vivo temperature measurements. Also, in order to cover all breathing activities, five different breathing flow rates (10, 15, 20, 30, and 40 l/min) and different ambient air temperatures (100, 200, 300, 400, and 500 °C) were studied. Different flow regimes, including laminar, transitional, and turbulence were considered and the simulations were validated using reliable experimental data. The results show that nostrils, vestibule, and nasal cavity are damaged more than other part of airway. Finally, In order to obtain the heat flux through the walls, correlations for Nusselt number for each individual parts of airway (vestibule, main upper airway, nasopharynx etc.,) are proposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways.

    PubMed

    Lin, Ching-Long; Tawhai, Merryn H; McLennan, Geoffrey; Hoffman, Eric A

    2007-08-01

    A computational fluid dynamics technique is applied to understand the relative importance of the upper and intra-thoracic airways and their role in determining central airflow patterns with particular attention paid to the importance of turbulence. The geometry of the human upper respiratory tract is derived from volumetric scans of a volunteer imaged via multidetector-row computed tomography. Geometry 1 consists of a mouthpiece, the mouth, the oropharynx, the larynx, and the intra-thoracic airways of up to six generations. Geometry 2 comprises only the intra-thoracic airways. The results show that a curved sheet-like turbulent laryngeal jet is observed only in geometry 1 with turbulence intensity in the trachea varying from 10% to 20%, whereas the turbulence in geometry 2 is negligible. The presence of turbulence is found to increase the maximum localised wall shear stress by three-folds. The proper orthogonal decomposition analysis reveals that the regions of high turbulence intensity are associated with Taylor-Görtler-like vortices. We conclude that turbulence induced by the laryngeal jet could significantly affect airway flow patterns as well as tracheal wall shear stress. Thus, airflow modeling, particularly subject specific evaluations, should consider upper as well as intra-thoracic airway geometry.

  18. Tissue optical clearing, three-dimensional imaging, and computer morphometry in whole mouse lungs and human airways.

    PubMed

    Scott, Gregory D; Blum, Emily D; Fryer, Allison D; Jacoby, David B

    2014-07-01

    In whole adult mouse lung, full identification of airway nerves (or other cellular/subcellular objects) has not been possible due to patchy distribution and micron-scale size. Here we describe a method using tissue clearing to acquire the first complete image of three-dimensional (3D) innervation in the lung. We then created a method to pair analysis of nerve (or any other colabeled epitope) images with identification of 3D tissue compartments and airway morphometry by using fluorescent casting and morphometry software (which we designed and are making available as open-source). We then tested our method to quantify a sparse heterogeneous nerve population by examining visceral pleural nerves. Finally, we demonstrate the utility of our method in human tissue to image full thickness innervation in irregular 3D tissue compartments and to quantify sparse objects (intrinsic airway ganglia). Overall, this method can uniquely pair the advantages of whole tissue imaging and cellular/subcellular fluorescence microscopy.

  19. The pharmacology of bitter taste receptors and their role in human airways.

    PubMed

    Devillier, Philippe; Naline, Emmanuel; Grassin-Delyle, Stanislas

    2015-11-01

    The receptors involved in bitter taste perception (bitter taste receptors--T2Rs) constitute a family of G-protein-coupled receptors, of which around 29 subtypes have been identified in humans. T2R expression was initially thought to be confined to the oral cavity but has recently been described in a range of other tissues (such as the heart, gut, nasal cavity and lungs) and cell types (chemosensory, smooth muscle, endothelial, epithelial and inflammatory cells). Although it is still not clear whether endogenous T2R agonists exist, the T2R receptors recognize many natural and synthetic compounds, such as the acyl-homoserine lactones produced by bacteria, caffeine, chloroquine, and erythromycin. In the upper airways, T2Rs are involved in neurogenic inflammation and bacterial clearance. Their known effects in the lungs are exerted at three different levels. Firstly, T2R agonists increase the beating frequency of cilia on epithelial cells. Secondly, the T2Rs induce bronchial smooth muscle cells to relax. Thirdly, the T2R receptors expressed on immune cells (such as macrophages and mast cells) modulate production of pro-inflammatory mediators. Furthermore, T2R agonists are effective in inhibiting lung inflammation or smooth muscle contraction in ex vivo and asthma animal models, and are known to be involved in bacterial killing in the nasal cavity and enhancing lung function in humans. This review focuses on the pharmacology and physiological functions of T2R receptors in the upper and lower airways. It presents recently acquired knowledge suggesting that T2Rs may become valuable drug targets in the treatment of diseases such as asthma and chronic rhinosinusitis. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Identification of human metapneumovirus-induced gene networks in airway epithelial cells by microarray analysis

    SciTech Connect

    Bao, X.; Sinha, M. |; Liu, T.; Hong, C.; Luxon, B.A. |; Garofalo, R.P. ||; Casola, A. ||

    2008-04-25

    Human metapneumovirus (hMPV) is a major cause of lower respiratory tract infections in infants, elderly and immunocompromised patients. Little is known about the response to hMPV infection of airway epithelial cells, which play a pivotal role in initiating and shaping innate and adaptive immune responses. In this study, we analyzed the transcriptional profiles of airway epithelial cells infected with hMPV using high-density oligonucleotide microarrays. Of the 47,400 transcripts and variants represented on the Affimetrix GeneChip Human Genome HG-U133 plus 2 array, 1601 genes were significantly altered following hMPV infection. Altered genes were then assigned to functional categories and mapped to signaling pathways. Many up-regulated genes are involved in the initiation of pro-inflammatory and antiviral immune responses, including chemokines, cytokines, type I interferon and interferon-inducible proteins. Other important functional classes up-regulated by hMPV infection include cellular signaling, gene transcription and apoptosis. Notably, genes associated with antioxidant and membrane transport activity, several metabolic pathways and cell proliferation were down-regulated in response to hMPV infection. Real-time PCR and Western blot assays were used to confirm the expression of genes related to several of these functional groups. The overall result of this study provides novel information on host gene expression upon infection with hMPV and also serves as a foundation for future investigations of genes and pathways involved in the pathogenesis of this important viral infection. Furthermore, it can facilitate a comparative analysis of other paramyxoviral infections to determine the transcriptional changes that are conserved versus the one that are specific to individual pathogens.

  1. α1-Antitrypsin reduces rhinovirus infection in primary human airway epithelial cells exposed to cigarette smoke.

    PubMed

    Berman, Reena; Jiang, Di; Wu, Qun; Chu, Hong Wei

    2016-01-01

    Human rhinovirus (HRV) infections target airway epithelium and are the leading cause of acute exacerbations of COPD. Cigarette smoke (CS) increases the severity of viral infections, but there is no effective therapy for HRV infection. We determined whether α1-antitrypsin (A1AT) reduces HRV-16 infection in CS-exposed primary human airway epithelial cells. Brushed bronchial epithelial cells from normal subjects and patients diagnosed with COPD were cultured at air-liquid interface to induce mucociliary differentiation. These cells were treated with A1AT or bovine serum albumin for 2 hours and then exposed to air or whole cigarette smoke (WCS) with or without HRV-16 (5×10(4) 50% Tissue Culture Infective Dose [TCID50]/transwell) infection for 24 hours. WCS exposure significantly increased viral load by an average of fivefold and decreased the expression of antiviral genes interferon-λ1, OAS1, and MX1. When A1AT was added to WCS-exposed cells, viral load significantly decreased by an average of 29-fold. HRV-16 infection significantly increased HRV-16 receptor intercellular adhesion molecule-1 messenger RNA expression in air-exposed cells, which was decreased by A1AT. A1AT-mediated reduction of viral load was not accompanied by increased epithelial antiviral gene expression or by inhibiting the activity of 3C protease involved in viral replication or maturation. Our findings demonstrate that A1AT treatment prevents a WCS-induced increase in viral load and for the first time suggest a therapeutic effect of A1AT on HRV infection.

  2. Cholesterol depletion in cell membranes of human airway epithelial cells suppresses MUC5AC gene expression.

    PubMed

    Song, Kee Jae; Kim, Na Hyun; Lee, Gi Bong; Kim, Ji Hoon; Kwon, Jin Ho; Kim, Kyung-Su

    2013-05-01

    If cholesterol in the cell membrane is depleted by treating cells with methyl-β-cyclodextrin (MβCD), the activities of transmembrane receptors are altered in a cell-specific and/or receptor-specific manner. The proinflammatory cytokines, IL-1β is potent inducers of MUC5AC mRNA and protein synthesis in human airway epithelial cells. Cells activated by IL-1β showed increased phosphorylation of extracellular signal regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK). Thus, we investigated the effects of cholesterol depletion on the expression of MUC5AC in human airway epithelial cells and whether these alterations to MUC5AC expression were related to MAPK activity. After NCI-H292 cells were pretreated with 1% MβCD before adding IL-1β for 24 hours, MUC5AC mRNA expression was determined by reverse transcription- polymerase chain reaction (RT-PCR) and real time-PCR. Cholesterol depletion by MβCD was measured by modified microenzymatic fluorescence assay and filipin staining. The phosphorylation of IL-1 receptor, ERK and p38 MAPK, was analyzed by western blot. Cholesterol in the cell membrane was significantly depleted by treatment with MβCD on cells. IL-1β-induced MUC5AC mRNA expression was decreased by MβCD and this decrease occurred IL-1-receptor- specifically. Moreover, we have shown that MβCD suppressed the activation of ERK1/2 and p38 MAPK in cells activated with IL-1β. This result suggests that MβCD-mediated suppression of IL-1β-induced MUC5AC mRNA operated via the ERK- and p38 MAPK-dependent pathway. Cholesterol depletion in NCI-H292 cell membrane may be considered an anti-hypersecretory method since it effectively inhibits mucus secretion of respiratory epithelial cells.

  3. Biomechanical effects of environmental and engineered particles on human airway smooth muscle cells.

    PubMed

    Berntsen, P; Park, C Y; Rothen-Rutishauser, B; Tsuda, A; Sager, T M; Molina, R M; Donaghey, T C; Alencar, A M; Kasahara, D I; Ericsson, T; Millet, E J; Swenson, J; Tschumperlin, D J; Butler, J P; Brain, J D; Fredberg, J J; Gehr, P; Zhou, E H

    2010-06-06

    The past decade has seen significant increases in combustion-generated ambient particles, which contain a nanosized fraction (less than 100 nm), and even greater increases have occurred in engineered nanoparticles (NPs) propelled by the booming nanotechnology industry. Although inhalation of these particulates has become a public health concern, human health effects and mechanisms of action for NPs are not well understood. Focusing on the human airway smooth muscle cell, here we show that the cellular mechanical function is altered by particulate exposure in a manner that is dependent upon particle material, size and dose. We used Alamar Blue assay to measure cell viability and optical magnetic twisting cytometry to measure cell stiffness and agonist-induced contractility. The eight particle species fell into four categories, based on their respective effect on cell viability and on mechanical function. Cell viability was impaired and cell contractility was decreased by (i) zinc oxide (40-100 nm and less than 44 microm) and copper(II) oxide (less than 50 nm); cell contractility was decreased by (ii) fluorescent polystyrene spheres (40 nm), increased by (iii) welding fumes and unchanged by (iv) diesel exhaust particles, titanium dioxide (25 nm) and copper(II) oxide (less than 5 microm), although in none of these cases was cell viability impaired. Treatment with hydrogen peroxide up to 500 microM did not alter viability or cell mechanics, suggesting that the particle effects are unlikely to be mediated by particle-generated reactive oxygen species. Our results highlight the susceptibility of cellular mechanical function to particulate exposures and suggest that direct exposure of the airway smooth muscle cells to particulates may initiate or aggravate respiratory diseases.

  4. Measurements of airway dimensions and calculation of mass transfer characteristics of the human oral passage.

    PubMed

    Cheng, K H; Cheng, Y S; Yeh, H C; Swift, D L

    1997-11-01

    This paper presents measurements of the geometric shape, perimeter, and cross-sectional area of the human oral passage (from oral entrance to midtrachea) and relates them through dimensionless parameters to the depositional mass transfer of ultrafine particles. Studies were performed in two identical replicate oral passage models, one of which was cut orthogonal to the airflow direction into 3 mm elements for measurement, the other used intact for experimental measurements of ultrafine aerosol deposition. Dimensional data were combined with deposition measurements in two sections of the oral passage (the horizontal oral cavity and the vertical laryngeal-tracheal airway) to calculate the dimensionless mass transfer Sherwood number (Sh). Mass transfer theory suggests that Sh should be expressible as a function of the Reynolds number (Re) and the Schmidt number (Sc). For inhalation and exhalation through the oral cavity (O-C), an empirical relationship was obtained for flow rates from 7.5-30.0 1 min-1: Sh = 15.3 Re0.812 Sc-0.986 An empirical relationship was likewise obtained for the laryngeal-tracheal (L-T) region over the same range of flow rates: Sh = 25.9 Re0.861 Sc-1.37 These relationships were compared to heat transfer in the human upper airways through the well-known analogy between heat and mass transfer. The Reynolds number dependence for both the O-C and L-T relationships was in good agreement with that for heat transfer. The mass transfer coefficients were compared to extrathoracic uptake of gases and vapors and showed similar flow rate dependence. For gases and vapors that conform to the zero concentration boundary condition, the empirical relationships are applicable when diffusion coefficients are taken into consideration.

  5. The principle of upper airway unidirectional flow facilitates breathing in humans.

    PubMed

    Jiang, Yandong; Liang, Yafen; Kacmarek, Robert M

    2008-09-01

    Upper airway unidirectional breathing, nose in and mouth out, is used by panting dogs to facilitate heat removal via water evaporation from the respiratory system. Why some humans instinctively employ the same breathing pattern during respiratory distress is still open to question. We hypothesized that 1) humans unconsciously perform unidirectional breathing because it improves breathing efficiency, 2) such an improvement is achieved by bypassing upper airway dead space, and 3) the magnitude of the improvement is inversely proportional to the tidal volume. Four breathing patterns were performed in random order in 10 healthy volunteers first with normal breathing effort, then with variable tidal volumes: mouth in and mouth out (MMB); nose in and nose out (NNB); nose in and mouth out (NMB); and mouth in and nose out (MNB). We found that unidirectional breathing bypasses anatomical dead space and improves breathing efficiency. At tidal volumes of approximately 380 ml, the functional anatomical dead space during NMB (81 +/- 31 ml) or MNB (101 +/- 20 ml) was significantly lower than that during MMB (148 +/- 15 ml) or NNB (130 +/- 13 ml) (all P < 0.001), and the breathing efficiency obtained with NMB (78 +/- 9%) or MNB (73 +/- 6%) was significantly higher than that with MMB (61 +/- 6%) or NNB (66 +/- 3%) (all P < 0.001). The improvement in breathing efficiency increased as tidal volume decreased. Unidirectional breathing results in a significant reduction in functional anatomical dead space and improvement in breathing efficiency. We suggest this may be the reason that such a breathing pattern is preferred during respiratory distress.

  6. Oxidative Stress Regulates CFTR Gene Expression in Human Airway Epithelial Cells through a Distal Antioxidant Response Element

    PubMed Central

    Zhang, Zhaolin; Leir, Shih-Hsing

    2015-01-01

    Cystic fibrosis transmembrane conductance regulator gene (CFTR) expression in human airway epithelial cells involves the recruitment of distal cis-regulatory elements, which are associated with airway-selective DNase hypersensitive sites at −44 kb and −35 kb from the gene. The −35-kb site encompasses an enhancer that is regulated by the immune mediators interferon regulatory factor 1 and 2 and by nuclear factor Y. Here we investigate the −44-kb element, which also has enhancer activity in vitro in airway epithelial cells but is inactive in intestinal epithelial cells. This site contains an antioxidant response element (ARE) that plays a critical role in its function in airway cell lines and primary human bronchial epithelial cells. The natural antioxidant sulforaphane (SFN) induces nuclear translocation of nuclear factor, erythroid 2-like 2 (Nrf2), a transcription factor that regulates genes with AREs in their promoters, many of which are involved in response to injury. Under normal conditions, the −44-kb ARE is occupied by the repressor BTB and CNC homology 1, basic leucine zipper transcription factor (Bach1), and v-Maf avian musculoaponeurotic fibrosarcoma oncogene homolog K (MafK) heterodimers. After 2 hours of SFN treatment, Nrf2 displaces these repressive factors and activates CFTR expression. Site-directed mutagenesis shows that both the ARE and an adjacent NF-κB binding site are required for activation of the –44-kb element in airway epithelial cells. Moreover, this element is functionally linked to the −35-kb enhancer in modulating CFTR expression in response to environmental stresses in the airway. PMID:25259561

  7. Serelaxin improves the therapeutic efficacy of RXFP1-expressing human amnion epithelial cells in experimental allergic airway disease.

    PubMed

    Royce, Simon G; Tominaga, Anna M; Shen, Matthew; Patel, Krupesh P; Huuskes, Brooke M; Lim, Rebecca; Ricardo, Sharon D; Samuel, Chrishan S

    2016-12-01

    Current asthma therapies primarily target airway inflammation (AI) and suppress episodes of airway hyperresponsiveness (AHR) but fail to treat airway remodelling (AWR), which can develop independently of AI and contribute to irreversible airway obstruction. The present study compared the anti-remodelling and therapeutic efficacy of human bone marrow-derived mesenchymal stem cells (MSCs) to that of human amnion epithelial stem cells (AECs) in the setting of chronic allergic airways disease (AAD), in the absence or presence of an anti-fibrotic (serelaxin; RLX). Female Balb/c mice subjected to the 9-week model of ovalbumin (OVA)-induced chronic AAD, were either vehicle-treated (OVA alone) or treated with MSCs or AECs alone [intranasally (i.n.)-administered with 1×10(6) cells once weekly], RLX alone (i.n.-administered with 0.8 mg/ml daily) or a combination of MSCs or AECs and RLX from weeks 9-11 (n=6/group). Measures of AI, AWR and AHR were then assessed. OVA alone exacerbated AI, epithelial damage/thickness, sub-epithelial extracellular matrix (ECM) and total collagen deposition, markers of collagen turnover and AHR compared with that in saline-treated counterparts (all P<0.01 compared with saline-treated controls). RLX or AECs (but not MSCs) alone normalized epithelial thickness and partially diminished the OVA-induced fibrosis and AHR by ∼40-50% (all P<0.05 compared with OVA alone). Furthermore, the combination treatments normalized epithelial thickness, measures of fibrosis and AHR to that in normal mice, and significantly decreased AI. Although AECs alone demonstrated greater protection against the AAD-induced AI, AWR and AHR, compared with that of MSCs alone, combining RLX with MSCs or AECs reversed airway fibrosis and AHR to an even greater extent. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  8. Functional expression of γ-amino butyric acid transporter 2 in human and guinea pig airway epithelium and smooth muscle.

    PubMed

    Zaidi, Sarah; Gallos, George; Yim, Peter D; Xu, Dingbang; Sonett, Joshua R; Panettieri, Reynold A; Gerthoffer, William; Emala, Charles W

    2011-08-01

    γ-Amino butyric acid (GABA) is a primary inhibitory neurotransmitter in the central nervous system, and is classically released by fusion of synaptic vesicles with the plasma membrane or by egress via GABA transporters (GATs). Recently, a GABAergic system comprised of GABA(A) and GABA(B) receptors has been identified on airway epithelial and smooth muscle cells that regulate mucus secretion and contractile tone of airway smooth muscle (ASM). In addition, the enzyme that synthesizes GABA, glutamic acid decarboxylase, has been identified in airway epithelial cells; however, the mechanism(s) by which this synthesized GABA is released from epithelial intracellular stores is unknown. We questioned whether any of the four known isoforms of GATs are functionally expressed in ASM or epithelial cells. We detected mRNA and protein expression of GAT2 and -4, and isoforms of glutamic acid decarboxylase in native and cultured human ASM and epithelial cells. In contrast, mRNA encoding vesicular GAT (VGAT), the neuronal GABA transporter, was not detected. Functional inhibition of (3)H-GABA uptake was demonstrated using GAT2 and GAT4/betaine-GABA transporter 1 (BGT1) inhibitors in both human ASM and epithelial cells. These results demonstrate that two isoforms of GATs, but not VGAT, are expressed in both airway epithelial and smooth muscle cells. They also provide a mechanism by which locally synthesized GABA can be released from these cells into the airway to activate GABA(A) channels and GABA(B) receptors, with subsequent autocrine and/or paracrine signaling effects on airway epithelium and ASM.

  9. Regenerative potential of human airway stem cells in lung epithelial engineering.

    PubMed

    Gilpin, Sarah E; Charest, Jonathan M; Ren, Xi; Tapias, Luis F; Wu, Tong; Evangelista-Leite, Daniele; Mathisen, Douglas J; Ott, Harald C

    2016-11-01

    Bio-engineered organs for transplantation may ultimately provide a personalized solution for end-stage organ failure, without the risk of rejection. Building upon the process of whole organ perfusion decellularization, we aimed to develop novel, translational methods for the recellularization and regeneration of transplantable lung constructs. We first isolated a proliferative KRT5(+)TP63(+) basal epithelial stem cell population from human lung tissue and demonstrated expansion capacity in conventional 2D culture. We then repopulated acellular rat scaffolds in ex vivo whole organ culture and observed continued cell proliferation, in combination with primary pulmonary endothelial cells. To show clinical scalability, and to test the regenerative capacity of the basal cell population in a human context, we then recellularized and cultured isolated human lung scaffolds under biomimetic conditions. Analysis of the regenerated tissue constructs confirmed cell viability and sustained metabolic activity over 7 days of culture. Tissue analysis revealed extensive recellularization with organized tissue architecture and morphology, and preserved basal epithelial cell phenotype. The recellularized lung constructs displayed dynamic compliance and rudimentary gas exchange capacity. Our results underline the regenerative potential of patient-derived human airway stem cells in lung tissue engineering. We anticipate these advances to have clinically relevant implications for whole lung bioengineering and ex vivo organ repair.

  10. The Impact of Vitamin D on Asthmatic Human Airway Smooth Muscle

    PubMed Central

    Hall, Sannette C.; Fischer, Kimberly D.; Agrawal, Devendra K.

    2016-01-01

    Asthma is a chronic heterogeneous disorder, which involves airway inflammation, airway hyperresponsiveness (AHR) and airway remodeling. The airway smooth muscle (ASM) bundle regulates the broncho-motor tone and plays a critical role in AHR as well as orchestrating inflammation. Vitamin D deficiency has been linked to increased severity and exacerbations of symptoms in asthmatic patients. It has been shown to modulate both immune and structural cells, including ASM cells, in inflammatory diseases. Given that current asthma therapies have not been successful in reversing airway remodeling, vitamin D supplementation as a potential therapeutic option has gained a great deal of attention. Here, we highlight the potential immunomodulatory properties of vitamin D in regulating ASM function and airway inflammation in bronchial asthma. PMID:26634624

  11. Airway irritation and cough evoked by acid: from human to ion channel

    PubMed Central

    Gu, Qihai; Lee, Lu-Yuan

    2011-01-01

    Inhalation or aspiration of acid solution evokes airway defense responses such as cough and reflex bronchoconstriction, resulting from activation of vagal bronchopulmonary C-fibers and Aδ afferents. The stimulatory effect of hydrogen ion on these sensory nerves is generated by activation of two major types of ion channels expressed in these neurons: a rapidly activating and inactivating current mediated through ASICs, and a slow sustaining current via activation of TRPV1. Recent studies have shown that these acid-evoked responses are elevated during airway inflammatory reaction, revealing the potential convergence of a wide array of inflammatory signaling on these ion channels. Since pH in the airway fluid drops substantially in patients with inflammatory airway diseases, these heightened stimulatory effects of acid on airway sensory nerves may play a part in the manifestation of airway irritation and excessive cough under those pathophysiological conditions. PMID:21543258

  12. Impact of tobacco smoke on interleukin-16 protein in human airways, lymphoid tissue and T lymphocytes

    PubMed Central

    ANDERSSON, A; QVARFORDT, I; LAAN, M; SJÖSTRAND, M; MALMHÄLL, C; RIISE, G C; CARDELL, L-O; LINDÉN, A

    2004-01-01

    CD4+ and CD8+ lymphocytes are mobilized in severe chronic obstructive pulmonary disease (COPD) and the CD8+ cytokine interleukin (IL)-16 is believed to be important in regulating the recruitment and activity of CD4+ lymphocytes. In the current study, we examined whether tobacco smoke exerts an impact not only on IL-16 in the lower airways but also in CD4+ or CD8+ lymphocytes or in lymphoid tissue. The concentration of IL-16 protein was measured by enzyme-linked immunosorbent assay (ELISA) in concentrated bronchoalveolar lavage fluid (BALF) collected from 33 smokers with chronic bronchitis (CB), eight asymptomatic smokers (AS) and seven healthy never-smokers (NS). The concentrations of IL-16 and soluble IL-2 receptor alpha (sIL-2Rα) protein were also measured in conditioned medium from human blood CD4+ and CD8+ lymphocytes stimulated with tobacco smoke extract (TSE) in vitro. IL-16 mRNA was assessed in vitro as well, using reverse transcription–polymerase chain reaction (RT-PCR). Finally, the intracellular immunoreactivity for IL-16 protein (IL-16IR) was assessed in six matched pairs of palatine tonsils from smokers and non-smokers. BALF IL-16 was higher in CB and AS than in NS. TSE substantially increased the concentration of IL-16 but not sIL-2Rα in conditioned medium from CD4+ and CD8+ lymphocytes. There was no corresponding effect on IL-16 mRNA. IL-16IR in tonsils was lower in smokers than in non-smokers. The current findings demonstrate that tobacco smoke exerts a wide impact on the CD8+ cytokine IL-16, in the airway lumen, in blood CD4+ and CD8+ lymphocytes and in lymphoid tissue. The effect on IL-16 release may be selective for preformed IL-16 in CD4+ lymphocytes. New clinical studies are required to evaluate whether tobacco smoke mobilizes T lymphocytes via IL-16 in the lower airways and whether this mechanism can be targeted in COPD. PMID:15373908

  13. Diallyl disulfide induces MUC5B expression via ERK2 in human airway epithelial cells.

    PubMed

    Bae, Chang Hoon; Kwak, Dong Suk; Ye, Sang Baik; Song, Si-Youn; Kim, Yong-Dae

    2012-02-01

    Garlic has been shown to have antimicrobial, hypolipidemic, antithrombotic, antitumor and immunostimulatory properties. The medicinal effects of garlic are derived from the flavonoid and organosulfur components. Diallyl disulfide (DADS), an organosulfur, is the main component responsible for the diverse biological effects of garlic. However, the effects of DADS on mucin gene expression in airway epithelial cells have not been reported to date. Therefore, this study was performed to investigate the effects and brief signaling pathway of DADS associated with MUC5B expression in NCI-H292 epithelial cells using RT-PCR, ELISA, western blot, immunocytochemistry and cell transfection with siRNA. DADS induced MUC5B expression and activated the phosphorylation of ERK1/2 MAPK. In addition, U0126 inhibited DADS-induced MUC5B expression and DADS-activated phosphorylation of ERK1/2 MAPK. Moreover, the immunopositive cells for MUC5B protein did not appear after treatment of DADS with U0126, and the knockdown of ERK2 MAPK by ERK2 MAPK siRNA significantly blocked DADS-induced MUC5B mRNA expression. However, DADS did not activate the phosphorylation of p38 MAPK, and SB203580 did not inhibit DADS-induced MUC5B expression. This is the first study to show that DADS-induced MUC5B expression appears to be regulated by activation of the ERK2 MAPK signaling pathway in human NCI-H292 airway epithelial cells. Copyright © 2011 John Wiley & Sons, Ltd.

  14. Nerve growth factor reduces amiloride‐sensitive Na+ transport in human airway epithelial cells

    PubMed Central

    Shimko, Michael J.; Zaccone, Eric J.; Thompson, Janet A.; Schwegler‐Berry, Diane; Kashon, Michael L.; Fedan, Jeffrey S.

    2014-01-01

    Abstract Nerve growth factor (NGF) is overexpressed in patients with inflammatory lung diseases, including virus infections. Airway surface liquid (ASL), which is regulated by epithelial cell ion transport, is essential for normal lung function. No information is available regarding the effect of NGF on ion transport of airway epithelium. To investigate whether NGF can affect ion transport, human primary air‐interface cultured epithelial cells were placed in Ussing chambers to obtain transepithelial voltage (−7.1 ± 3.4 mV), short‐circuit current (Isc, 5.9 ± 1.0 μA), and transepithelial resistance (750 Ω·cm2), and to measure responses to ion transport inhibitors. Amiloride (apical, 3.5 × 10−5 mol/L) decreased Isc by 55.3%. Apically applied NGF (1 ng/mL) reduced Isc by 5.3% in 5 min; basolaterally applied NGF had no effect. The response to amiloride was reduced (41.6%) in the presence of NGF. K‐252a (10 nmol/L, apical) did not itself affect Na+ transport, but it attenuated the NGF‐induced reduction in Na+ transport, indicating the participation of the trkA receptor in the NGF‐induced reduction in Na+ transport. PD‐98059 (30 μmol/L, apical and basolateral) did not itself affect Na+ transport, but attenuated the NGF‐induced reduction in Na+ transport, indicating that trkA activated the Erk 1/2 signaling cascade. NGF stimulated phosphorylation of Erk 1/2 and the β‐subunit of ENaC. K‐252a and PD‐98059 inhibited these responses. NGF had no effect on Isc in the presence of apical nystatin (50 μmol/L). These results indicate that NGF inhibits Na+ transport through a trkA‐Erk 1/2‐activated signaling pathway linked to ENaC phosphorylation. PMID:25347857

  15. Effect of guaifenesin on mucin production, rheology, and mucociliary transport in differentiated human airway epithelial cells.

    PubMed

    Seagrave, JeanClare; Albrecht, Helmut; Park, Yong Sung; Rubin, Bruce; Solomon, Gail; Kim, K Chul

    2011-12-01

    Guaifenesin is widely used to alleviate symptoms of excessive mucus accumulation in the respiratory tract. However, its mechanism of action is poorly understood. The authors hypothesized that guaifenesin improves mucociliary clearance in humans by reducing mucin release, by decreasing mucus viscoelasticity, and by increasing mucociliary transport. To test these hypotheses, human differentiated airway epithelial cells, cultured at an air-liquid interface, were treated with clinically relevant concentrations of guaifenesin by addition to the basolateral medium. To evaluate the effect on mucin secretion, the authors used an anzyme-linked immunosorbent assay (ELISA) to measure the amounts of MUC5AC protein in apical surface fluid and cell lysates. To measure mucociliary transportability, additional cultures were treated for 1 or 6 hours with guaifenesin, and the movement of cell debris was measured from video data. Further, the authors measured mucus dynamic viscoelasticity using a micro cone and plate rheometer with nondestructive creep transformation. Guaifenesin suppressed mucin production in a dose-dependent manner at clinically relevant concentrations. The reduced mucin production was associated with increased mucociliary transport and decreased viscoelasticity of the mucus. Viability of the cultures was not significantly affected. These results suggest that guaifenesin could improve mucociliary clearance in humans by reducing the release and/or production of mucins, thereby altering mucus rheology.

  16. Adaptation of influenza A (H7N9) virus in primary human airway epithelial cells.

    PubMed

    Huang, Daniel Tsung-Ning; Lu, Chun-Yi; Chi, Ya-Hui; Li, Wan-Ling; Chang, Luan-Yin; Lai, Mei-Ju; Chen, Jin-Shing; Hsu, Wen-Ming; Huang, Li-Min

    2017-09-12

    Influenza A (H7N9) is an emerging zoonotic pathogen with pandemic potential. To understand its adaptation capability, we examined the genetic changes and cellular responses following serial infections of A (H7N9) in primary human airway epithelial cells (hAECs). After 35 serial passages, six amino acid mutations were found, i.e. HA (R54G, T160A, Q226L, H3 numbering), NA (K289R, or K292R for N2 numbering), NP (V363V/I) and PB2 (L/R332R). The mutations in HA enabled A(H7N9) virus to bind with higher affinity (from 39.2% to 53.4%) to sialic acid α2,6-galactose (SAα2,6-Gal) linked receptors. A greater production of proinflammatory cytokines in hAECs was elicited at later passages together with earlier peaking at 24 hours post infection of IL-6, MIP-1α, and MCP-1 levels. Viral replication capacity in hAECs maintained at similar levels throughout the 35 passages. In conclusion, during the serial infections of hAECs by influenza A(H7N9) virus, enhanced binding of virion to cell receptors with subsequent stronger innate cell response were noted, but no enhancement of viral replication could be observed. This indicates the existence of possible evolutional hurdle for influenza A(H7N9) virus to transmit efficiently from human to human.

  17. Optimizing an Internal Airway Percussion Device for Facilitating Exhalate Diagnostics of the Human Respiratory System.

    PubMed

    Afshar-Mohajer, Nima; Wu, Chang-Yu; Tsai, Hsiu-Wen; Silverman, Erin; Davenport, Paul; Hegde, Satyanarayan

    2015-03-31

    There is an urgent need for simple, inexpensive, noninvasive, and repeatable technique for the diagnosis of pulmonary diseases. Bronchoalveolar lavage, which is the gold standard diagnostic method for pulmonary diseases, does not meet any of these criteria. This study seeks to develop and optimize a novel technique of Internal Airway Percussion (IAP) to facilitate the collection and characterization of human respiratory system exhalates. The IAP device transmits sound waves into the respiratory tract, thereby increasing the release of aerosolized particles within exhaled breath by vibrating both lungs. Nine combinations of sound wave frequencies and amplitudes were studied to determine optimal frequency and amplitude combination for maximum aerosol particle gain in healthy human subjects. Square-shaped sound waves generated at 15 Hz and 3 cm H2O resulted in 15 times greater total mass of collected particles in the first 2 min of sampling, and 1.2 to 1.5 times increase in count median diameter of the particles. IAP, optimized at the frequency of 15 Hz and the pressure amplitude of 3 cm H2O, increased the total mass of particles exhaled from the human respiratory system. IAP has a broad range of potential clinical applications for noninvasive diagnosis of lung diseases including asthma, cystic fibrosis, pneumonia, and lung cancer, along with improvement of mucus clearance.

  18. Cytokine and Lipid Mediator Regulation of Group 2 Innate Lymphoid Cells (ILC2s) in Human Allergic Airway Disease.

    PubMed

    Cavagnero, Kellen; Doherty, Taylor A

    2017-08-01

    The recent discovery of group 2 innate lymphoid cells (ILC2s) has caused a paradigm shift in the understanding of allergic airway disease pathogenesis. Prior to the discovery of ILC2s, Th2 cells were largely thought to be the primary source of type 2 cytokines; however, activated ILC2s have since been shown to contribute significantly, and in some cases, dominantly to type 2 cytokine production. Since the discovery of ILC2s in 2010, many mediators have been shown to regulate their effector functions. Initial studies identified the epithelial derived cytokines IL-25, IL-33, and TSLP as activators of ILC2s, and recent studies have identified many additional cytokine and lipid mediators that are involved in ILC2 regulation. ILC2s and their mediators represent novel therapeutic targets for allergic airway diseases and intensive investigation is underway to better understand ILC2 biology and upstream and downstream pathways that lead to ILC2-driven airway pathology. In this review, we will focus on the cytokine and lipid mediators that regulate ILC2s in human allergic airway disease, as well as highlight newly discovered mediators of mouse ILC2s that may eventually translate to humans.

  19. Mechanical Stretch Up-regulates MicroRNA-26a and Induces Human Airway Smooth Muscle Hypertrophy by Suppressing Glycogen Synthase Kinase-3β*

    PubMed Central

    Mohamed, Junaith S.; Lopez, Michael A.; Boriek, Aladin M.

    2010-01-01

    Airway smooth muscle hypertrophy is one of the hallmarks of airway remodeling in severe asthma. Several human diseases have been now associated with dysregulated microRNA (miRNA) expression. miRNAs are a class of small non-coding RNAs, which negatively regulate gene expression at the post-transcriptional level. Here, we identify miR-26a as a hypertrophic miRNA of human airway smooth muscle cells (HASMCs). We show that stretch selectively induces the transcription of miR-26a located in the locus 3p21.3 of human chromosome 3. The transcription factor CCAAT enhancer-binding protein α (C/EBPα) directly activates miR-26a expression through the transcriptional machinery upon stretch. Furthermore, stretch or enforced expression of miR-26a induces HASMC hypertrophy, and miR-26 knockdown reverses this effect, suggesting that miR-26a is a hypertrophic gene. We identify glycogen synthase kinase-3β (GSK-3β), an anti-hypertrophic protein, as a target gene of miR-26a. Luciferase reporter assays demonstrate that miR-26a directly interact with the 3′-untranslated repeat of the GSK-3β mRNA. Stretch or enforced expression of miR-26a attenuates the endogenous GSK-3β protein levels followed by the induction of HASMC hypertrophy. miR-26 knockdown reverses this effect, suggesting that miR-26a-induced hypertrophy occurs via its target gene GSK-3β. Overall, as a first time, our study unveils that miR-26a is a mechanosensitive gene, and it plays an important role in the regulation of HASMC hypertrophy. PMID:20525681

  20. Mechanical stretch up-regulates microRNA-26a and induces human airway smooth muscle hypertrophy by suppressing glycogen synthase kinase-3β.

    PubMed

    Mohamed, Junaith S; Lopez, Michael A; Boriek, Aladin M

    2010-09-17

    Airway smooth muscle hypertrophy is one of the hallmarks of airway remodeling in severe asthma. Several human diseases have been now associated with dysregulated microRNA (miRNA) expression. miRNAs are a class of small non-coding RNAs, which negatively regulate gene expression at the post-transcriptional level. Here, we identify miR-26a as a hypertrophic miRNA of human airway smooth muscle cells (HASMCs). We show that stretch selectively induces the transcription of miR-26a located in the locus 3p21.3 of human chromosome 3. The transcription factor CCAAT enhancer-binding protein α (C/EBPα) directly activates miR-26a expression through the transcriptional machinery upon stretch. Furthermore, stretch or enforced expression of miR-26a induces HASMC hypertrophy, and miR-26 knockdown reverses this effect, suggesting that miR-26a is a hypertrophic gene. We identify glycogen synthase kinase-3β (GSK-3β), an anti-hypertrophic protein, as a target gene of miR-26a. Luciferase reporter assays demonstrate that miR-26a directly interact with the 3'-untranslated repeat of the GSK-3β mRNA. Stretch or enforced expression of miR-26a attenuates the endogenous GSK-3β protein levels followed by the induction of HASMC hypertrophy. miR-26 knockdown reverses this effect, suggesting that miR-26a-induced hypertrophy occurs via its target gene GSK-3β. Overall, as a first time, our study unveils that miR-26a is a mechanosensitive gene, and it plays an important role in the regulation of HASMC hypertrophy.

  1. Human Airway Epithelial Cell Responses to Single Walled Carbon Nanotube Exposure: Nanorope-Residual Body Formation

    SciTech Connect

    Panessa-Warren, Barbara J.; Warren, John B.; Kisslinger, Kim; Crosson, Kenya; Maye, Mathew M.

    2012-11-01

    This investigation examines the 'first contact responses' of in vitro human epithelial airway cells exposed to unrefined single walled carbon nanotubes (SWCNTs) [containing metal catalyst, carbon black, amorphous carbon, graphitic shells, and SWCNTs], and refined acid/peroxide cleaned and cut SWCNTs at low and high dose exposures (0.16 ug/L and 1.60 ug/L) for 2, 3 and 3.5 hours. FTIR, X-ray compositional analysis, morphological TEM analysis and UV-Vis were used to physicochemically characterize the SWCNTs in this study. Following SWCNT exposure to human lung NCI-H292 epithelial monolayers, the airway cells were prepared for light microscopy vital staining, or fixed in glutaraldehyde for SEM/TEM imaging to determine SWCNT binding, uptake, intracellular processing and organellar/SWCNT fate within the exposure period. At 2 hr exposures to both unrefined Carbolex, and refined SWCNTs (at both high and low doses), there were no increases in lung cell necrosis compared to controls. However high dose, 3 hr exposures to unrefined Carbolex material produced severe cell damage (apical and basal plasma membrane holes, decreased mitochondria, numerous intracellular vesicles containing nanomaterial and membrane fragments) and increased cell necrosis. The refined SWCNTs exposed for 3 hr at low dose produced no increase in cell death, although high dose exposure produced significant cell death. By TEM, Acid/peroxide cleaned SWCNT 3 hr exposures at high and low doses, revealed SWCNTs attachment to cell surface mucin, and SWCNT uptake into the cells during membrane recycling. Membranes and SWCNTs were seen within cytoplasmic lamellar body-type vesicles, where vesicular contents were bio-degraded, eventually forming long SWCNT-nanoropes, which were subsequently released into the cytoplasm as clusters of attached nanoropes, as the vesicle membranes fragmented. These Nanorope-Residual Bodies did not cause damage to the surrounding organelles or cytoplasm, and seemed very stabile in the

  2. Effects of a continuous electromagnetic field on wound healing in human airway.

    PubMed

    Kim, Dong-Hyun; Kim, Hyun Jun; Gimm, Yoon-Myoung; Hong, Sung Pyo; Jeon, Eun-ju; Park, Eun Young

    2015-07-01

    The aim of this study was to investigate the effect of a 1.8-GHz continuous electromagnetic field (EMF) on wound healing in a human airway cell-culture system. In vitro study using a cell line. Immortalized human bronchial epithelial cells (a BEAS-2B cell line) were exposed to a 1.8-GHz EMF (specific absorption rate = 1.0 W/kg). We evaluated the effect of EMF on the cells using an 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) viability assay, by cell counting, and by using fluorescence-activated cell sorting (FACS) analysis of cell cycle dynamics and apoptosis. Inhibition of migration was tested by a wound-healing assay on scratched cell cultures. Cell migration in the wound-healing assay was decreased by the EMF treatment compared with controls. The MTT assay and cell counting consistently showed that the EMF used was not cytotoxic and did not inhibit cell proliferation. FACS analysis showed no alterations in the cell-cycle phase distribution or in apoptosis after EMF exposure. EMF can inhibit wound healing in vitro by inhibiting cell migration. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  3. Effect of the bifurcation angle on the flow within a synthetic model of lower human airways

    NASA Astrophysics Data System (ADS)

    Espinosa Moreno, Andres Santiago; Duque Daza, Carlos Alberto

    2016-11-01

    The effect of the bifurcation angle on the flow pattern developed during respiratory inhalation and exhalation processes was explored numerically using a synthetic model of lower human airways featuring three generations of a dichotomous morphology as described by a Weibel model. Laminar flow simulations were performed for six bifurcation angles and four Reynolds numbers relevant to human respiratory flow. Numerical results of the inhalation process showed a peak displacement trend of the velocity profile towards the inner walls of the model. This displacement exhibited correlation with Dean-type secondary flow patterns, as well as with the onset and location of vortices. High wall shear stress regions on the inner walls were observed for a range of bifurcation angles. Noteworthy, specific bifurcation angles produced higher values of pressure drop, compared to the average behavior, as well as changes in the volumetric flow through the branches. Results of the simulations for exhalation process showed a different picture, mainly the appearance of symmetrical velocity profiles and the change of location of the regions of high wall shear stress. The use of this modelling methodology for biomedical applications is discussed considering the validity of the obtained results. Department of Mechanical and Mechatronics Engineering, Universidad Nacional de Colombia.

  4. Inhibition of Human Metapneumovirus Binding to Heparan Sulfate Blocks Infection in Human Lung Cells and Airway Tissues

    PubMed Central

    Klimyte, Edita M.; Smith, Stacy E.; Oreste, Pasqua; Lembo, David

    2016-01-01

    ABSTRACT Human metapneumovirus (HMPV), a recently discovered paramyxovirus, infects nearly 100% of the world population and causes severe respiratory disease in infants, the elderly, and immunocompromised patients. We previously showed that HMPV binds heparan sulfate proteoglycans (HSPGs) and that HMPV binding requires only the viral fusion (F) protein. To characterize the features of this interaction critical for HMPV binding and the role of this interaction in infection in relevant models, we utilized sulfated polysaccharides, heparan sulfate mimetics, and occluding compounds. Iota-carrageenan demonstrated potent anti-HMPV activity by inhibiting binding to lung cells mediated by the F protein. Furthermore, analysis of a minilibrary of variably sulfated derivatives of Escherichia coli K5 polysaccharide mimicking the HS structure revealed that the highly O-sulfated K5 polysaccharides inhibited HMPV infection, identifying a potential feature of HS critical for HMPV binding. The peptide dendrimer SB105-A10, which binds HS, reduced binding and infection in an F-dependent manner, suggesting that occlusion of HS at the target cell surface is sufficient to prevent infection. HMPV infection was also inhibited by these compounds during apical infection of polarized airway tissues, suggesting that these interactions take place during HMPV infection in a physiologically relevant model. These results reveal key features of the interaction between HMPV and HS, supporting the hypothesis that apical HS in the airway serves as a binding factor during infection, and HS modulating compounds may serve as a platform for potential antiviral development. IMPORTANCE Human metapneumovirus (HMPV) is a paramyxovirus that causes respiratory disease worldwide. It has been previously shown that HMPV requires binding to heparan sulfate on the surfaces of target cells for attachment and infection. In this study, we characterize the key features of this binding interaction using heparan sulfate

  5. Human Reliability Considerations for Small Modular Reactors

    SciTech Connect

    OHara J. M.; Higgins, H.; DAgostino, A.; Erasmia, L.

    2012-01-27

    Small modular reactors (SMRs) are a promising approach to meeting future energy needs. Although the electrical output of an individual SMR is relatively small compared to that of typical commercial nuclear plants, they can be grouped to produce as much energy as a utility demands. Furthermore, SMRs can be used for other purposes, such as producing hydrogen and generating process heat. The design characteristics of many SMRs differ from those of current conventional plants and may require a distinct concept of operations. The U.S. Nuclear Regulatory Commission (NRC) conducted research to examine the human factors engineering and the operational aspects of SMRs. The research identified thirty potential human-performance issues that should be considered in the NRC's reviews of SMR designs and in future research activities. The purpose of this report is to illustrate how the issues can support SMR probabilistic risk analyses and their review by identifying potential human failure events for a subset of the issues. As part of addressing the human contribution to plant risk, human reliability analysis practitioners identify and quantify the human failure events that can negatively impact normal or emergency plant operations. The results illustrated here can be generalized to identify additional human failure events for the issues discussed and can be applied to those issues not discussed in this report.

  6. DASHR: database of small human noncoding RNAs

    PubMed Central

    Leung, Yuk Yee; Kuksa, Pavel P.; Amlie-Wolf, Alexandre; Valladares, Otto; Ungar, Lyle H.; Kannan, Sampath; Gregory, Brian D.; Wang, Li-San

    2016-01-01

    Small non-coding RNAs (sncRNAs) are highly abundant RNAs, typically <100 nucleotides long, that act as key regulators of diverse cellular processes. Although thousands of sncRNA genes are known to exist in the human genome, no single database provides searchable, unified annotation, and expression information for full sncRNA transcripts and mature RNA products derived from these larger RNAs. Here, we present the Database of small human noncoding RNAs (DASHR). DASHR contains the most comprehensive information to date on human sncRNA genes and mature sncRNA products. DASHR provides a simple user interface for researchers to view sequence and secondary structure, compare expression levels, and evidence of specific processing across all sncRNA genes and mature sncRNA products in various human tissues. DASHR annotation and expression data covers all major classes of sncRNAs including microRNAs (miRNAs), Piwi-interacting (piRNAs), small nuclear, nucleolar, cytoplasmic (sn-, sno-, scRNAs, respectively), transfer (tRNAs), and ribosomal RNAs (rRNAs). Currently, DASHR (v1.0) integrates 187 smRNA high-throughput sequencing (smRNA-seq) datasets with over 2.5 billion reads and annotation data from multiple public sources. DASHR contains annotations for ∼48 000 human sncRNA genes and mature sncRNA products, 82% of which are expressed in one or more of the curated tissues. DASHR is available at http://lisanwanglab.org/DASHR. PMID:26553799

  7. Relative contributions of large and small airways to flow limitation in normal subjects before and after atropine and isoproterenol.

    PubMed Central

    Ingram, R H; Wellman, J J; McFadden, E R; Mead, J

    1977-01-01

    Bronchodilatation was produced in normal subjects by the inhalation of atropine, a parasympatholytic agent, and isoproterenol, a beta adrenergic stimulator. Density dependence of maximal expiratory flow (Vmax), expressed as a ratio of Vmax with an 80% helium-20% oxygen gas mixture to Vmax with air at isolung volumes, indicated that the predominant flow regimes across upstream airways changed differently after each agent was given separately. After atropine Vmax increased, elastic recoil pressure did not change, and density dependence decreased. Utilizing the equal pressure points analysis which defines upstream and downstream segments of the intrathoracic airways at flow limitation, these results suggest a greater relative dilatation of the larger upstream airways such that more of the driving pressure is dissipated across the smaller airways in which flow is less dependent upon gas density. After isoproterenol Vmax increased, elastic recoil pressure did not change, and density dependence increased. This suggests a preferential dilatation of the smaller and more peripheral airways with less density-dependent flow regimes such that more of the driving pressure would be dissipated in the larger airways in which flow is more dependent upon gas density. Systematic decreases after isoproterenol lead independently to the same conclusion. After both agents together, Vmax increased and density dependence and critical alveolar pressures did not change from control, suggesting a relatively uniform dilatation of all the airways comprising the upstream segment. PMID:845256

  8. The Anti-inflammatory Effect of Alpha-1 Antitrypsin in Rhinovirus-infected Human Airway Epithelial Cells

    PubMed Central

    Jiang, Di; Berman, Reena; Wu, Qun; Stevenson, Connor; Chu, Hong Wei

    2017-01-01

    Objective Excessive airway inflammation is seen in chronic obstructive pulmonary disease (COPD) patients experiencing acute exacerbations, which are often associated with human rhinovirus (HRV) infection. Alpha-1 antitrypsin (A1AT) has anti-inflammatory function in endothelial cells and monocytes, but its anti-inflammatory effect has not been investigated in COPD airway epithelial cells. We determined A1AT’s anti-inflammatory function in COPD airway epithelial cells and the underlying mechanisms such as the role of caspase-1. Methods Brushed bronchial epithelial cells from COPD and normal subjects were cultured at air-liquid interface and treated with A1AT or bovine serum albumin (BSA, control) two hours prior to whole cigarette smoke (WCS) or air exposure, followed by HRV-16 infection. After 24 hours of viral infection, cell supernatants were collected for measuring IL-8, and cells were examined for caspase-1. The in vivo anti-inflammatory function of A1AT was determined by infecting mice intranasally with HRV-1B followed by aerosolized A1AT or BSA. Results A1AT significantly reduced WCS and HRV-16-induced IL-8 production in normal and COPD airway epithelial cells. COPD cells are less sensitive to A1AT’s anti-inflammatory effect than normal cells. A1AT exerted the anti-inflammatory function in part via reducing caspase-1 in normal cells, but not in COPD cells. In mice, A1AT significantly reduced HRV-1B induced lung neutrophilic inflammation. Conclusions A1AT exerts an anti-inflammatory effect in cigarette smoke-exposed and HRV-infected human airway epithelial cells, which may be related to its inhibitory effect on caspase-1 activity. PMID:28191362

  9. Mometasone Furoate Suppresses PMA-Induced MUC-5AC and MUC-2 Production in Human Airway Epithelial Cells

    PubMed Central

    Koontongkaew, Sittichai; Monthanapisut, Paopanga; Pattanacharoenchai, Napaporn

    2017-01-01

    Background Mucus hypersecretion from airway epithelium is a characteristic feature of airway inflammatory diseases. Tumor necrosis factor α (TNF-α) regulates mucin synthesis. Glucocorticoids including mometasone fuorate (MF) have been used to attenuate airway inflammation. However, effects of MF on mucin production have not been reported. Methods Effects of MF and budesonide (BUD) on the phorbol-12-myristate-13-acetate (PMA)–induction of mucin and TNF-α in human airway epithelial cells (NCI-H292) were investigated in the present study. Confluent NCI-H292 cells were pretreated with PMA (200 nM) for 2 hours. Subsequently, the cells were stimulated with MF (1–500 ng/mL) or BUD (21.5 ng/mL) for 8 hours. Dexamethasone (1 µg/mL) was used as the positive control. Real-time polymerase chain reaction was used to determine MUC2 and MUC5AC mRNA levels. The level of total mucin, MUC2, MUC5AC, and TNF-α in culture supernatants were measured using enzyme-linked immunosorbent assay. Results MF and BUD significantly suppressed MUC2 and MUC5AC gene expression in PMA-stimulated NCI-H292 cells. The inhibitory effects of the two steroid drugs were also observed in the production of total mucin, MUC2 and MUC5AC proteins, and TNF-α. Conclusion Our findings demonstrated that MF and BUD attenuated mucin and TNF-α production in PMA-induced human airway epithelial cells. PMID:28119748

  10. A possible genetic influence in parenchyma and small airway changes in COPD: a pilot study of twins using HRCT.

    PubMed

    Tarnoki, D L; Tarnoki, A D; Lazar, Zs; Korom, Cs; Berczi, V; Horvath, I; Karlinger, K

    2014-06-01

    Genetic effects that contribute to the risk of developing chronic obstructive pulmonary disease (COPD) have been reported. Our purpose was to estimate the possible genetic influence on CT features related to COPD in twins. Two COPD-discordant and one COPD-concordant monozygotic (MZ) twin pair, in addition to 2 control dizygotic (DZ) twin pairs underwent a low-dose high resolution computer tomography (HRCT) in inspiration and expiration (Philips Brilliance 16). Monozygotic twins were more similar in lung volume expiration and in air trapping score compared to dizygotics (382 cm(3) vs. 2303 cm(3) and 17.6% vs. 26.6%, respectively). In general, MZ twin pairs showed almost identical HRCT features independently of smoking attitude and COPD status. The dizygotic twin pairs showed larger differences in HRCT features compared to MZ twins. Lung parenchymal and small airway changes (lung density, presence of bronchial wall thickening, bronchiectasis and/or mucus plug formation, air trapping and emphysema score) seem to be genetically associated traits, independently of smoking/COPD history. A future study with a larger sample size should confirm our findings.

  11. Chrysin inhibits human airway smooth muscle cells proliferation through the extracellular signal-regulated kinase 1/2 signaling pathway.

    PubMed

    Yao, Jing; Zhang, Yun-Shi; Feng, Gan-Zhu; Du, Qiang

    2015-11-01

    Asthma is a chronic airway inflammatory disease characterized by an increased mass of airway smooth muscle (ASM). Chrysin (5,7-dihydroxyflavone), a natural flavonoid, has been shown to exert multiple biological activities, including anti-inflammatory, anti-proliferative and anti-oxidant effects, as well as the potency to ameliorate asthma in animal models. The objective of the present study was to identify the underlying mechanism of the therapeutic effects of chrysin. The impact of chrysin on basal and platelet-derived growth factor (PDGF)-induced proliferation and apoptosis of human airway smooth muscle cells (HASMCs) was investigated. Furthermore, the activation of the extracellular signal-regulated protein kinase (ERK) signaling pathway was evaluated in HASMCs. The results revealed that chrysin significantly inhibited basal as well as PDGF-induced HASMC proliferation, most likely through the suppression of ERK1/2 phosphorylation. However, chrysin did not significantly reduce PDGF-induced apoptosis of HASMCs. The present study indicated that chrysin may be a promising medication for controlling airway remodeling and clinical manifestations of asthma.

  12. Cyclic mechanical strain-induced proliferation and migration of human airway smooth muscle cells: role of EMMPRIN and MMPs.

    PubMed

    Hasaneen, Nadia A; Zucker, Stanley; Cao, Jian; Chiarelli, Christian; Panettieri, Reynold A; Foda, Hussein D

    2005-09-01

    Airway smooth muscle (ASM) proliferation and migration are major components of airway remodeling in asthma. Asthmatic airways are exposed to mechanical strain, which contributes to their remodeling. Matrix metalloproteinase (MMP) plays an important role in remodeling. In the present study, we examined if the mechanical strain of human ASM (HASM) cells contributes to their proliferation and migration and the role of MMPs in this process. HASM were exposed to mechanical strain using the FlexCell system. HASM cell proliferation, migration and MMP release, activation, and expression were assessed. Our results show that cyclic strain increased the proliferation and migration of HASM; cyclic strain increased release and activation of MMP-1, -2, and -3 and membrane type 1-MMP; MMP release was preceded by an increase in extracellular MMP inducer; Prinomastat [a MMP inhibitor (MMPI)] significantly decreased cyclic strain-induced proliferation and migration of HASM; and the strain-induced increase in the release of MMPs was accompanied by an increase in tenascin-C release. In conclusion, cyclic mechanical strain plays an important role in HASM cell proliferation and migration. This increase in proliferation and migration is through an increase in MMP release and activation. Pharmacological MMPIs should be considered in the pursuit of therapeutic options for airway remodeling in asthma.

  13. Regulation of transepithelial ion transport and intracellular calcium by extracellular ATP in human normal and cystic fibrosis airway epithelium.

    PubMed Central

    Mason, S. J.; Paradiso, A. M.; Boucher, R. C.

    1991-01-01

    1 The role of extracellular nucleotides in regulation of ion transport activities (short circuit current, Isc) of human respiratory epithelia was studied. 2 Application of nucleotides to the apical or basolateral membrane of human nasal epithelium induced a concentration-dependent increase in Isc. 3 The rank order of potency of purine- or pyrimidine-induced changes in Isc of normal human nasal epithelium when applied to the apical membrane (UTP greater than or equal to ATP greater than ATP gamma S greater than 2MeSATP greater than ADP beta S much greater than beta gamma MeATP greater than or equal to alpha beta MeATP) or basolateral membrane (2MeSATP greater than UTP greater than ATP greater than ATP gamma S greater than alpha beta MeATP greater than beta gamma MeATP) is consistent with involvement of a P2 purinoceptor. A similar rank order of potencies was observed for nucleotide effects on intracellular calcium measured by Fura-2 fluorescence using microspectrofluorimetry. 4 Similar nucleotide potency in the regulation of ion transport and intracellular calcium in cystic fibrosis (CF) airway epithelium (UTP greater than or equal to ATP) was observed, suggesting purinoceptors might be used to stimulate ion transport processes that would promote hydration of airway secretions and facilitate their clearance from CF lungs. 5 These data provide evidence for the regulation of ion transport by P2 purinoceptors in normal and cystic fibrosis human airway epithelium. PMID:1718521

  14. PM10-stimulated airway epithelial cells activate primary human dendritic cells independent of uric acid: application of an in vitro model system exposing dendritic cells to airway epithelial cell-conditioned media.

    PubMed

    Hirota, Jeremy A; Alexis, Neil E; Pui, Mandy; Wong, SzeWing; Fung, Elkie; Hansbro, Phillip; Knight, Darryl A; Sin, Don D; Carlsten, Chris

    2014-08-01

    Airway epithelial cells represent the first line of defence against inhaled insults, including air pollution. Air pollution can activate innate immune signalling in airway epithelial cells leading to the production of soluble mediators that can influence downstream inflammatory cells. Our objective was to develop and validate a model of dendritic cell exposure to airway epithelial cell-conditioned media. After establishing the model, we explored how soluble mediators released from airway epithelial cells in response to air pollution influenced the phenotype of dendritic cells. Human airway epithelial cells were cultured under control and urban particulate matter (PM10) exposure conditions with or without pharmacological inhibitors of the uric acid pathway. Culture supernatants were collected for conditioned media experiments with peripheral blood mononuclear cell-derived dendritic cells analysed by flow cytometry. Monocytes derived from peripheral blood mononuclear cells cultured in interleukin-4 and granulocyte macrophage colony stimulating factor differentiated into immature dendritic cells that phenotypically differentiated into mature dendritic cells in response to conditioned media from phorbol myristate acetate-activated THP-1 monocytes. Exposure of immature dendritic cells to conditioned media from airway epithelial cells exposed to PM10 resulted in dendritic cell maturation that was independent of uric acid. We present a conditioned media model useful for interrogating the contribution of soluble mediators produced by airway epithelial cells to dendritic cell phenotype and function. Furthermore, we demonstrate that PM10 exposure induces airway epithelial cell production of soluble mediators that induce maturation of dendritic cells independent of uric acid. © 2014 Asian Pacific Society of Respirology.

  15. Disruption of MicroRNA Expression in Human Airway Cells by Diesel Exhaust Particles Is Linked to Tumorigenesis-Associated Pathways

    PubMed Central

    Jardim, Melanie J.; Fry, Rebecca C.; Jaspers, Ilona; Dailey, Lisa; Diaz-Sanchez, David

    2009-01-01

    Background Particulate matter (PM) is associated with adverse airway health effects; however, the underlying mechanism in disease initiation is still largely unknown. Recently, microRNAs (miRNAs; small noncoding RNAs) have been suggested to be important in maintaining the lung in a disease-free state through regulation of gene expression. Although many studies have shown aberrant miRNA expression patterns in diseased versus healthy tissue, little is known regarding whether environmental agents can induce such changes. Objectives We used diesel exhaust particles (DEP), the largest source of emitted airborne PM, to investigate pollutant-induced changes in miRNA expression in airway epithelial cells. We hypothesized that DEP exposure can lead to disruption of normal miRNA expression patterns, representing a plausible novel mechanism through which DEP can mediate disease initiation. Methods Human bronchial epithelial cells were grown at air–liquid interface until they reached mucociliary differentiation. After treating the cells with 10 μg/cm2 DEP for 24 hr, we analyzed total RNA for miRNA expression using microarray profile analysis and quantitative real-time polymerase chain reaction. Results DEP exposure changed the miRNA expression profile in human airway epithelial cells. Specifically, 197 of 313 detectable miRNAs (62.9%) were either up-regulated or down-regulated by 1.5-fold. Molecular network analysis of putative targets of the 12 most altered miRNAs indicated that DEP exposure is associated with inflammatory responses pathways and a strong tumorigenic disease signature. Conclusions Alteration of miRNA expression profiles by environmental pollutants such as DEP can modify cellular processes by regulation of gene expression, which may lead to disease pathogenesis. PMID:20049127

  16. Recent advances and key challenges in investigations of the flow inside human oro-pharyngeal-laryngeal airway

    NASA Astrophysics Data System (ADS)

    Pollard, A.; Uddin, M.; Shinneeb, A.-M.; Ball, C. G.

    2012-07-01

    The oro-pharyngeal-laryngeal human airway is a complex geometry; the flow physics within are subjected to and influenced by a variety of different factors that produce jet-like flow, re-circulating flows that are enhanced by curvature, detached and secondary flows. Simulation and experiment are the tools available to the fluid dynamics researcher. Simulation results obtained from direct and large-eddy simulation, and Reynolds-averaged Navier-Stokes and associated models of turbulence are reviewed. Experimental data obtained through the use of flow visualisation, hot-wire anemometry and particle image velocimetry are also reviewed. A comparison of data obtained from the application of these tools reveals many inconsistencies that are explored in this article. While much progress has been made to understand some of the physics of the flow in the human airway, we continue to uncover new and significant fluid dynamic behaviour. Finally, future research directions are suggested.

  17. Preliminary Study on Gene Expression of Chitinase-Like Cytokines in Human Airway Epithelial Cell Under Chitin and Chitosan Microparticles Treatment.

    PubMed

    Alimohammadi, Masumeh; Yeganeh, Farshid; Haji Molla Hoseini, Mostafa

    2016-06-01

    Small-sized chitin and chitosan microparticles (MPs) reduce allergic inflammation. We examined the capacity of these glycans to stimulate A549 human airway epithelial cells to determine the feasibility of using of these glycans as allergic therapeutic modality. A549 cells were treated with MPs and then expressions levels of chitinase domain-containing 1 (CHID1) and chitinase 3-like 1 (CHI3L1) genes were determined by quantitative real-time PCR. IL-6 production was measured by ELISA. Chitin MPs resulted in upregulation of CHI3L1 expression by 35.7-fold while mRNA expression did not change with chitosan MPs. Compared to the untreated group, production of IL-6 was significantly decreased in the chitosan MPs-treated group, but chitin MPs treatment cause elevation of IL-6 level. This study demonstrates that chitin potently induces CHI3L1 expression, but chitosan is relatively inert. This effect and inhibition of pro-inflammatory cytokine (IL-6) suggest that chitosan MPs may possess more potential for therapeutic uses in human airway allergic inflammation.

  18. Carcinogenic effects of oil dispersants: A KEGG pathway-based RNA-seq study of human airway epithelial cells.

    PubMed

    Liu, Yao-Zhong; Zhang, Lei; Roy-Engel, Astrid M; Saito, Shigeki; Lasky, Joseph A; Wang, Guangdi; Wang, He

    2017-02-20

    The health impacts of the BP oil spill are yet to be further revealed as the toxicological effects of oil products and dispersants on human respiratory system may be latent and complex, and hence difficult to study and follow up. Here we performed RNA-seq analyses of a system of human airway epithelial cells treated with the BP crude oil and/or dispersants Corexit 9500 and Corexit 9527 that were used to help break up the oil spill. Based on the RNA-seq data, we then systemically analyzed the transcriptomic perturbations of the cells at the KEGG pathway level using two pathway-based analysis tools, GAGE (generally applicable gene set enrichment) and GSNCA (Gene Sets Net Correlations Analysis). Our results suggested a pattern of change towards carcinogenesis for the treated cells marked by upregulation of ribosomal biosynthesis (hsa03008) (p=1.97E-13), protein processing (hsa04141) (p=4.09E-7), Wnt signaling (hsa04310) (p=6.76E-3), neurotrophin signaling (hsa04722) (p=7.73E-3) and insulin signaling (hsa04910) (p=1.16E-2) pathways under the dispersant Corexit 9527 treatment, as identified by GAGE analysis. Furthermore, through GSNCA analysis, we identified gene co-expression changes for several KEGG cancer pathways, including small cell lung cancer pathway (hsa05222, p=9.99E-5), under various treatments of oil/dispersant, especially the mixture of oil and Corexit 9527. Overall, our results suggested carcinogenic effects of dispersants (in particular Corexit 9527) and their mixtures with the BP crude oil, and provided further support for more stringent safety precautions and regulations for operations involving long-term respiratory exposure to oil and dispersants.

  19. Nicotine-induced epithelial-mesenchymal transition via Wnt/β-catenin signaling in human airway epithelial cells.

    PubMed

    Zou, Weifeng; Zou, Yimin; Zhao, Zhuxiang; Li, Bing; Ran, Pixin

    2013-02-15

    Epithelial-mesenchymal transition (EMT) has been proposed to be a mechanism in airway remodeling, which is a characteristic of chronic obstructive pulmonary disease (COPD). Studies have shown that cigarette smoke and nicotine are factors that induce Wnt/β-catenin activation, which is a pathway that has also been implicated in EMT. The main aim of this study was to test whether human bronchial epithelial cells are able to undergo EMT in vitro following nicotine stimulation via the Wnt3a/β-catenin signaling pathway. We show that nicotine activates the Wnt3a signal pathway, which leads to the translocation of β-catenin into the nucleus and activation of β-catenin/Tcf-dependent transcription in the human bronchial epithelial cell (HBEC) line. This accumulation was accompanied by an increase in smooth muscle actin, vimentin, matrix metalloproteinases-9, and type I collagen expression as well as downregulation of E-cadherin, which are typical characteristics of EMT. We also noted that the release of TGF-β(1) from these cells was stimulated by nicotine. Knockdown of Wnt3a with small interfering RNA (siRNA) prevented these effects, implying that β-catenin activation in these responses is Wnt3a dependent. Furthermore, specific knockdown of TGF-β(1) with TGF-β(1) siRNA partially prevented nicotine-induced EMT, suggesting that TGF-β(1) has a role in nicotine-mediated EMT in HBECs. These results suggest that HBECs are able to undergo EMT in vitro upon nicotine stimulation via the Wnt3a/β-catenin signaling pathway.

  20. Pulmonary effects of exposure to fine fibreglass: irregular opacities and small airways obstruction.

    PubMed Central

    Kilburn, K H; Powers, D; Warshaw, R H

    1992-01-01

    OBJECTIVE--Man made mineral fibres imitate asbestos and produce tumours of the pleura in animals. To answer the question, Does prolonged exposure to fibreglass adversely affect pulmonary function or produce radiographic abnormalities in human subjects? we studied workers in a midwestern appliance plant where refrigerator doors and previously entire cabinets were insulated with fibreglass sheeting and loose rotary spun fibreglass. METHODS--Spirometry and lung volumes were measured, respiratory and occupational questionnaires were administered, and chest x-ray films were read for pneumoconiosis using International Labour Office (ILO) 1980 criteria in 284 workers with exposure of 20 years or more. RESULTS--Expiratory flows were reduced including FEV1 (mean 90.3% of predicted (pr), FEF25-75 (85.5% pr), and FEF75-85 (76.2% pr). Forced vital capacity was significantly reduced (92.8% pr) and total lung capacity was significantly increased (109.2% pr). In white male smokers, a group large enough for comparisons, parameters of pulmonary function were reduced further in the presence of irregular opacities. Forty three workers (15.1%) had evidence of pneumoconiosis on chest radiographs: 26 of these (9.1%), had no known exposure to asbestos and 17 (6.0%) had some exposure. The best judgement was that in 36 (13.0%), pulmonary opacities or pleural abnormalities were due to fibreglass. CONCLUSION--Commercial rotary spun fibreglass used for insulating appliances appears to produce human disease that is similar to asbestosis. PMID:1419860

  1. Differential transcriptional regulation of IL-8 expression by human airway epithelial cells exposed to diesel exhaust particles

    SciTech Connect

    Tal, Tamara L.; Simmons, Steven O.; Silbajoris, Robert; Dailey, Lisa; Cho, Seung-Hyun; Ramabhadran, Ram; Linak, William; Reed, William; Bromberg, Philip A.; Samet, James M.

    2010-02-15

    Exposure to diesel exhaust particles (DEP) induces inflammatory signaling characterized by MAP kinase-mediated activation of NFkB and AP-1 in vitro and in bronchial biopsies obtained from human subjects exposed to DEP. NFkB and AP-1 activation results in the upregulation of genes involved in promoting inflammation in airway epithelial cells, a principal target of inhaled DEP. IL-8 is a proinflammatory chemokine expressed by the airway epithelium in response to environmental pollutants. The mechanism by which DEP exposure induces IL-8 expression is not well understood. In the current study, we sought to determine whether DEP with varying organic content induces IL-8 expression in lung epithelial cells, as well as, to develop a method to rapidly evaluate the upstream mechanism(s) by which DEP induces IL-8 expression. Exposure to DEP with varying organic content differentially induced IL-8 expression and IL-8 promoter activity human airway epithelial cells. Mutational analysis of the IL-8 promoter was also performed using recombinant human cell lines expressing reporters linked to the mutated promoters. Treatment with a low organic-containing DEP stimulated IL-8 expression by a mechanism that is predominantly NFkB-dependent. In contrast, exposure to high organic-containing DEP induced IL-8 expression independently of NFkB through a mechanism that requires AP-1 activity. Our study reveals that exposure to DEP of varying organic content induces proinflammatory gene expression through multiple specific mechanisms in human airway epithelial cells. The approaches used in the present study demonstrate the utility of a promoter-reporter assay ensemble for identifying transcriptional pathways activated by pollutant exposure.

  2. Human airway epithelial cell responses to Neisseria lactamica and purified porin via Toll-like receptor 2-dependent signaling.

    PubMed

    Liu, Xiuping; Wetzler, Lee M; Nascimento, Laura Oliveira; Massari, Paola

    2010-12-01

    The human airway epithelium is constantly exposed to microbial products from colonizing organisms. Regulation of Toll-like receptor (TLR) expression and specific interactions with bacterial ligands is thought to mitigate exacerbation of inflammatory processes induced by the commensal flora in these cells. The genus Neisseria comprises pathogenic and commensal organisms that colonize the human nasopharynx. Neisseria lactamica is not associated with disease, but N. meningitidis occasionally invades the host, causing meningococcal disease and septicemia. Upon colonization of the airway epithelium, specific host cell receptors interact with numerous Neisseria components, including the PorB porin, at the immediate bacterial-host cell interface. This major outer membrane protein is expressed by all Neisseria strains, regardless of pathogenicity, but its amino acid sequence varies among strains, particularly in the surface-exposed regions. The interaction of Neisseria PorB with TLR2 is essential for driving TLR2/TLR1-dependent cellular responses and is thought to occur via the porin's surface-exposed loop regions. Our studies show that N. lactamica PorB is a TLR2 ligand but its binding specificity for TLR2 is different from that of meningococcal PorB. Furthermore, N. lactamica PorB is a poor inducer of proinflammatory mediators and of TLR2 expression in human airway epithelial cells. These effects are reproduced by whole N. lactamica organisms. Since the responsiveness of human airway epithelial cells to colonizing bacteria is in part regulated via TLR2 expression and signaling, commensal organisms such as N. lactamica would benefit from expressing a product that induces low TLR2-dependent local inflammation, likely delaying or avoiding clearance by the host.

  3. Possible contribution of pannexin‐1 to ATP release in human upper airway epithelia

    PubMed Central

    Ohbuchi, Toyoaki; Takenaga, Fumiko; Hohchi, Nobusuke; Wakasugi, Tetsuro; Ueta, Yoichi; Suzuki, Hideaki

    2014-01-01

    Abstract Pannexins are a family of transmembrane nonselective channel proteins that participate in the release of ATP into extracellular space. Previous studies have suggested that pannexin‐1 (Panx1) may constitute a local autocrine/paracrine system via transmitter ATP in association with the purinergic P2X7 receptor. In this study, we investigate the expressions of Panx1 and P2X7 in human nasal mucosa, together with hypotonic stress‐induced ATP release from this tissue. Twenty men and one woman ranging in age from 10 to 82 years with an average age of 44.2 ± 4.4 years participated in the study. Inferior turbinates were collected from patients with chronic hypertrophic rhinitis during endoscopic endonasal surgery. The expressions of Panx1 and P2X7 were examined by fluorescence immunohistochemistry and quantitative reverse transcription‐polymerase chain reaction (qRT‐PCR). We also examined hypotonic stress‐induced ATP release from the turbinate mucosa and the effects of channel blockers in an ex vivo experiment. Substantial expressions of both proteins were observed in human nasal mucosa. The immunoreactivity for Panx1 was stronger than that for P2X7. The presence of the transcripts of Panx1 and P2X7 was also shown by qRT‐PCR. Ten and 100 μmol/L carbenoxolone (a Panx1 channel blocker) significantly inhibited the ATP release from the nasal mucosa, but flufenamic acid (a connexin channel blocker) and gadolinium (a stretch‐activated channel blocker) did not. These results indicate the coexistence of Panx1 and P2X7 in, and Panx1‐dependent ATP release from, the human nasal mucosa, suggesting the possible participation of these molecules in the physiological functions of the upper airway. PMID:24744896

  4. Cyclic peptide *CRRETAWAC* attenuates fibronectin-induced cytokine secretion of human airway smooth muscle cells by inhibiting FAK and p38 MAPK.

    PubMed

    Chu, Mengdi; Ji, Jiani; Cao, Wenhao; Zhang, Huojun; Meng, Dan; Xie, Bangruan; Xu, Shuyun

    2017-10-01

    α5β1 integrin is highly expressed in airway smooth muscle cells and mediate the adhesion of airway smooth muscle cells to fibronectin to regulate airway remodelling in asthma. This study aimed to investigate the effects of synthetic cyclic peptide *CRRETAWAC* on fibronectin-induced cytokine secretion of airway smooth muscle cells and the underlying mechanism. Human airway smooth muscle cells were isolated and treated with fibronectin, IL-13, *CRRETAWAC* peptide, α5β1 integrin-blocking antibody, FAK inhibitor or p38 MAPK inhibitor. The transcription and secretion of eotaxin-1 and RANTES were detected by real-time PCR and ELISA, respectively. The phosphorylation of FAK and MAPKs including p38, ERK1/2 and JNK1/2 was detected by Western blot analysis. The transcription and secretion of eotaxin-1 and RANTES increased in airway smooth muscle cells cultured in fibronectin-coated plates. However, α5β1 integrin-blocking antibody, *CRRETAWAC* peptide, FAK inhibitor or p38 MAPK inhibitor significantly reduced mRNA levels and the secretion of eotaxin-1 and RANTES in airway smooth muscle cells cultured in fibronectin-coated plates. In addition, the phosphorylation of FAK and p38 MAPK was significantly increased in airway smooth muscle cells cultured in fibronectin-coated plates compared to the cells cultured in uncoated plates and was significantly reduced in airway smooth muscle cells treated with *CRRETAWAC* peptide. Fibronectin induces cytokine synthesis and secretion of airway smooth muscle cells. Peptide *CRRETAWAC* antagonizes fibronectin-induced cytokine synthesis and secretion of airway smooth muscle cells via the inhibition of FAK and p38 MAPK, and is a potential agent for the therapy of asthma. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  5. EXAMINATION OF THE EFFECTIVENESS OF SLOW AND DEEP INHALATION OF FP/FM-pMDI FOR THE SMALL-AIRWAYS DYSFUNCTION OF ADULT-ONSET ASTHMA.

    PubMed

    Hashimoto, Shoji

    To date adult-onset asthmatic patients who lack a clear stridor and show prolonged coughs and chest discomfort caused by small-airways dysfunction have increased. We examined the small-airways function of these cases and the effectiveness of slow and deep inhalation of FP/FM-pMDI. 62 adult-onset asthmatic patients who had prolonged coughs and chest discomfort with the middle or high dose of ICS/LABA combination agents under well technique (32 of BUD/FM-DPI group and 30 of FP/SM-pMDI group) were included into this study. ICS/LABAs were switched to FP/FM-pMDI and slow and deep inhalation for 2-3 seconds was carried out thoroughly. The dose of FP/FM-pMDI was reduced depending on the improvement of symptoms. ACT score, respiratory function tests and respiratory resistance were measured after approximately six months from switching (stable condition after switching) and were compared with the values of the same period of the last year (stable condition under the previous ICS/LABA). After switching to FP/FM-pMDI, asthmatic symptoms and plural values of small-airways function were improved in 93.7% (30/32 cases) of BUD/FM-DPI group and in 86.6% (26/30 cases) of FP/SM-pMDI group. Moreover, mean daily inhalation doses were decreased from 5.0 to 4.3 in BUD/FM-DPI group and decreased from 5.7 to 3.7 in FP/SM-pMDI group. Slow and deep inhalation of FP/FM-pMDI is effective in many asthmatic patients who have prolonged small-airways dysfunction. A prospective, multi-centered contrastive study is warranted to confirm the effectiveness of this inhalational method.

  6. Human Airway Primary Epithelial Cells Show Distinct Architectures on Membrane Supports Under Different Culture Conditions.

    PubMed

    Min, Kyoung Ah; Rosania, Gus R; Shin, Meong Cheol

    2016-06-01

    To facilitate drug development for lung delivery, it is highly demanding to establish appropriate airway epithelial cell models as transport barriers to evaluate pharmacokinetic profiles of drug molecules. Besides the cancer-derived cell lines, as the primary cell model, normal human bronchial epithelial (NHBE) cells have been used for drug screenings because of physiological relevance to in vivo. Therefore, to accurately interpret drug transport data in NHBE measured by different laboratories, it is important to know biophysical characteristics of NHBE grown on membranes in different culture conditions. In this study, NHBE was grown on the polyester membrane in a different medium and its transport barrier properties as well as cell architectures were fully characterized by functional assays and confocal imaging throughout the days of cultures. Moreover, NHBE cells on inserts in a different medium were subject to either of air-interfaced culture (AIC) or liquid-covered culture (LCC) condition. Cells in the AIC condition were cultivated on the membrane with medium in the basolateral side only, whereas cells with medium in apical and basolateral sides under the LCC condition. Quantitative microscopic imaging with biophysical examination revealed distinct multilayered architectures of differentiated NHBE cells, suggesting NHBE as functional cell barriers for the lung-targeting drug transport.

  7. Spatial and temporal traction response in human airway smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Tolic-Norrelykke, Iva Marija; Butler, James P.; Chen, Jianxin; Wang, Ning

    2002-01-01

    Tractions that cells exert on their substrates are essential in cell spreading, migration, and contraction. These tractions can be determined by plating the cells on a flexible gel and measuring the deformation of the gel by using fluorescent beads embedded just below the surface of the gel. In this article we describe the image correlation method (ICM) optimized for determining the displacement field of the gel under a contracting cell. For the calculation of the traction field from the displacement field we use the recently developed method of Fourier transform traction cytometry (FTTC). The ICM and FTTC methods are applied to human airway smooth muscle cells during stimulation with the contractile agonist histamine or the relaxing agonist isoproterenol. The overall intensity of the cell contraction (the median traction magnitude, the energy transferred from the cell to the gel, and the net contractile moment) increased after activation with histamine, and decreased after treatment with isoproterenol. Cells exhibited regional differences in the time course of traction during the treatment. Both temporal evolution and magnitude of traction increase induced by histamine varied markedly among different cell protrusions, whereas the nuclear region showed the smallest response. These results suggest that intracellular mediators of cell adhesion and contraction respond to contractile stimuli with different rates and intensities in different regions of the cell.

  8. Numerical Investigation of Flow Characteristics in the Obstructed Realistic Human Upper Airway

    PubMed Central

    Liu, Xingli; Liu, Yang; Choy, Yat Sze; Wei, Yikun

    2016-01-01

    The flow characteristics in the realistic human upper airway (HUA) with obstruction that resulted from pharyngeal collapse were numerically investigated. The 3D anatomically accurate HUA model was reconstructed from CT-scan images of a Chinese male patient (38 years, BMI 25.7). The computational fluid dynamics (CFD) with the large eddy simulation (LES) method was applied to simulate the airflow dynamics within the HUA model in both inspiration and expiration processes. The laser Doppler anemometry (LDA) technique was simultaneously adopted to measure the airflow fields in the HUA model for the purpose of testifying the reliability of LES approach. In the simulations, the representative respiration intensities of 16.8 L/min (slight breathing), 30 L/min (moderate breathing), and 60 L/min (severe breathing) were conducted under continuous inspiration and expiration conditions. The airflow velocity field and static pressure field were obtained and discussed in detail. The results indicated the airflow experiences unsteady transitional/turbulent flow in the HUA model under low Reynolds number. The airflow fields cause occurrence of forceful injection phenomenon due to the narrowing of pharynx caused by the respiratory illness in inspiration and expiration. There also exist strong flow separation and back flow inside obstructed HUA owing to the vigorous jet flow effect in the pharynx. The present results would provide theoretical guidance for the treatment of obstructive respiratory disease. PMID:27725841

  9. Spatial and temporal traction response in human airway smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Tolic-Norrelykke, Iva Marija; Butler, James P.; Chen, Jianxin; Wang, Ning

    2002-01-01

    Tractions that cells exert on their substrates are essential in cell spreading, migration, and contraction. These tractions can be determined by plating the cells on a flexible gel and measuring the deformation of the gel by using fluorescent beads embedded just below the surface of the gel. In this article we describe the image correlation method (ICM) optimized for determining the displacement field of the gel under a contracting cell. For the calculation of the traction field from the displacement field we use the recently developed method of Fourier transform traction cytometry (FTTC). The ICM and FTTC methods are applied to human airway smooth muscle cells during stimulation with the contractile agonist histamine or the relaxing agonist isoproterenol. The overall intensity of the cell contraction (the median traction magnitude, the energy transferred from the cell to the gel, and the net contractile moment) increased after activation with histamine, and decreased after treatment with isoproterenol. Cells exhibited regional differences in the time course of traction during the treatment. Both temporal evolution and magnitude of traction increase induced by histamine varied markedly among different cell protrusions, whereas the nuclear region showed the smallest response. These results suggest that intracellular mediators of cell adhesion and contraction respond to contractile stimuli with different rates and intensities in different regions of the cell.

  10. Intracellular calcium mobilization and phospholipid degradation in sphingosylphosphorylcholine-stimulated human airway epithelial cells.

    PubMed Central

    Orlati, S; Porcelli, A M; Hrelia, S; Lorenzini, A; Rugolo, M

    1998-01-01

    Extracellular sphingosylphosphorylcholine (SPC) caused a remarkable elevation in the intracellular Ca2+ concentration ([Ca2+]i) in immortalized human airway epithelial cells (CFNP9o-). An increase in total inositol phosphates formation was determined; however, the dose responses for [Ca2+]i elevation and inositol phosphates production were slightly different and, furthermore, PMA and pertussis toxin almost completely inhibited [Ca2+]i mobilization by SPC, whereas inositol phosphates production was only partially reduced. The possible direct interaction of SPC with Ca2+ channels of intracellular stores was determined by experiments with permeabilized cells, where SPC failed to evoke Ca2+ release, whereas lysophosphatidic acid was shown to be effective. The level of phosphatidic acid was increased by SPC only in the presence of AACOCF3, a specific inhibitor of phospholipase A2 (PLA2) and blocked by both pertussis toxin and R59022, an inhibitor of diacylglycerol kinase. R59022 enhanced diacylglycerol production by SPC and also significantly reduced [Ca2+]i mobilization. Only polyunsaturated diacylglycerol and phosphatidic acid were generated by SPC. Lastly, SPC caused stimulation of arachidonic acid release, indicating the involvement of PLA2. Taken together, these data suggest that, after SPC stimulation, phospholipase C-derived diacylglycerol is phosphorylated by a diacylglycerol kinase to phosphatidic acid, which is further hydrolysed by PLA2 activity to arachidonic and lysophosphatidic acids. We propose that lysophosphatidic acid might be the intracellular messenger able to release Ca2+ from internal stores. PMID:9729473

  11. Acid and organic aerosol coatings on magnetic nanoparticles increase iron concentrations in human airway epithelial cells.

    PubMed

    Ghio, Andrew J; Dailey, Lisa A; Richards, Judy H; Jang, Myoseon

    2009-07-01

    Numerous industrial applications for man-made nanoparticles have been proposed. Interactions of nanoparticles with agents in the atmosphere may impact human health. We tested the postulate that in vitro exposures of respiratory epithelial cells to airborne magnetic nanoparticles (MNP; Fe(3)O(4)) with and without a secondary organic aerosol (SOA) and an inorganic acid could affect iron homeostasis, oxidative stress, and interleukin (IL)-8 release. Cell iron concentrations were increased after exposures to MNP and values were further elevated with co-exposures to either SOA or inorganic acid. Increased expression of ferritin and elevated levels of RNA for DMT1, proteins for iron storage and transport respectively, followed MNP exposures, but values were significant for only those with co-exposures to inorganic acid and organic aerosols. Cell iron concentration corresponded to a measure of oxidative stress in the airway epithelial cells; MNP with co-exposures to SOA and inorganic acid increased both available metal and indices of oxidant generation. Finally, the release of a proinflammatory cytokine (i.e. IL-8) by the exposed cells similarly increased with cell iron concentration. We conclude that MNP can interact with a SOA and an inorganic acid to present metal in a catalytically reactive state to cultured respiratory cells. This produces an oxidative stress to affect a release of IL-8.

  12. Cadmium Regulates the Expression of the CFTR Chloride Channel in Human Airway Epithelial Cells

    PubMed Central

    Rennolds, Jessica; Butler, Susie; Maloney, Kevin; Boyaka, Prosper N.; Davis, Ian C.; Knoell, Daren L.; Parinandi, Narasimham L.; Cormet-Boyaka, Estelle

    2010-01-01

    Cadmium is a toxic heavy metal ranked seventh on the Priority List of Hazardous Substances. As a byproduct of smelters, cadmium is a prevalent environmental contaminant. It is also a major component of cigarette smoke, and its inhalation is associated with decreased pulmonary function, lung cancer, and chronic obstructive pulmonary disease. Ion channels, including the cystic fibrosis transmembrane conductance regulator (CFTR), play a central role in maintaining fluid homeostasis and lung functions. CFTR is mostly expressed in epithelial cells, and little is known about the effect of cadmium exposure on lung epithelial cell function. We show that exposure to cadmium decreases the expression of the CFTR protein and subsequent chloride transport in human airway epithelial cells in vitro. Impairment of CFTR protein expression was also observed in vivo in the lung of mice after intranasal instillation of cadmium. We established that the inhibitory effect of cadmium was not a nonspecific effect of heavy metals, as nickel had no effect on CFTR protein levels. Finally, we show that selected antioxidants, including alpha-tocopherol (vitamin E), but not N-acetylcysteine, can prevent the cadmium-induced suppression of CFTR. In summary, we have identified cadmium as a regulator of the CFTR chloride channel present in lung epithelial cells. Future strategies to prevent the deleterious effect of cadmium on epithelial cells and lung functions may benefit from the finding that alpha-tocopherol protects CFTR expression and function. PMID:20363832

  13. Numerical Investigation of Flow Characteristics in the Obstructed Realistic Human Upper Airway.

    PubMed

    Liu, Xingli; Yan, Weiwei; Liu, Yang; Choy, Yat Sze; Wei, Yikun

    2016-01-01

    The flow characteristics in the realistic human upper airway (HUA) with obstruction that resulted from pharyngeal collapse were numerically investigated. The 3D anatomically accurate HUA model was reconstructed from CT-scan images of a Chinese male patient (38 years, BMI 25.7). The computational fluid dynamics (CFD) with the large eddy simulation (LES) method was applied to simulate the airflow dynamics within the HUA model in both inspiration and expiration processes. The laser Doppler anemometry (LDA) technique was simultaneously adopted to measure the airflow fields in the HUA model for the purpose of testifying the reliability of LES approach. In the simulations, the representative respiration intensities of 16.8 L/min (slight breathing), 30 L/min (moderate breathing), and 60 L/min (severe breathing) were conducted under continuous inspiration and expiration conditions. The airflow velocity field and static pressure field were obtained and discussed in detail. The results indicated the airflow experiences unsteady transitional/turbulent flow in the HUA model under low Reynolds number. The airflow fields cause occurrence of forceful injection phenomenon due to the narrowing of pharynx caused by the respiratory illness in inspiration and expiration. There also exist strong flow separation and back flow inside obstructed HUA owing to the vigorous jet flow effect in the pharynx. The present results would provide theoretical guidance for the treatment of obstructive respiratory disease.

  14. Modeling the bifurcating flow in a CT-scanned human lung airway.

    PubMed

    Luo, H Y; Liu, Y

    2008-08-28

    The inspiratory flow characteristics in a CT-scanned human lung model were numerically investigated using low Reynolds number (LRN) kappa-omega turbulent model. The five-generation airway is extracted from the trachea to segmental bronchi of a 60-year-old Chinese male patient. Computations were carried out in the Reynolds number range of 900-2100, corresponding to mouth-air breathing rates of 190-440 ml/s. Flow patterns on the Re=2100 and flow rate distribution were presented. In this model, the flow pattern is very complex. To count the effect of laryngeal jet on trachea inlet, the trachea was extended and modified to simulate the larynx, consequently the inlet velocity profile is biased towards the rear wall. In the inferior lobar bronchi, there are two stems in which the axial velocity is stronger but secondary velocity is weaker. Secondary flow in the lateral bronchi is stronger than the medial ones. With increasing Re, the air flow increases in the middle, inferior lobes and left main bronchus, i.e., flow biases to left and downward.

  15. DNS and PIV Measurements of the Flow in a Model of the Human Upper Airway

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Oren, Liran; Gutmark, Epharim; Elghobashi, Said; University of California, Irvine Collaboration; Univ. of Cincinnati, Cincinnati Collaboration

    2014-11-01

    The flow in the human upper airway (HUA) is 3D, unsteady, undergoes transition from laminar to turbulent, and reverses its main direction about every two seconds. In order to enhance the understanding of the flow properties, both numerical and experimental studies are needed. In the present study, DNS results of the flow in a patient-specific model of HUA are compared with experimental data. The DNS solver uses the lattice Boltzmann method which was validated for some canonical laminar and turbulent flows The experimental model was constructed from transparent silicone using a mold prepared by 3D printing. Velocity measurements were performed via high speed particle image velocimetry (HSPIV). The refractive index of the fluid used in the HUA experimental model matched the refractive index of the silicone. Both inspiration and expiration cases with several flow rates in the HUA are studied. The DNS velocity fields at several cross section planes are compared with the HSPIV measurements. The computed pressure and vorticity distributions will be also presented. NIH Heart Lung and Blood Inst.-Grant HL105215.

  16. Phase-contrast helium-3 MRI of aerosol deposition in human airways.

    PubMed

    Sarracanie, Mathieu; Grebenkov, Denis; Sandeau, Julien; Coulibaly, Soulé; Martin, Andrew R; Hill, Kyle; Pérez Sánchez, José Manuel; Fodil, Redouane; Martin, Lionel; Durand, Emmanuel; Caillibotte, Georges; Isabey, Daniel; Darrasse, Luc; Bittoun, Jacques; Maître, Xavier

    2015-02-01

    One of the key challenges in the study of health-related aerosols is predicting and monitoring sites of particle deposition in the respiratory tract. The potential health risks of ambient exposure to environmental or workplace aerosols and the beneficial effects of medical aerosols are strongly influenced by the site of aerosol deposition along the respiratory tract. Nuclear medicine is the only current modality that combines quantification and regional localization of aerosol deposition, and this technique remains limited by its spatial and temporal resolutions and by patient exposure to radiation. Recent work in MRI has shed light on techniques to quantify micro-sized magnetic particles in living bodies by the measurement of associated static magnetic field variations. With regard to lung MRI, hyperpolarized helium-3 may be used as a tracer gas to compensate for the lack of MR signal in the airways, so as to allow assessment of pulmonary function and morphology. The extrathoracic region of the human respiratory system plays a critical role in determining aerosol deposition patterns, as it acts as a filter upstream from the lungs. In the present work, aerosol deposition in a mouth-throat phantom was measured using helium-3 MRI and compared with single-photon emission computed tomography. By providing high sensitivity with high spatial and temporal resolutions, phase-contrast helium-3 MRI offers new insights for the study of particle transport and deposition. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Cadmium regulates the expression of the CFTR chloride channel in human airway epithelial cells.

    PubMed

    Rennolds, Jessica; Butler, Susie; Maloney, Kevin; Boyaka, Prosper N; Davis, Ian C; Knoell, Daren L; Parinandi, Narasimham L; Cormet-Boyaka, Estelle

    2010-07-01

    Cadmium is a toxic heavy metal ranked seventh on the Priority List of Hazardous Substances. As a byproduct of smelters, cadmium is a prevalent environmental contaminant. It is also a major component of cigarette smoke, and its inhalation is associated with decreased pulmonary function, lung cancer, and chronic obstructive pulmonary disease. Ion channels, including the cystic fibrosis transmembrane conductance regulator (CFTR), play a central role in maintaining fluid homeostasis and lung functions. CFTR is mostly expressed in epithelial cells, and little is known about the effect of cadmium exposure on lung epithelial cell function. We show that exposure to cadmium decreases the expression of the CFTR protein and subsequent chloride transport in human airway epithelial cells in vitro. Impairment of CFTR protein expression was also observed in vivo in the lung of mice after intranasal instillation of cadmium. We established that the inhibitory effect of cadmium was not a nonspecific effect of heavy metals, as nickel had no effect on CFTR protein levels. Finally, we show that selected antioxidants, including alpha-tocopherol (vitamin E), but not N-acetylcysteine, can prevent the cadmium-induced suppression of CFTR. In summary, we have identified cadmium as a regulator of the CFTR chloride channel present in lung epithelial cells. Future strategies to prevent the deleterious effect of cadmium on epithelial cells and lung functions may benefit from the finding that alpha-tocopherol protects CFTR expression and function.

  18. Tomatidine inhibits replication of Staphylococcus aureus small-colony variants in cystic fibrosis airway epithelial cells.

    PubMed

    Mitchell, Gabriel; Gattuso, Mariza; Grondin, Gilles; Marsault, Éric; Bouarab, Kamal; Malouin, François

    2011-05-01

    Small-colony variants (SCVs) often are associated with chronic Staphylococcus aureus infections, such as those encountered by cystic fibrosis (CF) patients. We report here that tomatidine, the aglycon form of the plant secondary metabolite tomatine, has a potent growth inhibitory activity against SCVs (MIC of 0.12 μg/ml), whereas the growth of normal S. aureus strains was not significantly altered by tomatidine (MIC, >16 μg/ml). The specific action of tomatidine was bacteriostatic for SCVs and was clearly associated with their dysfunctional electron transport system, as the presence of the electron transport inhibitor 4-hydroxy-2-heptylquinoline-N-oxide (HQNO) caused normal S. aureus strains to become susceptible to tomatidine. Inversely, the complementation of SCVs' respiratory deficiency conferred resistance to tomatidine. Tomatidine provoked a general reduction of macromolecular biosynthesis but more specifically affected the incorporation of radiolabeled leucine in proteins of HQNO-treated S. aureus at a concentration corresponding to the MIC against SCVs. Furthermore, tomatidine inhibited the intracellular replication of a clinical SCV in polarized CF-like epithelial cells. Our results suggest that tomatidine eventually will find some use in combination therapy with other traditional antibiotics to eliminate persistent forms of S. aureus.

  19. Activation of the EP₄ prostanoid receptor induces prostaglandin E₂ and pro-inflammatory cytokine production in human airway epithelial cells.

    PubMed

    Li, Tiesong; Qi, Jiansong; Cowley, Elizabeth A

    2011-02-01

    Prostaglandin (PG)E₂ mediates its effects via activation of four distinct PGE₂ receptors, termed EP₁₋₄, all of which are present on the model human airway epithelial cell line, Calu-3. We previously reported that acute activation of the EP₄ subtype of the PGE₂ receptor is associated with increased anion efflux from these cells, via the CFTR chloride channel. In the present study we examine the effects of longer term activation of the EP₄ receptor in Calu-3 cells in an attempt to determine whether this would prove beneficial or detrimental to the airway epithelial cell environment. Using PGE₁-OH, an EP₄ receptor selective agonist, we determined that EP₄ receptor activation was associated with increased phosphorylation of extracellular signal-related kinases (ERKs) and induction of the transcription factor early growth response factor-1 (Egr-1). Additionally, using specific enzyme-linked immunosorbent assays and quantitative PCR, we detected increased production of PGE₂, IL-6, IL-8 and the chemokine monocyte chemotactic protein-1 (MCP-1) at both the protein and gene level in response to EP₄ receptor activation. Intriguingly, the enhanced production of PGE₂ in response to EP₄ receptor activation raises the possibility of a positive feedback situation. Generally, within the airways, PGE₂ is considered to have pro-inflammatory effects, whilst the enhanced production of IL-6, IL-8 and MCP-1 would be associated with the recruitment and activation of inflammatory cells to the airways. Thus, we conclude that chronic activation of the EP₄ receptor is associated with increased production of mediators likely to increase the pro-inflammatory milieu of airway epithelial cells. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Diesel exhaust augments allergen-induced lower airway inflammation in allergic individuals: a controlled human exposure study.

    PubMed

    Carlsten, Chris; Blomberg, Anders; Pui, Mandy; Sandstrom, Thomas; Wong, Sze Wing; Alexis, Neil; Hirota, Jeremy

    2016-01-01

    Traffic-related air pollution has been shown to augment allergy and airway disease. However, the enhancement of allergenic effects by diesel exhaust in particular is unproven in vivo in the human lung, and underlying details of this apparent synergy are poorly understood. To test the hypothesis that a 2 h inhalation of diesel exhaust augments lower airway inflammation and immune cell activation following segmental allergen challenge in atopic subjects. 18 blinded atopic volunteers were exposed to filtered air or 300 µg PM(2.5)/m(3) of diesel exhaust in random fashion. 1 h post-exposure, diluent-controlled segmental allergen challenge was performed; 2 days later, samples from the challenged segments were obtained by bronchoscopic lavage. Samples were analysed for markers and modifiers of allergic inflammation (eosinophils, Th2 cytokines) and adaptive immune cell activation. Mixed effects models with ordinal contrasts compared effects of single and combined exposures on these end points. Diesel exhaust augmented the allergen-induced increase in airway eosinophils, interleukin 5 (IL-5) and eosinophil cationic protein (ECP) and the GSTT1 null genotype was significantly associated with the augmented IL-5 response. Diesel exhaust alone also augmented markers of non-allergic inflammation and monocyte chemotactic protein (MCP)-1 and suppressed activity of macrophages and myeloid dendritic cells. Inhalation of diesel exhaust at environmentally relevant concentrations augments allergen-induced allergic inflammation in the lower airways of atopic individuals and the GSTT1 genotype enhances this response. Allergic individuals are a susceptible population to the deleterious airway effects of diesel exhaust. NCT01792232. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  1. Real-time imaging of ATP release induced by mechanical stretch in human airway smooth muscle cells.

    PubMed

    Takahara, Norihiro; Ito, Satoru; Furuya, Kishio; Naruse, Keiji; Aso, Hiromichi; Kondo, Masashi; Sokabe, Masahiro; Hasegawa, Yoshinori

    2014-12-01

    Airway smooth muscle (ASM) cells within the airway walls are continually exposed to mechanical stimuli, and exhibit various functions in response to these mechanical stresses. ATP acts as an extracellular mediator in the airway. Moreover, extracellular ATP is considered to play an important role in the pathophysiology of asthma and chronic obstructive pulmonary disease. However, it is not known whether ASM cells are cellular sources of ATP secretion in the airway. We therefore investigated whether mechanical stretch induces ATP release from ASM cells. Mechanical stretch was applied to primary human ASM cells cultured on a silicone chamber coated with type I collagen using a stretching apparatus. Concentrations of ATP in cell culture supernatants measured by luciferin-luciferase bioluminescence were significantly elevated by cyclic stretch (12 and 20% strain). We further visualized the stretch-induced ATP release from the cells in real time using a luminescence imaging system, while acquiring differential interference contrast cell images with infrared optics. Immediately after a single uniaxial stretch for 1 second, strong ATP signals were produced by a certain population of cells and spread to surrounding spaces. The cyclic stretch-induced ATP release was significantly reduced by inhibitors of Ca(2+)-dependent vesicular exocytosis, 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl ester, monensin, N-ethylmaleimide, and bafilomycin. In contrast, the stretch-induced ATP release was not inhibited by a hemichannel blocker, carbenoxolone, or blockade of transient receptor potential vanilloid 4 by short interfering RNA transfection or ruthenium red. These findings reveal a novel property of ASM cells: mechanically induced ATP release may be a cellular source of ATP in the airway.

  2. The Role of Vascular Endothelial Growth Factor in Small-airway Remodelling in a Rat Model of Chronic Obstructive Pulmonary Disease

    PubMed Central

    Wang, Lu; Xu, Zhibo; Chen, Bin; He, Wei; Hu, Jingxian; Zhang, Liting; Liu, Xianzhong; Chen, Fang

    2017-01-01

    Small-airway remodelling is one of the most remarkable pathological features of chronic obstructive pulmonary disease (COPD), in which angiogenesis plays a critical role that contributes to disease progression. The endothelial cell-specific mitogen vascular endothelial growth factor (VEGF), as well as its receptors, VEGFR1, VEGFR2, are thought to be the major mediators of pathological angiogenesis, and sunitinib exhibits anti-angiogenesis property through VEGF blockage and has been widely used to treat various cancers. In our study, Sprague-Dawley rats were subjected to lipopolysaccharide (LPS) injection and cigarette smoke (CS) inhalation to induce COPD, following sunitinib administration was conducted. Haematoxylin-eosin, Masson staining and immunostaining analysis were used to evaluate the pathological changes; quantitative real-time PCR and enzyme-linked immunosorbent assay were performed to provide more compelling data on the function of VEGF, VEGFR1, VEGFR2 in angiogenesis. Sunitinib treatment was associated with less angiogenesis in small-airway remodelling with a slightly disordered lung architecture, and lower expression level of VEGF, VEGFR1, VEGFR2. Overall, our results indicate that VEGF is a vital important factor that contributes to the small-airway remodelling in a rat model of COPD through promoting angiogenesis, which mainly depend on the specific binding between VEGF and VEGFR1 and can be effectively attenuated by sunitinib. PMID:28117425

  3. The beta-agonist isoproterenol attenuates EGF-stimulated wound closure in human airway epithelial cells.

    PubMed

    Schnackenberg, Bradley J; Jones, Stacie M; Pate, Crystal; Shank, Brian; Sessions, Laura; Pittman, Laura M; Cornett, Lawrence E; Kurten, Richard C

    2006-03-01

    Asthma is a disease characterized by reversible airway obstruction. An additional hallmark of chronic asthma is altered wound healing that leads to airway remodeling. Although beta-agonists are effective in treating the bronchospasm associated with asthma, their effects on airway wound healing, which are related to airway remodeling, are unknown. It has been demonstrated that beta-agonists can alter the signaling of epidermal growth factor (EGF) receptors, which are important in timely wound healing. Therefore, we hypothesized that the beta-agonist isoproterenol would affect wound healing. Using an in vitro scrape wound assay, we demonstrated that isoproterenol attenuates EGF-stimulated wound healing in 16HBE airway epithelial cell cultures. Through experiments with forskolin and cells overexpressing beta2-adrenergic receptor-yellow fluorescent protein, we show that attenuation is due to the accumulation of cAMP and the involvement of at least one additional pathway. Furthermore, attenuation is not due to a direct effect on the EGF receptor or to an alteration of the ERK/MAPK signaling cascade. Based on these results, we propose that isoproterenol may exert its effects through other MAPK signaling pathways (JNK and/or p38) or through parallel mechanisms. These results also demonstrate a problem of potential therapeutic relevance in which a commonly prescribed medication may alter wound healing and contribute to the remodeling of asthmatic airways.

  4. LES of Laminar-to-Turbulent Particle-Fluid Dynamics in Human and Nonhuman Primate Airways: Applications to Aerosolized Drug Delivery Animal Testing

    NASA Astrophysics Data System (ADS)

    Geisler, Taylor; Padhy, Sourav; Shaqfeh, Eric; Iaccarino, Gianluca

    2016-11-01

    Both the human health benefit and risk from the inhalation of aerosolized medications is often predicted by extrapolating experimental data taken using nonhuman primates to human inhalation. In this study, we e