Burles, Ford; Slone, Edward; Iaria, Giuseppe
2017-04-01
The retrosplenial complex is a region within the posterior cingulate cortex implicated in spatial navigation. Here, we investigated the functional specialization of this large and anatomically heterogeneous region using fMRI and resting-state functional connectivity combined with a spatial task with distinct phases of spatial 'updating' (i.e., integrating and maintaining object locations in memory during spatial displacement) and 'orienting' (i.e., recalling unseen locations from current position in space). Both spatial 'updating' and 'orienting' produced bilateral activity in the retrosplenial complex, among other areas. However, spatial 'updating' produced slightly greater activity in ventro-lateral portions, of the retrosplenial complex, whereas spatial 'orienting' produced greater activity in a more dorsal and medial portion of it (both regions localized along the parieto-occipital fissure). At rest, both ventro-lateral and dorso-medial subregions of the retrosplenial complex were functionally connected to the hippocampus and parahippocampus, regions both involved in spatial orientation and navigation. However, the ventro-lateral subregion of the retrosplenial complex displayed more positive functional connectivity with ventral occipital and temporal object recognition regions, whereas the dorso-medial subregion activity was more correlated to dorsal activity and frontal activity, as well as negatively correlated with more ventral parietal structures. These findings provide evidence for a dorso-medial to ventro-lateral functional specialization within the human retrosplenial complex that may shed more light on the complex neural mechanisms underlying spatial orientation and navigation in humans.
Optimal estimator model for human spatial orientation
NASA Technical Reports Server (NTRS)
Borah, J.; Young, L. R.; Curry, R. E.
1979-01-01
A model is being developed to predict pilot dynamic spatial orientation in response to multisensory stimuli. Motion stimuli are first processed by dynamic models of the visual, vestibular, tactile, and proprioceptive sensors. Central nervous system function is then modeled as a steady-state Kalman filter which blends information from the various sensors to form an estimate of spatial orientation. Where necessary, this linear central estimator has been augmented with nonlinear elements to reflect more accurately some highly nonlinear human response characteristics. Computer implementation of the model has shown agreement with several important qualitative characteristics of human spatial orientation, and it is felt that with further modification and additional experimental data the model can be improved and extended. Possible means are described for extending the model to better represent the active pilot with varying skill and work load levels.
Developing Spatial Orientation and Spatial Memory with a Treasure Hunting Game
ERIC Educational Resources Information Center
Lin, Chien-Heng; Chen, Chien-Min; Lou, Yu-Chiung
2014-01-01
The abilities of both spatial orientation and spatial memory play very important roles in human navigation and spatial cognition. Since such abilities are difficult to strengthen through books or classroom instruction, there are no particular curricula or methods to assist in their development. Therefore, this study develops a spatial…
Burles, Ford; Umiltá, Alberto; McFarlane, Liam H; Potocki, Kendra; Iaria, Giuseppe
2018-01-01
The retrosplenial cortex has long been implicated in human spatial orientation and navigation. However, neural activity peaks labeled "retrosplenial cortex" in human neuroimaging studies investigating spatial orientation often lie significantly outside of the retrosplenial cortex proper. This has led to a large and anatomically heterogenous region being ascribed numerous roles in spatial orientation and navigation. Here, we performed a meta-analysis of functional Magnetic Resonance Imaging (fMRI) investigations of spatial orientation and navigation and have identified a ventral-dorsal functional specialization within the posterior cingulate for spatial encoding vs. spatial recall . Generally, ventral portions of the posterior cingulate cortex were more likely to be activated by spatial encoding , i.e., passive viewing of scenes or active navigation without a demand to respond, perform a spatial computation, or localize oneself in the environment. Conversely, dorsal portions of the posterior cingulate cortex were more likely to be activated by cognitive demands to recall spatial information or to produce judgments of distance or direction to non-visible locations or landmarks. The greatly varying resting-state functional connectivity profiles of the ventral (centroids at MNI -22, -60, 6 and 20, -56, 6) and dorsal (centroid at MNI 4, -60, 28) posterior cingulate regions identified in the meta-analysis supported the conclusion that these regions, which would commonly be labeled as "retrosplenial cortex," should be more appropriately referred to as distinct subregions of the posterior cingulate cortex. We suggest that future studies investigating the role of the retrosplenial and posterior cingulate cortex in spatial tasks carefully localize activity in the context of these identifiable subregions.
High-field fMRI unveils orientation columns in humans.
Yacoub, Essa; Harel, Noam; Ugurbil, Kâmil
2008-07-29
Functional (f)MRI has revolutionized the field of human brain research. fMRI can noninvasively map the spatial architecture of brain function via localized increases in blood flow after sensory or cognitive stimulation. Recent advances in fMRI have led to enhanced sensitivity and spatial accuracy of the measured signals, indicating the possibility of detecting small neuronal ensembles that constitute fundamental computational units in the brain, such as cortical columns. Orientation columns in visual cortex are perhaps the best known example of such a functional organization in the brain. They cannot be discerned via anatomical characteristics, as with ocular dominance columns. Instead, the elucidation of their organization requires functional imaging methods. However, because of insufficient sensitivity, spatial accuracy, and image resolution of the available mapping techniques, thus far, they have not been detected in humans. Here, we demonstrate, by using high-field (7-T) fMRI, the existence and spatial features of orientation- selective columns in humans. Striking similarities were found with the known spatial features of these columns in monkeys. In addition, we found that a larger number of orientation columns are devoted to processing orientations around 90 degrees (vertical stimuli with horizontal motion), whereas relatively similar fMRI signal changes were observed across any given active column. With the current proliferation of high-field MRI systems and constant evolution of fMRI techniques, this study heralds the exciting prospect of exploring unmapped and/or unknown columnar level functional organizations in the human brain.
Human Infants' Preference for Left-to-Right Oriented Increasing Numerical Sequences
de Hevia, Maria Dolores; Girelli, Luisa; Addabbo, Margaret; Macchi Cassia, Viola
2014-01-01
While associations between number and space, in the form of a spatially oriented numerical representation, have been extensively reported in human adults, the origins of this phenomenon are still poorly understood. The commonly accepted view is that this number-space association is a product of human invention, with accounts proposing that culture, symbolic knowledge, and mathematics education are at the roots of this phenomenon. Here we show that preverbal infants aged 7 months, who lack symbolic knowledge and mathematics education, show a preference for increasing magnitude displayed in a left-to-right spatial orientation. Infants habituated to left-to-right oriented increasing or decreasing numerical sequences showed an overall higher looking time to new left-to-right oriented increasing numerical sequences at test (Experiment 1). This pattern did not hold when infants were presented with the same ordinal numerical information displayed from right to left (Experiment 2). The different pattern of results was congruent with the presence of a malleable, context-dependent baseline preference for increasing, left-to-right oriented, numerosities (Experiment 3). These findings are suggestive of an early predisposition in humans to link numerical order with a left-to-right spatial orientation, which precedes the acquisition of symbolic abilities, mathematics education, and the acquisition of reading and writing skills. PMID:24802083
Rugani, Rosa; de Hevia, Maria-Dolores
2017-04-01
It is well known that humans describe and think of numbers as being represented in a spatial configuration, known as the 'mental number line'. The orientation of this representation appears to depend on the direction of writing and reading habits present in a given culture (e.g., left-to-right oriented in Western cultures), which makes this factor an ideal candidate to account for the origins of the spatial representation of numbers. However, a growing number of studies have demonstrated that non-verbal subjects (preverbal infants and non-human animals) spontaneously associate numbers and space. In this review, we discuss evidence showing that pre-verbal infants and non-human animals associate small numerical magnitudes with short spatial extents and left-sided space, and large numerical magnitudes with long spatial extents and right-sided space. Together this evidence supports the idea that a more biologically oriented view can account for the origins of the 'mental number line'. In this paper, we discuss this alternative view and elaborate on how culture can shape a core, fundamental, number-space association.
Some influences of touch and pressure cues on human spatial orientation
NASA Technical Reports Server (NTRS)
Lackner, J. R.; Graybiel, A.
1978-01-01
In order to evaluate the influences of touch and pressure cues on human spatial orientation, blindfolded subjects were exposed to 30 rmp rotation about the Z-axis of their bodies while the axis was horizontal or near horizontal. It was found that the manipulation of pressure patterns to which the subjects are exposed significantly influences apparent orientation. When provided with visual information about actual orientation the subjects will eliminate the postural illusions created by pressure-cue patterns. The localization of sounds is dependent of the apparent orientation and the actual pattern of auditory stimulation. The study provides a basis for investigating: (1) the postural illusions experienced by astronauts in orbital flight and subjects in the free-fall phase of parabolic flight, and (2) the spatial-constancy mechanisms distinguishing changes in sensory afflux conditioned by a subject's movements in relation to the environment, and those conditioned by movements of the environment.
Endogenous orienting in the archer fish.
Saban, William; Sekely, Liora; Klein, Raymond M; Gabay, Shai
2017-07-18
The literature has long emphasized the neocortex's role in volitional processes. In this work, we examined endogenous orienting in an evolutionarily older species, the archer fish, which lacks neocortex-like cells. We used Posner's classic endogenous cuing task, in which a centrally presented, spatially informative cue is followed by a target. The fish responded to the target by shooting a stream of water at it. Interestingly, the fish demonstrated a human-like "volitional" facilitation effect: their reaction times to targets that appeared on the side indicated by the precue were faster than their reaction times to targets on the opposite side. The fish also exhibited inhibition of return, an aftermath of orienting that commonly emerges only in reflexive orienting tasks in human participants. We believe that this pattern demonstrates the acquisition of an arbitrary connection between spatial orienting and a nonspatial feature of a centrally presented stimulus in nonprimate species. In the literature on human attention, orienting in response to such contingencies has been strongly associated with volitional control. We discuss the implications of these results for the evolution of orienting, and for the study of volitional processes in all species, including humans.
Sexual Orientation and Spatial Position Effects on Selective Forms of Object Location Memory
ERIC Educational Resources Information Center
Rahman, Qazi; Newland, Cherie; Smyth, Beatrice Mary
2011-01-01
Prior research has demonstrated robust sex and sexual orientation-related differences in object location memory in humans. Here we show that this sexual variation may depend on the spatial position of target objects and the task-specific nature of the spatial array. We tested the recovery of object locations in three object arrays (object…
Strategy generalization across orientation tasks: testing a computational cognitive model.
Gunzelmann, Glenn
2008-07-08
Humans use their spatial information processing abilities flexibly to facilitate problem solving and decision making in a variety of tasks. This article explores the question of whether a general strategy can be adapted for performing two different spatial orientation tasks by testing the predictions of a computational cognitive model. Human performance was measured on an orientation task requiring participants to identify the location of a target either on a map (find-on-map) or within an egocentric view of a space (find-in-scene). A general strategy instantiated in a computational cognitive model of the find-on-map task, based on the results from Gunzelmann and Anderson (2006), was adapted to perform both tasks and used to generate performance predictions for a new study. The qualitative fit of the model to the human data supports the view that participants were able to tailor a general strategy to the requirements of particular spatial tasks. The quantitative differences between the predictions of the model and the performance of human participants in the new experiment expose individual differences in sample populations. The model provides a means of accounting for those differences and a framework for understanding how human spatial abilities are applied to naturalistic spatial tasks that involve reasoning with maps. 2008 Cognitive Science Society, Inc.
Spatial adaptation of the cortical visual evoked potential of the cat.
Bonds, A B
1984-06-01
Adaptation that is spatially specific for the adapting pattern has been seen psychophysically in humans. This is indirect evidence for independent analyzers (putatively single units) that are specific for orientation and spatial frequency in the human visual system, but it is unclear how global adaptation characteristics may be related to single unit performance. Spatially specific adaptation was sought in the cat visual evoked potential (VEP), with a view towards relating this phenomenon with what we know of cat single units. Adaptation to sine-wave gratings results in a temporary loss of cat VEP amplitude, with induction and recovery similar to that seen in human psychophysical experiments. The amplitude loss was specific for both the spatial frequency and orientation of the adapting pattern. The bandwidth of adaptation was not unlike the average selectivity of a population of cat single units.
Modeling Mental Spatial Reasoning about Cardinal Directions
ERIC Educational Resources Information Center
Schultheis, Holger; Bertel, Sven; Barkowsky, Thomas
2014-01-01
This article presents research into human mental spatial reasoning with orientation knowledge. In particular, we look at reasoning problems about cardinal directions that possess multiple valid solutions (i.e., are spatially underdetermined), at human preferences for some of these solutions, and at representational and procedural factors that lead…
Endogenous orienting in the archer fish
Sekely, Liora; Klein, Raymond M.; Gabay, Shai
2017-01-01
The literature has long emphasized the neocortex’s role in volitional processes. In this work, we examined endogenous orienting in an evolutionarily older species, the archer fish, which lacks neocortex-like cells. We used Posner’s classic endogenous cuing task, in which a centrally presented, spatially informative cue is followed by a target. The fish responded to the target by shooting a stream of water at it. Interestingly, the fish demonstrated a human-like “volitional” facilitation effect: their reaction times to targets that appeared on the side indicated by the precue were faster than their reaction times to targets on the opposite side. The fish also exhibited inhibition of return, an aftermath of orienting that commonly emerges only in reflexive orienting tasks in human participants. We believe that this pattern demonstrates the acquisition of an arbitrary connection between spatial orienting and a nonspatial feature of a centrally presented stimulus in nonprimate species. In the literature on human attention, orienting in response to such contingencies has been strongly associated with volitional control. We discuss the implications of these results for the evolution of orienting, and for the study of volitional processes in all species, including humans. PMID:28673997
Strategy Generalization across Orientation Tasks: Testing a Computational Cognitive Model
ERIC Educational Resources Information Center
Gunzelmann, Glenn
2008-01-01
Humans use their spatial information processing abilities flexibly to facilitate problem solving and decision making in a variety of tasks. This article explores the question of whether a general strategy can be adapted for performing two different spatial orientation tasks by testing the predictions of a computational cognitive model. Human…
Bulf, Hermann; de Hevia, Maria Dolores; Macchi Cassia, Viola
2016-05-01
Numbers are represented as ordered magnitudes along a spatially oriented number line. While culture and formal education modulate the direction of this number-space mapping, it is a matter of debate whether its emergence is entirely driven by cultural experience. By registering 8-9-month-old infants' eye movements, this study shows that numerical cues are critical in orienting infants' visual attention towards a peripheral region of space that is congruent with the number's relative position on a left-to-right oriented representational continuum. This finding provides the first direct evidence that, in humans, the association between numbers and oriented spatial codes occurs before the acquisition of symbols or exposure to formal education, suggesting that the number line is not merely a product of human invention. © 2015 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Kaiser, Mary Kister; Remington, Roger
1988-01-01
Spatial cognition is the ability to reason about geometric relationships in the real (or a metaphorical) world based on one or more internal representations of those relationships. The study of spatial cognition is concerned with the representation of spatial knowledge, and our ability to manipulate these representations to solve spatial problems. Spatial cognition is utilized most critically when direct perceptual cues are absent or impoverished. Examples are provided of how human spatial cognitive abilities impact on three areas of space station operator performance: orientation, path planning, and data base management. A videotape provides demonstrations of relevant phenomena (e.g., the importance of orientation for recognition of complex, configural forms). The presentation is represented by abstract and overhead visuals only.
Geometric Determinants of Human Spatial Memory
ERIC Educational Resources Information Center
Hartley, Tom; Trinkler, Iris; Burgess, Neil
2004-01-01
Geometric alterations to the boundaries of a virtual environment were used to investigate the representations underlying human spatial memory. Subjects encountered a cue object in a simple rectangular enclosure, with distant landmarks for orientation. After a brief delay, during which they were removed from the arena, subjects were returned to it…
Why is the sunny side always up? Explaining the spatial mapping of concepts by language use.
Goodhew, Stephanie C; McGaw, Bethany; Kidd, Evan
2014-10-01
Humans appear to rely on spatial mappings to represent and describe concepts. The conceptual cuing effect describes the tendency for participants to orient attention to a spatial location following the presentation of an unrelated cue word (e.g., orienting attention upward after reading the word sky). To date, such effects have predominately been explained within the embodied cognition framework, according to which people's attention is oriented on the basis of prior experience (e.g., sky → up via perceptual simulation). However, this does not provide a compelling explanation for how abstract words have the same ability to orient attention. Why, for example, does dream also orient attention upward? We report on an experiment that investigated the role of language use (specifically, collocation between concept words and spatial words for up and down dimensions) and found that it predicted the cuing effect. The results suggest that language usage patterns may be instrumental in explaining conceptual cuing.
NASA Astrophysics Data System (ADS)
Zhang, Jing; Liu, Yu; Sun, Jiuhu; Zhang, Jie
2006-10-01
Spatial relationship is an important research area in GIS. The orientation information about the urban environment is directly available to human beings through perception and is crucial for establishing their spatial location and for way-finding. People perceive the layout of entities in space, categorize them as spatial relationships, and describe them as spatial expression in language. The orientation expression in different language is different. This paper will discuss the road network in Beijing and its characteristic. We analyze the post-position in Chinese, we know that people like to use 'outside' and 'inside' in the sentence "N is + ring road + postposition" by first experiment. We will illustrate the fuzzy range by 'outside or inside' in the ring-road by the second experiment. In the last part, we conclude the paper and our further research.
Coarse-Scale Biases for Spirals and Orientation in Human Visual Cortex
Heeger, David J.
2013-01-01
Multivariate decoding analyses are widely applied to functional magnetic resonance imaging (fMRI) data, but there is controversy over their interpretation. Orientation decoding in primary visual cortex (V1) reflects coarse-scale biases, including an over-representation of radial orientations. But fMRI responses to clockwise and counter-clockwise spirals can also be decoded. Because these stimuli are matched for radial orientation, while differing in local orientation, it has been argued that fine-scale columnar selectivity for orientation contributes to orientation decoding. We measured fMRI responses in human V1 to both oriented gratings and spirals. Responses to oriented gratings exhibited a complex topography, including a radial bias that was most pronounced in the peripheral representation, and a near-vertical bias that was most pronounced near the foveal representation. Responses to clockwise and counter-clockwise spirals also exhibited coarse-scale organization, at the scale of entire visual quadrants. The preference of each voxel for clockwise or counter-clockwise spirals was predicted from the preferences of that voxel for orientation and spatial position (i.e., within the retinotopic map). Our results demonstrate a bias for local stimulus orientation that has a coarse spatial scale, is robust across stimulus classes (spirals and gratings), and suffices to explain decoding from fMRI responses in V1. PMID:24336733
Training, transfer, and retention of three-dimensional spatial memory in virtual environments
NASA Technical Reports Server (NTRS)
Richards, Jason T.; Oman, Charles M.; Shebilske, Wayne L.; Beall, Andrew C.; Liu, Andrew; Natapoff, Alan
2002-01-01
Human orientation requires one to remember and visualize spatial arrangements of landmarks from different perspectives. Astronauts have reported difficulties remembering relationships between environmental landmarks when imagined in arbitrary 3D orientations. The present study investigated the effects of strategy training on humans' 1) ability to infer their orientation from landmarks presented ahead and below, 2) performance when subsequently learning a different array, and 3) retention of configurational knowledge over time. On the first experiment day, 24 subjects were tested in a virtual cubic chamber in which a picture of an animal was drawn on each wall. Through trial-by-trial exposures, they had to memorize the spatial relationships among the six pictures around them and learn to predict the direction to a specific picture when facing any view direction, and in any roll orientation. Half of the subjects ("strategy group") were taught methods for remembering picture groupings, while the remainder received no such training ("control group"). After learning one picture array, the procedure was repeated in a second. Accuracy (% correct) and response time learning curves were measured. Performance for the second array and configurational memory of both arrays were also retested 1, 7, and 30 days later. Results showed that subjects "learned how to learn" this generic 3D spatial memory task regardless of their relative orientation to the environment, that ability and configurational knowledge was retained for at least a month, that figure rotation ability and field independence correlate with performance, and that teaching subjects specific strategies in advance significantly improves performance. Training astronauts to perform a similar generic 3D spatial memory task, and suggesting strategies in advance, may help them orient in three dimensions.
Spatial displacement of numbers on a vertical number line in spatial neglect.
Mihulowicz, Urszula; Klein, Elise; Nuerk, Hans-Christoph; Willmes, Klaus; Karnath, Hans-Otto
2015-01-01
Previous studies that investigated the association of numbers and space in humans came to contradictory conclusions about the spatial character of the mental number magnitude representation and about how it may be influenced by unilateral spatial neglect. The present study aimed to disentangle the debated influence of perceptual vs. representational aspects via explicit mapping of numbers onto space by applying the number line estimation paradigm with vertical orientation of stimulus lines. Thirty-five acute right-brain damaged stroke patients (6 with neglect) were asked to place two-digit numbers on vertically oriented lines with 0 marked at the bottom and 100 at the top. In contrast to the expected, nearly linear mapping in the control patient group, patients with spatial neglect overestimated the position of numbers in the lower middle range. The results corroborate spatial characteristics of the number magnitude representation. In neglect patients, this representation seems to be biased towards the ipsilesional side, independent of the physical orientation of the task stimuli.
Destabilizing effects of visual environment motions simulating eye movements or head movements
NASA Technical Reports Server (NTRS)
White, Keith D.; Shuman, D.; Krantz, J. H.; Woods, C. B.; Kuntz, L. A.
1991-01-01
In the present paper, we explore effects on the human of exposure to a visual virtual environment which has been enslaved to simulate the human user's head movements or eye movements. Specifically, we have studied the capacity of our experimental subjects to maintain stable spatial orientation in the context of moving their entire visible surroundings by using the parameters of the subjects' natural movements. Our index of the subjects' spatial orientation was the extent of involuntary sways of the body while attempting to stand still, as measured by translations and rotations of the head. We also observed, informally, their symptoms of motion sickness.
Sexual orientation and spatial memory.
Cánovas, Ma Rosa; Cimadevilla, José Manuel
2011-11-01
The present study aimed at determining the influence of sexual orientation in human spatial learning and memory. Participants performed the Boxes Room, a virtual reality version of the Holeboard. In Experiment I, a reference memory task, the position of the hidden rewards remained constant during the whole experiment. In Experiment II, a working memory task, the position of rewards changed between blocks. Each block consisted of two trials: One trial for acquisition and another for retrieval. The results of Experiment I showed that heterosexual men performed better than homosexual men and heterosexual women. They found the rewarded boxes faster. Moreover, homosexual participants committed more errors than heterosexuals. Experiment II showed that working memory abilities are the same in groups of different sexual orientation. These results suggest that sexual orientation is related to spatial navigation abilities, but mostly in men, and limited to reference memory, which depends more on the function of the hippocampal system.
Tong, Frank; Harrison, Stephenie A; Dewey, John A; Kamitani, Yukiyasu
2012-11-15
Orientation-selective responses can be decoded from fMRI activity patterns in the human visual cortex, using multivariate pattern analysis (MVPA). To what extent do these feature-selective activity patterns depend on the strength and quality of the sensory input, and might the reliability of these activity patterns be predicted by the gross amplitude of the stimulus-driven BOLD response? Observers viewed oriented gratings that varied in luminance contrast (4, 20 or 100%) or spatial frequency (0.25, 1.0 or 4.0 cpd). As predicted, activity patterns in early visual areas led to better discrimination of orientations presented at high than low contrast, with greater effects of contrast found in area V1 than in V3. A second experiment revealed generally better decoding of orientations at low or moderate as compared to high spatial frequencies. Interestingly however, V1 exhibited a relative advantage at discriminating high spatial frequency orientations, consistent with the finer scale of representation in the primary visual cortex. In both experiments, the reliability of these orientation-selective activity patterns was well predicted by the average BOLD amplitude in each region of interest, as indicated by correlation analyses, as well as decoding applied to a simple model of voxel responses to simulated orientation columns. Moreover, individual differences in decoding accuracy could be predicted by the signal-to-noise ratio of an individual's BOLD response. Our results indicate that decoding accuracy can be well predicted by incorporating the amplitude of the BOLD response into simple simulation models of cortical selectivity; such models could prove useful in future applications of fMRI pattern classification. Copyright © 2012 Elsevier Inc. All rights reserved.
Tong, Frank; Harrison, Stephenie A.; Dewey, John A.; Kamitani, Yukiyasu
2012-01-01
Orientation-selective responses can be decoded from fMRI activity patterns in the human visual cortex, using multivariate pattern analysis (MVPA). To what extent do these feature-selective activity patterns depend on the strength and quality of the sensory input, and might the reliability of these activity patterns be predicted by the gross amplitude of the stimulus-driven BOLD response? Observers viewed oriented gratings that varied in luminance contrast (4, 20 or 100%) or spatial frequency (0.25, 1.0 or 4.0 cpd). As predicted, activity patterns in early visual areas led to better discrimination of orientations presented at high than low contrast, with greater effects of contrast found in area V1 than in V3. A second experiment revealed generally better decoding of orientations at low or moderate as compared to high spatial frequencies. Interestingly however, V1 exhibited a relative advantage at discriminating high spatial frequency orientations, consistent with the finer scale of representation in the primary visual cortex. In both experiments, the reliability of these orientation-selective activity patterns was well predicted by the average BOLD amplitude in each region of interest, as indicated by correlation analyses, as well as decoding applied to a simple model of voxel responses to simulated orientation columns. Moreover, individual differences in decoding accuracy could be predicted by the signal-to-noise ratio of an individual's BOLD response. Our results indicate that decoding accuracy can be well predicted by incorporating the amplitude of the BOLD response into simple simulation models of cortical selectivity; such models could prove useful in future applications of fMRI pattern classification. PMID:22917989
Peters, Ryan M.; Staibano, Phillip
2015-01-01
The ability to resolve the orientation of edges is crucial to daily tactile and sensorimotor function, yet the means by which edge perception occurs is not well understood. Primate cortical area 3b neurons have diverse receptive field (RF) spatial structures that may participate in edge orientation perception. We evaluated five candidate RF models for macaque area 3b neurons, previously recorded while an oriented bar contacted the monkey's fingertip. We used a Bayesian classifier to assign each neuron a best-fit RF structure. We generated predictions for human performance by implementing an ideal observer that optimally decoded stimulus-evoked spike counts in the model neurons. The ideal observer predicted a saturating reduction in bar orientation discrimination threshold with increasing bar length. We tested 24 humans on an automated, precision-controlled bar orientation discrimination task and observed performance consistent with that predicted. We next queried the ideal observer to discover the RF structure and number of cortical neurons that best matched each participant's performance. Human perception was matched with a median of 24 model neurons firing throughout a 1-s period. The 10 lowest-performing participants were fit with RFs lacking inhibitory sidebands, whereas 12 of the 14 higher-performing participants were fit with RFs containing inhibitory sidebands. Participants whose discrimination improved as bar length increased to 10 mm were fit with longer RFs; those who performed well on the 2-mm bar, with narrower RFs. These results suggest plausible RF features and computational strategies underlying tactile spatial perception and may have implications for perceptual learning. PMID:26354318
Orientation decoding depends on maps, not columns
Freeman, Jeremy; Brouwer, Gijs Joost; Heeger, David J.; Merriam, Elisha P.
2011-01-01
The representation of orientation in primary visual cortex (V1) has been examined at a fine spatial scale corresponding to the columnar architecture. We present functional magnetic resonance imaging (fMRI) measurements providing evidence for a topographic map of orientation preference in human V1 at a much coarser scale, in register with the angular-position component of the retinotopic map of V1. This coarse-scale orientation map provides a parsimonious explanation for why multivariate pattern analysis methods succeed in decoding stimulus orientation from fMRI measurements, challenging the widely-held assumption that decoding results reflect sampling of spatial irregularities in the fine-scale columnar architecture. Decoding stimulus attributes and cognitive states from fMRI measurements has proven useful for a number of applications, but our results demonstrate that the interpretation cannot assume decoding reflects or exploits columnar organization. PMID:21451017
Harrison, Charlotte; Jackson, Jade; Oh, Seung-Mock; Zeringyte, Vaida
2016-01-01
Multivariate pattern analysis of functional magnetic resonance imaging (fMRI) data is widely used, yet the spatial scales and origin of neurovascular signals underlying such analyses remain unclear. We compared decoding performance for stimulus orientation and eye of origin from fMRI measurements in human visual cortex with predictions based on the columnar organization of each feature and estimated the spatial scales of patterns driving decoding. Both orientation and eye of origin could be decoded significantly above chance in early visual areas (V1–V3). Contrary to predictions based on a columnar origin of response biases, decoding performance for eye of origin in V2 and V3 was not significantly lower than that in V1, nor did decoding performance for orientation and eye of origin differ significantly. Instead, response biases for both features showed large-scale organization, evident as a radial bias for orientation, and a nasotemporal bias for eye preference. To determine whether these patterns could drive classification, we quantified the effect on classification performance of binning voxels according to visual field position. Consistent with large-scale biases driving classification, binning by polar angle yielded significantly better decoding performance for orientation than random binning in V1–V3. Similarly, binning by hemifield significantly improved decoding performance for eye of origin. Patterns of orientation and eye preference bias in V2 and V3 showed a substantial degree of spatial correlation with the corresponding patterns in V1, suggesting that response biases in these areas originate in V1. Together, these findings indicate that multivariate classification results need not reflect the underlying columnar organization of neuronal response selectivities in early visual areas. NEW & NOTEWORTHY Large-scale response biases can account for decoding of orientation and eye of origin in human early visual areas V1–V3. For eye of origin this pattern is a nasotemporal bias; for orientation it is a radial bias. Differences in decoding performance across areas and stimulus features are not well predicted by differences in columnar-scale organization of each feature. Large-scale biases in extrastriate areas are spatially correlated with those in V1, suggesting biases originate in primary visual cortex. PMID:27903637
Capotosto, Paolo; Corbetta, Maurizio; Romani, Gian Luca; Babiloni, Claudio
2013-01-01
Transcranial magnetic stimulation (TMS) interference over right intraparietal sulcus (IPS) causally disrupts behaviorally and electroencephalographic (EEG) rhythmic correlates of endogenous spatial orienting prior to visual target presentation (Capotosto et al. 2009; 2011). Here we combine data from our previous studies to examine whether right parietal TMS during spatial orienting also impairs stimulus-driven re-orienting or the ability to efficiently process unattended stimuli, i.e. stimuli outside the current focus of attention. Healthy subjects (N=24) performed a Posner spatial cueing task while their EEG activity was being monitored. Repetitive TMS (rTMS) was applied for 150 milliseconds (ms) simultaneously to the presentation of a central arrow directing spatial attention to the location of an upcoming visual target. Right IPS-rTMS impaired target detection, especially for stimuli presented at unattended locations; it also caused a modulation of the amplitude of parieto-occipital positive ERPs peaking at about 480 ms (P3) post-target. The P3 significantly decreased for unattended targets, and significantly increased for attended targets after right IPS-rTMS as compared to Sham stimulation. Similar effects were obtained for left IPS stimulation albeit in a smaller group of subjects. We conclude that disruption of anticipatory processes in right IPS has prolonged effects that persist during target processing. The P3 decrement may reflect interference with post-decision processes that are part of stimulus-driven re-orienting. Right IPS is a node of functional interaction between endogenous spatial orienting and stimulus-driven re-orienting processes in human vision. PMID:22905824
Action recognition via cumulative histogram of multiple features
NASA Astrophysics Data System (ADS)
Yan, Xunshi; Luo, Yupin
2011-01-01
Spatial-temporal interest points (STIPs) are popular in human action recognition. However, they suffer from difficulties in determining size of codebook and losing much information during forming histograms. In this paper, spatial-temporal interest regions (STIRs) are proposed, which are based on STIPs and are capable of marking the locations of the most ``shining'' human body parts. In order to represent human actions, the proposed approach takes great advantages of multiple features, including STIRs, pyramid histogram of oriented gradients and pyramid histogram of oriented optical flows. To achieve this, cumulative histogram is used to integrate dynamic information in sequences and to form feature vectors. Furthermore, the widely used nearest neighbor and AdaBoost methods are employed as classification algorithms. Experiments on public datasets KTH, Weizmann and UCF sports show that the proposed approach achieves effective and robust results.
Attention improves encoding of task-relevant features in the human visual cortex
Jehee, Janneke F.M.; Brady, Devin K.; Tong, Frank
2011-01-01
When spatial attention is directed towards a particular stimulus, increased activity is commonly observed in corresponding locations of the visual cortex. Does this attentional increase in activity indicate improved processing of all features contained within the attended stimulus, or might spatial attention selectively enhance the features relevant to the observer’s task? We used fMRI decoding methods to measure the strength of orientation-selective activity patterns in the human visual cortex while subjects performed either an orientation or contrast discrimination task, involving one of two laterally presented gratings. Greater overall BOLD activation with spatial attention was observed in areas V1-V4 for both tasks. However, multivariate pattern analysis revealed that orientation-selective responses were enhanced by attention only when orientation was the task-relevant feature, and not when the grating’s contrast had to be attended. In a second experiment, observers discriminated the orientation or color of a specific lateral grating. Here, orientation-selective responses were enhanced in both tasks but color-selective responses were enhanced only when color was task-relevant. In both experiments, task-specific enhancement of feature-selective activity was not confined to the attended stimulus location, but instead spread to other locations in the visual field, suggesting the concurrent involvement of a global feature-based attentional mechanism. These results suggest that attention can be remarkably selective in its ability to enhance particular task-relevant features, and further reveal that increases in overall BOLD amplitude are not necessarily accompanied by improved processing of stimulus information. PMID:21632942
Attention improves encoding of task-relevant features in the human visual cortex.
Jehee, Janneke F M; Brady, Devin K; Tong, Frank
2011-06-01
When spatial attention is directed toward a particular stimulus, increased activity is commonly observed in corresponding locations of the visual cortex. Does this attentional increase in activity indicate improved processing of all features contained within the attended stimulus, or might spatial attention selectively enhance the features relevant to the observer's task? We used fMRI decoding methods to measure the strength of orientation-selective activity patterns in the human visual cortex while subjects performed either an orientation or contrast discrimination task, involving one of two laterally presented gratings. Greater overall BOLD activation with spatial attention was observed in visual cortical areas V1-V4 for both tasks. However, multivariate pattern analysis revealed that orientation-selective responses were enhanced by attention only when orientation was the task-relevant feature and not when the contrast of the grating had to be attended. In a second experiment, observers discriminated the orientation or color of a specific lateral grating. Here, orientation-selective responses were enhanced in both tasks, but color-selective responses were enhanced only when color was task relevant. In both experiments, task-specific enhancement of feature-selective activity was not confined to the attended stimulus location but instead spread to other locations in the visual field, suggesting the concurrent involvement of a global feature-based attentional mechanism. These results suggest that attention can be remarkably selective in its ability to enhance particular task-relevant features and further reveal that increases in overall BOLD amplitude are not necessarily accompanied by improved processing of stimulus information.
Detection and recognition of simple spatial forms
NASA Technical Reports Server (NTRS)
Watson, A. B.
1983-01-01
A model of human visual sensitivity to spatial patterns is constructed. The model predicts the visibility and discriminability of arbitrary two-dimensional monochrome images. The image is analyzed by a large array of linear feature sensors, which differ in spatial frequency, phase, orientation, and position in the visual field. All sensors have one octave frequency bandwidths, and increase in size linearly with eccentricity. Sensor responses are processed by an ideal Bayesian classifier, subject to uncertainty. The performance of the model is compared to that of the human observer in detecting and discriminating some simple images.
Bae, Gi-Yeul; Luck, Steven J
2018-01-10
In human scalp EEG recordings, both sustained potentials and alpha-band oscillations are present during the delay period of working memory tasks and may therefore reflect the representation of information in working memory. However, these signals may instead reflect support mechanisms rather than the actual contents of memory. In particular, alpha-band oscillations have been tightly tied to spatial attention and may not reflect location-independent memory representations per se. To determine how sustained and oscillating EEG signals are related to attention and working memory, we attempted to decode which of 16 orientations was being held in working memory by human observers (both women and men). We found that sustained EEG activity could be used to decode the remembered orientation of a stimulus, even when the orientation of the stimulus varied independently of its location. Alpha-band oscillations also carried clear information about the location of the stimulus, but they provided little or no information about orientation independently of location. Thus, sustained potentials contain information about the object properties being maintained in working memory, consistent with previous evidence of a tight link between these potentials and working memory capacity. In contrast, alpha-band oscillations primarily carry location information, consistent with their link to spatial attention. SIGNIFICANCE STATEMENT Working memory plays a key role in cognition, and working memory is impaired in several neurological and psychiatric disorders. Previous research has suggested that human scalp EEG recordings contain signals that reflect the neural representation of information in working memory. However, to conclude that a neural signal actually represents the object being remembered, it is necessary to show that the signal contains fine-grained information about that object. Here, we show that sustained voltages in human EEG recordings contain fine-grained information about the orientation of an object being held in memory, consistent with a memory storage signal. Copyright © 2018 the authors 0270-6474/18/380409-14$15.00/0.
Vestibular models for design and evaluation of flight simulator motion
NASA Technical Reports Server (NTRS)
Bussolari, S. R.; Sullivan, R. B.; Young, L. R.
1986-01-01
The use of spatial orientation models in the design and evaluation of control systems for motion-base flight simulators is investigated experimentally. The development of a high-fidelity motion drive controller using an optimal control approach based on human vestibular models is described. The formulation and implementation of the optimal washout system are discussed. The effectiveness of the motion washout system was evaluated by studying the response of six motion washout systems to the NASA/AMES Vertical Motion Simulator for a single dash-quick-stop maneuver. The effects of the motion washout system on pilot performance and simulator acceptability are examined. The data reveal that human spatial orientation models are useful for the design and evaluation of flight simulator motion fidelity.
Mental transformations of spatial stimuli in humans and in monkeys: rotation vs. translocation.
Nekovarova, Tereza; Nedvidek, Jan; Klement, Daniel; Rokyta, Richard; Bures, Jan
2013-03-01
We studied the ability of monkeys and humans to orient in one spatial frame ("response frame") according to abstract spatial stimuli presented in another spatial frame ("stimulus frame"). The stimuli were designed as simple maps of the "response space". We studied how the transformations of these stimuli affected the performance. The subjects were trained to choose a particular position in the response frame - either on a touch screen (monkeys) or on a keyboard (humans) - according to schematic spatial stimuli presented on the stimulus screen. The monkeys responded by touching one of four circles shown in corners of a rectangle displayed on the touch screen. The correct position was signaled by the stimulus ("map") presented on the stimulus screen. The map was a complementary rectangle, but only with one circle shown ("pointer"). The position of this circle indicated the correct position in the response frame. In the first experiment we only manipulated stimuli presented on the computer screen. The "map" was originally shown in the same position and orientation as the "response pattern" but later the position and the rotation of the map on the screen were changing. Such transformations of the stimuli allow us to study the mental operations that the animals performed and how particular mental transformations mutually differed. In the second experiment we tested whether the monkeys relied more on stimuli presented on the screen or on the surrounding stable environment and objects. We compared the performance of animals in tasks with rotated virtual maps in a stable surrounding environment with the performance in tasks where we rotated the surrounding frame (computer monitor), whereas the stimuli on the screen remained stable. In the third experiment we tested human subjects in analogous tests to compare the ability and cognitive strategies of monkeys and humans in this task. We showed that the mental strategies that monkeys used for orientation in one spatial frame according to the map presented in the other spatial frame depended on the type of stimulus manipulation. We demonstrated that for monkeys there was a difference between solving "mental rotation" and "mental translocation" in this experimental design. We showed that humans were able both to mentally rotate and translocate the displayed stimuli. However, the mental rotation was more difficult than mental translocation also for them. These experiments help us to understand how the monkeys perceive the abstract spatial information, create the representation of space and how they transform the information about the position obtained from one spatial frame into another. The comparison between humans and monkeys allows us to study this cognitive ability in phylogeny. Copyright © 2012 Elsevier B.V. All rights reserved.
A gender- and sexual orientation-dependent spatial attentional effect of invisible images.
Jiang, Yi; Costello, Patricia; Fang, Fang; Huang, Miner; He, Sheng
2006-11-07
Human observers are constantly bombarded with a vast amount of information. Selective attention helps us to quickly process what is important while ignoring the irrelevant. In this study, we demonstrate that information that has not entered observers' consciousness, such as interocularly suppressed (invisible) erotic pictures, can direct the distribution of spatial attention. Furthermore, invisible erotic information can either attract or repel observers' spatial attention depending on their gender and sexual orientation. While unaware of the suppressed pictures, heterosexual males' attention was attracted to invisible female nudes, heterosexual females' attention was attracted to invisible male nudes, gay males behaved similarly to heterosexual females, and gay/bisexual females performed in-between heterosexual males and females.
A gender- and sexual orientation-dependent spatial attentional effect of invisible images
Jiang, Yi; Costello, Patricia; Fang, Fang; Huang, Miner; He, Sheng
2006-01-01
Human observers are constantly bombarded with a vast amount of information. Selective attention helps us to quickly process what is important while ignoring the irrelevant. In this study, we demonstrate that information that has not entered observers' consciousness, such as interocularly suppressed (invisible) erotic pictures, can direct the distribution of spatial attention. Furthermore, invisible erotic information can either attract or repel observers' spatial attention depending on their gender and sexual orientation. While unaware of the suppressed pictures, heterosexual males' attention was attracted to invisible female nudes, heterosexual females' attention was attracted to invisible male nudes, gay males behaved similarly to heterosexual females, and gay/bisexual females performed in-between heterosexual males and females. PMID:17075055
Garg, Arun; Schwartz, Daniel; Stevens, Alexander A.
2007-01-01
What happens in vision related cortical areas when congenitally blind (CB) individuals orient attention to spatial locations? Previous neuroimaging of sighted individuals has found overlapping activation in a network of frontoparietal areas including frontal eye-fields (FEF), during both overt (with eye movement) and covert (without eye movement) shifts of spatial attention. Since voluntary eye movement planning seems irrelevant in CB, their FEF neurons should be recruited for alternative functions if their attentional role in sighted individuals is only due to eye movement planning. Recent neuroimaging of the blind has also reported activation in medial occipital areas, normally associated with visual processing, during a diverse set of non-visual tasks, but their response to attentional shifts remains poorly understood. Here, we used event-related fMRI to explore FEF and medial occipital areas in CB individuals and sighted controls with eyes closed (SC) performing a covert attention orienting task, using endogenous verbal cues and spatialized auditory targets. We found robust stimulus-locked FEF activation of all CB subjects, similar but stronger than in SC, suggesting that FEF plays a role in endogenous orienting of covert spatial attention even in individuals in whom voluntary eye movements are irrelevant. We also found robust activation in bilateral medial occipital cortex in CB but not in SC subjects. The response decreased below baseline following endogenous verbal cues but increased following auditory targets, suggesting that the medial occipital area in CB does not directly engage during cued orienting of attention but may be recruited for processing of spatialized auditory targets. PMID:17397882
Infants learn better from left to right: a directional bias in infants' sequence learning.
Bulf, Hermann; de Hevia, Maria Dolores; Gariboldi, Valeria; Macchi Cassia, Viola
2017-05-26
A wealth of studies show that human adults map ordered information onto a directional spatial continuum. We asked whether mapping ordinal information into a directional space constitutes an early predisposition, already functional prior to the acquisition of symbolic knowledge and language. While it is known that preverbal infants represent numerical order along a left-to-right spatial continuum, no studies have investigated yet whether infants, like adults, organize any kind of ordinal information onto a directional space. We investigated whether 7-month-olds' ability to learn high-order rule-like patterns from visual sequences of geometric shapes was affected by the spatial orientation of the sequences (left-to-right vs. right-to-left). Results showed that infants readily learn rule-like patterns when visual sequences were presented from left to right, but not when presented from right to left. This result provides evidence that spatial orientation critically determines preverbal infants' ability to perceive and learn ordered information in visual sequences, opening to the idea that a left-to-right spatially organized mental representation of ordered dimensions might be rooted in biologically-determined constraints on human brain development.
Effects of spatial cues on color-change detection in humans
Herman, James P.; Bogadhi, Amarender R.; Krauzlis, Richard J.
2015-01-01
Studies of covert spatial attention have largely used motion, orientation, and contrast stimuli as these features are fundamental components of vision. The feature dimension of color is also fundamental to visual perception, particularly for catarrhine primates, and yet very little is known about the effects of spatial attention on color perception. Here we present results using novel dynamic color stimuli in both discrimination and color-change detection tasks. We find that our stimuli yield comparable discrimination thresholds to those obtained with static stimuli. Further, we find that an informative spatial cue improves performance and speeds response time in a color-change detection task compared with an uncued condition, similar to what has been demonstrated for motion, orientation, and contrast stimuli. Our results demonstrate the use of dynamic color stimuli for an established psychophysical task and show that color stimuli are well suited to the study of spatial attention. PMID:26047359
Wu, Dehua
2016-01-01
The spatial position and distribution of human body meridian are expressed limitedly in the decision support system (DSS) of acupuncture and moxibustion at present, which leads to the failure to give the effective quantitative analysis on the spatial range and the difficulty for the decision-maker to provide a realistic spatial decision environment. Focusing on the limit spatial expression in DSS of acupuncture and moxibustion, it was proposed that on the basis of the geographic information system, in association of DSS technology, the design idea was developed on the human body meridian spatial DSS. With the 4-layer service-oriented architecture adopted, the data center integrated development platform was taken as the system development environment. The hierarchical organization was done for the spatial data of human body meridian via the directory tree. The structured query language (SQL) server was used to achieve the unified management of spatial data and attribute data. The technologies of architecture, configuration and plug-in development model were integrated to achieve the data inquiry, buffer analysis and program evaluation of the human body meridian spatial DSS. The research results show that the human body meridian spatial DSS could reflect realistically the spatial characteristics of the spatial position and distribution of human body meridian and met the constantly changeable demand of users. It has the powerful spatial analysis function and assists with the scientific decision in clinical treatment and teaching of acupuncture and moxibustion. It is the new attempt to the informatization research of human body meridian.
Eisen, Lars; Rose, Dominic; Prose, Robert; Breuner, Nicole E; Dolan, Marc C; Thompson, Karen; Connally, Neeta
2017-10-01
Summer-weight clothing articles impregnated with permethrin are available as a personal protective measure against human-biting ticks in the United States. However, very few studies have addressed the impact of contact with summer-weight permethrin-treated textiles on tick vigor and behavior. Our aim was to generate new knowledge of how permethrin-treated textiles impact nymphal Ixodes scapularis ticks, the primary vectors in the eastern United States of the causative agents of Lyme disease, human anaplasmosis, and human babesiosis. We developed a series of bioassays designed to: (i) clarify whether permethrin-treated textiles impact ticks through non-contact spatial repellency or contact irritancy; (ii) evaluate the ability of ticks to remain in contact with vertically oriented permethrin-treated textiles, mimicking contact with treated clothing on arms or legs; and (iii) determine the impact of timed exposure to permethrin-treated textiles on the ability of ticks to move and orient toward a human finger stimulus, thus demonstrating normal behavior. Our results indicate that permethrin-treated textiles provide minimal non-contact spatial repellency but strong contact irritancy against ticks, manifesting as a "hot-foot" effect and resulting in ticks actively dislodging from contact with vertically oriented treated textile. Preliminary data suggest that the contact irritancy hot-foot response may be weaker for field-collected nymphs as compared with laboratory-reared nymphs placed upon permethrin-treated textile. We also demonstrate that contact with permethrin-treated textiles negatively impacts the vigor and behavior of nymphal ticks for >24h, with outcomes ranging from complete lack of movement to impaired movement and unwillingness of ticks displaying normal movement to ascend onto a human finger. The protective effect of summer-weight permethrin-treated clothing against tick bites merits further study. Published by Elsevier GmbH.
The effect of space flight on spatial orientation
NASA Technical Reports Server (NTRS)
Reschke, Millard F.; Bloomberg, Jacob J.; Harm, Deborah L.; Paloski, William H.; Satake, Hirotaka
1992-01-01
Both during and following early space missions, little neurosensory change in the astronauts was noted as a result of their exposure to microgravity. It is believed that this lack of in-flight adaptation in the spatial orientation and perceptual-motor system resulted from short exposure times and limited interaction with the new environment. Parker and Parker (1990) have suggested that while spatial orientation and motion information can be detected by a passive observer, adaptation to stimulus rearrangement is greatly enhanced when the observer moves through or acts on the environment. Experience with the actual consequences of action can be compared with those consequences expected on the basis of prior experience. Space flight today is of longer duration, and space craft volume has increased. These changes have forced the astronauts to interact with the new environment of microgravity, and as a result substantial changes occur in the perceptual and sensory-motor repsonses reflecting adaptation to the stimulus rearrangement of space flight. We are currently evaluating spatial orientation and the perceptual-motor systems' adaptation to microgravity by examining responses of postural control, head and gaze stability during locomotion, goal oriented vestibulo-ocular reflex (VOR), and structured quantitative perceptual reports. Evidence suggests that humans can successfully replace the gravitational reference available on Earth with cues available within the spacecraft or within themselves, but that adaptation to microgravity is not appropriate for a return to Earth. Countermeasures for optimal performance on-orbit and a successful return to earth will require development of preflight and in-flight training to help the astronauts acquire and maintain a dual adaptive state. An understanding of spatial orientation and motion perception, postural control, locomotion, and the VOR will aid in this process.
ERIC Educational Resources Information Center
Kelly, Jonathan W.; Sjolund, Lori A.; Sturz, Bradley R.
2013-01-01
Spatial memories are often organized around reference frames, and environmental shape provides a salient cue to reference frame selection. To date, however, the environmental cues responsible for influencing reference frame selection remain relatively unknown. To connect research on reference frame selection with that on orientation via…
The basis of orientation decoding in human primary visual cortex: fine- or coarse-scale biases?
Maloney, Ryan T
2015-01-01
Orientation signals in human primary visual cortex (V1) can be reliably decoded from the multivariate pattern of activity as measured with functional magnetic resonance imaging (fMRI). The precise underlying source of these decoded signals (whether by orientation biases at a fine or coarse scale in cortex) remains a matter of some controversy, however. Freeman and colleagues (J Neurosci 33: 19695-19703, 2013) recently showed that the accuracy of decoding of spiral patterns in V1 can be predicted by a voxel's preferred spatial position (the population receptive field) and its coarse orientation preference, suggesting that coarse-scale biases are sufficient for orientation decoding. Whether they are also necessary for decoding remains an open question, and one with implications for the broader interpretation of multivariate decoding results in fMRI studies. Copyright © 2015 the American Physiological Society.
Thurman, Steven M; Lu, Hongjing
2014-01-01
Visual form analysis is fundamental to shape perception and likely plays a central role in perception of more complex dynamic shapes, such as moving objects or biological motion. Two primary form-based cues serve to represent the overall shape of an object: the spatial position and the orientation of locations along the boundary of the object. However, it is unclear how the visual system integrates these two sources of information in dynamic form analysis, and in particular how the brain resolves ambiguities due to sensory uncertainty and/or cue conflict. In the current study, we created animations of sparsely-sampled dynamic objects (human walkers or rotating squares) comprised of oriented Gabor patches in which orientation could either coincide or conflict with information provided by position cues. When the cues were incongruent, we found a characteristic trade-off between position and orientation information whereby position cues increasingly dominated perception as the relative uncertainty of orientation increased and vice versa. Furthermore, we found no evidence for differences in the visual processing of biological and non-biological objects, casting doubt on the claim that biological motion may be specialized in the human brain, at least in specific terms of form analysis. To explain these behavioral results quantitatively, we adopt a probabilistic template-matching model that uses Bayesian inference within local modules to estimate object shape separately from either spatial position or orientation signals. The outputs of the two modules are integrated with weights that reflect individual estimates of subjective cue reliability, and integrated over time to produce a decision about the perceived dynamics of the input data. Results of this model provided a close fit to the behavioral data, suggesting a mechanism in the human visual system that approximates rational Bayesian inference to integrate position and orientation signals in dynamic form analysis.
How Are Bodies Special? Effects Of Body Features On Spatial Reasoning
Yu, Alfred B.; Zacks, Jeffrey M.
2015-01-01
Embodied views of cognition argue that cognitive processes are influenced by bodily experience. This implies that when people make spatial judgments about human bodies, they bring to bear embodied knowledge that affects spatial reasoning performance. Here, we examined the specific contribution to spatial reasoning of visual features associated with the human body. We used two different tasks to elicit distinct visuospatial transformations: object-based transformations, as elicited in typical mental rotation tasks, and perspective transformations, used in tasks in which people deliberately adopt the egocentric perspective of another person. Body features facilitated performance in both tasks. This result suggests that observers are particularly sensitive to the presence of a human head and body, and that these features allow observers to quickly recognize and encode the spatial configuration of a figure. Contrary to prior reports, this facilitation was not related to the transformation component of task performance. These results suggest that body features facilitate task components other than spatial transformation, including the encoding of stimulus orientation. PMID:26252072
3D hierarchical spatial representation and memory of multimodal sensory data
NASA Astrophysics Data System (ADS)
Khosla, Deepak; Dow, Paul A.; Huber, David J.
2009-04-01
This paper describes an efficient method and system for representing, processing and understanding multi-modal sensory data. More specifically, it describes a computational method and system for how to process and remember multiple locations in multimodal sensory space (e.g., visual, auditory, somatosensory, etc.). The multimodal representation and memory is based on a biologically-inspired hierarchy of spatial representations implemented with novel analogues of real representations used in the human brain. The novelty of the work is in the computationally efficient and robust spatial representation of 3D locations in multimodal sensory space as well as an associated working memory for storage and recall of these representations at the desired level for goal-oriented action. We describe (1) A simple and efficient method for human-like hierarchical spatial representations of sensory data and how to associate, integrate and convert between these representations (head-centered coordinate system, body-centered coordinate, etc.); (2) a robust method for training and learning a mapping of points in multimodal sensory space (e.g., camera-visible object positions, location of auditory sources, etc.) to the above hierarchical spatial representations; and (3) a specification and implementation of a hierarchical spatial working memory based on the above for storage and recall at the desired level for goal-oriented action(s). This work is most useful for any machine or human-machine application that requires processing of multimodal sensory inputs, making sense of it from a spatial perspective (e.g., where is the sensory information coming from with respect to the machine and its parts) and then taking some goal-oriented action based on this spatial understanding. A multi-level spatial representation hierarchy means that heterogeneous sensory inputs (e.g., visual, auditory, somatosensory, etc.) can map onto the hierarchy at different levels. When controlling various machine/robot degrees of freedom, the desired movements and action can be computed from these different levels in the hierarchy. The most basic embodiment of this machine could be a pan-tilt camera system, an array of microphones, a machine with arm/hand like structure or/and a robot with some or all of the above capabilities. We describe the approach, system and present preliminary results on a real-robotic platform.
Rugani, Rosa; Vallortigara, Giorgio; Priftis, Konstantinos; Regolin, Lucia
2017-11-01
Núñez and Fias raised concerns on whether our results demonstrate a linear number-space mapping. Patro and Nuerk urge caution on the use of animal models to understand the origin (cultural vs. biological) of the orientation of spatial-numerical association. Here, we discuss why both objections are unfounded. Copyright © 2017 Cognitive Science Society, Inc.
ERIC Educational Resources Information Center
Shapero, Joshua A.
2017-01-01
Previous studies have shown that language contributes to humans' ability to orient using landmarks and shapes their use of frames of reference (FoRs) for memory. However, the role of environmental experience in shaping spatial cognition has not been investigated. This study addresses such a possibility by examining the use of FoRs in a nonverbal…
The Use of Coarse Resolution Satellite Imagery to Predict Human Puumala Virus Epidemics in Sweden.
1992-09-11
the adverse effects on NDVI data quality can occur in both the spatial and temporal dimension. In other words, a specific pixel value recorded in...are compared to the land-oriented systems.22 On the other hand, the very course spatial resolution has the advantage of greatly reducing the volume...necessary on the scale of individual fields, in which case LANDSAT-TM has higher spatial resolution ; and secondly, when specific
Modality-independent coding of spatial layout in the human brain
Wolbers, Thomas; Klatzky, Roberta L.; Loomis, Jack M.; Wutte, Magdalena G.; Giudice, Nicholas A.
2011-01-01
Summary In many non-human species, neural computations of navigational information such as position and orientation are not tied to a specific sensory modality [1, 2]. Rather, spatial signals are integrated from multiple input sources, likely leading to abstract representations of space. In contrast, the potential for abstract spatial representations in humans is not known, as most neuroscientific experiments on human navigation have focused exclusively on visual cues. Here, we tested the modality independence hypothesis with two fMRI experiments that characterized computations in regions implicated in processing spatial layout [3]. According to the hypothesis, such regions should be recruited for spatial computation of 3-D geometric configuration, independent of a specific sensory modality. In support of this view, sighted participants showed strong activation of the parahippocampal place area (PPA) and the retrosplenial cortex (RSC) for visual and haptic exploration of information-matched scenes but not objects. Functional connectivity analyses suggested that these effects were not related to visual recoding, which was further supported by a similar preference for haptic scenes found with blind participants. Taken together, these findings establish the PPA/RSC network as critical in modality-independent spatial computations and provide important evidence for a theory of high-level abstract spatial information processing in the human brain. PMID:21620708
Revelation of `Hidden' Balinese Geospatial Heritage on A Map
NASA Astrophysics Data System (ADS)
Soeria Atmadja, Dicky A. S.; Wikantika, Ketut; Budi Harto, Agung; Putra, Daffa Gifary M.
2018-05-01
Bali is not just about beautiful nature. It also has a unique and interesting cultural heritage, including `hidden' geospatial heritage. Tri Hita Karana is a Hinduism concept of life consisting of human relation to God, to other humans and to the nature (Parahiyangan, Pawongan and Palemahan), Based on it, - in term of geospatial aspect - the Balinese derived its spatial orientation, spatial planning & lay out, measurement as well as color and typography. Introducing these particular heritage would be a very interesting contribution to Bali tourism. As a respond to these issues, a question arise on how to reveal these unique and highly valuable geospatial heritage on a map which can be used to introduce and disseminate them to the tourists. Symbols (patterns & colors), orientation, distance, scale, layout and toponimy have been well known as elements of a map. There is an chance to apply Balinese geospatial heritage in representing these map elements.
Neves-Petersen, Maria Teresa; Snabe, Torben; Klitgaard, Søren; Duroux, Meg; Petersen, Steffen B
2006-02-01
Photonic induced immobilization is a novel technology that results in spatially oriented and spatially localized covalent coupling of biomolecules onto thiol-reactive surfaces. Immobilization using this technology has been achieved for a wide selection of proteins, such as hydrolytic enzymes (lipases/esterases, lysozyme), proteases (human plasminogen), alkaline phosphatase, immunoglobulins' Fab fragment (e.g., antibody against PSA [prostate specific antigen]), Major Histocompability Complex class I protein, pepsin, and trypsin. The reaction mechanism behind the reported new technology involves "photonic activation of disulfide bridges," i.e., light-induced breakage of disulfide bridges in proteins upon UV illumination of nearby aromatic amino acids, resulting in the formation of free, reactive thiol groups that will form covalent bonds with thiol-reactive surfaces (see Fig. 1). Interestingly, the spatial proximity of aromatic residues and disulfide bridges in proteins has been preserved throughout molecular evolution. The new photonic-induced method for immobilization of proteins preserves the native structural and functional properties of the immobilized protein, avoiding the use of one or more chemical/thermal steps. This technology allows for the creation of spatially oriented as well as spatially defined multiprotein/DNA high-density sensor arrays with spot size of 1 microm or less, and has clear potential for biomedical, bioelectronic, nanotechnology, and therapeutic applications.
Non-invasive imaging of the crystalline structure within a human tooth.
Egan, Christopher K; Jacques, Simon D M; Di Michiel, Marco; Cai, Biao; Zandbergen, Mathijs W; Lee, Peter D; Beale, Andrew M; Cernik, Robert J
2013-09-01
The internal crystalline structure of a human molar tooth has been non-destructively imaged in cross-section using X-ray diffraction computed tomography. Diffraction signals from high-energy X-rays which have large attenuation lengths for hard biomaterials have been collected in a transmission geometry. Coupling this with a computed tomography data acquisition and mathematically reconstructing their spatial origins, diffraction patterns from every voxel within the tooth can be obtained. Using this method we have observed the spatial variations of some key material parameters including nanocrystallite size, organic content, lattice parameters, crystallographic preferred orientation and degree of orientation. We have also made a link between the spatial variations of the unit cell lattice parameters and the chemical make-up of the tooth. In addition, we have determined how the onset of tooth decay occurs through clear amorphization of the hydroxyapatite crystal, and we have been able to map the extent of decay within the tooth. The described method has strong prospects for non-destructive probing of mineralized biomaterials. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Luo, Jiebo; Boutell, Matthew
2005-05-01
Automatic image orientation detection for natural images is a useful, yet challenging research topic. Humans use scene context and semantic object recognition to identify the correct image orientation. However, it is difficult for a computer to perform the task in the same way because current object recognition algorithms are extremely limited in their scope and robustness. As a result, existing orientation detection methods were built upon low-level vision features such as spatial distributions of color and texture. Discrepant detection rates have been reported for these methods in the literature. We have developed a probabilistic approach to image orientation detection via confidence-based integration of low-level and semantic cues within a Bayesian framework. Our current accuracy is 90 percent for unconstrained consumer photos, impressive given the findings of a psychophysical study conducted recently. The proposed framework is an attempt to bridge the gap between computer and human vision systems and is applicable to other problems involving semantic scene content understanding.
ERIC Educational Resources Information Center
Hellweg, Rainer; Huber, Roman; Kuhl, Alexander; Riepe, Matthias W.; Lohmann, Peter
2006-01-01
Impairment of hippocampal function precedes frontal and parietal cortex impairment in human Alzheimer's disease(AD). Neurotrophins are critical for behavioral performance and neuronal survival in AD. We used complex and radial mazes to assess spatial orientation and learning in wild-type and B6-Tg(ThylAPP)23Sdz (APP23) animals, a transgenic mouse…
Coordinate Transformations in Object Recognition
ERIC Educational Resources Information Center
Graf, Markus
2006-01-01
A basic problem of visual perception is how human beings recognize objects after spatial transformations. Three central classes of findings have to be accounted for: (a) Recognition performance varies systematically with orientation, size, and position; (b) recognition latencies are sequentially additive, suggesting analogue transformation…
Lasaponara, Stefano; D'Onofrio, Marianna; Pinto, Mario; Dragone, Alessio; Menicagli, Dario; Bueti, Domenica; De Lucia, Marzia; Tomaiuolo, Francesco; Doricchi, Fabrizio
2018-04-11
Studies with event-related potentials have highlighted deficits in the early phases of orienting to left visual targets in right-brain-damaged patients with left spatial neglect (N+). However, brain responses associated with preparatory orienting of attention, with target novelty and with the detection of a match/mismatch between expected and actual targets (contextual updating), have not been explored in N+. Here in a study in healthy humans and brain-damaged patients of both sexes we demonstrate that frontal activity that reflects supramodal mechanisms of attentional orienting (Anterior Directing Attention Negativity, ADAN) is entirely spared in N+. In contrast, posterior responses that mark the early phases of cued orienting (Early Directing Attention Negativity, EDAN) and the setting up of sensory facilitation over the visual cortex (Late Directing Attention Positivity, LDAP) are suppressed in N+. This uncoupling is associated with damage of parietal-frontal white matter. N+ also exhibit exaggerated novelty reaction to targets in the right side of space and reduced novelty reaction for those in the left side (P3a) together with impaired contextual updating (P3b) in the left space. Finally, we highlight a drop in the amplitude and latency of the P1 that over the left hemisphere signals the early blocking of sensory processing in the right space when targets occur in the left one: this identifies a new electrophysiological marker of the rightward attentional bias in N+. The heterogeneous effects and spatial biases produced by localized brain damage on the different phases of attentional processing indicate relevant functional independence among their underlying neural mechanisms and improve the understanding of the spatial neglect syndrome. SIGNIFICANCE STATEMENT Our investigation answers important questions: are the different components of preparatory orienting (EDAN, ADAN, LDAP) functionally independent in the healthy brain? Is preparatory orienting of attention spared in left spatial neglect? Does the sparing of preparatory orienting have an impact on deficits in reflexive orienting and in the assignment of behavioral relevance to the left space? We show that supramodal preparatory orienting in frontal areas is entirely spared in neglect patients though this does not counterbalance deficits in preparatory parietal-occipital activity, reflexive orienting, and contextual updating. This points at relevant functional dissociations among different components of attention and suggests that improving voluntary attention in N+ might be behaviorally ineffective unless associated with stimulations boosting the response of posterior parietal-occipital areas. Copyright © 2018 the authors 0270-6474/18/383792-17$15.00/0.
Rahman, Qazi
2005-01-01
Later fraternal birth order (FBO) is a well-established correlate of homosexuality in human males and may implicate a maternal immunization response in the feminization of male sexuality. This has led to the suggestion that FBO may relate to other markers of male sexual orientation which are robustly sexually dimorphic. If so, among homosexual males the number of older brothers should strongly correlate with traits such as spatial ability and psychological gender, indicative of greater behavioural feminization, compared to heterosexual males. The present study failed to find significant associations between number of older brothers and these traits. PMID:17148215
Plescia, Fulvio; Sardo, Pierangelo; Rizzo, Valerio; Cacace, Silvana; Marino, Rosa Anna Maria; Brancato, Anna; Ferraro, Giuseppe; Carletti, Fabio; Cannizzaro, Carla
2014-01-01
Neurosteroids can alter neuronal excitability interacting with specific neurotransmitter receptors, thus affecting several functions such as cognition and emotionality. In this study we investigated, in adult male rats, the effects of the acute administration of pregnenolone-sulfate (PREGS) (10mg/kg, s.c.) on cognitive processes using the Can test, a non aversive spatial/visual task which allows the assessment of both spatial orientation-acquisition and object discrimination in a simple and in a complex version of the visual task. Electrophysiological recordings were also performed in vivo, after acute PREGS systemic administration in order to investigate on the neuronal activation in the hippocampus and the perirhinal cortex. Our results indicate that, PREGS induces an improvement in spatial orientation-acquisition and in object discrimination in the simple and in the complex visual task; the behavioural responses were also confirmed by electrophysiological recordings showing a potentiation in the neuronal activity of the hippocampus and the perirhinal cortex. In conclusion, this study demonstrates that PREGS systemic administration in rats exerts cognitive enhancing properties which involve both the acquisition and utilization of spatial information, and object discrimination memory, and also correlates the behavioural potentiation observed to an increase in the neuronal firing of discrete cerebral areas critical for spatial learning and object recognition. This provides further evidence in support of the role of PREGS in exerting a protective and enhancing role on human memory. Copyright © 2013. Published by Elsevier B.V.
Late maturation of visual spatial integration in humans
Kovács, Ilona; Kozma, Petra; Fehér, Ákos; Benedek, György
1999-01-01
Visual development is thought to be completed at an early age. We suggest that the maturation of the visual brain is not homogeneous: functions with greater need for early availability, such as visuomotor control, mature earlier, and the development of other visual functions may extend well into childhood. We found significant improvement in children between 5 and 14 years in visual spatial integration by using a contour-detection task. The data show that long-range spatial interactions—subserving the integration of orientational information across the visual field—span a shorter spatial range in children than in adults. Performance in the task improves in a cue-specific manner with practice, which indicates the participation of fairly low-level perceptual mechanisms. We interpret our findings in terms of a protracted development of ventral visual-stream function in humans. PMID:10518600
NASA Technical Reports Server (NTRS)
Watson, Andrew B.
1990-01-01
All vision systems, both human and machine, transform the spatial image into a coded representation. Particular codes may be optimized for efficiency or to extract useful image features. Researchers explored image codes based on primary visual cortex in man and other primates. Understanding these codes will advance the art in image coding, autonomous vision, and computational human factors. In cortex, imagery is coded by features that vary in size, orientation, and position. Researchers have devised a mathematical model of this transformation, called the Hexagonal oriented Orthogonal quadrature Pyramid (HOP). In a pyramid code, features are segregated by size into layers, with fewer features in the layers devoted to large features. Pyramid schemes provide scale invariance, and are useful for coarse-to-fine searching and for progressive transmission of images. The HOP Pyramid is novel in three respects: (1) it uses a hexagonal pixel lattice, (2) it uses oriented features, and (3) it accurately models most of the prominent aspects of primary visual cortex. The transform uses seven basic features (kernels), which may be regarded as three oriented edges, three oriented bars, and one non-oriented blob. Application of these kernels to non-overlapping seven-pixel neighborhoods yields six oriented, high-pass pyramid layers, and one low-pass (blob) layer.
Newman, Daniel P; Lockley, Steven W; Loughnane, Gerard M; Martins, Ana Carina P; Abe, Rafael; Zoratti, Marco T R; Kelly, Simon P; O'Neill, Megan H; Rajaratnam, Shantha M W; O'Connell, Redmond G; Bellgrove, Mark A
2016-06-13
Brain networks subserving alertness in humans interact with those for spatial attention orienting. We employed blue-enriched light to directly manipulate alertness in healthy volunteers. We show for the first time that prior exposure to higher, relative to lower, intensities of blue-enriched light speeds response times to left, but not right, hemifield visual stimuli, via an asymmetric effect on right-hemisphere parieto-occipital α-power. Our data give rise to the tantalising possibility of light-based interventions for right hemisphere disorders of spatial attention.
Newman, Daniel P.; Lockley, Steven W.; Loughnane, Gerard M.; Martins, Ana Carina P.; Abe, Rafael; Zoratti, Marco T. R.; Kelly, Simon P.; O’Neill, Megan H.; Rajaratnam, Shantha M. W.; O’Connell, Redmond G.; Bellgrove, Mark A.
2016-01-01
Brain networks subserving alertness in humans interact with those for spatial attention orienting. We employed blue-enriched light to directly manipulate alertness in healthy volunteers. We show for the first time that prior exposure to higher, relative to lower, intensities of blue-enriched light speeds response times to left, but not right, hemifield visual stimuli, via an asymmetric effect on right-hemisphere parieto-occipital α-power. Our data give rise to the tantalising possibility of light-based interventions for right hemisphere disorders of spatial attention. PMID:27291291
Sex differences in a virtual water maze: an eye tracking and pupillometry study.
Mueller, Sven C; Jackson, Carl P T; Skelton, Ron W
2008-11-21
Sex differences in human spatial navigation are well known. However, the exact strategies that males and females employ in order to navigate successfully around the environment are unclear. While some researchers propose that males prefer environment-centred (allocentric) and females prefer self-centred (egocentric) navigation, these findings have proved difficult to replicate. In the present study we examined eye movements and physiological measures of memory (pupillometry) in order to compare visual scanning of spatial orientation using a human virtual analogue of the Morris Water Maze task. Twelve women and twelve men (average age=24 years) were trained on a visible platform and had to locate an invisible platform over a series of trials. On all but the first trial, participants' eye movements were recorded for 3s and they were asked to orient themselves in the environment. While the behavioural data replicated previous findings of improved spatial performance for males relative to females, distinct sex differences in eye movements were found. Males tended to explore consistently more space early on while females demonstrated initially longer fixation durations and increases in pupil diameter usually associated with memory processing. The eye movement data provides novel insight into differences in navigational strategies between the sexes.
Spatial attention can modulate unconscious orientation processing.
Bahrami, Bahador; Carmel, David; Walsh, Vincent; Rees, Geraint; Lavie, Nilli
2008-01-01
It has recently been suggested that visual spatial attention can only affect consciously perceived events. We measured the effects of sustained spatial attention on orientation-selective adaptation to gratings, rendered invisible by prolonged interocular suppression. Spatial attention augmented the orientation-selective adaptation to invisible adaptor orientation. The effect of attention was clearest for test stimuli at peri-threshold, intermediate contrast levels, suggesting that previous negative results were due to assessing orientation discrimination at maximum contrast. On the basis of these findings we propose a constrained hypothesis for the difference between neuronal mechanisms of spatial attention in the presence versus absence of awareness.
How Building Systems Affect Worker Wellness
1994-03-01
spatial configuration must strike a balance between the objective needs of the organization and the more subjective human ingredient. Good building...sense, building design for thermal comfort involves a balance between the building’s orientation, its windowing scheme, the use of thermal mass, and the...stated above. An improved quality of worklife and a humanized work environment are psychological incentives that can increase productivity. Worker specific
The Human Retrosplenial Cortex and Thalamus Code Head Direction in a Global Reference Frame.
Shine, Jonathan P; Valdés-Herrera, José P; Hegarty, Mary; Wolbers, Thomas
2016-06-15
Spatial navigation is a multisensory process involving integration of visual and body-based cues. In rodents, head direction (HD) cells, which are most abundant in the thalamus, integrate these cues to code facing direction. Human fMRI studies examining HD coding in virtual environments (VE) have reported effects in retrosplenial complex and (pre-)subiculum, but not the thalamus. Furthermore, HD coding appeared insensitive to global landmarks. These tasks, however, provided only visual cues for orientation, and attending to global landmarks did not benefit task performance. In the present study, participants explored a VE comprising four separate locales, surrounded by four global landmarks. To provide body-based cues, participants wore a head-mounted display so that physical rotations changed facing direction in the VE. During subsequent MRI scanning, subjects saw stationary views of the environment and judged whether their orientation was the same as in the preceding trial. Parameter estimates extracted from retrosplenial cortex and the thalamus revealed significantly reduced BOLD responses when HD was repeated. Moreover, consistent with rodent findings, the signal did not continue to adapt over repetitions of the same HD. These results were supported by a whole-brain analysis showing additional repetition suppression in the precuneus. Together, our findings suggest that: (1) consistent with the rodent literature, the human thalamus may integrate visual and body-based, orientation cues; (2) global reference frame cues can be used to integrate HD across separate individual locales; and (3) immersive training procedures providing full body-based cues may help to elucidate the neural mechanisms supporting spatial navigation. In rodents, head direction (HD) cells signal facing direction in the environment via increased firing when the animal assumes a certain orientation. Distinct brain regions, the retrosplenial cortex (RSC) and thalamus, code for visual and vestibular cues of orientation, respectively. Putative HD signals have been observed in human RSC but not the thalamus, potentially because body-based cues were not provided. Here, participants encoded HD in a novel virtual environment while wearing a head-mounted display to provide body-based cues for orientation. In subsequent fMRI scanning, we found evidence of an HD signal in RSC, thalamus, and precuneus. These findings harmonize rodent and human data, and suggest that immersive training procedures provide a viable way to examine the neural basis of navigation. Copyright © 2016 the authors 0270-6474/16/366371-11$15.00/0.
Influence of gait mode and body orientation on following a walking avatar.
Meerhoff, L Rens A; de Poel, Harjo J; Jowett, Tim W D; Button, Chris
2017-08-01
Regulating distance with a moving object or person is a key component of human movement and of skillful interpersonal coordination. The current set of experiments aimed to assess the role of gait mode and body orientation on distance regulation using a cyclical locomotor tracking task in which participants followed a virtual leader. In the first experiment, participants moved in the backward-forward direction while the body orientation of the virtual leader was manipulated (i.e., facing towards, or away from the follower), hence imposing an incongruence in gait mode between leader and follower. Distance regulation was spatially less accurate when followers walked backwards. Additionally, a clear trade-off was found between spatial leader-follower accuracy and temporal synchrony. Any perceptual effects were overshadowed by the effect of one's gait mode. In the second experiment we examined lateral following. The results suggested that lateral following was also constrained strongly by perceptual information presented by the leader. Together, these findings demonstrated how locomotor tracking depends on gait mode, but also on the body orientation of whoever is being followed. Copyright © 2017 Elsevier B.V. All rights reserved.
Neuroscience Investigations: An Overview of Studies Conducted
NASA Technical Reports Server (NTRS)
Reschke, Millard F.
1999-01-01
The neural processes that mediate human spatial orientation and adaptive changes occurring in response to the sensory rearrangement encountered during orbital flight are primarily studied through second and third order responses. In the Extended Duration Orbiter Medical Project (EDOMP) neuroscience investigations, the following were measured: (1) eye movements during acquisition of either static or moving visual targets, (2) postural and locomotor responses provoked by unexpected movement of the support surface, changes in the interaction of visual, proprioceptive, and vestibular information, changes in the major postural muscles via descending pathways, or changes in locomotor pathways, and (3) verbal reports of perceived self-orientation and self-motion which enhance and complement conclusions drawn from the analysis of oculomotor, postural, and locomotor responses. In spaceflight operations, spatial orientation can be defined as situational awareness, where crew member perception of attitude, position, or motion of the spacecraft or other objects in three-dimensional space, including orientation of one's own body, is congruent with actual physical events. Perception of spatial orientation is determined by integrating information from several sensory modalities. This involves higher levels of processing within the central nervous system that control eye movements, locomotion, and stable posture. Spaceflight operational problems occur when responses to the incorrectly perceived spatial orientation are compensatory in nature. Neuroscience investigations were conducted in conjunction with U. S. Space Shuttle flights to evaluate possible changes in the ability of an astronaut to land the Shuttle or effectively perform an emergency post-landing egress following microgravity adaptation during space flights of variable length. While the results of various sensory motor and spatial orientation tests could have an impact on future space flights, our knowledge of sensorimotor adaptation to spaceflight is limited, and the future application of effective countermeasures depends, in large part, on the results from appropriate neuroscience investigations. Therefore, the objective of the neuroscience investigations could have a negative effect on mission success. The Neuroscience Laboratory, Johnson Space Center (JSC), implemented three integrated Detailed Supplementary Objectives (DSO) designed to investigate spatial orientation and the associated compensatory responses as a part of the EDOMP. The four primary goals were (1) to establish a normative database of vestibular and associated sensory changes in response to spaceflight, (2) to determine the underlying etiology of neurovestibular and sensory motor changes associated with exposure to microgravity and the subsequent return to Earth, (3) to provide immediate feedback to spaceflight crews regarding potential countermeasures that could improve performance and safety during and after flight, and (4) to take under consideration appropriate designs for preflight, in-flight, and postflight countermeasures that could be implemented for future flights.
The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex.
Self, Matthew W; Peters, Judith C; Possel, Jessy K; Reithler, Joel; Goebel, Rainer; Ris, Peterjan; Jeurissen, Danique; Reddy, Leila; Claus, Steven; Baayen, Johannes C; Roelfsema, Pieter R
2016-03-01
Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive fields with tunings for contrast, orientation, spatial frequency, and size, similar to those reported in the macaque. We also observed pronounced gamma oscillations in the local-field potential that could be used to estimate the underlying spiking response properties. Spiking responses were modulated by visual context and attention. We observed orientation-tuned surround suppression: responses were suppressed by image regions with a uniform orientation and enhanced by orientation contrast. Additionally, responses were enhanced on regions that perceptually segregated from the background, indicating that neurons in the human visual cortex are sensitive to figure-ground structure. Spiking responses were also modulated by object-based attention. When the patient mentally traced a curve through the neurons' receptive fields, the accompanying shift of attention enhanced neuronal activity. These results demonstrate that the tuning properties of cells in the human early visual cortex are similar to those in the macaque and that responses can be modulated by both contextual factors and behavioral relevance. Our results, therefore, imply that the macaque visual system is an excellent model for the human visual cortex.
The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex
Reithler, Joel; Goebel, Rainer; Ris, Peterjan; Jeurissen, Danique; Reddy, Leila; Claus, Steven; Baayen, Johannes C.; Roelfsema, Pieter R.
2016-01-01
Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive fields with tunings for contrast, orientation, spatial frequency, and size, similar to those reported in the macaque. We also observed pronounced gamma oscillations in the local-field potential that could be used to estimate the underlying spiking response properties. Spiking responses were modulated by visual context and attention. We observed orientation-tuned surround suppression: responses were suppressed by image regions with a uniform orientation and enhanced by orientation contrast. Additionally, responses were enhanced on regions that perceptually segregated from the background, indicating that neurons in the human visual cortex are sensitive to figure-ground structure. Spiking responses were also modulated by object-based attention. When the patient mentally traced a curve through the neurons’ receptive fields, the accompanying shift of attention enhanced neuronal activity. These results demonstrate that the tuning properties of cells in the human early visual cortex are similar to those in the macaque and that responses can be modulated by both contextual factors and behavioral relevance. Our results, therefore, imply that the macaque visual system is an excellent model for the human visual cortex. PMID:27015604
Neural Correlates of Visual–Spatial Attention in Electrocorticographic Signals in Humans
Gunduz, Aysegul; Brunner, Peter; Daitch, Amy; Leuthardt, Eric C.; Ritaccio, Anthony L.; Pesaran, Bijan; Schalk, Gerwin
2011-01-01
Attention is a cognitive selection mechanism that allocates the limited processing resources of the brain to the sensory streams most relevant to our immediate goals, thereby enhancing responsiveness and behavioral performance. The underlying neural mechanisms of orienting attention are distributed across a widespread cortical network. While aspects of this network have been extensively studied, details about the electrophysiological dynamics of this network are scarce. In this study, we investigated attentional networks using electrocorticographic (ECoG) recordings from the surface of the brain, which combine broad spatial coverage with high temporal resolution, in five human subjects. ECoG was recorded when subjects covertly attended to a spatial location and responded to contrast changes in the presence of distractors in a modified Posner cueing task. ECoG amplitudes in the alpha, beta, and gamma bands identified neural changes associated with covert attention and motor preparation/execution in the different stages of the task. The results show that attentional engagement was primarily associated with ECoG activity in the visual, prefrontal, premotor, and parietal cortices. Motor preparation/execution was associated with ECoG activity in premotor/sensorimotor cortices. In summary, our results illustrate rich and distributed cortical dynamics that are associated with orienting attention and the subsequent motor preparation and execution. These findings are largely consistent with and expand on primate studies using intracortical recordings and human functional neuroimaging studies. PMID:22046153
Tascón, Laura; García-Moreno, Luis Miguel; Cimadevilla, Jose Manuel
2017-06-09
Many different human spatial memory tasks were developed in the last two decades. Virtual reality based tasks make possible developing different scenarios and situations to assess spatial orientation but sometimes these tasks are complex for specific populations like children and older-adults. A new spatial task with a very limited technological requirement was developed in this study. It demanded the use of spatial memory for an accurate solution. It also proved to be sensitive to gender differences, with men outperforming women under high specific difficulty levels. Thanks to its simplicity it could be applied as a screening test and is easy to combine with EEG and fMRI studies. Copyright © 2017 Elsevier B.V. All rights reserved.
The Age-Related Orientational Changes of Human Semicircular Canals.
Lyu, Hui-Ying; Chen, Ke-Guang; Yin, Dong-Ming; Hong, Juan; Yang, Lin; Zhang, Tian-Yu; Dai, Pei-Dong
2016-06-01
Some changes are found in the labyrinth anatomy during postnatal development. Although the spatial orientation of semicircular canals was thought to be stable after birth, we investigated the age-related orientational changes of human semicircular canals during development. We retrospectively studied the computed tomography (CT) images of both ears of 76 subjects ranged from 1 to 70 years old. They were divided into 4 groups: group A (1-6 years), group B (7-12 years), group C (13-18 years), and group D (>18 years). The anatomical landmarks of the inner ear structures were determined from CT images. Their coordinates were imported into MATLAB software for calculating the semicircular canals orientation, angles between semicircular canal planes and the jugular bulb (JB) position. Differences between age groups were analyzed using multivariate statistics. Relationships between variables were analyzed using Pearson analysis. The angle between the anterior semicircular canal plane and the coronal plane, and the angle between the horizontal semicircular canal plane and the coronal plane were smaller in group D than those in group A (P<0.05). The JB position, especially the anteroposterior position of right JB, correlated to the semicircular canals orientation (P<0.05). However, no statistically significant differences in the angles between ipsilateral canal planes among different age groups were found. The semicircular canals had tendencies to tilt anteriorly simultaneously as a whole with age. The JB position correlated to the spatial arrangement of semicircular canals, especially the right JB. Our calculation method helps detect developmental and pathological changes in vestibular anatomy.
Geography and Viticulture: Rationale and Resource.
ERIC Educational Resources Information Center
Blij, Harm Jan de
1983-01-01
The study of viticulture (the growing of grapes) can illustrate the practical applications of geography: spatial orientation, focus on natural environment, human-land interaction, and concern with the properties and characteristics of regions. A suggested course outline is given, as well as a listing of resources about viticulture. (IS)
Object orientation affects spatial language comprehension.
Burigo, Michele; Sacchi, Simona
2013-01-01
Typical spatial descriptions, such as "The car is in front of the house," describe the position of a located object (LO; e.g., the car) in space relative to a reference object (RO) whose location is known (e.g., the house). The orientation of the RO affects spatial language comprehension via the reference frame selection process. However, the effects of the LO's orientation on spatial language have not received great attention. This study explores whether the pure geometric information of the LO (e.g., its orientation) affects spatial language comprehension using placing and production tasks. Our results suggest that the orientation of the LO influences spatial language comprehension even in the absence of functional relationships. Copyright © 2013 Cognitive Science Society, Inc.
Attention and predictions: control of spatial attention beyond the endogenous-exogenous dichotomy
Macaluso, Emiliano; Doricchi, Fabrizio
2013-01-01
The mechanisms of attention control have been extensively studied with a variety of methodologies in animals and in humans. Human studies using non-invasive imaging techniques highlighted a remarkable difference between the pattern of responses in dorsal fronto-parietal regions vs. ventral fronto-parietal (vFP) regions, primarily lateralized to the right hemisphere. Initially, this distinction at the neuro-physiological level has been related to the distinction between cognitive processes associated with strategic/endogenous vs. stimulus-driven/exogenous of attention control. Nonetheless, quite soon it has become evident that, in almost any situation, attention control entails a complex combination of factors related to both the current sensory input and endogenous aspects associated with the experimental context. Here, we review several of these aspects first discussing the joint contribution of endogenous and stimulus-driven factors during spatial orienting in complex environments and, then, turning to the role of expectations and predictions in spatial re-orienting. We emphasize that strategic factors play a pivotal role for the activation of the ventral system during stimulus-driven control, and that the dorsal system makes use of stimulus-driven signals for top-down control. We conclude that both the dorsal and the vFP networks integrate endogenous and exogenous signals during spatial attention control and that future investigations should manipulate both these factors concurrently, so as to reveal to full extent of these interactions. PMID:24155707
Spatial attention improves the quality of population codes in human visual cortex.
Saproo, Sameer; Serences, John T
2010-08-01
Selective attention enables sensory input from behaviorally relevant stimuli to be processed in greater detail, so that these stimuli can more accurately influence thoughts, actions, and future goals. Attention has been shown to modulate the spiking activity of single feature-selective neurons that encode basic stimulus properties (color, orientation, etc.). However, the combined output from many such neurons is required to form stable representations of relevant objects and little empirical work has formally investigated the relationship between attentional modulations on population responses and improvements in encoding precision. Here, we used functional MRI and voxel-based feature tuning functions to show that spatial attention induces a multiplicative scaling in orientation-selective population response profiles in early visual cortex. In turn, this multiplicative scaling correlates with an improvement in encoding precision, as evidenced by a concurrent increase in the mutual information between population responses and the orientation of attended stimuli. These data therefore demonstrate how multiplicative scaling of neural responses provides at least one mechanism by which spatial attention may improve the encoding precision of population codes. Increased encoding precision in early visual areas may then enhance the speed and accuracy of perceptual decisions computed by higher-order neural mechanisms.
The role of spatial integration in the perception of surface orientation with active touch.
Giachritsis, Christos D; Wing, Alan M; Lovell, Paul G
2009-10-01
Vision research has shown that perception of line orientation, in the fovea area, improves with line length (Westheimer & Ley, 1997). This suggests that the visual system may use spatial integration to improve perception of orientation. In the present experiments, we investigated the role of spatial integration in the perception of surface orientation using kinesthetic and proprioceptive information from shoulder and elbow. With their left index fingers, participants actively explored virtual slanted surfaces of different lengths and orientations, and were asked to reproduce an orientation or discriminate between two orientations. Results showed that reproduction errors and discrimination thresholds improve with surface length. This suggests that the proprioceptive shoulder-elbow system may integrate redundant spatial information resulting from extended arm movements to improve orientation judgments.
Dual-task results and the lateralization of spatial orientation: artifact of test selection?
Bowers, C A; Milham, L M; Price, C
1998-01-01
An investigation was conducted to identify the degree to which results regarding the lateralization of spatial orientation among men and women are artifacts of test selection. A dual-task design was used to study possible lateralization differences, providing baseline and dual-task measures of spatial-orientation performance, right- and left-hand tapping, and vocalization of "cat, dog, horse." The Guilford-Zimmerman Test (Guilford & Zimmerman, 1953), the Eliot-Price Test (Eliot & Price, 1976), and the Stumpf-Fay Cube Perspectives Test (Stumpf & Fay, 1983) were the three spatial-orientation tests used to investigate possible artifacts of test selection. Twenty-eight right-handed male and 39 right-handed female undergraduates completed random baseline and dual-task sessions. Analyses indicated no significant sex-related differences in spatial-orientation ability for all three tests. Furthermore, there was no evidence of differential lateralization of spatial orientation between the sexes.
Meilinger, Tobias; Frankenstein, Julia; Simon, Nadine; Bülthoff, Heinrich H; Bresciani, Jean-Pierre
2016-02-01
Reference frames in spatial memory encoding have been examined intensively in recent years. However, their importance for recall has received considerably less attention. In the present study, passersby used tags to arrange a configuration map of prominent city center landmarks. It has been shown that such configurational knowledge is memorized within a north-up reference frame. However, participants adjusted their maps according to their body orientations. For example, when participants faced south, the maps were likely to face south-up. Participants also constructed maps along their location perspective-that is, the self-target direction. If, for instance, they were east of the represented area, their maps were oriented west-up. If the location perspective and body orientation were in opposite directions (i.e., if participants faced away from the city center), participants relied on location perspective. The results indicate that reference frames in spatial recall depend on the current situation rather than on the organization in long-term memory. These results cannot be explained by activation spread within a view graph, which had been used to explain similar results in the recall of city plazas. However, the results are consistent with forming and transforming a spatial image of nonvisible city locations from the current location. Furthermore, prior research has almost exclusively focused on body- and environment-based reference frames. The strong influence of location perspective in an everyday navigational context indicates that such a reference frame should be considered more often when examining human spatial cognition.
Anticipatory neural dynamics of spatial-temporal orienting of attention in younger and older adults.
Heideman, Simone G; Rohenkohl, Gustavo; Chauvin, Joshua J; Palmer, Clare E; van Ede, Freek; Nobre, Anna C
2018-05-04
Spatial and temporal expectations act synergistically to facilitate visual perception. In the current study, we sought to investigate the anticipatory oscillatory markers of combined spatial-temporal orienting and to test whether these decline with ageing. We examined anticipatory neural dynamics associated with joint spatial-temporal orienting of attention using magnetoencephalography (MEG) in both younger and older adults. Participants performed a cued covert spatial-temporal orienting task requiring the discrimination of a visual target. Cues indicated both where and when targets would appear. In both age groups, valid spatial-temporal cues significantly enhanced perceptual sensitivity and reduced reaction times. In the MEG data, the main effect of spatial orienting was the lateralised anticipatory modulation of posterior alpha and beta oscillations. In contrast to previous reports, this modulation was not attenuated in older adults; instead it was even more pronounced. The main effect of temporal orienting was a bilateral suppression of posterior alpha and beta oscillations. This effect was restricted to younger adults. Our results also revealed a striking interaction between anticipatory spatial and temporal orienting in the gamma-band (60-75 Hz). When considering both age groups separately, this effect was only clearly evident and only survived statistical evaluation in the older adults. Together, these observations provide several new insights into the neural dynamics supporting separate as well as combined effects of spatial and temporal orienting of attention, and suggest that different neural dynamics associated with attentional orienting appear differentially sensitive to ageing. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Image segregation in strabismic amblyopia.
Levi, Dennis M
2007-06-01
Humans with naturally occurring amblyopia show deficits thought to involve mechanisms downstream of V1. These include excessive crowding, abnormal global image processing, spatial sampling and symmetry detection and undercounting. Several recent studies suggest that humans with naturally occurring amblyopia show deficits in global image segregation. The current experiments were designed to study figure-ground segregation in amblyopic observers with documented deficits in crowding, symmetry detection, spatial sampling and counting, using similar stimuli. Observers had to discriminate the orientation of a figure (an "E"-like pattern made up of 17 horizontal Gabor patches), embedded in a 7x7 array of Gabor patches. When the 32 "background" patches are vertical, the "E" pops-out, due to segregation by orientation and performance is perfect; however, if the background patches are all, or mostly horizontal, the "E" is camouflaged, and performance is random. Using a method of constant stimuli, we varied the number of "background" patches that were vertical and measured the probability of correct discrimination of the global orientation of the E (up/down/left/right). Surprisingly, amblyopes who showed strong crowding and deficits in symmetry detection and counting, perform normally or very nearly so in this segregation task. I therefore conclude that these deficits are not a consequence of abnormal segregation of figure from background.
Mu, Lan; Wang, Fahui; Chen, Vivien W.; Wu, Xiao-Cheng
2015-01-01
Similar geographic areas often have great variations in population size. In health data management and analysis, it is desirable to obtain regions of comparable population by decomposing areas of large population (to gain more spatial variability) and merging areas of small population (to mask privacy of data). Based on the Peano curve algorithm and modified scale-space clustering, this research proposes a mixed-level regionalization (MLR) method to construct geographic areas with comparable population. The method accounts for spatial connectivity and compactness, attributive homogeneity, and exogenous criteria such as minimum (and approximately equal) population or disease counts. A case study using Louisiana cancer data illustrates the MLR method and its strengths and limitations. A major benefit of the method is that most upper level geographic boundaries can be preserved to increase familiarity of constructed areas. Therefore, the MLR method is more human-oriented and place-based than computer-oriented and space-based. PMID:26251551
Studies of the Interactions Between Vestibular Function and Tactual Orientation Display Systems
NASA Technical Reports Server (NTRS)
Cholewiak, Roger W.; Reschke, Millard F.
1997-01-01
When humans experience conditions in which internal vestibular cues to movement or spatial location are challenged or contradicted by external visual information, the result can be spatial disorientation, often leading to motion sickness. Spatial disorientation can occur in any situation in which the individual is passively moved in the environment, but is most common in automotive, aircraft, or undersea travel. Significantly, the incidence of motion sickness in space travel is great: The majority of individuals in Shuttle operations suffer from the syndrome. Even after the space-sickness-producing influences of spatial disorientation dissipate, usually within several days, there are other situations in which, because of the absence of reliable or familiar vestibular cues, individuals in space still experience disorientation, resulting in a reliance on the already preoccupied sense of vision. One possible technique to minimize the deleterious effects of spatial disorientation might be to present attitude information (including orientation, direction, and motion) through another less-used sensory modality - the sense of touch. Data from experiences with deaf and blind persons indicate that this channel can provide useful communication and mobility information on a real-time basis. More recently, technologies have developed to present effective attitude information to pilots in situations in which dangerously ambiguous and conflicting visual and vestibular sensations occur. This summers project at NASA-Johnson Space Center will evaluate the influence of motion-based spatial disorientation on the perception of tactual stimuli representing veridical position and orientation information, presented by new dynamic vibrotactile array display technologies. In addition, the possibility will be explored that tactile presentations of motion and direction from this alternative modality might be useful in mitigating or alleviating spatial disorientation produced by multi-axis rotatory systems, monitored by physiological recording techniques developed at JSC.
Hierarchical human action recognition around sleeping using obscured posture information
NASA Astrophysics Data System (ADS)
Kudo, Yuta; Sashida, Takehiko; Aoki, Yoshimitsu
2015-04-01
This paper presents a new approach for human action recognition around sleeping with the human body parts locations and the positional relationship between human and sleeping environment. Body parts are estimated from the depth image obtained by a time-of-flight (TOF) sensor using oriented 3D normal vector. Issues in action recognition of sleeping situation are the demand of availability in darkness, and hiding of the human body by duvets. Therefore, the extraction of image features is difficult since color and edge features are obscured by covers. Thus, first in our method, positions of four parts of the body (head, torso, thigh, and lower leg) are estimated by using the shape model of bodily surface constructed by oriented 3D normal vector. This shape model can represent the surface shape of rough body, and is effective in robust posture estimation of the body hidden with duvets. Then, action descriptor is extracted from the position of each body part. The descriptor includes temporal variation of each part of the body and spatial vector of position of the parts and the bed. Furthermore, this paper proposes hierarchical action classes and classifiers to improve the indistinct action classification. Classifiers are composed of two layers, and recognize human action by using the action descriptor. First layer focuses on spatial descriptor and classifies action roughly. Second layer focuses on temporal descriptor and classifies action finely. This approach achieves a robust recognition of obscured human by using the posture information and the hierarchical action recognition.
Spatial and temporal heterogeneity of neural responses in human posteromedial cortex.
Daitch, Amy L; Parvizi, Josef
2018-05-01
Neuroimaging evidence supports a role of the default mode network (DMN) in spontaneous thought and goal-driven internally oriented processes, such as recalling an autobiographical event, and has demonstrated its deactivation during focused, externally oriented attention. Recent work suggests that the DMN is not a homogeneous network but rather is composed of at least several subnetworks, which are engaged in distinct functions; however, it is still unclear if these different functions rely on the same neuronal populations. In this study, we used intracranial EEG to record from the posteromedial cortex (PMC), a core hub of the DMN, in 13 human subjects, during autobiographical memory retrieval (internally oriented), arithmetic processing (externally oriented), and cued rest (spontaneous thought), allowing us to measure activity from anatomically precise PMC sites with high temporal resolution. We observed a heterogeneous, yet spatially organized, pattern of activity across tasks. Many sites, primarily in the more ventral portion of PMC, were engaged during autobiographical recall and suppressed during arithmetic processing. Other more dorsal PMC sites were engaged during the cued-rest condition. Of these rest-active sites, some exhibited variable temporal dynamics across trials, possibly reflecting various forms of spontaneous thought, while others showed only transient activity at the beginning of cued-rest trials (i.e., after a switch from a task to cued rest), possibly involved in shifting the brain from a more focused to a more exploratory attentional state. These results suggest heterogeneity of function even within an individual node of the DMN.
Sexual orientation and spatial position effects on selective forms of object location memory.
Rahman, Qazi; Newland, Cherie; Smyth, Beatrice Mary
2011-04-01
Prior research has demonstrated robust sex and sexual orientation-related differences in object location memory in humans. Here we show that this sexual variation may depend on the spatial position of target objects and the task-specific nature of the spatial array. We tested the recovery of object locations in three object arrays (object exchanges, object shifts, and novel objects) relative to veridical center (left compared to right side of the arrays) in a sample of 35 heterosexual men, 35 heterosexual women, and 35 homosexual men. Relative to heterosexual men, heterosexual women showed better location recovery in the right side of the array during object exchanges and homosexual men performed better in the right side during novel objects. However, the difference between heterosexual and homosexual men disappeared after controlling for IQ. Heterosexual women and homosexual men did not differ significantly from each other in location change detection with respect to task or side of array. These data suggest that visual space biases in processing categorical spatial positions may enhance aspects of object location memory in heterosexual women. Copyright © 2010 Elsevier Inc. All rights reserved.
Kelly, Debbie M; Bischof, Walter F
2008-10-01
We investigated how human adults orient in enclosed virtual environments, when discrete landmark information is not available and participants have to rely on geometric and featural information on the environmental surfaces. In contrast to earlier studies, where, for women, the featural information from discrete landmarks overshadowed the encoding of the geometric information, Experiment 1 showed that when featural information is conjoined with the environmental surfaces, men and women encoded both types of information. Experiment 2 showed that, although both types of information are encoded, performance in locating a goal position is better if it is close to a geometrically or featurally distinct location. Furthermore, although features are relied upon more strongly than geometry, initial experience with an environment influences the relative weighting of featural and geometric cues. Taken together, these results show that human adults use a flexible strategy for encoding spatial information.
Spatial orientation and mechanical properties of the human trachea: a computed tomography study.
Zanella, Alberto; Cressoni, Massimo; Ferlicca, Daniela; Chiurazzi, Chiara; Epp, Myra; Rovati, Cristina; Chiumello, Davide; Pesenti, Antonio; Gattinoni, Luciano; Kolobow, Theodor
2015-04-01
The literature generally describes the trachea as oriented toward the right and back, but there is very little detailed characterization. Therefore, the aim of this study was to precisely determine the spatial orientation and to better characterize the physical properties of the human trachea. We analyzed lung computed tomography scans of 68 intubated and mechanically ventilated subjects suffering from acute lung injury/ARDS at airway pressures (Paw) of 5, 15, and 45 cm H2O. At each Paw, the inner edge of the trachea from the subglottal space to the carina was captured. Tracheal length and diameter were measured. Tracheal orientation and compliance were estimated from processing barycenter and surface tracheal sections. Tracheal orientation at a Paw of 5 cm H2O showed a 4.2 ± 5.3° angle toward the right and a 20.6 ± 6.9° angle downward toward the back, which decreased significantly while increasing Paw (19.4 ± 6.9° at 15 cm H2O and 17.1 ± 6.8° at 45 cm H2O, P < .001). Tracheal compliance was 0.0113 ± 0.0131 mL/cm H2O/cm of trachea length from 5 to 15 cm H2O and 0.004 ± 0.0041 mL/cm H2O/cm of trachea length from 15 to 45 cm H2O (P < .001). Tracheal diameter was 19.6 ± 3.4 mm on the medial-lateral axis and 21.0 ± 4.3 mm on the sternal-vertebral axis. The trachea is oriented downward toward the back at a 20.6 ± 6.9° angle and slightly toward the right at a 4.2 ± 5.3° angle. Understanding tracheal orientation may help in enhancing postural drainage and respiratory physiotherapy, and knowing the physical properties of the trachea may aid in endotracheal tube cuff design. Copyright © 2015 by Daedalus Enterprises.
Sturz, Bradley R; Green, Marshall L; Gaskin, Katherine A; Evans, Alicia C; Graves, April A; Roberts, Jonathan E
2013-02-15
View-based matching theories of orientation suggest that mobile organisms encode a visual memory consisting of a visual panorama from a target location and maneuver to reduce discrepancy between current visual perception and this stored visual memory to return to a location. Recent success of such theories to explain the orientation behavior of insects and birds raises questions regarding the extent to which such an explanation generalizes to other species. In the present study, we attempted to determine the extent to which such view-based matching theories may explain the orientation behavior of a mammalian species (in this case adult humans). We modified a traditional enclosure orientation task so that it involved only the use of the haptic sense. The use of a haptic orientation task to investigate the extent to which view-based matching theories may explain the orientation behavior of adult humans appeared ideal because it provided an opportunity for us to explicitly prohibit the use of vision. Specifically, we trained disoriented and blindfolded human participants to search by touch for a target object hidden in one of four locations marked by distinctive textural cues located on top of four discrete landmarks arranged in a rectangular array. Following training, we removed the distinctive textural cues and probed the extent to which participants learned the geometry of the landmark array. In the absence of vision and the trained textural cues, participants showed evidence that they learned the geometry of the landmark array. Such evidence cannot be explained by an appeal to view-based matching strategies and is consistent with explanations of spatial orientation related to the incidental learning of environmental geometry.
Functional mechanisms of probabilistic inference in feature- and space-based attentional systems.
Dombert, Pascasie L; Kuhns, Anna; Mengotti, Paola; Fink, Gereon R; Vossel, Simone
2016-11-15
Humans flexibly attend to features or locations and these processes are influenced by the probability of sensory events. We combined computational modeling of response times with fMRI to compare the functional correlates of (re-)orienting, and the modulation by probabilistic inference in spatial and feature-based attention systems. Twenty-four volunteers performed two task versions with spatial or color cues. Percentage of cue validity changed unpredictably. A hierarchical Bayesian model was used to derive trial-wise estimates of probability-dependent attention, entering the fMRI analysis as parametric regressors. Attentional orienting activated a dorsal frontoparietal network in both tasks, without significant parametric modulation. Spatially invalid trials activated a bilateral frontoparietal network and the precuneus, while invalid feature trials activated the left intraparietal sulcus (IPS). Probability-dependent attention modulated activity in the precuneus, left posterior IPS, middle occipital gyrus, and right temporoparietal junction for spatial attention, and in the left anterior IPS for feature-based and spatial attention. These findings provide novel insights into the generality and specificity of the functional basis of attentional control. They suggest that probabilistic inference can distinctively affect each attentional subsystem, but that there is an overlap in the left IPS, which responds to both spatial and feature-based expectancy violations. Copyright © 2016 Elsevier Inc. All rights reserved.
Image Discrimination Models With Stochastic Channel Selection
NASA Technical Reports Server (NTRS)
Ahumada, Albert J., Jr.; Beard, Bettina L.; Null, Cynthia H. (Technical Monitor)
1995-01-01
Many models of human image processing feature a large fixed number of channels representing cortical units varying in spatial position (visual field direction and eccentricity) and spatial frequency (radial frequency and orientation). The values of these parameters are usually sampled at fixed values selected to ensure adequate overlap considering the bandwidth and/or spread parameters, which are usually fixed. Even high levels of overlap does not always ensure that the performance of the model will vary smoothly with image translation or scale changes. Physiological measurements of bandwidth and/or spread parameters result in a broad distribution of estimated parameter values and the prediction of some psychophysical results are facilitated by the assumption that these parameters also take on a range of values. Selecting a sample of channels from a continuum of channels rather than using a fixed set can make model performance vary smoothly with changes in image position, scale, and orientation. It also facilitates the addition of spatial inhomogeneity, nonlinear feature channels, and focus of attention to channel models.
Photography activities for developing students’ spatial orientation and spatial visualization
NASA Astrophysics Data System (ADS)
Hendroanto, Aan; van Galen, Frans; van Eerde, D.; Prahmana, R. C. I.; Setyawan, F.; Istiandaru, A.
2017-12-01
Spatial orientation and spatial visualization are the foundation of students’ spatial ability. They assist students’ performance in learning mathematics, especially geometry. Considering its importance, the present study aims to design activities to help young learners developing their spatial orientation and spatial visualization ability. Photography activity was chosen as the context of the activity to guide and support the students. This is a design research study consisting of three phases: 1) preparation and designing 2) teaching experiment, and 3) retrospective analysis. The data is collected by tests and interview and qualitatively analyzed. We developed two photography activities to be tested. In the teaching experiments, 30 students of SD Laboratorium UNESA, Surabaya were involved. The results showed that the activities supported the development of students’ spatial orientation and spatial visualization indicated by students’ learning progresses, answers, and strategies when they solved the problems in the activities.
Kelly, Jonathan W; McNamara, Timothy P; Bodenheimer, Bobby; Carr, Thomas H; Rieser, John J
2009-02-01
Two experiments explored the role of environmental cues in maintaining spatial orientation (sense of self-location and direction) during locomotion. Of particular interest was the importance of geometric cues (provided by environmental surfaces) and featural cues (nongeometric properties provided by striped walls) in maintaining spatial orientation. Participants performed a spatial updating task within virtual environments containing geometric or featural cues that were ambiguous or unambiguous indicators of self-location and direction. Cue type (geometric or featural) did not affect performance, but the number and ambiguity of environmental cues did. Gender differences, interpreted as a proxy for individual differences in spatial ability and/or experience, highlight the interaction between cue quantity and ambiguity. When environmental cues were ambiguous, men stayed oriented with either one or two cues, whereas women stayed oriented only with two. When environmental cues were unambiguous, women stayed oriented with one cue.
Orientation and metacognition in virtual space.
Tenbrink, Thora; Salwiczek, Lucie H
2016-05-01
Cognitive scientists increasingly use virtual reality scenarios to address spatial perception, orientation, and navigation. If based on desktops rather than mobile immersive environments, this involves a discrepancy between the physically experienced static position and the visually perceived dynamic scene, leading to cognitive challenges that users of virtual worlds may or may not be aware of. The frequently reported loss of orientation and worse performance in point-to-origin tasks relate to the difficulty of establishing a consistent reference system on an allocentric or egocentric basis. We address the verbalizability of spatial concepts relevant in this regard, along with the conscious strategies reported by participants. Behavioral and verbal data were collected using a perceptually sparse virtual tunnel scenario that has frequently been used to differentiate between humans' preferred reference systems. Surprisingly, the linguistic data we collected relate to reference system verbalizations known from the earlier literature only to a limited extent, but instead reveal complex cognitive mechanisms and strategies. Orientation in desktop virtual reality appears to pose considerable challenges, which participants react to by conceptualizing the task in individual ways that do not systematically relate to the generic concepts of egocentric and allocentric reference frames. (c) 2016 APA, all rights reserved).
Toy-playing behavior, sex-role orientation, spatial ability, and science achievement
NASA Astrophysics Data System (ADS)
Tracy, Dyanne M.
The purpose of this correlational study was to examine the possible relationships among children's extracurricular toy-playing habits, sex-role orientations, spatial abilities, and science achievement. Data were gathered from 282 midwestern, suburban, fifth-grade students. It was found that boys had significantly higher spatial skills than girls. No significant differences in spatial ability were found among students with different sex-role orientations. No significant differences in science achievement were found between girls and boys, or among students with the four different sex-role orientations. Students who had high spatial ability also had significantly higher science achievement scores than students with low spatial ability. Femininely oriented boys who reported low playing in the two-dimensional, gross-body-movement, and proportional-arrangement toy categories scored significantly higher on the test of science achievement than girls with the same sex-role and toy-playing behavior.
A new multi-spectral feature level image fusion method for human interpretation
NASA Astrophysics Data System (ADS)
Leviner, Marom; Maltz, Masha
2009-03-01
Various different methods to perform multi-spectral image fusion have been suggested, mostly on the pixel level. However, the jury is still out on the benefits of a fused image compared to its source images. We present here a new multi-spectral image fusion method, multi-spectral segmentation fusion (MSSF), which uses a feature level processing paradigm. To test our method, we compared human observer performance in a three-task experiment using MSSF against two established methods: averaging and principle components analysis (PCA), and against its two source bands, visible and infrared. The three tasks that we studied were: (1) simple target detection, (2) spatial orientation, and (3) camouflaged target detection. MSSF proved superior to the other fusion methods in all three tests; MSSF also outperformed the source images in the spatial orientation and camouflaged target detection tasks. Based on these findings, current speculation about the circumstances in which multi-spectral image fusion in general and specific fusion methods in particular would be superior to using the original image sources can be further addressed.
Perceived Average Orientation Reflects Effective Gist of the Surface.
Cha, Oakyoon; Chong, Sang Chul
2018-03-01
The human ability to represent ensemble visual information, such as average orientation and size, has been suggested as the foundation of gist perception. To effectively summarize different groups of objects into the gist of a scene, observers should form ensembles separately for different groups, even when objects have similar visual features across groups. We hypothesized that the visual system utilizes perceptual groups characterized by spatial configuration and represents separate ensembles for different groups. Therefore, participants could not integrate ensembles of different perceptual groups on a task basis. We asked participants to determine the average orientation of visual elements comprising a surface with a contour situated inside. Although participants were asked to estimate the average orientation of all the elements, they ignored orientation signals embedded in the contour. This constraint may help the visual system to keep the visual features of occluding objects separate from those of the occluded objects.
Edge orientation signals in tactile afferents of macaques
Suresh, Aneesha K.
2016-01-01
The orientation of edges indented into the skin has been shown to be encoded in the responses of neurons in primary somatosensory cortex in a manner that draws remarkable analogies to their counterparts in primary visual cortex. According to the classical view, orientation tuning arises from the integration of untuned input from thalamic neurons with aligned but spatially displaced receptive fields (RFs). In a recent microneurography study with human subjects, the precise temporal structure of the responses of individual mechanoreceptive afferents to scanned edges was found to carry information about their orientation. This putative mechanism could in principle contribute to or complement the classical rate-based code for orientation. In the present study, we further examine orientation information carried by mechanoreceptive afferents of Rhesus monkeys. To this end, we record the activity evoked in cutaneous mechanoreceptive afferents when edges are indented into or scanned across the skin. First, we confirm that information about the edge orientation can be extracted from the temporal patterning in afferent responses of monkeys, as is the case in humans. Second, we find that while the coarse temporal profile of the response can be predicted linearly from the layout of the RF, the fine temporal profile cannot. Finally, we show that orientation signals in tactile afferents are often highly dependent on stimulus features other than orientation, which complicates putative decoding strategies. We discuss the challenges associated with establishing a neural code at the somatosensory periphery, where afferents are exquisitely sensitive and nearly deterministic. PMID:27655968
The computational worm: spatial orientation and its neuronal basis in C. elegans.
Lockery, Shawn R
2011-10-01
Spatial orientation behaviors in animals are fundamental for survival but poorly understood at the neuronal level. The nematode Caenorhabditis elegans orients to a wide range of stimuli and has a numerically small and well-described nervous system making it advantageous for investigating the mechanisms of spatial orientation. Recent work by the C. elegans research community has identified essential computational elements of the neural circuits underlying two orientation strategies that operate in five different sensory modalities. Analysis of these circuits reveals novel motifs including simple circuits for computing temporal derivatives of sensory input and for integrating sensory input with behavioral state to generate adaptive behavior. These motifs constitute hypotheses concerning the identity and functionality of circuits controlling spatial orientation in higher organisms. Copyright © 2011 Elsevier Ltd. All rights reserved.
A spherical model for orientation and spatial-frequency tuning in a cortical hypercolumn.
Bressloff, Paul C; Cowan, Jack D
2003-01-01
A theory is presented of the way in which the hypercolumns in primary visual cortex (V1) are organized to detect important features of visual images, namely local orientation and spatial-frequency. Given the existence in V1 of dual maps for these features, both organized around orientation pinwheels, we constructed a model of a hypercolumn in which orientation and spatial-frequency preferences are represented by the two angular coordinates of a sphere. The two poles of this sphere are taken to correspond, respectively, to high and low spatial-frequency preferences. In Part I of the paper, we use mean-field methods to derive exact solutions for localized activity states on the sphere. We show how cortical amplification through recurrent interactions generates a sharply tuned, contrast-invariant population response to both local orientation and local spatial frequency, even in the case of a weakly biased input from the lateral geniculate nucleus (LGN). A major prediction of our model is that this response is non-separable with respect to the local orientation and spatial frequency of a stimulus. That is, orientation tuning is weaker around the pinwheels, and there is a shift in spatial-frequency tuning towards that of the closest pinwheel at non-optimal orientations. In Part II of the paper, we demonstrate that a simple feed-forward model of spatial-frequency preference, unlike that for orientation preference, does not generate a faithful representation when amplified by recurrent interactions in V1. We then introduce the idea that cortico-geniculate feedback modulates LGN activity to generate a faithful representation, thus providing a new functional interpretation of the role of this feedback pathway. Using linear filter theory, we show that if the feedback from a cortical cell is taken to be approximately equal to the reciprocal of the corresponding feed-forward receptive field (in the two-dimensional Fourier domain), then the mismatch between the feed-forward and cortical frequency representations is eliminated. We therefore predict that cortico-geniculate feedback connections innervate the LGN in a pattern determined by the orientation and spatial-frequency biases of feed-forward receptive fields. Finally, we show how recurrent cortical interactions can generate cross-orientation suppression. PMID:14561324
Spatial Orienting of Attention in Dyslexic Adults Using Directional and Alphabetic Cues
ERIC Educational Resources Information Center
Judge, Jeannie; Knox, Paul C.; Caravolas, Marketa
2013-01-01
Spatial attention performance was investigated in adults with dyslexia. Groups with and without dyslexia completed literacy/phonological tasks as well as two spatial cueing tasks, in which attention was oriented in response to a centrally presented pictorial (arrow) or alphabetic (letter) cue. Cued response times and orienting effects were largely…
Accessibility versus Accuracy in Retrieving Spatial Memory: Evidence for Suboptimal Assumed Headings
ERIC Educational Resources Information Center
Yerramsetti, Ashok; Marchette, Steven A.; Shelton, Amy L.
2013-01-01
Orientation dependence in spatial memory has often been interpreted in terms of accessibility: Object locations are encoded relative to a reference orientation that affords the most accurate access to spatial memory. An open question, however, is whether people naturally use this "preferred" orientation whenever recalling the space. We…
Numerical simulation of human orientation perception during lunar landing
NASA Astrophysics Data System (ADS)
Clark, Torin K.; Young, Laurence R.; Stimpson, Alexander J.; Duda, Kevin R.; Oman, Charles M.
2011-09-01
In lunar landing it is necessary to select a suitable landing point and then control a stable descent to the surface. In manned landings, astronauts will play a critical role in monitoring systems and adjusting the descent trajectory through either supervisory control and landing point designations, or by direct manual control. For the astronauts to ensure vehicle performance and safety, they will have to accurately perceive vehicle orientation. A numerical model for human spatial orientation perception was simulated using input motions from lunar landing trajectories to predict the potential for misperceptions. Three representative trajectories were studied: an automated trajectory, a landing point designation trajectory, and a challenging manual control trajectory. These trajectories were studied under three cases with different cues activated in the model to study the importance of vestibular cues, visual cues, and the effect of the descent engine thruster creating dust blowback. The model predicts that spatial misperceptions are likely to occur as a result of the lunar landing motions, particularly with limited or incomplete visual cues. The powered descent acceleration profile creates a somatogravic illusion causing the astronauts to falsely perceive themselves and the vehicle as upright, even when the vehicle has a large pitch or roll angle. When visual pathways were activated within the model these illusions were mostly suppressed. Dust blowback, obscuring the visual scene out the window, was also found to create disorientation. These orientation illusions are likely to interfere with the astronauts' ability to effectively control the vehicle, potentially degrading performance and safety. Therefore suitable countermeasures, including disorientation training and advanced displays, are recommended.
From Resource-Adaptive Navigation Assistance to Augmented Cognition
NASA Astrophysics Data System (ADS)
Zimmer, Hubert D.; Münzer, Stefan; Baus, Jörg
In an assistance scenario, a computer provides purposive information supporting a human user in an everyday situation. Wayfinding with navigation assistance is a prototypical assistance scenario. The present chapter analyzes the interplay of the resources of the assistance system and the resources of the user. The navigation assistance system provides geographic knowledge, positioning information, route planning, spatial overview information, and route commands at decision points. The user's resources encompass spatial knowledge, spatial abilities and visuo-spatial working memory, orientation strategies, and cultural habit. Flexible adaptations of the assistance system to available resources of the user are described, taking different wayfinding goals, situational constraints, and individual differences into account. Throughout the chapter, the idea is pursued that the available resources of the user should be kept active.
Spatial Encounters: Exercises in Spatial Awareness.
ERIC Educational Resources Information Center
New Mexico Univ., Albuquerque.
This series of activities on spatial relationships was designed to help users acquire the skills of spatial visualization and orientation and to improve their effectiveness in applying those skills. The series contains an introduction to spatial orientation with several self-directed activities to help improve that skill. It also contains seven…
Arnold, Aiden E G F; Protzner, Andrea B; Bray, Signe; Levy, Richard M; Iaria, Giuseppe
2014-02-01
Spatial orientation is a complex cognitive process requiring the integration of information processed in a distributed system of brain regions. Current models on the neural basis of spatial orientation are based primarily on the functional role of single brain regions, with limited understanding of how interaction among these brain regions relates to behavior. In this study, we investigated two sources of variability in the neural networks that support spatial orientation--network configuration and efficiency--and assessed whether variability in these topological properties relates to individual differences in orientation accuracy. Participants with higher accuracy were shown to express greater activity in the right supramarginal gyrus, the right precentral cortex, and the left hippocampus, over and above a core network engaged by the whole group. Additionally, high-performing individuals had increased levels of global efficiency within a resting-state network composed of brain regions engaged during orientation and increased levels of node centrality in the right supramarginal gyrus, the right primary motor cortex, and the left hippocampus. These results indicate that individual differences in the configuration of task-related networks and their efficiency measured at rest relate to the ability to spatially orient. Our findings advance systems neuroscience models of orientation and navigation by providing insight into the role of functional integration in shaping orientation behavior.
Selection within working memory based on a color retro-cue modulates alpha oscillations.
Poch, Claudia; Capilla, Almudena; Hinojosa, José Antonio; Campo, Pablo
2017-11-01
Working Memory (WM) maintains flexible representations. Retrospective cueing studies indicate that selective attention can be directed to memory representations in WM improving performance. While most of the work has explored the neural substrates of orienting attention based on a spatial retro-cue, behavioral studies show that a feature other than location can also improve WM performance. In the present work we explored the oscillatory underpinnings of orienting attention to a relevant representation held in WM guided by a feature value. We recorded EEG data in a group of 36 healthy human subjects (20 females) performing a WM task in which they had to memorize the orientation of four rectangles of different colors. After a maintenance period, a cue was presented indicating the color of the relevant item. We showed that directing attention to a memory item based on its color resulted in a modulation of posterior alpha activity, which appears as more desynchronization in the contralateral than in the ipsilateral hemisphere. Alpha lateralization is considered a neurophysiological marker of external and internal spatial attention. We propose that current findings support the idea that selection of a memory item based on a non-location feature could be accomplished by a spatial attentional mechanism. Moreover, using a centrally presented color retro-cue allowed us to surpass the confounds inherent to the use of spatial retro-cues, supporting that the observed lateralized alpha results from an endogenous attentional mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gangolli, Mihika; Holleran, Laurena; Kim, Joong Hee; Stein, Thor D.; Alvarez, Victor; McKee, Ann C.; Brody, David L.
2017-01-01
Advanced diffusion MRI methods have recently been proposed for detection of pathologies such as traumatic axonal injury and chronic traumatic encephalopathy which commonly affect complex cortical brain regions. However, radiological-pathological correlations in human brain tissue that detail the relationship between the multi-component diffusion signal and underlying pathology are lacking. We present a nonlinear voxel based two dimensional coregistration method that is useful for matching diffusion signals to quantitative metrics of high resolution histological images. When validated in ex vivo human cortical tissue at a 250 × 250 × 500 micron spatial resolution, the method proved robust in correlations between generalized q-sampling imaging and histologically based white matter fiber orientations, with r = 0.94 for the primary fiber direction and r = 0.88 for secondary fiber direction in each voxel. Importantly, however, the correlation was substantially worse with reduced spatial resolution or with fiber orientations derived using a diffusion tensor model. Furthermore, we have detailed a quantitative histological metric of white matter fiber integrity termed power coherence capable of distinguishing between architecturally complex but intact white matter from disrupted white matter regions. These methods may allow for more sensitive and specific radiological-pathological correlations of neurodegenerative diseases affecting complex gray and white matter. PMID:28365421
Palm, Christoph; Axer, Markus; Gräßel, David; Dammers, Jürgen; Lindemeyer, Johannes; Zilles, Karl; Pietrzyk, Uwe; Amunts, Katrin
2009-01-01
Polarised light imaging (PLI) utilises the birefringence of the myelin sheaths in order to visualise the orientation of nerve fibres in microtome sections of adult human post-mortem brains at ultra-high spatial resolution. The preparation of post-mortem brains for PLI involves fixation, freezing and cutting into 100-μm-thick sections. Hence, geometrical distortions of histological sections are inevitable and have to be removed for 3D reconstruction and subsequent fibre tracking. We here present a processing pipeline for 3D reconstruction of these sections using PLI derived multimodal images of post-mortem brains. Blockface images of the brains were obtained during cutting; they serve as reference data for alignment and elimination of distortion artefacts. In addition to the spatial image transformation, fibre orientation vectors were reoriented using the transformation fields, which consider both affine and subsequent non-linear registration. The application of this registration and reorientation approach results in a smooth fibre vector field, which reflects brain morphology. PLI combined with 3D reconstruction and fibre tracking is a powerful tool for human brain mapping. It can also serve as an independent method for evaluating in vivo fibre tractography. PMID:20461231
Kartashov, D A; Shurshakov, V A
2015-01-01
The paper presents the results of calculating doses from space ionizing radiation for a modeled orbital station cabin outfitted with an additional shield aimed to reduce radiation loads on cosmonaut. The shield is a layer with the mass thickness of -6 g/cm2 (mean density = 0.62 g/cm3) that covers the outer cabin wall and consists of wet tissues and towels used by cosmonauts for hygienic purposes. A tissue-equivalent anthropomorphic phantom imitates human body. Doses were calculated for the standard orbit of the International space station (ISS) with consideration of the longitudinal and transverse phantom orientation relative to the wall with or without the additional shield. Calculation of dose distribution in the human body improves prediction of radiation loads. The additional shield reduces radiation exposure of human critical organs by -20% depending on their depth and body spatial orientation in the ISS compartment.
Expectancy modulates pupil size during endogenous orienting of spatial attention.
Dragone, Alessio; Lasaponara, Stefano; Pinto, Mario; Rotondaro, Francesca; De Luca, Maria; Doricchi, Fabrizio
2018-05-01
fMRI investigations in healthy humans have documented phasic changes in the level of activation of the right temporal-parietal junction (TPJ) during cued voluntary orienting of spatial attention. Cues that correctly predict the position of upcoming targets in the majority of trials, i.e., predictive cues, produce higher deactivation of the right TPJ as compared with non-predictive cues. Since the right TPJ is the recipient of noradrenergic (NE) innervation, it has been hypothesised that changes in the level of TPJ activity are matched with changes in the level of NE activity. Based on aforementioned fMRI findings, this might imply that orienting with predictive cues is matched with different levels of NE activity as compared with non-predictive cues. To test this hypothesis, we measured changes in pupil dilation, an indirect index of NE activity, during voluntary orienting of attention with highly predictive (80% validity) or non-predictive (50% validity) cues. In agreement with current interpretations of the tonic/phasic activity of the Locus Coeruleus-Norepinephrinic system (LC-NE), we found that the steady level of cue predictiveness that characterised both the predictive and non-predictive conditions caused, across consecutive blocks of trials, a progressive decrement in pupil dilation during the baseline-fixation period that anticipated the cue period. With predictive cues we observed increased pupil dilation as compared with non-predictive cues. In addition, the relative reduction in pupil size observed with non-predictive cues increased as a function of cue-duration. These results show that changes in the predictiveness of cues that guide voluntary orienting of spatial attention are matched with changes in pupil dilation and, putatively, with corresponding changes in LC-NE activity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Global-local visual biases correspond with visual-spatial orientation.
Basso, Michael R; Lowery, Natasha
2004-02-01
Within the past decade, numerous investigations have demonstrated reliable associations of global-local visual processing biases with right and left hemisphere function, respectively (cf. Van Kleeck, 1989). Yet the relevance of these biases to other cognitive functions is not well understood. Towards this end, the present research examined the relationship between global-local visual biases and perception of visual-spatial orientation. Twenty-six women and 23 men completed a global-local judgment task (Kimchi and Palmer, 1982) and the Judgment of Line Orientation Test (JLO; Benton, Sivan, Hamsher, Varney, and Spreen, 1994), a measure of visual-spatial orientation. As expected, men had better performance on JLO. Extending previous findings, global biases were related to better visual-spatial acuity on JLO. The findings suggest that global-local biases and visual-spatial orientation may share underlying cerebral mechanisms. Implications of these findings for other visually mediated cognitive outcomes are discussed.
Català, Andreu; Rodríguez Martín, Daniel; van der Aa, Nico; Chen, Wei; Rauterberg, Matthias
2013-01-01
Background Freezing of gait (FoG) is one of the most disturbing and least understood symptoms in Parkinson disease (PD). Although the majority of existing assistive systems assume accurate detections of FoG episodes, the detection itself is still an open problem. The specificity of FoG is its dependency on the context of a patient, such as the current location or activity. Knowing the patient's context might improve FoG detection. One of the main technical challenges that needs to be solved in order to start using contextual information for FoG detection is accurate estimation of the patient's position and orientation toward key elements of his or her indoor environment. Objective The objectives of this paper are to (1) present the concept of the monitoring system, based on wearable and ambient sensors, which is designed to detect FoG using the spatial context of the user, (2) establish a set of requirements for the application of position and orientation tracking in FoG detection, (3) evaluate the accuracy of the position estimation for the tracking system, and (4) evaluate two different methods for human orientation estimation. Methods We developed a prototype system to localize humans and track their orientation, as an important prerequisite for a context-based FoG monitoring system. To setup the system for experiments with real PD patients, the accuracy of the position and orientation tracking was assessed under laboratory conditions in 12 participants. To collect the data, the participants were asked to wear a smartphone, with and without known orientation around the waist, while walking over a predefined path in the marked area captured by two Kinect cameras with non-overlapping fields of view. Results We used the root mean square error (RMSE) as the main performance measure. The vision based position tracking algorithm achieved RMSE = 0.16 m in position estimation for upright standing people. The experimental results for the proposed human orientation estimation methods demonstrated the adaptivity and robustness to changes in the smartphone attachment position, when the fusion of both vision and inertial information was used. Conclusions The system achieves satisfactory accuracy on indoor position tracking for the use in the FoG detection application with spatial context. The combination of inertial and vision information has the potential for correct patient heading estimation even when the inertial wearable sensor device is put into an a priori unknown position. PMID:25098265
Takač, Boris; Català, Andreu; Rodríguez Martín, Daniel; van der Aa, Nico; Chen, Wei; Rauterberg, Matthias
2013-07-15
Freezing of gait (FoG) is one of the most disturbing and least understood symptoms in Parkinson disease (PD). Although the majority of existing assistive systems assume accurate detections of FoG episodes, the detection itself is still an open problem. The specificity of FoG is its dependency on the context of a patient, such as the current location or activity. Knowing the patient's context might improve FoG detection. One of the main technical challenges that needs to be solved in order to start using contextual information for FoG detection is accurate estimation of the patient's position and orientation toward key elements of his or her indoor environment. The objectives of this paper are to (1) present the concept of the monitoring system, based on wearable and ambient sensors, which is designed to detect FoG using the spatial context of the user, (2) establish a set of requirements for the application of position and orientation tracking in FoG detection, (3) evaluate the accuracy of the position estimation for the tracking system, and (4) evaluate two different methods for human orientation estimation. We developed a prototype system to localize humans and track their orientation, as an important prerequisite for a context-based FoG monitoring system. To setup the system for experiments with real PD patients, the accuracy of the position and orientation tracking was assessed under laboratory conditions in 12 participants. To collect the data, the participants were asked to wear a smartphone, with and without known orientation around the waist, while walking over a predefined path in the marked area captured by two Kinect cameras with non-overlapping fields of view. We used the root mean square error (RMSE) as the main performance measure. The vision based position tracking algorithm achieved RMSE = 0.16 m in position estimation for upright standing people. The experimental results for the proposed human orientation estimation methods demonstrated the adaptivity and robustness to changes in the smartphone attachment position, when the fusion of both vision and inertial information was used. The system achieves satisfactory accuracy on indoor position tracking for the use in the FoG detection application with spatial context. The combination of inertial and vision information has the potential for correct patient heading estimation even when the inertial wearable sensor device is put into an a priori unknown position.
Keys and seats: Spatial response coding underlying the joint spatial compatibility effect.
Dittrich, Kerstin; Dolk, Thomas; Rothe-Wulf, Annelie; Klauer, Karl Christoph; Prinz, Wolfgang
2013-11-01
Spatial compatibility effects (SCEs) are typically observed when participants have to execute spatially defined responses to nonspatial stimulus features (e.g., the color red or green) that randomly appear to the left and the right. Whereas a spatial correspondence of stimulus and response features facilitates response execution, a noncorrespondence impairs task performance. Interestingly, the SCE is drastically reduced when a single participant responds to one stimulus feature (e.g., green) by operating only one response key (individual go/no-go task), whereas a full-blown SCE is observed when the task is distributed between two participants (joint go/no-go task). This joint SCE (a.k.a. the social Simon effect) has previously been explained by action/task co-representation, whereas alternative accounts ascribe joint SCEs to spatial components inherent in joint go/no-go tasks that allow participants to code their responses spatially. Although increasing evidence supports the idea that spatial rather than social aspects are responsible for joint SCEs emerging, it is still unclear to which component(s) the spatial coding refers to: the spatial orientation of response keys, the spatial orientation of responding agents, or both. By varying the spatial orientation of the responding agents (Exp. 1) and of the response keys (Exp. 2), independent of the spatial orientation of the stimuli, in the present study we found joint SCEs only when both the seating and the response key alignment matched the stimulus alignment. These results provide evidence that spatial response coding refers not only to the response key arrangement, but also to the-often neglected-spatial orientation of the responding agents.
Local structure of human hair spatially resolved by sub-micron X-ray beam.
Stanić, Vesna; Bettini, Jefferson; Montoro, Fabiano Emmanuel; Stein, Aaron; Evans-Lutterodt, Kenneth
2015-11-30
Human hair has three main regions, the medulla, the cortex, and the cuticle. An existing model for the cortex suggests that the α-keratin- based intermediate filaments (IFs) align with the hair's axis, but are orientationally disordered in-plane. We found that there is a new region in the cortex near the cuticle's boundary in which the IFs are aligned with the hair's axis, but additionally, they are orientationally ordered in-plane due to the presence of the cuticle/hair boundary. Further into the cortex, the IF arrangement becomes disordered, eventually losing all in-plane orientation. We also find that in the cuticle, a key diffraction feature is absent, indicating the presence of the β-keratin rather than that of the α-keratin phase. This is direct structural evidence that the cuticle contains β-keratin sheets. This work highlights the importance of using a sub-micron x-ray beam to unravel the structures of poorly ordered, multi-phase systems.
Orientation of human optokinetic nystagmus to gravity: a model-based approach
NASA Technical Reports Server (NTRS)
Gizzi, M.; Raphan, T.; Rudolph, S.; Cohen, B.
1994-01-01
Optokinetic nystagmus (OKN) was induced by having subjects watch a moving display in a binocular, head-fixed apparatus. The display was composed of 3.3 degrees stripes moving at 35 degrees/s for 45 s. It subtended 88 degrees horizontally by 72 degrees vertically of the central visual field and could be oriented to rotate about axes that were upright or tilted 45 degrees or 90 degrees. The head was held upright or was tilted 45 degrees left or right on the body during stimulation. Head-horizontal (yaw axis) and head-vertical (pitch axis) components of OKN were recorded with electro-oculography (EOG). Slow phase velocity vectors were determined and compared with the axis of stimulation and the spatial vertical (gravity axis). With the head upright, the axis of eye rotation during yaw axis OKN was coincident with the stimulus axis and the spatial vertical. With the head tilted, a significant vertical component of eye velocity appeared during yaw axis stimulation. As a result the axis of eye rotation shifted from the stimulus axis toward the spatial vertical. Vertical components developed within 1-2 s of stimulus onset and persisted until the end of stimulation. In the six subjects there was a mean shift of the axis of eye rotation during yaw axis stimulation of approximately 18 degrees with the head tilted 45 degrees on the body. Oblique optokinetic stimulation with the head upright was associated with a mean shift of the axis of eye rotation toward the spatial vertical of 9.2 degrees. When the head was tilted and the same oblique stimulation was given, the axis of eye rotation rotated to the other side of the spatial vertical by 5.4 degrees. This counterrotation of the axis of eye rotation is similar to the "Muller (E) effect," in which the perception of the upright is counterrotated to the opposite side of the spatial vertical when subjects are tilted in darkness. The data were simulated by a model of OKN with a "direct" and "indirect" pathway. It was assumed that the direct visual pathway is oriented in a body, not a spatial frame of reference. Despite the short optokinetic after-nystagmus time constants, strong horizontal to vertical cross-coupling could be produced if the horizontal and vertical time constants were in proper ratio and there were no suppression of nystagmus in directions orthogonal to the stimulus direction. The model demonstrates that the spatial orientation of OKN can be achieved by restructuring the system matrix of velocity storage. We conclude that an important function of velocity storage is to orient slow-phase velocity toward the spatial vertical during movement in a terrestrial environment.
At Birth, Humans Associate "Few" with Left and "Many" with Right.
de Hevia, Maria Dolores; Veggiotti, Ludovica; Streri, Arlette; Bonn, Cory D
2017-12-18
Humans use spatial representations to structure abstract concepts [1]. One of the most well-known examples is the "mental number line"-the propensity to imagine numbers oriented in space [2, 3]. Human infants [4, 5], children [6, 7], adults [8], and nonhuman animals [9, 10] associate small numbers with the left side of space and large numbers with the right. In humans, cultural artifacts, such as the direction of reading and writing, modulate the directionality of this representation, with right-to-left reading cultures associating small numbers with right and large numbers with left [11], whereas the opposite association permeates left-to-right reading cultures [8]. Number-space mapping plays a central role in human mathematical concepts [12], but its origins remain unclear: is it the result of an innate bias or does it develop after birth? Infant humans are passively exposed to a spatially coded environment, so experience and culture could underlie the mental number line. To rule out this possibility, we tested neonates' responses to small or large auditory quantities paired with geometric figures presented on either the left or right sides of the screen. We show that 0- to 3-day-old neonates associate a small quantity with the left and a large quantity with the right when the multidimensional stimulus contains discrete numerical information, providing evidence that representations of number are associated to an oriented space at the start of postnatal life, prior to experience with language, culture, or with culture-specific biases. Copyright © 2017 Elsevier Ltd. All rights reserved.
Visual spatial cue use for guiding orientation in two-to-three-year-old children
van den Brink, Danielle; Janzen, Gabriele
2013-01-01
In spatial development representations of the environment and the use of spatial cues change over time. To date, the influence of individual differences in skills relevant for orientation and navigation has not received much attention. The current study investigated orientation abilities on the basis of visual spatial cues in 2–3-year-old children, and assessed factors that possibly influence spatial task performance. Thirty-month and 35-month-olds performed an on-screen Virtual Reality (VR) orientation task searching for an animated target in the presence of visual self-movement cues and landmark information. Results show that, in contrast to 30-month-old children, 35-month-olds were successful in using visual spatial cues for maintaining orientation. Neither age group benefited from landmarks present in the environment, suggesting that successful task performance relied on the use of optic flow cues, rather than object-to-object relations. Analysis of individual differences revealed that 2-year-olds who were relatively more independent in comparison to their peers, as measured by the daily living skills scale of the parental questionnaire Vineland-Screener were most successful at the orientation task. These results support previous findings indicating that the use of various spatial cues gradually improves during early childhood. Our data show that a developmental transition in spatial cue use can be witnessed within a relatively short period of 5 months only. Furthermore, this study indicates that rather than chronological age, individual differences may play a role in successful use of visual cues for spatial updating in an orientation task. Future studies are necessary to assess the exact nature of these individual differences. PMID:24368903
Visual spatial cue use for guiding orientation in two-to-three-year-old children.
van den Brink, Danielle; Janzen, Gabriele
2013-01-01
In spatial development representations of the environment and the use of spatial cues change over time. To date, the influence of individual differences in skills relevant for orientation and navigation has not received much attention. The current study investigated orientation abilities on the basis of visual spatial cues in 2-3-year-old children, and assessed factors that possibly influence spatial task performance. Thirty-month and 35-month-olds performed an on-screen Virtual Reality (VR) orientation task searching for an animated target in the presence of visual self-movement cues and landmark information. Results show that, in contrast to 30-month-old children, 35-month-olds were successful in using visual spatial cues for maintaining orientation. Neither age group benefited from landmarks present in the environment, suggesting that successful task performance relied on the use of optic flow cues, rather than object-to-object relations. Analysis of individual differences revealed that 2-year-olds who were relatively more independent in comparison to their peers, as measured by the daily living skills scale of the parental questionnaire Vineland-Screener were most successful at the orientation task. These results support previous findings indicating that the use of various spatial cues gradually improves during early childhood. Our data show that a developmental transition in spatial cue use can be witnessed within a relatively short period of 5 months only. Furthermore, this study indicates that rather than chronological age, individual differences may play a role in successful use of visual cues for spatial updating in an orientation task. Future studies are necessary to assess the exact nature of these individual differences.
Covert Auditory Spatial Orienting: An Evaluation of the Spatial Relevance Hypothesis
ERIC Educational Resources Information Center
Roberts, Katherine L.; Summerfield, A. Quentin; Hall, Deborah A.
2009-01-01
The spatial relevance hypothesis (J. J. McDonald & L. M. Ward, 1999) proposes that covert auditory spatial orienting can only be beneficial to auditory processing when task stimuli are encoded spatially. We present a series of experiments that evaluate 2 key aspects of the hypothesis: (a) that "reflexive activation of location-sensitive neurons is…
Lateralization of Frequency-Specific Networks for Covert Spatial Attention to Auditory Stimuli
Thorpe, Samuel; D'Zmura, Michael
2011-01-01
We conducted a cued spatial attention experiment to investigate the time–frequency structure of human EEG induced by attentional orientation of an observer in external auditory space. Seven subjects participated in a task in which attention was cued to one of two spatial locations at left and right. Subjects were instructed to report the speech stimulus at the cued location and to ignore a simultaneous speech stream originating from the uncued location. EEG was recorded from the onset of the directional cue through the offset of the inter-stimulus interval (ISI), during which attention was directed toward the cued location. Using a wavelet spectrum, each frequency band was then normalized by the mean level of power observed in the early part of the cue interval to obtain a measure of induced power related to the deployment of attention. Topographies of band specific induced power during the cue and inter-stimulus intervals showed peaks over symmetric bilateral scalp areas. We used a bootstrap analysis of a lateralization measure defined for symmetric groups of channels in each band to identify specific lateralization events throughout the ISI. Our results suggest that the deployment and maintenance of spatially oriented attention throughout a period of 1,100 ms is marked by distinct episodes of reliable hemispheric lateralization ipsilateral to the direction in which attention is oriented. An early theta lateralization was evident over posterior parietal electrodes and was sustained throughout the ISI. In the alpha and mu bands punctuated episodes of parietal power lateralization were observed roughly 500 ms after attentional deployment, consistent with previous studies of visual attention. In the beta band these episodes show similar patterns of lateralization over frontal motor areas. These results indicate that spatial attention involves similar mechanisms in the auditory and visual modalities. PMID:21630112
Jackson, Margaret C; Morgan, Helen M; Shapiro, Kimron L; Mohr, Harald; Linden, David EJ
2011-01-01
The ability to integrate different types of information (e.g., object identity and spatial orientation) and maintain or manipulate them concurrently in working memory (WM) facilitates the flow of ongoing tasks and is essential for normal human cognition. Research shows that object and spatial information is maintained and manipulated in WM via separate pathways in the brain (object/ventral versus spatial/dorsal). How does the human brain coordinate the activity of different specialized systems to conjoin different types of information? Here we used functional magnetic resonance imaging to investigate conjunction- versus single-task manipulation of object (compute average color blend) and spatial (compute intermediate angle) information in WM. Object WM was associated with ventral (inferior frontal gyrus, occipital cortex), and spatial WM with dorsal (parietal cortex, superior frontal, and temporal sulci) regions. Conjoined object/spatial WM resulted in intermediate activity in these specialized areas, but greater activity in different prefrontal and parietal areas. Unique to our study, we found lower temporo-occipital activity and greater deactivation in temporal and medial prefrontal cortices for conjunction- versus single-tasks. Using structural equation modeling, we derived a conjunction-task connectivity model that comprises a frontoparietal network with a bidirectional DLPFC-VLPFC connection, and a direct parietal-extrastriate pathway. We suggest that these activation/deactivation patterns reflect efficient resource allocation throughout the brain and propose a new extended version of the biased competition model of WM. Hum Brain Mapp, 2011. © 2010 Wiley-Liss, Inc. PMID:20715083
Human spatial orientation in the pitch dimension
NASA Technical Reports Server (NTRS)
Cohen, M. M.; Larson, C. A.
1974-01-01
Two experiments were conducted. In Experiment I, each of eight Ss attempted to place himself at 13 different goal orientations between prone and supine. Deviations of achieved body pitch angles from goal orientations were determined. In Experiment II, each of eight Ss attempted to align a visual target with his morphological horizon while he was placed at each of the 13 goal orientations. Changes in settings of the target were examined. Results indicate that Ss underestimate body pitch when they are tilted less than 60 deg backward or forward from the vertical, overestimate body pitch when they are nearly prone, and accurately estimate body pitch when they are nearly supine. In contrast, Ss set the visual target maximally above the morphological horizon when they are tilted 30 deg forward from the vertical. The findings are discussed in terms of common and different physiological mechanism that may underlie judgments of these types.
Spatial Orienting Following Dynamic Cues in Infancy: Grasping Hands versus Inanimate Objects
ERIC Educational Resources Information Center
Wronski, Caroline; Daum, Moritz M.
2014-01-01
Movement perception facilitates spatial orienting of attention in infants (Farroni, Johnson, Brockbank, & Simion, 2000). In a series of 4 experiments, we investigated how orienting of attention in infancy is modulated by dynamic stimuli. Experiment 1 (N = 36) demonstrated that 5-month-olds as well as 7-month-olds orient to the direction of a…
[Development of spatial orientation during pilot training].
Ivanov, V V; Vorob'ev, O A; Snipkov, Iu Iu
1988-01-01
The problem of spatial orientation of pilots flying high-altitude aircraft is in the focus of present-day aviation medicine because of a growing number of accidents in the air. One of the productive lines of research is to study spatial orientation in terms of active formation and maintenance of its imagery in a complex environment. However investigators usually emphasize the role of visual (instrumental) information in the image construction, almost ignoring the sensorimotor component of spatial orientation. The theoretical analysis of the process of spatial orientation has facilitated the development of the concept assuming that the pattern of space perception changes with growing professional experience. The concept is based on an active approach to the essence, emergence, formation and variation in the pattern of sensory perception of space in man's consciousness. This concept asserts that as pilot's professional expertise increases, the pattern of spatial orientation becomes geocentric because a new system of spatial perception evolves which is a result of the development of a new (instrumental) type of motor activity in space. This finds expression in the fact that perception of spatial position inflight occurs when man has to resolve a new motor task--movement along a complex trajectory in the three-dimensional space onboard a flying vehicle. The meaningful structure of this problem which is to be implemented through controlling movements of the pilot acts as a factor that forms this new system of perception. All this underlies the arrangement of meaningful collection of instrumental data and detection of noninstrumental signals in the comprehensive perception of changes in the spatial position of a flying vehicle.
Kim, Yeon Jin; Gheiratmand, Mina; Mullen, Kathy T
2013-05-28
Cross-orientation masking (XOM) occurs when the detection of a test grating is masked by a superimposed grating at an orthogonal orientation, and is thought to reveal the suppressive effects mediating contrast normalization. Medina and Mullen (2009) reported that XOM was greater for chromatic than achromatic stimuli at equivalent spatial and temporal frequencies. Here we address whether the greater suppression found in binocular color vision originates from a monocular or interocular site, or both. We measure monocular and dichoptic masking functions for red-green color contrast and achromatic contrast at three different spatial frequencies (0.375, 0.75, and 1.5 cpd, 2 Hz). We fit these functions with a modified two-stage masking model (Meese & Baker, 2009) to extract the monocular and interocular weights of suppression. We find that the weight of monocular suppression is significantly higher for color than achromatic contrast, whereas dichoptic suppression is similar for both. These effects are invariant across spatial frequency. We then apply the model to the binocular masking data using the measured values of the monocular and interocular sources of suppression and show that these are sufficient to account for color binocular masking. We conclude that the greater strength of chromatic XOM has a monocular origin that transfers through to the binocular site.
He, Xiaofei; Lan, Yue; Xu, Guangqing; Mao, Yurong; Chen, Zhenghong; Huang, Dongfeng; Pei, Zhong
2013-12-01
Brain injury to the dorsal frontoparietal networks, including the posterior parietal cortex (PPC) and dorsolateral prefrontal cortex (DLPFC), commonly cause spatial neglect. However, the interaction of these different regions in spatial attention is unclear. The aim of the present study was to investigate whether hyperexcitable neural networks can cause an abnormal interhemispheric inhibition. The Attention Network Test was used to test subjects following intermittent theta burst stimulation (iTBS) to the left or right frontoparietal networks. During the Attention Network Test task, all subjects tolerated each conditioning iTBS without any obvious iTBS-related side effects. Subjects receiving real-right-PPC iTBS showed significant enhancement in both alerting and orienting efficiency compared with those receiving either sham-right-PPC iTBS or real-left-PPC iTBS. Moreover, subjects exposed to the real-right-DLPFC iTBS exhibited significant improvement in both alerting and executive control efficiency, compared with those exposed to either the sham-right-DLPFC or real-left-DLPFC conditioning. Interestingly, compared with subjects exposed to the sham-left-PPC stimuli, subjects exposed to the real-left-PPC iTBS had a significant deficit in the orienting index. The present study indicates that iTBS over the contralateral homologous cortex may induce the hypoactivity of the right PPC through interhemispheric competition in spatial orienting attention.
Simmons, Lisa M; Montgomery, Janet; Beaumont, Julia; Davis, Graham R; Al-Jawad, Maisoon
2013-11-01
The complex biological, physicochemical process of human dental enamel formation begins in utero and for most teeth takes several years to complete. Lost enamel tissue cannot regenerate, therefore a better understanding of the spatial and temporal progression of mineralization of this tissue is needed in order to design improved in vivo mineral growth processes for regenerative dentistry and allow the possibility to grow a synthetic whole or partial tooth. Human dental enamel samples across a range of developmental stages available through archaeological collections have been used to explore the spatial and temporal progression of enamel biomineralization. Position sensitive synchrotron X-ray diffraction was used to quantify spatial and temporal variations in crystallite organization, lattice parameters and crystallite thickness at three different stages in enamel maturation. In addition X-ray microtomography was used to study mineral content distributions. An inverse correlation was found between the spatial variation in mineral content and the distribution of crystallite organization and thickness as a function of time during enamel maturation. Combined X-ray microtomography and synchrotron X-ray diffraction results show that as enamel matures the mineral content increases and the mineral density distribution becomes more homogeneous. Starting concurrently but proceeding at a slower rate, the enamel crystallites become more oriented and larger; and the crystallite organization becomes spatially more complex and heterogeneous. During the mineralization of human dental enamel, the rate of mineral formation and mineral organization are not identical. Whilst the processes start simultaneously, full mineral content is achieved earlier, and crystallite organization is slower and continues for longer. These findings provide detailed insights into mineral development in human dental enamel which can inform synthetic biomimetic approaches for the benefit of clinical dentistry. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Deyhle, Hans; Bunk, Oliver; Buser, Stefan; Krastl, Gabriel; Zitzmann, Nicola U.; Ilgenstein, Bernd; Beckmann, Felix; Pfeiffer, Franz; Weiger, Roland; Müller, Bert
2009-08-01
Human teeth are anisotropic composites. Dentin as the core material of the tooth consists of nanometer-sized calcium phosphate crystallites embedded in collagen fiber networks. It shows its anisotropy on the micrometer scale by its well-oriented microtubules. The detailed three-dimensional nanostructure of the hard tissues namely dentin and enamel, however, is not understood, although numerous studies on the anisotropic mechanical properties have been performed and evaluated to explain the tooth function including the enamel-dentin junction acting as effective crack barrier. Small angle X-ray scattering (SAXS) with a spatial resolution in the 10 μm range allows determining the size and orientation of the constituents on the nanometer scale with reasonable precision. So far, only some dental materials, i.e. the fiber reinforced posts exhibit anisotropic properties related to the micrometer-size glass fibers. Dental fillings, composed of nanostructures oriented similar to the natural hard tissues of teeth, however, do not exist at all. The current X-ray-based investigations of extracted human teeth provide evidence for oriented micro- and nanostructures in dentin and enamel. These fundamental quantitative findings result in profound knowledge to develop biologically inspired dental fillings with superior resistance to thermal and mechanical shocks.
NASA Astrophysics Data System (ADS)
Ambekar Ramachandra Rao, Raghu; Mehta, Monal R.; Toussaint, Kimani C., Jr.
2010-02-01
We demonstrate the use of Fourier transform-second-harmonic generation (FT-SHG) imaging of collagen fibers as a means of performing quantitative analysis of obtained images of selected spatial regions in porcine trachea, ear, and cornea. Two quantitative markers, preferred orientation and maximum spatial frequency are proposed for differentiating structural information between various spatial regions of interest in the specimens. The ear shows consistent maximum spatial frequency and orientation as also observed in its real-space image. However, there are observable changes in the orientation and minimum feature size of fibers in the trachea indicating a more random organization. Finally, the analysis is applied to a 3D image stack of the cornea. It is shown that the standard deviation of the orientation is sensitive to the randomness in fiber orientation. Regions with variations in the maximum spatial frequency, but with relatively constant orientation, suggest that maximum spatial frequency is useful as an independent quantitative marker. We emphasize that FT-SHG is a simple, yet powerful, tool for extracting information from images that is not obvious in real space. This technique can be used as a quantitative biomarker to assess the structure of collagen fibers that may change due to damage from disease or physical injury.
2D spatially controlled polymer micro patterning for cellular behavior studies
NASA Astrophysics Data System (ADS)
Dinca, V.; Palla-Papavlu, A.; Paraico, I.; Lippert, T.; Wokaun, A.; Dinescu, M.
2011-04-01
A simple and effective method to functionalize glass surfaces that enable polymer micropatterning and subsequent spatially controlled adhesion of cells is reported in this paper. The method involves the application of laser induced forward transfer (LIFT) to achieve polymer patterning in a single step onto cell repellent substrates (i.e. polyethyleneglycol (PEG)). This approach was used to produce micron-size polyethyleneimine (PEI)-patterns alternating with cell-repellent areas. The focus of this work is the ability of SH-SY5Y human neuroblastoma cells to orient, migrate, and produce organized cellular arrangements on laser generated PEI patterns.
Theta and Alpha Oscillations Are Traveling Waves in the Human Neocortex.
Zhang, Honghui; Watrous, Andrew J; Patel, Ansh; Jacobs, Joshua
2018-06-01
Human cognition requires the coordination of neural activity across widespread brain networks. Here, we describe a new mechanism for large-scale coordination in the human brain: traveling waves of theta and alpha oscillations. Examining direct brain recordings from neurosurgical patients performing a memory task, we found contiguous clusters of cortex in individual patients with oscillations at specific frequencies within 2 to 15 Hz. These oscillatory clusters displayed spatial phase gradients, indicating that they formed traveling waves that propagated at ∼0.25-0.75 m/s. Traveling waves were relevant behaviorally because their propagation correlated with task events and was more consistent when subjects performed the task well. Human traveling theta and alpha waves can be modeled by a network of coupled oscillators because the direction of wave propagation correlated with the spatial orientation of local frequency gradients. Our findings suggest that oscillations support brain connectivity by organizing neural processes across space and time. Copyright © 2018 Elsevier Inc. All rights reserved.
Acquired prior knowledge modulates audiovisual integration.
Van Wanrooij, Marc M; Bremen, Peter; John Van Opstal, A
2010-05-01
Orienting responses to audiovisual events in the environment can benefit markedly by the integration of visual and auditory spatial information. However, logically, audiovisual integration would only be considered successful for stimuli that are spatially and temporally aligned, as these would be emitted by a single object in space-time. As humans do not have prior knowledge about whether novel auditory and visual events do indeed emanate from the same object, such information needs to be extracted from a variety of sources. For example, expectation about alignment or misalignment could modulate the strength of multisensory integration. If evidence from previous trials would repeatedly favour aligned audiovisual inputs, the internal state might also assume alignment for the next trial, and hence react to a new audiovisual event as if it were aligned. To test for such a strategy, subjects oriented a head-fixed pointer as fast as possible to a visual flash that was consistently paired, though not always spatially aligned, with a co-occurring broadband sound. We varied the probability of audiovisual alignment between experiments. Reaction times were consistently lower in blocks containing only aligned audiovisual stimuli than in blocks also containing pseudorandomly presented spatially disparate stimuli. Results demonstrate dynamic updating of the subject's prior expectation of audiovisual congruency. We discuss a model of prior probability estimation to explain the results.
Van Steenkiste, Gwendolyn; Jeurissen, Ben; Veraart, Jelle; den Dekker, Arnold J; Parizel, Paul M; Poot, Dirk H J; Sijbers, Jan
2016-01-01
Diffusion MRI is hampered by long acquisition times, low spatial resolution, and a low signal-to-noise ratio. Recently, methods have been proposed to improve the trade-off between spatial resolution, signal-to-noise ratio, and acquisition time of diffusion-weighted images via super-resolution reconstruction (SRR) techniques. However, during the reconstruction, these SRR methods neglect the q-space relation between the different diffusion-weighted images. An SRR method that includes a diffusion model and directly reconstructs high resolution diffusion parameters from a set of low resolution diffusion-weighted images was proposed. Our method allows an arbitrary combination of diffusion gradient directions and slice orientations for the low resolution diffusion-weighted images, optimally samples the q- and k-space, and performs motion correction with b-matrix rotation. Experiments with synthetic data and in vivo human brain data show an increase of spatial resolution of the diffusion parameters, while preserving a high signal-to-noise ratio and low scan time. Moreover, the proposed SRR method outperforms the previous methods in terms of the root-mean-square error. The proposed SRR method substantially increases the spatial resolution of MRI that can be obtained in a clinically feasible scan time. © 2015 Wiley Periodicals, Inc.
Edge-Related Activity Is Not Necessary to Explain Orientation Decoding in Human Visual Cortex.
Wardle, Susan G; Ritchie, J Brendan; Seymour, Kiley; Carlson, Thomas A
2017-02-01
Multivariate pattern analysis is a powerful technique; however, a significant theoretical limitation in neuroscience is the ambiguity in interpreting the source of decodable information used by classifiers. This is exemplified by the continued controversy over the source of orientation decoding from fMRI responses in human V1. Recently Carlson (2014) identified a potential source of decodable information by modeling voxel responses based on the Hubel and Wiesel (1972) ice-cube model of visual cortex. The model revealed that activity associated with the edges of gratings covaries with orientation and could potentially be used to discriminate orientation. Here we empirically evaluate whether "edge-related activity" underlies orientation decoding from patterns of BOLD response in human V1. First, we systematically mapped classifier performance as a function of stimulus location using population receptive field modeling to isolate each voxel's overlap with a large annular grating stimulus. Orientation was decodable across the stimulus; however, peak decoding performance occurred for voxels with receptive fields closer to the fovea and overlapping with the inner edge. Critically, we did not observe the expected second peak in decoding performance at the outer stimulus edge as predicted by the edge account. Second, we evaluated whether voxels that contribute most to classifier performance have receptive fields that cluster in cortical regions corresponding to the retinotopic location of the stimulus edge. Instead, we find the distribution of highly weighted voxels to be approximately random, with a modest bias toward more foveal voxels. Our results demonstrate that edge-related activity is likely not necessary for orientation decoding. A significant theoretical limitation of multivariate pattern analysis in neuroscience is the ambiguity in interpreting the source of decodable information used by classifiers. For example, orientation can be decoded from BOLD activation patterns in human V1, even though orientation columns are at a finer spatial scale than 3T fMRI. Consequently, the source of decodable information remains controversial. Here we test the proposal that information related to the stimulus edges underlies orientation decoding. We map voxel population receptive fields in V1 and evaluate orientation decoding performance as a function of stimulus location in retinotopic cortex. We find orientation is decodable from voxels whose receptive fields do not overlap with the stimulus edges, suggesting edge-related activity does not substantially drive orientation decoding. Copyright © 2017 the authors 0270-6474/17/371187-10$15.00/0.
Gait analysis--precise, rapid, automatic, 3-D position and orientation kinematics and dynamics.
Mann, R W; Antonsson, E K
1983-01-01
A fully automatic optoelectronic photogrammetric technique is presented for measuring the spatial kinematics of human motion (both position and orientation) and estimating the inertial (net) dynamics. Calibration and verification showed that in a two-meter cube viewing volume, the system achieves one millimeter of accuracy and resolution in translation and 20 milliradians in rotation. Since double differentiation of generalized position data to determine accelerations amplifies noise, the frequency domain characteristics of the system were investigated. It was found that the noise and all other errors in the kinematic data contribute less than five percent error to the resulting dynamics.
Yanovich, Polina; Isenhower, Robert W.; Sage, Jacob; Torres, Elizabeth B.
2013-01-01
Background Often in Parkinson’s disease (PD) motor-related problems overshadow latent non-motor deficits as it is difficult to dissociate one from the other with commonly used observational inventories. Here we ask if the variability patterns of hand speed and acceleration would be revealing of deficits in spatial-orientation related decisions as patients performed a familiar reach-to-grasp task. To this end we use spatial-orientation priming which normally facilitates motor-program selection and asked whether in PD spatial-orientation priming helps or hinders performance. Methods To dissociate spatial-orientation- and motor-related deficits participants performed two versions of the task. The biomechanical version (DEFAULT) required the same postural- and hand-paths as the orientation-priming version (primed-UP). Any differences in the patients here could not be due to motor issues as the tasks were biomechanically identical. The other priming version (primed-DOWN) however required additional spatial and postural processing. We assessed in all three cases both the forward segment deliberately aimed towards the spatial-target and the retracting segment, spontaneously bringing the hand to rest without an instructed goal. Results and Conclusions We found that forward and retracting segments belonged in two different statistical classes according to the fluctuations of speed and acceleration maxima. Further inspection revealed conservation of the forward (voluntary) control of speed but in PD a discontinuity of this control emerged during the uninstructed retractions which was absent in NC. Two PD groups self-emerged: one group in which priming always affected the retractions and the other in which only the more challenging primed-DOWN condition was affected. These PD-groups self-formed according to the speed variability patterns, which systematically changed along a gradient that depended on the priming, thus dissociating motor from spatial-orientation issues. Priming did not facilitate the motor task in PD but it did reveal a breakdown in the spatial-orientation decision that was independent of the motor-postural path. PMID:23843963
Asanowicz, Dariusz; Kruse, Lena; Śmigasiewicz, Kamila; Verleger, Rolf
2017-11-01
In bilateral rapid serial visual presentation (RSVP), the second of two targets, T1 and T2, is better identified in the left visual field (LVF) than in the right visual field (RVF). This LVF advantage may reflect hemispheric asymmetry in temporal attention or/and in spatial orienting of attention. Participants performed two tasks: the "standard" bilateral RSVP task (Exp.1) and its unilateral variant (Exp.1 & 2). In the bilateral task, spatial location was uncertain, thus target identification involved stimulus-driven spatial orienting. In the unilateral task, the targets were presented block-wise in the LVF or RVF only, such that no spatial orienting was needed for target identification. Temporal attention was manipulated in both tasks by varying the T1-T2 lag. The results showed that the LVF advantage disappeared when involvement of stimulus-driven spatial orienting was eliminated, whereas the manipulation of temporal attention had no effect on the asymmetry. In conclusion, the results do not support the hypothesis of hemispheric asymmetry in temporal attention, and provide further evidence that the LVF advantage reflects right hemisphere predominance in stimulus-driven orienting of spatial attention. These conclusions fit evidence that temporal attention is implemented by bilateral parietal areas and spatial attention by the right-lateralized ventral frontoparietal network. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lukeneder, Susanne; Lukeneder, Alexander; Weber, Gerhard W.
2014-03-01
The internal orientation of fossil mass occurrences can be exploited as useful source of information about their primary depositional conditions. A series of studies, using different kinds of fossils, especially those with elongated shape (e.g., elongated gastropods), deal with their orientation and the subsequent reconstruction of the depositional conditions (e.g., paleocurrents and transport mechanisms). However, disk-shaped fossils like planispiral cephalopods or gastropods were used, up to now, with caution for interpreting paleocurrents. Moreover, most studies just deal with the topmost surface of such mass occurrences, due to the easier accessibility. Within this study, a new method for three-dimensional reconstruction of the internal structure of a fossil mass occurrence and the subsequent calculation of its spatial shell orientation is established. A 234 million-years-old (Carnian, Triassic) monospecific mass occurrence of the ammonoid Kasimlarceltites krystyni from the Taurus Mountains in Turkey, embedded in limestone, is used for this pilot study. Therefore, a 150×45×140 mm3 block of the ammonoid bearing limestone bed has been grinded to 70 slices, with a distance of 2 mm between each slice. By using a semi-automatic region growing algorithm of the 3D-visualization software Amira, ammonoids of a part of this mass occurrence were segmented and a 3D-model reconstructed. Landmarks, trigonometric and vector-based calculations were used to compute the diameters and the spatial orientation of each ammonoid. The spatial shell orientation was characterized by dip and dip-direction and aperture direction of the longitudinal axis, as well as by dip and azimuth of an imaginary sagittal-plane through each ammonoid. The exact spatial shell orientation was determined for a sample of 675 ammonoids, and their statistical orientation analyzed (i.e., NW/SE). The study combines classical orientation analysis with modern 3D-visualization techniques, and establishes a novel spatial orientation analyzing method, which can be adapted to any kind of abundant solid matter.
1993-11-01
activating system or the vestibular efferent system , or both, are responsible for the resulting heightened arousal and enhanced vestibular information...the emetic response to poisons. When an animal ingests a tý.xc substance and experiences its effects on the central nervous system ---,m,-!y...ACCELERATION ax,xy,az ANGULAR REACTION RxRy,Rz Figure 2. System for describing acceleratiots and inertial reactions in humans . (Adapted from Hixson et
Correlation Based Target Location and Identification
1992-12-01
Research Daugman (7) cites research on the mammalian visual nervous system (retina, lateral geniculate , and primary visual cortex) as motivation for...brains, they can still sort slides into natural categories such as people, trees, and bodies of water, a capability that humans do easily. As such...critical neurobiological variables of a given neuron’s orientation and spatial frequency preference, the tuning bandwidths for these variables, the
Landscape Interpretation with Augmented Reality and Maps to Improve Spatial Orientation Skill
ERIC Educational Resources Information Center
Carbonell Carrera, Carlos; Bermejo Asensio, Luis A.
2017-01-01
Landscape interpretation is needed for navigating and determining an orientation: with traditional cartography, interpreting 3D topographic information from 2D landform representations to get self-location requires spatial orientation skill. Augmented reality technology allows a new way to interact with 3D landscape representation and thereby…
NASA Technical Reports Server (NTRS)
Lee, A. T.; Bussolari, S. R.
1986-01-01
The effect of motion platform systems on pilot behavior is considered with emphasis placed on civil aviation applications. A dynamic model for human spatial orientation based on the physiological structure and function of the human vestibular system is presented. Motion platform alternatives were evaluated on the basis of the following motion platform conditions: motion with six degrees-of-freedom required for Phase II simulators and two limited motion conditions. Consideration was given to engine flameout, airwork, and approach and landing scenarios.
Orienting attention to locations in internal representations.
Griffin, Ivan C; Nobre, Anna C
2003-11-15
Three experiments investigated whether it is possible to orient selective spatial attention to internal representations held in working memory in a similar fashion to orienting to perceptual stimuli. In the first experiment, subjects were either cued to orient to a spatial location before a stimulus array was presented (pre-cue), cued to orient to a spatial location in working memory after the array was presented (retro-cue), or given no cueing information (neutral cue). The stimulus array consisted of four differently colored crosses, one in each quadrant. At the end of a trial, a colored cross (probe) was presented centrally, and subjects responded according to whether it had occurred in the array. There were equivalent patterns of behavioral costs and benefits of cueing for both pre-cues and retro-cues. A follow-up experiment used a peripheral probe stimulus requiring a decision about whether its color matched that of the item presented at the same location in the array. Replication of the behavioral costs and benefits of pre-cues and retro-cues in this experiment ruled out changes in response criteria as the only explanation for the effects. The third experiment used event-related potentials (ERPs) to compare the neural processes involved in orienting attention to a spatial location in an external versus an internal spatial representation. In this task, subjects responded according to whether a central probe stimulus occurred at the cued location in the array. There were both similarities and differences between ERPs to spatial cues toward a perception versus an internal spatial representation. Lateralized early posterior and later frontal negativities were observed for both pre- and retro-cues. Retro-cues also showed additional neural processes to be involved in orienting to an internal representation, including early effects over frontal electrodes.
A Rehabilitation Protocol for Empowering Spatial Orientation in MCI. A Pilot Study.
Gadler, Erminia; Grassi, Alessandra; Riva, Giuseppe
2009-01-01
Spatial navigation is among the first cognitive functions to be impaired in Alzheimer's disease [1] and deficit in this domain is detectable earlier in patients with Mild Cognitive Impairment [2]. Since efficacy of cognitive training in persons with MCI was successfully assessed [3], we developed a multitasking training protocol using virtual environments for stimulating attention, perception and visuo-spatial cognition in order to empower spatial orientation in MCI. Two healthy elders were exposed to the training over a period of four weeks and both showed improved performances in attention and orientation after the end of the intervention.
Tao, X.; Zhang, B.; Smith, E. L.; Nishimoto, S.; Ohzawa, I.
2012-01-01
We used dynamic dense noise stimuli and local spectral reverse correlation methods to reveal the local sensitivities of neurons in visual area 2 (V2) of macaque monkeys to orientation and spatial frequency within their receptive fields. This minimized the potentially confounding assumptions that are inherent in stimulus selections. The majority of neurons exhibited a relatively high degree of homogeneity for the preferred orientations and spatial frequencies in the spatial matrix of facilitatory subfields. However, about 20% of all neurons showed maximum orientation differences between neighboring subfields that were greater than 25 deg. The neurons preferring horizontal or vertical orientations showed less inhomogeneity in space than the neurons preferring oblique orientations. Over 50% of all units also exhibited suppressive profiles, and those were more heterogeneous than facilitatory profiles. The preferred orientation and spatial frequency of suppressive profiles differed substantially from those of facilitatory profiles, and the neurons with suppressive subfields had greater orientation selectivity than those without suppressive subfields. The peak suppression occurred with longer delays than the peak facilitation. These results suggest that the receptive field profiles of the majority of V2 neurons reflect the orderly convergence of V1 inputs over space, but that a subset of V2 neurons exhibit more complex response profiles having both suppressive and facilitatory subfields. These V2 neurons with heterogeneous subfield profiles could play an important role in the initial processing of complex stimulus features. PMID:22114163
Pusher syndrome--a frequent but little-known disturbance of body orientation perception.
Karnath, Hans-Otto
2007-04-01
Disturbances of body orientation perception after brain lesions may specifically relate to only one dimension of space. Stroke patients with "pusher syndrome" suffer from a severe misperception of their body's orientation in the coronal (roll) plane. They experience their body as oriented 'upright' when it is in fact markedly tilted to one side. The patients use the unaffected arm or leg to actively push away from the un-paralyzed side and resist any attempt to passively correct their tilted body posture. Although pusher patients are unable to correctly determine when their own body is oriented in an upright, vertical position, they seem to have no significant difficulty in determining the orientation of the surrounding visual world in relation to their own body. Pusher syndrome is a distinctive clinical disorder occurring characteristically after unilateral left or right brain lesions in the posterior thalamus and -less frequently- in the insula and postcentral gyrus. These structures thus seem to constitute crucial neural substrates controlling human (upright) body orientation in the coronal (roll) plane. A further disturbance of body orientation that predominantly affects a single dimension of space, namely the transverse (yaw) plane, is observed in stroke patients with spatial neglect. Apparently, our brain has evolved separate neural subsystems for perceiving and controlling body orientation in different dimensions of space.
Slabbekoorn, D; van Goozen, S H; Sanders, G; Gooren, L J; Cohen-Kettenis, P T
2000-05-01
It has been proposed that gender identity and sexual orientation are influenced by the prenatal sex steroid milieu. Human dermatoglyphics and brain asymmetry have also been ascribed to prenatal hormone levels. This study investigated dermatoglyphics (total ridge count and finger ridge asymmetry) in 184 male-to-female transsexuals and 110 female-to-male transsexuals. In a subgroup, the relationship between dermatoglyphic asymmetry and spatial ability was tested. All investigations included controls. For all subjects hand preference and sexual orientation were noted. We hypothesized that the dermatoglyphics of male-to-female transsexuals would show similarities with control women and those of female-to-male transsexuals with control men. Our results showed a trend for a sex difference in total ridge count (P<.1) between genetic males and females, but no difference in directional asymmetry was found. Contrary to our expectations, the total ridge count and finger ridge asymmetry of transsexuals were similar to their genetic sex controls. Additionally, directional asymmetry was neither related to sexual orientation, nor to different aspects of spatial ability. In conclusion, we were unable to demonstrate that our chosen dermatoglyphic variables, total ridge count and finger ridge asymmetry are related to gender identity and sexual orientation in adult transsexuals. Hence, we found no support for a prenatal hormonal influence on these characteristics, at least insofar as dermatoglyphics may be regarded as a biological marker of organizing hormonal effects.
Aoki, Hirofumi; Ohno, Ryuzo; Yamaguchi, Takao
2005-01-01
In a virtual weightless environment, subjects' orientation skills were studied to examine what kind of cognitive errors people make when they moved through the interior space of virtual space stations and what kind of visual information effectively decreases those errors. Subjects wearing a head-mounted display moved from one end to the other end in space station-like routes constructed of rectangular and cubical modules, and did Pointing and Modeling tasks. In Experiment 1, configurations of the routes were changed with such variables as the number of bends, the number of embedding planes, and the number of planes with respect to the body posture. The results indicated that spatial orientation ability was relevant to the variables and that orientational errors were explained by two causes. One of these was that the place, the direction, and the sequence of turns were incorrect. The other was that subjects did not recognize the rotation of the frame of reference, especially when they turned in pitch direction rather than in yaw. In Experiment 2, the effect of the interior design was examined by testing three design settings. Wall colors that showed the allocentric frame of reference and the different interior design of vertical and horizontal modules were effective; however, there was a limit to the effectiveness in complicated configurations. c2005 Published by Elsevier Ltd.
Gravity orientation tuning in macaque anterior thalamus.
Laurens, Jean; Kim, Byounghoon; Dickman, J David; Angelaki, Dora E
2016-12-01
Gravity may provide a ubiquitous allocentric reference to the brain's spatial orientation circuits. Here we describe neurons in the macaque anterior thalamus tuned to pitch and roll orientation relative to gravity, independently of visual landmarks. We show that individual cells exhibit two-dimensional tuning curves, with peak firing rates at a preferred vertical orientation. These results identify a thalamic pathway for gravity cues to influence perception, action and spatial cognition.
The importance of vertical buildings in perception and memorising the city
NASA Astrophysics Data System (ADS)
Alihodzic, Rifat; Zupančič, Domen
2018-03-01
Being aware of the surrounding we live in, among other things, means establishing of spatial relationships between oneself and the environment, equally important as relationship between oneself and others. Environment consists of facilities and space. Space, "gift by itself", is defined by terrain topography, sky horizon, plants and animals. The architecture, as a profession, is interested in space created distinctively. Perception, as elementary process of consciousness and psychological life, deals with being conscious about something. In this case, physical structures that create a city. Psychological experience of urban environment is important factor having effect on perception, memorising and orientation in urban space. Gestalt psychology of perceiving is area applying to and significant for architecture either. The importance of vertical lies in its perceiving the gravitation, forming perceiving focus, landmark, for urban units and subunits to be memorised, creating spatial hierarchy and perception logics, remembering and orientation in space. This work analyses reasons for building upright with comparative analyses in their participation in space and on human psychology. This paper's purpose is to, using fundamental facts, show the importance of vertical buildings, not as a spatial use phenomenon, but also as significant phenomenon.
Identification of Resting State Networks Involved in Executive Function.
Connolly, Joanna; McNulty, Jonathan P; Boran, Lorraine; Roche, Richard A P; Delany, David; Bokde, Arun L W
2016-06-01
The structural networks in the human brain are consistent across subjects, and this is reflected also in that functional networks across subjects are relatively consistent. These findings are not only present during performance of a goal oriented task but there are also consistent functional networks during resting state. It suggests that goal oriented activation patterns may be a function of component networks identified using resting state. The current study examines the relationship between resting state networks measured and patterns of neural activation elicited during a Stroop task. The association between the Stroop-activated networks and the resting state networks was quantified using spatial linear regression. In addition, we investigated if the degree of spatial association of resting state networks with the Stroop task may predict performance on the Stroop task. The results of this investigation demonstrated that the Stroop activated network can be decomposed into a number of resting state networks, which were primarily associated with attention, executive function, visual perception, and the default mode network. The close spatial correspondence between the functional organization of the resting brain and task-evoked patterns supports the relevance of resting state networks in cognitive function.
Hallgrímsson, Haraldur T; Cieslak, Matthew; Foschini, Luca; Grafton, Scott T; Singh, Ambuj K
2018-05-15
We present a method to discover differences between populations with respect to the spatial coherence of their oriented white matter microstructure in arbitrarily shaped white matter regions. This method is applied to diffusion MRI scans of a subset of the Human Connectome Project dataset: 57 pairs of monozygotic and 52 pairs of dizygotic twins. After controlling for morphological similarity between twins, we identify 3.7% of all white matter as being associated with genetic similarity (35.1 k voxels, p<10 -4 , false discovery rate 1.5%), 75% of which spatially clusters into twenty-two contiguous white matter regions. Furthermore, we show that the orientation similarity within these regions generalizes to a subset of 47 pairs of non-twin siblings, and show that these siblings are on average as similar as dizygotic twins. The regions are located in deep white matter including the superior longitudinal fasciculus, the optic radiations, the middle cerebellar peduncle, the corticospinal tract, and within the anterior temporal lobe, as well as the cerebellum, brain stem, and amygdalae. These results extend previous work using undirected fractional anisotrophy for measuring putative heritable influences in white matter. Our multidirectional extension better accounts for crossing fiber connections within voxels. This bottom up approach has at its basis a novel measurement of coherence within neighboring voxel dyads between subjects, and avoids some of the fundamental ambiguities encountered with tractographic approaches to white matter analysis that estimate global connectivity. Copyright © 2018 Elsevier Inc. All rights reserved.
Dorst, J; Haag, A; Knake, S; Oertel, W H; Hamer, H M; Rosenow, F
2008-10-01
Functional transcranial Doppler sonography (fTCD) during word generation is well established for language lateralization. In this study, we evaluated a fTCD paradigm to reliably identify the non-dominant hemisphere. Twenty-nine right-handed healthy subjects (27.1+/-7.6 years) performed the 'cube perspective test' [Stumpf, H., & Fay, E. (1983). Schlauchfiguren: Ein Test zur Beurteilung des räumlichen Vorstellungsvermögens. Verlag für Psychologie Dr. C. J. Hogrefe, Göttingen, Toronto, Zürich] a spatial orientation task, while the cerebral blood flow velocity (CBFV) was simultaneously measured in both middle cerebral arteries (MCAs). In addition, the established word generation paradigm for language lateralization was performed. Subjects with atypical language representation were excluded. Data were analysed offline with the software Average, which performed a heart-cycle integration and a baseline-correction and calculated a lateralization index (LI) with its standard error of the mean increase in CBFV separately for both MCAs. Twenty-one of 29 subjects (72.4%) lateralized to the right hemisphere (chi2=5.828, p=0.016). The mean LI of the spatial orientation paradigm pointed to the right hemisphere (x =-1.9+/-3.2) and was different from the LI of word generation (x =3.9+/-2.2;p<0.001). There was no correlation between the LI of spatial orientation and word generation (R=0.095, p=0.624). Age of the subjects did not correlate with the LI during spatial orientation (p>0.05) but negatively with the LI during word generation (R=-0.468, p=0.010). The maximum increase of CBFV was greater in the spatial orientation (14.0%+/-3.6%) than in the word generation paradigm (9.4%+/-4.0%; p<0.001). In more than two thirds of the subjects with left-sided language dominance, the spatial orientation paradigm was able to identify the non-dominant hemisphere. The results suggest both paradigms to be independent of each other. The spatial orientation paradigm, therefore, appears to be a non-verbal fTCD paradigm with possible clinical relevance.
Sex differences in a landmark environmental re-orientation task only during the learning phase.
Piccardi, Laura; Bianchini, Filippo; Iasevoli, Luigi; Giannone, Gianluca; Guariglia, Cecilia
2011-10-10
Sex differences are consistently reported in human navigation. Indeed, to orient themselves during navigation women are more likely to use landmark-based strategies and men Euclidean-based strategies. The difference could be due to selective social pressure, which fosters greater spatial ability in men, or biological factors. And the great variability of the results reported in the literature could be due to the experimental setting more than real differences in ability. In this study, navigational behaviour was assessed by means of a place-learning task in which a modified version of the Morris water maze for humans was used to evaluate sex differences. In using landmarks, sex differences emerged only during the learning phase. Although the men were faster than the women in locating the target position, the differences between the sexes disappeared in delayed recall. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Nature as a model for biomimetic sensors
NASA Astrophysics Data System (ADS)
Bleckmann, H.
2012-04-01
Mammals, like humans, rely mainly on acoustic, visual and olfactory information. In addition, most also use tactile and thermal cues for object identification and spatial orientation. Most non-mammalian animals also possess a visual, acoustic and olfactory system. However, besides these systems they have developed a large variety of highly specialized sensors. For instance, pyrophilous insects use infrared organs for the detection of forest fires while boas, pythons and pit vipers sense the infrared radiation emitted by prey animals. All cartilaginous and bony fishes as well as some amphibians have a mechnaosensory lateral line. It is used for the detection of weak water motions and pressure gradients. For object detection and spatial orientation many species of nocturnal fish employ active electrolocation. This review describes certain aspects of the detection and processing of infrared, mechano- and electrosensory information. It will be shown that the study of these seemingly exotic sensory systems can lead to discoveries that are useful for the construction of technical sensors and artificial control systems.
Li, Chunlin; Chen, Kewei; Han, Hongbin; Chui, Dehua; Wu, Jinglong
2012-01-01
Top-down attention to spatial and temporal cues has been thoroughly studied in the visual domain. However, because the neural systems that are important for auditory top-down temporal attention (i.e., attention based on time interval cues) remain undefined, the differences in brain activity between directed attention to auditory spatial location (compared with time intervals) are unclear. Using fMRI (magnetic resonance imaging), we measured the activations caused by cue-target paradigms by inducing the visual cueing of attention to an auditory target within a spatial or temporal domain. Imaging results showed that the dorsal frontoparietal network (dFPN), which consists of the bilateral intraparietal sulcus and the frontal eye field, responded to spatial orienting of attention, but activity was absent in the bilateral frontal eye field (FEF) during temporal orienting of attention. Furthermore, the fMRI results indicated that activity in the right ventrolateral prefrontal cortex (VLPFC) was significantly stronger during spatial orienting of attention than during temporal orienting of attention, while the DLPFC showed no significant differences between the two processes. We conclude that the bilateral dFPN and the right VLPFC contribute to auditory spatial orienting of attention. Furthermore, specific activations related to temporal cognition were confirmed within the superior occipital gyrus, tegmentum, motor area, thalamus and putamen. PMID:23166800
Visual Orientation in Unfamiliar Gravito-Inertial Environments
NASA Technical Reports Server (NTRS)
Oman, Charles M.
1999-01-01
The goal of this project is to better understand the process of spatial orientation and navigation in unfamiliar gravito-inertial environments, and ultimately to use this new information to develop effective countermeasures against the orientation and navigation problems experienced by astronauts. How do we know our location, orientation, and motion of our body with respect to the external environment ? On earth, gravity provides a convenient "down" cue. Large body rotations normally occur only in a horizontal plane. In space, the gravitational down cue is absent. When astronauts roll or pitch upside down, they must recognize where things are around them by a process of mental rotation which involves three dimensions, rather than just one. While working in unfamiliar situations they occasionally misinterpret visual cues and experience striking "visual reorientation illusions" (VRIs), in which the walls, ceiling, and floors of the spacecraft exchange subjective identities. VRIs cause disorientation, reaching errors, trigger attacks of space motion sickness, and potentially complicate emergency escape. MIR crewmembers report that 3D relationships between modules - particularly those with different visual verticals - are difficult to visualize, and so navigating through the node that connects them is not instinctive. Crew members learn routes, but their apparent lack of survey knowledge is a concern should fire, power loss, or depressurization limit visibility. Anecdotally, experience in mockups, parabolic flight, neutral buoyancy and virtual reality (VR) simulators helps. However, no techniques have been developed to quantify individual differences in orientation and navigation abilities, or the effectiveness of preflight visual. orientation training. Our understanding of the underlying physiology - for example how our sense of place and orientation is neurally coded in three dimensions in the limbic system of the brain - is incomplete. During the 16 months that this human and animal research project has been underway, we have obtained several results that are not only of basic research interest, but which have practical implications for the architecture and layout of spacecraft interiors and for the development of astronaut spatial orientation training countermeasures.
Khuu, Sieu K; Cham, Joey; Hayes, Anthony
2016-01-01
In the present study, we investigated the detection of contours defined by constant curvature and the statistics of curved contours in natural scenes. In Experiment 1, we examined the degree to which human sensitivity to contours is affected by changing the curvature angle and disrupting contour curvature continuity by varying the orientation of end elements. We find that (1) changing the angle of contour curvature decreased detection performance, while (2) end elements oriented in the direction (i.e., clockwise) of curvature facilitated contour detection regardless of the curvature angle of the contour. In Experiment 2 we further established that the relative effect of end-element orientation on contour detection was not only dependent on their orientation (collinear or cocircular), but also their spatial separation from the contour, and whether the contour shape was curved or not (i.e., C-shaped or S-shaped). Increasing the spatial separation of end-elements reduced contour detection performance regardless of their orientation or the contour shape. However, at small separations, cocircular end-elements facilitated the detection of C-shaped contours, but not S-shaped contours. The opposite result was observed for collinear end-elements, which improved the detection of S- shaped, but not C-shaped contours. These dissociative results confirmed that the visual system specifically codes contour curvature, but the association of contour elements occurs locally. Finally, we undertook an analysis of natural images that mapped contours with a constant angular change and determined the frequency of occurrence of end elements with different orientations. Analogous to our behavioral data, this image analysis revealed that the mapped end elements of constantly curved contours are likely to be oriented clockwise to the angle of curvature. Our findings indicate that the visual system is selectively sensitive to contours defined by constant curvature and that this might reflect the properties of curved contours in natural images.
Meese, Tim S; Holmes, David J
2010-10-01
Most contemporary models of spatial vision include a cross-oriented route to suppression (masking from a broadly tuned inhibitory pool), which is most potent at low spatial and high temporal frequencies (T. S. Meese & D. J. Holmes, 2007). The influence of this pathway can elevate orientation-masking functions without exciting the target mechanism, and because early psychophysical estimates of filter bandwidth did not accommodate this, it is likely that they have been overestimated for this corner of stimulus space. Here we show that a transient 40% contrast mask causes substantial binocular threshold elevation for a transient vertical target, and this declines from a mask orientation of 0° to about 40° (indicating tuning), and then more gently to 90°, where it remains at a factor of ∼4. We also confirm that cross-orientation masking is diminished or abolished at high spatial frequencies and for sustained temporal modulation. We fitted a simple model of pedestal masking and cross-orientation suppression (XOS) to our data and those of G. C. Phillips and H. R. Wilson (1984) and found the dependency of orientation bandwidth on spatial frequency to be much less than previously supposed. An extension of our linear spatial pooling model of contrast gain control and dilution masking (T. S. Meese & R. J. Summers, 2007) is also shown to be consistent with our results using filter bandwidths of ±20°. Both models include tightly and broadly tuned components of divisive suppression. More generally, because XOS and/or dilution masking can affect the shape of orientation-masking curves, we caution that variations in bandwidth estimates might reflect variations in processes that have nothing to do with filter bandwidth.
Vasireddi, Anil K; Vazquez, Alberto L; Whitney, David E; Fukuda, Mitsuhiro; Kim, Seong-Gi
2016-09-07
Resting-state functional magnetic resonance imaging has been increasingly used for examining connectivity across brain regions. The spatial scale by which hemodynamic imaging can resolve functional connections at rest remains unknown. To examine this issue, deoxyhemoglobin-weighted intrinsic optical imaging data were acquired from the visual cortex of lightly anesthetized ferrets. The neural activity of orientation domains, which span a distance of 0.7-0.8 mm, has been shown to be correlated during evoked activity and at rest. We performed separate analyses to assess the degree to which the spatial and temporal characteristics of spontaneous hemodynamic signals depend on the known functional organization of orientation columns. As a control, artificial orientation column maps were generated. Spatially, resting hemodynamic patterns showed a higher spatial resemblance to iso-orientation maps than artificially generated maps. Temporally, a correlation analysis was used to establish whether iso-orientation domains are more correlated than orthogonal orientation domains. After accounting for a significant decrease in correlation as a function of distance, a small but significant temporal correlation between iso-orientation domains was found, which decreased with increasing difference in orientation preference. This dependence was abolished when using artificially synthetized orientation maps. Finally, the temporal correlation coefficient as a function of orientation difference at rest showed a correspondence with that calculated during visual stimulation suggesting that the strength of resting connectivity is related to the strength of the visual stimulation response. Our results suggest that temporal coherence of hemodynamic signals measured by optical imaging of intrinsic signals exists at a submillimeter columnar scale in resting state.
Statistics of natural scenes and cortical color processing.
Cecchi, Guillermo A; Rao, A Ravishankar; Xiao, Youping; Kaplan, Ehud
2010-09-01
We investigate the spatial correlations of orientation and color information in natural images. We find that the correlation of orientation information falls off rapidly with increasing distance, while color information is more highly correlated over longer distances. We show that orientation and color information are statistically independent in natural images and that the spatial correlation of jointly encoded orientation and color information decays faster than that of color alone. Our findings suggest that: (a) orientation and color information should be processed in separate channels and (b) the organization of cortical color and orientation selectivity at low spatial frequencies is a reflection of the cortical adaptation to the statistical structure of the visual world. These findings are in agreement with biological observations, as form and color are thought to be represented by different classes of neurons in the primary visual cortex, and the receptive fields of color-selective neurons are larger than those of orientation-selective neurons. The agreement between our findings and biological observations supports the ecological theory of perception.
Object Orientation Affects Spatial Language Comprehension
ERIC Educational Resources Information Center
Burigo, Michele; Sacchi, Simona
2013-01-01
Typical spatial descriptions, such as "The car is in front of the house," describe the position of a located object (LO; e.g., the car) in space relative to a reference object (RO) whose location is known (e.g., the house). The orientation of the RO affects spatial language comprehension via the reference frame selection process.…
Modeling human perception of orientation in altered gravity
Clark, Torin K.; Newman, Michael C.; Oman, Charles M.; Merfeld, Daniel M.; Young, Laurence R.
2015-01-01
Altered gravity environments, such as those experienced by astronauts, impact spatial orientation perception, and can lead to spatial disorientation and sensorimotor impairment. To more fully understand and quantify the impact of altered gravity on orientation perception, several mathematical models have been proposed. The utricular shear, tangent, and the idiotropic vector models aim to predict static perception of tilt in hyper-gravity. Predictions from these prior models are compared to the available data, but are found to systematically err from the perceptions experimentally observed. Alternatively, we propose a modified utricular shear model for static tilt perception in hyper-gravity. Previous dynamic models of vestibular function and orientation perception are limited to 1 G. Specifically, they fail to predict the characteristic overestimation of roll tilt observed in hyper-gravity environments. To address this, we have proposed a modification to a previous observer-type canal-otolith interaction model based upon the hypothesis that the central nervous system (CNS) treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. Here we evaluate our modified utricular shear and modified observer models in four altered gravity motion paradigms: (a) static roll tilt in hyper-gravity, (b) static pitch tilt in hyper-gravity, (c) static roll tilt in hypo-gravity, and (d) static pitch tilt in hypo-gravity. The modified models match available data in each of the conditions considered. Our static modified utricular shear model and dynamic modified observer model may be used to help quantitatively predict astronaut perception of orientation in altered gravity environments. PMID:25999822
Context-dependent spatially periodic activity in the human entorhinal cortex
Nguyen, T. Peter; Török, Ágoston; Shen, Jason Y.; Briggs, Deborah E.; Modur, Pradeep N.; Buchanan, Robert J.
2017-01-01
The spatially periodic activity of grid cells in the entorhinal cortex (EC) of the rodent, primate, and human provides a coordinate system that, together with the hippocampus, informs an individual of its location relative to the environment and encodes the memory of that location. Among the most defining features of grid-cell activity are the 60° rotational symmetry of grids and preservation of grid scale across environments. Grid cells, however, do display a limited degree of adaptation to environments. It remains unclear if this level of environment invariance generalizes to human grid-cell analogs, where the relative contribution of visual input to the multimodal sensory input of the EC is significantly larger than in rodents. Patients diagnosed with nontractable epilepsy who were implanted with entorhinal cortical electrodes performing virtual navigation tasks to memorized locations enabled us to investigate associations between grid-like patterns and environment. Here, we report that the activity of human entorhinal cortical neurons exhibits adaptive scaling in grid period, grid orientation, and rotational symmetry in close association with changes in environment size, shape, and visual cues, suggesting scale invariance of the frequency, rather than the wavelength, of spatially periodic activity. Our results demonstrate that neurons in the human EC represent space with an enhanced flexibility relative to neurons in rodents because they are endowed with adaptive scalability and context dependency. PMID:28396399
Fahmy, Gamal; Black, John; Panchanathan, Sethuraman
2006-06-01
Today's multimedia applications demand sophisticated compression and classification techniques in order to store, transmit, and retrieve audio-visual information efficiently. Over the last decade, perceptually based image compression methods have been gaining importance. These methods take into account the abilities (and the limitations) of human visual perception (HVP) when performing compression. The upcoming MPEG 7 standard also addresses the need for succinct classification and indexing of visual content for efficient retrieval. However, there has been no research that has attempted to exploit the characteristics of the human visual system to perform both compression and classification jointly. One area of HVP that has unexplored potential for joint compression and classification is spatial frequency perception. Spatial frequency content that is perceived by humans can be characterized in terms of three parameters, which are: 1) magnitude; 2) phase; and 3) orientation. While the magnitude of spatial frequency content has been exploited in several existing image compression techniques, the novel contribution of this paper is its focus on the use of phase coherence for joint compression and classification in the wavelet domain. Specifically, this paper describes a human visual system-based method for measuring the degree to which an image contains coherent (perceptible) phase information, and then exploits that information to provide joint compression and classification. Simulation results that demonstrate the efficiency of this method are presented.
Masking reduces orientation selectivity in rat visual cortex
Alwis, Dasuni S.; Richards, Katrina L.
2016-01-01
In visual masking the perception of a target stimulus is impaired by a preceding (forward) or succeeding (backward) mask stimulus. The illusion is of interest because it allows uncoupling of the physical stimulus, its neuronal representation, and its perception. To understand the neuronal correlates of masking, we examined how masks affected the neuronal responses to oriented target stimuli in the primary visual cortex (V1) of anesthetized rats (n = 37). Target stimuli were circular gratings with 12 orientations; mask stimuli were plaids created as a binarized sum of all possible target orientations. Spatially, masks were presented either overlapping or surrounding the target. Temporally, targets and masks were presented for 33 ms, but the stimulus onset asynchrony (SOA) of their relative appearance was varied. For the first time, we examine how spatially overlapping and center-surround masking affect orientation discriminability (rather than visibility) in V1. Regardless of the spatial or temporal arrangement of stimuli, the greatest reductions in firing rate and orientation selectivity occurred for the shortest SOAs. Interestingly, analyses conducted separately for transient and sustained target response components showed that changes in orientation selectivity do not always coincide with changes in firing rate. Given the near-instantaneous reductions observed in orientation selectivity even when target and mask do not spatially overlap, we suggest that monotonic visual masking is explained by a combination of neural integration and lateral inhibition. PMID:27535373
Kabara, J F; Bonds, A B
2001-12-01
Responses of cat striate cortical cells to a drifting sinusoidal grating were modified by the superimposition of a second, perturbing grating (PG) that did not excite the cell when presented alone. One consequence of the presence of a PG was a shift in the tuning curves. The orientation tuning of all 41 cells exposed to a PG and the spatial frequency tuning of 83% of the 23 cells exposed to a PG showed statistically significant dislocations of both the response function peak and center of mass from their single grating values. As found in earlier reports, the presence of PGs suppressed responsiveness. However, reductions measured at the single grating optimum orientation or spatial frequency were on average 1.3 times greater than the suppression found at the peak of the response function modified by the presence of the PG. Much of the loss in response seen at the single grating optimum is thus a result of a shift in the tuning function rather than outright suppression. On average orientation shifts were repulsive and proportional (approximately 0.10 deg/deg) to the angle between the perturbing stimulus and the optimum single grating orientation. Shifts in the spatial frequency response function were both attractive and repulsive, resulting in an overall average of zero. For both simple and complex cells, PGs generally broadened orientation response function bandwidths. Similarly, complex cell spatial frequency response function bandwidths broadened. Simple cell spatial frequency response functions usually did not change, and those that did broadened only 4% on average. These data support the hypothesis that additional sinusoidal components in compound stimuli retune cells' response functions for orientation and spatial frequency.
Tong, Jonathan; Mao, Oliver; Goldreich, Daniel
2013-01-01
Two-point discrimination is widely used to measure tactile spatial acuity. The validity of the two-point threshold as a spatial acuity measure rests on the assumption that two points can be distinguished from one only when the two points are sufficiently separated to evoke spatially distinguishable foci of neural activity. However, some previous research has challenged this view, suggesting instead that two-point task performance benefits from an unintended non-spatial cue, allowing spuriously good performance at small tip separations. We compared the traditional two-point task to an equally convenient alternative task in which participants attempt to discern the orientation (vertical or horizontal) of two points of contact. We used precision digital readout calipers to administer two-interval forced-choice versions of both tasks to 24 neurologically healthy adults, on the fingertip, finger base, palm, and forearm. We used Bayesian adaptive testing to estimate the participants’ psychometric functions on the two tasks. Traditional two-point performance remained significantly above chance levels even at zero point separation. In contrast, two-point orientation discrimination approached chance as point separation approached zero, as expected for a valid measure of tactile spatial acuity. Traditional two-point performance was so inflated at small point separations that 75%-correct thresholds could be determined on all tested sites for fewer than half of participants. The 95%-correct thresholds on the two tasks were similar, and correlated with receptive field spacing. In keeping with previous critiques, we conclude that the traditional two-point task provides an unintended non-spatial cue, resulting in spuriously good performance at small spatial separations. Unlike two-point discrimination, two-point orientation discrimination rigorously measures tactile spatial acuity. We recommend the use of two-point orientation discrimination for neurological assessment. PMID:24062677
Training the elderly on the ability factors of spatial orientation and inductive reasoning.
Willis, S L; Schaie, K W
1986-09-01
We examined the effects of cognitive training with elderly participants from the Seattle Longitudinal Study. Subjects were classified as having remained stable or having declined over the previous 14-year interval on each of two primary abilities, spatial orientation and inductive reasoning. Subjects who had declined on one of these abilities received training on that ability; subjects who had declined on both abilities or who had remained stable on both were randomly assigned to the spatial orientation or inductive reasoning training programs. Training outcomes were examined within an ability-measurement framework with empirically determined factorial structure. Significant training effects, at the level of the latent ability constructs, occurred for both spatial orientation and inductive reasoning. These effects were general, in that no significant interactions with decline status or gender were found. Thus, training interventions were effective both in remediating cognitive decline on the target abilities and in improving the performance of stable subjects.
Friston, Karl J.; Mattingley, Jason B.; Roepstorff, Andreas; Garrido, Marta I.
2014-01-01
Detecting the location of salient sounds in the environment rests on the brain's ability to use differences in sounds arriving at both ears. Functional neuroimaging studies in humans indicate that the left and right auditory hemispaces are coded asymmetrically, with a rightward attentional bias that reflects spatial attention in vision. Neuropsychological observations in patients with spatial neglect have led to the formulation of two competing models: the orientation bias and right-hemisphere dominance models. The orientation bias model posits a symmetrical mapping between one side of the sensorium and the contralateral hemisphere, with mutual inhibition of the ipsilateral hemisphere. The right-hemisphere dominance model introduces a functional asymmetry in the brain's coding of space: the left hemisphere represents the right side, whereas the right hemisphere represents both sides of the sensorium. We used Dynamic Causal Modeling of effective connectivity and Bayesian model comparison to adjudicate between these alternative network architectures, based on human electroencephalographic data acquired during an auditory location oddball paradigm. Our results support a hemispheric asymmetry in a frontoparietal network that conforms to the right-hemisphere dominance model. We show that, within this frontoparietal network, forward connectivity increases selectively in the hemisphere contralateral to the side of sensory stimulation. We interpret this finding in light of hierarchical predictive coding as a selective increase in attentional gain, which is mediated by feedforward connections that carry precision-weighted prediction errors during perceptual inference. This finding supports the disconnection hypothesis of unilateral neglect and has implications for theories of its etiology. PMID:24695717
Levichkina, Ekaterina; Saalmann, Yuri B; Vidyasagar, Trichur R
2017-03-01
Primate posterior parietal cortex (PPC) is known to be involved in controlling spatial attention. Neurons in one part of the PPC, the lateral intraparietal area (LIP), show enhanced responses to objects at attended locations. Although many are selective for object features, such as the orientation of a visual stimulus, it is not clear how LIP circuits integrate feature-selective information when providing attentional feedback about behaviorally relevant locations to the visual cortex. We studied the relationship between object feature and spatial attention properties of LIP cells in two macaques by measuring the cells' orientation selectivity and the degree of attentional enhancement while performing a delayed match-to-sample task. Monkeys had to match both the location and orientation of two visual gratings presented separately in time. We found a wide range in orientation selectivity and degree of attentional enhancement among LIP neurons. However, cells with significant attentional enhancement had much less orientation selectivity in their response than cells which showed no significant modulation by attention. Additionally, orientation-selective cells showed working memory activity for their preferred orientation, whereas cells showing attentional enhancement also synchronized with local neuronal activity. These results are consistent with models of selective attention incorporating two stages, where an initial feature-selective process guides a second stage of focal spatial attention. We suggest that LIP contributes to both stages, where the first stage involves orientation-selective LIP cells that support working memory of the relevant feature, and the second stage involves attention-enhanced LIP cells that synchronize to provide feedback on spatial priorities. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Covert spatial attention is functionally intact in amblyopic human adults.
Roberts, Mariel; Cymerman, Rachel; Smith, R Theodore; Kiorpes, Lynne; Carrasco, Marisa
2016-12-01
Certain abnormalities in behavioral performance and neural signaling have been attributed to a deficit of visual attention in amblyopia, a neurodevelopmental disorder characterized by a diverse array of visual deficits following abnormal binocular childhood experience. Critically, most have inferred attention's role in their task without explicitly manipulating and measuring its effects against a baseline condition. Here, we directly investigate whether human amblyopic adults benefit from covert spatial attention-the selective processing of visual information in the absence of eye movements-to the same degree as neurotypical observers. We manipulated both involuntary (Experiment 1) and voluntary (Experiment 2) attention during an orientation discrimination task for which the effects of covert spatial attention have been well established in neurotypical and special populations. In both experiments, attention significantly improved accuracy and decreased reaction times to a similar extent (a) between the eyes of the amblyopic adults and (b) between the amblyopes and their age- and gender-matched controls. Moreover, deployment of voluntary attention away from the target location significantly impaired task performance (Experiment 2). The magnitudes of the involuntary and voluntary attention benefits did not correlate with amblyopic depth or severity. Both groups of observers showed canonical performance fields (better performance along the horizontal than vertical meridian and at the lower than upper vertical meridian) and similar effects of attention across locations. Despite their characteristic low-level vision impairments, covert spatial attention remains functionally intact in human amblyopic adults.
Retrieving Enduring Spatial Representations after Disorientation
Li, Xiaoou; Mou, Weimin; McNamara, Timothy P.
2012-01-01
Four experiments tested whether there are enduring spatial representations of objects’ locations in memory. Previous studies have shown that under certain conditions the internal consistency of pointing to objects using memory is disrupted by disorientation. This disorientation effect has been attributed to an absence of or to imprecise enduring spatial representations of objects’ locations. Experiment 1 replicated the standard disorientation effect. Participants learned locations of objects in an irregular layout and then pointed to objects after physically turning to face an object and after disorientation. The expected disorientation was observed. In Experiment 2, after disorientation, participants were asked to imagine they were facing the original learning direction and then physically turned to adopt the test orientation. In Experiment 3, after disorientation, participants turned to adopt the test orientation and then were informed of the original viewing direction by the experimenter. A disorientation effect was not observed in Experiment 2 or 3. In Experiment 4, after disorientation, participants turned to face the test orientation but were not told the original learning orientation. As in Experiment 1, a disorientation effect was observed. These results suggest that there are enduring spatial representations of objects’ locations specified in terms of a spatial reference direction parallel to the learning view, and that the disorientation effect is caused by uncertainty in recovering the spatial reference direction relative to the testing orientation following disorientation. PMID:22682765
Assessment of Human Visual Performance with a Swept Evoked Potential Technique
1984-07-01
obtained in naive patients. Retinitis pigmentosa patients with < 20/50 vision have shown contrast sensitivity losses at the higher spatial frequencies...X and Y visual subsystems The new visual duplicity. Th« observation that cat retinal ganglion cells can be divided into those which sum luminous...bias in retinal ganglion cells (cat: Levick & Thibos, 1980; monkey: DeMonasterio, 1978). The bias is weak. In cat, when the stimulus orientation was
Habituation to novel visual vestibular environments with special reference to space flight
NASA Technical Reports Server (NTRS)
Young, L. R.; Kenyon, R. V.; Oman, C. M.
1981-01-01
The etiology of space motion sickness and the underlying physiological mechanisms associated with spatial orientation in a space environment were investigated. Human psychophysical experiments were used as the basis for the research concerning the interaction of visual and vestibular cues in the development of motion sickness. Particular emphasis is placed on the conflict theory in terms of explaining these interactions. Research on the plasticity of the vestibulo-ocular reflex is discussed.
Zach, Bernhard; Hofer, Ernst; Asslaber, Martin; Ahammer, Helmut
2016-01-01
The human heart has a heterogeneous structure, which is characterized by different cell types and their spatial configurations. The physical structure, especially the fibre orientation and the interstitial fibrosis, determines the electrical excitation and in further consequence the contractility in macroscopic as well as in microscopic areas. Modern image processing methods and parameters could be used to describe the image content and image texture. In most cases the description of the texture is not satisfying because the fibre orientation, detected with common algorithms, is biased by elements such as fibrocytes or endothelial nuclei. The goal of this work is to figure out if cardiac tissue can be analysed and classified on a microscopic level by automated image processing methods with a focus on an accurate detection of the fibre orientation. Quantitative parameters for identification of textures of different complexity or pathological attributes inside the heart were determined. The focus was set on the detection of the fibre orientation, which was calculated on the basis of the cardiomyocytes' nuclei. It turned out that the orientation of these nuclei corresponded with a high precision to the fibre orientation in the image plane. Additionally, these nuclei also indicated very well the inclination of the fibre.
Pesyna, Colin; Pundi, Krishna; Flanders, Martha
2011-03-09
The neural control of hand movement involves coordination of the sensory, motor, and memory systems. Recent studies have documented the motor coordinates for hand shape, but less is known about the corresponding patterns of somatosensory activity. To initiate this line of investigation, the present study characterized the sense of hand shape by evaluating the influence of differences in the amount of grasping or twisting force, and differences in forearm orientation. Human subjects were asked to use the left hand to report the perceived shape of the right hand. In the first experiment, six commonly grasped items were arranged on the table in front of the subject: bottle, doorknob, egg, notebook, carton, and pan. With eyes closed, subjects used the right hand to lightly touch, forcefully support, or imagine holding each object, while 15 joint angles were measured in each hand with a pair of wired gloves. The forces introduced by supporting or twisting did not influence the perceptual report of hand shape, but for most objects, the report was distorted in a consistent manner by differences in forearm orientation. Subjects appeared to adjust the intrinsic joint angles of the left hand, as well as the left wrist posture, so as to maintain the imagined object in its proper spatial orientation. In a second experiment, this result was largely replicated with unfamiliar objects. Thus, somatosensory and motor information appear to be coordinated in an object-based, spatial-coordinate system, sensitive to orientation relative to gravitational forces, but invariant to grasp forcefulness.
Vinson, David W.; Abney, Drew H.; Dale, Rick; Matlock, Teenie
2014-01-01
Three decades of research suggests that cognitive simulation of motion is involved in the comprehension of object location, bodily configuration, and linguistic meaning. For example, the remembered location of an object associated with actual or implied motion is typically displaced in the direction of motion. In this paper, two experiments explore context effects in spatial displacement. They provide a novel approach to estimating the remembered location of an implied motion image by employing a cursor-positioning task. Both experiments examine how the remembered spatial location of a person is influenced by subtle differences in implied motion, specifically, by shifting the orientation of the person’s body to face upward or downward, and by pairing the image with motion language that differed on intentionality, fell versus jumped. The results of Experiment 1, a survey-based experiment, suggest that language and body orientation influenced vertical spatial displacement. Results of Experiment 2, a task that used Adobe Flash and Amazon Mechanical Turk, showed consistent effects of body orientation on vertical spatial displacement but no effect of language. Our findings are in line with previous work on spatial displacement that uses a cursor-positioning task with implied motion stimuli. We discuss how different ways of simulating motion can influence spatial memory. PMID:25071628
Chin, John J; Kim, Anna J; Takahashi, Lois; Wiebe, Douglas J
2015-01-01
Social determinants of health may be substantially affected by spatial factors, which together may explain the persistence of health inequities. Clustering of possible sources of negative health and social outcomes points to a spatial focus for future interventions. We analyzed the spatial clustering of sex work businesses in Southern California to examine where and why they cluster. We explored economic and legal factors as possible explanations of clustering. We manually coded data from a website used by paying members to post reviews of female massage parlor workers. We identified clusters of sexually oriented massage parlor businesses using spatial autocorrelation tests. We conducted spatial regression using census tract data to identify predictors of clustering. A total of 889 venues were identified. Clusters of tracts having higher-than-expected numbers of sexually oriented massage parlors ("hot spots") were located outside downtowns. These hot spots were characterized by a higher proportion of adult males, a higher proportion of households below the federal poverty level, and a smaller average household size. Sexually oriented massage parlors in Los Angeles and Orange counties cluster in particular neighborhoods. More research is needed to ascertain the causal factors of such clusters and how interventions can be designed to leverage these spatial factors.
Vinson, David W; Abney, Drew H; Dale, Rick; Matlock, Teenie
2014-01-01
Three decades of research suggests that cognitive simulation of motion is involved in the comprehension of object location, bodily configuration, and linguistic meaning. For example, the remembered location of an object associated with actual or implied motion is typically displaced in the direction of motion. In this paper, two experiments explore context effects in spatial displacement. They provide a novel approach to estimating the remembered location of an implied motion image by employing a cursor-positioning task. Both experiments examine how the remembered spatial location of a person is influenced by subtle differences in implied motion, specifically, by shifting the orientation of the person's body to face upward or downward, and by pairing the image with motion language that differed on intentionality, fell versus jumped. The results of Experiment 1, a survey-based experiment, suggest that language and body orientation influenced vertical spatial displacement. Results of Experiment 2, a task that used Adobe Flash and Amazon Mechanical Turk, showed consistent effects of body orientation on vertical spatial displacement but no effect of language. Our findings are in line with previous work on spatial displacement that uses a cursor-positioning task with implied motion stimuli. We discuss how different ways of simulating motion can influence spatial memory.
Neural Models of Spatial Orientation in Novel Environments
1994-01-01
tool use, the problem of self-organizing body -centered spatial representations for movement planning and spatial orientation, and the problem of...meeting of the American Association for the Advancement of Science, Boston, February, 1993. 23. Grossberg, S., annual Linnaeus Lecture, Uppsala...Congress on Neural Networks entitled --A self-organizing neural network for learning a body -centered invariant representa- tion of 3-D target
Huang, Luoxiu; Chen, Xin; Shou, Tiande
2004-02-20
The feedback effect of activity of area 21a on orientation maps of areas 17 and 18 was investigated in cats using intrinsic signal optical imaging. A spatial frequency-dependent decrease in response amplitude of orientation maps to grating stimuli was observed in areas 17 and 18 when area 21a was inactivated by local injection of GABA, or by a lesion induced by liquid nitrogen freezing. The decrease in response amplitude of orientation maps of areas 17 and 18 after the area 21a inactivation paralleled the normal response without the inactivation. Application in area 21a of bicuculline, a GABAa receptor antagonist caused an increase in response amplitude of orientation maps of area 17. The results indicate a positive feedback from high-order visual cortical area 21a to lower-order areas underlying a spatial frequency-dependent mechanism.
Gravity modulates Listing's plane orientation during both pursuit and saccades
NASA Technical Reports Server (NTRS)
Hess, Bernhard J M.; Angelaki, Dora E.
2003-01-01
Previous studies have shown that the spatial organization of all eye orientations during visually guided saccadic eye movements (Listing's plane) varies systematically as a function of static and dynamic head orientation in space. Here we tested if a similar organization also applies to the spatial orientation of eye positions during smooth pursuit eye movements. Specifically, we characterized the three-dimensional distribution of eye positions during horizontal and vertical pursuit (0.1 Hz, +/-15 degrees and 0.5 Hz, +/-8 degrees) at different eccentricities and elevations while rhesus monkeys were sitting upright or being statically tilted in different roll and pitch positions. We found that the spatial organization of eye positions during smooth pursuit depends on static orientation in space, similarly as during visually guided saccades and fixations. In support of recent modeling studies, these results are consistent with a role of gravity on defining the parameters of Listing's law.
Orientation tuning of binocular summation: a comparison of colour to achromatic contrast
Gheiratmand, Mina; Cherniawsky, Avital S.; Mullen, Kathy T.
2016-01-01
A key function of the primary visual cortex is to combine the input from the two eyes into a unified binocular percept. At low, near threshold, contrasts a process of summation occurs if the visual inputs from the two eyes are similar. Here we measure the orientation tuning of binocular summation for chromatic and equivalent achromatic contrast. We derive estimates of orientation tuning by measuring binocular summation as a function of the orientation difference between two sinusoidal gratings presented dichoptically to different eyes. We then use a model to estimate the orientation bandwidth of the neural detectors underlying the binocular combination. We find that orientation bandwidths are similar for chromatic and achromatic stimuli at both low (0.375 c/deg) and mid (1.5 c/deg) spatial frequencies, with an overall average of 29 ± 3 degs (HWHH, s.e.m). This effect occurs despite the overall greater binocular summation found for the low spatial frequency chromatic stimuli. These results suggest that similar, oriented processes underlie both chromatic and achromatic binocular contrast combination. The non-oriented detection process found in colour vision at low spatial frequencies under monocular viewing is not evident at the binocular combination stage. PMID:27168119
Adaptation to implied tilt: extensive spatial extrapolation of orientation gradients
Roach, Neil W.; Webb, Ben S.
2013-01-01
To extract the global structure of an image, the visual system must integrate local orientation estimates across space. Progress is being made toward understanding this integration process, but very little is known about whether the presence of structure exerts a reciprocal influence on local orientation coding. We have previously shown that adaptation to patterns containing circular or radial structure induces tilt-aftereffects (TAEs), even in locations where the adapting pattern was occluded. These spatially “remote” TAEs have novel tuning properties and behave in a manner consistent with adaptation to the local orientation implied by the circular structure (but not physically present) at a given test location. Here, by manipulating the spatial distribution of local elements in noisy circular textures, we demonstrate that remote TAEs are driven by the extrapolation of orientation structure over remarkably large regions of visual space (more than 20°). We further show that these effects are not specific to adapting stimuli with polar orientation structure, but require a gradient of orientation change across space. Our results suggest that mechanisms of visual adaptation exploit orientation gradients to predict the local pattern content of unfilled regions of space. PMID:23882243
NASA Astrophysics Data System (ADS)
dias, S. B.; Yang, C.; Li, Z.; XIA, J.; Liu, K.; Gui, Z.; Li, W.
2013-12-01
Global climate change has become one of the biggest concerns for human kind in the 21st century due to its broad impacts on society and ecosystems across the world. Arctic has been observed as one of the most vulnerable regions to the climate change. In order to understand the impacts of climate change on the natural environment, ecosystems, biodiversity and others in the Arctic region, and thus to better support the planning and decision making process, cross-disciplinary researches are required to monitor and analyze changes of Arctic regions such as water, sea level, biodiversity and so on. Conducting such research demands the efficient utilization of various geospatially referenced data, web services and information related to Arctic region. In this paper, we propose a cloud-enabled and service-oriented Spatial Web Portal (SWP) to support the discovery, integration and utilization of Arctic related geospatial resources, serving as a building block of polar CI. This SWP leverages the following techniques: 1) a hybrid searching mechanism combining centralized local search, distributed catalogue search and specialized Internet search for effectively discovering Arctic data and web services from multiple sources; 2) a service-oriented quality-enabled framework for seamless integration and utilization of various geospatial resources; and 3) a cloud-enabled parallel spatial index building approach to facilitate near-real time resource indexing and searching. A proof-of-concept prototype is developed to demonstrate the feasibility of the proposed SWP, using an example of analyzing the Arctic snow cover change over the past 50 years.
NASA Astrophysics Data System (ADS)
Kohfeld, K. E.; Savo, V.; Sillmann, J.; Morton, C.; Lepofsky, D.
2016-12-01
Shifting precipitation patterns are a well-documented consequence of climate change, but their spatial variability is particularly difficult to assess. While the accuracy of global models has increased, specific regional changes in precipitation regimes are not well captured by these models. Typically, researchers who wish to detect trends and patterns in climatic variables, such as precipitation, use instrumental observations. In our study, we combined observations of rainfall by subsistence-oriented communities with several metrics of rainfall estimated from global instrumental records for comparable time periods (1955 - 2005). This comparison was aimed at identifying: 1) which rainfall metrics best match human observations of changes in precipitation; 2) areas where local communities observe changes not detected by global models. The collated observations ( 3800) made by subsistence-oriented communities covered 129 countries ( 1830 localities). For comparable time periods, we saw a substantial correspondence between instrumental records and human observations (66-77%) at the same locations, regardless of whether we considered trends in general rainfall, drought, or extreme rainfall. We observed a clustering of mismatches in two specific regions, possibly indicating some climatic phenomena not completely captured by the currently available global models. Many human observations also indicated an increased unpredictability in the start, end, duration, and continuity of the rainy seasons, all of which may hamper the performance of subsistence activities. We suggest that future instrumental metrics should capture this unpredictability of rainfall. This information would be important for thousands of subsistence-oriented communities in planning, coping, and adapting to climate change.
Sexual Orientation-Related Differences in Virtual Spatial Navigation and Spatial Search Strategies.
Rahman, Qazi; Sharp, Jonathan; McVeigh, Meadhbh; Ho, Man-Ling
2017-07-01
Spatial abilities are generally hypothesized to differ between men and women, and people with different sexual orientations. According to the cross-sex shift hypothesis, gay men are hypothesized to perform in the direction of heterosexual women and lesbian women in the direction of heterosexual men on cognitive tests. This study investigated sexual orientation differences in spatial navigation and strategy during a virtual Morris water maze task (VMWM). Forty-four heterosexual men, 43 heterosexual women, 39 gay men, and 34 lesbian/bisexual women (aged 18-54 years) navigated a desktop VMWM and completed measures of intelligence, handedness, and childhood gender nonconformity (CGN). We quantified spatial learning (hidden platform trials), probe trial performance, and cued navigation (visible platform trials). Spatial strategies during hidden and probe trials were classified into visual scanning, landmark use, thigmotaxis/circling, and enfilading. In general, heterosexual men scored better than women and gay men on some spatial learning and probe trial measures and used more visual scan strategies. However, some differences disappeared after controlling for age and estimated IQ (e.g., in visual scanning heterosexual men differed from women but not gay men). Heterosexual women did not differ from lesbian/bisexual women. For both sexes, visual scanning predicted probe trial performance. More feminine CGN scores were associated with lower performance among men and greater performance among women on specific spatial learning or probe trial measures. These results provide mixed evidence for the cross-sex shift hypothesis of sexual orientation-related differences in spatial cognition.
Dzieciol, Anna M.; Gadian, David G.; Jentschke, Sebastian; Doeller, Christian F.; Burgess, Neil; Mishkin, Mortimer
2015-01-01
The extent to which navigational spatial memory depends on hippocampal integrity in humans is not well documented. We investigated allocentric spatial recall using a virtual environment in a group of patients with severe hippocampal damage (SHD), a group of patients with “moderate” hippocampal damage (MHD), and a normal control group. Through four learning blocks with feedback, participants learned the target locations of four different objects in a circular arena. Distal cues were present throughout the experiment to provide orientation. A circular boundary as well as an intra-arena landmark provided spatial reference frames. During a subsequent test phase, recall of all four objects was tested with only the boundary or the landmark being present. Patients with SHD were impaired in both phases of this task. Across groups, performance on both types of spatial recall was highly correlated with memory quotient (MQ), but not with intelligence quotient (IQ), age, or sex. However, both measures of spatial recall separated experimental groups beyond what would be expected based on MQ, a widely used measure of general memory function. Boundary-based and landmark-based spatial recall were both strongly related to bilateral hippocampal volumes, but not to volumes of the thalamus, putamen, pallidum, nucleus accumbens, or caudate nucleus. The results show that boundary-based and landmark-based allocentric spatial recall are similarly impaired in patients with SHD, that both types of recall are impaired beyond that predicted by MQ, and that recall deficits are best explained by a reduction in bilateral hippocampal volumes. SIGNIFICANCE STATEMENT In humans, bilateral hippocampal atrophy can lead to profound impairments in episodic memory. Across species, perhaps the most well-established contribution of the hippocampus to memory is not to episodic memory generally but to allocentric spatial memory. However, the extent to which navigational spatial memory depends on hippocampal integrity in humans is not well documented. We investigated spatial recall using a virtual environment in two groups of patients with hippocampal damage (moderate/severe) and a normal control group. The results showed that patients with severe hippocampal damage are impaired in learning and recalling allocentric spatial information. Furthermore, hippocampal volume reduction impaired allocentric navigation beyond what can be predicted by memory quotient as a widely used measure of general memory function. PMID:26490854
Guderian, Sebastian; Dzieciol, Anna M; Gadian, David G; Jentschke, Sebastian; Doeller, Christian F; Burgess, Neil; Mishkin, Mortimer; Vargha-Khadem, Faraneh
2015-10-21
The extent to which navigational spatial memory depends on hippocampal integrity in humans is not well documented. We investigated allocentric spatial recall using a virtual environment in a group of patients with severe hippocampal damage (SHD), a group of patients with "moderate" hippocampal damage (MHD), and a normal control group. Through four learning blocks with feedback, participants learned the target locations of four different objects in a circular arena. Distal cues were present throughout the experiment to provide orientation. A circular boundary as well as an intra-arena landmark provided spatial reference frames. During a subsequent test phase, recall of all four objects was tested with only the boundary or the landmark being present. Patients with SHD were impaired in both phases of this task. Across groups, performance on both types of spatial recall was highly correlated with memory quotient (MQ), but not with intelligence quotient (IQ), age, or sex. However, both measures of spatial recall separated experimental groups beyond what would be expected based on MQ, a widely used measure of general memory function. Boundary-based and landmark-based spatial recall were both strongly related to bilateral hippocampal volumes, but not to volumes of the thalamus, putamen, pallidum, nucleus accumbens, or caudate nucleus. The results show that boundary-based and landmark-based allocentric spatial recall are similarly impaired in patients with SHD, that both types of recall are impaired beyond that predicted by MQ, and that recall deficits are best explained by a reduction in bilateral hippocampal volumes. In humans, bilateral hippocampal atrophy can lead to profound impairments in episodic memory. Across species, perhaps the most well-established contribution of the hippocampus to memory is not to episodic memory generally but to allocentric spatial memory. However, the extent to which navigational spatial memory depends on hippocampal integrity in humans is not well documented. We investigated spatial recall using a virtual environment in two groups of patients with hippocampal damage (moderate/severe) and a normal control group. The results showed that patients with severe hippocampal damage are impaired in learning and recalling allocentric spatial information. Furthermore, hippocampal volume reduction impaired allocentric navigation beyond what can be predicted by memory quotient as a widely used measure of general memory function. Copyright © 2015 Guderian et al.
Handler, Michael; Schier, Peter P; Fritscher, Karl D; Raudaschl, Patrik; Johnson Chacko, Lejo; Glueckert, Rudolf; Saba, Rami; Schubert, Rainer; Baumgarten, Daniel; Baumgartner, Christian
2017-01-01
Our sense of balance and spatial orientation strongly depends on the correct functionality of our vestibular system. Vestibular dysfunction can lead to blurred vision and impaired balance and spatial orientation, causing a significant decrease in quality of life. Recent studies have shown that vestibular implants offer a possible treatment for patients with vestibular dysfunction. The close proximity of the vestibular nerve bundles, the facial nerve and the cochlear nerve poses a major challenge to targeted stimulation of the vestibular system. Modeling the electrical stimulation of the vestibular system allows for an efficient analysis of stimulation scenarios previous to time and cost intensive in vivo experiments. Current models are based on animal data or CAD models of human anatomy. In this work, a (semi-)automatic modular workflow is presented for the stepwise transformation of segmented vestibular anatomy data of human vestibular specimens to an electrical model and subsequently analyzed. The steps of this workflow include (i) the transformation of labeled datasets to a tetrahedra mesh, (ii) nerve fiber anisotropy and fiber computation as a basis for neuron models, (iii) inclusion of arbitrary electrode designs, (iv) simulation of quasistationary potential distributions, and (v) analysis of stimulus waveforms on the stimulation outcome. Results obtained by the workflow based on human datasets and the average shape of a statistical model revealed a high qualitative agreement and a quantitatively comparable range compared to data from literature, respectively. Based on our workflow, a detailed analysis of intra- and extra-labyrinthine electrode configurations with various stimulation waveforms and electrode designs can be performed on patient specific anatomy, making this framework a valuable tool for current optimization questions concerning vestibular implants in humans.
Temporal asynchrony and spatial perception
Lev, Maria; Polat, Uri
2016-01-01
Collinear facilitation is an enhancement in the visibility of a target by laterally placed iso-oriented flankers in a collinear (COL) configuration. Iso-oriented flankers placed in a non-collinear configuration (side-by-side, SBS) produce less facilitation. Surprisingly, presentation of both configurations simultaneously (ISO-CROSS) abolishes the facilitation rather than increases it - a phenomenon that can’t be fully explained by the spatial properties of the target and flankers. Based on our preliminary data and recent studies, we hypothesized that there might be a novel explanation based on the temporal properties of the excitation and inhibition, resulting in asynchrony between the lateral inputs received from COL and SBS, leading to cancelation of the facilitatory component in ISO-CROSS. We explored this effect using a detection task in humans. The results replicated the previous results showing that the preferred facilitation for COL and SBS was abolished for the ISO-CROSS configuration. However, presenting the SBS flankers, but not the COL flankers 20 msec before ISO-CROSS restored the facilitatory effect. We propose a novel explanation that the perceptual advantage of collinear facilitation may be cancelled by the delayed input from the sides; thus, the final perception is determined by the overall spatial-temporal integration of the lateral interactions. PMID:27460532
NASA Technical Reports Server (NTRS)
Jobson, Daniel J.
1990-01-01
The visual perception of form information is considered to be based on the functioning of simple and complex neurons in the primate striate cortex. However, a review of the physiological data on these brain cells cannot be harmonized with either the perceptual spatial frequency performance of primates or the performance which is necessary for form perception in humans. This discrepancy together with recent interest in cortical-like and perceptual-like processing in image coding and machine vision prompted a series of image processing experiments intended to provide some definition of the selection of image operators. The experiments were aimed at determining operators which could be used to detect edges in a computational manner consistent with the visual perception of structure in images. Fundamental issues were the selection of size (peak spatial frequency) and circular versus oriented operators (or some combination). In a previous study, circular difference-of-Gaussian (DOG) operators, with peak spatial frequency responses at about 11 and 33 cyc/deg were found to capture the primary structural information in images. Here larger scale circular DOG operators were explored and led to severe loss of image structure and introduced spatial dislocations (due to blur) in structure which is not consistent with visual perception. Orientation sensitive operators (akin to one class of simple cortical neurons) introduced ambiguities of edge extent regardless of the scale of the operator. For machine vision schemes which are functionally similar to natural vision form perception, two circularly symmetric very high spatial frequency channels appear to be necessary and sufficient for a wide range of natural images. Such a machine vision scheme is most similar to the physiological performance of the primate lateral geniculate nucleus rather than the striate cortex.
Varray, François; Mirea, Iulia; Langer, Max; Peyrin, Françoise; Fanton, Laurent; Magnin, Isabelle E
2017-05-01
This paper presents a methodology to access the 3D local myocyte arrangements in fresh human post-mortem heart samples. We investigated the cardiac micro-structure at a high and isotropic resolution of 3.5 µm in three dimensions using X-ray phase micro-tomography at the European Synchrotron Radiation Facility. We then processed the reconstructed volumes to extract the 3D local orientation of the myocytes using a multi-scale approach with no segmentation. We created a simplified 3D model of tissue sample made of simulated myocytes with known size and orientations, to evaluate our orientation extraction method. Afterwards, we applied it to 2D histological cuts and to eight 3D left ventricular (LV) cardiac tissue samples. Then, the variation of the helix angles, from the endocardium to the epicardium, was computed at several spatial resolutions ranging from 3.6 3 mm 3 to 112 3 µm 3 . We measure an increased range of 20° to 30° from the coarsest resolution level to the finest level in the experimental samples. This result is in line with the higher values measured from histology. The displayed tractography demonstrates a rather smooth evolution of the transmural helix angle in six LV samples and a sudden discontinuity of the helix angle in two septum samples. These measurements bring a new vision of the human heart architecture from macro- to micro-scale. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Stephen, N. R.
2016-08-01
IR spectroscopy is used to infer composition of extraterrestrial bodies, comparing bulk spectra to databases of separate mineral phases. We extract spatially resolved meteorite-specific spectra from achondrites with respect to zonation and orientation.
The Two Modes of Visual Processing: Implications for Spatial Orientation
NASA Technical Reports Server (NTRS)
Leibowitz, H. W.; Shupert, C. L.; Post, R. B.
1984-01-01
The roles of the focal and ambient visual systems in spatial orientation are discussed. The two modes are defined and compared. The contribution of each system is illustrated through examples such as spatial disorientation/motion sickness, vehicle guidance/night driving, visual narrowing under stress/cortical brain damage, and aircraft instrumentation. Emphasis is placed on the need for testing procedures for the ambient system.
Spatial orientation in weightlessness and readaptation to earth's gravity
NASA Technical Reports Server (NTRS)
Young, L. R.; Oman, C. M.; Lichtenberg, B. K.; Watt, D. G. D.; Money, K. E.
1984-01-01
Unusual vestibular responses to head movements in weightlessness may produce spatial orientation illusions and symptoms of space motion sickness. An integrated set of experiments was performed during Spacelab 1, as well as before and after the flight, to evaluate responses mediated by the otolith organs and semicircular canals. A variety of measurements were used, including eye movements, postural control, perception of orientation, and susceptibility to space sickness.
Cohen, D
1976-10-01
This paper reports an analysis of sex differences in cognitive test scores covering the dimensions of spatial orientation and spatial visualization in groups of 6 older men and 6 women matched for speed of performance on a maze test and level of performance on a spatial relations task. Older men were more proficient solving spatial problems using the body as a referent, whereas there was no significant difference between the sexes in imagining spatial displacement. Matched comparisons appear a useful adjunct to population research to understand the type(s) of cognitive processes where differential performance by the sexes is observed.
From innervation density to tactile acuity: 1. Spatial representation.
Brown, Paul B; Koerber, H Richard; Millecchia, Ronald
2004-06-11
We tested the hypothesis that the population receptive field representation (a superposition of the excitatory receptive field areas of cells responding to a tactile stimulus) provides spatial information sufficient to mediate one measure of static tactile acuity. In psychophysical tests, two-point discrimination thresholds on the hindlimbs of adult cats varied as a function of stimulus location and orientation, as they do in humans. A statistical model of the excitatory low threshold mechanoreceptive fields of spinocervical, postsynaptic dorsal column and spinothalamic tract neurons was used to simulate the population receptive field representations in this neural population of the one- and two-point stimuli used in the psychophysical experiments. The simulated and observed thresholds were highly correlated. Simulated and observed thresholds' relations to physiological and anatomical variables such as stimulus location and orientation, receptive field size and shape, map scale, and innervation density were strikingly similar. Simulated and observed threshold variations with receptive field size and map scale obeyed simple relationships predicted by the signal detection model, and were statistically indistinguishable from each other. The population receptive field representation therefore contains information sufficient for this discrimination.
Hicheur, Halim; Vieilledent, Stéphane; Berthoz, Alain
Anticipatory head orientation relative to walking direction was investigated in humans. Subjects were asked to walk along a 20 m perimeter, figure of eight. The geometry of this path required subjects to steer their body according to both curvature variations (alternate straight with curved walking) and walking direction (clock wise and counter clock wise). In agreement with previous results obtained during different locomotor tasks [R. Grasso, S. Glasauer, Y. Takei, A. Berthoz, The predictive brain: anticipatory control of head direction for the steering of locomotion, NeuroReport 7 (1996) 1170-1174; R. Grasso, P. Prevost, Y.P. Ivanenko, A. Berthoz, Eye-head coordination for the steering of locomotion in humans: an anticipatory synergy, Neurosci. Lett. 253 (2) (1998) 115-118; T. Imai, S.T. Moore, T. Raphan, B. Cohen, Interaction of body, head, and eyes during walking and turning, Exp. Brain Res. 136 (2001) 1-18; P. Prevost, Y. Ivanenko, R. Grasso, A. Berthoz, Spatial invariance in anticipatory orienting behaviour during human navigation, Neurosci. Lett. 339 (2002) 243-247; G. Courtine, M. Schieppati, Human walking along a curved path. I. Body trajectory, segment orientation and the effect of vision, Eur. J. Neurosci. 18 (2003) 177-190], the head turned toward the future walking direction. This anticipatory head behaviour was continuously modulated by the geometrical variations of the path. Two main components were observed in the anticipatory head behaviour. One was related to the geometrical form of the path, the other to the transfer of body mass from one foot to the other during stepping. A clear modulation of the head deviation pattern was observed between walking on curved versus straight parts of the path: head orientation was influenced to a lesser extent by step alternation for curved path where a transient head fixation was observed. We also observed good symmetry in the head deviation profile, i.e. the head tended to anticipate the future walking direction with the same amplitude when turning to the left (29.75 +/- 7.41 degrees of maximum head deviation) or to the right (30.86 +/- 9.92 degrees ). These findings suggest a combination of motor strategies underlying head stabilization in space and more global orienting mechanisms for steering the whole body in the desired direction.
Kim, Anna J.; Takahashi, Lois; Wiebe, Douglas J.
2015-01-01
Objective Social determinants of health may be substantially affected by spatial factors, which together may explain the persistence of health inequities. Clustering of possible sources of negative health and social outcomes points to a spatial focus for future interventions. We analyzed the spatial clustering of sex work businesses in Southern California to examine where and why they cluster. We explored economic and legal factors as possible explanations of clustering. Methods We manually coded data from a website used by paying members to post reviews of female massage parlor workers. We identified clusters of sexually oriented massage parlor businesses using spatial autocorrelation tests. We conducted spatial regression using census tract data to identify predictors of clustering. Results A total of 889 venues were identified. Clusters of tracts having higher-than-expected numbers of sexually oriented massage parlors (“hot spots”) were located outside downtowns. These hot spots were characterized by a higher proportion of adult males, a higher proportion of households below the federal poverty level, and a smaller average household size. Conclusion Sexually oriented massage parlors in Los Angeles and Orange counties cluster in particular neighborhoods. More research is needed to ascertain the causal factors of such clusters and how interventions can be designed to leverage these spatial factors. PMID:26327731
Vargas, Roger I; Stark, John D; Banks, John; Leblanc, Luc; Manoukis, Nicholas C; Peck, Steven
2013-10-01
We examined spatial patterns of both sexes of oriental fruit fly, Bactrocera dorsalis (Hendel), and its two most abundant parasitoids, Fopius arisanus (Sonan) and Diachasmimorpha longicaudata (Ashmead) in a commercial guava (Psidium guajava L.) orchard. Oriental fruit fly spatial patterns were initially random, but became highly aggregated with host fruit ripening and the subsequent colonization of, first, F. arisanus (egg-pupal parasitoid) and, second, D. longicaudata (larval-pupal parasitoid). There was a significant positive relationship between populations of oriental fruit fly and F. arisanus during each of the F. arisanus increases, a pattern not exhibited between oriental fruit fly and D. longicaudata. Generally, highest total numbers of males and females (oriental fruit fly, F. arisanus, and D. longicaudata) occurred on or about the same date. There was a significant positive correlation between male and female populations of all three species; we measured a lag of 2-4 wk between increases of female F. arisanus and conspecific males. There was a similar trend in one of the two years for the second most abundant species, D. longicaudata, but no sign of a time lag between the sexes for oriental fruit fly. Spatially, we found a significant positive relationship between numbers of F. arisanus in blocks and the average number in adjoining blocks. We did not find the same effect for oriental fruit fly and D. longicaudata, possibly a result of lower overall numbers of the latter two species or less movement of F. arisanus within the field.
Perceived orientation, spatial layout and the geometry of pictures
NASA Technical Reports Server (NTRS)
Goldstein, E. Bruce
1989-01-01
The purpose is to discuss the role of geometry in determining the perception of spatial layout and perceived orientation in pictures viewed at an angle. This discussion derives from Cutting's (1988) suggestion, based on his analysis of some of the author's data (Goldstein, 1987), that the changes in perceived orientation that occur when pictures are viewed at an angle can be explained in terms of geometrically produced changes in the picture's virtual space.
NASA Astrophysics Data System (ADS)
Pietrzyk, Mariusz W.; Manning, David J.; Dix, Alan; Donovan, Tim
2009-02-01
Aim: The goal of the study is to determine the spatial frequency characteristics at locations in the image of overt and covert observers' decisions and find out if there are any similarities in different observers' groups: the same radiological experience group or the same accuracy scored level. Background: The radiological task is described as a visual searching decision making procedure involving visual perception and cognitive processing. Humans perceive the world through a number of spatial frequency channels, each sensitive to visual information carried by different spatial frequency ranges and orientations. Recent studies have shown that particular physical properties of local and global image-based elements are correlated with the performance and the level of experience of human observers in breast cancer and lung nodule detections. Neurological findings in visual perception were an inspiration for wavelet applications in vision research because the methodology tries to mimic the brain processing algorithms. Methods: The wavelet approach to the set of postero-anterior chest radiographs analysis has been used to characterize perceptual preferences observers with different levels of experience in the radiological task. Psychophysical methodology has been applied to track eye movements over the image, where particular ROIs related to the observers' fixation clusters has been analysed in the spaces frame by Daubechies functions. Results: Significance differences have been found between the spatial frequency characteristics at the location of different decisions.
THE LIMITED EFFECT OF COINCIDENT ORIENTATION ON THE CHOICE OF INTRINSIC AXIS (.).
Li, Jing; Su, Wei
2015-06-01
The allocentric system computes and represents general object-to-object spatial relationships to provide a spatial frame of reference other than the egocentric system. The intrinsic frame-of-reference system theory, which suggests people learn the locations of objects based upon an intrinsic axis, is important in research about the allocentric system. The purpose of the current study was to determine whether the effect of coincident orientation on the choice of intrinsic axis was limited. Two groups of participants (24 men, 24 women; M age = 24 yr., SD = 2) encoded different spatial layouts in which the objects shared the coincident orientation of 315° and 225° separately at learning perspective (0°). The response pattern of partial-scene-recognition task following learning reflected different strategies for choosing the intrinsic axis under different conditions. Under the 315° object-orientation condition, the objects' coincident orientation was as important as the symmetric axis in the choice of the intrinsic axis. However, participants were more likely to choose the symmetric axis as the intrinsic axis under the 225° object-orientation condition. The results suggest the effect of coincident orientation on the choice of intrinsic axis is limited.
NASA Technical Reports Server (NTRS)
Eckstein, M. P.; Ahumada, A. J. Jr; Watson, A. B.
1997-01-01
Studies of visual detection of a signal superimposed on one of two identical backgrounds show performance degradation when the background has high contrast and is similar in spatial frequency and/or orientation to the signal. To account for this finding, models include a contrast gain control mechanism that pools activity across spatial frequency, orientation and space to inhibit (divisively) the response of the receptor sensitive to the signal. In tasks in which the observer has to detect a known signal added to one of M different backgrounds grounds due to added visual noise, the main sources of degradation are the stochastic noise in the image and the suboptimal visual processing. We investigate how these two sources of degradation (contrast gain control and variations in the background) interact in a task in which the signal is embedded in one of M locations in a complex spatially varying background (structured background). We use backgrounds extracted from patient digital medical images. To isolate effects of the fixed deterministic background (the contrast gain control) from the effects of the background variations, we conduct detection experiments with three different background conditions: (1) uniform background, (2) a repeated sample of structured background, and (3) different samples of structured background. Results show that human visual detection degrades from the uniform background condition to the repeated background condition and degrades even further in the different backgrounds condition. These results suggest that both the contrast gain control mechanism and the background random variations degrade human performance in detection of a signal in a complex, spatially varying background. A filter model and added white noise are used to generate estimates of sampling efficiencies, an equivalent internal noise, an equivalent contrast-gain-control-induced noise, and an equivalent noise due to the variations in the structured background.
Visual-Spatial Orienting in Autism.
ERIC Educational Resources Information Center
Wainwright, J. Ann; Bryson, Susan E.
1996-01-01
Visual-spatial orienting in 10 high-functioning adults with autism was examined. Compared to controls, subjects responded faster to central than to lateral stimuli, and showed a left visual field advantage for stimulus detection only when laterally presented. Abnormalities in attention shifting and coordination of attentional and motor systems are…
Yang, Xing; Ru, Wenzhao; Wang, Bei; Gao, Xiaocai; Yang, Lu; Li, She; Xi, Shoumin; Gong, Pingyuan
2016-12-01
Levels of norepinephrine (NE) in the brain are related to attention ability in animals and risk of attention-deficit hyperactivity disorder in humans. Given the modulation of the norepinephrine transporter (NET) on NE levels in the brain and the link between NE and attention impairment of attention-deficit hyperactivity disorder, it was possible that the NET gene underpinned individual differences in attention processes in healthy populations. To investigate to what extent NET could modulate one's attention orientation to facial expressions, we categorized individuals according to the genotypes of the -182 T/C (rs2242446) polymorphism and measured individuals' attention orientation with the spatial cueing task. Our results indicated that the -182 T/C polymorphism significantly modulated attention orientation to facial expressions, of which the CC genotype facilitated attention reorientation to the locations where cued faces were previously presented. However, this polymorphism showed no significant effects on the regulations of emotional cues on attention orientation. Our findings suggest that the NET gene modulates the individual difference in attention to facial expressions, which provides new insights into the roles of NE in social interactions.
Castro, Cibele Canal; Dos Reis-Lunardelli, Eleonora Araujo; Schmidt, Werner J; Coitinho, Adriana Simon; Izquierdo, Iván
2007-11-01
Many studies indicate a dissociation between two forms of orientation: allocentric orientation, in which an organism orients on the basis of cues external to the organism, and egocentric spatial orientation (ESO) by which an organism orients on the basis of proprioceptive information. While allocentric orientation is mediated primarily by the hippocampus and its afferent and efferent connections, ESO is mediated by the prefronto-striatal system. Striatal lesions as well as classical neuroleptics, which block dopamine receptors, act through the prefronto-striatal system and impair ESO. The purpose of the present study was to determine the effects of the atypical antipsychotics clozapine, olanzapine and risperidone which are believed to exert its antipsychotic effects mainly by dopaminergic, cholinergic and serotonergic mechanisms. A delayed-two-alternative-choice-task, under conditions that required ESO and at the same time excluded allocentric spatial orientation was used. Clozapine and olanzapine treated rats made more errors than risperidone treated rats in the delayed alternation in comparison with the controls. Motor abilities were not impaired by any of the drugs. Thus, with regard to the delayed alternation requiring ESO, clozapine and olanzapine but not risperidone affects the prefronto-striatal system in a similar way as classical neuroleptics does.
Effects of Pro-Cholinergic Treatment in Patients Suffering from Spatial Neglect
Lucas, N.; Saj, A.; Schwartz, S.; Ptak, R.; Thomas, C.; Conne, P.; Leroy, R.; Pavin, S.; Diserens, K.; Vuilleumier, Patrik
2013-01-01
Spatial neglect is a neurological condition characterized by a breakdown of spatial cognition contralateral to hemispheric damage. Deficits in spatial attention toward the contralesional side are considered to be central to this syndrome. Brain lesions typically involve right fronto-parietal cortices mediating attentional functions and subcortical connections in underlying white matter. Convergent findings from neuroimaging and behavioral studies in both animals and humans suggest that the cholinergic system might also be critically implicated in selective attention by modulating cortical function via widespread projections from the basal forebrain. Here we asked whether deficits in spatial attention associated with neglect could partly result from a cholinergic deafferentation of cortical areas subserving attentional functions, and whether such disturbances could be alleviated by pro-cholinergic therapy. We examined the effect of a single-dose transdermal nicotine treatment on spatial neglect in 10 stroke patients in a double-blind placebo-controlled protocol, using a standardized battery of neglect tests. Nicotine-induced systematic improvement on cancellation tasks and facilitated orienting to single visual targets, but had no significant effect on other tests. These results support a global effect of nicotine on attention and arousal, but no effect on other spatial mechanisms impaired in neglect. PMID:24062674
Can Retinal Ganglion Cell Dipoles Seed Iso-Orientation Domains in the Visual Cortex?
Schottdorf, Manuel; Eglen, Stephen J.; Wolf, Fred; Keil, Wolfgang
2014-01-01
It has been argued that the emergence of roughly periodic orientation preference maps (OPMs) in the primary visual cortex (V1) of carnivores and primates can be explained by a so-called statistical connectivity model. This model assumes that input to V1 neurons is dominated by feed-forward projections originating from a small set of retinal ganglion cells (RGCs). The typical spacing between adjacent cortical orientation columns preferring the same orientation then arises via Moiré-Interference between hexagonal ON/OFF RGC mosaics. While this Moiré-Interference critically depends on long-range hexagonal order within the RGC mosaics, a recent statistical analysis of RGC receptive field positions found no evidence for such long-range positional order. Hexagonal order may be only one of several ways to obtain spatially repetitive OPMs in the statistical connectivity model. Here, we investigate a more general requirement on the spatial structure of RGC mosaics that can seed the emergence of spatially repetitive cortical OPMs, namely that angular correlations between so-called RGC dipoles exhibit a spatial structure similar to that of OPM autocorrelation functions. Both in cat beta cell mosaics as well as primate parasol receptive field mosaics we find that RGC dipole angles are spatially uncorrelated. To help assess the level of these correlations, we introduce a novel point process that generates mosaics with realistic nearest neighbor statistics and a tunable degree of spatial correlations of dipole angles. Using this process, we show that given the size of available data sets, the presence of even weak angular correlations in the data is very unlikely. We conclude that the layout of ON/OFF ganglion cell mosaics lacks the spatial structure necessary to seed iso-orientation domains in the primary visual cortex. PMID:24475081
Castañer, Marta; Andueza, Juan; Hileno, Raúl; Puigarnau, Silvia; Prat, Queralt; Camerino, Oleguer
2018-01-01
Laterality is a key aspect of the analysis of basic and specific motor skills. It is relevant to sports because it involves motor laterality profiles beyond left-right preference and spatial orientation of the body. The aim of this study was to obtain the laterality profiles of young athletes, taking into account the synergies between the support and precision functions of limbs and body parts in the performance of complex motor skills. We applied two instruments: (a) MOTORLAT, a motor laterality inventory comprising 30 items of basic, specific, and combined motor skills, and (b) the Precision and Agility Tapping over Hoops (PATHoops) task, in which participants had to perform a path by stepping in each of 14 hoops arranged on the floor, allowing the observation of their feet, left-right preference and spatial orientation. A total of 96 young athletes performed the PATHoops task and the 30 MOTORLAT items, allowing us to obtain data about limb dominance and spatial orientation of the body in the performance of complex motor skills. Laterality profiles were obtained by means of a cluster analysis and a correlational analysis and a contingency analysis were applied between the motor skills and spatial orientation actions performed. The results obtained using MOTORLAT show that the combined motor skills criterion (for example, turning while jumping) differentiates athletes' uses of laterality, showing a clear tendency toward mixed laterality profiles in the performance of complex movements. In the PATHoops task, the best spatial orientation strategy was “same way” (same foot and spatial wing) followed by “opposite way” (opposite foot and spatial wing), in keeping with the research assumption that actions unfolding in a horizontal direction in front of an observer's eyes are common in a variety of sports. PMID:29930527
Can retinal ganglion cell dipoles seed iso-orientation domains in the visual cortex?
Schottdorf, Manuel; Eglen, Stephen J; Wolf, Fred; Keil, Wolfgang
2014-01-01
It has been argued that the emergence of roughly periodic orientation preference maps (OPMs) in the primary visual cortex (V1) of carnivores and primates can be explained by a so-called statistical connectivity model. This model assumes that input to V1 neurons is dominated by feed-forward projections originating from a small set of retinal ganglion cells (RGCs). The typical spacing between adjacent cortical orientation columns preferring the same orientation then arises via Moiré-Interference between hexagonal ON/OFF RGC mosaics. While this Moiré-Interference critically depends on long-range hexagonal order within the RGC mosaics, a recent statistical analysis of RGC receptive field positions found no evidence for such long-range positional order. Hexagonal order may be only one of several ways to obtain spatially repetitive OPMs in the statistical connectivity model. Here, we investigate a more general requirement on the spatial structure of RGC mosaics that can seed the emergence of spatially repetitive cortical OPMs, namely that angular correlations between so-called RGC dipoles exhibit a spatial structure similar to that of OPM autocorrelation functions. Both in cat beta cell mosaics as well as primate parasol receptive field mosaics we find that RGC dipole angles are spatially uncorrelated. To help assess the level of these correlations, we introduce a novel point process that generates mosaics with realistic nearest neighbor statistics and a tunable degree of spatial correlations of dipole angles. Using this process, we show that given the size of available data sets, the presence of even weak angular correlations in the data is very unlikely. We conclude that the layout of ON/OFF ganglion cell mosaics lacks the spatial structure necessary to seed iso-orientation domains in the primary visual cortex.
Falomir, Zoe; Kluth, Thomas
2017-06-24
The challenge of describing 3D real scenes is tackled in this paper using qualitative spatial descriptors. A key point to study is which qualitative descriptors to use and how these qualitative descriptors must be organized to produce a suitable cognitive explanation. In order to find answers, a survey test was carried out with human participants which openly described a scene containing some pieces of furniture. The data obtained in this survey are analysed, and taking this into account, the QSn3D computational approach was developed which uses a XBox 360 Kinect to obtain 3D data from a real indoor scene. Object features are computed on these 3D data to identify objects in indoor scenes. The object orientation is computed, and qualitative spatial relations between the objects are extracted. These qualitative spatial relations are the input to a grammar which applies saliency rules obtained from the survey study and generates cognitive natural language descriptions of scenes. Moreover, these qualitative descriptors can be expressed as first-order logical facts in Prolog for further reasoning. Finally, a validation study is carried out to test whether the descriptions provided by QSn3D approach are human readable. The obtained results show that their acceptability is higher than 82%.
Soskey, Laura N; Allen, Paul D; Bennetto, Loisa
2017-08-01
One of the earliest observable impairments in autism spectrum disorder (ASD) is a failure to orient to speech and other social stimuli. Auditory spatial attention, a key component of orienting to sounds in the environment, has been shown to be impaired in adults with ASD. Additionally, specific deficits in orienting to social sounds could be related to increased acoustic complexity of speech. We aimed to characterize auditory spatial attention in children with ASD and neurotypical controls, and to determine the effect of auditory stimulus complexity on spatial attention. In a spatial attention task, target and distractor sounds were played randomly in rapid succession from speakers in a free-field array. Participants attended to a central or peripheral location, and were instructed to respond to target sounds at the attended location while ignoring nearby sounds. Stimulus-specific blocks evaluated spatial attention for simple non-speech tones, speech sounds (vowels), and complex non-speech sounds matched to vowels on key acoustic properties. Children with ASD had significantly more diffuse auditory spatial attention than neurotypical children when attending front, indicated by increased responding to sounds at adjacent non-target locations. No significant differences in spatial attention emerged based on stimulus complexity. Additionally, in the ASD group, more diffuse spatial attention was associated with more severe ASD symptoms but not with general inattention symptoms. Spatial attention deficits have important implications for understanding social orienting deficits and atypical attentional processes that contribute to core deficits of ASD. Autism Res 2017, 10: 1405-1416. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.
Albonico, Andrea; Malaspina, Manuela; Bricolo, Emanuela; Martelli, Marialuisa; Daini, Roberta
2016-11-01
Selective attention, i.e. the ability to concentrate one's limited processing resources on one aspect of the environment, is a multifaceted concept that includes different processes like spatial attention and its subcomponents of orienting and focusing. Several studies, indeed, have shown that visual tasks performance is positively influenced not only by attracting attention to the target location (orientation component), but also by the adjustment of the size of the attentional window according to task demands (focal component). Nevertheless, the relative weight of the two components in central and peripheral vision has never been studied. We conducted two experiments to explore whether different components of spatial attention have different effects in central and peripheral vision. In order to do so, participants underwent either a detection (Experiment 1) or a discrimination (Experiment 2) task where different types of cues elicited different components of spatial attention: a red dot, a small square and a big square (an optimal stimulus for the orientation component, an optimal and a sub-optimal stimulus for the focal component respectively). Response times and cue-size effects indicated a stronger effect of the small square or of the dot in different conditions, suggesting the existence of a dissociation in terms of mechanisms between the focal and the orientation components of spatial attention. Specifically, we found that the orientation component was stronger in periphery, while the focal component was noticeable only in central vision and characterized by an exogenous nature. Copyright © 2016 Elsevier B.V. All rights reserved.
Gharat, Amol; Baker, Curtis L
2017-01-25
Many of the neurons in early visual cortex are selective for the orientation of boundaries defined by first-order cues (luminance) as well as second-order cues (contrast, texture). The neural circuit mechanism underlying this selectivity is still unclear, but some studies have proposed that it emerges from spatial nonlinearities of subcortical Y cells. To understand how inputs from the Y-cell pathway might be pooled to generate cue-invariant receptive fields, we recorded visual responses from single neurons in cat Area 18 using linear multielectrode arrays. We measured responses to drifting and contrast-reversing luminance gratings as well as contrast modulation gratings. We found that a large fraction of these neurons have nonoriented responses to gratings, similar to those of subcortical Y cells: they respond at the second harmonic (F2) to high-spatial frequency contrast-reversing gratings and at the first harmonic (F1) to low-spatial frequency drifting gratings ("Y-cell signature"). For a given neuron, spatial frequency tuning for linear (F1) and nonlinear (F2) responses is quite distinct, similar to orientation-selective cue-invariant neurons. Also, these neurons respond to contrast modulation gratings with selectivity for the carrier (texture) spatial frequency and, in some cases, orientation. Their receptive field properties suggest that they could serve as building blocks for orientation-selective cue-invariant neurons. We propose a circuit model that combines ON- and OFF-center cortical Y-like cells in an unbalanced push-pull manner to generate orientation-selective, cue-invariant receptive fields. A significant fraction of neurons in early visual cortex have specialized receptive fields that allow them to selectively respond to the orientation of boundaries that are invariant to the cue (luminance, contrast, texture, motion) that defines them. However, the neural mechanism to construct such versatile receptive fields remains unclear. Using multielectrode recording, we found a large fraction of neurons in early visual cortex with receptive fields not selective for orientation that have spatial nonlinearities like those of subcortical Y cells. These are strong candidates for building cue-invariant orientation-selective neurons; we present a neural circuit model that pools such neurons in an imbalanced "push-pull" manner, to generate orientation-selective cue-invariant receptive fields. Copyright © 2017 the authors 0270-6474/17/370998-16$15.00/0.
Spatial Instability of the Linearly Polarized Plane Wave in a Cubic Crystal
NASA Astrophysics Data System (ADS)
Kuz'mina, M. S.; Khazanov, E. A.
2016-12-01
We study theoretically the development of a small-scale spatial instability of a plane wave in a cubic crystal with [111], [001] and [101] orientations. It is shown that in the [111] oriented crystals the instability develops at lower intensities than in the [001] and [101] oriented crystals. In the latter two crystals, the instability can significantly be suppressed by choosing the optimal radiation polarization. It is found that in the case of a small B integral, the method of temporal contrast enhancement of laser pulses by generating an orthogonal polarization achieves the largest efficiency with the [101] orientation, while the [001] orientation is more preferable for B > 3.
Covert spatial attention is functionally intact in amblyopic human adults
Roberts, Mariel; Cymerman, Rachel; Smith, R. Theodore; Kiorpes, Lynne; Carrasco, Marisa
2016-01-01
Certain abnormalities in behavioral performance and neural signaling have been attributed to a deficit of visual attention in amblyopia, a neurodevelopmental disorder characterized by a diverse array of visual deficits following abnormal binocular childhood experience. Critically, most have inferred attention's role in their task without explicitly manipulating and measuring its effects against a baseline condition. Here, we directly investigate whether human amblyopic adults benefit from covert spatial attention—the selective processing of visual information in the absence of eye movements—to the same degree as neurotypical observers. We manipulated both involuntary (Experiment 1) and voluntary (Experiment 2) attention during an orientation discrimination task for which the effects of covert spatial attention have been well established in neurotypical and special populations. In both experiments, attention significantly improved accuracy and decreased reaction times to a similar extent (a) between the eyes of the amblyopic adults and (b) between the amblyopes and their age- and gender-matched controls. Moreover, deployment of voluntary attention away from the target location significantly impaired task performance (Experiment 2). The magnitudes of the involuntary and voluntary attention benefits did not correlate with amblyopic depth or severity. Both groups of observers showed canonical performance fields (better performance along the horizontal than vertical meridian and at the lower than upper vertical meridian) and similar effects of attention across locations. Despite their characteristic low-level vision impairments, covert spatial attention remains functionally intact in human amblyopic adults. PMID:28033433
Shapero, Joshua A
2017-07-01
Previous studies have shown that language contributes to humans' ability to orient using landmarks and shapes their use of frames of reference (FoRs) for memory. However, the role of environmental experience in shaping spatial cognition has not been investigated. This study addresses such a possibility by examining the use of FoRs in a nonverbal spatial memory task among residents of an Andean community in Peru. Participants consisted of 97 individuals from Ancash Quechua-speaking households (8-77 years of age) who spoke Quechua and/or Spanish and varied considerably with respect to the extent of their experience in the surrounding landscape. The results demonstrated that environmental experience was the only factor significantly related to the preference for allocentric FoRs. The study thus shows that environmental experience can play a role alongside language in shaping habits of spatial representation, and it suggests a new direction of inquiry into the relationships among language, thought, and experience. Copyright © 2016 Cognitive Science Society, Inc.
CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription.
Tang, Zhonghui; Luo, Oscar Junhong; Li, Xingwang; Zheng, Meizhen; Zhu, Jacqueline Jufen; Szalaj, Przemyslaw; Trzaskoma, Pawel; Magalska, Adriana; Wlodarczyk, Jakub; Ruszczycki, Blazej; Michalski, Paul; Piecuch, Emaly; Wang, Ping; Wang, Danjuan; Tian, Simon Zhongyuan; Penrad-Mobayed, May; Sachs, Laurent M; Ruan, Xiaoan; Wei, Chia-Lin; Liu, Edison T; Wilczynski, Grzegorz M; Plewczynski, Dariusz; Li, Guoliang; Ruan, Yijun
2015-12-17
Spatial genome organization and its effect on transcription remains a fundamental question. We applied an advanced chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) strategy to comprehensively map higher-order chromosome folding and specific chromatin interactions mediated by CCCTC-binding factor (CTCF) and RNA polymerase II (RNAPII) with haplotype specificity and nucleotide resolution in different human cell lineages. We find that CTCF/cohesin-mediated interaction anchors serve as structural foci for spatial organization of constitutive genes concordant with CTCF-motif orientation, whereas RNAPII interacts within these structures by selectively drawing cell-type-specific genes toward CTCF foci for coordinated transcription. Furthermore, we show that haplotype variants and allelic interactions have differential effects on chromosome configuration, influencing gene expression, and may provide mechanistic insights into functions associated with disease susceptibility. 3D genome simulation suggests a model of chromatin folding around chromosomal axes, where CTCF is involved in defining the interface between condensed and open compartments for structural regulation. Our 3D genome strategy thus provides unique insights in the topological mechanism of human variations and diseases. Copyright © 2015 Elsevier Inc. All rights reserved.
Chanes, Lorena; Chica, Ana B.; Quentin, Romain; Valero-Cabré, Antoni
2012-01-01
The right Frontal Eye Field (FEF) is a region of the human brain, which has been consistently involved in visuo-spatial attention and access to consciousness. Nonetheless, the extent of this cortical site’s ability to influence specific aspects of visual performance remains debated. We hereby manipulated pre-target activity on the right FEF and explored its influence on the detection and categorization of low-contrast near-threshold visual stimuli. Our data show that pre-target frontal neurostimulation has the potential when used alone to induce enhancements of conscious visual detection. More interestingly, when FEF stimulation was combined with visuo-spatial cues, improvements remained present only for trials in which the cue correctly predicted the location of the subsequent target. Our data provide evidence for the causal role of the right FEF pre-target activity in the modulation of human conscious vision and reveal the dependence of such neurostimulatory effects on the state of activity set up by cue validity in the dorsal attentional orienting network. PMID:22615759
Laminar Neural Field Model of Laterally Propagating Waves of Orientation Selectivity
2015-01-01
We construct a laminar neural-field model of primary visual cortex (V1) consisting of a superficial layer of neurons that encode the spatial location and orientation of a local visual stimulus coupled to a deep layer of neurons that only encode spatial location. The spatially-structured connections in the deep layer support the propagation of a traveling front, which then drives propagating orientation-dependent activity in the superficial layer. Using a combination of mathematical analysis and numerical simulations, we establish that the existence of a coherent orientation-selective wave relies on the presence of weak, long-range connections in the superficial layer that couple cells of similar orientation preference. Moreover, the wave persists in the presence of feedback from the superficial layer to the deep layer. Our results are consistent with recent experimental studies that indicate that deep and superficial layers work in tandem to determine the patterns of cortical activity observed in vivo. PMID:26491877
Spatially oriented plasmonic ‘nanograter’ structures
Liu, Zhe; Cui, Ajuan; Gong, Zhijie; Li, Hongqiang; Xia, Xiaoxiang; Shen, Tiehan H.; Li, Junjie; Yang, Haifang; Li, Wuxia; Gu, Changzhi
2016-01-01
One of the key motivations in producing 3D structures has always been the realization of metamaterials with effective constituent properties that can be tuned in all propagation directions at various frequencies. Here, we report the investigation of spatially oriented “Nanograter” structures with orientation-dependent responses over a wide spectrum by focused-ion-beam based patterning and folding of thin film nanostructures. Au nano units of different shapes, standing along specifically designated orientations, were fabricated. Experimental measurements and simulation results show that such structures offer an additional degree of freedom for adjusting optical properties with the angle of inclination, in additional to the size of the structures. The response frequency can be varied in a wide range (8 μm–14 μm) by the spatial orientation (0°–180°) of the structures, transforming the response from magnetic into electric coupling. This may open up prospects for the fabrication of 3D nanostructures as optical interconnects, focusing elements and logic elements, moving toward the realization of 3D optical circuits. PMID:27357610
Synthesis and Photochromic Properties of Configurationally Varied Azobenzene Glycosides
Chandrasekaran, Vijayanand; Johannes, Eugen; Kobarg, Hauke; Sönnichsen, Frank D; Lindhorst, Thisbe K
2014-01-01
Spatial orientation of carbohydrates is a meaningful parameter in carbohydrate recognition processes. To vary orientation of sugars with temporal and spatial resolution, photosensitive glycoconjugates with favorable photochromic properties appear to be opportune. Here, a series of azobenzene glycosides were synthesized, employing glycoside synthesis and Mills reaction, to allow “switching” of carbohydrate orientation by reversible E/Z isomerization of the azobenzene N=N double bond. Their photochromic properties were tested and effects of azobenzene substitution as well as the effect of anomeric configuration and the orientation of the sugars 2-hydroxy group were evaluated. PMID:25050228
Virtual reality in neurologic rehabilitation of spatial disorientation
2013-01-01
Background Topographical disorientation (TD) is a severe and persistent impairment of spatial orientation and navigation in familiar as well as new environments and a common consequence of brain damage. Virtual reality (VR) provides a new tool for the assessment and rehabilitation of TD. In VR training programs different degrees of active motor control over navigation may be implemented (i.e. more passive spatial navigation vs. more active). Increasing demands of active motor control may overload those visuo-spatial resources necessary for learning spatial orientation and navigation. In the present study we used a VR-based verbally-guided passive navigation training program to improve general spatial abilities in neurologic patients with spatial disorientation. Methods Eleven neurologic patients with focal brain lesions, which showed deficits in spatial orientation, as well as 11 neurologic healthy controls performed a route finding training in a virtual environment. Participants learned and recalled different routes for navigation in a virtual city over five training sessions. Before and after VR training, general spatial abilities were assessed with standardized neuropsychological tests. Results Route finding ability in the VR task increased over the five training sessions. Moreover, both groups improved different aspects of spatial abilities after VR training in comparison to the spatial performance before VR training. Conclusions Verbally-guided passive navigation training in VR enhances general spatial cognition in neurologic patients with spatial disorientation as well as in healthy controls and can therefore be useful in the rehabilitation of spatial deficits associated with TD. PMID:23394289
Relating Dopaminergic and Cholinergic Polymorphisms to Spatial Attention in Infancy
ERIC Educational Resources Information Center
Markant, Julie; Cicchetti, Dante; Hetzel, Susan; Thomas, Kathleen M.
2014-01-01
Early selective attention skills are a crucial building block for cognitive development, as attention orienting serves as a primary means by which infants interact with and learn from the environment. Although several studies have examined infants' attention orienting using the spatial cueing task, relatively few studies have examined…
Ernst, Udo A.; Schiffer, Alina; Persike, Malte; Meinhardt, Günter
2016-01-01
Processing natural scenes requires the visual system to integrate local features into global object descriptions. To achieve coherent representations, the human brain uses statistical dependencies to guide weighting of local feature conjunctions. Pairwise interactions among feature detectors in early visual areas may form the early substrate of these local feature bindings. To investigate local interaction structures in visual cortex, we combined psychophysical experiments with computational modeling and natural scene analysis. We first measured contrast thresholds for 2 × 2 grating patch arrangements (plaids), which differed in spatial frequency composition (low, high, or mixed), number of grating patch co-alignments (0, 1, or 2), and inter-patch distances (1° and 2° of visual angle). Contrast thresholds for the different configurations were compared to the prediction of probability summation (PS) among detector families tuned to the four retinal positions. For 1° distance the thresholds for all configurations were larger than predicted by PS, indicating inhibitory interactions. For 2° distance, thresholds were significantly lower compared to PS when the plaids were homogeneous in spatial frequency and orientation, but not when spatial frequencies were mixed or there was at least one misalignment. Next, we constructed a neural population model with horizontal laminar structure, which reproduced the detection thresholds after adaptation of connection weights. Consistent with prior work, contextual interactions were medium-range inhibition and long-range, orientation-specific excitation. However, inclusion of orientation-specific, inhibitory interactions between populations with different spatial frequency preferences were crucial for explaining detection thresholds. Finally, for all plaid configurations we computed their likelihood of occurrence in natural images. The likelihoods turned out to be inversely related to the detection thresholds obtained at larger inter-patch distances. However, likelihoods were almost independent of inter-patch distance, implying that natural image statistics could not explain the crowding-like results at short distances. This failure of natural image statistics to resolve the patch distance modulation of plaid visibility remains a challenge to the approach. PMID:27757076
Neurons in cat V1 show significant clustering by degree of tuning
Ziskind, Avi J.; Emondi, Al A.; Kurgansky, Andrei V.; Rebrik, Sergei P.
2015-01-01
Neighboring neurons in cat primary visual cortex (V1) have similar preferred orientation, direction, and spatial frequency. How diverse is their degree of tuning for these properties? To address this, we used single-tetrode recordings to simultaneously isolate multiple cells at single recording sites and record their responses to flashed and drifting gratings of multiple orientations, spatial frequencies, and, for drifting gratings, directions. Orientation tuning width, spatial frequency tuning width, and direction selectivity index (DSI) all showed significant clustering: pairs of neurons recorded at a single site were significantly more similar in each of these properties than pairs of neurons from different recording sites. The strength of the clustering was generally modest. The percent decrease in the median difference between pairs from the same site, relative to pairs from different sites, was as follows: for different measures of orientation tuning width, 29–35% (drifting gratings) or 15–25% (flashed gratings); for DSI, 24%; and for spatial frequency tuning width measured in octaves, 8% (drifting gratings). The clusterings of all of these measures were much weaker than for preferred orientation (68% decrease) but comparable to that seen for preferred spatial frequency in response to drifting gratings (26%). For the above properties, little difference in clustering was seen between simple and complex cells. In studies of spatial frequency tuning to flashed gratings, strong clustering was seen among simple-cell pairs for tuning width (70% decrease) and preferred frequency (71% decrease), whereas no clustering was seen for simple-complex or complex-complex cell pairs. PMID:25652921
A spatial reference frame model of Beijing based on spatial cognitive experiment
NASA Astrophysics Data System (ADS)
Zhang, Jie; Zhang, Jing; Liu, Yu
2006-10-01
Orientation relation in the spatial relation is very important in GIS. People can obtain orientation information by making use of map reading and the cognition of the surrounding environment, and then create the spatial reference frame. City is a kind of special spatial environment, a person with life experiences has some spatial knowledge about the city where he or she lives in. Based on the spatial knowledge of the city environment, people can position, navigate and understand the meaning embodied in the environment correctly. Beijing as a real geographic space, its layout is very special and can form a kind of new spatial reference frame. Based on the characteristics of the layout of Beijing city, this paper will introduce a new spatial reference frame of Beijing and use two psychological experiments to validate its cognitive plausibility.
Angular relation of axes in perceptual space
NASA Technical Reports Server (NTRS)
Bucher, Urs
1992-01-01
The geometry of perceptual space needs to be known to model spatial orientation constancy or to create virtual environments. To examine one main aspect of this geometry, the angular relation between the three spatial axes was measured. Experiments were performed consisting of a perceptual task in which subjects were asked to set independently their apparent vertical and horizontal plane. The visual background provided no other stimuli to serve as optical direction cues. The task was performed in a number of different body tilt positions with pitches and rolls varied in steps of 30 degs. The results clearly show the distortion of orthogonality of the perceptual space for nonupright body positions. Large interindividual differences were found. Deviations from orthogonality up to 25 deg were detected in the pitch as well as in the roll direction. Implications of this nonorthogonality on further studies of spatial perception and on the construction of virtual environments for human interaction is also discussed.
Astronaut activity in weightlessness and unsupported space
NASA Technical Reports Server (NTRS)
Ivanov, Y. A.; Popov, V. A.; Kachaturyants, L. S.
1975-01-01
For the purpose of study of the performance ability of a human operator in prolonged weightless conditions was studied by the following methods: (1) psychophysiological analysis of certain operations; (2) the dynamic characteristics of a man, included in a model control system, with direct and delayed feedback; (3) evaluation of the singularities of analysis and quality of the working memory, in working with outlines of patterned and random lines; and (4) biomechanical analysis of spatial orientation and motor activity in unsupported space.
2008-05-01
4 ). The three-dimensional spatial orientation of the atoms for these resolved solution structures (Protein Data Bank accession codes: 2gt3...Crystal structure of the Escherichia coli peptide methionine sulphoxide reductase at 1.9 Å resolution . Struct. Fold. Des. 8: 1167 – 1178. 2 . Brot...sources (8). There is a 67% sequence identity between the E.coli and human MsrA ( 2 ). N-terminus C-terminus Figure 2 . Three-dimensional structure
Digital visual communications using a Perceptual Components Architecture
NASA Technical Reports Server (NTRS)
Watson, Andrew B.
1991-01-01
The next era of space exploration will generate extraordinary volumes of image data, and management of this image data is beyond current technical capabilities. We propose a strategy for coding visual information that exploits the known properties of early human vision. This Perceptual Components Architecture codes images and image sequences in terms of discrete samples from limited bands of color, spatial frequency, orientation, and temporal frequency. This spatiotemporal pyramid offers efficiency (low bit rate), variable resolution, device independence, error-tolerance, and extensibility.
Physiological Targets of Artificial Gravity: The Sensory-Motor System. Chapter 4
NASA Technical Reports Server (NTRS)
Paloski, William; Groen, Eric; Clarke, Andrew; Bles, Willem; Wuyts, Floris; Paloski, William; Clement, Gilles
2006-01-01
This chapter describes the pros and cons of artificial gravity applications in relation to human sensory-motor functioning in space. Spaceflight creates a challenge for sensory-motor functions that depend on gravity, which include postural balance, locomotion, eye-hand coordination, and spatial orientation. The sensory systems, and in particular the vestibular system, must adapt to weightlessness on entering orbit, and again to normal gravity upon return to Earth. During this period of adaptation, which persists beyond the actual gravity-level transition itself the sensory-motor systems are disturbed. Although artificial gravity may prove to be beneficial for the musculoskeletal and cardiovascular systems, it may well have negative side effects for the neurovestibular system, such as spatial disorientation, malcoordination, and nausea.
Stimulus factors in motion perception and spatial orientation
NASA Technical Reports Server (NTRS)
Post, R. B.; Johnson, C. A.
1984-01-01
The Malcolm horizon utilizes a large projected light stimulus Peripheral Vision Horizon Device (PVHD) as an attitude indicator in order to achieve a more compelling sense of roll than is obtained with smaller devices. The basic principle is that the larger stimulus is more similar to visibility of a real horizon during roll, and does not require fixation and attention to the degree that smaller displays do. Successful implementation of such a device requires adjustment of the parameters of the visual stimulus so that its effects on motion perception and spatial orientation are optimized. With this purpose in mind, the effects of relevant image variables on the perception of object motion, self motion and spatial orientation are reviewed.
Midline Body Actions and Leftward Spatial “Aiming” in Patients with Spatial Neglect
Chaudhari, Amit; Pigott, Kara; Barrett, A. M.
2015-01-01
Spatial motor–intentional “Aiming” bias is a dysfunction in initiation/execution of motor–intentional behavior, resulting in hypokinetic and hypometric leftward movements. Aiming bias may contribute to posture, balance, and movement problems and uniquely account for disability in post-stroke spatial neglect. Body movement may modify and even worsen Aiming errors, but therapy techniques, such as visual scanning training, do not take this into account. Here, we evaluated (1) whether instructing neglect patients to move midline body parts improves their ability to explore left space and (2) whether this has a different impact on different patients. A 68-year-old woman with spatial neglect after a right basal ganglia infarct had difficulty orienting to and identifying left-sided objects. She was prompted with four instructions: “look to the left,” “point with your nose to the left,” “point with your [right] hand to the left,” and “stick out your tongue and point it to the left.” She oriented leftward dramatically better when pointing with the tongue/nose, than she did when pointing with the hand. We then tested nine more consecutive patients with spatial neglect using the same instructions. Only four of them made any orienting errors. Only one patient made >50% errors when pointing with the hand, and she did not benefit from pointing with the tongue/nose. We observed that pointing with the tongue could facilitate left-sided orientation in a stroke survivor with spatial neglect. If midline structures are represented more bilaterally, they may be less affected by Aiming bias. Alternatively, moving the body midline may be more permissive for leftward orienting than moving right body parts. We were not able to replicate this effect in another patient; we suspect that the magnitude of this effect may depend upon the degree to which patients have directional akinesia, spatial Where deficits, or cerebellar/frontal cortical lesions. Future research could examine these hypotheses. PMID:26217211
The Development and Temporal Dynamics of Spatial Orienting in Infants.
ERIC Educational Resources Information Center
Johnson, Mark H.; Tucker, Leslie A.
1996-01-01
Discusses changes occurring in two-, four-, and six-month-old infants' visual attention span, through a series of experiments examining their ability to orient to peripheral visual stimuli. The results obtained were consistent with the hypothesis that infants get faster with age in shifting attention to a spatial location. (AA)
Kang, Guanlan; Zhou, Xiaolin; Wei, Ping
2015-09-01
The present study investigated the effect of reward expectation and spatial orientation on the processing of emotional facial expressions, using a spatial cue-target paradigm. A colored cue was presented at the left or right side of the central fixation point, with its color indicating the monetary reward stakes of a given trial (incentive vs. non-incentive), followed by the presentation of an emotional facial target (angry vs. neutral) at a cued or un-cued location. Participants were asked to discriminate the emotional expression of the target, with the cue-target stimulus onset asynchrony being 200-300 ms in Experiment 1 and 950-1250 ms in Experiment 2a (without a fixation cue) and Experiment 2b (with a fixation cue), producing a spatial facilitation effect and an inhibition of return effect, respectively. The results of all the experiments revealed faster reaction times in the monetary incentive condition than in the non-incentive condition, demonstrating the effect of reward to facilitate task performance. An interaction between reward expectation and the emotion of the target was evident in all the three experiments, with larger reward effects for angry faces than for neutral faces. This interaction was not affected by spatial orientation. These findings demonstrate that incentive motivation improves task performance and increases sensitivity to angry faces, irrespective of spatial orienting and reorienting processes.
Research on Remote Sensing Geological Information Extraction Based on Object Oriented Classification
NASA Astrophysics Data System (ADS)
Gao, Hui
2018-04-01
The northern Tibet belongs to the Sub cold arid climate zone in the plateau. It is rarely visited by people. The geological working conditions are very poor. However, the stratum exposures are good and human interference is very small. Therefore, the research on the automatic classification and extraction of remote sensing geological information has typical significance and good application prospect. Based on the object-oriented classification in Northern Tibet, using the Worldview2 high-resolution remote sensing data, combined with the tectonic information and image enhancement, the lithological spectral features, shape features, spatial locations and topological relations of various geological information are excavated. By setting the threshold, based on the hierarchical classification, eight kinds of geological information were classified and extracted. Compared with the existing geological maps, the accuracy analysis shows that the overall accuracy reached 87.8561 %, indicating that the classification-oriented method is effective and feasible for this study area and provides a new idea for the automatic extraction of remote sensing geological information.
Tang, Xiaoyu; Li, Chunlin; Li, Qi; Gao, Yulin; Yang, Weiping; Yang, Jingjing; Ishikawa, Soushirou; Wu, Jinglong
2013-10-11
Utilizing the high temporal resolution of event-related potentials (ERPs), we examined how visual spatial or temporal cues modulated the auditory stimulus processing. The visual spatial cue (VSC) induces orienting of attention to spatial locations; the visual temporal cue (VTC) induces orienting of attention to temporal intervals. Participants were instructed to respond to auditory targets. Behavioral responses to auditory stimuli following VSC were faster and more accurate than those following VTC. VSC and VTC had the same effect on the auditory N1 (150-170 ms after stimulus onset). The mean amplitude of the auditory P1 (90-110 ms) in VSC condition was larger than that in VTC condition, and the mean amplitude of late positivity (300-420 ms) in VTC condition was larger than that in VSC condition. These findings suggest that modulation of auditory stimulus processing by visually induced spatial or temporal orienting of attention were different, but partially overlapping. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
A task-irrelevant stimulus attribute affects perception and short-term memory
Huang, Jie; Kahana, Michael J.; Sekuler, Robert
2010-01-01
Selective attention protects cognition against intrusions of task-irrelevant stimulus attributes. This protective function was tested in coordinated psychophysical and memory experiments. Stimuli were superimposed, horizontally and vertically oriented gratings of varying spatial frequency; only one orientation was task relevant. Experiment 1 demonstrated that a task-irrelevant spatial frequency interfered with visual discrimination of the task-relevant spatial frequency. Experiment 2 adopted a two-item Sternberg task, using stimuli that had been scaled to neutralize interference at the level of vision. Despite being visually neutralized, the task-irrelevant attribute strongly influenced recognition accuracy and associated reaction times (RTs). This effect was sharply tuned, with the task-irrelevant spatial frequency having an impact only when the task-relevant spatial frequencies of the probe and study items were highly similar to one another. Model-based analyses of judgment accuracy and RT distributional properties converged on the point that the irrelevant orientation operates at an early stage in memory processing, not at a later one that supports decision making. PMID:19933454
Spatial disorientation in right-hemisphere infarction: a study of the speed of recovery.
Meerwaldt, J D
1983-01-01
Sixteen patients with an infarct in the posterior region of the right hemisphere were tested at fixed intervals after a stroke (2 weeks, 6 weeks, 3 months, 6 months, 1 year) with the rod orientation test and the line orientation test. All patients initially showed spatial disorientation on the rod orientation test, while only three had a defective performance on the line orientation test. The recovery on the rod orientation test was parallel with the neurological improvement. Recovery mainly took place in the first six months after the stroke. Most patients then performed at a normal level. A relation between the size of the lesion (assessed from CT scans) and the speed of recovery was found. PMID:6101178
The effect of spatial orientation on detecting motion trajectories in noise.
Pavan, Andrea; Casco, Clara; Mather, George; Bellacosa, Rosilari M; Cuturi, Luigi F; Campana, Gianluca
2011-09-15
A series of experiments investigated the extent to which the spatial orientation of a signal line affects discrimination of its trajectory from the random trajectories of background noise lines. The orientation of the signal line was either parallel (iso-) or orthogonal (ortho-) to its motion direction and it was identical in all respects to the noise (orientation, length and speed) except for its motion direction, rendering the signal line indistinguishable from the noise on a frame-to-frame basis. We found that discrimination of ortho-trajectories was generally better than iso-trajectories. Discrimination of ortho-trajectories was largely immune to the effects of spatial jitter in the trajectory, and to variations in step size and line-length. Discrimination of iso-trajectories was reliable provided that step-size was not too short and did not exceed line length, and that the trajectory was straight. The new result that trajectory discrimination in moving line elements is modulated by line orientation suggests that ortho- and iso-trajectory discrimination rely upon two distinct mechanisms: iso-motion discrimination involves a 'motion-streak' process that combines motion information with information about orientation parallel to the motion trajectory, while ortho-motion discrimination involves extended trajectory facilitation in a network of receptive fields with orthogonal orientation tuning. Copyright © 2011 Elsevier Ltd. All rights reserved.
Steinbach, Gábor; Pomozi, István; Jánosa, Dávid Péter; Makovitzky, Josef; Garab, Gyozo
2011-05-01
Amyloids are highly organized insoluble protein aggregates that are associated with a large variety of degenerative diseases. In this work, we investigated the anisotropic architecture of isolated human amyloid samples stained with Congo Red. This was performed by fluorescence detected linear dichroism (FDLD) imaging in a laser scanning confocal microscope that was equipped with a differential polarization attachment using high frequency modulation of the polarization state of the laser beam and a demodulation circuit. Two- and three-dimensional FDLD images of amyloids provided information on the orientation of the electric transition dipoles of the intercalated Congo Red molecules with unprecedented precision and spatial resolution. We show that, in accordance with linear dichroism imaging (Jin et al. Proc Natl Acad Sci USA 100:15294, 2003), amyloids exhibit strong anisotropy with preferential orientation of the dye molecules along the fibrils; estimations on the orientation angle, of around 45°, are given using a model calculation which takes into account the helical organization of the filaments and fibrils. Our data also show that FDLD images display large inhomogeneities, high local values with alternating signs and, in some regions, well identifiable µm-sized periodicities. These features of the anisotropic architecture are accounted for by supercoiling of helically organized amyloid fibrils. © Springer Science+Business Media, LLC 2010
Hayward, Dana A.; Ristic, Jelena
2013-01-01
Numerous studies conducted within the recent decades have utilized the Posner cuing paradigm for eliciting, measuring, and theoretically characterizing attentional orienting. However, the data from recent studies suggest that the Posner cuing task might not provide an unambiguous measure of attention, as reflexive spatial orienting has been found to interact with extraneous processes engaged by the task's typical structure, i.e., the probability of target presence across trials, which affects tonic alertness, and the probability of target presence within trials, which affects voluntary temporal preparation. To understand the contribution of each of these two processes to the measurement of attentional orienting we assessed their individual and combined effects on reflexive attention elicited by a spatially nonpredictive peripheral cue. Our results revealed that the magnitude of spatial orienting was modulated by joint changes in the global probability of target presence across trials and the local probability of target presence within trials, while the time course of spatial orienting was susceptible to changes in the probability of target presence across trials. These data thus raise important questions about the choice of task parameters within the Posner cuing paradigm and their role in both the measurement and theoretical attributions of the observed attentional effects. PMID:23730280
Space in the brain: how the hippocampal formation supports spatial cognition
Hartley, Tom; Lever, Colin; Burgess, Neil; O'Keefe, John
2014-01-01
Over the past four decades, research has revealed that cells in the hippocampal formation provide an exquisitely detailed representation of an animal's current location and heading. These findings have provided the foundations for a growing understanding of the mechanisms of spatial cognition in mammals, including humans. We describe the key properties of the major categories of spatial cells: place cells, head direction cells, grid cells and boundary cells, each of which has a characteristic firing pattern that encodes spatial parameters relating to the animal's current position and orientation. These properties also include the theta oscillation, which appears to play a functional role in the representation and processing of spatial information. Reviewing recent work, we identify some themes of current research and introduce approaches to computational modelling that have helped to bridge the different levels of description at which these mechanisms have been investigated. These range from the level of molecular biology and genetics to the behaviour and brain activity of entire organisms. We argue that the neuroscience of spatial cognition is emerging as an exceptionally integrative field which provides an ideal test-bed for theories linking neural coding, learning, memory and cognition. PMID:24366125
Cortical fibers orientation mapping using in-vivo whole brain 7 T diffusion MRI.
Gulban, Omer F; De Martino, Federico; Vu, An T; Yacoub, Essa; Uğurbil, Kamil; Lenglet, Christophe
2018-05-10
Diffusion MRI of the cortical gray matter is challenging because the micro-environment probed by water molecules is much more complex than within the white matter. High spatial and angular resolutions are therefore necessary to uncover anisotropic diffusion patterns and laminar structures, which provide complementary (e.g. to anatomical and functional MRI) microstructural information about the cortex architectonic. Several ex-vivo and in-vivo MRI studies have recently addressed this question, however predominantly with an emphasis on specific cortical areas. There is currently no whole brain in-vivo data leveraging multi-shell diffusion MRI acquisition at high spatial resolution, and depth dependent analysis, to characterize the complex organization of cortical fibers. Here, we present unique in-vivo human 7T diffusion MRI data, and a dedicated cortical depth dependent analysis pipeline. We leverage the high spatial (1.05 mm isotropic) and angular (198 diffusion gradient directions) resolution of this whole brain dataset to improve cortical fiber orientations mapping, and study neurites (axons and/or dendrites) trajectories across cortical depths. Tangential fibers in superficial cortical depths and crossing fiber configurations in deep cortical depths are identified. Fibers gradually inserting into the gyral walls are visualized, which contributes to mitigating the gyral bias effect. Quantitative radiality maps and histograms in individual subjects and cortex-based aligned datasets further support our results. Copyright © 2018 Elsevier Inc. All rights reserved.
A test of the influence of continental axes of orientation on patterns of human gene flow
Ramachandran, Sohini; Rosenberg, Noah A.
2012-01-01
The geographic distribution of genetic variation reflects trends in past population migrations, and can be used to make inferences about these migrations. It has been proposed that the east-west orientation of the Eurasian landmass facilitated the rapid spread of ancient technological innovations across Eurasia, while the north-south orientation of the Americas led to a slower diffusion of technology there. If the diffusion of technology was accompanied by gene flow, then this hypothesis predicts that genetic differentiation in the Americas along lines of longitude will be greater than that in Eurasia along lines of latitude. We use 678 microsatellite loci from 68 indigenous populations in Eurasia and the Americas to investigate the spatial axes that underlie population-genetic variation. We find that genetic differentiation increases more rapidly along lines of longitude in the Americas than along lines of latitude in Eurasia. Distance along lines of latitude explains a sizeable portion of genetic distance in Eurasia, whereas distance along lines of longitude does not explain a large proportion of Eurasian genetic variation. Genetic differentiation in the Americas occurs along both latitudinal and longitudinal axes and has a greater magnitude than corresponding differentiation in Eurasia, even when adjusting for the lower level of genetic variation in the American populations. These results support the view that continental orientation has influenced migration patterns and has played an important role in determining both the structure of human genetic variation and the distribution and spread of cultural traits. (240 words) PMID:21913175
McDonald, J Scott; Seymour, Kiley J; Schira, Mark M; Spehar, Branka; Clifford, Colin W G
2009-05-01
The responses of orientation-selective neurons in primate visual cortex can be profoundly affected by the presence and orientation of stimuli falling outside the classical receptive field. Our perception of the orientation of a line or grating also depends upon the context in which it is presented. For example, the perceived orientation of a grating embedded in a surround tends to be repelled from the predominant orientation of the surround. Here, we used fMRI to investigate the basis of orientation-specific surround effects in five functionally-defined regions of visual cortex: V1, V2, V3, V3A/LO1 and hV4. Test stimuli were luminance-modulated and isoluminant gratings that produced responses similar in magnitude. Less BOLD activation was evident in response to gratings with parallel versus orthogonal surrounds across all the regions of visual cortex investigated. When an isoluminant test grating was surrounded by a luminance-modulated inducer, the degree of orientation-specific contextual modulation was no larger for extrastriate areas than for V1, suggesting that the observed effects might originate entirely in V1. However, more orientation-specific modulation was evident in extrastriate cortex when both test and inducer were luminance-modulated gratings than when the test was isoluminant; this difference was significant in area V3. We suggest that the pattern of results in extrastriate cortex may reflect a refinement of the orientation-selectivity of surround suppression specific to the colour of the surround or, alternatively, processes underlying the segmentation of test and inducer by spatial phase or orientation when no colour cue is available.
Arabi, Hosein; Asl, Ali Reza Kamali; Ay, Mohammad Reza; Zaidi, Habib
2011-03-01
The variable resolution x-ray (VRX) CT scanner provides substantial improvement in the spatial resolution by matching the scanner's field of view (FOV) to the size of the object being imaged. Intercell x-ray cross-talk is one of the most important factors limiting the spatial resolution of the VRX detector. In this work, a new cell arrangement in the VRX detector is suggested to decrease the intercell x-ray cross-talk. The idea is to orient the detector cells toward the opening end of the detector. Monte Carlo simulations were used for performance assessment of the oriented cell detector design. Previously published design parameters and simulation results of x-ray cross-talk for the VRX detector were used for model validation using the GATE Monte Carlo package. In the first step, the intercell x-ray cross-talk of the actual VRX detector model was calculated as a function of the FOV. The obtained results indicated an optimum cell orientation angle of 28 degrees to minimize the x-ray cross-talk in the VRX detector. Thereafter, the intercell x-ray cross-talk in the oriented cell detector was modeled and quantified. The intercell x-ray cross-talk in the actual detector model was considerably high, reaching up to 12% at FOVs from 24 to 38 cm. The x-ray cross-talk in the oriented cell detector was less than 5% for all possible FOVs, except 40 cm (maximum FOV). The oriented cell detector could provide considerable decrease in the intercell x-ray cross-talk for the VRX detector, thus leading to significant improvement in the spatial resolution and reduction in the spatial resolution nonuniformity across the detector length. The proposed oriented cell detector is the first dedicated detector design for the VRX CT scanners. Application of this concept to multislice and flat-panel VRX detectors would also result in higher spatial resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arabi, Hosein; Asl, Ali Reza Kamali; Ay, Mohammad Reza
Purpose: The variable resolution x-ray (VRX) CT scanner provides substantial improvement in the spatial resolution by matching the scanner's field of view (FOV) to the size of the object being imaged. Intercell x-ray cross-talk is one of the most important factors limiting the spatial resolution of the VRX detector. In this work, a new cell arrangement in the VRX detector is suggested to decrease the intercell x-ray cross-talk. The idea is to orient the detector cells toward the opening end of the detector. Methods: Monte Carlo simulations were used for performance assessment of the oriented cell detector design. Previously publishedmore » design parameters and simulation results of x-ray cross-talk for the VRX detector were used for model validation using the GATE Monte Carlo package. In the first step, the intercell x-ray cross-talk of the actual VRX detector model was calculated as a function of the FOV. The obtained results indicated an optimum cell orientation angle of 28 deg. to minimize the x-ray cross-talk in the VRX detector. Thereafter, the intercell x-ray cross-talk in the oriented cell detector was modeled and quantified. Results: The intercell x-ray cross-talk in the actual detector model was considerably high, reaching up to 12% at FOVs from 24 to 38 cm. The x-ray cross-talk in the oriented cell detector was less than 5% for all possible FOVs, except 40 cm (maximum FOV). The oriented cell detector could provide considerable decrease in the intercell x-ray cross-talk for the VRX detector, thus leading to significant improvement in the spatial resolution and reduction in the spatial resolution nonuniformity across the detector length. Conclusions: The proposed oriented cell detector is the first dedicated detector design for the VRX CT scanners. Application of this concept to multislice and flat-panel VRX detectors would also result in higher spatial resolution.« less
Intervention strategies for spatial orientation disorders in dementia: a selective review.
Caffò, Alessandro O; Hoogeveen, Frans; Groenendaal, Mari; Perilli, Anna Viviana; Picucci, Luciana; Lancioni, Giulio E; Bosco, Andrea
2014-06-01
This article provides a brief overview of the intervention strategies aimed at reducing spatial orientation disorders in elderly people with dementia. Eight experimental studies using spatial cues, assistive technology programs, reality orientation training, errorless learning technique, and backward chaining programs are described. They can be classified into two main approaches: restorative and compensatory, depending on whether they rely or not on residual learning ability, respectively. A review of the efficacy of these intervention strategies is proposed. Results suggest that both compensatory and restorative approaches may be valuable in enhancing correct way-finding behavior, with various degrees of effectiveness. Some issues concerning (a) variability in participants' characteristics and experimental designs and (b) practicality of intervention strategies do not permit to draw a definite conclusion. Future research should be aimed at a direct comparison between these two strategies, and should incorporate an extensive neuropsychological assessment of spatial domain.
Goldberg, Melissa C; Mostow, Allison J; Vecera, Shaun P; Larson, Jennifer C Gidley; Mostofsky, Stewart H; Mahone, E Mark; Denckla, Martha B
2008-09-01
We examined the ability to use static line drawings of eye gaze cues to orient visual-spatial attention in children with high functioning autism (HFA) compared to typically developing children (TD). The task was organized such that on valid trials, gaze cues were directed toward the same spatial location as the appearance of an upcoming target, while on invalid trials gaze cues were directed to an opposite location. Unlike TD children, children with HFA showed no advantage in reaction time (RT) on valid trials compared to invalid trials (i.e., no significant validity effect). The two stimulus onset asynchronies (200 ms, 700 ms) did not differentially affect these findings. The results suggest that children with HFA show impairments in utilizing static line drawings of gaze cues to orient visual-spatial attention.
Chen, Xin; Sun, Chao; Huang, Luoxiu; Shou, Tiande
2003-01-01
To compare the orientation column maps elicited by different spatial frequency gratings in cortical area 17 of cats before and during brief elevation of intraocular pressure (IOP). IOP was elevated by injecting saline into the anterior chamber of a cat's eye through a syringe needle. The IOP was elevated enough to cause a retinal perfusion pressure (arterial pressure minus IOP) of approximately 30 mm Hg during a brief elevation of IOP. The visual stimulus gratings were varied in spatial frequency, whereas other parameters were kept constant. The orientation column maps of the cortical area 17 were monocularly elicited by drifting gratings of different spatial frequencies and revealed by a brain intrinsic signal optical imaging system. These maps were compared before and during short-term elevation of IOP. The response amplitude of the orientation maps in area 17 decreased during a brief elevation of IOP. This decrease was dependent on the retinal perfusion pressure but not on the absolute IOP. The location of the most visible maps was spatial-frequency dependent. The blurring or loss of the pattern of the orientation maps was most severe when high-spatial-frequency gratings were used and appeared most significantly on the posterior part of the exposed cortex while IOP was elevated. However, the basic patterns of the maps remained unchanged. Changes in cortical signal were not due to changes in the optics of the eye with elevation of IOP. A stable normal IOP is essential for maintaining normal visual cortical functions. During a brief and high elevation of IOP, the cortical processing of high-spatial-frequency visual information was diminished because of a selectively functional decline of the retinogeniculocortical X pathway by a mechanism of retinal circulation origin.
The Migration Matrix: Marine Vertebrate Movements in Magnetic Coordinate Space
NASA Astrophysics Data System (ADS)
Horton, T. W.; Holdaway, R. N.; Clapham, P. J.; Zerbini, A. N.; Andriolo, A.; Hays, G. C.; Egevang, C.; Domeier, M. L.; Lucas, N.
2011-12-01
Determining how vertebrates navigate during their long-distance migrations remains one of the most enduring and fundamental challenges of behavioral ecology. It is widely accepted that spatial orientation relative to a reference datum is a fundamental requirement of long-distance return migration between seasonal habitats, and a variety of viable positional and directional orientation cues, including the sun, stars, and magnetic field, have been documented experimentally. However, a fundamental question remains unanswered: Are empirically observed migratory movements compatible with modern theoretical frameworks of spatial orientation? To address this question, we analysed leatherback turtle (Dermochelys coriacea), arctic tern (Sterna paradisaea), humpback whale (Megaptera novaeangliae), and great white shark (Carcharodon carcharias) track maps, frequency distribution diagrams and time-series plots of animal locations in spherical magnetic coordinate space. Our analyses indicates that, although individual migration tracks are spatially and temporally distinct, vertebrate movements are non-randomly distributed in all three spherical magnetic coordinates (i.e. intensity, inclination, and declination). Stop-over locations, migratory destinations, and re-orientation points occur at similar magnetic coordinate locations, relative to tagging areas, in all four species, suggesting that a common system of magnetic orientation likely informs the navigational behaviors of these phylogenetically diverse taxa. Although our analyses demonstrate that the experiment-derived 'magnetic map' goal orientation theoretical framework of animal navigation is compatible with remotely-sensed migration track data, they also indicate that magnetic information is complemented by spatially and temporally contingent celestial stimuli during navigation.
2016-11-30
USAARL Report No. 2017-07 Design Considerations and Research Needs for Expanding the Current Perceptual Model of Spatial Orientation into an In...Brill5, Angus H. Rupert1 1U.S. Army Aeromedical Research Laboratory 2Laulima Government Solutions, LLC 3National AeroSpace Training and Research ...Center 4Embry-Riddle Aeronautical University 5U.S. Air Force Research Laboratory United States Army Aeromedical Research Laboratory Auditory
Psychophysical investigation of an auditory spatial illusion in cats: the precedence effect.
Tollin, Daniel J; Yin, Tom C T
2003-10-01
The precedence effect (PE) describes several spatial perceptual phenomena that occur when similar sounds are presented from two different locations and separated by a delay. The mechanisms that produce the effect are thought to be responsible for the ability to localize sounds in reverberant environments. Although the physiological bases for the PE have been studied, little is known about how these sounds are localized by species other than humans. Here we used the search coil technique to measure the eye positions of cats trained to saccade to the apparent locations of sounds. To study the PE, brief broadband stimuli were presented from two locations, with a delay between their onsets; the delayed sound meant to simulate a single reflection. Although the cats accurately localized single sources, the apparent locations of the paired sources depended on the delay. First, the cats exhibited summing localization, the perception of a "phantom" sound located between the sources, for delays < +/-400 micros for sources positioned in azimuth along the horizontal plane, but not for sources positioned in elevation along the sagittal plane. Second, consistent with localization dominance, for delays from 400 micros to about 10 ms, the cats oriented toward the leading source location only, with little influence of the lagging source, both for horizontally and vertically placed sources. Finally, the echo threshold was reached for delays >10 ms, where the cats first began to orient to the lagging source on some trials. These data reveal that cats experience the PE phenomena similarly to humans.
NASA Technical Reports Server (NTRS)
Paloski, William H.
2001-01-01
The terrestrial gravitational field serves as an important orientation reference for human perception and movement, being continually monitored by sensory receptors in the skin, muscles, joints, and vestibular otolith organs. Cues from these graviceptors are used by the brain to estimate spatial orientation and to control balance and movement. Changes in these cues associated with the tonic changes in gravity (gravito-inertial force),during the launch and entry phases of space flight missions result in altered perceptions, degraded motor control performance, and in some cases, "motion" sickness during, and for a period of time after, the g-transitions. In response to these transitions, however, physiological and behavioral response mechanisms are triggered to compensate for altered graviceptor cues and/or to adapt to the new sensory environment. Basic research in the neurophysiology discipline is focused on understanding the characteristic features of and the underlying mechanisms for the normal human response to tonic changes in the gravito-inertial force environment. These studies address fundamental questions regarding the role of graviceptors in orientation and movement in the terrestrial environment, as well as the capacity, specificity, and modes for neural plasticity in the sensory-motor and perceptual systems of the brain. At the 2001 workshop basic research studies were presented addressing: neuroanatomical responses to altered gravity environments, the neural mechanisms for resolving the ambiguity between tilting and translational stimuli in otolith organ sensory input, interactions between the vestibular system and the autonomic nervous system , the roles of haptic and visual cues in spatial orientation, mechanisms for training environment-appropriate sensorimotor responses triggered by environment-specific context cues, and studies of sensori-motor control of posture and locomotion in the terrestrial environment with and without recent exposure to space flight. Building on these basic research studies are more applied studies focused on the development of countermeasures to the untoward neurophysiological responses to space flight. At the 2001 workshop, applied research studies were presented addressing issues related to the use of rotational artificial gravity (centripetal acceleration) as a multisystem (bone, muscle, cardiovascular, and, perhaps, neurovestibular) countermeasure. Also presented was a clinical study reporting on a new rating system for clinical evaluation of postflight functional neurological status.
ERIC Educational Resources Information Center
Özdemir, Ahmet Sükrü; Göktepe Yildiz, Sevda
2015-01-01
Problem Statement: The SOLO model places responses provided by students on a certain level instead of placing students there themselves. SOLO taxonomy, including five sub-levels, is used for determining observed structures of learning outcomes in various disciplines and grade levels. On the other hand, the spatial orientation skill is the ability…
Effect of Exogenous Cues on Covert Spatial Orienting in Deaf and Normal Hearing Individuals
Prasad, Seema Gorur; Patil, Gouri Shanker; Mishra, Ramesh Kumar
2015-01-01
Deaf individuals have been known to process visual stimuli better at the periphery compared to the normal hearing population. However, very few studies have examined attention orienting in the oculomotor domain in the deaf, particularly when targets appear at variable eccentricity. In this study, we examined if the visual perceptual processing advantage reported in the deaf people also modulates spatial attentional orienting with eye movement responses. We used a spatial cueing task with cued and uncued targets that appeared at two different eccentricities and explored attentional facilitation and inhibition. We elicited both a saccadic and a manual response. The deaf showed a higher cueing effect for the ocular responses than the normal hearing participants. However, there was no group difference for the manual responses. There was also higher facilitation at the periphery for both saccadic and manual responses, irrespective of groups. These results suggest that, owing to their superior visual processing ability, the deaf may orient attention faster to targets. We discuss the results in terms of previous studies on cueing and attentional orienting in deaf. PMID:26517363
Effect of Exogenous Cues on Covert Spatial Orienting in Deaf and Normal Hearing Individuals.
Prasad, Seema Gorur; Patil, Gouri Shanker; Mishra, Ramesh Kumar
2015-01-01
Deaf individuals have been known to process visual stimuli better at the periphery compared to the normal hearing population. However, very few studies have examined attention orienting in the oculomotor domain in the deaf, particularly when targets appear at variable eccentricity. In this study, we examined if the visual perceptual processing advantage reported in the deaf people also modulates spatial attentional orienting with eye movement responses. We used a spatial cueing task with cued and uncued targets that appeared at two different eccentricities and explored attentional facilitation and inhibition. We elicited both a saccadic and a manual response. The deaf showed a higher cueing effect for the ocular responses than the normal hearing participants. However, there was no group difference for the manual responses. There was also higher facilitation at the periphery for both saccadic and manual responses, irrespective of groups. These results suggest that, owing to their superior visual processing ability, the deaf may orient attention faster to targets. We discuss the results in terms of previous studies on cueing and attentional orienting in deaf.
Citizen Science as a Tool for Mosquito Control.
Jordan, Rebecca C; Sorensen, Amanda E; Ladeau, Shannon
2017-09-01
In this paper, we share our findings from a 2-year citizen science program called Mosquito Stoppers. This pest-oriented citizen science project is part of a larger coupled natural-human systems project seeking to understand the fundamental drivers of mosquito population density and spatial variability in potential exposure to mosquito-borne pathogens in a matrix of human construction, urban renewal, and individual behaviors. Focusing on residents in West Baltimore, participants were recruited through neighborhood workshops and festivals. Citizen scientists participated in yard surveys of potential mosquito habitat and in evaluating mosquito nuisance. We found that citizen scientists, with minimal education and training, were able to accurately collect data that reflect trends found in a comparable researcher-generated database.
Reliability-Weighted Integration of Audiovisual Signals Can Be Modulated by Top-down Attention
Noppeney, Uta
2018-01-01
Abstract Behaviorally, it is well established that human observers integrate signals near-optimally weighted in proportion to their reliabilities as predicted by maximum likelihood estimation. Yet, despite abundant behavioral evidence, it is unclear how the human brain accomplishes this feat. In a spatial ventriloquist paradigm, participants were presented with auditory, visual, and audiovisual signals and reported the location of the auditory or the visual signal. Combining psychophysics, multivariate functional MRI (fMRI) decoding, and models of maximum likelihood estimation (MLE), we characterized the computational operations underlying audiovisual integration at distinct cortical levels. We estimated observers’ behavioral weights by fitting psychometric functions to participants’ localization responses. Likewise, we estimated the neural weights by fitting neurometric functions to spatial locations decoded from regional fMRI activation patterns. Our results demonstrate that low-level auditory and visual areas encode predominantly the spatial location of the signal component of a region’s preferred auditory (or visual) modality. By contrast, intraparietal sulcus forms spatial representations by integrating auditory and visual signals weighted by their reliabilities. Critically, the neural and behavioral weights and the variance of the spatial representations depended not only on the sensory reliabilities as predicted by the MLE model but also on participants’ modality-specific attention and report (i.e., visual vs. auditory). These results suggest that audiovisual integration is not exclusively determined by bottom-up sensory reliabilities. Instead, modality-specific attention and report can flexibly modulate how intraparietal sulcus integrates sensory signals into spatial representations to guide behavioral responses (e.g., localization and orienting). PMID:29527567
Influence of acute stress on spatial tasks in humans.
Richardson, Anthony E; VanderKaay Tomasulo, Melissa M
2011-07-06
Few studies have investigated the relationship between stress and spatial performance in humans. In this study, participants were exposed to an acute laboratory stressor (Star Mirror Tracing Task) or a control condition (watching a nature video) and then performed two spatial tasks. In the first task, participants navigated through a virtual reality (VR) environment and then returned to the environment to make directional judgments relating to the learned targets. In the second task, perspective taking, participants made directional judgments to targets after imagined body rotations with respect to a map. Compared to the control condition, participants in the Stress condition showed increases in heart rate and systolic and diastolic blood pressure indicating sympathetic adrenal medulla (SAM) axis activation. Participants in the Stress condition also reported being more anxious, angry, frustrated, and irritated than participants in the Non-Stress condition. Salivary cortisol did not differ between conditions, indicating no significant hypothalamic-pituitary-adrenocortical (HPA) axis involvement. In the VR task, memory encoding was unaffected as directional error was similar in both conditions; however, participants in the Stress condition responded more slowly, which may be due to increases in negative affect, SAM disruption in spatial memory retrieval through catecholamine release, or a combination of both factors. In the perspective taking task, participants were also slower to respond after stress, suggesting interference in the ability to adopt new spatial orientations. Additionally, sex differences were observed in that men had greater accuracy on both spatial tasks, but no significant Sex by Stress condition interactions were demonstrated. Copyright © 2011 Elsevier Inc. All rights reserved.
Spatial vision in older adults: perceptual changes and neural bases.
McKendrick, Allison M; Chan, Yu Man; Nguyen, Bao N
2018-05-17
The number of older adults is rapidly increasing internationally, leading to a significant increase in research on how healthy ageing impacts vision. Most clinical assessments of spatial vision involve simple detection (letter acuity, grating contrast sensitivity, perimetry). However, most natural visual environments are more spatially complicated, requiring contrast discrimination, and the delineation of object boundaries and contours, which are typically present on non-uniform backgrounds. In this review we discuss recent research that reports on the effects of normal ageing on these more complex visual functions, specifically in the context of recent neurophysiological studies. Recent research has concentrated on understanding the effects of healthy ageing on neural responses within the visual pathway in animal models. Such neurophysiological research has led to numerous, subsequently tested, hypotheses regarding the likely impact of healthy human ageing on specific aspects of spatial vision. Healthy normal ageing impacts significantly on spatial visual information processing from the retina through to visual cortex. Some human data validates that obtained from studies of animal physiology, however some findings indicate that rethinking of presumed neural substrates is required. Notably, not all spatial visual processes are altered by age. Healthy normal ageing impacts significantly on some spatial visual processes (in particular centre-surround tasks), but leaves contrast discrimination, contrast adaptation, and orientation discrimination relatively intact. The study of older adult vision contributes to knowledge of the brain mechanisms altered by the ageing process, can provide practical information regarding visual environments that older adults may find challenging, and may lead to new methods of assessing visual performance in clinical environments. © 2018 The Authors Ophthalmic & Physiological Optics © 2018 The College of Optometrists.
Effects of configural processing on the perceptual spatial resolution for face features.
Namdar, Gal; Avidan, Galia; Ganel, Tzvi
2015-11-01
Configural processing governs human perception across various domains, including face perception. An established marker of configural face perception is the face inversion effect, in which performance is typically better for upright compared to inverted faces. In two experiments, we tested whether configural processing could influence basic visual abilities such as perceptual spatial resolution (i.e., the ability to detect spatial visual changes). Face-related perceptual spatial resolution was assessed by measuring the just noticeable difference (JND) to subtle positional changes between specific features in upright and inverted faces. The results revealed robust inversion effect for spatial sensitivity to configural-based changes, such as the distance between the mouth and the nose, or the distance between the eyes and the nose. Critically, spatial resolution for face features within the region of the eyes (e.g., the interocular distance between the eyes) was not affected by inversion, suggesting that the eye region operates as a separate 'gestalt' unit which is relatively immune to manipulations that would normally hamper configural processing. Together these findings suggest that face orientation modulates fundamental psychophysical abilities including spatial resolution. Furthermore, they indicate that classic psychophysical methods can be used as a valid measure of configural face processing. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Patkin, Dorit; Dayan, Ester
2013-03-01
This case study of one class versus a control group focused on the impact of an intervention unit, which is not part of the regular curriculum, on the improvement of spatial ability of high school students (forty-six 12th-graders, aged 17-18, both boys and girls) in general as well as from a gender perspective. The study explored three sub-abilities: mental rotation (MR), spatial visualization (VS) and spatial orientation (SO). Findings indicated that the spatial orientation of the experimental group students had considerably improved. The findings also illustrated a significant gender-based advantage in favour of the boys in some of the spatial abilities even before the implementation of the intervention unit. The hypothesis relating to the reduction of the gender differences was not corroborated.
Langley, Keith; Anderson, Stephen J
2010-08-06
To represent the local orientation and energy of a 1-D image signal, many models of early visual processing employ bandpass quadrature filters, formed by combining the original signal with its Hilbert transform. However, representations capable of estimating an image signal's 2-D phase have been largely ignored. Here, we consider 2-D phase representations using a method based upon the Riesz transform. For spatial images there exist two Riesz transformed signals and one original signal from which orientation, phase and energy may be represented as a vector in 3-D signal space. We show that these image properties may be represented by a Singular Value Decomposition (SVD) of the higher-order derivatives of the original and the Riesz transformed signals. We further show that the expected responses of even and odd symmetric filters from the Riesz transform may be represented by a single signal autocorrelation function, which is beneficial in simplifying Bayesian computations for spatial orientation. Importantly, the Riesz transform allows one to weight linearly across orientation using both symmetric and asymmetric filters to account for some perceptual phase distortions observed in image signals - notably one's perception of edge structure within plaid patterns whose component gratings are either equal or unequal in contrast. Finally, exploiting the benefits that arise from the Riesz definition of local energy as a scalar quantity, we demonstrate the utility of Riesz signal representations in estimating the spatial orientation of second-order image signals. We conclude that the Riesz transform may be employed as a general tool for 2-D visual pattern recognition by its virtue of representing phase, orientation and energy as orthogonal signal quantities.
NASA Astrophysics Data System (ADS)
Wang, Hequn; Shyr, Thomas; Fevola, Michael J.; Cula, Gabriela Oana; Stamatas, Georgios N.
2018-03-01
Two-photon fluorescence (TPF) and second harmonic generation (SHG) microscopy provide direct visualization of the skin dermal fibers in vivo. A typical method for analyzing TPF/SHG images involves averaging the image intensity and therefore disregarding the spatial distribution information. The goal of this study is to develop an algorithm to document age-related effects of the dermal matrix. TPF and SHG images were acquired from the upper inner arm, volar forearm, and cheek of female volunteers of two age groups: 20 to 30 and 60 to 80 years of age. The acquired images were analyzed for parameters relating to collagen and elastin fiber features, such as orientation and density. Both collagen and elastin fibers showed higher anisotropy in fiber orientation for the older group. The greatest difference in elastin fiber anisotropy between the two groups was found for the upper inner arm site. Elastin fiber density increased with age, whereas collagen fiber density decreased with age. The proposed analysis considers the spatial information inherent to the TPF and SHG images and provides additional insights into how the dermal fiber structure is affected by the aging process.
Dromosagnosia, or why some people lose their sense of direction while driving.
Tseng, Wei-Shih; Tzeng, Nian-Sheng
2013-11-01
We coined a new word, "dromosagnosia", from the Greek words, dromos ("way, road")+agnosia, to describe the loss of direction while driving, an orientation disorder similar to but different from pure topographic disorientation. Historically, human beings have moved more quickly, from using domesticated animals to high speed vehicles, and this may be beyond the brain's ability to react. Without the benefit of an automatic navigation system, automobiles are associated with more problems of dromosagnosia than are fast-moving aircraft or ships. Previous studies have noted that some areas of the brain are associated with spatial orientation, spatial memory, and even emotion, and abnormalities there could exacerbate the loss of sense of direction. We hypothesize that some people are especially disadvantaged from these brain differences and emotional disturbances when driving their cars. Functional magnetic resonance imaging (fMRI) and event-related potentials (ERP) studies combined with a virtual reality driving simulation might be used to find the areas of the brain related to dromosagnosia. Future applications: some people with dromosagnosia might benefit from special remedial training and a driving safety support system to avoid potential problems. Copyright © 2013 Elsevier Ltd. All rights reserved.
Heredity Factors in Spatial Visualization.
ERIC Educational Resources Information Center
Vandenberg, S. G.
Spatial visualization is not yet clearly understood. Some researchers have concluded that two factors or abilities are involved, spatial orientation and spatial visualization. Different definitions and different tests have been proposed for these two abilities. Several studies indicate that women generally perform more poorly on spatial tests than…
NASA Astrophysics Data System (ADS)
Inochkin, F. M.; Pozzi, P.; Bezzubik, V. V.; Belashenkov, N. R.
2017-06-01
Superresolution image reconstruction method based on the structured illumination microscopy (SIM) principle with reduced and simplified pattern set is presented. The method described needs only 2 sinusoidal patterns shifted by half a period for each spatial direction of reconstruction, instead of the minimum of 3 for the previously known methods. The method is based on estimating redundant frequency components in the acquired set of modulated images. Digital processing is based on linear operations. When applied to several spatial orientations, the image set can be further reduced to a single pattern for each spatial orientation, complemented by a single non-modulated image for all the orientations. By utilizing this method for the case of two spatial orientations, the total input image set is reduced up to 3 images, providing up to 2-fold improvement in data acquisition time compared to the conventional 3-pattern SIM method. Using the simplified pattern design, the field of view can be doubled with the same number of spatial light modulator raster elements, resulting in a total 4-fold increase in the space-time product. The method requires precise knowledge of the optical transfer function (OTF). The key limitation is the thickness of object layer that scatters or emits light, which requires to be sufficiently small relatively to the lens depth of field. Numerical simulations and experimental results are presented. Experimental results are obtained on the SIM setup with the spatial light modulator based on the 1920x1080 digital micromirror device.
Dissociable cognitive mechanisms underlying human path integration.
Wiener, Jan M; Berthoz, Alain; Wolbers, Thomas
2011-01-01
Path integration is a fundamental mechanism of spatial navigation. In non-human species, it is assumed to be an online process in which a homing vector is updated continuously during an outward journey. In contrast, human path integration has been conceptualized as a configural process in which travelers store working memory representations of path segments, with the computation of a homing vector only occurring when required. To resolve this apparent discrepancy, we tested whether humans can employ different path integration strategies in the same task. Using a triangle completion paradigm, participants were instructed either to continuously update the start position during locomotion (continuous strategy) or to remember the shape of the outbound path and to calculate home vectors on basis of this representation (configural strategy). While overall homing accuracy was superior in the configural condition, participants were quicker to respond during continuous updating, strongly suggesting that homing vectors were computed online. Corroborating these findings, we observed reliable differences in head orientation during the outbound path: when participants applied the continuous updating strategy, the head deviated significantly from straight ahead in direction of the start place, which can be interpreted as a continuous motor expression of the homing vector. Head orientation-a novel online measure for path integration-can thus inform about the underlying updating mechanism already during locomotion. In addition to demonstrating that humans can employ different cognitive strategies during path integration, our two-systems view helps to resolve recent controversies regarding the role of the medial temporal lobe in human path integration.
Orienting numbers in mental space: horizontal organization trumps vertical.
Holmes, Kevin J; Lourenco, Stella F
2012-01-01
While research on the spatial representation of number has provided substantial evidence for a horizontally oriented mental number line, recent studies suggest vertical organization as well. Directly comparing the relative strength of horizontal and vertical organization, however, we found no evidence of spontaneous vertical orientation (upward or downward), and horizontal trumped vertical when pitted against each other (Experiment 1). Only when numbers were conceptualized as magnitudes (as opposed to nonmagnitude ordinal sequences) did reliable vertical organization emerge, with upward orientation preferred (Experiment 2). Altogether, these findings suggest that horizontal representations predominate, and that vertical representations, when elicited, may be relatively inflexible. Implications for spatial organization beyond number, and its ontogenetic basis, are discussed.
The "where is it?" reflex: autoshaping the orienting response.
Buzsáki, G
1982-05-01
The goal of this review is to compare two divergent lines of research on signal-centered behavior: the orienting reflex (OR) and autoshaping. A review of conditioning experiments in animals and humans suggests that the novelty hypothesis of the OR is no longer tenable. Only stimuli that represent biological "relevance" elicit ORs. A stimulus may be relevant a priori (i.e., unconditioned) or as a result of conditioning. Exposure to a conditioned stimulus (CS) that predicts a positive reinforcer causes the animal to orient to it throughout conditioning. Within the CS-US interval, the initial CS-directed orienting response is followed by US-directed tendencies. Experimental evidence is shown that the development and maintenance of the conditioned OR occur in a similar fashion both in response-independent (classical) and response-dependent (instrumental) paradigms. It is proposed that the conditioned OR and the signal-directed autoshaped response are identical. Signals predicting aversive events repel the subject from the source of the CS. It is suggested that the function of the CS is not only to signal the probability of US occurrence, but also to serve as a spatial cue to guide the animal in the environment.
The "where is it?" reflex: autoshaping the orienting response.
Buzsáki, G
1982-01-01
The goal of this review is to compare two divergent lines of research on signal-centered behavior: the orienting reflex (OR) and autoshaping. A review of conditioning experiments in animals and humans suggests that the novelty hypothesis of the OR is no longer tenable. Only stimuli that represent biological "relevance" elicit ORs. A stimulus may be relevant a priori (i.e., unconditioned) or as a result of conditioning. Exposure to a conditioned stimulus (CS) that predicts a positive reinforcer causes the animal to orient to it throughout conditioning. Within the CS-US interval, the initial CS-directed orienting response is followed by US-directed tendencies. Experimental evidence is shown that the development and maintenance of the conditioned OR occur in a similar fashion both in response-independent (classical) and response-dependent (instrumental) paradigms. It is proposed that the conditioned OR and the signal-directed autoshaped response are identical. Signals predicting aversive events repel the subject from the source of the CS. It is suggested that the function of the CS is not only to signal the probability of US occurrence, but also to serve as a spatial cue to guide the animal in the environment. PMID:7097153
NASA Technical Reports Server (NTRS)
Wood, Scott; Clement, Gilles
2013-01-01
This purpose of this study was to examine the spatial coding of eye movements during roll tilt relative to perceived orientations while free-floating during the microgravity phase of parabolic flight or during head tilt in normal gravity. Binocular videographic recordings obtained in darkness from six subjects allowed us to quantify the mean deviations in gaze trajectories along both horizontal and vertical coordinates relative to the aircraft and head orientations. Both variability and curvature of gaze trajectories increased during roll tilt compared to the upright position. The saccades were less accurate during parabolic flight compared to measurements obtained in normal gravity. The trajectories of saccades along perceived horizontal orientations tended to deviate in the same direction as the head tilt, while the deviations in gaze trajectories along the perceived vertical orientations deviated in the opposite direction relative to the head tilt. Although subjects were instructed to look off in the distance while performing the eye movements, fixation distance varied with vertical gaze direction independent of whether the saccades were made along perceived aircraft or head orientations. This coupling of horizontal vergence with vertical gaze is in a consistent direction with the vertical slant of the horopter. The increased errors in gaze trajectories along both perceived orientations during microgravity can be attributed to the otolith's role in spatial coding of eye movements.
A conditioned visual orientation requires the ellipsoid body in Drosophila
Guo, Chao; Du, Yifei; Yuan, Deliang; Li, Meixia; Gong, Haiyun; Gong, Zhefeng
2015-01-01
Orientation, the spatial organization of animal behavior, is an essential faculty of animals. Bacteria and lower animals such as insects exhibit taxis, innate orientation behavior, directly toward or away from a directional cue. Organisms can also orient themselves at a specific angle relative to the cues. In this study, using Drosophila as a model system, we established a visual orientation conditioning paradigm based on a flight simulator in which a stationary flying fly could control the rotation of a visual object. By coupling aversive heat shocks to a fly's orientation toward one side of the visual object, we found that the fly could be conditioned to orientate toward the left or right side of the frontal visual object and retain this conditioned visual orientation. The lower and upper visual fields have different roles in conditioned visual orientation. Transfer experiments showed that conditioned visual orientation could generalize between visual targets of different sizes, compactness, or vertical positions, but not of contour orientation. Rut—Type I adenylyl cyclase and Dnc—phosphodiesterase were dispensable for visual orientation conditioning. Normal activity and scb signaling in R3/R4d neurons of the ellipsoid body were required for visual orientation conditioning. Our studies established a visual orientation conditioning paradigm and examined the behavioral properties and neural circuitry of visual orientation, an important component of the insect's spatial navigation. PMID:25512578
Orientation selectivity and the functional clustering of synaptic inputs in primary visual cortex
Wilson, Daniel E.; Whitney, David E.; Scholl, Benjamin; Fitzpatrick, David
2016-01-01
The majority of neurons in primary visual cortex are tuned for stimulus orientation, but the factors that account for the range of orientation selectivities exhibited by cortical neurons remain unclear. To address this issue, we used in vivo 2-photon calcium imaging to characterize the orientation tuning and spatial arrangement of synaptic inputs to the dendritic spines of individual pyramidal neurons in layer 2/3 of ferret visual cortex. The summed synaptic input to individual neurons reliably predicted the neuron’s orientation preference, but did not account for differences in orientation selectivity among neurons. These differences reflected a robust input-output nonlinearity that could not be explained by spike threshold alone, and was strongly correlated with the spatial clustering of co-tuned synaptic inputs within the dendritic field. Dendritic branches with more co-tuned synaptic clusters exhibited greater rates of local dendritic calcium events supporting a prominent role for functional clustering of synaptic inputs in dendritic nonlinearities that shape orientation selectivity. PMID:27294510
Brownian systems with spatially inhomogeneous activity
NASA Astrophysics Data System (ADS)
Sharma, A.; Brader, J. M.
2017-09-01
We generalize the Green-Kubo approach, previously applied to bulk systems of spherically symmetric active particles [J. Chem. Phys. 145, 161101 (2016), 10.1063/1.4966153], to include spatially inhomogeneous activity. The method is applied to predict the spatial dependence of the average orientation per particle and the density. The average orientation is given by an integral over the self part of the Van Hove function and a simple Gaussian approximation to this quantity yields an accurate analytical expression. Taking this analytical result as input to a dynamic density functional theory approximates the spatial dependence of the density in good agreement with simulation data. All theoretical predictions are validated using Brownian dynamics simulations.
Tactile Cueing as a Gravitational Substitute for Spatial Navigation During Parabolic Flight
NASA Technical Reports Server (NTRS)
Montgomery, K. L.; Beaton, K. H.; Barba, J. M.; Cackler, J. M.; Son, J. H.; Horsfield, S. P.; Wood, S. J.
2010-01-01
INTRODUCTION: Spatial navigation requires an accurate awareness of orientation in your environment. The purpose of this experiment was to examine how spatial awareness was impaired with changing gravitational cues during parabolic flight, and the extent to which vibrotactile feedback of orientation could be used to help improve performance. METHODS: Six subjects were restrained in a chair tilted relative to the plane floor, and placed at random positions during the start of the microgravity phase. Subjects reported their orientation using verbal reports, and used a hand-held controller to point to a desired target location presented using a virtual reality video mask. This task was repeated with and without constant tactile cueing of "down" direction using a belt of 8 tactors placed around the mid-torso. Control measures were obtained during ground testing using both upright and tilted conditions. RESULTS: Perceptual estimates of orientation and pointing accuracy were impaired during microgravity or during rotation about an upright axis in 1g. The amount of error was proportional to the amount of chair displacement. Perceptual errors were reduced during movement about a tilted axis on earth. CONCLUSIONS: Reduced perceptual errors during tilts in 1g indicate the importance of otolith and somatosensory cues for maintaining spatial awareness. Tactile cueing may improve navigation in operational environments or clinical populations, providing a non-visual non-auditory feedback of orientation or desired direction heading.
Texture-dependent motion signals in primate middle temporal area
Gharaei, Saba; Tailby, Chris; Solomon, Selina S; Solomon, Samuel G
2013-01-01
Neurons in the middle temporal (MT) area of primate cortex provide an important stage in the analysis of visual motion. For simple stimuli such as bars and plaids some neurons in area MT – pattern cells – seem to signal motion independent of contour orientation, but many neurons – component cells – do not. Why area MT supports both types of receptive field is unclear. To address this we made extracellular recordings from single units in area MT of anaesthetised marmoset monkeys and examined responses to two-dimensional images with a large range of orientations and spatial frequencies. Component and pattern cell response remained distinct during presentation of these complex spatial textures. Direction tuning curves were sharpest in component cells when a texture contained a narrow range of orientations, but were similar across all neurons for textures containing all orientations. Response magnitude of pattern cells, but not component cells, increased with the spatial bandwidth of the texture. In addition, response variability in all neurons was reduced when the stimulus was rich in spatial texture. Fisher information analysis showed that component cells provide more informative responses than pattern cells when a texture contains a narrow range of orientations, but pattern cells had more informative responses for broadband textures. Component cells and pattern cells may therefore coexist because they provide complementary and parallel motion signals. PMID:24000175
NASA Technical Reports Server (NTRS)
Young, Laurence R.; Oman, C. M.; Watt, D. G. D.; Money, K. E.; Lichtenberg, B. K.; Kenyon, R. V.; Arrott, A. P.
1991-01-01
Experiments on human spatial orientation were conducted on four crewmembers of Space Shuttle Spacelab Mission 1. The conceptual background of the project, the relationship among the experiments, and their relevance to a 'sensory reinterpretation hypothesis' are presented. Detailed experiment procedures and results are presented in the accompanying papers in this series. The overall findings are discussed as they pertain to the following aspects of hypothesized sensory reinterpretation in weightlessness: (1) utricular otolith afferent signals are reinterpreted as indicating head translation rather than tilt, (2) sensitivity of reflex responses to footward acceleration is reduced, and (3) increased weighting is given to visual and tactile cues in orientation perception and posture control. Results suggest increased weighting of visual cues and reduced weighting of graviceptor signals in weightlessness.
Chang, Chia-Yuan; Lin, Cheng-Han; Lin, Chun-Yu; Sie, Yong-Da; Hu, Yvonne Yuling; Tsai, Sheng-Feng; Chen, Shean-Jen
2018-01-01
A developed temporal focusing-based multiphoton excitation microscope (TFMPEM) has a digital micromirror device (DMD) which is adopted not only as a blazed grating for light spatial dispersion but also for patterned illumination simultaneously. Herein, the TFMPEM has been extended to implement spatially modulated illumination at structured frequency and orientation to increase the beam coverage at the back-focal aperture of the objective lens. The axial excitation confinement (AEC) of TFMPEM can be condensed from 3.0 μm to 1.5 μm for a 50 % improvement. By using the TFMPEM with HiLo technique as two structured illuminations at the same spatial frequency but different orientation, reconstructed biotissue images according to the condensed AEC structured illumination are shown obviously superior in contrast and better scattering suppression. Picture: TPEF images of the eosin-stained mouse cerebellar cortex by conventional TFMPEM (left), and the TFMPEM with HiLo technique as 1.09 μm -1 spatially modulated illumination at 90° (center) and 0° (right) orientations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Feature integration and spatial attention: common processes for endogenous and exogenous orienting.
Henderickx, David; Maetens, Kathleen; Soetens, Eric
2010-05-01
Briand (J Exp Psychol Hum Percept Perform 24:1243-1256, 1998) and Briand and Klein (J Exp Psychol Hum Percept Perform 13:228-241, 1987) demonstrated that spatial cueing effects are larger for detecting conjunction of features than for detecting simple features when spatial attention is oriented exogenously, and not when attention is oriented endogenously. Their results were interpreted as if only exogenous attention affects the posterior spatial attention system that performs the feature binding function attributed to spatial attention by Treisman's feature integration theory (FIT; 1980). In a series of 6 experiments, we attempted to replicate Briand's findings. Manipulations of distractor string size and symmetry of stimulus presentation left and right from fixation were implemented in Posner's cueing paradigm. The data indicate that both exogenous and endogenous cueing address the same attentional mechanism needed for feature binding. The results also limit the generalisability of Briand's proposal concerning the role of exogenous attention in feature integration. Furthermore, the importance to control the effect of unintended attentional capture in a cueing task is demonstrated.
Structure-mechanical function relations at nano-scale in heat-affected human dental tissue.
Sui, Tan; Sandholzer, Michael A; Le Bourhis, Eric; Baimpas, Nikolaos; Landini, Gabriel; Korsunsky, Alexander M
2014-04-01
The knowledge of the mechanical properties of dental materials related to their hierarchical structure is essential for understanding and predicting the effect of microstructural alterations on the performance of dental tissues in the context of forensic and archaeological investigation as well as laser irradiation treatment of caries. So far, few studies have focused on the nano-scale structure-mechanical function relations of human teeth altered by chemical or thermal treatment. The response of dental tissues to thermal treatment is thought to be strongly affected by the mineral crystallite size, their spatial arrangement and preferred orientation. In this study, synchrotron-based small and wide angle X-ray scattering (SAXS/WAXS) techniques were used to investigate the micro-structural alterations (mean crystalline thickness, crystal perfection and degree of alignment) of heat-affected dentine and enamel in human dental teeth. Additionally, nanoindentation mapping was applied to detect the spatial and temperature-dependent nano-mechanical properties variation. The SAXS/WAXS results revealed that the mean crystalline thickness distribution in dentine was more uniform compared with that in enamel. Although in general the mean crystalline thickness increased both in dentine and enamel as the temperature increased, the local structural variations gradually reduced. Meanwhile, the hardness and reduced modulus in enamel decreased as the temperature increased, while for dentine, the tendency reversed at high temperature. The analysis of the correlation between the ultrastructure and mechanical properties coupled with the effect of temperature demonstrates the effect of mean thickness and orientation on the local variation of mechanical property. This structural-mechanical property alteration is likely to be due to changes of HAp crystallites, thus dentine and enamel exhibit different responses at different temperatures. Our results enable an improved understanding of the mechanical properties correlation in hierarchical biological materials, and human dental tissue in particular. Copyright © 2013 Elsevier Ltd. All rights reserved.
Development of a High Angular Resolution Diffusion Imaging Human Brain Template
Varentsova, Anna; Zhang, Shengwei; Arfanakis, Konstantinos
2014-01-01
Brain diffusion templates contain rich information about the microstructure of the brain, and are used as references in spatial normalization or in the development of brain atlases. The accuracy of diffusion templates constructed based on the diffusion tensor (DT) model is limited in regions with complex neuronal micro-architecture. High angular resolution diffusion imaging (HARDI) overcomes limitations of the DT model and is capable of resolving intravoxel heterogeneity. However, when HARDI is combined with multiple-shot sequences to minimize image artifacts, the scan time becomes inappropriate for human brain imaging. In this work, an artifact-free HARDI template of the human brain was developed from low angular resolution multiple-shot diffusion data. The resulting HARDI template was produced in ICBM-152 space based on Turboprop diffusion data, was shown to resolve complex neuronal micro-architecture in regions with intravoxel heterogeneity, and contained fiber orientation information consistent with known human brain anatomy. PMID:24440528
Link between orientation and retinotopic maps in primary visual cortex
Paik, Se-Bum; Ringach, Dario L.
2012-01-01
Maps representing the preference of neurons for the location and orientation of a stimulus on the visual field are a hallmark of primary visual cortex. It is not yet known how these maps develop and what function they play in visual processing. One hypothesis postulates that orientation maps are initially seeded by the spatial interference of ON- and OFF-center retinal receptive field mosaics. Here we show that such a mechanism predicts a link between the layout of orientation preferences around singularities of different signs and the cardinal axes of the retinotopic map. Moreover, we confirm the predicted relationship holds in tree shrew primary visual cortex. These findings provide additional support for the notion that spatially structured input from the retina may provide a blueprint for the early development of cortical maps and receptive fields. More broadly, it raises the possibility that spatially structured input from the periphery may shape the organization of primary sensory cortex of other modalities as well. PMID:22509015
Virtual-reality-Based 3D navigation training for emergency egress from spacecraft.
Aoki, Hirofumi; Oman, Charles M; Natapoff, Alan
2007-08-01
Astronauts have reported spatial disorientation and navigation problems inside spacecraft whose interior visual vertical direction varies from module to module. If they had relevant preflight practice they might orient better. This experiment examined the influence of relative body orientation and individual spatial skills during VR training on a simulated emergency egress task. During training, 36 subjects were each led on 12 tours through a space station by a virtual tour guide. Subjects wore a head-mounted display and controlled their motion with a game-pad. Each tour traversed multiple modules and involved up to three changes in visual vertical direction. Each subject was assigned to one of three groups that maintained different postures: visually upright relative to the "local" module; constant orientation relative to the "station" irrespective of local visual vertical; and "mixed" (local, followed by station orientation). Groups were balanced on the basis of mental rotation and perspective-taking test scores. Subjects then performed 24 emergency egress testing trials without the tour guide. Smoke reduced visibility during the last 12 trials. Egress time, sense of direction (by pointing to origin and destination) and configuration knowledge were measured. Both individual 3D spatial abilities and orientation during training influence emergency egress performance, pointing, and configuration knowledge. Local training facilitates landmark and route learning, but station training enhances sense of direction relative to station, and, therefore, performance in low visibility. We recommend a sequence of local, followed by station, and then randomized orientation training, preferably customized to a trainee's 3D spatial ability.
A Conditioned Visual Orientation Requires the Ellipsoid Body in "Drosophila"
ERIC Educational Resources Information Center
Guo, Chao; Du, Yifei; Yuan, Deliang; Li, Meixia; Gong, Haiyun; Gong, Zhefeng; Liu, Li
2015-01-01
Orientation, the spatial organization of animal behavior, is an essential faculty of animals. Bacteria and lower animals such as insects exhibit taxis, innate orientation behavior, directly toward or away from a directional cue. Organisms can also orient themselves at a specific angle relative to the cues. In this study, using…
Behavioral and neural correlates of disrupted orienting attention in posttraumatic stress disorder.
Russman Block, Stefanie; King, Anthony P; Sripada, Rebecca K; Weissman, Daniel H; Welsh, Robert; Liberzon, Israel
2017-04-01
Prior work has revealed that posttraumatic stress disorder (PTSD) is associated with altered (a) attentional performance and (b) resting-state functional connectivity (rsFC) in brain networks linked to attention. Here, we sought to characterize and link these behavioral and brain-based alterations in the context of Posner and Peterson's tripartite model of attention. Male military veterans with PTSD (N = 49; all deployed to Iraq or Afghanistan) and healthy age-and-gender-matched community controls (N = 26) completed the Attention Network Task. A subset of these individuals (36 PTSD and 21 controls) also underwent functional magnetic resonance imaging (fMRI) to assess rsFC. The behavioral measures revealed that the PTSD group was impaired at disengaging spatial attention, relative to the control group. FMRI measures further revealed that, relative to the control group, the PTSD group exhibited greater rsFC between the salience network and (a) the default mode network, (b) the dorsal attention network, and (c) the ventral attention network. Moreover, problems with disengaging spatial attention increased the rsFC between the networks above in the control group, but not in the PTSD group. The present findings link PTSD to both altered orienting of spatial attention and altered relationships between spatial orienting and functional connectivity involving the salience network. Interventions that target orienting and disengaging spatial attention may be a new avenue for PTSD research.
Spatial and physical frames of reference in positioning a limb.
Garrett, S R; Pagano, C; Austin, G; Turvey, M T
1998-10-01
Splints attached to the right forearm were used to rotate the forearm's physical reference frame, as defined by the eigenvectors of its inertia tensor, relative to its spatial reference frame. In two experiments, when subjects were required to orient the forearm parallel to, or at 45 degrees to, the environmental horizontal, they produced limb orientations that were systematically deflected from the forearm's longitudinal spatial axis in the direction of the forearm's physical axes. The position sense seems to be based on inertial eigenvectors rather than on joint angles or gravitational torques.
Dale, Corby L; Simpson, Gregory V; Foxe, John J; Luks, Tracy L; Worden, Michael S
2008-06-01
Brain-based models of visual attention hypothesize that attention-related benefits afforded to imperative stimuli occur via enhancement of neural activity associated with relevant spatial and non-spatial features. When relevant information is available in advance of a stimulus, anticipatory deployment processes are likely to facilitate allocation of attention to stimulus properties prior to its arrival. The current study recorded EEG from humans during a centrally-cued covert attention task. Cues indicated relevance of left or right visual field locations for an upcoming motion or orientation discrimination. During a 1 s delay between cue and S2, multiple attention-related events occurred at frontal, parietal and occipital electrode sites. Differences in anticipatory activity associated with the non-spatial task properties were found late in the delay, while spatially-specific modulation of activity occurred during both early and late periods and continued during S2 processing. The magnitude of anticipatory activity preceding the S2 at frontal scalp sites (and not occipital) was predictive of the magnitude of subsequent selective attention effects on the S2 event-related potentials observed at occipital electrodes. Results support the existence of multiple anticipatory attention-related processes, some with differing specificity for spatial and non-spatial task properties, and the hypothesis that levels of activity in anterior areas are important for effective control of subsequent S2 selective attention.
Samaha, Jason; Sprague, Thomas C; Postle, Bradley R
2016-08-01
Many aspects of perception and cognition are supported by activity in neural populations that are tuned to different stimulus features (e.g., orientation, spatial location, color). Goal-directed behavior, such as sustained attention, requires a mechanism for the selective prioritization of contextually appropriate representations. A candidate mechanism of sustained spatial attention is neural activity in the alpha band (8-13 Hz), whose power in the human EEG covaries with the focus of covert attention. Here, we applied an inverted encoding model to assess whether spatially selective neural responses could be recovered from the topography of alpha-band oscillations during spatial attention. Participants were cued to covertly attend to one of six spatial locations arranged concentrically around fixation while EEG was recorded. A linear classifier applied to EEG data during sustained attention demonstrated successful classification of the attended location from the topography of alpha power, although not from other frequency bands. We next sought to reconstruct the focus of spatial attention over time by applying inverted encoding models to the topography of alpha power and phase. Alpha power, but not phase, allowed for robust reconstructions of the specific attended location beginning around 450 msec postcue, an onset earlier than previous reports. These results demonstrate that posterior alpha-band oscillations can be used to track activity in feature-selective neural populations with high temporal precision during the deployment of covert spatial attention.
NASA Astrophysics Data System (ADS)
Kayumova, Shakhnoza; McGuire, Chad J.; Cardello, Suzanne
2018-04-01
In this conceptual paper, we draw upon the insights of Feminist Science Studies, in particular Karen Barad's concept of agential realism, as a critical analytical tool to re-think nature and culture binaries in dominant science knowledge-making practices and explanatory accounts, and their possible implications for science education in the context of socio-spatial and environmental injustices. Barad's framework proposes a relational and more expansive approach to justice, which takes into account consequential effects of nature-culture practices on humans, non-humans, and more than human vitalities. In efforts to understand potentialities of Barad's theory of agential realism, we situate our argument in the "story" of local children who encounter a bottle of cyanide in a former manufacturing building. The story takes place in a post-industrial urban city located in the U.S., caught up in an inverse relationship between the technological and scientific advances observed "globally" and the deteriorating environmental and living conditions experienced "locally" as the result of erstwhile industrial activity. Based on agential realist readings of the story and taking into consideration children's developing subjectivities, we argue that equity-oriented scholarship in science education might not be able to achieve justice devoid of understanding of the relatedness to plurality of life forms. We invite our readers to consider (re)configuring socio-spatial and environmental issues as an ethical response-ability that is constituted through relationships of care, recognition, openness, and responsiveness to vitalities of humans and nonhumans equally, one which cannot be conceptualized from a priori and distant calculations, but rather continuous entangled relations.
Visual orienting and attention deficits in 5- and 10-month-old preterm infants.
Ross-Sheehy, Shannon; Perone, Sammy; Macek, Kelsi L; Eschman, Bret
2017-02-01
Cognitive outcomes for children born prematurely are well characterized, including increased risk for deficits in memory, attention, processing speed, and executive function. However, little is known about deficits that appear within the first 12 months, and how these early deficits contribute to later outcomes. To probe for functional deficits in visual attention, preterm and full-term infants were tested at 5 and 10 months with the Infant Orienting With Attention task (IOWA; Ross-Sheehy, Schneegans and Spencer, 2015). 5-month-old preterm infants showed significant deficits in orienting speed and task related error. However, 10-month-old preterm infants showed only selective deficits in spatial attention, particularly reflexive orienting responses, and responses that required some inhibition. These emergent deficits in spatial attention suggest preterm differences may be related to altered postnatal developmental trajectories. Moreover, we found no evidence of a dose-response relation between increased gestational risk and spatial attention. These results highlight the critical role of postnatal visual experience, and suggest that visual orienting may be a sensitive measure of attentional delay. Results reported here both inform current theoretical models of early perceptual/cognitive development, and future intervention efforts. Copyright © 2016 Elsevier Inc. All rights reserved.
Dissociation of spatial memory systems in Williams syndrome.
Bostelmann, Mathilde; Fragnière, Emilie; Costanzo, Floriana; Di Vara, Silvia; Menghini, Deny; Vicari, Stefano; Lavenex, Pierre; Lavenex, Pamela Banta
2017-11-01
Williams syndrome (WS), a genetic deletion syndrome, is characterized by severe visuospatial deficits affecting performance on both tabletop spatial tasks and on tasks which assess orientation and navigation. Nevertheless, previous studies of WS spatial capacities have ignored the fact that two different spatial memory systems are believed to contribute parallel spatial representations supporting navigation. The place learning system depends on the hippocampal formation and creates flexible relational representations of the environment, also known as cognitive maps. The spatial response learning system depends on the striatum and creates fixed stimulus-response representations, also known as habits. Indeed, no study assessing WS spatial competence has used tasks which selectively target these two spatial memory systems. Here, we report that individuals with WS exhibit a dissociation in their spatial abilities subserved by these two memory systems. As compared to typically developing (TD) children in the same mental age range, place learning performance was impaired in individuals with WS. In contrast, their spatial response learning performance was facilitated. Our findings in individuals with WS and TD children suggest that place learning and response learning interact competitively to control the behavioral strategies normally used to support human spatial navigation. Our findings further suggest that the neural pathways supporting place learning may be affected by the genetic deletion that characterizes WS, whereas those supporting response learning may be relatively preserved. The dissociation observed between these two spatial memory systems provides a coherent theoretical framework to characterize the spatial abilities of individuals with WS, and may lead to the development of new learning strategies based on their facilitated response learning abilities. © 2017 Wiley Periodicals, Inc.
Ragan, Eric D; Scerbo, Siroberto; Bacim, Felipe; Bowman, Doug A
2017-08-01
Many types of virtual reality (VR) systems allow users to use natural, physical head movements to view a 3D environment. In some situations, such as when using systems that lack a fully surrounding display or when opting for convenient low-effort interaction, view control can be enabled through a combination of physical and virtual turns to view the environment, but the reduced realism could potentially interfere with the ability to maintain spatial orientation. One solution to this problem is to amplify head rotations such that smaller physical turns are mapped to larger virtual turns, allowing trainees to view the entire surrounding environment with small head movements. This solution is attractive because it allows semi-natural physical view control rather than requiring complete physical rotations or a fully-surrounding display. However, the effects of amplified head rotations on spatial orientation and many practical tasks are not well understood. In this paper, we present an experiment that evaluates the influence of amplified head rotation on 3D search, spatial orientation, and cybersickness. In the study, we varied the amount of amplification and also varied the type of display used (head-mounted display or surround-screen CAVE) for the VR search task. By evaluating participants first with amplification and then without, we were also able to study training transfer effects. The findings demonstrate the feasibility of using amplified head rotation to view 360 degrees of virtual space, but noticeable problems were identified when using high amplification with a head-mounted display. In addition, participants were able to more easily maintain a sense of spatial orientation when using the CAVE version of the application, which suggests that visibility of the user's body and awareness of the CAVE's physical environment may have contributed to the ability to use the amplification technique while keeping track of orientation.
ERIC Educational Resources Information Center
Chan, David W.
2007-01-01
Spatial ability based on measures of mental rotation, and spatial experience based on self-reported participation in visual-arts as well as spatial-orientation activities were assessed in a sample of 337 Chinese, gifted students. Consistent with past findings for the general population, there were gender differences in spatial ability favoring…
Modality-specificity of Selective Attention Networks.
Stewart, Hannah J; Amitay, Sygal
2015-01-01
To establish the modality specificity and generality of selective attention networks. Forty-eight young adults completed a battery of four auditory and visual selective attention tests based upon the Attention Network framework: the visual and auditory Attention Network Tests (vANT, aANT), the Test of Everyday Attention (TEA), and the Test of Attention in Listening (TAiL). These provided independent measures for auditory and visual alerting, orienting, and conflict resolution networks. The measures were subjected to an exploratory factor analysis to assess underlying attention constructs. The analysis yielded a four-component solution. The first component comprised of a range of measures from the TEA and was labeled "general attention." The third component was labeled "auditory attention," as it only contained measures from the TAiL using pitch as the attended stimulus feature. The second and fourth components were labeled as "spatial orienting" and "spatial conflict," respectively-they were comprised of orienting and conflict resolution measures from the vANT, aANT, and TAiL attend-location task-all tasks based upon spatial judgments (e.g., the direction of a target arrow or sound location). These results do not support our a-priori hypothesis that attention networks are either modality specific or supramodal. Auditory attention separated into selectively attending to spatial and non-spatial features, with the auditory spatial attention loading onto the same factor as visual spatial attention, suggesting spatial attention is supramodal. However, since our study did not include a non-spatial measure of visual attention, further research will be required to ascertain whether non-spatial attention is modality-specific.
From Objects to Landmarks: The Function of Visual Location Information in Spatial Navigation
Chan, Edgar; Baumann, Oliver; Bellgrove, Mark A.; Mattingley, Jason B.
2012-01-01
Landmarks play an important role in guiding navigational behavior. A host of studies in the last 15 years has demonstrated that environmental objects can act as landmarks for navigation in different ways. In this review, we propose a parsimonious four-part taxonomy for conceptualizing object location information during navigation. We begin by outlining object properties that appear to be important for a landmark to attain salience. We then systematically examine the different functions of objects as navigational landmarks based on previous behavioral and neuroanatomical findings in rodents and humans. Evidence is presented showing that single environmental objects can function as navigational beacons, or act as associative or orientation cues. In addition, we argue that extended surfaces or boundaries can act as landmarks by providing a frame of reference for encoding spatial information. The present review provides a concise taxonomy of the use of visual objects as landmarks in navigation and should serve as a useful reference for future research into landmark-based spatial navigation. PMID:22969737
Pictorial communication in virtual and real environments
NASA Technical Reports Server (NTRS)
Ellis, Stephen R. (Editor)
1991-01-01
Papers about the communication between human users and machines in real and synthetic environments are presented. Individual topics addressed include: pictorial communication, distortions in memory for visual displays, cartography and map displays, efficiency of graphical perception, volumetric visualization of 3D data, spatial displays to increase pilot situational awareness, teleoperation of land vehicles, computer graphics system for visualizing spacecraft in orbit, visual display aid for orbital maneuvering, multiaxis control in telemanipulation and vehicle guidance, visual enhancements in pick-and-place tasks, target axis effects under transformed visual-motor mappings, adapting to variable prismatic displacement. Also discussed are: spatial vision within egocentric and exocentric frames of reference, sensory conflict in motion sickness, interactions of form and orientation, perception of geometrical structure from congruence, prediction of three-dimensionality across continuous surfaces, effects of viewpoint in the virtual space of pictures, visual slant underestimation, spatial constraints of stereopsis in video displays, stereoscopic stance perception, paradoxical monocular stereopsis and perspective vergence. (No individual items are abstracted in this volume)
Statistical Analysis of Sport Movement Observations: the Case of Orienteering
NASA Astrophysics Data System (ADS)
Amouzandeh, K.; Karimipour, F.
2017-09-01
Study of movement observations is becoming more popular in several applications. Particularly, analyzing sport movement time series has been considered as a demanding area. However, most of the attempts made on analyzing movement sport data have focused on spatial aspects of movement to extract some movement characteristics, such as spatial patterns and similarities. This paper proposes statistical analysis of sport movement observations, which refers to analyzing changes in the spatial movement attributes (e.g. distance, altitude and slope) and non-spatial movement attributes (e.g. speed and heart rate) of athletes. As the case study, an example dataset of movement observations acquired during the "orienteering" sport is presented and statistically analyzed.
Spatial and Feature-Based Attention in a Layered Cortical Microcircuit Model
Wagatsuma, Nobuhiko; Potjans, Tobias C.; Diesmann, Markus; Sakai, Ko; Fukai, Tomoki
2013-01-01
Directing attention to the spatial location or the distinguishing feature of a visual object modulates neuronal responses in the visual cortex and the stimulus discriminability of subjects. However, the spatial and feature-based modes of attention differently influence visual processing by changing the tuning properties of neurons. Intriguingly, neurons' tuning curves are modulated similarly across different visual areas under both these modes of attention. Here, we explored the mechanism underlying the effects of these two modes of visual attention on the orientation selectivity of visual cortical neurons. To do this, we developed a layered microcircuit model. This model describes multiple orientation-specific microcircuits sharing their receptive fields and consisting of layers 2/3, 4, 5, and 6. These microcircuits represent a functional grouping of cortical neurons and mutually interact via lateral inhibition and excitatory connections between groups with similar selectivity. The individual microcircuits receive bottom-up visual stimuli and top-down attention in different layers. A crucial assumption of the model is that feature-based attention activates orientation-specific microcircuits for the relevant feature selectively, whereas spatial attention activates all microcircuits homogeneously, irrespective of their orientation selectivity. Consequently, our model simultaneously accounts for the multiplicative scaling of neuronal responses in spatial attention and the additive modulations of orientation tuning curves in feature-based attention, which have been observed widely in various visual cortical areas. Simulations of the model predict contrasting differences between excitatory and inhibitory neurons in the two modes of attentional modulations. Furthermore, the model replicates the modulation of the psychophysical discriminability of visual stimuli in the presence of external noise. Our layered model with a biologically suggested laminar structure describes the basic circuit mechanism underlying the attention-mode specific modulations of neuronal responses and visual perception. PMID:24324628
Gueguen, Marc; Vuillerme, Nicolas; Isableu, Brice
2012-01-01
Background The selection of appropriate frames of reference (FOR) is a key factor in the elaboration of spatial perception and the production of robust interaction with our environment. The extent to which we perceive the head axis orientation (subjective head orientation, SHO) with both accuracy and precision likely contributes to the efficiency of these spatial interactions. A first goal of this study was to investigate the relative contribution of both the visual and egocentric FOR (centre-of-mass) in the SHO processing. A second goal was to investigate humans' ability to process SHO in various sensory response modalities (visual, haptic and visuo-haptic), and the way they modify the reliance to either the visual or egocentric FORs. A third goal was to question whether subjects combined visual and haptic cues optimally to increase SHO certainty and to decrease the FORs disruption effect. Methodology/Principal Findings Thirteen subjects were asked to indicate their SHO while the visual and/or egocentric FORs were deviated. Four results emerged from our study. First, visual rod settings to SHO were altered by the tilted visual frame but not by the egocentric FOR alteration, whereas no haptic settings alteration was observed whether due to the egocentric FOR alteration or the tilted visual frame. These results are modulated by individual analysis. Second, visual and egocentric FOR dependency appear to be negatively correlated. Third, the response modality enrichment appears to improve SHO. Fourth, several combination rules of the visuo-haptic cues such as the Maximum Likelihood Estimation (MLE), Winner-Take-All (WTA) or Unweighted Mean (UWM) rule seem to account for SHO improvements. However, the UWM rule seems to best account for the improvement of visuo-haptic estimates, especially in situations with high FOR incongruence. Finally, the data also indicated that FOR reliance resulted from the application of UWM rule. This was observed more particularly, in the visual dependent subject. Conclusions: Taken together, these findings emphasize the importance of identifying individual spatial FOR preferences to assess the efficiency of our interaction with the environment whilst performing spatial tasks. PMID:22509295
Comparison of Spatial Skills of Students Entering Different Engineering Majors
ERIC Educational Resources Information Center
Veurink, N.; Sorby, S. A.
2012-01-01
Spatial skills have been shown to be important to success in an engineering curriculum, and some question if poor spatial skills prevent students from entering STEM fields or if students with weak spatial skills avoid engineering disciplines believed to highly spatially-oriented. Veurink and Hamlin (2011) found that freshmen students entering…
Aberg, Kristoffer Carl; Doell, Kimberly Crystal; Schwartz, Sophie
2016-08-01
Orienting biases refer to consistent, trait-like direction of attention or locomotion toward one side of space. Recent studies suggest that such hemispatial biases may determine how well people memorize information presented in the left or right hemifield. Moreover, lesion studies indicate that learning rewarded stimuli in one hemispace depends on the integrity of the contralateral striatum. However, the exact neural and computational mechanisms underlying the influence of individual orienting biases on reward learning remain unclear. Because reward-based behavioural adaptation depends on the dopaminergic system and prediction error (PE) encoding in the ventral striatum, we hypothesized that hemispheric asymmetries in dopamine (DA) function may determine individual spatial biases in reward learning. To test this prediction, we acquired fMRI in 33 healthy human participants while they performed a lateralized reward task. Learning differences between hemispaces were assessed by presenting stimuli, assigned to different reward probabilities, to the left or right of central fixation, i.e. presented in the left or right visual hemifield. Hemispheric differences in DA function were estimated through differential fMRI responses to positive vs. negative feedback in the left vs. right ventral striatum, and a computational approach was used to identify the neural correlates of PEs. Our results show that spatial biases favoring reward learning in the right (vs. left) hemifield were associated with increased reward responses in the left hemisphere and relatively better neural encoding of PEs for stimuli presented in the right (vs. left) hemifield. These findings demonstrate that trait-like spatial biases implicate hemisphere-specific learning mechanisms, with individual differences between hemispheres contributing to reinforcing spatial biases. Copyright © 2016 Elsevier Ltd. All rights reserved.
Buonocore, Antimo; Fracasso, Alessio; Melcher, David
2017-01-01
We interact with complex scenes using eye movements to select targets of interest. Studies have shown that the future target of a saccadic eye movement is processed differently by the visual system. A number of effects have been reported, including a benefit for perceptual performance at the target (“enhancement”), reduced influences of backward masking (“un-masking”), reduced crowding (“un-crowding”) and spatial compression towards the saccade target. We investigated the time course of these effects by measuring orientation discrimination for targets that were spatially crowded or temporally masked. In four experiments, we varied the target-flanker distance, the presence of forward/backward masks, the orientation of the flankers and whether participants made a saccade. Masking and randomizing flanker orientation reduced performance in both fixation and saccade trials. We found a small improvement in performance on saccade trials, compared to fixation trials, with a time course that was consistent with a general enhancement at the saccade target. In addition, a decrement in performance (reporting the average flanker orientation, rather than the target) was found in the time bins nearest saccade onset when random oriented flankers were used, consistent with spatial pooling around the saccade target. We did not find strong evidence for un-crowding. Overall, our pattern of results was consistent with both an early, general enhancement at the saccade target and a later, peri-saccadic compression/pooling towards the saccade target. PMID:28614367
Focusing and alignment of erythrocytes in a viscoelastic medium
NASA Astrophysics Data System (ADS)
Go, Taesik; Byeon, Hyeokjun; Lee, Sang Joon
2017-01-01
Viscoelastic fluid flow-induced cross-streamline migration has recently received considerable attention because this process provides simple focusing and alignment over a wide range of flow rates. The lateral migration of particles depends on the channel geometry and physicochemical properties of particles. In this study, digital in-line holographic microscopy (DIHM) is employed to investigate the lateral migration of human erythrocytes induced by viscoelastic fluid flow in a rectangular microchannel. DIHM provides 3D spatial distributions of particles and information on particle orientation in the microchannel. The elastic forces generated in the pressure-driven flows of a viscoelastic fluid push suspended particles away from the walls and enforce erythrocytes to have a fixed orientation. Blood cell deformability influences the lateral focusing and fixed orientation in the microchannel. Different from rigid spheres and hardened erythrocytes, deformable normal erythrocytes disperse from the channel center plane, as the flow rate increases. Furthermore, normal erythrocytes have a higher angle of inclination than hardened erythrocytes in the region near the side-walls of the channel. These results may guide the label-free diagnosis of hematological diseases caused by abnormal erythrocyte deformability.
Gender differences associated with orienting attentional networks in healthy subjects.
Liu, Gang; Hu, Pan-Pan; Fan, Jin; Wang, Kai
2013-06-01
Selective attention is considered one of the main components of cognitive functioning. A number of studies have demonstrated gender differences in cognition. This study aimed to investigate the gender differences in selective attention in healthy subjects. The present experiment examined the gender differences associated with the efficiency of three attentional networks: alerting, orienting, and executive control attention in 73 healthy subjects (38 males). All participants performed a modified version of the Attention Network Test (ANT). Females had higher orienting scores than males (t = 2.172, P < 0.05). Specifically, females were faster at covert orienting of attention to a spatially cued location. There were no gender differences between males and females in alerting (t = 0.813, P > 0.05) and executive control (t = 0.945, P > 0.05) attention networks. There was a significant gender difference between males and females associated with the orienting network. Enhanced orienting attention in females may function to motivate females to direct their attention to a spatially cued location.
Alerting, orienting or executive attention networks: differential patters of pupil dilations
Geva, Ronny; Zivan, Michal; Warsha, Aviv; Olchik, Dov
2013-01-01
Attention capacities, alerting responses, orienting to sensory stimulation, and executive monitoring of performance are considered independent yet interrelated systems. These operations play integral roles in regulating the behavior of diverse species along the evolutionary ladder. Each of the primary attention constructs—alerting, orienting, and executive monitoring—involves salient autonomic correlates as evidenced by changes in reactive pupil dilation (PD), heart rate, and skin conductance. Recent technological advances that use remote high-resolution recording may allow the discernment of temporo-spatial attributes of autonomic responses that characterize the alerting, orienting, and executive monitoring networks during free viewing, irrespective of voluntary performance. This may deepen the understanding of the roles of autonomic regulation in these mental operations and may deepen our understanding of behavioral changes in verbal as well as in non-verbal species. The aim of this study was to explore differences between psychosensory PD responses in alerting, orienting, and executive conflict monitoring tasks to generate estimates of concurrent locus coeruleus (LC) noradrenergic input trajectories in healthy human adults using the attention networks test (ANT). The analysis revealed a construct-specific pattern of pupil responses: alerting is characterized by an early component (Pa), its acceleration enables covert orienting, and executive control is evidenced by a prominent late component (Pe). PD characteristics seem to be task-sensitive, allowing exploration of mental operations irrespective of conscious voluntary responses. These data may facilitate development of studies designed to assess mental operations in diverse species using autonomic responses. PMID:24133422
Van der Lubbe, Rob H J; Blom, Jorian H G; De Kleine, Elian; Bohlmeijer, Ernst T
2017-02-01
We examined whether sustained vs. transient spatial attention differentially affect the processing of electrical nociceptive stimuli. Cued nociceptive stimuli of a relevant intensity (low or high) on the left or right forearm required a foot pedal press. The cued side varied trial wise in the transient attention condition, while it remained constant during a series of trials in the sustained attention condition. The orienting phase preceding the nociceptive stimuli was examined by focusing on lateralized EEG activity. ERPs were computed to examine the influence of spatial attention on the processing of the nociceptive stimuli. Results for the orienting phase showed increased ipsilateral alpha and beta power above somatosensory areas in both the transient and the sustained attention conditions, which may reflect inhibition of ipsilateral and/or disinhibition of contralateral somatosensory areas. Cued nociceptive stimuli evoked a larger N130 than uncued stimuli, both in the transient and the sustained attention conditions. Support for increased efficiency of spatial attention in the sustained attention condition was obtained for the N180 and the P540 component. We concluded that spatial attention is more efficient in the case of sustained than in the case of transient spatial attention. Copyright © 2016 Elsevier B.V. All rights reserved.
New technologies lead to a new frontier: cognitive multiple data representation
NASA Astrophysics Data System (ADS)
Buffat, S.; Liege, F.; Plantier, J.; Roumes, C.
2005-05-01
The increasing number and complexity of operational sensors (radar, infrared, hyperspectral...) and availability of huge amount of data, lead to more and more sophisticated information presentations. But one key element of the IMINT line cannot be improved beyond initial system specification: the operator.... In order to overcome this issue, we have to better understand human visual object representation. Object recognition theories in human vision balance between matching 2D templates representation with viewpoint-dependant information, and a viewpoint-invariant system based on structural description. Spatial frequency content is relevant due to early vision filtering. Orientation in depth is an important variable to challenge object constancy. Three objects, seen from three different points of view in a natural environment made the original images in this study. Test images were a combination of spatial frequency filtered original images and an additive contrast level of white noise. In the first experiment, the observer's task was a same versus different forced choice with spatial alternative. Test images had the same noise level in a presentation row. Discrimination threshold was determined by modifying the white noise contrast level by means of an adaptative method. In the second experiment, a repetition blindness paradigm was used to further investigate the viewpoint effect on object recognition. The results shed some light on the human visual system processing of objects displayed under different physical descriptions. This is an important achievement because targets which not always match physical properties of usual visual stimuli can increase operational workload.
Effects of spaceflight on ocular counterrolling and the spatial orientation of the vestibular system
NASA Technical Reports Server (NTRS)
Dai, M.; McGarvie, L.; Kozlovskaya, I.; Raphan, T.; Cohen, B.
1994-01-01
We recorded the horizontal (yaw), vertical (pitch), and torsional (roll) eye movements of two rhesus monkeys with scleral search coils before and after the COSMOS Biosatellite 2229 Flight. The aim was to determine effects of adaptation to microgravity on the vestibulo-ocular reflex (VOR). The animals flew for 11 days. The first postflight tests were 22 h and 55 h after landing, and testing extended for 11 days after reentry. There were four significant effects of spaceflight on functions related to spatial orientation: (1) Compensatory ocular counterrolling (OCR) was reduced by about 70% for static and dynamic head tilts with regard to gravity. The reduction in OCR persisted in the two animals throughout postflight testing. (2) The gain of the torsional component of the angular VOR (roll VOR) was decreased by 15% and 50% in the two animals over the same period. (3) An up-down asymmetry of nystagmus, present in the two monkeys before flight was reduced after exposure to microgravity. (4) The spatial orientation of velocity storage was shifted in the one monkey that could be tested soon after flight. Before flight, the yaw axis eigenvector of optokinetic afternystagmus was close to gravity when the animal was upright or tilted. After flight, the yaw orientation vector was shifted toward the body yaw axis. By 7 days after recovery, it had reverted to a gravitational orientation. We postulate that spaceflight causes changes in the vestibular system which reflect adaptation of spatial orientation from a gravitational to a body frame of reference. These changes are likely to play a role in the postural, locomotor, and gaze instability demonstrated on reentry after spaceflight.
Carter, Alex R; McAvoy, Mark P; Siegel, Joshua S; Hong, Xin; Astafiev, Serguei V; Rengachary, Jennifer; Zinn, Kristi; Metcalf, Nicholas V; Shulman, Gordon L; Corbetta, Maurizio
2017-03-01
Visuospatial attention depends on the integration of multiple processes, and people with right hemisphere lesions after a stroke may exhibit severe or no visuospatial deficits. The anatomy of core components of visuospatial attention is an area of intense interest. Here we examine the relationship between the disruption of core components of attention and lesion distribution in a heterogeneous group (N = 70) of patients with right hemisphere strokes regardless of the presence of clinical neglect. Deficits of lateralized spatial orienting, measured as the difference in reaction times for responding to visual targets in the contralesional or ipsilesional visual field, and deficits in re-orienting attention, as measured by the difference in reaction times for invalidly versus validly cued targets, were measured using a computerized spatial orienting task. Both measures were related through logistic regression and a novel ridge regression method to anatomical damage measured with magnetic resonance imaging. While many regions were common to both deficit maps, a deficit in lateralized spatial orienting was more associated with lesions in the white matter underlying the posterior parietal cortex, and middle and inferior frontal gyri. A deficit in re-orienting of attention toward unattended locations was associated with lesions in the white matter of the posterior parietal cortex, insular cortex and less so with white matter involvement of the anterior frontal lobe. An hodological analysis also supports this partial dissociation between the white matter tracts that are damaged in lateralized spatial biases versus impaired re-orienting. Our results underscore that the integrity of fronto-parietal white matter tracts is crucial for visuospatial attention and that different attention components are mediated by partially distinct neuronal substrates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Differentiating Spatial Memory from Spatial Transformations
ERIC Educational Resources Information Center
Street, Whitney N.; Wang, Ranxiao Frances
2014-01-01
The perspective-taking task is one of the most common paradigms used to study the nature of spatial memory, and better performance for certain orientations is generally interpreted as evidence of spatial representations using these reference directions. However, performance advantages can also result from the relative ease in certain…
The role of visualization in learning from computer-based images
NASA Astrophysics Data System (ADS)
Piburn, Michael D.; Reynolds, Stephen J.; McAuliffe, Carla; Leedy, Debra E.; Birk, James P.; Johnson, Julia K.
2005-05-01
Among the sciences, the practice of geology is especially visual. To assess the role of spatial ability in learning geology, we designed an experiment using: (1) web-based versions of spatial visualization tests, (2) a geospatial test, and (3) multimedia instructional modules built around QuickTime Virtual Reality movies. Students in control and experimental sections were administered measures of spatial orientation and visualization, as well as a content-based geospatial examination. All subjects improved significantly in their scores on spatial visualization and the geospatial examination. There was no change in their scores on spatial orientation. A three-way analysis of variance, with the geospatial examination as the dependent variable, revealed significant main effects favoring the experimental group and a significant interaction between treatment and gender. These results demonstrate that spatial ability can be improved through instruction, that learning of geological content will improve as a result, and that differences in performance between the genders can be eliminated.
Markant, Julie; Ackerman, Laura K.; Nussenbaum, Kate; Amso, Dima
2015-01-01
Socioeconomic status (SES) has a documented impact on brain and cognitive development. We demonstrate that engaging spatial selective attention mechanisms may counteract this negative influence of impoverished environments on early learning. We previously used a spatial cueing task to compare target object encoding in the context of basic orienting (“facilitation”) versus a spatial selective attention orienting mechanism that engages distractor suppression (“IOR”). This work showed that object encoding in the context of IOR boosted 9-month-old infants’ recognition memory relative to facilitation (Markant and Amso, 2013). Here we asked whether this attention-memory links further interacted with SES in infancy. Results indicated that SES was related to memory but not attention orienting efficacy. However, the correlation between SES and memory performance was moderated by the attention mechanism engaged during encoding. SES predicted memory performance when objects were encoded with basic orienting processes, with infants from low-SES environments showing poorer memory than those from high-SES environments. However, SES did not predict memory performance among infants who engaged selective attention during encoding. Spatial selective attention engagement mitigated the effects of SES on memory and may offer an effective mechanism for promoting learning among infants at risk for poor cognitive outcomes related to SES. PMID:26597046
Liu, Sisi; Liu, Duo; Pan, Zhihui; Xu, Zhengye
2018-03-25
A growing body of research suggests that visual-spatial attention is important for reading achievement. However, few studies have been conducted in non-alphabetic orthographies. This study extended the current research to reading development in Chinese, a logographic writing system known for its visual complexity. Eighty Hong Kong Chinese children were selected and divided into poor reader and typical reader groups, based on their performance on the measures of reading fluency, Chinese character reading, and reading comprehension. The poor and typical readers were matched on age and nonverbal intelligence. A Posner's spatial cueing task was adopted to measure the exogenous and endogenous orienting of visual-spatial attention. Although the typical readers showed the cueing effect in the central cue condition (i.e., responses to targets following valid cues were faster than those to targets following invalid cues), the poor readers did not respond differently in valid and invalid conditions, suggesting an impairment of the endogenous orienting of attention. The two groups, however, showed a similar cueing effect in the peripheral cue condition, indicating intact exogenous orienting in the poor readers. These findings generally supported a link between the orienting of covert attention and Chinese reading, providing evidence for the attentional-deficit theory of dyslexia. Copyright © 2018 John Wiley & Sons, Ltd.
Spatial irregularities in Jupiter's upper ionosphere observed by Voyager radio occultations
NASA Technical Reports Server (NTRS)
Hinson, D. P.; Tyler, G. L.
1982-01-01
Radio scintillations (at 3.6 and 13 cm) produced by scattering from ionospheric irregularities during the Voyager occultations are interpreted using a weak-scattering theory. Least squares solutions for ionospheric parameters derived from the observed fluctuation spectra yield estimates of (1) the axial ratio, (2) angular orientation of the anisotropic irregularities, (3) the power law exponent of the spatial spectrum of irregularities, and (4) the magnitude of the spatial variations in electron density. It is shown that the measured angular orientation of the anisotropic irregularities indicates magnetic field direction and may provide a basis for refining Jovian magnetic field models.
User Localization During Human-Robot Interaction
Alonso-Martín, F.; Gorostiza, Javi F.; Malfaz, María; Salichs, Miguel A.
2012-01-01
This paper presents a user localization system based on the fusion of visual information and sound source localization, implemented on a social robot called Maggie. One of the main requisites to obtain a natural interaction between human-human and human-robot is an adequate spatial situation between the interlocutors, that is, to be orientated and situated at the right distance during the conversation in order to have a satisfactory communicative process. Our social robot uses a complete multimodal dialog system which manages the user-robot interaction during the communicative process. One of its main components is the presented user localization system. To determine the most suitable allocation of the robot in relation to the user, a proxemic study of the human-robot interaction is required, which is described in this paper. The study has been made with two groups of users: children, aged between 8 and 17, and adults. Finally, at the end of the paper, experimental results with the proposed multimodal dialog system are presented. PMID:23012577
User localization during human-robot interaction.
Alonso-Martín, F; Gorostiza, Javi F; Malfaz, María; Salichs, Miguel A
2012-01-01
This paper presents a user localization system based on the fusion of visual information and sound source localization, implemented on a social robot called Maggie. One of the main requisites to obtain a natural interaction between human-human and human-robot is an adequate spatial situation between the interlocutors, that is, to be orientated and situated at the right distance during the conversation in order to have a satisfactory communicative process. Our social robot uses a complete multimodal dialog system which manages the user-robot interaction during the communicative process. One of its main components is the presented user localization system. To determine the most suitable allocation of the robot in relation to the user, a proxemic study of the human-robot interaction is required, which is described in this paper. The study has been made with two groups of users: children, aged between 8 and 17, and adults. Finally, at the end of the paper, experimental results with the proposed multimodal dialog system are presented.
ERIC Educational Resources Information Center
Ramful, Ajay; Lowrie, Thomas; Logan, Tracy
2017-01-01
This article describes the development and validation of a newly designed instrument for measuring the spatial ability of middle school students (11-13 years old). The design of the Spatial Reasoning Instrument (SRI) is based on three constructs (mental rotation, spatial orientation, and spatial visualization) and is aligned to the type of spatial…
Pisharady, Pramod Kumar; Duarte-Carvajalino, Julio M; Sotiropoulos, Stamatios N; Sapiro, Guillermo; Lenglet, Christophe
2017-01-01
The RubiX [1] algorithm combines high SNR characteristics of low resolution data with high spacial specificity of high resolution data, to extract microstructural tissue parameters from diffusion MRI. In this paper we focus on estimating crossing fiber orientations and introduce sparsity to the RubiX algorithm, making it suitable for reconstruction from compressed (under-sampled) data. We propose a sparse Bayesian algorithm for estimation of fiber orientations and volume fractions from compressed diffusion MRI. The data at high resolution is modeled using a parametric spherical deconvolution approach and represented using a dictionary created with the exponential decay components along different possible directions. Volume fractions of fibers along these orientations define the dictionary weights. The data at low resolution is modeled using a spatial partial volume representation. The proposed dictionary representation and sparsity priors consider the dependence between fiber orientations and the spatial redundancy in data representation. Our method exploits the sparsity of fiber orientations, therefore facilitating inference from under-sampled data. Experimental results show improved accuracy and decreased uncertainty in fiber orientation estimates. For under-sampled data, the proposed method is also shown to produce more robust estimates of fiber orientations. PMID:28845484
Pisharady, Pramod Kumar; Duarte-Carvajalino, Julio M; Sotiropoulos, Stamatios N; Sapiro, Guillermo; Lenglet, Christophe
2015-10-01
The RubiX [1] algorithm combines high SNR characteristics of low resolution data with high spacial specificity of high resolution data, to extract microstructural tissue parameters from diffusion MRI. In this paper we focus on estimating crossing fiber orientations and introduce sparsity to the RubiX algorithm, making it suitable for reconstruction from compressed (under-sampled) data. We propose a sparse Bayesian algorithm for estimation of fiber orientations and volume fractions from compressed diffusion MRI. The data at high resolution is modeled using a parametric spherical deconvolution approach and represented using a dictionary created with the exponential decay components along different possible directions. Volume fractions of fibers along these orientations define the dictionary weights. The data at low resolution is modeled using a spatial partial volume representation. The proposed dictionary representation and sparsity priors consider the dependence between fiber orientations and the spatial redundancy in data representation. Our method exploits the sparsity of fiber orientations, therefore facilitating inference from under-sampled data. Experimental results show improved accuracy and decreased uncertainty in fiber orientation estimates. For under-sampled data, the proposed method is also shown to produce more robust estimates of fiber orientations.
The Roles of Innate Information, Learning Rules and Plasticity in Migratory Bird Orientation
NASA Astrophysics Data System (ADS)
Able, Kenneth P.; Able, Mary A.
This paper and the following three papers were presented at the RIN97 Conference held in Oxford under the auspices of the Animal Navigation Special Interest Group, April 1997. The full proceedings, under the title Orientation and Navigation - Birds, Humans and Other Animals, can be obtained from the Director (£30 to Members, £50 to non-Members).Studies of the compass mechanisms involved in the migratory orientation of birds have revealed a complex web of interactions, both during the development of orientation behaviour in young birds and in mature individuals exhibiting migratory activity. In young birds, the acquisition of compass orientation capabilities involves the interplay of apparently genetically programmed information with a suite of innate learning rules. The latter canalise the ways in which experience with relevant orientation information from the environment impinges on development. There are many general similarities with the development of singing behaviour in songbirds, although that system is more thoroughly understood, especially at the neuronal level.Here we shall attempt to synthesise what is known about the development of compass mechanisms in a framework of innate information and learning rules. The way in which orientation behaviour develops leaves open the possibility for plasticity that enables birds to compensate for variability in the environmental cues that form the basis of their compasses. For at least some components of the system, behavioural plasticity remains into adulthood, allowing the bird on migration to respond in apparently adaptive ways to spatial and temporal variability in orientation information that it may encounter while enroute. We have studied these questions in the Savannah sparrow (Passerculus sandwichensis), a medium-distance North American emberizine nocturnal migrant. We will focus on that species, relating the results of our work to relevant studies on others.
Adaptation to vestibular disorientation. XII, Habituation of vestibular responses : an overview.
DOT National Transportation Integrated Search
1974-03-01
Vestibular and visual mechanisms are critical sensing systems in spatial orientation and in spatial disorientation. In aviation or space environments in particular, the role of the vestibular system is central to the problems of spatial disorientatio...
Guizar-Sicairos, Manuel; Gschwend, Oliver; Hangartner, Peter; Bunk, Oliver; Müller, Ralph; Schneider, Philipp
2016-01-01
Although the organization of bone ultrastructure, i.e. the orientation and arrangement of the mineralized collagen fibrils, has been in the focus of research for many years for cortical bone, and many models on the osteonal arrangement have been proposed, limited attention has been paid to trabecular bone ultrastructure. This is surprising because trabeculae play a crucial role for the mechanical strength of several bone sites, including the vertebrae and the femoral head. On this account, we first validated a recently developed method (3D sSAXS or 3D scanning small-angle X-ray scattering) for investigating bone ultrastructure in a quantitative and spatially resolved way, using conventional linearly polarized light microscopy as a gold standard. While both methods are used to analyze thin tissue sections, in contrast to polarized light microscopy, 3D sSAXS has the important advantage that it provides 3D information on the orientation and arrangement of bone ultrastructure. In this first study of its kind, we used 3D sSAXS to investigate the ultrastructural organization of 22 vertebral trabeculae of different alignment, types and sizes, obtained from 4 subjects of different ages. Maps of ultrastructure orientation and arrangement of the trabeculae were retrieved by stacking information from consecutive 20-μm-thick bone sections. The organization of the ultrastructure was analyzed in relation to trabecular microarchitecture obtained from computed tomography and to relevant parameters such as distance to trabecular surface, local curvature or local bone mineralization. We found that (i) ultrastructure organization is similar for all investigated trabeculae independent of their particular characteristics, (ii) bone ultrastructure exhibiting a high degree of orientation was arranged in domains, (iii) highly oriented ultrastructural areas were located closer to the bone surface, (iv) the ultrastructure of the human trabecular bone specimens followed the microarchitecture, being oriented mostly parallel to bone surface, and (v) local surface curvature seems to have an effect on the ultrastructure organization. Further studies that investigate bone ultrastructure orientation and arrangement are needed in order to understand its organization and consequently its relation to bone biology and mechanics. PMID:27547973
Enhanced Facilitation of Spatial Attention in Schizophrenia
Spencer, Kevin M.; Nestor, Paul G.; Valdman, Olga; Niznikiewicz, Margaret A.; Shenton, Martha E.; McCarley, Robert W.
2010-01-01
Objective While attentional functions are usually found to be impaired in schizophrenia, a review of the literature on the orienting of spatial attention in schizophrenia suggested that voluntary attentional orienting in response to a valid cue might be paradoxically enhanced. We tested this hypothesis with orienting tasks involving the cued detection of a laterally-presented target stimulus. Method Subjects were chronic schizophrenia patients (SZ) and matched healthy control subjects (HC). In Experiment 1 (15 SZ, 16 HC), cues were endogenous (arrows) and could be valid (100% predictive) or neutral with respect to the subsequent target position. In Experiment 2 (16 SZ, 16 HC), subjects performed a standard orienting task with unpredictive exogenous cues (brightening of the target boxes). Results In Experiment 1, SZ showed a larger attentional facilitation effect on reaction time than HC. In Experiment 2, no clear sign of enhanced attentional facilitation was found in SZ. Conclusions The voluntary, facilitatory shifting of spatial attention may be relatively enhanced in individuals with schizophrenia in comparison to healthy individuals. This effect bears resemblance to other relative enhancements of information processing in schizophrenia such as saccade speed and semantic priming. PMID:20919764
Enhanced facilitation of spatial attention in schizophrenia.
Spencer, Kevin M; Nestor, Paul G; Valdman, Olga; Niznikiewicz, Margaret A; Shenton, Martha E; McCarley, Robert W
2011-01-01
While attentional functions are usually found to be impaired in schizophrenia, a review of the literature on the orienting of spatial attention in schizophrenia suggested that voluntary attentional orienting in response to a valid cue might be paradoxically enhanced. We tested this hypothesis with orienting tasks involving the cued detection of a laterally presented target stimulus. Subjects were chronic schizophrenia patients (SZ) and matched healthy control subjects (HC). In Experiment 1 (15 SZ, 16 HC), cues were endogenous (arrows) and could be valid (100% predictive) or neutral with respect to the subsequent target position. In Experiment 2 (16 SZ, 16 HC), subjects performed a standard orienting task with unpredictive exogenous cues (brightening of the target boxes). In Experiment 1, SZ showed a larger attentional facilitation effect on reaction time than HC. In Experiment 2, no clear sign of enhanced attentional facilitation was found in SZ. The voluntary, facilitatory shifting of spatial attention may be relatively enhanced in individuals with schizophrenia in comparison to healthy individuals. This effect bears resemblance to other relative enhancements of information processing in schizophrenia such as saccade speed and semantic priming. (c) 2010 APA, all rights reserved.
Exogenous orienting of attention depends upon the ability to execute eye movements.
Smith, Daniel T; Rorden, Chris; Jackson, Stephen R
2004-05-04
Shifts of attention can be made overtly by moving the eyes or covertly with attention being allocated to a region of space that does not correspond to the current direction of gaze. However, the precise relationship between eye movements and the covert orienting of attention remains controversial. The influential premotor theory proposes that the covert orienting of attention is produced by the programming of (unexecuted) eye movements and thus predicts a strong relationship between the ability to execute eye movements and the operation of spatial attention. Here, we demonstrate for the first time that impaired spatial attention is observed in an individual (AI) who is neurologically healthy but who cannot execute eye movements as a result of a congenital impairment in the elasticity of her eye muscles. This finding provides direct support for the role of the eye-movement system in the covert orienting of attention and suggests that whereas intact cortical structures may be necessary for normal attentional reflexes, they are not sufficient. The ability to move our eyes is essential for the development of normal patterns of spatial attention.
Prell, Christina; Sun, Laixiang; Feng, Kuishuang; He, Jiaying; Hubacek, Klaus
2017-05-15
Land-use change is increasingly driven by global trade. The term "telecoupling" has been gaining ground as a means to describe how human actions in one part of the world can have spatially distant impacts on land and land-use in another. These interactions can, over time, create both direct and spatially distant feedback loops, in which human activity and land use mutually impact one another over great expanses. In this paper, we develop an analytical framework to clarify spatially distant feedbacks in the case of land use and global trade. We use an innovative mix of multi-regional input-output (MRIO) analysis and stochastic actor-oriented models (SAOMs) for analyzing the co-evolution of changes in trade network patterns with those of land use, as embodied in trade. Our results indicate that the formation of trade ties and changes in embodied land use mutually impact one another, and further, that these changes are linked to disparities in countries' wealth. Through identifying this feedback loop, our results support ongoing discussions about the unequal trade patterns between rich and poor countries that result in uneven distributions of negative environmental impacts. Finally, evidence for this feedback loop is present even when controlling for a number of underlying mechanisms, such as countries' land endowments, their geographical distance from one another, and a number of endogenous network tendencies. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jacquemin, I.; Fontaine, C. M.; Dendoncker, N.; François, L.; De Vreese, R.; Marek, A.; Mortelmans, D.; Van Herzele, A.; Devillet, G.
2012-04-01
Projecting the future of the evolution of socio-ecological systems to analyse their sustainability under climate or other environmental changes is not straightforward. Current projections usually use process-oriented models describing the complex interactions within the physical/biological systems (ecosystems), while the socio-economic constraints are represented with the help of scenarios. However, the actual evolution can be expected to be much more complex, because of the mutual interactions between ecological and socio-economic systems. To represent these interactions, models must integrate the complex process of human decision at individual or society levels. Moreover, models must be spatially explicit, defining elementary spatial units on which can act both the physical factors and the human decision process. These spatial units (e.g., farm fields) must be described not only in terms of energy, water, carbon and nutrient flows, but also in terms of the flow of ecosystem goods and services (EGS) they provide to the society together with the management costs required to sustain them. The provision of EGS may be altered in the future in response to changes in the climate system and the environment, but also through various human pressures on the landscape such as urbanization, as well as through the reaction of human societies to these changes in EGS provision. In the VOTES ("Valuation Of Terrestrial Ecosystem Services in a multifunctional peri-urban space") project, we attempt to model this coupled socio-ecological system by combining a dynamic vegetation model (DVM) with an agent-based model (ABM). The DVM (CARAIB; Dury et al., iForest - Biogeosciences and Forestry, 4:82-99, 2011) model describes the evolution of physical and biological processes in the ecosystems, i.e. the impact of climate change and land management on the energy, water and carbon budgets, as well as the productivity of each simulated plant species present on each land unit. The original version of the model developed for natural vegetation has been upgraded to include crop systems and pastures. The ABM (Murray-Rust, Journal of Land Use Science, 6(2-3):83-99, 2011) describes the management choices (e.g., crop rotation, intensive agriculture or organic farming, etc) for each land plot, as well as the possible change in their affectation (e.g., conversion of farm fields to residential areas in response to urbanization), under different socio-economic contexts described in the storyline of three scenarios depicting general societal orientations (business-as-usual; market oriented; sustainability oriented). As a result, the ABM produces a dynamic evolution of land use and management options to be passed on to the DVM for further analysis. The outputs from the DVM allow evaluating quantitatively the provision of EGS by each land plot. This DVM-ABM modelling tool is thus able to describe the future evolution of land use and land cover, as well as of EGS production, in the context of socio-economic scenarios. The model is applied to a case study area covering four municipalities located in central Belgium close to Brussels and Leuven. The area is mostly composed of agricultural fields (crops and meadows), residential areas and a large protected forest (Meerdaalbos) and is subject to intense urbanization pressure due to the proximity to Brussels.
Amyloid structure exhibits polymorphism on multiple length scales in human brain tissue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jiliang; Costantino, Isabel; Venugopalan, Nagarajan
Although aggregation of Aβ amyloid fibrils into plaques in the brain is a hallmark of Alzheimer's Disease (AD), the correlation between amyloid burden and severity of symptoms is weak. One possible reason is that amyloid fibrils are structurally polymorphic and different polymorphs may contribute differentially to disease. However, the occurrence and distribution of amyloid polymorphisms in human brain is poorly documented. Here we seek to fill this knowledge gap by using X-ray microdiffraction of histological sections of human tissue to map the abundance, orientation and structural heterogeneities of amyloid within individual plaques; among proximal plaques and in subjects with distinctmore » clinical histories. A 5 µ x-ray beam was used to generate diffraction data with each pattern arising from a scattering volume of only ~ 450 µ3 , making possible collection of dozens to hundreds of diffraction patterns from a single amyloid plaque. X-ray scattering from these samples exhibited all the properties expected for scattering from amyloid. Amyloid distribution was mapped using the intensity of its signature 4.7 Å reflection which also provided information on the orientation of amyloid fibrils across plaques. Margins of plaques exhibited a greater degree of orientation than cores and orientation around blood vessels frequently appeared tangential. Variation in the structure of Aβ fibrils is reflected in the shape of the 4.7 Å peak which usually appears as a doublet. Variations in this peak correspond to differences between the structure of amyloid within cores of plaques and at their periphery. Examination of tissue from a mismatch case - an individual with high plaque burden but no overt signs of dementia at time of death - revealed a diversity of structure and spatial distribution of amyloid that is distinct from typical AD cases. We demonstrate the existence of structural polymorphisms among amyloid within and among plaques of a single individual and suggest the existence of distinct differences in the organization of amyloid in subjects with different clinical presentations.« less
Amyloid structure exhibits polymorphism on multiple length scales in human brain tissue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jiliang; Costantino, Isabel; Venugopalan, Nagarajan
Although aggregation of Aβ amyloid fibrils into plaques in the brain is a hallmark of Alzheimer's Disease (AD), the correlation between amyloid burden and severity of symptoms is weak. One possible reason is that amyloid fibrils are structurally polymorphic and different polymorphs may contribute differentially to disease. However, the occurrence and distribution of amyloid polymorphisms in human brain is poorly documented. Here we seek to fill this knowledge gap by using X-ray microdiffraction of histological sections of human tissue to map the abundance, orientation and structural heterogeneities of amyloid within individual plaques; among proximal plaques and in subjects with distinctmore » clinical histories. A 5 µ x-ray beam was used to generate diffraction data with each pattern arising from a scattering volume of only ~ 450 µ3 , making possible collection of dozens to hundreds of diffraction patterns from a single amyloid plaque. X-ray scattering from these samples exhibited all the properties expected for scattering from amyloid. Amyloid distribution was mapped using the intensity of its signature 4.7 Å reflection which also provided information on the orientation of amyloid fibrils across plaques. Margins of plaques exhibited a greater degree of orientation than cores and orientation around blood vessels frequently appeared tangential. Variation in the structure of Aβ fibrils is reflected in the shape of the 4.7 Å peak which usually appears as a doublet. Variations in this peak correspond to differences between the structure of amyloid within cores of plaques and at their periphery. Examination of tissue from a mismatch case - an individual with high plaque burden but no overt signs of dementia at time of death - revealed a diversity of structure and spatial distribution of amyloid that is distinct from typical AD cases. As a result, we demonstrate the existence of structural polymorphisms among amyloid within and among plaques of a single individual and suggest the existence of distinct differences in the organization of amyloid in subjects with different clinical presentations.« less
Amyloid structure exhibits polymorphism on multiple length scales in human brain tissue
Liu, Jiliang; Costantino, Isabel; Venugopalan, Nagarajan; ...
2016-09-15
Although aggregation of Aβ amyloid fibrils into plaques in the brain is a hallmark of Alzheimer's Disease (AD), the correlation between amyloid burden and severity of symptoms is weak. One possible reason is that amyloid fibrils are structurally polymorphic and different polymorphs may contribute differentially to disease. However, the occurrence and distribution of amyloid polymorphisms in human brain is poorly documented. Here we seek to fill this knowledge gap by using X-ray microdiffraction of histological sections of human tissue to map the abundance, orientation and structural heterogeneities of amyloid within individual plaques; among proximal plaques and in subjects with distinctmore » clinical histories. A 5 µ x-ray beam was used to generate diffraction data with each pattern arising from a scattering volume of only ~ 450 µ3 , making possible collection of dozens to hundreds of diffraction patterns from a single amyloid plaque. X-ray scattering from these samples exhibited all the properties expected for scattering from amyloid. Amyloid distribution was mapped using the intensity of its signature 4.7 Å reflection which also provided information on the orientation of amyloid fibrils across plaques. Margins of plaques exhibited a greater degree of orientation than cores and orientation around blood vessels frequently appeared tangential. Variation in the structure of Aβ fibrils is reflected in the shape of the 4.7 Å peak which usually appears as a doublet. Variations in this peak correspond to differences between the structure of amyloid within cores of plaques and at their periphery. Examination of tissue from a mismatch case - an individual with high plaque burden but no overt signs of dementia at time of death - revealed a diversity of structure and spatial distribution of amyloid that is distinct from typical AD cases. As a result, we demonstrate the existence of structural polymorphisms among amyloid within and among plaques of a single individual and suggest the existence of distinct differences in the organization of amyloid in subjects with different clinical presentations.« less
A SOA-based approach to geographical data sharing
NASA Astrophysics Data System (ADS)
Li, Zonghua; Peng, Mingjun; Fan, Wei
2009-10-01
In the last few years, large volumes of spatial data have been available in different government departments in China, but these data are mainly used within these departments. With the e-government project initiated, spatial data sharing become more and more necessary. Currently, the Web has been used not only for document searching but also for the provision and use of services, known as Web services, which are published in a directory and may be automatically discovered by software agents. Particularly in the spatial domain, the possibility of accessing these large spatial datasets via Web services has motivated research into the new field of Spatial Data Infrastructure (SDI) implemented using service-oriented architecture. In this paper a Service-Oriented Architecture (SOA) based Geographical Information Systems (GIS) is proposed, and a prototype system is deployed based on Open Geospatial Consortium (OGC) standard in Wuhan, China, thus that all the departments authorized can access the spatial data within the government intranet, and also these spatial data can be easily integrated into kinds of applications.
Technical Note: Orientation of cracks and hydrology in a shrink-swell soil
USDA-ARS?s Scientific Manuscript database
Crack orientations are an important soil physical property that affects water flow, particularly in vertic soils. However, the spatial and temporal variability of crack orientations across different land uses and gilgai features is not well-documented and addressed in hydrology models. Thus there is...
1990-10-01
to economic, technological, spatial or logistic concerns, or involve training, man-machine interfaces, or integration into existing systems. Once the...probabilistic reasoning, mixed analysis- and simulation-oriented, mixed computation- and communication-oriented, nonpreemptive static priority...scheduling base, nonrandomized, preemptive static priority scheduling base, randomized, simulation-oriented, and static scheduling base. The selection of both
McCormick, Kathryn E.; Gaertner, Bryn E.; Sottile, Matthew; Phillips, Patrick C.; Lockery, Shawn R.
2011-01-01
This article describes the fabrication and use of microfluidic devices for investigating spatial orientation behaviors in nematode worms (Caenorhabditis elegans). Until now, spatial orientation has been studied in freely moving nematodes in which the frequency and nature of encounters with the gradient are uncontrolled experimental variables. In the new devices, the nematode is held in place by a restraint that aligns the longitudinal axis of the body with the border between two laminar fluid streams, leaving the animal's head and tail free to move. The content of the fluid streams can be manipulated to deliver step gradients in space or time. We demonstrate the utility of the device by identifying previously uncharacterized aspects of the behavioral mechanisms underlying chemotaxis, osmotic avoidance, and thermotaxis in this organism. The new devices are readily adaptable to behavioral and imaging studies involving fluid borne stimuli in a wide range of sensory modalities. PMID:22022437
Xue, Zhong; Li, Hai; Guo, Lei; Wong, Stephen T.C.
2010-01-01
It is a key step to spatially align diffusion tensor images (DTI) to quantitatively compare neural images obtained from different subjects or the same subject at different timepoints. Different from traditional scalar or multi-channel image registration methods, tensor orientation should be considered in DTI registration. Recently, several DTI registration methods have been proposed in the literature, but deformation fields are purely dependent on the tensor features not the whole tensor information. Other methods, such as the piece-wise affine transformation and the diffeomorphic non-linear registration algorithms, use analytical gradients of the registration objective functions by simultaneously considering the reorientation and deformation of tensors during the registration. However, only relatively local tensor information such as voxel-wise tensor-similarity, is utilized. This paper proposes a new DTI image registration algorithm, called local fast marching (FM)-based simultaneous registration. The algorithm not only considers the orientation of tensors during registration but also utilizes the neighborhood tensor information of each voxel to drive the deformation, and such neighborhood tensor information is extracted from a local fast marching algorithm around the voxels of interest. These local fast marching-based tensor features efficiently reflect the diffusion patterns around each voxel within a spherical neighborhood and can capture relatively distinctive features of the anatomical structures. Using simulated and real DTI human brain data the experimental results show that the proposed algorithm is more accurate compared with the FA-based registration and is more efficient than its counterpart, the neighborhood tensor similarity-based registration. PMID:20382233
McClaine, Elizabeth M.; Yin, Tom C. T.
2010-01-01
The precedence effect (PE) is an auditory spatial illusion whereby two identical sounds presented from two separate locations with a delay between them are perceived as a fused single sound source whose position depends on the value of the delay. By training cats using operant conditioning to look at sound sources, we have previously shown that cats experience the PE similarly to humans. For delays less than ±400 μs, cats exhibit summing localization, the perception of a “phantom” sound located between the sources. Consistent with localization dominance, for delays from 400 μs to ∼10 ms, cats orient toward the leading source location only, with little influence of the lagging source. Finally, echo threshold was reached for delays >10 ms, where cats first began to orient to the lagging source. It has been hypothesized by some that the neural mechanisms that produce facets of the PE, such as localization dominance and echo threshold, must likely occur at cortical levels. To test this hypothesis, we measured both pinnae position, which were not under any behavioral constraint, and eye position in cats and found that the pinnae orientations to stimuli that produce each of the three phases of the PE illusion was similar to the gaze responses. Although both eye and pinnae movements behaved in a manner that reflected the PE, because the pinnae moved with strikingly short latencies (∼30 ms), these data suggest a subcortical basis for the PE and that the cortex is not likely to be directly involved. PMID:19889848
Tollin, Daniel J; McClaine, Elizabeth M; Yin, Tom C T
2010-01-01
The precedence effect (PE) is an auditory spatial illusion whereby two identical sounds presented from two separate locations with a delay between them are perceived as a fused single sound source whose position depends on the value of the delay. By training cats using operant conditioning to look at sound sources, we have previously shown that cats experience the PE similarly to humans. For delays less than +/-400 mus, cats exhibit summing localization, the perception of a "phantom" sound located between the sources. Consistent with localization dominance, for delays from 400 mus to approximately 10 ms, cats orient toward the leading source location only, with little influence of the lagging source. Finally, echo threshold was reached for delays >10 ms, where cats first began to orient to the lagging source. It has been hypothesized by some that the neural mechanisms that produce facets of the PE, such as localization dominance and echo threshold, must likely occur at cortical levels. To test this hypothesis, we measured both pinnae position, which were not under any behavioral constraint, and eye position in cats and found that the pinnae orientations to stimuli that produce each of the three phases of the PE illusion was similar to the gaze responses. Although both eye and pinnae movements behaved in a manner that reflected the PE, because the pinnae moved with strikingly short latencies ( approximately 30 ms), these data suggest a subcortical basis for the PE and that the cortex is not likely to be directly involved.
Internally generated hippocampal sequences as a vantage point to probe future-oriented cognition.
Pezzulo, Giovanni; Kemere, Caleb; van der Meer, Matthijs A A
2017-05-01
Information processing in the rodent hippocampus is fundamentally shaped by internally generated sequences (IGSs), expressed during two different network states: theta sequences, which repeat and reset at the ∼8 Hz theta rhythm associated with active behavior, and punctate sharp wave-ripple (SWR) sequences associated with wakeful rest or slow-wave sleep. A potpourri of diverse functional roles has been proposed for these IGSs, resulting in a fragmented conceptual landscape. Here, we advance a unitary view of IGSs, proposing that they reflect an inferential process that samples a policy from the animal's generative model, supported by hippocampus-specific priors. The same inference affords different cognitive functions when the animal is in distinct dynamical modes, associated with specific functional networks. Theta sequences arise when inference is coupled to the animal's action-perception cycle, supporting online spatial decisions, predictive processing, and episode encoding. SWR sequences arise when the animal is decoupled from the action-perception cycle and may support offline cognitive processing, such as memory consolidation, the prospective simulation of spatial trajectories, and imagination. We discuss the empirical bases of this proposal in relation to rodent studies and highlight how the proposed computational principles can shed light on the mechanisms of future-oriented cognition in humans. © 2017 New York Academy of Sciences.
Force generation within tissues during development
NASA Astrophysics Data System (ADS)
Kasza, Karen
During embryonic development, multicellular tissues physically change shape, move, and grow. Changes in epithelial tissue organization are often accomplished by local movements of cells that are driven largely by forces generated by the motor protein myosin II. These forces are patterned to orient cell movements, resulting in changes in tissue shape and organization to build functional tissues and organs. To investigate the mechanisms of force generation in vivo, we use the fruit fly embryo as a model system. Spatial patterns of forces orient cell movements to drive rapid tissue elongation along the head-to-tail axis of the embryo. I will describe how studying embryos generated with engineered myosin variants provides insight into where, when, and how forces are generated to efficiently reorganize tissues. We found that a myosin variant that is locked-in to the active or ``on'' state accelerates cell movements, while two mutant myosin variants associated with human disease produce slowed cell movement. These myosin variants all disrupt tissue elongation, but live imaging and biophysical measurements reveal distinct effects on myosin organization and dynamics within cells and uncover mechanisms that control the spatial and temporal patterns of force generation. These studies shed light not only on how defects in force generation contribute to disease but also on physical principles at work in active, living materials.
Think spatial: the representation in mental rotation is nonvisual.
Liesefeld, Heinrich R; Zimmer, Hubert D
2013-01-01
For mental rotation, introspection, theories, and interpretations of experimental results imply a certain type of mental representation, namely, visual mental images. Characteristics of the rotated representation can be examined by measuring the influence of stimulus characteristics on rotational speed. If the amount of a given type of information influences rotational speed, one can infer that it was contained in the rotated representation. In Experiment 1, rotational speed of university students (10 men, 11 women) was found to be influenced exclusively by the amount of represented orientation-dependent spatial-relational information but not by orientation-independent spatial-relational information, visual complexity, or the number of stimulus parts. As information in mental-rotation tasks is initially presented visually, this finding implies that at some point during each trial, orientation-dependent information is extracted from visual information. Searching for more direct evidence for this extraction, we recorded the EEG of another sample of university students (12 men, 12 women) during mental rotation of the same stimuli. In an early time window, the observed working memory load-dependent slow potentials were sensitive to the stimuli's visual complexity. Later, in contrast, slow potentials were sensitive to the amount of orientation-dependent information only. We conclude that only orientation-dependent information is contained in the rotated representation. (PsycINFO Database Record (c) 2013 APA, all rights reserved).
Neural Codes for One's Own Position and Direction in a Real-World "Vista" Environment.
Sulpizio, Valentina; Boccia, Maddalena; Guariglia, Cecilia; Galati, Gaspare
2018-01-01
Humans, like animals, rely on an accurate knowledge of one's spatial position and facing direction to keep orientated in the surrounding space. Although previous neuroimaging studies demonstrated that scene-selective regions (the parahippocampal place area or PPA, the occipital place area or OPA and the retrosplenial complex or RSC), and the hippocampus (HC) are implicated in coding position and facing direction within small-(room-sized) and large-scale navigational environments, little is known about how these regions represent these spatial quantities in a large open-field environment. Here, we used functional magnetic resonance imaging (fMRI) in humans to explore the neural codes of these navigationally-relevant information while participants viewed images which varied for position and facing direction within a familiar, real-world circular square. We observed neural adaptation for repeated directions in the HC, even if no navigational task was required. Further, we found that the amount of knowledge of the environment interacts with the PPA selectivity in encoding positions: individuals who needed more time to memorize positions in the square during a preliminary training task showed less neural attenuation in this scene-selective region. We also observed adaptation effects, which reflect the real distances between consecutive positions, in scene-selective regions but not in the HC. When examining the multi-voxel patterns of activity we observed that scene-responsive regions and the HC encoded both spatial information and that the RSC classification accuracy for positions was higher in individuals scoring higher to a self-reported questionnaire of spatial abilities. Our findings provide new insight into how the human brain represents a real, large-scale "vista" space, demonstrating the presence of neural codes for position and direction in both scene-selective and hippocampal regions, and revealing the existence, in the former regions, of a map-like spatial representation reflecting real-world distance between consecutive positions.
NASA Technical Reports Server (NTRS)
Young, L. R.
1976-01-01
Progress in the development of a cohesive theory of the underlying physiological mechanisms associated with spatial orientation in unusual environments is described. Results can be applied to providing means of preventing and/or minimizing the space motion sickness which has been observed during prolonged space missions. Three major areas were investigated: (1) the interaction of visual and vestibular cues in conflict in the human, (2) the plasticity of the vestibulo-ocular reflex in monkeys, and (3) end organ function in the ray with particular emphasis on the effect of ionic concentration.
Mark, A F; Li, W; Sharples, S; Withers, P J
2017-07-01
Our aim was to establish the capability of spatially resolved acoustic spectroscopy (SRAS) to map grain orientations and the anisotropy in stiffness at the sub-mm to micron scale by comparing the method with electron backscatter diffraction (EBSD) undertaken within a scanning electron microscope. In the former the grain orientations are deduced by measuring the spatial variation in elastic modulus; conversely, in EBSD the elastic anisotropy is deduced from direct measurements of the crystal orientations. The two test-cases comprise mapping the fusion zones for large TIG and MMA welds in thick power plant austenitic and ferritic steels, respectively; these are technologically important because, among other things, elastic anisotropy can cause ultrasonic weld inspection methods to become inaccurate because it causes bending in the paths of sound waves. The spatial resolution of SRAS is not as good as that for EBSD (∼100 μm vs. ∼a few nm), nor is the angular resolution (∼1.5° vs. ∼0.5°). However the method can be applied to much larger areas (currently on the order of 300 mm square), is much faster (∼5 times), is cheaper and easier to perform, and it could be undertaken on the manufacturing floor. Given these advantages, particularly to industrial users, and the on-going improvements to the method, SRAS has the potential to become a standard method for orientation mapping, particularly in cases where the elastic anisotropy is important over macroscopic/component length scales. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Using Geo-Spatial Technologies for Field Applications in Higher Geography Education
ERIC Educational Resources Information Center
Karatepe, Akif
2012-01-01
Today's important geo-spatial technologies, GIS (Geographic Information Systems), GPS (Global Positioning Systems) and Google Earth have been widely used in geography education. Transferring spatially oriented data taken by GPS to the GIS and Google Earth has provided great benefits in terms of showing the usage of spatial technologies for field…
ERIC Educational Resources Information Center
Sarno, Emilia
2012-01-01
This contribution explains the connection between spatial intelligence and spatial competences and by indicating how the first is the cognitive matrix of abilities necessary to move in space as well as to represent it. Indeed, two are principal factors involved in the spatial intelligence: orientation and representation. Both are based on a close…
Lambrey, Simon; Berthoz, Alain
2007-09-01
Numerous data in the literature provide evidence for gender differences in spatial orientation. In particular, it has been suggested that spatial representations of large-scale environments are more accurate in terms of metric information in men than in women but are richer in landmark information in women than in men. One explanatory hypothesis is that men and women differ in terms of navigational processes they used in daily life. The present study investigated this hypothesis by distinguishing two navigational processes: spatial updating by self-motion and landmark-based orientation. Subjects were asked to perform a pointing task in three experimental conditions, which differed in terms of reliability of the external landmarks that could be used. Two groups of subjects were distinguished, a mobile group and an immobile group, in which spatial updating of environmental locations did not have the same degree of importance for the correct performance of the pointing task. We found that men readily relied on an internal egocentric representation of where landmarks were expected to be in order to perform the pointing task, a representation that could be updated during self-motion (spatial updating). In contrast, women seemed to take their bearings more readily on the basis of the stable landmarks of the external world. We suggest that this gender difference in spatial orientation is not due to differences in information processing abilities but rather due to the differences in higher level strategies.
Tactile spatial resolution in blind braille readers.
Van Boven, R W; Hamilton, R H; Kauffman, T; Keenan, J P; Pascual-Leone, A
2000-06-27
To determine if blind people have heightened tactile spatial acuity. Recently, studies using magnetic source imaging and somatosensory evoked potentials have shown that the cortical representation of the reading fingers of blind Braille readers is expanded compared to that of fingers of sighted subjects. Furthermore, the visual cortex is activated during certain tactile tasks in blind subjects but not sighted subjects. The authors hypothesized that the expanded cortical representation of fingers used in Braille reading may reflect an enhanced fidelity in the neural transmission of spatial details of a stimulus. If so, the quantitative limit of spatial acuity would be superior in blind people. The authors employed a grating orientation discrimination task in which threshold performance is accounted for by the spatial resolution limits of the neural image evoked by a stimulus. The authors quantified the psychophysical limits of spatial acuity at the middle and index fingers of 15 blind Braille readers and 15 sighted control subjects. The mean grating orientation threshold was significantly (p = 0.03) lower in the blind group (1.04 mm) compared to the sighted group (1.46 mm). The self-reported dominant reading finger in blind subjects had a mean grating orientation threshold of 0.80 mm, which was significantly better than other fingers tested. Thresholds at non-Braille reading fingers in blind subjects averaged 1.12 mm, which were also superior to sighted subjects' performances. Superior tactile spatial acuity in blind Braille readers may represent an adaptive, behavioral correlate of cortical plasticity.
Li, W; Thier, P; Wehrhahn, C
2000-02-01
We studied the effects of various patterns as contextual stimuli on human orientation discrimination, and on responses of neurons in V1 of alert monkeys. When a target line is presented along with various contextual stimuli (masks), human orientation discrimination is impaired. For most V1 neurons, responses elicited by a line in the receptive field (RF) center are suppressed by these contextual patterns. Orientation discrimination thresholds of human observers are elevated slightly when the target line is surrounded by orthogonal lines. For randomly oriented lines, thresholds are elevated further and even more so for lines parallel to the target. Correspondingly, responses of most V1 neurons to a line are suppressed. Although contextual lines inhibit the amplitude of orientation tuning functions of most V1 neurons, they do not systematically alter the tuning width. Elevation of human orientation discrimination thresholds decreases with increasing curvature of masking lines, so does the inhibition of V1 neuronal responses. A mask made of straight lines yields the strongest interference with human orientation discrimination and produces the strongest suppression of neuronal responses. Elevation of human orientation discrimination thresholds is highest when a mask covers only the immediate vicinity of the target line. Increasing the masking area results in less interference. On the contrary, suppression of neuronal responses in V1 increases with increasing mask size. Our data imply that contextual interference observed in human orientation discrimination is in part directly related to contextual inhibition of neuronal activity in V1. However, the finding that interference with orientation discrimination is weaker for larger masks suggests a figure-ground segregation process that is not located in V1.
Open-Access, Low-Magnetic-Field MRI System for Lung Research
NASA Technical Reports Server (NTRS)
Mair, Ross W.; Rosen, Matthew S.; Tsai, Leo L.; Walsworth, Ronald L.; Hrovat, Mirko I.; Patz, Samuel; Ruset, Iullian C.; Hersman, F. William
2009-01-01
An open-access magnetic resonance imaging (MRI) system is being developed for use in research on orientational/gravitational effects on lung physiology and function. The open-access geometry enables study of human subjects in diverse orientations. This system operates at a magnetic flux density, considerably smaller than the flux densities of typical other MRI systems, that can be generated by resistive electromagnet coils (instead of the more-expensive superconducting coils of the other systems). The human subject inhales air containing He-3 or Xe-129 atoms, the nuclear spins of which have been polarized by use of a laser beam to obtain a magnetic resonance that enables high-resolution gas space imaging at the low applied magnetic field. The system includes a bi-planar, constant-current, four-coil electromagnet assembly and associated electronic circuitry to apply a static magnetic field of 6.5 mT throughout the lung volume; planar coils and associated circuitry to apply a pulsed magnetic-field-gradient for each spatial dimension; a single, detachable radio-frequency coil and associated circuitry for inducing and detecting MRI signals; a table for supporting a horizontal subject; and electromagnetic shielding surrounding the electromagnet coils.
NASA Astrophysics Data System (ADS)
Zhao, Yongli; Zhu, Ye; Wang, Chunhui; Yu, Xiaosong; Liu, Chuan; Liu, Binglin; Zhang, Jie
2017-07-01
With the capacity increasing in optical networks enabled by spatial division multiplexing (SDM) technology, spatial division multiplexing elastic optical networks (SDM-EONs) attract much attention from both academic and industry. Super-channel is an important type of service provisioning in SDM-EONs. This paper focuses on the issue of super-channel construction in SDM-EONs. Mixed super-channel oriented routing, spectrum and core assignment (MS-RSCA) algorithm is proposed in SDM-EONs considering inter-core crosstalk. Simulation results show that MS-RSCA can improve spectrum resource utilization and reduce blocking probability significantly compared with the baseline RSCA algorithms.
Bastir, Markus; García Martínez, Daniel; Rios, Luis; Higuero, Antonio; Barash, Alon; Martelli, Sandra; García Tabernero, Antonio; Estalrrich, Almudena; Huguet, Rosa; de la Rasilla, Marco; Rosas, Antonio
2017-07-01
Well preserved thoracic vertebrae of Neandertals are rare. However, such fossils are important as their three-dimensional (3D) spatial configuration can contribute to the understanding of the size and shape of the thoracic spine and the entire thorax. This is because the vertebral body and transverse processes provide the articulation and attachment sites for the ribs. Dorsal orientation of the transverse processes relative to the vertebral body also rotates the attached ribs in a way that could affect thorax width. Previous research indicates possible evidence for greater dorsal orientation of the transverse processes and small vertebral body heights in Neandertals, but their 3D vertebral structure has not yet been addressed. Here we present 15 new vertebral remains from the El Sidrón Neandertals (Asturias, Northern Spain) and used 3D geometric morphometrics to address the above issues by comparing two particularly well preserved El Sidrón remains (SD-1619, SD-1641) with thoracic vertebrae from other Neandertals and a sample of anatomically modern humans. Centroid sizes of El Sidrón vertebrae are within the human range. Neandertals have larger T1 and probably also T2. The El Sidrón vertebrae are similar in 3D shape to those of other Neandertals, which differ from Homo sapiens particularly in central-lower regions (T6-T10) of the thoracic spine. Differences include more dorsally and cranially oriented transverse processes, less caudally oriented spinous processes, and vertebral bodies that are anteroposteriorly and craniocaudally short. The results fit with current reconstructions of Neandertal thorax morphology. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of head pitch and roll orientations on magnetically induced vertigo.
Mian, Omar S; Li, Yan; Antunes, Andre; Glover, Paul M; Day, Brian L
2016-02-15
Lying supine in a strong magnetic field, such as in magnetic resonance imaging scanners, can induce a perception of whole-body rotation. The leading hypothesis to explain this invokes a Lorentz force mechanism acting on vestibular endolymph that acts to stimulate semicircular canals. The hypothesis predicts that the perception of whole-body rotation will depend on head orientation in the field. Results showed that the direction and magnitude of apparent whole-body rotation while stationary in a 7 T magnetic field is influenced by head orientation. The data are compatible with the Lorentz force hypothesis of magnetic vestibular stimulation and furthermore demonstrate the operation of a spatial transformation process from head-referenced vestibular signals to Earth-referenced body motion. High strength static magnetic fields are known to induce vertigo, believed to be via stimulation of the vestibular system. The leading hypothesis (Lorentz forces) predicts that the induced vertigo should depend on the orientation of the magnetic field relative to the head. In this study we examined the effect of static head pitch (-80 to +40 deg; 12 participants) and roll (-40 to +40 deg; 11 participants) on qualitative and quantitative aspects of vertigo experienced in the dark by healthy humans when exposed to the static uniform magnetic field inside a 7 T MRI scanner. Three participants were additionally examined at 180 deg pitch and roll orientations. The effect of roll orientation on horizontal and vertical nystagmus was also measured and was found to affect only the vertical component. Vertigo was most discomforting when head pitch was around 60 deg extension and was mildest when it was around 20 deg flexion. Quantitative analysis of vertigo focused on the induced perception of horizontal-plane rotation reported online with the aid of hand-held switches. Head orientation had effects on both the magnitude and the direction of this perceived rotation. The data suggest sinusoidal relationships between head orientation and perception with spatial periods of 180 deg for pitch and 360 deg for roll, which we explain is consistent with the Lorentz force hypothesis. The effects of head pitch on vertigo and previously reported nystagmus are consistent with both effects being driven by a common vestibular signal. To explain all the observed effects, this common signal requires contributions from multiple semicircular canals. © 2015 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
“Taller and Shorter”: Human 3-D Spatial Memory Distorts Familiar Multilevel Buildings
Brandt, Thomas; Huber, Markus; Schramm, Hannah; Kugler, Günter; Dieterich, Marianne; Glasauer, Stefan
2015-01-01
Animal experiments report contradictory findings on the presence of a behavioural and neuronal anisotropy exhibited in vertical and horizontal capabilities of spatial orientation and navigation. We performed a pointing experiment in humans on the imagined 3-D direction of the location of various invisible goals that were distributed horizontally and vertically in a familiar multilevel hospital building. The 21 participants were employees who had worked for years in this building. The hypothesis was that comparison of the experimentally determined directions and the true directions would reveal systematic inaccuracy or dimensional anisotropy of the localizations. The study provides first evidence that the internal representation of a familiar multilevel building was distorted compared to the dimensions of the true building: vertically 215% taller and horizontally 51% shorter. This was not only demonstrated in the mathematical reconstruction of the mental model based on the analysis of the pointing experiments but also by the participants’ drawings of the front view and the ground plan of the building. Thus, in the mental model both planes were altered in different directions: compressed for the horizontal floor plane and stretched for the vertical column plane. This could be related to human anisotropic behavioural performance of horizontal and vertical navigation in such buildings. PMID:26509927
"Taller and Shorter": Human 3-D Spatial Memory Distorts Familiar Multilevel Buildings.
Brandt, Thomas; Huber, Markus; Schramm, Hannah; Kugler, Günter; Dieterich, Marianne; Glasauer, Stefan
2015-01-01
Animal experiments report contradictory findings on the presence of a behavioural and neuronal anisotropy exhibited in vertical and horizontal capabilities of spatial orientation and navigation. We performed a pointing experiment in humans on the imagined 3-D direction of the location of various invisible goals that were distributed horizontally and vertically in a familiar multilevel hospital building. The 21 participants were employees who had worked for years in this building. The hypothesis was that comparison of the experimentally determined directions and the true directions would reveal systematic inaccuracy or dimensional anisotropy of the localizations. The study provides first evidence that the internal representation of a familiar multilevel building was distorted compared to the dimensions of the true building: vertically 215% taller and horizontally 51% shorter. This was not only demonstrated in the mathematical reconstruction of the mental model based on the analysis of the pointing experiments but also by the participants' drawings of the front view and the ground plan of the building. Thus, in the mental model both planes were altered in different directions: compressed for the horizontal floor plane and stretched for the vertical column plane. This could be related to human anisotropic behavioural performance of horizontal and vertical navigation in such buildings.
Christe, Blaise; Burkhard, Pierre R; Pegna, Alan J; Mayer, Eugene; Hauert, Claude-Alain
2007-01-01
In this study, we developed a digitizing tablet-based instrument for the clinical assessment of human voluntary movements targeting motor processes of planning, programming and execution. The tool was used to investigate an adaptation of Fitts' reciprocal tapping task [10], comprising four conditions, each of them modulated by three indices of difficulty related to the amplitude of movement required. Temporal, spatial and sequential constraints underlying the various conditions allowed the intricate motor processes to be dissociated. Data obtained from a group of elderly healthy subjects (N=50) were in agreement with the literature on motor control, in the temporal and spatial domains. Speed constraints generated gains in the temporal domain and costs in the spatial one, while spatial constraints generated gain in the spatial domain and costs in the temporal one; finally, sequential constraints revealed the integrative nature of the cognitive operations involved in motor production. This versatile instrument proved capable of providing quantitative, accurate and sensitive measures of the various processes sustaining voluntary movement in healthy subjects. Altogether, analyses performed in this study generated a theoretical framework and reference data which could be used in the future for the clinical assessment of patients with various movement disorders, in particular Parkinson's disease.
Smile! Social reward drives attention.
Hayward, Dana A; Pereira, Effie J; Otto, A Ross; Ristic, Jelena
2018-02-01
Human social behavior is fine-tuned by interactions between individuals and their environments. Here we show that social motivation plays an important role in this process. Using a novel manipulation of social reward that included elements of real-life social exchanges, we demonstrate the emergence of attentional orienting for coincidental spatial associations that received positive social reward. After an interaction with the experimenter, participants completed a computerized task in which they received positive, negative, or no social reward for their performance to spatially congruent, spatially incongruent, and neutral cue-target pairings, respectively. Even though cue-target spatial correspondences remained at chance, attentional benefits emerged and persisted a day later for targets that received positive social reward. Our data further revealed that participants' level of social competence, as measured by the Autism-Spectrum Quotient scale, was predictably related to the magnitude of their reward-driven attentional benefits. No attentional effects emerged when the social interaction and social reward manipulations were removed. These results show that motivational incentives available during social exchanges affect later individual cognitive functioning, providing one of the first insights into why seemingly ambiguous social signals produce reliable and persistent attentional effects. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
The Role of Extra-Vestibular Inputs in Maintaining Spatial Orientation in Military Vehicles
2003-02-01
flow contribute to spatial orientation. Disordered regulation of any of these factors can be identified in land based tests and allows us to study pre...adaptation disorders . 1,2 The sensory conflict theory of motion sickness states that motion sickness arises when one or several inputs from the body’s sensory...several episodes of severe motion sickness during an operational military assignment (usually aboard ship), but demonstrate no balance disorder or ear
Markant, Julie; Ackerman, Laura K; Nussenbaum, Kate; Amso, Dima
2016-04-01
Socioeconomic status (SES) has a documented impact on brain and cognitive development. We demonstrate that engaging spatial selective attention mechanisms may counteract this negative influence of impoverished environments on early learning. We previously used a spatial cueing task to compare target object encoding in the context of basic orienting ("facilitation") versus a spatial selective attention orienting mechanism that engages distractor suppression ("IOR"). This work showed that object encoding in the context of IOR boosted 9-month-old infants' recognition memory relative to facilitation (Markant and Amso, 2013). Here we asked whether this attention-memory link further interacted with SES in infancy. Results indicated that SES was related to memory but not attention orienting efficacy. However, the correlation between SES and memory performance was moderated by the attention mechanism engaged during encoding. SES predicted memory performance when objects were encoded with basic orienting processes, with infants from low-SES environments showing poorer memory than those from high-SES environments. However, SES did not predict memory performance among infants who engaged selective attention during encoding. Spatial selective attention engagement mitigated the effects of SES on memory and may offer an effective mechanism for promoting learning among infants at risk for poor cognitive outcomes related to SES. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Perception of Upright: Multisensory Convergence and the Role of Temporo-Parietal Cortex
Kheradmand, Amir; Winnick, Ariel
2017-01-01
We inherently maintain a stable perception of the world despite frequent changes in the head, eye, and body positions. Such “orientation constancy” is a prerequisite for coherent spatial perception and sensorimotor planning. As a multimodal sensory reference, perception of upright represents neural processes that subserve orientation constancy through integration of sensory information encoding the eye, head, and body positions. Although perception of upright is distinct from perception of body orientation, they share similar neural substrates within the cerebral cortical networks involved in perception of spatial orientation. These cortical networks, mainly within the temporo-parietal junction, are crucial for multisensory processing and integration that generate sensory reference frames for coherent perception of self-position and extrapersonal space transformations. In this review, we focus on these neural mechanisms and discuss (i) neurobehavioral aspects of orientation constancy, (ii) sensory models that address the neurophysiology underlying perception of upright, and (iii) the current evidence for the role of cerebral cortex in perception of upright and orientation constancy, including findings from the neurological disorders that affect cortical function. PMID:29118736
Cardiac re-entry dynamics and self-termination in DT-MRI based model of Human Foetal Heart
NASA Astrophysics Data System (ADS)
Biktasheva, Irina V.; Anderson, Richard A.; Holden, Arun V.; Pervolaraki, Eleftheria; Wen, Fen Cai
2018-02-01
The effect of human foetal heart geometry and anisotropy on anatomy induced drift and self-termination of cardiac re-entry is studied here in MRI based 2D slice and 3D whole heart computer simulations. Isotropic and anisotropic models of 20 weeks of gestational age human foetal heart obtained from 100μm voxel diffusion tensor MRI data sets were used in the computer simulations. The fiber orientation angles of the heart were obtained from the orientation of the DT-MRI primary eigenvectors. In a spatially homogeneous electrophysiological monodomain model with the DT-MRI based heart geometries, cardiac re-entry was initiated at a prescribed location in a 2D slice, and in the 3D whole heart anatomy models. Excitation was described by simplified FitzHugh-Nagumo kinetics. In a slice of the heart, with propagation velocity twice as fast along the fibres than across the fibers, DT-MRI based fiber anisotropy changes the re-entry dynamics from pinned to an anatomical re-entry. In the 3D whole heart models, the fiber anisotropy changes cardiac re-entry dynamics from a persistent re-entry to the re-entry self-termination. The self-termination time depends on the re-entry’s initial position. In all the simulations with the DT-MRI based cardiac geometry, the anisotropy of the myocardial tissue shortens the time to re-entry self-termination several folds. The numerical simulations depend on the validity of the DT-MRI data set used. The ventricular wall showed the characteristic transmural rotation of the helix angle of the developed mammalian heart, while the fiber orientation in the atria was irregular.
Jabar, Syaheed B; Filipowicz, Alex; Anderson, Britt
2017-11-01
When a location is cued, targets appearing at that location are detected more quickly. When a target feature is cued, targets bearing that feature are detected more quickly. These attentional cueing effects are only superficially similar. More detailed analyses find distinct temporal and accuracy profiles for the two different types of cues. This pattern parallels work with probability manipulations, where both feature and spatial probability are known to affect detection accuracy and reaction times. However, little has been done by way of comparing these effects. Are probability manipulations on space and features distinct? In a series of five experiments, we systematically varied spatial probability and feature probability along two dimensions (orientation or color). In addition, we decomposed response times into initiation and movement components. Targets appearing at the probable location were reported more quickly and more accurately regardless of whether the report was based on orientation or color. On the other hand, when either color probability or orientation probability was manipulated, response time and accuracy improvements were specific for that probable feature dimension. Decomposition of the response time benefits demonstrated that spatial probability only affected initiation times, whereas manipulations of feature probability affected both initiation and movement times. As detection was made more difficult, the two effects further diverged, with spatial probability disproportionally affecting initiation times and feature probability disproportionately affecting accuracy. In conclusion, all manipulations of probability, whether spatial or featural, affect detection. However, only feature probability affects perceptual precision, and precision effects are specific to the probable attribute.
NASA Astrophysics Data System (ADS)
Chang, Chia-Yuan; Chen, Shean-Jen
2017-02-01
Conventional temporal focusing-based multiphoton excitation microscopy (TFMPEM) can offer widefield optical sectioning with an axial excitation confinement (AEC) of a few microns. Herein, a developed TFMPEM with a digital micromirror device (DMD), acting as the blazed grating for light spatial dispersion and simultaneous patterned illumination, has been extended to implement spatially modulated illumination at structured frequency and orientation. By implementing the spatially modulated illumination, the beam coverage at the back-focal aperture of the objective lens can be increased. As a result, the AEC can be condensed from 3.0 μm to 1.5 μm in full width at half maximum for a 2-fold enhancement. Furthermore, by using HiLo microscopy with two structured illuminations at the same spatial frequency but different orientation, biotissue images according to the structured illumination with condensed AEC is obviously superior in contrast and scattering suppression.
Sensory-Motor Adaptation to Space Flight: Human Balance Control and Artificial Gravity
NASA Technical Reports Server (NTRS)
Paloski, William H.
2004-01-01
Gravity, which is sensed directly by the otolith organs and indirectly by proprioceptors and exteroceptors, provides the CNS a fundamental reference for estimating spatial orientation and coordinating movements in the terrestrial environment. The sustained absence of gravity during orbital space flight creates a unique environment that cannot be reproduced on Earth. Loss of this fundamental CNS reference upon insertion into orbit triggers neuro-adaptive processes that optimize performance for the microgravity environment, while its reintroduction upon return to Earth triggers neuro-adaptive processes that return performance to terrestrial norms. Five pioneering symposia on The Role of the Vestibular Organs in the Exploration of Space were convened between 1965 and 1970. These innovative meetings brought together the top physicians, physiologists, and engineers in the vestibular field to discuss and debate the challenges associated with human vestibular system adaptation to the then novel environment of space flight. These highly successful symposia addressed the perplexing problem of how to understand and ameliorate the adverse physiological effects on humans resulting from the reduction of gravitational stimulation of the vestibular receptors in space. The series resumed in 2002 with the Sixth Symposium, which focused on the microgravity environment as an essential tool for the study of fundamental vestibular functions. The three day meeting included presentations on historical perspectives, vestibular neurobiology, neurophysiology, neuroanatomy, neurotransmitter systems, theoretical considerations, spatial orientation, psychophysics, motor integration, adaptation, autonomic function, space motion sickness, clinical issues, countermeasures, and rehabilitation. Scientists and clinicians entered into lively exchanges on how to design and perform mutually productive research and countermeasure development projects in the future. The problems posed by long duration missions dominated these discussions and were driven by the paucity of data available. These issues along with more specific recommendations arising from the above discussions will be addressed an upcoming issue of the Journal of Vestibular Research.
Three-dimensional co-culture process
NASA Technical Reports Server (NTRS)
Wolf, David A. (Inventor); Goodwin, Thomas J. (Inventor)
1992-01-01
The present invention relates to a 3-dimensional co-culture process, more particularly to methods or co-culturing at least two types of cells in a culture environment, either in space or in unit gravity, with minimum shear stress, freedom for 3-dimensional spatial orientation of the suspended particles and localization of particles with differing or similar sedimentation properties in a similar spatial region to form 3-dimensional tissue-like structures. Several examples of multicellular 3-dimensional experiences are included. The protocol and procedure are also set forth. The process allows simultaneous culture of multiple cell types and supporting substrates in a manner which does not disrupt the 3-dimensional spatial orientation of these components. The co-cultured cells cause a mutual induction effect which mimics the natural hormonal signals and cell interactions found in the intact organism. This causes the tissues to differentiate and form higher 3-dimensional structures such as glands, junctional complexes polypoid geometries, and microvilli which represent the corresponding in-vitro structures to a greater degree than when the cell types are cultured individually or by conventional processes. This process was clearly demonstrated for the case of two epithelial derived colon cancer lines, each co-cultured with normal human fibroblasts and with microcarrier bead substrates. The results clearly demonstrate increased 3-dimensional tissue-like structure and biochemical evidence of an increased differentiation state. With the present invention a variety of cells may be co-cultured to produce tissue which has 3-dimensionality and has some of the characteristics of in-vitro tissue. The process provides enhanced 3-dimensional tissue which create a multicellular organoid differentiation model.
Optical computed tomography for spatially isotropic four-dimensional imaging of live single cells
Kelbauskas, Laimonas; Shetty, Rishabh; Cao, Bin; Wang, Kuo-Chen; Smith, Dean; Wang, Hong; Chao, Shi-Hui; Gangaraju, Sandhya; Ashcroft, Brian; Kritzer, Margaret; Glenn, Honor; Johnson, Roger H.; Meldrum, Deirdre R.
2017-01-01
Quantitative three-dimensional (3D) computed tomography (CT) imaging of living single cells enables orientation-independent morphometric analysis of the intricacies of cellular physiology. Since its invention, x-ray CT has become indispensable in the clinic for diagnostic and prognostic purposes due to its quantitative absorption-based imaging in true 3D that allows objects of interest to be viewed and measured from any orientation. However, x-ray CT has not been useful at the level of single cells because there is insufficient contrast to form an image. Recently, optical CT has been developed successfully for fixed cells, but this technology called Cell-CT is incompatible with live-cell imaging due to the use of stains, such as hematoxylin, that are not compatible with cell viability. We present a novel development of optical CT for quantitative, multispectral functional 4D (three spatial + one spectral dimension) imaging of living single cells. The method applied to immune system cells offers truly isotropic 3D spatial resolution and enables time-resolved imaging studies of cells suspended in aqueous medium. Using live-cell optical CT, we found a heterogeneous response to mitochondrial fission inhibition in mouse macrophages and differential basal remodeling of small (0.1 to 1 fl) and large (1 to 20 fl) nuclear and mitochondrial structures on a 20- to 30-s time scale in human myelogenous leukemia cells. Because of its robust 3D measurement capabilities, live-cell optical CT represents a powerful new tool in the biomedical research field. PMID:29226240
Trzcinski, Natalie K; Gomez-Ramirez, Manuel; Hsiao, Steven S
2016-09-01
Continuous training enhances perceptual discrimination and promotes neural changes in areas encoding the experienced stimuli. This type of experience-dependent plasticity has been demonstrated in several sensory and motor systems. Particularly, non-human primates trained to detect consecutive tactile bar indentations across multiple digits showed expanded excitatory receptive fields (RFs) in somatosensory cortex. However, the perceptual implications of these anatomical changes remain undetermined. Here, we trained human participants for 9 days on a tactile task that promoted expansion of multi-digit RFs. Participants were required to detect consecutive indentations of bar stimuli spanning multiple digits. Throughout the training regime we tracked participants' discrimination thresholds on spatial (grating orientation) and temporal tasks on the trained and untrained hands in separate sessions. We hypothesized that training on the multi-digit task would decrease perceptual thresholds on tasks that require stimulus processing across multiple digits, while also increasing thresholds on tasks requiring discrimination on single digits. We observed an increase in orientation thresholds on a single digit. Importantly, this effect was selective for the stimulus orientation and hand used during multi-digit training. We also found that temporal acuity between digits improved across trained digits, suggesting that discriminating the temporal order of multi-digit stimuli can transfer to temporal discrimination of other tactile stimuli. These results suggest that experience-dependent plasticity following perceptual learning improves and interferes with tactile abilities in manners predictive of the task and stimulus features used during training. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Trzcinski, Natalie K; Gomez-Ramirez, Manuel; Hsiao, Steven S.
2016-01-01
Continuous training enhances perceptual discrimination and promotes neural changes in areas encoding the experienced stimuli. This type of experience-dependent plasticity has been demonstrated in several sensory and motor systems. Particularly, non-human primates trained to detect consecutive tactile bar indentations across multiple digits showed expanded excitatory receptive fields (RFs) in somatosensory cortex. However, the perceptual implications of these anatomical changes remain undetermined. Here, we trained human participants for nine days on a tactile task that promoted expansion of multi-digit RFs. Participants were required to detect consecutive indentations of bar stimuli spanning multiple digits. Throughout the training regime we tracked participants’ discrimination thresholds on spatial (grating orientation) and temporal tasks on the trained and untrained hands in separate sessions. We hypothesized that training on the multi-digit task would decrease perceptual thresholds on tasks that require stimulus processing across multiple digits, while also increasing thresholds on tasks requiring discrimination on single digits. We observed an increase in orientation thresholds on a single-digit. Importantly, this effect was selective for the stimulus orientation and hand used during multi-digit training. We also found that temporal acuity between digits improved across trained digits, suggesting that discriminating the temporal order of multi-digit stimuli can transfer to temporal discrimination of other tactile stimuli. These results suggest that experience-dependent plasticity following perceptual learning improves and interferes with tactile abilities in manners predictive of the task and stimulus features used during training. PMID:27422224
The Role of Global and Local Visual Information during Gaze-Cued Orienting of Attention.
Munsters, Nicolette M; van den Boomen, Carlijn; Hooge, Ignace T C; Kemner, Chantal
2016-01-01
Gaze direction is an important social communication tool. Global and local visual information are known to play specific roles in processing socially relevant information from a face. The current study investigated whether global visual information has a primary role during gaze-cued orienting of attention and, as such, may influence quality of interaction. Adults performed a gaze-cueing task in which a centrally presented face cued (valid or invalid) the location of a peripheral target through a gaze shift. We measured brain activity (electroencephalography) towards the cue and target and behavioral responses (manual and saccadic reaction times) towards the target. The faces contained global (i.e. lower spatial frequencies), local (i.e. higher spatial frequencies), or a selection of both global and local (i.e. mid-band spatial frequencies) visual information. We found a gaze cue-validity effect (i.e. valid versus invalid), but no interaction effects with spatial frequency content. Furthermore, behavioral responses towards the target were in all cue conditions slower when lower spatial frequencies were not present in the gaze cue. These results suggest that whereas gaze-cued orienting of attention can be driven by both global and local visual information, global visual information determines the speed of behavioral responses towards other entities appearing in the surrounding of gaze cue stimuli.
Biologically Inspired Model for Inference of 3D Shape from Texture
Gomez, Olman; Neumann, Heiko
2016-01-01
A biologically inspired model architecture for inferring 3D shape from texture is proposed. The model is hierarchically organized into modules roughly corresponding to visual cortical areas in the ventral stream. Initial orientation selective filtering decomposes the input into low-level orientation and spatial frequency representations. Grouping of spatially anisotropic orientation responses builds sketch-like representations of surface shape. Gradients in orientation fields and subsequent integration infers local surface geometry and globally consistent 3D depth. From the distributions in orientation responses summed in frequency, an estimate of the tilt and slant of the local surface can be obtained. The model suggests how 3D shape can be inferred from texture patterns and their image appearance in a hierarchically organized processing cascade along the cortical ventral stream. The proposed model integrates oriented texture gradient information that is encoded in distributed maps of orientation-frequency representations. The texture energy gradient information is defined by changes in the grouped summed normalized orientation-frequency response activity extracted from the textured object image. This activity is integrated by directed fields to generate a 3D shape representation of a complex object with depth ordering proportional to the fields output, with higher activity denoting larger distance in relative depth away from the viewer. PMID:27649387
Development of a high angular resolution diffusion imaging human brain template.
Varentsova, Anna; Zhang, Shengwei; Arfanakis, Konstantinos
2014-05-01
Brain diffusion templates contain rich information about the microstructure of the brain, and are used as references in spatial normalization or in the development of brain atlases. The accuracy of diffusion templates constructed based on the diffusion tensor (DT) model is limited in regions with complex neuronal micro-architecture. High angular resolution diffusion imaging (HARDI) overcomes limitations of the DT model and is capable of resolving intravoxel heterogeneity. However, when HARDI is combined with multiple-shot sequences to minimize image artifacts, the scan time becomes inappropriate for human brain imaging. In this work, an artifact-free HARDI template of the human brain was developed from low angular resolution multiple-shot diffusion data. The resulting HARDI template was produced in ICBM-152 space based on Turboprop diffusion data, was shown to resolve complex neuronal micro-architecture in regions with intravoxel heterogeneity, and contained fiber orientation information consistent with known human brain anatomy. Copyright © 2014 Elsevier Inc. All rights reserved.
Synthesis of spatially variant lattices.
Rumpf, Raymond C; Pazos, Javier
2012-07-02
It is often desired to functionally grade and/or spatially vary a periodic structure like a photonic crystal or metamaterial, yet no general method for doing this has been offered in the literature. A straightforward procedure is described here that allows many properties of the lattice to be spatially varied at the same time while producing a final lattice that is still smooth and continuous. Properties include unit cell orientation, lattice spacing, fill fraction, and more. This adds many degrees of freedom to a design such as spatially varying the orientation to exploit directional phenomena. The method is not a coordinate transformation technique so it can more easily produce complicated and arbitrary spatial variance. To demonstrate, the algorithm is used to synthesize a spatially variant self-collimating photonic crystal to flow a Gaussian beam around a 90° bend. The performance of the structure was confirmed through simulation and it showed virtually no scattering around the bend that would have arisen if the lattice had defects or discontinuities.
van den Berg, Ronald; Roerdink, Jos B T M; Cornelissen, Frans W
2010-01-22
An object in the peripheral visual field is more difficult to recognize when surrounded by other objects. This phenomenon is called "crowding". Crowding places a fundamental constraint on human vision that limits performance on numerous tasks. It has been suggested that crowding results from spatial feature integration necessary for object recognition. However, in the absence of convincing models, this theory has remained controversial. Here, we present a quantitative and physiologically plausible model for spatial integration of orientation signals, based on the principles of population coding. Using simulations, we demonstrate that this model coherently accounts for fundamental properties of crowding, including critical spacing, "compulsory averaging", and a foveal-peripheral anisotropy. Moreover, we show that the model predicts increased responses to correlated visual stimuli. Altogether, these results suggest that crowding has little immediate bearing on object recognition but is a by-product of a general, elementary integration mechanism in early vision aimed at improving signal quality.
Koch, Michael; Denzler, Joachim; Redies, Christoph
2010-01-01
Art images and natural scenes have in common that their radially averaged (1D) Fourier spectral power falls according to a power-law with increasing spatial frequency (1/f2 characteristics), which implies that the power spectra have scale-invariant properties. In the present study, we show that other categories of man-made images, cartoons and graphic novels (comics and mangas), have similar properties. Further on, we extend our investigations to 2D power spectra. In order to determine whether the Fourier power spectra of man-made images differed from those of other categories of images (photographs of natural scenes, objects, faces and plants and scientific illustrations), we analyzed their 2D power spectra by principal component analysis. Results indicated that the first fifteen principal components allowed a partial separation of the different image categories. The differences between the image categories were studied in more detail by analyzing whether the mean power and the slope of the power gradients from low to high spatial frequencies varied across orientations in the power spectra. Mean power was generally higher in cardinal orientations both in real-world photographs and artworks, with no systematic difference between the two types of images. However, the slope of the power gradients showed a lower degree of mean variability across spectral orientations (i.e., more isotropy) in art images, cartoons and graphic novels than in photographs of comparable subject matters. Taken together, these results indicate that art images, cartoons and graphic novels possess relatively uniform 1/f2 characteristics across all orientations. In conclusion, the man-made stimuli studied, which were presumably produced to evoke pleasant and/or enjoyable visual perception in human observers, form a subset of all images and share statistical properties in their Fourier power spectra. Whether these properties are necessary or sufficient to induce aesthetic perception remains to be investigated. PMID:20808863
Koch, Michael; Denzler, Joachim; Redies, Christoph
2010-08-19
Art images and natural scenes have in common that their radially averaged (1D) Fourier spectral power falls according to a power-law with increasing spatial frequency (1/f(2) characteristics), which implies that the power spectra have scale-invariant properties. In the present study, we show that other categories of man-made images, cartoons and graphic novels (comics and mangas), have similar properties. Further on, we extend our investigations to 2D power spectra. In order to determine whether the Fourier power spectra of man-made images differed from those of other categories of images (photographs of natural scenes, objects, faces and plants and scientific illustrations), we analyzed their 2D power spectra by principal component analysis. Results indicated that the first fifteen principal components allowed a partial separation of the different image categories. The differences between the image categories were studied in more detail by analyzing whether the mean power and the slope of the power gradients from low to high spatial frequencies varied across orientations in the power spectra. Mean power was generally higher in cardinal orientations both in real-world photographs and artworks, with no systematic difference between the two types of images. However, the slope of the power gradients showed a lower degree of mean variability across spectral orientations (i.e., more isotropy) in art images, cartoons and graphic novels than in photographs of comparable subject matters. Taken together, these results indicate that art images, cartoons and graphic novels possess relatively uniform 1/f(2) characteristics across all orientations. In conclusion, the man-made stimuli studied, which were presumably produced to evoke pleasant and/or enjoyable visual perception in human observers, form a subset of all images and share statistical properties in their Fourier power spectra. Whether these properties are necessary or sufficient to induce aesthetic perception remains to be investigated.
ERIC Educational Resources Information Center
Opfer, John E.; Thompson, Clarissa A.; Furlong, Ellen E.
2010-01-01
Numeric magnitudes often bias adults' spatial performance. Partly because the direction of this bias (left-to-right versus right-to-left) is culture-specific, it has been assumed that the orientation of spatial-numeric associations is a late development, tied to reading practice or schooling. Challenging this assumption, we found that preschoolers…
What is 3D good for? A review of human performance on stereoscopic 3D displays
NASA Astrophysics Data System (ADS)
McIntire, John P.; Havig, Paul R.; Geiselman, Eric E.
2012-06-01
This work reviews the human factors-related literature on the task performance implications of stereoscopic 3D displays, in order to point out the specific performance benefits (or lack thereof) one might reasonably expect to observe when utilizing these displays. What exactly is 3D good for? Relative to traditional 2D displays, stereoscopic displays have been shown to enhance performance on a variety of depth-related tasks. These tasks include judging absolute and relative distances, finding and identifying objects (by breaking camouflage and eliciting perceptual "pop-out"), performing spatial manipulations of objects (object positioning, orienting, and tracking), and navigating. More cognitively, stereoscopic displays can improve the spatial understanding of 3D scenes or objects, improve memory/recall of scenes or objects, and improve learning of spatial relationships and environments. However, for tasks that are relatively simple, that do not strictly require depth information for good performance, where other strong cues to depth can be utilized, or for depth tasks that lie outside the effective viewing volume of the display, the purported performance benefits of 3D may be small or altogether absent. Stereoscopic 3D displays come with a host of unique human factors problems including the simulator-sickness-type symptoms of eyestrain, headache, fatigue, disorientation, nausea, and malaise, which appear to effect large numbers of viewers (perhaps as many as 25% to 50% of the general population). Thus, 3D technology should be wielded delicately and applied carefully; and perhaps used only as is necessary to ensure good performance.
Reckfort, Julia; Wiese, Hendrik; Pietrzyk, Uwe; Zilles, Karl; Amunts, Katrin; Axer, Markus
2015-01-01
Structural connectivity of the brain can be conceptionalized as a multiscale organization. The present study is built on 3D-Polarized Light Imaging (3D-PLI), a neuroimaging technique targeting the reconstruction of nerve fiber orientations and therefore contributing to the analysis of brain connectivity. Spatial orientations of the fibers are derived from birefringence measurements of unstained histological sections that are interpreted by means of a voxel-based analysis. This implies that a single fiber orientation vector is obtained for each voxel, which reflects the net effect of all comprised fibers. We have utilized two polarimetric setups providing an object space resolution of 1.3 μm/px (microscopic setup) and 64 μm/px (macroscopic setup) to carry out 3D-PLI and retrieve fiber orientations of the same tissue samples, but at complementary voxel sizes (i.e., scales). The present study identifies the main sources which cause a discrepancy of the measured fiber orientations observed when measuring the same sample with the two polarimetric systems. As such sources the differing optical resolutions and diverging retardances of the implemented waveplates were identified. A methodology was implemented that enables the compensation of measured different systems' responses to the same birefringent sample. This opens up new ways to conduct multiscale analysis in brains by means of 3D-PLI and to provide a reliable basis for the transition between different scales of the nerve fiber architecture. PMID:26388744
Posture, locomotion, spatial orientation, and motion sickness as a function of space flight
NASA Technical Reports Server (NTRS)
Reschke, M. F.; Bloomberg, J. J.; Harm, D. L.; Paloski, W. H.; Layne, C.; McDonald, V.
1998-01-01
This article summarizes a variety of newly published findings obtained by the Neuroscience Laboratory, Johnson Space Center, and attempts to place this work within a historical framework of previous results on posture, locomotion, motion sickness, and perceptual responses that have been observed in conjunction with space flight. In this context, we have taken the view that correct transduction and integration of signals from all sensory systems is essential to maintaining stable vision, postural and locomotor control, and eye-hand coordination as components of spatial orientation. The plasticity of the human central nervous system allows individuals to adapt to altered stimulus conditions encountered in a microgravity environment. However, until some level of adaptation is achieved, astronauts and cosmonauts often experience space motion sickness, disturbances in motion control and eye-hand coordination, unstable vision, and illusory motion of the self, the visual scene, or both. Many of the same types of disturbances encountered in space flight reappear immediately after crew members return to earth. The magnitude of these neurosensory, sensory-motor and perceptual disturbances, and the time needed to recover from them, tend to vary as a function of mission duration and the space travelers prior experience with the stimulus rearrangement of space flight. To adequately chart the development of neurosensory changes associated with space flight, we recommend development of enhanced eye movement systems and body position measurement. We also advocate the use of a human small radius centrifuge as both a research tool and as a means of providing on-orbit countermeasures that will lessen the impact of living for long periods of time with out exposure to altering gravito-inertial forces. Copyright 1998 Elsevier Science B.V.
Subjective Straight Ahead Orientation in Microgravity
NASA Technical Reports Server (NTRS)
Clement, G.; Reschke, M. F.; Wood, S. J.
2015-01-01
This joint ESA NASA study will address adaptive changes in spatial orientation related to the subjective straight ahead and the use of a vibrotactile sensory aid to reduce perceptual errors. The study will be conducted before and after long-duration expeditions to the International Space Station (ISS) to examine how spatial processing of target location is altered following exposure to microgravity. This study addresses the sensorimotor research gap to "determine the changes in sensorimotor function over the course of a mission and during recovery after landing."
NASA Technical Reports Server (NTRS)
Wood, S. J.; Paloski, W. H.; Reschke, M. F.
1998-01-01
This purpose of this study was to examine the spatial coding of eye movements during static roll tilt (up to +/-45 degrees) relative to perceived earth and head orientations. Binocular videographic recordings obtained in darkness from eight subjects allowed us to quantify the mean deviations in gaze trajectories along both horizontal and vertical coordinates relative to the true earth and head orientations. We found that both variability and curvature of gaze trajectories increased with roll tilt. The trajectories of eye movements made along the perceived earth-horizontal (PEH) were more accurate than movements along the perceived head-horizontal (PHH). The trajectories of both PEH and PHH saccades tended to deviate in the same direction as the head tilt. The deviations in gaze trajectories along the perceived earth-vertical (PEV) and perceived head-vertical (PHV) were both similar to the PHH orientation, except that saccades along the PEV deviated in the opposite direction relative to the head tilt. The magnitude of deviations along the PEV, PHH, and PHV corresponded to perceptual overestimations of roll tilt obtained from verbal reports. Both PEV gaze trajectories and perceptual estimates of tilt orientation were different following clockwise rather than counterclockwise tilt rotation; however, the PEH gaze trajectories were less affected by the direction of tilt rotation. Our results suggest that errors in gaze trajectories along PEV and perceived head orientations increase during roll tilt in a similar way to perceptual errors of tilt orientation. Although PEH and PEV gaze trajectories became nonorthogonal during roll tilt, we conclude that the spatial coding of eye movements during roll tilt is overall more accurate for the perceived earth reference frame than for the perceived head reference frame.
Human Resource Orientation and Corporate Performance.
ERIC Educational Resources Information Center
Lam, Long W.; White, Louis P.
1998-01-01
A study of 14 manufacturing firms found significantly better financial performance among those that strongly emphasized recruitment, compensation, and training and development (a human resource orientation). Human resource development that helped sustain competence combined with that orientation to form a valuable competitive advantage. (SK)
Activity-dependent gene expression in honey bee mushroom bodies in response to orientation flight.
Lutz, Claudia C; Robinson, Gene E
2013-06-01
The natural history of adult worker honey bees (Apis mellifera) provides an opportunity to study the molecular basis of learning in an ecological context. Foragers must learn to navigate between the hive and floral locations that may be up to miles away. Young pre-foragers prepare for this task by performing orientation flights near the hive, during which they begin to learn navigational cues such as the appearance of the hive, the position of landmarks, and the movement of the sun. Despite well-described spatial learning and navigation behavior, there is currently limited information on the neural basis of insect spatial learning. We found that Egr, an insect homolog of Egr-1, is rapidly and transiently upregulated in the mushroom bodies in response to orientation. This result is the first example of an Egr-1 homolog acting as a learning-related immediate-early gene in an insect and also demonstrates that honey bee orientation uses a molecular mechanism that is known to be involved in many other forms of learning. This transcriptional response occurred both in naïve bees and in foragers induced to re-orient. Further experiments suggest that visual environmental novelty, rather than exercise or memorization of specific visual cues, acts as the stimulus for Egr upregulation. Our results implicate the mushroom bodies in spatial learning and emphasize the deep conservation of Egr-related pathways in experience-dependent plasticity.
Attentional Orienting towards Emotion: P2 and N400 ERP Effects
ERIC Educational Resources Information Center
Kanske, Philipp; Plitschka, Jan; Kotz, Sonja A.
2011-01-01
Attention can be oriented to different spatial locations yielding faster processing of attended compared to unattended stimuli. Similarly attention can be oriented to a semantic category such as "animals" or "tools". Words from the attended category will also be recognized faster than words from an unattended category. Here, we asked whether it is…
Griffin, C; Choong, W Y; Teh, W; Buxton, A J; Bolton, P S
2015-02-01
The aim of this study was to define the temporal and spatial (postural) characteristics of the head and cervical vertebral column (spine) of behaving rats in order to better understand their suitability as a model to study human conditions involving the head and neck. Time spent in each of four behavioral postures was determined from video tape recordings of rats (n = 10) in the absence and presence of an intruder rat. Plain film radiographic examination of a subset of these rats (n = 5) in each of these postures allowed measurement of head and cervical vertebral column positions adopted by the rats. When single they were quadruped or crouched most (∼80%) of the time and bipedal either supported or free standing for only ∼10% of the time. The introduction of an intruder significantly (P < 0.0001) reduced the proportion of time rats spent quadruped (median, from 71% to 47%) and bipedal free standing (median, from 2.9% to 0.4%). The cervical spine was orientated (median, 25-75 percentile) near vertical (18.8°, 4.2°-30.9°) when quadruped, crouched (15.4°, 7.6°-69.3°) and bipedal supported (10.5°, 4.8°-22.6°) but tended to be less vertical oriented when bipedal free standing (25.9°, 7.7°-39.3°). The range of head positions relative to the cervical spine was largest when crouched (73.4°) and smallest when erect free standing (17.7°). This study indicates that, like humans, rats have near vertical orientated cervical vertebral columns but, in contrast to humans, they displace their head in space by movements at both the cervico-thoracic junction and the cranio-cervical regions. © 2014 Wiley Periodicals, Inc.
Specificity of V1-V2 Orientation Networks in the Primate Visual Cortex
Roe, Anna W.; Ts'o, Daniel Y.
2015-01-01
The computation of texture and shape involves integration of features of various orientations. Orientation networks within V1 tend to involve cells which share similar orientation selectivity. However, emergent properties in V2 require the integration of multiple orientations. We now show that, unlike interactions within V1, V1-V2 orientation interactions are much less synchronized and are not necessarily orientation dependent. We find V1-V2 orientation networks are of two types: a more tightly synchronized, orientation-preserving network and a less synchronized orientation-diverse network. We suggest that such diversity of V1-V2 interactions underlies the spatial and functional integration required for computation of higher order contour and shape in V2. PMID:26314798
One-dimensional spatial dark soliton-induced channel waveguides in lithium niobate crystal.
Zhang, Peng; Ma, Yanghua; Zhao, Jianlin; Yang, Dexing; Xu, Honglai
2006-04-01
The anisotropic dependence of the formation of one-dimensional (1-D) spatial dark solitons on the orientation of intensity gradients in lithium niobate crystal is numerically specified. Based on this, we propose an approach to fabricate channel waveguides by employing 1-D spatial dark solitons. By exposure of two 1-D dark solitons with different orientations, channel waveguides can be created. The structures of the channel waveguides can be tuned by adjustment of the widths of the solitons and/or the angles between the two exposures. A square channel waveguide is experimentally demonstrated in an iron-doped lithium niobate crystal by exposure of two orthogonal 1-D dark solitons in sequence.
ERIC Educational Resources Information Center
Liao, Kun-Hsi
2017-01-01
Three-dimensional (3D) product design is an essential ability that students of subjects related to product design must acquire. The factors that affect designers' performance in 3D design are numerous, one of which is spatial abilities. Studies have reported that spatial abilities can be used to effectively predict people's performance in…
Houck, M R; Hoffman, J E
1986-05-01
According to feature-integration theory (Treisman & Gelade, 1980), separable features such as color and shape exist in separate maps in preattentive vision and can be integrated only through the use of spatial attention. Many perceptual aftereffects, however, which are also assumed to reflect the features available in preattentive vision, are sensitive to conjunctions of features. One possible resolution of these views holds that adaptation to conjunctions depends on spatial attention. We tested this proposition by presenting observers with gratings varying in color and orientation. The resulting McCollough aftereffects were independent of whether the adaptation stimuli were presented inside or outside of the focus of spatial attention. Therefore, color and shape appear to be conjoined preattentively, when perceptual aftereffects are used as the measure. These same stimuli, however, appeared to be separable in two additional experiments that required observers to search for gratings of a specified color and orientation. These results show that different experimental procedures may be tapping into different stages of preattentive vision.
Tse, Chi-Shing; Kurby, Christopher A.; Du, Feng
2010-01-01
We examined the effect of spatial iconicity (a perceptual simulation of canonical locations of objects) and word-order frequency on language processing and episodic memory of orientation. Participants made speeded relatedness judgments to pairs of words presented in locations typical to their real world arrangements (e.g., ceiling on top and floor on bottom). They then engaged in a surprise orientation recognition task for the word pairs. We replicated Louwerse’s finding (2008) that word-order frequency has a stronger effect on semantic relatedness judgments than spatial iconicity. This is consistent with recent suggestions that linguistic representations have a stronger impact on immediate decisions about verbal materials than perceptual simulations. In contrast, spatial iconicity enhanced episodic memory of orientation to a greater extent than word-order frequency did. This new finding indicates that perceptual simulations have an important role in episodic memory. Results are discussed with respect to theories of perceptual representation and linguistic processing. PMID:19742388
Effects of Artificial Gravity and Bed Rest on Spatial Orientation and Balance Control
NASA Technical Reports Server (NTRS)
Paloski, William H.; Moore, S. T.; Feiveson, A. H.; Taylor, L. C.
2007-01-01
While the vestibular system should be well-adapted to bed rest (a condition it experiences approximately 8/24 hrs each day), questions remain regarding the degree to which repeated exposures to the unusual gravito-inertial force environment of a short-radius centrifuge might affect central processing of vestibular information used in spatial orientation and balance control. Should these functions be impaired by intermittent AG, its feasibility as a counter-measure would be diminished. We, therefore, examined the effects of AG on spatial orientation and balance control in 15 male volunteers before and after 21 days of 6 HDT bed rest (BR). Eight of the subjects were treated with daily 1hr AG exposures (2.5g at the feet; 1.0g at the heart) aboard a short radius (3m) centrifuge, while the other seven served as controls (C). Spatial orientation was assessed by measures of ocular counter-rolling (OCR; rotation of the eye about the line of sight, an otolith-mediated reflex) and subjective visual vertical (SVV; perception of the spatial upright). Both OCR and SVV measurements were made with the subject upright, lying on their left sides, and lying on their right sides. OCR was measured from binocular eye orientation recordings made while the subjects fixated for 10s on a point target directly in front of the face at a distance of 1 m. SVV was assessed by asking subjects (in the dark) to adjust to upright (using a handheld controller) the orientation of a luminous bar randomly perturbed (15) to either side of the vertical meridian. Balance control performance was assessed using a computerized dynamic posturography (CDP) protocol similar to that currently required for all returning crew members. During each session, the subjects completed a combination of trials of sensory organization test (SOT) 2 (eyes closed, fixed platform) and SOT 5 (eyes closed, sway-referenced platform) with and without static and dynamic pitch plane head movements (plus or minus 20 deg., dynamic paced by an audible tone at 0.33Hz). OCR and CDP performance were unaffected by BR and BR+AG; post-BR measures were unchanged from baseline for both AG and C groups. Similarly, BR did not affect SVV in the C group. However, BR+AG disrupted one measure of spatial orientation: SVV error was significantly increased on R+0 and R+1 following BR in the AG group. These results suggest a transient untoward effect on central vestibular processing may accompany repeated exposure to intermittent AG, a potential side-effect that should be studied more closely in future studies.
Relationship between selected orientation rest frame, circular vection and space motion sickness
NASA Technical Reports Server (NTRS)
Harm, D. L.; Parker, D. E.; Reschke, M. F.; Skinner, N. C.
1998-01-01
Space motion sickness (SMS) and spatial orientation and motion perception disturbances occur in 70-80% of astronauts. People select "rest frames" to create the subjective sense of spatial orientation. In microgravity, the astronaut's rest frame may be based on visual scene polarity cues and on the internal head and body z axis (vertical body axis). The data reported here address the following question: Can an astronaut's orientation rest frame be related and described by other variables including circular vection response latencies and space motion sickness? The astronaut's microgravity spatial orientation rest frames were determined from inflight and postflight verbal reports. Circular vection responses were elicited by rotating a virtual room continuously at 35 degrees/s in pitch, roll and yaw with respect to the astronaut. Latency to the onset of vection was recorded from the time the crew member opened their eyes to the onset of vection. The astronauts who used visual cues exhibited significantly shorter vection latencies than those who used internal z axis cues. A negative binomial regression model was used to represent the observed total SMS symptom scores for each subject for each flight day. Orientation reference type had a significant effect, resulting in an estimated three-fold increase in the expected motion sickness score on flight day 1 for astronauts who used visual cues. The results demonstrate meaningful classification of astronauts' rest frames and their relationships to sensitivity to circular vection and SMS. Thus, it may be possible to use vection latencies to predict SMS severity and duration.
Doricchi, Fabrizio; Macci, Enrica; Silvetti, Massimo; Macaluso, Emiliano
2010-07-01
Voluntary orienting of visual attention is conventionally measured in tasks with predictive central cues followed by frequent valid targets at the cued location and by infrequent invalid targets at the uncued location. This implies that invalid targets entail both spatial reorienting of attention and breaching of the expected spatial congruency between cues and targets. Here, we used event-related functional magnetic resonance imaging (fMRI) to separate the neural correlates of the spatial and expectancy components of both endogenous orienting and stimulus-driven reorienting of attention. We found that during endogenous orienting with predictive cues, there was a significant deactivation of the right Temporal-Parietal Junction (TPJ). We also discovered that the lack of an equivalent deactivation with nonpredictive cues was matched to drop in attentional costs and preservation of attentional benefits. The right TPJ showed equivalent responses to invalid targets following predictive and nonpredictive cues. On the contrary, infrequent-unexpected invalid targets following predictive cues specifically activated the right Middle and Inferior Frontal Gyrus (MFG-IFG). Additional comparisons with spatially neutral trials demonstrated that, independently of cue predictiveness, valid targets activate the left TPJ, whereas invalid targets activate both the left and right TPJs. These findings show that the selective right TPJ activation that is found in the comparison between invalid and valid trials results from the reciprocal cancelling of the different activations that in the left TPJ are related to the processing of valid and invalid targets. We propose that left and right TPJs provide "matching and mismatching to attentional template" signals. These signals enable reorienting of attention and play a crucial role in the updating of the statistical contingency between cues and targets.
Rathee, Manu; Tamrakar, Amit Kumar; Kundu, Renu; Yunus, Nadeem
2014-01-01
Facial deformity can be debilitating, especially in the psychological and cosmetic aspects. Although surgical correction or replacement of deformed or missing parts is the ideal treatment, prosthetic replacement serves the purpose in case of surgical limitations. Prosthetic rehabilitation of a missing auricle is an acceptable option as it provides better control over the tortuous anatomical shape and shade of the missing portion. Improper spatial orientation of the prosthetic ear on the face can damage the results of even the most aesthetic prosthesis. This case report describes a simple and innovative method for precise spatial orientation of auricular trial prosthesis using a facebow and custom-made adjustable mechanical retention design using stainless steel wire. PMID:25096652
Nijhout, H Frederik; Cinderella, Margaret; Grunert, Laura W
2014-03-01
The wings of butterflies and moths develop from imaginal disks whose structure is always congruent with the final adult wing. It is therefore possible to map every point on the imaginal disk to a location on the adult wing throughout ontogeny. We studied the growth patterns of the wings of two distantly related species with very different adult wing shapes, Junonia coenia and Manduca sexta. The shape of the wing disks change throughout their growth phase in a species-specific pattern. We measured mitotic densities and mitotic orientation in successive stages of wing development approximately one cell division apart. Cell proliferation was spatially patterned, and the density of mitoses was highly correlated with local growth. Unlike other systems in which the direction of mitoses has been viewed as the primary determinant of directional growth, we found that in these two species the direction of growth was only weakly correlated with the orientation of mitoses. Directional growth appears to be imposed by a constantly changing spatial pattern of cell division coupled with a weak bias in the orientation of cell division. Because growth and cell division in imaginal disk require ecdysone and insulin signaling, the changing spatial pattern of cell division may due to a changing pattern of expression of receptors or downstream elements in the signaling pathways for one or both of these hormones. Evolution of wing shape comes about by changes in the progression of spatial patterns of cell division. © 2014 Wiley Periodicals, Inc.
The interaction of feature and space based orienting within the attention set.
Lim, Ahnate; Sinnett, Scott
2014-01-01
The processing of sensory information relies on interacting mechanisms of sustained attention and attentional capture, both of which operate in space and on object features. While evidence indicates that exogenous attentional capture, a mechanism previously understood to be automatic, can be eliminated while concurrently performing a demanding task, we reframe this phenomenon within the theoretical framework of the "attention set" (Most et al., 2005). Consequently, the specific prediction that cuing effects should reappear when feature dimensions of the cue overlap with those in the attention set (i.e., elements of the demanding task) was empirically tested and confirmed using a dual-task paradigm involving both sustained attention and attentional capture, adapted from Santangelo et al. (2007). Participants were required to either detect a centrally presented target presented in a stream of distractors (the primary task), or respond to a spatially cued target (the secondary task). Importantly, the spatial cue could either share features with the target in the centrally presented primary task, or not share any features. Overall, the findings supported the attention set hypothesis showing that a spatial cuing effect was only observed when the peripheral cue shared a feature with objects that were already in the attention set (i.e., the primary task). However, this finding was accompanied by differential attentional orienting dependent on the different types of objects within the attention set, with feature-based orienting occurring for target-related objects, and additional spatial-based orienting for distractor-related objects.
The interaction of feature and space based orienting within the attention set
Lim, Ahnate; Sinnett, Scott
2014-01-01
The processing of sensory information relies on interacting mechanisms of sustained attention and attentional capture, both of which operate in space and on object features. While evidence indicates that exogenous attentional capture, a mechanism previously understood to be automatic, can be eliminated while concurrently performing a demanding task, we reframe this phenomenon within the theoretical framework of the “attention set” (Most et al., 2005). Consequently, the specific prediction that cuing effects should reappear when feature dimensions of the cue overlap with those in the attention set (i.e., elements of the demanding task) was empirically tested and confirmed using a dual-task paradigm involving both sustained attention and attentional capture, adapted from Santangelo et al. (2007). Participants were required to either detect a centrally presented target presented in a stream of distractors (the primary task), or respond to a spatially cued target (the secondary task). Importantly, the spatial cue could either share features with the target in the centrally presented primary task, or not share any features. Overall, the findings supported the attention set hypothesis showing that a spatial cuing effect was only observed when the peripheral cue shared a feature with objects that were already in the attention set (i.e., the primary task). However, this finding was accompanied by differential attentional orienting dependent on the different types of objects within the attention set, with feature-based orienting occurring for target-related objects, and additional spatial-based orienting for distractor-related objects. PMID:24523682
Gutierrez, J Claudio; Chigerwe, Munashe; Ilkiw, Jan E; Youngblood, Patricia; Holladay, Steven D; Srivastava, Sakti
Spatial visualization ability refers to the human cognitive ability to form, retrieve, and manipulate mental models of spatial nature. Visual reasoning ability has been linked to spatial ability. There is currently limited information about how entry-level spatial and visual reasoning abilities may predict veterinary anatomy performance or may be enhanced with progression through the veterinary anatomy content in an integrated curriculum. The present study made use of two tests that measure spatial ability and one test that measures visual reasoning ability in veterinary students: Guay's Visualization of Views Test, adapted version (GVVT), the Mental Rotations Test (MRT), and Raven's Advanced Progressive Matrices Test, short form (RavenT). The tests were given to the entering class of veterinary students during their orientation week and at week 32 in the veterinary medical curriculum. Mean score on the MRT significantly increased from 15.2 to 20.1, and on the RavenT significantly increased from 7.5 to 8.8. When females only were evaluated, results were similar to the total class outcome; however, all three tests showed significant increases in mean scores. A positive correlation between the pre- and post-test scores was found for all three tests. The present results should be considered preliminary at best for associating anatomic learning in an integrated curriculum with spatial and visual reasoning abilities. Other components of the curriculum, for instance histology or physiology, could also influence the improved spatial visualization and visual reasoning test scores at week 32.
Development of orientation tuning in simple cells of primary visual cortex
Moore, Bartlett D.
2012-01-01
Orientation selectivity and its development are basic features of visual cortex. The original model of orientation selectivity proposes that elongated simple cell receptive fields are constructed from convergent input of an array of lateral geniculate nucleus neurons. However, orientation selectivity of simple cells in the visual cortex is generally greater than the linear contributions based on projections from spatial receptive field profiles. This implies that additional selectivity may arise from intracortical mechanisms. The hierarchical processing idea implies mainly linear connections, whereas cortical contributions are generally considered to be nonlinear. We have explored development of orientation selectivity in visual cortex with a focus on linear and nonlinear factors in a population of anesthetized 4-wk postnatal kittens and adult cats. Linear contributions are estimated from receptive field maps by which orientation tuning curves are generated and bandwidth is quantified. Nonlinear components are estimated as the magnitude of the power function relationship between responses measured from drifting sinusoidal gratings and those predicted from the spatial receptive field. Measured bandwidths for kittens are slightly larger than those in adults, whereas predicted bandwidths are substantially broader. These results suggest that relatively strong nonlinearities in early postnatal stages are substantially involved in the development of orientation tuning in visual cortex. PMID:22323631
Morgan, M J; Casco, C
1990-10-22
The apparent length and orientation of short lines is altered when they abut against oblique lines (the Zöllner and Judd illusions). Here we present evidence that the length and orientation biases are geometrically related and probably depend upon the same underlying mechanism. Measurements were done with an 'H' figure, in which the apparent length and orientation of the cross-bar was assessed by the method of adjustment while the orientation of the outer flanking lines was varied. When the flanking lines are oblique the apparent length of the central line is reduced and its orientation is shifted so that it appears more nearly at right-angles to the obliques than is in fact the case. Measurements of the orientation and length effects were made in three observers, over a range of flanking-line angles (90, 63, 45, 34 and 27 deg) and central line lengths (9, 17, 33 and 67 arc min). The biases increased with the tilt of the flanking-lines, and decreased with central line length. The extent of the length bias could be accurately predicted from the angular shift by simple trigonometry. We describe physiological and computational models to account for the relation between the orientation and length biases.
USDA-ARS?s Scientific Manuscript database
Leaf orientation plays a fundamental role in many transport processes in plant canopies. At the plant or stand level, leaf orientation is often highly anisotropic and heterogeneous, yet most analyses neglect such complexity. In many cases, this is due to the difficulty in measuring the spatial varia...
ERIC Educational Resources Information Center
Antezana, Ligia; Mosner, Maya G.; Troiani, Vanessa; Yerys, Benjamin E.
2016-01-01
In typical development there is a bias to orient visual attention to social information. Children with ASD do not reliably demonstrate this bias, and the role of attention orienting has not been well studied. We examined attention orienting via the inhibition of return (IOR) mechanism in a spatial cueing task using social-emotional cues; we…
Electrophysiological correlates of figure-ground segregation directly reflect perceptual saliency.
Straube, Sirko; Grimsen, Cathleen; Fahle, Manfred
2010-03-05
In a figure identification task, we investigated the influence of different visual cue configurations (spatial frequency, orientation or a combination of both) on the human EEG. Combining psychophysics with ERP and time-frequency analysis, we show that the neural response at about 200ms reflects perceptual saliency rather than physical cue contrast. Increasing saliency caused (i) a negative shift of the posterior P2 coinciding with a power decrease in the posterior theta-band and (ii) an amplitude and latency increase of the posterior P3. We demonstrate that visual cues interact for a percept that is non-linearly related to the physical figure-ground properties.
Neurovestibular and Sensorimotor Studies in Space and Earth Benefits
NASA Technical Reports Server (NTRS)
Clement, Gilles; Reschke, Millard; Wood, Scott
2005-01-01
This review summarizes what has been learned from studies of human neurovestibular system in weightless conditions, including balance and locomotion, gaze control, vestibular-autonomic function and spatial orientation, and gives some examples of the potential Earth benefits of this research. Results show that when astronauts and cosmonauts return from space flight, both the peripheral and central neural processes are physiologically and functionally altered. There are clear distinctions between the virtually immediate adaptive compensations to weightlessness and those that require longer periods of time to adapt. However, little is known to date about the adaptation of sensory-motor functions to long-duration space missions in weightlessness and to the transitions between various reduced gravitational levels, such as on the Moon and Mars. Results from neurovestibular research in space have substantially enhanced our understanding of the mechanisms and characteristics of postural, gaze, and spatial orientation deficits, analogous to clinical cases of labyrinthine-defective function. Also, space neurosciences research has participated in the development and application of significant new technologies, such as video recording and processing of three-dimensional eye movements and posture, hardware for the unencumbered measurement of head and body movement, and procedures for investigating otolith function on Earth. In particular, devices such as centrifugation or off-vertical axis rotation could enhance clinical neurological testing because it provides linear acceleration which specifically stimulates the otolith organs in a frequency range close to natural head and body movement.
Neurovestibular and sensorimotor studies in space and Earth benefits.
Clément, Gilles; Reschke, Millard; Wood, Scott
2005-08-01
This review summarizes what has been learned from studies of human neurovestibular system in weightless conditions, including balance and locomotion, gaze control, vestibular-autonomic function and spatial orientation, and gives some examples of the potential Earth benefits of this research. Results show that when astronauts and cosmonauts return from space flight both the peripheral and central neural processes are physiologically and functionally altered. There are clear distinctions between the virtually immediate adaptive compensations to weightlessness and those that require longer periods of time to adapt. However, little is known to date about the adaptation of sensory-motor functions to long-duration space missions in weightlessness and to the transitions between various reduced gravitational levels, such as on the Moon and Mars. Results from neurovestibular research in space have substantially enhanced our understanding of the mechanisms and characteristics of postural, gaze, and spatial orientation deficits, analogous to clinical cases of labyrinthine-defective function. Also, space neurosciences research has participated in the development and application of significant new technologies, such as video recording and processing of three-dimensional eye movements and posture, hardware for the unencumbered measurement of head and body movement, and procedures for investigating otolith function on Earth. In particular, devices such as centrifugation or off-vertical axis rotation could enhance clinical neurological testing because it provides linear acceleration which specifically stimulates the otolith organs in a frequency range close to natural head and body movement.
Spatial orientation of caloric nystagmus in semicircular canal-plugged monkeys.
Arai, Yasuko; Yakushin, Sergei B; Cohen, Bernard; Suzuki, Jun-Ichi; Raphan, Theodore
2002-08-01
We studied caloric nystagmus before and after plugging all six semicircular canals to determine whether velocity storage contributed to the spatial orientation of caloric nystagmus. Monkeys were stimulated unilaterally with cold ( approximately 20 degrees C) water while upright, supine, prone, right-side down, and left-side down. The decline in the slow phase velocity vector was determined over the last 37% of the nystagmus, at a time when the response was largely due to activation of velocity storage. Before plugging, yaw components varied with the convective flow of endolymph in the lateral canals in all head orientations. Plugging blocked endolymph flow, eliminating convection currents. Despite this, caloric nystagmus was readily elicited, but the horizontal component was always toward the stimulated (ipsilateral) side, regardless of head position relative to gravity. When upright, the slow phase velocity vector was close to the yaw and spatial vertical axes. Roll components became stronger in supine and prone positions, and vertical components were enhanced in side down positions. In each case, this brought the velocity vectors toward alignment with the spatial vertical. Consistent with principles governing the orientation of velocity storage, when the yaw component of the velocity vector was positive, the cross-coupled pitch or roll components brought the vector upward in space. Conversely, when yaw eye velocity vector was downward in the head coordinate frame, i.e., negative, pitch and roll were downward in space. The data could not be modeled simply by a reduction in activity in the ipsilateral vestibular nerve, which would direct the velocity vector along the roll direction. Since there is no cross coupling from roll to yaw, velocity storage alone could not rotate the vector to fit the data. We postulated, therefore, that cooling had caused contraction of the endolymph in the plugged canals. This contraction would deflect the cupula toward the plug, simulating ampullofugal flow of endolymph. Inhibition and excitation induced by such cupula deflection fit the data well in the upright position but not in lateral or prone/supine conditions. Data fits in these positions required the addition of a spatially orientated, velocity storage component. We conclude, therefore, that three factors produce cold caloric nystagmus after canal plugging: inhibition of activity in ampullary nerves, contraction of endolymph in the stimulated canals, and orientation of eye velocity to gravity through velocity storage. Although the response to convection currents dominates the normal response to caloric stimulation, velocity storage probably also contributes to the orientation of eye velocity.
Osvath, Mathias; Martin-Ordas, Gema
2014-11-05
One of the most contested areas in the field of animal cognition is non-human future-oriented cognition. We critically examine key underlying assumptions in the debate, which is mainly preoccupied with certain dichotomous positions, the most prevalent being whether or not 'real' future orientation is uniquely human. We argue that future orientation is a theoretical construct threatening to lead research astray. Cognitive operations occur in the present moment and can be influenced only by prior causation and the environment, at the same time that most appear directed towards future outcomes. Regarding the current debate, future orientation becomes a question of where on various continua cognition becomes 'truly' future-oriented. We question both the assumption that episodic cognition is the most important process in future-oriented cognition and the assumption that future-oriented cognition is uniquely human. We review the studies on future-oriented cognition in the great apes to find little doubt that our closest relatives possess such ability. We conclude by urging that future-oriented cognition not be viewed as expression of some select set of skills. Instead, research into future-oriented cognition should be approached more like research into social and physical cognition. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Osvath, Mathias; Martin-Ordas, Gema
2014-01-01
One of the most contested areas in the field of animal cognition is non-human future-oriented cognition. We critically examine key underlying assumptions in the debate, which is mainly preoccupied with certain dichotomous positions, the most prevalent being whether or not ‘real’ future orientation is uniquely human. We argue that future orientation is a theoretical construct threatening to lead research astray. Cognitive operations occur in the present moment and can be influenced only by prior causation and the environment, at the same time that most appear directed towards future outcomes. Regarding the current debate, future orientation becomes a question of where on various continua cognition becomes ‘truly’ future-oriented. We question both the assumption that episodic cognition is the most important process in future-oriented cognition and the assumption that future-oriented cognition is uniquely human. We review the studies on future-oriented cognition in the great apes to find little doubt that our closest relatives possess such ability. We conclude by urging that future-oriented cognition not be viewed as expression of some select set of skills. Instead, research into future-oriented cognition should be approached more like research into social and physical cognition. PMID:25267827
Innovative Organization of Project Activity of Construction Students
NASA Astrophysics Data System (ADS)
Stolbova, I. D.; Aleksandrova, E. P.; Krainova, M. N.
2017-11-01
The construction industry competitiveness depends on its equipping with information modeling technologies. This requires training and development of human resources. The advantages of BIM-technologies are considered. The requirements for the specialists capable of promoting information modeling technologies in the construction industry are discussed. For a wide application of BIM-technologies, the problem of training personnel with a new thinking must be solved. When preparing graduates of the major “Construction”, it is necessary to introduce innovative educational technologies aimed at building the students’ ability for team work, competences in the field of modern information and communication technologies, as well as design skills basing on spatial modeling. Graphic training is the first discipline of the professional orientation for construction students. In the context of training it is important to create such learning environment that is close to a professional one. The paper provides the examples of practice-oriented assignments based on the project method in the course of students’ independent work.
NASA Astrophysics Data System (ADS)
Fu, Z.; Qin, Q.; Wu, C.; Chang, Y.; Luo, B.
2017-09-01
Due to the differences of imaging principles, image matching between visible and thermal infrared images still exist new challenges and difficulties. Inspired by the complementary spatial and frequency information of geometric structural features, a robust descriptor is proposed for visible and thermal infrared images matching. We first divide two different spatial regions to the region around point of interest, using the histogram of oriented magnitudes, which corresponds to the 2-D structural shape information to describe the larger region and the edge oriented histogram to describe the spatial distribution for the smaller region. Then the two vectors are normalized and combined to a higher feature vector. Finally, our proposed descriptor is obtained by applying principal component analysis (PCA) to reduce the dimension of the combined high feature vector to make our descriptor more robust. Experimental results showed that our proposed method was provided with significant improvements in correct matching numbers and obvious advantages by complementing information within spatial and frequency structural information.
NASA Technical Reports Server (NTRS)
Chelette, T. L.; Repperger, Daniel W.; Albery, W. B.
1991-01-01
An effort was initiated at the Armstrong Aerospace Medical Research Laboratory (AAMRL) to investigate the improvement of the situational awareness of a pilot with respect to his aircraft's spatial orientation. The end product of this study is a device to alert a pilot to potentially disorienting situations. Much like a ground collision avoidance system (GCAS) is used in fighter aircraft to alert the pilot to 'pull up' when dangerous flight paths are predicted, this device warns the pilot to put a higher priority on attention to the orientation instrument. A Kalman filter was developed which estimates the pilot's perceived position and orientation. The input to the Kalman filter consists of two classes of data. The first class of data consists of noise parameters (indicating parameter uncertainty), conflict signals (e.g. vestibular and kinesthetic signal disagreement), and some nonlinear effects. The Kalman filter's perceived estimates are now the sum of both Class 1 data (good information) and Class 2 data (distorted information). When the estimated perceived position or orientation is significantly different from the actual position or orientation, the pilot is alerted.
EVLA observations of radio-loud quasars selected to study radio orientation
NASA Astrophysics Data System (ADS)
Maithil, Jaya; Brotherton, Michael S.; Runnoe, Jessie; Wardle, John F. C.; DiPompeo, Michael; De Breuck, Carlos; Wills, Beverley J.
2018-06-01
We present preliminary work to develop an unbiased sample of radio-loud quasars to test orientation indicators. We have obtained radio data of 147 radio-loud quasars using EVLA at 10 GHz and with the A-array. With this high-resolution data we have measured the uncontaminated core flux density to determine orientation indicators based on radio core dominance. The radio cores of quasars have a flat spectrum over a broad range of frequencies, so we expect that the core flux density at the FIRST and the observed frequencies should be the same in the absence of variability. Jackson & Brown (2012) pointed out that the survey measurements of core flux density, like FIRST, often doesn't have the spatial resolution to distinguish cores from extended emission. Our measurements show that at FIRST spatial resolution, core flux measurements are indeed systematically high. Our results establish that orientation studies need high-resolution radio data as compared to survey data, and that the optical emission is a better normalization than the extended radio emission for a core dominance parameter to track orientation.
Virtual Technologies to Develop Visual-Spatial Ability in Engineering Students
ERIC Educational Resources Information Center
Roca-González, Cristina; Martin-Gutierrez, Jorge; García-Dominguez, Melchor; Carrodeguas, Mª del Carmen Mato
2017-01-01
The present study assessed a short training experiment to improve spatial abilities using two tools based on virtual technologies: one focused on manipulation of specific geometric virtual pieces, and the other consisting of virtual orienteering game. The two tools can help improve spatial abilities required for many engineering problem-solving…
Spatial Cognition and Map Interpretation
1987-09-01
Terrain association Spatial cognition Map reading Videogames aa mldm II naeaaaaiy and Hontlty by block numbor) Spatial memory span Orientation...ability. Finally, field and classroom performance was compared to wayfinding in a simulated ( videogame ) environment in which position coordinates were...a simulated ( videogame ) environment. Findings: MITAC instruction significantly improved the experimental group’s ability to perform terrain
Spatial Associations for Musical Stimuli: A Piano in the Head?
ERIC Educational Resources Information Center
Lidji, Pascale; Kolinsky, Regine; Lochy, Aliette; Morais, Jose
2007-01-01
This study was aimed at examining whether pitch height and pitch change are mentally represented along spatial axes. A series of experiments explored, for isolated tones and 2-note intervals, the occurrence of effects analogous to the spatial numerical association of response codes (SNARC) effect. Response device orientation (horizontal vs.…
Oblique interaction of spatial dark-soliton stripes in nonlocal media.
Fischer, Robert; Neshev, Dragomir N; Krolikowski, Wieslaw; Kivshar, Yuri S; Iturbe-Castillo, David; Chavez-Cerda, Sabino; Meneghetti, Mario R; Caetano, Dilson P; Hickman, Jandir M
2006-10-15
We report what we believe to be the first experimental observation of a large spatial lateral shift in the interaction of obliquely oriented spatial dark-soliton stripes. We demonstrate by numerical simulations that this new effect can be attributed to the specific features of optical media with a nonlocal nonlinear response.
The Spatial Distribution of Attention within and across Objects
ERIC Educational Resources Information Center
Hollingworth, Andrew; Maxcey-Richard, Ashleigh M.; Vecera, Shaun P.
2012-01-01
Attention operates to select both spatial locations and perceptual objects. However, the specific mechanism by which attention is oriented to objects is not well understood. We examined the means by which object structure constrains the distribution of spatial attention (i.e., a "grouped array"). Using a modified version of the Egly et…
Pettorossi, V E; Errico, P; Ferraresi, A; Minciotti, M; Barmack, N H
1998-07-01
Researchers investigated how vestibular and optokinetic signals alter the spatial transformation of the coordinate system that governs the spatial orientation of reflexive eye movements. Also examined were the effects of sensory stimulation when vestibular and optokinetic signals act synergistically and when the two signals are in conflict.
Engineers' Spatial Orientation Ability Development at the European Space for Higher Education
ERIC Educational Resources Information Center
Carrera, C. Carbonell; Perez, J. L. Saorin; Cantero, J. de la Torre; Gonzalez, A. M. Marrero
2011-01-01
The aim of this research was to determine whether the new geographic information technologies, included as teaching objectives in the new European Space for Higher Education Engineering degrees, develop spatial abilities. Bearing this in mind, a first year seminar using the INSPIRE Geoportal (Infrastructure for Spatial Information in Europe) was…
Dalmaso, Mario; Galfano, Giovanni; Tarqui, Luana; Forti, Bruno; Castelli, Luigi
2013-09-01
The nature of possible impairments in orienting attention to social signals in schizophrenia is controversial. The present research was aimed at addressing this issue further by comparing gaze and arrow cues. Unlike previous studies, we also included pointing gestures as social cues, with the goal of addressing whether any eventual impairment in the attentional response was specific to gaze signals or reflected a more general deficit in dealing with social stimuli. Patients with schizophrenia or schizoaffective disorder and matched controls performed a spatial-cuing paradigm in which task-irrelevant centrally displayed gaze, pointing finger, and arrow cues oriented rightward or leftward, preceded a lateralized target requiring a simple detection response. Healthy controls responded faster to spatially congruent targets than to spatially incongruent targets, irrespective of cue type. In contrast, schizophrenic patients responded faster to spatially congruent targets than to spatially incongruent targets only for arrow and pointing finger cues. No cuing effect emerged for gaze cues. The results support the notion that gaze cuing is impaired in schizophrenia, and suggest that this deficit may not extend to all social cues.
Hore, Victoria R A; Troy, John B; Eglen, Stephen J
2012-11-01
The receptive fields of on- and off-center parasol cell mosaics independently tile the retina to ensure efficient sampling of visual space. A recent theoretical model represented the on- and off-center mosaics by noisy hexagonal lattices of slightly different density. When the two lattices are overlaid, long-range Moiré interference patterns are generated. These Moiré interference patterns have been suggested to drive the formation of highly structured orientation maps in visual cortex. Here, we show that noisy hexagonal lattices do not capture the spatial statistics of parasol cell mosaics. An alternative model based upon local exclusion zones, termed as the pairwise interaction point process (PIPP) model, generates patterns that are statistically indistinguishable from parasol cell mosaics. A key difference between the PIPP model and the hexagonal lattice model is that the PIPP model does not generate Moiré interference patterns, and hence stimulated orientation maps do not show any hexagonal structure. Finally, we estimate the spatial extent of spatial correlations in parasol cell mosaics to be only 200-350 μm, far less than that required to generate Moiré interference. We conclude that parasol cell mosaics are too disordered to drive the formation of highly structured orientation maps in visual cortex.
Emotion improves and impairs early vision.
Bocanegra, Bruno R; Zeelenberg, René
2009-06-01
Recent studies indicate that emotion enhances early vision, but the generality of this finding remains unknown. Do the benefits of emotion extend to all basic aspects of vision, or are they limited in scope? Our results show that the brief presentation of a fearful face, compared with a neutral face, enhances sensitivity for the orientation of subsequently presented low-spatial-frequency stimuli, but diminishes orientation sensitivity for high-spatial-frequency stimuli. This is the first demonstration that emotion not only improves but also impairs low-level vision. The selective low-spatial-frequency benefits are consistent with the idea that emotion enhances magnocellular processing. Additionally, we suggest that the high-spatial-frequency deficits are due to inhibitory interactions between magnocellular and parvocellular pathways. Our results suggest an emotion-induced trade-off in visual processing, rather than a general improvement. This trade-off may benefit perceptual dimensions that are relevant for survival at the expense of those that are less relevant.
Bosworth, Rain G.; Petrich, Jennifer A.; Dobkins, Karen R.
2012-01-01
In order to investigate differences in the effects of spatial attention between the left visual field (LVF) and the right visual field (RVF), we employed a full/poor attention paradigm using stimuli presented in the LVF vs. RVF. In addition, to investigate differences in the effects of spatial attention between the Dorsal and Ventral processing streams, we obtained motion thresholds (motion coherence thresholds and fine direction discrimination thresholds) and orientation thresholds, respectively. The results of this study showed negligible effects of attention on the orientation task, in either the LVF or RVF. In contrast, for both motion tasks, there was a significant effect of attention in the LVF, but not in the RVF. These data provide psychophysical evidence for greater effects of spatial attention in the LVF/right hemisphere, specifically, for motion processing in the Dorsal stream. PMID:22051893
Children can implicitly, but not voluntarily, direct attention in time.
Johnson, Katherine A; Burrowes, Emma; Coull, Jennifer T
2015-01-01
Children are able to use spatial cues to orient their attention to discrete locations in space from around 4 years of age. In contrast, no research has yet investigated the ability of children to use informative cues to voluntarily predict when an event will occur in time. The spatial and temporal attention task was used to determine whether children were able to voluntarily orient their attention in time, as well as in space: symbolic spatial and temporal cues predicted where or when an imperative target would appear. Thirty typically developing children (average age 11 yrs) and 32 adults (average age 27 yrs) took part. Confirming previous findings, adults made use of both spatial and temporal cues to optimise behaviour, and were significantly slower to respond to invalidly cued targets in either space or time. Children were also significantly slowed by invalid spatial cues, demonstrating their use of spatial cues to guide expectations. In contrast, children's responses were not slowed by invalid temporal cues, suggesting that they were not using the temporal cue to voluntarily orient attention through time. Children, as well as adults, did however demonstrate signs of more implicit forms of temporal expectation: RTs were faster for long versus short cue-target intervals (the variable foreperiod effect) and slower when the preceding trial's cue-target interval was longer than that on the current trial (sequential effects). Overall, our results suggest that although children implicitly made use of the temporally predictive information carried by the length of the current and previous trial's cue-target interval, they could not deliberately use symbolic temporal cues to speed responses. The developmental trajectory of the ability to voluntarily use symbolic temporal cues is therefore delayed, relative both to the use of symbolic (arrow) spatial cues, and to the use of implicit temporal information.
Anisotropy of Human Horizontal and Vertical Navigation in Real Space: Behavioral and PET Correlates.
Zwergal, Andreas; Schöberl, Florian; Xiong, Guoming; Pradhan, Cauchy; Covic, Aleksandar; Werner, Philipp; Trapp, Christoph; Bartenstein, Peter; la Fougère, Christian; Jahn, Klaus; Dieterich, Marianne; Brandt, Thomas
2016-10-17
Spatial orientation was tested during a horizontal and vertical real navigation task in humans. Video tracking of eye movements was used to analyse the behavioral strategy and combined with simultaneous measurements of brain activation and metabolism ([18F]-FDG-PET). Spatial navigation performance was significantly better during horizontal navigation. Horizontal navigation was predominantly visually and landmark-guided. PET measurements indicated that glucose metabolism increased in the right hippocampus, bilateral retrosplenial cortex, and pontine tegmentum during horizontal navigation. In contrast, vertical navigation was less reliant on visual and landmark information. In PET, vertical navigation activated the bilateral hippocampus and insula. Direct comparison revealed a relative activation in the pontine tegmentum and visual cortical areas during horizontal navigation and in the flocculus, insula, and anterior cingulate cortex during vertical navigation. In conclusion, these data indicate a functional anisotropy of human 3D-navigation in favor of the horizontal plane. There are common brain areas for both forms of navigation (hippocampus) as well as unique areas such as the retrosplenial cortex, visual cortex (horizontal navigation), flocculus, and vestibular multisensory cortex (vertical navigation). Visually guided landmark recognition seems to be more important for horizontal navigation, while distance estimation based on vestibular input might be more relevant for vertical navigation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Human balance, the evolution of bipedalism and dysequilibrium syndrome.
Skoyles, John R
2006-01-01
A new model of the uniqueness, nature and evolution of human bipedality is presented in the context of the etiology of the balance disorder of dysequilibrium syndrome. Human bipedality is biologically novel in several remarkable respects. Humans are (a) obligate, habitual and diverse in their bipedalism, (b) hold their body carriage spinally erect in a multisegmental "antigravity pole", (c) use their forelimbs exclusively for nonlocomotion, (d) support their body weight exclusively by vertical balance and normally never use prehensile holds. Further, human bipedalism is combined with (e) upper body actions that quickly shift the body's center of mass (e.g. tennis serves, piggy-back carrying of children), (f) use transient unstable erect positions (dance, kicking and fighting), (g) body height that makes falls injurious, (h) stiff gait walking, and (i) endurance running. Underlying these novelties, I conjecture, is a species specific human vertical balance faculty. This faculty synchronizes any action with a skeletomuscular adjustment that corrects its potential destabilizing impact upon the projection of the body's center of mass over its foot support. The balance faculty depends upon internal models of the erect vertical body's geometrical relationship (and its deviations) to its support base. Due to the situation that humans are obligate erect terrestrial animals, two frameworks - the body- and gravity-defined frameworks - are in constant alignment in the vertical z-axis. This alignment allows human balance to adapt egocentric body cognitions to detect body deviations from the gravitational vertical. This link between human balance and the processing of geometrical orientation, I propose, accounts for the close link between balance and spatial cognition found in the cerebral cortex. I argue that cortical areas processing the spatial and other cognitions needed to enable vertical balance was an important reason for brain size expansion of Homo erectus. A novel source of evidence for this conjecture is the rare autosomal recessive condition of dysequilibrium syndrome. In dysequilibrium syndrome, individuals fail to learn to walk bipedally (with this not being due to sensory, vestibular nor motor coordination defects). Dysequilibrium syndrome is associated with severe spatial deficits that I conjecture underlie its balance dysfunction. The associated brain defects and gene mutations of dysequilibrium syndrome provide new opportunities to investigate (i) the neurological processes responsible for the human specific balance faculty, and (ii) through gene dating techniques, its evolution.
Spatial language and converseness.
Burigo, Michele; Coventry, Kenny R; Cangelosi, Angelo; Lynott, Dermot
2016-12-01
Typical spatial language sentences consist of describing the location of an object (the located object) in relation to another object (the reference object) as in "The book is above the vase". While it has been suggested that the properties of the located object (the book) are not translated into language because they are irrelevant when exchanging location information, it has been shown that the orientation of the located object affects the production and comprehension of spatial descriptions. In line with the claim that spatial language apprehension involves inferences about relations that hold between objects it has been suggested that during spatial language apprehension people use the orientation of the located object to evaluate whether the logical property of converseness (e.g., if "the book is above the vase" is true, then also "the vase is below the book" must be true) holds across the objects' spatial relation. In three experiments using sentence acceptability rating tasks we tested this hypothesis and demonstrated that when converseness is violated people's acceptability ratings of a scene's description are reduced indicating that people do take into account geometric properties of the located object and use it to infer logical spatial relations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.
2011-11-15
Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-raymore » views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8.9-fold speed-up of the processing (from 1336 to 150 s). Conclusions: Adaptive anisotropic filtering has the potential to substantially improve image quality and/or reduce the radiation dose required for obtaining 3D image data using cone beam CT.« less
Effects of Monomer Structure on Their Organization and Polymerization in a Smectic Liquid Crystal
Guymon; Hoggan; Clark; Rieker; Walba; Bowman
1997-01-03
Photopolymerizable diacrylate monomers dissolved in fluid-layer smectic A and smectic C liquid crystal (LC) hosts exhibited significant spatial segregation and orientation that depend strongly on monomer structure. Small, flexible monomers such as 1,6-hexanediol diacrylate (HDDA) oriented parallel to the smectic layers and intercalated, whereas rod-shaped mesogen-like monomers such as 1,4-di-(4-(6-acryloyloxyhexyloxy)benzoyloxy)-2-methylbenzene (C6M) oriented normal to the smectic layers and collected within them. Such spatial segregation caused by the smectic layering dramatically enhanced photopolymerization rates; for HDDA, termination rates were reduced, whereas for C6M, both the termination and propagation rates were increased. These polymerization precursor structures suggest novel materials-design paradigms for gel LCs and nanophase-separated polymer systems.
Rathee, Manu; Tamrakar, Amit Kumar; Kundu, Renu; Yunus, Nadeem
2014-08-05
Facial deformity can be debilitating, especially in the psychological and cosmetic aspects. Although surgical correction or replacement of deformed or missing parts is the ideal treatment, prosthetic replacement serves the purpose in case of surgical limitations. Prosthetic rehabilitation of a missing auricle is an acceptable option as it provides better control over the tortuous anatomical shape and shade of the missing portion. Improper spatial orientation of the prosthetic ear on the face can damage the results of even the most aesthetic prosthesis. This case report describes a simple and innovative method for precise spatial orientation of auricular trial prosthesis using a facebow and custom-made adjustable mechanical retention design using stainless steel wire. 2014 BMJ Publishing Group Ltd.
Azimuthal Anisotropy beneath the Contiguous United States Revealed by Shear Wave Splitting
NASA Astrophysics Data System (ADS)
Liu, K. H.; Yang, B.; Liu, Y.; Dahm, H. H.; Refayee, H. A.; Gao, S. S.
2017-12-01
We have produced a uniformly-measured XKS (including SKS, SKKS, and PKS) splitting database for the contiguous United States and adjacent areas. The database consists of about 30,000 pairs of splitting parameters from 3185 stations. Both the fast orientations and splitting times show systematic spatial variations. The vast majority of the fast orientations are in agreement with the absolute plate motion (APM) direction computed under a fixed hot-spot reference frame. Spatial coherency analysis of the splitting parameters indicates that for the majority of the study area, where a single layer of anisotropy with a horizontal axis of symmetry is inferred, the source of anisotropy is located in the rheologically transitional zone between the lithosphere and asthenosphere. Beneath the western U.S., the previously recognized semi-circular feature of the fast orientations has a much greater spatial coverage, extending to northern Mexico and the Rio Grande Rift. The fast orientations are parallel to the western, southern, and southeastern edges of the North American Craton and can be interpreted by simple shear strain associated with mantle flow around the cratonic keel. The combination of anisotropy induced by this around keel flow and the APM can effectively explain the E-W fast orientations beneath the southern margin of the North American Craton and NE U.S., as well as the nearly N-S fast orientations and small splitting times observed in the SE U.S. The splitting times show a systematic decrease from both the western and eastern U.S. toward the central U.S., where the thickness of the lithosphere is the largest in the study area. This trend can be explained by the reduced efficiency of anisotropy development at greater depth, as well as by the lack of around keel flow in the continental interior.
Selective processing of multiple features in the human brain: effects of feature type and salience.
McGinnis, E Menton; Keil, Andreas
2011-02-09
Identifying targets in a stream of items at a given constant spatial location relies on selection of aspects such as color, shape, or texture. Such attended (target) features of a stimulus elicit a negative-going event-related brain potential (ERP), termed Selection Negativity (SN), which has been used as an index of selective feature processing. In two experiments, participants viewed a series of Gabor patches in which targets were defined as a specific combination of color, orientation, and shape. Distracters were composed of different combinations of color, orientation, and shape of the target stimulus. This design allows comparisons of items with and without specific target features. Consistent with previous ERP research, SN deflections extended between 160-300 ms. Data from the subsequent P3 component (300-450 ms post-stimulus) were also examined, and were regarded as an index of target processing. In Experiment A, predominant effects of target color on SN and P3 amplitudes were found, along with smaller ERP differences in response to variations of orientation and shape. Manipulating color to be less salient while enhancing the saliency of the orientation of the Gabor patch (Experiment B) led to delayed color selection and enhanced orientation selection. Topographical analyses suggested that the location of SN on the scalp reliably varies with the nature of the to-be-attended feature. No interference of non-target features on the SN was observed. These results suggest that target feature selection operates by means of electrocortical facilitation of feature-specific sensory processes, and that selective electrocortical facilitation is more effective when stimulus saliency is heightened.
Nurminen, Lauri; Angelucci, Alessandra
2014-01-01
The responses of neurons in primary visual cortex (V1) to stimulation of their receptive field (RF) are modulated by stimuli in the RF surround. This modulation is suppressive when the stimuli in the RF and surround are of similar orientation, but less suppressive or facilitatory when they are cross-oriented. Similarly, in human vision surround stimuli selectively suppress the perceived contrast of a central stimulus. Although the properties of surround modulation have been thoroughly characterized in many species, cortical areas and sensory modalities, its role in perception remains unknown. Here we argue that surround modulation in V1 consists of multiple components having different spatio-temporal and tuning properties, generated by different neural circuits and serving different visual functions. One component arises from LGN afferents, is fast, untuned for orientation, and spatially restricted to the surround region nearest to the RF (the near-surround); its function is to normalize V1 cell responses to local contrast. Intra-V1 horizontal connections contribute a slower, narrowly orientation-tuned component to near-surround modulation, whose function is to increase the coding efficiency of natural images in manner that leads to the extraction of object boundaries. The third component is generated by topdown feedback connections to V1, is fast, broadly orientation-tuned, and extends into the far-surround; its function is to enhance the salience of behaviorally relevant visual features. Far- and near-surround modulation, thus, act as parallel mechanisms: the former quickly detects and guides saccades/attention to salient visual scene locations, the latter segments object boundaries in the scene. PMID:25204770
The effect of receiver coil orientations on the imaging performance of magnetic induction tomography
NASA Astrophysics Data System (ADS)
Gürsoy, D.; Scharfetter, H.
2009-10-01
Magnetic induction tomography is an imaging modality which aims to reconstruct the conductivity distribution of the human body. It uses magnetic induction to excite the body and an array of sensor coils to detect the perturbations in the magnetic field. Up to now, much effort has been expended with the aim of finding an efficient coil configuration to extend the dynamic range of the measured signal. However, the merits of different sensor orientations on the imaging performance have not been studied in great detail so far. Therefore, the aim of the study is to fill the void of a systematic investigation of coil orientations on the reconstruction quality of the designs. To this end, a number of alternative receiver array designs with different coil orientations were suggested and the evaluations of the designs were performed based on the singular value decomposition. A generalized class of quality measures, the subclasses of which are linked to both the spatial resolution and uncertainty measures, was used to assess the performance on the radial and axial axes of a cylindrical phantom. The detectability of local conductivity perturbations in the phantom was explored using the reconstructed images. It is possible to draw the conclusion that the proper choice of the coil orientations significantly influences the number of usable singular vectors and accordingly the stability of image reconstruction, although the effect of increased stability on the quality of the reconstructed images was not of paramount importance due to the reduced independent information content of the associated singular vectors.
Rhesus monkeys (Macaca mulatta) map number onto space
Drucker, Caroline B.; Brannon, Elizabeth M.
2014-01-01
Humans map number onto space. However, the origins of this association, and particularly the degree to which it depends upon cultural experience, are not fully understood. Here we provide the first demonstration of a number-space mapping in a non-human primate. We trained four adult male rhesus macaques (Macaca mulatta) to select the fourth position from the bottom of a five-element vertical array. Monkeys maintained a preference to choose the fourth position through changes in the appearance, location, and spacing of the vertical array. We next asked whether monkeys show a spatially-oriented number mapping by testing their responses to the same five-element stimulus array rotated ninety degrees into a horizontal line. In these horizontal probe trials, monkeys preferentially selected the fourth position from the left, but not the fourth position from the right. Our results indicate that rhesus macaques map number onto space, suggesting that the association between number and space in human cognition is not purely a result of cultural experience and instead has deep evolutionary roots. PMID:24762923
Orienting attention to locations in mental representations
Astle, Duncan Edward; Summerfield, Jennifer; Griffin, Ivan; Nobre, Anna Christina
2014-01-01
Many cognitive processes depend on our ability to hold information in mind, often well beyond the offset of the original sensory input. The capacity of this ‘visual short-term memory’ (VSTM) is limited to around three to four items. Recent research has demonstrated that the content of VSTM can be modulated by top-down attentional biases. This has been demonstrated using retrodictive spatial cues, termed ‘retro-cues’, which orient participants’ attention to spatial locations within VSTM. In the current paper, we tested whether the use of these cues is modulated by memory load and cue delay. There are a number of important conclusions: i) top-down biases can operate upon very brief iconic traces as well as older VSTM representations (Experiment 1); ii) when operating within capacity, subjects use the cue to prioritize where they initiate their memory search, rather than to discard un-cued items (Experiments 2 and 3); iii) when capacity is exceeded there is little benefit to top-down biasing relative to a neutral condition, however, unattended items are lost, with there being a substantial cost of invalid spatial cueing (Experiment 3); iv) these costs and benefits of orienting spatial attention differ across iconic memory and VSTM representations when VSTM capacity is exceeded (Experiment 4). PMID:21972046
Cell shape can mediate the spatial organization of the bacterial cytoskeleton
NASA Astrophysics Data System (ADS)
Wang, Siyuan; Wingreen, Ned
2013-03-01
The bacterial cytoskeleton guides the synthesis of cell wall and thus regulates cell shape. Since spatial patterning of the bacterial cytoskeleton is critical to the proper control of cell shape, it is important to ask how the cytoskeleton spatially self-organizes in the first place. In this work, we develop a quantitative model to account for the various spatial patterns adopted by bacterial cytoskeletal proteins, especially the orientation and length of cytoskeletal filaments such as FtsZ and MreB in rod-shaped cells. We show that the combined mechanical energy of membrane bending, membrane pinning, and filament bending of a membrane-attached cytoskeletal filament can be sufficient to prescribe orientation, e.g. circumferential for FtsZ or helical for MreB, with the accuracy of orientation increasing with the length of the cytoskeletal filament. Moreover, the mechanical energy can compete with the chemical energy of cytoskeletal polymerization to regulate filament length. Notably, we predict a conformational transition with increasing polymer length from smoothly curved to end-bent polymers. Finally, the mechanical energy also results in a mutual attraction among polymers on the same membrane, which could facilitate tight polymer spacing or bundling. The predictions of the model can be verified through genetic, microscopic, and microfluidic approaches.
NASA Technical Reports Server (NTRS)
Lathrop, William B.; Kaiser, Mary K.
2002-01-01
Two experiments examined perceived spatial orientation in a small environment as a function of experiencing that environment under three conditions: real-world, desktop-display (DD), and head-mounted display (HMD). Across the three conditions, participants acquired two targets located on a perimeter surrounding them, and attempted to remember the relative locations of the targets. Subsequently, participants were tested on how accurately and consistently they could point in the remembered direction of a previously seen target. Results showed that participants were significantly more consistent in the real-world and HMD conditions than in the DD condition. Further, it is shown that the advantages observed in the HMD and real-world conditions were not simply due to nonspatial response strategies. These results suggest that the additional idiothetic information afforded in the real-world and HMD conditions is useful for orientation purposes in our presented task domain. Our results are relevant to interface design issues concerning tasks that require spatial search, navigation, and visualization.
Optical switch based on the electrically controlled liquid crystal interface.
Komar, Andrei A; Tolstik, Alexei L; Melnikova, Elena A; Muravsky, Alexander A
2015-06-01
The peculiarities of the linearly polarized light beam reflection at the interface within the bulk of a nematic liquid crystal (NLC) cell with different orientations of the director are analyzed. Two methods to create the interface are considered. Combination of the planar and homeotropic orientations of the NLC director is realized by means of a spatially structured electrode under the applied voltage. In-plane patterned azimuthal alignment of the NLC director is created by the patterned rubbing alignment technique. All possible orthogonal orientations of the LC director are considered; the configurations for realization of total internal reflection are determined. The revealed relationship between the propagation of optical beams in a liquid crystal material and polarization of laser radiation has enabled realization of the spatial separation for the orthogonally polarized light beams at the interface between two regions of NLC with different director orientations (domains). Owing to variations in the applied voltage and, hence, in the refractive index gradient, the light beam propagation directions may be controlled electrically.
Does Changing the Reference Frame Affect Infant Categorization of the Spatial Relation BETWEEN?
ERIC Educational Resources Information Center
Quinn, Paul C.; Doran, Matthew M.; Papafragou, Anna
2011-01-01
Past research has shown that variation in the target objects depicting a given spatial relation disrupts the formation of a category representation for that relation. In the current research, we asked whether changing the orientation of the referent frame depicting the spatial relation would also disrupt the formation of a category representation…
ERIC Educational Resources Information Center
Liben, Lynn S.; Kastens, Kim A.; Christensen, Adam E.
2011-01-01
To study the role of spatial concepts in science learning, 125 college students with high, medium, or low scores on a horizontality (water-level) spatial task were given information about geological strike and dip using existing educational materials. Participants mapped an outcrop's strike and dip, a rod's orientation, pointed to a distant…
USDA-ARS?s Scientific Manuscript database
We examined temporal and spatial patterns of both sexes of Bactrocera dorsalis (Hendel) and its two most abundant parasitoids, Fopius arisanus (Sonan) and Diachasmimorpha longicaudata (Ashmead) in a commercial guava orchard. Bactrocera dorsalis spatial patterns were initially random, but became high...
Self-motion facilitates echo-acoustic orientation in humans
Wallmeier, Ludwig; Wiegrebe, Lutz
2014-01-01
The ability of blind humans to navigate complex environments through echolocation has received rapidly increasing scientific interest. However, technical limitations have precluded a formal quantification of the interplay between echolocation and self-motion. Here, we use a novel virtual echo-acoustic space technique to formally quantify the influence of self-motion on echo-acoustic orientation. We show that both the vestibular and proprioceptive components of self-motion contribute significantly to successful echo-acoustic orientation in humans: specifically, our results show that vestibular input induced by whole-body self-motion resolves orientation-dependent biases in echo-acoustic cues. Fast head motions, relative to the body, provide additional proprioceptive cues which allow subjects to effectively assess echo-acoustic space referenced against the body orientation. These psychophysical findings clearly demonstrate that human echolocation is well suited to drive precise locomotor adjustments. Our data shed new light on the sensory–motor interactions, and on possible optimization strategies underlying echolocation in humans. PMID:26064556
Cross-orientation interactions in human vision.
Roeber, Urte; Wong, Elaine M Y; Freeman, Alan W
2008-03-18
Humans can discriminate one visual contour from another on the basis of small differences in orientation. This capability depends on cortical detectors that are selective for a small range of orientations. We have measured this orientation bandwidth and the suppression that helps to shape it, with a reverse correlation technique. Human subjects were presented with a stream of randomly oriented gratings at a rate of 30 per second. Their task was to press a key whenever they saw an orientation nominated as the target. We analyzed the data by finding the probability density of two orientations: One preceded the key-press by the reaction time, and the second preceded the first by up to 100 ms. The results were as follows: (1) One grating facilitated the following one in producing a key-press when the gratings differed little in orientation. The estimate of orientation bandwidth resulting from this facilitation was 38 degrees . (2) A large angle between the two orientations reduced the probability of a key-press. This finding was best modelled as a suppression that did not vary with orientation, consistent with the idea that cross-orientation suppression is non-oriented. (3) Analysis of non-consecutive grating pairs showed that cross-orientation interactions lasted no longer than 67 ms.
de Sousa, Hilário
2012-01-01
It has long been argued that spatial aspects of language influence people’s conception of time. However, what spatial aspect of language is the most influential in this regard? To test this, two experiments were conducted in Hong Kong and Macau with literate Cantonese speakers. The results suggest that the crucial factor in literate Cantonese people’s spatial conceptualization of time is their experience with writing and reading Chinese script. In Hong Kong and Macau, Chinese script is written either in the traditional vertical orientation, which is still used, or the newer horizontal orientation, which is more common these days. Before the 1950s, the dominant horizontal direction was right-to-left. However, by the 1970s, the dominant horizontal direction had become left-to-right. In both experiments, the older participants predominately demonstrated time in a right-to-left direction, whereas younger participants predominately demonstrated time in a left-to-right direction, consistent with the horizontal direction that was prevalent when they first became literate. PMID:22855679
Liu, Sheng; Angelaki, Dora E.
2009-01-01
Visual and vestibular signals converge onto the dorsal medial superior temporal area (MSTd) of the macaque extrastriate visual cortex, which is thought to be involved in multisensory heading perception for spatial navigation. Peripheral otolith information, however, is ambiguous and cannot distinguish linear accelerations experienced during self-motion from those due to changes in spatial orientation relative to gravity. Here we show that, unlike peripheral vestibular sensors but similar to lobules 9 and 10 of the cerebellar vermis (nodulus and uvula), MSTd neurons respond selectively to heading and not to changes in orientation relative to gravity. In support of a role in heading perception, MSTd vestibular responses are also dominated by velocity-like temporal dynamics, which might optimize sensory integration with visual motion information. Unlike the cerebellar vermis, however, MSTd neurons also carry a spatial orientation-independent rotation signal from the semicircular canals, which could be useful in compensating for the effects of head rotation on the processing of optic flow. These findings show that vestibular signals in MSTd are appropriately processed to support a functional role in multisensory heading perception. PMID:19605631
When Numbers Get Heavy: Is the Mental Number Line Exclusively Numerical?
Holmes, Kevin J.; Lourenco, Stella F.
2013-01-01
The mental number line, with its left-to-right orientation of increasing numerical values, is often regarded as evidence for a unique connection between space and number. Yet left-to-right orientation has been shown to extend to other dimensions, consistent with a general magnitude system wherein different magnitudes share neural and conceptual resources. Such observations raise a fundamental, yet relatively unexplored, question about spatial-numerical associations: What is the nature of the information represented along the mental number line? Here we show that this information is not exclusive to number, simultaneously accommodating numerical and non-numerical magnitudes. Participants completed the classic SNARC (Spatial-Numerical Association of Response Codes) task while sometimes wearing wrist weights. Weighting the left wrist–thereby linking less and more weight to right and left, respectively–worked against left-to-right orientation of number, leaving no behavioral trace of the mental number line. Our findings point to the dynamic integration of magnitude dimensions, with spatial organization instantiating representational currency (i.e., more/less relations) shared across magnitudes. PMID:23484023
Attentional focus affects how events are segmented and updated in narrative reading.
Bailey, Heather R; Kurby, Christopher A; Sargent, Jesse Q; Zacks, Jeffrey M
2017-08-01
Readers generate situation models representing described events, but the nature of these representations may differ depending on the reading goals. We assessed whether instructions to pay attention to different situational dimensions affect how individuals structure their situation models (Exp. 1) and how they update these models when situations change (Exp. 2). In Experiment 1, participants read and segmented narrative texts into events. Some readers were oriented to pay specific attention to characters or space. Sentences containing character or spatial-location changes were perceived as event boundaries-particularly if the reader was oriented to characters or space, respectively. In Experiment 2, participants read narratives and responded to recognition probes throughout the texts. Readers who were oriented to the spatial dimension were more likely to update their situation models at spatial changes; all readers tracked the character dimension. The results from both experiments indicated that attention to individual situational dimensions influences how readers segment and update their situation models. More broadly, the results provide evidence for a global situation model updating mechanism that serves to set up new models at important narrative changes.
Dangerous animals capture and maintain attention in humans.
Yorzinski, Jessica L; Penkunas, Michael J; Platt, Michael L; Coss, Richard G
2014-05-28
Predation is a major source of natural selection on primates and may have shaped attentional processes that allow primates to rapidly detect dangerous animals. Because ancestral humans were subjected to predation, a process that continues at very low frequencies, we examined the visual processes by which men and women detect dangerous animals (snakes and lions). We recorded the eye movements of participants as they detected images of a dangerous animal (target) among arrays of nondangerous animals (distractors) as well as detected images of a nondangerous animal (target) among arrays of dangerous animals (distractors). We found that participants were quicker to locate targets when the targets were dangerous animals compared with nondangerous animals, even when spatial frequency and luminance were controlled. The participants were slower to locate nondangerous targets because they spent more time looking at dangerous distractors, a process known as delayed disengagement, and looked at a larger number of dangerous distractors. These results indicate that dangerous animals capture and maintain attention in humans, suggesting that historical predation has shaped some facets of visual orienting and its underlying neural architecture in modern humans.
Temporal-frequency tuning of cross-orientation suppression in the cat striate cortex.
Allison, J D; Smith, K R; Bonds, A B
2001-01-01
A sinusoidal mask grating oriented orthogonally to and superimposed onto an optimally oriented base grating reduces a cortical neuron's response amplitude. The spatial selectivity of cross-orientation suppression (XOR) has been described, so for this paper we investigated the temporal properties of XOR. We recorded from single striate cortical neurons (n = 72) in anesthetized and paralyzed cats. After quantifying the spatial and temporal characteristics of each cell's excitatory response to a base grating, we measured the temporal-frequency tuning of XOR by systematically varying the temporal frequency of a mask grating placed at a null orientation outside of the cell's excitatory orientation domain. The average preferred temporal frequency of the excitatory response of the neurons in our sample was 3.8 (+/- 1.5 S.D.) Hz. The average cutoff frequency for the sample was 16.3 (+/- 1.7) Hz. The average preferred temporal frequency (7.0 +/- 2.6 Hz) and cutoff frequency (20.4 +/- 6.9 Hz) of the XOR were significantly higher. The differences averaged 1.1 (+/- 0.6) octaves for the peaks and 0.3 (+/- 0.4) octaves for the cutoffs. The XOR mechanism's preference for high temporal frequencies suggests a possible extrastriate origin for the effect and could help explain the low-pass temporal-frequency response profile displayed by most striate cortical neurons.
Connell, Charlotte J. W.; Thompson, Benjamin; Kuhn, Gustav; Gant, Nicholas
2016-01-01
Fatigue resulting from strenuous exercise can impair cognition and oculomotor control. These impairments can be prevented by administering psychostimulants such as caffeine. This study used two experiments to explore the influence of caffeine administered at rest and during fatiguing physical exercise on spatial attention—a cognitive function that is crucial for task-based visually guided behavior. In independent placebo-controlled studies, cohorts of 12 healthy participants consumed caffeine and rested or completed 180 min of stationary cycling. Covert attentional orienting was measured in both experiments using a spatial cueing paradigm. We observed no alterations in attentional facilitation toward spatial cues suggesting that covert attentional orienting is not influenced by exercise fatigue or caffeine supplementation. Response times were increased (impaired) after exercise and this deterioration was prevented by caffeine supplementation. In the resting experiment, response times across all conditions and cues were decreased (improved) with caffeine. Covert spatial attention was not influenced by caffeine. Together, the results of these experiments suggest that covert attentional orienting is robust to the effects of fatiguing exercise and not influenced by caffeine. However, exercise fatigue impairs response times, which can be prevented by caffeine, suggesting that pre-motor planning and execution of the motor responses required for performance of the cueing task are sensitive to central nervous system fatigue. Caffeine improves response time in both fatigued and fresh conditions, most likely through action on networks controlling motor function. PMID:27768747
Connell, Charlotte J W; Thompson, Benjamin; Kuhn, Gustav; Gant, Nicholas
2016-01-01
Fatigue resulting from strenuous exercise can impair cognition and oculomotor control. These impairments can be prevented by administering psychostimulants such as caffeine. This study used two experiments to explore the influence of caffeine administered at rest and during fatiguing physical exercise on spatial attention-a cognitive function that is crucial for task-based visually guided behavior. In independent placebo-controlled studies, cohorts of 12 healthy participants consumed caffeine and rested or completed 180 min of stationary cycling. Covert attentional orienting was measured in both experiments using a spatial cueing paradigm. We observed no alterations in attentional facilitation toward spatial cues suggesting that covert attentional orienting is not influenced by exercise fatigue or caffeine supplementation. Response times were increased (impaired) after exercise and this deterioration was prevented by caffeine supplementation. In the resting experiment, response times across all conditions and cues were decreased (improved) with caffeine. Covert spatial attention was not influenced by caffeine. Together, the results of these experiments suggest that covert attentional orienting is robust to the effects of fatiguing exercise and not influenced by caffeine. However, exercise fatigue impairs response times, which can be prevented by caffeine, suggesting that pre-motor planning and execution of the motor responses required for performance of the cueing task are sensitive to central nervous system fatigue. Caffeine improves response time in both fatigued and fresh conditions, most likely through action on networks controlling motor function.
Digital polarization holography advancing geometrical phase optics.
De Sio, Luciano; Roberts, David E; Liao, Zhi; Nersisyan, Sarik; Uskova, Olena; Wickboldt, Lloyd; Tabiryan, Nelson; Steeves, Diane M; Kimball, Brian R
2016-08-08
Geometrical phase or the fourth generation (4G) optics enables realization of optical components (lenses, prisms, gratings, spiral phase plates, etc.) by patterning the optical axis orientation in the plane of thin anisotropic films. Such components exhibit near 100% diffraction efficiency over a broadband of wavelengths. The films are obtained by coating liquid crystalline (LC) materials over substrates with patterned alignment conditions. Photo-anisotropic materials are used for producing desired alignment conditions at the substrate surface. We present and discuss here an opportunity of producing the widest variety of "free-form" 4G optical components with arbitrary spatial patterns of the optical anisotropy axis orientation with the aid of a digital spatial light polarization converter (DSLPC). The DSLPC is based on a reflective, high resolution spatial light modulator (SLM) combined with an "ad hoc" optical setup. The most attractive feature of the use of a DSLPC for photoalignment of nanometer thin photo-anisotropic coatings is that the orientation of the alignment layer, and therefore of the fabricated LC or LC polymer (LCP) components can be specified on a pixel-by-pixel basis with high spatial resolution. By varying the optical magnification or de-magnification the spatial resolution of the photoaligned layer can be adjusted to an optimum for each application. With a simple "click" it is possible to record different optical components as well as arbitrary patterns ranging from lenses to invisible labels and other transparent labels that reveal different images depending on the side from which they are viewed.
NASA Astrophysics Data System (ADS)
Marston, B. K.; Bishop, M. P.; Shroder, J. F.
2009-12-01
Digital terrain analysis of mountain topography is widely utilized for mapping landforms, assessing the role of surface processes in landscape evolution, and estimating the spatial variation of erosion. Numerous geomorphometry techniques exist to characterize terrain surface parameters, although their utility to characterize the spatial hierarchical structure of the topography and permit an assessment of the erosion/tectonic impact on the landscape is very limited due to scale and data integration issues. To address this problem, we apply scale-dependent geomorphometric and object-oriented analyses to characterize the hierarchical spatial structure of mountain topography. Specifically, we utilized a high resolution digital elevation model to characterize complex topography in the Shimshal Valley in the Western Himalaya of Pakistan. To accomplish this, we generate terrain objects (geomorphological features and landform) including valley floors and walls, drainage basins, drainage network, ridge network, slope facets, and elemental forms based upon curvature. Object-oriented analysis was used to characterize object properties accounting for object size, shape, and morphometry. The spatial overlay and integration of terrain objects at various scales defines the nature of the hierarchical organization. Our results indicate that variations in the spatial complexity of the terrain hierarchical organization is related to the spatio-temporal influence of surface processes and landscape evolution dynamics. Terrain segmentation and the integration of multi-scale terrain information permits further assessment of process domains and erosion, tectonic impact potential, and natural hazard potential. We demonstrate this with landform mapping and geomorphological assessment examples.
Cortical Structure of Hallucal Metatarsals and Locomotor Adaptations in Hominoids
Jashashvili, Tea; Dowdeswell, Mark R.; Lebrun, Renaud; Carlson, Kristian J.
2015-01-01
Diaphyseal morphology of long bones, in part, reflects in vivo loads experienced during the lifetime of an individual. The first metatarsal, as a cornerstone structure of the foot, presumably expresses diaphyseal morphology that reflects loading history of the foot during stance phase of gait. Human feet differ substantially from those of other apes in terms of loading histories when comparing the path of the center of pressure during stance phase, which reflects different weight transfer mechanisms. Here we use a novel approach for quantifying continuous thickness and cross-sectional geometric properties of long bones in order to test explicit hypotheses about loading histories and diaphyseal structure of adult chimpanzee, gorilla, and human first metatarsals. For each hallucal metatarsal, 17 cross sections were extracted at regularly-spaced intervals (2.5% length) between 25% and 65% length. Cortical thickness in cross sections was measured in one degree radially-arranged increments, while second moments of area were measured about neutral axes also in one degree radially-arranged increments. Standardized thicknesses and second moments of area were visualized using false color maps, while penalized discriminant analyses were used to evaluate quantitative species differences. Humans systematically exhibit the thinnest diaphyseal cortices, yet the greatest diaphyseal rigidities, particularly in dorsoplantar regions. Shifts in orientation of maximum second moments of area along the diaphysis also distinguish human hallucal metatarsals from those of chimpanzees and gorillas. Diaphyseal structure reflects different loading regimes, often in predictable ways, with human versus non-human differences probably resulting both from the use of arboreal substrates by non-human apes and by differing spatial relationships between hallux position and orientation of the substrate reaction resultant during stance. The novel morphological approach employed in this study offers the potential for transformative insights into form-function relationships in additional long bones, including those of extinct organisms (e.g., fossils). PMID:25635768
Self-Motion Perception: Assessment by Real-Time Computer Generated Animations
NASA Technical Reports Server (NTRS)
Parker, Donald E.
1999-01-01
Our overall goal is to develop materials and procedures for assessing vestibular contributions to spatial cognition. The specific objective of the research described in this paper is to evaluate computer-generated animations as potential tools for studying self-orientation and self-motion perception. Specific questions addressed in this study included the following. First, does a non- verbal perceptual reporting procedure using real-time animations improve assessment of spatial orientation? Are reports reliable? Second, do reports confirm expectations based on stimuli to vestibular apparatus? Third, can reliable reports be obtained when self-motion description vocabulary training is omitted?
Reorienting with terrain slope and landmarks.
Nardi, Daniele; Newcombe, Nora S; Shipley, Thomas F
2013-02-01
Orientation (or reorientation) is the first step in navigation, because establishing a spatial frame of reference is essential for a sense of location and heading direction. Recent research on nonhuman animals has revealed that the vertical component of an environment provides an important source of spatial information, in both terrestrial and aquatic settings. Nonetheless, humans show large individual and sex differences in the ability to use terrain slope for reorientation. To understand why some participants--mainly women--exhibit a difficulty with slope, we tested reorientation in a richer environment than had been used previously, including both a tilted floor and a set of distinct objects that could be used as landmarks. This environment allowed for the use of two different strategies for solving the task, one based on directional cues (slope gradient) and one based on positional cues (landmarks). Overall, rather than using both cues, participants tended to focus on just one. Although men and women did not differ significantly in their encoding of or reliance on the two strategies, men showed greater confidence in solving the reorientation task. These facts suggest that one possible cause of the female difficulty with slope might be a generally lower spatial confidence during reorientation.
A spatial approach of magnitude-squared coherence applied to selective attention detection.
Bonato Felix, Leonardo; de Souza Ranaudo, Fernando; D'affonseca Netto, Aluizio; Ferreira Leite Miranda de Sá, Antonio Mauricio
2014-05-30
Auditory selective attention is the human ability of actively focusing in a certain sound stimulus while avoiding all other ones. This ability can be used, for example, in behavioral studies and brain-machine interface. In this work we developed an objective method - called Spatial Coherence - to detect the side where a subject is focusing attention to. This method takes into consideration the Magnitude Squared Coherence and the topographic distribution of responses among electroencephalogram electrodes. The individuals were stimulated with amplitude-modulated tones binaurally and were oriented to focus attention to only one of the stimuli. The results indicate a contralateral modulation of ASSR in the attention condition and are in agreement with prior studies. Furthermore, the best combination of electrodes led to a hit rate of 82% for 5.03 commands per minute. Using a similar paradigm, in a recent work, a maximum hit rate of 84.33% was achieved, but with a greater a classification time (20s, i.e. 3 commands per minute). It seems that Spatial Coherence is a useful technique for detecting focus of auditory selective attention. Copyright © 2014 Elsevier B.V. All rights reserved.
Spatial Structure in the Infrared Spectra of Three Evolved Stars
NASA Astrophysics Data System (ADS)
Sloan, G. C.; Tandy, P. C.; Pirger, B. E.; Hodge, T. M.
1993-05-01
We have spatially resolved three evolved sources using GLADYS, a long-slit 10 microns spectrometer, at the Wyoming Infrared Observatory. These observations, made in 1993 March, were the first for GLADYS after a complete replacement of the detector drive electronics, ADCs, and hardware co-adder. We studied each source in a north/south and an east/west slit orientation. For each set of observations, we fit a gaussian to the spatial profile at each wavelength to create a spatiogram, or plot of the width of the spectrum as a function of wavelength. In both slit orientations, the spatiogram of alpha Orionis is widest at 10 microns, where the contribution from the silicate dust in the circumstellar shell is strongest. The FWHM at 10 microns is 2.0 arcsec, while our point-source comparison has a FWHM of 1.6 arcsec. These results are very similar to those presented for a N/S slit by Grasdalen, Sloan, and LeVan (1992, ApJ, 384, L25). IRC+10216 is also resolved in both slit orientations, having a FWHM of 1.9 arcsec at 11 microns, compared with 1.5 arcsec for a point source. No spectral structure is apparent in the spatiograms, indicating that there is little change in the spectral character of the emission across the source. AFGL 2688 (the Cygnus Egg) is clearly resolved in the N/S slit orientation, where its FWHM at 11 microns is 2.2 arcsec, but its spatiogram in the E/W slit orientation is barely distinguishable from that of a point source.
Prieur, J-M; Bourdin, C; Sarès, F; Vercher, J-L
2006-01-01
A major issue in motor control studies is to determine whether and how we use spatial frames of reference to organize our spatially oriented behaviors. In previous experiments we showed that simulated body tilt during off-axis rotation affected the performance in verbal localization and manual pointing tasks. It was hypothesized that the observed alterations were at least partly due to a change in the orientation of the egocentric frame of reference, which was indeed centered on the body but aligned with the gravitational vector. The present experiments were designed to test this hypothesis in a situation where no inertial constraints (except the usual gravitational one) exist and where the orientation of the body longitudinal z-axis was not aligned with the direction of the gravity. Eleven subjects were exposed to real static body tilt and were required to verbally localize (experiment 1) and to point as accurately as possible towards (experiment 2) memorized visual targets, in two conditions, Head-Free and Head-Fixed conditions. Results show that the performance was only affected by real body tilt in the localization task performed when the subject's head was tilted relative to the body. Thus, dissociation between gravity and body longitudinal z-axis alone is not responsible for localization nor for pointing errors. Therefore, the egocentric frame of reference seems independent from the orientation of the gravity with regard to body z-axis as expected from our previous studies. Moreover, the use of spatial referentials appears to be less mandatory than expected for pointing movements (motor task) than for localization task (cognitive task).
Tactile Acuity Charts: A Reliable Measure of Spatial Acuity
Bruns, Patrick; Camargo, Carlos J.; Campanella, Humberto; Esteve, Jaume; Dinse, Hubert R.; Röder, Brigitte
2014-01-01
For assessing tactile spatial resolution it has recently been recommended to use tactile acuity charts which follow the design principles of the Snellen letter charts for visual acuity and involve active touch. However, it is currently unknown whether acuity thresholds obtained with this newly developed psychophysical procedure are in accordance with established measures of tactile acuity that involve passive contact with fixed duration and control of contact force. Here we directly compared tactile acuity thresholds obtained with the acuity charts to traditional two-point and grating orientation thresholds in a group of young healthy adults. For this purpose, two types of charts, using either Braille-like dot patterns or embossed Landolt rings with different orientations, were adapted from previous studies. Measurements with the two types of charts were equivalent, but generally more reliable with the dot pattern chart. A comparison with the two-point and grating orientation task data showed that the test-retest reliability of the acuity chart measurements after one week was superior to that of the passive methods. Individual thresholds obtained with the acuity charts agreed reasonably with the grating orientation threshold, but less so with the two-point threshold that yielded relatively distinct acuity estimates compared to the other methods. This potentially considerable amount of mismatch between different measures of tactile acuity suggests that tactile spatial resolution is a complex entity that should ideally be measured with different methods in parallel. The simple test procedure and high reliability of the acuity charts makes them a promising complement and alternative to the traditional two-point and grating orientation thresholds. PMID:24504346
van den Berg, Ronald; Roerdink, Jos B. T. M.; Cornelissen, Frans W.
2010-01-01
An object in the peripheral visual field is more difficult to recognize when surrounded by other objects. This phenomenon is called “crowding”. Crowding places a fundamental constraint on human vision that limits performance on numerous tasks. It has been suggested that crowding results from spatial feature integration necessary for object recognition. However, in the absence of convincing models, this theory has remained controversial. Here, we present a quantitative and physiologically plausible model for spatial integration of orientation signals, based on the principles of population coding. Using simulations, we demonstrate that this model coherently accounts for fundamental properties of crowding, including critical spacing, “compulsory averaging”, and a foveal-peripheral anisotropy. Moreover, we show that the model predicts increased responses to correlated visual stimuli. Altogether, these results suggest that crowding has little immediate bearing on object recognition but is a by-product of a general, elementary integration mechanism in early vision aimed at improving signal quality. PMID:20098499
On the effectiveness of noise masks: naturalistic vs. un-naturalistic image statistics.
Hansen, Bruce C; Hess, Robert F
2012-05-01
It has been argued that the human visual system is optimized for identification of broadband objects embedded in stimuli possessing orientation averaged power spectra fall-offs that obey the 1/f(β) relationship typically observed in natural scene imagery (i.e., β=2.0 on logarithmic axes). Here, we were interested in whether individual spatial channels leading to recognition are functionally optimized for narrowband targets when masked by noise possessing naturalistic image statistics (β=2.0). The current study therefore explores the impact of variable β noise masks on the identification of narrowband target stimuli ranging in spatial complexity, while simultaneously controlling for physical or perceived differences between the masks. The results show that β=2.0 noise masks produce the largest identification thresholds regardless of target complexity, and thus do not seem to yield functionally optimized channel processing. The differential masking effects are discussed in the context of contrast gain control. Copyright © 2012 Elsevier Ltd. All rights reserved.
Six dimensional X-ray Tensor Tomography with a compact laboratory setup
NASA Astrophysics Data System (ADS)
Sharma, Y.; Wieczorek, M.; Schaff, F.; Seyyedi, S.; Prade, F.; Pfeiffer, F.; Lasser, T.
2016-09-01
Attenuation based X-ray micro computed tomography (XCT) provides three-dimensional images with micrometer resolution. However, there is a trade-off between the smallest size of the structures that can be resolved and the measurable sample size. In this letter, we present an imaging method using a compact laboratory setup that reveals information about micrometer-sized structures within samples that are several orders of magnitudes larger. We combine the anisotropic dark-field signal obtained in a grating interferometer and advanced tomographic reconstruction methods to reconstruct a six dimensional scattering tensor at every spatial location in three dimensions. The scattering tensor, thus obtained, encodes information about the orientation of micron-sized structures such as fibres in composite materials or dentinal tubules in human teeth. The sparse acquisition schemes presented in this letter enable the measurement of the full scattering tensor at every spatial location and can be easily incorporated in a practical, commercially feasible laboratory setup using conventional X-ray tubes, thus allowing for widespread industrial applications.
Hesse, Bernhard; Salome, Murielle; Castillo-Michel, Hiram; Cotte, Marine; Fayard, Barbara; Sahle, Christoph J; De Nolf, Wout; Hradilova, Jana; Masic, Admir; Kanngießer, Birgit; Bohner, Marc; Varga, Peter; Raum, Kay; Schrof, Susanne
2016-04-05
Here, we show results on X-ray absorption near edge structure spectroscopy in both transmission and X-ray fluorescence full-field mode (FF-XANES) at the calcium K-edge on human bone tissue in healthy and diseased conditions and for different tissue maturation stages. We observe that the dominating spectral differences originating from different tissue regions, which are well pronounced in the white line and postedge structures are associated with polarization effects. These polarization effects dominate the spectral variance and must be well understood and modeled before analyzing the very subtle spectral variations related to the bone tissue variations itself. However, these modulations in the fine structure of the spectra can potentially be of high interest to quantify orientations of the apatite crystals in highly structured tissue matrices such as bone. Due to the extremely short wavelengths of X-rays, FF-XANES overcomes the limited spatial resolution of other optical and spectroscopic techniques exploiting visible light. Since the field of view in FF-XANES is rather large the acquisition times for analyzing the same region are short compared to, for example, X-ray diffraction techniques. Our results on the angular absorption dependence were verified by both site-matched polarized Raman spectroscopy, which has been shown to be sensitive to the orientation of bone building blocks and by mathematical simulations of the angular absorbance dependence. As an outlook we further demonstrate the polarization based assessment of calcium-containing crystal orientation and specification of calcium in a beta-tricalcium phosphate (β-Ca3(PO4)2 scaffold implanted into ovine bone. Regarding the use of XANES to assess chemical properties of Ca in human bone tissue our data suggest that neither the anatomical site (tibia vs jaw) nor pathology (healthy vs necrotic jaw bone tissue) affected the averaged spectral shape of the XANES spectra.
Perceptual-cognitive skills and performance in orienteering.
Guzmán, José F; Pablos, Ana M; Pablos, Carlos
2008-08-01
The goal was analysis of the perceptual-cognitive skills associated with sport performance in orienteering in a sample of 22 elite and 17 nonelite runners. Variables considered were memory, basic orienteering techniques, map reading, symbol knowledge, map-terrain-map identification, and spatial organisation. A computerised questionnaire was developed to measure the variables. The reliability of the test (agreement between experts) was 90%. Findings suggested that competence in performing basic orienteering techniques efficiently was a key variable differentiating between the elite and the nonelite athletes. The results are discussed in comparison with previous studies.
Murphy-Baum, Benjamin L; Taylor, W Rowland
2015-09-30
Much of the computational power of the retina derives from the activity of amacrine cells, a large and diverse group of GABAergic and glycinergic inhibitory interneurons. Here, we identify an ON-type orientation-selective, wide-field, polyaxonal amacrine cell (PAC) in the rabbit retina and demonstrate how its orientation selectivity arises from the structure of the dendritic arbor and the pattern of excitatory and inhibitory inputs. Excitation from ON bipolar cells and inhibition arising from the OFF pathway converge to generate a quasi-linear integration of visual signals in the receptive field center. This serves to suppress responses to high spatial frequencies, thereby improving sensitivity to larger objects and enhancing orientation selectivity. Inhibition also regulates the magnitude and time course of excitatory inputs to this PAC through serial inhibitory connections onto the presynaptic terminals of ON bipolar cells. This presynaptic inhibition is driven by graded potentials within local microcircuits, similar in extent to the size of single bipolar cell receptive fields. Additional presynaptic inhibition is generated by spiking amacrine cells on a larger spatial scale covering several hundred microns. The orientation selectivity of this PAC may be a substrate for the inhibition that mediates orientation selectivity in some types of ganglion cells. Significance statement: The retina comprises numerous excitatory and inhibitory circuits that encode specific features in the visual scene, such as orientation, contrast, or motion. Here, we identify a wide-field inhibitory neuron that responds to visual stimuli of a particular orientation, a feature selectivity that is primarily due to the elongated shape of the dendritic arbor. Integration of convergent excitatory and inhibitory inputs from the ON and OFF visual pathways suppress responses to small objects and fine textures, thus enhancing selectivity for larger objects. Feedback inhibition regulates the strength and speed of excitation on both local and wide-field spatial scales. This study demonstrates how different synaptic inputs are regulated to tune a neuron to respond to specific features in the visual scene. Copyright © 2015 the authors 0270-6474/15/3513336-15$15.00/0.
Attention to baseline: does orienting visuospatial attention really facilitate target detection?
Albares, Marion; Criaud, Marion; Wardak, Claire; Nguyen, Song Chi Trung; Ben Hamed, Suliann; Boulinguez, Philippe
2011-08-01
Standard protocols testing the orientation of visuospatial attention usually present spatial cues before targets and compare valid-cue trials with invalid-cue trials. The valid/invalid contrast results in a relative behavioral or physiological difference that is generally interpreted as a benefit of attention orientation. However, growing evidence suggests that inhibitory control of response is closely involved in this kind of protocol that requires the subjects to withhold automatic responses to cues, probably biasing behavioral and physiological baselines. Here, we used two experiments to disentangle the inhibitory control of automatic responses from orienting of visuospatial attention in a saccadic reaction time task in humans, a variant of the classical cue-target detection task and a sustained visuospatial attentional task. Surprisingly, when referring to a simple target detection task in which there is no need to refrain from reacting to avoid inappropriate responses, we found no consistent evidence of facilitation of target detection at the attended location. Instead, we observed a cost at the unattended location. Departing from the classical view, our results suggest that reaction time measures of visuospatial attention probably relie on the attenuation of elementary processes involved in visual target detection and saccade initiation away from the attended location rather than on facilitation at the attended location. This highlights the need to use proper control conditions in experimental designs to disambiguate relative from absolute cueing benefits on target detection reaction times, both in psychophysical and neurophysiological studies.
High level language-based robotic control system
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo (Inventor); Kruetz, Kenneth K. (Inventor); Jain, Abhinandan (Inventor)
1994-01-01
This invention is a robot control system based on a high level language implementing a spatial operator algebra. There are two high level languages included within the system. At the highest level, applications programs can be written in a robot-oriented applications language including broad operators such as MOVE and GRASP. The robot-oriented applications language statements are translated into statements in the spatial operator algebra language. Programming can also take place using the spatial operator algebra language. The statements in the spatial operator algebra language from either source are then translated into machine language statements for execution by a digital control computer. The system also includes the capability of executing the control code sequences in a simulation mode before actual execution to assure proper action at execution time. The robot's environment is checked as part of the process and dynamic reconfiguration is also possible. The languages and system allow the programming and control of multiple arms and the use of inward/outward spatial recursions in which every computational step can be related to a transformation from one point in the mechanical robot to another point to name two major advantages.
High level language-based robotic control system
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo (Inventor); Kreutz, Kenneth K. (Inventor); Jain, Abhinandan (Inventor)
1996-01-01
This invention is a robot control system based on a high level language implementing a spatial operator algebra. There are two high level languages included within the system. At the highest level, applications programs can be written in a robot-oriented applications language including broad operators such as MOVE and GRASP. The robot-oriented applications language statements are translated into statements in the spatial operator algebra language. Programming can also take place using the spatial operator algebra language. The statements in the spatial operator algebra language from either source are then translated into machine language statements for execution by a digital control computer. The system also includes the capability of executing the control code sequences in a simulation mode before actual execution to assure proper action at execution time. The robot's environment is checked as part of the process and dynamic reconfiguration is also possible. The languages and system allow the programming and control of multiple arms and the use of inward/outward spatial recursions in which every computational step can be related to a transformation from one point in the mechanical robot to another point to name two major advantages.
Human speed perception is contrast dependent
NASA Technical Reports Server (NTRS)
Stone, Leland S.; Thompson, Peter
1992-01-01
When two parallel gratings moving at the same speed are presented simultaneously, the lower-contrast grating appears slower. This misperception is evident across a wide range of contrasts (2.5-50 percent) and does not appear to saturate. On average, a 70 percent contrast grating must be slowed by 35 percent to match a 10 percent contrast grating moving at 2 deg/sec (N = 6). Furthermore, the effect is largely independent of the absolute contrast level and is a quasilinear function of log contrast ratio. A preliminary parametric study shows that, although spatial frequency has little effect, relative orientation is important. Finally, the misperception of relative speed appears lessened when the stimuli to be matched are presented sequentially.
Valdetaro, Gisele P.; Aldrovani, Marcela; Padua, Ivan R. M.; Cristovam, Priscila C.; Gomes, José A. P.; Laus, José L.
2016-01-01
In this research we evaluated the supramolecular organizations and the optical anisotropical properties of the de-epithelialized human amniotic membrane and rabbit limbal stroma, before and after explant culture. Birefringence, monochromatic light spectral absorption and linear dichroism of the main extracellular matrix biopolymers, that is, the fibrillar collagens and proteoglycans, were investigated by polarized light microscopy combined with image analysis. Our results demonstrated that the culture procedure–induced stimuli altered the supra-organizational characteristics (in terms of collagens/proteoglycans spatial orientation and ordered-aggregational state) of the amniotic and limbal extracellular matrix, which led to changes in optical anisotropical properties. PMID:28018719
Hemispheric Differences in Attentional Orienting by Social Cues
ERIC Educational Resources Information Center
Greene, Deanna J.; Zaidel, Eran
2011-01-01
Research points to a right hemisphere bias for processing social stimuli. Hemispheric specialization for attention shifts cued by social stimuli, however, has been rarely studied. We examined the capacity of each hemisphere to orient attention in response to social and nonsocial cues using a lateralized spatial cueing paradigm. We compared the…
ERIC Educational Resources Information Center
Canagarajah, Suresh
2018-01-01
The expanding orientations to translingualism are motivated by a gradual shift from the structuralist paradigm that has been treated as foundational in modern linguistics. Structuralism encouraged scholars to consider language, like other social constructs, as organized as a self-defining and closed structure, set apart from spatiotemporal…
Wiese, Eva; Wykowska, Agnieszka; Müller, Hermann J.
2014-01-01
For effective social interactions with other people, information about the physical environment must be integrated with information about the interaction partner. In order to achieve this, processing of social information is guided by two components: a bottom-up mechanism reflexively triggered by stimulus-related information in the social scene and a top-down mechanism activated by task-related context information. In the present study, we investigated whether these components interact during attentional orienting to gaze direction. In particular, we examined whether the spatial specificity of gaze cueing is modulated by expectations about the reliability of gaze behavior. Expectations were either induced by instruction or could be derived from experience with displayed gaze behavior. Spatially specific cueing effects were observed with highly predictive gaze cues, but also when participants merely believed that actually non-predictive cues were highly predictive. Conversely, cueing effects for the whole gazed-at hemifield were observed with non-predictive gaze cues, and spatially specific cueing effects were attenuated when actually predictive gaze cues were believed to be non-predictive. This pattern indicates that (i) information about cue predictivity gained from sampling gaze behavior across social episodes can be incorporated in the attentional orienting to social cues, and that (ii) beliefs about gaze behavior modulate attentional orienting to gaze direction even when they contradict information available from social episodes. PMID:24722348
Visual selective attention in amnestic mild cognitive impairment.
McLaughlin, Paula M; Anderson, Nicole D; Rich, Jill B; Chertkow, Howard; Murtha, Susan J E
2014-11-01
Subtle deficits in visual selective attention have been found in amnestic mild cognitive impairment (aMCI). However, few studies have explored performance on visual search paradigms or the Simon task, which are known to be sensitive to disease severity in Alzheimer's patients. Furthermore, there is limited research investigating how deficiencies can be ameliorated with exogenous support (auditory cues). Sixteen individuals with aMCI and 14 control participants completed 3 experimental tasks that varied in demand and cue availability: visual search-alerting, visual search-orienting, and Simon task. Visual selective attention was influenced by aMCI, auditory cues, and task characteristics. Visual search abilities were relatively consistent across groups. The aMCI participants were impaired on the Simon task when working memory was required, but conflict resolution was similar to controls. Spatially informative orienting cues improved response times, whereas spatially neutral alerting cues did not influence performance. Finally, spatially informative auditory cues benefited the aMCI group more than controls in the visual search task, specifically at the largest array size where orienting demands were greatest. These findings suggest that individuals with aMCI have working memory deficits and subtle deficiencies in orienting attention and rely on exogenous information to guide attention. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Investigating shape representation using sensitivity to part- and axis-based transformations.
Denisova, Kristina; Feldman, Jacob; Su, Xiaotao; Singh, Manish
2016-09-01
Part- and axis-based approaches organize shape representations in terms of simple parts and their spatial relationships. Shape transformations that alter qualitative part structure have been shown to be more detectable than those that preserve it. We compared sensitivity to various transformations that change quantitative properties of parts and their spatial relationships, while preserving qualitative part structure. Shape transformations involving changes in length, width, curvature, orientation and location were applied to a small part attached to a larger base of a two-part shape. Increment thresholds were estimated for each transformation using a 2IFC procedure. Thresholds were converted into common units of shape difference to enable comparisons across transformations. Higher sensitivity was consistently found for transformations involving a parameter of a single part (length, width, curvature) than those involving spatial relations between two parts (relative orientation and location), suggesting a single-part superiority effect. Moreover, sensitivity to shifts in part location - a biomechanically implausible shape transformation - was consistently poorest. The influence of region-based geometry was investigated via stereoscopic manipulation of figure and ground. Sensitivity was compared across positive parts (protrusions) and negative parts (indentations) for transformations involving a change in orientation or location. For changes in part orientation (biomechanically plausible), sensitivity was better for positive than negative parts; whereas for changes in part location (biomechanically implausible), no systematic difference was observed. Copyright © 2015 Elsevier Ltd. All rights reserved.
INVESTIGATING SHAPE REPRESENTATION USING SENSITIVITY TO PART- AND AXIS-BASED TRANSFORMATIONS
Denisova, Kristina; Feldman, Jacob; Su, Xiaotao; Singh, Manish
2015-01-01
Part -and axis-based approaches organize shape representations in terms of simple parts and their spatial relationships. Shape transformations that alter qualitative part structure have been shown to be more detectable than those that preserve it. We compared sensitivity to various transformations that change quantitative properties of parts and their spatial relationships, while preserving qualitative part structure. Shape transformations involving changes in length, width, curvature, orientation and location were applied to a small part attached to a larger base of a two-part shape. Increment thresholds were estimated for each transformation using a 2IFC procedure. Thresholds were converted into common units of shape difference to enable comparisons across transformations. Higher sensitivity was consistently found for transformations involving a parameter of a single part (length, width, curvature) than those involving spatial relations between two parts (relative orientation and location), suggesting a single-part superiority effect. Moreover, sensitivity to shifts in part location—a biomechanically implausible shape transformation—was consistently poorest. The influence of region-based geometry was investigated via stereoscopic manipulation of figure and ground. Sensitivity was compared across positive parts (protrusions) and negative parts (indentations) for transformations involving a change in orientation or location. For changes in part orientation (biomechanically plausible), sensitivity was better for positive than negative parts; whereas for changes in part location (biomechanically implausible), no systematic difference was observed. PMID:26325393
Salvato, Gerardo; Patai, Eva Z; McCloud, Tayla; Nobre, Anna C
2016-09-01
Apolipoprotein (APOE) ɛ4 genotype has been identified as a risk factor for late-onset Alzheimer disease (AD). The memory system is mostly involved in AD, and memory deficits represent its key feature. A growing body of studies has focused on the earlier identification of cognitive dysfunctions in younger and older APOE ɛ4 carriers, but investigation on middle-aged individuals remains rare. Here we sought to investigate if the APOE ɛ4 genotype modulates declarative memory and its influences on perception in the middle of the life span. We tested 60 middle-aged individuals recruited according to their APOE allele variants (ɛ3/ɛ3, ɛ3/ɛ4, ɛ4/ɛ4) on a long-term memory-based orienting of attention task. Results showed that the APOE ɛ4 genotype impaired neither explicit memory nor memory-based orienting of spatial attention. Interestingly, however, we found that the possession of the ɛ4 allele broke the relationship between declarative long-term memory and memory-guided orienting of visuo-spatial attention, suggesting an earlier modulation exerted by pure genetic characteristics on cognition. These findings are discussed in light of possible accelerated brain ageing in middle-aged ɛ4-carriers, and earlier structural changes in the brain occurring at this stage of the lifespan. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Coding of Velocity Storage in the Vestibular Nuclei.
Yakushin, Sergei B; Raphan, Theodore; Cohen, Bernard
2017-01-01
Semicircular canal afferents sense angular acceleration and output angular velocity with a short time constant of ≈4.5 s. This output is prolonged by a central integrative network, velocity storage that lengthens the time constants of eye velocity. This mechanism utilizes canal, otolith, and visual (optokinetic) information to align the axis of eye velocity toward the spatial vertical when head orientation is off-vertical axis. Previous studies indicated that vestibular-only (VO) and vestibular-pause-saccade (VPS) neurons located in the medial and superior vestibular nucleus could code all aspects of velocity storage. A recently developed technique enabled prolonged recording while animals were rotated and received optokinetic stimulation about a spatial vertical axis while upright, side-down, prone, and supine. Firing rates of 33 VO and 8 VPS neurons were studied in alert cynomolgus monkeys. Majority VO neurons were closely correlated with the horizontal component of velocity storage in head coordinates, regardless of head orientation in space. Approximately, half of all tested neurons (46%) code horizontal component of velocity in head coordinates, while the other half (54%) changed their firing rates as the head was oriented relative to the spatial vertical, coding the horizontal component of eye velocity in spatial coordinates. Some VO neurons only coded the cross-coupled pitch or roll components that move the axis of eye rotation toward the spatial vertical. Sixty-five percent of these VO and VPS neurons were more sensitive to rotation in one direction (predominantly contralateral), providing directional orientation for the subset of VO neurons on either side of the brainstem. This indicates that the three-dimensional velocity storage integrator is composed of directional subsets of neurons that are likely to be the bases for the spatial characteristics of velocity storage. Most VPS neurons ceased firing during drowsiness, but the firing rates of VO neurons were unaffected by states of alertness and declined with the time constant of velocity storage. Thus, the VO neurons are the prime components of the mechanism of coding for velocity storage, whereas the VPS neurons are likely to provide the path from the vestibular to the oculomotor system for the VO neurons.
Coding of Velocity Storage in the Vestibular Nuclei
Yakushin, Sergei B.; Raphan, Theodore; Cohen, Bernard
2017-01-01
Semicircular canal afferents sense angular acceleration and output angular velocity with a short time constant of ≈4.5 s. This output is prolonged by a central integrative network, velocity storage that lengthens the time constants of eye velocity. This mechanism utilizes canal, otolith, and visual (optokinetic) information to align the axis of eye velocity toward the spatial vertical when head orientation is off-vertical axis. Previous studies indicated that vestibular-only (VO) and vestibular-pause-saccade (VPS) neurons located in the medial and superior vestibular nucleus could code all aspects of velocity storage. A recently developed technique enabled prolonged recording while animals were rotated and received optokinetic stimulation about a spatial vertical axis while upright, side-down, prone, and supine. Firing rates of 33 VO and 8 VPS neurons were studied in alert cynomolgus monkeys. Majority VO neurons were closely correlated with the horizontal component of velocity storage in head coordinates, regardless of head orientation in space. Approximately, half of all tested neurons (46%) code horizontal component of velocity in head coordinates, while the other half (54%) changed their firing rates as the head was oriented relative to the spatial vertical, coding the horizontal component of eye velocity in spatial coordinates. Some VO neurons only coded the cross-coupled pitch or roll components that move the axis of eye rotation toward the spatial vertical. Sixty-five percent of these VO and VPS neurons were more sensitive to rotation in one direction (predominantly contralateral), providing directional orientation for the subset of VO neurons on either side of the brainstem. This indicates that the three-dimensional velocity storage integrator is composed of directional subsets of neurons that are likely to be the bases for the spatial characteristics of velocity storage. Most VPS neurons ceased firing during drowsiness, but the firing rates of VO neurons were unaffected by states of alertness and declined with the time constant of velocity storage. Thus, the VO neurons are the prime components of the mechanism of coding for velocity storage, whereas the VPS neurons are likely to provide the path from the vestibular to the oculomotor system for the VO neurons. PMID:28861030
NASA Astrophysics Data System (ADS)
Cruden, A. R.; Vollgger, S.
2016-12-01
The emerging capability of UAV photogrammetry combines a simple and cost-effective method to acquire digital aerial images with advanced computer vision algorithms that compute spatial datasets from a sequence of overlapping digital photographs from various viewpoints. Depending on flight altitude and camera setup, sub-centimeter spatial resolution orthophotographs and textured dense point clouds can be achieved. Orientation data can be collected for detailed structural analysis by digitally mapping such high-resolution spatial datasets in a fraction of time and with higher fidelity compared to traditional mapping techniques. Here we describe a photogrammetric workflow applied to a structural study of folds and fractures within alternating layers of sandstone and mudstone at a coastal outcrop in SE Australia. We surveyed this location using a downward looking digital camera mounted on commercially available multi-rotor UAV that autonomously followed waypoints at a set altitude and speed to ensure sufficient image overlap, minimum motion blur and an appropriate resolution. The use of surveyed ground control points allowed us to produce a geo-referenced 3D point cloud and an orthophotograph from hundreds of digital images at a spatial resolution < 10 mm per pixel, and cm-scale location accuracy. Orientation data of brittle and ductile structures were semi-automatically extracted from these high-resolution datasets using open-source software. This resulted in an extensive and statistically relevant orientation dataset that was used to 1) interpret the progressive development of folds and faults in the region, and 2) to generate a 3D structural model that underlines the complex internal structure of the outcrop and quantifies spatial variations in fold geometries. Overall, our work highlights how UAV photogrammetry can contribute to new insights in structural analysis.
Plasticity of spatial hearing: behavioural effects of cortical inactivation
Nodal, Fernando R; Bajo, Victoria M; King, Andrew J
2012-01-01
The contribution of auditory cortex to spatial information processing was explored behaviourally in adult ferrets by reversibly deactivating different cortical areas by subdural placement of a polymer that released the GABAA agonist muscimol over a period of weeks. The spatial extent and time course of cortical inactivation were determined electrophysiologically. Muscimol-Elvax was placed bilaterally over the anterior (AEG), middle (MEG) or posterior ectosylvian gyrus (PEG), so that different regions of the auditory cortex could be deactivated in different cases. Sound localization accuracy in the horizontal plane was assessed by measuring both the initial head orienting and approach-to-target responses made by the animals. Head orienting behaviour was unaffected by silencing any region of the auditory cortex, whereas the accuracy of approach-to-target responses to brief sounds (40 ms noise bursts) was reduced by muscimol-Elvax but not by drug-free implants. Modest but significant localization impairments were observed after deactivating the MEG, AEG or PEG, although the largest deficits were produced in animals in which the MEG, where the primary auditory fields are located, was silenced. We also examined experience-induced spatial plasticity by reversibly plugging one ear. In control animals, localization accuracy for both approach-to-target and head orienting responses was initially impaired by monaural occlusion, but recovered with training over the next few days. Deactivating any part of the auditory cortex resulted in less complete recovery than in controls, with the largest deficits observed after silencing the higher-level cortical areas in the AEG and PEG. Although suggesting that each region of auditory cortex contributes to spatial learning, differences in the localization deficits and degree of adaptation between groups imply a regional specialization in the processing of spatial information across the auditory cortex. PMID:22547635
NASA Technical Reports Server (NTRS)
Hess, Bernhard J M.; Angelaki, Dora E.
2003-01-01
Rotational disturbances of the head about an off-vertical yaw axis induce a complex vestibuloocular reflex pattern that reflects the brain's estimate of head angular velocity as well as its estimate of instantaneous head orientation (at a reduced scale) in space coordinates. We show that semicircular canal and otolith inputs modulate torsional and, to a certain extent, also vertical ocular orientation of visually guided saccades and smooth-pursuit eye movements in a similar manner as during off-vertical axis rotations in complete darkness. It is suggested that this graviceptive control of eye orientation facilitates rapid visual spatial orientation during motion.
A Bayesian model of stereopsis depth and motion direction discrimination.
Read, J C A
2002-02-01
The extraction of stereoscopic depth from retinal disparity, and motion direction from two-frame kinematograms, requires the solution of a correspondence problem. In previous psychophysical work [Read and Eagle (2000) Vision Res 40: 3345-3358], we compared the performance of the human stereopsis and motion systems with correlated and anti-correlated stimuli. We found that, although the two systems performed similarly for narrow-band stimuli, broadband anti-correlated kinematograms produced a strong perception of reversed motion, whereas the stereograms appeared merely rivalrous. I now model these psychophysical data with a computational model of the correspondence problem based on the known properties of visual cortical cells. Noisy retinal images are filtered through a set of Fourier channels tuned to different spatial frequencies and orientations. Within each channel, a Bayesian analysis incorporating a prior preference for small disparities is used to assess the probability of each possible match. Finally, information from the different channels is combined to arrive at a judgement of stimulus disparity. Each model system--stereopsis and motion--has two free parameters: the amount of noise they are subject to, and the strength of their preference for small disparities. By adjusting these parameters independently for each system, qualitative matches are produced to psychophysical data, for both correlated and anti-correlated stimuli, across a range of spatial frequency and orientation bandwidths. The motion model is found to require much higher noise levels and a weaker preference for small disparities. This makes the motion model more tolerant of poor-quality reverse-direction false matches encountered with anti-correlated stimuli, matching the strong perception of reversed motion that humans experience with these stimuli. In contrast, the lower noise level and tighter prior preference used with the stereopsis model means that it performs close to chance with anti-correlated stimuli, in accordance with human psychophysics. Thus, the key features of the experimental data can be reproduced assuming that the motion system experiences more effective noise than the stereoscopy system and imposes a less stringent preference for small disparities.