Sample records for human support technology

  1. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 5: Human Support

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Viewgraphs of briefings from the Space Systems and Technology Advisory Committee (SSTAC)/ARTS review of the draft integrated technology plan (ITP) on human support are included. Topics covered include: human support program; human factors; life support technology; fire safety; medical support technology; advanced refrigeration technology; EVA suit system; advanced PLSS technology; and ARC-EVA systems research program.

  2. Space Life Support Technology Applications to Terrestrial Environmental Problems

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, Steven H.; Sleeper, Howard L.

    1993-01-01

    Many of the problems now facing the human race on Earth are, in fact, life support issues. Decline of air Quality as a result of industrial and automotive emissions, pollution of ground water by organic pesticides or solvents, and the disposal of solid wastes are all examples of environmental problems that we must solve to sustain human life. The technologies currently under development to solve the problems of supporting human life for advanced space missions are extraordinarily synergistic with these environmental problems. The development of these technologies (including both physicochemical and bioregenerative types) is increasingly focused on closing the life support loop by removing and recycling contaminants and wastes to produce the materials necessary to sustain human life. By so doing, this technology development effort also focuses automatically on reducing resupply logistics requirements and increasing crew safety through increased self-sufficiency. This paper describes several technologies that have been developed to support human life in space and illustrates the applicability of the technologies to environmental problems including environmental remediation and pollution prevention.

  3. Technology Needs to Support Future Mars Exploration

    NASA Technical Reports Server (NTRS)

    Nilsen, Erik N.; Baker, John; Lillard, Randolph P.

    2013-01-01

    The Mars Program Planning Group (MPPG) under the direction of Dr. Orlando Figueroa, was chartered to develop options for a program-level architecture for robotic exploration of Mars consistent with the objective to send humans to Mars in the 2030's. Scientific pathways were defined for future exploration, and multiple architectural options were developed that meet current science goals and support the future human exploration objectives. Integral to the process was the identification of critical technologies which enable the future scientific and human exploration goals. This paper describes the process for technology capabilities identification and examines the critical capability needs identified in the MPPG process. Several critical enabling technologies that have been identified to support the robotic exploration goals and with potential feedforward application to human exploration goals. Potential roadmaps for the development and validation of these technologies are discussed, including options for subscale technology demonstrations of future human exploration technologies on robotic missions.

  4. study on trace contaminants control assembly for sealed environment chamber

    NASA Astrophysics Data System (ADS)

    Pang, L. P.; Wang, J.; Liu, L. K.; Liu, H.

    The biological and Physicochemical P C life support technologies are all important parts to establish a human Closed Ecological Life Support System CELSS for long-duration mission The latter has the advantages of lower power consumption lower mass and higher efficiency therefore researchers often incorporate the use of biological systems with P C life support technologies to continuously recycle air water and part of the solid waste stream generated such as the Russian BLSS and the NASA-sponsored Lunar-Mars Life Support Test Project LMLSTP In short these tests were very successful in integrating biological and P C life support technologies for long-duration life support Therefore we should use a combination of integrated biological with P C life support technologies in a human CELSS Human construction materials plants animals and soils release much trace toxic gases in a CELSS and they will inhibit plant growth and badly affect human health when their concentrations rise over their threshold levels The effect of biological trace contaminant control technologies is slower especially for a human sealed chamber because human produce much more methane and other contaminants A regenerative Trace Contaminant Control Subsystem TCCS with P C technology is a more important part in this case to control quickly the airborne contaminants levels and assure human in good condition in a sealed chamber This paper describes a trace contaminant control test facility incorporated a 8 m3 sealed environment chamber a regenerative TCCS with P C

  5. Early convergence research and education supported by the National Science Foundation.

    PubMed

    Bainbridge, William Sims

    2004-05-01

    The following pages describe research grants awarded by the National Science Foundation that illustrate how different fields of science and technology can converge in order to increase human potential. Technological convergence involves the unification of the sciences of Nanotechnology, Biotechnology, Information Technology, and new technologies based on Cognitive Science (NBIC). Because it supports research across all major branches of science and technology, including the social and behavioral sciences, the NSF has been a focus of discussions about converging technologies to enhance human capabilities and serve human needs.

  6. Human Support Technology Research, Development and Demonstration

    NASA Technical Reports Server (NTRS)

    Joshi, Jitendra; Trinh, Eugene

    2004-01-01

    The Human Support Technology research, development, and demonstration program address es the following areas at TRL: Advanced Power and Propulsion. Cryogenic fluid management. Closed-loop life support and Habitability. Extravehicular activity systems. Scientific data collection and analysis. and Planetary in-situ resource utilization.

  7. Workshop on Critical Issues in Microgravity Fluids, Transport, and Reaction Processes in Advanced Human Support Technology

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis P.; Joshi, Jitendra A.

    2004-01-01

    This workshop was designed to bring the experts from the Advanced Human Support Technologies communities together to identify the most pressing and fruitful areas of research where success hinges on collaborative research between the two communities. Thus an effort was made to bring together experts in both advanced human support technologies and microgravity fluids, transport and reaction processes. Expertise was drawn from academia, national laboratories, and the federal government. The intent was to bring about a thorough exchange of ideas and develop recommendations to address the significant open design and operation issues for human support systems that are affected by fluid physics, transport and reaction processes. This report provides a summary of key discussions, findings, and recommendations.

  8. The Success of Advanced Learning Technologies for Instruction: Research and Evaluation of Human Factors Issues.

    ERIC Educational Resources Information Center

    Coldeway, Dan O.

    2002-01-01

    Data from three graduate programs using advanced learning technologies (ALTs) identified important human factors issues in technology use in three categories: learners (needs, skills, support, and motivation related to ALTs); faculty (attitudes, skills, support, and motivation related to ALTs); and technical staff (methods of providing assistance,…

  9. Development of Life Support System Technologies for Human Lunar Missions

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Ewert, Michael K.

    2009-01-01

    With the Preliminary Design Review (PDR) for the Orion Crew Exploration Vehicle planned to be completed in 2009, Exploration Life Support (ELS), a technology development project under the National Aeronautics and Space Administration s (NASA) Exploration Technology Development Program, is focusing its efforts on needs for human lunar missions. The ELS Project s goal is to develop and mature a suite of Environmental Control and Life Support System (ECLSS) technologies for potential use on human spacecraft under development in support of U.S. Space Exploration Policy. ELS technology development is directed at three major vehicle projects within NASA s Constellation Program (CxP): the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems, including habitats and pressurized rovers. The ELS Project includes four technical elements: Atmosphere Revitalization Systems, Water Recovery Systems, Waste Management Systems and Habitation Engineering, and two cross cutting elements, Systems Integration, Modeling and Analysis, and Validation and Testing. This paper will provide an overview of the ELS Project, connectivity with its customers and an update to content within its technology development portfolio with focus on human lunar missions.

  10. 39 CFR 221.6 - Field organization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... functional units responsible for finance, human resources, marketing, and operations support. (2) Reporting... support, finance, human resources, information technology, administrative support, and marketing. (2... assigned, Headquarters field units are responsible for legal services, corporate relations, human resources...

  11. Space Station Technology, 1983

    NASA Technical Reports Server (NTRS)

    Wright, R. L. (Editor); Mays, C. R. (Editor)

    1984-01-01

    This publication is a compilation of the panel summaries presented in the following areas: systems/operations technology; crew and life support; EVA; crew and life support: ECLSS; attitude, control, and stabilization; human capabilities; auxillary propulsion; fluid management; communications; structures and mechanisms; data management; power; and thermal control. The objective of the workshop was to aid the Space Station Technology Steering Committee in defining and implementing a technology development program to support the establishment of a permanent human presence in space. This compilation will provide the participants and their organizations with the information presented at this workshop in a referenceable format. This information will establish a stepping stone for users of space station technology to develop new technology and plan future tasks.

  12. Proposed Project Selection Method for Human Support Research and Technology Development (HSR&TD)

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2005-01-01

    The purpose of HSR&TD is to deliver human support technologies to the Exploration Systems Mission Directorate (ESMD) that will be selected for future missions. This requires identifying promising candidate technologies and advancing them in technology readiness until they are acceptable. HSR&TD must select an may of technology development projects, guide them, and either terminate or continue them, so as to maximize the resulting number of usable advanced human support technologies. This paper proposes an effective project scoring methodology to support managing the HSR&TD project portfolio. Researchers strongly disagree as to what are the best technology project selection methods, or even if there are any proven ones. Technology development is risky and outstanding achievements are rare and unpredictable. There is no simple formula for success. Organizations that are satisfied with their project selection approach typically use a mix of financial, strategic, and scoring methods in an open, established, explicit, formal process. This approach helps to build consensus and develop management insight. It encourages better project proposals by clarifying the desired project attributes. We propose a project scoring technique based on a method previously used in a federal laboratory and supported by recent research. Projects are ranked by their perceived relevance, risk, and return - a new 3 R's. Relevance is the degree to which the project objective supports the HSR&TD goal of developing usable advanced human support technologies. Risk is the estimated probability that the project will achieve its specific objective. Return is the reduction in mission life cycle cost obtained if the project is successful. If the project objective technology performs a new function with no current cost, its return is the estimated cash value of performing the new function. The proposed project selection scoring method includes definitions of the criteria, a project evaluation questionnaire, and a scoring formula.

  13. Developing Advanced Human Support Technologies for Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Berdich, Debra P.; Campbell, Paul D.; Jernigan, J. Mark

    2004-01-01

    The United States Vision for Space Exploration calls for sending robots and humans to explore the Earth's moon, the planet Mars, and beyond. The National Aeronautics and Space Administration (NASA) is developing a set of design reference missions that will provide further detail to these plans. Lunar missions are expected to provide a stepping stone, through operational research and evaluation, in developing the knowledge base necessary to send crews on long duration missions to Mars and other distant destinations. The NASA Exploration Systems Directorate (ExSD), in its program of bioastronautics research, manages the development of technologies that maintain human life, health, and performance in space. Using a system engineering process and risk management methods, ExSD's Human Support Systems (HSS) Program selects and performs research and technology development in several critical areas and transfers the results of its efforts to NASA exploration mission/systems development programs in the form of developed technologies and new knowledge about the capabilities and constraints of systems required to support human existence beyond Low Earth Orbit. HSS efforts include the areas of advanced environmental monitoring and control, extravehicular activity, food technologies, life support systems, space human factors engineering, and systems integration of all these elements. The HSS Program provides a structured set of deliverable products to meet the needs of exploration programs. These products reduce the gaps that exist in our knowledge of and capabilities for human support for long duration, remote space missions. They also reduce the performance gap between the efficiency of current space systems and the greater efficiency that must be achieved to make human planetary exploration missions economically and logistically feasible. In conducting this research and technology development program, it is necessary for HSS technologists and program managers to develop a common currency for decision making and the allocation of funding. A high level assessment is made of both the knowledge gaps and the system performance gaps across the program s technical project portfolio. This allows decision making that assures proper emphasis areas and provides a key measure of annual technological progress, as exploration mission plans continue to mature.

  14. iPAS: AES Flight System Technology Maturation for Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Othon, William L.

    2014-01-01

    In order to realize the vision of expanding human presence in space, NASA will develop new technologies that can enable future crewed spacecraft to go far beyond Earth orbit. These technologies must be matured to the point that future project managers can accept the risk of incorporating them safely and effectively within integrated spacecraft systems, to satisfy very challenging mission requirements. The technologies must also be applied and managed within an operational context that includes both on-board crew and mission support on Earth. The Advanced Exploration Systems (AES) Program is one part of the NASA strategy to identify and develop key capabilities for human spaceflight, and mature them for future use. To support this initiative, the Integrated Power Avionics and Software (iPAS) environment has been developed that allows engineers, crew, and flight operators to mature promising technologies into applicable capabilities, and to assess the value of these capabilities within a space mission context. This paper describes the development of the integration environment to support technology maturation and risk reduction, and offers examples of technology and mission demonstrations executed to date.

  15. Human Health and Support Systems Capability Roadmap Progress Review

    NASA Technical Reports Server (NTRS)

    Grounds, Dennis; Boehm, Al

    2005-01-01

    The Human Health and Support Systems Capability Roadmap focuses on research and technology development and demonstration required to ensure the health, habitation, safety, and effectiveness of crews in and beyond low Earth orbit. It contains three distinct sub-capabilities: Human Health and Performance. Life Support and Habitats. Extra-Vehicular Activity.

  16. Next Generation Life Support Project: Development of Advanced Technologies for Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2012-01-01

    Next Generation Life Support (NGLS) is one of several technology development projects sponsored by the National Aeronautics and Space Administration s Game Changing Development Program. NGLS is developing life support technologies (including water recovery, and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processing. The selected technologies within each of these areas are focused on increasing affordability, reliability, and vehicle self sufficiency while decreasing mass and enabling long duration exploration. The RCA and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Exploration Extravehicular Mobility Unit (EMU), with focus on prototyping and integrated testing. The focus of the Rapid Cycle Amine (RCA) swing-bed ventilation task is to provide integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The Variable Oxygen Regulator technology will significantly increase the number of pressure settings available to the space suit. Current spacesuit pressure regulators are limited to only two settings while the adjustability of the advanced regulator will be nearly continuous. The Alternative Water Processor efforts will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water, based on natural biological processes and membrane-based post treatment. The technologies will support a capability-driven architecture for extending human presence beyond low Earth orbit to potential destinations such as the Moon, near Earth asteroids and Mars.

  17. Next Generation Life Support Project Status

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Chullen, Cinda; Vega, Leticia; Cox, Marlon R.; Aitchison, Lindsay T.; Lange, Kevin E.; Pensinger, Stuart J.; Meyer, Caitlin E.; Flynn, Michael; Jackson, W. Andrew; hide

    2014-01-01

    Next Generation Life Support (NGLS) is one of over twenty technology development projects sponsored by NASA's Game Changing Development Program. The NGLS Project develops selected life support technologies needed for humans to live and work productively in space, with focus on technologies for future use in spacecraft cabin and space suit applications. Over the last three years, NGLS had five main project elements: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, High Performance (HP) Extravehicular Activity (EVA) Glove, Alternative Water Processor (AWP) and Series-Bosch Carbon Dioxide Reduction. The RCA swing bed, VOR and HP EVA Glove tasks are directed at key technology needs for the Portable Life Support System (PLSS) and pressure garment for an Advanced Extravehicular Mobility Unit (EMU). Focus is on prototyping and integrated testing in cooperation with the Advanced Exploration Systems (AES) Advanced EVA Project. The HP EVA Glove Element, new this fiscal year, includes the generation of requirements and standards to guide development and evaluation of new glove designs. The AWP and Bosch efforts focus on regenerative technologies to further close spacecraft cabin atmosphere revitalization and water recovery loops and to meet technology maturation milestones defined in NASA's Space Technology Roadmaps. These activities are aimed at increasing affordability, reliability, and vehicle self-sufficiency while decreasing mass and mission cost, supporting a capability-driven architecture for extending human presence beyond low-Earth orbit, along a human path toward Mars. This paper provides a status of current technology development activities with a brief overview of future plans.

  18. Developing Advanced Support Technologies for Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Berdich, Debra P.; Campbel, Paul D.; Jernigan, J. Mark

    2004-01-01

    The United States Vision for Space Exploration calls for sending robots and humans to explore the Earth s moon, the planet Mars, and beyond. The National Aeronautics and Space Administration (NASA) is developing a set of design reference missions that will provide further detail to these plans. Lunar missions are expected to provide a stepping stone, through operational research and evaluation, in developing the knowledge base necessary to send crews on long duration missions to Mars and other distant destinations. The NASA Exploration Systems Directorate (ExSD), in its program of bioastronautics research, manages the development of technologies that maintain human life, health, and performance in space. Using a systems engineering process and risk management methods, ExSD s Human Support Systems (HSS) Program selects and performs research and technology development in several critical areas and transfers the results of its efforts to NASA exploration mission/systems development programs in the form of developed technologies and new knowledge about the capabilities and constraints of systems required to support human existence beyond Low Earth Orbit. HSS efforts include the areas of advanced environmental monitoring and control, extravehicular activity, food technologies, life support systems, space human factors engineering, and systems integration of all these elements. The HSS Program provides a structured set of deliverable products to meet the needs of exploration programs. these products reduce the gaps that exist in our knowledge of and capabilities for human support for long duration, remote space missions. They also reduce the performance gap between the efficiency of current space systems and the greater efficiency that must be achieved to make human planetary exploration missions economically and logistically feasible. In conducting this research and technology development program, it is necessary for HSS technologists and program managers to develop a common currency for decision making and the allocation of funding. A high level assessment is made of both the knowledge gaps and the system performance gaps across the program s technical project portfolio. This allows decision making that assures proper emphasis areas and provides a key measure of annual technological progress, as exploration mission plans continue to mature.

  19. Human Support Technology Research to Enable Exploration

    NASA Technical Reports Server (NTRS)

    Joshi, Jitendra

    2003-01-01

    Contents include the following: Advanced life support. System integration, modeling, and analysis. Progressive capabilities. Water processing. Air revitalization systems. Why advanced CO2 removal technology? Solid waste resource recovery systems: lyophilization. ISRU technologies for Mars life support. Atmospheric resources of Mars. N2 consumable/make-up for Mars life. Integrated test beds. Monitoring and controlling the environment. Ground-based commercial technology. Optimizing size vs capability. Water recovery systems. Flight verification topics.

  20. Human Exploration System Test-Bed for Integration and Advancement (HESTIA) Support of Future NASA Deep-Space Missions

    NASA Technical Reports Server (NTRS)

    Marmolejo, Jose; Ewert, Michael

    2016-01-01

    The Engineering Directorate at the NASA - Johnson Space Center is outfitting a 20-Foot diameter hypobaric chamber in Building 7 to support future deep-space Environmental Control & Life Support System (ECLSS) research as part of the Human Exploration System Test-bed for Integration and Advancement (HESTIA) Project. This human-rated chamber is the only NASA facility that has the unique experience, chamber geometry, infrastructure, and support systems capable of conducting this research. The chamber was used to support Gemini, Apollo, and SkyLab Missions. More recently, it was used to conduct 30-, 60-, and 90-day human ECLSS closed-loop testing in the 1990s to support the International Space Station and life support technology development. NASA studies show that both planetary surface and deep-space transit crew habitats will be 3-4 story cylindrical structures driven by human occupancy volumetric needs and launch vehicle constraints. The HESTIA facility offers a 3-story, 20-foot diameter habitat consistent with the studies' recommendations. HESTIA operations follow stringent processes by a certified test team that including human testing. Project management, analysis, design, acquisition, fabrication, assembly and certification of facility build-ups are available to support this research. HESTIA offers close proximity to key stakeholders including astronauts, Human Research Program (who direct space human research for the agency), Mission Operations, Safety & Mission Assurance, and Engineering Directorate. The HESTIA chamber can operate at reduced pressure and elevated oxygen environments including those proposed for deep-space exploration. Data acquisition, power, fluids and other facility resources are available to support a wide range of research. Recently completed HESTIA research consisted of unmanned testing of ECLSS technologies. Eventually, the HESTIA research will include humans for extended durations at reduced pressure and elevated oxygen to demonstrate very high reliability of critical ECLSS and other technologies.

  1. Deep Space Habitat ECLSS Design Concept

    NASA Technical Reports Server (NTRS)

    Curley, Su; Stambaugh, Imelda; Swickrath, Michael; Anderson, Molly S.; Rotter, Henry

    2012-01-01

    Life support is vital to human spaceflight, and most current life support systems employ single-use hardware or regenerable technologies that throw away the waste products, relying on resupply to make up the consumables lost in the process. Because the long-term goal of the National Aeronautics and Space Administration is to expand human presence beyond low-earth orbit, life support systems must become self-sustaining for missions where resupply is not practical. From May through October 2011, the life support team at the Johnson Space Center was challenged to define requirements, develop a system concept, and create a preliminary life support system design for a non-planetary Deep Space Habitat that could sustain a crew of four in near earth orbit for a duration of 388 days. Some of the preferred technology choices to support this architecture were passed over because the mission definition has an unmanned portion lasting 825 days. The main portion of the architecture was derived from technologies currently integrated on the International Space Station as well as upcoming technologies with moderate Technology Readiness Levels. The final architecture concept contains only partially-closed air and water systems, as the breakeven point for some of the closure technologies was not achieved with the mission duration.

  2. Deep Space Habitat ECLS Design Concept

    NASA Technical Reports Server (NTRS)

    Curley, Su; Stambaugh, Imelda; Swickrath, Mike; Anderson, Molly; Rotter, Hank

    2011-01-01

    Life support is vital to human spaceflight, and most current life support systems employ single-use hardware or regenerable technologies that throw away the waste products, relying on resupply to make up the consumables lost in the process. Because the long-term goal of the National Aeronautics and Space Administration is to expand human presence beyond low-earth orbit, life support systems must become self-sustaining for missions where resupply is not practical. From May through October 2011, the life support team at the Johnson Space Center was challenged to define requirements, develop a system concept, and create a preliminary life support system design for a non-planetary Deep Space Habitat that could sustain a crew of four in near earth orbit for a duration of 388 days. Some of the preferred technology choices to support this architecture were passed over as the mission definition also has an unmanned portion lasting 825 days. The main portion of the architecture was derived from technologies currently integrated on the International Space Station as well as upcoming technologies with moderate Technology Readiness Levels. The final architecture concept contains only partially-closed air and water systems, as the breakeven point for some of the closure technologies was not achieved with the mission duration.

  3. Virtual HR: The Impact of Information Technology on the Human Resource Professional.

    ERIC Educational Resources Information Center

    Gardner, Sharyn D.; Lepak, David P.; Bartol, Kathyrn M.

    2003-01-01

    Responses from 357 complete pairs of human resources executives and professionals from the same company showed that information technology has increased autonomy, the responsiveness of their information dissemination, and networking with other professionals; they spend more time in technology support activities. Organizational climate moderated…

  4. Life Support and Habitation Systems: Crew Support and Protection for Human Exploration Missions Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; McQuillan, Jeffrey

    2011-01-01

    The National Aeronautics and Space Administration (NASA) has recently expanded its mission set for possible future human exploration missions. With multiple options there is interest in identifying technology needs across these missions to focus technology investments. In addition to the Moon and other destinations in cis-lunar space, other destinations including Near Earth Objects and Mars have been added for consideration. Recently, technology programs and projects have been re-organizing to better meet the Agency s strategic goals and address needs across these potential future missions. Life Support and Habitation Systems (LSHS) is one of 10 Foundational Domains as part of the National Aeronautics and Space Administration s Exploration Technology Development Program. The chief goal of LSHS is to develop and mature advanced technologies to sustain human life on missions beyond Low Earth Orbit (LEO) to increase reliability, reduce dependency on resupply and increase vehicle self-sufficiency. For long duration exploration missions, further closure of life support systems is of interest. Focus includes key technologies for atmosphere revitalization, water recovery, waste management, thermal control and crew accommodations. Other areas of focus include technologies for radiation protection, environmental monitoring and fire protection. The aim is to recover additional consumable mass, reduce requirements for power, volume, heat rejection, crew involvement, and meet exploration vehicle requirements. This paper provides a brief description of the LSHS Foundational Domain as defined for fiscal year 2011.

  5. Habitats and Surface Construction Technology and Development Roadmap

    NASA Technical Reports Server (NTRS)

    Cohen, Marc; Kennedy, Kriss J.

    1997-01-01

    The vision of the technology and development teams at NASA Ames and Johnson Research Centers is to provide the capability for automated delivery and emplacement of habitats and surface facilities. The benefits of the program are as follows: Composites and Inflatables: 30-50% (goal) lighter than Al Hard Structures; Capability for Increased Habitable Volume, Launch Efficiency; Long Term Growth Potential; and Supports initiation of commercial and industrial expansion. Key Habitats and Surface Construction (H&SC) technology issues are: Habitat Shell Structural Materials; Seals and Mechanisms; Construction and Assembly: Automated Pro-Deploy Construction Systems; ISRU Soil/Construction Equipment: Lightweight and Lower Power Needs; Radiation Protection (Health and Human Performance Tech.); Life Support System (Regenerative Life Support System Tech.); Human Physiology of Long Duration Space Flight (Health and Human Performance Tech.); and Human Psychology of Long Duration Space Flight (Health and Human Performance Tech.) What is being done regarding these issues?: Use of composite materials for X-38 CRV, RLV, etc.; TransHAB inflatable habitat design/development; Japanese corporations working on ISRU-derived construction processes. What needs to be done for the 2004 Go Decision?: Characterize Mars Environmental Conditions: Civil Engineering, Material Durability, etc.; Determine Credibility of Inflatable Structures for Human Habitation; and Determine Seal Technology for Mechanisms and Hatches, Life Cycle, and Durability. An overview encompassing all of the issues above is presented.

  6. Human spaceflight technology needs-a foundation for JSC's technology strategy

    NASA Astrophysics Data System (ADS)

    Stecklein, J. M.

    Human space exploration has always been heavily influenced by goals to achieve a specific mission on a specific schedule. This approach drove rapid technology development, the rapidity of which added risks and became a major driver for costs and cost uncertainty. The National Aeronautics and Space Administration (NASA) is now approaching the extension of human presence throughout the solar system by balancing a proactive yet less schedule-driven development of technology with opportunistic scheduling of missions as the needed technologies are realized. This approach should provide cost effective, low risk technology development that will enable efficient and effective manned spaceflight missions. As a first step, the NASA Human Spaceflight Architecture Team (HAT) has identified a suite of critical technologies needed to support future manned missions across a range of destinations, including in cis-lunar space, near earth asteroid visits, lunar exploration, Mars moons, and Mars exploration. The challenge now is to develop a strategy and plan for technology development that efficiently enables these missions over a reasonable time period, without increasing technology development costs unnecessarily due to schedule pressure, and subsequently mitigating development and mission risks. NASA's Johnson Space Center (JSC), as the nation's primary center for human exploration, is addressing this challenge through an innovative approach in allocating Internal Research and Development funding to projects. The HAT Technology Needs (Tech Needs) Database has been developed to correlate across critical technologies and the NASA Office of Chief Technologist Technology Area Breakdown Structure (TABS). The TechNeeds Database illuminates that many critical technologies may support a single technical capability gap, that many HAT technology needs may map to a single TABS technology discipline, and that a single HAT technology need may map to multiple TABS technology disciplines. Th- TechNeeds Database greatly clarifies understanding of the complex relationships of critical technologies to mission and architecture element needs. Extensions to the core TechNeeds Database allow JSC to factor in and appropriately weight JSC core technology competencies, and considerations of commercialization potential and partnership potential. The inherent coupling among these, along with an appropriate importance weighting, has provided an initial prioritization for allocation of technology development research funding at JSc. The HAT Technology Needs Database, with a core of built-in reports, clarifies and communicates complex technology needs for cost effective human space exploration so that an organization seeking to assure that research prioritization supports human spaceflight of the future can be successful.

  7. Human Spaceflight Technology Needs - A Foundation for JSC's Technology Strategy

    NASA Technical Reports Server (NTRS)

    Stecklein, Jonette M.

    2013-01-01

    Human space exploration has always been heavily influenced by goals to achieve a specific mission on a specific schedule. This approach drove rapid technology development, the rapidity of which adds risks as well as provides a major driver for costs and cost uncertainty. The National Aeronautics and Space Administration (NASA) is now approaching the extension of human presence throughout the solar system by balancing a proactive yet less schedule-driven development of technology with opportunistic scheduling of missions as the needed technologies are realized. This approach should provide cost effective, low risk technology development that will enable efficient and effective manned spaceflight missions. As a first step, the NASA Human Spaceflight Architecture Team (HAT) has identified a suite of critical technologies needed to support future manned missions across a range of destinations, including in cis-lunar space, near earth asteroid visits, lunar exploration, Mars moons, and Mars exploration. The challenge now is to develop a strategy and plan for technology development that efficiently enables these missions over a reasonable time period, without increasing technology development costs unnecessarily due to schedule pressure, and subsequently mitigating development and mission risks. NASA's Johnson Space Center (JSC), as the nation s primary center for human exploration, is addressing this challenge through an innovative approach in allocating Internal Research and Development funding to projects. The HAT Technology Needs (TechNeeds) Database has been developed to correlate across critical technologies and the NASA Office of Chief Technologist Technology Area Breakdown Structure (TABS). The TechNeeds Database illuminates that many critical technologies may support a single technical capability gap, that many HAT technology needs may map to a single TABS technology discipline, and that a single HAT technology need may map to multiple TABS technology disciplines. The TechNeeds Database greatly clarifies understanding of the complex relationships of critical technologies to mission and architecture element needs. Extensions to the core TechNeeds Database allow JSC to factor in and appropriately weight JSC Center Core Technology Competencies, and considerations of Commercialization Potential and Partnership Potential. The inherent coupling among these, along with an appropriate importance weighting, has provided an initial prioritization for allocation of technology development research funding for JSC. The HAT Technology Needs Database, with a core of built-in reports, clarifies and communicates complex technology needs for cost effective human space exploration such that an organization seeking to assure that research prioritization supports human spaceflight of the future can be successful.

  8. Imaginable Technologies for Human Missions to Mars

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    2007-01-01

    The thesis of the present discussion is that the simultaneous cost and inherent safety issues of human on-site exploration of Mars will require advanced-to-revolutionary technologies. The major crew safety issues as currently identified include reduced gravity, radiation, potentially extremely toxic dust and the requisite reliability for years-long missions. Additionally, this discussion examines various technological areas which could significantly impact Human-Mars cost and safety. Cost reductions for space access is a major metric, including approaches to significantly reduce the overall up-mass. Besides fuel, propulsion and power systems, the up-mass consists of the infrastructure and supplies required to keep humans healthy and the equipment for executing exploration mission tasks. Hence, the major technological areas of interest for potential cost reductions include propulsion, in-space and on-planet power, life support systems, materials and overall architecture, systems, and systems-of-systems approaches. This discussion is specifically offered in response to and as a contribution to goal 3 of the Presidential Exploration Vision: "Develop the Innovative Technologies Knowledge and Infrastructures both to explore and to support decisions about the destinations for human exploration".

  9. Marshall Space Flight Center Research and Technology Report 2015

    NASA Technical Reports Server (NTRS)

    Keys, A. S. (Compiler); Tinker, M. L. (Compiler); Sivak, A. D. (Compiler); Morris, H. C. (Compiler)

    2015-01-01

    The investments in technology development we made in 2015 not only support the Agency's current missions, but they will also enable new missions. Some of these projects will allow us to develop an in-space architecture for human space exploration; Marshall employees are developing and testing cutting-edge propulsion solutions that will propel humans in-space and land them on Mars. Others are working on technologies that could support a deep space habitat, which will be critical to enable humans to live and work in deep space and on other worlds. Still others are maturing technologies that will help new scientific instruments study the outer edge of the universe-instruments that will provide valuable information as we seek to explore the outer planets and search for life.

  10. Caring communications: how technology enhances interpersonal relations, Part II.

    PubMed

    Simpson, Roy L

    2008-01-01

    Part I of this 2-part series about technology's role in interpersonal communications examined how humans interact; proposed a caring theory of communication, collaboration, and conflict resolution; and delineated ways that technology--in general--supports this carative model of interpersonal relations. Part II will examine the barriers to adoption of carative technologies, describe the core capabilities required to overcome them, and discuss specific technologies that can support carative interpersonal relationships.

  11. Technology support of the handover: promoting observability, flexibility and efficiency.

    PubMed

    Patterson, Emily S

    2012-12-01

    Efforts to standardise data elements and increase the comprehensiveness of information included in patient handovers have produced a growing interest in augmenting the verbal exchange of information with written communications conducted through health information technology (HIT). The aim of this perspective is to offer recommendations to optimise technology support of handovers, based on a review of the relevant scientific literature. Review of the literature on human factors and the study of communication produced three recommendations. The first entails making available "shared knowledge" relevant to the handover and subsequent clinical management with intended and unintended recipients. The second is to create a flexible narrative structure (unstructured text fields) for human-human communications facilitated by technology. The third recommendation is to avoid reliance on real-time data entry during busy periods. Implementing these recommendations is anticipated to increase the observability (the ability to readily determine current status), flexibility, and efficiency of HIT-supported patient handovers. Anticipated benefits of technology-supported handovers include reducing reliance on human memory, increasing the efficiency and structure of the verbal exchange, avoiding readbacks of numeric data, and aiding clinical management following the handover. In cases when verbal handovers are delayed, do not occur, or involve members of the health care team without first-hand access to critical information, making 'common ground' observable for all recipients, creating a flexible narrative structure for communication and avoiding reliance on real-time data entry during the busiest times has implications for HIT design and day to day data entry and management operations. Benefits include increased observability, flexibility, and efficiency of HIT-supported patient handovers.

  12. New Directions for NASA's Advanced Life Support Program

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2006-01-01

    Advanced Life Support (ALS), an element of Human Systems Research and Technology s (HSRT) Life Support and Habitation Program (LSH), has been NASA s primary sponsor of life support research and technology development for the agency. Over its history, ALS sponsored tasks across a diverse set of institutions, including field centers, colleges and universities, industry, and governmental laboratories, resulting in numerous publications and scientific articles, patents and new technologies, as well as education and training for primary, secondary and graduate students, including minority serving institutions. Prior to the Vision for Space Exploration (VSE) announced on January 14th, 2004 by the President, ALS had been focused on research and technology development for long duration exploration missions, emphasizing closed-loop regenerative systems, including both biological and physicochemical. Taking a robust and flexible approach, ALS focused on capabilities to enable visits to multiple potential destinations beyond low Earth orbit. ALS developed requirements, reference missions, and assumptions upon which to structure and focus its development program. The VSE gave NASA a plan for steady human and robotic space exploration based on specific, achievable goals. Recently, the Exploration Systems Architecture Study (ESAS) was chartered by NASA s Administrator to determine the best exploration architecture and strategy to implement the Vision. The study identified key technologies required to enable and significantly enhance the reference exploration missions and to prioritize near-term and far-term technology investments. This technology assessment resulted in a revised Exploration Systems Mission Directorate (ESMD) technology investment plan. A set of new technology development projects were initiated as part of the plan s implementation, replacing tasks previously initiated under HSRT and its sister program, Exploration Systems Research and Technology (ESRT). The Exploration Life Support (ELS) Project, under the Exploration Technology Development Program, has recently been initiated to perform directed life support technology development in support of Constellation and the Crew Exploration Vehicle (CEV). ELS) has replaced ALS, with several major differences. Thermal Control Systems have been separated into a new stand alone project (Thermal Systems for Exploration Missions). Tasks in Advanced Food Technology have been relocated to the Human Research Program. Tasks in a new discipline area, Habitation Engineering, have been added. Research and technology development for capabilities required for longer duration stays on the Moon and Mars, including bioregenerative system, have been deferred.

  13. Bioregenerative life support: not a picnic

    NASA Technical Reports Server (NTRS)

    Knott, W. M.

    1998-01-01

    If humans are to live permanently in space, regenerative life support systems are an enabling technology and must replace the picnic approach of taking all supplies required for each mission. These systems are classified by technologies as either physical/chemical or bioregenerative. Both of these system-types can recycle water, remove carbon dioxide, produce oxygen, and recover essential elements from waste products. Bioregenerative can also produce food, thus, making it essential if humans are to exist in space independent of earth. A solely bioregenerative life support system includes plants as a biomass production module and microbial organisms in bioreactors as a resource recovery module. In the Advanced Life Support Program, bioregenerative life support systems are being investigated through a research and technology development project which includes large scale testing as part of the Breadboard Project and human tests conducted in the soon to be constructed BioPlex facility. Research and technology development efforts are directed toward optimizing biomass productivity in controlled chambers by developing light weight, energy efficient, and automated systems; recycling liquid and solid wastes; baselining the operation of bioreactors; determining system microbial stability; assessing chemical contamination; and building models required for long term system operations. The program will include space flight studies in the near future to determine if these life support technologies will function in microgravity. When a bioregenerative system is finally incorporated into a mission, the conversion from a picnic and resupply mentality to permanent recycling and independence from earth will be complete.

  14. NASA Technology Area 07: Human Exploration Destination Systems Roadmap

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.; Alexander, Leslie; Landis, Rob; Linne, Diane; Mclemore, Carole; Santiago-Maldonado, Edgardo; Brown, David L.

    2011-01-01

    This paper gives an overview of the National Aeronautics and Space Administration (NASA) Office of Chief Technologist (OCT) led Space Technology Roadmap definition efforts. This paper will given an executive summary of the technology area 07 (TA07) Human Exploration Destination Systems (HEDS). These are draft roadmaps being reviewed and updated by the National Research Council. Deep-space human exploration missions will require many game changing technologies to enable safe missions, become more independent, and enable intelligent autonomous operations and take advantage of the local resources to become self-sufficient thereby meeting the goal of sustained human presence in space. Taking advantage of in-situ resources enhances and enables revolutionary robotic and human missions beyond the traditional mission architectures and launch vehicle capabilities. Mobility systems will include in-space flying, surface roving, and Extra-vehicular Activity/Extravehicular Robotics (EVA/EVR) mobility. These push missions will take advantage of sustainability and supportability technologies that will allow mission independence to conduct human mission operations either on or near the Earth, in deep space, in the vicinity of Mars, or on the Martian surface while opening up commercialization opportunities in low Earth orbit (LEO) for research, industrial development, academia, and entertainment space industries. The Human Exploration Destination Systems (HEDS) Technology Area (TA) 7 Team has been chartered by the Office of the Chief Technologist (OCT) to strategically roadmap technology investments that will enable sustained human exploration and support NASA s missions and goals for at least the next 25 years. HEDS technologies will enable a sustained human presence for exploring destinations such as remote sites on Earth and beyond including, but not limited to, LaGrange points, low Earth orbit (LEO), high Earth orbit (HEO), geosynchronous orbit (GEO), the Moon, near-Earth objects (NEOs), which > 95% are asteroidal bodies, Phobos, Deimos, Mars, and beyond. The HEDS technology roadmap will strategically guide NASA and other U.S. Government agency technology investments that will result in capabilities enabling human exploration missions to diverse destinations generating high returns on investments.

  15. ISRU Technologies for Mars Life Support

    NASA Technical Reports Server (NTRS)

    Finn, John E.; Sridhar, K. R.

    2000-01-01

    The primary objectives of the Mars Exploration program are to collect data for planetary science in a quest to answer questions related to Origins, to search for evidence of extinct and extant life, and to expand the human presence in the solar system. The public and political engagement that is critical for support of a Mars exploration program is based on all of these objectives. In order to retain and to build public and political support, it is important for NASA to have an integrated Mars exploration plan, not separate robotic and human plans that exist in parallel or in sequence. The resolution stemming from the current architectural review and prioritization of payloads may be pivotal in determining whether NASA will have such a unified plan and retain public support. There are several potential scientific and technological links between the robotic-only missions that have been flown and planned to date, and the robotic + human missions that will come in the future. Taking advantage of and leveraging those links are central to the idea of a unified Mars exploration plan. One such link is in situ resource utilization (ISRU) as an enabling technology to provide consumables such as fuels, oxygen, sweep and utility gases from the Mars atmosphere. ISRU for propellant production and for generation of life support consumables is a key element of human exploration mission plans because of the tremendous savings that can be realized in terms of launch costs and reduction in overall risk to the mission. The Human Exploration and Development of Space (HEDS) Enterprise has supported ISRU technology development for several years, and is funding the MIP and PROMISE payloads that will serve as the first demonstrations of ISRU technology for Mars. In our discussion and presentation at the workshop, we will highlight how the PROMISE ISRU experiment that has been selected by HEDS for a future Mars flight opportunity can extend and enhance the science experiments on board.

  16. Exploration Life Support Critical Questions for Future Human Space Missions

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.; Barta, Daniel J.; McQuillan, Jeff

    2009-01-01

    Exploration Life Support (ELS) is a project under NASA s Exploration Technology Development Program. The ELS Project plans, coordinates and implements the development of advanced life support technologies for human exploration missions in space. Recent work has focused on closed loop atmosphere and water systems for a lunar outpost, including habitats and pressurized rovers. But, what are the critical questions facing life support system developers for these and other future human missions? This paper explores those questions and discusses how progress in the development of ELS technologies can help answer them. The ELS Project includes Atmosphere Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing, which includes the sub-elements Flight Experiments and Integrated Testing. Systems engineering analysis by ELS seeks to optimize the overall mission architecture by considering all the internal and external interfaces of the life support system and the potential for reduction or reuse of commodities. In particular, various sources and sinks of water and oxygen are considered along with the implications on loop closure and the resulting launch mass requirements.

  17. Gas Generators and Their Potential to Support Human-Scale HIADS (Hypersonic Inflatable Aerodynamic Decelerators)

    NASA Technical Reports Server (NTRS)

    Bodkin, Richard J.; Cheatwood, F. M.; Dillman, Robert A; Dinonno, John M.; Hughes, Stephen J.; Lucy, Melvin H.

    2016-01-01

    As HIAD technology progresses from 3-m diameter experimental scale to as large as 20-m diameter for human Mars entry, the mass penalties of carrying compressed gas has led the HIAD team to research current state-of-the-art gas generator approaches. Summarized below are several technologies identified in this survey, along with some of the pros and cons with respect to supporting large-scale HIAD applications.

  18. The human role in space: Technology, economics and optimization

    NASA Technical Reports Server (NTRS)

    Hall, S. B. (Editor)

    1985-01-01

    Man-machine interactions in space are explored in detail. The role and the degree of direct involvement of humans that will be required in future space missions are investigated. An attempt is made to establish valid criteria for allocating functional activities between humans and machines and to provide insight into the technological requirements, economics, and benefits of the human presence in space. Six basic categories of man-machine interactions are considered: manual, supported, augmented, teleoperated, supervised, and independent. Appendices are included which provide human capability data, project analyses, activity timeline profiles and data sheets for 37 generic activities, support equipment and human capabilities required in these activities, and cumulative costs as a function of activity for seven man-machine modes.

  19. Revolutionary Concepts for Human Outer Planet Exploration (HOPE)

    NASA Technical Reports Server (NTRS)

    Troutman, Patrick A.; Bethke, Kristen; Stillwagen, Fred; Caldwell, Darrell L., Jr.; Manvi, Ram; Strickland, Chris; Krizan, Shawn A.

    2003-01-01

    This paper summarizes the content of a NASA-led study performed to identify revolutionary concepts and supporting technologies for Human Outer Planet Exploration (HOPE). Callisto, the fourth of Jupiter's Galilean moons, was chosen as the destination for the HOPE study. Assumptions for the Callisto mission include a launch year of 2045 or later, a spacecraft capable of transporting humans to and from Callisto in less than five years, and a requirement to support three humans on the surface for a minimum of 30 days. Analyses performed in support of HOPE include identification of precursor science and technology demonstration missions and development of vehicle concepts for transporting crew and supplies. A complete surface architecture was developed to provide the human crew with a power system, a propellant production plant, a surface habitat, and supporting robotic systems. An operational concept was defined that provides a surface layout for these architecture components, a list of surface tasks, a 30-day timeline, a daily schedule, and a plan for communication from the surface.

  20. GSFC Information Systems Technology Developments Supporting the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Hughes, Peter; Dennehy, Cornelius; Mosier, Gary; Smith, Dan; Rykowski, Lisa

    2004-01-01

    The Vision for Space Exploration will guide NASA's future human and robotic space activities. The broad range of human and robotic missions now being planned will require the development of new system-level capabilities enabled by emerging new technologies. Goddard Space Flight Center is actively supporting the Vision for Space Exploration in a number of program management, engineering and technology areas. This paper provides a brief background on the Vision for Space Exploration and a general overview of potential key Goddard contributions. In particular, this paper focuses on describing relevant GSFC information systems capabilities in architecture development; interoperable command, control and communications; and other applied information systems technology/research activities that are applicable to support the Vision for Space Exploration goals. Current GSFC development efforts and task activities are presented together with future plans.

  1. Biomedical Monitoring By A Novel Noncontact Radio Frequency Technology Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J. (Compiler)

    2014-01-01

    The area of Space Health and Medicine is one of the NASA's Space Technology Grand Challenges. Space is an extreme environment which is not conducive to human life. The extraterrestrial environment can result in the deconditioning of various human physiological systems and thus require easy to use physiological monitoring technologies in order to better monitor space crews for appropriate health management and successful space missions and space operations. Furthermore, the Space Technology Roadmap's Technology Area Breakdown Structure calls for improvements in research to support human health and performance (Technology Area 06). To address these needs, this project investigated a potential noncontact and noninvasive radio frequency-based technique of monitoring central hemodynamic function in human research subjects in response to orthostatic stress.

  2. A Distributed Simulation Facility to Support Human Factors Research in Advanced Air Transportation Technology

    NASA Technical Reports Server (NTRS)

    Amonlirdviman, Keith; Farley, Todd C.; Hansman, R. John, Jr.; Ladik, John F.; Sherer, Dana Z.

    1998-01-01

    A distributed real-time simulation of the civil air traffic environment developed to support human factors research in advanced air transportation technology is presented. The distributed environment is based on a custom simulation architecture designed for simplicity and flexibility in human experiments. Standard Internet protocols are used to create the distributed environment, linking all advanced cockpit simulator, all Air Traffic Control simulator, and a pseudo-aircraft control and simulation management station. The pseudo-aircraft control station also functions as a scenario design tool for coordinating human factors experiments. This station incorporates a pseudo-pilot interface designed to reduce workload for human operators piloting multiple aircraft simultaneously in real time. The application of this distributed simulation facility to support a study of the effect of shared information (via air-ground datalink) on pilot/controller shared situation awareness and re-route negotiation is also presented.

  3. Technology for space station

    NASA Astrophysics Data System (ADS)

    Colladay, R. S.; Carlisle, R. F.

    1984-10-01

    Some of the most significant advances made in the space station discipline technology program are examined. Technological tasks and advances in the areas of systems/operations, environmental control and life support systems, data management, power, thermal considerations, attitude control and stabilization, auxiliary propulsion, human capabilities, communications, and structures, materials, and mechanisms are discussed. An overview of NASA technology planning to support the initial space station and the evolutionary growth of the space station is given.

  4. The Study of Surface Computer Supported Cooperative Work and Its Design, Efficiency, and Challenges

    ERIC Educational Resources Information Center

    Hwang, Wu-Yuin; Su, Jia-Han

    2012-01-01

    In this study, a Surface Computer Supported Cooperative Work paradigm is proposed. Recently, multitouch technology has become widely available for human-computer interaction. We found it has great potential to facilitate more awareness of human-to-human interaction than personal computers (PCs) in colocated collaborative work. However, other…

  5. The human dimensions of climate change: A micro-level assessment of views from the ecological modernization, political economy and human ecology perspectives.

    PubMed

    Adua, Lazarus; York, Richard; Schuelke-Leech, Beth-Anne

    2016-03-01

    Understanding the manifold human and physical dimensions of climate change has become an area of great interest to researchers in recent decades. Using a U.S. nationally-representative data set and drawing on the ecological modernization, political economy, and human ecology perspectives, this study examines the impacts of energy efficiency technologies, affluence, household demographics, and biophysical characteristics on residential CO2 emissions. Overall, the study provides mixed support for the ecological modernization perspective. While several findings are consistent with the theory's expectation that modern societies can harness technology to mitigate human impacts on the environment, others directly contradict it. Also, the theory's prediction of an inverted U-shaped relationship between affluence and environmental impacts is contradicted. The evidence is somewhat more supportive of the political economy and human ecology perspectives, with affluence, some indicators of technology, household demographics, and biophysical characteristics emerging as important drivers of residential CO2 emissions. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. What do we mean by Human-Centered Design of Life-Critical Systems?

    PubMed

    Boy, Guy A

    2012-01-01

    Human-centered design is not a new approach to design. Aerospace is a good example of a life-critical systems domain where participatory design was fully integrated, involving experimental test pilots and design engineers as well as many other actors of the aerospace engineering community. This paper provides six topics that are currently part of the requirements of the Ph.D. Program in Human-Centered Design of the Florida Institute of Technology (FIT.) This Human-Centered Design program offers principles, methods and tools that support human-centered sustainable products such as mission or process control environments, cockpits and hospital operating rooms. It supports education and training of design thinkers who are natural leaders, and understand complex relationships among technology, organizations and people. We all need to understand what we want to do with technology, how we should organize ourselves to a better life and finally find out whom we are and have become. Human-centered design is being developed for all these reasons and issues.

  7. Evaluation of Optical Sonography for Real-Time Breast Imaging and Biopsy Guidance

    DTIC Science & Technology

    2002-08-01

    supported through images of target standards and subjective validation using images of human anatomy . Keywords: Diffractive Energy Imaging...real-time imaging technology that uses the principles of acoustical holography to produce unique images of the human anatomy . The ADI technology is

  8. A Conceptual Framework for the Electronic Performance Support Systems within IBM Lotus Notes 6 (LN6) Example

    ERIC Educational Resources Information Center

    Bayram, Servet

    2005-01-01

    The concept of Electronic Performance Support Systems (EPSS) is containing multimedia or computer based instruction components that improves human performance by providing process simplification, performance information and decision support system. EPSS has become a hot topic for organizational development, human resources, performance technology,…

  9. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Human Exploration and Operations Mission Directorate Projects for 2016

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2017-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research Small Business Technology Transfer (SBIR/STTR) technologies into NASA Human Exploration and Operations Mission Directorate (HEOMD) projects. Other Government and commercial projects managers can also find this useful. Space Transportation; Life Support and Habitation Systems; Extra-Vehicular Activity; High EfficiencySpace Power; Human Exploration and Operations Mission,

  10. Network Centric Warfare in the U.S. Navy’s Fifth Fleet. Network-Supported Operational Level Command and Control in Operation Enduring Freedom

    DTIC Science & Technology

    2004-06-01

    Mark Adkins Director of Research Ph.D Human Communication adkins@arizona.edu Dr. John Kruse Director of Programming Ph.D Management Information Systems...Theory • Network Centric Warfare • Technology Adoption – Technology Adoption Model – Technology Transition Model • Human Communication – Social Context

  11. Budget estimates, fiscal year 1995. Volume 1: Agency summary, human space flight, and science, aeronautics and technology

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The NASA budget request has been restructured in FY 1995 into four appropriations: human space flight; science, aeronautics, and technology; mission support; and inspector general. The human space flight appropriations provides funding for NASA's human space flight activities. This includes the on-orbit infrastructure (space station and Spacelab), transportation capability (space shuttle program, including operations, program support, and performance and safety upgrades), and the Russian cooperation program, which includes the flight activities associated with the cooperative research flights to the Russian Mir space station. These activities are funded in the following budget line items: space station, Russian cooperation, space shuttle, and payload utilization and operations. The science, aeronautics, and technology appropriations provides funding for the research and development activities of NASA. This includes funds to extend our knowledge of the earth, its space environment, and the universe and to invest in new technologies, particularly in aeronautics, to ensure the future competitiveness of the nation. These objectives are achieved through the following elements: space science, life and microgravity sciences and applications, mission to planet earth, aeronautical research and technology, advanced concepts and technology, launch services, mission communication services, and academic programs.

  12. Management of Service Projects in Support of Space Flight Research

    NASA Technical Reports Server (NTRS)

    Love, J.

    2009-01-01

    Goal:To provide human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration . [HRP-47051] Specific Objectives: 1) Develop capabilities, necessary countermeasures, and technologies in support of human space exploration, focusing on mitigating the highest risks to human health and performance. 2) Define and improve human spaceflight medical, environmental, and human factors standards. 3) Develop technologies that serve to reduce medical and environmental risks, to reduce human systems resource requirements (mass, volume, power, data, etc.) and to ensure effective human-system integration across exploration systems. 4) Ensure maintenance of Agency core competencies necessary to enable risk reduction in the following areas: A. Space medicine B. Physiological and behavioral effects of long duration spaceflight on the human body C. Space environmental effects, including radiation, on human health and performance D. Space "human factors" [HRP-47051]. Service projects can form integral parts of research-based project-focused programs to provide specialized functions. Traditional/classic project management methodologies and agile approaches are not mutually exclusive paradigms. Agile strategies can be combined with traditional methods and applied in the management of service projects functioning in changing environments. Creative collaborations afford a mechanism for mitigation of constrained resource limitations.

  13. Layered Metals Fabrication Technology Development for Support of Lunar Exploration at NASA/MSFC

    NASA Technical Reports Server (NTRS)

    Cooper, Kenneth G.; Good, James E.; Gilley, Scott D.

    2007-01-01

    NASA's human exploration initiative poses great opportunity and risk for missions to the Moon and beyond. In support of these missions, engineers and scientists at the Marshall Space Flight Center are developing technologies for ground-based and in-situ fabrication capabilities utilizing provisioned and locally-refined materials. Development efforts are pushing state-of-the art fabrication technologies to support habitat structure development, tools and mechanical part fabrication, as well as repair and replacement of ground support and space mission hardware such as life support items, launch vehicle components and crew exercise equipment. This paper addresses current fabrication technologies relative to meeting targeted capabilities, near term advancement goals, and process certification of fabrication methods.

  14. Advanced research to qualify man for long term weightlessness.

    NASA Technical Reports Server (NTRS)

    Jones, W. L.

    1972-01-01

    NASA is in the process of conducting a broad program of research and development of technology to qualify, support, and permit the successful use of man in long-term space flight. The technological tasks include human engineering, extravehicular engineering, life support, and human research to assess the effect of space stresses on human physiology and psychology. Various testing techniques that are being used may have future relevance to world health. These include a biocybernetic approach to the study of cardiovascular stresses, measurement of blood flow by means of the Doppler effect, and a device for simulating radiation dosages similar to those produced in solar flares. The planned program includes a study of both humans and animals.

  15. Human Research Program Requirements Document. Human Research Program Revision E

    NASA Technical Reports Server (NTRS)

    Vargas, Paul

    2011-01-01

    This document defines, documents, and allocates the Human Research Program (HRP) requirements to the HRP Program Elements. It also establishes the flow of requirements from the Human Exploration and Operations Mission Directorate (HEOMD) and the Office of the Chief Health and Medical Officer (OCHMO) down to the various HRP Program Elements to ensure that human research and technology countermeasure investments support the delivery of countermeasures and technologies that satisfy HEOMD's and OCHMO's exploration mission requirements.

  16. The Space Exploration Initiative: a challenge to advanced life support technologies: keynote presentation

    NASA Technical Reports Server (NTRS)

    Mendell, W. W.

    1991-01-01

    President Bush has enunciated an unparalleled, open-ended commitment to human exploration of space called the Space Exploration Initiative (SEI). At the heart of the SEI is permanent human presence beyond Earth orbit, which implies a new emphasis on life science research and life support system technology. Proposed bioregenerative systems for planetary surface bases will require carefully designed waste processing elements whose development will lead to streamlined and efficient and efficient systems for applications on Earth.

  17. Research and Technology 1997

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This report highlights the challenging work accomplished during fiscal year 1997 by Ames research scientists and engineers. The work is divided into accomplishments that support the goals of NASA s four Strategic Enterprises: Aeronautics and Space Transportation Technology, Space Science, Human Exploration and Development of Space (HEDS), and Earth Science. NASA Ames Research Center s research effort in the Space, Earth, and HEDS Enterprises is focused i n large part to support Ames lead role for Astrobiology, which broadly defined is the scientific study of the origin, distribution, and future of life in the universe. This NASA initiative in Astrobiology is a broad science effort embracing basic research, technology development, and flight missions. Ames contributions to the Space Science Enterprise are focused in the areas of exobiology, planetary systems, astrophysics, and space technology. Ames supports the Earth Science Enterprise by conducting research and by developing technology with the objective of expanding our knowledge of the Earth s atmosphere and ecosystems. Finallv, Ames supports the HEDS Enterprise by conducting research, managing spaceflight projects, and developing technologies. A key objective is to understand the phenomena surrounding the effects of gravity on living things. Ames has also heen designated the Agency s Center of Evcellence for Information Technnlogv. The three cornerstones of Information Technology research at Ames are automated reasoning, human-centered computing, and high performance computing and networking.

  18. Human life support during interplanetary travel and domicile. I - System approach

    NASA Technical Reports Server (NTRS)

    Seshan, P. K.; Ferrall, Joseph; Rohatgi, Naresh

    1989-01-01

    The importance of mission-driven system definition and assessment for extraterrestrial human life support is examined. The tricotyledon theory for system engineering is applied to the physiochemical life support system of the Pathfinder project. The rationale and methodology for adopting the systems approach is discussed. The assessment of the system during technology development is considered.

  19. Technology Needs of Future Space Infrastructures Supporting Human Exploration and Development of Space

    NASA Technical Reports Server (NTRS)

    Carrington, Connie; Howell, Joe

    2001-01-01

    The path to human presence beyond near-Earth will be paved by the development of infrastructure. A fundamental technology in this infrastructure is energy, which enables not only the basic function of providing shelter for man and machine, but also enables transportation, scientific endeavors, and exploration. This paper discusses the near-term needs in technology that develop the infrastructure for HEDS.

  20. Energy Storage: Batteries and Fuel Cells for Exploration

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Miller, Thomas B.; Hoberecht, Mark A.; Baumann, Eric D.

    2007-01-01

    NASA's Vision for Exploration requires safe, human-rated, energy storage technologies with high energy density, high specific energy and the ability to perform in a variety of unique environments. The Exploration Technology Development Program is currently supporting the development of battery and fuel cell systems that address these critical technology areas. Specific technology efforts that advance these systems and optimize their operation in various space environments are addressed in this overview of the Energy Storage Technology Development Project. These technologies will support a new generation of more affordable, more reliable, and more effective space systems.

  1. Biomedical wellness challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Tangney, John F.

    2012-06-01

    The mission of ONR's Human and Bioengineered Systems Division is to direct, plan, foster, and encourage Science and Technology in cognitive science, computational neuroscience, bioscience and bio-mimetic technology, social/organizational science, training, human factors, and decision making as related to future Naval needs. This paper highlights current programs that contribute to future biomedical wellness needs in context of humanitarian assistance and disaster relief. ONR supports fundamental research and related technology demonstrations in several related areas, including biometrics and human activity recognition; cognitive sciences; computational neurosciences and bio-robotics; human factors, organizational design and decision research; social, cultural and behavioral modeling; and training, education and human performance. In context of a possible future with automated casualty evacuation, elements of current science and technology programs are illustrated.

  2. Making War on Death and on Persons.

    ERIC Educational Resources Information Center

    Balk, David E.

    1994-01-01

    Reviews "On Death without Dignity: The Human Impact of Technological Dying" by David W. Moller. Describes author as well grounded in concepts and theories chosen for analysis. States that the author supports contention that modern society fosters dehumanized dying which obscures death through technological control with little communal support for…

  3. Occupational stress in human computer interaction.

    PubMed

    Smith, M J; Conway, F T; Karsh, B T

    1999-04-01

    There have been a variety of research approaches that have examined the stress issues related to human computer interaction including laboratory studies, cross-sectional surveys, longitudinal case studies and intervention studies. A critical review of these studies indicates that there are important physiological, biochemical, somatic and psychological indicators of stress that are related to work activities where human computer interaction occurs. Many of the stressors of human computer interaction at work are similar to those stressors that have historically been observed in other automated jobs. These include high workload, high work pressure, diminished job control, inadequate employee training to use new technology, monotonous tasks, por supervisory relations, and fear for job security. New stressors have emerged that can be tied primarily to human computer interaction. These include technology breakdowns, technology slowdowns, and electronic performance monitoring. The effects of the stress of human computer interaction in the workplace are increased physiological arousal; somatic complaints, especially of the musculoskeletal system; mood disturbances, particularly anxiety, fear and anger; and diminished quality of working life, such as reduced job satisfaction. Interventions to reduce the stress of computer technology have included improved technology implementation approaches and increased employee participation in implementation. Recommendations for ways to reduce the stress of human computer interaction at work are presented. These include proper ergonomic conditions, increased organizational support, improved job content, proper workload to decrease work pressure, and enhanced opportunities for social support. A model approach to the design of human computer interaction at work that focuses on the system "balance" is proposed.

  4. FY04 Advanced Life Support Architecture and Technology Studies: Mid-Year Presentation

    NASA Technical Reports Server (NTRS)

    Lange, Kevin; Anderson, Molly; Duffield, Bruce; Hanford, Tony; Jeng, Frank

    2004-01-01

    Long-Term Objective: Identify optimal advanced life support system designs that meet existing and projected requirements for future human spaceflight missions. a) Include failure-tolerance, reliability, and safe-haven requirements. b) Compare designs based on multiple criteria including equivalent system mass (ESM), technology readiness level (TRL), simplicity, commonality, etc. c) Develop and evaluate new, more optimal, architecture concepts and technology applications.

  5. Surface Habitat Systems

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.

    2009-01-01

    The Surface Habitat Systems (SHS) Focused Investment Group (FIG) is part of the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) effort to provide a focused direction and funding to the various projects that are working on human surface habitat designs and technologies for the planetary exploration missions. The overall SHS-FIG effort focuses on directing and guiding those projects that: 1) develop and demonstrate new surface habitat system concepts, innovations, and technologies to support human exploration missions, 2) improve environmental systems that interact with human habitats, 3) handle and emplace human surface habitats, and 4) focus on supporting humans living and working in habitats on planetary surfaces. The activity areas of the SHS FIG described herein are focused on the surface habitat project near-term objectives as described in this document. The SHS-FIG effort focuses on mitigating surface habitat risks (as identified by the Lunar Surface Systems Project Office (LSSPO) Surface Habitat Element Team; and concentrates on developing surface habitat technologies as identified in the FY08 gap analysis. The surface habitat gap assessment will be updated annually as the surface architecture and surface habitat definition continues to mature. These technologies are mapped to the SHS-FIG Strategic Development Roadmap. The Roadmap will bring to light the areas where additional innovative efforts are needed to support the development of habitat concepts and designs and the development of new technologies to support of the LSSPO Habitation Element development plan. Three specific areas of development that address Lunar Architecture Team (LAT)-2 and Constellation Architecture Team (CxAT) Lunar habitat design issues or risks will be focused on by the SHS-FIG. The SHS-FIG will establish four areas of development that will help the projects prepare in their planning for surface habitat systems development. Those development areas are the 1) surface habitat concept definition, 2) inflatable surface habitat development, and 3) autonomous habitat operations, and 4) cross-cutting / systems engineering. In subsequent years, the SHS-FIG will solicit a call for innovations and technologies that will support the development of these four development areas. The other development areas will be assessed yearly and identified on the SHS-FIG s Strategic Development Roadmap. Initial investment projects that are funded by the Constellation Program Office (CxPO), LSSPO, or the Exploration Technology Development Projects (ETDP) will also be included on the Roadmap. For example, in one or two years from now, the autonomous habitat operations and testbed would collaborations with the Integrated Systems Health Management (ISHM) and Automation for Operations ETDP projects, which will give the surface habitat projects an integrated habitat autonomy testbed to test software and systems. The SHS-FIG scope is to provide focused direction for multiple innovations, technologies and subsystems that are needed to support humans at a remote planetary surface habitat during the concept development, design definition, and integration phases of that project. Subsystems include: habitability, lightweight structures, power management, communications, autonomy, deployment, outfitting, life support, wireless connectivity, lighting, thermal and more.

  6. Technology and Research Requirements for Combating Human Trafficking: Enhancing Communication, Analysis, Reporting, and Information Sharing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreyling, Sean J.; West, Curtis L.; Olson, Jarrod

    2011-03-17

    DHS’ Science & Technology Directorate directed PNNL to conduct an exploratory study on the domain of human trafficking in the Pacific Northwest in order to examine and identify technology and research requirements for enhancing communication, analysis, reporting, and information sharing – activities that directly support efforts to track, identify, deter, and prosecute human trafficking – including identification of potential national threats from smuggling and trafficking networks. This effort was conducted under the Knowledge Management Technologies Portfolio as part of the Integrated Federal, State, and Local/Regional Information Sharing (RISC) and Collaboration Program.

  7. An assessment of waste processing/resource recovery technologies for lunar/Mars life applications

    NASA Technical Reports Server (NTRS)

    Verostko, Charles E.; Packham, Nigel J. C.; Henninger, Donald H.

    1992-01-01

    NASA's future manned missions to explore the solar system are by nature of long duration, mandating extensive regeneration of life support consumables from wastes generated in space-based habitats. Long-duration exploration missions would otherwise be prohibitive due to the number and frequency of energy-intensive resupply missions from Earth. Resource recovery is therefore a critical component of the controlled ecological life support system (CELSS). In order to assess resource recovery technologies for CELSS applications, the Crew and Thermal Systems Division at NASA-Johnson Space Center convened a three-day workshop to assess potential resource recovery technologies for application in a space-based CELSS. This paper describes the methodology of assessing and ranking of these technologies. Recommendations and issues are identified. Evaluations focused on the processes for handling and treatment of inedible plant biomass, human waste, and human generated trash. Technologies were assessed on the basis of safety, reliability, technology readiness, and performance characteristics.

  8. Applied Nanotechnology for Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Yowell, Leonard L.

    2007-01-01

    A viewgraph presentation describing nanotechnology for human space exploration is shown. The topics include: 1) NASA's Strategic Vision; 2) Exploration Architecture; 3) Future Exploration Mission Requirements Cannot be met with Conventional Materials; 4) Nanomaterials: Single Wall Carbon Nanotubes; 5) Applied Nanotechnology at JSC: Fundamentals to Applications; 6) Technology Readiness Levels (TRL); 7) Growth, Modeling, Diagnostics and Production; 8) Characterization: Purity, Dispersion and Consistency; 9) Processing; 10) Nanoelectronics: Enabling Technologies; 11) Applications for Human Space Exploration; 12) Exploration Life Support: Atmosphere Revitalization System; 13) Advanced and Exploration Life Support: Regenerable CO2 Removal; 14) Exploration Life Support: Water Recovery; 15) Advanced Life Support: Water Disinfection/Recovery; 16) Power and Energy: Supercapacitors and Fuel Cells; 17) Nanomaterials for EMI Shielding; 18) Active Radiation Dosimeter; 19) Advanced Thermal Protection System (TPS) Repair; 20) Thermal Radiation and Impact Protection (TRIPS); 21) Nanotechnology: Astronaut Health Management; 22) JSC Nanomaterials Group Collaborations.

  9. Innovative Socio-Technical Environments in Support of Distributed Intelligence and Lifelong Learning

    ERIC Educational Resources Information Center

    Fischer, G; Konomi, S.

    2007-01-01

    Individual, unaided human abilities are constrained. Media have helped us to transcend boundaries in thinking, working, learning and collaborating by supporting "distributed intelligence". Wireless and mobile technologies provide new opportunities for creating novel socio-technical environments and thereby empowering humans, but not without…

  10. Human life support during interplanetary travel and domicile. IV - Mars expedition technology trade study

    NASA Technical Reports Server (NTRS)

    Rohatgi, Naresh K.; Ferrall, Joseph F.; Seshan, P. K.

    1991-01-01

    Results of trading processing technologies in a closed-loop configuration, in terms of power and weight for the Mars Expedition Mission, are presented. The technologies were traded and compared to a baseline set for functional elements that include CO2 removal, H2O electrolysis, potable H2O cleanup, and hygiene H2O cleanup. These technologies were selected from those being considered for Space Station Freedom and represent only chemical/physical technologies. Attention is given to the technology trade calculation scheme, technology data and selection, the generic modular flow schematic, and life support system specifications.

  11. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 2

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar (Compiler)

    1994-01-01

    This is the second volume of papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools; systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development; perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; and robotics technologies.

  12. Working Smarter: The Skill Bias of Computer Technologies. The Evolving Workplace Series

    ERIC Educational Resources Information Center

    Wannell, Ted; Ali, Jennifer

    2002-01-01

    This document provides data from the new Workplace and Employee Survey (WES) conducted by Statistics Canada with the support of Human Resources Development Canada. The survey consists of two components: (1) a workplace survey on the adoption of technologies, organizational change, training and other human resource practices, business strategies,…

  13. Avionics Architectures for Exploration: Wireless Technologies and Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Goforth, Montgomery B.; Ratliff, James E.; Barton, Richard J.; Wagner, Raymond S.; Lansdowne, Chatwin

    2014-01-01

    The authors describe ongoing efforts by the Avionics Architectures for Exploration (AAE) project chartered by NASA's Advanced Exploration Systems (AES) Program to evaluate new avionics architectures and technologies, provide objective comparisons of them, and mature selected technologies for flight and for use by other AES projects. The AAE project team includes members from most NASA centers and from industry. This paper provides an overview of recent AAE efforts, with particular emphasis on the wireless technologies being evaluated under AES to support human spaceflight.

  14. Exploration EVA System

    NASA Technical Reports Server (NTRS)

    Kearney, Lara

    2004-01-01

    In January 2004, the President announced a new Vision for Space Exploration. NASA's Office of Exploration Systems has identified Extravehicular Activity (EVA) as a critical capability for supporting the Vision for Space Exploration. EVA is required for all phases of the Vision, both in-space and planetary. Supporting the human outside the protective environment of the vehicle or habitat and allow ing him/her to perform efficient and effective work requires an integrated EVA "System of systems." The EVA System includes EVA suits, airlocks, tools and mobility aids, and human rovers. At the core of the EVA System is the highly technical EVA suit, which is comprised mainly of a life support system and a pressure/environmental protection garment. The EVA suit, in essence, is a miniature spacecraft, which combines together many different sub-systems such as life support, power, communications, avionics, robotics, pressure systems and thermal systems, into a single autonomous unit. Development of a new EVA suit requires technology advancements similar to those required in the development of a new space vehicle. A majority of the technologies necessary to develop advanced EVA systems are currently at a low Technology Readiness Level of 1-3. This is particularly true for the long-pole technologies of the life support system.

  15. ARMD Strategic Thrust 6: Assured Autonomy for Aviation Transformation

    NASA Technical Reports Server (NTRS)

    Ballin, Mark; Holbrook, Jon; Sharma, Shivanjli

    2016-01-01

    In collaboration with the external community and other government agencies, NASA will develop enabling technologies, standards, and design guidelines to support cost-effective applications of automation and limited autonomy for individual components of aviation systems. NASA will also provide foundational knowledge and methods to support the next epoch. Research will address issues of verification and validation, operational evaluation, national policy, and societal cost-benefit. Two research and development approaches to aviation autonomy will advance in parallel. The Increasing Autonomy (IA) approach will seek to advance knowledge and technology through incremental increases in machine-based support of existing human-centered tasks, leading to long-term reallocation of functions between humans and machines. The Autonomy as a New Technology (ANT) approach seeks advances by developing technology to achieve goals that are not currently possible using human-centered concepts of operation. IA applications are mission-enhancing, and their selection will be based on benefits achievable relative to existing operations. ANT applications are mission-enabling, and their value will be assessed based on societal benefit resulting from a new capability. The expected demand for small autonomous unmanned aircraft systems (UAS) provides an opportunity for development of ANT applications. Supervisory autonomy may be implemented as an expansion of the number of functions or systems that may be controlled by an individual human operator. Convergent technology approaches, such as the use of electronic flight bags and existing network servers, will be leveraged to the maximum extent possible.

  16. Advanced Environmental Monitoring and Control Program: Technology Development Requirements

    NASA Technical Reports Server (NTRS)

    Jan, Darrell (Editor); Seshan, Panchalam (Editor); Ganapathi, Gani (Editor); Schmidt, Gregory (Editor); Doarn, Charles (Editor)

    1996-01-01

    Human missions in space, from the International Space Station on towards potential human exploration of the moon, Mars and beyond into the solar system, will require advanced systems to maintain an environment that supports human life. These systems will have to recycle air and water for many months or years at a time, and avoid harmful chemical or microbial contamination. NASA's Advanced Environmental Monitoring and Control program has the mission of providing future spacecraft with advanced, integrated networks of microminiaturized sensors to accurately determine and control the physical, chemical and biological environment of the crew living areas. This document sets out the current state of knowledge for requirements for monitoring the crew environment, based on (1) crew health, and (2) life support monitoring systems. Both areas are updated continuously through research and space mission experience. The technologies developed must meet the needs of future life support systems and of crew health monitoring. These technologies must be inexpensive and lightweight, and use few resources. Using these requirements to continue to push the state of the art in miniaturized sensor and control systems will produce revolutionary technologies to enable detailed knowledge of the crew environment.

  17. The Potential and Challenges of Digital Well-Being Interventions: Positive Technology Research and Design in Light of the Bitter-Sweet Ambivalence of Change.

    PubMed

    Diefenbach, Sarah

    2018-01-01

    Along with the dissemination of technical assistance in nearly every part of life, there has been growing interest in the potential of technology to support well-being and human flourishing. "Positive technology" thereby takes the responsible role of a "digital coach," supporting people in achieving personal goals and behavior change. The design of such technology requires knowledge of different disciplines such as psychology, design and human-computer interaction. However, possible synergies are not yet used to full effect, and it needs common frameworks to support a more deliberate design of the "therapeutic interaction" mediated through technology. For positive technology design, positive psychology, and resource oriented approaches appear as particularly promising starting point. Besides a general fit of the basic theoretical conceptions of human change, many elements of established interventions could possibly be transferred to technology design. However, besides the power of focusing on the positive, another psychological aspect to consider are the bitter components inherent to change, such as the confrontation with a negative status quo, threat of self-esteem, and the effort required. The present research discusses the general potential and challenges within positive technology design from an interdisciplinary perspective with theoretical and practical contributions. Based on the bitter-sweet ambivalence of change as present in many psychological approaches of motivation and behavior change, the bitter-sweet continuum serves as a proxy for the mixed emotions and cognitions related to change. An empirical investigation of those factors among 177 users of self-improvement technologies provides initial support for the usefulness of the bitter-sweet perspective in understanding change dynamics. In a next step, the bitter-sweet concept is transformed into different design strategies to support positive change. The present article aims to deepen the discussion about the responsible role of technology as a well-being enhancement tool and to provide a fruitful frame for different disciplines involved in positive technology. Two aspects are highlighted: First, investigating well-being technology as a form of "therapeutic interaction," focusing on the need for sensible design solutions in the emerging dialogue between technology and user. Second, a stronger consideration of the bitter-sweet ambivalence of change, utilizing (positive) psychology interventions to full effect.

  18. Optimization of System Maturity and Equivalent System Mass for Exploration Systems Development Planning

    NASA Technical Reports Server (NTRS)

    Magnaye, Romulo; Tan, Weiping; Ramirez-Marquez, Jose; Sauser, Bruce

    2010-01-01

    The Exploration Systems Mission Directorate of the National Aeronautics and Space Administration (NASA) is currently pursuing the development of the next generation of human spacecraft and exploration systems throughout the Constellation Program. This includes, among others, habitation technologies for supporting lunar and Mars exploration. The key to these systems is the Exploration Life Support (ELS) system that composes several technology development projects related to atmosphere revitalization, water recovery, waste management and habitation. The proper functioning of these technologies is meant to produce sufficient and balanced resources of water, air, and food to maintain a safe and comfortable environment for long-term human habitation and exploration of space.

  19. Human life support during interplanetary travel and domicile. V - Mars expedition technology trade study for solid waste management

    NASA Technical Reports Server (NTRS)

    Ferrall, Joe; Rohatgi, Naresh K.; Seshan, P. K.

    1992-01-01

    A model has been developed for NASA to quantitatively compare and select life support systems and technology options. The model consists of a modular, top-down hierarchical breakdown of the life support system into subsystems, and further breakdown of subsystems into functional elements representing individual processing technologies. This paper includes the technology trades for a Mars mission, using solid waste treatment technologies to recover water from selected liquid and solid waste streams. Technologies include freeze drying, thermal drying, wet oxidation, combustion, and supercritical-water oxidation. The use of these technologies does not have any significant advantages with respect to weight; however, significant power penalties are incurred. A benefit is the ability to convert hazardous waste into a useful resource, namely water.

  20. From Presentation to Interaction: New Goals for Online Learning Technologies

    ERIC Educational Resources Information Center

    Tu, Chih-Hsiung

    2005-01-01

    Educators have used online technology in the past as information presentation tools and information storage tools to support learning. Researchers identify online technologies with large capacities and capabilities to enhance human learning in an interactive fashion. Online learning technology should move away from the use of computer technology…

  1. #2) Sensor Technology-State of the Science | Science ...

    EPA Pesticide Factsheets

    Establish market surveys of commercially-available air quality sensorsConduct an extensive literature survey describing the state of sensor technologiesInvestigate emerging technologies and their potential to meet future air quality monitoring needs for the Agency as well as other partners/stakeholders Develop sensor user guidesEducate sensor developers/sensors users on the state of low cost censorsFacilitate knowledge transfer to Federal/Regional/State air quality associatesWork directly with sensor developers to dramatically speed up the development of next generation air monitoring Support ORD’s Sensor Roadmap by focusing on areas of highest priority (NAAQS, Air Toxics, Citizen Science)Establish highly integrated research efforts across ORD and its partners (internal/external) to ensure consistent The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose.

  2. In-situ resource utilization technologies for Mars life support systems.

    PubMed

    Sridhar, K R; Finn, J E; Kliss, M H

    2000-01-01

    The atmosphere of Mars has many of the ingredients that can be used to support human exploration missions. It can be "mined" and processed to produce oxygen, buffer gas, and water, resulting in significant savings on mission costs. The use of local materials, called ISRU (for in-situ resource utilization), is clearly an essential strategy for a long-term human presence on Mars from the standpoints of self-sufficiency, safety, and cost. Currently a substantial effort is underway by NASA to develop technologies and designs of chemical plants to make propellants from the Martian atmosphere. Consumables for life support, such as oxygen and water, will probably benefit greatly from this ISRU technology development for propellant production. However, the buffer gas needed to dilute oxygen for breathing is not a product of a propellant production plant. The buffer gas needs on each human Mars mission will probably be in the order of metric tons, primarily due to losses during airlock activity. Buffer gas can be separated, compressed, and purified from the Mars atmosphere. This paper discusses the buffer gas needs for a human mission to Mars and consider architectures for the generation of buffer gas including an option that integrates it to the propellant production plant.

  3. Structural technology challenges for evolutionary growth of Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Doiron, Harold H.

    1990-01-01

    A proposed evolutionary growth scenario for Space Station Freedom was defined recently by a NASA task force created to study requirements for a Human Exploration Initiative. The study was an initial response to President Bush's July 20, 1989 proposal to begin a long range program of human exploration of space including a permanently manned lunar base and a manned mission to Mars. This growth scenario evolves Freedom into a critical transportation node to support lunar and Mars missions. The growth scenario begins with the Assembly Complete configuration and adds structure, power, and facilities to support a Lunar Transfer Vehicle (LTV) verification flight. Evolutionary growth continues to support expendable, then reusable LTV operations, and finally, LTV and Mars Transfer Vehicle (MTV) operations. The significant structural growth and additional operations creating new loading conditions will present new technological and structural design challenges in addition to the considerable technology requirements of the baseline Space Station Freedom program. Several structural design and technology issues of the baseline program are reviewed and related technology development required by the growth scenario is identified.

  4. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 1

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar (Compiler)

    1994-01-01

    This document contains papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; new ways of doing business; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; ans robotics technologies. More than 77 papers, 20 presentations, and 20 exhibits covering various disciplines were presented b experts from NASA, universities, and industry.

  5. Advanced Life Support Project Plan

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Life support systems are an enabling technology and have become integral to the success of living and working in space. As NASA embarks on human exploration and development of space to open the space frontier by exploring, using and enabling the development of space and to expand the human experience into the far reaches of space, it becomes imperative, for considerations of safety, cost, and crew health, to minimize consumables and increase the autonomy of the life support system. Utilizing advanced life support technologies increases this autonomy by reducing mass, power, and volume necessary for human support, thus permitting larger payload allocations for science and exploration. Two basic classes of life support systems must be developed, those directed toward applications on transportation/habitation vehicles (e.g., Space Shuttle, International Space Station (ISS), next generation launch vehicles, crew-tended stations/observatories, planetary transit spacecraft, etc.) and those directed toward applications on the planetary surfaces (e.g., lunar or Martian landing spacecraft, planetary habitats and facilities, etc.). In general, it can be viewed as those systems compatible with microgravity and those compatible with hypogravity environments. Part B of the Appendix defines the technology development 'Roadmap' to be followed in providing the necessary systems for these missions. The purpose of this Project Plan is to define the Project objectives, Project-level requirements, the management organizations responsible for the Project throughout its life cycle, and Project-level resources, schedules and controls.

  6. The Potential and Challenges of Digital Well-Being Interventions: Positive Technology Research and Design in Light of the Bitter-Sweet Ambivalence of Change

    PubMed Central

    Diefenbach, Sarah

    2018-01-01

    Along with the dissemination of technical assistance in nearly every part of life, there has been growing interest in the potential of technology to support well-being and human flourishing. “Positive technology” thereby takes the responsible role of a “digital coach,” supporting people in achieving personal goals and behavior change. The design of such technology requires knowledge of different disciplines such as psychology, design and human-computer interaction. However, possible synergies are not yet used to full effect, and it needs common frameworks to support a more deliberate design of the “therapeutic interaction” mediated through technology. For positive technology design, positive psychology, and resource oriented approaches appear as particularly promising starting point. Besides a general fit of the basic theoretical conceptions of human change, many elements of established interventions could possibly be transferred to technology design. However, besides the power of focusing on the positive, another psychological aspect to consider are the bitter components inherent to change, such as the confrontation with a negative status quo, threat of self-esteem, and the effort required. The present research discusses the general potential and challenges within positive technology design from an interdisciplinary perspective with theoretical and practical contributions. Based on the bitter-sweet ambivalence of change as present in many psychological approaches of motivation and behavior change, the bitter-sweet continuum serves as a proxy for the mixed emotions and cognitions related to change. An empirical investigation of those factors among 177 users of self-improvement technologies provides initial support for the usefulness of the bitter-sweet perspective in understanding change dynamics. In a next step, the bitter-sweet concept is transformed into different design strategies to support positive change. The present article aims to deepen the discussion about the responsible role of technology as a well-being enhancement tool and to provide a fruitful frame for different disciplines involved in positive technology. Two aspects are highlighted: First, investigating well-being technology as a form of “therapeutic interaction,” focusing on the need for sensible design solutions in the emerging dialogue between technology and user. Second, a stronger consideration of the bitter-sweet ambivalence of change, utilizing (positive) psychology interventions to full effect. PMID:29593625

  7. Cognitive Demand of Model Tracing Tutor Tasks: Conceptualizing and Predicting How Deeply Students Engage

    ERIC Educational Resources Information Center

    Kessler, Aaron M.; Stein, Mary Kay; Schunn, Christian D.

    2015-01-01

    Model tracing tutors represent a technology designed to mimic key elements of one-on-one human tutoring. We examine the situations in which such supportive computer technologies may devolve into mindless student work with little conceptual understanding or student development. To analyze the support of student intellectual work in the model…

  8. Teleoperation support for early human planetary missions.

    PubMed

    Genta, Giancarlo; Perino, Maria Antonietta

    2005-12-01

    A renewed interest in human exploration is flourishing among all the major spacefaring nations. In fact, in the complex scene of planned future space activities, the development of a Moon base and the human exploration of Mars might have the potential to renew the enthusiasm in expanding the human presence beyond the boundaries of Earth. Various initiatives have been undertaken to define scenarios and identify the required infrastructures and related technology innovations. The typical proposed approach follows a multistep strategy, starting with a series of precursor robotic missions to acquire further knowledge of the planet and to select the best potential landing sites, and evolving toward more demanding missions for the development of a surface infrastructure necessary to sustain human presence. The technologies involved in such a demanding enterprise range from typical space technologies, like transportation and propulsion, automation and robotics, rendezvous and docking, entry/reentry, aero-braking, navigation, and deep space communications, to human-specific issues like physiology, psychology, behavioral aspects, and nutritional science for long-duration exposure, that go beyond the traditional boundaries of space activities. Among the required elements to support planetary exploration, both for the precursor robotic missions and to sustain human exploration, rovers and trucks play a key role. A robust level of autonomy will need to be secured to perform preplanned operations, particularly for the surface infrastructure development, and a teleoperated support, either from Earth or from a local base, will enhance the in situ field exploration capability.

  9. 1991 NASA Life Support Systems Analysis workshop

    NASA Technical Reports Server (NTRS)

    Evanich, Peggy L.; Crabb, Thomas M.; Gartrell, Charles F.

    1992-01-01

    The 1991 Life Support Systems Analysis Workshop was sponsored by NASA Headquarters' Office of Aeronautics and Space Technology (OAST) to foster communication among NASA, industrial, and academic specialists, and to integrate their inputs and disseminate information to them. The overall objective of systems analysis within the Life Support Technology Program of OAST is to identify, guide the development of, and verify designs which will increase the performance of the life support systems on component, subsystem, and system levels for future human space missions. The specific goals of this workshop were to report on the status of systems analysis capabilities, to integrate the chemical processing industry technologies, and to integrate recommendations for future technology developments related to systems analysis for life support systems. The workshop included technical presentations, discussions, and interactive planning, with time allocated for discussion of both technology status and time-phased technology development recommendations. Key personnel from NASA, industry, and academia delivered inputs and presentations on the status and priorities of current and future systems analysis methods and requirements.

  10. Virtual reality and planetary exploration

    NASA Technical Reports Server (NTRS)

    Mcgreevy, Michael W.

    1992-01-01

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  11. Virtual reality and planetary exploration

    NASA Astrophysics Data System (ADS)

    McGreevy, Michael W.

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  12. Glenn Research Center Human Research Program: Overview

    NASA Technical Reports Server (NTRS)

    Nall, Marsha M.; Myers, Jerry G.

    2013-01-01

    The NASA-Glenn Research Centers Human Research Program office supports a wide range of technology development efforts aimed at enabling extended human presence in space. This presentation provides a brief overview of the historical successes, current 2013 activities and future projects of NASA-GRCs Human Research Program.

  13. Human-computer interface for the study of information fusion concepts in situation analysis and command decision support systems

    NASA Astrophysics Data System (ADS)

    Roy, Jean; Breton, Richard; Paradis, Stephane

    2001-08-01

    Situation Awareness (SAW) is essential for commanders to conduct decision-making (DM) activities. Situation Analysis (SA) is defined as a process, the examination of a situation, its elements, and their relations, to provide and maintain a product, i.e., a state of SAW for the decision maker. Operational trends in warfare put the situation analysis process under pressure. This emphasizes the need for a real-time computer-based Situation analysis Support System (SASS) to aid commanders in achieving the appropriate situation awareness, thereby supporting their response to actual or anticipated threats. Data fusion is clearly a key enabler for SA and a SASS. Since data fusion is used for SA in support of dynamic human decision-making, the exploration of the SA concepts and the design of data fusion techniques must take into account human factor aspects in order to ensure a cognitive fit of the fusion system with the decision-maker. Indeed, the tight human factor aspects in order to ensure a cognitive fit of the fusion system with the decision-maker. Indeed, the tight integration of the human element with the SA technology is essential. Regarding these issues, this paper provides a description of CODSI (Command Decision Support Interface), and operational- like human machine interface prototype for investigations in computer-based SA and command decision support. With CODSI, one objective was to apply recent developments in SA theory and information display technology to the problem of enhancing SAW quality. It thus provides a capability to adequately convey tactical information to command decision makers. It also supports the study of human-computer interactions for SA, and methodologies for SAW measurement.

  14. Advanced Technologies for Space Life Science Payloads on the International Space Station

    NASA Technical Reports Server (NTRS)

    Hines, John W.; Connolly, John P. (Technical Monitor)

    1997-01-01

    SENSORS 2000! (S2K!) is a specialized, high-performance work group organized to provide advanced engineering and technology support for NASA's Life Sciences spaceflight and ground-based research and development programs. In support of these objectives, S2K! manages NASA's Advanced Technology Development Program for Biosensor and Biotelemetry Systems (ATD-B), with particular emphasis on technologies suitable for Gravitational Biology, Human Health and Performance, and Information Technology and Systems Management. A concurrent objective is to apply and transition ATD-B developed technologies to external, non-NASA humanitarian (medical, clinical, surgical, and emergency) situations and to stimulate partnering and leveraging with other government agencies, academia, and the commercial/industrial sectors. A phased long-term program has been implemented to support science disciplines and programs requiring specific biosensor (i.e., biopotential, biophysical, biochemical, and biological) measurements from humans, animals (mainly primates and rodents), and cells under controlled laboratory and simulated microgravity situations. In addition to the technology programs described above, NASA's Life and Microgravity Sciences and Applications Office has initiated a Technology Infusion process to identify and coordinate the utilization and integration of advanced technologies into its International Space Station Facilities. This project has recently identified a series of technologies, tasks, and products which, if implemented, would significantly increase the science return, decrease costs, and provide improved technological capability. This presentation will review the programs described above and discuss opportunities for collaboration, leveraging, and partnering with NASA.

  15. Information Technology and the Human Research Facility

    NASA Technical Reports Server (NTRS)

    Klee, Margaret

    2002-01-01

    This slide presentation reviews how information technology supports the Human Research Facility (HRF) and specifically the uses that contractor has for the information. There is information about the contractor, the HRF, some of the experiments that were performed using the HRF on board the Shuttle, overviews of the data architecture, and software both commercial and specially developed software for the specific experiments.

  16. Political Minimalism and Social Debates: The Case of Human-Enhancement Technologies.

    PubMed

    Rodríguez-Alcázar, Javier

    2017-09-01

    A faulty understanding of the relationship between morality and politics encumbers many contemporary debates on human enhancement. As a result, some ethical reflections on enhancement undervalue its social dimensions, while some social approaches to the topic lack normative import. In this essay, I use my own conception of the relationship between ethics and politics, which I call "political minimalism," in order to support and strengthen the existing social perspectives on human-enhancement technologies.

  17. Lunar Relay Satellite Network for Space Exploration: Architecture, Technologies and Challenges

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Hackenberg, Anthony W.; Slywczak, Richard A.; Bose, Prasanta; Bergamo, Marcos; Hayden, Jeffrey L.

    2006-01-01

    NASA is planning a series of short and long duration human and robotic missions to explore the Moon and then Mars. A key objective of these missions is to grow, through a series of launches, a system of systems infrastructure with the capability for safe and sustainable autonomous operations at minimum cost while maximizing the exploration capabilities and science return. An incremental implementation process will enable a buildup of the communication, navigation, networking, computing, and informatics architectures to support human exploration missions in the vicinities and on the surfaces of the Moon and Mars. These architectures will support all space and surface nodes, including other orbiters, lander vehicles, humans in spacesuits, robots, rovers, human habitats, and pressurized vehicles. This paper describes the integration of an innovative MAC and networking technology with an equally innovative position-dependent, data routing, network technology. The MAC technology provides the relay spacecraft with the capability to autonomously discover neighbor spacecraft and surface nodes, establish variable-rate links and communicate simultaneously with multiple in-space and surface clients at varying and rapidly changing distances while making optimum use of the available power. The networking technology uses attitude sensors, a time synchronization protocol and occasional orbit-corrections to maintain awareness of its instantaneous position and attitude in space as well as the orbital or surface location of its communication clients. A position-dependent data routing capability is used in the communication relay satellites to handle the movement of data among any of multiple clients (including Earth) that may be simultaneously in view; and if not in view, the relay will temporarily store the data from a client source and download it when the destination client comes into view. The integration of the MAC and data routing networking technologies would enable a relay satellite system to provide end-to-end communication services for robotic and human missions in the vicinity, or on the surface of the Moon with a minimum of Earth-based operational support.

  18. Life Support and Habitation and Planetary Protection Workshop

    NASA Technical Reports Server (NTRS)

    Hogan, John A. (Editor); Race, Margaret S. (Editor); Fisher, John W. (Editor); Joshi, Jitendra A. (Editor); Rummel, John D. (Editor)

    2006-01-01

    A workshop entitled "Life Support and Habitation and Planetary Protection Workshop" was held in Houston, Texas on April 27-29, 2005 to facilitate the development of planetary protection guidelines for future human Mars exploration missions and to identify the potential effects of these guidelines on the design and selection of related human life support, extravehicular activity and monitoring and control systems. This report provides a summary of the workshop organization, starting assumptions, working group results and recommendations. Specific result topics include the identification of research and technology development gaps, potential forward and back contaminants and pathways, mitigation alternatives, and planetary protection requirements definition needs. Participants concluded that planetary protection and science-based requirements potentially affect system design, technology trade options, development costs and mission architecture. Therefore early and regular coordination between the planetary protection, scientific, planning, engineering, operations and medical communities is needed to develop workable and effective designs for human exploration of Mars.

  19. National Institute of Occupational Safety and Health (NIOSH) Partnered Development of Cryogenic Life Support Technologies

    NASA Technical Reports Server (NTRS)

    Bush, David R.

    2017-01-01

    Cryogenic life support technology, used by NASA to protect crews working around hazardous gases soon could be called on for a number of life-saving applications as well as the agency's new human spaceflight endeavors. This technology under development in Kennedy Space Center's Biomedical Laboratory has the potential to store more than twice the amount of breathable air than traditional compressed gas systems. The National Institute for Occupational Safety and Health (NIOSH) is contributing to the funding for this project in the hopes that the liquid air-based systems could change the way workers dependent on life support technologies accomplish their mission, improving their safety and efficiency.

  20. Requirements for Designing Life Support System Architectures for Crewed Exploration Missions Beyond Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Howard, David; Perry,Jay; Sargusingh, Miriam; Toomarian, Nikzad

    2016-01-01

    NASA's technology development roadmaps provide guidance to focus technological development on areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-situ maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted.

  1. Exploration Life Support Critical Questions for Future Human Space Missions

    NASA Technical Reports Server (NTRS)

    Kwert, Michael K.; Barta, Daniel J.; McQuillan, Jeff

    2010-01-01

    Exploration Life Support (ELS) is a current project under NASA's Exploration Systems Mission Directorate. The ELS Project plans, coordinates and implements the development of advanced life support technologies for human exploration missions in space. Recent work has focused on closed loop atmosphere and water systems for long duration missions, including habitats and pressurized rovers. But, what are the critical questions facing life support system developers for these and other future human missions? This paper explores those questions and how progress in the development of ELS technologies can help answer them. The ELS Project includes the following Elements: Atmosphere Revitalization Systems, Water Recovery Systems, Waste Management Systems, Habitation Engineering, Systems Integration, Modeling and Analysis, and Validation and Testing, which includes the Sub-Elements Flight Experiments and Integrated Testing. Systems engineering analysis by ELS seeks to optimize overall mission architectures by considering all the internal and external interfaces of the life support system and the potential for reduction or reuse of commodities. In particular, various sources and sinks of water and oxygen are considered along with the implications on loop closure and the resulting launch mass requirements. Systems analysis will be validated through the data gathered from integrated testing, which will demonstrate the interfaces of a closed loop life support system. By applying a systematic process for defining, sorting and answering critical life support questions, the ELS project is preparing for a variety of future human space missions

  2. Human-system interfaces for space cognitive awareness

    NASA Astrophysics Data System (ADS)

    Ianni, J.

    Space situational awareness is a human activity. We have advanced sensors and automation capabilities but these continue to be tools for humans to use. The reality is, however, that humans cannot take full advantage of the power of these tools due to time constraints, cognitive limitations, poor tool integration, poor human-system interfaces, and other reasons. Some excellent tools may never be used in operations and, even if they were, they may not be well suited to provide a cohesive and comprehensive picture. Recognizing this, the Air Force Research Laboratory (AFRL) is applying cognitive science principles to increase the knowledge derived from existing tools and creating new capabilities to help space analysts and decision makers. At the center of this research is Sensemaking Support Environment technology. The concept is to create cognitive-friendly computer environments that connect critical and creative thinking for holistic decision making. AFRL is also investigating new visualization technologies for multi-sensor exploitation and space weather, human-to-human collaboration technologies, and other technology that will be discussed in this paper.

  3. Technology Development for Human Exploration Beyond LEO in the New Millennium IAA-13-3 Strategies and Plans for Human Mars Missions

    NASA Technical Reports Server (NTRS)

    Larson, William E.; Lueck, Dale E.; Parrish, Clyde F.; Sanders, Gerald B.; Trevathan, Joseph R.; Baird, R. Scott; Simon, Tom; Peters, T.; Delgado, H. (Technical Monitor)

    2001-01-01

    As we look forward into the new millennium, the extension of human presence beyond Low-Earth Orbit (LEO) looms large in the plans of NASA. The Agency's Strategic Plan specifically calls out the need to identify and develop technologies for 100 and 1000-day class missions beyond LEO. To meet the challenge of these extended duration missions, it is important that we learn how to utilize the indigenous resources available to us on extraterrestrial bodies. This concept, known as In-Situ Resource Utilization (ISRU) can greatly reduce the launch mass & cost of human missions while reducing the risk. These technologies may also pave the way for the commercial development of space. While no specific target beyond LEO is identified in NASA's Strategic Plan, mission architecture studies have been on-going for the Moon, Mars, Near-Earth Asteroids and Earth/Moon & Earth/Sun Libration Points. As a result of these studies, the NASA Office of Space Flight (Code M) through the Johnson and Kennedy Space Centers, is leading the effort to develop ISRU technologies and systems to meet the current and future needs of human missions beyond LEO and on to Mars. This effort also receives support from the NASA Office of Biological and Physical Research (Code U), the Office of Space Science (Code S), and the Office of Aerospace Technology (Code R). This paper will present unique developments in the area of fuel and oxidizer production, breathing air production, water production, C02 collection, separation of atmospheric gases, and gas liquefaction and storage. A technology overview will be provided for each topic along with the results achieved to date, future development plans, and the mission architectures that these technologies support.

  4. Clinical engineering and risk management in healthcare technological process using architecture framework.

    PubMed

    Signori, Marcos R; Garcia, Renato

    2010-01-01

    This paper presents a model that aids the Clinical Engineering to deal with Risk Management in the Healthcare Technological Process. The healthcare technological setting is complex and supported by three basics entities: infrastructure (IS), healthcare technology (HT), and human resource (HR). Was used an Enterprise Architecture - MODAF (Ministry of Defence Architecture Framework) - to model this process for risk management. Thus, was created a new model to contribute to the risk management in the HT process, through the Clinical Engineering viewpoint. This architecture model can support and improve the decision making process of the Clinical Engineering to the Risk Management in the Healthcare Technological process.

  5. An overview of Japanese CELSS research activities

    NASA Technical Reports Server (NTRS)

    Nitta, Keiji

    1987-01-01

    Development of Controlled Ecological Life Support System (CELSS) technology is inevitable for future long duration stays of human beings in space, for lunar base construction and for manned Mars flight programs. CELSS functions can be divided into 2 categories, Environmental Control and Material Recycling. Temperature, humidity, total atmospheric pressure and partial pressure of oxygen and carbon dioxide, necessary for all living things, are to be controlled by the environment control function. This function can be performed by technologies already developed and used as the Environment Control Life Support System (ECLSS) of Space Shuttle and Space Station. As for material recycling, matured technologies have not yet been established for fully satisfying the specific metabolic requirements of each living thing including human beings. Therefore, research activities for establishing CELSS technology should be focused on material recycling technologies using biological systems such as plants and animals and physico-chemical systems, for example, a gas recycling system, a water purifying and recycling system and a waste management system. Japanese research activities were conducted and will be continued accordingly.

  6. Human Research Program: Space Human Factors and Habitability Element

    NASA Technical Reports Server (NTRS)

    Russo, Dane M.

    2007-01-01

    The three project areas of the Space Human Factors and Habitability Element work together to achieve a working and living environment that will keep crews healthy, safe, and productive throughout all missions -- from Earth orbit to Mars expeditions. The Advanced Environmental Health (AEH) Project develops and evaluates advanced habitability systems and establishes requirements and health standards for exploration missions. The Space Human Factors Engineering (SHFE) Project s goal is to ensure a safe and productive environment for humans in space. With missions using new technologies at an ever-increasing rate, it is imperative that these advances enhance crew performance without increasing stress or risk. The ultimate goal of Advanced Food Technology (AFT) Project is to develop and deliver technologies for human centered spacecraft that will support crews on missions to the moon, Mars, and beyond.

  7. Advanced Life Support Systems: Opportunities for Technology Transfer

    NASA Technical Reports Server (NTRS)

    Fields, B.; Henninger, D.; Ming, D.; Verostko, C. E.

    1994-01-01

    NASA's future missions to explore the solar system will be of long-duration possibly lasting years at a time. Human life support systems will have to operate with very high reliability for these long periods with essentially no resupply from Earth. Such life support systems will make extensive use of higher plants, microorganisms, and physicochemical processes for recycling air and water, processing wastes, and producing food. Development of regenerative life support systems will be a pivotal capability for NASA's future human missions. A fully functional closed loop human life support system currently does not exist and thus represents a major technical challenge for space exploration. Technologies where all life support consumables are recycled have many potential terrestrial applications as well. Potential applications include providing human habitation in hostile environments such as the polar regions or the desert in such a way as to minimize energy expenditures and to minimize negative impacts on those often ecologically-sensitive areas. Other potential applications include production of food and ornamental crops without damaging the environment from fertilizers that contaminate water supplies; removal of trace gas contaminants from tightly sealed, energy-efficient buildings (the so-called sick building syndrome); and even the potential of gaining insight into the dynamics of the Earth's biosphere such that we can better manage our global environment. Two specific advanced life support technologies being developed by NASA, with potential terrestrial application, are the zeoponic plant growth system and the Hybrid Regenerative Water Recovery System (HRWRS). The potential applications for these candidate dual use technologies are quite different as are the mechanisms for transfer. In the case of zeoponics, a variety of commercial applications has been suggested which represent potentially lucrative markets. Also, the patented nature of this product offers opportunities for licensing to commercial entities. In the case of the HRWRS, commercial markets with broad applications have not been identified but some terrestrial applications are being explored where this approach has advantages over other methods of waste water processing. Although these potential applications do not appear to have the same broad attraction from the standpoint of rapid commercialization, they represent niches where commercialization possibilities as well as social benefits could be realized.

  8. Aeronautics Technology Possibilities for 2000: Report of a workshop

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The potential of aeronautical research and technology (R&T) development, which could provide the basis for facility planning and long range guidance of R&T programs and could establish justification for support of aeronautical research and technology was studied. The projections served specific purposes: (1) to provide a base for research and future facilities needed to support the projected technologies, and development advanced vehicles; (2) to provide insight on the possible state of the art in aeronautical technology by the year 2000 for civil and military planners of air vehicles and systems. Topics discussed include: aerodynamics; propulsion; structures; materials; guidance, navigation and control; computer and information technology; human factors; and systems integration.

  9. Life Support and Habitation Systems: Crew Support and Protection for Human Exploration Missions Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; McQuillan, Jeffrey

    2010-01-01

    Life Support and Habitation Systems (LSHS) is one of 10 Foundational Domains as part of the National Aeronautics and Space Administration s proposed Enabling Technology Development and Demonstration (ETDD) Program. LSHS will develop and mature technologies to sustain life on long duration human missions beyond Low Earth Orbit that are reliable, have minimal logistics supply and increase self-sufficiency. For long duration exploration missions, further closure of life support systems is paramount, including focus on key technologies for atmosphere revitalization, water recovery, waste management, thermal control and crew accommodation that recover additional consumable mass, reduce requirements for power, volume, heat rejection, crew involvement, and which have increased reliability and capability. Other areas of focus include technologies for radiation protection, environmental monitoring and fire protection. Beyond LEO, return to Earth will be constrained. The potability of recycled water and purity of regenerated air must be measured and certified aboard the spacecraft. Missions must be able to recover from fire events through early detection, use of non-toxic suppression agents, and operation of recovery systems that protect on-board Environmental Control and Life Support (ECLS) hardware. Without the protection of the Earth s geomagnetic field, missions beyond LEO must have improved radiation shielding and dosimetry, as well as warning systems to protect the crew against solar particle events. This paper will describe plans for the new LSHS Foundational Domain and mission factors that will shape its technology development portfolio.

  10. A Minimized Technological Approach towards Human Self Sufficiency off Earth

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.

    2007-01-01

    Since the early 1970's it has been known that it is technically feasible to build large habitats in space where many people could live, more or less, independently off Earth. These large habitats would require decades of Apollo level expenditures to build. The objective of this paper is to begin the study of the minimum technological system that wi11 enable the historic shift from the state where all of humanity is dependent on Earth to the state where an independent human community can exist off Earth. It is suggested that such a system is more on the order of a homestead than a city. A minimum technical system is described that could support one human reproductive unit (family) in free space or on a planetary or lunar surface. The system consists of life support, materials extraction, mobility, and power production. Once the technology is developed for the single unit, many could be deployed. They could reproduce themselves at an exponential rate using space resources and energy. One would imagine cooperation of these units to build any combination of towns, cities and nations in space to extend human life beyond Earth.

  11. Teaching medical humanities in the digital world: affordances of technology-enhanced learning.

    PubMed

    Kemp, Sandra Joy; Day, Giskin

    2014-12-01

    Medical humanities courses are typically taught in face-to-face teaching environments, but now medical humanities educators, alongside educators from other disciplines, are facing shifts in higher education towards online (and sometimes open) courses. For the medical humanities educator, there is limited guidance regarding how technology-enhanced learning design can support the learning outcomes associated with medical humanities. This article aims to provide useful direction for such educators on how digital technologies can be used through learner-focused pedagogies. Specific examples are provided as to how the affordances of Web 2.0 and other tools can be realised in innovative ways to help achieve skills development within the medical humanities. The guidance, alongside the practical suggestions for implementation, can provide important conceptual background for medical humanities educators who wish to embrace technology-enhanced learning, and reconceptualise or redesign medical humanities for an online or blended teaching environment. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  12. Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2004-01-01

    This presentation is planned to be a 10-15 minute "catalytic" focused presentation to be scheduled during one of the working sessions at the TIM. This presentation will focus on Advanced Life Support technologies key to future human Space Exploration as outlined in the Vision, and will include basic requirements, assessment of the state-of-the-art and gaps, and include specific technology metrics. The presentation will be technical in character, lean heavily on data in published ALS documents (such as the Baseline Values and Assumptions Document) but not provide specific technical details or build to information on any technology mentioned (thus the presentation will be benign from an export control and a new technology perspective). The topics presented will be focused on the following elements of Advanced Life Support: air revitalization, water recovery, waste management, thermal control, habitation systems, food systems and bioregenerative life support.

  13. The Concept and Analytical Investigation of CO2 and Steam Co-Electrolysis for Resource Utilization in Space Exploration

    NASA Technical Reports Server (NTRS)

    McKellar, Michael G.; Stoots, Carl M.; Sohal, Manohar S.; Mulloth, Lila M.; Luna, Bernadette; Abney, Morgan B.

    2010-01-01

    CO2 acquisition and utilization technologies will have a vital role in designing sustainable and affordable life support and in situ fuel production architectures for human and robotic exploration of Moon and Mars. For long-term human exploration to be practical, reliable technologies have to be implemented to capture the metabolic CO2 from the cabin air and chemically reduce it to recover oxygen. Technologies that enable the in situ capture and conversion of atmospheric CO2 to fuel are essential for a viable human mission to Mars. This paper describes the concept and mathematical analysis of a closed-loop life support system based on combined electrolysis of CO2 and steam (co-electrolysis). Products of the coelectrolysis process include oxygen and syngas (CO and H2) that are suitable for life support and synthetic fuel production, respectively. The model was developed based on the performance of a co-electrolysis system developed at Idaho National Laboratory (INL). Individual and combined process models of the co-electrolysis and Sabatier, Bosch, Boudouard, and hydrogenation reactions are discussed and their performance analyses in terms of oxygen production and CO2 utilization are presented.

  14. Life Support System Technologies for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.

    2007-01-01

    The Lunar Mars Life Support Test series successfully demonstrated integration and operation of advanced technologies for closed-loop life support systems, including physicochemical and biological subsystems. Increased closure was obtained when targeted technologies, such as brine dewatering subsystems, were added to further process life support system byproducts to recover resources. Physicochemical and biological systems can be integrated satisfactorily to achieve desired levels of closure. Imbalances between system components, such as differences in metabolic quotients between human crews and plants, must be addressed. Each subsystem or component that is added to increase closure will likely have added costs, ranging from initial launch mass, power, thermal, crew time, byproducts, etc., that must be factored into break even analysis. Achieving life support system closure while maintaining control of total mass and system complexity will be a challenge.

  15. Technologies for Human Exploration

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.

    2014-01-01

    Access to Space, Chemical Propulsion, Advanced Propulsion, In-Situ Resource Utilization, Entry, Descent, Landing and Ascent, Humans and Robots Working Together, Autonomous Operations, In-Flight Maintenance, Exploration Mobility, Power Generation, Life Support, Space Suits, Microgravity Countermeasures, Autonomous Medicine, Environmental Control.

  16. Recent NASA aerospace medicine technology developments

    NASA Technical Reports Server (NTRS)

    Jones, W. L.

    1973-01-01

    Areas of life science are being studied to obtain baseline data, strategies, and technology to permit life research in the space environment. The reactions of the cardiovascular system to prolonged weightlessness are also being investigated. Particle deposition in the human lung, independent respiratory support system, food technology, and remotely controlled manipulators are mentioned briefly.

  17. Individual Autonomy, Law, and Technology: Should Soft Determinism Guide Legal Analysis?

    ERIC Educational Resources Information Center

    Cockfield, Arthur J.

    2010-01-01

    How one thinks about the relationship between individual autonomy (sometimes referred to as individual willpower or human agency) and technology can influence the way legal thinkers develop policy at the intersection of law and technology. Perspectives that fall toward the "machines control us" end of the spectrum may support more interventionist…

  18. NASA's Plans for Materials Science on ISS: Cooperative Utilization of the MSRR-MSL

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis; Szofran, Frank

    2008-01-01

    The ISS Research Project draws Life (non-human) and Physical Sciences investigations on the ISS, free flyer and ground-based into one coordinated project. The project has two categories: I. Exploration Research Program: a) Utilizes the ISS as a low Technology Readiness Level (TRL) test bed for technology development, demonstration and problem resolution in the areas of life support, fire safety, power, propulsion, thermal management, materials technology, habitat design, etc.; b) Will include endorsement letters from other ETDP projects to show relevancy. II. Non-Exploration Research Program; a) Not directly related to supporting the human exploration program. Research conducted in the life (non-human) and physical sciences; b) The program will sustain, to the maximum extent practicable, the United States scientific expertise and research capability in fundamental microgravity research. Physical Sciences has about 44 grants, and Life Sciences has approximately 32 grants, mostly with universities, to conduct low TRL research; this includes grants to be awarded from the 2008 Fluid Physics and Life Science NRA's.

  19. New Strategy for Exploration Technology Development: The Human Exploration and Development of Space (HEDS) Exploration/Commercialization Technology Initiative

    NASA Technical Reports Server (NTRS)

    Mankins, John C.

    2000-01-01

    In FY 2001, NASA will undertake a new research and technology program supporting the goals of human exploration: the Human Exploration and Development of Space (HEDS) Exploration/Commercialization Technology Initiative (HTCI). The HTCI represents a new strategic approach to exploration technology, in which an emphasis will be placed on identifying and developing technologies for systems and infrastructures that may be common among exploration and commercial development of space objectives. A family of preliminary strategic research and technology (R&T) road maps have been formulated that address "technology for human exploration and development of space (THREADS). These road maps frame and bound the likely content of the HTCL Notional technology themes for the initiative include: (1) space resources development, (2) space utilities and power, (3) habitation and bioastronautics, (4) space assembly, inspection and maintenance, (5) exploration and expeditions, and (6) space transportation. This paper will summarize the results of the THREADS road mapping process and describe the current status and content of the HTCI within that framework. The paper will highlight the space resources development theme within the Initiative and will summarize plans for the coming year.

  20. Johnson Space Center Research and Technology Report

    NASA Technical Reports Server (NTRS)

    Pido, Kelle; Davis, Henry L. (Technical Monitor)

    1999-01-01

    As the principle center for NASA's Human Exploration and Development of Space (HEDS) Enterprise, the Johnson Space Center (JSC) leads NASA's development of human spacecraft, human support systems, and human spacecraft operations. To implement this mission, JSC has focused on developing the infrastructure and partnerships that enable the technology development for future NASA programs. In our efforts to develop key technologies, we have found that collaborative relationships with private industry and academia strengthen our capabilities, infuse innovative ideas, and provide alternative applications for our development projects. The American public has entrusted NASA with the responsibility for space--technology development, and JSC is committed to the transfer of the technologies that we develop to the private sector for further development and application. It is our belief that commercialization of NASA technologies benefits both American industry and NASA through technology innovation and continued partnering. To this end, we present the 1998-1999 JSC Research and Technology Report. As your guide to the current JSC technologies, this report showcases the projects in work at JSC that may be of interest to U.S. industry, academia, and other government agencies (federal, state, and local). For each project, potential alternative uses and commercial applications are described.

  1. Intelligent Systems Technologies for Ops

    NASA Technical Reports Server (NTRS)

    Smith, Ernest E.; Korsmeyer, David J.

    2012-01-01

    As NASA supports International Space Station assembly complete operations through 2020 (or later) and prepares for future human exploration programs, there is additional emphasis in the manned spaceflight program to find more efficient and effective ways of providing the ground-based mission support. Since 2006 this search for improvement has led to a significant cross-fertilization between the NASA advanced software development community and the manned spaceflight operations community. A variety of mission operations systems and tools have been developed over the past decades as NASA has operated the Mars robotic missions, the Space Shuttle, and the International Space Station. NASA Ames Research Center has been developing and applying its advanced intelligent systems research to mission operations tools for both unmanned Mars missions operations since 2001 and to manned operations with NASA Johnson Space Center since 2006. In particular, the fundamental advanced software development work under the Exploration Technology Program, and the experience and capabilities developed for mission operations systems for the Mars surface missions, (Spirit/Opportunity, Phoenix Lander, and MSL) have enhanced the development and application of advanced mission operation systems for the International Space Station and future spacecraft. This paper provides an update on the status of the development and deployment of a variety of intelligent systems technologies adopted for manned mission operations, and some discussion of the planned work for Autonomous Mission Operations in future human exploration. We discuss several specific projects between the Ames Research Center and the Johnson Space Centers Mission Operations Directorate, and how these technologies and projects are enhancing the mission operations support for the International Space Station, and supporting the current Autonomous Mission Operations Project for the mission operation support of the future human exploration programs.

  2. Advanced Food Technology Workshop Report. Volumes 1 and 2

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele

    2003-01-01

    The Advanced Human Support Technology (AHST) Program conducts research and technology development to provide new technologies and next-generation system that will enable humans to live and work safely and effectively in space. One program element within the AHST Program is Advanced Life Support (ALS). The goal of the ALS program element is to develop regenerative life support systems directed at supporting National Aeronautics and Space Administration's (NASA) future long-duration missions. Such missions could last from months to years and make resupply impractical, thereby necessitating self-sufficiency. Thus, subsystems must be developed to fully recycle air and water, recover resources from solid wastes grow plants, process raw plant products into nutritious and palatable foods, control the thermal environment, while reducing the overall system mass. ALS systems will be a combination of physico-chemical and biological components depending on the specific mission requirements. In the transit vehicle, the food system will primarily be a prepackaged food system with the possible addition of salad crops that can be picked and eaten with limited preparation. On the lunar or planetary evolved base, the food system will be a combination of the prepackaged menu item and ingredients that are processed from the grown crops. Food processing and food preparation will be part of this food system.

  3. Guiding Requirements for Designing Life Support System Architectures for Crewed Exploration Missions Beyond Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Sargusingh, Miriam J.; Toomarian, Nikzad

    2016-01-01

    The National Aeronautics and Space Administration's (NASA) technology development roadmaps provide guidance to focus technological development in areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-flight maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted.

  4. The new world of discovery, invention, and innovation: convergence of knowledge, technology, and society

    NASA Astrophysics Data System (ADS)

    Roco, Mihail C.; Bainbridge, William S.

    2013-09-01

    Convergence of knowledge and technology for the benefit of society (CKTS) is the core opportunity for progress in the twenty-first century. CKTS is defined as the escalating and transformative interactions among seemingly different disciplines, technologies, communities, and domains of human activity to achieve mutual compatibility, synergism, and integration, and through this process to create added value and branch out to meet shared goals. Convergence has been progressing by stages over the past several decades, beginning with nanotechnology for the material world, followed by convergence of nanotechnology, biotechnology, information, and cognitive science (NBIC) for emerging technologies. CKTS is the third level of convergence. It suggests a general process to advance creativity, innovation, and societal progress based on five general purpose principles: (1) the interdependence of all components of nature and society, (2) decision analysis for research, development, and applications based on dynamic system-logic deduction, (3) enhancement of creativity and innovation through evolutionary processes of convergence that combines existing principles and divergence that generates new ones, (4) the utility of higher-level cross-domain languages to generate new solutions and support transfer of new knowledge, and (5) the value of vision-inspired basic research embodied in grand challenges. CKTS is a general purpose approach in knowledge society. It allows society to answer questions and resolve problems that isolated capabilities cannot, as well as to create new competencies, knowledge, and technologies on this basis. Possible solutions are outlined for key societal challenges in the next decade, including support for foundational emerging technologies NBIC to penetrate essential platforms of human activity and create new industries and jobs, improve lifelong wellness and human potential, achieve personalized and integrated healthcare and education, and secure a sustainable quality of life for all. This paper provides a 10-year "NBIC2" vision within a longer-term framework for converging technology and human progress outlined in a previous study of unifying principles across "NBIC" fields that began with nanotechnology, biotechnology, information technology, and technologies based on and enabling cognitive science (Roco and Bainbridge, Converging technologies for improving human performance: nanotechnology, biotechnology, information technology and cognitive sciences, 2003).

  5. Critical Technology Determination for Future Human Space Flight

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Vangen, Scott D.; Williams-Byrd, Julie A.; Steckleim, Jonette M.; Alexander, Leslie; Rahman, Shamin A.; Rosenthal, Matthew; Wiley, Dianne S.; Davison, Stephan C.; Korsmeyer, David J.; hide

    2012-01-01

    As the National Aeronautics and Space Administration (NASA) prepares to extend human presence throughout the solar system, technical capabilities must be developed to enable long duration flights to destinations such as near Earth asteroids, Mars, and extended stays on the Moon. As part of the NASA Human Spaceflight Architecture Team, a Technology Development Assessment Team has identified a suite of critical technologies needed to support this broad range of missions. Dialog between mission planners, vehicle developers, and technologists was used to identify a minimum but sufficient set of technologies, noting that needs are created by specific mission architecture requirements, yet specific designs are enabled by technologies. Further consideration was given to the re-use of underlying technologies to cover multiple missions to effectively use scarce resources. This suite of critical technologies is expected to provide the needed base capability to enable a variety of possible destinations and missions. This paper describes the methodology used to provide an architecture driven technology development assessment (technology pull), including technology advancement needs identified by trade studies encompassing a spectrum of flight elements and destination design reference missions.

  6. Critical Technology Determination for Future Human Space Flight

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Vangen, Scott D.; Williams-Byrd, Julie A.; Stecklein, Jonette M.; Rahman, Shamim A.; Rosenthal, Matthew E.; Hornyak, David M.; Alexander, Leslie; Korsmeyer, David J.; Tu, Eugene L.; hide

    2012-01-01

    As the National Aeronautics and Space Administration (NASA) prepares to extend human presence throughout the solar system, technical capabilities must be developed to enable long duration flights to destinations such as near Earth asteroids, Mars, and extended stays on the Moon. As part of the NASA Human Spaceflight Architecture Team, a Technology Development Assessment Team has identified a suite of critical technologies needed to support this broad range of missions. Dialog between mission planners, vehicle developers, and technologists was used to identify a minimum but sufficient set of technologies, noting that needs are created by specific mission architecture requirements, yet specific designs are enabled by technologies. Further consideration was given to the re-use of underlying technologies to cover multiple missions to effectively use scarce resources. This suite of critical technologies is expected to provide the needed base capability to enable a variety of possible destinations and missions. This paper describes the methodology used to provide an architecture-driven technology development assessment ("technology pull"), including technology advancement needs identified by trade studies encompassing a spectrum of flight elements and destination design reference missions.

  7. Soft System Analysis to Integrate Technology & Human in Controller Workstation

    DOT National Transportation Integrated Search

    2011-10-16

    Computer-based decision support tools (DST), : shared information, and other forms of automation : are increasingly being planned for use by controllers : and pilots to support Air Traffic Management (ATM) : and Air Traffic Control (ATC) in the Next ...

  8. Selecting Appropriate Functionality and Technologies for EPSS.

    ERIC Educational Resources Information Center

    McGraw, Karen L.

    1995-01-01

    Presents background information that describes the major components of an embedded performance support system, compares levels of functionality, and discusses some of the required technologies. Highlights include the human-computer interface; online help; advisors; training and tutoring; hypermedia; and artificial intelligence techniques. (LRW)

  9. Johnson Space Center Research and Technology 1997 Annual Report

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This report highlights key projects and technologies at Johnson Space Center for 1997. The report focuses on the commercial potential of the projects and technologies and is arranged by CorpTech Major Products Groups. Emerging technologies in these major disciplines we summarized: solar system sciences, life sciences, technology transfer, computer sciences, space technology, and human support technology. Them NASA advances have a range of potential commercial applications, from a school internet manager for networks to a liquid metal mirror for optical measurements.

  10. Integration of Biological, Physical/Chemical and Energy Efficient Systems in the CELSS Antarctic Analog: Performance of Prototype Systems and Issues for Life Support

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Flynn, Michael T.; Lamparter, Richard; Bates, Maynard; Kliss, Mark (Technical Monitor)

    1998-01-01

    The Controlled Ecological Life Support System (CELSS) Antarctic Analog Project (CAAP) is a joint endeavor between the National Science Foundation, Office of Polar Programs (NSF-OPP), and the National Aeronautics and Space Administration (NASA). The fundamental objective is to develop, deploy, and operate a testbed of advanced life support technologies at the Amundsen-Scott South Pole Station that enable the objectives of both the NSF and NASA. The functions of food production, water purification, and waste treatment, recycle, and reduction provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, enhance safety, and minimize environmental impacts associated with human presence on the polar plateau. Because of the analogous technical, scientific, and mission features with Planetary missions, such as a mission to Mars, CAAP provides NASA with a method for validating technologies and overall approaches to supporting humans. Prototype systems for waste treatment, water recycle, resource recovery and crop production are being evaluated in a testbed at Ames Research Center. The combined performance of these biological and physical/chemical systems as an integrated function in support of the human habitat will be discussed. Overall system performance will be emphasized. The effectiveness and efficiency of component technologies will be discussed in the context of energy and mass flow within the system and contribution to achieving a mass and energy conservative system. Critical to the discussion are interfaces with habitat functions outside of the closed-loop life support: the ability of the system to satisfy the life support requirements of the habitat and the ability to define input requirements. The significance of analog functions in relation to future Mars habitats will be discussed.

  11. In Situ Resource Utilization Technology Research and Facilities Supporting the NASA's Human Systems Research and Technology Life Support Program

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Sibille, Laurent; Sacksteder, Kurt; Owens, Chuck

    2005-01-01

    The NASA Microgravity Science program has transitioned research required in support of NASA s Vision for Space Exploration. Research disciplines including the Materials Science, Fluid Physics and Combustion Science are now being applied toward projects with application in the planetary utilization and transformation of space resources. The scientific and engineering competencies and infrastructure in these traditional fields developed at multiple NASA Centers and by external research partners provide essential capabilities to support the agency s new exploration thrusts including In-Situ Resource Utilization (ISRU). Among the technologies essential to human space exploration, the production of life support consumables, especially oxygen and; radiation shielding; and the harvesting of potentially available water are realistically achieved for long-duration crewed missions only through the use of ISRU. Ongoing research in the physical sciences have produced a body of knowledge relevant to the extraction of oxygen from lunar and planetary regolith and associated reduction of metals and silicon for use meeting manufacturing and repair requirements. Activities being conducted and facilities used in support of various ISRU projects at the Glenn Research Center and Marshall Space Flight Center will be described. The presentation will inform the community of these new research capabilities, opportunities, and challenges to utilize their materials, fluids and combustion science expertise and capabilities to support the vision for space exploration.

  12. Applications of a Case Library of Technology Integration Stories for Teachers

    ERIC Educational Resources Information Center

    Wang, Feng-Kwei; Jonassen, David H.; Strobel, Johannes; Cernusca, Dawn

    2003-01-01

    Stories are the most natural form of communication and learning among humans. In this paper, we describe how we have designed and implemented an case library of technology integration stories to support pre-service and in-service teachers learning how to integrate technologies into their teaching. The case library was built using the artificial…

  13. Supporting Friendly Atmosphere in a Classroom by Technology Implementation

    ERIC Educational Resources Information Center

    Lukaš, Mirko

    2014-01-01

    Extremely rapid development of information technology and the lack of monopoly in the technological market have resulted in a sudden price reduction of the informatic equipment and gadgets enabling them to be used in all segments of a human life, hence the education as well. In the modern, digital era it is almost impossible to make any…

  14. JPRS Report, Science & Technology, USSR: Science & Technology Policy

    DTIC Science & Technology

    1990-01-15

    opment of theoretical and applied research in the field of cybernetic science was an unrealized dream . It did not receive support among the leaders... dream . Cooperative works with foreign organizations have made it possible to relieve the urgency of some problems, but one must not in all questions...Belonging to the first group, for example, is telepathy —the transmission of informa- tion from a human agent to the human percipient, who is isolated

  15. Exoskeleton Enhancements for Marines: Tactical-level Technology for an Operational Consequence

    DTIC Science & Technology

    2010-01-01

    wearable mechanical capability to assist Marines in the form of a robotic anthropomorphic exoskeleton system. This capability may be a key enabler to...or human attributes.”37 In this case exoskeletons are a device that follows the human form and direction. "Exoskeleton" within the robotics community...technology. An exoskeleton is not a panacea and will likely still require parallel development with other robotic alternatives to support

  16. Cryogenic Propellant Storage and Transfer Technology Demonstration: Advancing Technologies for Future Mission Architectures Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Chojnacki, Kent T.; Crane, Deborah J.; Motil, Susan M.; Ginty, Carol A.; Tofil, Todd A.

    2014-01-01

    As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including the Moon, asteroids, Lagrange points, and Mars and its environs. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages and propellant depots. The TDM CPST will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration that enables long term human space exploration missions beyond low Earth orbit. This paper will present a summary of the cryogenic fluid management technology maturation effort, infusion of those technologies into flight hardware development, and a summary of the CPST preliminary design.

  17. Improving the Representation of Human Factors in Operational Analysis

    DTIC Science & Technology

    2010-10-01

    Defence Equipment and Support (DE&S) via Human Factors Integration Defence Technology Centre ( HFI DTC) activities. In particular this study’s Theme...Framework has been exploited in the HFI DTC Social Organisational Framework study, and the study team has provided a short extract for contribution to...the HFI DTC Handbook. The study has also been explicitly referenced in support to future MOD OA research studies. 8 SUMMARY AND CONCLUSIONS This

  18. NEH Western Humanities Conference Workshop (Asilomar, California, August 2-5, 1977).

    ERIC Educational Resources Information Center

    1977

    Descriptions of nine humanities programs supported by the National Endowment for the Humanities at two- and four-year colleges are presented in this document. These include a 15-hour team taught interdisciplinary program for technology students at Abraham Baldwin Agricultural College (Georgia); the Bay Area Writing Project, aimed at strengthening…

  19. Organizations, Individuals, and Families in a Technological Society.

    ERIC Educational Resources Information Center

    Quilling, Joan

    1990-01-01

    Individuals, families, and organizations create an interactive network within society and are affected by technological developments. Economic productivity depends on technical expertise within a supportive human environment. When worker health and well-being are neglected, individuals fail to operate at their maximum potential and organizations…

  20. Technology in HRD.

    ERIC Educational Resources Information Center

    1998

    This document contains four papers from a symposium on technology in human resource development (HRD). "COBRA, an Electronic Performance Support System for the Analysis of Jobs and Tasks" (Theo J. Bastiaens) is described as an integrated computerized environment that provides tools, information, advice, and training to help employees do…

  1. Extravehicular Activity Systems Education and Public Outreach in Support of NASA's STEM Initiatives

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.

    2011-01-01

    The exploration activities associated with NASA?s goals to return to the Moon, travel to Mars, or explore Near Earth Objects (NEOs) will involve the need for human-supported space and surface extravehicular activities (EVAs). The technology development and human element associated with these exploration missions provide fantastic content to promote science, technology, engineering, and math (STEM). As NASA Administrator Charles F. Bolden remarked on December 9, 2009, "We....need to provide the educational and experiential stepping-stones to inspire the next generation of scientists, engineers, and leaders in STEM fields." The EVA Systems Project actively supports this initiative by providing subject matter experts and hands-on, interactive presentations to educate students, educators, and the general public about the design challenges encountered as NASA develops EVA hardware for these missions. This paper summarizes these education and public efforts.

  2. Sustainable Systems for exploration, stays with increased duration in LEO and Earth application -an overview about life support activities

    NASA Astrophysics Data System (ADS)

    Slenzka, Klaus; Duenne, Matthias

    Solar system exploration with extended stays in totally closed habitats far away from Earth as well as longer stays in LEO requires intensive preparatory activities. Activities supporting life in a more or less close meaning are essential in this context -on a scientific as well as on a technical level. These needed activities are supporting life by e.g.: i) increasing knowledge about the impact of single and combined effects of different exploration related environmental conditions (e. g. microgravity, radiation, reduced pressure and temperature, lunar soil etc.) on biological systems. This is needed to enable safe life of humans itself as well as safe operating of required bioregenerative life support systems. Thus, different human cell types as well as representatives of bioregenerative life support system protagonists (algae, bacteria as well as higher organisms) needs to be addressed. ii) provision of required consumables (oxygen, food, energy equivalents etc.) on site, mainly via bioregenerative life support systems, Bio-ISRU-units etc. Preparation is needed on a scientific as well as technological level. iii) ensuring reduced negative effects on humans (and partially also equipment), which could be caused by living in a closed habitat in general (and thus being not space related per se): E. g. detection systems for the quality of water and air, antimicrobial and selfhealing as well as anti-icing materials without dangerous hazard substances, psychological health enhancing components etc. Referring payloads for above mentioned investigations (scientific evaluation and technology demonstration) must be developed. Extended stays and extended closure in habitats without the possibility of material transport into and out of the system are leading to the necessity of more autonomous technologies and sustainable processes. Latter one will rely mainly on biological processes and structures, which increases additionally the necessity of an intensive scientific and technological verification before routine use under extreme conditions during solar system exploration.

  3. Developing an Advanced Life Support System for the Flexible Path into Deep Space

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Kliss, Mark H.

    2010-01-01

    Long duration human missions beyond low Earth orbit, such as a permanent lunar base, an asteroid rendezvous, or exploring Mars, will use recycling life support systems to preclude supplying large amounts of metabolic consumables. The International Space Station (ISS) life support design provides a historic guiding basis for future systems, but both its system architecture and the subsystem technologies should be reconsidered. Different technologies for the functional subsystems have been investigated and some past alternates appear better for flexible path destinations beyond low Earth orbit. There is a need to develop more capable technologies that provide lower mass, increased closure, and higher reliability. A major objective of redesigning the life support system for the flexible path is achieving the maintainability and ultra-reliability necessary for deep space operations.

  4. Employing socially driven techniques for framing, contextualization, and collaboration in complex analytical threads

    NASA Astrophysics Data System (ADS)

    Wollocko, Arthur; Danczyk, Jennifer; Farry, Michael; Jenkins, Michael; Voshell, Martin

    2015-05-01

    The proliferation of sensor technologies continues to impact Intelligence Analysis (IA) work domains. Historical procurement focus on sensor platform development and acquisition has resulted in increasingly advanced collection systems; however, such systems often demonstrate classic data overload conditions by placing increased burdens on already overtaxed human operators and analysts. Support technologies and improved interfaces have begun to emerge to ease that burden, but these often focus on single modalities or sensor platforms rather than underlying operator and analyst support needs, resulting in systems that do not adequately leverage their natural human attentional competencies, unique skills, and training. One particular reason why emerging support tools often fail is due to the gap between military applications and their functions, and the functions and capabilities afforded by cutting edge technology employed daily by modern knowledge workers who are increasingly "digitally native." With the entry of Generation Y into these workplaces, "net generation" analysts, who are familiar with socially driven platforms that excel at giving users insight into large data sets while keeping cognitive burdens at a minimum, are creating opportunities for enhanced workflows. By using these ubiquitous platforms, net generation analysts have trained skills in discovering new information socially, tracking trends among affinity groups, and disseminating information. However, these functions are currently under-supported by existing tools. In this paper, we describe how socially driven techniques can be contextualized to frame complex analytical threads throughout the IA process. This paper focuses specifically on collaborative support technology development efforts for a team of operators and analysts. Our work focuses on under-supported functions in current working environments, and identifies opportunities to improve a team's ability to discover new information and disseminate insightful analytic findings. We describe our Cognitive Systems Engineering approach to developing a novel collaborative enterprise IA system that combines modern collaboration tools with familiar contemporary social technologies. Our current findings detail specific cognitive and collaborative work support functions that defined the design requirements for a prototype analyst collaborative support environment.

  5. Developing Fabrication Technologies to Provide On Demand Manufacturing for Exploration of the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Hammond, Monica S.; Good, James E.; Gilley, Scott D.; Howard, Richard W.

    2006-01-01

    NASA's human exploration initiative poses great opportunity and risk for manned and robotic missions to the Moon, Mars, and beyond. Engineers and scientists at the Marshall Space Flight Center (MSFC) are developing technologies for in situ fabrication capabilities during lunar and Martian surface operations utilizing provisioned and locally refined materials. Current fabrication technologies must be advanced to support the special demands and applications of the space exploration initiative such as power, weight and volume constraints. In Situ Fabrication and Repair (ISFR) will advance state-of-the-art technologies in support of habitat structure development, tools, and mechanical part fabrication. The repair and replacement of space mission components, such as life support items or crew exercise equipment, fall within the ISFR scope. This paper will address current fabrication technologies relative to meeting ISFR targeted capabilities, near-term advancement goals, and systematic evaluation of various fabrication methods.

  6. Overview of NASA Technology Development for In-Situ Resource Utilization (ISRU)

    NASA Technical Reports Server (NTRS)

    Linne, Diane L.; Sanders, Gerald B.; Starr, Stanley O.; Eisenman, David J.; Suzuki, Nantel H.; Anderson, Molly S.; O'Malley, Terrence F.; Araghi, Koorosh R.

    2017-01-01

    In-Situ Resource Utilization (ISRU) encompasses a broad range of systems that enable the production and use of extraterrestrial resources in support of future exploration missions. It has the potential to greatly reduce the dependency on resources transported from Earth (e.g., propellants, life support consumables), thereby significantly improving the ability to conduct future missions. Recognizing the critical importance of ISRU for the future, NASA is currently conducting technology development projects in two of its four mission directorates. The Advanced Exploration Systems Division in the Agency's Human Exploration and Operations Mission Directorate has initiated a new project for ISRU Technology focused on component, subsystem, and system maturation in the areas of water volatiles resource acquisition, and water volatiles and atmospheric processing into propellants and other consumable products. The Space Technology Mission Directorate is supporting development of ISRU component technologies in the areas of Mars atmosphere acquisition, including dust management, and oxygen production from Mars atmosphere for propellant and life support consumables. Together, these two coordinated projects are working towards a common goal of demonstrating ISRU technology and systems in preparation for future flight applications.

  7. Proposed teleworking platform for workstations supporting multimedia medical applications

    NASA Astrophysics Data System (ADS)

    Orphanos, George; Kanellopoulos, Dimitris; Prentzas, Lambros; Koubias, Stavros

    1993-09-01

    Teleworking refers to the usage of telecommunication facilities to improve human to human collaboration and enhance performance of work. This paper focuses on the way teleworking affects medicine. In particular, a teleworking platform is proposed to support multimedia medical applications embedded into RISC-based workstations. In order to support the teleworking platform, current commercially available products have to be taken into consideration and a range of new technologies need to be developed and made available. In this paper, we put emphasis on a RISC-based workstation, UNIXTM operating system, communication protocols capable to support the teleworking platform, and ISDN network capabilities.

  8. Environmental control and life support system selection for the first Lunar outpost habitat

    NASA Technical Reports Server (NTRS)

    Adams, Alan

    1993-01-01

    The planning for and feasibility study of an early human return mission to the lunar surface has been undertaken. The First Lunar Outpost (FLO) Mission philosophy is to use existing or near-term technology to achieve a human landing on the lunar surface in the year 2000. To support the crew the lunar habitat for the FLO mission incorporates an environmental control/life support system (ECLSS) design which meets the mission requirements and balances fixed mass and consumable mass. This tradeoff becomes one of regenerable life support systems versus open-loop systems.

  9. An alternative perspective on assistive technology: the Person-Environment-Tool (PET) model.

    PubMed

    Jarl, Gustav; Lundqvist, Lars-Olov

    2018-04-20

    The medical and social models of disability are based on a dichotomy that categorizes people as able-bodied or disabled. In contrast, the biopsychosocial model, which forms the basis for the International Classification of Functioning, Disability and Health (ICF), suggests a universalistic perspective on human functioning, encompassing all human beings. In this article we argue that the artificial separation of function-enhancing technology into assistive technology (AT) and mainstream technology might be one of the barriers to a universalistic view of human functioning. Thus, an alternative view of AT is needed. The aim of this article was to construct a conceptual model to demonstrate how all human activities and participation depend on factors related to the person, environment, and tools, emphasizing a universalistic perspective on human functioning. In the Person-Environment-Tool (PET) model, a person's activity and participation are described as a function of factors related to the person, environment, and tool, drawing on various ICF components. Importantly, the PET model makes no distinction between people of different ability levels, between environmental modifications intended for people of different ability levels, or between different function-enhancing technologies (AT and mainstream technology). A fictive patient case is used to illustrate how the universalistic view of the PET model lead to a different approach in rehabilitation. The PET model supports a universalistic view of technology use, environmental adaptations, and variations in human functioning.

  10. Attitudes in a Web-Supported Learning Environment

    ERIC Educational Resources Information Center

    Acun, Ismail

    2013-01-01

    The aim of the study is to investigate the possible effect of web-supported teaching on students' attitudes on Human Rights, Democracy and Citizenship Education and technology (HRDCE). To examine weather web-supported instruction would make a difference in attitude levels of the subjects, a quasi-experimental design was employed. Subjects of the…

  11. Overview of Human-Centric Space Situational Awareness (SSA) Science and Technology (S&T)

    NASA Astrophysics Data System (ADS)

    Ianni, J.; Aleva, D.; Ellis, S.

    2012-09-01

    A number of organizations, within the government, industry, and academia, are researching ways to help humans understand and react to events in space. The problem is both helped and complicated by the fact that there are numerous data sources that need to be planned (i.e., tasked), collected, processed, analyzed, and disseminated. A large part of the research is in support of the Joint Space Operational Center (JSpOC), National Air and Space Intelligence Center (NASIC), and similar organizations. Much recent research has been specifically targeting the JSpOC Mission System (JMS) which has provided a unifying software architecture. This paper will first outline areas of science and technology (S&T) related to human-centric space situational awareness (SSA) and space command and control (C2) including: 1. Object visualization - especially data fused from disparate sources. Also satellite catalog visualizations that convey the physical relationships between space objects. 2. Data visualization - improve data trend analysis as in visual analytics and interactive visualization; e.g., satellite anomaly trends over time, space weather visualization, dynamic visualizations 3. Workflow support - human-computer interfaces that encapsulate multiple computer services (i.e., algorithms, programs, applications) into a 4. Command and control - e.g., tools that support course of action (COA) development and selection, tasking for satellites and sensors, etc. 5. Collaboration - improve individuals or teams ability to work with others; e.g., video teleconferencing, shared virtual spaces, file sharing, virtual white-boards, chat, and knowledge search. 6. Hardware/facilities - e.g., optimal layouts for operations centers, ergonomic workstations, immersive displays, interaction technologies, and mobile computing. Secondly we will provide a survey of organizations working these areas and suggest where more attention may be needed. Although no detailed master plan exists for human-centric SSA and C2, we see little redundancy among the groups supporting SSA human factors at this point.

  12. Human-like robots as platforms for electroactive polymers (EAP)

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph

    2008-03-01

    Human-like robots, which have been a science fiction for many years, are increasingly becoming an engineering reality thanks to many technology advances in recent years. Humans have always sought to imitate the human appearance, functions and intelligence and as the capability progresses they may become our household appliance or even companion. Biomimetic technologies are increasingly becoming common tools to support the development of such robots. As artificial muscles, electroactive polymers (EAP) are offering important actuation capability for making such machines lifelike. The current limitations of EAP are hampering the possibilities that can be adapted in such robots but progress is continually being made. As opposed to other human made machines and devices, this technology raises various questions and concerns that need to be addressed. These include the need to prevent accidents, deliberate harm, or their use in crimes. In this paper the state-of-the-art and the challenges will be reviewed.

  13. I've got a mobile phone too! Hard and soft assistive technology customization and supportive call centres for people with disability.

    PubMed

    Darcy, Simon; Green, Jenny; Maxwell, Hazel

    2017-05-01

    The purpose of this article is to examine the use of a mobile technology platform, software customization and technical support services by people with disability. The disability experience is framed through the participants' use of the technology, their social participation. A qualitative and interpretive research design was employed using a three-stage process of observation and semi-structured interviews of people with disability, a significant other and their service provider. Transcripts were analyzed to examine the research questions through the theoretical framework of PHAATE - Policy, Human, Activity, Assistance and Technology and Environment. The analysis revealed three emergent themes: 1. Engagement and activity; 2. Training, support and customization; and 3. Enablers, barriers and attitudes. The findings indicate that for the majority of users, the mobile technology increased the participants' communication and social participation. However, this was not true for all members of the pilot with variations due to disability type, support needs and availability of support services. Most participants, significant others and service providers identified improvements in confidence, security, safety and independence of those involved. Yet, the actions and attitudes of some of the significant others and service providers acted as a constraint to the adoption of the technology. Implications for Rehabilitation Customized mobile technology can operate as assistive technology providing a distinct benefit in terms of promoting disability citizenship. Mobile technology used in conjunction with a supportive call centre can lead to improvements in confidence, safety and independence for people experiencing disability. Training and support are critical in increasing independent use of mobile technology for people with disability. The enjoyment, development of skills and empowerment gained through the use of mobile technology facilitate the social inclusion of people with disability.

  14. Designing medical technology for resilience: integrating health economics and human factors approaches.

    PubMed

    Borsci, Simone; Uchegbu, Ijeoma; Buckle, Peter; Ni, Zhifang; Walne, Simon; Hanna, George B

    2018-01-01

    The slow adoption of innovation into healthcare calls into question the manner of evidence generation for medical technology. This paper identifies potential reasons for this including a lack of attention to human factors, poor evaluation of economic benefits, lack of understanding of the existing healthcare system and a failure to recognise the need to generate resilient products. Areas covered: Recognising a cross-disciplinary need to enhance evidence generation early in a technology's life cycle, the present paper proposes a new approach that integrates human factors and health economic evaluation as part of a wider systems approach to the design of technology. This approach (Human and Economic Resilience Design for Medical Technology or HERD MedTech) supports early stages of product development and is based on the recent experiences of the National Institute for Health Research London Diagnostic Evidence Co-operative in the UK. Expert commentary: HERD MedTech i) proposes a shift from design for usability to design for resilience, ii) aspires to reduce the need for service adaptation to technological constraints iii) ensures value of innovation at the time of product development, and iv) aims to stimulate discussion around the integration of pre- and post-market methods of assessment of medical technology.

  15. In Situ Resource Utilization Technologies for Enhancing and Expanding Mars Scientific and Exploration Missions

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Finn, J. E.

    2000-01-01

    The primary objectives of the Mars exploration program are to collect data for planetary science in a quest to answer questions related to Origins, to search for evidence of extinct and extant life, and to expand the human presence in the solar system. The public and political engagement that is critical for support of a Mars exploration program is based on all of these objectives. In order to retain and to build public and political support, it is important for NASA to have an integrated Mars exploration plan, not separate robotic and human plans that exist in parallel or in sequence. The resolutions stemming from the current architectural review and prioritization of payloads may be pivotal in determining whether NASA will have such a unified plan and retain public support. There are several potential scientific and technological links between the robotic-only missions that have been flown and planned to date, and the combined robotic and human missions that will come in the future. Taking advantage of and leveraging those links are central to the idea of a unified Mars exploration plan. One such link is in situ resource utilization (ISRU) as an enabling technology to provide consumables such as fuels, oxygen, sweep and utility gases from the Mars atmosphere.

  16. Exploration Life Support Technology Development for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.; Barta, Daniel J.; McQuillan, Jeffrey

    2009-01-01

    Exploration Life Support (ELS) is one of NASA's Exploration Technology Development Projects. ELS plans, coordinates and implements the development of new life support technologies for human exploration missions as outlined in NASA's Vision for Space Exploration. ELS technology development currently supports three major projects of the Constellation Program - the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems. ELS content includes Air Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing. The primary goal of the ELS project is to provide different technology options to Constellation which fill gaps or provide substantial improvements over the state-of-the-art in life support systems. Since the Constellation missions are so challenging, mass, power, and volume must be reduced from Space Shuttle and Space Station technologies. Systems engineering analysis also optimizes the overall architecture by considering all interfaces with the life support system and potential for reduction or reuse of resources. For long duration missions, technologies which aid in closure of air and water loops with increased reliability are essential as well as techniques to minimize or deal with waste. The ELS project utilizes in-house efforts at five NASA centers, aerospace industry contracts, Small Business Innovative Research contracts and other means to develop advanced life support technologies. Testing, analysis and reduced gravity flight experiments are also conducted at the NASA field centers. This paper gives a current status of technologies under development by ELS and relates them to the Constellation customers who will eventually use them.

  17. Mathematical Modeling Of Life-Support Systems

    NASA Technical Reports Server (NTRS)

    Seshan, Panchalam K.; Ganapathi, Balasubramanian; Jan, Darrell L.; Ferrall, Joseph F.; Rohatgi, Naresh K.

    1994-01-01

    Generic hierarchical model of life-support system developed to facilitate comparisons of options in design of system. Model represents combinations of interdependent subsystems supporting microbes, plants, fish, and land animals (including humans). Generic model enables rapid configuration of variety of specific life support component models for tradeoff studies culminating in single system design. Enables rapid evaluation of effects of substituting alternate technologies and even entire groups of technologies and subsystems. Used to synthesize and analyze life-support systems ranging from relatively simple, nonregenerative units like aquariums to complex closed-loop systems aboard submarines or spacecraft. Model, called Generic Modular Flow Schematic (GMFS), coded in such chemical-process-simulation languages as Aspen Plus and expressed as three-dimensional spreadsheet.

  18. Next Generation Life Support (NGLS): High Performance EVA Glove (HPEG) Technology Development Element

    NASA Technical Reports Server (NTRS)

    Walsh, Sarah; Barta, Daniel; Stephan, Ryan; Gaddis, Stephen

    2015-01-01

    The overall objective is to develop advanced gloves for extra vehicular activity (EVA) for future human space exploration missions and generate corresponding standards by which progress may be quantitatively assessed. The glove prototypes that result from the successful completion of this technology development activity will be delivered to NASA's Human Exploration Operations Mission Directorate (HEOMD) and ultimately to be included in an integrated test with the next generation spacesuit currently under development.

  19. Technology Development on ISS for Satellite Servicing and Exploration

    NASA Technical Reports Server (NTRS)

    Reed, Benjamin B.

    2015-01-01

    NASA's Satellite Servicing Capabilities Office is utilizing the International Space Station to demonstrate technologies essential to satellite servicing endeavors in support of human exploration and science. Within this presentation, we will discuss the status and implications of three of these technology payloads: Restore-L, Asteroid Redirect Robotic Mission (ARRM), Raven, Robotic Refueling Mission (RRM) Phase 2, and RRM Phase 3.

  20. Innovation in the Harnessing and Transfer of Technology: The Gran Mariscal de Ayacucho Foundation

    ERIC Educational Resources Information Center

    Lerner de Almea, Ruth

    1977-01-01

    Discusses the background, organization, success, problems, and functions of the Gran Mariscal de Ayacucho Foundation, Caracas, Venezuela, for producing human resources for the harnessing of scientific technology. The fellowship program supports study by students both at home and abroad. (SL)

  1. The roles and functions of a lunar base Nuclear Technology Center

    NASA Astrophysics Data System (ADS)

    Buden, D.; Angelo, J. A., Jr.

    This paper describes the roles and functions of a special Nuclear Technology Center which is developed as an integral part of a permanent lunar base. Numerous contemporary studies clearly point out that nuclear energy technology will play a major role in any successful lunar/Mars initiative program and in the overall establishment of humanity's solar system civilization. The key role of nuclear energy in the providing power has been recognized. A Nuclear Technology Center developed as part of a permanent lunar base can also help bring about many other nuclear technology applications, such as producing radioisotopes for self-illumination, food preservation, waste sterilization, and medical treatment; providing thermal energy for mining, materials processing and agricultural; and as a source of emergency habitat power. Designing such a center will involve the deployment, operation, servicing and waste product management and disposal of megawatt class reactor power plants. This challenge must be met with a minimum of direct human support at the facility. Furthermore, to support the timely, efficient integration of this Nuclear Technology Center in the evolving lunar base infrastructure, an analog of such a facility will be needed here on Earth.

  2. JSC research and technology

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The primary roles and missions of JSC incorporate all aspects of human presence in space. Therefore, the Center is involved in the development of technology that will allow humans to stay longer in Earth orbit, allow safe flight in space, and provide capabilities to explore the Moon and Mars. The Center's technology emphasis areas include human spacecraft development, human support systems and infrastructure, and human spacecraft operations. Safety and reliability are critical requirements for the technologies that JSC pursues for long-duration use in space. One of the objectives of technology development at the Center is to give employees the opportunity to enhance their technological expertise and project management skills by defining, designing, and developing projects that are vital to the Center's strategy for the future. This report is intended to communicate within and outside the Agency our research and technology (R&T) accomplishments, as well as inform Headquarters program managers and their constituents of the significant accomplishments that have promise for future Agency programs. While not inclusive of all R&T efforts, the report presents a comprehensive summary of JSC projects in which substantial progress was made in the 1992 fiscal year. At the beginning of each project description, names of the Principal Investigator (PI) and the Technical Monitor (TM) are given, followed by their JSC mail codes or their company or university affiliations. The funding sources and technology focal points are identified in the index.

  3. Testing and Results of Human Metabolic Simulation Utilizing Ultrasonic Nebulizer Technology for Water Vapor Generation

    NASA Technical Reports Server (NTRS)

    Stubbe, Matthew; Curley, Su

    2010-01-01

    Life support technology must be evaluated thoroughly before ever being implemented into a functioning design. A major concern during that evaluation is safety. The ability to mimic human metabolic loads allows test engineers to evaluate the effectiveness of new technologies without risking injury to any actual humans. The main function of most life support technologies is the removal of carbon dioxide (CO2) and water (H2O) vapor. As such any good human metabolic simulator (HMS) will mimic the human body s ability to produce these items. Introducing CO2 into a test chamber is a very straightforward process with few unknowns so the focus of this particular new HMS design was on the much more complicated process of introducing known quantities of H2O vapor on command. Past iterations of the HMS have utilized steam which is very hard to keep in vapor phase while transporting and injecting into a test chamber. Also steam adds large quantities of heat to any test chamber, well beyond what an actual human does. For the new HMS an alternative approach to water vapor generation was designed utilizing ultrasonic nebulizers as a method for creating water vapor. Ultrasonic technology allows water to be vibrated into extremely tiny pieces (2-5 microns) and evaporate without requiring additional heating. Doing this process inside the test chamber itself allows H2O vapor generation without the unwanted heat and the challenging process of transporting water vapor. This paper presents the design details as well as results of all initial and final acceptance system testing. Testing of the system was performed at a range of known human metabolic rates in both sea-level and reduced pressure environments. This multitude of test points fully defines the systems capabilities as they relate to actual environmental systems testing.

  4. Application of Human Factors Methods to Design Healthcare Work Systems: Instance of the prevention of Adverse Drug Events.

    PubMed

    Marcilly, Romaric; Beuscart-Zephir, Marie-Catherine

    2015-01-01

    Human Factors (HF) methods are increasingly needed to support the design of new technologies in order to avoid that introducing those technologies into healthcare work systems induces use errors with potentially catastrophic consequences for the patients. This chapter illustrates the application of HF methods in developing two health technologies aiming at securing the hospital medication management process. Lessons learned from this project highlight the importance of (i) analyzing the work system in which the technology is intended to be implemented, (ii) involving end users in the design process and (iii) the intermediation role of HF between end users and scientific/technical experts.

  5. SMART Power Systems for ANTS Missions

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Floyd, S. R.; Curtis, S. A.; Rilee, M. L.

    2005-02-01

    Autonomous NanoTechnology Swarm (ANTS) Architecture is based on Addressable Reconfigurable Technology (ART) adaptable for the full spectrum of activities in space. ART systems based on currently available electromechanical (EMS) technology could support human crews on the lunar surface within the next 10 to 15 years. Two or more decades from now, NEMS (Super Miniaturized ART or SMART) technology could perform fully autonomous surveys and operations beyond the reach of human crews. Power system requirements would range from 1 kg to generate tens of Watts for near term ART applications, such as a lunar or Mars Lander Amorphous Rover Antenna (LARA), to <0.1 kg to generate hundreds of mWatts for more advanced SMART applications.

  6. Research and Development Annual Report, 1992

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Issued as a companion to Johnson Space Center's Research and Technology Annual Report, which reports JSC accomplishments under NASA Research and Technology Operating Plan (RTOP) funding, this report describes 42 additional JSC projects that are funded through sources other than the RTOP. Emerging technologies in four major disciplines are summarized: space systems technology, medical and life sciences, mission operations, and computer systems. Although these projects focus on support of human spacecraft design, development, and safety, most have wide civil and commercial applications in areas such as advanced materials, superconductors, advanced semiconductors, digital imaging, high density data storage, high performance computers, optoelectronics, artificial intelligence, robotics and automation, sensors, biotechnology, medical devices and diagnosis, and human factors engineering.

  7. The JSC Research and Development Annual Report 1993

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Issued as a companion to Johnson Space Center's Research and Technology Annual Report, which reports JSC accomplishments under NASA Research and Technology Operating Plan (RTOP) funding, this report describes 47 additional projects that are funded through sources other than the RTOP. Emerging technologies in four major disciplines are summarized: space systems technology, medical and life sciences, mission operations, and computer systems. Although these projects focus on support of human spacecraft design, development, and safety, most have wide civil and commercial applications in areas such as advanced materials, superconductors, advanced semiconductors, digital imaging, high density data storage, high performance computers, optoelectronics, artificial intelligence, robotics and automation, sensors, biotechnology, medical devices and diagnosis, and human factors engineering.

  8. The Concept and Experimental Investigation of CO2 and Steam Co-electrolysis for Resource Utilization in Space Exploration

    NASA Technical Reports Server (NTRS)

    Stoots, Carl; Mulloth, Lila M.; Luna, Bernadette; Varghese, Mini M.

    2009-01-01

    CO2 acquisition and utilization technologies will have a vital role in determining sustained and affordable life support and in-situ fuel production architectures for human and robotic exploration of Moon and Mars. For long-term human exploration to be practical, reliable technologies have to be implemented to capture and chemically reduce the metabolic CO2 from the cabin air to restitute oxygen consumption. Technologies that facilitate the in-situ capture and conversion of atmospheric CO2 to fuel are essential for a viable human mission to Mars and their demonstration on the moon is critical as well. This paper describes the concept and experimental investigation of a CO2 capture and reduction system that comprises an adsorption compressor and a CO2 and steam co-electrolysis unit. The process products include oxygen for life support and Syngas (CO and H2) for synthetic fuel production. Electrochemical performance in terms of CO2 conversion, oxygen production, and power consumption of a system with a capacity to process 1kg CO2 per day (1-person equivalent) will be discussed.

  9. Artificial Intelligence and Educational Technology: A Natural Synergy. Extended Abstract.

    ERIC Educational Resources Information Center

    McCalla, Gordon I.

    Educational technology and artificial intelligence (AI) are natural partners in the development of environments to support human learning. Designing systems with the characteristics of a rich learning environment is the long term goal of research in intelligent tutoring systems (ITS). Building these characteristics into a system is extremely…

  10. Using Level 1 E-Learning to Support Socio-Economic Development

    ERIC Educational Resources Information Center

    Edmundson, Andrea

    2007-01-01

    The most developed, progressive, and economically stable countries in the world are those that are technologically advanced. Technological change and the building of human capabilities are interrelated: each requires the development of the other for success and the "rethinking [of] educational systems to meet the new challenges of…

  11. Technology for Future NASA Missions: Civil Space Technology Initiative (CSTI) and Pathfinder

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Information is presented in viewgraph form on a number of related topics. Information is given on orbit transfer vehicles, spacecraft instruments, spaceborne experiments, university/industry programs, spacecraft propulsion, life support systems, cryogenics, spacecraft power supplies, human factors engineering, spacecraft construction materials, aeroassist, aerobraking and aerothermodynamics.

  12. Technologies for Humans in Space with Terrestrial Application for Testing in :envihab

    NASA Astrophysics Data System (ADS)

    Belz, Stefan; Henn, Norbert

    Technologies for humans in space and for a sustainable resource management on Earth are faced to similar recycling challenges. The main differences between life support systems (LSS) in human spaceflight and Earth’s environment are the buffer capacities and enormous diversity of material and organisms in Earth. Thus, LSS in space as a small-scale set-up show quickly the problems of artificial cycle management. Such a cycle management becomes more and more important with increase on world’s population and enlargement of (mega-)cities, in order to provide clean air, clean water and no wasting the environment. There is a need of technologies on Earth and for crewed long-term missions in space focusing on efficient and clean electricity generation, as well as on air, water, food, and waste management at lowest power demand. Existing technologies shall be adapted, and new technologies shall be developed for enhancing quality of life on Earth. The poster demonstrates some significant activities in Germany in the field of air revitalization, biomass and food production by microalgae cultivation, biological water regeneration, synergetic use of fuel cells and electrolyzers, respectively hydrogen and oxygen, in life support and energy systems. These technologies make a strong contribution to higher cycle closures, especially combined in an overall system configuration. The facility of :envihab (Environment and Habitat) in Cologne/Germany enables a unique testbed for integrative experiments from component level to system level, in order to demonstrate and investigate compatibilities, required peripherals devices and diagnostic tools.

  13. EVA Systems Technology Gaps and Priorities 2017

    NASA Technical Reports Server (NTRS)

    Johnson, Brian J.; Buffington, Jesse A.

    2017-01-01

    Performance of Extra-Vehicular Activities (EVA) has been and will continue to be a critical capability for human space flight. Human exploration missions beyond LEO will require EVA capability for either contingency or nominal activities to support mission objectives and reduce mission risk. EVA systems encompass a wide array of products across pressure suits, life support systems, EVA tools and unique spacecraft interface hardware (i.e. EVA Translation Paths and EVA Worksites). In a fiscally limited environment with evolving transportation and habitation options, it is paramount that the EVA community's strategic planning and architecture integration products be reviewed and vetted for traceability between the mission needs far into the future to the known technology and knowledge gaps to the current investments across EVA systems. To ascertain EVA technology and knowledge gaps many things need to be brought together, assessed and analyzed. This includes an understanding of the destination environments, various mission concept of operations, current state of the art of EVA systems, EVA operational lessons learned, and reference advanced capabilities. A combined assessment of these inputs should result in well-defined list of gaps. This list can then be prioritized depending on the mission need dates and time scale of the technology or knowledge gap closure plan. This paper will summarize the current state of EVA related technology and knowledge gaps derived from NASA's Exploration EVA Reference Architecture and Operations Concept products. By linking these products and articulating NASA's approach to strategic development for EVA across all credible destinations an EVA could be done in, the identification of these gaps is then used to illustrate the tactical and strategic planning for the EVA technology development portfolio. Finally, this paper illustrates the various "touch points" with other human exploration risk identification areas including human health and performance.

  14. Aerothermal Instrumentation Loads To Implement Aeroassist Technology in Future Robotic and Human Missions to MARS and Other Locations Within the Solar System

    NASA Technical Reports Server (NTRS)

    Parmar, Devendra S.; Shams, Qamar A.

    2002-01-01

    The strategy of NASA to explore space objects in the vicinity of Earth and other planets of the solar system includes robotic and human missions. This strategy requires a road map for technology development that will support the robotic exploration and provide safety for the humans traveling to other celestial bodies. Aeroassist is one of the key elements of technology planning for the success of future robot and human exploration missions to other celestial bodies. Measurement of aerothermodynamic parameters such as temperature, pressure, and acceleration is of prime importance for aeroassist technology implementation and for the safety and affordability of the mission. Instrumentation and methods to measure such parameters have been reviewed in this report in view of past practices, current commercial availability of instrumentation technology, and the prospects of improvement and upgrade according to the requirements. Analysis of the usability of each identified instruments in terms of cost for efficient weight-volume ratio, power requirement, accuracy, sample rates, and other appropriate metrics such as harsh environment survivability has been reported.

  15. Human Exploration Spacecraft Testbed for Integration and Advancement (HESTIA)

    NASA Technical Reports Server (NTRS)

    Banker, Brian F.; Robinson, Travis

    2016-01-01

    The proposed paper will cover ongoing effort named HESTIA (Human Exploration Spacecraft Testbed for Integration and Advancement), led at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) to promote a cross-subsystem approach to developing Mars-enabling technologies with the ultimate goal of integrated system optimization. HESTIA also aims to develop the infrastructure required to rapidly test these highly integrated systems at a low cost. The initial focus is on the common fluids architecture required to enable human exploration of mars, specifically between life support and in-situ resource utilization (ISRU) subsystems. An overview of the advancements in both integrated technologies, in infrastructure, in simulation, and in modeling capabilities will be presented, as well as the results and findings of integrated testing,. Due to the enormous mass gear-ratio required for human exploration beyond low-earth orbit, (for every 1 kg of payload landed on Mars, 226 kg will be required on Earth), minimization of surface hardware and commodities is paramount. Hardware requirements can be minimized by reduction of equipment performing similar functions though for different subsystems. If hardware could be developed which meets the requirements of both life support and ISRU it could result in the reduction of primary hardware and/or reduction in spares. Minimization of commodities to the surface of mars can be achieved through the creation of higher efficiency systems producing little to no undesired waste, such as a closed-loop life support subsystem. Where complete efficiency is impossible or impractical, makeup commodities could be manufactured via ISRU. Although, utilization of ISRU products (oxygen and water) for crew consumption holds great promise of reducing demands on life support hardware, there exist concerns as to the purity and transportation of commodities. To date, ISRU has been focused on production rates and purities for propulsion needs. The meshing of requirements between all potential users, producers, and cleaners of oxygen and water is crucial to guiding the development of technologies which will be used to perform these functions. Various new capabilities are being developed as part of HESTIA, which will enable the integrated testing of these technologies. This includes the upgrading of a 20' diameter habitat chamber to eventually support long duration (90+ day) human-in-the-loop testing of advanced life support systems. Additionally, a 20' diameter vacuum chamber is being modified to create Mars atmospheric pressures and compositions. This chamber, designated the Mars Environment Chamber (MEC), will eventually be upgraded to include a dusty environment and thermal shroud to simulate conditions on the surface of Mars. In view that individual technologies will be in geographically diverse locations across NASA facilities and elsewhere in the world, schedule and funding constraints will likely limit the frequency of physical integration. When this is the case, absent subsystems can be either digitally or physically simulated. Using the Integrated Power Avionics and Software (iPAS) environment, HESTIA is able to bring together data from various subsystems in simulated surroundings, insert faults, errors, time delays, etc., and feed data into computer models or physical systems capable of reproducing the output of the absent subsystems for the consumption of a local subsystems. Although imperfect, this capability provides opportunities to test subsystem integration and interactions at a fraction of the cost. When a subsystem technology is too immature for integrated testing, models can be produced using the General-Use Nodal Network Solver (GUNNS) capability to simulate the overall system performance. In doing so, even technologies not yet on the drawing board can be integrated and overall system performance estimated. Through the integrated development of technologies, as well as of the infrastructure to rapidly and at a low cost, model, simulate, and test subsystem technologies early in their development, HESTIA is pioneering a new way of developing the future of human space exploration.

  16. Robots and Humans in Planetary Exploration: Working Together?

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Today's approach to human-robotic cooperation in planetary exploration focuses on using robotic probes as precursors to human exploration. A large portion of current NASA planetary surface exploration is focussed on Mars, and robotic probes are seen as precursors to human exploration in: Learning about operation and mobility on Mars; Learning about the environment of Mars; Mapping the planet and selecting landing sites for human mission; Demonstration of critical technology; Manufacture fuel before human presence, and emplace elements of human-support infrastructure

  17. INFLUENCE OF AEROSPACE MEDICINE ACHIEVEMENTS ON THE DEVELOPMENT OF SPORT MEDICINE METHODOLOGY.

    PubMed

    R Yashina, E R; Kurashvili, V A; Turzin, P S

    Modern technologies of aerospace medicine develop at rapid pace pulling on its orbit all spheres of the human activity, including sport. Innovations play a major role in the progress of sport medicine areas related to the biomedical support of precontest training. Overview of the most important aerospace medicine achievements and their methodical implications for sport medicine is presented. Discussion is devoted to how the aerospace medicine technologies can raise effectiveness of the biomedical support to different sectors of sport and fitness.

  18. Atmosphere Revitalization Technology Development for Crewed Space Exploration

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Carrasquillo, Robyn L.; Harris, Danny W.

    2006-01-01

    As space exploration objectives extend human presence beyond low Earth orbit, the solutions to technological challenges presented by supporting human life in the hostile space environment must build upon experience gained during past and present crewed space exploration programs. These programs and the cabin atmosphere revitalization process technologies and systems developed for them represent the National Aeronautics and Space Administration s (NASA) past and present operational knowledge base for maintaining a safe, comfortable environment for the crew. The contributions of these programs to the NASA s technological and operational working knowledge base as well as key strengths and weaknesses to be overcome are discussed. Areas for technological development to address challenges inherent with the Vision for Space Exploration (VSE) are presented and a plan for their development employing unit operations principles is summarized

  19. Advanced Life Support Research and Technology Development

    NASA Technical Reports Server (NTRS)

    Kliss, Mark

    2001-01-01

    A videograph outlining life support research. The Human Exploration and Development of Space (HEDS) Enterprise's goals are to provide life support self-sufficiency for human beings to carry out research and exploration productively in space, to open the door for planetary exploration, and for benefits on Earth. Topics presented include the role of NASA Ames, funding, and technical monitoring. The focused research areas discussed include air regeneration, carbon dioxide removal, Mars Life Support, water recovery, Vapor Phase Catalytic Ammonia Removal (VPCAR), solid waste treatment, and Supercritical Water Oxidation (SCWC). Focus is placed on the utilization of Systems Integration, Modeling and Analysis (SIMA) and Dynamic Systems Modeling in this research.

  20. Marshall Space Flight Center's Virtual Reality Applications Program 1993

    NASA Technical Reports Server (NTRS)

    Hale, Joseph P., II

    1993-01-01

    A Virtual Reality (VR) applications program has been under development at the Marshall Space Flight Center (MSFC) since 1989. Other NASA Centers, most notably Ames Research Center (ARC), have contributed to the development of the VR enabling technologies and VR systems. This VR technology development has now reached a level of maturity where specific applications of VR as a tool can be considered. The objectives of the MSFC VR Applications Program are to develop, validate, and utilize VR as a Human Factors design and operations analysis tool and to assess and evaluate VR as a tool in other applications (e.g., training, operations development, mission support, teleoperations planning, etc.). The long-term goals of this technology program is to enable specialized Human Factors analyses earlier in the hardware and operations development process and develop more effective training and mission support systems. The capability to perform specialized Human Factors analyses earlier in the hardware and operations development process is required to better refine and validate requirements during the requirements definition phase. This leads to a more efficient design process where perturbations caused by late-occurring requirements changes are minimized. A validated set of VR analytical tools must be developed to enable a more efficient process for the design and development of space systems and operations. Similarly, training and mission support systems must exploit state-of-the-art computer-based technologies to maximize training effectiveness and enhance mission support. The approach of the VR Applications Program is to develop and validate appropriate virtual environments and associated object kinematic and behavior attributes for specific classes of applications. These application-specific environments and associated simulations will be validated, where possible, through empirical comparisons with existing, accepted tools and methodologies. These validated VR analytical tools will then be available for use in the design and development of space systems and operations and in training and mission support systems.

  1. Assessing Space Exploration Technology Requirements as a First Step Towards Ensuring Technology Readiness for International Cooperation in Space Exploration

    NASA Technical Reports Server (NTRS)

    Laurini, Kathleen C.; Hufenbach, Bernhard; Satoh, Maoki; Piedboeuf, Jean-Claude; Neumann, Benjamin

    2010-01-01

    Advancing critical and enhancing technologies is considered essential to enabling sustainable and affordable human space exploration. Critical technologies are those that enable a certain class of mission, such as technologies necessary for safe landing on the Martian surface, advanced propulsion, and closed loop life support. Others enhance the mission by leading to a greater satisfaction of mission objectives or increased probability of mission success. Advanced technologies are needed to reduce mass and cost. Many space agencies have studied exploration mission architectures and scenarios with the resulting lists of critical and enhancing technologies being very similar. With this in mind, and with the recognition that human space exploration will only be enabled by agencies working together to address these challenges, interested agencies participating in the International Space Exploration Coordination Group (ISECG) have agreed to perform a technology assessment as an important step in exploring cooperation opportunities for future exploration mission scenarios. "The Global Exploration Strategy: The Framework for Coordination" was developed by fourteen space agencies and released in May 2007. Since the fall of 2008, several International Space Exploration Coordination Group (ISECG) participating space agencies have been studying concepts for human exploration of the moon. They have identified technologies considered critical and enhancing of sustainable space exploration. Technologies such as in-situ resource utilization, advanced power generation/energy storage systems, reliable dust resistant mobility systems, and closed loop life support systems are important examples. Similarly, agencies such as NASA, ESA, and Russia have studied Mars exploration missions and identified critical technologies. They recognize that human and robotic precursor missions to destinations such as LEO, moon, and near earth objects provide opportunities to demonstrate the technologies needed for Mars mission. Agencies see the importance of assessing gaps and overlaps in their plans to advance technologies in order to leverage their investments and enable exciting missions as soon as practical. They see the importance of respecting the ability of any agency to invest in any technologies considered interesting or strategic. This paper will describe the importance of developing an appropriate international strategy for technology development and ideas for effective mechanisms for advancing an international strategy. This work will both inform and be informed by the development of an ISECG Global Exploration Roadmap and serve as a concrete step forward in advancing the Global Exploration Strategy.

  2. Testing a Regenerative Carbon Dioxide and Moisture Removal Technology

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Button, Amy; Sweterlitsch, Jeffrey J.; Curley, Suzanne

    2010-01-01

    The National Aeronautics and Space Administration supported the development of a new vacuum-desorbed regenerative carbon dioxide and humidity control technology for use in short duration human spacecraft. The technology was baselined for use in the Orion Crew Exploration Vehicle s Environmental Control and Life Support System (ECLSS). Termed the Carbon Dioxide And Moisture Removal Amine Swing-bed (CAMRAS), the unit was developed by Hamilton Sundstrand and has undergone extensive testing at Johnson Space Center. The tests were performed to evaluate performance characteristics under range of operating conditions and human loads expected in future spacecraft applications, as part of maturation to increase its readiness for flight. Early tests, conducted at nominal atmospheric pressure, used human metabolic simulators to generate loads, with later tests making us of human test subjects. During these tests many different test cases were performed, involving from 1 to 6 test subjects, with different activity profiles (sleep, nominal and exercise). These tests were conducted within the airlock portion of a human rated test chamber sized to simulate the Orion cabin free air volume. More recently, a test was completed that integrated the CAMRAS with a simulated suit loop using prototype umbilicals and was conducted at reduced atmospheric pressure and elevated oxygen levels. This paper will describe the facilities and procedures used to conduct these and future tests, and provide a summary of findings.

  3. Human Exploration on the Moon, Mars and NEOs: PEX.2/ICEUM12B

    NASA Astrophysics Data System (ADS)

    Foing, Bernard H.

    2016-07-01

    The session COSPAR-16-PEX.2: "Human Exploration on the Moon, Mars and NEOs", co-sponsored by Commissions B, F will include solicited and contributed talks and poster/interactive presentations. It will also be part of the 12th International Conference on Exploration and Utilisation of the Moon ICEUM12B from the ILEWG ICEUM series started in 1994. It will address various themes and COSPAR communities: - Sciences (of, on, from) the Moon enabled by humans - Research from cislunar and libration points - From robotic villages to international lunar bases - Research from Mars & NEOs outposts - Humans to Phobos/Deimos, Mars and NEOS - Challenges and preparatory technologies, field research operations - Human and robotic partnerships and precursor missions - Resource utilisation, life support and sustainable exploration - Stakeholders for human exploration One half-day session will be dedicated to a workshop format and meetings/reports of task groups: Science, Technology, Agencies, Robotic village, Human bases, Society & Commerce, Outreach, Young Explorers. COSPAR has provided through Commissions, Panels and Working Groups (such as ILEWG, IMEWG) an international forum for supporting and promoting the robotic and human exploration of the Moon, Mars and NEOS. Proposed sponsors : ILEWG, ISECG, IKI, ESA, NASA, DLR, CNES, ASI, UKSA, JAXA, ISRO, SRON, CNSA, SSERVI, IAF, IAA, Lockheed Martin, Google Lunar X prize, UNOOSA

  4. Technology for Education Act of 1993. Hearings on S. 1040 before the Committee on Labor and Human Resources. United States Senate. One Hundred Third Congress, First Session (Washington, D.C., July 21, 1993 and Albequerque, New Mexico, August 18, 1993).

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Senate Committee on Labor and Human Resources.

    Hearings were held on the Technology for Education Act of 1993 (S. 1040) to support systemic improvement of education and the development of a technologically literate citizenry and internationally competitive work force by establishing a comprehensive system through which appropriate technology-enhanced curriculum, instruction, and administrative…

  5. Application of the Human Activity Assistive Technology model for occupational therapy research.

    PubMed

    Giesbrecht, Ed

    2013-08-01

    Theoretical models provide a framework for describing practice and integrating evidence into systematic research. There are few models that relate specifically to the provision of assistive technology in occupational therapy practice. The Human Activity Assistive Technology model is an enduring example that has continued to develop by integrating a social model of disability, concepts from occupational therapy theory and principles of assistive technology adoption and abandonment. This study first describes the core concepts of the Human Activity Assistive Technology model and reviews its development over three successive published versions. A review of the research literature reflects application of the model to clinical practice, study design, outcome measure selection and interpretation of results, particularly among occupational therapists. An evaluative framework is used to critique the adequacy of the Human Activity Assistive Technology model for practice and research, exploring attributes of clarity, simplicity, generality, accessibility and importance. Finally, recommendations are proposed for continued development of the model and research applications. Most of the existing research literature employs the Human Activity Assistive Technology model for background and study design; there is emerging evidence to support the core concepts as predictive factors. Although the concepts are generally simple, clear and applicable to occupational therapy practice and research, evolving terminology and outcomes become more complex with the conflation of integrated theories. The development of the Human Activity Assistive Technology model offers enhanced access and application for occupational therapists, but poses challenges to clarity among concepts. Suggestions are made for further development and applications of the model. © 2013 Occupational Therapy Australia.

  6. For and against the "New" Education.

    ERIC Educational Resources Information Center

    Knox, Bernard

    1991-01-01

    Observes that the humanities first came under attack immediately after their development in ancient Athens. Describes the fifth-century Sophists who developed an education designed for democracy. Urges support of the humanities today as a training in free citizenship, speech, and thought. Warns that technology cannot solve the problems facing…

  7. An Investigative Laboratory Course in Human Physiology Using Computer Technology and Collaborative Writing

    ERIC Educational Resources Information Center

    FitzPatrick, Kathleen A.

    2004-01-01

    Active investigative student-directed experiences in laboratory science are being encouraged by national science organizations. A growing body of evidence from classroom assessment supports their effectiveness. This study describes four years of implementation and assessment of an investigative laboratory course in human physiology for 65…

  8. Cue Representation and Situational Awareness in Task Analysis

    ERIC Educational Resources Information Center

    Carl, Diana R.

    2009-01-01

    Task analysis in human performance technology is used to determine how human performance can be well supported with training, job aids, environmental changes, and other interventions. Early work by Miller (1953) and Gilbert (1969, 1974) addressed cue processing in task execution and recommended cue descriptions in task analysis. Modern task…

  9. Facilitating interdisciplinary design specification of "smart" homes for aging in place.

    PubMed

    Demiris, George; Skubic, Marjorie; Rantz, Marilyn J; Courtney, Karen L; Aud, Myra A; Tyrer, Harry W; He, Zhihai; Lee, Jia

    2006-01-01

    "Smart homes" are defined as residences equipped with sensors and other advanced technology applications that enhance residents' independence and can be used for aging in place. The objective of this study is to determine design specifications for smart residences as defined by professional groups involved both in care delivery to senior citizens and development of devices and technologies to support aging. We assessed the importance of specific devices and sensors and their advantages and disadvantages as perceived by the interdisciplinary expert team. This work lays the ground for the implementation of smart home residencies and confirms that only an interdisciplinary design approach can address all the technical, clinical and human factors related challenges associated with home-based technologies that support aging. Our findings indicate that the use of adaptive technology that can be installed in the home environment has the potential to not only support but also empower individual senior users.

  10. Developing a Strategic Plan for NASA JSC's Technology Investments

    NASA Technical Reports Server (NTRS)

    Stecklein, Jonette M.

    2012-01-01

    Human space exploration has always been heavily influenced by goals to achieve a specific mission on a specific schedule. This approach drove rapid technology development, the rapidity of which adds risks as well as provides a major driver for costs. The National Aeronautics and Space Administration (NASA) is now approaching the extension of human presence throughout the solar system by balancing a proactive yet less schedule-driven development of technology with opportunistic scheduling of missions as the needed technologies are realized. This approach should provide cost effective, low risk technology development that will enable efficient and effective manned spaceflight missions. As a first step, the NASA Human Spaceflight Architecture Team (HAT) has identified a suite of critical technologies needed to support future manned missions across a range of destinations, including in cislunar space, near earth asteroid visits, lunar exploration, Mars space, and Mars exploration. The challenge now is to develop a strategy and plan for technology development that efficiently enables these missions over a reasonable time period, without increasing technology development costs unnecessarily due to schedule pressure, and subsequently mitigating development and mission risks. NASA fs Johnson Space Center (JSC), as the nation's primary center for human exploration, is addressing this challenge through an innovative approach allocating Internal Research and Development funding to projects that have been prioritized using four focus criteria, with appropriate importance weighting. These four focus criteria are the Human Space Flight Technology Needs, JSC Core Technology Competencies, Commercialization Potential, and Partnership Potential. The inherent coupling in these focus criteria have been captured in a database and have provided an initial prioritization for allocation of technology development research funding. This paper will describe this process and this database, and the preliminary technology development prioritization results.

  11. Health Information Technology Risks, Errors, External Threats, and Human Complacency.

    PubMed

    Felkey, Bill G; Fox, Brent I

    2015-06-01

    It may seem that our position is one of unwavering support for all things health information technology (HIT). However, we like to believe that we are cautious and deliberate in our evaluation of HIT. This month, we explore some of the common overt and covert challenges to optimal use of HIT.

  12. From CMS to SNS: Educational Networking for Urban Teachers

    ERIC Educational Resources Information Center

    Chen, Pearl

    2011-01-01

    A complex view of the socioeconomic digital divide in urban schools requires us to address not only the gaps in access to technology, but also inequities in access to human support, digital content, and "effective pedagogical" approaches to technology integration. This study explored the use of social networking site (SNS) as a platform…

  13. Building Different Bridges: Technology Integration, Engaged Student Learning, and New Approaches to Professional Development.

    ERIC Educational Resources Information Center

    Jacobsen, D. Michele

    The human and organizational infrastructure that is required to support the efficacious use of technology by teachers in the classroom was studied in three elementary schools in Alberta, Canada. The resulting impacts on engaged student learning were also studied, and the usefulness of Alberta's Galileo Educational Network Association initiative…

  14. Overview of the National Aeronautics and Space Administration's Nondestructive Evaluation (NDE) Program

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    2002-01-01

    NASA's Office of Safety and Mission Assurance sponsors an Agency-wide NDE Program that supports Aeronautics and Space Transportation Technology, Human Exploration and Development of Space, Earth Science, and Space Science Enterprises. For each of these Enterprises, safety is the number one priority. Development of the next generation aero-space launch and transportation vehicles, satellites, and deep space probes have highlighted the enabling role that NDE plays in these advanced technology systems. Specific areas of advanced component development, component integrity, and structural heath management are critically supported by NDE technologies. The simultaneous goals of assuring safety, maintaining overall operational efficiency, and developing and utilizing revolutionary technologies to expand human activity and space-based commerce in the frontiers of air and space places increasing demands on the Agencies NDE infrastructure and resources. In this presentation, an overview of NASA's NDE Program will be presented, that includes a background and status of current Enterprise NDE issues, and the NDE investment areas being developed to meet Enterprise safety and mission assurance needs through the year 2009 and beyond.

  15. In-Space Structural Assembly: Applications and Technology

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith; Doggett, Bill R.; Watson, Judith J.; Dorsey, John T.; Warren, Jay; Jones, Thomas C.; Komendera, Erik E.; Mann, Troy O.; Bowman, Lynn

    2016-01-01

    As NASA exploration moves beyond earth's orbit, the need exists for long duration space systems that are resilient to events that compromise safety and performance. Fortunately, technology advances in autonomy, robotic manipulators, and modular plug-and-play architectures over the past two decades have made in-space vehicle assembly and servicing possible at acceptable cost and risk. This study evaluates future space systems needed to support scientific observatories and human/robotic Mars exploration to assess key structural design considerations. The impact of in-space assembly is discussed to identify gaps in structural technology and opportunities for new vehicle designs to support NASA's future long duration missions.

  16. ParentLink: A Model of Integration and Support for Parents.

    ERIC Educational Resources Information Center

    Mertensmeyer, Carol; Fine, Mark

    2000-01-01

    Discusses ParentLink, a collective of Missouri organizations and agencies striving to simplify parents' access to research-based information, services, and problem-solving support pertaining to parenting. It is based on systems theory, specifically the ecology of human development. A comprehensive array of technologies augments ParentLink…

  17. An Assessment of Potential Robotic Applications to Naval Aviation Operations and Support. ASTR (Advanced Support Technologies/Robotics)

    DTIC Science & Technology

    1982-09-17

    Potential .............. 11-21 G. Socialogical Impactso... ..... .................... 11-23 H. Summary ....................... o................. 11-26...productivity by enhancin- or eliminating the human presence, has been veil applied in the Navy’s industrial segment. There remains a strong resistance to the

  18. AC Electric Field Communication for Human-Area Networking

    NASA Astrophysics Data System (ADS)

    Kado, Yuichi; Shinagawa, Mitsuru

    We have proposed a human-area networking technology that uses the surface of the human body as a data transmission path and uses an AC electric field signal below the resonant frequency of the human body. This technology aims to achieve a “touch and connect” intuitive form of communication by using the electric field signal that propagates along the surface of the human body, while suppressing both the electric field radiating from the human body and mutual interference. To suppress the radiation field, the frequency of the AC signal that excites the transmitter electrode must be lowered, and the sensitivity of the receiver must be raised while reducing transmission power to its minimally required level. We describe how we are developing AC electric field communication technologies to promote the further evolution of a human-area network in support of ubiquitous services, focusing on three main characteristics, enabling-transceiver technique, application-scenario modeling, and communications quality evaluation. Special attention is paid to the relationship between electro-magnetic compatibility evaluation and regulations for extremely low-power radio stations based on Japan's Radio Law.

  19. Contributions to nuclear safety and radiation technologies in Ukraine by the Science and Technology Center in Ukraine (STCU)

    NASA Astrophysics Data System (ADS)

    Taranenko, L.; Janouch, F.; Owsiacki, L.

    2001-06-01

    This paper presents Science and Technology Center in Ukraine (STCU) activities devoted to furthering nuclear and radiation safety, which is a prioritized STCU area. The STCU, an intergovernmental organization with the principle objective of non-proliferation, administers financial support from the USA, Canada, and the EU to Ukrainian projects in various scientific and technological areas; coordinates projects; and promotes the integration of Ukrainian scientists into the international scientific community, including involving western collaborators. The paper focuses on STCU's largest project to date "Program Supporting Y2K Readiness at Ukrainian NPPs" initiated in April 1999 and designed to address possible Y2K readiness problems at 14 Ukrainian nuclear reactors. Other presented projects demonstrate a wide diversity of supported directions in the fields of nuclear and radiation safety, including reactor material improvement ("Improved Zirconium-Based Elements for Nuclear Reactors"), information technologies for nuclear industries ("Ukrainian Nuclear Data Bank in Slavutich"), and radiation health science ("Diagnostics and Treatment of Radiation-Induced Injuries of Human Biopolymers").

  20. Distributed 3D Information Visualization - Towards Integration of the Dynamic 3D Graphics and Web Services

    NASA Astrophysics Data System (ADS)

    Vucinic, Dean; Deen, Danny; Oanta, Emil; Batarilo, Zvonimir; Lacor, Chris

    This paper focuses on visualization and manipulation of graphical content in distributed network environments. The developed graphical middleware and 3D desktop prototypes were specialized for situational awareness. This research was done in the LArge Scale COllaborative decision support Technology (LASCOT) project, which explored and combined software technologies to support human-centred decision support system for crisis management (earthquake, tsunami, flooding, airplane or oil-tanker incidents, chemical, radio-active or other pollutants spreading, etc.). The performed state-of-the-art review did not identify any publicly available large scale distributed application of this kind. Existing proprietary solutions rely on the conventional technologies and 2D representations. Our challenge was to apply the "latest" available technologies, such Java3D, X3D and SOAP, compatible with average computer graphics hardware. The selected technologies are integrated and we demonstrate: the flow of data, which originates from heterogeneous data sources; interoperability across different operating systems and 3D visual representations to enhance the end-users interactions.

  1. Wearable smart systems: from technologies to integrated systems.

    PubMed

    Lymberis, A

    2011-01-01

    Wearable technology and integrated systems, so called Smart Wearable Systems (SWS) have demonstrated during the last 10-15 years significant advances in terms of, miniaturisation, seamless integration, data processing & communication, functionalisation and comfort. This is mainly due to the huge progress in sciences and technologies e.g. biomedical and micro & nano technologies, but also to a strong demand for new applications such as continuous personal health monitoring, healthy lifestyle support, human performance monitoring and support of professionals at risk. Development of wearable systems based of smart textile have, in addition, benefited from the eagerness of textile industry to develop new value-added apparel products like functionalized garments and smart clothing. Research and development in these areas has been strongly promoted worldwide. In Europe the major R&D activities were supported through the Information & Communication Technologies (ICT) priority of the R&D EU programs. The paper presents and discusses the main achievements towards integrated systems as well as future challenges to be met in order to reach a market with reliable and high value-added products.

  2. 3min. poster presentations of B01

    NASA Astrophysics Data System (ADS)

    Foing, Bernard H.

    We give a report on recommendations from ILEWG International conferences held at Cape Canaveral in 2008 (ICEUM10), and in Beijing in May 2010 with IAF (GLUC -ICEUM11). We discuss the different rationale for Moon exploration. Priorities for scientific investigations include: clues on the formation and evolution of rocky planets, accretion and bombardment in the inner solar system, comparative planetology processes (tectonic, volcanic, impact cratering, volatile delivery), historical records, astrobiology, survival of organics; past, present and future life. The ILEWG technology task group set priorities for the advancement of instrumenta-tion: Remote sensing miniaturised instruments; Surface geophysical and geochemistry package; Instrument deployment and robotic arm, nano-rover, sampling, drilling; Sample finder and collector. Regional mobility rover; Autonomy and Navigation; Artificially intelligent robots, Complex systems. The ILEWG ExogeoLab pilot project was developed as support for instru-ments, landers, rovers,and preparation for cooperative robotic village. The ILEWG lunar base task group looked at minimal design concepts, technologies in robotic and human exploration with Tele control, telepresence, virtual reality; Man-Machine interface and performances. The ILEWG ExoHab pilot project has been started with support from agencies and partners. We discuss ILEWG terrestrial Moon-Mars campaigns for validation of technologies, research and human operations. We indicate how Moon-Mars Exploration can inspire solutions to global Earth sustained development: In-Situ Utilisation of resources; Establishment of permanent robotic infrastructures, Environmental protection aspects; Life sciences laboratories; Support to human exploration. Co-Authors: ILEWG Task Groups on: Science, Technology, Robotic village, Lunar Bases , Commercial and Societal aspects, Roadmap synergies with other programmes, Public en-gagemnet and Outreach, Young Lunar Explorers.

  3. Aerospace Communications Technologies in Support of NASA Mission

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2016-01-01

    NASA is endeavoring in expanding communications capabilities to enable and enhance robotic and human exploration of space and to advance aero communications here on Earth. This presentation will discuss some of the research and technology development work being performed at the NASA Glenn Research Center in aerospace communications in support of NASAs mission. An overview of the work conducted in-house and in collaboration with academia, industry, and other government agencies (OGA) to advance radio frequency (RF) and optical communications technologies in the areas of antennas, ultra-sensitive receivers, power amplifiers, among others, will be presented. In addition, the role of these and other related RF and optical communications technologies in enabling the NASA next generation aerospace communications architecture will be also discussed.

  4. Characteristics of Adults Seeking Health Care Provider Support Facilitated by Mobile Technology: Secondary Data Analysis.

    PubMed

    Bosak, Kelly; Park, Shin Hye

    2017-12-21

    Mobile health technology is rapidly evolving with the potential to transform health care. Self-management of health facilitated by mobile technology can maximize long-term health trajectories of adults. Little is known about the characteristics of adults seeking Web-based support from health care providers facilitated by mobile technology. This study aimed to examine the following: (1) the characteristics of adults who seek human support from health care providers for health concerns using mobile technology rather than from family members and friends or others with similar health conditions and (2) the use of mobile health technology among adults with chronic health conditions. Findings of this study were interpreted in the context of the Efficiency Model of Support. We first described characteristics of adults seeking Web-based support from health care providers. Using chi-square tests for categorical variables and t test for the continuous variable of age, we compared adults seeking Web-based and conventional support by demographics. The primary aim was analyzed using multivariate logistic regression to examine whether chronic health conditions and demographic factors (eg, sex, income, employment status, race, ethnicity, education, and age) were associated with seeking Web-based support from health care providers. The sample included adults (N=1453), the majority of whom were female 57.60% (837/1453), white 75.02% (1090/1453), and non-Hispanic 89.13% (1295/1453). The age of the participants ranged from 18 to 92 years (mean 48.6, standard deviation [SD] 16.8). The majority 76.05% (1105/1453) of participants reported college or higher level of education. A disparity was found in access to health care providers via mobile technology based on socioeconomic status. Adults with annual income of US $30,000 to US $100,000 were 1.72 times more likely to use Web-based methods to contact a health care provider, and adults with an annual income above US $100,000 were 2.41 to 2.46 times more likely to access health care provider support on the Web, compared with those with an annual income below US $30,000. After adjusting for other demographic covariates and chronic conditions, age was not a significant factor in Web-based support seeking. In this study, the likelihood of seeking Web-based support increased when adults had any or multiple chronic health conditions. A higher level of income and education than the general population was found to be related to the use of mobile health technology among adults in this survey. Future study is needed to better understand the disparity in Web-based support seeking for health issues and the clinicians' role in promoting access to and use of mobile health technology. ©Kelly Bosak, Shin Hye Park. Originally published in JMIR Human Factors (http://humanfactors.jmir.org), 21.12.2017.

  5. The Pendulum Swing of User Instruction and Interaction: The Resurrection of "How to Use" Technology to Learn in the 21st Century

    ERIC Educational Resources Information Center

    Ramsay, Judith; Terras, Melody M.

    2015-01-01

    The use of technology to support learning is well recognised. One generation ago a major strand of human--computer interaction research focussed on the development of forms of instruction in how to interact with computers. Today, however, the advanced usability of modern technologies has all but removed the presence of many user manuals. Learners,…

  6. Investigation of europium(III)-doped ZnS for immunoassay

    NASA Astrophysics Data System (ADS)

    Zhu, Chao-Fan; Sha, Xue; Chu, Xue-Ying; Li, Jin-Hua; Xu, Ming-Ze; Jin, Fang-Jun; Xu, Zhi-Kun

    2018-02-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant No. 61205193), the Project of Science and Technology of Jilin Province, China (Grant No. 20140520107JH), the Technology Foundation of Jilin Provincial Department of Human Resources and Social Security, China (Grant No. RL201306), and the Science Foundation for Young Scientists of Changchun University of Science and Technology, China (Grant No. XQNJJ-2015-03).

  7. Advanced Water Recovery Technologies for Long Duration Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Liu, Scan X.

    2005-01-01

    Extended-duration space travel and habitation require recovering water from wastewater generated in spacecrafts and extraterrestrial outposts since the largest consumable for human life support is water. Many wastewater treatment technologies used for terrestrial applications are adoptable to extraterrestrial situations but challenges remain as constraints of space flights and habitation impose severe limitations of these technologies. Membrane-based technologies, particularly membrane filtration, have been widely studied by NASA and NASA-funded research groups for possible applications in space wastewater treatment. The advantages of membrane filtration are apparent: it is energy-efficient and compact, needs little consumable other than replacement membranes and cleaning agents, and doesn't involve multiphase flow, which is big plus for operations under microgravity environment. However, membrane lifespan and performance are affected by the phenomena of concentration polarization and membrane fouling. This article attempts to survey current status of membrane technologies related to wastewater treatment and desalination in the context of space exploration and quantify them in terms of readiness level for space exploration. This paper also makes specific recommendations and predictions on how scientist and engineers involving designing, testing, and developing space-certified membrane-based advanced water recovery technologies can improve the likelihood of successful development of an effective regenerative human life support system for long-duration space missions.

  8. The human role in space (THURIS) applications study. Final briefing

    NASA Technical Reports Server (NTRS)

    Maybee, George W.

    1987-01-01

    The THURIS (The Human Role in Space) application is an iterative process involving successive assessments of man/machine mixes in terms of performance, cost and technology to arrive at an optimum man/machine mode for the mission application. The process begins with user inputs which define the mission in terms of an event sequence and performance time requirements. The desired initial operational capability date is also an input requirement. THURIS terms and definitions (e.g., generic activities) are applied to the input data converting it into a form which can be analyzed using the THURIS cost model outputs. The cost model produces tabular and graphical outputs for determining the relative cost-effectiveness of a given man/machine mode and generic activity. A technology database is provided to enable assessment of support equipment availability for selected man/machine modes. If technology gaps exist for an application, the database contains information supportive of further investigation into the relevant technologies. The present study concentrated on testing and enhancing the THURIS cost model and subordinate data files and developing a technology database which interfaces directly with the user via technology readiness displays. This effort has resulted in a more powerful, easy-to-use applications system for optimization of man/machine roles. Volume 1 is an executive summary.

  9. Automation and Robotics for Human Mars Exploration (AROMA)

    NASA Technical Reports Server (NTRS)

    Hofmann, Peter; von Richter, Andreas

    2003-01-01

    Automation and Robotics (A&R) systems are a key technology for Mars exploration. All over the world initiatives in this field aim at developing new A&R systems and technologies for planetary surface exploration. From December 2000 to February 2002 Kayser-Threde GmbH, Munich, Germany lead a study called AROMA (Automation and Robotics for Human Mars Exploration) under ESA contract in order to define a reference architecture of A&R elements in support of a human Mars exploration program. One of the goals of this effort is to initiate new developments and to maintain the competitiveness of European industry within this field. c2003 Published by Elsevier Science Ltd.

  10. Automation and Robotics for Human Mars Exploration (AROMA).

    PubMed

    Hofmann, Peter; von Richter, Andreas

    2003-01-01

    Automation and Robotics (A&R) systems are a key technology for Mars exploration. All over the world initiatives in this field aim at developing new A&R systems and technologies for planetary surface exploration. From December 2000 to February 2002 Kayser-Threde GmbH, Munich, Germany lead a study called AROMA (Automation and Robotics for Human Mars Exploration) under ESA contract in order to define a reference architecture of A&R elements in support of a human Mars exploration program. One of the goals of this effort is to initiate new developments and to maintain the competitiveness of European industry within this field. c2003 Published by Elsevier Science Ltd.

  11. Humans, Intentionality, Experience And Tools For Learning: Some Contributions From Post-cognitive Theories To The Use Of Technology In Physics Education

    NASA Astrophysics Data System (ADS)

    Bernhard, Jonte

    2007-11-01

    Human cognition cannot be properly understood if we do not take the use of tools into account. The English word cognition stems from the Latin "cognoscere," meaning "to become acquainted with" or "to come to know." Following the original Latin meaning we should not only study "what happens in the head" if we want to study cognition. Experientially based perspectives, such as pragmatism, phenomenology, phenomenography, and activity theory, stress that we should study person-world relationships. Technologies actively shape the character of human-world relationships. An emergent understanding in modern cognitive research is the co-evolution of the human brain and human use of tools and the active character of perception. Thus, I argue that we must analyze the role of technologies in physics education in order to realize their full potential as tools for learning, and I will provide selected examples from physics learning environments to support this assertion.

  12. Project Orion, Environmental Control and Life Support System Integrated Studies

    NASA Technical Reports Server (NTRS)

    Russell, James F.; Lewis, John F.

    2008-01-01

    Orion is the next vehicle for human space travel. Humans will be sustained in space by the Orion subystem, environmental control and life support (ECLS). The ECLS concept at the subsystem level is outlined by function and technology. In the past two years, the interface definition with other subsystems has increased through different integrated studies. The paper presents the key requirements and discusses three recent studies (e.g., unpressurized cargo) along with the respective impacts on the ECLS design moving forward.

  13. Genomics Community Resources | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    To facilitate genomic research and the dissemination of its products, National Human Genome Research Institute (NHGRI) supports genomic resources that are crucial for basic research, disease studies, model organism studies, and other biomedical research.  Awards under this FOA will support the development and distribution of genomic resources that will be valuable for the broad research community, using cost-effective approaches.  Such resources include (but are not limited to) databases and informatics resources (such as human and model organism databases, ontologies, and analysi

  14. Human Health Countermeasures (HHC) Element Management Plan: Human Research Program. Revision B

    NASA Technical Reports Server (NTRS)

    Norsk, Peter; Baumann, David

    2012-01-01

    NASA s Human Research Program (HRP) is an applied research and technology program within the Human Exploration and Operations Mission Directorate (HEOMD) that addresses human health and performance risk mitigation strategies in support of exploration missions. The HRP research and technology development is focused on the highest priority risks to crew health and safety with the goal of ensuring mission success and maintaining long-term crew health. Crew health and performance standards, defined by the NASA Chief Health and Medical Officer (CHMO), set the acceptable risk level for exploration missions. The HRP conducts research to inform these standards as well as provide deliverables, such as countermeasures, that ensure standards can be met to maximize human performance and mission success. The Human Health Countermeasures (HHC) Element was formed as part of the HRP to develop a scientifically-based, integrated approach to understanding and mitigating the health risks associated with human spaceflight. These health risks have been organized into four research portfolios that group similar or related risks. A fifth portfolio exists for managing technology developments and infrastructure projects. The HHC Element portfolios consist of: a) Vision and Cardiovascular; b) Exercise and Performance; c) Multisystem; d) Bone; and e) Technology and Infrastructure. The HHC identifies gaps associated with the health risks and plans human physiology research that will result in knowledge required to more fully understand risks and will result in validated countermeasures to mitigate risks.

  15. Recent developments in stereoscopic and holographic 3D display technologies

    NASA Astrophysics Data System (ADS)

    Sarma, Kalluri

    2014-06-01

    Currently, there is increasing interest in the development of high performance 3D display technologies to support a variety of applications including medical imaging, scientific visualization, gaming, education, entertainment, air traffic control and remote operations in 3D environments. In this paper we will review the attributes of the various 3D display technologies including stereoscopic and holographic 3D, human factors issues of stereoscopic 3D, the challenges in realizing Holographic 3D displays and the recent progress in these technologies.

  16. Cascade Distillation System Development

    NASA Technical Reports Server (NTRS)

    Callahan, Michael R.; Sargushingh, Miriam; Shull, Sarah

    2014-01-01

    NASA's Advanced Exploration Systems (AES) Life Support System (LSS) Project is chartered with de-veloping advanced life support systems that will ena-ble NASA human exploration beyond low Earth orbit (LEO). The goal of AES is to increase the affordabil-ity of long-duration life support missions, and to re-duce the risk associated with integrating and infusing new enabling technologies required to ensure mission success. Because of the robust nature of distillation systems, the AES LSS Project is pursuing develop-ment of the Cascade Distillation Subsystem (CDS) as part of its technology portfolio. Currently, the system is being developed into a flight forward Generation 2.0 design.

  17. Human factors involvement in bringing the power of AI to a heterogeneous user population

    NASA Technical Reports Server (NTRS)

    Czerwinski, Mary; Nguyen, Trung

    1994-01-01

    The Human Factors involvement in developing COMPAQ QuickSolve, an electronic problem-solving and information system for Compaq's line of networked printers, is described. Empowering customers with expert system technology so they could solve advanced networked printer problems on their own was a major goal in designing this system. This process would minimize customer down-time, reduce the number of phone calls to the Compaq Customer Support Center, improve customer satisfaction, and, most importantly, differentiate Compaq printers in the marketplace by providing the best, and most technologically advanced, customer support. This represents a re-engineering of Compaq's customer support strategy and implementation. In its first generation system, SMART, the objective was to provide expert knowledge to Compaq's help desk operation to more quickly and correctly answer customer questions and problems. QuickSolve is a second generation system in that customer support is put directly in the hands of the consumers. As a result, the design of QuickSolve presented a number of challenging issues. Because the produce would be used by a diverse and heterogeneous set of users, a significant amount of human factors research and analysis was required while designing and implementing the system. Research that shaped the organization and design of the expert system component as well.

  18. Combining High-Speed Cameras and Stop-Motion Animation Software to Support Students' Modeling of Human Body Movement

    NASA Astrophysics Data System (ADS)

    Lee, Victor R.

    2015-04-01

    Biomechanics, and specifically the biomechanics associated with human movement, is a potentially rich backdrop against which educators can design innovative science teaching and learning activities. Moreover, the use of technologies associated with biomechanics research, such as high-speed cameras that can produce high-quality slow-motion video, can be deployed in such a way to support students' participation in practices of scientific modeling. As participants in classroom design experiment, fifteen fifth-grade students worked with high-speed cameras and stop-motion animation software (SAM Animation) over several days to produce dynamic models of motion and body movement. The designed series of learning activities involved iterative cycles of animation creation and critique and use of various depictive materials. Subsequent analysis of flipbooks of human jumping movements created by the students at the beginning and end of the unit revealed a significant improvement in both the epistemic fidelity of students' representations. Excerpts from classroom observations highlight the role that the teacher plays in supporting students' thoughtful reflection of and attention to slow-motion video. In total, this design and research intervention demonstrates that the combination of technologies, activities, and teacher support can lead to improvements in some of the foundations associated with students' modeling.

  19. Humanizing the Technological Learning Experience: The Role of Support Services as Socialization in a Human Resource Development Distance Education Program.

    ERIC Educational Resources Information Center

    Hatcher, Tim; Craig, Bob

    The University of Arkansas developed a distance education (DE) baccalaureate degree program in human resource development (HRD) that may serve as a model for developing DE at any level. The program, which was designed on the basis of a statewide needs assessment and competencies researched by the American Society for Training and Development, is…

  20. Human Exploration Missions - Maturing Technologies to Sustain Crews

    NASA Technical Reports Server (NTRS)

    Mukai, Chiaki; Koch, Bernhard; Reese, Terrence G.

    2012-01-01

    Human exploration missions beyond low earth orbit will be long duration with abort scenarios of days to months. Providing crews with the essentials of life such as clean air and potable water means recycling human metabolic wastes back to useful products. Individual technologies are under development for such things as CO2 scrubbing, recovery of O2 from CO2, turning waste water into potable water, and so on. But in order to fully evaluate and mature technologies fully they must be tested in a relevant, high-functionality environment; a systems environment where technologies are challenged with real human metabolic wastes. It is for this purpose that an integrated systems ground testing capability at the Johnson Space Center is being readied for testing. The relevant environment will include deep space habitat human accommodations, sealed atmosphere of 8 psi total pressure and 32% oxygen concentration, life support systems (food, air, water), communications, crew accommodations, medical, EVA, tools, etc. Testing periods will approximate those of the expected missions (such as a near Earth asteroid, Earth ]Moon L2 or L1, the moon, and Mars). This type of integrated testing is needed not only for research and technology development but later during the mission design, development, test, and evaluation phases of preparing for the mission.

  1. Technology Development to Support Human Health and Performance in Exploration Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Kundrot, C.E.; Steinberg, S. L.; Charles, J. B.

    2011-01-01

    In the course of defining the level of risks and mitigating the risks for exploration missions beyond low Earth orbit, NASA s Human Research Program (HRP) has identified the need for technology development in several areas. Long duration missions increase the risk of serious medical conditions due to limited options for return to Earth; no resupply; highly limited mass, power, volume; and communication delays. New space flight compatible medical capabilities required include: diagnostic imaging, oxygen concentrator, ventilator, laboratory analysis (saliva, blood, urine), kidney stone diagnosis & treatment, IV solution preparation and delivery. Maintenance of behavioral health in such an isolated, confined and extreme environment requires new sensory stimulation (e.g., virtual reality) technology. Unobtrusive monitoring of behavioral health and treatment methods are also required. Prolonged exposure to weightlessness deconditions bone, muscle, and the cardiovascular system. Novel exercise equipment or artificial gravity are necessary to prevent deconditioning. Monitoring of the degree of deconditioning is required to ensure that countermeasures are effective. New technologies are required in all the habitable volumes (e.g., suit, capsule, habitat, exploration vehicle, lander) to provide an adequate food system, and to meet human environmental standards for air, water, and surface contamination. Communication delays require the crew to be more autonomous. Onboard decision support tools that assist crew with real-time detection and diagnosis of vehicle and habitat operational anomalies will enable greater autonomy. Multi-use shield systems are required to provide shielding from solar particle events. The HRP is pursuing the development of these technologies in laboratories, flight analog environments and the ISS so that the human health and performance risks will be acceptable with the available resources.

  2. A Human Endeavor: Lessons from Shakespeare and Beyond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, Matt; Frincke, Deb A.

    This article discusses human-oriented educational activities that support the study of computer security. It poses the point that technology is perhaps the least important aspect of security solutions, and that because of this, the fields of psychology, literature, business, and political science have significant value for any serious student of the science of security.

  3. Benefits for Health; NASA

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele

    2014-01-01

    The goal of HRP is to provide human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration. Presentation discusses (1) Bone Health: Vitamin D, Fish Consumption and Exercise (2) Medical Support in Remote Areas (3) ISS Ultrasound 4) Dry electrode EKG System (5) Environmental Factors and Psychological Health.

  4. Innovation leadership: new perspectives for new work.

    PubMed

    Malloch, Kathy

    2010-03-01

    The industrial age command and control leadership style and supporting infrastructure are ineffective in meeting the challenges of the increased availability and sharing of information, the media used for knowledge transfer, the changing range and types of relationships between individuals, and the time required to transfer and share information. What has not changed is the need for effective personal relationships in the evaluation and selection of new technologies; human to human sensitivity, acknowledgment, and respect for the patient care experience. As individuals embrace these new technologies, the essence of the innovation leader emerges to purposefully guide, assess, integrate, and synthesize technology into the human work of patient care. Building organizational infrastructures with openness for technology and innovations to enhance effective patient care relationships now requires an innovation skill set that understands and integrates human needs with the best of technology. In this article a brief description of innovation leadership is presented as the backdrop for change along with 4 significant changes in work processes that have irreversibly altered health care work, the trimodal organizational structure to accommodate operations, innovation, and transition between the 2, and finally, individual and team behaviors that emphasize the work of innovation. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Step 1:Human System Integration (HSI) FY05 Pilot-Technology Interface Requirements for Collision Avoidance

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This document provides definition of technology human interface requirements for Collision Avoidance (CA). This was performed through a review of CA-related, HSI requirements documents, standards, and recommended practices. Technology concepts in use by the Access 5 CA work package were considered... Beginning with the HSI high-level functional requirement for CA, and CA technology elements, HSI requirements for the interface to the pilot were identified. Results of the analysis describe (1) the information required by the pilot to have knowledge CA system status, and (2) the control capability needed by the pilot to obtain CA information and affect an avoidance maneuver. Fundamentally, these requirements provide the candidate CA technology concepts with the necessary human-related elements to make them compatible with human capabilities and limitations. The results of the analysis describe how CA operations and functions should interface with the pilot to provide the necessary CA functionality to the UA-pilot system .Requirements and guidelines for CA are partitioned into four categories: (1) General, (2) Alerting, (3) Guidance, and (4) Cockpit Display of Traffic Information. Each requirement is stated and is supported with a rationale and associated reference(s).

  6. Step 1: Human System Integration Pilot-Technology Interface Requirements for Weather Management

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This document involves definition of technology interface requirements for Hazardous Weather Avoidance. Technology concepts in use by the Access 5 Weather Management Work Package were considered. Beginning with the Human System Integration (HIS) high-level functional requirement for Hazardous Weather Avoidance, and Hazardous Weather Avoidance technology elements, HSI requirements for the interface to the pilot were identified. Results of the analysis describe (1) the information required by the pilot to have knowledge of hazardous weather, and (2) the control capability needed by the pilot to obtain hazardous weather information. Fundamentally, these requirements provide the candidate Hazardous Weather Avoidance technology concepts with the necessary human-related elements to make them compatible with human capabilities and limitations. The results of the analysis describe how Hazardous Weather Avoidance operations and functions should interface with the pilot to provide the necessary Weather Management functionality to the UA-pilot system. Requirements and guidelines for Hazardous Weather Avoidance are partitioned into four categories: (1) Planning En Route (2) Encountering Hazardous Weather En Route, (3) Planning to Destination, and (4) Diversion Planning Alternate Airport. Each requirement is stated and is supported with a rationale and associated reference(s).

  7. Space Exploration Supply Chain Modeling, Simulation and Analysis Using the SCOR Model

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar; Callinan, Mike; Fayez, Sam

    2006-01-01

    sustained and affordable human and robotic program to explore the solar system and beyond. Extend human presence across the solar system, starting with a human return to the Moon by the year 2020, in preparation for human exploration of Mars and other destinations. Develop the innovative technologies, knowledge, and infrastructure both to explore and to support decisions about the destinations for human exploration; and promote international and commercial participation in exploration to further U.S. scientific, security, and economic interests

  8. Summative Evaluation of the Office of Learning Technologies. Final Report

    ERIC Educational Resources Information Center

    Human Resources Development Canada, 2002

    2002-01-01

    The Office of Learning Technologies (OLT) was launched by Human Resources Canada (HRDC) in 1996 as part of an education and training strategy for adult learners. It was established with an annual budget of $6 million. As a contributions program, the OLT encourages and supports initiatives of various public and private sector partners to expand…

  9. FY18 SSC Agile-Seedling Fund Opportunities

    NASA Technical Reports Server (NTRS)

    Travis, Ramona

    2017-01-01

    The attached charts provide some background on an SSC (Stennis Space Center) initiative to support employees who may have ideas for technology development efforts but haven't been engaged in writing proposals to sources such as the Center Innovation Fund and other STMD (NASA Space Technology Mission Directorate) or HEOMD (NASA Human Exploration and Operations Mission Directorate) solicitation calls.

  10. An Investigation of Human-Computer Interaction Approaches Beneficial to Weak Learners in Complex Animation Learning

    ERIC Educational Resources Information Center

    Yeh, Yu-Fang

    2016-01-01

    Animation is one of the useful contemporary educational technologies in teaching complex subjects. There is a growing interest in proper use of learner-technology interaction to promote learning quality for different groups of learner needs. The purpose of this study is to investigate if an interaction approach supports weak learners, who have…

  11. Favouring Reflexivity in Technology-Enhanced Learning Systems: Towards Smart Uses of Traces

    ERIC Educational Resources Information Center

    George, Sébastien; Michel, Christine; Ollagnier-Beldame, Magali

    2016-01-01

    During learning activities, reflexive processes allow learners to realise what they have done, understand why, decide on new actions and gain motivation. They help learners to regulate their actions by themselves, that is, to develop metacognitive regulation skills. Computer environments can support reflexive processes to support human learning,…

  12. CRISPR/Cas9 genome editing in human pluripotent stem cells: Harnessing human genetics in a dish.

    PubMed

    González, Federico

    2016-07-01

    Because of their extraordinary differentiation potential, human pluripotent stem cells (hPSCs) can differentiate into virtually any cell type of the human body, providing a powerful platform not only for generating relevant cell types useful for cell replacement therapies, but also for modeling human development and disease. Expanding this potential, structures resembling human organs, termed organoids, have been recently obtained from hPSCs through tissue engineering. Organoids exhibit multiple cell types self-organizing into structures recapitulating in part the physiology and the cellular interactions observed in the organ in vivo, offering unprecedented opportunities for human disease modeling. To fulfill this promise, tissue engineering in hPSCs needs to be supported by robust and scalable genome editing technologies. With the advent of the CRISPR/Cas9 technology, manipulating the genome of hPSCs has now become an easy task, allowing modifying their genome with superior precision, speed, and throughput. Here we review current and potential applications of the CRISPR/Cas9 technology in hPSCs and how they contribute to establish hPSCs as a model of choice for studying human genetics. Developmental Dynamics 245:788-806, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 3: Navigation, guidance and control panel

    NASA Technical Reports Server (NTRS)

    1975-01-01

    User technology requirements are identified in relation to needed technology advancement for future space missions in the areas of navigation, guidance, and control. Emphasis is placed on: reduction of mission support cost by 50% through autonomous operation, a ten-fold increase in mission output through improved pointing and control, and a hundred-fold increase in human productivity in space through large-scale teleoperator applications.

  14. Ergonomics and quality management--humans in interaction with technology, work environment, and organization.

    PubMed

    Eklund, J A

    1999-01-01

    In many studies, ergonomics has been shown to influence human performance. The aim of this paper was to demonstrate important ergonomics influences on quality in industrial production, from the perspective of interactions between humans, technology, organization, and work environment. A second aim was to elaborate on the implications of these findings for the development of quality management strategies. This paper shows that ergonomics problems in terms of adverse work environmental conditions, inappropriate design of technology, and an unsuitable organization are important causes of quality deficiencies. Problem solving aimed at improving ergonomics, quality, and productivity simultaneously is likely to obtain support from most of the interest parties of the company, and may also enhance participation. Ergonomics has the potential of becoming a driving force for the development of new quality management strategies.

  15. Training + Technology: The Future Is Now.

    ERIC Educational Resources Information Center

    Heathman, Dena J.; Kleiner, Brian H.

    1991-01-01

    New applications of computer-assisted training being developed include telecommunications, artificial intelligence, soft skills training, and performance support systems. Barriers to acceptance are development time, costs, and lack of human contact. (SK)

  16. Next Generation Life Support Project Status

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Chullen, Cinda; Pickering, Karen D.; Cox, Marlon; Towsend, Neil; Campbell, Colin; Flynn, Michael; Wheeler, Raymond

    2012-01-01

    Next Generation Life Support (NGLS) is one of several technology development projects sponsored by NASA s Game Changing Development Program. The NGLS Project is developing life support technologies (including water recovery and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processor (AWP). The RCA swing bed and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Advanced Extravehicular Mobility Unit, with focus on test article development and integrated testing in an Advanced PLSS in cooperation with the Advanced Extra Vehicular Activity (EVA) Project. An RCA swing-bed provides integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The VOR technology will significantly increase the number of pressure settings available to the space suit. Current space suit pressure regulators are limited to only two settings whereas the adjustability of the advanced regulator will be nearly continuous. The AWP effort, based on natural biological processes and membrane-based secondary treatment, will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water. This paper will provide a status of technology development activities and future plans.

  17. The next 15 years: taking plant-made vaccines beyond proof of concept.

    PubMed

    Kirk, Dwayne D; Webb, Steven R

    2005-06-01

    Significant potential advantages are associated with the production of vaccines in transgenic plants; however, no commercial product has emerged. An analysis of the strengths, weaknesses, opportunities and threats for plant-made vaccine technology is provided. The use of this technology for human vaccines will require significant investment and developmental efforts that cannot be supported entirely by the academic sector and is not currently supported financially by industry. A focus on downstream aspects to define potential products, conduct of additional basic clinical testing, and the incorporation of multidisciplinary strategic planning would accelerate the potential for commercialization in this field. Estimates of production cost per dose and volume of production are highly variable for a model vaccine produced in transgenic tomato, and can be influenced by the optimization of many factors. Commercialization of plant-made vaccine technology is likely to be led by the agricultural biotechnology sector rather than the pharmaceutical sector due to the disruptive nature of the technology and the complex intellectual property landscape. The next major milestones will be conduct of a phase II human clinical trial and demonstration of protection in humans. The achievement of these milestones would be accelerated by further basic investigation into mucosal immunity, the codevelopment of oral adjuvants, and the integration of quality control standards and good manufacturing practices for the production of preclinical and clinical batch materials.

  18. Office of Biological and Physical Research: Overview Transitioning to the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Crouch, Roger

    2004-01-01

    Viewgraphs on NASA's transition to its vision for space exploration is presented. The topics include: 1) Strategic Directives Guiding the Human Support Technology Program; 2) Progressive Capabilities; 3) A Journey to Inspire, Innovate, and Discover; 4) Risk Mitigation Status Technology Readiness Level (TRL) and Countermeasures Readiness Level (CRL); 5) Biological And Physical Research Enterprise Aligning With The Vision For U.S. Space Exploration; 6) Critical Path Roadmap Reference Missions; 7) Rating Risks; 8) Current Critical Path Roadmap (Draft) Rating Risks: Human Health; 9) Current Critical Path Roadmap (Draft) Rating Risks: System Performance/Efficiency; 10) Biological And Physical Research Enterprise Efforts to Align With Vision For U.S. Space Exploration; 11) Aligning with the Vision: Exploration Research Areas of Emphasis; 12) Code U Efforts To Align With The Vision For U.S. Space Exploration; 13) Types of Critical Path Roadmap Risks; and 14) ISS Human Support Systems Research, Development, and Demonstration. A summary discussing the vision for U.S. space exploration is also provided.

  19. Computational Support for Technology- Investment Decisions

    NASA Technical Reports Server (NTRS)

    Adumitroaie, Virgil; Hua, Hook; Lincoln, William; Block, Gary; Mrozinski, Joseph; Shelton, Kacie; Weisbin, Charles; Elfes, Alberto; Smith, Jeffrey

    2007-01-01

    Strategic Assessment of Risk and Technology (START) is a user-friendly computer program that assists human managers in making decisions regarding research-and-development investment portfolios in the presence of uncertainties and of non-technological constraints that include budgetary and time limits, restrictions related to infrastructure, and programmatic and institutional priorities. START facilitates quantitative analysis of technologies, capabilities, missions, scenarios and programs, and thereby enables the selection and scheduling of value-optimal development efforts. START incorporates features that, variously, perform or support a unique combination of functions, most of which are not systematically performed or supported by prior decision- support software. These functions include the following: Optimal portfolio selection using an expected-utility-based assessment of capabilities and technologies; Temporal investment recommendations; Distinctions between enhancing and enabling capabilities; Analysis of partial funding for enhancing capabilities; and Sensitivity and uncertainty analysis. START can run on almost any computing hardware, within Linux and related operating systems that include Mac OS X versions 10.3 and later, and can run in Windows under the Cygwin environment. START can be distributed in binary code form. START calls, as external libraries, several open-source software packages. Output is in Excel (.xls) file format.

  20. In Situ Fabrication and Repair (ISFR) Technologies; New Challenges for Exploration

    NASA Technical Reports Server (NTRS)

    Bassler, Julie A.; Bodiford, Melanie P.; Hammond, Monica S.; King, Ron; Mclemore, Carole A.; Hall, Nancy R.; Fiske, Michael R.; Ray, Julie A.

    2006-01-01

    NASA's human exploration initiative poses great opportunity and great risk for manned missions to the Moon and Mars. Engineers and Scientists at the Marshall Space Flight Center (MSFC) are continuing to evaluate current technologies for in situ resource-based exploration fabrication and repair applications. Several technologies to be addressed in this paper have technology readiness levels (TRLs) that are currently mature enough to pursue for exploration purposes. However, while many technologies offer promising applications, these technologies must be pulled along by the demands and applications of this great initiative. The In Situ Fabrication and Repair (ISFR) Element will supply and push state of the art technologies for applications such as habitat structure development, in situ resource utilization for tool and part fabrication, and repair and non-destructive evaluation W E ) of common life support elements. As an overview of the ISFR Element, this paper will address rapid prototyping technologies, their applications, challenges, and near term advancements. This paper will also discuss the anticipated need to utilize in situ resources to produce replacement parts and fabricate repairs to vehicles, habitats, life support and quality of life elements. Overcoming the challenges of ISFR development will provide the Exploration initiative with state of the art technologies that reduce risk, and enhance supportability.

  1. A closed-loop air revitalization process technology demonstrator

    NASA Astrophysics Data System (ADS)

    Mulloth, Lila; Perry, Jay; Luna, Bernadette; Kliss, Mark

    Demonstrating a sustainable, reliable life support system process design that possesses the capability to close the oxygen cycle to the greatest extent possible is required for extensive surface exploration of the Moon and Mars by humans. A conceptual closed-loop air revitalization system process technology demonstrator that combines the CO2 removal, recovery, and reduction and oxygen generation operations in a single compact envelope is described. NASA has developed, and in some cases flown, process technologies for capturing metabolic CO2 from air, reducing CO2 to H2O and CH4, electrolyzing H2O to O2, and electrolyzing CO2 to O2 and CO among a number of candidates. Traditionally, these processes either operate in parallel with one another or have not taken full benefit of a unit operation-based design approach to take complete advantage of the synergy between individual technologies. The appropriate combination of process technologies must capitalize on the advantageous aspects of individual technologies while eliminating or transforming the features that limit their feasibility when considered alone. Such a process technology integration approach also provides advantages of optimized mass, power and volume characteristics for the hardware embodiment. The conceptual air revitalization system process design is an ideal technology demonstrator for the critically needed closed-loop life support capabilities for long duration human exploration of the lunar surface and extending crewed space exploration toward Mars. The conceptual process design incorporates low power CO2 removal, process gas drying, and advanced engineered adsorbents being developed by NASA and industry.

  2. Proactive human-computer collaboration for information discovery

    NASA Astrophysics Data System (ADS)

    DiBona, Phil; Shilliday, Andrew; Barry, Kevin

    2016-05-01

    Lockheed Martin Advanced Technology Laboratories (LM ATL) is researching methods, representations, and processes for human/autonomy collaboration to scale analysis and hypotheses substantiation for intelligence analysts. This research establishes a machinereadable hypothesis representation that is commonsensical to the human analyst. The representation unifies context between the human and computer, enabling autonomy in the form of analytic software, to support the analyst through proactively acquiring, assessing, and organizing high-value information that is needed to inform and substantiate hypotheses.

  3. The Role of the Human Mirror Neuron System in Supporting Communication in a Digital World.

    PubMed

    Dickerson, Kelly; Gerhardstein, Peter; Moser, Alecia

    2017-01-01

    Humans use both verbal and non-verbal communication to interact with others and their environment and increasingly these interactions are occurring in a digital medium. Whether live or digital, learning to communicate requires overcoming the correspondence problem: There is no direct mapping, or correspondence between perceived and self-produced signals. Reconciliation of the differences between perceived and produced actions, including linguistic actions, is difficult and requires integration across multiple modalities and neuro-cognitive networks. Recent work on the neural substrates of social learning suggests that there may be a common mechanism underlying the perception-production cycle for verbal and non-verbal communication. The purpose of this paper is to review evidence supporting the link between verbal and non-verbal communications, and to extend the hMNS literature by proposing that recent advances in communication technology, which at times have had deleterious effects on behavioral and perceptual performance, may disrupt the success of the hMNS in supporting social interactions because these technologies are virtual and spatiotemporal distributed nature.

  4. Applications of telemedicine in the United States space program.

    PubMed

    Doarn, C R; Nicogossian, A E; Merrell, R C

    1998-01-01

    Since the beginning of human space flight, NASA has been placing humans in extreme and remote environments. There are many challenges in maintaining humans in outer space, including the provision of life-support systems, radiation shielding, and countermeasures for minimizing the effect of microgravity. Because astronauts are selected for their health, among other factors, disease and illness are minimized. However, it is still of great importance to have appropriate medical care systems in place to address illness and injury should they occur. With the exception of the Apollo program, exploration of space has been limited to missions that are within several hundred miles of the surface of the Earth. At the drawn of the 21st century and the new millennium, human exploration will be focused on operation of the International Space Station (ISS) and preparation for human missions to Mars. These missions will present inherent risks to human health, and, therefore, appropriate plans must be established to address these challenges and risks. Crews of long-duration missions must become more independent from ground controllers. New systems, protocols, and procedures are currently being perfected. Application of emerging technologies in information systems and telecommunications will be critical to inflight medical care. Application of these technologies through telemedicine will provide crew members access to information, noninvasive procedures for assessing health status, and guidance through the integration of sensors, holography, decision-support systems, and virtual environments. These technologies will also serve as a basis to enhance training and medical education. The design of medical care for space flight should lead to a redesign of the practice of medicine on Earth.

  5. A HUMAN FACTORS ENGINEERING PROCESS TO SUPPORT HUMAN-SYSTEM INTERFACE DESIGN IN CONTROL ROOM MODERNIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovesdi, C.; Joe, J.; Boring, R.

    The primary objective of the United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program is to sustain operation of the existing commercial nuclear power plants (NPPs) through a multi-pathway approach in conducting research and development (R&D). The Advanced Instrumentation, Information, and Control (II&C) System Technologies pathway conducts targeted R&D to address aging and reliability concerns with legacy instrumentation and control (I&C) and other information systems in existing U.S. NPPs. Control room modernization is an important part following this pathway, and human factors experts at Idaho National Laboratory (INL) have been involved in conducting R&D to supportmore » migration of new digital main control room (MCR) technologies from legacy analog and legacy digital I&C. This paper describes a human factors engineering (HFE) process that supports human-system interface (HSI) design in MCR modernization activities, particularly with migration of old digital to new digital I&C. The process described in this work is an expansion from the LWRS Report INL/EXT-16-38576, and is a requirements-driven approach that aligns with NUREG-0711 requirements. The work described builds upon the existing literature by adding more detail around key tasks and decisions to make when transitioning from HSI Design into Verification and Validation (V&V). The overall objective of this process is to inform HSI design and elicit specific, measurable, and achievable human factors criteria for new digital technologies. Upon following this process, utilities should have greater confidence with transitioning from HSI design into V&V.« less

  6. Applications of telemedicine in the United States space program

    NASA Technical Reports Server (NTRS)

    Doarn, C. R.; Nicogossian, A. E.; Merrell, R. C.

    1998-01-01

    Since the beginning of human space flight, NASA has been placing humans in extreme and remote environments. There are many challenges in maintaining humans in outer space, including the provision of life-support systems, radiation shielding, and countermeasures for minimizing the effect of microgravity. Because astronauts are selected for their health, among other factors, disease and illness are minimized. However, it is still of great importance to have appropriate medical care systems in place to address illness and injury should they occur. With the exception of the Apollo program, exploration of space has been limited to missions that are within several hundred miles of the surface of the Earth. At the drawn of the 21st century and the new millennium, human exploration will be focused on operation of the International Space Station (ISS) and preparation for human missions to Mars. These missions will present inherent risks to human health, and, therefore, appropriate plans must be established to address these challenges and risks. Crews of long-duration missions must become more independent from ground controllers. New systems, protocols, and procedures are currently being perfected. Application of emerging technologies in information systems and telecommunications will be critical to inflight medical care. Application of these technologies through telemedicine will provide crew members access to information, noninvasive procedures for assessing health status, and guidance through the integration of sensors, holography, decision-support systems, and virtual environments. These technologies will also serve as a basis to enhance training and medical education. The design of medical care for space flight should lead to a redesign of the practice of medicine on Earth.

  7. A Cognitive Systems Engineering Approach to Developing Human Machine Interface Requirements for New Technologies

    NASA Astrophysics Data System (ADS)

    Fern, Lisa Carolynn

    This dissertation examines the challenges inherent in designing and regulating to support human-automation interaction for new technologies that will be deployed into complex systems. A key question for new technologies with increasingly capable automation, is how work will be accomplished by human and machine agents. This question has traditionally been framed as how functions should be allocated between humans and machines. Such framing misses the coordination and synchronization that is needed for the different human and machine roles in the system to accomplish their goals. Coordination and synchronization demands are driven by the underlying human-automation architecture of the new technology, which are typically not specified explicitly by designers. The human machine interface (HMI), which is intended to facilitate human-machine interaction and cooperation, typically is defined explicitly and therefore serves as a proxy for human-automation cooperation requirements with respect to technical standards for technologies. Unfortunately, mismatches between the HMI and the coordination and synchronization demands of the underlying human-automation architecture can lead to system breakdowns. A methodology is needed that both designers and regulators can utilize to evaluate the predicted performance of a new technology given potential human-automation architectures. Three experiments were conducted to inform the minimum HMI requirements for a detect and avoid (DAA) system for unmanned aircraft systems (UAS). The results of the experiments provided empirical input to specific minimum operational performance standards that UAS manufacturers will have to meet in order to operate UAS in the National Airspace System (NAS). These studies represent a success story for how to objectively and systematically evaluate prototype technologies as part of the process for developing regulatory requirements. They also provide an opportunity to reflect on the lessons learned in order to improve the methodology for defining technology requirements for regulators in the future. The biggest shortcoming of the presented research program was the absence of the explicit definition, generation and analysis of potential human-automation architectures. Failure to execute this step in the research process resulted in less efficient evaluation of the candidate prototypes technologies in addition to a lack of exploration of different approaches to human-automation cooperation. Defining potential human-automation architectures a priori also allows regulators to develop scenarios that will stress the performance boundaries of the technology during the evaluation phase. The importance of adding this step of generating and evaluating candidate human-automation architectures prior to formal empirical evaluation is discussed. This document concludes with a look at both the importance of, and the challenges facing, the inclusion of examining human-automation coordination issues as part of the safety assurance activities of new technologies.

  8. Human Exploration Science Office (KX) Overview

    NASA Technical Reports Server (NTRS)

    Calhoun, Tracy A.

    2014-01-01

    The Human Exploration Science Office supports human spaceflight, conducts research, and develops technology in the areas of space orbital debris, hypervelocity impact technology, image science and analysis, remote sensing, imagery integration, and human and robotic exploration science. NASA's Orbital Debris Program Office (ODPO) resides in the Human Exploration Science Office. ODPO provides leadership in orbital debris research and the development of national and international space policy on orbital debris. The office is recognized internationally for its measurement and modeling of the debris environment. It takes the lead in developing technical consensus across U.S. agencies and other space agencies on debris mitigation measures to protect users of the orbital environment. The Hypervelocity Impact Technology (HVIT) project evaluates the risks to spacecraft posed by micrometeoroid and orbital debris (MMOD). HVIT facilities at JSC and White Sands Test Facility (WSTF) use light gas guns, diagnostic tools, and high-speed imagery to quantify the response of spacecraft materials to MMOD impacts. Impact tests, with debris environment data provided by ODPO, are used by HVIT to predict risks to NASA and commercial spacecraft. HVIT directly serves NASA crew safety with MMOD risk assessments for each crewed mission and research into advanced shielding design for future missions. The Image Science and Analysis Group (ISAG) supports the International Space Station (ISS) and commercial spaceflight through the design of imagery acquisition schemes (ground- and vehicle-based) and imagery analyses for vehicle performance assessments and mission anomaly resolution. ISAG assists the Multi-Purpose Crew Vehicle (MPCV) Program in the development of camera systems for the Orion spacecraft that will serve as data sources for flight test objectives that lead to crewed missions. The multi-center Imagery Integration Team is led by the Human Exploration Science Office and provides expertise in the application of engineering imagery to spaceflight. The team links NASA programs and private industry with imagery capabilities developed and honed through decades of human spaceflight, including imagery integration, imaging assets, imagery data management, and photogrammetric analysis. The team is currently supporting several NASA programs, including commercial demonstration missions. The Earth Science and Remote Sensing Team is responsible for integrating the scientific use of Earth-observation assets onboard the ISS, which consist of externally mounted sensors and crew photography capabilities. This team facilitates collaboration on remote sensing and participates in research with academic organizations and other Government agencies, not only in conjunction with ISS science, but also for planetary exploration and regional environmental/geological studies. Human exploration science focuses on science strategies for future human exploration missions to the Moon, Mars, asteroids, and beyond. This function provides communication and coordination between the science community and mission planners. ARES scientists support the operation of robotic missions (i.e., Mars Exploration Rovers and the Mars Science Laboratory), contribute to the interpretation of returned mission data, and translate robotic mission technologies and techniques to human spaceflight.

  9. Addressing the human factors issues associated with control room modifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Hara, J.; Stubler, W.; Kramer, J.

    1998-03-01

    Advanced human-system interface (HSI) technology is being integrated into existing nuclear plants as part of plant modifications and upgrades. The result of this trend is that hybrid HSIs are created, i.e., HSIs containing a mixture of conventional (analog) and advanced (digital) technology. The purpose of the present research is to define the potential effects of hybrid HSIs on personnel performance and plant safety and to develop human factors guidance for safety reviews of them where necessary. In support of this objective, human factors issues associated with hybrid HSIs were identified. The issues were evaluated for their potential significance to plantmore » safety, i.e., their human performance concerns have the potential to compromise plant safety. The issues were then prioritized and a subset was selected for design review guidance development.« less

  10. A Cognitive Systems Engineering Approach to Developing HMI Requirements for New Technologies

    NASA Technical Reports Server (NTRS)

    Fern, Lisa Carolynn

    2016-01-01

    This document examines the challenges inherent in designing and regulating to support human-automation interaction for new technologies that will deployed into complex systems. A key question for new technologies, is how work will be accomplished by the human and machine agents. This question has traditionally been framed as how functions should be allocated between humans and machines. Such framing misses the coordination and synchronization that is needed for the different human and machine roles in the system to accomplish their goals. Coordination and synchronization demands are driven by the underlying human-automation architecture of the new technology, which are typically not specified explicitly by the designers. The human machine interface (HMI) which is intended to facilitate human-machine interaction and cooperation, however, typically is defined explicitly and therefore serves as a proxy for human-automation cooperation requirements with respect to technical standards for technologies. Unfortunately, mismatches between the HMI and the coordination and synchronization demands of the underlying human-automation architecture, can lead to system breakdowns. A methodology is needed that both designers and regulators can utilize to evaluate the expected performance of a new technology given potential human-automation architectures. Three experiments were conducted to inform the minimum HMI requirements a detect and avoid system for unmanned aircraft systems (UAS). The results of the experiments provided empirical input to specific minimum operational performance standards that UAS manufacturers will have to meet in order to operate UAS in the National Airspace System (NAS). These studies represent a success story for how to objectively and systematically evaluate prototype technologies as part of the process for developing regulatory requirements. They also provide an opportunity to reflect on the lessons learned from a recent research effort in order to improve the methodology for defining technology requirements for regulators in the future. The biggest shortcoming of the presented research program was the absence of the explicit definition, generation and analysis of potential human-automation architectures. Failure to execute this step in the research process resulted in less efficient evaluation of the candidate prototypes technologies in addition to the complete absence of different approaches to human-automation cooperation. For example, all of the prototype technologies that were evaluated in the research program assumed a human-automation architecture that relied on serial processing from the automation to the human. While this type of human-automation architecture is typical across many different technologies and in many different domains, it ignores different architectures where humans and automation work in parallel. Defining potential human-automation architectures a priori also allows regulators to develop scenarios that will stress the performance boundaries of the technology during the evaluation phase. The importance of adding this step of generating and evaluating candidate human-automation architectures prior to formal empirical evaluation is discussed.

  11. Lunar Polar In Situ Resource Utilization (ISRU) as a Stepping Stone for Human Exploration

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.

    2013-01-01

    A major emphasis of NASA is to extend and expand human exploration across the solar system. While specific destinations are still being discussed as to what comes first, it is imperative that NASA create new technologies and approaches that make space exploration affordable and sustainable. Critical to achieving affordable and sustainable exploration beyond low Earth orbit (LEO) are the development of technologies and approaches for advanced robotics, power, propulsion, habitats, life support, and especially, space resource utilization systems. Space resources and how to use them, often called In-Situ Resource Utilization (ISRU), can have a tremendous beneficial impact on robotic and human exploration of the Moon, Mars, Phobos, and Near Earth Objects (NEOs), while at the same time helping to solve terrestrial challenges and enabling commercial space activities. The search for lunar resources, demonstration of extraterrestrial mining, and the utilization of resource-derived products, especially from polar volatiles, can be a stepping stone for subsequent human exploration missions to other destinations of interest due to the proximity of the Moon, complimentary environments and resources, and the demonstration of critical technologies, processes, and operations. ISRU and the Moon: There are four main areas of development interest with respect to finding, obtaining, extracting, and using space resources: Prospecting for resources, Production of mission critical consumables like propellants and life support gases, Civil engineering and construction, and Energy production, storage, and transfer. The search for potential resources and the production of mission critical consumables are the primary focus of current NASA technology and system development activities since they provide the greatest initial reduction in mission mass, cost, and risk. Because of the proximity of the Moon, understanding lunar resources and developing, demonstrating, and implementing lunar ISRU provides a near and early opportunity to perform the following that are applicable to other human exploration mission destinations: Identify and characterize resources, how they are distributed, and the material, location and environment in which they are found; Demonstrate concepts, technologies, and hardware that can reduce the cost and risk of human exploration beyond Earth orbit; Use the Moon for operation experience and mission validation for much longer missions that are farther from Earth Develop and evolve ISRU to support sustained, economical human presence beyond Earth's orbit, including promoting space commercialization As Table 1 depicts, the Moon provides environments and resources applicable to Mars and NEOs. Two lunar ISRU resource and product pathways that have notable synergism with NEO, Phobos/Demos, and Mars ISRU are oxygen/metal extraction from regolith, and water/volatile extraction from lunar polar materials. To minimize the risk of developing and incorporating ISRU into human missions, a phased implementation plan is recommended that starts with prospecting and demonstrating critical technologies on robotic and human missions, then performing pilot scale operations (in non-mission critical roles) to enhance exploration mission capabilities, leading to full utilization of space resources in mission critical roles. Which lunar ISRU pathway is followed will depend on the results of early resource prospecting/proof-ofconcept mission(s), and long-term human exploration plans.

  12. Multisensory Technology for Flavor Augmentation: A Mini Review.

    PubMed

    Velasco, Carlos; Obrist, Marianna; Petit, Olivia; Spence, Charles

    2018-01-01

    There is growing interest in the development of new technologies that capitalize on our emerging understanding of the multisensory influences on flavor perception in order to enhance human-food interaction design. This review focuses on the role of (extrinsic) visual, auditory, and haptic/tactile elements in modulating flavor perception and more generally, our food and drink experiences. We review some of the most exciting examples of recent multisensory technologies for augmenting such experiences. Here, we discuss applications for these technologies, for example, in the field of food experience design, in the support of healthy eating, and in the rapidly growing world of sensory marketing. However, as the review makes clear, while there are many opportunities for novel human-food interaction design, there are also a number of challenges that will need to be tackled before new technologies can be meaningfully integrated into our everyday food and drink experiences.

  13. Gaze Toward Naturalistic Social Scenes by Individuals With Intellectual and Developmental Disabilities: Implications for Augmentative and Alternative Communication Designs.

    PubMed

    Liang, Jiali; Wilkinson, Krista

    2018-04-18

    A striking characteristic of the social communication deficits in individuals with autism is atypical patterns of eye contact during social interactions. We used eye-tracking technology to evaluate how the number of human figures depicted and the presence of sharing activity between the human figures in still photographs influenced visual attention by individuals with autism, typical development, or Down syndrome. We sought to examine visual attention to the contents of visual scene displays, a growing form of augmentative and alternative communication support. Eye-tracking technology recorded point-of-gaze while participants viewed 32 photographs in which either 2 or 3 human figures were depicted. Sharing activities between these human figures are either present or absent. The sampling rate was 60 Hz; that is, the technology gathered 60 samples of gaze behavior per second, per participant. Gaze behaviors, including latency to fixate and time spent fixating, were quantified. The overall gaze behaviors were quite similar across groups, regardless of the social content depicted. However, individuals with autism were significantly slower than the other groups in latency to first view the human figures, especially when there were 3 people depicted in the photographs (as compared with 2 people). When participants' own viewing pace was considered, individuals with autism resembled those with Down syndrome. The current study supports the inclusion of social content with various numbers of human figures and sharing activities between human figures into visual scene displays, regardless of the population served. Study design and reporting practices in eye-tracking literature as it relates to autism and Down syndrome are discussed. https://doi.org/10.23641/asha.6066545.

  14. Systems Engineering and Integration for Advanced Life Support System and HST

    NASA Technical Reports Server (NTRS)

    Kamarani, Ali K.

    2005-01-01

    Systems engineering (SE) discipline has revolutionized the way engineers and managers think about solving issues related to design of complex systems: With continued development of state-of-the-art technologies, systems are becoming more complex and therefore, a systematic approach is essential to control and manage their integrated design and development. This complexity is driven from integration issues. In this case, subsystems must interact with one another in order to achieve integration objectives, and also achieve the overall system's required performance. Systems engineering process addresses these issues at multiple levels. It is a technology and management process dedicated to controlling all aspects of system life cycle to assure integration at all levels. The Advanced Integration Matrix (AIM) project serves as the systems engineering and integration function for the Human Support Technology (HST) program. AIM provides means for integrated test facilities and personnel for performance trade studies, analyses, integrated models, test results, and validated requirements of the integration of HST. The goal of AIM is to address systems-level integration issues for exploration missions. It will use an incremental systems integration approach to yield technologies, baselines for further development, and possible breakthrough concepts in the areas of technological and organizational interfaces, total information flow, system wide controls, technical synergism, mission operations protocols and procedures, and human-machine interfaces.

  15. Analysis of a spacecraft life support system for a Mars mission.

    PubMed

    Czupalla, M; Aponte, V; Chappell, S; Klaus, D

    2004-01-01

    This report summarizes a trade study conducted as part of the Fall 2002 semester Spacecraft Life Support System Design course (ASEN 5116) in the Aerospace Engineering Sciences Department at the University of Colorado. It presents an analysis of current life support system technologies and a preliminary design of an integrated system for supporting humans during transit to and on the surface of the planet Mars. This effort was based on the NASA Design Reference Mission (DRM) for the human exploration of Mars [NASA Design Reference Mission (DRM) for Mars, Addendum 3.0, from the world wide web: http://exploration.jsc.nasa.gov/marsref/contents.html.]. The integrated design was broken into four subsystems: Water Management, Atmosphere Management, Waste Processing, and Food Supply. The process started with the derivation of top-level requirements from the DRM. Additional system and subsystem level assumptions were added where clarification was needed. Candidate technologies were identified and characterized based on performance factors. Trade studies were then conducted for each subsystem. The resulting technologies were integrated into an overall design solution using mass flow relationships. The system level trade study yielded two different configurations--one for the transit to Mars and another for the surface habitat, which included in situ resource utilization. Equivalent System Mass analyses were used to compare each design against an open-loop (non-regenerable) baseline system. c2003 International Astronautical Federation. Published by Elsevier Ltd. All rights reserved.

  16. Combining High-Speed Cameras and Stop-Motion Animation Software to Support Students' Modeling of Human Body Movement

    ERIC Educational Resources Information Center

    Lee, Victor R.

    2015-01-01

    Biomechanics, and specifically the biomechanics associated with human movement, is a potentially rich backdrop against which educators can design innovative science teaching and learning activities. Moreover, the use of technologies associated with biomechanics research, such as high-speed cameras that can produce high-quality slow-motion video,…

  17. Medical and technology requirements for human solar system exploration missions

    NASA Technical Reports Server (NTRS)

    Nicogossian, Arnauld; Harris, Leonard; Couch, Lana; Sulzman, Frank; Gaiser, Karen

    1989-01-01

    Measures that need to be taken to cope with the health problems posed by zero gravity and radiation in manned solar system exploration missions are discussed. The particular systems that will be used aboard Space Station Freedom are addressed, and relevant human factors problems are examined. The development of a controlled ecological life support system is addressed.

  18. Powered Descent Trajectory Guidance and Some Considerations for Human Lunar Landing

    NASA Technical Reports Server (NTRS)

    Sostaric, Ronald R.

    2007-01-01

    The Autonomous Precision Landing and Hazard Detection and Avoidance Technology development (ALHAT) will enable an accurate (better than 100m) landing on the lunar surface. This technology will also permit autonomous (independent from ground) avoidance of hazards detected in real time. A preliminary trajectory guidance algorithm capable of supporting these tasks has been developed and demonstrated in simulations. Early results suggest that with expected improvements in sensor technology and lunar mapping, mission objectives are achievable.

  19. Research and Development Strategies for Human Centered and Group Support Technologies

    DTIC Science & Technology

    1992-05-01

    al.,6 Rothwell, 7 Hidson,8 and Richards and Companion 9 provide detailed 3 R . Bruce Gould, AFHRI/MOD, MPT Technology Branch, Brooks AFB, TX, and...88 Transactions, Boston, 1988. Gould, R . Bruce , AFHRL/MOD, MPT Technology Branch, Brooks AFB, TX, and Thomas Nondorf, McDonnell Douglas Corp. MCAIR...future R &D activities. This paper reports the results of research performed by an Institute for Defense Analyses study team whose immediate goal was

  20. Progress in the Development of Direct Osmotic Concentration Wastewater Recovery Process for Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Cath, Tzahi Y.; Adams, Dean V.; Childress, Amy; Gormly, Sherwin; Flynn, Michael

    2005-01-01

    Direct osmotic concentration (DOC) has been identified as a high potential technology for recycling of wastewater to drinking water in advanced life support (ALS) systems. As a result the DOC process has been selected for a NASA Rapid Technology Development Team (RTDT) effort. The existing prototype system has been developed to a Technology Readiness Level (TRL) 3. The current project focuses on advancing the development of this technology from TRL 3 to TRL 6 (appropriate for human rated testing). A new prototype of a DOC system is been designed and fabricated that addresses the deficiencies encountered during the testing of the original system and allowing the new prototype to achieve TRL 6. Background information is provided about the technologies investigated and their capabilities, results from preliminary tests, and the milestones plan and activities for the RTDT program intended to develop a second generation prototype of the DOC system.

  1. Modulation of visually evoked movement responses in moving virtual environments.

    PubMed

    Reed-Jones, Rebecca J; Vallis, Lori Ann

    2009-01-01

    Virtual-reality technology is being increasingly used to understand how humans perceive and act in the moving world around them. What is currently not clear is how virtual reality technology is perceived by human participants and what virtual scenes are effective in evoking movement responses to visual stimuli. We investigated the effect of virtual-scene context on human responses to a virtual visual perturbation. We hypothesised that exposure to a natural scene that matched the visual expectancies of the natural world would create a perceptual set towards presence, and thus visual guidance of body movement in a subsequently presented virtual scene. Results supported this hypothesis; responses to a virtual visual perturbation presented in an ambiguous virtual scene were increased when participants first viewed a scene that consisted of natural landmarks which provided 'real-world' visual motion cues. Further research in this area will provide a basis of knowledge for the effective use of this technology in the study of human movement responses.

  2. Supporting the Social Media Needs of Emergency Public Information Officers with Human-Centered Design and Development

    ERIC Educational Resources Information Center

    Hughes, Amanda Lee

    2012-01-01

    Emergency response agencies, which operate as command-and-control organizations, push information to members of the public with too few mechanisms to support communication flowing back. Recently, information communication technologies (ICTs) such as social media have challenged this one-way model by allowing the public to participate in emergency…

  3. Investigating Human Impact in the Environment with Faded Scaffolded Inquiry Supported by Technologies

    ERIC Educational Resources Information Center

    Campbell, Todd; Longhurst, Max; Duffy, Aaron M.; Wolf, Paul G.; Nagy, Robin

    2012-01-01

    Teaching science as inquiry is advocated in all national science education documents and by leading science and science teaching organizations. In addition to teaching science as inquiry, we recognize that learning experiences need to connect to students' lives. This article details how we use a sequence of faded scaffolded inquiry supported by…

  4. Computational Toxicology as Implemented by the U.S. EPA: Providing High Throughput Decision Support Tools for Screening and Assessing Chemical Exposure, Hazard and Risk

    EPA Science Inventory

    Computational toxicology is the application of mathematical and computer models to help assess chemical hazards and risks to human health and the environment. Supported by advances in informatics, high-throughput screening (HTS) technologies, and systems biology, the U.S. Environ...

  5. Johnson Space Center Research and Technology 1993 Annual Report

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Johnson Space Center research and technology accomplishments during fiscal year 1993 are described and principle researchers and technologists are identified as contacts for further information. Each of the four sections gives a summary of overall progress in a major discipline, followed by detailed, illustrated descriptions of significant tasks. The four disciplines are Life Sciences, Human Support Technology, Solar Systems Sciences, and Space Systems Technology. The report is intended for technical and management audiences throughout the NASA and worldwide aerospace community. An index lists project titles, funding codes, and principal investigators.

  6. Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Mount, Frances; Carreon, Patricia; Torney, Susan E.

    2001-01-01

    The Engineering and Mission Operations Directorates at NASA Johnson Space Center are combining laboratories and expertise to establish the Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations. This is a testbed for human centered design, development and evaluation of intelligent autonomous and assistant systems that will be needed for human exploration and development of space. This project will improve human-centered analysis, design and evaluation methods for developing intelligent software. This software will support human-machine cognitive and collaborative activities in future interplanetary work environments where distributed computer and human agents cooperate. We are developing and evaluating prototype intelligent systems for distributed multi-agent mixed-initiative operations. The primary target domain is control of life support systems in a planetary base. Technical approaches will be evaluated for use during extended manned tests in the target domain, the Bioregenerative Advanced Life Support Systems Test Complex (BIO-Plex). A spinoff target domain is the International Space Station (ISS) Mission Control Center (MCC). Prodl}cts of this project include human-centered intelligent software technology, innovative human interface designs, and human-centered software development processes, methods and products. The testbed uses adjustable autonomy software and life support systems simulation models from the Adjustable Autonomy Testbed, to represent operations on the remote planet. Ground operations prototypes and concepts will be evaluated in the Exploration Planning and Operations Center (ExPOC) and Jupiter Facility.

  7. Pacific Northwest National Laboratory institutional plan FY 1997--2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-10-01

    Pacific Northwest National Laboratory`s core mission is to deliver environmental science and technology in the service of the nation and humanity. Through basic research fundamental knowledge is created of natural, engineered, and social systems that is the basis for both effective environmental technology and sound public policy. Legacy environmental problems are solved by delivering technologies that remedy existing environmental hazards, today`s environmental needs are addressed with technologies that prevent pollution and minimize waste, and the technical foundation is being laid for tomorrow`s inherently clean energy and industrial processes. Pacific Northwest National Laboratory also applies its capabilities to meet selected nationalmore » security, energy, and human health needs; strengthen the US economy; and support the education of future scientists and engineers. Brief summaries are given of the various tasks being carried out under these broad categories.« less

  8. NASA Intelligent Systems Project: Results, Accomplishments and Impact on Science Missions.

    NASA Astrophysics Data System (ADS)

    Coughlan, J. C.

    2005-12-01

    The Intelligent Systems Project was responsible for much of NASA's programmatic investment in artificial intelligence and advanced information technologies. IS has completed three major project milestones which demonstrated increased capabilities in autonomy, human centered computing, and intelligent data understanding. Autonomy involves the ability of a robot to place an instrument on a remote surface with a single command cycle, human centered computing supported a collaborative, mission centric data and planning system for the Mars Exploration Rovers and data understanding has produced key components of a terrestrial satellite observation system with automated modeling and data analysis capabilities. This paper summarizes the technology demonstrations and metrics which quantify and summarize these new technologies which are now available for future NASA missions.

  9. NASA Intelligent Systems Project: Results, Accomplishments and Impact on Science Missions

    NASA Technical Reports Server (NTRS)

    Coughlan, Joseph C.

    2005-01-01

    The Intelligent Systems Project was responsible for much of NASA's programmatic investment in artificial intelligence and advanced information technologies. IS has completed three major project milestones which demonstrated increased capabilities in autonomy, human centered computing, and intelligent data understanding. Autonomy involves the ability of a robot to place an instrument on a remote surface with a single command cycle. Human centered computing supported a collaborative, mission centric data and planning system for the Mars Exploration Rovers and data understanding has produced key components of a terrestrial satellite observation system with automated modeling and data analysis capabilities. This paper summarizes the technology demonstrations and metrics which quantify and summarize these new technologies which are now available for future Nasa missions.

  10. Johnson Space Center Research and Technology Annual Report 1998-1999

    NASA Technical Reports Server (NTRS)

    Abbey, George W. S.

    2004-01-01

    As the principle center for NASA's Human Exploration and Development of Space (HEDS) Enterprise, the Johnson Space Center (JSC) leads NASA development of human spacecraft, human support systems, and human spacecraft operations. An important element in implementing this mission, JSC has focused on developing the infrastructure and partnerships that enable the technology development for future NASA programs. In our efforts to develop key technologies, we have found that collaborative relationships with private industry and academia strengthen our capabilities, infuse innovative ideas, and provide alternative applications for our development projects. The American public has entrusted NASA with the responsibility for space technology development, and JSC is committed to the transfer of the technologies that we develop to the private sector for further development and application. It is our belief that commercialization of NASA technologies benefits both American industry and NASA through technology innovation and continued partnering. To this end, we present the 1998-1999 JSC Research and Technology Report. As your guide to the current JSC technologies, this report showcases the projects in work at JSC that may be of interest to U.S. industry, academia, and other government agencies (federal, state, and local). For each project, potential alternative uses and commercial applications are described. To aid in your search, projects are arranged according to the Major Product Groups used by CorpTech to classify and index types of industry. Some projects fall into multiple categories and are placed under the predominant category, for example, an artificial intelligence project is listed under the Computer Software category, while its function is to automate a process (Automation category).

  11. Introduction

    NASA Astrophysics Data System (ADS)

    Gaskin, J. A.; Smith, I. S.; Jones, W. V.

    In 1783, the Montgolfier brothers ushered in a new era of transportation and exploration when they used hot air to drive an un-tethered balloon to an altitude of 2 km. Made of sackcloth and held together with cords, this balloon challenged the way we thought about human travel, and it has since evolved into a robust platform for performing novel science and testing new technologies. Today, high-altitude balloons regularly reach altitudes of 40 km, and they can support payloads that weigh more than 3000 kg. Long-duration balloons can currently support mission durations lasting 55 days, and developing balloon technologies (i.e. Super-Pressure Balloons) are expected to extend that duration to 100 days or longer; competing with satellite payloads. This relatively inexpensive platform supports a broad range of science payloads, spanning multiple disciplines (astrophysics, heliophysics, planetary and earth science). Applications extending beyond traditional science include testing new technologies for eventual space-based application and stratospheric airships for planetary applications.

  12. COST action TD1407: network on technology-critical elements (NOTICE)--from environmental processes to human health threats.

    PubMed

    Cobelo-García, A; Filella, M; Croot, P; Frazzoli, C; Du Laing, G; Ospina-Alvarez, N; Rauch, S; Salaun, P; Schäfer, J; Zimmermann, S

    2015-10-01

    The current socio-economic, environmental and public health challenges that countries are facing clearly need common-defined strategies to inform and support our transition to a sustainable economy. Here, the technology-critical elements (which includes Ga, Ge, In, Te, Nb, Ta, Tl, the Platinum Group Elements and most of the rare-earth elements) are of great relevance in the development of emerging key technologies-including renewable energy, energy efficiency, electronics or the aerospace industry. In this context, the increasing use of technology-critical elements (TCEs) and associated environmental impacts (from mining to end-of-life waste products) is not restricted to a national level but covers most likely a global scale. Accordingly, the European COST Action TD1407: Network on Technology-Critical Elements (NOTICE)-from environmental processes to human health threats, has an overall objective for creating a network of scientists and practitioners interested in TCEs, from the evaluation of their environmental processes to understanding potential human health threats, with the aim of defining the current state of knowledge and gaps, proposing priority research lines/activities and acting as a platform for new collaborations and joint research projects. The Action is focused on three major scientific areas: (i) analytical chemistry, (ii) environmental biogeochemistry and (iii) human exposure and (eco)-toxicology.

  13. Describing functional requirements for knowledge sharing communities

    NASA Technical Reports Server (NTRS)

    Garrett, Sandra; Caldwell, Barrett

    2002-01-01

    Human collaboration in distributed knowledge sharing groups depends on the functionality of information and communication technologies (ICT) to support performance. Since many of these dynamic environments are constrained by time limits, knowledge must be shared efficiently by adapting the level of information detail to the specific situation. This paper focuses on the process of knowledge and context sharing with and without mediation by ICT, as well as issues to be resolved when determining appropriate ICT channels. Both technology-rich and non-technology examples are discussed.

  14. Space Resources Development: The Link Between Human Exploration and the Long-Term Commercialization of Space

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.

    2000-01-01

    In a letter to the NASA Administrator, Dan Goldin, in January of 1999, the Office of Management and Budget (OMB) stated the following . OMB recommends that NASA consider commercialization in a broader context than the more focused efforts to date on space station and space shuttle commercialization. We suggest that NASA examine architectures that take advantage of a potentially robust future commercial infrastructure that could dramatically lower the cost of future human exploration." In response to this letter, the NASA Human Exploration and Development of Space (HEDS) Enterprise launched the BEDS Technology & Commercialization Initiative (HTCI) to link technology and system development for human exploration with the commercial development of space to emphasize the "D" (Development) in BEDS. The development of technologies and capabilities to utilize space resources is the first of six primary focus areas in this program. It is clear that Space Resources Development (SRD) is key for both long-term human exploration of our solar system and to the long-term commercialization of space since: a) it provides the technologies, products, and raw materials to support efficient space transportation and in-space construction and manufacturing, and b) it provides the capabilities and infrastructure to allow outpost growth, self-sufficiency, and commercial space service and utility industry activities.

  15. A New Informatics Geography.

    PubMed

    Coiera, E

    2016-11-10

    Anyone with knowledge of information systems has experienced frustration when it comes to system implementation or use. Unanticipated challenges arise frequently and unanticipated consequences may follow. Working from first principles, to understand why information technology (IT) is often challenging, identify which IT endeavors are more likely to succeed, and predict the best role that technology can play in different tasks and settings. The fundamental purpose of IT is to enhance our ability to undertake tasks, supplying new information that changes what we decide and ultimately what occurs in the world. The value of this information (VOI) can be calculated at different stages of the decision-making process and will vary depending on how technology is used. We can imagine a task space that describes the relative benefits of task completion by humans or computers and that contains specific areas where humans or computers are superior. There is a third area where neither is strong and a final joint workspace where humans and computers working in partnership produce the best results. By understanding that information has value and that VOI can be quantified, we can make decisions about how best to support the work we do. Evaluation of the expected utility of task completion by humans or computers should allow us to decide whether solutions should depend on technology, humans, or a partnership between the two.

  16. Advanced Collaborative Environments Supporting Systems Integration and Design

    DTIC Science & Technology

    2003-03-01

    concurrently view a virtual system or product model while maintaining natural, human communication . These virtual systems operate within a computer-generated...These environments allow multiple individuals to concurrently view a virtual system or product model while simultaneously maintaining natural, human ... communication . As a result, TARDEC researchers and system developers are using this advanced high-end visualization technology to develop future

  17. National Space Biomedical Research Institute

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The National Space Biomedical Research Institute (NSBRI) sponsors and performs fundamental and applied space biomedical research with the mission of leading a world-class, national effort in integrated, critical path space biomedical research that supports NASA's Human Exploration and Development of Space (HEDS) Strategic Plan. It focuses on the enabling of long-term human presence in, development of, and exploration of space. This will be accomplished by: designing, implementing, and validating effective countermeasures to address the biological and environmental impediments to long-term human space flight; defining the molecular, cellular, organ-level, integrated responses and mechanistic relationships that ultimately determine these impediments, where such activity fosters the development of novel countermeasures; establishing biomedical support technologies to maximize human performance in space, reduce biomedical hazards to an acceptable level, and deliver quality medical care; transferring and disseminating the biomedical advances in knowledge and technology acquired through living and working in space to the benefit of mankind in space and on Earth, including the treatment of patients suffering from gravity- and radiation-related conditions on Earth; and ensuring open involvement of the scientific community, industry, and the public at large in the Institute's activities and fostering a robust collaboration with NASA, particularly through Johnson Space Center.

  18. Viral infections and breast cancer - A current perspective.

    PubMed

    Gannon, O M; Antonsson, A; Bennett, I C; Saunders, N A

    2018-04-28

    Sporadic human breast cancer is the most common cancer to afflict women. Since the discovery, decades ago, of the oncogenic mouse mammary tumour virus, there has been significant interest in the potential aetiologic role of infectious agents in sporadic human breast cancer. To address this, many studies have examined the presence of viruses (e.g. papillomaviruses, herpes viruses and retroviruses), endogenous retroviruses and more recently, microbes, as a means of implicating them in the aetiology of human breast cancer. Such studies have generated conflicting experimental and clinical reports of the role of infection in breast cancer. This review evaluates the current evidence for a productive oncogenic viral infection in human breast cancer, with a focus on the integration of sensitive and specific next generation sequencing technologies with pathogen discovery. Collectively, the majority of the recent literature using the more powerful next generation sequencing technologies fail to support an oncogenic viral infection being involved in disease causality in breast cancer. In balance, the weight of the current experimental evidence supports the conclusion that viral infection is unlikely to play a significant role in the aetiology of breast cancer. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Lunar Outpost Life Support Trade Studies

    NASA Technical Reports Server (NTRS)

    Lange, Kevin E.; Anderson, Molly S.; Ewert, Michael K.; Barta, Daniel J.

    2008-01-01

    Engineering trade-off studies of life support system architecture and technology options were conducted for potential lunar surface mission scenarios within NASA's Constellation Program. The scenarios investigated are based largely on results of the NASA Lunar Architecture Team (LAT) Phase II study. In particular, the possibility of Hosted Sortie missions, the high cost of power during eclipse periods, and the potential to reduce life support consumables through scavenging, in-situ resources, and alternative EVA technologies were all examined. These trade studies were performed within the Systems Integration, Modeling and Analysis (SIMA) element of NASA's Exploration Life Support (ELS) technology development project. The tools and methodology used in the study are described briefly, followed by a discussion of mission scenarios, life support technology options and results presented in terms of equivalent system mass for various regenerative life support technologies and architectures. Three classes of repeated or extended lunar surface missions were investigated in this study along with several life support resource scenarios for each mission class. Individual mission durations of 14 days, 90 days and 180 days were considered with 10 missions assumed for each at a rate of 2 missions per year. The 14-day missions represent a class of Hosted Sortie missions where a pre-deployed and potentially mobile habitat provides life support for multiple crews at one or more locations. The 90-day and 180-day missions represent lunar outpost expeditions with a larger fixed habitat. The 180-day missions assume continuous human presence and must provide life support through eclipse periods of up to 122 hours while the 90-day missions are planned for best-case periods of nearly continuous sunlight. This paper investigates system optimization within the assumptions of each scenario and addresses how the scenario selected drives the life support system to different designs. Subsequently, these analysis results can be used to determine which technologies may be good choices throughout a broad range of architectures.

  20. NASA Performance Report

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Introduction NASA's mission is to advance and communicate scientific knowledge and understanding of Earth, the solar system, and the universe; to advance human exploration, use, and development of space; and to research, develop, verify, and transfer advanced aeronautics, space, and related technologies. In support of this mission, NASA has a strategic architecture that consists of four Enterprises supported by four Crosscutting Processes. The Strategic Enterprises are NASA's primary mission areas to include Earth Science, Space Science, Human Exploration and Development of Space, and Aerospace Technology. NASA's Crosscutting Processes are Manage Strategically, Provide Aerospace Products and Capabilities, Generate Knowledge and Communicate Knowledge. The implementation of NASA programs, science, and technology research occurs primarily at our Centers. NASA consists of a Headquarters, nine Centers, and the Jet Propulsion Laboratory, as well as several ancillary installations and offices in the United States and abroad. The nine Centers are as follows: (1) Ames Research Center, (2) Dryden Flight Research Center (DFRC), (3) Glenn Research Center (GRC), (4) Goddard Space Flight Center (GSFC), (5) Johnson Space Center, (6) Kennedy Space Center (KSC), (7) Langley Research Center (LaRC), (8) Marshall Space Flight Center (MSFC), and (9) Stennis Space Center (SSC).

  1. Starting a European Space Agency Sample Analogue Collection (ESA2C) and Curation Facility for Exploration Missions.

    NASA Astrophysics Data System (ADS)

    Smith, C. L.; Rumsey, M. S.; Manick, K.; Gill, S.-J.; Mavris, C.; Schroeven-Deceuninck, H.; Duvet, L.

    2017-09-01

    The ESA2C will support current and future technology development activities that are required for human and robotic exploration of Mars, Phobos, Deimos, C-Type Asteroids and the Moon.The long-term goal of this work is to produce a useful, useable and sustainable resource for engineers and scientists developing technologies for ESA space exploration missions.

  2. Bridging the Technology Valley of Death in Joint Medical Development

    DTIC Science & Technology

    2015-11-01

    Force lieutenant colonel, is the Air Force Medical Support Agency Advanced Development Liaison Field Engineer in Falls Church, Virginia. Prusaczyk is...Awareness, communication and coordination may be mini - mal among Service S&T and AD programs. Joint Transition Planning Process A Joint Transition...Human Proof of Phase III NDA/BLA ling Approval, Launch Concept*** Launch Review Program Initiation Materiel Technology Engineering & Production

  3. HFE safety reviews of advanced nuclear power plant control rooms

    NASA Technical Reports Server (NTRS)

    Ohara, John

    1994-01-01

    Advanced control rooms (ACR's) will utilize human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator's overall role and means of interacting with the system. The Nuclear Regulatory Commission (NRC) reviews the human factors engineering (HFE) aspects of HSI's to ensure that they are designed to good HFE principles and support performance and reliability in order to protect public health and safety. However, the only available NRC guidance was developed more than ten years ago, and does not adequately address the human performance issues and technology changes associated with ACR's. Accordingly, a new approach to ACR safety reviews was developed based upon the concept of 'convergent validity'. This approach to ACR safety reviews is described.

  4. Computational Toxicology at the US EPA

    EPA Science Inventory

    Computational toxicology is the application of mathematical and computer models to help assess chemical hazards and risks to human health and the environment. Supported by advances in informatics, high-throughput screening (HTS) technologies, and systems biology, EPA is developin...

  5. Collboard: Fostering New Media Literacies in the Classroom through Collaborative Problem Solving Supported by Digital Pens and Interactive Whiteboards

    ERIC Educational Resources Information Center

    Alvarez, Claudio; Salavati, Sadaf; Nussbaum, Miguel; Milrad, Marcelo

    2013-01-01

    Education systems worldwide must strive to support the teaching of a set of New Media Literacies (NMLs). These literacies respond to the need for educating human capital within participatory cultures in a highly technologized world. In this paper, we present Collboard, a constructivist problem solving activity for fostering the development of…

  6. Maternal Support and Brain Development: Neuroscience Validation for the Importance of Early Caregiving Relationships

    ERIC Educational Resources Information Center

    Luby, Joan; Rogers, Cynthia

    2013-01-01

    Advances in brain imaging methods and technology over the last 2 decades have opened an unprecedented window into the understanding of the structure and function of the human brain. In this article, the authors describe their investigation of the relationship between maternal support, observed during the preschool period, and the size of key brain…

  7. Use of antarctic analogs to support the space exploration initiative

    NASA Technical Reports Server (NTRS)

    Wharton, Robert; Roberts, Barney; Chiang, Erick; Lynch, John; Roberts, Carol; Buoni, Corinne; Andersen, Dale

    1990-01-01

    This report has discussed the Space Exploration Initiative (SEI) and the U.S. Antarctic Program (USAP) in the context of assessing the potential rationale and strategy for conducting a cooperative NASA/NSF (National Science Foundation) effort. Specifically, such an effort would address shared research and data on living and conducting scientific research in isolated, confined, hostile, and remote environments. A review of the respective goals and requirements of NASA and the NSF indicates that numerous opportunities exist to mutually benefit from sharing relevant technologies, data, and systems. Two major conclusions can be drawn: (1) The technologies, experience, and capabilities existing and developing in the aerospace community would enhance scientific research capabilities and the efficiency and effectiveness of operations in Antarctica. The transfer and application of critical technologies (e.g., power, waste management, life support) and collaboration on crew research needs (e.g., human behavior and medical support needs) would streamline the USAP operations and provide the scientific community with advancements in facilities and tools for Antarctic research. (2) Antarctica is the most appropriate earth analog for the environments of the the Moon and Mars. Using Antarctica in this way would contribute substantially to near- and long-term needs and plans for the SEI. Antarctica is one of the few ground-based analogs that would permit comprehensive and integrated studies of three areas deemed critical to productive and safe operations on the Moon and Mars: human health and productivity; innovative scientific research techniques; and reliable, efficient technologies and facilities.

  8. Use of antarctic analogs to support the space exploration initiative

    NASA Astrophysics Data System (ADS)

    Wharton, Robert; Roberts, Barney; Chiang, Erick; Lynch, John; Roberts, Carol; Buoni, Corinne; Andersen, Dale

    1990-12-01

    This report has discussed the Space Exploration Initiative (SEI) and the U.S. Antarctic Program (USAP) in the context of assessing the potential rationale and strategy for conducting a cooperative NASA/NSF (National Science Foundation) effort. Specifically, such an effort would address shared research and data on living and conducting scientific research in isolated, confined, hostile, and remote environments. A review of the respective goals and requirements of NASA and the NSF indicates that numerous opportunities exist to mutually benefit from sharing relevant technologies, data, and systems. Two major conclusions can be drawn: (1) The technologies, experience, and capabilities existing and developing in the aerospace community would enhance scientific research capabilities and the efficiency and effectiveness of operations in Antarctica. The transfer and application of critical technologies (e.g., power, waste management, life support) and collaboration on crew research needs (e.g., human behavior and medical support needs) would streamline the USAP operations and provide the scientific community with advancements in facilities and tools for Antarctic research. (2) Antarctica is the most appropriate earth analog for the environments of the the Moon and Mars. Using Antarctica in this way would contribute substantially to near- and long-term needs and plans for the SEI. Antarctica is one of the few ground-based analogs that would permit comprehensive and integrated studies of three areas deemed critical to productive and safe operations on the Moon and Mars: human health and productivity; innovative scientific research techniques; and reliable, efficient technologies and facilities.

  9. NASA Advanced Explorations Systems: 2017 Advancements in Life Support Systems

    NASA Technical Reports Server (NTRS)

    Schneider, Walter F.; Shull, Sarah A.

    2017-01-01

    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions planned in the mid-2020s and beyond. The LSS Project is focused on four are-as-architecture and systems engineering for life support systems, environmental monitoring, air revitalization, and wastewater processing and water management. Starting with the International Space Station (ISS) LSS systems as a point of departure where applicable, the three-fold mission of the LSS Project is to address discrete LSS technology gaps, to improve the reliability of LSS systems, and to advance LSS systems toward integrated testing aboard the ISS. This paper is a follow on to the AES LSS development status reported in 2016 and provides additional details on the progress made since that paper was published with specific attention to the status of the Aerosol Sampler ISS Flight Experiment, the Spacecraft Atmosphere Monitor (SAM) Flight Experiment, the Brine Processor Assembly (BPA) Flight Experiment, the CO2 removal technology development tasks, and the work investigating the impacts of dormancy on LSS systems.

  10. Exploring Life Support Architectures for Evolution of Deep Space Human Exploration

    NASA Technical Reports Server (NTRS)

    Anderson, Molly S.; Stambaugh, Imelda C.

    2015-01-01

    Life support system architectures for long duration space missions are often explored analytically in the human spaceflight community to find optimum solutions for mass, performance, and reliability. But in reality, many other constraints can guide the design when the life support system is examined within the context of an overall vehicle, as well as specific programmatic goals and needs. Between the end of the Constellation program and the development of the "Evolvable Mars Campaign", NASA explored a broad range of mission possibilities. Most of these missions will never be implemented but the lessons learned during these concept development phases may color and guide future analytical studies and eventual life support system architectures. This paper discusses several iterations of design studies from the life support system perspective to examine which requirements and assumptions, programmatic needs, or interfaces drive design. When doing early concept studies, many assumptions have to be made about technology and operations. Data can be pulled from a variety of sources depending on the study needs, including parametric models, historical data, new technologies, and even predictive analysis. In the end, assumptions must be made in the face of uncertainty. Some of these may introduce more risk as to whether the solution for the conceptual design study will still work when designs mature and data becomes available.

  11. Conceptual design for a lunar-base CELSS

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, Steven H.; Cullingford, Hatice S.

    1990-01-01

    Future human exploration is key to the United States National Space Policy goal of maintaining a world leadership position in space. In the past, spacecraft life support systems have used open-loop technologies that were simple and sufficiently reliable to demonstrate the feasibility of spaceflight. A critical technology area needing development in support of both long duration missions and the establishment of lunar or planetary bases is regenerative life support. The information presented in this paper describes a conceptual design of a Lunar Base Controlled Ecological Life Support System (LCELSS) which supports a crew size ranging from 4 to 100. The system includes, or incorporates interfaces with, eight primary subsystems. An initial description of the Lunar-Base CELSS subsystems is provided within the framework of the conceptual design. The system design includes both plant (algae and higher plant) and animal species as potential food sources.

  12. Challenges for Life Support Systems in Space Environments, Including Food Production

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.

    2012-01-01

    Environmental Control and Life Support Systems (ECLSS) refer to the technologies needed to sustain human life in space environments. Histor ically these technologies have focused on providing a breathable atmo sphere, clean water, food, managing wastes, and the associated monitoring capabilities. Depending on the space agency or program, ELCSS has sometimes expanded to include other aspects of managing space enviro nments, such as thermal control, radiation protection, fire detection I suppression, and habitat design. Other times, testing and providing these latter technologies have been associated with the vehicle engi neering. The choice of ECLSS technologies is typically driven by the mission profile and their associated costs and reliabilities. These co sts are largely defined by the mass, volume, power, and crew time req uirements. For missions close to Earth, e.g., low-Earth orbit flights, stowage and resupply of food, some 0 2, and some water are often the most cost effective option. But as missions venture further into spa ce, e.g., transit missions to Mars or asteroids, or surface missions to Moon or Mars, the supply line economics change and the need to clos e the loop on life support consumables increases. These are often ref erred to as closed loop or regenerative life support systems. Regardless of the technologies, the systems must be capable of operating in a space environment, which could include micro to fractional g setting s, high radiation levels, and tightly closed atmospheres, including perhaps reduced cabin pressures. Food production using photosynthetic o rganisms such as plants by nature also provides atmospheric regenerat ion (e.g., CO2 removal and reduction, and 0 2 production), yet to date such "bioregenerative" technologies have not been used due largely t o the high power requirements for lighting. A likely first step in te sting bioregenerative capabilities will involve production of small a mounts of fresh foods to supplement to crew's diet. As humans venture further into space, regenerative life support technologies will becom e more important, and gathering accurate data on their performance an d reliabilities will require long lead times. As we learn more about sustainable living in space, we almost certainly learn more about sust ainable living on Earth.

  13. Risk Management for Human Support Technology Development

    NASA Technical Reports Server (NTRS)

    jones, Harry

    2005-01-01

    NASA requires continuous risk management for all programs and projects. The risk management process identifies risks, analyzes their impact, prioritizes them, develops and carries out plans to mitigate or accept them, tracks risks and mitigation plans, and communicates and documents risk information. Project risk management is driven by the project goal and is performed by the entire team. Risk management begins early in the formulation phase with initial risk identification and development of a risk management plan and continues throughout the project life cycle. This paper describes the risk management approach that is suggested for use in NASA's Human Support Technology Development. The first step in risk management is to identify the detailed technical and programmatic risks specific to a project. Each individual risk should be described in detail. The identified risks are summarized in a complete risk list. Risk analysis provides estimates of the likelihood and the qualitative impact of a risk. The likelihood and impact of the risk are used to define its priority location in the risk matrix. The approaches for responding to risk are either to mitigate it by eliminating or reducing the effect or likelihood of a risk, to accept it with a documented rationale and contingency plan, or to research or monitor the risk, The Human Support Technology Development program includes many projects with independently achievable goals. Each project must do independent risk management, considering all its risks together and trading them against performance, budget, and schedule. Since the program can succeed even if some projects fail, the program risk has a complex dependence on the individual project risks.

  14. Flight Deck Display Technologies for 4DT and Surface Equivalent Visual Operations

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Jones, Denis R.; Shelton, Kevin J.; Arthur, Jarvis J., III; Bailey, Randall E.; Allamandola, Angela S.; Foyle, David C.; Hooey, Becky L.

    2009-01-01

    NASA research is focused on flight deck display technologies that may significantly enhance situation awareness, enable new operating concepts, and reduce the potential for incidents/accidents for terminal area and surface operations. The display technologies include surface map, head-up, and head-worn displays; 4DT guidance algorithms; synthetic and enhanced vision technologies; and terminal maneuvering area traffic conflict detection and alerting systems. This work is critical to ensure that the flight deck interface technologies and the role of the human participants can support the full realization of the Next Generation Air Transportation System (NextGen) and its novel operating concepts.

  15. Advanced Technologies for Robotic Exploration Leading to Human Exploration: Results from the SpaceOps 2015 Workshop

    NASA Technical Reports Server (NTRS)

    Lupisella, Mark L.; Mueller, Thomas

    2016-01-01

    This paper will provide a summary and analysis of the SpaceOps 2015 Workshop all-day session on "Advanced Technologies for Robotic Exploration, Leading to Human Exploration", held at Fucino Space Center, Italy on June 12th, 2015. The session was primarily intended to explore how robotic missions and robotics technologies more generally can help lead to human exploration missions. The session included a wide range of presentations that were roughly grouped into (1) broader background, conceptual, and high-level operations concepts presentations such as the International Space Exploration Coordination Group Roadmap, followed by (2) more detailed narrower presentations such as rover autonomy and communications. The broader presentations helped to provide context and specific technical hooks, and helped lay a foundation for the narrower presentations on more specific challenges and technologies, as well as for the discussion that followed. The discussion that followed the presentations touched on key questions, themes, actions and potential international collaboration opportunities. Some of the themes that were touched on were (1) multi-agent systems, (2) decentralized command and control, (3) autonomy, (4) low-latency teleoperations, (5) science operations, (6) communications, (7) technology pull vs. technology push, and (8) the roles and challenges of operations in early human architecture and mission concept formulation. A number of potential action items resulted from the workshop session, including: (1) using CCSDS as a further collaboration mechanism for human mission operations, (2) making further contact with subject matter experts, (3) initiating informal collaborative efforts to allow for rapid and efficient implementation, and (4) exploring how SpaceOps can support collaboration and information exchange with human exploration efforts. This paper will summarize the session and provide an overview of the above subjects as they emerged from the SpaceOps 2015 Workshop session.

  16. Systems Analysis of In-Space Manufacturing Applications for the International Space Station and the Evolvable Mars Campaign

    NASA Technical Reports Server (NTRS)

    Owens, Andrew C.; De Weck, Olivier L.

    2016-01-01

    Maintenance logistics support is a significant challenge for extended human operations in space, especially for missions beyond Low Earth Orbit (LEO). For missions to Mars (such as NASA's Evolvable Mars Campaign (EMC)), where timely resupply or abort in the event of emergency will not be possible, maintenance logistics mass is directly linked to the Probability of Loss of Crew (P(LoC)), and the cost of driving down risk is an exponential increase in mass requirements. The logistics support strategies that have maintained human operations in LEO will not be effective for these deep space missions. In-Space Manufacturing (ISM) is a promising technological solution that could reduce logistics requirements, mitigate risks, and augment operational capabilities, enabling Earth- independent human spaceflight. This paper reviews maintenance logistics challenges for spaceflight operations in LEO and beyond, and presents a summary of selected results from a systems analysis of potential ISM applications for the ISS and EMC. A quantitative modeling framework and sample assessment of maintenance logistics and risk reduction potential of this new technology is also presented and discussed.

  17. Partnering to Change the Way NASA and the Nation Communicate Through Space

    NASA Technical Reports Server (NTRS)

    Vrotsos, Pete A.; Budinger, James M.; Bhasin, Kul; Ponchak, Denise S.

    2000-01-01

    For at least 20 years, the Space Communications Program at NASA Glenn Research Center (GRC) has focused on enhancing the capability and competitiveness of the U.S. commercial communications satellite industry. GRC has partnered with the industry on the development of enabling technologies to help maintain U.S. preeminence in the worldwide communications satellite marketplace. The Advanced Communications Technology Satellite (ACTS) has been the most significant space communications technology endeavor ever performed at GRC, and the centerpiece of GRC's communication technology program for the last decade. Under new sponsorship from NASA's Human Exploration and Development of Space Enterprise, GRC has transitioned the focus and direction of its program, from commercial relevance to NASA mission relevance. Instead of one major experimental spacecraft and one headquarters sponsor, GRC is now exploring opportunities for all of NASA's Enterprises to benefit from advances in space communications technologies, and accomplish their missions through the use of existing and emerging commercially provided services. A growing vision within NASA is to leverage the best commercial standards, technologies, and services as a starting point to satisfy NASA's unique needs. GRC's heritage of industry partnerships is closely aligned with this vision. NASA intends to leverage the explosive growth of the telecommunications industry through its impressive technology advancements and potential new commercial satellite systems. GRC's partnerships with the industry, academia, and other government agencies will directly support all four NASA's future mission needs, while advancing the state of the art of commercial practice. GRC now conducts applied research and develops and demonstrates advanced communications and network technologies in support of all four NASA Enterprises (Human Exploration and Development of Space, Space Science, Earth Science, and Aero-Space Technologies).

  18. Monitoring and telemedicine support in remote environments and in human space flight.

    PubMed

    Cermack, M

    2006-07-01

    The common features of remote environments are geographical separation, logistic problems with health care delivery and with patient retrieval, extreme natural conditions, artificial environment, or combination of all. The exposure can have adverse effects on patients' physiology, on care providers' performance and on hardware functionality. The time to definite treatment may vary between hours as in orbital space flight, days for remote exploratory camp, weeks for polar bases and months to years for interplanetary exploration. The generic system architecture, used in any telematic support, consists of data acquisition, data-processing and storage, telecommunications links, decision-making facilities and the means of command execution. At the present level of technology, a simple data transfer and two-way voice communication could be established from any place on the earth, but the current use of mobile communication technologies for telemedicine applications is still low, either for logistic, economic and political reasons, or because of limited knowledge about the available technology and procedures. Criteria for selection of portable telemedicine terminals in remote terrestrial places, characteristics of currently available mobile telecommunication systems, and the concept of integrated monitoring of physiological and environmental parameters are mentioned in the first section of this paper. The second part describes some aspects of emergency medical support in human orbital spaceflight, the limits of telemedicine support in near-Earth space environment and mentions some open issues related to long-term exploratory missions beyond the low Earth orbit.

  19. Performance of Off-the-Shelf Technologies for Spacecraft Cabin Atmospheric Major Constituent Monitoring

    NASA Technical Reports Server (NTRS)

    Tatara, J. D.; Perry, J. L.

    2004-01-01

    Monitoring the atmospheric composition of a crewed spacecraft cabin is central to successfully expanding the breadth and depth of first-hand human knowledge and understanding of space. Highly reliable technologies must be identified and developed to monitor atmospheric composition. This will enable crewed space missions that last weeks, months, and eventually years. Atmospheric composition monitoring is a primary component of any environmental control and life support system. Instrumentation employed to monitor atmospheric composition must be inexpensive, simple, and lightweight and provide robust performance. Such a system will ensure an environment that promotes human safety and health, and that the environment can be maintained with a high degree of confidence. Key to this confidence is the capability for any technology to operate autonomously, with little intervention from the crew or mission control personnel. A study has been conducted using technologies that, with further development, may reach these goals.

  20. Step 1: Human System Integration (HSI) FY05 Pilot-Technology Interface Requirements for Contingency Management

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This document involves definition of technology interface requirements for Contingency Management. This was performed through a review of Contingency Management-related, HSI requirements documents, standards, and recommended practices. Technology concepts in use by the Contingency Management Work Package were considered. Beginning with HSI high-level functional requirements for Contingency Management, and Contingency Management technology elements, HSI requirements for the interface to the pilot were identified. Results of the analysis describe (1) the information required by the pilot to have knowledge of system failures and associated contingency procedures, and (2) the control capability needed by the pilot to obtain system status and procedure information. Fundamentally, these requirements provide the candidate Contingency Management technology concepts with the necessary human-related elements to make them compatible with human capabilities and limitations. The results of the analysis describe how Contingency Management operations and functions should interface with the pilot to provide the necessary Contingency Management functionality to the UA-pilot system. Requirements and guidelines for Contingency Management are partitioned into four categories: (1) Health and Status and (2) Contingency Management. Each requirement is stated and is supported with a rationale and associated reference(s).

  1. Publications of the NASA Controlled Ecological Life Support System (CELSS) Program, 1979-1989

    NASA Technical Reports Server (NTRS)

    Wallace, Janice S.; Powers, Janet V.

    1990-01-01

    Publications of research sponsored by the NASA Controlled Ecological Life Support System (CELSS) Program from 1979 to 1989 are listed. The CELSS Program encompasses research and technology with the goal of developing an autonomous bioregenerative life support system that continually recycles the solid, liquid, and gaseous materials essential for human life. The bibliography is divided into four major subject areas: food production, nutritional requirements, waste management, and systems management and control.

  2. Antenna Technology and other Radio Frequency (RF) Communications Activities at the Glenn Research Center in Support of NASA's Exploration Vision

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2007-01-01

    NASA s Vision for Space Exploration outlines a very ambitious program for the next several decades of the Space Agency endeavors. Ahead is the completion of the International Space Station (ISS); safely flight the shuttle (STS) until 2010; develop and fly the Crew Exploration Vehicle (Orion) by no later than 2014; return to the moon by no later than 2020; extend human presence across the solar system and beyond; implement a sustainable and affordable human and robotic program; develop supporting innovative technologies, knowledge and infrastructure; and promote international and commercial participation in exploration. To achieve these goals, a series of enabling technologies must be developed or matured in a timely manner. Some of these technologies are: spacecraft RF technology (e.g., high power sources and large antennas which using surface receive arrays can get up to 1 Gbps from Mars), uplink arraying (reduce reliance on large ground-based antennas and high operation costs; single point of failure; enable greater data-rates or greater effective distance; scalable, evolvable, flexible scheduling), software define radio (i.e., reconfigurable, flexible interoperability allows for in flight updates open architecture; reduces mass, power, volume), and optical communications (high capacity communications with low mass/power required; significantly increases data rates for deep space). This presentation will discuss some of the work being performed at the NASA Glenn Research Center, Cleveland, Ohio, in antenna technology as well as other on-going RF communications efforts.

  3. Non-Equilibrium Plasma Applications for Water Purification Supporting Human Spaceflight and Terrestrial Point-of-Use

    NASA Technical Reports Server (NTRS)

    Blankson, Isaiah M.; Foster, John E.; Adamovsky, Grigory

    2016-01-01

    2016 NASA Glenn Technology Day Panel Presentation on May 24, 2016. The panel description is: Environmental Impact: NASA Glenn Water Capabilities Both global water scarcity and water treatment concerns are two of the most predominant environmental issues of our time. Glenn researchers share insights on a snow sensing technique, hyper spectral imaging of Lake Erie algal blooms, and a discussion on non-equilibrium plasma applications for water purification supporting human spaceflight and terrestrial point-of-use. The panel moderator will be Bryan Stubbs, Executive Director of the Cleveland Water Alliance.

  4. Beyond DNA Sequencing in Space: Current and Future Omics Capabilities of the Biomolecule Sequencer Payload

    NASA Technical Reports Server (NTRS)

    Wallace, Sarah

    2017-01-01

    Why do we need a DNA sequencer to support the human exploration of space? (A) Operational environmental monitoring; (1) Identification of contaminating microbes, (2) Infectious disease diagnosis, (3) Reduce down mass (sample return for environmental monitoring, crew health, etc.). (B) Research; (1) Human, (2) Animal, (3) Microbes/Cell lines, (4) Plant. (C) Med Ops; (1) Response to countermeasures, (2) Radiation, (3) Real-time analysis can influence medical intervention. (C) Support astrobiology science investigations; (1) Technology superiorly suited to in situ nucleic acid-based life detection, (2) Functional testing for integration into robotics for extraplanetary exploration mission.

  5. Technology Of Controlled-Environment Agriculture

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Bates, Maynard E.

    1995-01-01

    Report discusses controlled-environment agriculture (CEA) for commercial production of organisms, whether plants or animals. Practiced in greenhouses to produce food on nonarable lands. Describes conceptual regenerative system that incorporates biological, physical, and chemical processes to support humans in extraterrestrial environments.

  6. Human-Centered Technology for Maintainability: Workshop Proceedings

    DTIC Science & Technology

    1991-06-01

    INT E RNAL) POPLITEAL STATION-ANKLE JOINT-- -* A (LOCATOR) AFTANKLE .... -. REANKLE ANKLE JOINT HT., STANDING---... - , FOREFOOT AFTFOOT...to strike down missile containers in the weapons elevator nwd stack them within the confines of the magazine. 259 Mechanized support equipment models

  7. Youth Alienation: Implications for Administrators.

    ERIC Educational Resources Information Center

    Wynne, Edward A.

    1989-01-01

    Charts modern phenomena (technology, urbanization, affluence, large institutions, mass media, and others) that affect human interactions and teach certain attitudes. Provides supporting statistics to show increases in youth suicide, illegitimate births, delinquency, substance abuse, and homicide. Outlines desirable school changes producing modest…

  8. The Residential Conference Center as a Learning Sanctuary.

    ERIC Educational Resources Information Center

    Simpson, Edward G., Jr.

    1990-01-01

    Adult learning in residential conference centers is enhanced when a philosophical basis underlies their design. Six integrated elements for the development of learning sanctuaries are historical context, educational program, physical environment, support services, technology, and human resources. (SK)

  9. National Aeronautics and Space Administration Biological and Physical Research Enterprise Strategy

    NASA Technical Reports Server (NTRS)

    2003-01-01

    As the 21st century begins, NASA's new Vision and Mission focuses the Agency's Enterprises toward exploration and discovery.The Biological and Physical Research Enterprise has a unique and enabling role in support of the Agency's Vision and Mission. Our strategic research seeks innovations and solutions to enable the extension of life into deep space safely and productively. Our fundamental research, as well as our research partnerships with industry and other agencies, allow new knowledge and tech- nologies to bring improvements to life on Earth. Our interdisciplinary research in the unique laboratory of microgravity addresses opportunities and challenges on our home planet as well as in space environments. The Enterprise maintains a key role in encouraging and engaging the next generation of explorers from primary school through the grad- uate level via our direct student participation in space research.The Biological and Physical Research Enterprise encompasses three themes. The biological sciences research theme investigates ways to support a safe human presence in space. This theme addresses the definition and control of physiological and psychological risks from the space environment, including radiation,reduced gravity, and isolation. The biological sciences research theme is also responsible for the develop- ment of human support systems technology as well as fundamental biological research spanning topics from genomics to ecologies. The physical sciences research theme supports research that takes advantage of the space environment to expand our understanding of the fundamental laws of nature. This theme also supports applied physical sciences research to improve safety and performance of humans in space. The research partnerships and flight support theme establishes policies and allocates space resources to encourage and develop entrepreneurial partners access to space research.Working together across research disciplines, the Biological and Physical Research Enterprise is performing vital research and technology development to extend the reach of human space flight.

  10. Design of admission medication reconciliation technology: a human factors approach to requirements and prototyping.

    PubMed

    Lesselroth, Blake J; Adams, Kathleen; Tallett, Stephanie; Wood, Scott D; Keeling, Amy; Cheng, Karen; Church, Victoria L; Felder, Robert; Tran, Hanna

    2013-01-01

    Our objectives were to (1) develop an in-depth understanding of the workflow and information flow in medication reconciliation, and (2) design medication reconciliation support technology using a combination of rapid-cycle prototyping and human-centered design. Although medication reconciliation is a national patient safety goal, limitations both of physical environment and in workflow can make it challenging to implement durable systems. We used several human factors techniques to gather requirements and develop a new process to collect a medication history at hospital admission. We completed an ethnography and time and motion analysis of pharmacists in order to illustrate the processes used to reconcile medications. We then used the requirements to design prototype multimedia software for collecting a bedside medication history. We observed how pharmacists incorporated the technology into their physical environment and documented usability issues. Admissions occurred in three phases: (1) list compilation, (2) order processing, and (3) team coordination. Current medication reconciliation processes at the hospital average 19 minutes to complete and do not include a bedside interview. Use of our technology during a bedside interview required an average of 29 minutes. The software represents a viable proof-of-concept to automate parts of history collection and enhance patient communication. However, we discovered several usability issues that require attention. We designed a patient-centered technology to enhance how clinicians collect a patient's medication history. By using multiple human factors methods, our research team identified system themes and design constraints that influence the quality of the medication reconciliation process and implementation effectiveness of new technology. Evidence-based design, human factors, patient-centered care, safety, technology.

  11. Diabetes and technology in 2030: a utopian or dystopian future?

    PubMed

    Kerr, D; Axelrod, C; Hoppe, C; Klonoff, D C

    2018-04-01

    The ability of an individual living with diabetes to have human-to-human contact with their healthcare provider is not keeping pace with the number of people developing diabetes. From a futurist perspective, however, this dichotomy of diabetes care represents an opportunity for digital healthcare. The focus of technological innovation is unlikely to be the replacement of the multidisciplinary diabetes team but rather the provision of meaningful individual and family support between clinic visits and, on a larger scale, the facilitation of population health management for diabetes. We can also expect to see new therapies, including implantable drug delivery systems, automated closed-loop systems and miniaturized non-invasive glucose monitoring systems. New digital health technologies will create a 'digital diabetes ecosystem' to enhance rather than devolve care from humans. Concerns related to data privacy and ownership will inevitably rise, thus a future for diabetes care relying heavily on technology is not inevitably utopian. Nevertheless, revolutions in the development of novel sensors, accumulation of 'big data', and use of artificial intelligence will provide exciting opportunities for preventing, monitoring and treating diabetes in the near future. © 2018 Diabetes UK.

  12. Technology Roadmap Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donald D Dudenhoeffer; Burce P Hallbert

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functionalmore » obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.« less

  13. Detailed Modeling of Distillation Technologies for Closed-Loop Water Recovery Systems

    NASA Technical Reports Server (NTRS)

    Allada, Rama Kumar; Lange, Kevin E.; Anderson, Molly S.

    2011-01-01

    Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA?s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents efforts to develop chemical process simulations for three technologies: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system and the Wiped-Film Rotating Disk (WFRD) using the Aspen Custom Modeler and Aspen Plus process simulation tools. The paper discusses system design, modeling details, and modeling results for each technology and presents some comparisons between the model results and recent test data. Following these initial comparisons, some general conclusions and forward work are discussed.

  14. Health information technology: initial set of standards, implementation specifications, and certification criteria for electronic health record technology. Interim final rule.

    PubMed

    2010-01-13

    The Department of Health and Human Services (HHS) is issuing this interim final rule with a request for comments to adopt an initial set of standards, implementation specifications, and certification criteria, as required by section 3004(b)(1) of the Public Health Service Act. This interim final rule represents the first step in an incremental approach to adopting standards, implementation specifications, and certification criteria to enhance the interoperability, functionality, utility, and security of health information technology and to support its meaningful use. The certification criteria adopted in this initial set establish the capabilities and related standards that certified electronic health record (EHR) technology will need to include in order to, at a minimum, support the achievement of the proposed meaningful use Stage 1 (beginning in 2011) by eligible professionals and eligible hospitals under the Medicare and Medicaid EHR Incentive Programs.

  15. Strategic considerations for support of humans in space and Moon/Mars exploration missions. Life sciences research and technology programs, volume 1

    NASA Technical Reports Server (NTRS)

    1992-01-01

    During the next several decades, our nation will embark on human exploration in space. In the microgravity environment we will learn how human physiology responds to the absence of gravity and what procedures and systems are required to maintain health and performance. As the human experience is extended for longer periods in low Earth orbit, we will also be exploring space robotically. Robotic precursor missions, to learn more about the lunar and Martian environments will be conducted so that we can send crews to these planetary surfaces to further explore and conduct scientific investigations that include examining the very processes of life itself. Human exploration in space requires the ability to maintain crew health and performance in spacecraft, during extravehicular activities, on planetary surfaces, and upon return to Earth. This goal can only be achieved through focused research and technological developments. This report provides the basis for setting research priorities and making decisions to enable human exploration missions.

  16. Assistive technology use and human rights enjoyment: a cross-sectional study in Bangladesh.

    PubMed

    Borg, Johan; Larsson, Stig; Ostergren, Per-Olof; Rahman, Asm Atiqur; Bari, Nazmul; Khan, Ahm Noman

    2012-09-19

    About half a billion people with disabilities in developing countries have limited access to assistive technology. The Convention on the Rights of persons with Disabilities requires governments to take measures to ensure provision of such technologies. To guide implementation of these measures there is a need for understanding health outcomes from a human rights perspective. The objective of this study was therefore to explore the relation between assistive technology use and enjoyment of human rights in a low-income country. Data was collected in eight districts of Bangladesh through interviews of people with hearing impairments using and not using hearings aids, and people with ambulatory impairments using and not using manual wheelchairs (N = 583). Using logistic regression, self-reported outcomes on standard of living, health, education, work, receiving information and movement were analyzed. The adjusted likelihood of reporting greater enjoyment of human rights was significantly higher among people using hearing aids compared to non-users for all outcomes except working status. Compared to non-users, users of wheelchairs reported a significantly higher adjusted likelihood of good ambulatory performance and a significantly lower adjusted likelihood of reporting a positive working status. Further analyses indicated that physical accessibility to working places and duration of wheelchair use had a statistically significant impact on the likelihood of reporting positive work outcomes. The findings support the notion that assistive technology use increases the likelihood of human rights enjoyment, particularly hearing aid use. Physical accessibility should always be addressed in wheelchair provision.

  17. NASA's telemedicine testbeds: Commercial benefit

    NASA Astrophysics Data System (ADS)

    Doarn, Charles R.; Whitten, Raymond

    1998-01-01

    The National Aeronautics and Space Administration (NASA) has been developing and applying telemedicine to support space flight since the Agency's beginning. Telemetry of physiological parameters from spacecraft to ground controllers is critical to assess the health status of humans in extreme and remote environments. Requisite systems to support medical care and maintain readiness will evolve as mission duration and complexity increase. Developing appropriate protocols and procedures to support multinational, multicultural missions is a key objective of this activity. NASA has created an Agency-wide strategic plan that focuses on the development and integration of technology into the health care delivery systems for space flight to meet these challenges. In order to evaluate technology and systems that can enhance inflight medical care and medical education, NASA has established and conducted several testbeds. Additionally, in June of 1997, NASA established a Commercial Space Center (CSC) for Medical Informatics and Technology Applications at Yale University School of Medicine. These testbeds and the CSC foster the leveraging of technology and resources between government, academia and industry to enhance health care. This commercial endeavor will influence both the delivery of health care in space and on the ground. To date, NASA's activities in telemedicine have provided new ideas in the application of telecommunications and information systems to health care. NASA's Spacebridge to Russia, an Internet-based telemedicine testbed, is one example of how telemedicine and medical education can be conducted using the Internet and its associated tools. Other NASA activities, including the development of a portable telemedicine workstation, which has been demonstrated on the Crow Indian Reservation and in the Texas Prison System, show promise in serving as significant adjuncts to the delivery of health care. As NASA continues to meet the challenges of space flight, the technologies adapted to support humans in extreme and remote environments, and the resultant protocols and procedures will further evolve the commercial practice of medicine and thereby enhance life on Earth.

  18. Independent Review of Aviation Technology and Research Information Analysis System (ATRIAS) Database

    DTIC Science & Technology

    1994-02-01

    capability to support the Federal Aviation Administration (FAA)/ Aviation Security Research and Development Service’s (ACA) Explosive Detection...Systems (EDS) programs and Aviation Security Human Factors Program (ASHFP). This review was conducted by an independent consultant selected by the FAA...sections 2 and 3 of the report. Overall, ATRIAS was found to address many technology application areas relevant to the FAA’s aviation security programs

  19. UniDA: Uniform Device Access Framework for Human Interaction Environments

    PubMed Central

    Varela, Gervasio; Paz-Lopez, Alejandro; Becerra, Jose Antonio; Vazquez-Rodriguez, Santiago; Duro, Richard José

    2011-01-01

    Human interaction environments (HIE) must be understood as any place where people carry out their daily life, including their work, family life, leisure and social life, interacting with technology to enhance or facilitate the experience. The integration of technology in these environments has been achieved in a disorderly and incompatible way, with devices operating in isolated islands with artificial edges delimited by the manufacturers. In this paper we are presenting the UniDA framework, an integral solution for the development of systems that require the integration and interoperation of devices and technologies in HIEs. It provides developers and installers with a uniform conceptual framework capable of modelling an HIE, together with a set of libraries, tools and devices to build distributed instrumentation networks with support for transparent integration of other technologies. A series of use case examples and a comparison to many of the existing technologies in the field has been included in order to show the benefits of using UniDA. PMID:22163700

  20. UniDA: uniform device access framework for human interaction environments.

    PubMed

    Varela, Gervasio; Paz-Lopez, Alejandro; Becerra, Jose Antonio; Vazquez-Rodriguez, Santiago; Duro, Richard José

    2011-01-01

    Human interaction environments (HIE) must be understood as any place where people carry out their daily life, including their work, family life, leisure and social life, interacting with technology to enhance or facilitate the experience. The integration of technology in these environments has been achieved in a disorderly and incompatible way, with devices operating in isolated islands with artificial edges delimited by the manufacturers. In this paper we are presenting the UniDA framework, an integral solution for the development of systems that require the integration and interoperation of devices and technologies in HIEs. It provides developers and installers with a uniform conceptual framework capable of modelling an HIE, together with a set of libraries, tools and devices to build distributed instrumentation networks with support for transparent integration of other technologies. A series of use case examples and a comparison to many of the existing technologies in the field has been included in order to show the benefits of using UniDA.

  1. The implementation of the Human Exploration Demonstration Project (HEDP), a systems technology testbed

    NASA Technical Reports Server (NTRS)

    Rosen, Robert; Korsmeyer, David J.

    1993-01-01

    The Human Exploration Demonstration Project (HEDP) is an ongoing task at the NASA's Ames Research Center to address the advanced technology requirements necessary to implement an integrated working and living environment for a planetary surface habitat. The integrated environment consists of life support systems, physiological monitoring of project crew, a virtual environment work station, and centralized data acquisition and habitat systems health monitoring. The HEDP is an integrated technology demonstrator, as well as an initial operational testbed. There are several robotic systems operational in a simulated planetary landscape external to the habitat environment, to provide representative work loads for the crew. This paper describes the evolution of the HEDP from initial concept to operational project; the status of the HEDP after two years; the final facilities composing the HEDP; the project's role as a NASA Ames Research Center systems technology testbed; and the interim demonstration scenarios that have been run to feature the developing technologies in 1993.

  2. The NASA light-emitting diode medical program-progress in space flight and terrestrial applications

    NASA Astrophysics Data System (ADS)

    Whelan, Harry T.; Houle, John M.; Whelan, Noel T.; Donohoe, Deborah L.; Cwiklinski, Joan; Schmidt, Meic H.; Gould, Lisa; Larson, David L.; Meyer, Glenn A.; Cevenini, Vita; Stinson, Helen

    2000-01-01

    This work is supported and managed through the NASA Marshall Space Flight Center-SBIR Program. Studies on cells exposed to microgravity and hypergravity indicate that human cells need gravity to stimulate cell growth. As the gravitational force increases or decreases, the cell function responds in a linear fashion. This poses significant health risks for astronauts in long termspace flight. LED-technology developed for NASA plant growth experiments in space shows promise for delivering light deep into tissues of the body to promote wound healing and human tissue growth. This LED-technology is also biologically optimal for photodynamic therapy of cancer. .

  3. Explore with Us

    NASA Technical Reports Server (NTRS)

    Morales, Lester

    2012-01-01

    The fundamental goal of this vision is to advance U.S. scientific, security and economic interest through a robust space exploration program. Implement a sustained and affordable human and robotic program to explore the solar system and beyond. Extend human presence across the solar system, starting with a human return to the Moon by the year 2020, in preparation for human exploration of Mars and other destinations. Develop the innovative technologies, knowledge, and infrastructures both to explore and to support decisions about the destinations for human exploration. Promote international and commercial participation in exploration to further U.S. scientific, security, and economic interests.

  4. Minimal support technology and in situ resource utilization for risk management of planetary spaceflight missions

    NASA Astrophysics Data System (ADS)

    Murphy, K. L.; Rygalov, V. Ye.; Johnson, S. B.

    2009-04-01

    All artificial systems and components in space degrade at higher rates than on Earth, depending in part on environmental conditions, design approach, assembly technologies, and the materials used. This degradation involves not only the hardware and software systems but the humans that interact with those systems. All technological functions and systems can be expressed through functional dependence: [Function]˜[ERU]∗[RUIS]∗[ISR]/[DR];where [ERU]efficiency (rate) of environmental resource utilization[RUIS]resource utilization infrastructure[ISR]in situ resources[DR]degradation rateThe limited resources of spaceflight and open space for autonomous missions require a high reliability (maximum possible, approaching 100%) for system functioning and operation, and must minimize the rate of any system degradation. To date, only a continuous human presence with a system in the spaceflight environment can absolutely mitigate those degradations. This mitigation is based on environmental amelioration for both the technology systems, as repair of data and spare parts, and the humans, as exercise and psychological support. Such maintenance now requires huge infrastructures, including research and development complexes and management agencies, which currently cannot move beyond the Earth. When considering what is required to move manned spaceflight from near Earth stations to remote locations such as Mars, what are the minimal technologies and infrastructures necessary for autonomous restoration of a degrading system in space? In all of the known system factors of a mission to Mars that reduce the mass load, increase the reliability, and reduce the mission’s overall risk, the current common denominator is the use of undeveloped or untested technologies. None of the technologies required to significantly reduce the risk for critical systems are currently available at acceptable readiness levels. Long term interplanetary missions require that space programs produce a craft with all systems integrated so that they are of the highest reliability. Right now, with current technologies, we cannot guarantee this reliability for a crew of six for 1000 days to Mars and back. Investigation of the technologies to answer this need and a focus of resources and research on their advancement would significantly improve chances for a safe and successful mission.

  5. Health information technology needs help from primary care researchers.

    PubMed

    Krist, Alex H; Green, Lee A; Phillips, Robert L; Beasley, John W; DeVoe, Jennifer E; Klinkman, Michael S; Hughes, John; Puro, Jon; Fox, Chester H; Burdick, Tim

    2015-01-01

    While health information technology (HIT) efforts are beginning to yield measurable clinical benefits, more is needed to meet the needs of patients and clinicians. Primary care researchers are uniquely positioned to inform the evidence-based design and use of technology. Research strategies to ensure success include engaging patient and clinician stakeholders, working with existing practice-based research networks, and using established methods from other fields such as human factors engineering and implementation science. Policies are needed to help support primary care researchers in evaluating and implementing HIT into everyday practice, including expanded research funding, strengthened partnerships with vendors, open access to information systems, and support for the Primary Care Extension Program. Through these efforts, the goal of improved outcomes through HIT can be achieved. © Copyright 2015 by the American Board of Family Medicine.

  6. Warfighter decision making performance analysis as an investment priority driver

    NASA Astrophysics Data System (ADS)

    Thornley, David J.; Dean, David F.; Kirk, James C.

    2010-04-01

    Estimating the relative value of alternative tactics, techniques and procedures (TTP) and information systems requires measures of the costs and benefits of each, and methods for combining and comparing those measures. The NATO Code of Best Practice for Command and Control Assessment explains that decision making quality would ideally be best assessed on outcomes. Lessons learned in practice can be assessed statistically to support this, but experimentation with alternate measures in live conflict is undesirable. To this end, the development of practical experimentation to parameterize effective constructive simulation and analytic modelling for system utility prediction is desirable. The Land Battlespace Systems Department of Dstl has modeled human development of situational awareness to support constructive simulation by empirically discovering how evidence is weighed according to circumstance, personality, training and briefing. The human decision maker (DM) provides the backbone of the information processing activity associated with military engagements because of inherent uncertainty associated with combat operations. To develop methods for representing the process in order to assess equipment and non-technological interventions such as training and TTPs we are developing componentized or modularized timed analytic stochastic model components and instruments as part of a framework to support quantitative assessment of intelligence production and consumption methods in a human decision maker-centric mission space. In this paper, we formulate an abstraction of the human intelligence fusion process from the Defence Science and Technology Laboratory's (Dstl's) INCIDER model to include in our framework, and synthesize relevant cost and benefit characteristics.

  7. A Pedagogy of Abundance or a Pedagogy to Support Human Beings? Participant Support on Massive Open Online Courses

    ERIC Educational Resources Information Center

    Kop, Rita; Fournier, Helene; Mak, John Sui Fai

    2011-01-01

    This paper examines how emergent technologies could influence the design of learning environments. It will pay particular attention to the roles of educators and learners in creating networked learning experiences on massive open online courses (MOOCs). The research shows that it is possible to move from a pedagogy of abundance to a pedagogy that…

  8. Quality Assurance of Post-Graduate Education: The Case of CAPES, the Brazilian Agency for Support and Evaluation of Graduate Education

    ERIC Educational Resources Information Center

    Almeida Guimarães, Jorge; Chaves Edler de Almeida, Elenara

    2012-01-01

    The authors discuss the CAPES Foundation, the Brazilian Agency for Support and Evaluation of Graduate Education. They also present and discuss the current data and status of the Brazilian venture for developing human resources and for the formation of an active community dedicated to Science and Technology, giving a general vision of its…

  9. Human Research Program: 2012 Fiscal Year Annual Report

    NASA Technical Reports Server (NTRS)

    Effenhauser, Laura

    2012-01-01

    Crew health and performance are critical to successful human exploration beyond low Earth orbit. Risks to health and performance include physiologic effects from radiation, hypogravity, and planetary environments, as well as unique challenges in medical treatment, human factors, and support of behavioral health. The scientists and engineers of the Human Research Program (HRP) investigate and reduce the greatest risks to human health and performance, and provide essential countermeasures and technologies for human space exploration. In its seventh year of operation, the HRP continued to refine its management architecture of evidence, risks, gaps, tasks, and deliverables. Experiments continued on the International Space Station (ISS), on the ground in analog environments that have features similar to those of spaceflight, and in laboratory environments. Data from these experiments furthered the understanding of how the space environment affects the human system. These research results contributed to scientific knowledge and technology developments that address the human health and performance risks. As shown in this report, HRP has made significant progress toward developing medical care and countermeasure systems for space exploration missions which will ultimately reduce risks to crew health and performance.

  10. Human Activity Recognition Supported on Indoor Localization: A Systematic Review.

    PubMed

    Cerón, Jesús; López, Diego M

    2018-01-01

    The number of older adults is growing worldwide. This has a social and economic impact in all countries because of the increased number of older adults affected by chronic diseases, health emergencies, and disabilities, representing at the end high cost for the health system. To face this problem, the Ambient Assisted Living (AAL) domain has emerged. Its main objective is to extend the time that older adults can live independently in their homes. AAL is supported by different fields and technologies, being Human Activity Recognition (HAR), control of vital signs and location tracking the three of most interest during the last years. To perform a systematic review about Human Activity Recognition (HAR) approaches supported on Indoor Localization (IL) and vice versa, describing the methods they have used, the accuracy they have obtained and whether they have been directed towards the AAL domain or not. A systematic review of six databases was carried out (ACM, IEEE Xplore, PubMed, Science Direct and Springer). 27 papers were found. They were categorised into three groups according their approach: paper focus on 1. HAR, 2. IL, 3. HAR and IL. A detailed analysis of the following factors was performed: type of methods and technologies used for HAR, IL and data fusion, as well as the precision obtained for them. This systematic review shows that the relationship between HAR and IL has been very little studied, therefore providing insights of its potential mutual support to provide AAL solutions.

  11. Annotated Bibliography of Enabling Technologies for the Small Aircraft Transportation System

    NASA Technical Reports Server (NTRS)

    ONeil, Patrick D.; Tarry, Scott E.

    2002-01-01

    The following collection of research summaries are submitted as fulfillment of a request from NASA LaRC to conduct research into existing enabling technologies that support the development of the Small Aircraft Transportation System aircraft and accompanying airspace management infrastructure. Due to time and fiscal constraints, the included studies focus primarily on visual systems and architecture, flight control design, instrumentation and display, flight deck design considerations, Human-Machine Interface issues, and supporting augmentation technologies and software. This collation of summaries is divided in sections in an attempt to group similar technologies and systems. However, the reader is advised that many of these studies involve multiple technologies and systems that span across many categories. Because of this fact, studies are not easily categorized into single sections. In an attempt to help the reader more easily identify topics of interest, a SATS application description is provided for each summary. In addition, a list of acronyms provided at the front of the report to aid the reader.

  12. Planetary Protection Considerations for Life Support and Habitation Systems

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Hogan, John A.

    2010-01-01

    Life support systems for future human missions beyond low Earth orbit may include a combination of existing hardware components and advanced technologies. Discipline areas for technology development include atmosphere revitalization, water recovery, solid waste management, crew accommodations, food production, thermal systems, environmental monitoring, fire protection and radiation protection. Life support systems will be influenced by in situ resource utilization (ISRU), crew mobility and the degree of extravehicular activity. Planetary protection represents an additional set of requirements that technology developers have generally not considered. Planetary protection guidelines will affect the kind of operations, processes, and functions that can take place during future exploration missions, including venting and discharge of liquids and solids, ejection of wastes, use of ISRU, requirements for cabin atmospheric trace contaminant concentrations, cabin leakage and restrictions on what materials, organisms, and technologies that may be brought on missions. Compliance with planetary protection requirements may drive development of new capabilities or processes (e.g. in situ sterilization, waste containment, contaminant measurement) and limit or prohibit certain kinds of operations or processes (e.g. unfiltered venting). Ultimately, there will be an effect on mission costs, including the mission trade space. Planetary protection requirements need to be considered early in technology development programs. It is expected that planetary protection will have a major impact on technology selection for future missions.

  13. Fire Prevention, Detection and Suppression

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.

    2004-01-01

    In mid-1999, the Space and Life Sciences Directorate at Johnson Space Center was challenged to develop a new paradigm for NASA human life sciences: space medicine, space biomedical research and countermeasures, advanced human support technology. A new thrust - Bioastronautics - was formulated with a budget augmentation request. The objective are: expanded extramural community participation through the National Space Biomedical Research Institute, initiated the detailed planning and implementation of Bioastronautics, an integrated approach to ensure healthy and safe human space travel, assist in the solution of earth-based problems.

  14. Neuronal medium that supports basic synaptic functions and activity of human neurons in vitro.

    PubMed

    Bardy, Cedric; van den Hurk, Mark; Eames, Tameji; Marchand, Cynthia; Hernandez, Ruben V; Kellogg, Mariko; Gorris, Mark; Galet, Ben; Palomares, Vanessa; Brown, Joshua; Bang, Anne G; Mertens, Jerome; Böhnke, Lena; Boyer, Leah; Simon, Suzanne; Gage, Fred H

    2015-05-19

    Human cell reprogramming technologies offer access to live human neurons from patients and provide a new alternative for modeling neurological disorders in vitro. Neural electrical activity is the essence of nervous system function in vivo. Therefore, we examined neuronal activity in media widely used to culture neurons. We found that classic basal media, as well as serum, impair action potential generation and synaptic communication. To overcome this problem, we designed a new neuronal medium (BrainPhys basal + serum-free supplements) in which we adjusted the concentrations of inorganic salts, neuroactive amino acids, and energetic substrates. We then tested that this medium adequately supports neuronal activity and survival of human neurons in culture. Long-term exposure to this physiological medium also improved the proportion of neurons that were synaptically active. The medium was designed to culture human neurons but also proved adequate for rodent neurons. The improvement in BrainPhys basal medium to support neurophysiological activity is an important step toward reducing the gap between brain physiological conditions in vivo and neuronal models in vitro.

  15. Neuronal medium that supports basic synaptic functions and activity of human neurons in vitro

    PubMed Central

    Bardy, Cedric; van den Hurk, Mark; Eames, Tameji; Marchand, Cynthia; Hernandez, Ruben V.; Kellogg, Mariko; Gorris, Mark; Galet, Ben; Palomares, Vanessa; Brown, Joshua; Bang, Anne G.; Mertens, Jerome; Böhnke, Lena; Boyer, Leah; Simon, Suzanne; Gage, Fred H.

    2015-01-01

    Human cell reprogramming technologies offer access to live human neurons from patients and provide a new alternative for modeling neurological disorders in vitro. Neural electrical activity is the essence of nervous system function in vivo. Therefore, we examined neuronal activity in media widely used to culture neurons. We found that classic basal media, as well as serum, impair action potential generation and synaptic communication. To overcome this problem, we designed a new neuronal medium (BrainPhys basal + serum-free supplements) in which we adjusted the concentrations of inorganic salts, neuroactive amino acids, and energetic substrates. We then tested that this medium adequately supports neuronal activity and survival of human neurons in culture. Long-term exposure to this physiological medium also improved the proportion of neurons that were synaptically active. The medium was designed to culture human neurons but also proved adequate for rodent neurons. The improvement in BrainPhys basal medium to support neurophysiological activity is an important step toward reducing the gap between brain physiological conditions in vivo and neuronal models in vitro. PMID:25870293

  16. Artificial photosynthesis combines biology with technology for sustainable energy transformation

    NASA Astrophysics Data System (ADS)

    Moore, Thomas A.; Moore, Ana L.; Gust, Devens

    2013-03-01

    Photosynthesis supports the biosphere. Currently, human activity appropriates about one fourth of terrestrial photosynthetic net primary production (NPP) to support our GDP and nutrition. The cost to Earth systems of "our cut" of NPP is thought to be rapidly driving several Earth systems outside of bounds that were established on the geological time scale. Even with a fundamental realignment of human priorities, changing the unsustainable trajectory of the anthropocene will require reengineering photosynthesis to more efficiently meet human needs. Artificial photosynthetic systems are envisioned that can both supply renewable fuels and serve as platforms for exploring redesign strategies for photosynthesis. These strategies can be used in the nascent field of synthetic biology to make vast, much needed improvements in the biomass production efficiency of photosynthesis.

  17. Strategic Plan for the ORD National Exposure Research Laboratory (NERL)

    EPA Science Inventory

    The National Exposure Research Laboratory (NERL) has a valued reputation for supporting the Agency’s mission of protecting human health and the environment with multidisciplinary expertise that brings cutting-edge research and technology to address critical exposure questions and...

  18. Senior Cross-Functional Support -- Essential for Implementing Corrective Actions at C3RS Sites

    DOT National Transportation Integrated Search

    2012-08-01

    The Federal Railroad Administrations (FRA) Office of Railroad Policy and Development believes that, in addition to process and technology innovations, human factors-based solutions can make a significant contribution to improving safety in the rai...

  19. Kilowatt-Class Fission Power Systems for Science and Human Precursor Missions

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.; Gibson, Marc Andrew; Poston, Dave

    2013-01-01

    Nuclear power provides an enabling capability for NASA missions that might otherwise be constrained by power availability, mission duration, or operational robustness. NASA and the Department of Energy (DOE) are developing fission power technology to serve a wide range of future space uses. Advantages include lower mass, longer life, and greater mission flexibility than competing power system options. Kilowatt-class fission systems, designated "Kilopower," were conceived to address the need for systems to fill the gap above the current 100-W-class radioisotope power systems being developed for science missions and below the typical 100-k We-class reactor power systems being developed for human exploration missions. This paper reviews the current fission technology project and examines some Kilopower concepts that could be used to support future science missions or human precursors.

  20. Kilowatt-Class Fission Power Systems for Science and Human Precursor Missions

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Gibson, Marc; Poston, Dave

    2013-01-01

    Nuclear power provides an enabling capability for NASA missions that might otherwise be constrained by power availability, mission duration, or operational robustness. NASA and the Department of Energy (DOE) are developing fission power technology to serve a wide range of future space uses. Advantages include lower mass, longer life, and greater mission flexibility than competing power system options. Kilowatt-class fission systems, designated "Kilopower," were conceived to address the need for systems to fill the gap above the current 100-Wclass radioisotope power systems being developed for science missions and below the typical 100-kWe-class reactor power systems being developed for human exploration missions. This paper reviews the current fission technology project and examines some Kilopower concepts that could be used to support future science missions or human precursors.

  1. Decision Analysis Methods Used to Make Appropriate Investments in Human Exploration Capabilities and Technologies

    NASA Technical Reports Server (NTRS)

    Williams-Byrd, Julie; Arney, Dale C.; Hay, Jason; Reeves, John D.; Craig, Douglas

    2016-01-01

    NASA is transforming human spaceflight. The Agency is shifting from an exploration-based program with human activities in low Earth orbit (LEO) and targeted robotic missions in deep space to a more sustainable and integrated pioneering approach. Through pioneering, NASA seeks to address national goals to develop the capacity for people to work, learn, operate, live, and thrive safely beyond Earth for extended periods of time. However, pioneering space involves daunting technical challenges of transportation, maintaining health, and enabling crew productivity for long durations in remote, hostile, and alien environments. Prudent investments in capability and technology developments, based on mission need, are critical for enabling a campaign of human exploration missions. There are a wide variety of capabilities and technologies that could enable these missions, so it is a major challenge for NASA's Human Exploration and Operations Mission Directorate (HEOMD) to make knowledgeable portfolio decisions. It is critical for this pioneering initiative that these investment decisions are informed with a prioritization process that is robust and defensible. It is NASA's role to invest in targeted technologies and capabilities that would enable exploration missions even though specific requirements have not been identified. To inform these investments decisions, NASA's HEOMD has supported a variety of analysis activities that prioritize capabilities and technologies. These activities are often based on input from subject matter experts within the NASA community who understand the technical challenges of enabling human exploration missions. This paper will review a variety of processes and methods that NASA has used to prioritize and rank capabilities and technologies applicable to human space exploration. The paper will show the similarities in the various processes and showcase instances were customer specified priorities force modifications to the process. Specifically, this paper will describe the processes that the NASA Langley Research Center (LaRC) Technology Assessment and Integration Team (TAIT) has used for several years and how those processes have been customized to meet customer needs while staying robust and defensible. This paper will show how HEOMD uses these analyses results to assist with making informed portfolio investment decisions. The paper will also highlight which human exploration capabilities and technologies typically rank high regardless of the specific design reference mission. The paper will conclude by describing future capability and technology ranking activities that will continue o leverage subject matter experts (SME) input while also incorporating more model-based analysis.

  2. Overview: Solar Electric Propulsion Concept Designs for SEP Technology Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David; Herman, Daniel

    2014-01-01

    JPC presentation of the Concept designs for NASA Solar Electric Propulsion Technology Demonstration mission paper. Multiple Solar Electric Propulsion Technology Demonstration Missions were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kg spacecraft capable of delivering 4000 kg of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kg spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload.

  3. Operator Performance Support System (OPSS)

    NASA Technical Reports Server (NTRS)

    Conklin, Marlen Z.

    1993-01-01

    In the complex and fast reaction world of military operations, present technologies, combined with tactical situations, have flooded the operator with assorted information that he is expected to process instantly. As technologies progress, this flow of data and information have both guided and overwhelmed the operator. However, the technologies that have confounded many operators today can be used to assist him -- thus the Operator Performance Support Team. In this paper we propose an operator support station that incorporates the elements of Video and Image Databases, productivity Software, Interactive Computer Based Training, Hypertext/Hypermedia Databases, Expert Programs, and Human Factors Engineering. The Operator Performance Support System will provide the operator with an integrating on-line information/knowledge system that will guide expert or novice to correct systems operations. Although the OPSS is being developed for the Navy, the performance of the workforce in today's competitive industry is of major concern. The concepts presented in this paper which address ASW systems software design issues are also directly applicable to industry. the OPSS will propose practical applications in how to more closely align the relationships between technical knowledge and equipment operator performance.

  4. Controlled Ecological Life Support System: Regenerative Life Support Systems in Space

    NASA Technical Reports Server (NTRS)

    Macelroy, Robert D.; Smernoff, David T.

    1987-01-01

    A wide range of topics related to the extended support of humans in space are covered. Overviews of research conducted in Japan, Europe, and the U.S. are presented. The methods and technologies required to recycle materials, especially respiratory gases, within a closed system are examined. Also presented are issues related to plant and algal productivity, efficiency, and processing methods. Computer simulation of closed systems, discussions of radiation effects on systems stability, and modeling of a computer bioregenerative system are also covered.

  5. Air and Water System (AWS) Design and Technology Selection for the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Kliss, Mark

    2005-01-01

    This paper considers technology selection for the crew air and water recycling systems to be used in long duration human space exploration. The specific objectives are to identify the most probable air and water technologies for the vision for space exploration and to identify the alternate technologies that might be developed. The approach is to conduct a preliminary first cut systems engineering analysis, beginning with the Air and Water System (AWS) requirements and the system mass balance, and then define the functional architecture, review the International Space Station (ISS) technologies, and discuss alternate technologies. The life support requirements for air and water are well known. The results of the mass flow and mass balance analysis help define the system architectural concept. The AWS includes five subsystems: Oxygen Supply, Condensate Purification, Urine Purification, Hygiene Water Purification, and Clothes Wash Purification. AWS technologies have been evaluated in the life support design for ISS node 3, and in earlier space station design studies, in proposals for the upgrade or evolution of the space station, and in studies of potential lunar or Mars missions. The leading candidate technologies for the vision for space exploration are those planned for Node 3 of the ISS. The ISS life support was designed to utilize Space Station Freedom (SSF) hardware to the maximum extent possible. The SSF final technology selection process, criteria, and results are discussed. Would it be cost-effective for the vision for space exploration to develop alternate technology? This paper will examine this and other questions associated with AWS design and technology selection.

  6. [Human body meridian spatial decision support system for clinical treatment and teaching of acupuncture and moxibustion].

    PubMed

    Wu, Dehua

    2016-01-01

    The spatial position and distribution of human body meridian are expressed limitedly in the decision support system (DSS) of acupuncture and moxibustion at present, which leads to the failure to give the effective quantitative analysis on the spatial range and the difficulty for the decision-maker to provide a realistic spatial decision environment. Focusing on the limit spatial expression in DSS of acupuncture and moxibustion, it was proposed that on the basis of the geographic information system, in association of DSS technology, the design idea was developed on the human body meridian spatial DSS. With the 4-layer service-oriented architecture adopted, the data center integrated development platform was taken as the system development environment. The hierarchical organization was done for the spatial data of human body meridian via the directory tree. The structured query language (SQL) server was used to achieve the unified management of spatial data and attribute data. The technologies of architecture, configuration and plug-in development model were integrated to achieve the data inquiry, buffer analysis and program evaluation of the human body meridian spatial DSS. The research results show that the human body meridian spatial DSS could reflect realistically the spatial characteristics of the spatial position and distribution of human body meridian and met the constantly changeable demand of users. It has the powerful spatial analysis function and assists with the scientific decision in clinical treatment and teaching of acupuncture and moxibustion. It is the new attempt to the informatization research of human body meridian.

  7. THE FLUIDS AND COMBUSTION FACILITY: ENABLING THE EXPLORATION OF SPACE

    NASA Technical Reports Server (NTRS)

    Weiland, Karen J.; Gati, Frank G.; Hill, Myron E.; OMalley, Terence; Zurawski, Robert L.

    2005-01-01

    The Fluids and Combustion Facility (FCF) is an International Space Station facility designed to support physical and biological research as well as technology experiments in space. The FCF consists of two racks called the Combustion Integrated Rack (CIR) and the Fluids Integrated Rack (FIR). The capabilities of the CIR and the FIR and plans for their utilization will support the President s vision for space exploration. The CIR will accommodate physical research and technology experiments that address needs in the areas of spacecraft fire prevention, detection and suppression, incineration of solid wastes, and power generation. Initial experiments will provide data to support design decisions for exploration spacecraft. The CIR provides a large sealed chamber in a near-weightless environment. The chamber supports many simulated atmospheres including lunar or Martian environments. The FIR will accommodate experiments that address needs for advanced life support, power, propulsion, and spacecraft thermal control systems. The FIR can also serve as a platform for experiments that address human health and performance, medical technologies, and biological sciences. The FIR provides a large volume for payload hardware, reconfigurable diagnostics, customizable software, active rack-level vibration isolation, and data acquisition and management in a nearly uniform temperature environment.

  8. The Fluids and Combustion Facility: Enabling the Exploration of Space

    NASA Technical Reports Server (NTRS)

    Weiland, Karen J.; Gati, Frank G.; Hill, Myron E.; O'Malley Terence F.; Zurawski, Robert L.

    2005-01-01

    The Fluids and Combustion Facility (FCF) is an International Space Station facility designed to support physical and biological research as well as technology experiments in space. The FCF consists of two racks called the Combustion Integrated Rack (CIR) and the Fluids Integrated Rack (FIR). The capabilities of the CIR and the FIR and plans for their utilization will support the President's vision for space exploration. The CIR will accommodate physical research and technology experiments that address needs in the areas of spacecraft fire prevention, detection and suppression, incineration of solid wastes, and power generation. Initial experiments will provide data to support design decisions for exploration spacecraft. The CIR provides a large sealed chamber in a near-weightless environment. The chamber supports many simulated atmospheres including lunar or Martian environments. The FIR will accommodate experiments that address needs for advanced life support, power, propulsion, and spacecraft thermal control systems. The FIR can also serve as a platform for experiments that address human health and performance, medical technologies, and biological sciences. The FIR provides a large volume for payload hardware, reconfigurable diagnostics, customizable software, active rack-level vibration isolation, and data acquisition and management in a nearly uniform temperature environment.

  9. Bioregenerative Planetary Life Support Systems Test Complex (BIO-Plex): NASA's Next Human-Rated Testing Facility

    NASA Technical Reports Server (NTRS)

    Tri, Terry O.

    1999-01-01

    As a key component in its ground test bed capability, NASA's Advanced Life Support Program has been developing a large-scale advanced life support test facility capable of supporting long-duration evaluations of integrated bioregenerative life support systems with human test crews. This facility-targeted for evaluation of hypogravity compatible life support systems to be developed for use on planetary surfaces such as Mars or the Moon-is called the Bioregenerative Planetary Life Support Systems Test Complex (BIO-Plex) and is currently under development at the Johnson Space Center. This test bed is comprised of a set of interconnected chambers with a sealed internal environment which are outfitted with systems capable of supporting test crews of four individuals for periods exceeding one year. The advanced technology systems to be tested will consist of both biological and physicochemical components and will perform all required crew life support functions. This presentation provides a description of the proposed test "missions" to be supported by the BIO-Plex and the planned development strategy for the facility.

  10. Antarctic analogs as a testbed for regenerative life support technologies

    NASA Technical Reports Server (NTRS)

    Roberts, D. R.; Andersen, D. T.; Mckay, C. P.; Wharton, R. A., Jr.; Rummel, J. D.

    1991-01-01

    The feasibility of using Antarctica as a platform for creating earth-based simulations of regenerative life support systems (LSSs) for future space missions is discussed. The requirements for a bioregenerative LSS and the types of technologies that may be used in such a system are examined. Special attention is given to the objectives and the organization of the NASA's CELSS program for the development of regenerative LSSs to support long-duration human missions in space, largely independent of resupply, in a safe and reliable manner. There are two types of locations on the continent of Antarctica suitable for the placement of simulation facilities: the polar plateau and the ice-free dry valleys. The unique attributes that lend each type of location to very different functions as simulation facilities are discussed.

  11. The Use of Motion-Based Technology for People Living With Dementia or Mild Cognitive Impairment: A Literature Review.

    PubMed

    Dove, Erica; Astell, Arlene J

    2017-01-11

    The number of people living with dementia and mild cognitive impairment (MCI) is increasing substantially. Although there are many research efforts directed toward the prevention and treatment of dementia and MCI, it is also important to learn more about supporting people to live well with dementia or MCI through cognitive, physical, and leisure means. While past research suggests that technology can be used to support positive aging for people with dementia or MCI, the use of motion-based technology has not been thoroughly explored with this population. The aim of this study was to identify and synthesize the current literature involving the use of motion-based technology for people living with dementia or MCI by identifying themes while noting areas requiring further research. A systematic review of studies involving the use of motion-based technology for human participants living with dementia or MCI was conducted. A total of 31 articles met the inclusion criteria. Five questions are addressed concerning (1) context of use; (2) population included (ie, dementia, MCI, or both); (3) hardware and software selection; (4) use of motion-based technology in a group or individual setting; and (5) details about the introduction, teaching, and support methods applied when using the motion-based technology with people living with dementia or MCI. The findings of this review confirm the potential of motion-based technology to improve the lives of people living with dementia or MCI. The use of this technology also spans across several contexts including cognitive, physical, and leisure; all of which support multidimensional well-being. The literature provides evidence that people living with dementia or MCI can learn how to use this technology and that they enjoy doing so. However, there is a lack of information provided in the literature regarding the introduction, training, and support methods applied when using this form of technology with this population. Future research should address the appropriate introduction, teaching, and support required for people living with dementia or MCI to use the motion-based technology. In addition, it is recommended that the diverse needs of these specific end-users be considered in the design and development of this technology. ©Erica Dove, Arlene J Astell. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 11.01.2017.

  12. The Use of Motion-Based Technology for People Living With Dementia or Mild Cognitive Impairment: A Literature Review

    PubMed Central

    Astell, Arlene J

    2017-01-01

    Background The number of people living with dementia and mild cognitive impairment (MCI) is increasing substantially. Although there are many research efforts directed toward the prevention and treatment of dementia and MCI, it is also important to learn more about supporting people to live well with dementia or MCI through cognitive, physical, and leisure means. While past research suggests that technology can be used to support positive aging for people with dementia or MCI, the use of motion-based technology has not been thoroughly explored with this population. Objective The aim of this study was to identify and synthesize the current literature involving the use of motion-based technology for people living with dementia or MCI by identifying themes while noting areas requiring further research. Methods A systematic review of studies involving the use of motion-based technology for human participants living with dementia or MCI was conducted. Results A total of 31 articles met the inclusion criteria. Five questions are addressed concerning (1) context of use; (2) population included (ie, dementia, MCI, or both); (3) hardware and software selection; (4) use of motion-based technology in a group or individual setting; and (5) details about the introduction, teaching, and support methods applied when using the motion-based technology with people living with dementia or MCI. Conclusions The findings of this review confirm the potential of motion-based technology to improve the lives of people living with dementia or MCI. The use of this technology also spans across several contexts including cognitive, physical, and leisure; all of which support multidimensional well-being. The literature provides evidence that people living with dementia or MCI can learn how to use this technology and that they enjoy doing so. However, there is a lack of information provided in the literature regarding the introduction, training, and support methods applied when using this form of technology with this population. Future research should address the appropriate introduction, teaching, and support required for people living with dementia or MCI to use the motion-based technology. In addition, it is recommended that the diverse needs of these specific end-users be considered in the design and development of this technology. PMID:28077346

  13. NASA technology investments: building America's future

    NASA Astrophysics Data System (ADS)

    Peck, Mason

    2013-03-01

    Investments in technology and innovation enable new space missions, stimulate the economy, contribute to the nation's global competitiveness, and inspire America's next generation of scientists, engineers and astronauts. Chief Technologist Mason Peck will provide an overview of NASA's ambitious program of space exploration that builds on new technologies, as well as proven capabilities, as it expands humanity's reach into the solar system while providing broadly-applicable benefits here on Earth. Peck also will discuss efforts of the Office of the Chief Technologist to coordinate the agency's overall technology portfolio, identifying development needs, ensuring synergy and reducing duplication, while furthering the national initiatives as outlined by President Obama's Office of Science and Technology Policy. By coordinating technology programs within NASA, Peck's office facilitates integration of available and new technology into operational systems that support specific human-exploration missions, science missions, and aeronautics. The office also engages other government agencies and the larger aerospace community to develop partnerships in areas of mutual interest that could lead to new breakthrough capabilities. NASA technology transfer translates our air and space missions into societal benefits for people everywhere. Peck will highlight NASA's use of technology transfer and commercialization to help American entrepreneurs and innovators develop technological solutions that stimulate the growth of the innovation economy by creating new products and services, new business and industries and high quality, sustainable jobs.

  14. Commercial Human Spaceflight Press Conference

    NASA Image and Video Library

    2010-02-02

    Assistant to the President for Science and Technology and Director of the White House Office of Science and Technology Policy Dr. John P. Holdren speaks during a press conference, Tuesday, Feb. 2, 2010, at the National Press Club in Washington, where it was announced that NASA has awarded $50 million through funded agreements to further the commercial sector's capability to support transport of crew to and from low Earth orbit. Photo Credit: (NASA/Bill Ingalls)

  15. 76 FR 21386 - National Cancer Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ....395, Cancer Treatment Research; 93.396, Cancer Biology Research; 93.397, Cancer Centers Support; 93... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Cancer Institute... personal privacy. Name of Committee: National Cancer Institute Special Emphasis Panel, Protein Technologies...

  16. Air Sensor Guidebook | Science Inventory | US EPA

    EPA Pesticide Factsheets

    This Air Sensor Guidebook has been developed by the U.S. EPA to assist those interested in potentially using lower cost air quality sensor technologies for air quality measurements. Its development was in direct response to a request for such a document following a recent scientific conference (Apps and Sensors for Air Pollution-2012). Low cost air quality sensors ($100-$2500) are now commercially available in a wide variety of designs and capabilities. This is an emerging technology area and one that is quickly evolving. Even so, their availability has resulted in questions from many as to how they might be used appropriately. This document attempts to provide useful information concerning some of those questions. The National Exposure Research Laboratory’s (NERL’s) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA’s mission to protect human health and the environment. HEASD’s research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA’s strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose. The impact of these tools is improved regulatory programs and pol

  17. Introduction (Special Issue on Scientific Balloon Capabilities and Instrumentation)

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica A.; Smith, I. S.; Jones, W. V.

    2014-01-01

    In 1783, the Montgolfier brothers ushered in a new era of transportation and exploration when they used hot air to drive an un-tethered balloon to an altitude of 2 km. Made of sackcloth and held together with cords, this balloon challenged the way we thought about human travel, and it has since evolved into a robust platform for performing novel science and testing new technologies. Today, high-altitude balloons regularly reach altitudes of 40 km, and they can support payloads that weigh more than 3,000 kg. Long-duration balloons can currently support mission durations lasting 55 days, and developing balloon technologies (i.e. Super-Pressure Balloons) are expected to extend that duration to 100 days or longer; competing with satellite payloads. This relatively inexpensive platform supports a broad range of science payloads, spanning multiple disciplines (astrophysics, heliophysics, planetary and earth science.) Applications extending beyond traditional science include testing new technologies for eventual space-based application and stratospheric airships for planetary applications.

  18. The Mars imperative: Species survival and inspiring a globalized culture

    NASA Astrophysics Data System (ADS)

    Barker, Donald C.

    2015-02-01

    Humanity has crossed a unique technological threshold enabling self-guided survival, a first in the history of life on Earth. From a human perspective the Earth may be considered as a single interconnected ecosystem, and given our tenuous understanding and control over the environment as well as our own behaviors, ever-looming specters of social collapse or even extinction dictate enacting immediate off-world diversification and self-preservation efforts. Herein, Mars is touted as the most tenable and sustainable location in which to initiate such permanent diversification. Scientific curiosity alone cannot initiate nor drive such off-world settlement and concerted impetus and public support for such an endeavor is shown to be constrained by human attention span. Lastly, the initial act of settlement uniquely serves as humanities greatest globally inspiring self-initiated endeavor, a tangible benefit capable of inspiring generations, connecting cultures and motivating college enrollments and career path choices in science, technology, engineering and math (STEM) in a manner similar to the dawn of human space exploration.

  19. Next Generation Respiratory Viral Vaccine System: Advanced and Emerging Bioengineered Human Lung Epithelia Model (HLEM) Organoid Technology

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.; Schneider, Sandra L.; MacIntosh, Victor; Gibbons, Thomas F.

    2010-01-01

    Acute respiratory infections, including pneumonia and influenza, are the S t" leading cause of United States and worldwide deaths. Newly emerging pathogens signaled the need for an advanced generation of vaccine technology.. Human bronchial-tracheal epithelial tissue was bioengineered to detect, identify, host and study the pathogenesis of acute respiratory viral disease. The 3-dimensional (3D) human lung epithelio-mesechymal tissue-like assemblies (HLEM TLAs) share characteristics with human respiratory epithelium: tight junctions, desmosomes, microvilli, functional markers villin, keratins and production of tissue mucin. Respiratory Syntial Virus (RSV) studies demonstrate viral growth kinetics and membrane bound glycoproteins up to day 20 post infection in the human lung-orgainoid infected cell system. Peak replication of RSV occurred on day 10 at 7 log10 particles forming units per ml/day. HLEM is an advanced virus vaccine model and biosentinel system for emergent viral infectious diseases to support DoD global surveillance and military readiness.

  20. Face Recognition in Humans and Machines

    NASA Astrophysics Data System (ADS)

    O'Toole, Alice; Tistarelli, Massimo

    The study of human face recognition by psychologists and neuroscientists has run parallel to the development of automatic face recognition technologies by computer scientists and engineers. In both cases, there are analogous steps of data acquisition, image processing, and the formation of representations that can support the complex and diverse tasks we accomplish with faces. These processes can be understood and compared in the context of their neural and computational implementations. In this chapter, we present the essential elements of face recognition by humans and machines, taking a perspective that spans psychological, neural, and computational approaches. From the human side, we overview the methods and techniques used in the neurobiology of face recognition, the underlying neural architecture of the system, the role of visual attention, and the nature of the representations that emerges. From the computational side, we discuss face recognition technologies and the strategies they use to overcome challenges to robust operation over viewing parameters. Finally, we conclude the chapter with a look at some recent studies that compare human and machine performances at face recognition.

  1. Methods in Clinical Pharmacology Series

    PubMed Central

    Beaumont, Claire; Young, Graeme C; Cavalier, Tom; Young, Malcolm A

    2014-01-01

    Human radiolabel studies are traditionally conducted to provide a definitive understanding of the human absorption, distribution, metabolism and excretion (ADME) properties of a drug. However, advances in technology over the past decade have allowed alternative methods to be employed to obtain both clinical ADME and pharmacokinetic (PK) information. These include microdose and microtracer approaches using accelerator mass spectrometry, and the identification and quantification of metabolites in samples from classical human PK studies using technologies suitable for non-radiolabelled drug molecules, namely liquid chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy. These recently developed approaches are described here together with relevant examples primarily from experiences gained in support of drug development projects at GlaxoSmithKline. The advantages of these study designs together with their limitations are described. We also discuss special considerations which should be made for a successful outcome to these new approaches and also to the more traditional human radiolabel study in order to maximize knowledge around the human ADME properties of drug molecules. PMID:25041729

  2. Modular System to Enable Extravehicular Activity

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam J.

    2011-01-01

    The ability to perform extravehicular activity (EVA), both human and robotic, has been identified as a key component to space missions to support such operations as assembly and maintenance of space system (e.g. construction and maintenance of the International Space Station), and unscheduled activities to repair an element of the transportation and habitation systems that can only be accessed externally and via unpressurized areas. In order to make human transportation beyond lower earth orbit (BLEO) practical, efficiencies must be incorporated into the integrated transportation systems to reduce system mass and operational complexity. Affordability is also a key aspect to be considered in space system development; this could be achieved through commonality, modularity and component reuse. Another key aspect identified for the EVA system was the ability to produce flight worthy hardware quickly to support early missions and near Earth technology demonstrations. This paper details a conceptual architecture for a modular extravehicular activity system (MEVAS) that would meet these stated needs for EVA capability that is affordable, and that could be produced relatively quickly. Operational concepts were developed to elaborate on the defined needs and define the key capabilities, operational and design constraints, and general timelines. The operational concept lead to a high level design concept for a module that interfaces with various space transportation elements and contains the hardware and systems required to support human and telerobotic EVA; the module would not be self-propelled and would rely on an interfacing element for consumable resources. The conceptual architecture was then compared to EVA Systems used in the Shuttle Orbiter, on the International Space Station to develop high level design concepts that incorporate opportunities for cost savings through hardware reuse, and quick production through the use of existing technologies and hardware designs. An upgrade option was included to make use of the developing suitport technologies.

  3. NASA In-Situ Resource Utilization (ISRU) Technology and Development Project Overview

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.; Lason, William E.; Sacksteder, Kurt R.; Mclemore, Carole; Johnson, Kenneth

    2008-01-01

    Since the Vision for Space Exploration (VSE) was released in 2004, NASA, in conjunction with international space agencies, industry, and academia, has continued to define and refine plans for sustained and affordable robotic and human exploration of the Moon and beyond. With the goal of establishing a lunar Outpost on the Moon to extend human presence, pursue scientific activities, use the Moon to prepare for future human missions to Mars, and expand Earth s economic sphere, a change in how space exploration is performed is required. One area that opens up the possibility for the first time of breaking our reliance on Earth supplied consumables and learn to live off the land is In-Situ Resource Utilization (ISRU). ISRU, which involves the extraction and processing of space resources into useful products, can have a substantial impact on mission and architecture concepts. In particular, the ability to make propellants, life support consumables, and fuel cell reagents can significantly reduce the cost, mass, and risk of sustained human activities beyond Earth. However, ISRU is an unproven capability for human lunar exploration and can not be put in the critical path of lunar Outpost success until it has been proven. Therefore, ISRU development and deployment needs to take incremental steps toward the desired end state. To ensure ISRU capabilities are available for pre-Outpost and Outpost deployment by 2020, and mission and architecture planners are confident that ISRU can meet initial and long term mission requirements, the ISRU Project is developing technologies and systems in three critical areas: (1) Regolith Excavation, Handling and Material Transportation; (2) Oxygen Extraction from Regolith; and (3) Volatile Extraction and Resource Prospecting, and in four development stages: (I) Demonstrate feasibility; (II) Evolve system w/ improved technologies; (III) Develop one or more systems to TRL 6 before start of flight development; and (IV) Flight development for Outpost. To minimize cost and ensure that ISRU technologies, systems, and functions are integrated properly into the Outpost, technology development efforts are being coordinated with other development areas such as Surface Mobility, Surface Power, Life Support, EVA, and Propulsion. Lastly, laboratory and field system-level tests and demonstrations will be performed as often as possible to demonstrate improvements in: Capabilities (ex. digging deeper); Performance (ex. lower power); and Duration (ex. more autonomy or more robustness). This presentation will provide the status of work performed to date within the NASA ISRU project with respect to technology and system development and field demonstration activities, as well as the current strategy to implement ISRU in future robotic and human lunar exploration missions.

  4. Conversational sensing

    NASA Astrophysics Data System (ADS)

    Preece, Alun; Gwilliams, Chris; Parizas, Christos; Pizzocaro, Diego; Bakdash, Jonathan Z.; Braines, Dave

    2014-05-01

    Recent developments in sensing technologies, mobile devices and context-aware user interfaces have made it pos- sible to represent information fusion and situational awareness for Intelligence, Surveillance and Reconnaissance (ISR) activities as a conversational process among actors at or near the tactical edges of a network. Motivated by use cases in the domain of Company Intelligence Support Team (CoIST) tasks, this paper presents an approach to information collection, fusion and sense-making based on the use of natural language (NL) and controlled nat- ural language (CNL) to support richer forms of human-machine interaction. The approach uses a conversational protocol to facilitate a ow of collaborative messages from NL to CNL and back again in support of interactions such as: turning eyewitness reports from human observers into actionable information (from both soldier and civilian sources); fusing information from humans and physical sensors (with associated quality metadata); and assisting human analysts to make the best use of available sensing assets in an area of interest (governed by man- agement and security policies). CNL is used as a common formal knowledge representation for both machine and human agents to support reasoning, semantic information fusion and generation of rationale for inferences, in ways that remain transparent to human users. Examples are provided of various alternative styles for user feedback, including NL, CNL and graphical feedback. A pilot experiment with human subjects shows that a prototype conversational agent is able to gather usable CNL information from untrained human subjects.

  5. Aquarius, a reusable water-based interplanetary human spaceflight transport

    NASA Astrophysics Data System (ADS)

    Adamo, Daniel R.; Logan, James S.

    2016-11-01

    Attributes of a reusable interplanetary human spaceflight transport are proposed and applied to example transits between the Earth/Moon system and Deimos, the outer moon of Mars. Because the transport is 54% water by mass at an interplanetary departure, it is christened Aquarius. In addition to supporting crew hydration/hygiene, water aboard Aquarius serves as propellant and as enhanced crew habitat radiation shielding during interplanetary transit. Key infrastructure and technology supporting Aquarius operations include pre-emplaced consumables and subsurface habitat at Deimos with crew radiation shielding equivalent to sea level on Earth, resupply in a selenocentric distant retrograde orbit, and nuclear thermal propulsion.

  6. Global change and carrying capacity: Implications for life on Earth

    NASA Technical Reports Server (NTRS)

    Ehrlich, Paul R.; Daily, Gretchen C.; Ehrlich, Anne H.; Matson, Pamela; Vitousek, Peter

    1989-01-01

    Determining the long-term number of people that the planet can support without irreversibly reducing its ability to support people in the future, i.e., the carrying capacity of the Earth, is an exceedingly complex problem. About all that is known for certain is that, with present and foreseeable technologies, the human population has already exceeded the capacity. The reduction in carrying capacity that can be expected to result from direct human impacts on resources and the environment and from our indirect impacts of the climate system is discussed. Global warming and modeling global change and food security are also discussed with respect to carrying capacity.

  7. The role of Space Station Freedom in the Human Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Ahlf, P. R.; Saucillo, R. J.; Meredith, B. D.; Peach, L. L.

    1990-01-01

    Exploration accommodation requirements for Space Station Freedom (SSF) and mission-supporting capabilities have been studied. For supporting the Human Exploration Initiative (HEI), SSF will accommodate two functions with augmentations to the baseline Assembly Complete configuration. First, it will be an earth-orbiting transportation node providing facilities and resources (crew, power, communications) for space vehicle assembly, testing, processing and postflight servicing. Second, it will be an in-space laboratory for science research and technology development. The evolutionary design of SSF will allow the on-orbit addition of pressurized laboratory and habitation modules, power generation equipment, truss structure, and unpressurized vehicle processing platforms.

  8. Impact of Water Recovery from Wastes on the Lunar Surface Mission Water Balance

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Hogan, John Andrew; Wignarajah, Kanapathipi; Pace, Gregory S.

    2010-01-01

    Future extended lunar surface missions will require extensive recovery of resources to reduce mission costs and enable self-sufficiency. Water is of particular importance due to its potential use for human consumption and hygiene, general cleaning, clothes washing, radiation shielding, cooling for extravehicular activity suits, and oxygen and hydrogen production. Various water sources are inherently present or are generated in lunar surface missions, and subject to recovery. They include: initial water stores, water contained in food, human and other solid wastes, wastewaters and associated brines, ISRU water, and scavenging from residual propellant in landers. This paper presents the results of an analysis of the contribution of water recovery from life support wastes on the overall water balance for lunar surface missions. Water in human wastes, metabolic activity and survival needs are well characterized and dependable figures are available. A detailed life support waste model was developed that summarizes the composition of life support wastes and their water content. Waste processing technologies were reviewed for their potential to recover that water. The recoverable water in waste is a significant contribution to the overall water balance. The value of this contribution is discussed in the context of the other major sources and loses of water. Combined with other analyses these results provide guidance for research and technology development and down-selection.

  9. History of remote operations and robotics in nuclear facilities. Robotics and Intelligent Systems Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herndon, J.N.

    1992-05-01

    The field of remote technology is continuing to evolve to support man`s efforts to perform tasks in hostile environments. Remote technology has roots which reach into the early history of man. Fireplace pokers, blacksmith`s tongs, and periscopes are examples of the beginnings of remote technology. The technology which we recognize today has evolved over the last 45-plus years to support human operations in hostile environments such as nuclear fission and fusion, space, underwater, hazardous chemical, and hazardous manufacturing. The four major categories of approach to remote technology have been (1) protective clothing and equipment for direct human entry, (2) extendedmore » reach tools using distance for safety, (3) telemanipulators with barriers for safety, and (4) teleoperators incorporating mobility with distance and/or barriers for safety. The government and commercial nuclear industry has driven the development of the majority of the actual teleoperator hardware available today. This hardware has been developed due to the unsatisfactory performance of the protective-clothing approach in many hostile applications. Systems which have been developed include crane/impact wrench systems, unilateral power manipulators, mechanical master/slaves, and servomanipulators. Work for space applications has been primarily research oriented with few successful space applications, although the shuttle`s remote manipulator system has been successful. In the last decade, underwater applications have moved forward significantly, with the offshore oil industry and military applications providing the primary impetus. This document consists of viewgraphs and subtitled figures.« less

  10. History of remote operations and robotics in nuclear facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herndon, J.N.

    1992-01-01

    The field of remote technology is continuing to evolve to support man's efforts to perform tasks in hostile environments. Remote technology has roots which reach into the early history of man. Fireplace pokers, blacksmith's tongs, and periscopes are examples of the beginnings of remote technology. The technology which we recognize today has evolved over the last 45-plus years to support human operations in hostile environments such as nuclear fission and fusion, space, underwater, hazardous chemical, and hazardous manufacturing. The four major categories of approach to remote technology have been (1) protective clothing and equipment for direct human entry, (2) extendedmore » reach tools using distance for safety, (3) telemanipulators with barriers for safety, and (4) teleoperators incorporating mobility with distance and/or barriers for safety. The government and commercial nuclear industry has driven the development of the majority of the actual teleoperator hardware available today. This hardware has been developed due to the unsatisfactory performance of the protective-clothing approach in many hostile applications. Systems which have been developed include crane/impact wrench systems, unilateral power manipulators, mechanical master/slaves, and servomanipulators. Work for space applications has been primarily research oriented with few successful space applications, although the shuttle's remote manipulator system has been successful. In the last decade, underwater applications have moved forward significantly, with the offshore oil industry and military applications providing the primary impetus. This document consists of viewgraphs and subtitled figures.« less

  11. Space station needs, attributes and architectural options study. Volume 4: Architectural options, subsystems, technology and programmatics

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Space station architectural options, habitability considerations and subsystem analyses, technology, and programmatics are reviewed. The methodology employed for conceiving and defining space station concepts is presented. As a result of this approach, architectures were conceived and along with their supporting rationale are described within this portion of the report. Habitability consideration and subsystem analyses describe the human factors associated with space station operations and includes subsections covering (1) data management, (2) communications and tracking, (3) environmental control and life support, (4) manipulator systems, (5) resupply, (6) pointing, (7) thermal management and (8) interface standardization. A consolidated matrix of subsystems technology issues as related to meeting the mission needs for a 1990's era space station is presented. Within the programmatics portion, a brief description of costing and program strategies is outlined.

  12. Enviromnental Control and Life Support Systems for Mars Missions - Issues and Concerns for Planetary Protection

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Anderson, Molly S.; Lange, Kevin

    2015-01-01

    Planetary protection represents an additional set of requirements that generally have not been considered by developers of technologies for Environmental Control and Life Support Systems (ECLSS). Planetary protection guidelines will affect the kind of operations, processes, and functions that can take place during future human planetary exploration missions. Ultimately, there will be an effect on mission costs, including the mission trade space when planetary protection requirements begin to drive vehicle deisgn in a concrete way. Planetary protection requirements need to be considered early in technology development and mission programs in order to estimate these impacts and push back on requirements or find efficient ways to perform necessary functions. It is expected that planetary protection will be a significant factor during technology selection and system architecture design for future missions.

  13. Cyborg practices: call-handlers and computerised decision support systems in urgent and emergency care.

    PubMed

    Pope, Catherine; Halford, Susan; Turnbull, Joanne; Prichard, Jane

    2014-06-01

    This article draws on data collected during a 2-year project examining the deployment of a computerised decision support system. This computerised decision support system was designed to be used by non-clinical staff for dealing with calls to emergency (999) and urgent care (out-of-hours) services. One of the promises of computerised decisions support technologies is that they can 'hold' vast amounts of sophisticated clinical knowledge and combine it with decision algorithms to enable standardised decision-making by non-clinical (clerical) staff. This article draws on our ethnographic study of this computerised decision support system in use, and we use our analysis to question the 'automated' vision of decision-making in healthcare call-handling. We show that embodied and experiential (human) expertise remains central and highly salient in this work, and we propose that the deployment of the computerised decision support system creates something new, that this conjunction of computer and human creates a cyborg practice.

  14. Buried waste integrated demonstration human engineered control station. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-09-01

    This document describes the Human Engineered Control Station (HECS) project activities including the conceptual designs. The purpose of the HECS is to enhance the effectiveness and efficiency of remote retrieval by providing an integrated remote control station. The HECS integrates human capabilities, limitations, and expectations into the design to reduce the potential for human error, provides an easy system to learn and operate, provides an increased productivity, and reduces the ultimate investment in training. The overall HECS consists of the technology interface stations, supporting engineering aids, platform (trailer), communications network (broadband system), and collision avoidance system.

  15. SemantEco: a semantically powered modular architecture for integrating distributed environmental and ecological data

    USGS Publications Warehouse

    Patton, Evan W.; Seyed, Patrice; Wang, Ping; Fu, Linyun; Dein, F. Joshua; Bristol, R. Sky; McGuinness, Deborah L.

    2014-01-01

    We aim to inform the development of decision support tools for resource managers who need to examine large complex ecosystems and make recommendations in the face of many tradeoffs and conflicting drivers. We take a semantic technology approach, leveraging background ontologies and the growing body of linked open data. In previous work, we designed and implemented a semantically enabled environmental monitoring framework called SemantEco and used it to build a water quality portal named SemantAqua. Our previous system included foundational ontologies to support environmental regulation violations and relevant human health effects. In this work, we discuss SemantEco’s new architecture that supports modular extensions and makes it easier to support additional domains. Our enhanced framework includes foundational ontologies to support modeling of wildlife observation and wildlife health impacts, thereby enabling deeper and broader support for more holistically examining the effects of environmental pollution on ecosystems. We conclude with a discussion of how, through the application of semantic technologies, modular designs will make it easier for resource managers to bring in new sources of data to support more complex use cases.

  16. An Internet-based program for depressive symptoms using human and automated support: a randomized controlled trial

    PubMed Central

    Mira, Adriana; Bretón-López, Juana; García-Palacios, Azucena; Quero, Soledad; Baños, Rosa María; Botella, Cristina

    2017-01-01

    Purpose The purpose of this study was to analyze the efficacy of an Internet-based program for depressive symptoms using automated support by information and communication technologies (ICTs) and human support. Patients and methods An Internet-based program was used to teach adaptive ways to cope with depressive symptoms and daily problems. A total of 124 participants who were experiencing at least one stressful event that caused interference in their lives, many of whom had clinically significant depressive symptoms, were randomly assigned into either an intervention group with ICT support (automated mobile phone messages, automated emails, and continued feedback through the program); an intervention group with ICT support plus human support (brief weekly support phone call without clinical content); or a waiting-list control. At pre-, post-, and 12-month follow-up, they completed depression, anxiety, positive and negative effect, and perceived stress measures. Results were analyzed using both intention-to-treat and completers data. The majority were women (67.7%), with a mean age of 35.6 years (standard deviation =9.7). Results The analysis showed that the two intervention groups improved significantly pre- to posttreatment, compared with the control group. Furthermore, improvements were maintained at the 12-month follow-up. Adherence and satisfaction with the program was high in both conditions. Conclusion The Internet-based program was effective and well accepted, with and without human support, showing that ICT-based automated support may be useful. It is essential to continue to study other ICT strategies for providing support. PMID:28408833

  17. Water Recovery from Brines to Further Close the Water Recovery Loop in Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Jackson, W. Andrew; Barta, Daniel J.; Anderson, Molly S.; Lange, Kevin E.; Hanford, Anthony J.; Shull, Sarah A.; Carter, D. Layne

    2014-01-01

    Further closure of water recovery systems will be necessary for future long duration human exploration missions. NASA's Space Technology Roadmap for Human Health, Life Support and Habitation Systems specified a milestone to advance water management technologies during the 2015 to 2019 timeframe to achieve 98% H2O recovery from a mixed wastewater stream containing condensate, urine, hygiene, laundry, and water derived from waste. This goal can only be achieved by either reducing the amount of brines produced by a water recovery system or by recovering water from wastewater brines. NASA convened a Technical Interchange Meeting (TIM) on the topic of Water Recovery from Brines (WRB) that was held on January14-15th, 2014 at Johnson Space Center. Objectives of the TIM were to review systems and architectures that are sources of brines and the composition of brines they produce, review the state of the art in NASA technology development and perspectives from other industries, capture the challenges and difficulties in developing brine processing hardware, identify key figures of merit and requirements to focus technology development and evaluate candidate technologies, and identify other critical issues including microgravity sensitivity, and concepts of operation, safety. This paper represents an initial summary of findings from the workshop.

  18. Using Rapid Ethnography to Support the Design and Implementation of Health Information Technologies.

    PubMed

    Ackerman, Sara; Gleason, Nathaniel; Gonzales, Ralph

    2015-01-01

    Ethnography is the defining practice - and art - of anthropology. Among health information technology (IT) developers, however, ethnography remains a little used and undervalued mode of inquiry and representation. In this chapter we demonstrate that ethnography can make important contributions to the design and implementation of more user-oriented health IT devices and systems. In particular, we propose 'rapid ethnography' as a pragmatic strategy that draws on classic ethnographic methods, but emphasizes shorter periods of fieldwork and quick turnaround of findings to inform (re)design, programming and implementation efforts. Rapid ethnography is theoretically and empirically situated in science and technology studies' explorations of a) the entanglement of social and technical dimensions of technology use; b) how getting tools to 'work' requires aligning interests across a wide range of human and non-human actors; and c) the ways in which humans and technology transform each other as they interact. We provide two detailed case studies to illustrate the evolution and uses of rapid ethnography at a U.S. academic medical center. By providing deeper insights into the experiences of users, and the contexts and communities in which new tools are introduced, rapid ethnography can serve as a valuable component of Techno-Anthropology and health IT innovation.

  19. Online emotional support delivered by trained volunteers: users' satisfaction and their perception of the service compared to psychotherapy.

    PubMed

    Baumel, Amit

    2015-01-01

    Technology could answer the substantial need in human resources available for supporting those who suffer from mental illness, by providing scalable methods to train and engage non-professionals to those who need their support. 7 Cups of Tea (7COT) platform was chosen for this study, because it provides a good case study for examining this kind of solution. The aim of this paper was to provide empirical findings regarding users' satisfaction with online emotional support provided by trained volunteers and how it is perceived in comparison to psychotherapy. An online survey was conducted among a convenience sample of 7COT users. The findings showed high user satisfaction with the support provided by 7COT listeners and, on average, users who indicated to receive psychotherapy in their past marked the listeners' support to be as helpful as psychotherapy. Relating to psychotherapy and online emotional support advantages, different advantages were found. The findings suggest that receiving support from volunteers makes users feel that the support is more genuine. The paper provides preliminary evidence that people in emotional distress may find non-professionals support delivered through the use of technology to be helpful. Limitations and implications are discussed.

  20. A Holistic Approach to Systems Development

    NASA Technical Reports Server (NTRS)

    Wong, Douglas T.

    2008-01-01

    Introduces a Holistic and Iterative Design Process. Continuous process but can be loosely divided into four stages. More effort spent early on in the design. Human-centered and Multidisciplinary. Emphasis on Life-Cycle Cost. Extensive use of modeling, simulation, mockups, human subjects, and proven technologies. Human-centered design doesn t mean the human factors discipline is the most important Disciplines should be involved in the design: Subsystem vendors, configuration management, operations research, manufacturing engineering, simulation/modeling, cost engineering, hardware engineering, software engineering, test and evaluation, human factors, electromagnetic compatibility, integrated logistics support, reliability/maintainability/availability, safety engineering, test equipment, training systems, design-to-cost, life cycle cost, application engineering etc. 9

  1. A white paper: NASA virtual environment research, applications, and technology

    NASA Technical Reports Server (NTRS)

    Null, Cynthia H. (Editor); Jenkins, James P. (Editor)

    1993-01-01

    Research support for Virtual Environment technology development has been a part of NASA's human factors research program since 1985. Under the auspices of the Office of Aeronautics and Space Technology (OAST), initial funding was provided to the Aerospace Human Factors Research Division, Ames Research Center, which resulted in the origination of this technology. Since 1985, other Centers have begun using and developing this technology. At each research and space flight center, NASA missions have been major drivers of the technology. This White Paper was the joint effort of all the Centers which have been involved in the development of technology and its applications to their unique missions. Appendix A is the list of those who have worked to prepare the document, directed by Dr. Cynthia H. Null, Ames Research Center, and Dr. James P. Jenkins, NASA Headquarters. This White Paper describes the technology and its applications in NASA Centers (Chapters 1, 2 and 3), the potential roles it can take in NASA (Chapters 4 and 5), and a roadmap of the next 5 years (FY 1994-1998). The audience for this White Paper consists of managers, engineers, scientists and the general public with an interest in Virtual Environment technology. Those who read the paper will determine whether this roadmap, or others, are to be followed.

  2. Worksite Training. ERIC Digest No. 109.

    ERIC Educational Resources Information Center

    Lankard, Bettina A.

    Economic, social, and technological changes highlight the value of human resources and employee training. Acquiring the knowledge and skills demanded of today's workers represents a lifelong learning experience that must be nurtured through work-related learning activities and workplace training. For the employer, training supports organizational…

  3. Integrating Sensor Monitoring Technology into the Current Air Pollution Regulatory Support Paradigm: Practical Considerations

    EPA Science Inventory

    The US Environmental Protection Agency (EPA) along with state, local, and tribal governments operate Federal Reference Method (FRM) and Federal Equivalent Method (FEM) instruments to assess compliance with US air pollution standards designed to protect human and ecosystem health....

  4. Innovative Technologies for Global Space Exploration

    NASA Technical Reports Server (NTRS)

    Hay, Jason; Gresham, Elaine; Mullins, Carie; Graham, Rachael; Williams-Byrd; Reeves, John D.

    2012-01-01

    Under the direction of NASA's Exploration Systems Mission Directorate (ESMD), Directorate Integration Office (DIO), The Tauri Group with NASA's Technology Assessment and Integration Team (TAIT) completed several studies and white papers that identify novel technologies for human exploration. These studies provide technical inputs to space exploration roadmaps, identify potential organizations for exploration partnerships, and detail crosscutting technologies that may meet some of NASA's critical needs. These studies are supported by a relational database of more than 400 externally funded technologies relevant to current exploration challenges. The identified technologies can be integrated into existing and developing roadmaps to leverage external resources, thereby reducing the cost of space exploration. This approach to identifying potential spin-in technologies and partnerships could apply to other national space programs, as well as international and multi-government activities. This paper highlights innovative technologies and potential partnerships from economic sectors that historically are less connected to space exploration. It includes breakthrough concepts that could have a significant impact on space exploration and discusses the role of breakthrough concepts in technology planning. Technologies and partnerships are from NASA's Technology Horizons and Technology Frontiers game-changing and breakthrough technology reports as well as the External Government Technology Dataset, briefly described in the paper. The paper highlights example novel technologies that could be spun-in from government and commercial sources, including virtual worlds, synthetic biology, and human augmentation. It will consider how these technologies can impact space exploration and will discuss ongoing activities for planning and preparing them.

  5. A synergetic use of hydrogen and fuel cells in human spaceflight power systems

    NASA Astrophysics Data System (ADS)

    Belz, S.

    2016-04-01

    Hydrogen is very flexible in different fields of application of energy conversion. It can be generated by water electrolysis. Stored in tanks it is available for re-electrification by fuel cells. But it is not only the power system, which benefits from use of hydrogen, but also the life support system, which can contain hydrogen consuming technologies for recycling management (e.g. carbon dioxide removal and waste combustion processes). This paper points out various fields of hydrogen use in a human spaceflight system. Depending on mission scenarios, shadow phases, and the need of energy storage, regenerative fuel cell systems can be more efficient than secondary batteries. Here, different power storage concepts are compared by equivalent system mass calculation, thus including impact in the peripheral structure (volume, thermal management, etc.) on the space system. It is also focused on the technical integration aspect, e.g. which peripheral components have to be adapted when hydrogen is also used for life support technologies and what system mass benefit can be expected. Finally, a recommendation is given for the following development steps for a synergetic use of hydrogen and fuel cells in human spaceflight power systems.

  6. Simulation and control for telerobots in space medicine

    NASA Astrophysics Data System (ADS)

    Haidegger, Tamás; Kovács, Levente; Precup, Radu-Emil; Benyó, Balázs; Benyó, Zoltán; Preitl, Stefan

    2012-12-01

    Human space exploration is continuously advancing despite the current financial difficulties, and the new missions are targeting the Moon and the Mars with more effective human-robot collaborative systems. The continuous development of robotic technology should lead to the advancement of automated technology, including space medicine. Telesurgery has already proved its effectiveness through various telemedicine procedures on Earth, and it has the potential to provide medical assistance in space as well. Aeronautical agencies have already conducted numerous experiments and developed various setups to push the boundaries of teleoperation under extreme conditions. Different control schemes have been proposed and tested to facilitate and enhance telepresence and to ensure transparency, sufficient bandwidth and latency-tolerance. This paper focuses on the modeling of a generic telesurgery setup, supported by a cascade control approach. The minimalistic models were tested with linear and PID-fuzzy control options to provide a simple, universal and scalable solution for the challenges of telesurgery over large distances. In our simulations, the control structures were capable of providing good dynamic performance indices and robustness with respect to the gain in the human operator model. This is a promising result towards the support of future teleoperational missions.

  7. The Genome Sequencer FLX System--longer reads, more applications, straight forward bioinformatics and more complete data sets.

    PubMed

    Droege, Marcus; Hill, Brendon

    2008-08-31

    The Genome Sequencer FLX System (GS FLX), powered by 454 Sequencing, is a next-generation DNA sequencing technology featuring a unique mix of long reads, exceptional accuracy, and ultra-high throughput. It has been proven to be the most versatile of all currently available next-generation sequencing technologies, supporting many high-profile studies in over seven applications categories. GS FLX users have pursued innovative research in de novo sequencing, re-sequencing of whole genomes and target DNA regions, metagenomics, and RNA analysis. 454 Sequencing is a powerful tool for human genetics research, having recently re-sequenced the genome of an individual human, currently re-sequencing the complete human exome and targeted genomic regions using the NimbleGen sequence capture process, and detected low-frequency somatic mutations linked to cancer.

  8. High-Power Hall Propulsion Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Manzella, David H.; Smith, Timothy D.; Schmidt, George R.

    2014-01-01

    The NASA Office of the Chief Technologist Game Changing Division is sponsoring the development and testing of enabling technologies to achieve efficient and reliable human space exploration. High-power solar electric propulsion has been proposed by NASA's Human Exploration Framework Team as an option to achieve these ambitious missions to near Earth objects. NASA Glenn Research Center (NASA Glenn) is leading the development of mission concepts for a solar electric propulsion Technical Demonstration Mission. The mission concepts are highlighted in this paper but are detailed in a companion paper. There are also multiple projects that are developing technologies to support a demonstration mission and are also extensible to NASA's goals of human space exploration. Specifically, the In-Space Propulsion technology development project at NASA Glenn has a number of tasks related to high-power Hall thrusters including performance evaluation of existing Hall thrusters; performing detailed internal discharge chamber, near-field, and far-field plasma measurements; performing detailed physics-based modeling with the NASA Jet Propulsion Laboratory's Hall2De code; performing thermal and structural modeling; and developing high-power efficient discharge modules for power processing. This paper summarizes the various technology development tasks and progress made to date

  9. High-Power Hall Propulsion Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Manzella, David H.; Smith, Timothy D.; Schmidt, George R.

    2012-01-01

    The NASA Office of the Chief Technologist Game Changing Division is sponsoring the development and testing of enabling technologies to achieve efficient and reliable human space exploration. High-power solar electric propulsion has been proposed by NASA's Human Exploration Framework Team as an option to achieve these ambitious missions to near Earth objects. NASA Glenn Research Center is leading the development of mission concepts for a solar electric propulsion Technical Demonstration Mission. The mission concepts are highlighted in this paper but are detailed in a companion paper. There are also multiple projects that are developing technologies to support a demonstration mission and are also extensible to NASA's goals of human space exploration. Specifically, the In-Space Propulsion technology development project at the NASA Glenn has a number of tasks related to high-power Hall thrusters including performance evaluation of existing Hall thrusters; performing detailed internal discharge chamber, near-field, and far-field plasma measurements; performing detailed physics-based modeling with the NASA Jet Propulsion Laboratory's Hall2De code; performing thermal and structural modeling; and developing high-power efficient discharge modules for power processing. This paper summarizes the various technology development tasks and progress made to date.

  10. Fuel cells, electrolyzers, and microalgae photobioreactors: technologies for long-duration missions in human spaceflight

    NASA Astrophysics Data System (ADS)

    Belz, Stefan; Bretschneider, Jens; Nathanson, Emil; Buchert, Melanie

    Long-duration and far-distant missions in human spaceflight have higher requirements on life support systems (LSS) technologies than for missions into low Earth orbit (LEO). LSS technologies have to ensure that humans can survive, live, and work in space. Enhancements of existing technologies, new technological developments and synergetic components integration help to close the oxygen, water and carbon loops. For these reasons, the approach of a synergetic integration of Polymer Electrolyte Membrane Fuel Cells (PEFC), Polymer Electrolyte Membrane Electrolyzers (PEL) and Photobioreactors (PBR) for microalgae cultivation into the LSS is investigated. It is demonstrated in which mission scenarii the application of PEFC, PEL, and PBR are useful in terms of mass, reliability, and cycle closures. The paper represents the current status of research at the Institute of Space Systems (IRS) of University of Stuttgart on PEFC, PEL, and PBR development. A final configuration of a prototype of a PEFC system includes the gas, water, and thermal management. The PEL is a state-of-the-art technology for space application, but the specific requirements by a synergetic integration are focused. A prototype configuration of a PBR system, which was tested under microgravity conditions in a parabolic experiment, consists of a highly sophisticated cultivation chamber, adapted sensorics, pumps, nutrients supply and harvesting unit. Additionally, the latest results of the cultivation of the microalgae species Chlorella vulgaris and Scenedesmus obliquus in the laboratories of the IRS are represented. Both species are robust, nutrient-rich for human diet. An outlook of the next steps is given for in-orbit verification.

  11. Cryogenic Propellant Storage and Transfer (CPST) Technology Maturation: Establishing a Foundation for a Technology Demonstration Mission (TDM)

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Meyer, Michael L.; Motil, Susan M.; Ginty, Carol A.

    2014-01-01

    As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including asteroids, Lagrange points, the Moon and Mars. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages (CPS) and propellant depots. The TDM CPST project will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration which is relevant to enable long term human space exploration missions beyond low Earth orbit (LEO). Recognizing that key cryogenic fluid management technologies anticipated for on-orbit (flight) demonstration needed to be matured to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate authorized funding for a one-year (FY12) ground based technology maturation program. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, studies, and ground tests of the storage and fluid transfer Cryogenic Fluid Management (CFM) technology sub-elements and components that were not already at a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. This paper will present the testing, studies, and modeling that occurred in FY12 to mature cryogenic fluid management technologies for propellant storage, transfer, and supply, to examine extensibility to full scale, long duration missions, and to develop and validate analytical models. Finally, the paper will briefly describe an upcoming test to demonstrate Liquid Oxygen (LO2) Zero Boil-Off (ZBO).

  12. Cryogenic Propellant Storage and Transfer (CPST) Technology Maturation: Establishing a Foundation for a Technology Demonstration Mission (TDM)

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Meyer, Michael L.; Motil, Susan M.; Ginty, Carol A.

    2013-01-01

    As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including asteroids, Lagrange points, the Moon and Mars. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages (CPS) and propellant depots. The TDM CPST project will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration which is relevant to enable long term human space exploration missions beyond low Earth orbit (LEO). Recognizing that key cryogenic fluid management technologies anticipated for on-orbit (flight) demonstration needed to be matured to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate authorized funding for a one-year (FY12) ground based technology maturation program. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, studies, and ground tests of the storage and fluid transfer Cryogenic Fluid Management (CFM) technology sub-elements and components that were not already at a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. This paper will present the testing, studies, and modeling that occurred in FY12 to mature cryogenic fluid management technologies for propellant storage, transfer, and supply, to examine extensibility to full scale, long duration missions, and to develop and validate analytical models. Finally, the paper will briefly describe an upcoming test to demonstrate Liquid Oxygen (LO2) Zero Boil- Off (ZBO).

  13. Accounting for human neurocognitive function in the design and evaluation of 360 degree situational awareness display systems

    NASA Astrophysics Data System (ADS)

    Metcalfe, Jason S.; Mikulski, Thomas; Dittman, Scott

    2011-06-01

    The current state and trajectory of development for display technologies supporting information acquisition, analysis and dissemination lends a broad informational infrastructure to operators of complex systems. The amount of information available threatens to outstrip the perceptual-cognitive capacities of operators, thus limiting their ability to effectively interact with targeted technologies. Therefore, a critical step in designing complex display systems is to find an appropriate match between capabilities, operational needs, and human ability to utilize complex information. The present work examines a set of evaluation parameters that were developed to facilitate the design of systems to support a specific military need; that is, the capacity to support the achievement and maintenance of real-time 360° situational awareness (SA) across a range of complex military environments. The focal point of this evaluation is on the reciprocity native to advanced engineering and human factors practices, with a specific emphasis on aligning the operator-systemenvironment fit. That is, the objective is to assess parameters for evaluation of 360° SA display systems that are suitable for military operations in tactical platforms across a broad range of current and potential operational environments. The approach is centered on five "families" of parameters, including vehicle sensors, data transmission, in-vehicle displays, intelligent automation, and neuroergonomic considerations. Parameters are examined under the assumption that displays designed to conform to natural neurocognitive processing will enhance and stabilize Soldier-system performance and, ultimately, unleash the human's potential to actively achieve and maintain the awareness necessary to enhance lethality and survivability within modern and future operational contexts.

  14. Crew Exercise Fact Sheet

    NASA Technical Reports Server (NTRS)

    Rafalik, Kerrie

    2017-01-01

    Johnson Space Center (JSC) provides research, engineering, development, integration, and testing of hardware and software technologies for exercise systems applications in support of human spaceflight. This includes sustaining the current suite of on-orbit exercise devices by reducing maintenance, addressing obsolescence, and increasing reliability through creative engineering solutions. Advanced exercise systems technology development efforts focus on the sustainment of crew's physical condition beyond Low Earth Orbit for extended mission durations with significantly reduced mass, volume, and power consumption when compared to the ISS.

  15. Crew Exercise

    NASA Technical Reports Server (NTRS)

    Rafalik, Kerrie K.

    2017-01-01

    Johnson Space Center (JSC) provides research, engineering, development, integration, and testing of hardware and software technologies for exercise systems applications in support of human spaceflight. This includes sustaining the current suite of on-orbit exercise devices by reducing maintenance, addressing obsolescence, and increasing reliability through creative engineering solutions. Advanced exercise systems technology development efforts focus on the sustainment of crew's physical condition beyond Low Earth Orbit for extended mission durations with significantly reduced mass, volume, and power consumption when compared to the ISS.

  16. Aircrew Performance Cutting-Edge Technology: Emerging Human Performance Enhancement Technology Vision in Support of Operational Military Aviation Strategy

    DTIC Science & Technology

    2003-09-01

    Refractive Surgery Origin and History, (RK, PRK , LASIK ) Refractive surgery was first considered as early as 1898 by a Dutch professor and was...34 This ejection demonstrated one extreme facet of the safety of PRK . Laser-Assisted In Situ Keratomileusis ( LASIK ) LASIK offers the greatest...refractive shift of clinical significance.35 Therefore LASIK and PRK , recipients had no significant vision changes at altitude, unlike recipients of RK

  17. Commercial Human Spaceflight Press Conference

    NASA Image and Video Library

    2010-02-02

    NASA Administrator Charles Bolden, left, and Assistant to the President for Science and Technology and Director of the White House Office of Science and Technology Policy Dr. John P. Holdren are seen during a press conference, Tuesday, Feb. 2, 2010, at the National Press Club in Washington, where it was announced that NASA has awarded $50 million through funded agreements to further the commercial sector's capability to support transport of crew to and from low Earth orbit. Photo Credit: (NASA/Bill Ingalls)

  18. International Space Station as a Platform for Exploration Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Raftery, Michael; Woodcock, Gordon

    2010-01-01

    The International Space Station (ISS) has established a new model for the achievement of the most difficult engineering goals in space: international collaboration at the program level with competition at the level of technology. This strategic shift in management approach provides long term program stability while still allowing for the flexible evolution of technology needs and capabilities. Both commercial and government sponsored technology developments are well supported in this management model. ISS also provides a physical platform for development and demonstration of the systems needed for missions beyond low earth orbit. These new systems at the leading edge of technology require operational exercise in the unforgiving environment of space before they can be trusted for long duration missions. Systems and resources needed for expeditions can be aggregated and thoroughly tested at ISS before departure thus providing wide operational flexibility and the best assurance of mission success. We will describe representative mission profiles showing how ISS can support exploration missions to the Moon, Mars, asteroids and other potential destinations. Example missions would include humans to lunar surface and return, and humans to Mars orbit as well as Mars surface and return. ISS benefits include: international access from all major launch sites; an assembly location with crew and tools that could help prepare departing expeditions that involve more than one launch; a parking place for reusable vehicles; and the potential to add a propellant depot.

  19. [The Cinematographic Narration of the Posthumanism].

    PubMed

    Talavera, Pedro

    2015-01-01

    The cinema constitutes today the aesthetic forefront of the posthumanism and a powerful instance of reflection on the posthuman future. In its more futurist dimension, the films present an evolutionary irreversible process linked to the technological development, which will determine the end of the human kind and its birth to a new posthuman reality. But it turns out paradoxical that the process of dehumanization of the human beings appears like inevitable and, nevertheless, appears as ideally Utopian the desire of humanization of the androids (to support the human values beyond the human kind). In consequence, the cinematographic reflection on posthumanism seems to be headed not towards the appearance of a new nature but towards the recovery of the genuine human values.

  20. NASA's Exploration Architecture

    NASA Technical Reports Server (NTRS)

    Tyburski, Timothy

    2006-01-01

    A Bold Vision for Space Exploration includes: 1) Complete the International Space Station; 2) Safely fly the Space Shuttle until 2010; 3) Develop and fly the Crew Exploration Vehicle no later than 2012; 4) Return to the moon no later than 2020; 5) Extend human presence across the solar system and beyond; 6) Implement a sustained and affordable human and robotic program; 7) Develop supporting innovative technologies, knowledge, and infrastructures; and 8) Promote international and commercial participation in exploration.

  1. Human Computer Collaboration at the Edge: Enhancing Collective Situation Understanding with Controlled Natural Language

    DTIC Science & Technology

    2016-09-06

    settled all but question 36 which was: ‘What sport does Capt Falcon play?’ and answers conflicted because some players used the name ‘soccer’ while others...email: PreeceAD@cardiff.ac.uk †Emerging Technology Services, IBM United Kingdom Ltd, Hursley Park, Winchester, UK ‡US Army Research Laboratory, Human... Research and Engineering Directorate, Aberdeen Proving Ground, USA Abstract—Effective coalition operations require support for dynamic information

  2. A simulation based optimization approach to model and design life support systems for manned space missions

    NASA Astrophysics Data System (ADS)

    Aydogan, Selen

    This dissertation considers the problem of process synthesis and design of life-support systems for manned space missions. A life-support system is a set of technologies to support human life for short and long-term spaceflights, via providing the basic life-support elements, such as oxygen, potable water, and food. The design of the system needs to meet the crewmember demand for the basic life-support elements (products of the system) and it must process the loads generated by the crewmembers. The system is subject to a myriad of uncertainties because most of the technologies involved are still under development. The result is high levels of uncertainties in the estimates of the model parameters, such as recovery rates or process efficiencies. Moreover, due to the high recycle rates within the system, the uncertainties are amplified and propagated within the system, resulting in a complex problem. In this dissertation, two algorithms have been successfully developed to help making design decisions for life-support systems. The algorithms utilize a simulation-based optimization approach that combines a stochastic discrete-event simulation and a deterministic mathematical programming approach to generate multiple, unique realizations of the controlled evolution of the system. The timelines are analyzed using time series data mining techniques and statistical tools to determine the necessary technologies, their deployment schedules and capacities, and the necessary basic life-support element amounts to support crew life and activities for the mission duration.

  3. Effective Team Support: From Modeling to Software Agents

    NASA Technical Reports Server (NTRS)

    Remington, Roger W. (Technical Monitor); John, Bonnie; Sycara, Katia

    2003-01-01

    The purpose of this research contract was to perform multidisciplinary research between CMU psychologists, computer scientists and engineers and NASA researchers to design a next generation collaborative system to support a team of human experts and intelligent agents. To achieve robust performance enhancement of such a system, we had proposed to perform task and cognitive modeling to thoroughly understand the impact technology makes on the organization and on key individual personnel. Guided by cognitively-inspired requirements, we would then develop software agents that support the human team in decision making, information filtering, information distribution and integration to enhance team situational awareness. During the period covered by this final report, we made substantial progress in modeling infrastructure and task infrastructure. Work is continuing under a different contract to complete empirical data collection, cognitive modeling, and the building of software agents to support the teams task.

  4. Effective Team Support: From Task and Cognitive Modeling to Software Agents for Time-Critical Complex Work Environments

    NASA Technical Reports Server (NTRS)

    Remington, Roger W. (Technical Monitor); John, Bonnie E.; Sycara, Katia

    2005-01-01

    The purpose of this research contract was to perform multidisciplinary research between CMU psychologists, computer scientists and NASA researchers to design a next generation collaborative system to support a team of human experts and intelligent agents. To achieve robust performance enhancement of such a system, we had proposed to perform task and cognitive modeling to thoroughly understand the impact technology makes on the organization and on key individual personnel. Guided by cognitively-inspired requirements, we would then develop software agents that support the human team in decision making, information filtering, information distribution and integration to enhance team situational awareness. During the period covered by this final report, we made substantial progress in completing a system for empirical data collection, cognitive modeling, and the building of software agents to support a team's tasks, and in running experiments for the collection of baseline data.

  5. Knowledge bases, clinical decision support systems, and rapid learning in oncology.

    PubMed

    Yu, Peter Paul

    2015-03-01

    One of the most important benefits of health information technology is to assist the cognitive process of the human mind in the face of vast amounts of health data, limited time for decision making, and the complexity of the patient with cancer. Clinical decision support tools are frequently cited as a technologic solution to this problem, but to date useful clinical decision support systems (CDSS) have been limited in utility and implementation. This article describes three unique sources of health data that underlie fundamentally different types of knowledge bases which feed into CDSS. CDSS themselves comprise a variety of models which are discussed. The relationship of knowledge bases and CDSS to rapid learning health systems design is critical as CDSS are essential drivers of rapid learning in clinical care. Copyright © 2015 by American Society of Clinical Oncology.

  6. Technology-based management of environmental organizations using an Environmental Management Information System (EMIS): Design and development

    NASA Astrophysics Data System (ADS)

    Kouziokas, Georgios N.

    2016-01-01

    The adoption of Information and Communication Technologies (ICT) in environmental management has become a significant demand nowadays with the rapid growth of environmental information. This paper presents a prototype Environmental Management Information System (EMIS) that was developed to provide a systematic way of managing environmental data and human resources of an environmental organization. The system was designed using programming languages, a Database Management System (DBMS) and other technologies and programming tools and combines information from the relational database in order to achieve the principal goals of the environmental organization. The developed application can be used to store and elaborate information regarding: human resources data, environmental projects, observations, reports, data about the protected species, environmental measurements of pollutant factors or other kinds of analytical measurements and also the financial data of the organization. Furthermore, the system supports the visualization of spatial data structures by using geographic information systems (GIS) and web mapping technologies. This paper describes this prototype software application, its structure, its functions and how this system can be utilized to facilitate technology-based environmental management and decision-making process.

  7. NASA Johnson Space Center Usability Testing and Analysis facility (UTAF) Overview

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Holden, Kritina L.

    2005-01-01

    The Usability Testing and Analysis Facility (UTAF) is part of the Space Human Factors Laboratory at the NASA Johnson Space Center in Houston, Texas. The facility performs research for NASA's HumanSystems Integration Program, under the HumanSystems Research and Technology Division. Specifically, the UTAF provides human factors support for space vehicles, including the International Space Station, the Space Shuttle, and the forthcoming Crew Exploration Vehicle. In addition, there are ongoing collaborative research efforts with external corporations and universities. The UTAF provides human factors analysis, evaluation, and usability testing of crew interfaces for space applications. This includes computer displays and controls, workstation systems, and work environments. The UTAF has a unique mix of capabilities, with a staff experienced in both cognitive human factors and ergonomics. The current areas of focus are: human factors applications in emergency medical care and informatics; control and display technologies for electronic procedures and instructions; voice recognition in noisy environments; crew restraint design for unique microgravity workstations; and refinement of human factors processes and requirements. This presentation will provide an overview of ongoing activities, and will address how the UTAF projects will evolve to meet new space initiatives.

  8. Exponential expansion: galactic destiny or technological hubris?

    NASA Astrophysics Data System (ADS)

    Finney, B. R.

    Is it our destiny to expand exponentially to populate the galaxy, or is such a vision but an extreme example of technological hubris? The overall record of human evolution and dispersion over the Earth can be cited to support the view that we are a uniquely expansionary and technological animal bound for the stars, yet an examination of the fate of individual migrations and exploratory initiatives raises doubts. Although it may be in keeping with our hubristic nature to predict ultimate galactic expansion, there is no way to specify how far expansionary urges may drive our spacefaring descendants.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacques V Hugo

    This book chapter describes the considerations for the selection of advanced human–system interfaces (HSIs) for the new generation of nuclear power plants. The chapter discusses the technologies that will be needed to support highly automated nuclear power plants, while minimising demands for numbers of operational staff, reducing human error and improving plant efficiency and safety. Special attention is paid to the selection and deployment of advanced technologies in nuclear power plants (NPPs). The chapter closes with an examination of how technologies are likely to develop over the next 10–15 years and how this will affect design choices for the nuclearmore » industry.« less

  10. Genetic and archaeological perspectives on the initial modern human colonization of southern Asia.

    PubMed

    Mellars, Paul; Gori, Kevin C; Carr, Martin; Soares, Pedro A; Richards, Martin B

    2013-06-25

    It has been argued recently that the initial dispersal of anatomically modern humans from Africa to southern Asia occurred before the volcanic "supereruption" of the Mount Toba volcano (Sumatra) at ∼74,000 y before present (B.P.)-possibly as early as 120,000 y B.P. We show here that this "pre-Toba" dispersal model is in serious conflict with both the most recent genetic evidence from both Africa and Asia and the archaeological evidence from South Asian sites. We present an alternative model based on a combination of genetic analyses and recent archaeological evidence from South Asia and Africa. These data support a coastally oriented dispersal of modern humans from eastern Africa to southern Asia ∼60-50 thousand years ago (ka). This was associated with distinctively African microlithic and "backed-segment" technologies analogous to the African "Howiesons Poort" and related technologies, together with a range of distinctively "modern" cultural and symbolic features (highly shaped bone tools, personal ornaments, abstract artistic motifs, microblade technology, etc.), similar to those that accompanied the replacement of "archaic" Neanderthal by anatomically modern human populations in other regions of western Eurasia at a broadly similar date.

  11. Acquisition and Visualization Techniques of Human Motion Using Master-Slave System and Haptograph

    NASA Astrophysics Data System (ADS)

    Katsura, Seiichiro; Ohishi, Kiyoshi

    Artificial acquisition and reproduction of human sensations are basic technologies of communication engineering. For example, auditory information is obtained by a microphone, and a speaker reproduces it by artificial means. Furthermore, a video camera and a television make it possible to transmit visual sensation by broadcasting. On the contrary, since tactile or haptic information is subject to the Newton's “law of action and reaction” in the real world, a device which acquires, transmits, and reproduces the information has not been established. From the point of view, real-world haptics is the key technology for future haptic communication engineering. This paper proposes a novel acquisition method of haptic information named “haptograph”. The haptograph visualizes the haptic information like photograph. Since temporal and spatial analyses are conducted to represent haptic information as the haptograph, it is possible to be recognized and to be evaluated intuitively. In this paper, the proposed haptograph is applied to visualization of human motion. It is possible to represent the motion characteristics, the expert's skill and the personal habit, and so on. In other words, a personal encyclopedia is attained. Once such a personal encyclopedia is stored in ubiquitous environment, the future human support technology will be developed.

  12. Engaging Historically Black Colleges and Universities through Science, Technology, Engineering and Math (STEM) Education and Community Engagement

    EPA Pesticide Factsheets

    EPA’s STEM Outreach Program in RTP began in 2004, with the aim of supporting EPA’s mission of protecting human health and the environment by increasing awareness, providing education, and inspiring the public, especially K-12 students.

  13. EXPOSURE TO CONCENTRATED AMBIENT PARTICLES (CAPS): REVIEW

    EPA Science Inventory

    Epidemiologic studies support a participation of fine particulate matter (PM) with a diameter of 0.1 to 2.5 microm in the effects of air pollution particles on human health. The ambient fine particle concentrator is a recently developed technology that can enrich the mass of ambi...

  14. Compact Laser Multi-gas Spectral Sensors for Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    Tittel, Frank K.

    1997-01-01

    The objective of this research effort has been the development of a new gas sensor technology to meet NASA requirements for spacecraft and space station human life support systems for sensitive selective and real time detection of trace gas species in the mid-infrared spectral region.

  15. Multimodal Learning Clubs

    ERIC Educational Resources Information Center

    Casey, Heather

    2012-01-01

    Multimodal learning clubs link principles of motivation and engagement with 21st century technological tools and texts to support content area learning. The author describes how a sixth grade health teacher and his class incorporated multimodal learning clubs into a unit of study on human body systems. The students worked collaboratively online…

  16. The Use of Telehealth in Schools. Position Statement. Revised

    ERIC Educational Resources Information Center

    Hoffmann, Susan; Dolatowski, Rosemary; McDowell, Bernadette; Mancuso, Patty; Rochkes, Laura L.; Wavra, Theresa Ernst; Selekman, Janice

    2012-01-01

    Telehealth has been defined as "the use of electronic information and telecommunications technologies to support long-distance clinical health care, patient and professional health-related education, public health and health administration" (United States Department of Health and Human Services [USDHHS], n.d.). Telehealth enables collaboration of…

  17. Meeting the challenges--the role of medical informatics in an ageing society.

    PubMed

    Koch, Sabine

    2006-01-01

    The objective of this paper is to identify trends and new technological developments that appear due to an ageing society and to relate them to current research in the field of medical informatics. A survey of the current literature reveals that recent technological advances have been made in the fields of "telecare and home-monitoring", "smart homes and robotics" and "health information systems and knowledge management". Innovative technologies such as wearable devices, bio- and environmental sensors and mobile, humanoid robots do already exist and ambient assistant living environments are being created for an ageing society. However, those technologies have to be adapted to older people's self-care processes and coping strategies, and to support new ways of healthcare delivery. Medical informatics can support this process by providing the necessary information infrastructure, contribute to standardisation, interoperability and security issues and provide modelling and simulation techniques for educational purposes. Research fields of increasing importance with regard to an ageing society are, moreover, the fields of knowledge management, ubiquitous computing and human-computer interaction.

  18. Certification of tactics and strategies in aviation

    NASA Technical Reports Server (NTRS)

    Koelman, Hartmut

    1994-01-01

    The paper suggests that the 'tactics and strategies' notion is a highly suitable paradigm to describe the cognitive involvement of human operators in advanced aviation systems (far more suitable than classical functional analysis), and that the workload and situational awareness of operators are intimately associated with the planning and execution of their tactics and strategies. If system designers have muddled views about the collective tactics and strategies to be used during operation, they will produce sub-optimum designs. If operators use unproven and/or inappropriate tactics and strategies, the system may fail. The author wants to make a point that, beyond certification of people or system designs, there may be a need to go into more detail and examine (certify?) the set of tactics and strategies (i.e., the Operational Concept) which makes the people and systems perform as expected. The collective tactics and strategies determine the information flows and situational awareness which exists in organizations and composite human-machine systems. The available infrastructure and equipment (automation) enable these information flows and situational awareness, but are at the same time the constraining factor. Frequently, the tactics and strategies are driven by technology, whereas we would rather like to see a system designed to support an optimized Operational Concept, i.e., to support a sufficiently coherent, cooperative and modular set of anticipation and planning mechanisms. Again, in line with the view of MacLeod and Taylor (1993), this technology driven situation may be caused by the system designer's and operator job designer's over-emphasis on functional analysis (a mechanistic engineering concept), at the expense of a subject which does not seem to be well understood today: the role of the (human cognitive and/or automated) tactics and strategies which are embedded in composite human-machine systems. Research would be needed to arrive at a generally accepted 'planning theory' which can elevate the analysis, description and design of tactics and strategies from today's cottage industry methods to an engineering discipline. The available infrastructure and equipment (automation) enable these information flows and situational awareness, but are at the same time the constraining factor. Frequently, the tactics and strategies are driven by technology, whereas we would rather like to see a system designed to support an optimized Operational Concept, i.e., to support a sufficiently coherent, cooperative and modular set of anticipation and planning mechanisms. Again, in line with the view of MacLeod and Taylor (1993), this technology driven situation may be caused by the system designer's and operator job designer's over-emphasis on functional analysis (a mechanistic engineering concept), at the expense of a subject which does not seem to be well understood today: the role of the (human cognitive and/or automated) tactics and strategies which are embedded in composite human-machine systems. Research would be needed to arrive at a generally accepted 'planning theory' which can evaluate the analysis, description and design of tactics and strategies from today's cottage industry methods to an engineering discipline.

  19. Health information technology: standards, implementation specifications, and certification criteria for electronic health record technology, 2014 edition; revisions to the permanent certification program for health information technology. Final rule.

    PubMed

    2012-09-04

    With this final rule, the Secretary of Health and Human Services adopts certification criteria that establish the technical capabilities and specify the related standards and implementation specifications that Certified Electronic Health Record (EHR) Technology will need to include to, at a minimum, support the achievement of meaningful use by eligible professionals, eligible hospitals, and critical access hospitals under the Medicare and Medicaid EHR Incentive Programs beginning with the EHR reporting periods in fiscal year and calendar year 2014. This final rule also makes changes to the permanent certification program for health information technology, including changing the program's name to the ONC HIT Certification Program.

  20. A Framework for Human Performance Criteria for Advanced Reactor Operational Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacques V Hugo; David I Gertman; Jeffrey C Joe

    2014-08-01

    This report supports the determination of new Operational Concept models needed in support of the operational design of new reactors. The objective of this research is to establish the technical bases for human performance and human performance criteria frameworks, models, and guidance for operational concepts for advanced reactor designs. The report includes a discussion of operating principles for advanced reactors, the human performance issues and requirements for human performance based upon work domain analysis and current regulatory requirements, and a description of general human performance criteria. The major findings and key observations to date are that there is some operatingmore » experience that informs operational concepts for baseline designs for SFR and HGTRs, with the Experimental Breeder Reactor-II (EBR-II) as a best-case predecessor design. This report summarizes the theoretical and operational foundations for the development of a framework and model for human performance criteria that will influence the development of future Operational Concepts. The report also highlights issues associated with advanced reactor design and clarifies and codifies the identified aspects of technology and operating scenarios.« less

  1. Technology for increased human productivity and safety on orbit

    NASA Technical Reports Server (NTRS)

    Ambrus, Judith; Gartrell, Charles F.

    1991-01-01

    Technologies are addressed that can facilitate the efficient performance of station operations on the Space Station Freedom (SSF) and thereby optimize the utilization of SSF for scientific research. The dedication of SSF capabilities to scientific study and to the payload-user community is a key goal of the program. Robotics applications are discussed in terms of automating the processing of experiment materials on-orbit by transferring ampules to a furnace system or by handling plant-tissue cultures. Noncontact temperature measurement and medical support technology are considered important technologies for maximizing time for scientific purposes. Detailed examinations are conducted of other technologies including advanced data systems and furnace designs. The addition of the listed technologies can provide an environment in which scientific research is more efficient and accurate.

  2. ISRU Development Strategy and Recent Activities to Support Near and Far Term Missions

    NASA Astrophysics Data System (ADS)

    Baird, Russell S.; Sanders, Gerald B.; Simon, Thomas M.

    2003-01-01

    The practical expansion of humans beyond low Earth orbit into near-Earth space and out into the solar system for exploration, commercialization, tourism, and colonization will require the effective utilization of whatever indigenous resources are available to make these endeavors economically feasible and capable of extended operations. This concept of ``living off the land'' is called In-Situ Resource Utilization (ISRU). The resources available for ISRU applications vary widely, depending upon the location. However, there are resources, technologies, and processes that are common to multiple destinations and ISRU-related applications. These resources range from carbon dioxide (CO2) and water vapor found in human habitats (surface & spacecraft) and in the Martian atmosphere, to water (ice and hydrated minerals) and various oxygen, carbon, and metal-bearing resources found on comets and asteroids, and in planetary surface materials at numerous destinations of interest (Moon, Mars, Titan, and Europa). Many parties are investigating the common technologies and processes to effectively extract and use these resources. This paper will discuss how ISRU is enabling for both near and far term human exploration missions, and present a summary of recent and on-going ISRU work sponsored by the NASA/Johnson Space Center. Technology development activities that will be described in detail include an advanced CO2 freezer acquisition system, a multi-fluid common bulkhead cryogenic storage tank, and a variety of microchannel chemical reactor concepts. Recent advanced Sabatier reactor concept development activities in preparation for later, end-to-end system testing will be described as well. This paper will also discuss an ISRU-based strategy to enable extensive robotic and human surface exploration operations and a related on-going demonstration program for a fuel cell based power plant for rover applications. Technology commonalities between ISRU, life support systems, and Extra Vehicular Activity (EVA), applications will also be presented.

  3. Dynamic Modeling of Process Technologies for Closed-Loop Water Recovery Systems

    NASA Technical Reports Server (NTRS)

    Allada, Rama Kumar; Lange, Kevin; Anderson, Molly

    2011-01-01

    Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents dynamic simulations of chemical process for primary processor technologies including: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system, the Wiped-Film Rotating Disk (WFRD), and post-distillation water polishing processes such as the Volatiles Removal Assembly (VRA) that were developed using the Aspen Custom Modeler and Aspen Plus process simulation tools. The results expand upon previous work for water recovery technology models and emphasize dynamic process modeling and results. The paper discusses system design, modeling details, and model results for each technology and presents some comparisons between the model results and available test data. Following these initial comparisons, some general conclusions and forward work are discussed.

  4. CO2 and O2 Gas Exchange in an Experimental Model of the Btlss with Plant Wastes and Human Wastes Included in the Mass Exchange

    NASA Astrophysics Data System (ADS)

    Ushakova, Sofya; Tikhomirov, Alexander A.; Velichko, Vladimir; Tikhomirova, Natalia; Trifonov, Sergey V.

    2016-07-01

    Mass exchange processes in the new experimental model of the biotechnical life support system (BTLSS) constructed at the Institute of Biophysics SB RAS have a higher degree of closure than in the previous BTLSS, and, thus, the technologies employed in the new system are more complex. Therefore, before closing the loops of mass exchange processes for several months, the new model of the BTLSS was run to match the technologies employed to cultivate plants and the methods used to involve inedible plant parts and human wastes into the mass exchange with the CO2 absorption rate and the amount of the resulting O2. The plant compartment included vegetables grown on the soil-like substrate (SLS) (chufa, beet, carrot, radish, and lettuce), plants hydroponically grown on expanded clay aggregate (wheat, soybean, watercress), and plants grown in aquaculture (common glasswort and watercress). Nutrient solutions for hydroponically grown plants were prepared by using products of physicochemical mineralization of human wastes. Growing the plants in aquaculture enabled maintaining NaCl concentration in the irrigation solution for hydroponically grown plants at a level safe for the plants. Inedible plant biomass was added to the SLS. Three cycles of closing the system were run, which lasted 7, 7, and 10 days. The comparison of the amount of CO2 fed into the system over 24 h (simulating human respiration) and the amount of CO2 daily exhaled by a 70-kg middle-aged human showed that between 1% and 4% of the daily emissions of CO2 were assimilated in the system, and about 3% of the average human daily O2 requirement accumulated in the system. Plant productivity was between 4 and 4.7% of the human daily vegetable requirement, or between 3 and 3.5% of the total human daily food requirement. Thus, testing of the BTLSS showed a match between the technologies employed to arrange mass exchange processes. This study was supported by the grant of the Russian Science Foundation (Project No. 14-14-00599).

  5. Outside the box: will information technology be a viable intervention to improve the quality of cancer care?

    PubMed

    Hesse, Bradford W; Hanna, Christopher; Massett, Holly A; Hesse, Nicola K

    2010-01-01

    The use of health information technology (IT) to resolve the crisis in communication inherent within the fragmented service environment of medical care in the United States is a strategic priority for the Department of Health and Human Services. Yet the deployment of health IT alone is not sufficient to improve quality in health service delivery; what is needed is a human factors approach designed to optimize the balance between health-care users, health-care providers, policies, procedures, and technologies. An evaluation of interface issues between primary and specialist care related to cancer reveals opportunities for human factors improvement along the cancer care continuum. Applications that emphasize cognitive support for prevention recommendations and that encourage patient engagement can help create a coordinated health-care environment conducive to cancer prevention and early detection. An emphasis on reliability, transparency, and accountability can help improve the coordination of activities among multiple service providers during diagnosis and treatment. A switch in emphasis from a transaction-based approach to one emphasizing long-term support for healing relationships should help improve patient outcomes during cancer survivorship and end-of-life care. Across the entire continuum of care, an emphasis on "meaningful use" of health IT-rather than on IT as an endpoint-should help put cancer on a path toward substantive continuous quality improvement. The accompanying research questions will focus on reducing the variance between the social and technical subsystems as IT is used to improve patient outcomes across the interfaces of care.

  6. Engaging with residents' perceived risks and benefits about technologies as a way of resolving remediation dilemmas.

    PubMed

    Prior, Jason; Rai, Tapan

    2017-12-01

    In recent decades the diversity of remediation technologies has increased significantly, with the breadth of technologies ranging from dig and dump to emergent technologies like phytoremediation and nanoremediation. The benefits of these technologies to the environment and human health are believed to be substantial. However, they also potentially constitute risks. Whilst there is a growing body of knowledge about the risks and benefits of these technologies from the perspective of experts, little is known about how residents perceive the risks and benefits of the application of these technologies to address contaminants in their local environment. This absence of knowledge poses a challenge to remediation practitioners and policy makers who are increasingly seeking to engage these affected local residents in choosing technology applications. Building on broader research into the perceived benefits and risks of technologies, and data from a telephone survey of 2009 residents living near 13 contaminated sites in Australia, regression analysis of closed-ended survey questions and coding of open-ended questions are combined to identify the main predictors of resident's perceived levels of risk and benefit to resident's health and to their local environment from remediation technologies. This research identifies a range of factors associated with the residents' physical context, their engagement with institutions during remediation processes, and the technologies which are associated with residents' level of perceived risk and benefit for human health and the local environment. The analysis found that bioremediation technologies were perceived as less risky and more beneficial than chemical, thermal and physical technologies. The paper also supports broader technology research that reports an inverse correlation between levels of perceived risks and benefits. In addition, the paper reveals the types of risks and benefits to human health and the local environment that residents most commonly associate with remediation technologies. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Electroactive polymer (EAP) actuators for future humanlike robots

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph

    2009-03-01

    Human-like robots are increasingly becoming an engineering reality thanks to recent technology advances. These robots, which are inspired greatly by science fiction, were originated from the desire to reproduce the human appearance, functions and intelligence and they may become our household appliance or even companion. The development of such robots is greatly supported by emerging biologically inspired technologies. Potentially, electroactive polymer (EAP) materials are offering actuation capabilities that allow emulating the action of our natural muscles for making such machines perform lifelike. There are many technical issues related to making such robots including the need for EAP materials that can operate as effective actuators. Beside the technology challenges these robots also raise concerns that need to be addressed prior to forming super capable robots. These include the need to prevent accidents, deliberate harm, or their use in crimes. In this paper, the potential EAP actuators and the challenges that these robots may pose will be reviewed.

  8. Electroactive Polymer (EAP) Actuators for Future Humanlike Robots

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    2009-01-01

    Human-like robots are increasingly becoming an engineering reality thanks to recent technology advances. These robots, which are inspired greatly by science fiction, were originated from the desire to reproduce the human appearance, functions and intelligence and they may become our household appliance or even companion. The development of such robots is greatly supported by emerging biologically inspired technologies. Potentially, electroactive polymer (EAP) materials are offering actuation capabilities that allow emulating the action of our natural muscles for making such machines perform lifelike. There are many technical issues related to making such robots including the need for EAP materials that can operate as effective actuators. Beside the technology challenges these robots also raise concerns that need to be addressed prior to forming super capable robots. These include the need to prevent accidents, deliberate harm, or their use in crimes. In this paper, the potential EAP actuators and the challenges that these robots may pose will be reviewed.

  9. Past, Present and Future Advanced ECLS Systems for Human Exploration of Space

    NASA Technical Reports Server (NTRS)

    Mitchell, Kenny

    2004-01-01

    This paper will review the historical record of NASA's regenerative life support systems flight hardware with emphasis on the complexity of spiral development of technology as related to the International Space Station program. A brief summary of what constitutes ECLSS designs for human habitation will be included and will provide illustrations of the complex system/system integration issues. The new technology areas which need to be addressed in our future Code T initiatives will be highlighted. The development status of the current regenerative ECLSS for Space Station will be provided for the Oxygen Generation System and the Water Recovery System. In addition, the NASA is planning to augment the existing ISS capability with a new technology development effort by Code U/Code T for CO2 reduction (Sabatier Reactor). This latest ISS spiral development activity will be highlighted in this paper.

  10. Physical/chemical closed-loop water-recycling

    NASA Technical Reports Server (NTRS)

    Herrmann, Cal C.; Wydeven, Theodore

    1991-01-01

    Water needs, water sources, and means for recycling water are examined in terms appropriate to the water quality requirements of a small crew and spacecraft intended for long duration exploration missions. Inorganic, organic, and biological hazards are estimated for waste water sources. Sensitivities to these hazards for human uses are estimated. The water recycling processes considered are humidity condensation, carbon dioxide reduction, waste oxidation, distillation, reverse osmosis, pervaporation, electrodialysis, ion exchange, carbon sorption, and electrochemical oxidation. Limitations and applications of these processes are evaluated in terms of water quality objectives. Computerized simulation of some of these chemical processes is examined. Recommendations are made for development of new water recycling technology and improvement of existing technology for near term application to life support systems for humans in space. The technological developments are equally applicable to water needs on Earth, in regions where extensive water recycling is needed or where advanced water treatment is essential to meet EPA health standards.

  11. Acceptance model of a Hospital Information System.

    PubMed

    Handayani, P W; Hidayanto, A N; Pinem, A A; Hapsari, I C; Sandhyaduhita, P I; Budi, I

    2017-03-01

    The purpose of this study is to develop a model of Hospital Information System (HIS) user acceptance focusing on human, technological, and organizational characteristics for supporting government eHealth programs. This model was then tested to see which hospital type in Indonesia would benefit from the model to resolve problems related to HIS user acceptance. This study used qualitative and quantitative approaches with case studies at four privately owned hospitals and three government-owned hospitals, which are general hospitals in Indonesia. The respondents involved in this study are low-level and mid-level hospital management officers, doctors, nurses, and administrative staff who work at medical record, inpatient, outpatient, emergency, pharmacy, and information technology units. Data was processed using Structural Equation Modeling (SEM) and AMOS 21.0. The study concludes that non-technological factors, such as human characteristics (i.e. compatibility, information security expectancy, and self-efficacy), and organizational characteristics (i.e. management support, facilitating conditions, and user involvement) which have level of significance of p<0.05, significantly influenced users' opinions of both the ease of use and the benefits of the HIS. This study found that different factors may affect the acceptance of each user in each type of hospital regarding the use of HIS. Finally, this model is best suited for government-owned hospitals. Based on the results of this study, hospital management and IT developers should have more understanding on the non-technological factors to better plan for HIS implementation. Support from management is critical to the sustainability of HIS implementation to ensure HIS is easy to use and provides benefits to the users as well as hospitals. Finally, this study could assist hospital management and IT developers, as well as researchers, to understand the obstacles faced by hospitals in implementing HIS. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Possibilities for global governance of converging technologies

    NASA Astrophysics Data System (ADS)

    Roco, Mihail C.

    2008-01-01

    The convergence of nanotechnology, modern biology, the digital revolution and cognitive sciences will bring about tremendous improvements in transformative tools, generate new products and services, enable opportunities to meet and enhance human potential and social achievements, and in time reshape societal relationships. This paper focuses on the progress made in governance of such converging, emerging technologies and suggests possibilities for a global approach. Specifically, this paper suggests creating a multidisciplinary forum or a consultative coordinating group with members from various countries to address globally governance of converging, emerging technologies. The proposed framework for governance of converging technologies calls for four key functions: supporting the transformative impact of the new technologies; advancing responsible development that includes health, safety and ethical concerns; encouraging national and global partnerships; and establishing commitments to long-term planning and investments centered on human development. Principles of good governance guiding these functions include participation of all those who are forging or affected by the new technologies, transparency of governance strategies, responsibility of each participating stakeholder, and effective strategic planning. Introduction and management of converging technologies must be done with respect for immediate concerns, such as privacy, access to medical advancements, and potential human health effects. At the same time, introduction and management should also be done with respect for longer-term concerns, such as preserving human integrity, dignity and welfare. The suggested governance functions apply to four levels of governance: (a) adapting existing regulations and organizations; (b) establishing new programs, regulations and organizations specifically to handle converging technologies; (c) building capacity for addressing these issues into national policies and institutions; and (d) making international agreements and partnerships. Several possibilities for improving the governance of converging technologies in the global self-regulating ecosystem are recommended: using open-source and incentive-based models, establishing corresponding science and engineering platforms, empowering the stakeholders and promoting partnerships among them, implementing long-term planning that includes international perspectives, and institute voluntary and science-based measures for risk management.

  13. Advanced Technologies for Future Spacecraft Cockpits and Space-based Control Centers

    NASA Technical Reports Server (NTRS)

    Garcia-Galan, Carlos; Uckun, Serdar; Gregory, William; Williams, Kerry

    2006-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a new era of Space Exploration, aimed at sending crewed spacecraft beyond Low Earth Orbit (LEO), in medium and long duration missions to the Lunar surface, Mars and beyond. The challenges of such missions are significant and will require new technologies and paradigms in vehicle design and mission operations. Current roles and responsibilities of spacecraft systems, crew and the flight control team, for example, may not be sustainable when real-time support is not assured due to distance-induced communication lags, radio blackouts, equipment failures, or other unexpected factors. Therefore, technologies and applications that enable greater Systems and Mission Management capabilities on-board the space-based system will be necessary to reduce the dependency on real-time critical Earth-based support. The focus of this paper is in such technologies that will be required to bring advance Systems and Mission Management capabilities to space-based environments where the crew will be required to manage both the systems performance and mission execution without dependence on the ground. We refer to this concept as autonomy. Environments that require high levels of autonomy include the cockpits of future spacecraft such as the Mars Exploration Vehicle, and space-based control centers such as a Lunar Base Command and Control Center. Furthermore, this paper will evaluate the requirements, available technology, and roadmap to enable full operational implementation of onboard System Health Management, Mission Planning/re-planning, Autonomous Task/Command Execution, and Human Computer Interface applications. The technology topics covered by the paper include enabling technology to perform Intelligent Caution and Warning, where the systems provides directly actionable data for human understanding and response to failures, task automation applications that automate nominal and Off-nominal task execution based on human input or integrated health state-derived conditions. Shifting from Systems to Mission Management functions, we discuss the role of automated planning applications (tactical planning) on-board, which receive data from the other cockpit automation systems and evaluate the mission plan against the dynamic systems and mission states and events, to provide the crew with capabilities that enable them to understand, change, and manage the timeline of their mission. Lastly, we discuss the role of advanced human interface technologies that organize and provide the system md mission information to the crew in ways that maximize their situational awareness and ability to provide oversight and control of aLl the automated data and functions.

  14. Are We There Yet? ... Developing In Situ Fabrication and Repair (ISFR) Technologies to Explore and Live on the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Bodiford, Melanie P.; Gilley, Scott D.; Howard, Richard W.; Kennedy, James P.; Ray, Julie A.

    2005-01-01

    NASA's human exploration initiative poses great opportunity and great risk for manned missions to the Moon and Mars. Engineers and Scientists at the Marshall Space Flight Center (MSFC) are evaluating current technologies for in situ resource-based exploration fabrication and repair applications. Several technologies to be addressed in this paper have technology readiness levels (TRLs) that are currently mature enough to pursue for exploration purposes. However, many technologies offer promising applications but these must be pulled along by the demands and applications of this great initiative. The In Situ Fabrication and Repair (ISFR) Element will supply and push state of the art technologies for applications such as habitat structure development, in situ resource utilization for tool and part fabrication, and repair and replacement of common life support elements, as well as non-destructive evaluation. This paper will address current rapid prototyping technologies, their ISFR applications and near term advancements. We will discuss the anticipated need to utilize in situ resources to produce replacement parts and fabricate repairs to vehicles, habitats, life support and quality of life elements. Many ISFR technology developments will incorporate automated deployment and robotic construction and fabrication techniques. The current state of the art for these applications is fascinating, but the future is out of this world.

  15. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Human Exploration and Operations Mission Directorate Projects at Glenn Research Center for 2015

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    This report is intended to help NASA program and project managers incorporate Glenn Research Center Small Business Innovation Research/Small Business Technology Transfer (SBIR)/(STTR) technologies into NASA Human Exploration and Operations Mission Directorate (HEOMD) programs and projects. Other Government and commercial project managers can also find this useful. Introduction Incorporating Small Business Innovation Research (SBIR)-developed technology into NASA projects is important, especially given the Agency's limited resources for technology development. The SBIR program's original intention was for technologies that had completed Phase II to be ready for integration into NASA programs, however, in many cases there is a gap between Technology Readiness Levels (TRLs) 5 and 6 that needs to be closed. After SBIR Phase II projects are completed, the technology is evaluated against various parameters and a TRL rating is assigned. Most programs tend to adopt more mature technologies-at least TRL 6 to reduce the risk to the mission rather than adopt TRLs between 3 and 5 because those technologies are perceived as too risky. The gap between TRLs 5 and 6 is often called the "Valley of Death" (Figure 1), and historically it has been difficult to close because of a lack of funding support from programs. Several papers have already suggested remedies on how to close the gap (Refs. 1 to 4).

  16. Minimizing Human Risk: Human Performance Models in the Human Factors and Behavioral Performance Element

    NASA Technical Reports Server (NTRS)

    Gore, Brian F.

    2017-01-01

    Human space exploration has never been more exciting than it is today. Human presence to outer worlds is becoming a reality as humans are leveraging much of our prior knowledge to the new mission of going to Mars. Exploring the solar system at greater distances from Earth than ever before will possess some unique challenges, which can be overcome thanks to the advances in modeling and simulation technologies. The National Aeronautics and Space Administration (NASA) is at the forefront of exploring our solar system. NASA's Human Research Program (HRP) focuses on discovering the best methods and technologies that support safe and productive human space travel in the extreme and harsh space environment. HRP uses various methods and approaches to answer questions about the impact of long duration missions on the human in space including: gravitys impact on the human body, isolation and confinement on the human, hostile environments impact on the human, space radiation, and how the distance is likely to impact the human. Predictive models are included in the HRP research portfolio as these models provide valuable insights into human-system operations. This paper will provide an overview of NASA's HRP and will present a number of projects that have used modeling and simulation to provide insights into human-system issues (e.g. automation, habitat design, schedules) in anticipation of space exploration.

  17. Minimizing Human Risk: Human Performance Models in the Space Human Factors and Habitability and Behavioral Health and Performance Elements

    NASA Technical Reports Server (NTRS)

    Gore, Brian F.

    2016-01-01

    Human space exploration has never been more exciting than it is today. Human presence to outer worlds is becoming a reality as humans are leveraging much of our prior knowledge to the new mission of going to Mars. Exploring the solar system at greater distances from Earth than ever before will possess some unique challenges, which can be overcome thanks to the advances in modeling and simulation technologies. The National Aeronautics and Space Administration (NASA) is at the forefront of exploring our solar system. NASA's Human Research Program (HRP) focuses on discovering the best methods and technologies that support safe and productive human space travel in the extreme and harsh space environment. HRP uses various methods and approaches to answer questions about the impact of long duration missions on the human in space including: gravity's impact on the human body, isolation and confinement on the human, hostile environments impact on the human, space radiation, and how the distance is likely to impact the human. Predictive models are included in the HRP research portfolio as these models provide valuable insights into human-system operations. This paper will provide an overview of NASA's HRP and will present a number of projects that have used modeling and simulation to provide insights into human-system issues (e.g. automation, habitat design, schedules) in anticipation of space exploration.

  18. On the Transition and Migration of Flight Functions in the Airspace System

    NASA Technical Reports Server (NTRS)

    Morris, Allan Terry; Young, Steve D.

    2012-01-01

    Since 400 BC, when man first replicated flying behavior with kites, up until the turn of the 20th century, when the Wright brothers performed the first successful powered human flight, flight functions have become available to man via significant support from man-made structures and devices. Over the past 100 years or so, technology has enabled several flight functions to migrate to automation and/or decision support systems. This migration continues with the United States NextGen and Europe s Single European Sky (a.k.a. SESAR) initiatives. These overhauls of the airspace system will be accomplished by accommodating the functional capabilities, benefits, and limitations of technology and automation together with the unique and sometimes overlapping functional capabilities, benefits, and limitations of humans. This paper will discuss how a safe and effective migration of any flight function must consider several interrelated issues, including, for example, shared situation awareness, and automation addiction, or over-reliance on automation. A long-term philosophical perspective is presented that considers all of these issues by primarily asking the following questions: How does one find an acceptable level of risk tolerance when allocating functions to automation versus humans? How does one measure or predict with confidence what the risks will be? These two questions and others will be considered from the two most-discussed paradigms involving the use of increasingly complex systems in the future: humans as operators and humans as monitors.

  19. Employees' perception of organizational support: a qualitative investigation in the Indian information technology (IT) industry.

    PubMed

    Dhar, Rajib Lochan

    2012-01-01

    Organizational support relates to an organization's readiness to reward increased work effort and to meet socio-emotional needs. This study investigated the various constructs of employees' perceptions of organizational support in the Indian context, with specific reference to the information technology (IT) industry. Thirty six semi-structured interviews were conducted from three different organizations over a period of four months. The participants were employed as Project Managers, Team Leaders and Executives in these organizations operating in Pune and were selected via randomized quota sampling to reflect a mix of age, positions, genders and experience with organization. Qualitative methods were used in order to collect the data, through phenomenological principles. Discussion with the participants led to the emergence of five different themes which influence employees' perception of organizational support. These were: materialistic support, supervisor support, building reciprocal relationships, Organizational justice and intentions to leave. This study provided a tentative starting point towards the greater understanding of the employee's perceived notion of organizational support. Based on the study findings, there is an imperative that the human resource department and organizational forerunners continue to use research findings to support IT professionals in various ways in order to improve their quality of work life.

  20. NASA Advanced Life Support Technology Testing and Development

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.

    2012-01-01

    Prior to 2010, NASA's advanced life support research and development was carried out primarily under the Exploration Life Support Project of NASA's Exploration Systems Mission Directorate. In 2011, the Exploration Life Support Project was merged with other projects covering Fire Prevention/Suppression, Radiation Protection, Advanced Environmental Monitoring and Control, and Thermal Control Systems. This consolidated project was called Life Support and Habitation Systems, which was managed under the Exploration Systems Mission Directorate. In 2012, NASA re-organized major directorates within the agency, which eliminated the Exploration Systems Mission Directorate and created the Office of the Chief Technologist (OCT). Life support research and development is currently conducted within the Office of the Chief Technologist, under the Next Generation Life Support Project, and within the Human Exploration Operation Missions Directorate under several Advanced Exploration System projects. These Advanced Exploration Systems projects include various themes of life support technology testing, including atmospheric management, water management, logistics and waste management, and habitation systems. Food crop testing is currently conducted as part of the Deep Space Habitation (DSH) project within the Advanced Exploration Systems Program. This testing is focused on growing salad crops that could supplement the crew's diet during near term missions.

  1. 75 FR 2013 - Health Information Technology: Initial Set of Standards, Implementation Specifications, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-13

    ...The Department of Health and Human Services (HHS) is issuing this interim final rule with a request for comments to adopt an initial set of standards, implementation specifications, and certification criteria, as required by section 3004(b)(1) of the Public Health Service Act. This interim final rule represents the first step in an incremental approach to adopting standards, implementation specifications, and certification criteria to enhance the interoperability, functionality, utility, and security of health information technology and to support its meaningful use. The certification criteria adopted in this initial set establish the capabilities and related standards that certified electronic health record (EHR) technology will need to include in order to, at a minimum, support the achievement of the proposed meaningful use Stage 1 (beginning in 2011) by eligible professionals and eligible hospitals under the Medicare and Medicaid EHR Incentive Programs.

  2. Interacting With Robots to Investigate the Bases of Social Interaction.

    PubMed

    Sciutti, Alessandra; Sandini, Giulio

    2017-12-01

    Humans show a great natural ability at interacting with each other. Such efficiency in joint actions depends on a synergy between planned collaboration and emergent coordination, a subconscious mechanism based on a tight link between action execution and perception. This link supports phenomena as mutual adaptation, synchronization, and anticipation, which cut drastically the delays in the interaction and the need of complex verbal instructions and result in the establishment of joint intentions, the backbone of social interaction. From a neurophysiological perspective, this is possible, because the same neural system supporting action execution is responsible of the understanding and the anticipation of the observed action of others. Defining which human motion features allow for such emergent coordination with another agent would be crucial to establish more natural and efficient interaction paradigms with artificial devices, ranging from assistive and rehabilitative technology to companion robots. However, investigating the behavioral and neural mechanisms supporting natural interaction poses substantial problems. In particular, the unconscious processes at the basis of emergent coordination (e.g., unintentional movements or gazing) are very difficult-if not impossible-to restrain or control in a quantitative way for a human agent. Moreover, during an interaction, participants influence each other continuously in a complex way, resulting in behaviors that go beyond experimental control. In this paper, we propose robotics technology as a potential solution to this methodological problem. Robots indeed can establish an interaction with a human partner, contingently reacting to his actions without losing the controllability of the experiment or the naturalness of the interactive scenario. A robot could represent an "interactive probe" to assess the sensory and motor mechanisms underlying human-human interaction. We discuss this proposal with examples from our research with the humanoid robot iCub, showing how an interactive humanoid robot could be a key tool to serve the investigation of the psychological and neuroscientific bases of social interaction.

  3. Human Performance Technology and Knowledge Management: A Case Study

    ERIC Educational Resources Information Center

    Massey, Anne P.; Montoya-Weiss, Mitzi M.; O'Driscoll, Tony M.

    2005-01-01

    As organizations respond to competitive environments and strive to enhance performance, knowledge management (KM) has increasingly become a strategic activity. A KM strategy entails consciously helping people share and put knowledge into action. A key challenge is how to develop and implement KM solutions that provide performance support to…

  4. 75 FR 37811 - Agency Information Collection Request; 60-Day Public Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-30

    ... Health and Human Services' (HHS) high priority programs and is supportive of HHS Strategic Goal 1: Health...- prescribing and quality reporting functionalities, and the number of providers who have become meaningful.... Additionally, it allows for the synergy of grantee business processes and technology to increase transparency...

  5. Applying Case-Based Reasoning in Knowledge Management to Support Organizational Performance

    ERIC Educational Resources Information Center

    Wang, Feng-Kwei

    2006-01-01

    Research and practice in human performance technology (HPT) has recently accelerated the search for innovative approaches to supplement or replace traditional training interventions for improving organizational performance. This article examines a knowledge management framework built upon the theories and techniques of case-based reasoning (CBR)…

  6. Space radiation protection: Human support thrust exploration technology program

    NASA Technical Reports Server (NTRS)

    Conway, Edmund J.

    1991-01-01

    Viewgraphs on space radiation protection are presented. For crew and practical missions, exploration requires effective, low-mass shielding and accurate estimates of space radiation exposure for lunar and Mars habitat shielding, manned space transfer vehicle, and strategies for minimizing exposure during extravehicular activity (EVA) and rover operations.

  7. Transforming Online Learning through Narrative and Student Agency

    ERIC Educational Resources Information Center

    Lindgren, Robb; McDaniel, Rudy

    2012-01-01

    Efforts to improve online learning have focused primarily on the technology platform for delivering educational content and supporting student discourse. In this paper we describe an alternative approach that invokes two powerful forces behind human learning: narrative and agency. Each of these constructs and their potential impacts on learning is…

  8. OMICS DATA IN THE QUALITATIVE AND QUANTITATIVE CHARACTERIZATION OF THE MODE OF ACTION IN SUPPORT OF IRIS ASSESSMENTS

    EPA Science Inventory

    Knowledge and information generated using new tools/methods collectively called "Omics" technologies could have a profound effect on qualitative and quantitative characterizations of human health risk assessments.

    The suffix "Omics" is a descriptor used for a series of e...

  9. In-Service Support Plan for Electromagnetic Environment Effects.

    DTIC Science & Technology

    1978-05-05

    assure highly motivated and trained Fleet personnel are placed in positions to initiate formal EME deficiency reports. The human factors and technological...Assistant I )eputy C hief of Naval Material AD P Automiated Data Processing ALRE-I1 Air-LUmnhed G uided Weapons System Perform-rance Re- port APL

  10. Waste streams in a crewed space habitat

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Golub, M. A.

    1991-01-01

    A judicious compilation of generation rates and chemical compositions of potential waste feed streams in a typical crewed space habitat was made in connection with the waste-management aspect of NASA's Physical/Chemical Closed-Loop Life Support Program. Waste composition definitions are needed for the design of waste-processing technologies involved in closing major life support functions in future long-duration human space missions. Tables of data for the constituents and chemical formulas of the following waste streams are presented and discussed: human urine, feces, hygiene (laundry and shower) water, cleansing agents, trash, humidity condensate, dried sweat, and trace contaminants. Tables of data on dust generation and pH values of the different waste streams are also presented and discussed.

  11. Commercial Human Spaceflight Press Conference

    NASA Image and Video Library

    2010-02-02

    NASA Administrator Charles Bolden listens to his introduction by Assistant to the President for Science and Technology and Director of the White House Office of Science and Technology Policy Dr. John P. Holdren during a press conference, Tuesday, Feb. 2, 2010, at the National Press Club in Washington, where it was announced that NASA has awarded $50 million through funded agreements to further the commercial sector's capability to support transport of crew to and from low Earth orbit. Photo Credit: (NASA/Bill Ingalls)

  12. Closed-Loop Life Support and Habitability: 2000-2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This custom bibliography from the NASA Scientific and Technical Information Program lists a sampling of records found in the NASA Aeronautics and Space Database. The scope of this topic includes technologies for the recycling of oxygen, carbon dioxide, and water for long-duration human presence in space. This area of focus is one of the enabling technologies as defined by NASA s Report of the President s Commission on Implementation of United States Space Exploration Policy, published in June 2004.

  13. Step 1: Human System Integration (HSI) FY05 Pilot-Technology Interface Requirements for Command, Control, and Communications (C3)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The document provides the Human System Integration(HSI) high-level functional C3 HSI requirements for the interface to the pilot. Description includes (1) the information required by the pilot to have knowledge C3 system status, and (2) the control capability needed by the pilot to obtain C3 information. Fundamentally, these requirements provide the candidate C3 technology concepts with the necessary human-related elements to make them compatible with human capabilities and limitations. The results of the analysis describe how C3 operations and functions should interface with the pilot to provide the necessary C3 functionality to the UA-pilot system. Requirements and guidelines for C3 are partitioned into three categories: (1) Pilot-Air Traffic Control (ATC) Voice Communications (2) Pilot-ATC Data Communications, and (3) command and control of the unmanned aircraft (UA). Each requirement is stated and is supported with a rationale and associated reference(s).

  14. The Controlled Ecological Life Support System Antarctic Analog Project: Prototype Crop Production and Water Treatment System Performance

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Flynn, Michael T.; Bates, Maynard; Schlick, Greg; Kliss, Mark (Technical Monitor)

    1997-01-01

    The Controlled Ecological Life Support System (CELSS) Antarctic Analog Project (CAAP), is a joint endeavor between the National Science Foundation, Office of Polar Programs (NSF-OPP) and the NASA. The fundamental objective is to develop, deploy, and operate a testbed of advanced life support technologies at the Amundsen-Scott South Pole Station that enable the objectives of both the NSF and NASA. The functions of food production, water purification, and waste treatment, recycle and reduction provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, enhance safety and minimize environmental impacts associated with human presence on the polar plateau. Because of the analogous technical, scientific, and mission features with Planetary missions such as a mission to Mars, CAAP provides NASA with a method for validating technologies and overall approaches to supporting humans. Prototype systems for sewage treatment, water recycle and crop production are being evaluated at Ames Research Center. The product water from sewage treatment using a Wiped-Film Rotating Disk is suitable for input to the crop production system. The crop production system has provided an enhanced level of performance compared with projected performance for plant-based life support: an approximate 50% increase in productivity per unit area, more than a 65% decrease in power for plant lighting, and more than a 75% decrease in the total power requirement to produce an equivalent mass of edible biomass.

  15. Identifying Functional Requirements for Flexible Airspace Management Concept Using Human-In-The-Loop Simulations

    NASA Technical Reports Server (NTRS)

    Lee, Paul U.; Bender, Kim; Pagan, Danielle

    2011-01-01

    Flexible Airspace Management (FAM) is a mid- term Next Generation Air Transportation System (NextGen) concept that allows dynamic changes to airspace configurations to meet the changes in the traffic demand. A series of human-in-the-loop (HITL) studies have identified procedures and decision support requirements needed to implement FAM. This paper outlines a suggested FAM procedure and associated decision support functionality based on these HITL studies. A description of both the tools used to support the HITLs and the planned NextGen technologies available in the mid-term are presented and compared. The mid-term implementation of several NextGen capabilities, specifically, upgrades to the Traffic Management Unit (TMU), the initial release of an en route automation system, the deployment of a digital data communication system, a more flexible voice communications network, and the introduction of a tool envisioned to manage and coordinate networked ground systems can support the implementation of the FAM concept. Because of the variability in the overall deployment schedule of the mid-term NextGen capabilities, the dependency of the individual NextGen capabilities are examined to determine their impact on a mid-term implementation of FAM. A cursory review of the different technologies suggests that new functionality slated for the new en route automation system is a critical enabling technology for FAM, as well as the functionality to manage and coordinate networked ground systems. Upgrades to the TMU are less critical but important nonetheless for FAM to be fully realized. Flexible voice communications network and digital data communication system could allow more flexible FAM operations but they are not as essential.

  16. NASA's Flexible Path for the Human Exploration

    NASA Technical Reports Server (NTRS)

    Soeder, James F.

    2016-01-01

    The idea of human exploration of Mars has been a topic in science fiction for close to a century. For the past 50 years it has been a major thrust in NASAs space mission planning. Currently, NASA is pursuing a flexible development path with the final goal to have humans on Mars. To reach Mars, new hardware will have to be developed and many technology hurdles will have to be overcome. This presentation discusses Mars and its Moons; the flexible path currently being followed; the hardware under development to support exploration; and the technical and organizational challenges that must be overcome to realize the age old dream of humans traveling to Mars.

  17. Architectures for Human Exploration of Near Earth Asteroids

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.

    2011-01-01

    The presentation explores human exploration of Near Earth Asteroid (NEA) key factors including challenges of supporting humans for long-durations in deep-space, incorporation of advanced technologies, mission design constraints, and how many launches are required to conduct a round trip human mission to a NEA. Topics include applied methodology, all chemical NEA mission operations, all nuclear thermal propulsion NEA mission operations, SEP only for deep space mission operations, and SEP/chemical hybrid mission operations. Examples of mass trends between datasets are provided as well as example sensitivity of delta-v and trip home, sensitivity of number of launches and trip home, and expected targets for various transportation architectures.

  18. An intelligent control and virtual display system for evolutionary space station workstation design

    NASA Technical Reports Server (NTRS)

    Feng, Xin; Niederjohn, Russell J.; Mcgreevy, Michael W.

    1992-01-01

    Research and development of the Advanced Display and Computer Augmented Control System (ADCACS) for the space station Body-Ported Cupola Virtual Workstation (BP/VCWS) were pursued. The potential applications were explored of body ported virtual display and intelligent control technology for the human-system interfacing applications is space station environment. The new system is designed to enable crew members to control and monitor a variety of space operations with greater flexibility and efficiency than existing fixed consoles. The technologies being studied include helmet mounted virtual displays, voice and special command input devices, and microprocessor based intelligent controllers. Several research topics, such as human factors, decision support expert systems, and wide field of view, color displays are being addressed. The study showed the significant advantages of this uniquely integrated display and control system, and its feasibility for human-system interfacing applications in the space station command and control environment.

  19. In-Situ Resource Utilization: Laying the Foundation for "Living off the Land"

    NASA Technical Reports Server (NTRS)

    Kaplan, D. I.

    2000-01-01

    The technology to manufacture rocket propellants, breathing and life-support gases, fuel cell reagents, and other consumables on Mars using indigenous Martian resources as feedstock in the production process is known as In-Situ Resource Utilization (ISRU). Several studies of the long-term, committed exploration of Mars by humans show that ISRU is essential ... an enabling technology. The recognized value of ISRU to human exploration is reflected in the NASA Strategic Plan. In the description of the "Strategies and Outcomes" of the Human Exploration and Development of Space (HEDS) Enterprise, the NASA Strategic Plan states: The [HEDS] Enterprise relies on the robotic missions of the Space Science Enterprise to provide extensive knowledge of the geology, environment, and resources of planetary bodies. The Space Science Enterprise missions will also demonstrate the feasibility of utilizing local resources to "live off the land."

  20. A Space-Based Near-Earth Object Survey Telescope in Support of Human Exploration, Solar System Science, and Planetary Defense

    NASA Technical Reports Server (NTRS)

    Abell, Paul A.

    2011-01-01

    Human exploration of near-Earth objects (NEOs) beginning in 2025 is one of the stated objectives of U.S. National Space Policy. Piloted missions to these bodies would further development of deep space mission systems and technologies, obtain better understanding of the origin and evolution of our Solar System, and support research for asteroid deflection and hazard mitigation strategies. As such, mission concepts have received much interest from the exploration, science, and planetary defense communities. One particular system that has been suggested by all three of these communities is a space-based NEO survey telescope. Such an asset is crucial for enabling affordable human missions to NEOs circa 2025 and learning about the primordial population of objects that could present a hazard to the Earth in the future.

  1. National Aeronautics and Space Administration Budget Estimates, Fiscal Year 2011

    NASA Technical Reports Server (NTRS)

    2010-01-01

    The Budget includes three new robust exploration programs: (1) Technology demonstration program, $7.8 five years. Funds the development and demonstration of technologies that reduce the cost and expand the capabilities of future exploration activities, including in-orbit refueling and storage. (2) Heavy-Lift and Propulsion R&D, $3.1 billion over five years. Funds R&D for new launch systems, propellants, materials, and combustion processes. (3) Robotic precursor missions, $3.0 billion over five years. Funds cost-effective means to scout exploration targets and identify hazards and resources for human visitation and habitation. In addition, the Budget enhances the current Human Research Program by 42%; and supports the Participatory Exploration Program at 5 million per year for activities across many NASA programs.

  2. National Aeronautics and Space Administration (NASA) Environmental Control and Life Support (ECLS) Capability Roadmap Development for Exploration

    NASA Technical Reports Server (NTRS)

    Bagdigian, Robert M.; Carrasquillo, Robyn L.; Metcalf, Jordan; Peterson, Laurie

    2012-01-01

    NASA is considering a number of future human space exploration mission concepts. Although detailed requirements and vehicle architectures remain mostly undefined, near-term technology investment decisions need to be guided by the anticipated capabilities needed to enable or enhance the mission concepts. This paper describes a roadmap that NASA has formulated to guide the development of Environmental Control and Life Support Systems (ECLSS) capabilities required to enhance the long-term operation of the International Space Station (ISS) and enable beyond-Low Earth Orbit (LEO) human exploration missions. Three generic mission types were defined to serve as a basis for developing a prioritized list of needed capabilities and technologies. Those are 1) a short duration micro gravity mission; 2) a long duration transit microgravity mission; and 3) a long duration surface exploration mission. To organize the effort, ECLSS was categorized into three major functional groups (atmosphere, water, and solid waste management) with each broken down into sub-functions. The ability of existing, flight-proven state-of-the-art (SOA) technologies to meet the functional needs of each of the three mission types was then assessed. When SOA capabilities fell short of meeting the needs, those "gaps" were prioritized in terms of whether or not the corresponding capabilities enable or enhance each of the mission types. The resulting list of enabling and enhancing capability gaps can be used to guide future ECLSS development. A strategy to fulfill those needs over time was then developed in the form of a roadmap. Through execution of this roadmap, the hardware and technologies needed to enable and enhance exploration may be developed in a manner that synergistically benefits the ISS operational capability, supports Multi-Purpose Crew Vehicle (MPCV) development, and sustains long-term technology investments for longer duration missions. This paper summarizes NASA s ECLSS capability roadmap development process, findings, and recommendation

  3. What is quality in assisted living technology? The ARCHIE framework for effective telehealth and telecare services.

    PubMed

    Greenhalgh, Trisha; Procter, Rob; Wherton, Joe; Sugarhood, Paul; Hinder, Sue; Rouncefield, Mark

    2015-04-23

    We sought to define quality in telehealth and telecare with the aim of improving the proportion of patients who receive appropriate, acceptable and workable technologies and services to support them living with illness or disability. This was a three-phase study: (1) interviews with seven technology suppliers and 14 service providers, (2) ethnographic case studies of 40 people, 60 to 98 years old, with multi-morbidity and assisted living needs and (3) 10 co-design workshops. In phase 1, we explored barriers to uptake of telehealth and telecare. In phase 2, we used ethnographic methods to build a detailed picture of participants' lives, illness experiences and technology use. In phase 3, we brought users and their carers together with suppliers and providers to derive quality principles for assistive technology products and services. Interviews identified practical, material and organisational barriers to smooth introduction and continued support of assistive technologies. The experience of multi-morbidity was characterised by multiple, mutually reinforcing and inexorably worsening impairments, producing diverse and unique care challenges. Participants and their carers managed these pragmatically, obtaining technologies and adapting the home. Installed technologies were rarely fit for purpose. Support services for technologies made high (and sometimes oppressive) demands on users. Six principles emerged from the workshops. Quality telehealth or telecare is 1) ANCHORED in a shared understanding of what matters to the user; 2) REALISTIC about the natural history of illness; 3) CO-CREATIVE, evolving and adapting solutions with users; 4) HUMAN, supported through interpersonal relationships and social networks; 5) INTEGRATED, through attention to mutual awareness and knowledge sharing; 6) EVALUATED to drive system learning. Technological advances are important, but must be underpinned by industry and service providers following a user-centred approach to design and delivery. For the ARCHIE principles to be realised, the sector requires: (1) a shift in focus from product ('assistive technologies') to performance ('supporting technologies-in-use'); (2) a shift in the commissioning model from standardised to personalised home care contracts; and (3) a shift in the design model from 'walled garden', branded products to inter-operable components that can be combined and used flexibly across devices and platforms. Please see related article: http://dx.doi.org/10.1186/s12916-015-0305-8.

  4. CELSS Antarctic Analog Project (CAAP): A New Paradigm for Polar Life Support and CELSS Research

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Straight, Christian; Flynn, Michael; Bates, Maynard; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    The CELSS Antarctic Analog Project (CAAP) is a joint National Science Foundation (NSF) and National Aeronautics and Space Administration (NASA) project for the development, deployment and operation of CELSS technologies at the Amundsen-Scott South Pole Station. CAAP is implemented through the joint NSF/NASA Antarctic Space Analog Program (ASAP), initiated to support the pursuit of future NASA missions and to promote the transfer of space technologies to the NSF. Under a Memorandum of Agreement, the CAAP represents an example of a working dual agency cooperative project. NASA goals are operational testing of CELSS technologies and the conduct of scientific study to facilitate . technology selection, system design and methods development, including human dynamics as required for the operation of a CELSS. Although not fully closed, food production, water purification, and waste recycle and reduction provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, and minimize environmental impacts associated with human presence on the polar plateau. The CAAP facility will be highly integrated with the new South Pole Station infrastructure and will be composed of a deployed hardware facility and a research activity. This paper will include a description of CAAP and its functionality, conceptual designs, component selection and sizing for the crop growth chamber, crop production expectations, and a brief report on an initial on-site visit. This paper will also provide a discussion of issues associated with power and energy use and the applicability of CAAP to direct technology transfer to society in general and remote communities in particular.

  5. Testing a Mars science outpost in the Antarctic dry valleys

    NASA Technical Reports Server (NTRS)

    Andersen, D. T.; Mckay, C. P.; Wharton, R. A.; Rummel, J. D.

    1992-01-01

    Field research conducted in the Antarctic has been providing insights about the nature of Mars in the science disciplines of exobiology and geology. Located in the McMurdo Dry Valleys of southern Victoria Land (160 deg and 164 deg E longitude and 76 deg 30 min and 78 deg 30 min S latitude), research outposts are inhabited by teams of 4-6 scientists. It is proposed that the design of these outposts be expanded to enable meaningful tests of many of the systems that will be needed for the successful conduct of exploration activities on Mars. Although there are some important differences between the environment in the Antarctic dry valleys and on Mars, the many similarities and particularly the field science activities, make the dry valleys a useful terrestrial analog to conditions on Mars. Three areas have been identified for testing at a small science outpost in the dry valleys: (1) studying human factors and physiology in an isolated environment; (2) testing emerging technologies (e.g. innovative power management systems, advanced life support facilities including partial bioregenerative life support systems for water recycling and food growth, telerobotics, etc.); and (3) conducting basic scientific research that will enhance understanding of Mars while contributing to the planning for human exploration. It is suggested that an important early result of a Mars habitat program will be the experience gained by interfacing humans and their supporting technology in a remote and stressful environment.

  6. Atmospheric Monitoring Strategy for Ground Testing of Closed Ecological Life Support Systems

    NASA Technical Reports Server (NTRS)

    Feighery, John; Cavenall, Ivan; Knight, Amanda

    2004-01-01

    This paper reviews the evolution and current state of atmospheric monitoring on the International Space Station to provide context from which we can imagine a more advanced and integrated system. The unique environmental hazards of human space flight are identified and categorized into groups, taking into consideration the time required for the hazard to become a threat to human health or performance. The key functions of a comprehensive monitoring strategy for a closed ecological life support system are derived from past experience and a survey of currently available technologies for monitoring air quality. Finally, a system architecture is developed incorporating the lessons learned from ISS and other analogous closed life support systems. The paper concludes by presenting recommendations on how to proceed with requirements definition and conceptual design of an air monitoring system for exploration missions.

  7. Clinical translation of bioartificial liver support systems with human pluripotent stem cell-derived hepatic cells

    PubMed Central

    Sakiyama, Ryoichi; Blau, Brandon J; Miki, Toshio

    2017-01-01

    There is currently a pressing need for alternative therapies to liver transplantation. The number of patients waiting for a liver transplant is substantially higher than the number of transplantable donor livers, resulting in a long waiting time and a high waiting list mortality. An extracorporeal liver support system is one possible approach to overcome this problem. However, the ideal cell source for developing bioartificial liver (BAL) support systems has yet to be determined. Recent advancements in stem cell technology allow researchers to generate highly functional hepatocyte-like cells from human pluripotent stem cells (hPSCs). In this mini-review, we summarize previous clinical trials with different BAL systems, and discuss advantages of and potential obstacles to utilizing hPSC-derived hepatic cells in clinical-scale BAL systems. PMID:28373763

  8. [Spiritual support in the spirit of current trends in the Israeli healthcare system].

    PubMed

    Ziv, Amitai; Talmi, Rachet; Gary-Cohen, Meirav; Chen, Wendy

    2014-11-01

    This editorial is in response to Bar-Sela, Bentur, Schultz and Corn's article entitled "Spiritual care in hospitals and other healthcare settings in Israel--a profession in the making", published in Harefuah in May 2014. The integration of spiritual support into hospitals marks an interesting trend in light of the current emphases in the Israeli medical system on technological advancement, financial feasibility and quantifiable quality measures. This step is evidence of the importance still attached by policy and decisionmakers to those human aspects of illness and disease, which are difficult to define and measure. "Spiritual Support" is an ancient profession based on the principle, whereby support of the spirit is considered a basic human right, in recognition of the spirit as a source of strength during times of crisis and distress. This service was introduced into the Chaim Sheba Medical Center six years ago for patients with untreatable illnesses, and through identification of commonality between their coping features and those of rehabilitation patients. It was later expanded into the orthopedic and neurological rehabilitation departments. The service is provided on an individual level for the patients and in a group formal for their caregivers. Spiritual support as an integral part of the multi-disciplinary care further ratifies the holistic approach in medical practice, as an everlasting value transcending periodical trends. The conclusion drawn is that technological advancement, the scientific approach, physical-medical treatment, emotional therapy and spiritual support can and should exist side by side to improve the welfare and coping abilities of patients dealing with adverse medical conditions.

  9. Systems Integration, Analysis and Modeling Support to the HEDS Technology/Commercialization Initiative (HTCI)

    NASA Technical Reports Server (NTRS)

    Feingold, Harvey; ONeil, Dan (Technical Monitor)

    2002-01-01

    In response to a recommendation from OMB, NASA's Fiscal Year 2001 budget included a new program within the HEDS (Human Exploration and Development of Space) Enterprise called HEDS Technology/ Commercialization Initiative (HTCI). HTCI had three overarching goals: to support REDS analysis and planning for safe, affordable and effective future programs and projects that advance human exploration, scientific discovery, and the commercial development of space; to pursue research, development, and validation of breakthrough technologies and highly innovative systems concepts; and to advance die creation of strong partnerships within NASA, with U.S. industry and universities, and internationally. As part of its contracted effort, SAIC was to write a report contribution, describing die results of its task activities, to a final HTCI report prepared by MSFC. Unfortunately, government cancellation of the HTCI program in the summer of 2001 curtailed all efforts on the program including die Final HTCI report. In the absence of that report, SAIC has issued this final report in an attempt to document some of the technical material it produced. The report contains SAIC presentations for both HTCI workshops; a set of roadmap charts for the Systems Analysis, Integration and Modeling; and charts showing the evolution of the current TITAN modeling architecture.

  10. Reference Mission Version 3.0 Addendum to the Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team. Addendum; 3.0

    NASA Technical Reports Server (NTRS)

    Drake, Bret G. (Editor)

    1998-01-01

    This Addendum to the Mars Reference Mission was developed as a companion document to the NASA Special Publication 6107, "Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team." It summarizes changes and updates to the Mars Reference Missions that were developed by the Exploration Office since the final draft of SP 6107 was printed in early 1999. The Reference Mission is a tool used by the exploration community to compare and evaluate approaches to mission and system concepts that could be used for human missions to Mars. It is intended to identify and clarify system drivers, significant sources of cost, performance, risk, and schedule variation. Several alternative scenarios, employing different technical approaches to solving mission and technology challenges, are discussed in this Addendum. Comparing alternative approaches provides the basis for continual improvement to technology investment plan and a general understanding of future human missions to Mars. The Addendum represents a snapshot of work in progress in support of planning for future human exploration missions through May 1998.

  11. The Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT)

    NASA Technical Reports Server (NTRS)

    Epp, Chirold D.; Smith, Thomas B.

    2007-01-01

    As NASA plans to send humans back to the Moon and develop a lunar outpost, technologies must be developed to place humans and cargo safely, precisely, repeatedly, on the lunar surface with the capability to avoid surface hazards. Exploration Space Architecture Study requirements include the need for global lunar surface access with safe, precise landing without lighting constraints on terrain that may have landing hazards for human scale landing vehicles. Landing accuracies of perhaps 1,000 meters for sortie crew missions to 10 s of meters for Outpost class missions are required. The Autonomous precision Landing Hazard Avoidance Technology (ALHAT) project will develop the new and unique descent and landing Guidance, Navigation and Control (GNC) hardware and software technologies necessary for these capabilities. The ALHAT project will qualify a lunar descent and landing GNC system to a Technology Readiness Level (TRL) of 6 capable of supporting lunar crewed, cargo, and robotic missions. The (ALHAT) development project was chartered by NASA Headquarters in October 2006. The initial effort to write a project plan and define an ALHAT Team was followed by a fairly aggressive research and analysis effort to determine what technologies existed that could be developed and applied to the lunar landing problems indicated above. This paper describes the project development, research, analysis and concept evolution that has occurred since the assignment of the project. This includes the areas of systems engineering, GNC, sensors, sensor algorithms, simulations, fielding testing, laboratory testing, Hardware-In-The-Loop testing, system avionics and system certification concepts.

  12. Scientific Programs and Funding Opportunities at the National Institute of Biomedical Imaging and Bioengineering

    NASA Astrophysics Data System (ADS)

    Baird, Richard

    2006-03-01

    The mission of the National Institute of Biomedical Imaging and Bioengineering (NIBIB) is to improve human health by promoting the development and translation of emerging technologies in biomedical imaging and bioengineering. To this end, NIBIB supports a coordinated agenda of research programs in advanced imaging technologies and engineering methods that enable fundamental biomedical discoveries across a broad spectrum of biological processes, disorders, and diseases and have significant potential for direct medical application. These research programs dramatically advance the Nation's healthcare by improving the detection, management and, ultimately, the prevention of disease. The research promoted and supported by NIBIB also is strongly synergistic with other NIH Institutes and Centers as well as across government agencies. This presentation will provide an overview of the scientific programs and funding opportunities supported by NIBIB, highlighting those that are of particular important to the field of medical physics.

  13. Humanoid Flight Metabolic Simulator Project

    NASA Technical Reports Server (NTRS)

    Ross, Stuart

    2015-01-01

    NASA's Evolvable Mars Campaign (EMC) has identified several areas of technology that will require significant improvements in terms of performance, capacity, and efficiency, in order to make a manned mission to Mars possible. These include crew vehicle Environmental Control and Life Support System (ECLSS), EVA suit Portable Life Support System (PLSS) and Information Systems, autonomous environmental monitoring, radiation exposure monitoring and protection, and vehicle thermal control systems (TCS). (MADMACS) in a Suit can be configured to simulate human metabolism, consuming crew resources (oxygen) in the process. In addition to providing support for testing Life Support on unmanned flights, MADMACS will also support testing of suit thermal controls, and monitor radiation exposure, body zone temperatures, moisture, and loads.

  14. Towards a Mars base - Critical steps for life support on the moon and beyond

    NASA Technical Reports Server (NTRS)

    Rummel, John D.

    1992-01-01

    In providing crew life support for future exploration missions, overall exploration objectives will drive the life support solutions selected. Crew size, mission tasking, and exploration strategy will determine the performance required from life support systems. Human performance requirements, for example, may be offset by the availability of robotic assistance. Once established, exploration requirements for life support will be weighed against the financial and technical risks of developing new technologies and systems. Other considerations will include the demands that a particular life support strategy will make on planetary surface site selection, and the availability of precursor mission data to support EVA and in situ resource recovery planning. As space exploration progresses, the diversity of life support solutions that are implemented is bound to increase.

  15. The Dust Management Project: Characterizing Lunar Environments and Dust, Developing Regolith Mitigation Technology and Simulants

    NASA Technical Reports Server (NTRS)

    Hyatt, Mark J.; Straka, Sharon A.

    2010-01-01

    A return to the Moon to extend human presence, pursue scientific activities, use the Moon to prepare for future human missions to Mars, and expand Earth?s economic sphere, will require investment in developing new technologies and capabilities to achieve affordable and sustainable human exploration. From the operational experience gained and lessons learned during the Apollo missions, conducting long-term operations in the lunar environment will be a particular challenge, given the difficulties presented by the unique physical properties and other characteristics of lunar regolith, including dust. The Apollo missions and other lunar explorations have identified significant lunar dust-related problems that will challenge future mission success. Comprised of regolith particles ranging in size from tens of nanometers to microns, lunar dust is a manifestation of the complex interaction of the lunar soil with multiple mechanical, electrical, and gravitational effects. The environmental and anthropogenic factors effecting the perturbation, transport, and deposition of lunar dust must be studied in order to mitigate it?s potentially harmful effects on exploration systems and human explorers. The Dust Management Project (DMP) is tasked with the evaluation of lunar dust effects, assessment of the resulting risks, and development of mitigation and management strategies and technologies related to Exploration Systems architectures. To this end, the DMP supports the overall goal of the Exploration Technology Development Program (ETDP) of addressing the relevant high priority technology needs of multiple elements within the Constellation Program (CxP) and sister ETDP projects. Project scope, plans, and accomplishments will be presented.

  16. A Tale of Two Chambers: Iterative Approaches and Lessons Learned from Life Support Systems Testing in Altitude Chambers

    NASA Technical Reports Server (NTRS)

    Callini, Gianluca

    2016-01-01

    The drive for the journey to Mars is in a higher gear than ever before. We are developing new spacecraft and life support systems to take humans to the Red Planet. The journey that development hardware takes before its final incarnation in a fully integrated spacecraft can take years, as is the case for the Orion environmental control and life support system (ECLSS). Through the Pressure Integrated Suit Test (PIST) series, NASA personnel at Johnson Space Center have been characterizing the behavior of a closed loop ECLSS in the event of cabin depressurization. This kind of testing - one of the most hazardous activities performed at JSC - requires an iterative approach, increasing in complexity and hazards). The PIST series, conducted in the Crew and Thermal Systems Division (CTSD) 11-ft Chamber, started with unmanned test precursors before moving to a human-in-the-loop phase, and continues to evolve with the eventual goal of a qualification test for the final system that will be installed on Orion. Meanwhile, the Human Exploration Spacecraft Testbed for Integration and Advancement (HESTIA) program is an effort to research and develop technologies that will work in concert to support habitation on Mars. September 2015 marked the first unmanned HESTIA test, with the goal of characterizing how ECLSS technologies work together in a closed environment. HESTIA will culminate in crewed testing, but it can benefit from the lessons learned from another test that is farther ahead in its development and life cycle. Discussing PIST and HESTIA, this paper illustrates how we approach testing, the kind of information that facility teams need to ensure efficient collaborations and successful testing, and how we can apply what we learn to execute future tests.

  17. Application of NASA's Advanced Life Support Technologies in Polar Regions

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.

    1997-01-01

    The problems of obtaining adequate pure drinking water and disposing of liquid and solid waste in the U.S Arctic, a region where virtually all water is frozen solid for much of the year, has led to unsanitary solutions. Sanitation and a safe water supply are particularly problems in rural villages. These villages are without running water and use plastic buckets for toilets. The outbreak of diseases is believed to be partially attributable to exposure to human waste and lack of sanitation. Villages with the most frequent outbreaks of disease are those in which running water is difficult to obtain. Waste is emptied into open lagoons, rivers, or onto the sea coast. It does not degrade rapidly and in addition to affecting human health, can be harmful to the fragile ecology of the Arctic and the indigenous wildlife and fish populations. Current practices for waste management and sanitation pose serious human hazards as well as threaten the environment. NASA's unique knowledge of water/wastewater treatment systems for extreme environments, identified in the Congressional Office of Technology Assessment report entitled An Alaskan Challenge: Native Villagt Sanitation, may offer practical solutions addressing the issues of safe drinking water and effective sanitation practices in rural villages. NASA's advanced life support technologies are being combined with Arctic science and engineering knowledge to address the unique needs of the remote communities of Alaska through the Advanced Life Systems for Extreme Environments (ALSEE) project. ALSEE is a collaborative effort involving the NASA, the State of Alaska, the University of Alaska, the North Slope Borough of Alaska, Ilisagvik College in Barrow and the National Science Foundation (NSF). The focus is a major issue in the State of Alaska and other areas of the Circumpolar North; the health and welfare of its people, their lives and the subsistence lifestyle in remote communities, economic opportunity, and care for the environment. As advanced technologies are transferred to the commercial sector the ALSEE project Offers the potential for development of new industries in Alaska to supply the products to support remote communities of the globe.

  18. Near-Earth Objects: Targets for Future Human Exploration, Solar System Science, and Planetary Defense

    NASA Technical Reports Server (NTRS)

    Abell, Paul A.

    2011-01-01

    Human exploration of near-Earth objects (NEOs) beginning circa 2025 - 2030 is one of the stated objectives of U.S. National Space Policy. Piloted missions to these bodies would further development of deep space mission systems and technologies, obtain better understanding of the origin and evolution of our Solar System, and support research for asteroid deflection and hazard mitigation strategies. This presentation will discuss some of the physical characteristics of NEOs and review some of the current plans for NEO research and exploration from both a human and robotic mission perspective.

  19. An operator interface design for a telerobotic inspection system

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Tso, Kam S.; Hayati, Samad

    1993-01-01

    The operator interface has recently emerged as an important element for efficient and safe interactions between human operators and telerobotics. Advances in graphical user interface and graphics technologies enable us to produce very efficient operator interface designs. This paper describes an efficient graphical operator interface design newly developed for remote surface inspection at NASA-JPL. The interface, designed so that remote surface inspection can be performed by a single operator with an integrated robot control and image inspection capability, supports three inspection strategies of teleoperated human visual inspection, human visual inspection with automated scanning, and machine-vision-based automated inspection.

  20. Hypersonic Inflatable Aerodynamic Decelerator Ground Test Development

    NASA Technical Reports Server (NTRS)

    Del Corso, Jospeh A.; Hughes, Stephen; Cheatwood, Neil; Johnson, Keith; Calomino, Anthony

    2015-01-01

    Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology readiness levels have been incrementally matured by NASA over the last thirteen years, with most recent support from NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). Recently STMD GCDP has authorized funding and support through fiscal year 2015 (FY15) for continued HIAD ground developments which support a Mars Entry, Descent, and Landing (EDL) study. The Mars study will assess the viability of various EDL architectures to enable a Mars human architecture pathfinder mission planned for mid-2020. At its conclusion in November 2014, NASA's first HIAD ground development effort had demonstrated success with fabricating a 50 W/cm2 modular thermal protection system, a 400 C capable inflatable structure, a 10-meter scale aeroshell manufacturing capability, together with calibrated thermal and structural models. Despite the unquestionable success of the first HIAD ground development effort, it was recognized that additional investment was needed in order to realize the full potential of the HIAD technology capability to enable future flight opportunities. The second HIAD ground development effort will focus on extending performance capability in key technology areas that include thermal protection system, lifting-body structures, inflation systems, flight control, stage transitions, and 15-meter aeroshell scalability. This paper presents an overview of the accomplishments under the baseline HIAD development effort and current plans for a follow-on development effort focused on extending those critical technologies needed to enable a Mars Pathfinder mission.

  1. Develop Recovery Systems for Separations of Salts from Process Streams for use in Advanced Life Support System

    NASA Technical Reports Server (NTRS)

    Colon, Guillermo

    1998-01-01

    The main objectives of this project were the development of a four-compartment electrolytic cell using high selective membranes to remove nitrate from crop residue leachate and convert it to nitric acid, and the development of an six compartment electrodialysis cell to remove selectively sodium from urine wastes. The recovery of both plant inedible biomass and human wastes nutrients to sustain a biomass production system are important aspects in the development of a controlled ecological life support system (CELSS) to provide the basic human needs required for life support during long term space missions. A four-compartment electrolytic cell has been proposed to remove selectively nitrate from crop residue and to convert it to nitric acid, which is actually used in the NASA-KSC Controlled Ecological Life Support System to control the pH of the aerobic bioreactors and biomass production chamber. Human activities in a closed system require large amount of air, water and minerals to sustain life and also generate wastes. Before using human wastes as nutrients, these must be treated to reduce organic content and to remove some minerals which have adverse effects on plant growth. Of all the minerals present in human urine, sodium chloride (NACl) is the only one that can not be used as nutrient for most plants. Human activities also requires sodium chloride as part of the diet. Therefore, technology to remove and recover sodium chloride from wastes is highly desirable. A six-compartment electrodialysis cell using high selective membranes has been proposed to remove and recover NaCl from human urine.

  2. EDL Pathfinder Missions

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.

    2016-01-01

    NASA is developing a long-term strategy for achieving extended human missions to Mars in support of the policies outlined in the 2010 NASA Authorization Act and National Space Policy. The Authorization Act states that "A long term objective for human exploration of space should be the eventual international exploration of Mars." Echoing this is the National Space Policy, which directs that NASA should, "By 2025, begin crewed missions beyond the moon, including sending humans to an asteroid. By the mid-2030s, send humans to orbit Mars and return them safely to Earth." Further defining this goal, NASA's 2014 Strategic Plan identifies that "Our long-term goal is to send humans to Mars. Over the next two decades, we will develop and demonstrate the technologies and capabilities needed to send humans to explore the red planet and safely return them to Earth." Over the past several decades numerous assessments regarding human exploration of Mars have indicated that landing humans on the surface of Mars remains one of the key critical challenges. In 2015 NASA initiated an Agency-wide assessment of the challenges associated with Entry, Descent, and Landing (EDL) of large payloads necessary for supporting human exploration of Mars. Due to the criticality and long-lead nature of advancing EDL techniques, it is necessary to determine an appropriate strategy to improve the capability to land large payloads. This paper provides an overview of NASA's 2015 EDL assessment on understanding the key EDL risks with a focus on determining what "must" be tested at Mars. This process identified the various risks and potential risk mitigation strategies, that is, benefits of flight demonstration at Mars relative to terrestrial test, modeling, and analysis. The goal of the activity was to determine if a subscale demonstrator is necessary, or if NASA should take a direct path to a human-scale lander. This assessment also provided insight into how EDL advancements align with other Agency Mars lander activities such as the technology portfolio investments and post-2020 robotic Mars Exploration Program missions.

  3. 77 FR 54163 - Health Information Technology: Standards, Implementation Specifications, and Certification...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    ...With this final rule, the Secretary of Health and Human Services adopts certification criteria that establish the technical capabilities and specify the related standards and implementation specifications that Certified Electronic Health Record (EHR) Technology will need to include to, at a minimum, support the achievement of meaningful use by eligible professionals, eligible hospitals, and critical access hospitals under the Medicare and Medicaid EHR Incentive Programs beginning with the EHR reporting periods in fiscal year and calendar year 2014. This final rule also makes changes to the permanent certification program for health information technology, including changing the program's name to the ONC HIT Certification Program.

  4. PLDAPS: A Hardware Architecture and Software Toolbox for Neurophysiology Requiring Complex Visual Stimuli and Online Behavioral Control.

    PubMed

    Eastman, Kyler M; Huk, Alexander C

    2012-01-01

    Neurophysiological studies in awake, behaving primates (both human and non-human) have focused with increasing scrutiny on the temporal relationship between neural signals and behaviors. Consequently, laboratories are often faced with the problem of developing experimental equipment that can support data recording with high temporal precision and also be flexible enough to accommodate a wide variety of experimental paradigms. To this end, we have developed a MATLAB toolbox that integrates several modern pieces of equipment, but still grants experimenters the flexibility of a high-level programming language. Our toolbox takes advantage of three popular and powerful technologies: the Plexon apparatus for neurophysiological recordings (Plexon, Inc., Dallas, TX, USA), a Datapixx peripheral (Vpixx Technologies, Saint-Bruno, QC, Canada) for control of analog, digital, and video input-output signals, and the Psychtoolbox MATLAB toolbox for stimulus generation (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007). The PLDAPS ("Platypus") system is designed to support the study of the visual systems of awake, behaving primates during multi-electrode neurophysiological recordings, but can be easily applied to other related domains. Despite its wide range of capabilities and support for cutting-edge video displays and neural recording systems, the PLDAPS system is simple enough for someone with basic MATLAB programming skills to design their own experiments.

  5. Cascade Distillation Subsystem Development: Early Results From the Exploration Life Support Distillation Technology Comparison Test

    NASA Technical Reports Server (NTRS)

    Callahan, Michael R.; Patel, Vipul; Pickering, Karen D.

    2009-01-01

    In 2009, the Cascade Distillation Subsystem (CDS) wastewater processor (Honeywell International, Torrance, CA) was assessed in the National Aeronautics and Space Administration (NASA) Exploration Life Support (ELS) distillation comparison test. The purpose of the test was to collect data to support down-selection and development of a primary distillation technology for application in a lunar outpost water recovery system. The CDS portion of the comparison test was conducted between May 6 and August 19, 2009. The system was challenged with two pretreated test solutions, each intended to represent a feasible wastewater generated in a surface habitat. The 30-day equivalent wastewater loading volume for a crew of four was processed for each wastewater solution. Test Solution 1 consisted of a mixed stream containing human-generated urine and humidity condensate. Test Solution 2 contained the addition of human-generated hygiene wastewater to the solution 1 waste stream components. Approximately 1500 kg of total wastewater was processed through the CDS during testing. Respective recoveries per solution were 93.4 +/- 0.7 and 90.3 +/- 0.5%. The average specific energy of the system was calculated to be less than 130 W-hr/kg. The following paper provides detailed information and data on the performance of the CDS as challenged per the ELS distillation comparison test.

  6. Cyberpsychology: a human-interaction perspective based on cognitive modeling.

    PubMed

    Emond, Bruno; West, Robert L

    2003-10-01

    This paper argues for the relevance of cognitive modeling and cognitive architectures to cyberpsychology. From a human-computer interaction point of view, cognitive modeling can have benefits both for theory and model building, and for the design and evaluation of sociotechnical systems usability. Cognitive modeling research applied to human-computer interaction has two complimentary objectives: (1) to develop theories and computational models of human interactive behavior with information and collaborative technologies, and (2) to use the computational models as building blocks for the design, implementation, and evaluation of interactive technologies. From the perspective of building theories and models, cognitive modeling offers the possibility to anchor cyberpsychology theories and models into cognitive architectures. From the perspective of the design and evaluation of socio-technical systems, cognitive models can provide the basis for simulated users, which can play an important role in usability testing. As an example of application of cognitive modeling to technology design, the paper presents a simulation of interactive behavior with five different adaptive menu algorithms: random, fixed, stacked, frequency based, and activation based. Results of the simulation indicate that fixed menu positions seem to offer the best support for classification like tasks such as filing e-mails. This research is part of the Human-Computer Interaction, and the Broadband Visual Communication research programs at the National Research Council of Canada, in collaboration with the Carleton Cognitive Modeling Lab at Carleton University.

  7. 78 FR 27479 - Notice of Request for Approval To Continue To Collect New Information: Confidential Close Call...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-10

    ... project. This data collection effort is in support of a five-year research study aiming at improving rail... ongoing research study is conducted by the Office of Human Factors in the Federal Railroad Administration... DEPARTMENT OF TRANSPORTATION Research and Innovative Technology Administration [Docket Number RITA...

  8. Considerations for lunar colony communications systems

    NASA Technical Reports Server (NTRS)

    Dowling, Richard P.

    1992-01-01

    This paper addresses system aspects of communications for a lunar colony. Human factors are particularly noted. The practical aspects of communications infrastructure are emphasized rather than specific technologies. Communications needs for mission support and morale are discussed along with potential means of satisfying them. Problem areas are identified and some possible solutions are considered.

  9. Curriculum Integration: The Use of Technology to Support Learning

    ERIC Educational Resources Information Center

    Jackson, Allen; Gaudet, Laura; McDaniel, Larry; Brammer, Dawn

    2009-01-01

    Our understanding of how people learn is continually changing. Howard Gardner's Theory of Multiple Intelligences revolutionized the field education, because it accounts for a broader range of human potential in children and adults and suggests that individuals learn in a multitude of ways. Gardner's theory suggests there are a variety of…

  10. Advanced extravehicular protective systems

    NASA Technical Reports Server (NTRS)

    Sutton, J. G.; Heimlich, P. F.; Tepper, E. H.

    1972-01-01

    New technologies are identified and recommended for developing a regenerative portable life support system that provides protection for extravehicular human activities during long duration missions on orbiting space stations, potential lunar bases, and possible Mars landings. Parametric subsystems analyses consider: thermal control, carbon dioxide control, oxygen supply, power supply, contaminant control, humidity control, prime movers, and automatic temperature control.

  11. Digital Libraries: Universal Access to Human Knowledge. Report to the President.

    ERIC Educational Resources Information Center

    National Coordination Office for Information Technology Research and Development, Arlington, VA.

    This report to the President and Congress provides an overview of digital libraries. The following related findings are discussed: the full potential of today's digital libraries to support the national challenge transformations has not yet been realized; the federal government can and should do much more to further the science, technology, and…

  12. The Unexpected Connection: Serendipity and Human Mediation in Networked Learning

    ERIC Educational Resources Information Center

    Kop, Rita

    2012-01-01

    Major changes on the Web in recent years have contributed to an abundance of information for people to harness in their learning. Emerging technologies have instigated the need for critical literacies to support learners on open online networks in the mastering of critical information gathering during their learning journeys. This paper will argue…

  13. Analogs and the BHP Risk Reduction Strategy for Future Spaceflight Missions

    NASA Technical Reports Server (NTRS)

    Whitmire, Sandra; Leveton, Lauren

    2011-01-01

    In preparation for future exploration missions to distant destinations (e.g., Moon, Near Earth Objects (NEO), and Mars), the NASA Human Research Program s (HRP) Behavioral Health and Performance Element (BHP) conducts and supports research to address four human health risks: Risk of Behavioral Conditions; Risk of Psychiatric Conditions; Risk of Performance Decrements Due to Inadequate Cooperation, Coordination, Communication, and Psychosocial Adaptation within a Team; and Risk of Performance Errors due to Sleep Loss, Fatigue, Circadian Desynchronization, and Work Overload (HRP Science Management Plan, 2008). BHP Research, in collaboration with internal and external research investigators, as well as subject matter experts within NASA operations including flight surgeons, astronauts, and mission planners and others within the Mission Operations Directorate (MOD), identifies knowledge and technology gaps within each Risk. BHP Research subsequently manages and conducts research tasks to address and close the gaps, either through risk assessment and quantification, or the development of countermeasures and monitoring technologies. The resulting deliverables, in many instances, also support current Medical Operations and/or Mission Operations for the International Space Station (ISS).

  14. Quest for Missing Proteins: Update 2015 on Chromosome-Centric Human Proteome Project.

    PubMed

    Horvatovich, Péter; Lundberg, Emma K; Chen, Yu-Ju; Sung, Ting-Yi; He, Fuchu; Nice, Edouard C; Goode, Robert J; Yu, Simon; Ranganathan, Shoba; Baker, Mark S; Domont, Gilberto B; Velasquez, Erika; Li, Dong; Liu, Siqi; Wang, Quanhui; He, Qing-Yu; Menon, Rajasree; Guan, Yuanfang; Corrales, Fernando J; Segura, Victor; Casal, J Ignacio; Pascual-Montano, Alberto; Albar, Juan P; Fuentes, Manuel; Gonzalez-Gonzalez, Maria; Diez, Paula; Ibarrola, Nieves; Degano, Rosa M; Mohammed, Yassene; Borchers, Christoph H; Urbani, Andrea; Soggiu, Alessio; Yamamoto, Tadashi; Salekdeh, Ghasem Hosseini; Archakov, Alexander; Ponomarenko, Elena; Lisitsa, Andrey; Lichti, Cheryl F; Mostovenko, Ekaterina; Kroes, Roger A; Rezeli, Melinda; Végvári, Ákos; Fehniger, Thomas E; Bischoff, Rainer; Vizcaíno, Juan Antonio; Deutsch, Eric W; Lane, Lydie; Nilsson, Carol L; Marko-Varga, György; Omenn, Gilbert S; Jeong, Seul-Ki; Lim, Jong-Sun; Paik, Young-Ki; Hancock, William S

    2015-09-04

    This paper summarizes the recent activities of the Chromosome-Centric Human Proteome Project (C-HPP) consortium, which develops new technologies to identify yet-to-be annotated proteins (termed "missing proteins") in biological samples that lack sufficient experimental evidence at the protein level for confident protein identification. The C-HPP also aims to identify new protein forms that may be caused by genetic variability, post-translational modifications, and alternative splicing. Proteogenomic data integration forms the basis of the C-HPP's activities; therefore, we have summarized some of the key approaches and their roles in the project. We present new analytical technologies that improve the chemical space and lower detection limits coupled to bioinformatics tools and some publicly available resources that can be used to improve data analysis or support the development of analytical assays. Most of this paper's content has been compiled from posters, slides, and discussions presented in the series of C-HPP workshops held during 2014. All data (posters, presentations) used are available at the C-HPP Wiki (http://c-hpp.webhosting.rug.nl/) and in the Supporting Information.

  15. NASA Ames Sustainability Initiatives: Aeronautics, Space Exploration, and Sustainable Futures

    NASA Technical Reports Server (NTRS)

    Grymes, Rosalind A.

    2015-01-01

    In support of the mission-specific challenges of aeronautics and space exploration, NASA Ames produces a wealth of research and technology advancements with significant relevance to larger issues of planetary sustainability. NASA research on NexGen airspace solutions and its development of autonomous and intelligent technologies will revolutionize both the nation's air transporation systems and have applicability to the low altitude flight economy and to both air and ground transporation, more generally. NASA's understanding of the Earth as a complex of integrated systems contributes to humanity's perception of the sustainability of our home planet. Research at NASA Ames on closed environment life support systems produces directly applicable lessons on energy, water, and resource management in ground-based infrastructure. Moreover, every NASA campus is a 'city'; including an urbanscape and a workplace including scientists, human relations specialists, plumbers, engineers, facility managers, construction trades, transportation managers, software developers, leaders, financial planners, technologists, electricians, students, accountants, and even lawyers. NASA is applying the lessons of our mission-related activities to our urbanscapes and infrastructure, and also anticipates a leadership role in developing future environments for living and working in space.

  16. Sustainable Human Presence on the Moon using In Situ Resources

    NASA Technical Reports Server (NTRS)

    McLemore, Carol A.; Fikes, John C.; McCarley, Kevin S.; Darby, Charles A.; Curreri, Peter A.; Kennedy, James P.; Good, James E.; Gilley, Scott D.

    2008-01-01

    New capabilities, technologies and infrastructure must be developed to enable a sustained human presence on the moon and beyond. The key to having this permanent presence is the utilization of in situ resources. To this end, NASA is investigating how in situ resources can be utilized to improve mission success by reducing up-mass, improving safety, reducing risk, and bringing down costs for the overall mission. To ensure that this capability is available when needed, technology development is required now. NASA/Marshall Space Flight Center (MSFC) is supporting this endeavor, along with other NASA centers, by exploring how lunar regolith can be mined for uses such as construction, life support, propulsion, power, and fabrication. Efforts at MSFC include development of lunar regolith simulant for hardware testing and development, extraction of oxygen and other materials from the lunar regolith, production of parts and tools on the moon from local materials or from provisioned feedstocks, and capabilities to show that produced parts are "ready for use". This paper discusses the lunar regolith, how the regolith is being replicated in the development of simulants and possible uses of the regolith.

  17. KSC/IT Knowledge Sharing With JAXA/IT

    NASA Technical Reports Server (NTRS)

    Turner, Stacie

    2010-01-01

    The mission of NASA IT [organizations throughout the Agency] is to increase the productivity of scientists, engineers, and mission support personnel by responsively and efficiently delivering reliable, innovative and secure IT services. (http://insidenasa.nasa.gov/ocio/about/index.html, July 2010) IT at NASA/KSC serves to enable KSC's mission (Human Space Flight) in a customer-focused manner by offering a breadth of IT services to support the current and advanced information technology and communications needs of KSC institutional and NASA/KSC program customers.

  18. Capacity building in emerging space nations: Experiences, challenges and benefits

    NASA Astrophysics Data System (ADS)

    Jason, Susan; da Silva Curiel, Alex; Liddle, Doug; Chizea, Francis; Leloglu, Ugur Murat; Helvaci, Mustafa; Bekhti, Mohammed; Benachir, Djouad; Boland, Lee; Gomes, Luis; Sweeting, Martin

    2010-09-01

    This paper focuses on ways in which space is being used to build capacity in science and technology in order to: Offer increasing support for national and global solutions to current and emerging problems including: how to improve food security; resource management; understanding the impacts of climate change and how to deal with them; improving disaster mitigation, management and response. Support sustainable economic development. We present some of the experiences, lessons learned and benefits gained in capacity building projects undertaken by Surrey Satellite Technology Ltd. and our partners from developing and mature space nations. We focus on the Turkish, Algerian and Nigerian know-how and technology transfer programmes which form part of the first Disaster Monitoring Constellation (DMC) in orbit. From the lessons learned on Surrey's know-how and technology transfer partnership programmes, it is clear that space technology needs to be implemented responsibly as part of a long-term capacity building plan to be a sustainable one. It needs to be supported with appropriate policy and legal frameworks, institutional development, including community participation, human resources development and strengthening of managerial systems. In taking this on board, DMC has resulted in a strong international partnership combining national objectives, humanitarian aid and commerce. The benefits include: Ownership of space-based and supporting ground assets with low capital expenditure that is in line with national budgets of developing nations. Ownership of data and control over data acquisition. More for the money via collaborative consortium. Space related capacity building in organisations and nations with the goal of sustainable development. Opportunities for international collaboration, including disaster management and relief.

  19. Electronic Medical Records and the Technological Imperative: The Retrieval of Dialogue in Community-Based Primary Care.

    PubMed

    Franz, Berkeley; Murphy, John W

    2015-01-01

    Electronic medical records are regarded as an important tool in primary health-care settings. Because these records are thought to standardize medical information, facilitate provider communication, and improve office efficiency, many practices are transitioning to these systems. However, much of the concern with improving the practice of record keeping has related to technological innovations and human-computer interaction. Drawing on the philosophical reflection raised in Jacques Ellul's work, this article questions the technological imperative that may be supporting medical record keeping. Furthermore, given the growing emphasis on community-based care, this article discusses important non-technological aspects of electronic medical records that might bring the use of these records in line with participatory primary-care medicine.

  20. Genetic and archaeological perspectives on the initial modern human colonization of southern Asia

    PubMed Central

    Mellars, Paul; Gori, Kevin C.; Carr, Martin; Soares, Pedro A.; Richards, Martin B.

    2013-01-01

    It has been argued recently that the initial dispersal of anatomically modern humans from Africa to southern Asia occurred before the volcanic “supereruption” of the Mount Toba volcano (Sumatra) at ∼74,000 y before present (B.P.)—possibly as early as 120,000 y B.P. We show here that this “pre-Toba” dispersal model is in serious conflict with both the most recent genetic evidence from both Africa and Asia and the archaeological evidence from South Asian sites. We present an alternative model based on a combination of genetic analyses and recent archaeological evidence from South Asia and Africa. These data support a coastally oriented dispersal of modern humans from eastern Africa to southern Asia ∼60–50 thousand years ago (ka). This was associated with distinctively African microlithic and “backed-segment” technologies analogous to the African “Howiesons Poort” and related technologies, together with a range of distinctively “modern” cultural and symbolic features (highly shaped bone tools, personal ornaments, abstract artistic motifs, microblade technology, etc.), similar to those that accompanied the replacement of “archaic” Neanderthal by anatomically modern human populations in other regions of western Eurasia at a broadly similar date. PMID:23754394

Top