Science.gov

Sample records for human surfactant protein

  1. Surfactant proteins of the human larynx.

    PubMed

    Sheats, M; Schröder, H; Rausch, F; Bohr, C; Kißlinger, F; de Tristan, J; Iro, H; Garreis, F; Paulsen, F; Schicht, M; Bräuer, L

    2016-11-01

    Surfactant proteins (SPs) originally identified in lung tissue are important players in the innate immune system. Beyond this, they contribute to stability and rheology of gaseous or aqueous interphases. In the present study, we determined the expression and presence of SPs (A, B, C and D) in different areas of the human larynx. mRNA expression of SP-A, -B, -C and -D was analyzed by means of RT-PCR in healthy samples of epiglottis, vocal and vestibular folds, subglottis and trachea. Distribution and localization of all four SPs were analyzed by Western blot and immunohistochemistry in healthy human tissue samples. All four SPs were detected at the mRNA- and protein level in the human larynx as well as by means of immunohistochemistry in the different tissue samples of the human larynx. The results reveal that all four SPs are produced with different expression patterns within the human larynx. Based on the known functions, our results suggest that SPs might be involved in maintaining mucus rheology and subsequently they could be essential components for proper phonation. Moreover, the proteins seem to play a role in immune defense of the larynx. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Immunogenicity of surfactant. I. Human alveolar surfactant.

    PubMed Central

    Strayer, D S; Hallman, M; Merritt, T A

    1991-01-01

    The immunogenicity of lung surfactant derived from amniotic fluid has been well established. We have set out to examine the antigenic similarity of human surfactant to non-human alveolar surfactants currently being used therapeutically in clinical trials with neonatal respiratory distress syndrome. To this end, we raised a series of eight monoclonal antibodies in rats directed to human surfactant (H1 to H8). All antibodies bound human surfactant as measured by ELISA. Four of these monoclonal antibodies bound surfactant components by Western blot analysis: all bound a 9-10-kD species. In addition, one antibody (H2) bound a protein of 16 kD, one (H8) a 6-kD protein, and one (H6) a 30-kD protein. When mixed with surfactant, three antibodies, H4, H7 and H8, profoundly altered surfactant activity in vitro in the pulsating bubble surfactometer. Three other antibodies, H1, H2, and H5 moderately inhibited surfactant's surface activity. We also examined the cross-reactivity of these monoclonal antibodies with bovine (CLSE) and porcine (Curosurf) surfactants. By Western blot analysis, only H6 bound these heterologous surfactants. Other antibodies did so by ELISA. However, functional assays indicated that antibodies H7, H8 and H4 all greatly inhibited CLSE surface activity in vitro. Five antibodies (H1-H4 and H8) inhibited Curosurf function. Thus, human surfactant species, especially low molecular weight species, are highly antigenic. Antibodies to alveolar surfactants may inhibit surfactant function in vitro. As indicated by Western blot and cross-inhibition data, human lower molecular weight surfactants share epitopes with proteins from therapeutically important porcine and bovine surfactants. The potential importance of these findings to treatment of neonatal respiratory distress syndrome with heterologous surfactants is discussed. PMID:1988229

  3. The detection of surfactant proteins A, B, C and D in the human brain and their regulation in cerebral infarction, autoimmune conditions and infections of the CNS.

    PubMed

    Schob, Stefan; Schicht, Martin; Sel, Saadettin; Stiller, Dankwart; Kekulé, Alexander S; Kekulé, Alexander; Paulsen, Friedrich; Maronde, Erik; Bräuer, Lars

    2013-01-01

    Surfactant proteins (SP) have been studied intensively in the respiratory system. Surfactant protein A and surfactant protein D are proteins belonging to the family of collectins each playing a major role in the innate immune system. The ability of surfactant protein A and surfactant protein D to bind various pathogens and facilitate their elimination has been described in a vast number of studies. Surfactant proteins are very important in modulating the host's inflammatory response and participate in the clearance of apoptotic cells. Surfactant protein B and surfactant protein C are proteins responsible for lowering the surface tension in the lungs. The aim of this study was an investigation of expression of surfactant proteins in the central nervous system to assess their specific distribution patterns. The second aim was to quantify surfactant proteins in cerebrospinal fluid of healthy subjects compared to patients suffering from different neuropathologies. The expression of mRNA for the surfactant proteins was analyzed with RT-PCR done with samples from different parts of the human brain. The production of the surfactant proteins in the brain was verified using immunohistochemistry and Western blot. The concentrations of the surfactant proteins in cerebrospinal fluid from healthy subjects and patients suffering from neuropathologic conditions were quantified using ELISA. Our results revealed that surfactant proteins are present in the central nervous system and that the concentrations of one or more surfactant proteins in healthy subjects differed significantly from those of patients affected by central autoimmune processes, CNS infections or cerebral infarction. Based on the localization of the surfactant proteins in the brain, their different levels in normal versus pathologic samples of cerebrospinal fluid and their well-known functions in the lungs, it appears that the surfactant proteins may play roles in host defense of the brain, facilitation of

  4. Assignment of the human pulmonary surfactant protein D gene (SFTP4) to 10q22-q23 close to the surfactant protein A gene cluster

    SciTech Connect

    Koelble, K.; Kaluz, S.; Reid, K.B.M. ); Mole, S.E. )

    1993-08-01

    Pulmonary surfactant consists of a complex mixture of phospholipids and several proteins essential to normal respiratory function. Two of the surfactant proteins, SP-A and SP-D, appear to have lectin-like activity relevant to the local phagocytic defense. Using polymerase chain reaction (PCR)-based somatic cell hybrid mapping, the human SP-D gene (SFTP4) was assigned to chromosome 10. A regional mapping panel was assembled and characterized using sequence tagged sites for five loci previously mapped to 10q. SFTP4, the SP-A gene (SFTP1), and the microsatellite D10S109 were placed in the interval 10q22-q23. Low-stringency PCR using the SFTP1 primer pair suggested the presence of at least two additional SP-A-related genes in the same region. With the locus for mannose-binding lectin (MBL) at 10q21, this may be indicative of this region's central role in the evolutionary history of carbohydrate-binding proteins containing collagen-like regions. 41 refs., 3 figs., 1 tab.

  5. Pulmonary surfactant protein A and surfactant lipids upregulate IRAK-M, a negative regulator of TLR-mediated inflammation in human macrophages

    PubMed Central

    Nguyen, Huy A.; Rajaram, Murugesan V. S.; Meyer, Douglas A.

    2012-01-01

    Alveolar macrophages (AMs) are exposed to frequent challenges from inhaled particulates and microbes and function as a first line of defense with a highly regulated immune response because of their unique biology as prototypic alternatively activated macrophages. Lung collectins, particularly surfactant protein A (SP-A), contribute to this activation state by fine-tuning the macrophage inflammatory response. During short-term (10 min–2 h) exposure, SP-A's regulation of human macrophage responses occurs through decreased activity of kinases required for proinflammatory cytokine production. However, AMs are continuously exposed to surfactant, and the biochemical pathways underlying long-term reduction of proinflammatory cytokine activity are not known. We investigated the molecular mechanism(s) underlying SP-A- and surfactant lipid-mediated suppression of proinflammatory cytokine production in response to Toll-like receptor (TLR) 4 (TLR4) activation over longer time periods. We found that exposure of human macrophages to SP-A for 6–24 h upregulates expression of IL-1 receptor-associated kinase M (IRAK-M), a negative regulator of TLR-mediated NF-κB activation. Exposure to Survanta, a natural bovine lung extract lacking SP-A, also enhances IRAK-M expression, but at lower magnitude and for a shorter duration than SP-A. Surfactant-mediated upregulation of IRAK-M in macrophages suppresses TLR4-mediated TNF-α and IL-6 production in response to LPS, and IRAK-M knockdown by small interfering RNA reverses this suppression. In contrast to TNF-α and IL-6, the surfactant components upregulate LPS-mediated immunoregulatory IL-10 production, an effect reversed by IRAK-M knockdown. In conclusion, these data identify an important signaling regulator in human macrophages that is used by surfactant to control the long-term alveolar inflammatory response, i.e., enhanced IRAK-M activity. PMID:22886503

  6. Measurement of human surfactant protein-B turnover in vivo from tracheal aspirates using targeted proteomics.

    PubMed

    Tomazela, Daniela M; Patterson, Bruce W; Hanson, Elizabeth; Spence, Kimberly L; Kanion, Tiffany B; Salinger, David H; Vicini, Paolo; Barret, Hugh; Heins, Hillary B; Cole, F Sessions; Hamvas, Aaron; MacCoss, Michael J

    2010-03-15

    We describe a method to measure protein synthesis and catabolism in humans without prior purification and use the method to measure the turnover of surfactant protein-B (SP-B). SP-B, a lung-specific, hydrophobic protein essential for fetal-neonatal respiratory transition, is present in only picomolar quantities in tracheal aspirate samples and difficult to isolate for dynamic turnover studies using traditional in vivo tracer techniques. Using infusion of [5,5,5-(2)H(3)] leucine and a targeted proteomics method, we measured both the quantity and kinetics of SP-B tryptic peptides in tracheal aspirate samples of symptomatic newborn infants. The fractional synthetic rate (FSR) of SP-B measured using the most abundant proteolytic fragment, a 10 amino acid peptide from the carboxy-terminus of proSP-B (SPTGEWLPR), from the circulating leucine pool was 0.035 +/- 0.005 h(-1), and the fractional catabolic rate was 0.044 +/- 0.003 h(-1). This technique permits high-throughput and sensitive measurement of turnover of low abundance proteins with minimal sample preparation.

  7. Measurement of human surfactant protein-B turnover in vivo from tracheal aspirates using targeted proteomics

    PubMed Central

    Tomazela, Daniela; Patterson, Bruce W.; Hanson, Elizabeth; Spence, Kimberly L.; Kanion, Tiffany B.; Salinger, David H.; Vicini, Paolo; Barret, Hugh; Heins, Hillary B.; Cole, F. Sessions; Hamvas, Aaron; MacCoss, Michael J.

    2010-01-01

    We describe a method to measure protein synthesis and catabolism in humans without prior purification and use the method to measure the turnover of surfactant protein-B (SP-B). SP-B, a lung-specific, hydrophobic protein essential for fetal-neonatal respiratory transition, is present in only picomolar quantities in tracheal aspirate samples and difficult to isolate for dynamic turnover studies using traditional in vivo tracer techniques. Using infusion of [5,5,5-2H3] leucine and a targeted proteomics method, we measured both the quantity and kinetics of SP-B tryptic peptides in tracheal aspirate samples of symptomatic newborn infants. The fractional synthetic rate (FSR) of SP-B measured using the most abundant proteolytic fragment, a 10 amino acid peptide from the carboxy-terminus of proSP-B (SPTGEWLPR), from the circulating leucine pool was 0.035±0.005 hr−1 and fractional catabolic rate was 0.044±0.003 hr−1. This technique permits high-throughput, sensitive measurement of turnover of low abundance proteins with minimal sample preparation. PMID:20178338

  8. Structure binding relationship of human surfactant protein D and various lipopolysaccharide inner core structures.

    PubMed

    Reinhardt, Anika; Wehle, Marko; Geissner, Andreas; Crouch, Erika C; Kang, Yu; Yang, You; Anish, Chakkumkal; Santer, Mark; Seeberger, Peter H

    2016-09-01

    As a major player of the innate immune system, surfactant protein D (SP-D) recognizes and promotes elimination of various pathogens such as Gram-negative bacteria. SP-D binds to l-glycero-d-manno-heptose (Hep), a constituent of the partially conserved lipopolysaccharide (LPS) inner core of many Gram-negative bacteria. Binding and affinity of trimeric human SP-D to Hep in distinct LPS inner core glycans differing in linkages and adjacent residues was elucidated using glycan array and surface plasmon resonance measurements that were compared to in silico interaction studies. The combination of in vitro assays using defined glycans and molecular docking and dynamic simulation approaches provides insights into the interaction of trimeric SP-D with those glycan ligands. Trimeric SP-D wildtype recognized larger LPS inner core oligosaccharides with slightly enhanced affinity than smaller compounds suggesting the involvement of stabilizing secondary interactions. A trimeric human SP-D mutant D324N+D325N+R343K resembling rat SP-D bound to various LPS inner core structures in a similar pattern as observed for the wildtype but with higher affinity. The selective mutation of SP-D promotes targeting of LPS inner core oligosaccharides on Gram-negative bacteria to develop novel therapeutic agents. Copyright © 2016. Published by Elsevier Inc.

  9. Pulmonary Surfactant Protein-A regulates Toll-like receptor expression and activity in human macrophages

    PubMed Central

    Henning, Lisa N.; Azad, Abul K.; Parsa, Kishore V. L.; Crowther, Joy E.; Tridandapani, Susheela; Schlesinger, Larry S.

    2008-01-01

    The pulmonary innate immune system responds to various airborne microbes. Although its specificity is broad and based on the recognition of pathogen-associated molecular patterns (PAMPs), it is uniquely regulated to limit inflammation and thereby prevent damage to the gas-exchanging alveoli. Macrophages, critical cell determinants of this system, recognize microbes through pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs) which typically mediate pro-inflammatory responses. The lung collectin, surfactant protein-A (SP-A), has emerged as an important innate immune determinant that regulates microbe-macrophage interactions in this environment. Here we report the basal and SP-A-induced transcriptional and post-translational regulation of TLR2 and TLR4 expression during the differentiation of primary human monocytes into macrophages. Despite SP-A’s ability to up-regulate TLR2 expression on human macrophages, it dampens TLR2 and TLR4 signaling in these cells. SP-A decreases the phosphorylation of IκBα, a key regulator of NFκB activity, and nuclear translocation of p65 which result in diminished TNFα secretion in response to TLR ligands. SP-A also reduces the phosphorylation of TLR signaling proteins upstream of NFκB, including members of the MAP kinase family. Finally, we report for the first time that SP-A decreases the phosphorylation of Akt, a major cell regulator of NFκB and potentially MAP kinases. These data identify a critical role for SP-A in modulating the lung inflammatory response by regulating macrophage TLR activity. PMID:18523248

  10. Structural Studies of Protein-Surfactant Complexes

    SciTech Connect

    Chodankar, S. N.; Aswal, V. K.; Wagh, A. G.

    2008-03-17

    The structure of protein-surfactant complexes of two proteins bovine serum albumin (BSA) and lysozyme in presence of anionic surfactant sodium dodecyl sulfate (SDS) has been studied using small-angle neutron scattering (SANS). It is observed that these two proteins form different complex structures with the surfactant. While BSA protein undergoes unfolding on addition of surfactant, lysozyme does not show any unfolding even up to very high surfactant concentrations. The unfolding of BSA protein is caused by micelle-like aggregation of surfactant molecules in the complex. On the other hand, for lysozyme protein there is only binding of individual surfactant molecules to protein. Lysozyme in presence of higher surfactant concentrations has protein-surfactant complex structure coexisting with pure surfactant micelles.

  11. Biofoams and natural protein surfactants

    PubMed Central

    Cooper, Alan; Kennedy, Malcolm W.

    2010-01-01

    Naturally occurring foam constituent and surfactant proteins with intriguing structures and functions are now being identified from a variety of biological sources. The ranaspumins from tropical frog foam nests comprise a range of proteins with a mixture of surfactant, carbohydrate binding and antimicrobial activities that together provide a stable, biocompatible, protective foam environment for developing eggs and embryos. Ranasmurfin, a blue protein from a different species of frog, displays a novel structure with a unique chromophoric crosslink. Latherin, primarily from horse sweat, but with similarities to salivary, oral and upper respiratory tract proteins, illustrates several potential roles for surfactant proteins in mammalian systems. These proteins, together with the previously discovered hydrophobins of fungi, throw new light on biomolecular processes at air–water and other interfaces. This review provides a perspective on these recent findings, focussing on structure and biophysical properties. PMID:20615601

  12. Cis-acting sequences from a human surfactant protein gene confer pulmonary-specific gene expression in transgenic mice

    SciTech Connect

    Korfhagen, T.R.; Glasser, S.W.; Wert, S.E.; Bruno, M.D.; Daugherty, C.C.; McNeish, J.D.; Stock, J.L.; Potter, S.S.; Whitsett, J.A. )

    1990-08-01

    Pulmonary surfactant is produced in late gestation by developing type II epithelial cells lining the alveolar epithelium of the lung. Lack of surfactant at birth is associated with respiratory distress syndrome in premature infants. Surfactant protein C (SP-C) is a highly hydrophobic peptide isolated from pulmonary tissue that enhances the biophysical activity of surfactant phospholipids. Like surfactant phospholipid, SP-C is produced by epithelial cells in the distal respiratory epithelium, and its expression increases during the latter part of gestation. A chimeric gene containing 3.6 kilobases of the promoter and 5{prime}-flanking sequences of the human SP-C gene was used to express diphtheria toxin A. The SP-C-diphtheria toxin A fusion gene was injected into fertilized mouse eggs to produce transgenic mice. Affected mice developed respiratory failure in the immediate postnatal period. Morphologic analysis of lungs from affected pups showed variable but severe cellular injury confined to pulmonary tissues. Ultrastructural changes consistent with cell death and injury were prominent in the distal respiratory epithelium. Proximal components of the tracheobronchial tree were not severely affected. Transgenic animals were of normal size at birth, and structural abnormalities were not detected in nonpulmonary tissues. Lung-specific diphtheria toxin A expression controlled by the human SP-C gene injured type II epithelial cells and caused extensive necrosis of the distal respiratory epithelium. The absence of type I epithelial cells in the most severely affected transgenic animals supports the concept that developing type II cells serve as precursors to type I epithelial cells.

  13. The Interactions between SP-B Protein and Anionic Lipids Found in Human Lung Surfactant

    NASA Astrophysics Data System (ADS)

    Lee, Ka Yee C.; Lipp, Michael M.; Zasadzinski, Joseph A.; Waring, Alan J.

    1997-03-01

    Several lung pathologies, including neonatal respiratory distress syndrome, are characterized by a failure of the lung surfactant (LS) system to function properly. Utilizing fluorescence and Brewster angle microscopy, we have investigated the phase behavior of monolayers of binary mixtures of anionic lipids found in LS (palmitic acid, and both saturated and unsaturated phosphatidylglycerol) with both the full length SP-B protein and a shorter, 25-amino acid sequence based on its amino terminus. We found that both protein candidates interact specifically yet differently with each of the lipid components, altering their phase behavior to resemble more closely to that of an ideal LS monolayer. The SP-B protein incorporates itself in the lipid monolayer in all cases, and partitions preferentially into the fluid-type phases during phase transitions; its presence drastically changes the collapse mechanism of the monolayer.

  14. Genetic complexity of the human surfactant-associated proteins SP-A1 and SP-A2

    PubMed Central

    Silveyra, Patricia; Floros, Joanna

    2012-01-01

    Pulmonary surfactant protein A (SP-A) plays a key role in innate lung host defense, in surfactant-related functions, and in parturition. In the course of evolution, the genetic complexity of SP-A has increased, particularly in the regulatory regions (i.e. promoter, untranslated regions). Although most species have a single SP-A gene, two genes encode SP-A in humans and primates (SFTPA1and SFTPA2). This may account for the multiple functions attributed to human SP-A, as well as the regulatory complexity of its expression by a relatively diverse set of protein and non-protein cellular factors. The interplay between enhancer cis-acting DNA sequences and trans-acting proteins that recognize these DNA elements is essential for gene regulation, primarily at the transcription initiation level. Furthermore, regulation at the mRNA level is essential to ensure proper physiological levels of SP-A under different conditions. To date, numerous studies have shown significant complexity of the regulation of SP-A expression at different levels, including transcription, splicing, mRNA decay, and translation. A number of trans-acting factors have also been described to play a role in the control of SP-A expression. The aim of this report is to describe the genetic complexity of the SFTPA1 and SFTPA2 genes, as well as to review regulatory mechanisms that control SP-A expression in humans and other animal species. PMID:23069847

  15. Biomimicry of surfactant protein C.

    PubMed

    Brown, Nathan J; Johansson, Jan; Barron, Annelise E

    2008-10-01

    Since the widespread use of exogenous lung surfactant to treat neonatal respiratory distress syndrome, premature infant survival and respiratory morbidity have dramatically improved. Despite the effectiveness of the animal-derived surfactant preparations, there still remain some concerns and difficulties associated with their use. This has prompted investigation into the creation of synthetic surfactant preparations. However, to date, no clinically used synthetic formulation is as effective as the natural material. This is largely because the previous synthetic formulations lacked analogues of the hydrophobic proteins of the lung surfactant system, SP-B and SP-C, which are critical functional constituents. As a result, recent investigation has turned toward the development of a new generation of synthetic, biomimetic surfactants that contain synthetic phospholipids along with a mimic of the hydrophobic protein portion of lung surfactant. In this Account, we detail our efforts in creating accurate mimics of SP-C for use in a synthetic surfactant replacement therapy. Despite SP-C's seemingly simple structure, the predominantly helical protein is extraordinarily challenging to work with given its extreme hydrophobicity and structural instability, which greatly complicates the creation of an effective SP-C analogue. Drawing inspiration from Nature, two promising biomimetic approaches have led to the creation of rationally designed biopolymers that recapitulate many of SP-C's molecular features. The first approach utilizes detailed SP-C structure-activity relationships and amino acid folding propensities to create a peptide-based analogue, SP-C33. In SP-C33, the problematic and metastable polyvaline helix is replaced with a structurally stable polyleucine helix and includes a well-placed positive charge to prevent aggregation. SP-C33 is structurally stable and eliminates the association propensity of the native protein. The second approach follows the same design

  16. Biomimicry of surfactant protein C

    PubMed Central

    Brown, Nathan J.; Johansson, Jan; Barron, Annelise E.

    2012-01-01

    CONSPECTUS Since the widespread use of exogenous lung surfactant to treat neonatal respiratory distress syndrome, premature infant survival and respiratory morbidity have dramatically improved. Despite the effectiveness of the animal-derived surfactant preparations, there still remain some concerns and difficulties associated with their use. This has prompted investigation into the creation of synthetic surfactant preparations. However, to date, no clinically used synthetic formulation is as effective as the natural material. This is largely because the previous synthetic formulations lacked analogues of the hydrophobic proteins of the lung surfactant system, SP-B and SP-C, which are critical functional constituents. As a result, recent investigation has turned towards the development of a new generation of synthetic, biomimetic surfactants that contain synthetic phospholipids along with a mimic of the hydrophobic protein portion of lung surfactant. In this Account, we detail our efforts in creating accurate mimics of SP-C for use in a synthetic surfactant replacement therapy. Despite SP-C’s seemingly simple structure, the predominantly helical protein is extraordinarily challenging to work with given its extreme hydrophobicity and structural instability, which greatly complicates the creation of an effective SP-C analogue. Drawing inspiration from Nature, two promising biomimetic approaches have led to the creation of rationally designed biopolymers that recapitulate many of SP-C’s molecular features. The first approach utilizes detailed SP-C structure-activity relationships and amino acid folding propensities to create a peptide-based analogue, SP-C33. In SP-C33, the problematic and metastable poly-valine helix is replaced with a structurally stable, poly-leucine helix and includes a well placed positive charge to prevent aggregation. SP-C33 is both structurally stable and eliminates the association propensity of the native protein. The second approach

  17. Surfactant protein A expression in human normal and neoplastic breast epithelium.

    PubMed

    Braidotti, P; Cigala, C; Graziani, D; Del Curto, B; Dessy, E; Coggi, G; Bosari, S; Pietra, G G

    2001-11-01

    We studied the presence of surfactant protein A (Sp-A) immunoreactivity and messenger RNA in 62 normal and abnormal breast samples. Sections were immunostained with polyclonal anti-Sp-A antibody. The association between Sp-A immunoreactivity and histologic grade of 32 invasive ductal carcinomas was assessed by 3 pathologists who scored the intensity of Sp-A immunoreactivity times the percentage of tumor immunostained; individual scores were averaged, and the final scores were correlated with tumor grade, proliferative index, and expression of estrogen and progesterone receptors. Strong Sp-A immunoreactivity was present at the luminal surface of ductal epithelial cells in normal breast samples and in benign lesions; carcinomas displayed variable immunoreactivity, inversely proportional to the degree of differentiation. Sp-A messenger RNA was detected by reverse transcriptase-polymerase chain reaction in 3 of 3 normal breast samples and 9 of 9 carcinomas. The significance of Sp-A expression in breast epithelium requires further study; possibly it has a role in native host defense or epithelial differentiation.

  18. OSCAR is a receptor for Surfactant Protein D that activates TNF-α release from human CCR2+ inflammatory monocytes

    PubMed Central

    Barrow, Alexander D.; Palarasah, Yaseelan; Bugatti, Mattia; Holehouse, Alex S.; Byers, Derek E.; Holtzman, Michael J.; Vermi, William; Skjødt, Karsten; Crouch, Erika; Colonna, Marco

    2015-01-01

    Surfactant Protein D (SP-D) is critical for maintenance of lung homeostasis and provides a first line of defense to pathogens at mucosal surfaces. Polymorphisms in the SP-D-encoding gene SFTPD have been associated with chronic obstructive pulmonary disease and ulcerative colitis. Identification of the immunoreceptors that bind SP-D is essential for understanding its contribution to lung homeostasis and mucosal defense. We located a putative binding motif for the Osteoclast-associated Receptor (OSCAR) within the SP-D collagenous domain. An OSCAR-Fc fusion protein specifically bound to the collagenous region of recombinant SP-D and captured native SP-D from human bronchoalveolar lavage. OSCAR localized in an intracellular compartment of alveolar macrophages together with SP-D. Moreover, we found OSCAR on the surface of interstitial lung and blood CCR2+ inflammatory monocytes, which secreted TNF-α when exposed to SP-D in an OSCAR-dependent fashion. OSCAR and SP-D did not exclusively co-localize in lung as they were also highly expressed in atherosclerotic plaques of human aorta supporting a role for this interaction in atherosclerosis. Our results identify the OSCAR-SP-D interaction as a potential therapeutic target in chronic inflammatory diseases of the lung as well as other diseases involving tissue accumulation of SP-D, infiltration of inflammatory monocytes and release of TNF-α. PMID:25716998

  19. Impact of SDS surfactant on the interactions of Cu(2+) ions with the amyloidogenic region of human prion protein.

    PubMed

    Hecel, Aleksandra; Migliorini, Caterina; Valensin, Daniela; Luczkowski, Marek; Kozlowski, Henryk

    2015-08-07

    Prion diseases, known as Transmissible Spongiform Encephalopathies (TSEs), are a group of fatal neuronal, and to some extent infectious disorders, associated with a pathogenic protein agent called prion protein (PrP). The human prion protein (hPrP) fragment encompassing the 91-127 region, also known as the amyloidogenic domain, comprises two copper-binding sites corresponding to His-96 and His-111 residues that act as anchors for Cu(2+) binding. In this work, we investigated Cu(2+) interaction with hPrP91-127 in the presence of the anionic surfactant sodium dodecyl sulfate (SDS), which induces a partial α-helix folding of the peptide. Our data indicate that the Cu(2+) coordination ability of the amyloidogenic fragment in the presence of SDS micelles is significantly different to that observed in aqueous solution. This is mainly due to the fact that SDS micelles strongly stabilize the formation of the α-helical structure of the peptide backbone, which is well conserved also upon Cu(2+) binding, contrary to the random coil conformation mainly assumed by hPrP91-127 in aqueous solutions. Potentiometric and spectroscopic studies clearly indicate that in the case of SDS containing solutions, Cu(2+) ions coordinate simultaneously to both imidazoles, while in the case of water solutions, metal ion coordination involves only a single His side chain, which individually acts as an independent Cu(2+) anchoring site.

  20. Genetic Complexity of the Human Innate Host Defense Molecules, Surfactant Protein A1 (SP-A1) and SP-A2—Impact on Function

    PubMed Central

    Floros, Joanna; Wang, Guirong; Mikerov, Anatoly N.

    2010-01-01

    Innate immunity mechanisms play a critical role in the primary response to invading pathogenic microorganisms and other insulting agents. The innate lung immune system includes lung surfactant, a lipoprotein complex that carries out a function essential for life, that is, reduction of the surface tension at the air–liquid interphase of the alveolar space. By means of this function, pulmonary surfactant prevents lung collapse, therefore ensuring normal lung function and lung health. Pulmonary surfactant contains a number of host-defense molecules that are involved in the elimination of pathogens, viruses, particles, allergens, and other insults, as well as in the control of inflammation. This review is concerned with one of the surfactant proteins, the human (h) surfactant protein A (hSP-A), which, in addition to its role in surfactant-related functions, plays an important role in the modulation of lung host defense. The hSP-A locus has been identified with extensive complexity that may have an impact on its function, structure, and regulation. In humans, two genes—SP-A1 (SFTPA1) and SP-A2 (SFTPA2)—encode SP-A, with SP-A2 gene products being more biologically active than SP-A1 in most of the in vitro assays investigated. Although the two hSP-A genes share a high level of sequence similarity, differences in the structure and function between SP-A1 and SP-A2 have been observed in recent studies. In this review, we discuss the human SP-A complexity and how this may affect SP-A function. PMID:19392648

  1. Genetic complexity of the human innate host defense molecules, surfactant protein A1 (SP-A1) and SP-A2--impact on function.

    PubMed

    Floros, Joanna; Wang, Guirong; Mikerov, Anatoly N

    2009-01-01

    Innate immunity mechanisms play a critical role in the primary response to invading pathogenic microorganisms and other insulting agents. The innate lung immune system includes lung surfactant, a lipoprotein complex that carries out a function essential for life, that is, reduction of the surface tension at the air-liquid interphase of the alveolar space. By means of this function, pulmonary surfactant prevents lung collapse, therefore ensuring normal lung function and lung health. Pulmonary surfactant contains a number of host-defense molecules that are involved in the elimination of pathogens, viruses, particles, allergens, and other insults, as well as in the control of inflammation. This review is concerned with one of the surfactant proteins, the human (h) surfactant protein A (hSP-A), which, in addition to its role in surfactant-related functions, plays an important role in the modulation of lung host defense. The hSP-A locus has been identified with extensive complexity that may have an impact on its function, structure, and regulation. In humans, two genes--SP-A1 (SFTPA1) and SP-A2 (SFTPA2)--encode SP-A, with SP-A2 gene products being more biologically active than SP-A1 in most of the in vitro assays investigated. Although the two hSP-A genes share a high level of sequence similarity, differences in the structure and function between SP-A1 and SP-A2 have been observed in recent studies. In this review, we discuss the human SP-A complexity and how this may affect SP-A function.

  2. Contributions of Phenylalanine 335 to Ligand Recognition by Human Surfactant Protein D: Ring Interactions with SP-D Ligands

    SciTech Connect

    Crouch,E.; McDonald, B.; Smith, K.; Cararella, T.; Seaton, B.; Head, J.

    2006-01-01

    Surfactant Protein D (SP-D) is an innate immune effector that contributes to antimicrobial host defense and immune regulation. Interactions of SP-D with microorganisms and organic antigens involve binding of glycoconjugates to the C-type lectin carbohydrate recognition domain (CRD). A trimeric fusion protein encoding the human neck+CRD (hNCRD) bound to the aromatic glycoside, p-nitrophenyl-alpha-D-maltoside, with nearly a log-fold higher affinity than maltose, the prototypical competitor. Maltotriose, which has the same linkage pattern as the maltoside, bound with intermediate affinity. Site-directed substitution of leucine for phenylalanine 335 (Phe335) decreased affinities for the maltoside and maltotriose without significantly altering the affinity for maltose or glucose, and substitution of tyrosine or tryptophan for leucine restored preferential binding to maltotriose and the maltoside. A mutant with alanine at this position failed to bind to mannan or maltose-substituted solid supports. Crystallographic analysis of the hNCRD complexed with maltotriose or p-nitrophenyl-maltoside showed stacking of the terminal glucose or nitrophenyl ring with the aromatic ring of Phe335. Our studies indicate that Phe335, which is evolutionarily conserved in all known SP-Ds, plays important - if not critical roles - in SP-D function.

  3. Interindividual Variability in the Expression of Surfactant Protein A and B in the Human Lung During Development

    PubMed Central

    Cau, F.; Pisu, E.; Gerosa, C.; Senes, G.; Ronchi, F.; Botta, C.; Di Felice, E.; Uda, F.; Marinelli, V.; Faa, G.; Fanos, V.; Moretti, C.; Fanni, D.

    2016-01-01

    The surfactant complex, thanks to its multiple actions including decrease of surface-tension and antimicrobial activity, plays a fundamental role in newborn survival, lowering the risk of respiratory distress syndrome. The aim of this work was to determine if the synthesis of two surfactant proteins (SP), SPA and pro-SPB, shows some inter-individual variability during lung development in the intrauterine life. Immunoreactivity for SPA and pro-SPB was investigated in the lungs of 40 subjects, including 15 fetuses, ranging from 14 to 22 weeks of gestation, and 25 neonates, from 24 to 41 weeks. Lung samples were formalin fixed, paraffin-embedded and routinely processed. SPA and pro-SPB were detected utilizing commercial antibodies. A semi-quantitative grading system (1 to 4) was applied, based on the number of reactive cells and the intensity of immunostaining. Surfactant protein immunostaining was found in three compartments: bronchi, bronchioles and alveoli, starting from 14 weeks of gestation in the bronchial epithelium and from the 21st week in the alveolar spaces. Differences were found regarding SPA and pro-SPB expression in the vast majority of subjects: in some lungs, SPA was more expressed whereas in others pro-SPB showed an higher degree of immunoreactivity. The expression of both surfactant proteins was not strictly correlated with gestational age. Whereas the highest levels of reactivity were detected in at term neonates, on the other hand one case with grade 3 was detected at 22 weeks and one negative case for both proteins was observed at 31 weeks. Our data clearly show a marked inter-individual variability regarding the production of SPA and pro-SPB and suggest the existence of other epigenetic factors, acting during gestation, that might influence surfactant production and, consequently, the survival potential of neonates at birth. PMID:27734990

  4. THE CONCENTRATION OF SURFACTANT PROTEIN-A IN AMNIOTIC FLUID DECREASES IN SPONTANEOUS HUMAN PARTURITION AT TERM

    PubMed Central

    Chaiworapongsa, Tinnakorn; Hong, Joon-Seok; Hull, William M.; Kim, Chong Jai; Gomez, Ricardo; Mazor, Moshe; Romero, Roberto; Whitsett, Jeffrey A.

    2012-01-01

    OBJECTIVE The fetus is thought to play a central role in the onset of labor. Pulmonary surfactant protein (SP)-A, secreted by the maturing fetal lung, has been implicated in the mechanisms initiating parturition in mice. The present study was conducted to determine whether amniotic fluid concentrations of SP-A and SP-B change during human parturition. STUDY DESIGN Amniotic fluid SP-A and SP-B concentrations were measured with sensitive and specific ELISA in the following groups of pregnant women: 1) mid-trimester of pregnancy between 15th and 18th weeks of gestation (n=29); 2) term pregnancy not in labor (n=28); and 3) term pregnancy in spontaneous labor (n=26). Non-parametric statistics were used for analysis. RESULTS SP-A was detected in all amniotic fluid samples. SP-B was detected in 24.1% (7/29) of mid-trimester samples and in all samples at term. The median amniotic fluid concentration of SP-A and SP-B were significantly higher in women at term than in women in the mid-trimester (SP-A term no labor: median 5.6 μg/ml, range 2.2–15.2 μg/ml vs. mid-trimester: median 1.64 μg/ml, range 0.1–4.7 μg/ml; and SP-B term no labor: median 0.54 μg/ml, range 0.17–1.99 μg/ml vs. mid-trimester: median 0 μg/ml, range 0–0.35 μg/ml; both p<0.001). The median amniotic fluid SP-A concentration in women at term in labor was significantly lower than that in women at term not in labor (term in labor: median 2.7 μg/ml, range 1.2–10.1 μg/ml vs. term no labor: median 5.6 μg/ml, range 2.2–15.2 μg/ml; p<0.001). There was no significant difference in the median amniotic fluid SP-B concentrations between women in labor and those not in labor (term in labor: median 0.47 μg/ml range 0.04–1.32 μg/ml vs. term no labor: median 0.54 μg/ml range 0.17–1.99 μg/ml; p=0.2). CONCLUSION The amniotic fluid concentration of surfactant protein-A decreases in spontaneous human parturition at term. PMID:18828058

  5. Lipid-restricted recognition of mycobacterial lipoglycans by human pulmonary surfactant protein A: a surface-plasmon-resonance study.

    PubMed Central

    Sidobre, Stéphane; Puzo, Germain; Rivière, Michel

    2002-01-01

    The human pulmonary surfactant protein A (hSP-A), a member of the mammalian collectin family, is thought to play a key defensive role against airborne invading pulmonary pathogens, among which is Mycobacterium tuberculosis, the aetiologic agent of tuberculosis. hSP-A has been shown to promote the uptake and the phagocytosis of pathogenic bacilli through the recognition and the binding of carbohydrate motifs on the invading pathogen surface. Recently we identified lipomannan and mannosylated lipoarabinomannan (ManLAM), two major mycobacterial cell-wall lipoglycans, as potential ligands for binding of hSP-A. We demonstrated that both the terminal mannose residues and the fatty acids are critical for binding, whereas the inner arabinosyl and mannosyl domains do not participate. In the present study we developed a surface-plasmon-resonance assay to analyse the molecular basis for the recognition of ManLAM by hSP-A and to try to define further the role of the lipidic aglycone moiety. Binding of ManLAM to immobilized hSP-A was consistent with the simplest one-to-one interaction model involving a single class of carbohydrate-binding site. This observation strongly suggests that the lipid moiety of ManLAM does not directly interact with hSP-A, but is rather responsible for the macromolecular organization of the lipoglycan, which may be necessary for efficient recognition of the terminal mannosyl epitopes. The indirect, structural role of the lipoglycan lipidic component is further supported by the complete lack of interaction with hSP-A in the presence of a low concentration of mild detergent. PMID:12071842

  6. [Deficiency of surfactant protein: Case report].

    PubMed

    Milet, María Beatriz; Mena N, Patricia; Pérez, Héctor I; Espinoza, Tatiana

    Congenital surfactant deficiency is a condition infrequently diagnosed in newborns. A clinical case is presented of surfactant protein B deficiency. A review is performed on the study, treatment and differential diagnosis of surfactant protein deficiencies and infant chronic interstitial lung disease. The case is presented of a term newborn that developed respiratory distress, recurrent pulmonary opacification, and a transient response to the administration of surfactant. Immunohistochemical and genetic studies confirmed the diagnosis of surfactant protein B deficiency. Pulmonary congenital anomalies require a high index of suspicion. Surfactant protein B deficiency is clinically progressive and fatal in the majority of the cases, similar to that of ATP binding cassette subfamily A member 3 (ABCA3) deficiency. Protein C deficiency is insidious and may present with a radiological pulmonary interstitial pattern. Due to the similarity in the histological pattern, genetic studies help to achieve greater certainty in the prognosis and the possibility of providing adequate genetic counselling. Copyright © 2016 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Interfacial Reactions of Ozone with Surfactant Protein B in a Model Lung Surfactant System

    PubMed Central

    Kim, Hugh I.; Kim, Hyungjun; Shin, Young Shik; Beegle, Luther W.; Jang, Seung Soon; Neidholdt, Evan L.; Goddard, William A.; Heath, James R.; Kanik, Isik; Beauchamp, J. L.

    2010-01-01

    Oxidative stresses from irritants such as hydrogen peroxide and ozone (O3) can cause dysfunction of the pulmonary surfactant (PS) layer in the human lung, resulting in chronic diseases of the respiratory tract. For identification of structural changes of pulmonary surfactant protein B due to the heterogeneous reaction with O3, field induced droplet ionization (FIDI) mass spectrometry is utilized. FIDI is a soft ionization method in which ions are extracted from the surface of microliter-volume droplets. We report the structurally specific oxidative changes of SP-B1-25 (a shortened version of human surfactant protein B) at the air-liquid interface. We also present studies of the interfacial oxidation of SP-B1-25 in a non-ionizable 1-palmitoyl-2-oleoyl-sn-glycerol (POG) surfactant layer as a model PS system, where the competitive oxidation of the two components is observed. Our results indicate that the heterogeneous reaction of SP-B1-25 at the interface is quite different from that in the solution phase. Compared to the nearly complete homogeneous oxidation of SP-B1-25, only a subset of the amino acids known to react with ozone is oxidized by direct ozonolysis in the hydrophobic interfacial environment, both with and without the lipid monolayer. Combining these experimental observations with the results of molecular dynamics simulations provides an improved understanding of the interfacial structure and chemistry of a model lung surfactant system when subject to oxidative stress. PMID:20121208

  8. Surfactant-associated proteins: structure, function and clinical implications.

    PubMed

    Ketko, Anastasia K; Donn, Steven M

    2014-01-01

    Surfactant replacement therapy is now the standard of care for infants with respiratory distress syndrome. As the understanding of surfactant structure and function has evolved, surfactant-associated proteins are now understood to be essential components of pulmonary surfactant. Their structural and functional diversity detail the complexity of their contributions to normal pulmonary physiology, and deficiency states result in significant pathology. Engineering synthetic surfactant protein constructs has been a major research focus for replacement therapies. This review highlights what is known about surfactant proteins and how this knowledge is pivotal for future advancements in treating respiratory distress syndrome as well as other pulmonary diseases characterized by surfactant deficiency or inactivation.

  9. Interfacial reactions of ozone with surfactant protein B in a model lung surfactant system.

    PubMed

    Kim, Hugh I; Kim, Hyungjun; Shin, Young Shik; Beegle, Luther W; Jang, Seung Soon; Neidholdt, Evan L; Goddard, William A; Heath, James R; Kanik, Isik; Beauchamp, J L

    2010-02-24

    Oxidative stresses from irritants such as hydrogen peroxide and ozone (O(3)) can cause dysfunction of the pulmonary surfactant (PS) layer in the human lung, resulting in chronic diseases of the respiratory tract. For identification of structural changes of pulmonary surfactant protein B (SP-B) due to the heterogeneous reaction with O(3), field-induced droplet ionization (FIDI) mass spectrometry has been utilized. FIDI is a soft ionization method in which ions are extracted from the surface of microliter-volume droplets. We report structurally specific oxidative changes of SP-B(1-25) (a shortened version of human SP-B) at the air-liquid interface. We also present studies of the interfacial oxidation of SP-B(1-25) in a nonionizable 1-palmitoyl-2-oleoyl-sn-glycerol (POG) surfactant layer as a model PS system, where competitive oxidation of the two components is observed. Our results indicate that the heterogeneous reaction of SP-B(1-25) at the interface is quite different from that in the solution phase. In comparison with the nearly complete homogeneous oxidation of SP-B(1-25), only a subset of the amino acids known to react with ozone are oxidized by direct ozonolysis in the hydrophobic interfacial environment, both with and without the lipid surfactant layer. Combining these experimental observations with the results of molecular dynamics simulations provides an improved understanding of the interfacial structure and chemistry of a model lung surfactant system subjected to oxidative stress.

  10. Biophysical inhibition of pulmonary surfactant function by polymeric nanoparticles: role of surfactant protein B and C.

    PubMed

    Beck-Broichsitter, Moritz; Ruppert, Clemens; Schmehl, Thomas; Günther, Andreas; Seeger, Werner

    2014-11-01

    The current study investigated the mechanisms involved in the process of biophysical inhibition of pulmonary surfactant by polymeric nanoparticles (NP). The minimal surface tension of diverse synthetic surfactants was monitored in the presence of bare and surface-decorated (i.e. poloxamer 407) sub-100 nm poly(lactide) NP. Moreover, the influence of NP on surfactant composition (i.e. surfactant protein (SP) content) was studied. Dose-elevations of SP advanced the biophysical activity of the tested surfactant preparation. Surfactant-associated protein C supplemented phospholipid mixtures (PLM-C) were shown to be more susceptible to biophysical inactivation by bare NP than phospholipid mixture supplemented with surfactant protein B (PLM-B) and PLM-B/C. Surfactant function was hindered owing to a drastic depletion of the SP content upon contact with bare NP. By contrast, surface-modified NP were capable of circumventing unwanted surfactant inhibition. Surfactant constitution influences the extent of biophysical inhibition by polymeric NP. Steric shielding of the NP surface minimizes unwanted NP-surfactant interactions, which represents an option for the development of surfactant-compatible nanomedicines. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Impact of C-reactive protein (CRP) on surfactant function

    SciTech Connect

    Li, J.J.; Sanders, R.L.; McAdam, K.P.; Hales, C.A.; Thompson, B.T.; Gelfand, J.A.; Burke, J.F. )

    1989-12-01

    Plasma levels of the acute-phase reactant, C-reactive protein (CRP), increase up to one thousand-fold as a result of trauma or inflammation. CRP binds to phosphorylcholine (PC) in a calcium-ion dependent manner. The structural homology between PC and the major phospholipid component of surfactant, dipalmitoyl phosphatidylcholine (DPPC), led to the present study in which we examined if CRP levels might be increased in patients with adult respiratory distress syndrome (ARDS), and subsequently interfere with surfactant function. Our results showed that CRP levels in the bronchoalveolar fluid (BALF) was increased in patients with ARDS (97.8 +/- 84.2 micrograms/mg total protein vs. 4.04 +/- 2.2 micrograms/mg total protein in normals). Our results show that CRP binds to liposomes containing DPPC and phosphatidylglycerol (PG). As a result of this interaction, CRP inhibits the surface activity of a PG-DPPC mixture when tested with a Wilhelmy surfactometer or with the Enhorning pulsating bubble apparatus. Furthermore, the surface activity of a clinically used surfactant replacement, Surfactant TA (2 mg/ml), was also severely impaired by CRP in a dose-dependent manner (doses used ranging from 24.5 to 1,175 micrograms/ml). In contrast, human serum albumin (HSA) at 500 and 900 micrograms/ml had no inhibitory effect on Surfactant TA surface activity. These results suggest that CRP, although not an initiating insult in ARDS, may contribute to the subsequent abnormalities of surfactant function and thus the pathogenesis of the pulmonary dysfunction seen in ARDS.

  12. Experimental Study on How Human Lung Surfactant Protein SP-B1-25 is Oxidized by Ozone in the Presence of Fe(II) and Ascorbic Acid

    NASA Astrophysics Data System (ADS)

    Colussi, A. J.; Enami, S.; Hoffmann, M. R.

    2014-12-01

    We will report the results of experiments on the chemical fate of the human lung surfactant protein SP-B1-25 upon exposure to gaseous ozone in realistic aqueous media simulating the conditions prevalent in epithelial lining fluids in polluted ambient air. Our experiments consist of exposing aqueous microjets containing SP-B1-25, the natural antioxidant ascorbic acid, and the Fe2+ carried by most atmospheric fine particulates, under mild acidic conditions, such as those created by the innate lung host defense response. Reactants and the products of such interactions are detected via online electrospray ionization mass spectrometry. We will show that ascorbic acid largely inhibits the ozonation of SP-B1-25 in the absence of Fe2+, leading to the formation of an ascorbic acid ozonide (Enami et al., PNAS 2008). In the presence of Fe2+, however, the ozonide decomposes into reactive intermediates that result in the partial oxidation of SP-B1-25, presumable affecting its function as surfactant. We infer that these experimental results establish a plausible causal link for the observed synergic adverse health effects of ambient ozone and fine particulates

  13. Molecular simulation of surfactant-assisted protein refolding

    NASA Astrophysics Data System (ADS)

    Lu, Diannan; Liu, Zheng; Liu, Zhixia; Zhang, Minlian; Ouyang, Pingkai

    2005-04-01

    Protein refolding to its native state in vitro is a challenging problem in biotechnology, i.e., in the biomedical, pharmaceutical, and food industry. Protein aggregation and misfolding usually inhibit the recovery of proteins with their native states. These problems can be partially solved by adding a surfactant into a suitable solution environment. However, the process of this surfactant-assisted protein refolding is not well understood. In this paper, we wish to report on the first-ever simulations of surfactant-assisted protein refolding. For these studies, we defined a simple model for the protein and the surfactant and investigated how a surfactant affected the folding behavior of a two-dimensional lattice protein molecule. The model protein and model surfactant were chosen such that we could capture the important features of the folding process and the interaction between the protein and the surfactant, namely, the hydrophobic interaction. It was shown that, in the absence of surfactants, a protein in an "energy trap" conformation, i.e., a local energy minima, could not fold into the native form, which was characterized by a global energy minimum. The addition of surfactants created folding pathways via the formation of protein-surfactant complexes and thus enabled the conformations that fell into energy trap states to escape from these traps and to form the native proteins. The simulation results also showed that it was necessary to match the hydrophobicity of surfactant to the concentration of denaturant, which was added to control the folding or unfolding of a protein. The surfactants with different hydrophobicity had their own concentration range on assisting protein refolding. All of these simulations agreed well with experimental results reported elsewhere, indicating both the validity of the simulations presented here and the potential application of the simulations for the design of a surfactant on assisting protein refolding.

  14. Structural study of surfactant-dependent interaction with protein

    SciTech Connect

    Mehan, Sumit; Aswal, Vinod K.; Kohlbrecher, Joachim

    2015-06-24

    Small-angle neutron scattering (SANS) has been used to study the complex structure of anionic BSA protein with three different (cationic DTAB, anionic SDS and non-ionic C12E10) surfactants. These systems form very different surfactant-dependent complexes. We show that the structure of protein-surfactant complex is initiated by the site-specific electrostatic interaction between the components, followed by the hydrophobic interaction at high surfactant concentrations. It is also found that hydrophobic interaction is preferred over the electrostatic interaction in deciding the resultant structure of protein-surfactant complexes.

  15. Different effects of surfactant proteins B and C - implications for development of synthetic surfactants.

    PubMed

    Curstedt, Tore; Johansson, Jan

    2010-06-01

    Treatment of premature newborn rabbits with synthetic surfactants containing a surfactant protein C analogue in a simple phospholipid mixture gives similar tidal volumes as treatment with poractant alfa (Curosurf(R)) but ventilation with a positive end-expiratory pressure (PEEP) is needed for this synthetic surfactant to stabilize the alveoli at end-expiration. The effect on lung gas volumes seems to depend on the structure of the peptide since treatment with a synthetic surfactant containing the 21-residue peptide (LysLeu(4))(4)Lys (KL(4)) gives low lung gas volumes in experiments also performed with PEEP. Surfactant preparations containing both surfactant proteins B and C or their analogues prevent alveolar collapse at end-expiration even if ventilated without PEEP. Treatment of premature newborn rabbits with different natural surfactants indicates that both the lipid composition and the proteins are important in order to stabilize the alveoli at end-expiration. Synthetic surfactants containing two peptides may be able to replace natural surfactants within the near future but more trials need to be performed before any conclusion can be drawn about the ideal composition of this new generation of synthetic surfactants. Copyright 2010 S. Karger AG, Basel.

  16. Surfactant Protein D Facilitates Cryptococcus neoformans Infection

    PubMed Central

    Geunes-Boyer, Scarlett; Beers, Michael F.; Heitman, Joseph; Wright, Jo Rae

    2012-01-01

    Concurrent with the global escalation of the AIDS pandemic, cryptococcal infections are increasing and are of significant medical importance. Furthermore, Cryptococcus neoformans has become a primary human pathogen, causing infection in seemingly healthy individuals. Although numerous studies have elucidated the virulence properties of C. neoformans, less is understood regarding lung host immune factors during early stages of fungal infection. Based on our previous studies documenting that pulmonary surfactant protein D (SP-D) protects C. neoformans cells against macrophage-mediated defense mechanisms in vitro (S. Geunes-Boyer et al., Infect. Immun. 77:2783–2794, 2009), we postulated that SP-D would facilitate fungal infection in vivo. To test this hypothesis, we examined the role of SP-D in response to C. neoformans using SP-D−/− mice. Here, we demonstrate that mice lacking SP-D were partially protected during C. neoformans infection; they displayed a longer mean time to death and decreased fungal burden at several time points postinfection than wild-type mice. This effect was reversed by the administration of exogenous SP-D. Furthermore, we show that SP-D bound to the surface of the yeast cells and protected the pathogenic microbes against macrophage-mediated defense mechanisms and hydrogen peroxide (H2O2)-induced oxidative stress in vitro and in vivo. These findings indicate that C. neoformans is capable of coopting host SP-D to increase host susceptibility to the yeast. This study establishes a new paradigm for the role played by SP-D during host responses to C. neoformans and consequently imparts insight into potential future preventive and/or treatment strategies for cryptococcosis. PMID:22547543

  17. Nintedanib modulates surfactant protein-D expression in A549 human lung epithelial cells via the c-Jun N-terminal kinase-activator protein-1 pathway.

    PubMed

    Kamio, Koichiro; Usuki, Jiro; Azuma, Arata; Matsuda, Kuniko; Ishii, Takeo; Inomata, Minoru; Hayashi, Hiroki; Kokuho, Nariaki; Fujita, Kazue; Saito, Yoshinobu; Miya, Toshimichi; Gemma, Akihiko

    2015-06-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease with a high mortality rate. Signalling pathways activated by several tyrosine kinase receptors are known to be involved in lung fibrosis, and this knowledge has led to the development of the triple tyrosine kinase inhibitor nintedanib, an inhibitor of vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), and fibroblast growth factor receptor (FGFR), for the treatment of IPF. Pulmonary surfactant protein D (SP-D), an important biomarker of IPF, reportedly attenuates bleomycin-induced pulmonary fibrosis in mice. In this study, we investigated whether nintedanib modulates SP-D expression in human lung epithelial (A549) cells using quantitative real-time reverse transcriptase polymerase chain reaction and western blotting. To investigate the mechanisms underlying the effects of nintedanib, we evaluated the phosphorylation of c-Jun N-terminal kinase (JNK) and its downstream target c-Jun. The effect of the JNK inhibitor SP600125 on c-Jun phosphorylation was also tested. Activation of activator protein-1 (AP-1) was examined using an enzyme-linked immunosorbent assay-based test, and cell proliferation assays were performed to estimate the effect of nintedanib on cell proliferation. Furthermore, we treated mice with nintedanib to examine its in vivo effect on SP-D levels in lungs. These experiments showed that nintedanib up-regulated SP-D messenger RNA expression in a dose-dependent manner at concentrations up to 5 μM, with significant SP-D induction observed at concentrations of 3 μM and 5 μM, in comparison with that observed in vehicle controls. Nintedanib stimulated a rapid increase in phosphorylated JNK in A549 cells within 30 min of treatment and stimulated c-Jun phosphorylation, which was inhibited by the JNK inhibitor SP600125. Additionally, nintedanib was found to activate AP-1. A549 cell proliferation was not affected by nintedanib at any of the tested

  18. Lung Surfactant Levels are Regulated by Ig-Hepta/GPR116 by Monitoring Surfactant Protein D

    PubMed Central

    Fukuzawa, Taku; Ishida, Junji; Kato, Akira; Ichinose, Taro; Ariestanti, Donna Maretta; Takahashi, Tomoya; Ito, Kunitoshi; Abe, Jumpei; Suzuki, Tomohiro; Wakana, Shigeharu; Fukamizu, Akiyoshi; Nakamura, Nobuhiro; Hirose, Shigehisa

    2013-01-01

    Lung surfactant is a complex mixture of lipids and proteins, which is secreted from the alveolar type II epithelial cell and coats the surface of alveoli as a thin layer. It plays a crucial role in the prevention of alveolar collapse through its ability to reduce surface tension. Under normal conditions, surfactant homeostasis is maintained by balancing its release and the uptake by the type II cell for recycling and the internalization by alveolar macrophages for degradation. Little is known about how the surfactant pool is monitored and regulated. Here we show, by an analysis of gene-targeted mice exhibiting massive accumulation of surfactant, that Ig-Hepta/GPR116, an orphan receptor, is expressed on the type II cell and sensing the amount of surfactant by monitoring one of its protein components, surfactant protein D, and its deletion results in a pulmonary alveolar proteinosis and emphysema-like pathology. By a coexpression experiment with Sp-D and the extracellular region of Ig-Hepta/GPR116 followed by immunoprecipitation, we identified Sp-D as the ligand of Ig-Hepta/GPR116. Analyses of surfactant metabolism in Ig-Hepta+/+ and Ig-Hepta−/− mice by using radioactive tracers indicated that the Ig-Hepta/GPR116 signaling system exerts attenuating effects on (i) balanced synthesis of surfactant lipids and proteins and (ii) surfactant secretion, and (iii) a stimulating effect on recycling (uptake) in response to elevated levels of Sp-D in alveolar space. PMID:23922714

  19. Adsorption of surfactant protein D from human respiratory secretions by carbon nanotubes and polystyrene nanoparticles depends on nanomaterial surface modification and size

    PubMed Central

    Marchetti, Magda; Shaffer, Milo S. P.; Zambianchi, Martina; Chen, Shu; Superti, Fabiana; Schwander, Stephan; Gow, Andrew; Zhang, Junfeng (Jim); Chung, Kian Fan; Ryan, Mary P.; Porter, Alexandra E.; Tetley, Teresa D.

    2015-01-01

    The alveolar respiratory unit constitutes one of the main targets of inhaled nanoparticles; the effect of engineered nanomaterials (NMs) on human health is largely unknown. Surfactant protein D (SP-D) is synthesized by alveolar type II epithelial cells and released into respiratory secretions; its main function is in immune defence, notably against inhaled microbes. SP-D also plays an important role in modulating an appropriate inflammatory response in the lung, and reduced SP-D is associated with a number of inflammatory lung diseases. Adsorption of SP-D to inhaled NMs may facilitate their removal via macrophage phagocytosis. This study addresses the hypothesis that the chemistry, size and surface modification of engineered NMs will impact on their interaction with, and adsorption of, SP-D. To this purpose, we have examined the interactions between SP-D in human lung lavage and two NMs, carbon nanotubes and polystyrene nanoparticles, with different surface functionalization. We have demonstrated that particle size, functionalization and concentration affect the adsorption of SP-D from human lung lavage. Functionalization with negatively charged groups enhanced the amount of SP-D binding. While SP-D binding would be expected to enhance macrophage phagocytosis, these results suggest that the degree of binding is markedly affected by the physicochemistry of the NM and that deposition of high levels of some nanoparticles within the alveolar unit might deplete SP-D levels and affect alveolar immune defence mechanisms. PMID:25533095

  20. Molecular origins of surfactant-mediated stabilization of protein drugs.

    PubMed

    Lee, Hyo Jin; McAuley, Arnold; Schilke, Karl F; McGuire, Joseph

    2011-10-01

    Loss of activity through aggregation and surface-induced denaturation is a significant problem in the production, formulation and administration of therapeutic proteins. Surfactants are commonly used in upstream and downstream processing and drug formulation. However, the effectiveness of a surfactant strongly depends on its mechanism(s) of action and properties of the protein and interfaces. Surfactants can modulate adsorption loss and aggregation by coating interfaces and/or participating in protein-surfactant associations. Minimizing protein loss from colloidal and interfacial interaction requires a fundamental understanding of the molecular factors underlying surfactant effectiveness and mechanism. These concepts provide direction for improvements in the manufacture and finishing of therapeutic proteins. We summarize the roles of surfactants, proteins, and surfactant-protein complexes in modulating interfacial behavior and aggregation. These events depend on surfactant properties that may be quantified using a thermodynamic model, to provide physical/chemical direction for surfactant selection or design, and to effectively reduce aggregation and adsorption loss. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Surfactant protein A is expressed in the central nervous system of rats with experimental autoimmune encephalomyelitis, and suppresses inflammation in human astrocytes and microglia.

    PubMed

    Yang, Xue; Yan, Jun; Feng, Juan

    2017-06-01

    The collectin surfactant protein‑A (SP‑A), a potent host defense molecule, is well recognized for its role in the maintenance of pulmonary homeostasis and the modulation of inflammatory responses. While previous studies have detected SP‑A in numerous extrapulmonary tissues, there is still a lack of information regarding its expression in central nervous system (CNS) and potential effects in neuroinflammatory diseases, such as multiple sclerosis (MS). The present study used experimental autoimmune encephalomyelitis (EAE), the most commonly used animal model of MS, to investigate the expression of SP‑A in the CNS at different stages of disease progression. In addition, in vitro experiments with lipopolysaccharide (LPS)‑stimulated human astrocytes and microglia were performed to investigate the potential role of SP‑A in the modulation of CNS inflammatory responses. The results of the present study demonstrated widespread distribution of SP‑A in the rat CNS, and also identified specific expression patterns of SP‑A at different stages of EAE. In vitro, the current study revealed that treatment of human astrocytes and microglia with LPS promoted SP‑A expression in a dose‑dependent manner. Furthermore, exogenous SP‑A protein significantly decreased Toll‑like receptor 4 and nuclear factor‑κB expression, and reduced interleukin‑1β and tumor necrosis factor‑α levels. The results of the current study indicate a potential role for SP‑A in the modulation of CNS inflammatory responses.

  2. “SP-G”, a Putative New Surfactant Protein – Tissue Localization and 3D Structure

    PubMed Central

    Paulsen, Friedrich; Ngueya, Ivan; Bräuer, Lars; Brandt, Wolfgang

    2012-01-01

    Surfactant proteins (SP) are well known from human lung. These proteins assist the formation of a monolayer of surface-active phospholipids at the liquid-air interface of the alveolar lining, play a major role in lowering the surface tension of interfaces, and have functions in innate and adaptive immune defense. During recent years it became obvious that SPs are also part of other tissues and fluids such as tear fluid, gingiva, saliva, the nasolacrimal system, and kidney. Recently, a putative new surfactant protein (SFTA2 or SP-G) was identified, which has no sequence or structural identity to the already know surfactant proteins. In this work, computational chemistry and molecular-biological methods were combined to localize and characterize SP-G. With the help of a protein structure model, specific antibodies were obtained which allowed the detection of SP-G not only on mRNA but also on protein level. The localization of this protein in different human tissues, sequence based prediction tools for posttranslational modifications and molecular dynamic simulations reveal that SP-G has physicochemical properties similar to the already known surfactant proteins B and C. This includes also the possibility of interactions with lipid systems and with that, a potential surface-regulatory feature of SP-G. In conclusion, the results indicate SP-G as a new surfactant protein which represents an until now unknown surfactant protein class. PMID:23094088

  3. "SP-G", a putative new surfactant protein--tissue localization and 3D structure.

    PubMed

    Rausch, Felix; Schicht, Martin; Paulsen, Friedrich; Ngueya, Ivan; Bräuer, Lars; Brandt, Wolfgang

    2012-01-01

    Surfactant proteins (SP) are well known from human lung. These proteins assist the formation of a monolayer of surface-active phospholipids at the liquid-air interface of the alveolar lining, play a major role in lowering the surface tension of interfaces, and have functions in innate and adaptive immune defense. During recent years it became obvious that SPs are also part of other tissues and fluids such as tear fluid, gingiva, saliva, the nasolacrimal system, and kidney. Recently, a putative new surfactant protein (SFTA2 or SP-G) was identified, which has no sequence or structural identity to the already know surfactant proteins. In this work, computational chemistry and molecular-biological methods were combined to localize and characterize SP-G. With the help of a protein structure model, specific antibodies were obtained which allowed the detection of SP-G not only on mRNA but also on protein level. The localization of this protein in different human tissues, sequence based prediction tools for posttranslational modifications and molecular dynamic simulations reveal that SP-G has physicochemical properties similar to the already known surfactant proteins B and C. This includes also the possibility of interactions with lipid systems and with that, a potential surface-regulatory feature of SP-G. In conclusion, the results indicate SP-G as a new surfactant protein which represents an until now unknown surfactant protein class.

  4. Pseudomonas aeruginosa protease IV degrades surfactant proteins and inhibits surfactant host defense and biophysical functions.

    PubMed

    Malloy, Jaret L; Veldhuizen, Ruud A W; Thibodeaux, Brett A; O'Callaghan, Richard J; Wright, Jo Rae

    2005-02-01

    Pulmonary surfactant has two distinct functions within the lung: reduction of surface tension at the air-liquid interface and participation in innate host defense. Both functions are dependent on surfactant-associated proteins. Pseudomonas aeruginosa is primarily responsible for respiratory dysfunction and death in cystic fibrosis patients and is also a leading pathogen in nosocomial pneumonia. P. aeruginosa secretes a number of proteases that contribute to its virulence. We hypothesized that P. aeruginosa protease IV degrades surfactant proteins and results in a reduction in pulmonary surfactant host defense and biophysical functions. Protease IV was isolated from cultured supernatant of P. aeruginosa by gel chromatography. Incubation of cell-free bronchoalveolar lavage fluid with protease IV resulted in degradation of surfactant proteins (SP)-A, -D, and -B. SPs were degraded in a time- and dose-dependent fashion by protease IV, and degradation was inhibited by the trypsin-like serine protease inhibitor Nalpha-p-tosyl-L-lysine-chloromethyl ketone (TLCK). Degradation by protease IV inhibited SP-A- and SP-D-mediated bacterial aggregation and uptake by macrophages. Surfactant treated with protease IV was unable to reduce surface tension as effectively as untreated surfactant, and this effect was inhibited by TLCK. We speculate that protease IV may be an important contributing factor to the development and propagation of acute lung injury associated with P. aeruginosa via loss of surfactant function within the lung.

  5. Surface film formation in vitro by infant and therapeutic surfactants: role of surfactant protein B.

    PubMed

    Danhaive, Olivier; Chapin, Cheryl; Horneman, Hart; Cogo, Paola E; Ballard, Philip L

    2015-02-01

    Pulmonary surfactant provides an alveolar surface-active film that is critical for normal lung function. Our objective was to determine in vitro film formation properties of therapeutic and infant surfactants and the influence of surfactant protein (SP)-B content. We used a multiwell fluorescent assay measuring maximum phospholipid surface accumulation (Max), phospholipid concentration required for half-maximal film formation (½Max), and time for maximal accumulation (tMax). Among five therapeutic surfactants, calfactant (highest SP-B content) had film formation values similar to natural surfactant, and addition of SP-B to beractant (lowest SP-B) normalized its Max value. Addition of budesonide to calfactant did not adversely affect film formation. In tracheal aspirates of preterm infants with evolving chronic lung disease, SP-B content correlated with ½Max and tMax values, and SP-B supplementation of SP-B-deficient infant surfactant restored normal film formation. Reconstitution of normal surfactant indicated a role for both SP-B and SP-C in film formation. Film formation in vitro differs among therapeutic surfactants and is highly dependent on SP-B content in infant surfactant. The results support a critical role of SP-B for promoting surface film formation.

  6. Relating Surfactant Properties to Activity and Solubilization of the Human Adenosine A3 Receptor

    PubMed Central

    Berger, Bryan W.; García, Roxana Y.; Lenhoff, Abraham M.; Kaler, Eric W.; Robinson, Clifford R.

    2005-01-01

    The effects of various surfactants on the activity and stability of the human adenosine A3 receptor (A3) were investigated. The receptor was expressed using stably transfected HEK293 cells at a concentration of 44 pmol functional receptor per milligram membrane protein and purified using over 50 different nonionic surfactants. A strong correlation was observed between a surfactant's ability to remove A3 from the membrane and the ability of the surfactant to remove A3 selectively relative to other membrane proteins. The activity of A3 once purified also correlates well with the selectivity of the surfactant used. The effects of varying the surfactant were much stronger than those achieved by including A3 ligands in the purification scheme. Notably, all surfactants that gave high efficiency, selectivity and activity fall within a narrow range of hydrophile-lipophile balance values. This effect may reflect the ability of the surfactant to pack effectively at the hydrophobic transmembrane interface. These findings emphasize the importance of identifying appropriate surfactants for a particular membrane protein, and offer promise for the development of rapid, efficient, and systematic methods to facilitate membrane protein purification. PMID:15849244

  7. Recognition of Mannosylated Ligands and Influenza A Virus by Human Surfactant Protein D: Contributions of an Extended Site and Residue 343

    SciTech Connect

    Crouch, E.; Hartshorn, K; Horlacher, T; McDonald, B; Smith, K; Cafarella, T; Seaton, B; Seeberger, P; Head, J

    2009-01-01

    Surfactant protein D (SP-D) plays important roles in antiviral host defense. Although SP-D shows a preference for glucose/maltose, the protein also recognizes d-mannose and a variety of mannose-rich microbial ligands. This latter preference prompted an examination of the mechanisms of mannose recognition, particularly as they relate to high-mannose viral glycans. Trimeric neck plus carbohydrate recognition domains from human SP-D (hNCRD) preferred ?1-2-linked dimannose (DM) over the branched trimannose (TM) core, ?1-3 or ?1-6 DM, or d-mannose. Previous studies have shown residues flanking the carbohydrate binding site can fine-tune ligand recognition. A mutant with valine at 343 (R343V) showed enhanced binding to mannan relative to wild type and R343A. No alteration in affinity was observed for d-mannose or for ?1-3- or ?1-6-linked DM; however, substantially increased affinity was observed for ?1-2 DM. Both proteins showed efficient recognition of linear and branched subdomains of high-mannose glycans on carbohydrate microarrays, and R343V showed increased binding to a subset of the oligosaccharides. Crystallographic analysis of an R343V complex with 1,2-DM showed a novel mode of binding. The disaccharide is bound to calcium by the reducing sugar ring, and a stabilizing H-bond is formed between the 2-OH of the nonreducing sugar ring and Arg349. Although hNCRDs show negligible binding to influenza A virus (IAV), R343V showed markedly enhanced viral neutralizing activity. Hydrophobic substitutions for Arg343 selectively blocked binding of a monoclonal antibody (Hyb 246-05) that inhibits IAV binding activity. Our findings demonstrate an extended ligand binding site for mannosylated ligands and the significant contribution of the 343 side chain to specific recognition of multivalent microbial ligands, including high-mannose viral glycans.

  8. Molecular dynamics for surfactant-assisted protein refolding

    NASA Astrophysics Data System (ADS)

    Lu, Diannan; Liu, Zheng; Wu, Jianzhong

    2007-02-01

    Surfactants are widely used to refold recombinant proteins that are produced as inclusion bodies in E. Coli. However, the microscopic details of the surfactant-assisted protein refolding processes are yet to be uncovered. In the present work, the authors aim to provide insights into the effect of hydrophobic interactions of a denatured protein with surfactant molecules on the refolding kinetics and equilibrium by using the Langevin dynamics for coarse-grained models. The authors have investigated the folding behavior of a β-barrel protein in the presence of surfactants of different hydrophobicities and concentrations. It is shown that the protein folding process follows a "collapse-rearrangement" mechanism, i.e., the denatured protein first falls into a collapsed state before acquiring the native conformation. In comparison with the protein folding without surfactants, the protein-surfactant hydrophobic interactions promote the collapse of a denatured protein and, consequently, the formation of a hydrophobic core. However, the surfactants must be released from the hydrophobic core during the rearrangement step, in which the native conformation is formed. The simulation results can be qualitatively reproduced by experiments.

  9. Adsorption of surfactant protein D from human respiratory secretions by carbon nanotubes and polystyrene nanoparticles depends on nanomaterial surface modification and size.

    PubMed

    Marchetti, Magda; Shaffer, Milo S P; Zambianchi, Martina; Chen, Shu; Superti, Fabiana; Schwander, Stephan; Gow, Andrew; Zhang, Junfeng Jim; Chung, Kian Fan; Ryan, Mary P; Porter, Alexandra E; Tetley, Teresa D

    2015-02-05

    The alveolar respiratory unit constitutes one of the main targets of inhaled nanoparticles; the effect of engineered nanomaterials (NMs) on human health is largely unknown. Surfactant protein D (SP-D) is synthesized by alveolar type II epithelial cells and released into respiratory secretions; its main function is in immune defence, notably against inhaled microbes. SP-D also plays an important role in modulating an appropriate inflammatory response in the lung, and reduced SP-D is associated with a number of inflammatory lung diseases. Adsorption of SP-D to inhaled NMs may facilitate their removal via macrophage phagocytosis. This study addresses the hypothesis that the chemistry, size and surface modification of engineered NMs will impact on their interaction with, and adsorption of, SP-D. To this purpose, we have examined the interactions between SP-D in human lung lavage and two NMs, carbon nanotubes and polystyrene nanoparticles, with different surface functionalization. We have demonstrated that particle size, functionalization and concentration affect the adsorption of SP-D from human lung lavage. Functionalization with negatively charged groups enhanced the amount of SP-D binding. While SP-D binding would be expected to enhance macrophage phagocytosis, these results suggest that the degree of binding is markedly affected by the physicochemistry of the NM and that deposition of high levels of some nanoparticles within the alveolar unit might deplete SP-D levels and affect alveolar immune defence mechanisms. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  10. Key interactions of surfactants in therapeutic protein formulations: A review.

    PubMed

    Khan, Tarik A; Mahler, Hanns-Christian; Kishore, Ravuri S K

    2015-11-01

    Proteins as amphiphilic, surface-active macromolecules, demonstrate substantial interfacial activity, which causes considerable impact on their multifarious applications. A commonly adapted measure to prevent interfacial damage to proteins is the use of nonionic surfactants. Particularly in biotherapeutic formulations, the use of nonionic surfactants is ubiquitous in order to prevent the impact of interfacial stress on drug product stability. The scope of this review is to convey the current understanding of interactions of nonionic surfactants with proteins both at the interface and in solution, with specific focus to their effects on biotherapeutic formulations.

  11. Surfactant protein A (SP-A) and angiotensin converting enzyme (ACE) as early biomarkers for pulmonary edema formation in ventilated human lung lobes.

    PubMed

    Gnadt, Mirjam; Kardziev, Boris; Schmidt, Michael; Högger, Petra

    2012-08-01

    Ex vivo perfused and ventilated lung lobes frequently develop pulmonary edema. We were looking for a suitable and early detectable biomarker in the perfusion fluid indicating lung cell damage and loss of tissue integrity in ventilated human lung lobes. Therefore, we elucidated whether surfactant protein A (SP-A) and angiotensin-converting enzyme (ACE) were measurable in the perfusion fluid and whether they were suitable indicators for edema formation occurring within the experimental time frame of 1-2 h. Patients (n = 39) undergoing a lobectomy, bilobectomy or pneumonectomy due to primary bronchial cell carcinoma were included in the studies. Lung lobes were extracorporally ventilated and perfused for up to 2 h. Two different perfusion fluids were used, plain perfusion buffer and perfusion buffer containing packed erythrocytes or buffy coats. Perfusion fluid samples were analyzed for SP-A and ACE using immunoassays served as perfusion fluids. SP-A and ACE concentrations were analyzed in fluid sample sets of 39 and 33 perfusion experiments, respectively. Degrees of edema formation were arbitrarily classified into three groups (≤ 29, 30-59, ≥ 60 % weight gain). The maximum increase of SP-A and ACE concentrations in the perfusate was significantly higher for more pronounced edemas in case of perfusions using a mixture of blood components and buffer. Interestingly, the time courses of ACE and SP-A were highly similar. We suggest that SP-A and ACE are promising early biochemical markers for the development for pulmonary edema formation in the ex vivo lung lobe perfusion.

  12. A Quantitative Study of the Effects of Chaotropic Agents, Surfactants, and Solvents on the Digestion Efficiency of Human Plasma Proteins by Trypsin

    PubMed Central

    Proc, Jennifer L.; Kuzyk, Michael A.; Hardie, Darryl B.; Yang, Juncong; Smith, Derek S.; Jackson, Angela M.; Parker, Carol E.; Borchers, Christoph H.

    2010-01-01

    Plasma biomarkers studies are based on the differential expression of proteins between different treatment groups or between diseased and control populations. Most mass spectrometry-based methods of protein quantitation, however, are based on the detection and quantitation of peptides, not intact proteins. For peptide-based protein quantitation to be accurate, the digestion protocols used in proteomic analyses must be both efficient and reproducible. There have been very few studies, however, where plasma denaturation/digestion protocols have been compared using absolute quantitation methods. In this paper, 14 combinations of heat, solvent [acetonitrile, methanol, trifluoroethanol], chaotropic agents [guanidine hydrochloride, urea], and surfactants [sodium dodecyl sulfate (SDS) and sodium deoxycholate (DOC)] were compared with respect to their effectiveness in improving subsequent tryptic digestion. These digestion protocols were evaluated by quantitating the production of proteotypic tryptic peptides from 45 moderate- to high-abundance plasma proteins, using tandem mass spectrometry in multiple reaction monitoring mode, with a mixture of stable-isotope labeled analogues of these proteotypic peptides as internal standards. When the digestion efficiencies of these 14 methods were compared, we found that both of the surfactants (SDS and DOC) produced an increase in the overall yield of tryptic peptides from these 45 proteins, when compared to the more commonly used urea protocol. SDS, however, can be a serious interference for subsequent mass spectrometry. DOC, on the other hand, can be easily removed from the samples by acid precipitation. Examining the results of a reproducibility study, done with 5 replicate digestions, DOC and SDS with a 9 h digestion time produced the highest average digestion efficiencies (~80%), with the highest average reproducibility (<5% error, defined as the relative deviation from the mean value). However, because of potential

  13. Molecular basis for premature senescence induced by surfactants in normal human cells.

    PubMed

    Yamakami, Yoshimi; Miki, Kensuke; Yonekura, Ryuzo; Kudo, Ikuru; Fujii, Michihiko; Ayusawa, Dai

    2014-01-01

    Sublethal doses of surfactants as exemplified by NP-40 clearly induce premature senescence in normal human cells. To understand molecular basis for this phenomenon, we tried to suppress it with use of various inhibitors. An inhibitor of p38 of the MAPK family almost completely suppressed growth arrest and morphological changes induced by surfactants; however, other inhibitors tested had no effect. Oleic acid, a weak inducer of premature senescence, was found to suppress the effect of NP-40. Fluorescein-labeled oleic acid rapidly bound to the cell surface, and this binding was clearly blocked by pre-treatment with surfactants, suggesting that surfactants and oleic acid compete for binding to the cell surface. Moderate concentrations of cycloheximide, an inhibitor of protein synthesis, also suppressed the senescent features induced by NP-40. These results suggest that surfactants activate p38 signaling pathway by binding to the cell surface, and induce cellular senescence.

  14. Pepsinogen C Proteolytic Processing of Surfactant Protein B*S⃞

    PubMed Central

    Gerson, Kristin D.; Foster, Cherie D.; Zhang, Peggy; Zhang, Zhenguo; Rosenblatt, Michael M.; Guttentag, Susan H.

    2008-01-01

    Surfactant protein B (SP-B) is essential to the function of pulmonary surfactant and to lamellar body genesis in alveolar epithelial type 2 cells. The bioactive, mature SP-B is derived from multistep post-translational proteolysis of a larger proprotein. The identity of the proteases involved in carboxyl-terminal cleavage of proSP-B remains uncertain. This cleavage event distinguishes SP-B production in type 2 cells from less complete processing in bronchiolar Clara cells. We previously identified pepsinogen C as an alveolar type 2 cell-specific protease that was developmentally regulated in the human fetal lung. We report that pepsinogen C cleaved recombinant proSP-B at Met302 in addition to an amino-terminal cleavage at Ser197. Using a well described model of type 2 cell differentiation, small interfering RNA knockdown of pepsinogen C inhibited production of mature SP-B, whereas overexpression of pepsinogen C increased SP-B production. Inhibition of SP-B production recapitulated the SP-B-deficient phenotype evident by aberrant lamellar body genesis. Together, these data support a primary role for pepsinogen C in SP-B proteolytic processing in alveolar type 2 cells. PMID:18256027

  15. Cell-specific modulation of surfactant proteins by ambroxol treatment

    SciTech Connect

    Seifart, Carola . E-mail: zwiebel@mailer.uni-marburg.de; Clostermann, Ursula; Seifart, Ulf

    2005-02-15

    Ambroxol [trans-4-(2-amino-3,5-dibromobenzylamino)-cyclohexanole hydrochloride], a mucolytic agent, was postulated to provide surfactant stimulatory properties and was previously used to prevent surfactant deficiency. Currently, the underlying mechanisms are not exactly clear. Because surfactant homeostasis is regulated by surfactant-specific proteins (SP), we analyzed protein amount and mRNA expression in whole lung tissue, isolated type II pneumocytes and bronchoalveolar lavage of Sprague-Dawley rats treated with ambroxol i.p. (75 mg/kg body weight, twice a day [every 12 h]). The methods used included competitive polymerase chain reaction (RT-PCR), Northern blotting, Western immunoblotting, and immunohistochemistry. In isolated type II pneumocytes of ambroxol-treated animals, SP-C protein and mRNA content were increased, whereas SP-A, -B and -D protein, mRNA, and immunoreactivity remained unaffected. However, ambroxol treatment resulted in a significant increase of SP-B and in a decrease of SP-D in whole lung tissue with enhanced immunostaining for SP-B in Clara Cells. SP-A and SP-D were significantly decreased in BAL fluid of ambroxol-treated animals. The data suggest that surfactant protein expression is modulated in a cell-specific manner by ambroxol, as type II pneumocytes exhibited an increase in SP-C, whereas Clara cells exhibited an increase in the immunoreactivity for SP-B accounting for the increased SP-B content of whole lung tissue. The results indicate that ambroxol may exert its positive effects, observed in the treatment of diseases related to surfactant deficiency, via modulation of surfactant protein expression.

  16. Cell-specific modulation of surfactant proteins by ambroxol treatment.

    PubMed

    Seifart, Carola; Clostermann, Ursula; Seifart, Ulf; Müller, Bernd; Vogelmeier, Claus; von Wichert, Peter; Fehrenbach, Heinz

    2005-02-15

    Ambroxol [trans-4-(2-amino-3,5-dibromobenzylamino)-cyclohexanole hydrochloride], a mucolytic agent, was postulated to provide surfactant stimulatory properties and was previously used to prevent surfactant deficiency. Currently, the underlying mechanisms are not exactly clear. Because surfactant homeostasis is regulated by surfactant-specific proteins (SP), we analyzed protein amount and mRNA expression in whole lung tissue, isolated type II pneumocytes and bronchoalveolar lavage of Sprague-Dawley rats treated with ambroxol i.p. (75 mg/kg body weight, twice a day [every 12 h]). The methods used included competitive polymerase chain reaction (RT-PCR), Northern blotting, Western immunoblotting, and immunohistochemistry. In isolated type II pneumocytes of ambroxol-treated animals, SP-C protein and mRNA content were increased, whereas SP-A, -B and -D protein, mRNA, and immunoreactivity remained unaffected. However, ambroxol treatment resulted in a significant increase of SP-B and in a decrease of SP-D in whole lung tissue with enhanced immunostaining for SP-B in Clara Cells. SP-A and SP-D were significantly decreased in BAL fluid of ambroxol-treated animals. The data suggest that surfactant protein expression is modulated in a cell-specific manner by ambroxol, as type II pneumocytes exhibited an increase in SP-C, whereas Clara cells exhibited an increase in the immunoreactivity for SP-B accounting for the increased SP-B content of whole lung tissue. The results indicate that ambroxol may exert its positive effects, observed in the treatment of diseases related to surfactant deficiency, via modulation of surfactant protein expression.

  17. A class of mild surfactants that keep integral membrane proteins water-soluble for functional studies and crystallization.

    PubMed

    Hovers, Jens; Potschies, Meike; Polidori, Ange; Pucci, Bernard; Raynal, Simon; Bonneté, Françoise; Serrano-Vega, Maria J; Tate, Christopher G; Picot, Daniel; Pierre, Yves; Popot, Jean-Luc; Nehmé, Rony; Bidet, Michel; Mus-Veteau, Isabelle; Busskamp, Holger; Jung, Karl-Heinz; Marx, Andreas; Timmins, Peter A; Welte, Wolfram

    2011-04-01

    Mixed protein-surfactant micelles are used for in vitro studies and 3D crystallization when solutions of pure, monodisperse integral membrane proteins are required. However, many membrane proteins undergo inactivation when transferred from the biomembrane into micelles of conventional surfactants with alkyl chains as hydrophobic moieties. Here we describe the development of surfactants with rigid, saturated or aromatic hydrocarbon groups as hydrophobic parts. Their stabilizing properties are demonstrated with three different integral membrane proteins. The temperature at which 50% of the binding sites for specific ligands are lost is used as a measure of stability and dodecyl-β-D-maltoside ('C12-b-M') as a reference for conventional surfactants. One surfactant increased the stability of two different G protein-coupled receptors and the human Patched protein receptor by approximately 10°C compared to C12-b-M. Another surfactant yielded the highest stabilization of the human Patched protein receptor compared to C12-b-M (13°C) but was inferior for the G protein-coupled receptors. In addition, one of the surfactants was successfully used to stabilize and crystallize the cytochrome b(6 )f complex from Chlamydomonas reinhardtii. The structure was solved to the same resolution as previously reported in C12-b-M.

  18. Surfactant protein B inhibits secretory phospholipase A2 hydrolysis of surfactant phospholipids

    PubMed Central

    Grier, Bonnie L.; Waite, B. Moseley; Veldhuizen, Ruud A.; Possmayer, Fred; Yao, Li-Juan; Seeds, Michael C.

    2012-01-01

    Hydrolysis of surfactant phospholipids (PL) by secretory phospholipases A2 (sPLA2) contributes to surfactant damage in inflammatory airway diseases such as acute lung injury/acute respiratory distress syndrome. We and others have reported that each sPLA2 exhibits specificity in hydrolyzing different PLs in pulmonary surfactant and that the presence of hydrophilic surfactant protein A (SP-A) alters sPLA2-mediated hydrolysis. This report tests the hypothesis that hydrophobic SP-B also inhibits sPLA2-mediated surfactant hydrolysis. Three surfactant preparations were used containing varied amounts of SP-B and radiolabeled tracers of phosphatidylcholine (PC) or phosphatidylglycerol (PG): 1) washed ovine surfactant (OS) (pre- and postorganic extraction) compared with Survanta (protein poor), 2) Survanta supplemented with purified bovine SP-B (1–5%, wt/wt), and 3) a mixture of dipalmitoylphosphatidylcholine (DPPC), 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC), and 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) (DPPC:POPC:POPG, 40:40:20) prepared as vesicles and monomolecular films in the presence or absence of SP-B. Hydrolysis of PG and PC by Group IB sPLA2 (PLA2G1A) was significantly lower in the extracted OS, which contains SP-B, compared with Survanta (P = 0.005), which is SP-B poor. Hydrolysis of PG and PC in nonextracted OS, which contains all SPs, was lower than both Survanta and extracted OS. When Survanta was supplemented with 1% SP-B, PG and PC hydrolysis by PLA2G1B was significantly lower (P < 0.001) than in Survanta alone. When supplemented into pure lipid vesicles and monomolecular films composed of PG and PC mixtures, SP-B also inhibited hydrolysis by both PLA2G1B and Group IIA sPLA2 (PLA2G2A). In films, PLA2G1B hydrolyzed surfactant PL monolayers at surface pressures ≤30 mN/m (P < 0.01), and SP-B lowered the surface pressure range at which hydrolysis can occur. These results suggest the hydrophobic SP, SP-B, protects alveolar surfactant PL from

  19. Deduced amino acid sequence of human pulmonary surfactant proteolipid: SPL(pVal)

    SciTech Connect

    Whitsett, J.A.; Glasser, S.W.; Korfhagen, T.R.; Weaver, T.E.; Clark, J.; Pilot-Matias, T.; Meuth, J.; Fox, J.L.

    1987-05-01

    Hydrophobic, proteolipid-like protein of Mr 6500 was isolated from ether/ethanol extracts of human, canine and bovine pulmonary surfactant. Amino acid composition of the protein demonstrated a remarkable abundance of hydrophobic residues, particularly valine and leucine. The N-terminal amino acid sequence of the human protein was determined: N-Leu-Ile-Pro-Cys-Cys-Pro-Val-Asn-Leu-Lys-Arg-Leu-Leu-Ile-Val4... An oligonucleotide probe was used to screen an adult human lung cDNA library and resulted in detection of cDNA clones with predicted amino acid sequence with close identity to the N-terminal amino acid sequence of the human peptide. SPL(pVal) was found within the reading frame of a larger peptide. SPL(pVal) results from proteolytic processing of a larger preprotein. Northern blot analysis detected in a single 1.0 kilobase SPL(pVal) RNA which was less abundant in fetal than in adult lung. Mixtures of purified canine and bovine SPL(pVal) and synthetic phospholipids display properties of rapid adsorption and surface tension lowering activity characteristic of surfactant. Human SPL(pVal) is a pulmonary surfactant proteolipid which may therefore be useful in combination with phospholipids and/or other surfactant proteins for the treatment of surfactant deficiency such as hyaline membrane disease in newborn infants.

  20. Whey protein coating efficiency on surfactant-modified hydrophobic surfaces.

    PubMed

    Lin, Shih-Yu D; Krochta, John M

    2005-06-15

    Whey protein oxygen-barrier coatings on peanuts are not effective, due to incomplete peanut-surface coverage, as well as some cracking and flaking of the coating. Addition of sorbitan laurate (Span 20) in the whey protein coating solution up to the critical micelle concentration (cmc) of 0.05% (w/w) significantly improved coating coverage to 88% of the peanut surface. Increasing the Span 20 concentration in the coating solution to 3 times the cmc (0.15% w/w) produced a substantial increase in peanut surface energy (>70 dyn/cm), indicating adsorption of the surfactant to the peanut surface. With this level of Span 20, the whey protein coating coverage on peanuts increased to 95%. These results suggest that a concentration of surfactant above the cmc in the coating solution is required for formation of self-assembled structures of surfactant molecules on peanut surfaces, which significantly increases the hydrophilicity, and thus coatability, of peanut surfaces.

  1. A Function of Lung Surfactant Protein SP-B

    NASA Astrophysics Data System (ADS)

    Longo, M. L.; Bisagno, A. M.; Zasadzinski, J. A. N.; Bruni, R.; Waring, A. J.

    1993-07-01

    The primary function of lung surfactant is to form monolayers at the alveolar interface capable of lowering the normal surface tension to near zero. To accomplish this process, the surfactant must be capable of maintaining a coherent, tightly packed monolayer that avoids collapse during expiration. The positively charged amino-terminal peptide SP-B1-25 of lung surfactant-specific protein SP-B increases the collapse pressure of an important component of lung surfactant, palmitic acid (PA), to nearly 70 millinewtons per meter. This alteration of the PA isotherms removes the driving force for "squeeze-out" of the fatty acids from the primarily dipalmitoylphosphatidylcholine monolayers of lung surfactant. An uncharged mutant of SP-B1-25 induced little change in the isotherms, suggesting that a specific charge interaction between the cationic peptide and the anionic lipid is responsible for the stabilization. The effect of SP-B1-25 on fatty acid isotherms is remarkably similar to that of simple poly-cations, suggesting that such polymers might be useful as components of replacement surfactants for the treatment of respiratory distress syndrome.

  2. Development of a Synthetic Surfactant Using a Surfactant Protein-C Peptide Analog: In Vitro Studies of Surface Physical Properties

    PubMed Central

    Chung, Sung-Hoon; Choi, Yong-Sung

    2016-01-01

    Purpose Pulmonary surfactant (PS) replacement has been the gold standard therapy for neonatal respiratory distress syndrome; however, almost all commercial PSs contain animal proteins. We prepared a synthetic PS by using a human surfactant protein (SP) analog and evaluated its in vitro properties. Materials and Methods A peptide sequence (CPVHLKRLLLLLLLLLLLLLLLL) of human SP-C was chosen to develop the peptide analog (SPa-C). The new synthetic SP-C PS (sSP-C PS) was synthesized from SPa-C, dipalmitoyl phosphatidylcholine, phosphatidyl glycerol, and palmitic acid. Physical properties of the sSP-C PS were evaluated by measuring the maximum and minimum surface tensions (STs), surfactant spreading, and adsorption rate. In addition, we recorded an ST-area diagram. The data obtained on sSP-C PS were subsequently compared with those of purified natural bovine surfactant (PNBS), and the commercial product, Surfacten®. Results The sSP-C PS and Surfacten® were found to have maximum ST values of 32-33 mN/m, whereas that of PNBS was much lower at 19 mN/m. The minimum ST values of all three products were less than 10 mN/m. The values that were measured for the equilibrium ST of rapidly spreading sSP-C PS, Surfacten®, and PNBS were 27, 27, and 24 mN/m, respectively. The surface adsorptions were found to be the same for all three PSs (20 mN/m). ST-area diagrams of sSP-C PS and Surfacten® revealed similar properties. Conclusion In an in vitro experiment, the physical properties exhibited by sSP-C PS were similar to those of Surfacten®. Further study is required to evaluate the in vivo efficacy. PMID:26632402

  3. Development of a Synthetic Surfactant Using a Surfactant Protein-C Peptide Analog: In Vitro Studies of Surface Physical Properties.

    PubMed

    Bae, Chong Woo; Chung, Sung Hoon; Choi, Yong Sung

    2016-01-01

    Pulmonary surfactant (PS) replacement has been the gold standard therapy for neonatal respiratory distress syndrome; however, almost all commercial PSs contain animal proteins. We prepared a synthetic PS by using a human surfactant protein (SP) analog and evaluated its in vitro properties. A peptide sequence (CPVHLKRLLLLLLLLLLLLLLLL) of human SP-C was chosen to develop the peptide analog (SPa-C). The new synthetic SP-C PS (sSP-C PS) was synthesized from SPa-C, dipalmitoyl phosphatidylcholine, phosphatidyl glycerol, and palmitic acid. Physical properties of the sSP-C PS were evaluated by measuring the maximum and minimum surface tensions (STs), surfactant spreading, and adsorption rate. In addition, we recorded an ST-area diagram. The data obtained on sSP-C PS were subsequently compared with those of purified natural bovine surfactant (PNBS), and the commercial product, Surfacten®. The sSP-C PS and Surfacten® were found to have maximum ST values of 32-33 mN/m, whereas that of PNBS was much lower at 19 mN/m. The minimum ST values of all three products were less than 10 mN/m. The values that were measured for the equilibrium ST of rapidly spreading sSP-C PS, Surfacten®, and PNBS were 27, 27, and 24 mN/m, respectively. The surface adsorptions were found to be the same for all three PSs (20 mN/m). ST-area diagrams of sSP-C PS and Surfacten® revealed similar properties. In an in vitro experiment, the physical properties exhibited by sSP-C PS were similar to those of Surfacten®. Further study is required to evaluate the in vivo efficacy.

  4. The importance of surfactant proteins-New aspects on macrophage phagocytosis.

    PubMed

    Tschernig, Thomas; Veith, Nils T; Diler, Ebru; Bischoff, Markus; Meier, Carola; Schicht, Martin

    2016-11-01

    Surfactant and its components have multiple functions. The so called collectins are surfactant proteins which opsonize bacteria and improve pulmonary host defense via the phagocytosis and clearance of microorganisms and particles. In this special issue of the Annals of Anatomy a new surfactant protein, Surfactant Associated 3, is highlighted. As outlined in this mini review Surfactant Associated 3 is regarded as an enhancer of phagocytosis. In addition, the role played by SP-A is updated and open research questions raised.

  5. Environmental and human safety of major surfactants. Volume 1. Anionic surfactants. Part 1. Linear alkylbenzene sulfonates. Final report

    SciTech Connect

    Not Available

    1991-02-01

    The report discusses critical reviews of published literature and unpublished company data on major surfactants. Part 1 of Vol. 1 discusses the chemistry, biodegradation, environmental effects and safety and human safety of linear alkylbenzene sulfonates. The information presented updates and supplements similar data included in two predecessor studies, Human Safety and Environmental Aspects of Major Surfactants (1977) NTIS Accession Number PB-301193 and Human and Environmental Aspects of Major Surfactants (Supplement) (1981) NTIS Accession Number PB-81-182453.

  6. Environmental and human safety of major surfactants. Volume 1. Anionic surfactants. Part 2. Alcohol ethoxy sulfates. Final report

    SciTech Connect

    Not Available

    1991-02-01

    The report discusses critical reviews of published literature and unpublished company data on major surfactants. Part 2 of Vol. 1 discusses the chemistry, biodegradation, environmental effects and safety and human safety of alcohol ethoxy sulfates. The information presented updates and supplements similar data included in two predecessor studies, Human Safety and Environmental Aspects of Major Surfactants (1977) NTIS Accession Number PB301193 and Human and Environmental Aspects of Major Surfactants (Supplement) (1981) NTIS Accessiion Number PB81-182453.

  7. Environmental and human safety of major surfactants. Volume 1. Anionic surfactants. Part 3. Alkyl sulfates. Final report

    SciTech Connect

    Not Available

    1991-02-01

    The report discusses critical reviews of published literature and unpublished company data on major surfactants. Part 3 of Vol. 1 discusses the chemistry, biodegradation, environmental effects and safety and human safety of alkyl sulfates. The information presented updates and supplements similar data included in two predecessor studies, Human Safety and Environmental Aspects of Major Surfactants (1977) NTIS Accession Number PB301193 and Human and Environmental Aspects of Major Surfactants (Supplement) (1981) NTIS Accession Number PB81-182453.

  8. cDNA and deduced amino acid sequence of human pulmonary surfactant-associated proteolipid SPL(Phe)

    SciTech Connect

    Glasser, S.W.; Korfhagen, T.R.; Weaver, T.; Pilot-Matias, T.; Fox, J.L.; Whitsett, J.A.

    1987-06-01

    Hydrophobic surfactant-associated protein of M/sub r/ 6000-14,000 was isolated from either/ethanol or chloroform/methanol extracts of mammalian pulmonary surfactant. Automated Edman degradation in a gas-phase sequencer showed the major N-terminus of the human low molecular weight protein to be Phe-Pro-Ile-Pro-Leu-Pro-Try-Cys-Trp-Leu-Cys-Arg-Ala-Leu-. Because of the N-terminal phenylalanine, the surfactant protein was designated SPL(Phe). Antiserum generated against hydrophobic surfactant protein(s) from bovine pulmonary surfactant recognized protein of M/sub r/ 6000-14,000 in immunoblot analysis and was used to screen a lambdagt11 expression library constructed from adult human lung poly(A)/sup +/ RNA. This resulted in identification of a 1.4-kilobase cDNA clone that was shown to encode the N-terminus of the surfactant polypeptide SPL(Phe) (Phe-Pro-Ile-Pro-Leu-Pro-) within an open reading frame for a larger protein. Expression of a fused ..beta..-galactosidase-SPL (Phe) gene in Escherichia coli yielded an immunoreactive M/sub r/ 34,000 fusion peptide. Hybrid-arrested translation with the cDNA and immunoprecipitation of (/sup 35/S)methionine-labeled in vitro translation products of human poly(A)/sup +/ RNA with a surfactant polyclonal antibody resulted in identification of a M/sub r/ 40,000 precursor protein. Blot hybridization analysis of electrophoretically fractionated RNA from human lung detected a 2.0-kilobase RNA that was more abundant in adult lung than in fetal lung. These proteins, and specifically SPL(Phe), may therefore be useful for synthesis of replacement surfactants for treatment of hyaline membrane disease in newborn infants or of other surfactant-deficient states.

  9. Stabilizing and destabilizing protein surfactant-based foams in the presence of a chemical surfactant: Effect of adsorption kinetics.

    PubMed

    Li, Huazhen; Le Brun, Anton P; Agyei, Dominic; Shen, Wei; Middelberg, Anton P J; He, Lizhong

    2016-01-15

    Stimuli-responsive protein surfactants promise alternative foaming materials that can be made from renewable sources. However, the cost of protein surfactants is still higher than their chemical counterparts. In order to reduce the required amount of protein surfactant for foaming, we investigated the foaming and adsorption properties of the protein surfactant, DAMP4, with addition of low concentrations of the chemical surfactant sodium dodecylsulfate (SDS). The results show that the small addition of SDS can enhance foaming functions of DAMP4 at a lowered protein concentration. Dynamic surface tension measurements suggest that there is a synergy between DAMP4 and SDS which enhances adsorption kinetics of DAMP4 at the initial stage of adsorption (first 60s), which in turn stabilizes protein foams. Further interfacial properties were revealed by X-ray reflectometry measurements, showing that there is a re-arrangement of adsorbed protein-surfactant layer over a long period of 1h. Importantly, the foaming switchability of DAMP4 by metal ions is not affected by the presence of SDS, and foams can be switched off by the addition of zinc ions at permissive pH. This work provides fundamental knowledge to guide formulation using a mixture of protein and chemical surfactants towards a high performance of foaming at a low cost.

  10. A class of mild surfactants that keep integral membrane proteins water-soluble for functional studies and crystallization

    PubMed Central

    Hovers, Jens; Potschies, Meike; Polidori, Ange; Pucci, Bernard; Raynal, Simon; Bonneté, Françoise; Serrano-Vega, Maria J.; Tate, Christopher G.; Picot, Daniel; Pierre, Yves; Popot, Jean-Luc; Nehmé, Rony; Bidet, Michel; Mus-Veteau, Isabelle; Bußkamp, Holger; Jung, Karl-Heinz; Marx, Andreas; Timmins, Peter A.; Welte, Wolfram

    2013-01-01

    Mixed protein-surfactant micelles are used for in vitro studies and 3D crystallization when solutions of pure, monodisperse integral membrane proteins are required. However, many membrane proteins undergo inactivation when transferred from the biomembrane into micelles of conventional surfactants with alkyl chains as hydrophobic moieties. Here we describe the development of surfactants with rigid, saturated or aromatic hydrocarbon groups as hydrophobic parts. Their stabilizing properties are demonstrated with three different integral membrane proteins. The temperature at which 50% of the binding sites for specific ligands are lost is used as a measure of stability and dodecyl-β-D-maltoside (“C12-b-M”) as a reference for conventional surfactants. One surfactant increased the stability of two different G protein-coupled receptors by approximately 10°C compared to C12-b-M. Another surfactant yielded a stabilization of the human Patched protein receptor by 13°C. In addition, one of the surfactants was successfully used to stabilize and crystallize the cytochrome b6f complex from Chlamydomonas reinhardtii. The structure was solved to the same resolution as previously reported in C12-b-M. PMID:21314479

  11. Surfactant enhanced disinfection of the human norovirus surrogate, tulane virus with organic acids and surfactant

    USDA-ARS?s Scientific Manuscript database

    Human infection with foodborne viruses can occur following consumption of contaminated food, person-to-person body contact, or release of aerosols. Combinatorial treatments of surfactants and organic acids may have synergistic or additive mechanisms to inactivate foodborne viruses and prevent outbr...

  12. Immunogenicity of surfactant. II. Porcine and bovine surfactants.

    PubMed Central

    Strayer, D S; Hallman, M; Merritt, T A

    1991-01-01

    Protein-containing surfactants of human and animal origin are being used increasingly to treat neonatal and adult respiratory distress syndromes. This trend led us to examine the antigenicity of two important preparations of animal surfactant, cow lung surfactant extract (CLSE) and a porcine surfactant preparation, Curosurf. We describe here 15 monoclonal antibodies against Curosurf and four against CLSE. Antibodies were studied by Western blot analysis to determine their ability to recognize protein components of their respective surfactant preparations. They were also tested for their ability to inactivate surfactant in vitro, assayed using the pulsating bubble surfactometer. Several antibodies directed against CLSE or Curosurf functionally inactivate the surfactant to which they were raised. We determined the degree of immunologic cross-reactivity between antibodies directed to CLSE and Curosurf against the other surfactant and also against human surfactant, both by Western blot and by examining functional inactivation in vitro. Antibodies to these animal surfactants that are commonly used therapeutically may inactivate the specific animal surfactant to which they were raised, as well as human and other surfactants. Generally, when antibodies inactivate surfactant from more than one animal species, they inactivate heterologous surfactants comparably to the extent to which they inactivate the surfactant to which they are directed. Immune complexes between anti-surfactant antibodies and surfactant have been described in the course of neonatal respiratory distress syndrome. The potential pathophysiological importance of anti-surfactant antibodies may therefore lie in their ability to inactivate administered surfactant, other similar surfactants and endogenous surfactant. In so doing, these antibodies may potentiate surfactant deficiency or pulmonary injury initiated by other stimuli. Images Fig. 1 Fig. 2 PMID:1988231

  13. The Interplay of Lung Surfactant Proteins and Lipids Assimilates the Macrophage Clearance of Nanoparticles

    PubMed Central

    Ruge, Christian A.; Schaefer, Ulrich F.; Herrmann, Jennifer; Kirch, Julian; Cañadas, Olga; Echaide, Mercedes; Pérez-Gil, Jesús; Casals, Cristina; Müller, Rolf; Lehr, Claus-Michael

    2012-01-01

    The peripheral lungs are a potential entrance portal for nanoparticles into the human body due to their large surface area. The fact that nanoparticles can be deposited in the alveolar region of the lungs is of interest for pulmonary drug delivery strategies and is of equal importance for toxicological considerations. Therefore, a detailed understanding of nanoparticle interaction with the structures of this largest and most sensitive part of the lungs is important for both nanomedicine and nanotoxicology. Astonishingly, there is still little known about the bio-nano interactions that occur after nanoparticle deposition in the alveoli. In this study, we compared the effects of surfactant-associated protein A (SP-A) and D (SP-D) on the clearance of magnetite nanoparticles (mNP) with either more hydrophilic (starch) or hydrophobic (phosphatidylcholine) surface modification by an alveolar macrophage (AM) cell line (MH-S) using flow cytometry and confocal microscopy. Both proteins enhanced the AM uptake of mNP compared with pristine nanoparticles; for the hydrophilic ST-mNP, this effect was strongest with SP-D, whereas for the hydrophobic PL-mNP it was most pronounced with SP-A. Using gel electrophoretic and dynamic light scattering methods, we were able to demonstrate that the observed cellular effects were related to protein adsorption and to protein-mediated interference with the colloidal stability. Next, we investigated the influence of various surfactant lipids on nanoparticle uptake by AM because lipids are the major surfactant component. Synthetic surfactant lipid and isolated native surfactant preparations significantly modulated the effects exerted by SP-A and SP-D, respectively, resulting in comparable levels of macrophage interaction for both hydrophilic and hydrophobic nanoparticles. Our findings suggest that because of the interplay of both surfactant lipids and proteins, the AM clearance of nanoparticles is essentially the same, regardless of different

  14. The interplay of lung surfactant proteins and lipids assimilates the macrophage clearance of nanoparticles.

    PubMed

    Ruge, Christian A; Schaefer, Ulrich F; Herrmann, Jennifer; Kirch, Julian; Cañadas, Olga; Echaide, Mercedes; Pérez-Gil, Jesús; Casals, Cristina; Müller, Rolf; Lehr, Claus-Michael

    2012-01-01

    The peripheral lungs are a potential entrance portal for nanoparticles into the human body due to their large surface area. The fact that nanoparticles can be deposited in the alveolar region of the lungs is of interest for pulmonary drug delivery strategies and is of equal importance for toxicological considerations. Therefore, a detailed understanding of nanoparticle interaction with the structures of this largest and most sensitive part of the lungs is important for both nanomedicine and nanotoxicology. Astonishingly, there is still little known about the bio-nano interactions that occur after nanoparticle deposition in the alveoli. In this study, we compared the effects of surfactant-associated protein A (SP-A) and D (SP-D) on the clearance of magnetite nanoparticles (mNP) with either more hydrophilic (starch) or hydrophobic (phosphatidylcholine) surface modification by an alveolar macrophage (AM) cell line (MH-S) using flow cytometry and confocal microscopy. Both proteins enhanced the AM uptake of mNP compared with pristine nanoparticles; for the hydrophilic ST-mNP, this effect was strongest with SP-D, whereas for the hydrophobic PL-mNP it was most pronounced with SP-A. Using gel electrophoretic and dynamic light scattering methods, we were able to demonstrate that the observed cellular effects were related to protein adsorption and to protein-mediated interference with the colloidal stability. Next, we investigated the influence of various surfactant lipids on nanoparticle uptake by AM because lipids are the major surfactant component. Synthetic surfactant lipid and isolated native surfactant preparations significantly modulated the effects exerted by SP-A and SP-D, respectively, resulting in comparable levels of macrophage interaction for both hydrophilic and hydrophobic nanoparticles. Our findings suggest that because of the interplay of both surfactant lipids and proteins, the AM clearance of nanoparticles is essentially the same, regardless of different

  15. Fluorescently labeled pulmonary surfactant protein C in spread phospholipid monolayers.

    PubMed Central

    Nag, K; Perez-Gil, J; Cruz, A; Keough, K M

    1996-01-01

    Pulmonary surfactant, a lipid-protein complex, secreted into the fluid lining of lungs prevents alveolar collapse at low lung volumes. Pulmonary surfactant protein C (SP-C), an acylated, hydrophobic, alpha-helical peptide, enhances the surface activity of pulmonary surfactant lipids. Fluorescein-labeled SP-C (F-SP-C) (3, 6, 12 wt%) in dipalmitoylphosphatidylcholine (DPPC), and DPPC:dipalmitoylphosphatidylglycerol (DPPG) [DPPC:DPPG 7:3 mol/mol] in spread monolayers was studied by epifluorescence microscopy. Mass spectometry of F-SP-C indicated that the protein is partially deacylated and labeled with 1 mol fluorescein/1 mol protein. The protein partitioned into the fluid, or liquid expanded, phase. Increasing amounts of F-SP-C in DPPC or DPPC:DPPG monolayers decreased the size and total amounts of the condensed phase at all surface pressures. Calcium (1.6 mM) increased the amount of the condensed phase in monolayers of DPPC:DPPG but not of DPPC alone, and such monolayers were also perturbed by F-SP-C. The study indicates that SP-C perturbs the packing of neutral and anionic phospholipid monolayers even when the latter systems are condensed by calcium, indicating that interactions between SP-C and the lipids are predominantly hydrophobic in nature. Images FIGURE 2 FIGURE 4 FIGURE 7 PMID:8804608

  16. Impact of a surfactant on the electroactivity of proteins at an aqueous-organogel microinterface array.

    PubMed

    O'Sullivan, Shane; Arrigan, Damien W M

    2013-02-05

    The impact of surfactant addition to the organic phase on the electroactivity of proteins at the aqueous-organogel interface was examined by voltammetry. The presence of bis(2-ethylhexyl)sulfosuccinate (AOT) in the organogel phase, as the sodium salt, caused marked changes in the peak currents for myoglobin detection. The protein desorption voltammetric peak exhibited a 6-fold increase in the current compared to the corresponding experiment without surfactant. Interfacial coverage showed a 17-fold increase in the adsorbed protein at the interface, from 50 pmol cm(-2), in the absence of surfactant, to 850 pmol cm(-2), in the presence of 10 mM surfactant. Additionally, the presence of the surfactant resulted in a second pair of adsorption/desorption peaks at lower potentials and in a change in the capacitance of the system. The formation of surfactant-protein and surfactant-protein-organic anion deposits is proposed on the basis of these features, leading to increased voltammetric signals for myoglobin, hemoglobin, and cytochrome c. The mechanism of protein-surfactant interaction was probed by using the surfactant as the anion in the organic phase electrolyte salt. Repetitive cyclic voltammetry of cytochrome c showed that in the presence of surfactant there was an enhancement of the signal, caused by a buildup of the protein-surfactant-electrolyte anion assembly at the interface. These findings provide the basis for surfactant-modified interfaces to enhance the electroanalytical performance for protein detection.

  17. Are organosilicon surfactants safe for bees or humans?

    PubMed

    Chen, Jing; Fine, Julia D; Mullin, Christopher A

    2017-08-29

    Organosilicon surfactants are the most potent adjuvants available for formulating and applying agricultural pesticides and fertilizers, household cleaning and personal care products, dental impressions and medicines. Risk assessment of pesticides, drugs or personal care products that takes into account only active ingredients without the other formulation ingredients and adjuvants commonly used in their application will miss important toxicity outcomes detrimental to non-target species including pollinators and humans. Over a billion pounds of organosilicon surfactants from all uses are produced globally per year, making this a major component of the chemical landscape to which bees and humans are exposed. These silicones, like most "inerts", are generally recognized as safe, have no mandated tolerances, and their residues are largely unmonitored. Lack of their public disclosure and adequate analytical methods constrains evaluation of their risk. Organosilicon surfactants, the most super-spreading and -penetrating adjuvants available, at relevant exposure levels impair honey bee learning, are acutely toxic, and in combination with bee viruses cause synergistic mortality. Organosilicon surfactants need to be regulated as a separate class of "inerts" from the more common silicones. In turn, impacts of organosilicon surfactant exposures on humans need to be evaluated. Silicones in their great diversity probably represent the single most ubiquitous environmental class of global synthetic pollutants. Do honey bees, a model environmental indicator organism, forewarn of hidden risks to humans of ubiquitous silicone exposures? Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Multi-block poloxamer surfactants suppress aggregation of denatured proteins.

    PubMed

    Mustafi, Devkumar; Smith, Catherine M; Makinen, Marvin W; Lee, Raphael C

    2008-01-01

    On the basis of elastic light scattering, we have compared the capacity of the multi-block, surfactant copolymers Poloxamer 108 (P108), Poloxamer 188 (P188), and Tetronic 1107 (T1107), of average molecular weight 4700, 8400, and 15,000, respectively, with that of polyethylene glycol (PEG, molecular weight 8000) to suppress aggregation of heat-denatured hen egg white lysozyme (HEWL) and bovine serum albumin (BSA). We also compared the capacity of P188 to that of PEG to suppress aggregation of carboxypeptidase A denatured in the presence of trifluoroethanol and to facilitate recovery of catalytic activity. In contrast to the multi-block copolymers, PEG had no effect in inhibiting aggregation of HEWL or of carboxypeptidase A with the recovery of catalytic activity. At very high polymer:protein ratios (>or=10:1), PEG increased aggregation of heat-denatured HEWL and BSA, consistent with its known properties to promote macromolecular crowding and crystallization of proteins. At a polymer:protein ratio of 2:1, the tetra-block copolymer T1107 was the most effective of the three surfactant copolymers, completely suppressing aggregation of heat-denatured HEWL. At a T1107:BSA ratio of 10:1, the poloxamer suppressed aggregation of heat-denatured BSA by 50% compared to that observed in the absence of the polymer. We showed that the extent of suppression of aggregation of heat-denatured proteins by multi-block surfactant copolymers is dependent on the size of the protein and the copolymer:protein molar ratio. We also concluded that at least one of the tertiary nitrogens in the ethylene-1,2-diamine structural core of the T1107 copolymer is protonated, and that this electrostatic factor underlies its capacity to suppress aggregation of denatured proteins more effectively than nonionic, multi-block poloxamers. These results indicate that amphiphilic, surfactant, multi-block copolymers are efficient as additives to suppress aggregation and to facilitate refolding of denatured

  19. Structural requirements for palmitoylation of surfactant protein C precursor.

    PubMed Central

    ten Brinke, Anja; Vaandrager, Arie B; Haagsman, Henk P; Ridder, Anja N J A; van Golde, Lambert M G; Batenburg, Joseph J

    2002-01-01

    Pulmonary surfactant protein C (SP-C) propeptide (proSP-C) is a type II transmembrane protein that is palmitoylated on two cysteines adjacent to its transmembrane domain. To study the structural requirements for palmitoylation of proSP-C, His-tagged human proSP-C and mutant forms were expressed in Chinese hamster ovary cells and analysed by metabolic labelling with [3H]palmitate. Mutations were made in the amino acid sequence representing mature SP-C, as deletion of the N- and C-terminal propeptide parts showed that this sequence by itself could already be palmitoylated. Substitution of the transmembrane domain by an artificial transmembrane domain had no effect on palmitoylation. However, an inverse correlation was found between palmitoylation of proSP-C and the number of amino acids present between the cysteines and the transmembrane domain. Moreover, substitution by alanines of amino acids localized on the N-terminal side of the cysteines had drastic effects on palmitoylation, probably as a result of the removal of hydrophobic amino acids. These data, together with the observation that substitution by alanines of the amino acids localized between the cysteines and the transmembrane domain had no effect on palmitoylation, suggest that the palmitoylation of proSP-C depends not on specific sequence motifs, but more on the probability that the cysteine is in the vicinity of the membrane surface. This is probably determined not only by the number of amino acids between the cysteines and the transmembrane domain, but also by the hydrophobic interaction of the N-terminus with the membrane. This may also be the case for the palmitoylation of other transmembrane proteins. PMID:11802797

  20. PLUNC Is a Novel Airway Surfactant Protein with Anti-Biofilm Activity

    PubMed Central

    Penterman, Jon; Mizrachi, Dario; Singh, Pradeep K.; Mallampalli, Rama K.; Ramaswamy, S.; McCray, Paul B.

    2010-01-01

    Background The PLUNC (“Palate, lung, nasal epithelium clone”) protein is an abundant secretory product of epithelia present throughout the conducting airways of humans and other mammals, which is evolutionarily related to the lipid transfer/lipopolysaccharide binding protein (LT/LBP) family. Two members of this family - the bactericidal/permeability increasing protein (BPI) and the lipopolysaccharide binding protein (LBP) - are innate immune molecules with recognized roles in sensing and responding to Gram negative bacteria, leading many to propose that PLUNC may play a host defense role in the human airways. Methodology/Principal Findings Based on its marked hydrophobicity, we hypothesized that PLUNC may be an airway surfactant. We found that purified recombinant human PLUNC greatly enhanced the ability of aqueous solutions to spread on a hydrophobic surface. Furthermore, we discovered that PLUNC significantly reduced surface tension at the air-liquid interface in aqueous solutions, indicating novel and biologically relevant surfactant properties. Of note, surface tensions achieved by adding PLUNC to solutions are very similar to measurements of the surface tension in tracheobronchial secretions from humans and animal models. Because surfactants of microbial origin can disperse matrix-encased bacterial clusters known as biofilms [1], we hypothesized that PLUNC may also have anti-biofilm activity. We found that, at a physiologically relevant concentration, PLUNC inhibited biofilm formation by the airway pathogen Pseudomonas aeruginosa in an in vitro model. Conclusions/Significance Our data suggest that the PLUNC protein contributes to the surfactant properties of airway secretions, and that this activity may interfere with biofilm formation by an airway pathogen. PMID:20161732

  1. Tuning of protein-surfactant interaction to modify the resultant structure.

    PubMed

    Mehan, Sumit; Aswal, Vinod K; Kohlbrecher, Joachim

    2015-09-01

    Small-angle neutron scattering and dynamic light scattering studies have been carried out to examine the interaction of bovine serum albumin (BSA) protein with different surfactants under varying solution conditions. We show that the interaction of anionic BSA protein (pH7) with surfactant and the resultant structure are strongly modified by the charge head group of the surfactant, ionic strength of the solution, and mixed surfactants. The protein-surfactant interaction is maximum when two components are oppositely charged, followed by components being similarly charged through the site-specific binding, and no interaction in the case of a nonionic surfactant. This interaction of protein with ionic surfactants is characterized by the fractal structure representing a bead-necklace structure of micellelike clusters adsorbed along the unfolded protein chain. The interaction is enhanced with ionic strength only in the case of site-specific binding of an anionic surfactant with an anionic protein, whereas it is almost unchanged for other complexes of cationic and nonionic surfactants with anionic proteins. Interestingly, the interaction of BSA protein with ionic surfactants is significantly suppressed in the presence of nonionic surfactant. These results with mixed surfactants thus can be used to fold back the unfolded protein as well as to prevent surfactant-induced protein unfolding. For different solution conditions, the results are interpreted in terms of a change in fractal dimension, the overall size of the protein-surfactant complex, and the number of micelles attached to the protein. The interplay of electrostatic and hydrophobic interactions is found to govern the resultant structure of complexes.

  2. Refolding of SDS-Unfolded Proteins by Nonionic Surfactants.

    PubMed

    Kaspersen, Jørn Døvling; Søndergaard, Anne; Madsen, Daniel Jhaf; Otzen, Daniel E; Pedersen, Jan Skov

    2017-04-25

    The strong and usually denaturing interaction between anionic surfactants (AS) and proteins/enzymes has both benefits and drawbacks: for example, it is put to good use in electrophoretic mass determinations but limits enzyme efficiency in detergent formulations. Therefore, studies of the interactions between proteins and AS as well as nonionic surfactants (NIS) are of both basic and applied relevance. The AS sodium dodecyl sulfate (SDS) denatures and unfolds globular proteins under most conditions. In contrast, NIS such as octaethylene glycol monododecyl ether (C12E8) and dodecyl maltoside (DDM) protect bovine serum albumin (BSA) from unfolding in SDS. Membrane proteins denatured in SDS can also be refolded by addition of NIS. Here, we investigate whether globular proteins unfolded by SDS can be refolded upon addition of C12E8 and DDM. Four proteins, BSA, α-lactalbumin (αLA), lysozyme, and β-lactoglobulin (βLG), were studied by small-angle x-ray scattering and both near- and far-UV circular dichroism. All proteins and their complexes with SDS were attempted to be refolded by the addition of C12E8, while DDM was additionally added to SDS-denatured αLA and βLG. Except for αLA, the proteins did not interact with NIS alone. For all proteins, the addition of NIS to the protein-SDS samples resulted in extraction of the SDS from the protein-SDS complexes and refolding of βLG, BSA, and lysozyme, while αLA changed to its NIS-bound state instead of the native state. We conclude that NIS competes with globular proteins for association with SDS, making it possible to release and refold SDS-denatured proteins by adding sufficient amounts of NIS, unless the protein also interacts with NIS alone. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Pulmonary haptoglobin (pHp) is part of the surfactant system in the human lung.

    PubMed

    Abdullah, Mahdi; Goldmann, Torsten

    2012-11-20

    Since the existence of pHp was demonstrated, it has been shown that this molecule and its receptor CD163 are regulated by different stimuli. Furthermore, a comparably fast secretion of pHp was described as well as the immuno-stimulatory effects. The intention of this study was to elucidate the role of pHp in the human lungs further. Here we show, by means of confocal microscopy and immune-electron-microscopy, a clear co-localization of pHp with surfactant protein-B in lamellar bodies of alveolar epithelial cells type II. These results are underlined by immunohistochemical stainings in differently fixed human lung tissues, which show pHp in vesicular and released form. The images of the released form resemble the intended position of surfactant in the human alveolus. pHp is secreted by Alveolar epithelial cells type II as previously shown. Moreover, pHp is co-localized with Surfactant protein-B. We conclude that the presented data shows that pHp is a native part of the surfactant system in the human lung. http://www.diagnosticpathology.diagnomx.eu/vs/2563584738239912.

  4. Pulmonary haptoglobin (pHp) is part of the surfactant system in the human lung

    PubMed Central

    2012-01-01

    Abstract Since the existence of pHp was demonstrated, it has been shown that this molecule and its receptor CD163 are regulated by different stimuli. Furthermore, a comparably fast secretion of pHp was described as well as the immuno-stimulatory effects. The intention of this study was to elucidate the role of pHp in the human lungs further. Here we show, by means of confocal microscopy and immune-electron-microscopy, a clear co-localization of pHp with Surfactant protein-B in lamellar bodies of Alveolar Epithelial Cells Type II. These results are underlined by immunohistochemical stainings in differently fixed human lung tissues, which show pHp in vesicular and released form. The images of the released form resemble the intended position of surfactant in the human alveolus. pHp is secreted by Alveolar epithelial cells type II as previously shown. Moreover, pHp is co-localized with Surfactant protein-B. We conclude that the presented data shows that pHp is a native part of the surfactant system in the human lung. Virtual slides http://www.diagnosticpathology.diagnomx.eu/vs/2563584738239912. PMID:23164167

  5. Effect of surfactants on preformed fibrils of human serum albumin.

    PubMed

    Pandey, Nitin Kumar; Ghosh, Sudeshna; Dasgupta, Swagata

    2013-08-01

    The central reason behind pathogenesis of various neurological disorders is usually attributed to the accumulation of aggregated proteins particularly in fibrillar morphology in vivo. One of the plausible remedial treatments for such disorders may be to identify molecules which are capable of either preventing formation of fibrils or disintegrating formed fibrils. The effect of cationic surfactants cetyl trimethylammonium bromide (CTAB), dodecyl trimethylammonium bromide (DTAB) and the anionic surfactant sodium dodecyl sulfate (SDS) in vitro toward mature HSA fibrils has been investigated. The process has been monitored using ThT fluorescence, FTIR, circular dichroism, fluorescence microscopy and HRTEM. It was observed that the micelles of cationic surfactants were able to effectively disrupt the HSA fibrils, among which CTAB was found to be the most potent.

  6. Lung Surfactant Protein A (SP-A) Interactions with Model Lung Surfactant Lipids and an SP-B Fragment

    PubMed Central

    2011-01-01

    Surfactant protein A (SP-A) is the most abundant protein component of lung surfactant, a complex mixture of proteins and lipids. SP-A performs host defense activities and modulates the biophysical properties of surfactant in concerted action with surfactant protein B (SP-B). Current models of lung surfactant mechanism generally assume SP-A functions in its octadecameric form. However, one of the findings of this study is that when SP-A is bound to detergent and lipid micelles that mimic lung surfactant phospholipids, it exists predominantly as smaller oligomers, in sharp contrast to the much larger forms observed when alone in water. These investigations were carried out in sodium dodecyl sulfate (SDS), dodecylphosphocholine (DPC), lysomyristoylphosphatidylcholine (LMPC), lysomyristoylphosphatidylglycerol (LMPG), and mixed LMPC + LMPG micelles, using solution and diffusion nuclear magnetic resonance (NMR) spectroscopy. We have also probed SP-A’s interaction with Mini-B, a biologically active synthetic fragment of SP-B, in the presence of micelles. Despite variations in Mini-B’s own interactions with micelles of different compositions, SP-A is found to interact with Mini-B in all micelle systems and perhaps to undergo a further structural rearrangement upon interacting with Mini-B. The degree of SP-A–Mini-B interaction appears to be dependent on the type of lipid headgroup and is likely mediated through the micelles, rather than direct binding. PMID:21553841

  7. Lung surfactant protein A (SP-A) interactions with model lung surfactant lipids and an SP-B fragment.

    PubMed

    Sarker, Muzaddid; Jackman, Donna; Booth, Valerie

    2011-06-07

    Surfactant protein A (SP-A) is the most abundant protein component of lung surfactant, a complex mixture of proteins and lipids. SP-A performs host defense activities and modulates the biophysical properties of surfactant in concerted action with surfactant protein B (SP-B). Current models of lung surfactant mechanism generally assume SP-A functions in its octadecameric form. However, one of the findings of this study is that when SP-A is bound to detergent and lipid micelles that mimic lung surfactant phospholipids, it exists predominantly as smaller oligomers, in sharp contrast to the much larger forms observed when alone in water. These investigations were carried out in sodium dodecyl sulfate (SDS), dodecylphosphocholine (DPC), lysomyristoylphosphatidylcholine (LMPC), lysomyristoylphosphatidylglycerol (LMPG), and mixed LMPC + LMPG micelles, using solution and diffusion nuclear magnetic resonance (NMR) spectroscopy. We have also probed SP-A's interaction with Mini-B, a biologically active synthetic fragment of SP-B, in the presence of micelles. Despite variations in Mini-B's own interactions with micelles of different compositions, SP-A is found to interact with Mini-B in all micelle systems and perhaps to undergo a further structural rearrangement upon interacting with Mini-B. The degree of SP-A-Mini-B interaction appears to be dependent on the type of lipid headgroup and is likely mediated through the micelles, rather than direct binding.

  8. SANS and DLS Studies of Protein Unfolding in Presence of Urea and Surfactant

    SciTech Connect

    Aswal, V. K.; Chodankar, S. N.; Wagh, A. G.; Kohlbrecher, J.; Vavrin, R.

    2008-03-17

    Small-angle neutron scattering (SANS) and dynamic light scattering (DLS) have been used to study conformational changes in protein bovine serum albumin (BSA) during its unfolding in presence of protein denaturating agents urea and surfactant. On addition of urea, the BSA protein unfolds for urea concentrations greater than 4 M and acquires a random coil configuration with its radius of gyration increasing with urea concentration. The addition of surfactant unfolds the protein by the formation of micelle-like aggregates of surfactants along the unfolded polypeptide chains of the protein. The fractal dimension of such a protein-surfactant complex decreases and the overall size of the complex increases on increasing the surfactant concentration. The conformation of the unfolded protein in the complex has been determined directly using contrast variation SANS measurements by contrast matching the surfactant to the medium. Results of DLS measurements are found to be in good agreement with those obtained using SANS.

  9. Pulmonary surfactant protein A (SP-A) specifically binds dipalmitoylphosphatidylcholine

    SciTech Connect

    Kuroki, Y.; Akino, T. )

    1991-02-15

    Phospholipids are the major components of pulmonary surfactant. Dipalmitoylphosphatidylcholine is believed to be especially essential for the surfactant function of reducing the surface tension at the air-liquid interface. Surfactant protein A (SP-A) with a reduced denatured molecular mass of 26-38 kDa, characterized by a collagen-like structure and N-linked glycosylation, interacts strongly with a mixture of surfactant-like phospholipids. In the present study the direct binding of SP-A to phospholipids on a thin layer chromatogram was visualized using 125I-SP-A as a probe, so that the phospholipid specificities of SP-A binding and the structural requirements of SP-A and phospholipids for the binding could be examined. Although 125I-SP-A bound phosphatidylcholine and sphingomyeline, it was especially strong in binding dipalmitoylphosphatidylcholine, but failed to bind phosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine, and phosphatidylserine. Labeled SP-A also exhibited strong binding to distearoylphosphatidylcholine, but weak binding to dimyristoyl-, 1-palmitoyl-2-linoleoyl-, and dilinoleoylphosphatidylcholine. Unlabeled SP-A readily competed with labeled SP-A for phospholipid binding. SP-A strongly bound dipalmitoylglycerol produced by phospholipase C treatment of dipalmitoylphosphatidylcholine, but not palmitic acid. This protein also failed to bind lysophosphatidylcholine produced by phospholipase A2 treatment of dipalmitoylphosphatidylcholine. 125I-SP-A shows almost no binding to dipalmitoylphosphatidylglycerol and dipalmitoylphosphatidylethanolamine. The addition of 10 mM EGTA into the binding buffer reduced much of the 125I-SP-A binding to phospholipids. Excess deglycosylated SP-A competed with labeled SP-A for binding to dipalmitoylphosphatidylcholine, but the excess collagenase-resistant fragment of SP-A failed.

  10. Weak interactive forces govern the interaction between a non-ionic surfactant with human serum albumin

    NASA Astrophysics Data System (ADS)

    Ghosh, Narayani; Mondal, Ramakanta; Deshmukh, Arundhati; Dutta, Sanjay; Mukherjee, Saptarshi

    2015-08-01

    The effect of the non-ionic surfactant Tween 40 (TW40) on Human Serum Albumin (HSA) has been studied by spectroscopic and isothermal titration calorimetric (ITC) methods. Our steady-state and time-resolved spectroscopic results reveal the perturbation of the native protein conformation upon interaction with TW40. The interaction of TW40 with HSA does not occur in a sequential manner unlike another anionic surfactant, sodium dodecyl sulfate (SDS). Our major conclusion is that the HSA-TW40 interaction is mainly driven by weak forces like van der Waal/hydrogen bonding interactions. This is also generalized from the results of interaction of HSA with another non-ionic surfactant TW80.

  11. Lung remodeling in aging surfactant protein D deficient mice.

    PubMed

    Schneider, Jan Philipp; Arkenau, Martina; Knudsen, Lars; Wedekind, Dirk; Ochs, Matthias

    2017-02-07

    Pulmonary surfactant, a mixture of lipids and proteins at the air-liquid interface of alveoli, prevents the lungs from collapsing due to surface tension. One constituent is surfactant-associated protein-D (SP-D), a protein involved in surfactant homeostasis and innate immunity. Mice deficient in SP-D (SP-D (-/-)) has been described as developing a characteristic phenotype which affects the surfactant system (including changes in the intra-cellular and intra-alveolar surfactant pool, alveolar epithelial type II cells and alveolar macrophages), lung architecture and its inflammatory state (development of an emphysema-like pathology, inflammatory cell infiltration). Furthermore, it has been described that these mice develop sub-pleural fibrosis and a thickening of alveolar septal walls. The aim of the present study was to systematically investigate the long term progression of this phenotype with special focus on parenchymal remodeling, whether there are progressive emphysematous changes and whether there is progressive septal wall thickening which might indicate the development of pulmonary fibrosis. By means of design-based stereology and light microscopy, lungs of wild type (wt) and SP-D (-/-) mice of four age groups (3, 6, 12 and ∼18 months) were investigated. The data do not suggest a relevant spontaneous pro-fibrotic remodeling or a destructive process in the aging SP-D (-/-) mice. We demonstrated neither a significant destructive emphysema nor significant thickening of alveolar septal walls, but the data suggest an increase in the number weighted mean alveolar volume in aging SP-D (-/-) mice without loss of alveoli or alveolar epithelial surface area per lung. This increase may reflect over-distension due to altered mechanical properties of alveoli. In the light of our findings and data from the literature, the question arises as to whether a lack of SP-D promotes structural changes in the lung which have been described as being associated with aging lungs

  12. Mature Surfactant Protein-B Expression by Immunohistochemistry as a Marker for Surfactant System Development in the Fetal Sheep Lung

    PubMed Central

    Lock, Mitchell C.; McGillick, Erin V.; Orgeig, Sandra; Zhang, Song; McMillen, I. Caroline; Morrison, Janna L.

    2015-01-01

    Evaluation of the number of type II alveolar epithelial cells (AECs) is an important measure of the lung’s ability to produce surfactant. Immunohistochemical staining of these cells in lung tissue commonly uses antibodies directed against mature surfactant protein (SP)-C, which is regarded as a reliable SP marker of type II AECs in rodents. There has been no study demonstrating reliable markers for surfactant system maturation by immunohistochemistry in the fetal sheep lung despite being widely used as a model to study lung development. Here we examine staining of a panel of surfactant pro-proteins (pro–SP-B and pro–SP-C) and mature proteins (SP-B and SP-C) in the fetal sheep lung during late gestation in the saccular/alveolar phase of development (120, 130, and 140 days), with term being 150 ± 3 days, to identify the most reliable marker of surfactant producing cells in this species. Results from this study indicate that during late gestation, use of anti-SP-B antibodies in the sheep lung yields significantly higher cell counts in the alveolar epithelium than SP-C antibodies. Furthermore, this study highlights that mature SP-B antibodies are more reliable markers than SP-C antibodies to evaluate surfactant maturation in the fetal sheep lung by immunohistochemistry. PMID:26297137

  13. Mature Surfactant Protein-B Expression by Immunohistochemistry as a Marker for Surfactant System Development in the Fetal Sheep Lung.

    PubMed

    Lock, Mitchell C; McGillick, Erin V; Orgeig, Sandra; Zhang, Song; McMillen, I Caroline; Morrison, Janna L

    2015-11-01

    Evaluation of the number of type II alveolar epithelial cells (AECs) is an important measure of the lung's ability to produce surfactant. Immunohistochemical staining of these cells in lung tissue commonly uses antibodies directed against mature surfactant protein (SP)-C, which is regarded as a reliable SP marker of type II AECs in rodents. There has been no study demonstrating reliable markers for surfactant system maturation by immunohistochemistry in the fetal sheep lung despite being widely used as a model to study lung development. Here we examine staining of a panel of surfactant pro-proteins (pro-SP-B and pro-SP-C) and mature proteins (SP-B and SP-C) in the fetal sheep lung during late gestation in the saccular/alveolar phase of development (120, 130, and 140 days), with term being 150 ± 3 days, to identify the most reliable marker of surfactant producing cells in this species. Results from this study indicate that during late gestation, use of anti-SP-B antibodies in the sheep lung yields significantly higher cell counts in the alveolar epithelium than SP-C antibodies. Furthermore, this study highlights that mature SP-B antibodies are more reliable markers than SP-C antibodies to evaluate surfactant maturation in the fetal sheep lung by immunohistochemistry.

  14. Comparison of solid particles, globular proteins and surfactants as emulsifiers.

    PubMed

    Tcholakova, S; Denkov, N D; Lips, A

    2008-03-28

    The aim of this paper is to present a short overview of the main mechanisms operative in the formation and stabilization of emulsions by solid particles and, on this basis, to make comparisons between solid particles, surfactants and globular proteins as emulsifiers. When available, simple quantitative relations are presented, with the respective numerical estimates and discussion of the applicability of these relations to particle-stabilized systems. Non-obvious similarities between the different types of emulsifiers are outlined in several cases in which the description of the system can be performed at a phenomenological level. Examples are presented for the process of emulsification, where we show that several simple theoretical expressions, derived originally in the studies of surfactants and protein emulsifiers, can be successfully applied to particle-stabilized emulsions. In contrast, for the phenomena in which the detailed mechanisms of particle adsorption and film stabilization are important, the differences between the various emulsifiers prevail, thus making it impossible to use the same theoretical description. The most important specific characteristics of the solid particles which strongly affect their behavior are the high barrier to particle adsorption, high desorption energy and strong capillary forces between particles trapped in liquid films, which all originate in the relatively large particle size (as compared to the size of surfactant and protein molecules). The capillary mechanism of stabilization of liquid films by solid particles is reviewed in some detail, to emphasize its specific features and to demonstrate the applicability of several simple expressions for approximate estimates. Interestingly, we found that the hypothesis for some exceptionally high coalescence stability of the particle-stabilized emulsions is not supported by the experimental data available in literature. On the other hand, the particles are able to completely arrest

  15. Essential Regulation of Lung Surfactant Homeostasis by the Orphan G-protein Coupled Receptor GPR116

    PubMed Central

    Yang, Mi Young; Hilton, Mary Beth; Seaman, Steven; Haines, Diana C.; Nagashima, Kunio; Burks, Christina M.; Tessarollo, Lino; Ivanova, Pavlina T.; Brown, H. Alex; Umstead, Todd M.; Floros, Joanna; Chroneos, Zissis C.; St. Croix, Brad

    2013-01-01

    SUMMARY GPR116 is an orphan seven-pass transmembrane receptor of previously unknown function. Global disruption of the Gpr116 gene in mice revealed an unexpected, critical role for this receptor in lung surfactant homeostasis, resulting in progressive accumulation of surfactant lipids and proteins in the alveolar space, labored breathing, and a reduced lifespan. GPR116 expression analysis, bone marrow transplantation studies and characterization of conditional knockout mice revealed that GPR116 expression in ATII cells is required for maintaining normal surfactant levels. Aberrant packaging of surfactant proteins with lipids in the Gpr116 mutant mice resulted in compromised surfactant structure, function, uptake, and processing. Thus, GPR116 plays an indispensable role in lung surfactant homeostasis with important ramifications for the understanding and treatment of lung surfactant disorders. PMID:23684610

  16. Complexation between dodecyl sulfate surfactant and zein protein in solution.

    PubMed

    Ruso, Juan M; Deo, Namita; Somasundaran, P

    2004-10-12

    Interactions between sodium dodecyl sulfate and zein protein, a model system for the understanding of the effect of surfactants on skin, were investigated using a range of techniques involving UV-vis spectroscopy, TOC (total organic carbon analysis), electrophoresis, and static and dynamic light scattering. Zein protein was solubilized by SDS. The adsorption of SDS onto insoluble protein fraction caused the zeta potential of the complex to become more negative. From these values, we calculated the Gibbs energy of absorption, which decreases when the SDS concentration is raised. Finally the structure of the complex, based on the analysis by static and dynamic light scattering, is proposed to be rod like. Copyright 2004 American Chemical Society

  17. Surfactant proteins A and D in the genital tract of mares.

    PubMed

    Kankavi, Orhan; Ata, Ayhan; Gungor, Orsan

    2007-04-01

    The presence of surface-active material in the lung alveolus has been known for several decades as being essential for normal lung function. Surfactant is essential for reducing the surface tension at the alveolar air-liquid interface. Pulmonary surfactant is composed of 90% lipids and 10% proteins. There are four non-serum proteins surfactant protein-A (SP-A), surfactant protein-B (SP-B), surfactant protein-C (SP-C) and surfactant protein-D (SP-D) named in chronologic order of discovery. Lung SP-A and SP-D belong to a family of collagen-containing C-type lectin family called collectins. The host defence and controlling inflammatory processes of the lung are the major functions of SP-A and SP-D. SP-A and SP-D were originally demonstrated in alveolar type II cells, but recent studies have shown extrapulmonary expression of SP-A and SP-D indicating systemic roles of these proteins. Present study describes the presence of SP-A and SP-D in the mare genital tract, vulva, vagina, ovarium, uterus and tuba uterina using immunohistochemistry and Western blotting. The aim of this study was to characterize surfactant proteins in terms of: (i) whether surfactant proteins were present in the various structures of the mare genital system, (ii) if so, identifying and locating the surfactant proteins and finally (iii) determining the differences from those previously characterized for the lung. Although beyond the scope of this report, it is recognized that there are also some potential implications for better defining the reproductive defence mechanisms in mare. Therefore, genital system organs and tissues from mares were examined. We were able to show that proteins reactive with surfactant-specific antibodies were present in the mare genital tract. Thus, surfactant proteins are present not in just lamellar bodies associated with lung, but also genital system of mare.

  18. Observation of two different fractal structures in nanoparticle, protein and surfactant complexes

    SciTech Connect

    Mehan, Sumit Kumar, Sugam Aswal, V. K.

    2014-04-24

    Small angle neutron scattering has been carried out from a complex of nanoparticle, protein and surfactant. Although all the components are similarly (anionic) charged, we have observed strong interactions in their complex formation. It is characterized by the coexistence of two different mass fractal structures. The first fractal structure is originated from the protein and surfactant interaction and second from the depletion effect of first fractal structure leading the nanoparticle aggregation. The fractal structure of protein-surfactant complex represents to bead necklace structure of micelle-like clusters of surfactant formed along the unfolded protein chain. Its fractal dimension depends on the surfactant to protein ratio (r) and decreases with the increase in r. However, fractal dimension of nanoparticle aggregates in nanoparticle-protein complex is found to be independent of protein concentration and governed by the diffusion limited aggregation like morphology.

  19. Interaction of two imidazolium gemini surfactants with two model proteins BSA and HEWL.

    PubMed

    Gospodarczyk, W; Kozak, M

    Gemini surfactants and their interactions with proteins have gained considerable scientific interest, especially when amyloidogenic proteins are taken into account. In this work, the influence of two selected dicationic (gemini) surfactants (3,3'-[1,8-(2,7-dioxaoctane)]bis(1-dodecylimidazolium) chloride and 3,3'-[1,12-(2,11-dioxadodecane)]bis(1-dodecylimidazolium) chloride) on two model proteins, bovine serum albumin (BSA) and hen egg white lysozyme (HEWL), have been investigated. A pronounced and sophisticated influence on BSA structure has been revealed, including a considerable change of protein radius of gyration as well as substantial alteration of its secondary structure. Radius of gyration has been found to rise significantly with addition of surfactants and to fall down for high surfactants concentration. Similarly, a remarkable fall of secondary structure (α-helix content) has been observed, followed by its partial retrieval for high surfactants concentration. A strong aggregation of BSA has been observed for a confined range of surfactants concentrations as well. In case of HEWL-gemini system, on the other hand, the protein-surfactant interaction was found to be weak. Molecular mechanisms explaining such behaviour of protein-surfactant systems have been proposed. The differences of properties of both studied surfactants have also been discussed.

  20. Binding of Alkyl Polyglucoside Surfactants to Bacteriorhodopsin and its Relation to Protein Stability

    PubMed Central

    Santonicola, M. Gabriella; Lenhoff, Abraham M.; Kaler, Eric W.

    2008-01-01

    The binding of alkyl polyglucoside surfactants to the integral membrane protein bacteriorhodopsin (BR) and the formation of protein-surfactant complexes are investigated by sedimentation equilibrium via analytical ultracentrifugation and by small-angle neutron scattering (SANS). Contrast variation techniques in SANS enable measurement of the composition of the protein-surfactant complexes and determination of the thickness of the surfactant shell bound to the protein. The results indicate that alkyl polyglucosides can bind to BR as single surfactant layers or as a thicker shell. The thickness of the surfactant shell increases with increasing surfactant tail length, and it is generally unrelated to the aggregation number of the micelles even for a small and predominantly hydrophobic membrane protein such as BR. The aggregation numbers determined by sedimentation equilibrium methods match those measured by SANS, which also allows reconstruction of the shape of the protein-detergent complex. When the surfactant is present as a single layer, the BR loses activity, as measured by absorption spectroscopy, more quickly than it does when the surfactant forms a thicker shell. PMID:18234822

  1. Binding of alkyl polyglucoside surfactants to bacteriorhodopsin and its relation to protein stability.

    PubMed

    Santonicola, M Gabriella; Lenhoff, Abraham M; Kaler, Eric W

    2008-05-01

    The binding of alkyl polyglucoside surfactants to the integral membrane protein bacteriorhodopsin (BR) and the formation of protein-surfactant complexes are investigated by sedimentation equilibrium via analytical ultracentrifugation and by small-angle neutron scattering (SANS). Contrast variation techniques in SANS enable measurement of the composition of the protein-surfactant complexes and determination of the thickness of the surfactant shell bound to the protein. The results indicate that alkyl polyglucosides can bind to BR as single surfactant layers or as a thicker shell. The thickness of the surfactant shell increases with increasing surfactant tail length, and it is generally unrelated to the aggregation number of the micelles even for a small and predominantly hydrophobic membrane protein such as BR. The aggregation numbers determined by sedimentation equilibrium methods match those measured by SANS, which also allows reconstruction of the shape of the protein-detergent complex. When the surfactant is present as a single layer, the BR loses activity, as measured by absorption spectroscopy, more quickly than it does when the surfactant forms a thicker shell.

  2. Surfactant protein A, exposure to endotoxin, and asthma in garbage collectors and in wastewater workers.

    PubMed

    Widmeier, Susanne; Bernard, Alfred; Tschopp, Alois; Jeggli, Stefan; Dumont, Xavier; Hilfiker, Silvia; Oppliger, Anne; Hotz, Philippe

    2007-04-01

    Endotoxin causes an inflammation at the bronchial and alveolar level. The inflammation-induced increase in permeability of the bronchoalveolar epithelial barrier is supposed to cause a leakage of pneumoproteins. Therefore, their concentrations are expected to increase in the bloodstream. This study aimed at examining the association between occupational exposure to endotoxin and a serum pneumoprotein, surfactant protein A, to look for nonoccupational factors capable of confounding this association, and examine the relation between surfactant protein A and spirometry. There were 369 control subjects, 325 wastewater workers, and 84 garbage collectors in the study. Exposure to endotoxin was assessed through personal sampling and the Limulus amebocytes lysate assay. Surfactant protein A was determined by an in house sandwich enzyme-linked immunosorbent assay (ELISA) in 697 subjects. Clinical and smoking history were ascertained and spirometry carried out according to American Thoracic Society criteria. Multiple linear regression was used for statistical analysis. Exposure was fairly high during some tasks in wastewater workers but did not influence surfactant protein A. Surfactant protein A was lower in asthmatics. Interindividual variability was large. No correlation with spirometry was found. Endotoxin has no effect on surfactant protein A at these endotoxin levels and serum surfactant protein A does not correlate with spirometry. The decreased surfactant protein A secretion in asthmatics requires further study.

  3. DECREASED PRODUCTION OF SURFACTANT PROTEINS AFTER DIESEL EXHAUST EXPOSURE INCREASES SUSCEPTIBILITY TO INFLUENZA INFECTION

    EPA Science Inventory

    Pulmonary surfactant proteins A and D (SP-A and SP-D), termed collectins, enhance the opsonization of foreign particles and pathogens by phagocytic cells. Inhaled pollutants such as diesel exhaust (DE) have a possible role in suppressing the production of surfactant proteins whic...

  4. DECREASED PRODUCTION OF SURFACTANT PROTEINS AFTER DIESEL EXHAUST EXPOSURE INCREASES SUSCEPTIBILITY TO INFLUENZA INFECTION

    EPA Science Inventory

    Pulmonary surfactant proteins A and D (SP-A and SP-D), termed collectins, enhance the opsonization of foreign particles and pathogens by phagocytic cells. Inhaled pollutants such as diesel exhaust (DE) have a possible role in suppressing the production of surfactant proteins whic...

  5. Tween surfactants: Adsorption, self-organization, and protein resistance

    NASA Astrophysics Data System (ADS)

    Shen, Lei; Guo, Athena; Zhu, Xiaoyang

    2011-03-01

    Tween surfactants, each containing hydrophilic ethylene glycol head groups and a hydrophobic alkyl tail, are being actively explored as protein-resistant surface coatings, but little is known about how they adsorb on surfaces. We carry out a comparative study of the adsorption of two Tween molecules (same hydrophilic head group, but a shorter dodecyl tail for Tween 20 and a longer octadecyl tail for Tween 40) on Au and polystyrene surfaces. Despite the similarity between these two molecules, there is a drastic difference in their protein resistance: a monolayer of Tween 20 on a hydrophobic surface is repulsive against protein adsorption but that of Tween 40 is not. The difference in protein resistance can be attributed to two distinctly different adsorption mechanisms. While the adsorption of Tween 40 is described by a simple first-order mechanism, that of Tween 20 consists of a fast adsorption step and a slower reorganization process at a high surface coverage. The latter leads to the formation of a high-density and self-organized monolayer, which is responsible for the enhanced stability and resistance against non-specific protein adsorption.

  6. Surfactant proteins A and D in pregnancy and parturition.

    PubMed

    Yadav, Ajit Kumar; Madan, Taruna; Bernal, Andres Lopez

    2011-01-01

    Surfactant proteins A and D have extra-pulmonary expression at various mucosal sites including the reproductive tract. Reproductive tissues require a fine immune balance, strong enough to keep infection at a bay and at the same time, subtle enough to support an allogeneic fetus throughout the pregnancy. Roles of SP-A and SP-D have been studied in depth and include immunoregulatory function, besides strengthening the innate immune system against various pathogens in the lungs. Interestingly, levels of SP-A and SP-D in the amniotic fluid increase progressively in pregnancy. SP-A has been implicated in the induction of parturition. The present review elaborates the plausible roles of SP-A and SP-D in pregnancy maintenance and future applications.

  7. Molecular biological characterization of equine surfactant protein A.

    PubMed

    Hospes, R; Hospes, B I L; Reiss, I; Bostedt, H; Gortner, L

    2002-12-01

    In the following, we describe the isolation and sequencing of the equine surfactant protein A (Sp-A) as found in both the cDNA and the genomic DNA. We found a length of the cDNA sequence of 747 bp (base pairs), in translation into amino acids of 248. Compared with the known molecular biological facts about Sp-A in other species, the cDNA sequence obtained showed highest homology with that of sheep (85.01%). The genomic DNA of equine Sp-A, as in other species, includes three introns. There were no hints for the existence of two different Sp-A genes. These results should form the basis for a better understanding of respiratory failure in foals and adult horses, and also lead to further studies on this item.

  8. Stabilization of human papillomavirus virus-like particles by non-ionic surfactants.

    PubMed

    Shi, Li; Sanyal, Gautam; Ni, Alex; Luo, Zheng; Doshna, Sarah; Wang, Bei; Graham, Tammy L; Wang, Ning; Volkin, David B

    2005-07-01

    Human papillomavirus (HPV) virus-like-particles (VLPs) produced by recombinant expression systems are promising vaccine candidates for prevention of cervical cancers as well as genital warts. At high protein concentrations, HPV VLPs, comprised of the viral capsid protein L1 and expressed and purified from yeast, are protected against detectable aggregation during preparation and storage by high concentrations of NaCl. At low protein concentrations, however, high salt concentration alone does not fully protect HPV VLPs from aggregation. Moreover, the analytical analysis of HPV VLPs proved to be a challenge due to surface adsorption of HPV VLPs to storage containers and cuvettes. The introduction of non-ionic surfactants into HPV VLP aqueous solutions provides significantly enhanced stabilization of HPV VLPs against aggregation upon exposure to low salt and protein concentration, as well as protection against surface adsorption and aggregation due to heat stress and physical agitation. The mechanism of non-ionic surfactant stabilization of HPV VLPs was extensively studied using polysorbate 80 (PS80) as a representative non-ionic surfactant. The results suggest that PS80 stabilizes HPV VLPs mainly by competing with the VLPs for various container surfaces and air/water interfaces. No appreciable binding of PS80 to intact HPV VLPs was observed although PS80 does bind to the denatured HPV L1 protein. Even in the presence of stabilizing level of PS80, however, an ionic strength dependence of HPV VLP stabilization against aggregation is observed indicating optimization of both salt and non-ionic surfactant levels is required for effective stabilization of HPV VLPs in solution. (c) 2005 Wiley-Liss, Inc.

  9. Protein binding onto surfactant-based synthetic vesicles.

    PubMed

    Letizia, Caterina; Andreozzi, Patrizia; Scipioni, Anita; La Mesa, Camillo; Bonincontro, Adalberto; Spigone, Elisabetta

    2007-02-01

    Synthetic vesicles were prepared by mixing anionic and cationic surfactants, aqueous sodium dodecylsulfate with didodecyltrimethylammonium or cetyltrimethylammonium bromide. The overall surfactant content and the (anionic/cationic) mole ratios allow one to obtain negatively charged vesicles. In the phase diagram, the vesicular region is located between a solution phase, a lamellar liquid crystalline dispersion, and a precipitate area. Characterization of the vesicles was performed by electrophoretic mobility, NMR, TEM, and DLS and we determined their uni-lamellar character, size, stability, and charge density. Negatively charged vesicular dispersions, made of sodium dodecylsulfate/didodecyltrimethylammonium bromide or sodium dodecylsulfate/cetyltrimethylammonium bromide, were mixed with lysozyme, to form lipoplexes. Depending on the protein/vesicle charge ratio, binding, surface saturation, and lipoplexes flocculation, or precipitation, occurs. The free protein in excess remains in solution, after binding saturation. The systems were investigated by thermodynamic (surface tension and solution calorimetry), DLS, CD, TEM, 1H NMR, transport properties, electrophoretic mobility, and dielectric relaxation. The latter two methods give information on the vesicle charge neutralization by adsorbed protein. Binding is concomitant to modifications in the double layer thickness of vesicles and in the surface charge density of the resulting lipoplexes. This is also confirmed by developing the electrophoretic mobility results in terms of a Langmuir-like adsorption isotherm. Charges in excess with respect to the amount required to neutralize the vesicle surface promote lipoplexes clustering and/or flocculation. Protein-vesicle interactions were observed by DLS, indicating changes in particle size (and in their distribution functions) upon addition of LYSO. According to CD, the bound protein retains its native conformation, at least in the SDS/CTAB vesicular system. In fact

  10. Impact of the New Generation Reconstituted Surfactant CHF5633 on Human CD4+ Lymphocytes

    PubMed Central

    Fehrholz, Markus; Glaser, Kirsten; Seidenspinner, Silvia; Ottensmeier, Barbara; Curstedt, Tore; Speer, Christian P.; Kunzmann, Steffen

    2016-01-01

    Background Natural surfactant preparations, commonly isolated from porcine or bovine lungs, are used to treat respiratory distress syndrome in preterm infants. Besides biophysical effectiveness, several studies have documented additional immunomodulatory properties. Within the near future, synthetic surfactant preparations may be a promising alternative. CHF5633 is a new generation reconstituted synthetic surfactant preparation with defined composition, containing dipalmitoyl-phosphatidylcholine, palmitoyl-oleoyl-phosphatidylglycerol and synthetic analogs of surfactant protein (SP-) B and SP-C. While its biophysical effectiveness has been demonstrated in vitro and in vivo, possible immunomodulatory abilities are currently unknown. Aim The aim of the current study was to define a potential impact of CHF5633 and its single components on pro- and anti-inflammatory cytokine responses in human CD4+ lymphocytes. Methods Purified human CD4+ T cells were activated using anti CD3/CD28 antibodies and exposed to CHF5633, its components, or to the well-known animal-derived surfactant Poractant alfa (Curosurf®). Proliferative response and cell viability were assessed using flow cytometry and a methylthiazolyldiphenyltetrazolium bromide colorimetric assay. The mRNA expression of IFNγ, IL-2, IL-17A, IL-22, IL-4, and IL-10 was measured by quantitative PCR, while intracellular protein expression was assessed by means of flow cytometry. Results Neither CHF5633 nor any of its phospholipid components with or without SP-B or SP-C analogs had any influence on proliferative ability and viability of CD4+ lymphocytes under the given conditions. IFNγ, IL-2, IL-17A, IL-22, IL-4, and IL-10 mRNA as well as IFNγ, IL-2, IL-4 and IL-10 protein levels were unaffected in both non-activated and activated CD4+ lymphocytes after exposure to CHF5633 or its constituents compared to non-exposed controls. However, in comparison to Curosurf®, expression levels of anti-inflammatory IL-4 and IL-10 m

  11. Effects of ozone and acid aerosol exposures on surfactant-associated protein A in the lung

    SciTech Connect

    Su, W.Y.

    1993-01-01

    This study examined the effect of ozone and/or acid aerosol exposure on the level of surfactant associated protein A (SP-A), its gene expression and functionality in the lung. Guinea pigs were exposed to (1) a single exposure to 0.2 to 0.8 ppm ozone for 6 hr and sacrificed at 0 to 120 hr postexposure, (2) 0.8 ppm ozone, 6 hr/day for 3 to 5 days and sacrificed immediately postexposure, or (3) 0.8 ppm ozone, 600 [mu]g/m[sup 3] sulfuric acid, or ozone plus acid for 6 hr and sacrificed at 72 hr postexposure. The concentration of SP-A was determined by ELISA in lavage fluid, lavage cell pellets, and lung tissue compartments. SP-A gene expression was examined in lung tissue by Northern and slot blot analysis. Effect of ozone exposure on functionality of surfactant was tested by its ability to modulate phagocytic cell respiratory burst in a luminol-amplified chemiluminescence (CL) assay of phagocytic cells simulated by PMA or opsonized-zymosan. There were isolated, but significant, changes in SP-A concentrations in the lavage cell and the lavage fluid compartments at 24 and 48 hr after single exposure to 0.8 ppm ozone, respectively. Exposure to ozone and ozone plus acid also slightly increased total SP-A level in the lung. No change in SP-A gene expression was detected under the exposure conditions examined. However, surfactant from ozone exposed animals significantly enhanced CL response of phagocytic cells stimulated by either PMA or opsonized-zymosan. Blocking of the enhancement of CL by a rabbit anti-human SP-A antibody strongly suggested that SP-A may contribute in the altered respiratory burst of phagocytic cells induced by surfactant from ozone exposed animals.

  12. Lipid-protein interactions of hydrophobic proteins SP-B and SP-C in lung surfactant assembly and dynamics.

    PubMed

    Pérez-Gil, J

    2001-01-01

    Phospholipids have the major role in pulmonary surfacant concerning its biophysical function of reducing surface tension at the alveolar air-liquid interface to facilitate respiratory mechanics. However, the presence of some specific, highly hydrophobic polypeptides is essential to modulate the physical behavior of phospholipids and to promote rapid formation of stable surface films that are able to produce surface tensions in the range of 0 dynes/cm during cyclic compression. The present review summarizes the available data on the parameters governing lipid-protein interactions of the hydrophobic surfactant proteins SP-B and SP-C with the main surfactant phospholipids. Lipid-protein interactions in surfactant have been studied in vitro using preparations reconstituted with very different methodological procedures. Conclusions concerning the role of hydrophobic surfactant proteins on the assembly of lipid-protein surfactant structures in vivo have been revised in this respect. This review presents the knowledge available on the disposition of SP-B and SP-C in surfactant structures, the mode, extent, selectivity, and stoichiometry of their lipid-protein interactions, and the effect of the proteins on structure and dynamics of surfactant bilayers and monolayers. Some considerations are given to possible concerted actions, under physiological conditions, of both proteins SP-B and SP-C.

  13. Untapped therapeutic potential of surfactant proteins: is there a case for recombinant SP-D supplementation in neonatal lung disease?

    PubMed

    Clark, Howard W

    2010-06-01

    Whilst pulmonary surfactant therapy has been highly successful in reducing mortality from respiratory distress syndrome of the newborn, a significant proportion of infants born at less than 28 weeks' gestation develop neonatal chronic lung disease. This has a complex pathogenesis but infection, inflammation, oxygen toxicity and ventilator-induced lung injury in the premature infant are all recognised risk factors for its development. Current surfactant therapies in clinical use do not contain all surfactant components and lack the hydrophilic surfactant proteins A and D. These proteins are known to have important roles in surfactant homeostasis and in protecting the lung against inflammation. This review examines the evidence from animal models supporting a role for surfactant protein-D in particular in reducing inflammation in the lung and speculates that supplementation of current surfactant therapies with recombinant forms of surfactant protein-D may help offset the risk of development of chronic lung disease. Copyright 2010 S. Karger AG, Basel.

  14. Surfactant protein A (SP-A) and SP-A-derived peptide attenuate chemotaxis of mast cells induced by human β-defensin 3.

    PubMed

    Uehara, Yasuaki; Takahashi, Motoko; Murata, Masaki; Saito, Atsushi; Takamiya, Rina; Hasegawa, Yoshihiro; Kuronuma, Koji; Chiba, Hirofumi; Hashimoto, Jiro; Sawada, Norimasa; Takahashi, Hiroki; Kuroki, Yoshio; Ariki, Shigeru

    2017-03-25

    Human β-defensin 3 (hBD3) is known to be involved in mast cell activation. However, molecular mechanisms underlying the regulation of hBD3-induced mast cell activation have been poorly understood. We previously reported that SP-A and SP-A-derived peptide 01 (SAP01) regulate the function of hBD3. In this study, we focused on the effects of SP-A and SAP01 on the activation of mast cells induced by hBD3. SAP01 directly bound to hBD3. Mast cell-mediated vascular permeability and edema in hBD3 administered rat ears were decreased when injected with SP-A or SAP01. Compatible with the results in rat ear model, both SP-A and SAP01 inhibited hBD3-induced chemotaxis of mast cells in vitro. Direct interaction between SP-A or SAP01 and hBD3 seemed to be responsible for the inhibitory effects on chemotaxis. Furthermore, SAP01 attenuated hBD3-induced accumulation of mast cells and eosinophils in tracheas of the OVA-sensitized inflammatory model. SP-A might contribute to the regulation of inflammatory responses mediated by mast cells during infection.

  15. Surfactant protein A is a principal and oxidation-sensitive microbial permeabilizing factor in the alveolar lining fluid.

    PubMed

    Kuzmenko, Alexander I; Wu, Huixing; Wan, Sijue; McCormack, Francis X

    2005-07-08

    We have reported that surfactant protein A kills some Gram-negative organisms by increasing membrane permeability. In this study, we investigated the physiologic importance of this activity and the effect of oxidative stress on the antimicrobial functions of SP-A in vitro and in vivo. Concentrated bronchoalveolar lavage fluids from SP-A+/+ mice increased the permeability of the Escherichia coli K12 cell membrane to a greater extent than lavage from SP-A-/- animals. Similarly, calcium-dependent surfactant-binding proteins of SP-A+/+ mice increased membrane permeability more than those from SP-A-/- mice and produced greater zonal killing of agar-embedded bacteria in a radial diffusion assay. Exposure of human SP-A to copper-initiated surfactant phospholipid peroxidation or to free radicals generated by human neutrophils in vitro increased the level of SP-A-associated carbonyl moieties and blocked the permeabilizing function of the protein. We also found that exposure of mice to 90% O2 for 4 days, sufficient to lead to consumption of glutathione, oxidation of protein thiols, and accumulation of airspace protein-associated carbonyl moieties, blocked the permeabilizing activity of lavage fluid from SP-A+/+ mice. We conclude that SP-A is a major microbial permeablizing factor in lavage fluid and that oxidative stress inhibits the antibacterial activity of SP-A by a mechanism that includes oxidative modification and functional inactivation of the protein.

  16. Thermodynamics, interfacial pressure isotherms and dilational rheology of mixed protein-surfactant adsorption layers.

    PubMed

    Fainerman, V B; Aksenenko, E V; Krägel, J; Miller, R

    2016-07-01

    Proteins and their mixtures with surfactants are widely used in many applications. The knowledge of their solution bulk behavior and its impact on the properties of interfacial layers made great progress in the recent years. Different mechanisms apply to the formation process of protein/surfactant complexes for ionic and non-ionic surfactants, which are governed mainly by electrostatic and hydrophobic interactions. The surface activity of these complexes is often remarkably different from that of the individual protein and has to be considered in respective theoretical models. At very low protein concentration, small amounts of added surfactants can change the surface activity of proteins remarkably, even though no strongly interfacial active complexes are observed. Also small added amounts of non-ionic surfactants change the surface activity of proteins in the range of small bulk concentrations or surface coverages. The modeling of the equilibrium adsorption behavior of proteins and their mixtures with surfactants has reached a rather high level. These models are suitable also to describe the high frequency limits of the dilational viscoelasticity of the interfacial layers. Depending on the nature of the protein/surfactant interactions and the changes in the interfacial layer composition rather complex dilational viscoelasticities can be observed and described by the available models. The differences in the interfacial behavior, often observed in literature for studies using different experimental methods, are at least partially explained by a depletion of proteins, surfactants and their complexes in the range of low concentrations. A correction of these depletion effects typically provides good agreement between the data obtained with different methods, such as drop and bubble profile tensiometry.

  17. Protective Effect of Surfactant Protein D in Pulmonary Vaccinia Virus Infection: Implication of A27 Viral Protein

    PubMed Central

    Julien, Perino; Thielens, Nicole M.; Crouch, Erika; Spehner, Danièle; Crance, Jean-Marc; Favier, Anne-Laure

    2013-01-01

    Vaccinia virus (VACV) was used as a surrogate of variola virus (VARV) (genus Orthopoxvirus), the causative agent of smallpox, to study Orthopoxvirus infection. VARV is principally transmitted between humans by aerosol droplets. Once inhaled, VARV first infects the respiratory tract where it could encounter surfactant components, such as soluble pattern recognition receptors. Surfactant protein D (SP-D), constitutively present in the lining fluids of the respiratory tract, plays important roles in innate host defense against virus infection. We investigated the role of SP-D in VACV infection and studied the A27 viral protein involvement in the interaction with SP-D. Interaction between SP-D and VACV caused viral inhibition in a lung cell model. Interaction of SP-D with VACV was mediated by the A27 viral protein. Binding required Ca2+ and interactions were blocked in the presence of excess of SP-D saccharide ligands. A27, which lacks glycosylation, directly interacted with SP-D. The interaction between SP-D and the viral particle was also observed using electron microscopy. Infection of mice lacking SP-D (SP-D-/-) resulted in increased mortality compared to SP-D+/+ mice. Altogether, our data show that SP-D participates in host defense against the vaccinia virus infection and that the interaction occurs with the viral surface protein A27. PMID:23518578

  18. Fluorinated and hemifluorinated surfactants as alternatives to detergents for membrane protein cell-free synthesis

    PubMed Central

    Park, Kyu-Ho; Berrier, Catherine; Lebaupain, Florence; Pucci, Bernard; Popot, Jean-Luc; Ghazi, Alexandre; Zito, Francesca

    2006-01-01

    Hemifluorinated and fluorinated surfactants are lipophobic and, as such, non-detergent. Although they do not solubilize biological membranes, they can, after conventional solubilization, substitute for detergents to keep membrane proteins soluble, which generally improves their stability [Breyton, Chabaud, Chaudier, Pucci and Popot (2004) FEBS Lett. 564, 312–318]. In the present study, we show that (hemi)fluorinated surfactants can be used for in vitro synthesis of membrane proteins: they do not interfere with protein synthesis, and they provide a suitable environment for MscL, a pentameric mechanosensitive channel, to fold and oligomerize to its native functional state. Following synthesis, both types of surfactants can be used to deliver MscL directly to pre-formed lipid vesicles. The electrophysiological activity of MscL synthesized in vitro in the presence of either hemi- or per-fluorinated surfactant is similar to that of the protein expressed in vivo. PMID:17176254

  19. Spectroscopic studies on the gemini surfactant mediated refolding of human serum albumin.

    PubMed

    Gull, Nuzhat; Khan, Javed Masood; Rukhsana; Khan, Rizwan Hassan

    2017-09-01

    Refolding of guanidinium hydrochloride (GdCl) denatured human serum albumin (HSA) using a combination of cationic gemini surfactants; pentanediyl-α,ω-bis(cetyldimethylammonium bromide) (C16H33(CH3)2N(+)-(CH2)5-N(+)(CH3)2C16H33)2Br(-) designated as G5 and methyl- β-cyclodextrin, is attempted in the present study. The studies were carried out in an aqueous medium (pH 7.4) using dynamic light scattering (DLS), circular dichroism (CD) and fluorescence spectroscopy. A careful study of the DLS data indicates that against the hydrodynamic radius (Rh) of 3.5nm in native human serum albumin (HSA), hydrodynamic radius after attempting refolding by simple dilution increases to 33.8nm. The large Rh values of the diluted protein sample is associated with the formation of aggregates as dilution is an aggregation prone pathway. Hydrodynamic radii equal to 5.4nm, that is very near to the native protein (3.5nm), is obtained on the sequential addition of G5 and methyl- β-cyclodextrin to the denatured protein. The results obtained from the multi-technique approach are associated with the presence of two charged head-groups and two hydrocarbon tails in the gemini surfactants resulting in very strong electrostatic and hydrophobic interactions.The present study suggests that gemini surfactants may be utilised in the protein refolding studies and may prove to be inexpensive and efficient folding agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. 'De-watering' capabilities of surfactants in human amniotic fluid.

    PubMed Central

    Hills, B A

    1984-01-01

    The phospholipid extracts from each of eleven samples of human amniotic fluid obtained from eleven full-term births were deposited as orientated monolayers adsorbed to glass. The surfaces were found to be rendered hydrophobic with maximum contact angles averaging 54.5 degrees while, upon withdrawing fluid, the edge of the saline pool receded to expose dry surface with minimum contact angles averaging 15.4 degrees. The extracts were found to be surface-active at the liquid-air interface and there was some indication that direct adsorption to solid surfaces was facilitated by calcium ions. It was found that, in all extracts, a continuous layer of saline adjacent to the adsorbed surface would break up spontaneously to expose dry surface when the thickness was reduced to an average of 764 micron, corresponding to several alveolar diameters. This phenomenon is discussed as a possible means of establishing dry patches on the alveolar membrane, especially in the new-born after the fetal alveolar wall has been exposed to the same surfactants in much the same physical form as found in amniotic fluid. Surfactant adsorbed directly to the tissue subphase is suggested as a physical basis for the discontinuity of the aqueous hypophase seen in many electron micrographs of the adult alveolus. This 'de-watering' of the alveolar surface could facilitate gas transfer. PMID:6546947

  1. Surfactant protein A2 mutations associated with pulmonary fibrosis lead to protein instability and endoplasmic reticulum stress.

    PubMed

    Maitra, Meenakshi; Wang, Yongyu; Gerard, Robert D; Mendelson, Carole R; Garcia, Christine Kim

    2010-07-16

    Rare heterozygous mutations in the gene encoding surfactant protein A2 (SP-A2, SFTPA2) are associated with adult-onset pulmonary fibrosis and adenocarcinoma of the lung. We have previously shown that two recombinant SP-A2 mutant proteins (G231V and F198S) remain within the endoplasmic reticulum (ER) of A549 cells and are not secreted into the culture medium. The pathogenic mechanism of the mutant proteins is unknown. Here we analyze all common and rare variants of the surfactant protein A2, SP-A2, in both A549 cells and in primary type II alveolar epithelial cells. We show that, in contrast with all other SP-A2 variants, the mutant proteins are not secreted into the medium with wild-type SP-A isoforms, form fewer intracellular dimer and trimer oligomers, are partially insoluble in 0.5% Nonidet P-40 lysates of transfected A549 cells, and demonstrate greater protein instability in chymotrypsin proteolytic digestions. Both the G231V and F198S mutant SP-A2 proteins are destroyed via the ER-association degradation pathway. Expression of the mutant proteins increases the transcription of a BiP-reporter construct, expression of BiP protein, and production of an ER stress-induced XBP-1 spliced product. Human bronchoalveolar wash samples from individuals who are heterozygous for the G231V mutation have similar levels of total SP-A as normal family members, which suggests that the mechanism of disease does not involve an overt lack of secreted SP-A but instead involves an increase in ER stress of resident type II alveolar epithelial cells.

  2. Comparison of positional surfactant isomers for displacement of rubisco protein from the air-water interface.

    PubMed

    He, Lizhong; Onaizi, Sagheer A; Dimitrijev-Dwyer, Mirjana; Malcolm, Andrew S; Shen, Hsin-Hui; Dong, Chuchuan; Holt, Stephen A; Thomas, Robert K; Middelberg, Anton P J

    2011-08-15

    Protein-surfactant interaction, which is a function of the protein and surfactant characteristics, is a common phenomenon in a wide range of industrial applications. In this work, we used rubisco, the most abundant protein in nature, as a model protein and sodium dodecylbenzenesulfonate (SDOBS), one of the most widely used commercial surfactants, with two positional isomers (SDOBS-2 and SDOBS-6), as a model surfactant. We first examined the surface tension and the mechanical properties of interfacial mixed rubisco-SDOBS films adsorbed at the air-water interface. The concentration of rubisco in solution was fixed at 0.1 mg mL(-1) while the SDOBS concentration varied from 0 to 150 μM. Both the surface tension and the mechanical strength of the interfacial film decreased with increasing SDOBS concentration. Overall, the surface tension of a rubisco-SDOBS-6 mixture is lower than that of rubisco-SDOBS-2, while the mechanical strength of both systems is similar. Neutron reflection data suggest that rubisco protein is likely denatured at the interface. The populations of rubisco and SDOBS of the mixed systems at the interface were determined by combining non-deuterated and deuterated SDOBS to provide contrast variation. At a low surfactant concentration, SDOBS-6 has a stronger ability to displace rubisco from the air-water interface than SDOBS-2. However, when surfactant concentration reaches 50 μM, SDOBS-2 has a higher population than SDOBS-6, with more rubisco displaced from the interface. The results presented in this work suggest that the extent of protein displacement from the air-water interface, and hence the nature of the protein-surfactant interactions at the interface, are strongly affected by the position of surfactant isomerisation, which might allow the design of formulations for efficient removal of protein stains.

  3. Interactions between Surfactants in Solution and Electrospun Protein Fibers: Effects on Release Behavior and Fiber Properties.

    PubMed

    Stephansen, Karen; García-Díaz, María; Jessen, Flemming; Chronakis, Ioannis S; Nielsen, Hanne M

    2016-03-07

    Intermolecular interaction phenomena occurring between endogenous compounds, such as proteins and bile salts, and electrospun compounds are so far unreported, despite the exposure of fibers to such biorelevant compounds when applied for biomedical purposes, e.g., tissue engineering, wound healing, and drug delivery. In the present study, we present a systematic investigation of how surfactants and proteins, as physiologically relevant components, interact with insulin-loaded fish sarcoplasmic protein (FSP) electrospun fibers (FSP-Ins fibers) in solution and thereby affect fiber properties such as accessible surface hydrophilicity, physical stability, and release characteristics of an encapsulated drug. Interactions between insulin-loaded protein fibers and five anionic surfactants (sodium taurocholate, sodium taurodeoxycholate, sodium glycocholate, sodium glycodeoxycholate, and sodium dodecyl sulfate), a cationic surfactant (benzalkonium chloride), and a neutral surfactant (Triton X-100) were studied. The anionic surfactants increased the insulin release in a concentration-dependent manner, whereas the neutral surfactant had no significant effect on the release. Interestingly, only minute amounts of insulin were released from the fibers when benzalkonium chloride was present. The FSP-Ins fibers appeared dense after incubation with this cationic surfactant, whereas high fiber porosity was observed after incubation with anionic or neutral surfactants. Contact angle measurements and staining with the hydrophobic dye 8-anilino-1-naphthalenesulfonic acid indicated that the FSP-Ins fibers were hydrophobic, and showed that the fiber surface properties were affected differently by the surfactants. Bovine serum albumin also affected insulin release in vitro, indicating that also proteins may affect the fiber performance in an in vivo setting.

  4. Study of the interactions between lysozyme and a fully-fluorinated surfactant in aqueous solution at different surfactant-protein ratios.

    PubMed

    Ruso, Juan M; González-Pérez, Alfredo; Prieto, Gerardo; Sarmiento, Félix

    2003-11-01

    The interactions of a fluorinated surfactant, sodium perfluorooctanoate, with lysozyme, have been investigated by a combination of UV absorbance, electrical conductivity and dynamic light scattering to detect and to characterize the conformational transitions of lysozyme. By using difference spectroscopy, the transition was followed as a function of surfactant concentration, and the data were analyzed to obtain the Gibbs energy of the transition in water (DeltaGw(o)) and in a hydrophobic environment (DeltaGh(o)) for saturated protein-surfactant complexes. Electrical conductivity was used to determine the critical micelle concentration of the surfactant in the presence of different lysozyme concentration. From these results, the average number of surfactant monomer per protein molecule was calculated. Finally, dynamic light scattering show that only changes in the secondary structure of the protein can be observed.

  5. Keeping Lung Surfactant Where It Belongs: Protein Regulation of Two-Dimensional Viscosity

    PubMed Central

    Alonso, Coralie; Waring, Alan; Zasadzinski, Joseph A.

    2005-01-01

    Lung surfactant causes the surface tension, γ, in the alveoli to drop to nearly zero on exhalation; in the upper airways γ is ∼30 mN/m and constant. Hence, a surface tension gradient exists between alveoli and airways that should lead to surfactant flow out of the alveoli and elimination of the surface tension gradient. However, the lung surfactant specific protein SP-C enhances the resistance to surfactant flow by regulating the ratio of solid to fluid phase in the monolayer, leading to a jamming transition at which the monolayer transforms from fluidlike to solidlike. The accompanying three orders of magnitude increase in surface viscosity helps minimize surfactant flow to the airways and likely stabilizes the alveoli against collapse. PMID:15833995

  6. Pulmonary surfactant: hydrophobic nature of the mucosal surface of the human amnion.

    PubMed Central

    Cotton, D B; Hills, B A

    1984-01-01

    The contact angle has been measured for a drop of saline placed upon the rinsed mucosal surface of the amnion in eleven human placental membranes obtained from normal births at full term. The contact angle averaged 70 degrees, indicating a hydrophobic surface comparable with graphite (86 degrees), polyethylene (94 degrees) or oxyntic tissue (85 degrees) which is also exposed to endogenous surface-active phospholipids in vivo. By comparison, four pre-term placentas with an average gestation period of 29.5 weeks gave a mean contact angle of 32 degrees, indicating that hydrophobicity of the placenta increases with maturity (41 weeks) and might well be imparted by adsorbed surfactants present in amniotic fluid and known to render other surfaces hydrophobic. Since the mucosal epithelium of the amnion is exposed to the same surfactants in the same physical state as the fetal alveolar wall, the above results imply that this surface may also be hydrophobic, as indicated in the adult lung by other studies. The concept of surfactant directly adsorbed to the pulmonary tissue surfaces is discussed in connexion with its possible functional advantages in 'de-watering' the lung at birth, maintaining homeostasis by water repellency , releasing airway surfaces and lymph ducts glued by protein and lubricating tissue respiratory movement. PMID:6547484

  7. Pulmonary surfactant: hydrophobic nature of the mucosal surface of the human amnion.

    PubMed

    Cotton, D B; Hills, B A

    1984-04-01

    The contact angle has been measured for a drop of saline placed upon the rinsed mucosal surface of the amnion in eleven human placental membranes obtained from normal births at full term. The contact angle averaged 70 degrees, indicating a hydrophobic surface comparable with graphite (86 degrees), polyethylene (94 degrees) or oxyntic tissue (85 degrees) which is also exposed to endogenous surface-active phospholipids in vivo. By comparison, four pre-term placentas with an average gestation period of 29.5 weeks gave a mean contact angle of 32 degrees, indicating that hydrophobicity of the placenta increases with maturity (41 weeks) and might well be imparted by adsorbed surfactants present in amniotic fluid and known to render other surfaces hydrophobic. Since the mucosal epithelium of the amnion is exposed to the same surfactants in the same physical state as the fetal alveolar wall, the above results imply that this surface may also be hydrophobic, as indicated in the adult lung by other studies. The concept of surfactant directly adsorbed to the pulmonary tissue surfaces is discussed in connexion with its possible functional advantages in 'de-watering' the lung at birth, maintaining homeostasis by water repellency , releasing airway surfaces and lymph ducts glued by protein and lubricating tissue respiratory movement.

  8. Comparative characterization of pulmonary surfactant aggregates and alkaline phosphatase isozymes in human lung carcinoma tissue.

    PubMed

    Iino, Nozomi; Matsunaga, Toshiyuki; Harada, Tsuyoshi; Igarashi, Seiji; Koyama, Iwao; Komoda, Tsugikazu

    2007-05-01

    Alkaline phosphatase (AP) isozymes are surfactant-associated proteins (SPs). Since several different AP isozymes have been detected in the pneumocytes of lung cancer patients, we attempted to identify the relationship between pulmonary surfactant aggregate subtypes and AP isozymes. Pulmonary surfactant aggregates were isolated from carcinoma and non-carcinoma tissues of patients with non-small cell carcinoma of the lung. Upon analysis, ultraheavy, heavy, and light surfactant aggregates were detected in the non-carcinoma tissues, but no ultraheavy surfactant aggregates were found in the carcinoma tissues. Surfactant-associated protein A (SP-A) was detected as two bands (a 27-kDa band and a 54-kDa band) in the ultraheavy, heavy, and light surfactant aggregates found in the non-carcinoma tissues. Although both SP-A bands were detected in the heavy and light surfactant aggregates from adenocarcinoma tissues, the 54-kDa band was not detected in squamous cell carcinoma tissues. Liver AP (LAP) was detected in the heavy and light surfactant aggregates from both non-carcinoma and squamous carcinoma tissues, but not in heavy surfactant aggregates from adenocarcinoma tissues. A larger amount of bone type AP (BAP) was found in light surfactant aggregate fractions from squamous cell carcinomas than those from adenocarcinoma tissues or non-carcinoma tissues from patients with either type of cancer. LAP, BAP, and SP-A were identified immunohistochemically in type II pneumocytes from non-carcinoma tissues and adenocarcinoma cells, but no distinct SP-A staining was observed in squamous cell carcinoma tissues. The present study has thus revealed several differences in pulmonary surfactant aggregates and AP isozymes between adenocarcinoma tissue and squamous cell carcinoma tissue.

  9. Exposure of surfactant protein A to ozone in vitro and in vivo impairs its interactions with alveolar cells

    SciTech Connect

    Oosting, R.S.; Van Iwaarden, J.F.; Van Bree, L.; Verhoef, J.; Van Golde, L.M.; Haagsman, H.P. )

    1992-01-01

    This study focused on the question of whether exposure of surfactant protein A (SP-A) to ozone affected properties of this protein that may be involved in regulating alveolar type II cell and alveolar macrophage functions. In vitro exposure of human or canine SP-A to ozone reduced the ability of this protein to inhibit phorbol-ester induced secretion of (3H)phosphatidylcholine by alveolar type II cells in culture. Ozone-exposed human SP-A showed a decreased ability to enhance phagocytosis of herpes simplex virus and to stimulate superoxide anion production by alveolar macrophages. Experiments with elastase showed that ozone-exposed canine SP-A was more susceptible to proteolysis. A conformational change of the protein could underlie this phenomenon. Surfactant isolated from ozone-exposed rats (0.4 ppm ozone for 12 h) was also less able to stimulate superoxide anion production by alveolar macrophages than surfactant from control rats, which suggested that SP-A in vivo was also susceptible to ozone. The results of this study suggest that SP-A-alveolar cell interactions can be inhibited by ozone exposure, which may contribute to the toxicity of ozone in the lungs.

  10. Stability of purple membranes from Halobacterium salinarum toward surfactants: inkjet printing of a retinal protein.

    PubMed

    Imhof, Martin; Pudewills, Jens; Rhinow, Daniel; Chizhik, Ivan; Hampp, Norbert

    2012-08-16

    Inkjet printing is a versatile technique widely applied in biological microarray technology. Because of its photochemical and photophysical properties, bacteriorhodopsin (BR) from Halobacterium salinarum holds promise for applications in nanotechnology, and inkjet printing would simplify the transfer of BR to suitable substrates. Surfactants are essential parts of inkjet formulations tuning viscosity, rheology, and spreading behavior of the solution. However, many surfactants destabilize the structure of proteins and often cause denaturation accompanied by a complete loss of function. Inkjet printing of membrane proteins is particularly challenging and special care must be taken in the choice of the surfactant. For BR, the situation is complicated by the fact that the structural integrity of BR depends on its native membrane environment, the so-called purple membrane (PM). PM contains 10 lipid molecules per BR monomer and is very sensitive toward surfactants. In this work, we identified surfactants suitable for inkjet formulations containing PM. Initially, we screened a variety of technically relevant surfactants for compatibility with PM using the UV-vis absorption of the retinal chromophore as a natural probe. Promising candidates were selected, and their impact on the structure of PM and BR was analyzed using UV-vis spectroscopy, CD spectroscopy, and small-angle X-ray scattering (SAXS). We identified two surfactants compatible with PM and suitable for inkjet formulations. An inkjet formulation containing PM as dye component was developed. We demonstrate that the photochromic properties of BR are maintained upon inkjet printing.

  11. Differential effect of surfactant and its saturated phosphatidylcholines on human blood macrophages.

    PubMed

    Gille, Christian; Spring, Bärbel; Bernhard, Wolfgang; Gebhard, Caroline; Basile, Denise; Lauber, Kirsten; Poets, Christian F; Orlikowsky, Thorsten W

    2007-02-01

    Blood monocyte-derived macrophages invading the alveolus encounter pulmonary surfactant, a phospholipoprotein complex that changes composition during lung development. We tested the hypothesis that characteristic phosphatidylcholine (PC) components differentially influence macrophage phenotype and function, as determined by phagocytosis of green fluorescent protein-labeled Escherichia coli and alphaCD3-induced T cell proliferation. Human macrophages were exposed to surfactant (Curosurf(R)), to two of its characteristic phosphadidylcholine (PC) components (dipalmitoyl-PC and palmitoylmyristoyl-PC), and to a ubiquituous PC (palmitoyloleoyl-PC) as control. Interaction of Curosurf and PC species with macrophages was assessed using Lissaminetrade mark-dihexadecanoyl-phosphoethanolamine-labeled liposomes. Curosurf and both saturated surfactant PC species downregulated CD14 expression and upregulated CD206. HLA-DR and CD80 were upregulated by Curosurf and palmitoylmyristoyl-PC, whereas dipalmitoyl-PC showed no effect. The latter upregulated TLR2 and TLR4 expression, whereas Curosurf and palmitoylmyristoyl-PC had no effect. PC species tested were incorporated in comparable amounts by macrophages. Curosurf and PC species inhibited phagocytosis of E. coli. Scavenger receptor CD36, CD68, SR-A, and LOX-1 mRNA expression was upregulated by Curosurf, whereas PC species only upregulated SR-A. Curosurf and palmitoylmyristoyl-PC inhibited alphaCD3-induced T cell proliferation by 50%, whereas dipalmitoyl-PC and palmitoyloleoyl-PC showed no effect. These data identify individual surfactant PC species as modifiers of macrophage differentiation and suggest differential effects on innate and adaptive immune functions.

  12. Critical Role of Arg/Lys343 in the Species-Dependent Recognition of Phosphatidylinositol by Plumonary Surfactant Protein D

    SciTech Connect

    Crouch,E.; McDonald, B.; Smith, K.; Roberts, M.; Mealy, T.; Seaton, B.; Head, J.

    2007-01-01

    Surfactant protein D (SP-D) plays important roles in lung host defense. However, it can also recognize specific host molecules and contributes to surfactant homeostasis. The major known surfactant-associated ligand is phosphatidylinositol (PI). Trimeric neck-carbohydrate recognition domains (NCRDs) of rat and human SP-D exhibited dose-dependent, calcium-dependent, and inositol-sensitive binding to solid-phase PI and to multilamellar PI liposomes. However, the rat protein exhibited a >5-fold higher affinity for solid-phase PI than the human NCRD. In addition, human dodecamers, but not full-length human trimers, efficiently coprecipitated with multilamellar PI liposomes in the presence of calcium. A human NCRD mutant resembling the rat and mouse proteins at position 343 (hR343K) showed much stronger binding to PI. A reciprocal rat mutant with arginine at the position of lysine 343 (rK343R) showed weak binding to PI, even weaker than that of the wild-type human protein. Crystal complexes of the human trimeric NCRD with myoinositol and inositol 1-phosphate showed binding of the equatorial OH groups of the cyclitol ring of the inositol to calcium at the carbohydrate binding site. Myoinositol binding occurred in two major orientations, while inositol 1-phosphate appeared primarily constrained to a single, different orientation. Our studies directly implicate the CRD in PI binding and reveal unexpected species differences in PI recognition that can be largely attributed to the side chain of residue 343. In addition, the studies indicate that oligomerization of trimeric subunits is an important determinant of recognition of PI by human SP-D.

  13. Characteristics of sugar surfactants in stabilizing proteins during freeze-thawing and freeze-drying.

    PubMed

    Imamura, Koreyoshi; Murai, Katsuyuki; Korehisa, Tamayo; Shimizu, Noriyuki; Yamahira, Ryo; Matsuura, Tsutashi; Tada, Hiroko; Imanaka, Hiroyuki; Ishida, Naoyuki; Nakanishi, Kazuhiro

    2014-06-01

    Sugar surfactants with different alkyl chain lengths and sugar head groups were compared for their protein-stabilizing effect during freeze-thawing and freeze-drying. Six enzymes, different in terms of tolerance against inactivation because of freeze-thawing and freeze-drying, were used as model proteins. The enzyme activities that remained after freeze-thawing and freeze-drying in the presence of a sugar surfactant were measured for different types and concentrations of sugar surfactants. Sugar surfactants stabilized all of the tested enzymes both during freeze-thawing and freeze-drying, and a one or two order higher amount of added sugar surfactant was required for achieving protein stabilization during freeze-drying than for the cryoprotection. The comprehensive comparison showed that the C10-C12 esters of sucrose or trehalose were the most effective through the freeze-drying process: the remaining enzyme activities after freeze-thawing and freeze-drying increased at the sugar ester concentrations of 1-10 and 10-100 μM, respectively, and increased to a greater extent than for the other surfactants at higher concentrations. Results also indicate that, when a decent amount of sugar was also added, the protein-stabilizing effect of a small amount of sugar ester through the freeze-drying process could be enhanced. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  14. Structural relationships of the major glycoproteins from human alveolar proteinosis surfactant.

    PubMed

    Ross, G F; Ohning, B L; Tannenbaum, D; Whitsett, J A

    1987-02-25

    Alveolar proteinosis is a disease characterized by accumulation of proteinaceous material in the alveolar space of the lung. Two major collagenase-sensitive polypeptides, alveolar proteinosis peptides of 34 kDa kilodaltons (APP-34) and of 62 kDa (APP-62), were isolated from bronchioalveolar lavage of patients with alveolar proteinosis. These proteins co-purified during fast-performance liquid chromatography (FPLC) chromatofocusing and were separated from each other by electroelution following SDS-polyacrylamide gel electrophoresis. Immunoblot analysis of these proteins demonstrated that both shared antigenic sites with the normal human surfactant-associated protein of Mr 34,000 (SAP-34) using both polyclonal and monoclonal antibodies generated against SAP-34. Removal of asparagine-linked oligosaccharides from the 34 kDa and 62 kDa alveolar proteinosis proteins with endoglycosidase F resulted in polypeptides of 28 kDa from APP-34 and 56 kDa from APP-62. Amino acid analysis and tryptic peptide maps of the electroeluted APP-34 and APP-62 proteins were essentially identical and similar to that previously reported for human SAP-34, supporting the likely relationship of APP-34 and APP-62 as monomer and dimer of the normal SAP-34. APP-34 and APP-62 were both sensitive to bacterial collagenase, yielding collagenase-resistant fragments of 21 kDa, similar in migration and amino acid composition to the fragment generated by collagenase digestion of normal human SAP-34. High molecular weight aggregates of APP-34 and APP-62 were the result of sulfhydryl-dependent and non-sulfhydryl-dependent cross-linking. A domain in the C-terminal non-collagenous portion of the molecules which forms sulfhydryl-dependent oligomers was identified. The two major polypeptides accumulating in the airway of patients with alveolar proteinosis are monomeric (34 kDa) and dimeric (62 kDa) forms of the major surfactant-associated glycoprotein, SAP-34.

  15. Stabilization of recombinant human growth hormone against emulsification-induced aggregation by Pluronic surfactants during microencapsulation.

    PubMed

    Wei, Gang; Lu, Li Fang; Lu, Wei Yue

    2007-06-29

    Protein aggregation upon exposing to the water/organic solvent interface is one of the most significant obstacles in developing poly(lactic-co-glycolic acid) (PLGA) microspheres with double emulsion process. The aim of present study is to devise a formulation strategy to prevent recombinant human growth hormone (rhGH) from aggregation during microencapsulation. The excipients used for stabilizing rhGH were selected from sugars, nonionic surfactants, polyol, and protein. Among the candidates, surfactants exhibited potentialities in protecting rhGH against emulsification-induced aggregation. It was also found that Pluronic F127 showed an outstanding as well as concentration-dependent stabilizing effect on rhGH, which was different to Pluronic F68 and Tween 20. After the rhGH solution comprising F127 and sucrose was emulsified with methylene chloride, the recovery of monomeric protein achieved 99.0%, principally attributed to the presence of F127. This solution was subsequently encapsulated as inner aqueous phase in the PLGA microspheres by a conventional double emulsion process, with the encapsulation efficiency higher than 98%. Improvement in the release of rhGH was observed for the microspheres co-encapsulating Pluronic F127 regardless in the presence or absence of sucrose, compared to the microspheres containing rhGH alone. The result further implied that co-encapsulation of Pluronic F127 in the microspheres played an important role in the stabilization of rhGH.

  16. Disintegration of protein microbubbles in presence of acid and surfactants: a multi-step process.

    PubMed

    Rovers, Tijs A M; Sala, Guido; van der Linden, Erik; Meinders, Marcel B J

    2015-08-28

    The stability of protein microbubbles against addition of acid or surfactants was investigated. When these compounds were added, the microbubbles first released the encapsulated air. Subsequently, the protein shell completely disintegrated into nanometer-sized particles. The decrease in the number of intact microbubbles could be well described with the Weibull distribution. This distribution is based on two parameters, which suggests that two phenomena are responsible for the fracture of the microbubble shell. The microbubble shell is first weakened. Subsequently, the weakened protein shell fractures randomly. The probability of fracture turned out to be exponentially proportional to the concentration of acid and surfactant. A higher decay rate and a lower average breaking time were observed at higher acid or surfactant concentrations. For different surfactants, different decay rates were observed. The fact that the microbubble shell was ultimately disintegrated into nanometer-sized particles upon addition of acid or surfactants indicates that the interactions in the shell are non-covalent and most probably hydrophobic. After acid addition, the time at which the complete disintegration of the shell was observed coincided with the time of complete microbubble decay (release of air), while in the case of surfactant addition, there was a significant time gap between complete microbubble decay and complete shell disintegration.

  17. Phase Behavior and Phase Structure of Protein-Surfactant-Water Systems.

    PubMed

    Morén; Khan

    1999-10-15

    Phase behavior of oppositely charged ovalbumin-DOTAC and BSA-DOTAC, and similarly charged ovalbumin-SDS, BSA-SDS, lysozyme-DOTAC, and BLG-SDS systems within the concentration range of 20 wt% of both protein and surfactant are examined in water. Aqueous solutions of ovalbumin yield, in succession, precipitation, gel, and solution with increased addition of the surfactant dodecyltrimethylammonium chloride (DOTAC). The stability range of each region is determined. Both isotropic and anisotropic gels are detected. Solutions of bovine serum albumin (BSA) form only a solution phase with oppositely charged DOTAC. One solution phase is also obtained with all similarly charged protein-surfactant systems except the BLG-SDS-water system, which produces a gel phase in addition to a large solution phase. (2)H NMR longitudinal (R(1)) and transverse (R(2)) relaxation rates are determined in solution and gel by following the behavior of selectively deuterated surfactant at the alpha-methylene group next to the surfactant head group for the oppositely charged systems ovalbumin-DOTAC and BSA-DOTAC. Large R(2)-values proved the existence of large protein-surfactant aggregates in both systems. Copyright 1999 Academic Press.

  18. Surfactant-induced dermatitis: comparison of corneosurfametry with predictive testing on human and reconstructed skin.

    PubMed

    Piérard, G E; Goffin, V; Hermanns-Lê, T; Arrese, J E; Piérard-Franchimont, C

    1995-09-01

    Surfactants elicit alterations in the stratum corneum. Predictive tests that avoid animal experimentation are needed. This study compares three methods of rating and predicting shampoo-induced irritation. Corneosurfametry entails collection of stratum corneum followed by brief contact with diluted surfactants and measurement of variations in staining of samples. Corneosurfametry appears to correlate well with in vivo testing in volunteers with sensitive skin. However, corneosurfametry presents less interindividual variability than in vivo testing and allows better discrimination among mild products. Morphologic information about surfactant-induced loosening of corneocytes may be increased by testing surfactants on human skin equivalent. Results are similar to those provided by specimens used for corneosurfametry. The corneosurfametric prediction of surfactant irritancy correlates with in vivo testing and with in vitro evaluation on human skin equivalent.

  19. Determination of nanograms of proteins based on decreased resonance light scattering of zwitterionic gemini surfactant.

    PubMed

    Chen, Zhanguang; Liu, Guoliang; Chen, Maohuai; Peng, Yurui; Wu, Mingyao

    2009-01-15

    A new high-sensitivity detection of protein assay at the nanogram level is proposed based on the decreased resonance light scattering (RLS) signals of zwitterionic gemini surfactant (phosphodiesters quaternary ammonium salt [PQAS]). It was found that PQAS self-assembled into nanometer-scale PQAS aggregates, which induced intense RLS signal in Britton-Robinson (BR) buffer solution (pH 10.5). Under the optimum conditions, the RLS intensity quenching extent of PQAS aggregation was in proportion to the concentration of proteins in the range of 0.0012-1.08 microg/ml for bovine serum albumin, 0.0015-0.95 microg/ml for human serum albumin, and 0.0025-1.3 microg/ml for gamma-globulin. The detection limits were 0.8, 1.2, and 2.0 ng/ml, respectively. The proposed method was successfully applied to determine total protein in human serum samples, and the results were identical to those obtained by the Bradford assay. The mechanism of interaction between PQAS and protein was studied using RLS, fluorescence, and time-resolved fluorescence, which indicated that the new complex formed between them, disaggregating self-aggregation of PQAS, resulted in the dominated quenching of RLS signal of the assay system.

  20. On relationships between surfactant type and globular proteins interactions in solution.

    PubMed

    Blanco, Elena; Ruso, Juan M; Prieto, Gerardo; Sarmiento, Félix

    2007-12-01

    The binding of sodium perfluorooctanoate (C8FONa), sodium octanoate (C8HONa), lithium perfluorooctanoate (C8FOLi), and sodium dodecanoate (C12HONa) onto myoglobin, ovalbumin, and catalase in water has been characterized using electrophoretic mobility. The tendency of the protein-surfactant complexes to change their charge in the order catalase < ovalbumin < myoglobin was observed which was related to the contents of alpha-helices in the proteins. alpha-Helices are more hydrophobic than beta-sheets. The effect of surfactant on the zeta potentials follows C8HONa < C8FONa < C8FOLi < C12HONa for catalase and ovalbumin; and C8HONa < C8FOLi < C8FONa < C12HONa for myoglobin. The numbers of binding sites on the proteins were determined from the observed increases of the zeta-potential as a function of surfactant concentration in the regions where the binding was a consequence of the hydrophobic effect. The Gibbs energies of binding of the surfactants onto the proteins were evaluated. For all systems, Gibbs energies are negative and large at low concentrations (where binding to the high energy sites takes place) and become less negative at higher ones. This fact suggests a saturation process. Changes in Gibbs energies with the different proteins and surfactants under study have been found to follow same sequence than that found for the charge. The role of hydrophobic interactions in these systems has been demonstrated to be the predominant.

  1. Universal method for the determination of nonionic surfactant content in the presence of protein

    PubMed Central

    Wei, Ziping; Li, Jingning; Pandey, Ratnesh; O'Connor, Ellen; Casas‐Finet, Jose; Cash, Patricia W.

    2015-01-01

    A new analytical method has been developed for the quantitative determination of ethylene glycol‐containing nonionic surfactants, such as polyethylene glycol 8000, polysorbate 80, and Pluronic F‐68. These surfactants are commonly used in pharmaceutical protein preparations, thus, testing in the presence of protein is required. This method is based on the capillary gas chromatographic analysis of ethylene glycol diacetate formed by hydrolysis and acetylation of surfactants that contain ethylene glycol. Protein samples containing free surfactants were hydrolyzed and acetylated with acetic anhydride in the presence of p‐toluene sulfonic acid. Acetylated ethylene glycol was extracted with dichloromethane and analyzed by gas chromatography using a flame ionization detector. The amount of nonionic surfactant in the sample was determined by comparing the released ethylene glycol diacetate signal to that measured from calibration standards. The limits of quantitation of the method were 5.0 μg/mL for polyethylene glycol 8000 and Pluronic F‐68, and 50 μg/mL for polysorbate 80. This method can be applied to determine the polyethylene glycol content in PEGylated proteins or the final concentration of polysorbate 80 in a protein drug in a quality control environment. PMID:25631386

  2. Universal method for the determination of nonionic surfactant content in the presence of protein.

    PubMed

    Wei, Ziping; Bilbulian, Susanna; Li, Jingning; Pandey, Ratnesh; O'Connor, Ellen; Casas-Finet, Jose; Cash, Patricia W

    2015-05-01

    A new analytical method has been developed for the quantitative determination of ethylene glycol-containing nonionic surfactants, such as polyethylene glycol 8000, polysorbate 80, and Pluronic F-68. These surfactants are commonly used in pharmaceutical protein preparations, thus, testing in the presence of protein is required. This method is based on the capillary gas chromatographic analysis of ethylene glycol diacetate formed by hydrolysis and acetylation of surfactants that contain ethylene glycol. Protein samples containing free surfactants were hydrolyzed and acetylated with acetic anhydride in the presence of p-toluene sulfonic acid. Acetylated ethylene glycol was extracted with dichloromethane and analyzed by gas chromatography using a flame ionization detector. The amount of nonionic surfactant in the sample was determined by comparing the released ethylene glycol diacetate signal to that measured from calibration standards. The limits of quantitation of the method were 5.0 μg/mL for polyethylene glycol 8000 and Pluronic F-68, and 50 μg/mL for polysorbate 80. This method can be applied to determine the polyethylene glycol content in PEGylated proteins or the final concentration of polysorbate 80 in a protein drug in a quality control environment. © 2015 MedImmune. Journal of Separation Science published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Dipeptidyl peptidase I controls survival from Klebsiella pneumoniae lung infection by processing surfactant protein D.

    PubMed

    Sutherland, Rachel E; Barry, Sophia S; Olsen, Joanna S; Salantes, D Brenda; Caughey, George H; Wolters, Paul J

    2014-07-18

    Prior work established that a deficiency in the cysteine protease dipeptidyl peptidase I (DPPI) improves survival following polymicrobial septic peritonitis. To test whether DPPI regulates survival from severe lung infections, DPPI(-/-) mice were studied in a Klebsiella pneumoniae lung infection model, finding that survival in DPPI(-/-) mice is significantly better than in DPPI(+/+) mice 8d after infection. DPPI(-/-) mice have significantly fewer bacteria in the lung than infected DPPI(+/+) mice, but no difference in lung histopathology, lung injury, or cytokine levels. To explore mechanisms of enhanced bacterial clearance in DPPI(-/-) mice, we examined the status of pulmonary collectins, finding that levels of surfactant protein D, but not of surfactant protein A, are higher in DPPI(-/-) than in DPPI(+/+) BAL fluid, and that DPPI(-/-) BAL fluid aggregate bacteria more effectively than control BAL fluid. Sequencing of the amino terminus of surfactant protein D revealed two or eight additional amino acids in surfactant protein D isolated from DPPI(-/-) mice, suggesting processing by DPPI. These results establish that DPPI is a major determinant of survival following Klebsiella pneumoniae lung infection and suggest that the survival disadvantage in DPPI(+/+) mice is in part due to processing of surfactant protein D by DPPI. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Dipeptidyl Peptidase I Controls Survival from Klebsiella pneumoniae Lung Infection by Processing Surfactant Protein D 1

    PubMed Central

    Olsen, Joanna S.; Salantes, D. Brenda; Caughey, George H.; Wolters, Paul J.

    2014-01-01

    Prior work established that a deficiency in the cysteine protease dipeptidyl peptidase I (DPPI) improves survival following polymicrobial septic peritonitis. To test whether DPPI regulates survival from severe lung infections, DPPI −/− mice were studied in a Klebsiella pneumonia lung infection model, finding that survival in DPPI −/− mice is significantly better than in DPPI +/+ mice 8 d after infection. DPPI −/− mice have significantly fewer bacteria in the lung than infected DPPI +/+ mice, but no difference in lung histopathology, lung injury, or cytokine levels. To explore mechanisms of enhanced bacterial clearance in DPPI −/− mice, we examined the status of pulmonary collectins, finding that levels of surfactant protein D, but not of surfactant protein A, are higher in DPPI −/− than in DPPI +/+ BAL fluid, and that DPPI −/− BAL fluid aggregate bacteria more effectively than control BAL fluid. Sequencing of the amino terminus of surfactant protein D revealed two or eight additional amino acids in surfactant protein D isolated from DPPI −/− mice, suggesting processing by DPPI. These results establish that DPPI is a major determinant of survival following Klebsiella pneumoniae lung infection and suggest that the survival disadvantage in DPPI +/+ mice is in part due to processing of surfactant protein D by DPPI. PMID:24955853

  5. Two mutations in surfactant protein C gene associated with neonatal respiratory distress.

    PubMed

    Tarocco, Anna; Ballardini, Elisa; Contiero, Maria Raffaella; Garani, Giampaolo; Fanaro, Silvia

    2015-01-01

    Multiple mutations of surfactant genes causing surfactant dysfunction have been described. Surfactant protein C (SP-C) deficiency is associated with variable clinical manifestations ranging from neonatal respiratory distress syndrome to lethal lung disease. We present an extremely low birth weight male infant with an unusual course of respiratory distress syndrome associated with two mutations in the SFTPC gene: C43-7G>A and 12T>A. He required mechanical ventilation for 26 days and was treated with 5 subsequent doses of surfactant with temporary and short-term efficacy. He was discharged at 37 weeks of postconceptional age without any respiratory support. During the first 16 months of life he developed five respiratory infections that did not require hospitalization. Conclusion. This mild course in our patient with two mutations is peculiar because the outcome in patients with a single SFTPC mutation is usually poor.

  6. Electrophoretic and spectroscopic characterization of the protein patterns formed in different surfactant solutions.

    PubMed

    Blanco, Elena; Ruso, Juan M; Prieto, Gerardo; Sarmiento, Félix

    2008-01-01

    The complexations between catalase and the sodium perfluorooctanoate/sodium octanoate and sodium perfluorooctanoate/sodium dodecanoate systems have been studied by a combination of electrophoresis and spectroscopy measurements. The numbers of adsorption sites on the protein were determined from the observed increases of the zeta-potential as a function of surfactant concentration in the regions where the adsorption was a consequence of the hydrophobic effect. The Gibbs energies of adsorption of the surfactants onto the protein were evaluated and the results show that for all systems, Gibbs energies are negative and larger, in absolute values, at low values of surfactant concentration where binding to the high energy sites takes place, and become less negative as more surfactant molecules bind, suggesting a saturation process. The role of hydrophobic interactions in these systems has been demonstrated to be the predominant. Spectroscopy measurements suggest conformational changes on catalase depending on the surfactant mixture as well as the mixed ratio. No isosbestic point or shifts have been found showing that catalase has spectrophotometrically one kind of binding site for these surfactant mixtures.

  7. Glucocorticoids regulate surfactant protein synthesis in a pulmonary adenocarcinoma cell line

    SciTech Connect

    O'Reilly, M.A.; Gazdar, A.F.; Clark, J.C.; Pilot-Matias, T.J.; Wert, S.E.; Hull, W.M.; Whitsett, J.A. )

    1989-12-01

    Synthesis of pulmonary surfactant proteins SP-A, SP-B, and SP-C was demonstrated in a cell line derived from a human adenocarcinoma of the lung. The cells contained numerous lamellar inclusion bodies and formed organized groups of cells containing well-developed junctional complexes and apical microvillous membranes. Synthesis of SP-A was detected in the cells by enzyme-linked immunoabsorbent assay and by immunoprecipitation of (35S)methionine-labeled protein. SP-A was identified as an Mr 31,000-36,000 polypeptide containing asparagine-linked carbohydrate. Northern blot analysis detected SP-A mRNA of 2.2 kb. Dexamethasone (1-10 nM) enhanced the relative abundance of SP-A mRNA. Despite stimulation of SP-A mRNA, intracellular SP-A content was unaltered or inhibited by dexamethasone. SP-B and SP-C mRNAs and synthesis of the SP-B and SP-C precursors were markedly induced by dexamethasone. ProSP-B was synthesized and secreted primarily as an Mr 42,000-46,000 polypeptide. Proteolysis of the proSP-B resulted in the generation of endoglycosidase F-sensitive Mr = 19,000-21,000 and 25,000-27,000 peptides, which were detected both intra- and extracellularly. SP-C proprotein of Mr = 22,000 and smaller SP-C fragments were detected intracellularly but were not detected in the media. Mature forms of SP-B (Mr = 8,000) and SP-C (Mr = 4,000) were not detected. Glucocorticoids directly enhance the relative synthesis and mRNA of the surfactant proteins SP-A, SP-B, and SP-C. Discrepancies among SP-A mRNA, its de novo synthesis, and cell content suggest that glucocorticoid may alter both pre- and posttranslational factors modulating SP-A expression.

  8. Dimeric N-terminal segment of human surfactant protein B (dSP-B(1-25)) has enhanced surface properties compared to monomeric SP-B(1-25).

    PubMed Central

    Veldhuizen, E J; Waring, A J; Walther, F J; Batenburg, J J; van Golde, L M; Haagsman, H P

    2000-01-01

    Surfactant protein B (SP-B) is a 17-kDa dimeric protein produced by alveolar type II cells. Its main function is to lower the surface tension by inserting lipids into the air/liquid interface of the lung. SP-B's function can be mimicked by a 25-amino acid peptide, SP-B(1-25), which is based on the N-terminal sequence of SP-B. We synthesized a dimeric version of this peptide, dSP-B(1-25), and the two peptides were tested for their surface activity. Both SP-B(1-25) and dSP-B(1-25) showed good lipid mixing and adsorption activities. The dimeric peptide showed activity comparable to that of native SP-B in the pressure-driven captive bubble surfactometer. Spread surface films led to stable near-zero minimum surface tensions during cycling while protein free, and films containing SP-B(1-25) lost material from the interface during compression. We propose that dimerization of the peptide is required to create a lipid reservoir attached to the monolayer from which new material can enter the surface film upon expansion of the air/liquid interface. The dimeric state of SP-B can fulfill the same function in vivo. PMID:10866963

  9. Anionic surfactants enhance click reaction-mediated protein conjugation with ubiquitin.

    PubMed

    Schneider, Daniel; Schneider, Tatjana; Aschenbrenner, Joos; Mortensen, Franziska; Scheffner, Martin; Marx, Andreas

    2016-03-01

    The Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC) has become increasingly important in the conjugation chemistry of biomolecules. For example, it is an efficient and convenient method to generate defined ubiquitin-protein conjugates. Here, we investigate the effect of surfactants on the efficiency of CuAAC for chemical protein ubiquitylation. We found that anionic surfactants enhance conjugate formation by up to 10-fold resulting in high yields even at low (i.e., micromolar) concentrations of the reactants. Notably, the herein investigated conjugates are functional and thus properly folded. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The structure of latherin, a surfactant allergen protein from horse sweat and saliva.

    PubMed

    Vance, Steven J; McDonald, Rhona E; Cooper, Alan; Smith, Brian O; Kennedy, Malcolm W

    2013-08-06

    Latherin is a highly surface-active allergen protein found in the sweat and saliva of horses and other equids. Its surfactant activity is intrinsic to the protein in its native form, and is manifest without associated lipids or glycosylation. Latherin probably functions as a wetting agent in evaporative cooling in horses, but it may also assist in mastication of fibrous food as well as inhibition of microbial biofilms. It is a member of the PLUNC family of proteins abundant in the oral cavity and saliva of mammals, one of which has also been shown to be a surfactant and capable of disrupting microbial biofilms. How these proteins work as surfactants while remaining soluble and cell membrane-compatible is not known. Nor have their structures previously been reported. We have used protein nuclear magnetic resonance spectroscopy to determine the conformation and dynamics of latherin in aqueous solution. The protein is a monomer in solution with a slightly curved cylindrical structure exhibiting a 'super-roll' motif comprising a four-stranded anti-parallel β-sheet and two opposing α-helices which twist along the long axis of the cylinder. One end of the molecule has prominent, flexible loops that contain a number of apolar amino acid side chains. This, together with previous biophysical observations, leads us to a plausible mechanism for surfactant activity in which the molecule is first localized to the non-polar interface via these loops, and then unfolds and flattens to expose its hydrophobic interior to the air or non-polar surface. Intrinsically surface-active proteins are relatively rare in nature, and this is the first structure of such a protein from mammals to be reported. Both its conformation and proposed method of action are different from other, non-mammalian surfactant proteins investigated so far.

  11. The structure of latherin, a surfactant allergen protein from horse sweat and saliva

    PubMed Central

    Vance, Steven J.; McDonald, Rhona E.; Cooper, Alan; Smith, Brian O.; Kennedy, Malcolm W.

    2013-01-01

    Latherin is a highly surface-active allergen protein found in the sweat and saliva of horses and other equids. Its surfactant activity is intrinsic to the protein in its native form, and is manifest without associated lipids or glycosylation. Latherin probably functions as a wetting agent in evaporative cooling in horses, but it may also assist in mastication of fibrous food as well as inhibition of microbial biofilms. It is a member of the PLUNC family of proteins abundant in the oral cavity and saliva of mammals, one of which has also been shown to be a surfactant and capable of disrupting microbial biofilms. How these proteins work as surfactants while remaining soluble and cell membrane-compatible is not known. Nor have their structures previously been reported. We have used protein nuclear magnetic resonance spectroscopy to determine the conformation and dynamics of latherin in aqueous solution. The protein is a monomer in solution with a slightly curved cylindrical structure exhibiting a ‘super-roll’ motif comprising a four-stranded anti-parallel β-sheet and two opposing α-helices which twist along the long axis of the cylinder. One end of the molecule has prominent, flexible loops that contain a number of apolar amino acid side chains. This, together with previous biophysical observations, leads us to a plausible mechanism for surfactant activity in which the molecule is first localized to the non-polar interface via these loops, and then unfolds and flattens to expose its hydrophobic interior to the air or non-polar surface. Intrinsically surface-active proteins are relatively rare in nature, and this is the first structure of such a protein from mammals to be reported. Both its conformation and proposed method of action are different from other, non-mammalian surfactant proteins investigated so far. PMID:23782536

  12. Combine and Conquer: Surfactants, Solvents, and Chaotropes for Robust Mass Spectrometry Based Analyses of Membrane Proteins

    PubMed Central

    2015-01-01

    Mass spectrometry (MS) based proteomic technologies enable the identification and quantification of membrane proteins as well as their post-translational modifications. A prerequisite for their quantitative and reliable MS-based bottom-up analysis is the efficient digestion into peptides by proteases, though digestion of membrane proteins is typically challenging due to their inherent properties such as hydrophobicity. Here, we investigated the effect of eight commercially available MS-compatible surfactants, two organic solvents, and two chaotropes on the enzymatic digestion efficiency of membrane protein-enriched complex mixtures in a multiphase study using a gelfree approach. Multiple parameters, including the number of peptides and proteins identified, total protein sequence coverage, and digestion specificity were used to evaluate transmembrane protein digestion performance. A new open-source software tool was developed to allow for the specific assessment of transmembrane domain sequence coverage. Results demonstrate that while Progenta anionic surfactants outperform other surfactants when tested alone, combinations of guanidine and acetonitrile improve performance of all surfactants to near similar levels as well as enhance trypsin specificity to >90%, which has critical implications for future quantitative and qualitative proteomic studies. PMID:24392666

  13. Combine and conquer: surfactants, solvents, and chaotropes for robust mass spectrometry based analyses of membrane proteins.

    PubMed

    Waas, Matthew; Bhattacharya, Subarna; Chuppa, Sandra; Wu, Xiaogang; Jensen, Davin R; Omasits, Ulrich; Wollscheid, Bernd; Volkman, Brian F; Noon, Kathleen R; Gundry, Rebekah L

    2014-02-04

    Mass spectrometry (MS) based proteomic technologies enable the identification and quantification of membrane proteins as well as their post-translational modifications. A prerequisite for their quantitative and reliable MS-based bottom-up analysis is the efficient digestion into peptides by proteases, though digestion of membrane proteins is typically challenging due to their inherent properties such as hydrophobicity. Here, we investigated the effect of eight commercially available MS-compatible surfactants, two organic solvents, and two chaotropes on the enzymatic digestion efficiency of membrane protein-enriched complex mixtures in a multiphase study using a gelfree approach. Multiple parameters, including the number of peptides and proteins identified, total protein sequence coverage, and digestion specificity were used to evaluate transmembrane protein digestion performance. A new open-source software tool was developed to allow for the specific assessment of transmembrane domain sequence coverage. Results demonstrate that while Progenta anionic surfactants outperform other surfactants when tested alone, combinations of guanidine and acetonitrile improve performance of all surfactants to near similar levels as well as enhance trypsin specificity to >90%, which has critical implications for future quantitative and qualitative proteomic studies.

  14. Interactions of gemini surfactants with two model proteins: NMR, CD, and fluorescence spectroscopies.

    PubMed

    Amiri, Razieh; Bordbar, Abdol-Khalegh; García-Mayoral, Ma Flor; Khosropour, Ahmad Reza; Mohammadpoor-Baltork, Iraj; Menéndez, Margarita; Laurents, Douglas V

    2012-03-01

    Gemini surfactants have two polar head groups and two hydrocarbon tails. Compared with conventional surfactants, geminis have much lower (μM vs. mM) critical micelle concentrations and possess slower (ms vs. μs) monomer <-- / --> micelle kinetics. The structure of the gemini surfactants studied is [HOCH(2)CH(2)-, CH(3)-, CH(3)(CH(2))(15)-N(+)-(CH(2))(s)-N(+)-(CH(2))(15)CH(3),-CH(3),-CH(2)CH(2)OH]·2Br(-) where s=4, 5, or 6. Our objective is to reveal the effect of these cationic gemini surfactants on the structure and stability of two model proteins: Ribonuclease A (RNase A) and Hen Egg White Lysozyme (HEWL). 2D (1)H NMR and Circular Dichroism (CD) spectroscopies show that the conformation of RNase A and HEWL is unaffected at low to neutral pH where these proteins are positively charged, although hydrogen exchange shows that RNase A's conformational stability is slightly lowered. At alkaline pH, where these proteins lose their net positive charge, fluorescence and CD spectroscopies and ITC experiments show that they do interact with gemini surfactants, and multiple protein•gemini complexes are observed. Based on the results, we conclude that these cationic gemini surfactants neither interact strongly with nor severely destabilize these well folded proteins in physiological conditions, and we advance that they can serve as useful membrane mimetics for studying the interactions between membrane components and positively charged proteins. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Inactivation of surfactant in rat lungs.

    PubMed

    Bruni, R; Fan, B R; David-Cu, R; Taeusch, H W; Walther, F J

    1996-02-01

    Although surfactant replacement therapy has dramatically improved the outcome of premature infants with respiratory distress syndrome, approximately 30% of treated infants show a transient or no response. Nonresponse to surfactant replacement therapy may be due to extreme lung immaturity and possibly surfactant inactivation. Surfactant inactivation involves aspecific biophysical events, such as interference with the formation or activity of an alveolar monolayer, and specific interactions with serum proteins, including antibodies, leaking into the alveolar space. As formulations containing surfactant proteins appear to better tolerate serum inactivation, we used an excised rat lung model to compare the susceptibility to serum inactivation of a mixture of synthetic phospholipids selected from surfactant lipid constituents, Exosurf (a protein-free synthetic surfactant), Survanta [containing surfactant proteins B and C (SP-B and -C)], and a porcine surfactant (containing SP-A, -B, and -C). For each of these preparations, we used pressure/volume determinations as an in situ measure of surfactant activity and retested the same preparations after mixing with human serum, a nonspecific surfactant inactivator. Human serum inactivated porcine surfactant to a lesser extent than Survanta, Exosurf, or synthetic phospholipids. Temperature exerted a significant effect on deflation stability, as shown by a greater lung compliance in untreated, normal lungs and a larger improvement in compliance after treating lavaged lungs with synthetic phospholipids at 37 degrees C than at 22 degrees C. We conclude that surfactant containing SP-A, -B, and -C is only moderately susceptible to inactivation with whole serum and may therefore exert a greater clinical response than protein-free surfactants or those containing only SP-B and -C.

  16. Photoinduced electron transfer in a protein-surfactant complex: probing the interaction of SDS with BSA.

    PubMed

    Chakraborty, Anjan; Seth, Debabrata; Setua, Palash; Sarkar, Nilmoni

    2006-08-24

    Photoinduced fluorescence quenching electron transfer from N,N-dimethyl aniline to different 7-amino coumarin dyes has been investigated in sodium dodecyl sulfate (SDS) micelles and in bovine serum albumin (BSA)-SDS protein-surfactant complexes using steady state and picosecond time resolved fluorescence spectroscopy. The electron transfer rate has been found to be slower in BSA-SDS protein-surfactant complexes compared to that in SDS micelles. This observation has been explained with the help of the "necklace-and-bead" structure formed by the protein-surfactant complex due to coiling of protein molecules around the micelles. In the correlation of free energy change to the fluorescence quenching electron transfer rate, we have observed that coumarin 151 deviates from the normal Marcus region, showing retardation in the electron transfer rate at higher negative free energy region. We endeavored to establish that the retardation in the fluorescence quenching electron transfer rate for coumarin 151 at higher free energy region is a result of slower rotational relaxation and slower translational diffusion of coumarin 151 (C-151) compared to its analogues coumarin 152 and coumarin 481 in micelles and in protein-surfactant complexes. The slower rotational relaxation and translational diffusion of C-151 are supposed to be arising from the different location of coumarin 151 compared to coumarin 152 and coumarin 481.

  17. Capillary electromigration separation of proteins and microorganisms dynamically modified by chromophoric nonionogenic surfactant.

    PubMed

    Horká, Marie; Růzicka, Filip; Holá, Veronika; Kahle, Vladislav; Moravcová, Dana; Slais, Karel

    2009-08-15

    A chromophoric nonionogenic surfactant poly(ethylene glycol) 3-(2-hydroxy-5-n-octylphenylazo)-benzoate, HOPAB, has been prepared and used as a buffer additive for a dynamic modification of proteins and/or microorganisms including Escherichia coli , Staphylococcus epidermidis (biofilm-positive and biofilm-negative), and the strains of yeast cells Candida albicans and Candida parapsilosis (biofilm-positive and biofilm-negative) during a capillary electrophoresis and a capillary isoelectric focusing (CIEF) with UV detection at 326 nm. Values of isoelectric points of labeled proteins and microorganisms have been calculated using UV-detectable pI markers and have been found comparable with pI of the native compounds. Minimum detectable amount has been assessed lower than picograms of proteins and lower than a hundred cells injected into a separation capillary. The introduced labeling method facilitates CIEF separation of microorganisms from the clinical sample of the infected urine at their clinically important levels in the pH gradient pH range of 2-5 and their subsequent cultivation. At the same time, it has enabled the determination of albumin in human urine as a major clinical marker of urinary tract infections and kidney diseases.

  18. The role of charged amphipathic helices in the structure and function of surfactant protein B.

    PubMed

    Waring, A J; Walther, F J; Gordon, L M; Hernandez-Juviel, J M; Hong, T; Sherman, M A; Alonso, C; Alig, T; Braun, A; Bacon, D; Zasadzinski, J A

    2005-12-01

    Surfactant protein B (SP-B) is essential for normal lung surfactant function. Theoretical models predict that the disulfide cross-linked, N- and C-terminal domains of SP-B fold as charged amphipathic helices, and suggest that these adjacent helices participate in critical surfactant activities. This hypothesis is tested using a disulfide-linked construct (Mini-B) based on the primary sequences of the N- and C-terminal domains. Consistent with theoretical predictions of the full-length protein, both isotope-enhanced Fourier transform infrared (FTIR) spectroscopy and molecular modeling confirm the presence of charged amphipathic alpha-helices in Mini-B. Similar to that observed with native SP-B, Mini-B in model surfactant lipid mixtures exhibits marked in vitro activity, with spread films showing near-zero minimum surface tensions during cycling using captive bubble surfactometry. In vivo, Mini-B shows oxygenation and dynamic compliance that compare favorably with that of full-length SP-B. Mini-B variants (i.e. reduced disulfides or cationic residues replaced by uncharged residues) or Mini-B fragments (i.e. unlinked N- and C-terminal domains) produced greatly attenuated in vivo and in vitro surfactant properties. Hence, the combination of structure and charge for the amphipathic alpha-helical N- and C-terminal domains are key to SP-B function.

  19. A novel continuous powder aerosolizer (CPA) for inhalative administration of highly concentrated recombinant surfactant protein-C (rSP-C) surfactant to preterm neonates.

    PubMed

    Pohlmann, G; Iwatschenko, P; Koch, W; Windt, H; Rast, M; de Abreu, M Gama; Taut, F J H; De Muynck, C

    2013-12-01

    In pulmonary medicine, aerosolization of substances for continuous inhalation is confined to different classes of nebulizers with their inherent limitations. Among the unmet medical needs is the lack of an aerosolized surfactant preparation for inhalation by preterm neonates, to avoid the risks associated with endotracheal intubation and surfactant bolus instillation. In the present report, we describe a high-concentration continuous powder aerosolization system developed for delivery of inhalable surfactant to preterm neonates. The developed device uses a technique that allows efficient aerosolization of dry surfactant powder, generating a surfactant aerosol of high concentration. In a subsequent humidification step, the heated aerosol particles are covered with a surface layer of water. The wet surfactant aerosol is then delivered to the patient interface (e.g., nasal prongs) through a tube. The performance characteristics of the system are given as mass concentration, dose rate, and size distribution of the generated aerosol. Continuous aerosol flows of about 0.84 L/min can be generated from dry recombinant surfactant protein-C surfactant, with concentrations of up to 12 g/m(3) and median particle sizes of the humidified particles in the range of 3 to 3.5 μm at the patient interface. The system has been successfully used in preclinical studies. The device with its continuous high-concentration delivery is promising for noninvasive delivery of surfactant aerosol to neonates and has the potential for becoming a versatile disperser platform closing the gap between continuously operating nebulizers and discontinuously operating dry powder inhaler devices.

  20. Solubilizing and Stabilizing Proteins in Anhydrous Ionic Liquids through Formation of Protein-Polymer Surfactant Nanoconstructs.

    PubMed

    Brogan, Alex P S; Hallett, Jason P

    2016-04-06

    Nonaqueous biocatalysis is rapidly becoming a desirable tool for chemical and fuel synthesis in both the laboratory and industry. Similarly, ionic liquids are increasingly popular anhydrous reaction media for a number of industrial processes. Consequently, the use of enzymes in ionic liquids as efficient, environment-friendly, commercial biocatalysts is highly attractive. However, issues surrounding the poor solubility and low stability of enzymes in truly anhydrous media remain a significant challenge. Here, we demonstrate for the first time that engineering the surface of a protein to yield protein-polymer surfactant nanoconstructs allows for dissolution of dry protein into dry ionic liquids. Using myoglobin as a model protein, we show that this method can deliver protein molecules with near native structure into both hydrophilic and hydrophobic anhydrous ionic liquids. Remarkably, using temperature-dependent synchrotron radiation circular dichroism spectroscopy to measure half-denaturation temperatures, our results show that protein stability increases by 55 °C in the ionic liquid as compared to aqueous solution, pushing the solution thermal denaturation beyond the boiling point of water. Therefore, the work presented herein could provide a platform for the realization of biocatalysis at high temperatures or in anhydrous solvent systems.

  1. Effect of protein-surfactant interactions on aggregation of β-lactoglobulin.

    PubMed

    Hansted, Jon G; Wejse, Peter L; Bertelsen, Hans; Otzen, Daniel E

    2011-05-01

    The milk protein β-lactoglobulin (βLG) dominates the properties of whey aggregates in food products. Here we use spectroscopic and calorimetric techniques to elucidate how anionic, cationic and non-ionic surfactants interact with bovine βLG and modulate its heat-induced aggregation. Alkyl trimethyl ammonium chlorides (xTAC) strongly promote aggregation, while sodium alkyl sulfates (SxS) and alkyl maltopyranosides (xM) reduce aggregation. Sodium dodecyl sulfate (SDS) binds to non-aggregated βLG in several steps, but reduction of aggregation was associated with the first binding step, which occurs far below the critical micelle concentration. In contrast, micellar concentrations of xMs are required to reduce aggregation. The ranking order for reduction of aggregation (normalized to their tendency to self-associate) was C10-C12>C8>C14 for SxS and C8>C10>C12>C14>C16 for xM. xTAC promote aggregation in the same ranking order as xM reduce it. We conclude that SxS reduce aggregation by stabilizing the protein's ligand-bound state (the melting temperature t(m) increases by up to 10°C) and altering its charge potential. xM monomers also stabilize the protein's ligand-bound state (increasing t(m) up to 6°C) but in the absence of charged head groups this is not sufficient by itself to prevent aggregation. Although micelles of both anionic and non-ionic surfactants destabilize βLG, they also solubilize unfolded protein monomers, leaving them unavailable for protein-protein association and thus inhibiting aggregation. Cationic surfactants promote aggregation by a combination of destabilization and charge neutralization. The food compatible surfactant sodium dodecanoate also inhibited aggregation well below the cmc, suggesting that surfactants may be a practical way to modulate whey protein properties. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Effects of lung surfactant proteins, SP-B and SP-C, and palmitic acid on monolayer stability.

    PubMed Central

    Ding, J; Takamoto, D Y; von Nahmen, A; Lipp, M M; Lee, K Y; Waring, A J; Zasadzinski, J A

    2001-01-01

    Langmuir isotherms and fluorescence and atomic force microscopy images of synthetic model lung surfactants were used to determine the influence of palmitic acid and synthetic peptides based on the surfactant-specific proteins SP-B and SP-C on the morphology and function of surfactant monolayers. Lung surfactant-specific protein SP-C and peptides based on SP-C eliminate the loss to the subphase of unsaturated lipids necessary for good adsorption and respreading by inducing a transition between monolayers and multilayers within the fluid phase domains of the monolayer. The morphology and thickness of the multilayer phase depends on the lipid composition of the monolayer and the concentration of SP-C or SP-C peptide. Lung surfactant protein SP-B and peptides based on SP-B induce a reversible folding transition at monolayer collapse that allows all components of surfactant to be retained at the interface during respreading. Supplementing Survanta, a clinically used replacement lung surfactant, with a peptide based on the first 25 amino acids of SP-B also induces a similar folding transition at monolayer collapse. Palmitic acid makes the monolayer rigid at low surface tension and fluid at high surface tension and modifies SP-C function. Identifying the function of lung surfactant proteins and lipids is essential to the rational design of replacement surfactants for treatment of respiratory distress syndrome. PMID:11325728

  3. A polymer surfactant corona dynamically replaces water in solvent-free protein liquids and ensures macromolecular flexibility and activity.

    PubMed

    Gallat, François-Xavier; Brogan, Alex P S; Fichou, Yann; McGrath, Nina; Moulin, Martine; Härtlein, Michael; Combet, Jérôme; Wuttke, Joachim; Mann, Stephen; Zaccai, Giuseppe; Jackson, Colin J; Perriman, Adam W; Weik, Martin

    2012-08-15

    The observation of biological activity in solvent-free protein-polymer surfactant hybrids challenges the view of aqueous and nonaqueous solvents being unique promoters of protein dynamics linked to function. Here, we combine elastic incoherent neutron scattering and specific deuterium labeling to separately study protein and polymer motions in solvent-free hybrids. Myoglobin motions within the hybrid are found to closely resemble those of a hydrated protein, and motions of the polymer surfactant coating are similar to those of the hydration water, leading to the conclusion that the polymer surfactant coating plasticizes protein structures in a way similar to hydration water.

  4. Evaluation of sucrose esters as alternative surfactants in microencapsulation of proteins by the solvent evaporation method.

    PubMed

    Youan, Bi-Botti C; Hussain, Alamdar; Nguyen, Nga T

    2003-01-01

    Sucrose esters (SE) are surfactants with potential pharmaceutical applications because of their low toxicity, biocompatibility, and excellent biodegradability. The objective of the study was to investigate SE as alternative surfactants in stabilizing emulsions for the preparation of protein-loaded microparticles. To achieve this goal, using bovine serum albumin as model protein and 75/25 poly(d,l-lactide-co-glycolide) as polymer carrier, we have investigated the influence of the following formulation variables on particle characteristics: (1) SE concentration from 0.01% to 1% (wt/vol), (2) hydrophile-lipophile balance (HLB) value of SE from 6 to 15, and (3) the nature of emulsion stabilizer. The formulations were characterized using ATR-FTIR spectroscopy, bicinchoninic acid protein assay, optical microscopy and SDS-PAGE. Results showed that at 0.05% (wt/vol) surfactant concentration, SE with HLB of 6 to 15 provided discrete and spherical microparticles with the highest encapsulation efficiency compared with controls polyvinyl alcohol (PVA) and poloxamer 188. These results may be explained by the difference in critical micelle concentration, diffusion, and partition coefficient among the tested surfactants. HLB values were consistent with SE spectral data. The protein molecular weight was preserved after the encapsulation process. The effective SE concentration was far less (20- to 200-fold) than that is usually required for PVA in microencapsulation of proteins. However, the encapsulation efficiency was relatively lower (approximately 13.5%). These preliminary results suggest that it may be desirable to optimize such formulations in vitro and in vivo for SE to be eventually used as alternative surfactants in the development of microparticulate systems for parenteral delivery of protein and gene medicines.

  5. Surfactant Protein A integrates activation signal strength to differentially modulate T cell proliferation

    PubMed Central

    Mukherjee, Sambuddho; Giamberardino, Charles; Thomas, Joseph; Evans, Kathy; Goto, Hisatsugu; Ledford, Julie G; Hsia, Bethany; Pastva, Amy M; Wright, Jo Rae

    2011-01-01

    Pulmonary surfactant lipoproteins lower the surface tension at the alveolar:airway interface of the lung and participate in host defense. Previous studies reported that surfactant protein A (SP-A) inhibits lymphocyte proliferation. We hypothesized that SP-A mediated modulation of T cell activation depends upon the strength, duration and type of lymphocyte activating signals. Modulation of T cell signal strength imparted by different activating agents ex and in vivo in different mouse models, and in vitro with human T cells show a strong correlation between strength of signal (SoS) and functional effects of SP-A interactions. T cell proliferation is enhanced in the presence of SP-A at low SoS imparted by exogenous mitogens, specific antibodies, APCs or in homeostatic proliferation. Proliferation is inhibited at higher SoS imparted by different doses of the same T cell mitogens, or indirect stimuli such as LPS. Importantly, reconstitution with exogenous SP-A into the lungs of SP-A-/- mice stimulated with a strong signal also resulted in suppression of T cell proliferation, while elevating baseline proliferation in unstimulated T cells. These signal strength and SP-A dependent effects are mediated by changes in intracellular Ca2+ levels over time, involving extrinsic Ca2+ activated channels late during activation. These effects are intrinsic to the global T cell population, and are manifested in vivo in naïve as well as memory phenotype T cells. Thus, SP-A appears to integrate signal thresholds to control T cell proliferation. PMID:22219327

  6. Rapid and sensitive determination of proteins with Eriochrome Red in the presence of anionic surfactant by multi-spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Bian, Yongru; Cai, Changqun; Gong, Hang; Chen, Xiaoming

    2010-10-01

    A new high-sensitivity detection of protein assay at the nanogram level is proposed based on multi-spectroscopic methods including resonance light scattering (RLS), atomic force microscopy (AFM), ultraviolet spectra (UV) and fluorescence spectra etc. Under the optimum conditions, the amplified RLS signals of anionic azo dyes Eriochrome Red B (ERB) in the presence of anionic surfactant sodium dodecyl sulphonate (SDS) was in proportion to the concentration of proteins in the range of 0.0-3.5 mg L -1 and 3.5-12.5 mg L -1 for bovine serum albumin (BSA), 0.0-2.0 mg L -1 and 2.0-8.0 mg L -1 for human serum albumin (HSA). The detection limits were 4.2 ng mL -1 and 2.7 ng mL -1, respectively. The method was satisfactorily applied to the measurement of total protein in human serum samples and a high-sensitivity was achieved.

  7. Evaluation of predictable irritative power of surfactant mixtures by human fibroblast culture and its correlation to physico-chemical parameters.

    PubMed

    Rigano, L; Cavalletti, T; Benetti, S; Traniello, S

    1995-02-01

    Summary The predictable toxic effects of some surfactants, their blends and some preserving agents on human fibroblast cultures were investigated with in vitro tests, with the aim of finding a possible correlation between the biologic evaluations and some physical characteristics of detergent solutions. Lactate dehydrogenase release into the medium was used as a marker of the plasma membrane integrity, while the amount of (3)H-radiolabelled proteins in the fibroblasts was measured in order to assess the cell biosynthetic machinery function. Disodium-alkyl-semi-sulphosuccinate induced membrane damage in the lactate dehydrogenase test and decreased the protein synthesis, with an EC 50 around 1mm, while sodium lauryl ether sulphate had an EC 50 at about 100 mum, indicating that this compound is ten-fold more toxic, when measured by this method. An ethoxylated glyceride, on the contrary, was completely harmless on the plasma membrane and, surprisingly, activated fibroblast protein synthesis in a dose-response way up to two-fold. Mixtures of the three surfactants evidenced the protective effect of the non-ionic against the cellular functionality damage. Parabens do not influence this type of evaluation, while some influence was shown by the formaldehyde releaser 2-bromo-2-nitro-propandiol at the highest concentration. The comparison between critical micellar concentration measures of the different surfactants and their in vitro detected irritative power shows, for the two anionics, that in vitro toxicity is proportionally bound to the amount of micelles even if the structural differences between the two types of molecules are reflected into different damage values, while the non-ionic compound shows a not defined CMC and a very low toxicity profile. Blends of anionics with the non-ionic show an increased CMC and a reduced toxicity profile. Toxicity evaluations of complex finished foaming formulations, carried out with human fibroblast cultures evaluation show that a

  8. Pulmonary surfactant protein A interacts with gel-like regions in monolayers of pulmonary surfactant lipid extract.

    PubMed Central

    Worthman, L A; Nag, K; Rich, N; Ruano, M L; Casals, C; Pérez-Gil, J; Keough, K M

    2000-01-01

    Epifluorescence microscopy was used to investigate the interaction of pulmonary surfactant protein A (SP-A) with spread monolayers of porcine surfactant lipid extract (PSLE) containing 1 mol % fluorescent probe (NBD-PC) spread on a saline subphase (145 mM NaCl, 5 mM Tris-HCl, pH 6.9) containing 0, 0.13, or 0.16 microg/ml SP-A and 0, 1.64, or 5 mM CaCl(2). In the absence of SP-A, no differences were noted in PSLE monolayers in the absence or presence of Ca(2+). Circular probe-excluded (dark) domains were observed against a fluorescent background at low surface pressures (pi approximately 5 mN/m) and the domains grew in size with increasing pi. Above 25 mN/m, the domain size decreased with increasing pi. The amount of observable dark phase was maximal at 18% of the total film area at pi approximately 25 mN/m, then decreased to approximately 3% at pi approximately 40 mN/m. The addition of 0.16 microg/ml SP-A with 0 or 1.64 mM Ca(2+) in the subphase caused an aggregation of dark domains into a loose network, and the total amount of dark phase was increased to approximately 25% between pi of 10-28 mN/m. Monolayer features in the presence of 5 mM Ca(2+) and SP-A were not substantially different from those spread in the absence of SP-A, likely due to a self-association and aggregation of SP-A in the presence of higher concentrations of Ca(2+). PSLE films were spread on a subphase containing 0.16 microg/ml SP-A with covalently bound Texas Red (TR-SP-A). In the absence of Ca(2+), TR-SP-A associated with the reorganized dark phase (as seen with the lipid probe). The presence of 5 mM Ca(2+) resulted in an appearance of TR-SP-A in the fluid phase and of aggregates at the fluid/gel phase boundaries of the monolayers. This study suggests that SP-A associates with PSLE monolayers, particularly with condensed or solid phase lipid, and results in some reorganization of rigid phase lipid in surfactant monolayers. PMID:11053138

  9. Effects of fluorinated and hydrogenated surfactants on human serum albumin at different pHs.

    PubMed

    Sabín, Juan; Prieto, Gerardo; González-Pérez, Alfredo; Ruso, Juan M; Sarmiento, Félix

    2006-01-01

    Complexation between human serum albumin (HSA) and two different surfactants, one fully fluorinated (sodium perfluorooctanoate, SPFO) and one fully hydrogenated (sodium caprylate, SO), was studied using zeta-potential measurements and difference spectroscopy. The study was carried out at three different pHs, 3.2, 6.7, and 10.0. The spectroscopy study was performed at pHs 6.7 and 10.0, given that at pH 3.2 high turbidity was observed in the wide range of surfactant concentrations. The results were interpreted in terms of the electrostatic and hydrophobic contributions to the stability of the different phases formed in the water-surfactant-HSA system. Solutions and precipitates were observed in the concentration range investigated in more detail. Using Pace methods, the thermodynamic values of the surfactant-induced conformational changes in HSA were determined for sodium perfluorooctanoate in the concentration range 2-12 mmol dm(-3) at pH 6.7 and 5-22 mmol dm(-3) at pH 10.0. Electrophoretic measurements were used to characterize surfactant adsorption by determining the number of molecules adsorbed on the surface of HSA and the Gibbs energy of adsorption. Finally, the interactions between human serum albumin and other anionic surfactants studied by other authors were compared with those observed in the present work.

  10. Interaction of Moringa oleifera seed protein with a mineral surface and the influence of surfactants.

    PubMed

    Kwaambwa, Habauka M; Hellsing, Maja S; Rennie, Adrian R; Barker, Robert

    2015-06-15

    The paper describes the adsorption of purified protein from seeds of Moringa oleifera to a sapphire interface and the effects of addition of the anionic surfactant sodium dodecylsulfate (SDS) and the cationic surfactant hexadecyltrimethylammonium bromide (CTAB). Neutron reflection was used to determine the structure and composition of interfacial layers adsorbed at the solid/solution interface. The maximum surface excess of protein was found to be about 5.3 mg m(-2). The protein does not desorb from the solid/liquid interface when rinsed with water. Addition of SDS increases the reflectivity indicating co-adsorption. It was observed that CTAB is able to remove the protein from the interface. The distinct differences to the behavior observed previously for the protein at the silica/water interface are identified. The adsorption of the protein to alumina in addition to other surfaces has shown why it is an effective flocculating agent for the range of impurities found in water supplies. The ability to tailor different surface layers in combination with various surfactants also offers the potential for adsorbed protein to be used in separation technologies.

  11. Protein-nanoparticle interactions evaluation by immunomethods: Surfactants can disturb quantitative determinations.

    PubMed

    Fornaguera, Cristina; Calderó, Gabriela; Solans, Conxita; Vauthier, Christine

    2015-08-01

    The adsorption of proteins on nanoparticle surface is one of the first events that occur when nanoparticles enter in the blood stream, which influences nanoparticles lifetime and further biodistribution. Albumin, which is the most abundant protein in serum and which has been deeply characterized, is an interesting model protein to investigate nanoparticle-protein interactions. Therefore, the interaction of nanoparticles with serum albumin has been widely studied. Immunomethods were suggested for the investigation of adsorption isotherms because of their ease to quantify the non-adsorbed bovine serum albumin without the need of applying separation methods that could modify the balance between the adsorbed and non-adsorbed proteins. The present work revealed that this method should be applied with caution. Artifacts in the determination of free protein can be generated by the presence of surfactants such as polysorbate 80, widely used in the pharmaceutical and biomedical field, that are needed to preserve the stability of nanoparticle dispersions. It was shown that the presence of traces of polysorbate 80 in the dispersion leads to an overestimation of the amount of bovine serum albumin remaining free in the dispersion medium when determined by both radial immunodiffusion and rocket immunoelectrophoresis. However, traces of poloxamer 188 did not result in clear perturbed migrations. These methods are not appropriate to perform adsorption isotherms of proteins on nanoparticle dispersions containing traces of remaining free surfactant. They should only be applied on dispersions that are free of surfactant that is not associated with nanoparticles.

  12. Clinical and ultrastructural spectrum of diffuse lung disease associated with surfactant protein C mutations.

    PubMed

    Peca, Donatella; Boldrini, Renata; Johannson, Jan; Shieh, Joseph T; Citti, Arianna; Petrini, Stefania; Salerno, Teresa; Cazzato, Salvatore; Testa, Raffaele; Messina, Francesco; Onofri, Alfredo; Cenacchi, Giovanna; Westermark, Per; Ullmann, Nicola; Ullman, Nicola; Cogo, Paola; Cutrera, Renato; Danhaive, Olivier

    2015-08-01

    Genetic defects of surfactant metabolism are associated with a broad range of clinical manifestations, from neonatal respiratory distress syndrome to adult interstitial lung disease. Early therapies may improve symptoms but diagnosis is often delayed owing to phenotype and genotype variability. Our objective was to characterize the cellular/ultrastructural correlates of surfactant protein C (SP-C) mutations in children with idiopathic diffuse lung diseases. We sequenced SFTPC - the gene encoding SP-C - SFTPB and ABCA3, and analyzed morphology, ultrastructure and SP expression in lung tissue when available. We identified eight subjects who were heterozygous for SP-C mutations. Median age at onset and clinical course were variable. None of the mutations were located in the mature peptide-encoding region, but were either in the pro-protein BRICHOS or linker C-terminal domains. Although lung morphology was similar to other genetic surfactant metabolism disorders, electron microscopy studies showed specific anomalies, suggesting surfactant homeostasis disruption, plus trafficking defects in the four subjects with linker domain mutation and protein misfolding in the single BRICHOS mutation carrier in whom material was available. Immunolabeling studies showed increased proSP-C staining in all cases. In two cases, amyloid deposits could be identified. Immunochemistry and ultrastructural studies may be useful for diagnostic purposes and for genotype interpretation.

  13. Probing the micellar properties of Quinacrine 2HCl and its binding with surfactants and human serum albumin.

    PubMed

    Usman, Muhammad; Siddiq, Mohammad

    2013-09-01

    This manuscript reports physicochemical behavior of an antimalarial drug Quinacrine 2HCl (QUN) drug as well as its interaction with surfactant and Human Serum Albumin (HSA). Surface tension and specific conductivity were employed to detect the critical micelle concentration (CMC) and thus its surface and thermodynamic parameters were calculated. Solublization of this drug within micelles of anionic surfactant sodium dodecyl sulfate (SDS) has also been studied. UV/Visible spectroscopy was used to calculate partition coefficient (Kx), free energy of partition and number of drug molecules per micelle. The complexation of drug with HSA at physiological conditions (pH 7.4) has been analyzed by using UV/Visible and fluorescence spectroscopy. In this way the values of drug-protein binding constant, number of binding sites and free energy of binding were calculated. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Human Mitochondrial Protein Database

    National Institute of Standards and Technology Data Gateway

    SRD 131 Human Mitochondrial Protein Database (Web, free access)   The Human Mitochondrial Protein Database (HMPDb) provides comprehensive data on mitochondrial and human nuclear encoded proteins involved in mitochondrial biogenesis and function. This database consolidates information from SwissProt, LocusLink, Protein Data Bank (PDB), GenBank, Genome Database (GDB), Online Mendelian Inheritance in Man (OMIM), Human Mitochondrial Genome Database (mtDB), MITOMAP, Neuromuscular Disease Center and Human 2-D PAGE Databases. This database is intended as a tool not only to aid in studying the mitochondrion but in studying the associated diseases.

  15. Interactions of Fluorinated Surfactants with Diphtheria Toxin T-Domain: Testing New Media for Studies of Membrane Proteins

    PubMed Central

    Rodnin, Mykola V.; Posokhov, Yevgen O.; Contino-Pépin, Christiane; Brettmann, Joshua; Kyrychenko, Alexander; Palchevskyy, Sergiy S.; Pucci, Bernard; Ladokhin, Alexey S.

    2008-01-01

    The principal difficulty in experimental exploration of the folding and stability of membrane proteins (MPs) is their aggregation outside of the native environment of the lipid bilayer. To circumvent this problem, we recently applied fluorinated nondetergent surfactants that act as chemical chaperones. The ideal chaperone surfactant would 1), maintain the MP in solution; 2), minimally perturb the MP's structure; 3), dissociate from the MP during membrane insertion; and 4), not partition into the lipid bilayer. Here, we compare how surfactants with hemifluorinated (HFTAC) and completely fluorinated (FTAC) hydrophobic chains of different length compare to this ideal. Using fluorescence correlation spectroscopy of dye-labeled FTAC and HFTAC, we demonstrate that neither type of surfactant will bind lipid vesicles. Thus, unlike detergents, fluorinated surfactants do not compromise vesicle integrity even at concentrations far in excess of their critical micelle concentration. We examined the interaction of surfactants with a model MP, DTT, using a variety of spectroscopic techniques. Site-selective labeling of DTT with fluorescent dyes indicates that the surfactants do not interact with DTT uniformly, instead concentrating in the most hydrophobic patches. Circular dichroism measurements suggest that the presence of surfactants does not alter the structure of DTT. However, the cooperativity of the thermal unfolding transition is reduced by the presence of surfactants, especially above the critical micelle concentration (a feature of regular detergents, too). The linear dependence of DTT's enthalpy of unfolding on the surfactant concentration is encouraging for future application of (H)FTACs to determine the stability of the membrane-competent conformations of other MPs. The observed reduction in the efficiency of Förster resonance energy transfer between donor-labeled (H)FTACs and acceptor-labeled DTT upon addition of lipid vesicles indicates that the protein sheds the

  16. Crystal Structure of Trimeric Carbohydrate Recognition and Neck Domains of Surfactant Protein A

    SciTech Connect

    Head,J.; Mealy, T.; McCormack, F.; Seaton, B.

    2003-01-01

    Surfactant protein A (SP-A), one of four proteins associated with pulmonary surfactant, binds with high affinity to alveolar phospholipid membranes, positioning the protein at the first line of defense against inhaled pathogens. SP-A exhibits both calcium-dependent carbohydrate binding, a characteristic of the collectin family, and specific interactions with lipid membrane components. The crystal structure of the trimeric carbohydrate recognition domain and neck domain of SP-A was solved to 2.1-{angstrom} resolution with multiwavelength anomalous dispersion phasing from samarium. Two metalbinding sites were identified, one in the highly conserved lectin site and the other 8.5 {angstrom} away. The interdomain carbohydrate recognition domain-neck angle is significantly less in SP-A than in the homologous collectins, surfactant protein D, and mannose-binding protein. This conformational difference may endow the SP-A trimer with a more extensive hydrophobic surface capable of binding lipophilic membrane components. The appearance of this surface suggests a putative binding region for membrane-derived SP-A ligands such as phosphatidylcholine and lipid A, the endotoxic lipid component of bacterial lipopolysaccharide that mediates the potentially lethal effects of Gram-negative bacterial infection.

  17. Pulmonary surfactant mitigates silver nanoparticle toxicity in human alveolar type-I-like epithelial cells.

    PubMed

    Sweeney, Sinbad; Leo, Bey Fen; Chen, Shu; Abraham-Thomas, Nisha; Thorley, Andrew J; Gow, Andrew; Schwander, Stephan; Zhang, Junfeng Jim; Shaffer, Milo S P; Chung, Kian Fan; Ryan, Mary P; Porter, Alexandra E; Tetley, Teresa D

    2016-09-01

    Accompanying increased commercial applications and production of silver nanomaterials is an increased probability of human exposure, with inhalation a key route. Nanomaterials that deposit in the pulmonary alveolar region following inhalation will interact firstly with pulmonary surfactant before they interact with the alveolar epithelium. It is therefore critical to understand the effects of human pulmonary surfactant when evaluating the inhalation toxicity of silver nanoparticles. In this study, we evaluated the toxicity of AgNPs on human alveolar type-I-like epithelial (TT1) cells in the absence and presence of Curosurf(®) (a natural pulmonary surfactant substitute), hypothesising that the pulmonary surfactant would act to modify toxicity. We demonstrated that 20nm citrate-capped AgNPs induce toxicity in human alveolar type I-like epithelial cells and, in agreement with our hypothesis, that pulmonary surfactant acts to mitigate this toxicity, possibly through reducing AgNP dissolution into cytotoxic Ag(+) ions. For example, IL-6 and IL-8 release by TT1 cells significantly increased 10.7- and 35-fold, respectively (P<0.01), 24h after treatment with 25μg/ml AgNPs. In contrast, following pre-incubation of AgNPs with Curosurf(®), this effect was almost completely abolished. We further determined that the mechanism of this toxicity is likely associated with Ag(+) ion release and lysosomal disruption, but not with increased reactive oxygen species generation. This study provides a critical understanding of the toxicity of AgNPs in target human alveolar type-I-like epithelial cells and the role of pulmonary surfactant in mitigating this toxicity. The observations reported have important implications for the manufacture and application of AgNPs, in particular for applications involving use of aerosolised AgNPs. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Recognition of Heptoses and the Inner Core of Bacterial Lipopolysaccharides by Surfactant Protein D

    SciTech Connect

    Wang,H.; Head, J.; Kosma, P.; Brade, H.; Muller-Loennies, S.; Sheikh, S.; McDonald, B.; Smith, K.; Cafarella, T.; et al

    2008-01-01

    Lipopolysaccharides (LPS) of Gram-negative bacteria are important mediators of bacterial virulence that can elicit potent endotoxic effects. Surfactant protein D (SP-D) shows specific interactions with LPS, both in vitro and in vivo. These interactions involve binding of the carbohydrate recognition domain (CRD) to LPS oligosaccharides (OS); however, little is known about the mechanisms of LPS recognition. Recombinant neck+CRDs (NCRDs) provide an opportunity to directly correlate binding interactions with a crystallographic analysis of the binding mechanism. In these studies, we examined the interactions of wild-type and mutant trimeric NCRDs with rough LPS (R-LPS). Although rat NCRDs bound more efficiently than human NCRDs to Escherichia coli J-5 LPS, both proteins exhibited efficient binding to solid-phase Rd2-LPS and to Rd2-LPS aggregates presented in the solution phase. Involvement of residues flanking calcium at the sugar binding site was demonstrated by reciprocal exchange of lysine and arginine at position 343 of rat and human CRDs. The lectin activity of hNCRDs was inhibited by specific heptoses, including l-glycero-{alpha}-d-manno-heptose (l, d-heptose), but not by 3-deoxy-{alpha}-d-manno-oct-2-ulosonic acid (Kdo). Crystallographic analysis of the hNCRD demonstrated a novel binding orientation for l, d-heptose, involving the hydroxyl groups of the side chain. Similar binding was observed for a synthetic {alpha}1{yields}3-linked heptose disaccharide corresponding to heptoses I and II of the inner core region in many LPS. 7-O-Carbamoyl-l, d-heptose and d-glycero-{alpha}-d-manno-heptose were bound via ring hydroxyl groups. Interactions with the side chain of inner core heptoses provide a potential mechanism for the recognition of diverse types of LPS by SP-D.

  19. Mutant surfactant A2 proteins associated with familial pulmonary fibrosis and lung cancer induce TGF-β1 secretion

    PubMed Central

    Maitra, Meenakshi; Cano, Christopher A.; Garcia, Christine Kim

    2012-01-01

    Mutations in the genes encoding the lung surfactant proteins are found in patients with interstitial lung disease and lung cancer, but their pathologic mechanism is poorly understood. Here we show that bronchoalveolar lavage fluid from humans heterozygous for a missense mutation in the gene encoding surfactant protein (SP)-A2 (SFTPA2) contains more TGF-β1 than control samples. Expression of mutant SP-A2 in lung epithelial cells leads to secretion of latent TGF-β1, which is capable of autocrine and paracrine signaling. TGF-β1 secretion is not observed in lung epithelial cells expressing the common SP-A2 variants or other misfolded proteins capable of increasing cellular endoplasmic reticulum stress. Activation of the unfolded protein response is necessary for maximal TGF-β1 secretion because gene silencing of the unfolded protein response transducers leads to an ∼50% decrease in mutant SP-A2–mediated TGF-β1 secretion. Expression of the mutant SP-A2 proteins leads to the coordinated increase in gene expression of TGF-β1 and two TGF-β1–binding proteins, LTBP-1 and LTBP-4; expression of the latter is necessary for secretion of this cytokine. Inhibition of the TGF-β autocrine positive feedback loop by a pan–TGF-β–neutralizing antibody, a TGF-β receptor antagonist, or LTBP gene silencing results in the reversal of TGF-β–mediated epithelial-to-mesenchymal transition and cell death. Because secretion of latent TGF-β1 is induced specifically by mutant SP-A2 proteins, therapeutics targeted to block this pathway may be especially beneficial for this molecularly defined subgroup of patients. PMID:23223528

  20. Mutant surfactant A2 proteins associated with familial pulmonary fibrosis and lung cancer induce TGF-β1 secretion.

    PubMed

    Maitra, Meenakshi; Cano, Christopher A; Garcia, Christine Kim

    2012-12-18

    Mutations in the genes encoding the lung surfactant proteins are found in patients with interstitial lung disease and lung cancer, but their pathologic mechanism is poorly understood. Here we show that bronchoalveolar lavage fluid from humans heterozygous for a missense mutation in the gene encoding surfactant protein (SP)-A2 (SFTPA2) contains more TGF-β1 than control samples. Expression of mutant SP-A2 in lung epithelial cells leads to secretion of latent TGF-β1, which is capable of autocrine and paracrine signaling. TGF-β1 secretion is not observed in lung epithelial cells expressing the common SP-A2 variants or other misfolded proteins capable of increasing cellular endoplasmic reticulum stress. Activation of the unfolded protein response is necessary for maximal TGF-β1 secretion because gene silencing of the unfolded protein response transducers leads to an ∼50% decrease in mutant SP-A2-mediated TGF-β1 secretion. Expression of the mutant SP-A2 proteins leads to the coordinated increase in gene expression of TGF-β1 and two TGF-β1-binding proteins, LTBP-1 and LTBP-4; expression of the latter is necessary for secretion of this cytokine. Inhibition of the TGF-β autocrine positive feedback loop by a pan-TGF-β-neutralizing antibody, a TGF-β receptor antagonist, or LTBP gene silencing results in the reversal of TGF-β-mediated epithelial-to-mesenchymal transition and cell death. Because secretion of latent TGF-β1 is induced specifically by mutant SP-A2 proteins, therapeutics targeted to block this pathway may be especially beneficial for this molecularly defined subgroup of patients.

  1. Implication of antigenic conversion of Helicobacter pylori lipopolysaccharides that involve interaction with surfactant protein D.

    PubMed

    Yokota, Shin-ichi; Amano, Ken-ichi; Nishitani, Chiaki; Ariki, Shigeru; Kuroki, Yoshio; Fujii, Nobuhiro

    2012-08-01

    We propose two antigenic types of Helicobacter pylori lipopolysaccharides (LPS): highly antigenic epitope-carrying LPS (HA-LPS) and weakly antigenic epitope-carrying LPS (WA-LPS) based on human serum reactivity. Strains carrying WA-LPS are highly prevalent in isolates from gastric cancer patients. WA-LPS exhibits more potent biological activities compared to HA-LPS, namely, upregulation of Toll-like receptor 4 (TLR4) expression and induction of enhanced epithelial cell proliferation. The results of competitive binding assays using monosaccharides and methylglycosides, as well as binding assays using glycosidase-treated LPS, suggested that β-linked N-acetyl-D-glucosamine and β-linked D-galactose residues largely contributed to the highly antigenic epitope and the weakly antigenic epitope, respectively. WA-LPS exhibited greater binding activity to surfactant protein D (SP-D) in a Ca(2+)-dependent manner, and this interaction was inhibited by methyl-β-D-galactoside. The biological activities of WA-LPS were markedly enhanced by the addition of SP-D. Lines of evidence suggested that removal of β-N-acetyl-D-glucosamine residue, which comprises the highly antigenic epitope, results in exposure of the weakly antigenic epitope. The weakly antigenic epitope interacted preferentially with SP-D, and SP-D enhanced the biological activity of WA-LPS.

  2. Structure and dynamics of a protein-surfactant assembly studied by ion-mobility mass spectrometry and molecular dynamics simulations.

    PubMed

    Borysik, Antoni J

    2015-09-01

    The structure and dynamics of a protein-surfactant assembly studied by ion-mobility mass spectrometry (IMS) and vacuum molecular dynamics (MD) simulations is reported. Direct evidence is provided for the ability of the surfactant dodecyl-β-D-maltoside (DDM) to prevent charge-induced unfolding of the membrane protein (PagP) in the gas-phase. Restraints obtained by IMS are used to map the surfactant positions onto the protein surface. Surfactants occupying more exposed positions at the apexes of the β-barrel structure are most in-line with the experimental observations. MD simulations provide additional evidence for this assembly organization through surfactant inversion and migration on the protein structure in the absence of solvent. Surfactant migration entails a net shift from apolar membrane spanning regions to more polar regions of the protein structure with the DDM molecule remaining attached to the protein via headgroup interactions. These data provide evidence for the role of protein-DDM headgroup interactions in stabilizing membrane protein structure from gas-phase unfolding.

  3. Multilayer Structures in Lipid Monolayer Films Containing Surfactant Protein C: Effects of Cholesterol and POPE

    PubMed Central

    Malcharek, Stefan; Hinz, Andreas; Hilterhaus, Lutz; Galla, Hans-Joachim

    2005-01-01

    The influence of cholesterol and POPE on lung surfactant model systems consisting of DPPC/DPPG (80:20) and DPPC/DPPG/surfactant protein C (80:20:0.4) has been investigated. Cholesterol leads to a condensation of the monolayers, whereas the isotherms of model lung surfactant films containing POPE exhibit a slight expansion combined with an increased compressibility at medium surface pressure (10–30 mN/m). An increasing amount of liquid-expanded domains can be visualized by means of fluorescence light microscopy in lung surfactant monolayers after addition of either cholesterol or POPE. At surface pressures of 50 mN/m, protrusions are formed which differ in size and shape as a function of the content of cholesterol or POPE, but only if SP-C is present. Low amounts of cholesterol (10 mol %) lead to an increasing number of protrusions, which also grow in size. This is interpreted as a stabilizing effect of cholesterol on bilayers formed underneath the monolayer. Extreme amounts of cholesterol (30 mol %), however, cause an increased monolayer rigidity, thus preventing reversible multilayer formation. In contrast, POPE, as a nonbilayer lipid thought to stabilize the edges of protrusions, leads to more narrow protrusions. The lateral extension of the protrusions is thereby more influenced than their height. PMID:15653721

  4. Maintenance of differentiated function of the surfactant system in human fetal lung type II epithelial cells cultured on plastic.

    PubMed

    Gonzales, L W; Angampalli, S; Guttentag, S H; Beers, M F; Feinstein, S I; Matlapudi, A; Ballard, P L

    2001-01-01

    We report a simplified culture system for human fetal lung type II cells that maintains surfactant expression. Type II cells isolated from explant cultures of hormone-treated lungs (18-22 wk gestation) by collagenase + trypsin digestion were cultured on plastic for 4 days in serum-free medium containing dexamethasone (Dex, 10 nM) + 8-bromo-cAMP (0.1 mM + isobutylmethylxanthine (0.1 mM) or were untreated (control). Surfactant protein (SP) mRNAs decreased markedly in control cells between days 1 and 4 of culture, but mRNA levels were high in treated cells on day) 4 (SP-A, SP-B, SP-C, SP-D; 600%, 100%, 85%, 130% of day 0 content, respectively). Dex or cAMP alone increased SP-B, SP-C, and SP-D mRNAs and together had additive effects. The greatest increase in SP-A mRNA occurred with cAMP alone. Treated cells processed pro-SP-B and pro-SP-C proteins to mature forms and had a higher rate of phosphatidylcholine (PC) synthesis (2-fold) and higher saturation of PC (approximately 34% versus 27%) than controls. Only treated cells maintained secretagogue-responsive phospholipid synthesis. By electron microscopy, the treated cells retained lamellar bodies and extensive microvilli. We conclude that Dex and cAMP additively stimulate expression of surfactant components in isolated fetal type II cells, providing a simplified culture system for investigation of surfactant-related, and perhaps other, type II cell functions.

  5. The surfactant protein C mutation A116D alters cellular processing, stress tolerance, surfactant lipid composition, and immune cell activation

    PubMed Central

    2012-01-01

    Background Surfactant protein C (SP-C) is important for the function of pulmonary surfactant. Heterozygous mutations in SFTPC, the gene encoding SP-C, cause sporadic and familial interstitial lung disease (ILD) in children and adults. Mutations mapping to the BRICHOS domain located within the SP-C proprotein result in perinuclear aggregation of the proprotein. In this study, we investigated the effects of the mutation A116D in the BRICHOS domain of SP-C on cellular homeostasis. We also evaluated the ability of drugs currently used in ILD therapy to counteract these effects. Methods SP-CA116D was expressed in MLE-12 alveolar epithelial cells. We assessed in vitro the consequences for cellular homeostasis, immune response and effects of azathioprine, hydroxychloroquine, methylprednisolone and cyclophosphamide. Results Stable expression of SP-CA116D in MLE-12 alveolar epithelial cells resulted in increased intracellular accumulation of proSP-C processing intermediates. SP-CA116D expression further led to reduced cell viability and increased levels of the chaperones Hsp90, Hsp70, calreticulin and calnexin. Lipid analysis revealed decreased intracellular levels of phosphatidylcholine (PC) and increased lyso-PC levels. Treatment with methylprednisolone or hydroxychloroquine partially restored these lipid alterations. Furthermore, SP-CA116D cells secreted soluble factors into the medium that modulated surface expression of CCR2 or CXCR1 receptors on CD4+ lymphocytes and neutrophils, suggesting a direct paracrine effect of SP-CA116D on neighboring cells in the alveolar space. Conclusions We show that the A116D mutation leads to impaired processing of proSP-C in alveolar epithelial cells, alters cell viability and lipid composition, and also activates cells of the immune system. In addition, we show that some of the effects of the mutation on cellular homeostasis can be antagonized by application of pharmaceuticals commonly applied in ILD therapy. Our findings shed new

  6. The surfactant protein C mutation A116D alters cellular processing, stress tolerance, surfactant lipid composition, and immune cell activation.

    PubMed

    Zarbock, Ralf; Woischnik, Markus; Sparr, Christiane; Thurm, Tobias; Kern, Sunčana; Kaltenborn, Eva; Hector, Andreas; Hartl, Dominik; Liebisch, Gerhard; Schmitz, Gerd; Griese, Matthias

    2012-03-29

    Surfactant protein C (SP-C) is important for the function of pulmonary surfactant. Heterozygous mutations in SFTPC, the gene encoding SP-C, cause sporadic and familial interstitial lung disease (ILD) in children and adults. Mutations mapping to the BRICHOS domain located within the SP-C proprotein result in perinuclear aggregation of the proprotein. In this study, we investigated the effects of the mutation A116D in the BRICHOS domain of SP-C on cellular homeostasis. We also evaluated the ability of drugs currently used in ILD therapy to counteract these effects. SP-CA116D was expressed in MLE-12 alveolar epithelial cells. We assessed in vitro the consequences for cellular homeostasis, immune response and effects of azathioprine, hydroxychloroquine, methylprednisolone and cyclophosphamide. Stable expression of SP-CA116D in MLE-12 alveolar epithelial cells resulted in increased intracellular accumulation of proSP-C processing intermediates. SP-CA116D expression further led to reduced cell viability and increased levels of the chaperones Hsp90, Hsp70, calreticulin and calnexin. Lipid analysis revealed decreased intracellular levels of phosphatidylcholine (PC) and increased lyso-PC levels. Treatment with methylprednisolone or hydroxychloroquine partially restored these lipid alterations. Furthermore, SP-CA116D cells secreted soluble factors into the medium that modulated surface expression of CCR2 or CXCR1 receptors on CD4+ lymphocytes and neutrophils, suggesting a direct paracrine effect of SP-CA116D on neighboring cells in the alveolar space. We show that the A116D mutation leads to impaired processing of proSP-C in alveolar epithelial cells, alters cell viability and lipid composition, and also activates cells of the immune system. In addition, we show that some of the effects of the mutation on cellular homeostasis can be antagonized by application of pharmaceuticals commonly applied in ILD therapy. Our findings shed new light on the pathomechanisms underlying SP

  7. Latherin: A Surfactant Protein of Horse Sweat and Saliva

    PubMed Central

    Beeley, John G.; Bovell, Douglas L.; Lu, Jian R.; Zhao, Xiubo; Cooper, Alan; Kennedy, Malcolm W.

    2009-01-01

    Horses are unusual in producing protein-rich sweat for thermoregulation, a major component of which is latherin, a highly surface-active, non-glycosylated protein. The amino acid sequence of latherin, determined from cDNA analysis, is highly conserved across four geographically dispersed equid species (horse, zebra, onager, ass), and is similar to a family of proteins only found previously in the oral cavity and associated tissues of mammals. Latherin produces a significant reduction in water surface tension at low concentrations (≤1 mg ml−1), and therefore probably acts as a wetting agent to facilitate evaporative cooling through a waterproofed pelt. Neutron reflection experiments indicate that this detergent-like activity is associated with the formation of a dense protein layer, about 10 Å thick, at the air-water interface. However, biophysical characterization (circular dichroism, differential scanning calorimetry) in solution shows that latherin behaves like a typical globular protein, although with unusual intrinsic fluorescence characteristics, suggesting that significant conformational change or unfolding of the protein is required for assembly of the air-water interfacial layer. RT-PCR screening revealed latherin transcripts in horse skin and salivary gland but in no other tissues. Recombinant latherin produced in bacteria was also found to be the target of IgE antibody from horse-allergic subjects. Equids therefore may have adapted an oral/salivary mucosal protein for two purposes peculiar to their lifestyle, namely their need for rapid and efficient heat dissipation and their specialisation for masticating and processing large quantities of dry food material. PMID:19478940

  8. Resonance assignments for latherin, a natural surfactant protein from horse sweat.

    PubMed

    Vance, Steven J; McDonald, Rhona E; Cooper, Alan; Kennedy, Malcolm W; Smith, Brian O

    2014-04-01

    Latherin is an intrinsically surfactant protein of ~23 kDa found in the sweat and saliva of horses. Its function is probably to enhance the translocation of sweat water from the skin to the surface of the pelt for evaporative cooling. Its role in saliva may be to enhance the wetting, softening and maceration of the dry, fibrous food for which equines are adapted. Latherin is unusual in its relatively high content of aliphatic amino acids (~25% leucines) that might contribute to its surfactant properties. Latherin is related to the palate, lung, and nasal epithelium carcinoma-associated proteins (PLUNCs) of mammals, at least one of which is now known to exhibit similar surfactant activity to latherin. No structures of any PLUNC protein are currently available. (15)N,(13)C-labelled recombinant latherin was produced in Escherichia coli, and essentially all of the resonances were assigned despite the signal overlap due to the preponderance of leucines. The most notable exceptions include a number of residues located in an apparently dynamic loop region between residues 145 and 154. The assignments have been deposited with BMRB accession number 19067.

  9. Surfactant protein (SP)-A and SP-D as antimicrobial and immunotherapeutic agents.

    PubMed

    Awasthi, Shanjana

    2010-06-01

    Surfactant protein (SP)-A and SP-D belong to the "Soluble C-type Lectin" family of proteins and are collectively known as "Collectins". Based on their ability to recognize pathogens and to regulate the host defense, SP-A and SP-D have been recently categorized as "Secretory Pathogen Recognition Receptors". SP-A and SP-D were first identified in the lung; the expression of SP-A and SP-D has also been observed at other mucosal surfaces, such as lacrimal glands, gastrointestinal mucosa, genitourinary epithelium and periodontal surfaces. Since the role of these proteins is not fully elucidated at other mucosal surfaces, the focus of this article is on lung-SP-A and SP-D. It has become clear from research studies performed over a number of years that SP-A and SP-D are critical for the maintenance of lung homeostasis and the regulation of host defense and inflammation. However, none of the surfactant preparations available for clinical use have SP-A or SP-D. A review is presented here on SP-A- and SP-D-deficiencies in lung diseases, the importance of the administration of SP-A and SP-D, and recent patents and research directions that may lead to the design of novel SP-A- or SP-D-based therapeutics and surfactants.

  10. Human Plasma Protein C

    PubMed Central

    Kisiel, Walter

    1979-01-01

    Protein C is a vitamin K-dependent protein, which exists in bovine plasma as a precursor of a serine protease. In this study, protein C was isolated to homogeneity from human plasma by barium citrate adsorption and elution, ammonium sulfate fractionation, DEAE-Sephadex chromatography, dextran sulfate agarose chromatography, and preparative polyacrylamide gel electrophoresis. Human protein C (Mr = 62,000) contains 23% carbohydrate and is composed of a light chain (Mr = 21,000) and a heavy chain (Mr = 41,000) held together by a disulfide bond(s). The light chain has an amino-terminal sequence of Ala-Asn-Ser-Phe-Leu- and the heavy chain has an aminoterminal sequence of Asp-Pro-Glu-Asp-Gln. The residues that are identical to bovine protein C are underlined. Incubation of human protein C with human α-thrombin at an enzyme to substrate weight ratio of 1:50 resulted in the formation of activated protein C, an enzyme with serine amidase activity. In the activation reaction, the apparent molecular weight of the heavy chain decreased from 41,000 to 40,000 as determined by gel electrophoresis in the presence of sodium dodecyl sulfate. No apparent change in the molecular weight of the light chain was observed in the activation process. The heavy chain of human activated protein C also contains the active-site serine residue as evidenced by its ability to react with radiolabeled diisopropyl fluorophosphate. Human activated protein C markedly prolongs the kaolin-cephalin clotting time of human plasma, but not that of bovine plasma. The amidolytic and anticoagulant activities of human activated protein C were completely obviated by prior incubation of the enzyme with diisopropyl fluorophosphate. These results indicate that human protein C, like its bovine counterpart, exists in plasma as a zymogen and is converted to a serine protease by limited proteolysis with attendant anticoagulant activity. Images PMID:468991

  11. Surfactant protein-C chromatin-bound green fluorescence protein reporter mice reveal heterogeneity of surfactant protein C-expressing lung cells.

    PubMed

    Lee, Joo-Hyeon; Kim, Jonghwan; Gludish, David; Roach, Rebecca R; Saunders, Arven H; Barrios, Juliana; Woo, Andrew Jonghan; Chen, Huaiyong; Conner, David A; Fujiwara, Yuko; Stripp, Barry R; Kim, Carla F

    2013-03-01

    The regeneration of alveolar epithelial cells is a critical aspect of alveolar reorganization after lung injury. Although alveolar Type II (AT2) cells have been described as progenitor cells for alveolar epithelia, more remains to be understood about how their progenitor cell properties are regulated. A nuclear, chromatin-bound green fluorescence protein reporter (H2B-GFP) was driven from the murine surfactant protein-C (SPC) promoter to generate SPC H2B-GFP transgenic mice. The SPC H2B-GFP allele allowed the FACS-based enrichment and gene expression profiling of AT2 cells. Approximately 97% of AT2 cells were GFP-labeled on Postnatal Day 1, and the percentage of GFP-labeled AT2 cells decreased to approximately 63% at Postnatal Week 8. Isolated young adult SPC H2B-GFP(+) cells displayed proliferation, differentiation, and self-renewal capacity in the presence of lung fibroblasts in a Matrigel-based three-dimensional culture system. Heterogeneity within the GFP(+) population was revealed, because cells with distinct alveolar and bronchiolar gene expression arose in three-dimensional cultures. CD74, a surface marker highly enriched on GFP(+) cells, was identified as a positive selection marker, providing 3-fold enrichment for AT2 cells. In vivo, GFP expression was induced within other epithelial cell types during maturation of the distal lung. The utility of the SPC H2B-GFP murine model for the identification of AT2 cells was greatest in early postnatal lungs and more limited with age, when some discordance between SPC and GFP expression was observed. In adult mice, this allele may allow for the enrichment and future characterization of other SPC-expressing alveolar and bronchiolar cells, including putative stem/progenitor cell populations.

  12. Anionic Pulmonary Surfactant Phospholipids Inhibit Inflammatory Responses from Alveolar Macrophages and U937 Cells by Binding the Lipopolysaccharide-interacting Proteins CD14 and MD-2*♦

    PubMed Central

    Kuronuma, Koji; Mitsuzawa, Hiroaki; Takeda, Katsuyuki; Nishitani, Chiaki; Chan, Edward D.; Kuroki, Yoshio; Nakamura, Mari; Voelker, Dennis R.

    2009-01-01

    Lipopolysaccharide (LPS), derived from Gram-negative bacteria, is a major cause of acute lung injury and respiratory distress syndrome. Pulmonary surfactant is secreted as a complex mixture of lipids and proteins onto the alveolar surface of the lung. Surfactant phospholipids are essential in reducing surface tension at the air-liquid interface and preventing alveolar collapse at the end of the respiratory cycle. In the present study, we determined that palmitoyl-oleoyl-phosphatidylglycerol and phosphatidylinositol, which are minor components of pulmonary surfactant, and synthetic dimyristoylphosphatidylglycerol regulated the inflammatory response of alveolar macrophages. The anionic lipids significantly inhibited LPS-induced nitric oxide and tumor necrosis factor-α production from rat and human alveolar macrophages and a U937 cell line by reducing the LPS-elicited phosphorylation of multiple intracellular protein kinases. The anionic lipids were also effective at attenuating inflammation when administered intratracheally to mice challenged with LPS. Binding studies revealed high affinity interactions between the palmitoyl-oleoyl-phosphatidylglycerol and the Toll-like receptor 4-interacting proteins CD14 and MD-2. Our data clearly identify important anti-inflammatory properties of the minor surfactant phospholipids at the environmental interface of the lung. PMID:19584052

  13. A common polymorphism in the SFTPD gene influences assembly, function, and concentration of surfactant protein D.

    PubMed

    Leth-Larsen, Rikke; Garred, Peter; Jensenius, Henriette; Meschi, Joseph; Hartshorn, Kevan; Madsen, Jens; Tornoe, Ida; Madsen, Hans O; Sørensen, Grith; Crouch, Erika; Holmskov, Uffe

    2005-02-01

    Surfactant protein D (SP-D) plays important roles in the host defense against infectious microorganisms and in regulating the innate immune response to a variety of pathogen-associated molecular pattern. SP-D is mainly expressed by type II cells of the lung, but SP-D is generally found on epithelial surfaces and in serum. Genotyping for three single-nucleotide variations altering amino acids in the mature protein in codon 11 (Met(11)Thr), 160 (Ala(160)Thr), and 270 (Ser(270)Thr) of the SP-D gene was performed and related to the SP-D levels in serum. Individuals with the Thr/Thr(11)-encoding genotype had significantly lower SP-D serum levels than individuals with the Met/Met(11) genotype. Gel filtration chromatography revealed two distinct m.w. peaks with SP-D immunoreactivity in serum from Met/Met(11)-encoding genotypes. In contrast, Thr/Thr(11) genotypes lacked the highest m.w. form. A similar SP-D size distribution was found for recombinant Met(11) and Thr(11) expressed in human embryonic kidney cells. Atomic force microscopy of purified SP-D showed that components eluting in the position of the high m.w. peak consist of multimers, dodecamers, and monomers of subunits, whereas the second peak exclusively contains monomers. SP-D from both peaks bound to mannan-coated ELISA plates. SP-D from the high m.w. peak bound preferentially to intact influenza A virus and Gram-positive and Gram-negative bacteria, whereas the monomeric species preferentially bound to isolated LPS. Our data strongly suggest that polymorphic variation in the N-terminal domain of the SP-D molecule influences oligomerization, function, and the concentration of the molecule in serum.

  14. Biophysical mimicry of lung surfactant protein B by random nylon-3 copolymers

    PubMed Central

    Dohm, Michelle T.; Mowery, Brendan P.; Czyzewski, Ann M.; Stahl, Shannon S.; Gellman, Samuel H.; Barron, Annelise E.

    2010-01-01

    Non-natural oligomers have recently shown promise as functional analogues of lung surfactant proteins B and C (SP-B and SP-C), two helical and amphiphilic proteins that are critical for normal respiration. The generation of non-natural mimics of SP-B and SP-C has previously been restricted to step-by-step, sequence-specific synthesis, which results in discrete oligomers that are intended to manifest specific structural attributes. Here we present an alternative approach to SP-B mimicry that is based on sequence-random copolymers containing cationic and lipophilic subunits. These materials, members of the nylon-3 family, are prepared by ring-opening polymerization of β-lactams. The best of the nylon-3 polymers display promising in vitro surfactant activities in a mixed lipid film. Pulsating bubble surfactometry data indicate that films containing the most surface-active polymers attain adsorptive and dynamic-cycling properties that surpass those of discrete peptides intended to mimic SP-B. Attachment of an N-terminal octadecanoyl unit to the nylon-3 copolymers – inspired by the post-translational modifications found in SP-C – affords further improvements by reducing the percent surface area compression to reach low minimum surface tension. Cytotoxic effects of the copolymers are diminished relative to that of an SP-B-derived peptide and a peptoid-based mimic. The current study provides evidence that sequence-random copolymers can mimic the in vitro surface-active behavior of lung surfactant proteins in a mixed lipid film. These findings raise the possibility that random copolymers might be useful for developing a lung surfactant replacement, which is an attractive prospect given that such polymers are easier to prepare than are sequence-specific oligomers. PMID:20481635

  15. Biophysical mimicry of lung surfactant protein B by random nylon-3 copolymers.

    PubMed

    Dohm, Michelle T; Mowery, Brendan P; Czyzewski, Ann M; Stahl, Shannon S; Gellman, Samuel H; Barron, Annelise E

    2010-06-16

    Non-natural oligomers have recently shown promise as functional analogues of lung surfactant proteins B and C (SP-B and SP-C), two helical and amphiphilic proteins that are critical for normal respiration. The generation of non-natural mimics of SP-B and SP-C has previously been restricted to step-by-step, sequence-specific synthesis, which results in discrete oligomers that are intended to manifest specific structural attributes. Here we present an alternative approach to SP-B mimicry that is based on sequence-random copolymers containing cationic and lipophilic subunits. These materials, members of the nylon-3 family, are prepared by ring-opening polymerization of beta-lactams. The best of the nylon-3 polymers display promising in vitro surfactant activities in a mixed lipid film. Pulsating bubble surfactometry data indicate that films containing the most surface-active polymers attain adsorptive and dynamic-cycling properties that surpass those of discrete peptides intended to mimic SP-B. Attachment of an N-terminal octadecanoyl unit to the nylon-3 copolymers, inspired by the post-translational modifications found in SP-C, affords further improvements by reducing the percent surface area compression to reach low minimum surface tension. Cytotoxic effects of the copolymers are diminished relative to that of an SP-B-derived peptide and a peptoid-based mimic. The current study provides evidence that sequence-random copolymers can mimic the in vitro surface-active behavior of lung surfactant proteins in a mixed lipid film. These findings raise the possibility that random copolymers might be useful for developing a lung surfactant replacement, which is an attractive prospect given that such polymers are easier to prepare than are sequence-specific oligomers.

  16. Alterations in nanoparticle protein corona by biological surfactants: impact of bile salts on β-lactoglobulin-coated gold nanoparticles.

    PubMed

    Winuprasith, Thunnalin; Chantarak, Sirinya; Suphantharika, Manop; He, Lili; McClements, David Julian

    2014-07-15

    The impact of biological surfactants (bile salts) on the protein (β-lactoglobulin) corona surrounding gold nanoparticles (200 nm) was studied using a variety of analytical techniques at pH 7: dynamic light scattering (DLS); particle electrophoresis (ζ-potential); UV-visible (UV) spectroscopy; transmission electron microscopy (TEM); and surface-enhanced Raman scattering (SERS). The bile salts adsorbed to the protein-coated nanoparticle surfaces and altered their interfacial composition, charge, and structure. SERS spectra of protein-coated nanoparticles after bile salt addition contained bands from both protein and bile salts, indicating that the protein was not fully displaced by the bile salts. UV, DLS and TEM techniques also indicated that the protein coating was not fully displaced from the nanoparticle surfaces. The impact of bile salts could be described by an orogenic mechanism: mixed interfaces were formed that consisted of islands of aggregated proteins surrounded by a sea of bile salts. This knowledge is useful for understanding the interactions of bile salts with protein-coated colloidal particles, which may be important for controlling the fate of colloidal delivery systems in the human gastrointestinal tract, or the gastrointestinal fate of ingested inorganic nanoparticles.

  17. Factors affecting protein transfer into surfactant-isooctane solution: a case study of extraction behavior of chemically modified cytochrome c.

    PubMed

    Ono, T; Goto, M

    1998-01-01

    The extraction mechanism of proteins by surfactant molecules in an organic solvent has been investigated using a chemically modified protein. We conducted guanidylation on lysine residues of cytochrome c by replacing their amino groups with homoarginine to enhance the protein-surfactant interaction. Results have shown that guanidylated cytochrome c readily forms a hydrophobic complex with dioleyl phosphoric acid (DOLPA) through hydrogen bonding between the phosphate moiety and the guanidinium groups. Although improved protein-surfactant interaction activated the formation of a hydrophobic complex at the interface, it could not improve the protein transfer in isooctane. It has been established that the protein extraction mechanism using surfactant molecules is mainly governed by two processes: formation of an interfacial complex at the oil-water interface and the subsequent solubilization of the complex into the organic phase. In addition, a kinetic study demonstrated that guanidylation of lysine accelerated the initial extraction rate of cytochrome c. This fact implies that the protein transferability from aqueous phase into organic phase depends on the protein-surfactant interaction which can be modified by protein surface engineering.

  18. No effect of ablation of surfactant protein-D on acute cerebral infarction in mice.

    PubMed

    Lambertsen, Kate L; Østergaard, Kamilla; Clausen, Bettina H; Hansen, Søren; Stenvang, Jan; Thorsen, Stine B; Meldgaard, Michael; Kristensen, Bjarne W; Hansen, Pernille B; Sorensen, Grith L; Finsen, Bente

    2014-07-19

    Crosstalk between the immune system in the brain and the periphery may contribute to the long-term outcome both in experimental and clinical stroke. Although, the immune defense collectin surfactant protein-D (SP-D) is best known for its role in pulmonary innate immunity, SP-D is also known to be involved in extrapulmonary modulation of inflammation in mice. We investigated whether SP-D affected cerebral ischemic infarction and ischemia-induced inflammatory responses in mice. The effect of SP-D was studied by comparing the size of ischemic infarction and the inflammatory and astroglial responses in SP-D knock out (KO) and wild type (WT) mice subjected to permanent middle cerebral artery occlusion. SP-D mRNA production was assessed in isolated cerebral arteries and in the whole brain by PCR, and SP-D protein in normal appearing and ischemic human brain by immunohistochemistry. Changes in plasma SP-D and TNF were assessed by ELISA and proximity ligation assay, respectively. Infarct volumetric analysis showed that ablation of SP-D had no effect on ischemic infarction one and five days after induction of ischemia. Further, ablation of SP-D had no effect on the ischemia-induced increase in TNF mRNA production one day after induction of ischemia; however the TNF response to the ischemic insult was affected at five days. SP-D mRNA was not detected in parenchymal brain cells in either naïve mice or in mice subjected to focal cerebral ischemia. However, SP-D mRNA was detected in middle cerebral artery cells in WT mice and SP-D protein in vascular cells both in normal appearing and ischemic human brain tissue. Measurements of the levels of SP-D and TNF in plasma in mice suggested that levels were unaffected by the ischemic insult. Microglial-leukocyte and astroglial responses were comparable in SP-D KO and WT mice. SP-D synthesis in middle cerebral artery cells is consistent with SP-D conceivably leaking into the infarcted area and affecting local cytokine production

  19. Determination of Lipid-Protein Interactions in Lung Surfactants Using Computer Simulations and Structural Bioinformatics.

    NASA Astrophysics Data System (ADS)

    Kaznessis, Yiannis

    2001-06-01

    Proteins are the primary components of the networks that conduct the flows of mass, energy and information in living organisms. The discovery of the principles of protein structure and function allows the development of design rules for biological activities. The microscopic nature of the operating mechanisms of protein activity, and the vast complexity of the networks of interaction call for the employment of powerful computational methodologies that can decipher the physicochemical and evolutionary principles underlying protein structure and function. An example will be presented that reflects the strength of computational approaches. Atomistic molecular dynamics simulations and structural bioinformatics tools are employed to investigate the interactions between the first 25 N-terminal residues of surfactant protein B (SP-B 1-25) and the lipid components of the lung surfactant (LS). An understanding of the molecular level interactions between the LS components is essential for the establishment of design rules for the development of synthetic LS and the treatment of the neonatal respiratory distress syndrome, which results from deficiency or inactivation of LS.

  20. Differential Effects of the Hydrophobic Surfactant Proteins on the Formation of Inverse Bicontinuous Cubic Phases

    PubMed Central

    Chavarha, Mariya; Loney, Ryan W.; Kumar, Kamlesh; Rananavare, Shankar B.; Hall, Stephen B.

    2012-01-01

    Prior studies have shown that the biological mixture of the two hydrophobic surfactant proteins, SP–B and SP–C, produces faster adsorption of the surfactant lipids to an air/water interface, and that they induce 1-palmitoyl-2-oleoyl phosphatidylethanolamine (POPE) to form inverse bicontinuous cubic phases. Previous studies have shown that SP–B has a much greater effect than SP–C on adsorption. If the two proteins induce faster adsorption and formation of the bicontinuous structures by similar mechanisms, then they should also have different abilities to form the cubic phases. To test this hypothesis, we measured small angle X-ray scattering on the individual proteins combined with POPE. SP–B replicated the dose-related ability of the combined proteins to induce the cubic phases at temperatures more than 25°C below the point at which POPE alone forms the curved inverse-hexagonal phase. With SP–C, diffraction from cubic structures was either absent or present at very low intensities only with larger amounts of protein. The correlation between the structural effects of inducing curved structures and the functional effects on the rate of adsorption fits with the model in which SP–B promotes adsorption by facilitating formation of an inversely curved, rate-limiting structure. PMID:23140329

  1. Elevated expression of surfactant proteins in newborn rats during adaptation to hyperoxia.

    PubMed

    White, C W; Greene, K E; Allen, C B; Shannon, J M

    2001-07-01

    The mechanisms whereby lung adaptation to hyperoxia occurs in the newborn period are incompletely understood. Pulmonary surfactant has been implicated in lung protection against hyperoxic injury, and elevated expression of certain surfactant proteins occurs in lungs of adult rats during adaptation to sublethal oxygen (85% O(2)). Here we report that newborn rats, which can adapt to even higher levels of hyperoxia (100% O(2)) than do adult rats, manifest changes in the lung surfactant proteins (SP), especially SP-A and SP-D. In newborn rats exposed to hyperoxia on Days 3 through 10 of life, lung messenger RNAs (mRNAs) for SP-A and SP-B gradually and progressively increased, relative to levels in age-matched, air-exposed newborns, over this 8-d period. By contrast, SP-C and SP-D mRNAs were maximally increased relative to values in simultaneously air-exposed control rats after 4 d of exposure. Lung mRNA for CC-10, a protein specific for Clara cells, was greater in hyperoxia-exposed rats than in air-exposed control rats on Day 4 of exposure, but not on other days. Lung mRNA for thyroid transcription factor (TTF)-1 was marginally increased on Days 1, 2, 4, and 6, and significantly increased on Day 8. Both SP-A and SP-D proteins were increased in lung lavage samples taken from hyperoxia-exposed newborns, relative to those taken from air-exposed controls, with the greatest increases occurring on Days 6 and 8 of exposure. However, the patterns of increase of the proteins were not identical to those of the respective mRNAs. In situ hybridization studies demonstrated increases in SP-D, and to a lesser extent in SP-A, in peripheral lung tissues from oxygen-exposed newborns. Taken together, these data indicate that specific surfactant proteins are upregulated at both the pretranslational and post-translational levels in distal lung epithelium during adaptation to hyperoxia in the newborn rat.

  2. Surfactant protein D induces immune quiescence and apoptosis of mitogen-activated peripheral blood mononuclear cells.

    PubMed

    Pandit, Hrishikesh; Thakur, Gargi; Koippallil Gopalakrishnan, Aghila Rani; Dodagatta-Marri, Eswari; Patil, Anushree; Kishore, Uday; Madan, Taruna

    2016-02-01

    Surfactant protein D (SP-D) is an integral molecule of the innate immunity secreted by epithelial cells lining the mucosal surfaces. The C-type lectin domain of SP-D performs pattern recognition functions while it binds to putative receptors on immune cells to modify cellular functions. Activation of immune cells and increased serum SP-D is observed in a range of patho-physiological conditions including infections. We speculated if SP-D can modulate systemic immune response via direct interaction with activated PBMCs. In this study, we examined interaction of a recombinant fragment of human SP-D (rhSP-D) on PHA-activated PBMCs. We report a significant downregulation of activation receptors such as TLR2, TLR4, CD11c and CD69 upon rhSP-D treatment. rhSP-D inhibited production of Th1 (TNF-α and IFN-γ) and Th17 (IL-17A) cytokines along with IL-6. Interestingly, levels of IL-2, Th2 (IL-4) and regulatory (IL-10 and TGF-β) cytokines remained unaltered. Analysis of co-stimulatory CD28 and co-inhibitory CTLA4 receptors along with their ligands CD80 and CD86 revealed a selective up-regulation of CTLA4 in the lymphocyte subset. rhSP-D induced apoptosis in the activated but not in non-activated lymphocytes. Blockade of CTLA4 inhibited rhSP-D mediated apoptosis of activated lymphocytes, confirming involvement of CTLA4. We conclude that SP-D restores immune homeostasis. It regulates expression of immunomodulatory receptors and cytokines, which is followed by induction of apoptosis in activated lymphocytes. These findings suggest a critical role of SP-D in immune surveillance against activated immune cells.

  3. Biosurfactants and surfactants interacting with membranes and proteins: Same but different?

    PubMed

    Otzen, Daniel E

    2017-04-01

    Biosurfactants (BS) are surface-active molecules produced by microorganisms. For several decades they have attracted interest as promising alternatives to current petroleum-based surfactants. Aside from their green profile, they have remarkably low critical micelle concentrations, reduce the air/water surface tension to very low levels and are excellent emulsifiers, all of which make them comparable or superior to their synthetic counterparts. These remarkable physical properties derive from their more complex chemical structures in which hydrophilic and hydrophobic regions are not as clearly separated as chemical surfactants but have a more mosaic distribution of polarity as well as branched or circular structures. This allows the lipopeptide surfactin to adopt spherical structures to facilitate dense packing at interfaces. They are also more complex. Glycolipid BS, e.g. rhamnolipids (RL) and sophorolipids, are produced biologically as mixtures which vary in the size and saturation of the hydrophobic region as well as modifications in the hydrophilic headgroup, such as the number of sugar groups and different levels of acetylation, leading to variable surface-active properties. Their amphiphilicity allows RL to insert easily into membranes at sub-cmc concentrations to modulate membrane structure and extract lipopolysaccharides, leading to extensive biofilm remodeling in vivo, sometimes in collaboration with hydrophobic RL precursors. Thanks to their mosaicity, even anionic BS like RL only bind weakly to proteins and show much lower denaturing potency, even supporting membrane protein refolding. Nevertheless, they can promote protein degradation by proteases e.g. by neutralizing positive charges, which together with their biofilm-combating properties makes them very promising detergent surfactants. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.

  4. Effect of Lung Surfactant Protein SP-C and SP-C-Promoted Membrane Fragmentation on Cholesterol Dynamics.

    PubMed

    Roldan, Nuria; Nyholm, Thomas K M; Slotte, J Peter; Pérez-Gil, Jesús; García-Álvarez, Begoña

    2016-10-18

    To allow breathing and prevent alveolar collapse, lung surfactant (LS) develops a complex membranous system at the respiratory surface. LS is defined by a specific protein and lipid composition, including saturated and unsaturated phospholipid species and cholesterol. Surfactant protein C (SP-C) has been suggested to be an essential element for sustaining the presence of cholesterol in surfactant without functional impairment. In this work, we used a fluorescent sterol-partitioning assay to assess the effect of the surfactant proteins SP-B and SP-C on cholesterol distribution in membranes. Our results suggest that in the LS context, the combined action of SP-B and SP-C appears to facilitate cholesterol dynamics, whereas SP-C does not seem to establish a direct interaction with cholesterol that could increase the partition of free cholesterol into membranes. Interestingly, SP-C exhibits a membrane-fragmentation behavior, leading to the conversion of large unilamellar vesicles into highly curved vesicles ∼25 nm in diameter. Sterol partition was observed to be sensitive to the bending of bilayers, indicating that the effect of SP-C to mobilize cholesterol could be indirectly associated with SP-C-mediated membrane remodeling. Our results suggest a potential role for SP-C in generating small surfactant structures that may participate in cholesterol mobilization and pulmonary surfactant homeostasis at the alveolar interfaces. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Protein-surfactant interactions at hydrophobic interfaces studied with total internal reflection fluorescence correlation spectroscopy (TIR-FCS).

    PubMed

    Sonesson, Andreas W; Blom, Hans; Hassler, Kai; Elofsson, Ulla M; Callisen, Thomas H; Widengren, Jerker; Brismar, Hjalmar

    2008-01-15

    The aim of this work was to study the dynamics of proteins near solid surfaces in the presence or absence of competing surfactants by means of total internal reflection fluorescence correlation spectroscopy (TIR-FCS). Two different proteins were studied, bovine serum albumin (BSA) and Thermomyces lanuginosus lipase (TLL). A nonionic/anionic (C12E6/LAS) surfactant composition was used to mimic a detergent formulation and the surfaces used were C18 terminated glass. It was found that with increasing surfactant concentrations the term in the autocorrelation function (ACF) representing surface binding decreased. This suggested that the proteins were competed off the hydrophobic surface by the surfactant. When fitting the measured ACF to a model for surface kinetics, it was seen that with raised C12E6/LAS concentration, the surface interaction rate increased for both proteins. Under these experimental conditions this meant that the time the protein was bound to the surface decreased. At 10 microM C12E6/LAS the surface interaction was not visible for BSA, whereas it was still distinguishable in the ACF for TLL. This indicated that TLL had a higher affinity than BSA for the C18 surface. The study showed that TIR-FCS provides a useful tool to quantify the surfactant effect on proteins adsorption.

  6. Protein-Protein Interaction between Surfactant Protein D and DC-SIGN via C-Type Lectin Domain Can Suppress HIV-1 Transfer.

    PubMed

    Dodagatta-Marri, Eswari; Mitchell, Daniel A; Pandit, Hrishikesh; Sonawani, Archana; Murugaiah, Valarmathy; Idicula-Thomas, Susan; Nal, Béatrice; Al-Mozaini, Maha M; Kaur, Anuvinder; Madan, Taruna; Kishore, Uday

    2017-01-01

    Surfactant protein D (SP-D) is a soluble C-type lectin, belonging to the collectin (collagen-containing calcium-dependent lectin) family, which acts as an innate immune pattern recognition molecule in the lungs at other mucosal surfaces. Immune regulation and surfactant homeostasis are salient functions of SP-D. SP-D can bind to a range of viral, bacterial, and fungal pathogens and trigger clearance mechanisms. SP-D binds to gp120, the envelope protein expressed on HIV-1, through its C-type lectin or carbohydrate recognition domain. This is of importance since SP-D is secreted by human mucosal epithelial cells and is present in the female reproductive tract, including vagina. Another C-type lectin, dendritic cell (DC)-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), present on the surface of the DCs, also binds to HIV-1 gp120 and facilitates viral transfer to the lymphoid tissues. DCs are also present at the site of HIV-1 entry, embedded in vaginal or rectal mucosa. In the present study, we report a direct protein-protein interaction between recombinant forms of SP-D (rfhSP-D) and DC-SIGN via their C-type lectin domains. Both SP-D and DC-SIGN competed for binding to immobilized HIV-1 gp120. Pre-incubation of human embryonic kidney cells expressing surface DC-SIGN with rfhSP-D significantly inhibited the HIV-1 transfer to activated peripheral blood mononuclear cells. In silico analysis revealed that SP-D and gp120 may occupy same sites on DC-SIGN, which may explain the reduced transfer of HIV-1. In summary, we demonstrate, for the first time, that DC-SIGN is a novel binding partner of SP-D, and this interaction can modulate HIV-1 capture and transfer to CD4(+) T cells. In addition, the present study also reveals a novel and distinct mechanism of host defense by SP-D against HIV-1.

  7. Microstructure of beta-lactoglobulin-stabilized emulsions containing non-ionic surfactant and excess free protein: influence of heating.

    PubMed

    Kerstens, Sven; Murray, Brent S; Dickinson, Eric

    2006-04-01

    The influence of the non-ionic surfactant Tween 20 on the microstructure of beta-lactoglobulin-stabilized emulsions with substantial excess free protein present was investigated via confocal microscopy. The separate distributions of oil droplets and protein were determined using two different fluorescent dyes. In the emulsion at ambient temperature the excess protein and protein-coated oil droplets were associated together in a reversibly flocculated state. The pore-size distribution of the initial flocculated emulsion was found to depend on the surfactant/protein ratio R, and at higher values of R the system became more inhomogeneous due to areas of local phase separation. Evidence for competitive displacement of protein from the oil-water interface by surfactant was obtained only on heating (from 25 to 85 degrees C) during the process of formation of a heat-set emulsion gel. By measuring fluorescence intensities of the protein dye inside and outside of the oil-droplet-rich areas, we have been able to quantify the evolving protein distribution during the thermal processing. The results are discussed in relation to previous work on the competitive adsorption of proteins and surfactants in emulsions and the effect of emulsion droplets on the rheology of heat-set protein gels.

  8. Evaluation of the Effectiveness of Surfactants and Denaturants to Elute and Denature Adsorbed Protein on Different Surface Chemistries.

    PubMed

    Thyparambil, Aby A; Wei, Yang; Latour, Robert A

    2015-11-03

    The elution and/or denaturation of proteins from material surfaces by chemical excipients such as surfactants and denaturants is important for numerous applications including medical implant reprocessing, bioanalyses, and biodefense. The objective of this study was to develop and apply methods to quantitatively assess how surface chemistry and adsorption conditions influence the effectiveness of three commonly used surfactants (sodium dodecyl sulfate, n-octyl-β-d-glucoside, and 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate) and two denaturants (guanidium hydrochloride and urea) to elute protein (hen egg white lysozyme and bovine pancreatic ribonuclease A) from three different surface chemistries (silica glass, poly(methyl methacrylate), and high-density polyethylene). The structure and bioactivity of residual protein on the surface following elution were characterized using circular dichroism spectropolarimetry and enzyme assays to assess the extent of protein denaturation. Our results indicate that the denaturants were generally more effective than the surfactants in removing the adsorbed proteins from each type of surface. Also, the denaturing capacity of these excipients on the residual proteins on the surfaces was distinctly different from their influence on the proteins in solution and was unique for each of the adsorption conditions. Taken altogether, these results reveal that the effectiveness of surfactants and denaturants to elute and denature adsorbed protein is significantly influenced by surface chemistry and the conditions from which the protein was adsorbed. These results provide a basis for the selection, design, and further development of chemical agents for protein elution and surface decontamination.

  9. Nonlinear Surface Dilatational Rheology and Foaming Behavior of Protein and Protein Fibrillar Aggregates in the Presence of Natural Surfactant.

    PubMed

    Wan, Zhili; Yang, Xiaoquan; Sagis, Leonard M C

    2016-04-19

    The surface and foaming properties of native soy glycinin (11S) and its heat-induced fibrillar aggregates, in the presence of natural surfactant steviol glycoside (STE), were investigated and compared at pH 7.0 to determine the impact of protein structure modification on protein-surfactant interfacial interactions. The adsorption at, and nonlinear dilatational rheological behavior of, the air-water interface were studied by combining drop shape analysis tensiometry, ellipsometry, and large-amplitude oscillatory dilatational rheology. Lissajous plots of surface pressure versus deformation were used to analyze the surface rheological response in terms of interfacial microstructure. The heat treatment generates a mixture of long fibrils and unconverted peptides. The presence of small peptides in 11S fibril samples resulted in a faster adsorption kinetics than that of native 11S. The addition of STE affected the adsorption of 11S significantly, whereas no apparent effect on the adsorption of the 11S fibril-peptide system was observed. The rheological response of interfaces stabilized by 11S-STE mixtures also differed significantly from the response for 11S fibril-peptide-STE mixtures. For 11S, the STE reduces the degree of strain hardening in extension and increases strain hardening in compression, suggesting the interfacial structure may change from a surface gel to a mixed phase of protein patches and STE domains. The foams generated from the mixtures displayed comparable foam stability to that of pure 11S. For 11S fibril-peptide mixtures STE only significantly affects the response in extension, where the degree of strain softening is decreased compared to the pure fibril-peptide system. The foam stability of the fibril-peptide system was significantly reduced by STE. These findings indicate that fibrillization of globular proteins could be a potential strategy to modify the complex surface and foaming behaviors of protein-surfactant mixtures.

  10. Recombinant human milk proteins.

    PubMed

    Lönnerdal, Bo

    2006-01-01

    Human milk provides proteins that benefit newborn infants. They not only provide amino acids, but also facilitate the absorption of nutrients, stimulate growth and development of the intestine, modulate immune function, and aid in the digestion of other nutrients. Breastfed infants have a lower prevalence of infections than formula-fed infants. Since many women in industrialized countries choose not to breastfeed, and an increasing proportion of women in developing countries are advised not to breastfeed because of the risk of HIV transmission, incorporation of recombinant human milk proteins into infant foods is likely to be beneficial. We are expressing human milk proteins known to have anti-infective activity in rice. Since rice is a normal constituent of the diet of infants and children, limited purification of the proteins is required. Lactoferrin has antimicrobial and iron-binding activities. Lysozyme is an enzyme that is bactericidal and also acts synergistically with lactoferrin. These recombinant proteins have biological activities identical to their native counterparts. They are equally resistant to heat processing, which is necessary for food applications, and to acid and proteolytic enzymes which are needed to maintain their biological activity in the gastrointestinal tract of infants. These recombinant human milk proteins may be incorporated into infant formulas, baby foods and complementary foods, and used with the goal to reduce infectious diseases.

  11. Hybrid Fluorinated and Hydrogenated Double-Chain Surfactants for Handling Membrane Proteins.

    PubMed

    Legrand, Fréderic; Breyton, Cécile; Guillet, Pierre; Ebel, Christine; Durand, Grégory

    2016-01-15

    Two hybrid fluorinated double-chain surfactants with a diglucosylated polar head were synthesized. The apolar domain consists of a perfluorohexyl main chain and a butyl hydrogenated branch as a side chain. They were found to self-assemble into small micelles at low critical micellar concentrations, demonstrating that the short branch increases the overall hydrophobicity while keeping the length of the apolar domain short. They were both able to keep the membrane protein bacteriorhodopsin stable, one of them for at least 3 months.

  12. Surfactant Protein C-associated interstitial lung disease; three different phenotypes of the same SFTPC mutation.

    PubMed

    Salerno, Teresa; Peca, Donatella; Menchini, Laura; Schiavino, Alessandra; Boldrini, Renata; Esposito, Fulvio; Danhaive, Olivier; Cutrera, Renato

    2016-02-29

    Monoallelic mutations of the Surfactant Protein C gene (SFTPC) are associated with Interstitial Lung Disease in children. I73T is the most common mutation, accounting for 30 % of all cases reported. We describe three patients carrying the same I73T SPC mutation with very different phenotypes, clinical course (ranging from mild respiratory symptoms to death for respiratory failure) and outcome. The disease mechanisms associated with SP-C mutations suggest that the combination of individual genetic background and environmental factors contribute largely to the wide variability of clinical expression. Infants, children and adults with ILD of unknown etiology should be investigated for SP-C genetic abnormalities.

  13. Surfactant-free purification of membrane proteins with intact native membrane environment.

    PubMed

    Jamshad, Mohammed; Lin, Yu-Pin; Knowles, Timothy J; Parslow, Rosemary A; Harris, Craig; Wheatley, Mark; Poyner, David R; Bill, Roslyn M; Thomas, Owen R T; Overduin, Michael; Dafforn, Tim R

    2011-06-01

    In order to study the structure and function of a protein, it is generally required that the protein in question is purified away from all others. For soluble proteins, this process is greatly aided by the lack of any restriction on the free and independent diffusion of individual protein particles in three dimensions. This is not the case for membrane proteins, as the membrane itself forms a continuum that joins the proteins within the membrane with one another. It is therefore essential that the membrane is disrupted in order to allow separation and hence purification of membrane proteins. In the present review, we examine recent advances in the methods employed to separate membrane proteins before purification. These approaches move away from solubilization methods based on the use of small surfactants, which have been shown to suffer from significant practical problems. Instead, the present review focuses on methods that stem from the field of nanotechnology and use a range of reagents that fragment the membrane into nanometre-scale particles containing the protein complete with the local membrane environment. In particular, we examine a method employing the amphipathic polymer poly(styrene-co-maleic acid), which is able to reversibly encapsulate the membrane protein in a 10 nm disc-like structure ideally suited to purification and further biochemical study.

  14. Colloidally Stable and Surfactant-Free Protein-Coated Gold Nanorods in Biological Media

    PubMed Central

    2015-01-01

    In this work, we investigate the ligand exchange of cetyltrimethylammonium bromide (CTAB) with bovine serum albumin for gold nanorods. We demonstrate by surface-enhanced Raman scattering measurements that CTAB, which is used as a shape-directing agent in the particle synthesis, is completely removed from solution and particle surface. Thus, the protein-coated nanorods are suitable for bioapplications, where cationic surfactants must be avoided. At the same time, the colloidal stability of the system is significantly increased, as evidenced by spectroscopic investigation of the particle longitudinal surface plasmon resonance, which is sensitive to aggregation. Particles are stable at very high concentrations (cAu 20 mg/mL) in biological media such as phosphate buffer saline or Dulbecco’s Modified Eagle’s Medium and over a large pH range (2–12). Particles can even be freeze-dried (lyophilized) and redispersed. The protocol was applied to gold nanoparticles with a large range of aspect ratios and sizes with main absorption frequencies covering the visible and the near-IR spectral range from 600 to 1100 nm. Thus, these colloidally stable and surfactant-free protein-coated nanoparticles are of great interest for various plasmonic and biomedical applications. PMID:25706195

  15. Numerical validation of IFT in the analysis of protein-surfactant complexes with SAXS and SANS.

    PubMed

    Franklin, J Matthew; Surampudi, Lalitanand N; Ashbaugh, Henry S; Pozzo, Danilo C

    2012-08-28

    The use of the indirect Fourier transform methods for evaluating structural parameters directly in real space with small-angle scattering measurements is validated for the analysis of protein-surfactant complexes. An efficient Monte Carlo approach rapidly generates in silico structures based on a realistic pearl-necklace model for denatured proteins decorated with surfactant micelles. Corresponding scattering profiles are calculated and averaged over a large number of possible configurations for each structure. IFT algorithms are then used to calculate the corresponding pair-distance distribution function, and structural information is extracted directly without model fitting. The extracted parameters are compared and correlated with the known structure of the simulated complexes to assess the quality of the information that can be reliably obtained from these systems. The average extension, nearest-neighbor micelle distance, and average number of associated micelles are all accurately extracted through IFT calculations. Improved and simple approaches to reliably extract the average extension of the complex and the total number of associated micelles are presented.

  16. Low Levels of Exhaled Surfactant Protein A Associated With BOS After Lung Transplantation

    PubMed Central

    Ericson, Petrea A.; Mirgorodskaya, Ekaterina; Hammar, Oscar S.; Viklund, Emilia A.; Almstrand, Ann-Charlotte R.; Larsson, Per J-W.; Riise, Gerdt C.; Olin, Anna-Carin

    2016-01-01

    Background There is no clinically available marker for early detection or monitoring of chronic rejection in the form of bronchiolitis obliterans syndrome (BOS), the main long-term complication after lung transplantation. Sampling and analysis of particles in exhaled air is a valid, noninvasive method for monitoring surfactant protein A (SP-A) and albumin in the distal airways. Methods We asked whether differences in composition of exhaled particles can be detected when comparing stable lung transplant recipients (LTRs) (n = 26) with LTRs who develop BOS (n = 7). A comparison between LTRs and a matching group of healthy controls (n = 33) was also conducted. Using a system developed in-house, particles were collected from exhaled air by the principal of inertial impaction before chemical analysis by immunoassays. Results Surfactant protein A in exhaled particles and the SP-A/albumin ratio were lower (P = 0.002 and P = 0.0001 respectively) in the BOS group compared to the BOS-free group. LTRs exhaled higher amount of particles (P < 0.0001) and had lower albumin content (P < 0.0001) than healthy controls. Conclusions We conclude that low levels of SP-A in exhaled particles are associated with increased risk of BOS in LTRs. The possibility that this noninvasive method can be used to predict BOS onset deserves further study with prospective and longitudinal approaches. PMID:27795995

  17. Calcium ions as "miscibility switch": colocalization of surfactant protein B with anionic lipids under absolute calcium free conditions.

    PubMed

    Saleem, Mohammed; Meyer, Michaela C; Breitenstein, Daniel; Galla, Hans-Joachim

    2009-07-22

    One of the main determinants of lung surfactant function is the complex interplay between its protein and lipid components. The lipid specificity of surfactant protein B (SP-B), however, and the protein's ability to selectively squeeze out lipids, has remained contradictory. In this work we present, for the first time to our knowledge, by means of time-of-flight secondary ion mass spectrometry chemical imaging, a direct evidence for colocalization of SP-B as well as its model peptide KL(4) with negatively charged dipalmitoylphosphatidylglycerol under absolute calcium free conditions. Our results prove that protein/lipid localization depends on the miscibility of all surfactant components, which itself is influenced by subphase ionic conditions. In contrast to our earlier studies reporting SP-B/KL(4) colocalization with zwitterionic dipalmitoylphosphatidylcholine, in the presence of even the smallest traces of calcium, we finally evidence an apparent reversal of protein/lipid mixing behavior upon calcium removal with ethylene diamine tetraacetic acid. In addition, scanning force microscopy measurements reveal that by depleting the subphase from calcium ions the protrusion formation ability of SP-B or KL(4) is not hampered. However, in the case of KL(4), distinct differences in protrusion morphology and height are visible. Our results support the idea that calcium ions act as a "miscibility switch" in surfactant model systems and probably are one of the major factors steering lipid/protein mixing behavior as well as influencing the protein's protrusion formation ability.

  18. Proteomic and Lipidomic Analysis of Nanoparticle Corona upon Contact with Lung Surfactant Reveals Differences in Protein, but Not Lipid Composition.

    PubMed

    Raesch, Simon Sebastian; Tenzer, Stefan; Storck, Wiebke; Rurainski, Alexander; Selzer, Dominik; Ruge, Christian Arnold; Perez-Gil, Jesus; Schaefer, Ulrich Friedrich; Lehr, Claus-Michael

    2015-12-22

    Pulmonary surfactant (PS) constitutes the first line of host defense in the deep lung. Because of its high content of phospholipids and surfactant specific proteins, the interaction of inhaled nanoparticles (NPs) with the pulmonary surfactant layer is likely to form a corona that is different to the one formed in plasma. Here we present a detailed lipidomic and proteomic analysis of NP corona formation using native porcine surfactant as a model. We analyzed the adsorbed biomolecules in the corona of three NP with different surface properties (PEG-, PLGA-, and Lipid-NP) after incubation with native porcine surfactant. Using label-free shotgun analysis for protein and LC-MS for lipid analysis, we quantitatively determined the corona composition. Our results show a conserved lipid composition in the coronas of all investigated NPs regardless of their surface properties, with only hydrophilic PEG-NPs adsorbing fewer lipids in total. In contrast, the analyzed NP displayed a marked difference in the protein corona, consisting of up to 417 different proteins. Among the proteins showing significant differences between the NP coronas, there was a striking prevalence of molecules with a notoriously high lipid and surface binding, such as, e.g., SP-A, SP-D, DMBT1. Our data indicate that the selective adsorption of proteins mediates the relatively similar lipid pattern in the coronas of different NPs. On the basis of our lipidomic and proteomic analysis, we provide a detailed set of quantitative data on the composition of the surfactant corona formed upon NP inhalation, which is unique and markedly different to the plasma corona.

  19. Prognostic significance of surfactant protein A, surfactant protein D, Clara cell protein 16, S100 protein, trefoil factor 3, and prostatic secretory protein 94 in idiopathic pulmonary fibrosis, sarcoidosis, and chronic pulmonary obstructive disease.

    PubMed

    Doubková, Martina; Karpíšek, Michal; Mazoch, Jiri; Skřičková, Jana; Doubek, Michael

    2016-10-07

    Identification of serum and bronchoalveolar lavage fluid (BALF) biomarkers may facilitate diagnosis and prognostication in various lung disorders. Serum and BALF levels of surfactant protein A (SP-A), surfactant protein D (SP-D), Clara cell protein 16 (CC16), S100 protein, trefoil factor 3 (TFF3), and prostatic secretory protein 94 (PSP94) were evaluated in 94 consecutive patients (idiopathic pulmonary fibrosis (IPF; n=18), sarcoidosis (n=25), chronic obstructive pulmonary disease (COPD; n=51)), and in 155 healthy controls. Biomarkers were measured at diagnosis and compared with disease characteristics. Both uniparametric and multiparametric analyses were used. Seven significant correlations were found: 1) BALF PSP94 level correlated with prognosis of sarcoidosis (P=0.035); 2) BALF SP-D level with pulmonary functions in IPF (P=0.032); 3) BALF SP-D and TFF3 with IPF mortality (P=0.049 and 0.017, respectively); 4) serum TFF3 level with COPD mortality (P=0.006,); 5) serum SP-A with pulmonary functions impairment in IPF (P=0.011); 6) serum SP-D level was associated with HRCT interstitial score in IPF (P=0.0346); and 7) serum SP-A was associated with staging of COPD according to spirometry (P<0.001). Moreover, our analysis showed that some biomarker levels differed significantly among the diseases: 1) BALF SP-D level differed between sarcoidosis and IPF; 2) serum SP-A level differed among IPF, sarcoidosis, COPD and was also different from healthy controls; 3) serum S100A6, S100A11 levels differed among IPF, sarcoidosis, COPD from healthy controls 4) serum SP-D, CC16, TFF-3 levels distinguished IPF patients from healthy controls; and 5) serum CC16, TFF3, PSP94 distinguished COPD patients from healthy controls. Our study shows that some of selected biomarkers should have prognostic value in the analysed lung disorders. On the other hand, these biomarkers do not appear to be unequivocally suitable for differential diagnosis of these disorders.

  20. Pulmonary surfactant protein SP-D opsonises carbon nanotubes and augments their phagocytosis and subsequent pro-inflammatory immune response.

    PubMed

    Pondman, Kirsten M; Paudyal, Basudev; Sim, Robert B; Kaur, Anuvinder; Kouser, Lubna; Tsolaki, Anthony G; Jones, Lucy A; Salvador-Morales, Carolina; Khan, Haseeb A; Ten Haken, Bennie; Stenbeck, Gudrun; Kishore, Uday

    2017-01-19

    Carbon nanotubes (CNTs) are increasingly being developed for use in biomedical applications, including drug delivery. One of the most promising applications under evaluation is in treating pulmonary diseases such as tuberculosis. Once inhaled or administered, the nanoparticles are likely to be recognised by innate immune molecules in the lungs such as hydrophilic pulmonary surfactant proteins. Here, we set out to examine the interaction between surfactant protein D (SP-D), a key lung pattern recognition molecule and CNTs, and possible downstream effects on the immune response via macrophages. We show here that a recombinant form of human SP-D (rhSP-D) bound to oxidised and carboxymethyl cellulose (CMC) coated CNTs via its C-type lectin domain and enhanced phagocytosis by U937 and THP-1 macrophages/monocytic cell lines, together with an increased pro-inflammatory response, suggesting that sequestration of SP-D by CNTs in the lungs can trigger an unwanted and damaging immune response. We also observed that functionalised CNTs, opsonised with rhSP-D, continued to activate complement via the classical pathway, suggesting that C1q, which is the recognition sub-component of the classical pathway, and SP-D have distinct pattern recognition sites on the CNTs. Consistent with our earlier reports, complement deposition on the rhSP-D opsonised CNTs led to dampening of the pro-inflammatory immune response by THP-1 macrophages, as evident from qPCR, cytokine array and NF-κB nuclear translocation analyses. This study highlights the importance of understanding the interplay between innate immune humoral factors including complement in devising nanoparticle based drug delivery strategies.

  1. Elevation of serum surfactant protein-A with exacerbation in canine eosinophilic pneumonia

    PubMed Central

    SONE, Katsuhito; AKIYOSHI, Hideo; HAYASHI, Akiyoshi; OHASHI, Fumihito

    2015-01-01

    A 7-year-old female spayed Labrador Retriever was admitted to our hospital, because of cough with sputum. She was diagnosed as having canine eosinophilic pneumonia (CEP) based on blood eosinophilia, bronchial pattern and infiltrative shadow observed on thoracic radiography, bronchiolar obstruction and air-space consolidation predominantly affecting the right caudal lung lobe, as revealed by computed tomography (CT), predominant eosinophils in CT-guided fine needle aspiration and the clinical course. She exhibited a good response to steroid therapy, and the cough disappeared. The serum surfactant protein (SP)-A level increased with the aggravated symptom and decreased markedly with improvement compared with the C-reactive protein level and the number of eosinophils. We propose that serum SP-A level is a good biomarker in CEP. PMID:26300438

  2. Micelle-mediated extraction of elderberry blossom by whey protein and naturally derived surfactants.

    PubMed

    Śliwa, Karolina; Tomaszkiewicz-Potępa, Anna; Sikora, Elżbieta; Ogonowski, Jan

    2013-01-01

    Classical methods of the extraction of active ingredients from the plant material are expensive, complicated and often environmentally unfriendly. The micelle-mediated extraction method (MME) seems to be a good alternative. In this work, extractions of elderberry blossoms (Flos Sambuci) were performed using MME methods. Several popular surfactants and whey protein concentrate (WPC) was applied in the process. The obtained results were compared with those obtained in extraction by means of water. Antioxidant properties of the extracts were analyzed by using two different methods: reaction with di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH) reagent and Follin's method. Furthermore, the flavonoid content in the extracts was determined. The results confirmed that the MME method with using whey protein might be an alternative method for obtaining, rich in natural antioxidants, plant extracts.

  3. Equilibrium and dynamic interfacial properties of protein/ionic-liquid-type surfactant solutions at the decane/water interface.

    PubMed

    Cao, Chong; Lei, Jinmei; Zhang, Lu; Du, Feng-Pei

    2014-11-25

    The interfacial behavior of β-casein and lysozyme solutions has been investigated in the presence of an ionic liquid-type imidazolium surfactant ([C16mim]Br) at the decane/water interface. The dynamic dilational properties of the protein/surfactant solutions are investigated by the oscillating drop method and interfacial tension relaxation method. The interfacial tension isotherms for the mixed adsorption layers indicate that the increased addition of [C16mim]Br to a pure protein changes the properties of the complex formed at the decane/water interface. Whereas the interfacial tension data of the protein/surfactant mixed layers do not clearly show differences with changing bulk composition, the dilational rheology provides undoubted evidence that the structure and, in particular, the dynamics of the adsorbed layers depend on the bulk surfactant concentration. The experiment data for β-casein/[C16mim]Br solutions indicate that at higher bulk [C16mim]Br concentrations, β-casein in the interfacial layer is subject to conformational changes, where it gives space to [C16mim]Br molecules in the form of coadsorb rather than replacement; in contrast, in lysozyme/[C16mim]Br solutions some lysozyme molecules desorb from the interface due to the competitive adsorption of free [C16mim]Br molecules. Experimental results related to the interfacial dilational properties of the protein/surfactant solutions show that the dilational modulus turns out to be more sensitive to the conformation of protein/surfactant mixture at the liquid interface than the interfacial tension.

  4. Ellipsometric study of the displacement of milk proteins from the oil-water interface by the non-ionic surfactant C(10)E(8).

    PubMed

    Day, James P R; Pudney, Paul D A; Bain, Colin D

    2010-05-14

    Ellipsometry was employed to study the adsorption to the hexadecane-water interface of the simple non-ionic hydrocarbon surfactant C(10)E(8) and the two milk proteins beta-casein and beta-lactoglobulin, as well as the competitive adsorption of each protein with the surfactant. The interfacial excess of the pure surfactant was determined by tensiometry. Modelling of the ellipsometric response of the pure surfactant monolayer shows that the polyethylene oxide headgroups are hydrated with approximately 40% of the headgroup layer occupied by water. Adsorbed layers of C(10)E(8) at the hexadecane-water, triolein-water and air-water interfaces are structurally similar. Both proteins form dense layers at the oil-water interface with a volume fraction of water in the protein film of <60%. Competitive adsorption between the surfactant and protein was investigated in two ways: co-adsorption from solution or injection of surfactant solution into the subphase of a preformed protein film. The long-time ellipsometric response was independent of the preparation procedure. The protein and surfactant films at oil-water interfaces generate ellipticities of opposite sign, which enabled direct determination of the concentration at which the surfactant completely displaces protein from the interface.

  5. Small surfactant-like peptides can drive soluble proteins into active aggregates

    PubMed Central

    2012-01-01

    Background Inactive protein inclusion bodies occur commonly in Escherichia coli (E. coli) cells expressing heterologous proteins. Previously several independent groups have found that active protein aggregates or pseudo inclusion bodies can be induced by a fusion partner such as a cellulose binding domain from Clostridium cellulovorans (CBDclos) when expressed in E. coli. More recently we further showed that a short amphipathic helical octadecapeptide 18A (EWLKAFYEKVLEKLKELF) and a short beta structure peptide ELK16 (LELELKLKLELELKLK) have a similar property. Results In this work, we explored a third type of peptides, surfactant-like peptides, for performing such a "pulling-down" function. One or more of three such peptides (L6KD, L6K2, DKL6) were fused to the carboxyl termini of model proteins including Aspergillus fumigatus amadoriase II (AMA, all three peptides were used), Bacillus subtilis lipase A (LipA, only L6KD was used, hereinafter the same), Bacillus pumilus xylosidase (XynB), and green fluorescent protein (GFP), and expressed in E. coli. All fusions were found to predominantly accumulate in the insoluble fractions, with specific activities ranging from 25% to 92% of the native counterparts. Transmission electron microscopic (TEM) and confocal fluorescence microscopic analyses confirmed the formation of protein aggregates in the cell. Furthermore, binding assays with amyloid-specific dyes (thioflavin T and Cong red) to the AMA-L6KD aggregate and the TEM analysis of the aggregate following digestion with protease K suggested that the AMA-L6KD aggregate may contain structures reminiscent of amyloids, including a fibril-like structure core. Conclusions This study shows that the surfactant-like peptides L6KD and it derivatives can act as a pull-down handler for converting soluble proteins into active aggregates, much like 18A and ELK16. These peptide-mediated protein aggregations might have important implications for protein aggregation in vivo, and can be

  6. Adsorption of the natural protein surfactant Rsn-2 onto liquid interfaces.

    PubMed

    Brandani, Giovanni B; Vance, Steven J; Schor, Marieke; Cooper, Alan; Kennedy, Malcolm W; Smith, Brian O; MacPhee, Cait E; Cheung, David L

    2017-03-22

    To stabilize foams, droplets and films at liquid interfaces a range of protein biosurfactants have evolved in nature. Compared to synthetic surfactants, these combine surface activity with biocompatibility and low solution aggregation. One recently studied example is Rsn-2, a component of the foam nest of the frog Engystomops pustulosus, which has been predicted to undergo a clamshell-like opening transition at the air-water interface. Using atomistic molecular dynamics simulations and surface tension measurements we study the adsorption of Rsn-2 onto air-water and cyclohexane-water interfaces. The protein adsorbs readily at both interfaces, with adsorption mediated by the hydrophobic N-terminus. At the cyclohexane-water interface the clamshell opens, due to the favourable interaction between hydrophobic residues and cyclohexane molecules and the penetration of cyclohexane molecules into the protein core. Simulations of deletion mutants showed that removal of the N-terminus inhibits interfacial adsorption, which is consistent with the surface tension measurements. Deletion of the hydrophilic C-terminus also affects adsorption, suggesting that this plays a role in orienting the protein at the interface. The characterisation of the interfacial behaviour gives insight into the factors that control the interfacial adsorption of proteins, which may inform new applications of this and similar proteins in areas including drug delivery and food technology and may also be used in the design of synthetic molecules showing similar changes in conformation at interfaces.

  7. Surfactant changes during experimental pneumocystosis are related to Pneumocystis development.

    PubMed

    Aliouat, E M; Escamilla, R; Cariven, C; Vieu, C; Mullet, C; Dei-Cas, E; Prévost, M C

    1998-03-01

    Pneumocystosis-related surfactant changes have been reported in both humans and corticosteroid-treated experimental hosts. As corticosteroids induce an increase in pulmonary surfactant, some findings could be considered as controversial. The aim of this study was to investigate whether the surfactant composition changes during experimental pneumocystosis were related to the Pneumocystis development. In this work two corticosteroid-untreated animal models were used: rabbits, which develop spontaneous pneumocystosis at weaning; and severe combined immunodeficiency mice, which were intranasally inoculated with Pneumocystis carinii. Surfactant phospholipid and protein content was explored by bronchoalveolar lavage. The in vitro effect of surfactant on P. carinii growth was also explored. In the two models, the surfactant phospholipid/protein ratio was significantly increased, whereas parasite rates were low. This ratio decreases with the slope increase of the parasite growth curve. These early surfactant changes suggested that Pneumocystis proliferation requires alveolar lining fluid changes, and that normal surfactant is not suitable for parasite development. In this way, in vitro experiments presented here have revealed an inhibitory effect of synthetic or seminatural surfactants on the P. carinii growth. Further studies are needed to determine how Pneumocystis induces the reported early modifications of the surfactant, and why the parasite development is inhibited by pulmonary surfactant.

  8. Effect of silk protein surfactant on silk degumming and its properties.

    PubMed

    Wang, Fei; Cao, Ting-Ting; Zhang, Yu-Qing

    2015-10-01

    The silk protein surfactant (SPS) first used as a silk degumming agent in this study is an amino acid-type anionic surfactant that was synthesized using silk fibroin amino acids and lauroyl chloride. We studied it systematically in comparison with the traditional degumming methods such as sodium carbonate (Na2CO3) and neutral soap (NS). The experimental results showed that the sericin can be completely removed from the silk fibroin fiber after boiling the fibers three times for 30 min and using a bath ratio of 1:80 (g/mL) and a concentration of 0.2% SPS in an aqueous solution. The results of the tensile properties, thermal analysis, and SEM all show that SPS is similar to the NS, far superior to Na2CO3. In short, SPS may be used as an environmentally friendly silk degumming/refining agent in the silk textile industry and in the manufacture of silk floss quilts. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Impaired surfactant protein B synthesis in infants with congenital diaphragmatic hernia.

    PubMed

    Cogo, Paola E; Simonato, Manuela; Danhaive, Olivier; Verlato, Giovanna; Cobellis, Giovanna; Savignoni, Francesco; Peca, Donatella; Baritussio, Aldo; Carnielli, Virgilio P

    2013-03-01

    Pulmonary hypoplasia and hypertension account for significant morbidity and mortality in neonates with congenital diaphragmatic hernia (CDH). Whether CDH is associated with surfactant dysfunction remains controversial. Therefore, we measured disaturated phosphatidylcholine (DSPC) and surfactant protein (SP)-B concentration in tracheal aspirates and their synthesis rate in infants with CDH compared to infants without lung disease. (2)H2O as a precursor of DSPC and 1-(13)C-leucine as a precursor of SP-B were administered to 13 infants with CDH and eight controls matched for gestational age. DSPC and SP-B were isolated from tracheal aspirates, and their fractional synthesis rate was derived from (2)H and (13)C enrichment curves obtained by mass spectrometry. DSPC and SP-B amounts in tracheal aspirates were also measured. In infants with CDH, SP-B fractional synthesis rate and amount were 62±27% and 57±22% lower, respectively, than the value found in infants without lung disease (p<0.01 and p<0.05, respectively). There were no significant group differences in DSPC fractional synthesis rate and amount. Infants with CDH have a lower rate of synthesis of SP-B and less SP-B in tracheal aspirates. In these infants, partial SP-B deficiency could contribute to the severity of respiratory failure and its correction might represent a therapeutic goal.

  10. Application of polyhydroxyalkanoate (PHA) synthesis regulatory protein PhaR as a bio-surfactant and bactericidal agent.

    PubMed

    Ma, Hong-Kun; Liu, Ming-Ming; Li, Shi-Yan; Wu, Qiong; Chen, Jin-Chun; Chen, Guo-Qiang

    2013-06-20

    Polyhydroxyalkanoates (PHA), a family of diverse bio-polyesters, are produced by many bacteria as an energy and carbon storage material. PHA synthesis regulatory protein PhaR was reported to attach on the surface of intracellular PHA granules for convenience of synthesis regulation. PhaR was found to have an amphiphilic property. However, no study was conducted to exploit this property for applications as bio-surfactant and bactericide agent. Purified PhaR showed a higher emulsification ability than that of the widely used chemical surfactants including SDS, Tween 20, sodium oleate, and liquefied detergent (LD). PhaR also showed a higher emulsification ability than bio-surfactants rhamnose and PHA granules associated protein termed phasin or PhaP. Non-purified PhaR, namely, the native inclusion bodies and cell lysates, also demonstrated to be an excellent surfactant. PhaR was found highly stable even at 95 °C. In addition, PhaR was revealed to be a promising bactericidal agent against Gram positive and negative bacteria. PhaR can be conveniently produced by recombinant Escherichia coli. It has shown to be a bio-surfactant with excellent emulsification ability and strong bactericidal capacity at elevated temperature as high as 95 °C. Therefore, PhaR could be used in areas including food, beverage, pharmaceutical and cosmetics industries. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Effect of surfactants on the physical stability of recombinant human growth hormone.

    PubMed

    Katakam, M; Bell, L N; Banga, A K

    1995-06-01

    The physical stability of a human growth hormone (hGH) formulation upon exposure to air/water interfaces (with vortex mixing) and to nonisothermal stress [determined by differential scanning calorimetry (DSC)] was investigated. The effect of these stresses on the formation of soluble and insoluble aggregates was studied. The aggregates were characterized and quantified by size exclusion-HPLC and UV spectrophotometry. Vortex mixing of hGH solutions (0.5 mg/mL) in phosphate buffer, pH 7.4, for just 1 min caused 67% of the drug to precipitate as insoluble aggregates. These aggregates were noncovalent in nature. Non-ionic surfactants prevented the interfacially induced aggregation at their critical micelle concentration (cmc) for Pluronic F-68 (polyoxyethylene polyoxypropylene block polymer) and Brij 35 (polyoxyethylene alkyl ether) and above the cmc for Tween 80 (polyoxyethylene sorbitan monooleate). However, the same surfactants failed to stabilize hGH against thermal stress in DSC studies. Higher concentrations of surfactants actually destabilized hGH as evidenced by the decrease in the onset temperature for the denaturation endotherm.

  12. Environmental Pollutant Ozone Causes Damage to Lung Surfactant Protein B (SP-B)

    PubMed Central

    2015-01-01

    Lung surfactant protein B (SP-B) is an essential protein found in the surfactant fluid at the air–water interface of the lung. Exposure to the air pollutant ozone could potentially damage SP-B and lead to respiratory distress. We have studied two peptides, one consisting of the N-terminus of SP-B [SP-B(1–25)] and the other a construct of the N- and C-termini of SP-B [SP-B(1–25,63–78)], called SMB. Exposure to dilute levels of ozone (∼2 ppm) of monolayers of each peptide at the air–water interface leads to a rapid reaction, which is evident from an increase in the surface tension. Fluorescence experiments revealed that this increase in surface tension is accompanied by a loss of fluorescence from the tryptophan residue at the interface. Neutron and X-ray reflectivity experiments show that, in contrast to suggestions in the literature, the peptides are not solubilized upon oxidation but rather remain at the interface with little change in their hydration. Analysis of the product material reveals that no cleavage of the peptides occurs, but a more hydrophobic product is slowly formed together with an increased level of oligomerization. We attributed this to partial unfolding of the peptides. Experiments conducted in the presence of phospholipids reveal that the presence of the lipids does not prevent oxidation of the peptides. Our results strongly suggest that exposure to low levels of ozone gas will damage SP-B, leading to a change in its structure. The implication is that the oxidized protein will be impaired in its ability to interact at the air–water interface with negatively charged phosphoglycerol lipids, thus compromising what is thought to be its main biological function. PMID:26270023

  13. Nanoparticles modulate surfactant protein A and D mediated protection against influenza A infection in vitro

    PubMed Central

    McKenzie, Zofi; Kendall, Michaela; Mackay, Rose-Marie; Tetley, Teresa D.; Morgan, Cliff; Griffiths, Mark; Clark, Howard W.; Madsen, Jens

    2015-01-01

    Numerous epidemiological and toxicological studies have indicated that respiratory infections are exacerbated following enhanced exposure to airborne particulates. Surfactant protein A (SP-A) and SP-D form an important part of the innate immune response in the lung and can interact with nanoparticles to modulate the cellular uptake of these particles. We hypothesize that this interaction will also affect the ability of these proteins to combat infections. TT1, A549 and differentiated THP-1 cells, representing the predominant cell types found in the alveolus namely alveolar type I (ATI) epithelial cells, ATII cells and macrophages, were used to examine the effect of two model nanoparticles, 100 nm amine modified (A-PS) and unmodified polystyrene (U-PS), on the ability of SP-A and SP-D to neutralize influenza A infections in vitro. Pre-incubation of low concentrations of U-PS with SP-A resulted in a reduction of SP-A anti-influenza activity in A549 cells, whereas at higher concentrations there was an increase in SP-A antiviral activity. This differential pattern of U-PS concentration on surfactant protein mediated protection against IAV was also shown with SP-D in TT1 cells. On the other hand, low concentrations of A-PS particles resulted in a reduction of SP-A activity in TT1 cells and a reduction in SP-D activity in A549 cells. These results indicate that nanoparticles can modulate the ability of SP-A and SP-D to combat viral challenges. Furthermore, the nanoparticle concentration, surface chemistry and cell type under investigation are important factors in determining the extent of these modulations. PMID:25533100

  14. Surfactant treatments influence drying mechanics in human stratum corneum.

    PubMed

    German, G K; Pashkovski, E; Dufresne, E R

    2013-09-03

    We describe a high-throughput method capable of quantifying the elastic modulus and drying stress of ex vivo samples of human stratum corneum. Spatially resolved drying deformations in circular tissue samples are measured, azimuthally averaged and fitted with a profile based on a linear elastic model. Our approach enables the comparison of the physical effects of different cleansers. We find that cleansing can cause dramatic changes to the mechanical properties of stratum corneum. In some cases, cleansing can lead to an order of magnitude increase in elastic modulus and drying stress. We expect that these mechanical properties have a direct impact on cracking and chapping skin as well as the milder sensation of perceived tightness often experienced after washing. Mechanical drying studies are also combined with drop wetting studies and pyranine staining experiments. This combination of techniques allows one to establish a multidimensional profile of stratum corneum including stiffness, susceptibility to drying, hydrophilicity and barrier functionality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Surfactant protein B labelled with [(99m)Tc(CO)3(H20)3](+) retains biological activity in vitro..

    PubMed

    Amann, A; Decristoforo, C; Ott, I; Wenger, M; Bader, D; Alberto, R; Putz, G

    2001-04-01

    Labelling of the hydrophobic surfactant protein B (SP-B) under non-reducing conditions was achieved with [(99m)Tc(CO)(3)(H2O)(3)](+) prepared according to Alberto et al. (JACS, 1998). The binding of radioactivity was protein-specific, with an overall radiochemical yield of 50%. Gel electrophoresis and Westernblot analyses showed no structural changes of SP-B. Spreading properties and surface activity of (99m)Tc-labelled SP-B in an air/water interface coincided with those of unlabelled SP-B. (99m)Tc-SP-B seems to be a promising agent to observe surfactant spreading under clinical conditions. Therapeutic results for surfactant instillation in clinical trials are conflicting. The (99m)Tc-labelling of surfactant would allow to observe its spreading in the lung under clinical conditions. [(99m)Tc(CO)(3)(H2O)(3)](+) was prepared as described by Alberto et al. (JACS, 1998). This carbonyl complex was used for the direct labelling of surfactant protein B (SP-B) under non-reductive conditions by direct incubation with SP-B at elevated temperature followed by extraction into CHCl(3)/MeOH. The hydrophobic protein SP-B was labelled with [(99m)Tc(CO)(3)(H2O)(3)](+). An overall radiochemical yield of about 50% was achieved. HPLC-analysis revealed a single radiolabelled species according to UV elution profile of SP-B, supported by paper and size exclusion chromatography. Gel electrophoresis confirmed that the dimer structure of SP-B was preserved. Spreading properties of (99m)Tc-labelled SP-B in an air/water interface coincided with those of unlabelled SP-B. Spreading of radioactivity observed in a glass trough of 26 cm x 27 cm with a gamma camera was completed during the first 7-9 sec after application of (99m)Tc-labelled SP-B. The corresponding decrease of surface tension to 45 mN/m at the peripheral surface tension sensors took 7 sec +/- 2 sec (MEAN +/- STD; n = 3). Direct and specific (99m)Tc-labelling of the hydrophobic surfactant protein B was achieved using the [(99m

  16. Effect of various mild surfactants on the reassembly of an oligomeric integral membrane protein OmpF porin.

    PubMed

    Watanabe, Yasushi

    2002-03-01

    Reassembly of OmpF porin from its denatured monomer into the sodium dodecyl sulfate-resistant species was investigated by using 27 kinds of mild surfactants. Polyethyleneoxide-type surfactants with a hydrophilic-lipophilic balance value of 10.8-14.6 induced the trimerization of denatured OmpF porin. Dimerization and trimerization were induced by non-polyethyleneoxide-type mild surfactants that are generally used for membrane protein solubilization. The dependence of surfactant concentrations on reassembly was estimated to obtain a minimal concentration required for the reassembly of the protein. Extensive reassembly (to approximately 85% yield) into dimer (a putative assembly intermediate) was observed at a protein concentration of 0.05 mg/ml in 7 mg/ml n-octyl-beta-D-glucopyranoside and 1 mg/ml sodium dodecyl sulfate. This condition will be useful for the studies of the dimer and dimerization of OmpF porin. The role of mixed micelle system on the protein renaturation was discussed.

  17. Immunohistochemical investigation of pulmonary surfactant-associated protein A in fire victims.

    PubMed

    Zhu, B L; Ishida, K; Oritani, S; Quan, L; Taniguchi, M; Li, D R; Fujita, M Q; Maeda, H

    2001-03-01

    To evaluate the forensic pathological significance of the immunohistochemical distribution of pulmonary surfactant-associated protein A (SP-A) in determining the cause of death in fires, 57 fire victims were examined by scoring the staining intensity. The highest SP-A score with dense granular deposits (aggregates) in the intra-alveolar space was frequently observed in cases with a lower blood carboxyhemoglobin (COHb) level (<60%). The SP-A score was relatively low in carbon monoxide intoxication due to causes other than fires. High SP-A scores showed a relation to the serum level and in part related to the bloody exudate in the lower airway. These observations suggested that the increase in SP-A in fire victims may be mainly related to pulmonary alveolar injury due to the inhalation of hot air and/or irritant gases rather than hypoxia.

  18. Eosinophil-Associated Lung Diseases. A Cry for Surfactant Proteins A and D Help?

    PubMed Central

    Ledford, Julie G.; Addison, Kenneth J.; Foster, Matthew W.

    2014-01-01

    Surfactant proteins (SP)-A and SP-D (SP-A/-D) play important roles in numerous eosinophil-dominated diseases, including asthma, allergic bronchopulmonary aspergillosis, and allergic rhinitis. In these settings, SP-A/-D have been shown to modulate eosinophil chemotaxis, inhibit eosinophil mediator release, and mediate macrophage clearance of apoptotic eosinophils. Dysregulation of SP-A/-D function in eosinophil-dominated diseases is also not uncommon. Alterations in serum SP-A/-D levels are associated with disease severity in allergic rhinitis and chronic obstructive pulmonary disease. Furthermore, oligimerization of SP-A/-D, necessary for their proper function, can be perturbed by reactive nitrogen species, which are increased in eosinophilic disease. In this review, we highlight the associations of eosinophilic lung diseases with SP-A and SP-D levels and functions. PMID:24960334

  19. Utilization of dairy byproduct proteins, surfactants, and enzymes in frozen dough.

    PubMed

    Asghar, Ali; Anjum, Faqir Muhammad; Allen, Jonathan C

    2011-04-01

    Use of natural additives is gaining popularity among the masses as they are becoming more conscious about their diet and health. Frozen dough products are one of the recent examples of value-added cereal products which face stability problems during extended storage periods of times. Dairy whey proteins, surfactants, and certain enzymes are considered important natural additives which could be used to control the water redistribution problem in the dough structure during the storage condition. They interact with the starch and gluten network in a dough system and thus behave as dough improvers and strengtheners. These natural additives not only help to bind extra moisture but also to improve texture and sensory attributes in frozen dough bakery products. © Taylor and Francis Group, LLC

  20. Synergistic Effect of Caffeine and Glucocorticoids on Expression of Surfactant Protein B (SP-B) mRNA

    PubMed Central

    Fehrholz, Markus; Bersani, Iliana; Kramer, Boris W.; Speer, Christian P.; Kunzmann, Steffen

    2012-01-01

    Administration of glucocorticoids and caffeine is a common therapeutic intervention in the neonatal period, but possible interactions between these substances are still unclear. The present study investigated the effect of caffeine and different glucocorticoids on expression of surfactant protein (SP)-B, crucial for the physiological function of pulmonary surfactant. We measured expression levels of SP-B, various SP-B transcription factors including erythroblastic leukemia viral oncogene homolog 4 (ErbB4) and thyroid transcription factor-1 (TTF-1), as well as the glucocorticoid receptor (GR) after administering different doses of glucocorticoids, caffeine, cAMP, or the phosphodiesterase-4 inhibitor rolipram in the human airway epithelial cell line NCI-H441. Administration of dexamethasone (1 µM) or caffeine (5 mM) stimulated SP-B mRNA expression with a maximal of 38.8±11.1-fold and 5.2±1.4-fold increase, respectively. Synergistic induction was achieved after co-administration of dexamethasone (1 mM) in combination with caffeine (10 mM) (206±59.7-fold increase, p<0.0001) or cAMP (1 mM) (213±111-fold increase, p = 0.0108). SP-B mRNA was synergistically induced also by administration of caffeine with hydrocortisone (87.9±39.0), prednisolone (154±66.8), and betamethasone (123±6.4). Rolipram also induced SP-B mRNA (64.9±21.0-fold increase). We detected a higher expression of ErbB4 and GR mRNA (7.0- and 1.7-fold increase, respectively), whereas TTF-1, Jun B, c-Jun, SP1, SP3, and HNF-3α mRNA expression was predominantly unchanged. In accordance with mRNA data, mature SP-B was induced significantly by dexamethasone with caffeine (13.8±9.0-fold increase, p = 0.0134). We found a synergistic upregulation of SP-B mRNA expression induced by co-administration of various glucocorticoids and caffeine, achieved by accumulation of intracellular cAMP. This effect was mediated by a caffeine-dependent phosphodiesterase inhibition and by upregulation of both ErbB4 and

  1. Surfactant Proteins A and D Suppress Alveolar Macrophage Phagocytosis via Interaction with SIRPα

    PubMed Central

    Janssen, William J.; McPhillips, Kathleen A.; Dickinson, Matthew G.; Linderman, Derek J.; Morimoto, Konosuke; Xiao, Yi Qun; Oldham, Kelly M.; Vandivier, R. William; Henson, Peter M.; Gardai, Shyra J.

    2008-01-01

    Rationale: Efficient removal of apoptotic cells is essential for the resolution of acute pulmonary inflammation. Alveolar macrophages ingest apoptotic cells less avidly than other professional phagocytes at rest but overcome this defect during acute inflammation. Surfactant protein (SP)-A and SP-D are potent modulators of macrophage function and may suppress clearance of apoptotic cells through activation of the transmembrane receptor signal inhibitory regulatory protein α (SIRPα). Objectives: To investigate whether binding of SP-A and SP-D to SIRPα on alveolar macrophages suppresses apoptotic cell clearance. Methods: Phagocytosis of apoptotic cells was assessed using macrophages pretreated with SP-A, SP-D, or the collectin-like molecule C1q. Binding of SP-A and SP-D to SIRPα was confirmed in vitro using blocking antibodies and fibroblasts transfected with active and mutant SIRPα. The effects of downstream molecules SHP-1 and RhoA on phagocytosis were studied using SHP-1–deficient mice, sodium stibogluconate, and a Rho kinase inhibitor. Lipopolysaccharide was given to chimeric mice to study the effects of SP-A and SP-D binding on inflammatory macrophages. Measurements and Main Results: Preincubation of macrophages with SP-A or SP-D suppressed apoptotic cell clearance. Surfactant suppression of macrophage phagocytosis was reversed by blocking SIRPα and inhibiting downstream molecules SHP-1 and RhoA. Macrophages from inflamed lungs ingested apoptotic cells more efficiently than resting alveolar macrophages. Recruited mononuclear phagocytes with low levels of SP-A and SP-D mediated this effect. Conclusions: SP-A and SP-D tonically inhibit alveolar macrophage phagocytosis by binding SIRPα. During acute pulmonary inflammation, defects in apoptotic cell clearance are overcome by recruited mononuclear phagocytes. PMID:18420961

  2. Involvement of eicosanoids and surfactant protein D in extrinsic allergic alveolitis.

    PubMed

    Higashi, A; Higashi, N; Tsuburai, T; Takeuchi, Y; Taniguchi, M; Mita, H; Saito, A; Takatori, K; Arimura, K; Akiyama, K

    2005-12-01

    The pathophysiology of extrinsic allergic alveolitis (EAA) involves oxidative lung damage as well as interstitial and alveolar inflammation. Macrophages and mast cells are inflammatory components of EAA that produce both leukotrienes (LTs) and prostaglandin D2 (PGD2). In addition, PGD2 is also produced by the free-radical-catalysed peroxidation of arachidonic acid during oxidative stress. Urinary 8-iso prostaglandin F2alpha (8-isoPGF2alpha) and serum surfactant protein D (SP-D) are considered appropriate biomarkers of oxidative stress and interstitial lung disease activity, respectively. The present study aimed to assess the association of these biomarkers with the pathophysiology of EAA. Two cases of acute EAA caused by the inhalation of fungi spores were reported. Eight asthmatic patients and six healthy control subjects were also enrolled in the current study. The serum SP-D and urinary eicosanoid (LTE4, PGD2 metabolite (9alpha,11betaPGF2), 8-isoPGF2alpha) concentrations markedly increased during the acute exacerbation phase. These concentrations decreased following corticosteroid therapy in the EAA patients. There was a significant correlation between serum SP-D and urinary 9alpha,11betaPGF2 concentrations in the EAA patients. In conclusion, although the present study proposes that serum surfactant protein-D and urinary eicosanoids are new biomarkers involved in the various immunological responses in extrinsic allergic alveolitis, further large-scale studies are needed to investigate the role of these compounds, not just as biomarkers, but also as biological potentiators of extrinsic allergic alveolitis.

  3. Surfactant Protein–C Chromatin-Bound Green Fluorescence Protein Reporter Mice Reveal Heterogeneity of Surfactant Protein C–Expressing Lung Cells

    PubMed Central

    Lee, Joo-Hyeon; Kim, Jonghwan; Gludish, David; Roach, Rebecca R.; Saunders, Arven H.; Barrios, Juliana; Woo, Andrew Jonghan; Chen, Huaiyong; Conner, David A.; Fujiwara, Yuko; Stripp, Barry R.

    2013-01-01

    The regeneration of alveolar epithelial cells is a critical aspect of alveolar reorganization after lung injury. Although alveolar Type II (AT2) cells have been described as progenitor cells for alveolar epithelia, more remains to be understood about how their progenitor cell properties are regulated. A nuclear, chromatin-bound green fluorescence protein reporter (H2B-GFP) was driven from the murine surfactant protein–C (SPC) promoter to generate SPC H2B-GFP transgenic mice. The SPC H2B-GFP allele allowed the FACS-based enrichment and gene expression profiling of AT2 cells. Approximately 97% of AT2 cells were GFP-labeled on Postnatal Day 1, and the percentage of GFP-labeled AT2 cells decreased to approximately 63% at Postnatal Week 8. Isolated young adult SPC H2B-GFP+ cells displayed proliferation, differentiation, and self-renewal capacity in the presence of lung fibroblasts in a Matrigel-based three-dimensional culture system. Heterogeneity within the GFP+ population was revealed, because cells with distinct alveolar and bronchiolar gene expression arose in three-dimensional cultures. CD74, a surface marker highly enriched on GFP+ cells, was identified as a positive selection marker, providing 3-fold enrichment for AT2 cells. In vivo, GFP expression was induced within other epithelial cell types during maturation of the distal lung. The utility of the SPC H2B-GFP murine model for the identification of AT2 cells was greatest in early postnatal lungs and more limited with age, when some discordance between SPC and GFP expression was observed. In adult mice, this allele may allow for the enrichment and future characterization of other SPC-expressing alveolar and bronchiolar cells, including putative stem/progenitor cell populations. PMID:23204392

  4. Surfactant protein D (SP-D) deficiency is attenuated in humanised mice expressing the Met(11)Thr short nucleotide polymorphism of SP-D: implications for surfactant metabolism in the lung

    PubMed Central

    Knudsen, Lars; Ochs, Katharina; Boxler, Laura; Tornoe, Ida; Lykke-Sorensen, Grith; Mackay, Rose-Marie; Clark, Howard W; Holmskov, Uffe; Ochs, Matthias; Madsen, Jens

    2013-01-01

    Surfactant protein D (SP-D) is part of the innate immune system involved in lung homeostasis. SP-D knockout mice show accumulations of foamy alveolar macrophages, alveolar lipoproteinosis and pulmonary emphysema. Three single nucleotide polymorphisms (SNPs) have been described in the coding sequence of the human SP-D gene SFTPD. Clinical studies showed that the SNP SFTPD with a nucleotide change from A to C resulting in a Met to Thr substitution at position 11 in the protein (Met(11)Thr), is relevant. This study set out to create a humanised mouse model of the Met(11)Thr SNP. Transgenic mice lines expressing either Met(11) or Thr(11) SP-D under the control of the ubiquitously expressed pROSA26 promoter in C57Bl/6 SP-D deficient mice (DKO) was created. Both Met(11) (142 ± 52 ng mL−1) and Thr(11) (228 ± 76 ng mL−1) mice lines expressed human SP-D at almost similar levels. According to the literature this was within the range of SP-D levels found in wildtype (WT) mice (253 ± 22 ng mL−1). Met(11) or Thr(11) SP-D in serum from transgenic mice bound maltose in a calcium-dependent manner, and binding was inhibited in the presence of EDTA or maltose. Bronchoalveolar lavage showed for both transgenic mice lines complementation of the DKO phenotype by restoring cell counts, phospholipid levels and protein content back to WT levels. Cytospins of BAL pellet cells showed a resemblance to WT but both mice lines showed some foamy alveolar macrophages. The stereological analysis showed for none of the mice lines a complete abrogation of emphysematous alterations. However, both Met(11) and Thr(11) mice lines were partially reverted back to a WT phenotype when compared with DKO mice, indicating important effects on surfactant metabolism in vivo. PMID:24111992

  5. A Unique Sugar-binding Site Mediates the Distinct Anti-influenza Activity of Pig Surfactant Protein D*

    PubMed Central

    van Eijk, Martin; Rynkiewicz, Michael J.; White, Mitchell R.; Hartshorn, Kevan L.; Zou, Xueqing; Schulten, Klaus; Luo, Dong; Crouch, Erika C.; Cafarella, Tanya R.; Head, James F.; Haagsman, Henk P.; Seaton, Barbara A.

    2012-01-01

    Pigs can act as intermediate hosts by which reassorted influenza A virus (IAV) strains can be transmitted to humans and cause pandemic influenza outbreaks. The innate host defense component surfactant protein D (SP-D) interacts with glycans on the hemagglutinin of IAV and contributes to protection against IAV infection in mammals. This study shows that a recombinant trimeric neck lectin fragment derived from porcine SP-D (pSP-D) exhibits profound inhibitory activity against IAV, in contrast to comparable fragments derived from human SP-D. Crystallographic analysis of the pSP-D fragment complexed with a viral sugar component shows that a unique tripeptide loop alters the lectin site conformation of pSP-D. Molecular dynamics simulations highlight the role of this flexible loop, which adopts a more stable conformation upon sugar binding and may facilitate binding to viral glycans through contact with distal portions of the branched mannoside. The combined data demonstrate that porcine-specific structural features of SP-D contribute significantly to its distinct anti-IAV activity. These findings could help explain why pigs serve as important reservoirs for newly emerging pathogenic IAV strains. PMID:22685299

  6. Characterization and Prevention of the Adsorption of Surfactant Protein D to Polypropylene

    PubMed Central

    Bratcher, Preston E.; Gaggar, Amit

    2013-01-01

    Surfactant Protein D (SP-D) is a multifunctional protein present in the lung and in respiratory secretions. In the process of developing new experimental approaches to examine SP-D function, we observed that SP-D adsorbs to polypropylene tubes to a great extent, thereby depleting SP-D from the solution. Although it is well known that proteins adsorb nonspecifically to plastic, this effect is usually diminished by treatments to make the plastic “low-retention” or “low-binding”. However, these treatments actually increased the binding of SP-D to the plastic. In addition, this adsorption affected the results of several assays, including proteolytic cleavage assays. In order to block SP-D from adsorbing to polypropylene and the effects caused by this adsorption, we coated the tubes with bovine serum albumin (BSA), as is commonly performed for ELISAs. This coating greatly diminished the amount of SP-D sticking to the plastic, providing an inexpensive and effective method for preventing adsorption and the artifacts resulting from this adsorption. PMID:24039953

  7. Crystallographic Complexes of Surfactant Protein A and Carbohydrates Reveal Ligand-induced Conformational Change*

    PubMed Central

    Shang, Feifei; Rynkiewicz, Michael J.; McCormack, Francis X.; Wu, Huixing; Cafarella, Tanya M.; Head, James F.; Seaton, Barbara A.

    2011-01-01

    Surfactant protein A (SP-A), a C-type lectin, plays an important role in innate lung host defense against inhaled pathogens. Crystallographic SP-A·ligand complexes have not been reported to date, limiting available molecular information about SP-A interactions with microbial surface components. This study describes crystal structures of calcium-dependent complexes of the C-terminal neck and carbohydrate recognition domain of SP-A with d-mannose, d-α-methylmannose, and glycerol, which represent subdomains of glycans on pathogen surfaces. Comparison of these complexes with the unliganded SP-A neck and carbohydrate recognition domain revealed an unexpected ligand-associated conformational change in the loop region surrounding the lectin site, one not previously reported for the lectin homologs SP-D and mannan-binding lectin. The net result of the conformational change is that the SP-A lectin site and the surrounding loop region become more compact. The Glu-202 side chain of unliganded SP-A extends out into the solvent and away from the calcium ion; however, in the complexes, the Glu-202 side chain translocates 12.8 Å to bind the calcium. The availability of Glu-202, together with positional changes involving water molecules, creates a more favorable hydrogen bonding environment for carbohydrate ligands. The Lys-203 side chain reorients as well, extending outward into the solvent in the complexes, thereby opening up a small cation-friendly cavity occupied by a sodium ion. Binding of this cation brings the large loop, which forms one wall of the lectin site, and the adjacent small loop closer together. The ability to undergo conformational changes may help SP-A adapt to different ligand classes, including microbial glycolipids and surfactant lipids. PMID:21047777

  8. Segregated ordered lipid phases and protein-promoted membrane cohesivity are required for pulmonary surfactant films to stabilize and protect the respiratory surface.

    PubMed

    Bernardino de la Serna, Jorge; Vargas, Rodolfo; Picardi, Victoria; Cruz, Antonio; Arranz, Rocío; Valpuesta, José M; Mateu, Leonardo; Pérez-Gil, Jesús

    2013-01-01

    Pulmonary surfactant is a lipid-protein complex essential to stabilize alveoli, by forming surface active films able to reach and sustain very low surface tensions (< 2 mN m(-1)) during the film compression that occurs at end-expiration. The particular lipid composition of surfactant, including a high proportion of dipalmitoylphosphatidylcholine (DPPC), induces segregation of fluid ordered and disordered phases in surfactant membranes and films at physiological temperatures. The segregation of DPPC-enriched ordered phase has been related with the ability of surfactant films to produce very low tensions, while the presence in surfactant of two specific hydrophobic polypeptides, SP-B and SP-C, is absolutely required to facilitate surfactant dynamics, including film formation and re-spreading during expansion at inspiration. In the present study, we have used X-ray scattering to analyze the structure of (1) whole native surfactant membranes purified from porcine lungs, (2) membranes reconstituted from the organic extract of surfactant containing the full lipid complement and the physiological proportion of SP-B and SP-C, and (3) membranes reconstituted from the lipid fraction of surfactant depleted of proteins. Small angle X-ray scattering data from whole surfactant or from membranes reconstituted from surfactant organic extract indicated the co-existence of two lamellar phases with different thicknesses. Such phase coexistence disappeared upon heating of the samples at temperatures above physiological values. When assessed in a captive bubble surfactometer, which mimics interfacial compression-expansion dynamics, the ability of surfactant films to produce very low tensions is only maintained at temperatures permitting the coexistence of the two lamellar phases. On the other hand, membranes reconstituted in the absence of proteins produced diffractograms indicative of the existence of a single dominant lamellar phase at all temperatures. These data suggest that SP

  9. Effect of surfactants on Ra-sHSPI - A small heat shock protein from the cattle tick Rhipicephalus annulatus

    NASA Astrophysics Data System (ADS)

    Siddiqi, Mohammad Khursheed; Shahein, Yasser E.; Hussein, Nahla; Khan, Rizwan H.

    2016-09-01

    Electrostatic interaction plays an important role in protein aggregation phenomenon. In this study, we have checked the effect of anionic - Sodium Dodecyl Sulfate (SDS) and cationic-Cetyltrimethyl Ammonium Bromide (CTAB) surfactant on aggregation behavior of Ra-sHSPI, a small heat shock protein purified from Rhipicephalus annulatus tick. To monitor the effect of these surfactants, we have employed several spectroscopic methods such as Rayleigh light scattering measurements, ANS (8-Anilinonaphthalene-1-sulfonic acid) fluorescence measurements, ThT (Thioflavin T) binding assays, Far-UV CD (Circular Dichroism) and dynamic light scattering measurements. In the presence of anionic surfactant-SDS, Ra-sHSPI forms amyloid fibrils, in contrast, no amyloid formation was observed in presence of cationic surfactant at low pH. Enhancement of ANS fluorescence intensity confirms the exposition of more hydrophobic patches during aggregation. ThT binding assay confirms the amyloid fibrillar nature of the SDS induced Ra-sHSPI aggregates and supported by PASTA 2.0 (prediction of amyloid structural aggregation) software. This study demonstrates the crucial role of charge during amyloid fibril formation at low pH in Ra-sHSPI.

  10. Interaction of surfactant protein A with the intermediate filaments desmin and vimentin.

    PubMed

    Garcia-Verdugo, Ignacio; Synguelakis, Monique; Degrouard, Jeril; Franco, Claudio-Areias; Valot, Benoit; Zivy, Michel; Chaby, Richard; Tanfin, Zahra

    2008-05-06

    Surfactant protein A (SP-A), a member of the collectin family that modulates innate immunity, has recently been involved in the physiology of reproduction. Consistent with the activation of ERK-1/2 and COX-2 induced by SP-A in myometrial cells, we reported previously the presence of two major proteins recognized by SP-A in these cells. Here we identify by mass spectrometry one of these SP-A targets as the intermediate filament (IF) desmin. In myometrial preparations derived from desmin-deficient mice, the absence of binding of SP-A to any 50 kDa protein confirmed the identity of this SP-A-binding site as desmin. Our data based on partial chymotrypsin digestion of pure desmin suggested that SP-A recognizes especially its rod domain, which is known to play an important role during the assembly of desmin into filaments. In line with that, electron microscopy experiments showed that SP-A inhibits in vitro the polymerization of desmin filaments. SP-A also recognized in vitro polymerized filaments in a calcium-dependent manner at a physiological ionic strength but not the C1q receptor gC1qR. Furthermore, Texas Red-labeled SP-A colocalized with desmin filaments in myometrial cells. Interestingly, vimentin, the IF characteristic of leukocytes, is one of the major proteins recognized by SP-A in protein extracts of U937 cells after PMA-induced differentiation of this monocytic cell line. Interaction of SP-A with vimentin was further confirmed using recombinant vimentin in solid-phase binding assays. The ability of SP-A to interact with desmin and vimentin, and to prevent polymerization of desmin monomers, shed light on unexpected and wider biological roles of this collectin.

  11. Early expression of surfactant proteins D in Fusarium solani infected rat cornea.

    PubMed

    Che, Cheng-Ye; Li, Xiao-Jing; Jia, Wen-Yan; Li, Na; Xu, Qiang; Lin, Jing; Wang, Qing; Jiang, Nan; Hu, Li-Ting; Zhao, Gui-Qiu

    2012-01-01

    To investigate the early expression of surfactant proteins D(SP-D) in Fusarium solani infected rat cornea. Wistar rats were divided into group A, B and C randomly. The right eyes were chosen as the experiment one. Group A was control group. Group B was not inoculated with Fusarium solani. Group C was taken as fusarium solani keratitis model. Five rats in group B and C were executed randomly at 6, 12, 24, 48 and 96 hours respectively after the experimental model being established. The expression of SP-D was assessed through immunohistochemistry and reverse transcription polymerase chain reaction(RT-PCR). RT-PCR detected that the SP-D mRNA expression was low in the corneal of normal rats and group B. The expression of fungal infected cornea increased gradually and reached the peak at 24 hours in group C. The synchronous expression of group B and C were in significant difference (P<0.01). Immunohistochemisty discovered the protein of SP-D expression was increased gradually from 12 hours and reached the peak at 48 hours in group C. The synchronous expression of group B and C were also in significant difference (P<0.01). There exists SP-D in rat corneal tissue and the expression is significantly increased at the early period of fusarium solani infected cornea. SP-D may play a role in the early innate immunity response of the corneal resistance to Fusarium solani infection.

  12. Clinical value of surfactant protein-A in serum and sputum for pulmonary tuberculosis diagnosis.

    PubMed

    Hu, H; Teng, G L; Gai, L Z; Yang, Y; Zhu, C J

    2013-10-24

    The aim of this study was to explore the diagnostic and differential diagnosis value of surfactant protein-A (SP-A) in the serum and sputum for pulmonary tuberculosis. A total of 101 patients with pulmonary tuberculosis, 85 healthy volunteers, and 30 chronic obstructive pulmonary disease (COPD) patients were divided into pulmonary tuberculosis group, healthy control group, and COPD group, respectively. SP-A was determined in the serum and sputum in the three groups by enzyme-linked immunosorbent assay. The expression of SP-A in serum was significantly higher (P < 0.05) in the pulmonary tuberculosis group than in the healthy control and COPD groups. There were no differences in the SP-A expression in the sputum among the three groups. There was no significant effect of gender, age, tubercle bacillus antibodies, tuberculin purified protein derivative trial, leukocyte count, neutrophilic granulocyte, lymphocyte percentage, or lung cavities on SP-A levels in serum or sputum for the pulmonary tuberculosis group (P > 0.05). The detection of SP-A in serum and sputum was shown to be of great value for the diagnosis and differential diagnosis of pulmonary tuberculosis, and therefore merits further investigation.

  13. Surfactant protein-D and exposure to bioaerosols in wastewater and garbage workers.

    PubMed

    Daneshzadeh Tabrizi, R; Bernard, A; Thommen, A M; De Winter, F; Oppliger, A; Hilfiker, S; Tschopp, A; Hotz, P

    2010-12-01

    Bioaerosols and their constituents, such as endotoxins, are capable of causing an inflammatory reaction at the level of the lung-blood barrier, which becomes more permeable. Thus, it was hypothesized that occupational exposure to bioaerosols can increase leakage of surfactant protein-D (SP-D), a lung-specific protein, into the bloodstream. SP-D was determined by ELISA in 316 wastewater workers, 67 garbage collectors, and 395 control subjects. Exposure was assessed with four interview-based indicators and by preliminary endotoxin measurements using the Limulus amoebocyte lysate assay. Influence of exposure on serum SP-D was assessed by multiple linear regression considering smoking, glomerular function, lung diseases, obesity, and other confounders. Overall, mean exposure levels to endotoxins were below 100 EU/m(3). However, special tasks of wastewater workers caused higher endotoxin exposure. SP-D concentration was slightly increased in this occupational group and associated with the occurrence of splashes and contact to raw sewage. No effect was found in garbage collectors. Smoking increased serum SP-D. No clinically relevant correlation between spirometry results and SP-D concentrations appeared. These results support the hypothesis that inhalation of bioaerosols, even at low concentrations, has a subclinical effect on the lung-blood barrier, the permeability of which increases without associated spirometric changes.

  14. Surfactant protein A regulates IgG-mediated phagocytosis in inflammatory neutrophils.

    PubMed

    Wofford, Jessica A; Wright, Jo Rae

    2007-12-01

    Surfactant proteins (SP)-A and SP-D have been shown to affect the functions of a variety of innate immune cells and to interact with various immune proteins such as complement and immunoglobulins. The goal of the current study is to test the hypothesis that SP-A regulates IgG-mediated phagocytosis by neutrophils, which are major effector cells of the innate immune response that remove invading pathogens by phagocytosis and by extracellular killing mediated by reactive oxygen and nitrogen. We have previously shown that SP-A stimulates chemotaxis by inflammatory, but not peripheral, neutrophils. To evaluate the ability of SP-A to modulate IgG-mediated phagocytosis, polystyrene beads were coated with BSA and treated with anti-BSA IgG. SP-A significantly and specifically enhanced IgG-mediated phagocytosis by inflammatory neutrophils, but it had no effect on beads not treated with IgG. SP-A bound to IgG-coated beads and enhanced their uptake via direct interactions with the beads as well as direct interactions with the neutrophils. SP-A did not affect reactive oxygen production or binding of IgG to neutrophils and had modest effects on polymerization of actin. These data suggest that SP-A plays an important role in mediating the phagocytic response of neutrophils to IgG-opsonized particles.

  15. Comparison of a phospholipid-based protein-free surfactant and a natural bovine surfactant (SURVANTA) during pressure and volume-controlled ventilation in an improved rabbit fetus model.

    PubMed

    Häfner, D; Kilian, U; Bühler, R; Beume, R; Habel, R

    1993-03-01

    During pressure- or volume-controlled ventilation different surfactant preparations were compared in an improved rabbit fetus model. Based on a self-designed software program, this model enables on-line registration of lung mechanics and heart rate in up to ten fetuses. Using a commercially available bovine lung surfactant (SURVANTA) as standard, we compared animals treated with a protein-free surfactant preparation containing only phospholipids, PL (dipalmitoylphosphatidylcholine:palmitoyloleoylphosphatidylglycerol++ +, DPPC:POPG 70:30) plus palmitic acid (PA) with an untreated ventilated control group. During pressure-controlled ventilation the insufflation pressure (IP) was decreased and increased stepwise with and without positive end-expiratory pressure (PEEP). SURVANTA was significantly more potent than PL plus PA and both differed significantly from the untreated controls. With additional PEEP the differences between SURVANTA and PL+PA disappeared but the differences to the controls were still present. We found that, with additional PEEP, active natural surfactants lead to ECG-irregularities, which indicates that PEEP influences pulmonary and cardiovascular function and compromises the benefits of surfactant therapy. Also during volume-controlled ventilation SURVANTA was superior to PL+PA and the untreated controls. In order to raise the level of activity of pure PL mixtures to that of natural bovine surfactants, we suggest that a surface active protein (probably SP-C) must be added to such mixtures.

  16. Surfactant Proteins SP-A and SP-D Modulate Uterine Contractile Events in ULTR Myometrial Cell Line

    PubMed Central

    Sotiriadis, Georgios; Dodagatta-Marri, Eswari; Kouser, Lubna; Alhamlan, Fatimah S.; Kishore, Uday; Karteris, Emmanouil

    2015-01-01

    Pulmonary surfactant proteins SP-A and SP-D are pattern recognition innate immune molecules. However, there is extrapulmonary existence, especially in the amniotic fluid and at the feto-maternal interface. There is sufficient evidence to suggest that SP-A and SP-D are involved in the initiation of labour. This is of great importance given that preterm birth is associated with increased mortality and morbidity. In this study, we investigated the effects of recombinant forms of SP-A and SP-D (rhSP-A and rhSP-D, the comprising of trimeric lectin domain) on contractile events in vitro, using a human myometrial cell line (ULTR) as an experimental model. Treatment with rhSP-A or rhSP-D increased the cell velocity, distance travelled and displacement by ULTR cells. rhSP-A and rhSP-D also affected the contractile response of ULTRs when grown on collagen matrices showing reduced surface area. We investigated this effect further by measuring contractility-associated protein (CAP) genes. Treatment with rhSP-A and rhSP-D induced expression of oxytocin receptor (OXTR) and connexin 43 (CX43). In addition, rhSP-A and rhSP-D were able to induce secretion of GROα and IL-8. rhSP-D also induced the expression of IL-6 and IL-6 Ra. We provide evidence that SP-A and SP-D play a key role in modulating events prior to labour by reconditioning the human myometrium and in inducing CAP genes and pro-inflammatory cytokines thus shifting the uterus from a quiescent state to a contractile one. PMID:26641881

  17. AMNIOTIC FLUID CONCENTRATION OF SURFACTANT PROTEINS IN INTRA-AMNIOTIC INFECTION

    PubMed Central

    Chaiworapongsa, Tinnakorn; Hong, Joon-Seok; Hull, William M.; Romero, Roberto; Whitsett, Jeffrey A.

    2008-01-01

    OBJECTIVE: Pulmonary surfactant is a complex molecule of lipids and proteins synthesized and secreted by type II alveolar cells into the alveolar epithelial lining. Both lipids and protein components are essential for lung function in postnatal life. Infection is a well-established cause of preterm delivery and several inflammatory cytokines play a role in the mechanisms of preterm parturition. An increased concentration of inflammatory cytokines in amniotic fluid or fetal plasma has been linked to the onset of preterm parturition and fetal/neonatal injury including cerebral palsy and chronic lung disease. Experimental evidence indicated that inflammatory mediators also regulated surfactant protein synthesis and histologic chorioamnionitis was associated with a decreased incidence of hyaline membrane disease in neonates. This study was conducted to determine if amniotic fluid concentration of surfactant protein (SP)-A, SP-B and SP-D changes in patients with and without intra-amniotic infection (IAI). MATERIAL AND METHODS: A case-control study was conducted to determine amniotic fluid concentrations of SP-A, SP-B, SP-D, and total protein in patients who had an amniocentesis performed between 18 and 34 weeks of gestation for the detection of IAI in patients with spontaneous preterm labor with intact membranes (n=42) and cervical insufficiency prior to the application for cerclage (n=6). Amniotic fluid samples were selected from a bank of biological specimens and included patients with (n=16) and without (n=32) IAI matched for gestational age at amniocentesis. Intra-amniotic infection was defined a positive amniotic fluid culture for microorganisms. Each group was further subdivided according to a history of corticosteroid administration within 7 days prior to amniocentesis into the following subgroups: 1) patients without IAI who had received antenatal corticosteroid (n=21); 2) patients with IAI who had received antenatal corticosteroid (n=9); 3) patients without IAI

  18. Surfactant protein A (SP-A) inhibits agglomeration and macrophage uptake of toxic amine modified nanoparticles

    PubMed Central

    McKenzie, Zofi; Kendall, Michaela; Mackay, Rose-Marie; Whitwell, Harry; Elgy, Christine; Ding, Ping; Mahajan, Sumeet; Morgan, Cliff; Griffiths, Mark; Clark, Howard; Madsen, Jens

    2015-01-01

    Abstract The lung provides the main route for nanomaterial exposure. Surfactant protein A (SP-A) is an important respiratory innate immune molecule with the ability to bind or opsonise pathogens to enhance phagocytic removal from the airways. We hypothesised that SP-A, like surfactant protein D, may interact with inhaled nanoparticulates, and that this interaction will be affected by nanoparticle (NP) surface characteristics. In this study, we characterise the interaction of SP-A with unmodified (U-PS) and amine-modified (A-PS) polystyrene particles of varying size and zeta potential using dynamic light scatter analysis. SP-A associated with both 100 nm U-PS and A-PS in a calcium-independent manner. SP-A induced significant calcium-dependent agglomeration of 100 nm U-PS NPs but resulted in calcium-independent inhibition of A-PS self agglomeration. SP-A enhanced uptake of 100 nm U-PS into macrophage-like RAW264.7 cells in a dose-dependent manner but in contrast inhibited A-PS uptake. Reduced association of A-PS particles in RAW264.7 cells following pre-incubation of SP-A was also observed with coherent anti-Stokes Raman spectroscopy. Consistent with these findings, alveolar macrophages (AMs) from SP-A−/− mice were more efficient at uptake of 100 nm A-PS compared with wild type C57Bl/6 macrophages. No difference in uptake was observed with 500 nm U-PS or A-PS particles. Pre-incubation with SP-A resulted in a significant decrease in uptake of 100 nm A-PS in macrophages isolated from both groups of mice. In contrast, increased uptake by AMs of U-PS was observed after pre-incubation with SP-A. Thus we have demonstrated that SP-A promotes uptake of non-toxic U-PS particles but inhibits the clearance of potentially toxic A-PS particles by blocking uptake into macrophages. PMID:25676620

  19. Protein aggregation with poly(vinyl) alcohol surfactant reduces double emulsion-encapsulated mammalian cell-free expression

    PubMed Central

    Ho, Kenneth K. Y.; Lee, Jin Woo; Durand, Grégory; Majumder, Sagardip

    2017-01-01

    Development of artificial cell models requires encapsulation of biomolecules within membrane-bound compartments. There have been limited studies of using mammalian cell-free expression (CFE) system as the ‘cytosol’ of artificial cells. We exploit glass capillary droplet microfluidics for the encapsulation of mammalian CFE within double emulsion templated vesicles. The complexity of the physicochemical properties of HeLa cell-free lysate poses a challenge compared with encapsulating simple buffer solutions. In particular, we discovered the formation of aggregates in double emulsion templated vesicles encapsulating mammalian HeLa CFE, but not with bacterial CFE. The aggregates did not arise from insolubility of the proteins made from CFE nor due to the interaction of mammalian CFE with the organic solvents in the middle phase of the double emulsions. We found that aggregation is dependent on the concentration of poly(vinyl) alcohol (PVA) surfactant, a critical double emulsion-stabilizing surfactant, and the lysate concentration in mammalian CFE. Despite vesicle instability and reduced protein expression, we demonstrate protein expression by encapsulating mammalian CFE system. Using mass spectrometry and Western blot, we identified and verified that actin is one of the proteins inside the mammalian CFE that aggregated with PVA surfactant. Our work establishes a baseline description of mammalian CFE system encapsulated in double emulsion templated vesicles as a platform for building artificial cells. PMID:28358875

  20. Protein aggregation with poly(vinyl) alcohol surfactant reduces double emulsion-encapsulated mammalian cell-free expression.

    PubMed

    Ho, Kenneth K Y; Lee, Jin Woo; Durand, Grégory; Majumder, Sagardip; Liu, Allen P

    2017-01-01

    Development of artificial cell models requires encapsulation of biomolecules within membrane-bound compartments. There have been limited studies of using mammalian cell-free expression (CFE) system as the 'cytosol' of artificial cells. We exploit glass capillary droplet microfluidics for the encapsulation of mammalian CFE within double emulsion templated vesicles. The complexity of the physicochemical properties of HeLa cell-free lysate poses a challenge compared with encapsulating simple buffer solutions. In particular, we discovered the formation of aggregates in double emulsion templated vesicles encapsulating mammalian HeLa CFE, but not with bacterial CFE. The aggregates did not arise from insolubility of the proteins made from CFE nor due to the interaction of mammalian CFE with the organic solvents in the middle phase of the double emulsions. We found that aggregation is dependent on the concentration of poly(vinyl) alcohol (PVA) surfactant, a critical double emulsion-stabilizing surfactant, and the lysate concentration in mammalian CFE. Despite vesicle instability and reduced protein expression, we demonstrate protein expression by encapsulating mammalian CFE system. Using mass spectrometry and Western blot, we identified and verified that actin is one of the proteins inside the mammalian CFE that aggregated with PVA surfactant. Our work establishes a baseline description of mammalian CFE system encapsulated in double emulsion templated vesicles as a platform for building artificial cells.

  1. Ranaspumin-2: Structure and Function of a Surfactant Protein from the Foam Nests of a Tropical Frog

    PubMed Central

    Mackenzie, Cameron D.; Smith, Brian O.; Meister, Annette; Blume, Alfred; Zhao, Xiubo; Lu, Jian R.; Kennedy, Malcolm W.; Cooper, Alan

    2009-01-01

    Abstract Ranaspumin-2 (Rsn-2) is a monomeric, 11 kDa surfactant protein identified as one of the major foam nest components of the túngara frog (Engystomops pustulosus), with an amino acid sequence unlike any other protein described so far. We report here on its structure in solution as determined by high-resolution NMR analysis, together with investigations of its conformation and packing at the air-water interface using a combination of infrared and neutron reflectivity techniques. Despite the lack of any significant sequence similarity, Rsn-2 in solution adopts a compact globular fold characteristic of the cystatin family, comprising a single helix over a four-stranded sheet, in a motif not previously associated with surfactant activity. The NMR structure of Rsn-2 shows no obvious amphiphilicity that might be anticipated for a surfactant protein. This suggests that it must undergo a significant conformational change when incorporated into the air-water interface that may involve a hinge-bending, clamshell opening of the separate helix and sheet segments to expose hydrophobic faces to air while maintaining the highly polar surfaces in contact with the underlying water layer. This model is supported by direct observation of the relative orientations of secondary structure elements at the interface by infrared reflection absorption spectroscopy, and by protein packing densities determined from neutron reflectivity profiles. PMID:19527658

  2. Protein–Protein Interaction between Surfactant Protein D and DC-SIGN via C-Type Lectin Domain Can Suppress HIV-1 Transfer

    PubMed Central

    Dodagatta-Marri, Eswari; Mitchell, Daniel A.; Pandit, Hrishikesh; Sonawani, Archana; Murugaiah, Valarmathy; Idicula-Thomas, Susan; Nal, Béatrice; Al-Mozaini, Maha M.; Kaur, Anuvinder; Madan, Taruna; Kishore, Uday

    2017-01-01

    Surfactant protein D (SP-D) is a soluble C-type lectin, belonging to the collectin (collagen-containing calcium-dependent lectin) family, which acts as an innate immune pattern recognition molecule in the lungs at other mucosal surfaces. Immune regulation and surfactant homeostasis are salient functions of SP-D. SP-D can bind to a range of viral, bacterial, and fungal pathogens and trigger clearance mechanisms. SP-D binds to gp120, the envelope protein expressed on HIV-1, through its C-type lectin or carbohydrate recognition domain. This is of importance since SP-D is secreted by human mucosal epithelial cells and is present in the female reproductive tract, including vagina. Another C-type lectin, dendritic cell (DC)-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), present on the surface of the DCs, also binds to HIV-1 gp120 and facilitates viral transfer to the lymphoid tissues. DCs are also present at the site of HIV-1 entry, embedded in vaginal or rectal mucosa. In the present study, we report a direct protein–protein interaction between recombinant forms of SP-D (rfhSP-D) and DC-SIGN via their C-type lectin domains. Both SP-D and DC-SIGN competed for binding to immobilized HIV-1 gp120. Pre-incubation of human embryonic kidney cells expressing surface DC-SIGN with rfhSP-D significantly inhibited the HIV-1 transfer to activated peripheral blood mononuclear cells. In silico analysis revealed that SP-D and gp120 may occupy same sites on DC-SIGN, which may explain the reduced transfer of HIV-1. In summary, we demonstrate, for the first time, that DC-SIGN is a novel binding partner of SP-D, and this interaction can modulate HIV-1 capture and transfer to CD4+ T cells. In addition, the present study also reveals a novel and distinct mechanism of host defense by SP-D against HIV-1. PMID:28824609

  3. The lung innate immune gene surfactant protein-D is expressed in adipose tissue and linked to obesity status.

    PubMed

    Ortega, F J; Pueyo, N; Moreno-Navarrete, J M; Sabater, M; Rodriguez-Hermosa, J I; Ricart, W; Tinahones, F J; Fernández-Real, J M

    2013-12-01

    Surfactant protein-D (SFTPD) is a component of the lung innate immunity that enhances clearance of pathogens and modulates inflammatory responses. An inverse association of putative, lung-derived circulating SFTPD with obesity has been reported but no information is available concerning possible SFTPD gene expression in human adipose tissue. SFTPD gene expression was analyzed in human omental (OM; n=156) and subcutaneous (SC; n=106) adipose tissue, and in isolated fat cells (n=12) in association with measures of obesity and glucose tolerance. SFTPD gene was expressed in human adipose tissue and adipocytes. This expression was decreased in OM and SC adipose tissue from obese subjects with (-47%, P<0.0001; and -37%, P=0.048) and without (-34%, P=0.001; and -22%, P=0.08; respectively) type 2 diabetes when compared with the control group. Indeed, OM SFTPD was inversely associated with body mass index (r=-0.33, P<0.0001), percent fat mass (r=-0.36, P<0.0001), waist perimeter (r=-0.26, P=0.002), diastolic blood pressure (r=-0.21, P=0.018) and fasting glucose (r=-0.21, P=0.012); and positively linked to the expression of insulin receptor substrate 1 (IRS1; r=0.25, P=0.004), perilipin A (PLIN; r=0.38, P=0.007) and fatty acid synthase (FASN; r=0.36, P<0.0001). Accordingly, increased SFTPD (4.5-fold, P=0.02) was detected in isolated adipocytes when compared with the stromal-vascular cell fraction, in parallel to IRS1, FASN and PLIN. Both OM and SC adipose tissue (mainly mature adipocytes) express SFTPD. This expression decreases with obesity and impaired glucose tolerance.

  4. Identification of the Surfactant Protein A Receptor 210 as the Unconventional Myosin 18A*

    PubMed Central

    Yang, Ching-Hui; Szeliga, Jacek; Jordan, Jeremy; Faske, Shawn; Sever-Chroneos, Zvjezdana; Dorsett, Bre; Christian, Robert E.; Settlage, Robert E.; Shabanowitz, Jeffrey; Hunt, Donald F.; Whitsett, Jeffrey A.; Chroneos, Zissis C.

    2006-01-01

    Mass spectrometric characterization of the surfactant protein A (SP-A) receptor 210 (SP-R210) led to the identification of myosin (Myo) XVIIIA and nonmuscle myosin IIA. Antibodies generated against the unique C-terminal tail of MyoXVIIIA revealed that MyoXVIIIA, MyoIIA, and SP-R210 have overlapping tissue distribution, all being highly expressed in myeloid cells, bone marrow, spleen, lymph nodes, and lung. Western blot analysis of COS-1 cells stably transfected with either MyoXVIIIA or MyoIIA indicated that SP-R210 antibodies recognize MyoXVIIIA. Furthermore, MyoXVIIIA but not MyoIIA localized to the surface of COS-1 cells, and most importantly, expression of MyoXVIIIA in COS-1 cells conferred SP-A binding. Western analysis of recombinant MyoXVIIIA domains expressed in bacteria mapped the epitopes of previously derived SP-R210 antibodies to the neck region of MyoXVIIIA. Antibodies raised against the neck domain of MyoXVIIIA blocked the binding of SP-A to macrophages. Together, these findings indicate that MyoXVIIIA constitutes a novel receptor for SP-A. PMID:16087679

  5. Quantification of unadsorbed protein and surfactant emulsifiers in oil-in-water emulsions.

    PubMed

    Berton, Claire; Genot, Claude; Ropers, Marie-Hélène

    2011-02-15

    Unadsorbed emulsifiers affect the physical and chemical behaviour of oil-in-water (O/W) emulsions. A simple methodology to quantify unadsorbed emulsifiers in the aqueous phase of O/W emulsions has been developed. Emulsions were centrifuged and filtered to separate the aqueous phase from the oil droplets and the concentration of unadsorbed emulsifiers in the aqueous phase determined. The quantification of unadsorbed surfactants based on the direct transesterification of their fatty acids was validated for Tween 20, Tween 80, citric acid ester (Citrem), Span 20 and monolauroyl glycerol. To determine unadsorbed proteins, results obtained with Folin-Ciocalteu reagent or UV-spectrophotometry were compared on emulsions stabilized by β-lactoglobulin (BLG), β-casein (BCN) or bovine serum albumin (BSA). The first method gave more accurate results especially during aging of emulsions in oxidative conditions. The whole methodology was applied to emulsions stabilized with single or mixed emulsifiers. This approach enables optimization of emulsion formulations and could be useful to follow changes in the levels of unadsorbed emulsifiers during physical or chemical aging processes. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Effects of nonionic surfactant on hydrolysis and fermentation of protein rich tannery solid waste.

    PubMed

    Ganesh Kumar, A; Venkatesan, R; Kirubagaran, R; Prabhakar, T G; Sekaran, G

    2008-09-01

    The untanned proteinaceous tannery solid waste, the animal fleshing (ANFL), was used as substrate in the treatment process (hydrolysis and fermentation) involving Synergistes sp. The nonionic surfactant (Tween 80) was evaluated for its ability to influence on microbial growth and enzyme activity in the hydrolysis and fermentation of ANFL. The addition of Tween 80 in the process significantly increased the activities of hydrolytic and fermentative enzymes like protease (338-360 Um l(-1)) and deaminase (187-206 Um l(-1)) compared to that of control (protease 195-220 Um l(-1) and deaminase 70-83 Um l(-1)). The total viable bacterial count was increased more than twofold, compared to the control in the presence of 0.15% Tween 80. The ANFL fermentation and formation of other metabolites were evidenced by Gas Chromatography and Mass Spectroscopy (GC-MS), Proton Nuclear Magnetic Resonance spectroscopy ((1)H NMR) and Fourier transform infra red spectroscopy (FT-IR). The breakdown of fibrillar proteins in ANFL was confirmed by the scanning electron microscopy (SEM) and the transmission electron microscopy (TEM).

  7. [Surfactant protein and thyroid transcription factor 1 in pleuro-pulmonary neoplasia. Immunohistochemical study].

    PubMed

    Dessy, E; Falleni, M; Del Curto, B; Braidotti, P; Pietra, G G

    2000-12-01

    Aim of this work was to investigate the ability of the antibodies against Surfactant proteins (SP) and Thyroid transcription factor 1 (TTF-1) to distinguish primary neoplasms of the lung from metastatic carcinomas to the lung and pleural mesotheliomas. We evaluated the immunohistochemical expression of the antibodies anti SP-A, SP-B, pro SP-C, SP-D, and TTF-1 in a series of 56 primary lung carcinomas, 9 metastatic carcinomas to the lung, 5 pleural mesotheliomas and 8 non-pulmonary carcinomas. Among primary lung neoplasms, only adenocarcinomas immunostained for all SP (specificity = 1; total sensitivity = 0.52). TTF-1 had an excellent specificity (= 1), but a weak sensitivity (= 0.34) in recognizing primary lung carcinomas. TTF-1 was present in lung adenocarcinomas which were negative for SPs; however it failed to distinguish the subtypes. Pleural mesotheliomas, pulmonary metastases and non-pulmonary carcinomas were not immunoreactive for SP-A, SP-B, SP-D, and TTF-1. Pro SP-C was positive also in the adenocarcinomas of the large bowel and in their pulmonary and nodal metastases. These results demonstrate that the combined use of antibodies anti SP-A, SP-B and TTF-1 is the best association in distinguishing primary lung carcinomas from metastatic carcinomas to the lung and pleural mesotheliomas.

  8. [Clinical manifestations of three cases of surfactant protein C p. V39L mutation].

    PubMed

    Chen, J H; Zhao, D Y; An, S H; Zheng, Y J; Wang, H P; Ma, H L

    2017-06-02

    Objective: To investigate the clinical manifestations of surfactant protein C gene (SFTPC) exon-2 c. 115G>G/T (p.V39L). Method: Patients were screened for the entire coding sequence of SFTPC. Three cases from three children's hospital with mutation in p. V39L were reported. Result: All the three cases were females. The age of onset ranged from 2 months to 7 years. Two cases had recurrent lower respiratory tract infection and failed to thrive. One had chronic anoxia and clubbing fingers. Chest computed tomography (CT) showed diffused ground glass pattern, localized emphysema and intralobular septal thickening. In one case, early sign of cyst formation was also shown on CT. Two were lost to follow-up after alleviation of acute respiratory infection. One was treated with oral low-dose azithromycin and nebulized budesonide and terbutaline. She had recurrent lower respiratory tract infection in more than one year of follow-up. Conclusion: Mutations in SFTPC p. V39L cause interstitial lung diseases. Clinical manifestations included recurrent respiratory tract infections, chronic lung disease. Chest CT showing diffused ground glass pattern, localized emphysema, intralobular septal thickening and early sign of cyst formation. The treatment and prognosis need further study.

  9. Surfactant Protein-D Is Essential for Immunity to Helminth Infection

    PubMed Central

    Schnoeller, Corinna; Chetty, Alisha; Smith, Katherine; Darby, Matthew; Roberts, Luke; Mackay, Rosie-Marie; Whitwell, Harry J.; Timms, John F.; Madsen, Jens; Selkirk, Murray E.; Brombacher, Frank; Clark, Howard William; Horsnell, William G. C.

    2016-01-01

    Pulmonary epithelial cell responses can enhance type 2 immunity and contribute to control of nematode infections. An important epithelial product is the collectin Surfactant Protein D (SP-D). We found that SP-D concentrations increased in the lung following Nippostrongylus brasiliensis infection; this increase was dependent on key components of the type 2 immune response. We carried out loss and gain of function studies of SP-D to establish if SP-D was required for optimal immunity to the parasite. N. brasiliensis infection of SP-D-/- mice resulted in profound impairment of host innate immunity and ability to resolve infection. Raising pulmonary SP-D levels prior to infection enhanced parasite expulsion and type 2 immune responses, including increased numbers of IL-13 producing type 2 innate lymphoid cells (ILC2), elevated expression of markers of alternative activation by alveolar macrophages (alvM) and increased production of the type 2 cytokines IL-4 and IL-13. Adoptive transfer of alvM from SP-D-treated parasite infected mice into naïve recipients enhanced immunity to N. brasiliensis. Protection was associated with selective binding by the SP-D carbohydrate recognition domain (CRD) to L4 parasites to enhance their killing by alvM. These findings are the first demonstration that the collectin SP-D is an essential component of host innate immunity to helminths. PMID:26900854

  10. A novel nanobody specific for respiratory surfactant protein A has potential for lung targeting

    PubMed Central

    Wang, Shan-Mei; He, Xian; Li, Nan; Yu, Feng; Hu, Yang; Wang, Liu-Sheng; Zhang, Peng; Du, Yu-Kui; Du, Shan-Shan; Yin, Zhao-Fang; Wei, Ya-Ru; Mulet, Xavier; Coia, Greg; Weng, Dong; He, Jian-Hua; Wu, Min; Li, Hui-Ping

    2015-01-01

    Lung-targeting drugs are thought to be potential therapies of refractory lung diseases by maximizing local drug concentrations in the lung to avoid systemic circulation. However, a major limitation in developing lung-targeted drugs is the acquirement of lung-specific ligands. Pulmonary surfactant protein A (SPA) is predominantly synthesized by type II alveolar epithelial cells, and may serve as a potential lung-targeting ligand. Here, we generated recombinant rat pulmonary SPA (rSPA) as an antigen and immunized an alpaca to produce two nanobodies (the smallest naturally occurring antibodies) specific for rSPA, designated Nb6 and Nb17. To assess these nanobodies’ potential for lung targeting, we evaluated their specificity to lung tissue and toxicity in mice. Using immunohistochemistry, we demonstrated that these anti-rSPA nanobodies selectively bound to rat lungs with high affinity. Furthermore, we intravenously injected fluorescein isothiocyanate-Nb17 in nude mice and observed its preferential accumulation in the lung to other tissues, suggesting high affinity of the nanobody for the lung. Studying acute and chronic toxicity of Nb17 revealed its safety in rats without causing apparent histological alterations. Collectively, we have generated and characterized lung-specific nanobodies, which may be applicable for lung drug delivery. PMID:25926731

  11. Critical Structural and Functional Roles for the N-Terminal Insertion Sequence in Surfactant Protein B Analogs

    PubMed Central

    Walther, Frans J.; Waring, Alan J.; Hernandez-Juviel, Jose M.; Gordon, Larry M.; Wang, Zhengdong; Jung, Chun-Ling; Ruchala, Piotr; Clark, Andrew P.; Smith, Wesley M.; Sharma, Shantanu; Notter, Robert H.

    2010-01-01

    Background Surfactant protein B (SP-B; 79 residues) belongs to the saposin protein superfamily, and plays functional roles in lung surfactant. The disulfide cross-linked, N- and C-terminal domains of SP-B have been theoretically predicted to fold as charged, amphipathic helices, suggesting their participation in surfactant activities. Earlier structural studies with Mini-B, a disulfide-linked construct based on the N- and C-terminal regions of SP-B (i.e., ∼residues 8–25 and 63–78), confirmed that these neighboring domains are helical; moreover, Mini-B retains critical in vitro and in vivo surfactant functions of the native protein. Here, we perform similar analyses on a Super Mini-B construct that has native SP-B residues (1–7) attached to the N-terminus of Mini-B, to test whether the N-terminal sequence is also involved in surfactant activity. Methodology/Results FTIR spectra of Mini-B and Super Mini-B in either lipids or lipid-mimics indicated that these peptides share similar conformations, with primary α-helix and secondary β-sheet and loop-turns. Gel electrophoresis demonstrated that Super Mini-B was dimeric in SDS detergent-polyacrylamide, while Mini-B was monomeric. Surface plasmon resonance (SPR), predictive aggregation algorithms, and molecular dynamics (MD) and docking simulations further suggested a preliminary model for dimeric Super Mini-B, in which monomers self-associate to form a dimer peptide with a “saposin-like” fold. Similar to native SP-B, both Mini-B and Super Mini-B exhibit in vitro activity with spread films showing near-zero minimum surface tension during cycling using captive bubble surfactometry. In vivo, Super Mini-B demonstrates oxygenation and dynamic compliance that are greater than Mini-B and compare favorably to full-length SP-B. Conclusion Super Mini-B shows enhanced surfactant activity, probably due to the self-assembly of monomer peptide into dimer Super Mini-B that mimics the functions and putative structure of

  12. Alcohol--Induced Polyelectrolyte-Surfactant Complex Coacervate Systems: Characterization and Applications in Enzyme and Protein Extraction

    NASA Astrophysics Data System (ADS)

    Nejati Moshtaghin, Mahboubeh

    The focus of this thesis is to achieve a better understanding of the newly discovered surfactant-polyelectrolyte complex coacervate (SPCC) systems induced by fluoroalcohol/acid as well as short chain aliphatic alcohol; and to elucidate their applications in extraction and enrichment of proteins and enzyme. We have discovered that fluoroalcohols and --acids induce complex coacervation and phase separation in the aqueous mixtures of oppositely charged anionic polyelectrolytes; specifically, sodium salts of polyacrylic acid and polymethacrylic acid and cationic surfactant (cetyltrimethylammonium bromide, CTAB) over a broad range of concentrations of mole fractions of the oppositely charged amphiphiles. Accordingly, these new classes of coacervators will significantly broaden the scope and facilitate engineering of new coacervate phases. Toward these goals, we have inspected the formation of surfactant-polyelectrolyte complex coacervates in the presence of fluoroalcohols namely hexafluoroisopropanol (HFIP) and Trifluoroethanol (TFE). Furthermore, the extent of coacervation as a function of concentrations the system components, and charge ratios of the oppositely charged amphiphiles has been investigated. Polyelectrolytes are considered to be milder reagents, as compared to surfactants, regarding proteins denaturation. This highlights the importance of a detailed investigation of the efficiency of our coacervate systems for extraction and preconcentration of proteins and enzymes, especially, when the biological activity of the extracted proteins needs to be maintained based on the objectives mentioned above, the results of the investigations have been organized in four chapters. In Chapter II, the phase behavior of the FA-SPCC will be investigated. The objective is to examine the phase behavior and phase properties with respect to the extent of coacervation in different solution conditions. In particular, the effects of different solution variables such as concentration

  13. Exploring the affinity binding of alkylmaltoside surfactants to bovine serum albumin and their effect on the protein stability: A spectroscopic approach.

    PubMed

    Hierrezuelo, J M; Carnero Ruiz, C

    2015-08-01

    Steady-state and time-resolved fluorescence together with circular dichroism (CD) spectroscopic studies was performed to examine the interactions between bovine serum albumin (BSA) and two alkylmaltoside surfactants, i.e. n-decyl-β-D-maltoside (β-C10G2) and n-dodecyl-β-D-maltoside (β-C12G2), having identical structures but different tail lengths. Changes in the intrinsic fluorescence of BSA from static as well as dynamic measurements revealed a weak protein-surfactant interaction and gave the corresponding binding curves, suggesting that the binding mechanism of surfactants to protein is essentially cooperative in nature. The behavior of both surfactants is similar, so that the differences detected were attributed to the more hydrophobic nature of β-C12G2, which favors the adsorption of micelle-like aggregates onto the protein surface. These observations were substantially demonstrated by data derived from synchronous, three-dimensional and anisotropy fluorescence experiments. Changes in the secondary structure of the protein induced by the interaction with surfactants were analyzed by CD to determine the contents of α-helix and β-strand. It was noted that whereas the addition of β-C10G2 appears to stabilize the secondary structure of the protein, β-C12G2 causes a marginal denaturation of BSA for a protein:surfactant molar ratio as high as 1 to 100.

  14. Deficiency in pulmonary surfactant proteins in mice with fatty acid binding protein 4-Cre-mediated knockout of the tuberous sclerosis complex 1 gene

    PubMed Central

    Xiang, Xinxin; Yuan, Fang; Zhao, Jing; Li, Ziru; Wang, Xian; Guan, Youfei; Tang, Chaoshu; Sun, Guang; Li, Yin; Zhang, Weizhen

    2013-01-01

    New findings What is the central question of this study? Does tuberous sclerosis complex 1–mammalian target of rapamycin (mTOR) signalling regulate the synthesis of surfactant proteins A and B and, if so, can this contribute to the postnatal death of Fabp4-Tsc1cKO mice? What is the main finding and its importance? Our study reveals a novel mechanism for the regulation of alveolar surfactant proteins. Tuberous sclerosis complex 1–mTOR signalling contributes to the regulation of synthesis of surfactant proteins A and B. Deficiency of tuberous sclerosis complex 1 in alveolar epithelial cells may contribute to the postnatal death of Fabp4-Tsc1cKO mice. Tuberous sclerosis complex 1 (TSC1) forms a heterodimmer with tuberous sclerosis complex 2, to inhibit signalling by the mammalian target of rapamycin (mTOR) complex 1 (mTORC1). The mTORC1 stimulates cell growth by promoting anabolic cellular processes, such as gene transcription and protein translation, in response to growth factors and nutrient signals. Originally designed to test the role of TSC1 in adipocyte function, mice in which the gene for TSC1 was specifically deleted by the fatty acid binding protein 4 (FABP4)-Cre (Fabp4-Tsc1cKO mice) died prematurely within 48 h after birth. The Fabp4-Tsc1cKO mouse revealed a much smaller phenotype relative to the wild-type littermates. Maternal administration of rapamycin, a classical mTOR inhibitor, significantly increased the survival time of Fabp4-Tsc1cKO mice for up to 23 days. Both macroscopic and microscopic haemorrhages were observed in the lungs of Fabp4-Tsc1cKO mice, while other tissues showed no significant changes. Levels of surfactant proteins A and B demonstrated a significant decrease in the Fabp4-Tsc1cKO mice, which was rescued by maternal injection of rapamycin. Co-localization of FABP4 or TSC1 with surfactant protein B was also detected in neonatal pulmonary tissues. Our study suggests that TSC1–mTORC1 may be critical for the synthesis of surfactant

  15. Interactions of pulmonary surfactant protein A with phospholipid monolayers change with pH.

    PubMed Central

    Ruano, M L; Nag, K; Casals, C; Pérez-Gil, J; Keough, K M

    1999-01-01

    The interaction of pulmonary surfactant protein A (SP-A) labeled with Texas Red (TR-SP-A) with monolayers containing zwitterionic and acidic phospholipids has been studied at pH 7.4 and 4.5 using epifluorescence microscopy. At pH 7.4, TR-SP-A expanded the pi-A isotherms of film of dipalmitoylphosphatidylcholine (DPPC). It interacted at high concentration at the edges of condensed-expanded phase domains, and distributed evenly at lower concentration into the fluid phase with increasing pressure. At pH 4.5, TR-SP-A expanded DPPC monolayers to a slightly lower extent than at pH 7.4. It interacted primarily at the phase boundaries but it did not distribute into the fluid phase with increasing pressure. Films of DPPC/dipalmitoylphosphatidylglycerol (DPPG) 7:3 mol/mol were somewhat expanded by TR-SP-A at pH 7.4. The protein was distributed in aggregates only at the condensed-expanded phase boundaries at all surface pressures. At pH 4.5 TR-SP-A caused no expansion of the pi-A isotherm of DPPC/DPPG, but its fluorescence was relatively homogeneously distributed throughout the expanded phase at all pressures studied. These observations can be explained by a combination of factors including the preference for SP-A aggregates to enter monolayers at packing dislocations and their disaggregation in the presence of lipid under increasing pressure, together with the influence of pH on the aggregation state of SP-A and the interaction of SP-A with zwitterionic and acidic lipid. PMID:10465757

  16. Surfactant-Associated Protein A Provides Critical Immunoprotection in Neonatal Mice▿

    PubMed Central

    George, Caroline L. S.; Goss, Kelli L.; Meyerholz, David K.; Lamb, Fred S.; Snyder, Jeanne M.

    2008-01-01

    The collectins surfactant-associated protein A (SP-A) and SP-D are components of innate immunity that are present before birth. Both proteins bind pathogens and assist in clearing infection. The significance of SP-A and SP-D as components of the neonatal immune system has not been investigated. To determine the role of SP-A and SP-D in neonatal immunity, wild-type, SP-A null, and SP-D null mice were bred in a bacterium-laden environment (corn dust bedding) or in a semisterile environment (cellulose fiber bedding). When reared in the corn dust bedding, SP-A null pups had significant mortality (P < 0.001) compared to both wild-type and SP-D null pups exposed to the same environment. The mortality of the SP-A null pups was associated with significant gastrointestinal tract pathology but little lung pathology. Moribund SP-A null newborn mice exhibited Bacillus sp. and Enterococcus sp. peritonitis. When the mother or newborn produced SP-A, newborn survival was significantly improved (P < 0.05) compared to the results when there was a complete absence of SP-A in both the mother and the pup. Significant sources of SP-A likely to protect a newborn include the neonatal lung and gastrointestinal tract but not the lactating mammary tissue of the mother. Furthermore, exogenous SP-A delivered by mouth to newborn SP-A null pups with SP-A null mothers improved newborn survival in the corn dust environment. Therefore, a lack of SP-D did not affect newborn survival, while SP-A produced by either the mother or the pup or oral exogenous SP-A significantly reduced newborn mortality associated with environmentally induced infection in SP-A null newborns. PMID:17967856

  17. Conformational Stability of the NH2-Terminal Propeptide of the Precursor of Pulmonary Surfactant Protein SP-B

    PubMed Central

    Bañares-Hidalgo, Ángeles; Estrada, Pilar

    2016-01-01

    Assembly of pulmonary surfactant lipid-protein complexes depends on conformational changes coupled with proteolytic maturation of proSP-B, the precursor of pulmonary surfactant protein B (SP-B), along the surfactant biogenesis pathway in pneumocytes. Conformational destabilization of the N-terminal propeptide of proSP-B (SP-BN) triggers exposure of the mature SP-B domain for insertion into surfactant lipids. We have studied the conformational stability during GdmCl- or urea-promoted unfolding of SP-BN with trp fluorescence and circular dichroism spectroscopies. Binding of the intermediate states to bis-ANS suggests their molten globule-like character. ΔG0H2O was ~ 12.7 kJ·mol-1 either with urea or GdmCl. None of the thermal transitions of SP-BN detected by CD correspond to protein unfolding. Differential scanning calorimetry of SP-BN evidenced two endothermic peaks involved in oligomer dissociation as confirmed with 2 M urea. Ionic strength was relevant since at 150 mM NaCl, the process originating the endotherm at the highest temperature was irreversible (Tm2 = 108.5°C) with an activation energy of 703.8 kJ·mol-1. At 500 mM NaCl the process became reversible (Tm2 = 114.4°C) and data were fitted to the Non-two States model with two subpeaks. No free thiols in the propeptide could be titrated by DTNB with or without 5.7 M GdmCl, indicating disulfide bonds establishment. PMID:27380171

  18. Purifying selection drives the evolution of surfactant protein C (SP-C) independently of body temperature regulation in mammals.

    PubMed

    Potter, Sally; Orgeig, Sandra; Donnellan, Stephen; Daniels, Christopher B

    2007-06-01

    The pulmonary surfactant system of heterothermic mammals must be capable of dealing with the effect of low body temperatures on the physical state of the lipid components. We have shown previously that there is a modest increase in surfactant cholesterol during periods of torpor, however these changes do not fully explain the capacity of surfactant to function under the wide range of physical conditions imposed by torpor. Here we examine indirectly the role of surfactant protein C (SP-C) in adapting to variable body temperatures by testing for the presence of positive (adaptive) selection during evolutionary transitions between heterothermy and homeothermy. We sequenced SP-C from genomic DNA of 32 mammalian species from groups of closely related heterothermic and homeothermic species (contrasts). We used phylogenetic analysis by maximum likelihood estimates of rates of non-synonymous to synonymous substitutions and fully Bayesian inference of these sequences to determine whether the mode of body temperature regulation exerts a selection pressure driving the molecular adaptation of SP-C. The protein sequence of SP-C is highly conserved with synonymous or highly conservative amino acid substitutions being predominant. The evolution of SP-C among mammals is characterised by high codon usage bias and high rates of transition/transversion. The only contrast to show evidence of positive selection was that of the bears (Ursus americanus and U. maritimus). The significance of this result is unclear. We show that SP-C is under strong evolutionary constraints, driven by purifying selection, presumably to maintain protein function despite variation in the mode of body temperature regulation.

  19. Conformational Stability of the NH2-Terminal Propeptide of the Precursor of Pulmonary Surfactant Protein SP-B.

    PubMed

    Bañares-Hidalgo, Ángeles; Pérez-Gil, Jesús; Estrada, Pilar

    2016-01-01

    Assembly of pulmonary surfactant lipid-protein complexes depends on conformational changes coupled with proteolytic maturation of proSP-B, the precursor of pulmonary surfactant protein B (SP-B), along the surfactant biogenesis pathway in pneumocytes. Conformational destabilization of the N-terminal propeptide of proSP-B (SP-BN) triggers exposure of the mature SP-B domain for insertion into surfactant lipids. We have studied the conformational stability during GdmCl- or urea-promoted unfolding of SP-BN with trp fluorescence and circular dichroism spectroscopies. Binding of the intermediate states to bis-ANS suggests their molten globule-like character. ΔG0H2O was ~ 12.7 kJ·mol-1 either with urea or GdmCl. None of the thermal transitions of SP-BN detected by CD correspond to protein unfolding. Differential scanning calorimetry of SP-BN evidenced two endothermic peaks involved in oligomer dissociation as confirmed with 2 M urea. Ionic strength was relevant since at 150 mM NaCl, the process originating the endotherm at the highest temperature was irreversible (Tm2 = 108.5°C) with an activation energy of 703.8 kJ·mol-1. At 500 mM NaCl the process became reversible (Tm2 = 114.4°C) and data were fitted to the Non-two States model with two subpeaks. No free thiols in the propeptide could be titrated by DTNB with or without 5.7 M GdmCl, indicating disulfide bonds establishment.

  20. Surfactant protein D, Club cell protein 16, Pulmonary and activation-regulated chemokine, C-reactive protein, and Fibrinogen biomarker variation in chronic obstructive lung disease.

    PubMed

    Lock-Johansson, Sofie; Vestbo, Jørgen; Sorensen, Grith Lykke

    2014-11-25

    Chronic obstructive pulmonary disease (COPD) is a multifaceted condition that cannot be fully described by the severity of airway obstruction. The limitations of spirometry and clinical history have prompted researchers to investigate a multitude of surrogate biomarkers of disease for the assessment of patients, prediction of risk, and guidance of treatment. The aim of this review is to provide a comprehensive summary of observations for a selection of recently investigated pulmonary inflammatory biomarkers (Surfactant protein D (SP-D), Club cell protein 16 (CC-16), and Pulmonary and activation-regulated chemokine (PARC/CCL-18)) and systemic inflammatory biomarkers (C-reactive protein (CRP) and fibrinogen) with COPD. The relevance of these biomarkers for COPD is discussed in terms of their biological plausibility, their independent association to disease and hard clinical outcomes, their modification by interventions, and whether changes in clinical outcomes are reflected by changes in the biomarker.

  1. Surfactants, skin cleansing protagonists.

    PubMed

    Corazza, M; Lauriola, M M; Zappaterra, M; Bianchi, A; Virgili, A

    2010-01-01

    The correct choice of cosmetic products and cleansers is very important to improve skin hydration, to provide moisturizing benefits and to minimize cutaneous damage caused by surfactants. In fact, surfactants may damage protein structures and solubilize lipids. Soaps, defined as the alkali salts of fatty acids, are the oldest surfactants and are quite aggressive. Syndets (synthetic detergents) vary in composition and surfactant types (anionic, cationic, amphotheric, non-ionic). These new skin cleansing products also contain preservatives, fragrances, and sometimes emollients, humectants and skin nutrients. We present a revision of the literature and discuss recent findings regarding skin cleansers.

  2. Protein carbonylation in human diseases.

    PubMed

    Dalle-Donne, Isabella; Giustarini, Daniela; Colombo, Roberto; Rossi, Ranieri; Milzani, Aldo

    2003-04-01

    Oxidative modifications of enzymes and structural proteins play a significant role in the aetiology and/or progression of several human diseases. Protein carbonyl content is the most general and well-used biomarker of severe oxidative protein damage. Human diseases associated with protein carbonylation include Alzheimer's disease, chronic lung disease, chronic renal failure, diabetes and sepsis. Rapid recent progress in the identification of carbonylated proteins should provide new diagnostic (possibly pre-symptomatic) biomarkers for oxidative damage, and yield basic information to aid the establishment an efficacious antioxidant therapy.

  3. Differential modulation of the chaperone-like activity of HSP-1/2, a major protein of horse seminal plasma by anionic and cationic surfactants.

    PubMed

    Kumar, C Sudheer; Swamy, Musti J

    2017-03-01

    The major protein of equine seminal plasma, HSP-1/2 exhibits chaperone-like activity (CLA) by protecting various target proteins against thermal, chemical and oxidative stress. Polydispersity and surface hydrophobicity of HSP-1/2 were found to be important for its CLA. Surfactants are known to alter certain properties of proteins, e.g. hydrophobicity, charge and conformation either by altering properties of the medium or by direct binding. In the current study, thermal aggregation of alcohol dehydrogenase (ADH) and enolase has been studied in the presence of HSP-1/2, different surfactants and their combinations. The results obtained show that anionic surfactants (SDS, sodium dodecyl benzene sulfate) and neutral surfactants (tween-20, triton X-100) increase the CLA of HSP-1/2 and also inhibit aggregation of the target proteins independently. On the other hand, cationic surfactants (CTAB, alanine palmityl ester) increased the thermal aggregation of ADH and enolase and also decreased the CLA of HSP-1/2. These results are of significant interest as they show that surfactants such as SDS and tween-20 can potentially be used as anti-aggregation agents to prevent thermal aggregation of target proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Deficiency in pulmonary surfactant proteins in mice with fatty acid binding protein 4-Cre-mediated knockout of the tuberous sclerosis complex 1 gene.

    PubMed

    Xiang, Xinxin; Yuan, Fang; Zhao, Jing; Li, Ziru; Wang, Xian; Guan, Youfei; Tang, Chaoshu; Sun, Guang; Li, Yin; Zhang, Weizhen

    2013-03-01

    Tuberous sclerosis complex 1 (TSC1) forms a heterodimmer with tuberous sclerosis complex 2, to inhibit signalling by the mammalian target of rapamycin (mTOR) complex 1 (mTORC1). The mTORC1 stimulates cell growth by promoting anabolic cellular processes, such as gene transcription and protein translation, in response to growth factors and nutrient signals. Originally designed to test the role of TSC1 in adipocyte function, mice in which the gene for TSC1 was specifically deleted by the fatty acid binding protein 4 (FABP4)-Cre (Fabp4-Tsc1cKO mice) died prematurely within 48 h after birth. The Fabp4-Tsc1cKO mouse revealed a much smaller phenotype relative to the wild-type littermates. Maternal administration of rapamycin, a classical mTOR inhibitor, significantly increased the survival time of Fabp4-Tsc1cKO mice for up to 23 days. Both macroscopic and microscopic haemorrhages were observed in the lungs of Fabp4-Tsc1cKO mice, while other tissues showed no significant changes. Levels of surfactant proteins A and B demonstrated a significant decrease in the Fabp4-Tsc1cKO mice, which was rescued by maternal injection of rapamycin. Co-localization of FABP4 or TSC1 with surfactant protein B was also detected in neonatal pulmonary tissues. Our study suggests that TSC1-mTORC1 may be critical for the synthesis of surfactant proteins A and B.

  5. Weak and Saturable Protein-Surfactant Interactions in the Denaturation of Apo-α-Lactalbumin by Acidic and Lactonic Sophorolipid.

    PubMed

    Andersen, Kell K; Vad, Brian S; Roelants, Sophie; van Bogaert, Inge N A; Otzen, Daniel E

    2016-01-01

    Biosurfactants are of growing interest as sustainable alternatives to fossil-fuel-derived chemical surfactants, particularly for the detergent industry. To realize this potential, it is necessary to understand how they affect proteins which they may encounter in their applications. However, knowledge of such interactions is limited. Here, we present a study of the interactions between the model protein apo-α-lactalbumin (apo-aLA) and the biosurfactant sophorolipid (SL) produced by the yeast Starmerella bombicola. SL occurs both as an acidic and a lactonic form; the lactonic form (lactSL) is sparingly soluble and has a lower critical micelle concentration (cmc) than the acidic form [non-acetylated acidic sophorolipid (acidSL)]. We show that acidSL affects apo-aLA in a similar way to the related glycolipid biosurfactant rhamnolipid (RL), with the important difference that RL is also active below the cmc in contrast to acidSL. Using isothermal titration calorimetry data, we show that acidSL has weak and saturable interactions with apo-aLA at low concentrations; due to the relatively low cmc of acidSL (which means that the monomer concentration is limited to ca. 0-1 mM SL), it is only possible to observe interactions with monomeric acidSL at high apo-aLA concentrations. However, the denaturation kinetics of apo-aLA in the presence of acidSL are consistent with a collaboration between monomeric and micellar surfactant species, similar to RL and non-ionic or zwitterionic surfactants. Inclusion of diacetylated lactonic sophorolipid (lactSL) as mixed micelles with acidSL lowers the cmc and this effectively reduces the rate of unfolding, emphasizing that SL like other biosurfactants is a gentle anionic surfactant. Our data highlight the potential of these biosurfactants for future use in the detergent and pharmaceutical industry.

  6. Meckel-Gruber syndrome protein MKS3 is required for endoplasmic reticulum-associated degradation of surfactant protein C.

    PubMed

    Wang, Mei; Bridges, James P; Na, Cheng-Lun; Xu, Yan; Weaver, Timothy E

    2009-11-27

    Autosomal dominant mutations in the SFTPC gene are associated with idiopathic pulmonary fibrosis, a progressive lethal interstitial lung disease. Mutations that cause misfolding of the encoded proprotein surfactant protein C (SP-C) trigger endoplasmic reticulum (ER)-associated degradation, a pathway that segregates terminally misfolded substrate for retrotranslocation to the cytosol and degradation by proteasome. Microarray screens for genes involved in SP-C ER-associated degradation identified MKS3/TMEM67, a locus previously linked to the ciliopathy Meckel-Gruber syndrome. In this study, MKS3 was identified as a membrane glycoprotein predominantly localized to the ER. Expression of MKS3 was up-regulated by genetic or pharmacological inducers of ER stress. The ER lumenal domain of MKS3 interacted with a complex that included mutant SP-C and associated chaperones, whereas the region predicted to encode the transmembrane domains of MKS3 interacted with cytosolic p97. Deletion of the transmembrane and cytosolic domains abrogated interaction of MKS3 with p97 and resulted in accumulation of mutant SP-C proprotein; knockdown of MKS3 also inhibited degradation of mutant SP-C. These results support a model in which MKS3 links the ER lumenal quality control machinery with the cytosolic degradation apparatus.

  7. Meckel-Gruber Syndrome Protein MKS3 Is Required for Endoplasmic Reticulum-associated Degradation of Surfactant Protein C*

    PubMed Central

    Wang, Mei; Bridges, James P.; Na, Cheng-Lun; Xu, Yan; Weaver, Timothy E.

    2009-01-01

    Autosomal dominant mutations in the SFTPC gene are associated with idiopathic pulmonary fibrosis, a progressive lethal interstitial lung disease. Mutations that cause misfolding of the encoded proprotein surfactant protein C (SP-C) trigger endoplasmic reticulum (ER)-associated degradation, a pathway that segregates terminally misfolded substrate for retrotranslocation to the cytosol and degradation by proteasome. Microarray screens for genes involved in SP-C ER-associated degradation identified MKS3/TMEM67, a locus previously linked to the ciliopathy Meckel-Gruber syndrome. In this study, MKS3 was identified as a membrane glycoprotein predominantly localized to the ER. Expression of MKS3 was up-regulated by genetic or pharmacological inducers of ER stress. The ER lumenal domain of MKS3 interacted with a complex that included mutant SP-C and associated chaperones, whereas the region predicted to encode the transmembrane domains of MKS3 interacted with cytosolic p97. Deletion of the transmembrane and cytosolic domains abrogated interaction of MKS3 with p97 and resulted in accumulation of mutant SP-C proprotein; knockdown of MKS3 also inhibited degradation of mutant SP-C. These results support a model in which MKS3 links the ER lumenal quality control machinery with the cytosolic degradation apparatus. PMID:19815549

  8. A human surfactant peptide-elastase inhibitor construct as a treatment for emphysema

    PubMed Central

    Guarnieri, Frank; Spencer, Jean L.; Lucey, Edgar C.; Nugent, Matthew A.; Stone, Phillip J.

    2010-01-01

    Two million Americans suffer from pulmonary emphysema, costing $2.5 billion/year and contributing to 100,000 deaths/year. Emphysema is thought to result from an imbalance between elastase and endogenous inhibitors of elastase, leading to tissue destruction and a loss of alveoli. Decades of research have still not resulted in an effective treatment other than stopping cigarette smoking, a highly addictive behavior. On the basis of our previous work, we hypothesize that small molecule inhibitors of human neutrophil elastase are ineffective because of rapid clearance from the lungs. To develop a long-acting elastase inhibitor with a lung pharmacodynamic profile that has minimal immunogenicity, we covalently linked an elastase inhibitor, similar to a trifluoro inhibitor that was used in clinical trials, to a 25-amino-acid fragment of human surfactant peptide B. We used this construct to prevent human neutrophil elastase-induced emphysema in a rodent model. The elastase inhibitor alone, although in a 70-fold molar excess to elastase in a mixture with <0.6% residual elastase activity, provided no protection from elastase-induced emphysema. Covalently combining an endogenous peptide from the target organ with a synthetic small molecule inhibitor is a unique way of endowing an active compound with the pharmacodynamic profile needed to create in vivo efficacy. PMID:20534582

  9. In vitro analysis of the effect of alkyl-chain length of anionic surfactants on the skin by using a reconstructed human epidermal model.

    PubMed

    Yamaguchi, Fumiko; Watanabe, Shin-Ichi; Harada, Fusae; Miyake, Miyuki; Yoshida, Masaki; Okano, Tomomichi

    2014-01-01

    We investigated the effect of the alkyl-chain length of anionic surfactants on the skin using an in vitro model. The evaluated anionic surfactants were sodium alkyl sulfate (AS) and sodium fatty acid methyl ester sulfonate (MES), which had different alkyl-chain lengths (C8-C14). Skin tissue damage and permeability were examined using a reconstructed human epidermal model, LabCyte EPI-MODEL24. Skin tissue damage was examined by measuring cytotoxicity with an MTT assay. Liquid chromatography/tandem mass spectrometry (LC/MS-MS) and liquid chromatography/mass spectrometry (LC/MS) were used to detect surfactants that permeated into the assay medium through an epidermal model. To assess the permeation mechanism and cell damage caused by the surfactants through the epidermis, we evaluated the structural changes of Bovine Serum Albumin (BSA), used as a simple model protein, and the fluidity of 1,2-dipalmitoyl-sn-glycero-3-phosphpcholine (DPPC) liposome, which serves as one of the most abundant phospholipid models of living cell membranes in the epidermis. The effects of the surfactants on the proteins were measured using Circular Dichroism (CD) spectroscopy, while the effects on membrane fluidity were investigated by electron spin resonance (ESR) spectroscopy. ET50 (the 50% median effective time) increased as follows: C10 < C12 < C8 < C14 in AS and C8, C10 < C12 < C14 in MES. The order of permeation through the LabCyte EPI-MODEL24 was C10 > C12 > C14, for both AS and MES. For both AS and MES, the order parameter, which is the criteria for the microscopic viscosity of lipid bilayers, increased as follows: C10 < C12 < C14, which means the membrane fluidity is C10 > C12 > C14. It was determined that the difference in skin tissue damage in the LabCyte EPI-MODEL24 with C10 to C14 AS and MES was caused by the difference in permeation and cell membrane fluidity through the lipid bilayer path in the epidermis.

  10. Pro-surfactant protein B as a biomarker for lung cancer prediction.

    PubMed

    Sin, Don D; Tammemagi, C Martin; Lam, Stephen; Barnett, Matt J; Duan, Xiaobo; Tam, Anthony; Auman, Heidi; Feng, Ziding; Goodman, Gary E; Hanash, Samir; Taguchi, Ayumu

    2013-12-20

    Preliminary studies have identified pro-surfactant protein B (pro-SFTPB) to be a promising blood biomarker for non-small-cell lung cancer. We conducted a study to determine the independent predictive potential of pro-SFTPB in identifying individuals who are subsequently diagnosed with lung cancer. Pro-SFTPB levels were measured in 2,485 individuals, who enrolled onto the Pan-Canadian Early Detection of Lung Cancer Study by using plasma sample collected at the baseline visit. Multivariable logistic regression models were used to evaluate the predictive ability of pro-SFTPB in addition to known lung cancer risk factors. Calibration and discrimination were evaluated, the latter by an area under the receiver operating characteristic curve (AUC). External validation was performed with samples collected in the Carotene and Retinol Efficacy Trial (CARET) participants using a case-control study design. Adjusted for age, sex, body mass index, personal history of cancer, family history of lung cancer, forced expiratory volume in one second percent predicted, average number of cigarettes smoked per day, and smoking duration, pro-SFTPB (log transformed) had an odds ratio of 2.220 (95% CI, 1.727 to 2.853; P < .001). The AUCs of the full model with and without pro-SFTPB were 0.741 (95% CI, 0.696 to 0.783) and 0.669 (95% CI, 0.620 to 0.717; difference in AUC P < .001). In the CARET Study, the use of pro-SFPTB yielded an AUC of 0.683 (95% CI, 0.604 to 0.761). Pro-SFTPB in plasma is an independent predictor of lung cancer and may be a valuable addition to existing lung cancer risk prediction models.

  11. Pro–Surfactant Protein B As a Biomarker for Lung Cancer Prediction

    PubMed Central

    Sin, Don D.; Tammemagi, C. Martin; Lam, Stephen; Barnett, Matt J.; Duan, Xiaobo; Tam, Anthony; Auman, Heidi; Feng, Ziding; Goodman, Gary E.; Hanash, Samir; Taguchi, Ayumu

    2013-01-01

    Purpose Preliminary studies have identified pro–surfactant protein B (pro-SFTPB) to be a promising blood biomarker for non–small-cell lung cancer. We conducted a study to determine the independent predictive potential of pro-SFTPB in identifying individuals who are subsequently diagnosed with lung cancer. Patients and Methods Pro-SFTPB levels were measured in 2,485 individuals, who enrolled onto the Pan-Canadian Early Detection of Lung Cancer Study by using plasma sample collected at the baseline visit. Multivariable logistic regression models were used to evaluate the predictive ability of pro-SFTPB in addition to known lung cancer risk factors. Calibration and discrimination were evaluated, the latter by an area under the receiver operating characteristic curve (AUC). External validation was performed with samples collected in the Carotene and Retinol Efficacy Trial (CARET) participants using a case-control study design. Results Adjusted for age, sex, body mass index, personal history of cancer, family history of lung cancer, forced expiratory volume in one second percent predicted, average number of cigarettes smoked per day, and smoking duration, pro-SFTPB (log transformed) had an odds ratio of 2.220 (95% CI, 1.727 to 2.853; P < .001). The AUCs of the full model with and without pro-SFTPB were 0.741 (95% CI, 0.696 to 0.783) and 0.669 (95% CI, 0.620 to 0.717; difference in AUC P < .001). In the CARET Study, the use of pro-SFPTB yielded an AUC of 0.683 (95% CI, 0.604 to 0.761). Conclusion Pro-SFTPB in plasma is an independent predictor of lung cancer and may be a valuable addition to existing lung cancer risk prediction models. PMID:24248694

  12. Serum Levels of Surfactant Proteins in Patients with Combined Pulmonary Fibrosis and Emphysema (CPFE).

    PubMed

    Papaioannou, Andriana I; Kostikas, Konstantinos; Manali, Effrosyni D; Papadaki, Georgia; Roussou, Aneza; Spathis, Aris; Mazioti, Argyro; Tomos, Ioannis; Papanikolaou, Ilias; Loukides, Stelios; Chainis, Kyriakos; Karakitsos, Petros; Griese, Matthias; Papiris, Spyros

    2016-01-01

    Emphysema and idiopathic pulmonary fibrosis (IPF) present either per se or coexist in combined pulmonary fibrosis and emphysema (CPFE). Serum surfactant proteins (SPs) A, B, C and D levels may reflect lung damage. We evaluated serum SP levels in healthy controls, emphysema, IPF, and CPFE patients and their associations to disease severity and survival. 122 consecutive patients (31 emphysema, 62 IPF, and 29 CPFE) and 25 healthy controls underwent PFTs, ABG-measurements, 6MWT and chest HRCT. Serum levels of SPs were measured. Patients were followed-up for 1-year. SP-A and SP-D levels differed between groups (p = 0.006 and p<0.001 respectively). In post-hoc analysis, SP-A levels differed only between controls and CPFE (p<0.05) and CPFE and emphysema (p<0.05). SP-D differed between controls and IPF or CPFE (p<0.001 for both comparisons). In IPF SP-B correlated to pulmonary function while SP-A, correlated to the Composite Physiological Index (CPI). Controls current smokers had higher SP-A and SP-D levels compared to non-smokers (p = 0.026 and p = 0.023 respectively). SP-D levels were higher in CPFE patients with extended emphysema (p = 0.042). In patients with IPF, SP-B levels at the upper quartile of its range (≥26 ng/mL) presented a weak association with reduced survival (p = 0.05). In conclusion, serum SP-A and SP-D levels were higher where fibrosis exists or coexists and related to disease severity, suggesting that serum SPs relate to alveolar damage in fibrotic lungs and may reflect either local overproduction or overleakage. The weak association between high levels of SP-B and survival needs further validation in clinical trials.

  13. Surfactant Protein D Enhances Phagocytosis and Killing of Unencapsulated Phase Variants of Klebsiella pneumoniae

    PubMed Central

    Ofek, Itzhak; Mesika, Adi; Kalina, Moshe; Keisari, Yona; Podschun, Ranier; Sahly, Hany; Chang, Donald; McGregor, David; Crouch, Erika

    2001-01-01

    Pulmonary surfactant protein D (SP-D) is a collagenous C-type lectin (collectin) that is secreted into the alveoli and distal airways of the lung. We have studied the interactions of SP-D and alveolar macrophages with Klebsiella pneumoniae, a common cause of nosocomial pneumonia. SP-D does not agglutinate encapsulated K. pneumoniae but selectively agglutinates spontaneous, unencapsulated phase variants, such as Klebsiella strain K50-3OF, through interactions with their lipopolysaccharides (LPS). These effects are calcium dependent and inhibited with maltose but not lactose, consistent with involvement of the SP-D carbohydrate recognition domain. Precoating of K50-3OF with SP-D enhances the phagocytosis and killing of these organisms by rat alveolar macrophages in cell culture and stimulates the production of nitric oxide by the NR-8383 rat alveolar macrophage cell line. SP-D similarly enhances the NO response to K50-3OF LPS adsorbed to Latex beads under conditions where soluble LPS or SP-D, or soluble complexes of SP-D and LPS, do not stimulate NO production. Our studies demonstrate that interactions of SP-D with exposed arrays of Klebsiella LPS on a particulate surface can enhance the host defense activities of alveolar macrophages and suggest that activation of macrophages by SP-D requires binding to microorganisms or other particulate ligands. Because unencapsulated phase variants are likely to be responsible for the initial stages of tissue invasion and infection, we speculate that SP-D-mediated agglutination and/or opsonization of K. pneumoniae is an important defense mechanism for this respiratory pathogen in otherwise healthy individuals. PMID:11119485

  14. Data mining and multiparameter analysis of lung surfactant protein genes in bronchopulmonary dysplasia.

    PubMed

    Rova, Meri; Haataja, Ritva; Marttila, Riitta; Ollikainen, Vesa; Tammela, Outi; Hallman, Mikko

    2004-06-01

    Bronchopulmonary dysplasia (BPD), the most common chronic lung disease in infancy, is influenced by a number of antenatal and postnatal risk factors and is mostly preceded by respiratory distress syndrome (RDS) in the newborn. Surfactant protein (SP-A, -B, -C and -D) gene variations may play a role in both BPD and RDS. An association study between these candidate genes and BPD was performed. A total of 365 preterm Finnish infants in a high-risk population with gestational age

  15. Lung surfactant protein D (SP-D) response and regulation during acute and chronic lung injury.

    PubMed

    Gaunsbaek, Maria Quisgaard; Rasmussen, Karina Juhl; Beers, Michael F; Atochina-Vasserman, Elena N; Hansen, Soren

    2013-06-01

    Surfactant protein D (SP-D) is a collection that plays important roles in modulating host defense functions and maintaining phospholipid homeostasis in the lung. The aim of current study was to characterize comparatively the SP-D response in bronchoalveolar lavage (BAL) and serum in three murine models of lung injury, using a validated ELISA technology for estimation of SP-D levels. Mice were exposed to lipopolysaccharide, bleomycin, or Pneumocystis carinii (Pc) and sacrificed at different time points. In lipopolysaccharide-challenged mice, the level of SP-D in BAL increased within 6 h, peaked at 51 h (4,518 ng/ml), and returned to base level at 99 h (612 ng/ml). Serum levels of SP-D increased immediately (8.6 ng/ml), peaked at 51 h (16 ng/ml), and returned to base levels at 99 h (3.8 ng/ml). In a subacute bleomycin inflammation model, SP-D levels were 4,625 and 367 ng/ml in BAL and serum, respectively, 8 days after exposure. In a chronic Pc inflammation model, the highest level of SP-D was observed 6 weeks after inoculation, with BAL and serum levels of 1,868 and 335 ng/ml, respectively. We conclude that serum levels of SP-D increase during lung injury, with a sustained increment during chronic inflammation compared with acute inflammation. A quick upregulation of SP-D in serum in response to acute airway inflammation supports the notion that SP-D translocates from the airways into the vascular system, in favor of being synthesized systemically. The study also confirms the concept of using increased SP-D serum levels as a biomarker of especially chronic airway inflammation.

  16. Surfactant protein A genetic variants associate with severe respiratory insufficiency in pandemic influenza A virus infection

    PubMed Central

    2014-01-01

    Introduction Inherited variability in host immune responses influences susceptibility and outcome of Influenza A virus (IAV) infection, but these factors remain largely unknown. Components of the innate immune response may be crucial in the first days of the infection. The collectins surfactant protein (SP)-A1, -A2, and -D and mannose-binding lectin (MBL) neutralize IAV infectivity, although only SP-A2 can establish an efficient neutralization of poorly glycosylated pandemic IAV strains. Methods We studied the role of polymorphic variants at the genes of MBL (MBL2), SP-A1 (SFTPA1), SP-A2 (SFTPA2), and SP-D (SFTPD) in 93 patients with H1N1 pandemic 2009 (H1N1pdm) infection. Results Multivariate analysis showed that two frequent SFTPA2 missense alleles (rs1965708-C and rs1059046-A) and the SFTPA2 haplotype 1A0 were associated with a need for mechanical ventilation, acute respiratory failure, and acute respiratory distress syndrome. The SFTPA2 haplotype 1A1 was a protective variant. Kaplan-Meier analysis and Cox regression also showed that diplotypes not containing the 1A1 haplotype were associated with a significantly shorter time to ICU admission in hospitalized patients. In addition, rs1965708-C (P = 0.0007), rs1059046-A (P = 0.0007), and haplotype 1A0 (P = 0.0004) were associated, in a dose-dependent fashion, with lower PaO2/FiO2 ratio, whereas haplotype 1A1 was associated with a higher PaO2/FiO2 ratio (P = 0.001). Conclusions Our data suggest an effect of genetic variants of SFTPA2 on the severity of H1N1pdm infection and could pave the way for a potential treatment with haplotype-specific (1A1) SP-A2 for future IAV pandemics. PMID:24950659

  17. Impact of Surfactant Protein D, Interleukin-5, and Eosinophilia on Cryptococcosis

    PubMed Central

    Holmer, Stephanie M.; Evans, Kathy S.; Asfaw, Yohannes G.; Saini, Divey; Schell, Wiley A.; Ledford, Julie G.; Frothingham, Richard; Wright, Jo Rae; Sempowski, Gregory D.

    2014-01-01

    Cryptococcus neoformans is an opportunistic fungal pathogen that initiates infection following inhalation. As a result, the pulmonary immune response provides a first line of defense against C. neoformans. Surfactant protein D (SP-D) is an important regulator of pulmonary immune responses and is typically host protective against bacterial and viral respiratory infections. However, SP-D is not protective against C. neoformans. This is evidenced by previous work from our laboratory demonstrating that SP-D-deficient mice infected with C. neoformans have a lower fungal burden and live longer than wild-type (WT) control animals. We hypothesized that SP-D alters susceptibility to C. neoformans by dysregulating the innate pulmonary immune response following infection. Thus, inflammatory cells and cytokines were compared in the bronchoalveolar lavage fluid from WT and SP-D−/− mice after C. neoformans infection. Postinfection, mice lacking SP-D have reduced eosinophil infiltration and interleukin-5 (IL-5) in lung lavage fluid. To further explore the interplay of SP-D, eosinophils, and IL-5, mice expressing altered levels of eosinophils and/or IL-5 were infected with C. neoformans to assess the role of these innate immune mediators. IL-5-overexpressing mice have increased pulmonary eosinophilia and are more susceptible to C. neoformans infection than WT mice. Furthermore, susceptibility of SP-D−/− mice to C. neoformans infection could be restored to the level of WT mice by increasing IL-5 and eosinophils by crossing the IL-5-overexpressing mice with SP-D−/− mice. Together, these studies support the conclusion that SP-D increases susceptibility to C. neoformans infection by promoting C. neoformans-driven pulmonary IL-5 and eosinophil infiltration. PMID:24478083

  18. Characterization of the Ca2+-dependent binding of annexin IV to surfactant protein A.

    PubMed Central

    Sohma, H; Creutz, C E; Saitoh, M; Sano, H; Kuroki, Y; Voelker, D R; Akino, T

    1999-01-01

    We have shown previously that surfactant protein A (SP-A) binds to annexin IV in a Ca2+-dependent manner [Sohma, Matsushima, Watanabe, Hattori, Kuroki and Akino (1995) Biochem. J. 312, 175-181]. Annexin IV is a member of the annexin family having four consensus repeats of about 70 amino acids and a unique N-terminal tail. In the present study, the functional site of both annexin IV and SP-A for the Ca2+-dependent binding was investigated using mutant proteins. SP-A bound in a Ca2+-dependent manner to an annexin-IV truncation mutant consisting of the N-terminal domain and the first three domains (T(N-1-2-3)). SP-A also bound to T3-4, but this interaction was not Ca2+-dependent. SP-A bound weakly to the other truncation mutants (T(N-1-2), T(2-3) and T(2-3-4)). Each consensus repeat of annexin IV possesses a conserved acidic amino acid residue (Glu70, Asp142, Glu226 and Asp301) that putatively ligates Ca2+. Using annexin-IV DE mutants in which one, two or three residues out of the four Asp/Glu were altered to Ala by site-directed mutagenesis [Nelson and Creutz (1995) Biochemistry 34, 3121-3132], it was revealed that Ca2+ binding in the third domain is more important than in the other Ca2+-binding sites. SP-A is a member of the animal lectin group homologous with mannose-binding protein A. The substitution of Arg197 of rat SP-A with Asp or Asn eliminated binding to annexin IV, whereas the substitution of Glu195 with Gln was silent. These results suggest that the Ca2+ binding to domain 3 of annexin IV is required for the Ca2+-dependent binding by SP-A and that Arg197 of SP-A is important in this binding. PMID:10377263

  19. Assessment of the potential skin irritation of lysine-derivative anionic surfactants using mouse fibroblasts and human keratinocytes as an alternative to animal testing.

    PubMed

    Sanchez, L; Mitjans, M; Infante, M R; Vinardell, M P

    2004-09-01

    The aim of this study was to identify new surfactants with low skin irritant properties for use in pharmaceutical and cosmetic formulations, employing cell culture as an alternative method to in vivo testing. In addition, we sought to establish whether potential cytotoxic properties were related to the size of the counterions bound to the surfactants. Cytotoxicity was assessed in the mouse fibroblast cell line 3T6 and the human keratinocyte cell line NCTC 2544 using the MTT assay and uptake of the vital dye neutral red 24 h after dosing (NRU). Lysine-derivative surfactants showed higher IC50s than did commercial anionic irritant compounds such as sodium dodecyl sulfate, proving to be no more harmful than amphoteric betaines. The aggressiveness of the surfactants depended on the size of their constituent counterions: surfactants associated with lighter counterions showed a proportionally higher aggressivity than those with heavier ones. Synthetic lysine-derivative anionic surfactants are less irritant than commercial surfactants such as sodium dodecyl sulfate and hexadecyltrimethylammonium bromide and are similar to betaines. These surfactants may offer promising applications in pharmaceutical and cosmetic preparations, representing a potential alternative to commercial anionic surfactants as a result of their low irritancy potential.

  20. Surfactant Protein A and Napsin A in the Immunohistochemical Characterization of Canine Pulmonary Carcinomas: Comparison With Thyroid Transcription Factor-1.

    PubMed

    Beck, Jessica; Miller, Margaret A; Frank, Chad; DuSold, Dee; Ramos-Vara, José Antonio

    2017-09-01

    Thyroid transcription factor-1 (TTF-1) is a specific and sensitive marker for canine pulmonary tumors but is also expressed in thyroid carcinomas, which commonly metastasize to lung. Napsin A and surfactant protein A (SP-A) are used in the histologic diagnosis of non-small-cell lung cancer in humans but have not been thoroughly evaluated in neoplasms of dogs. The objective of this study was to compare the efficacy of immunohistochemistry for SP-A, napsin A, and TTF-1 in the diagnosis of canine pulmonary carcinomas. TTF-1, napsin A, and SP-A antibodies were applied to 67 formalin-fixed, paraffin-embedded canine pulmonary tumors. Although each marker had good sensitivity, only 3% (2/67) of lung tumors were negative for SP-A compared with 7% (5/67) and 9% (6/67) for napsin A and TTF-1, respectively. Each antigen was detected in a greater percentage of cells of tumors with acinar or papillary patterns compared with those with squamous differentiation. SP-A immunoreactivity was absent in all 113 nonpulmonary tumors tested. Of 108 normal tissues, SP-A was detected only in lung and in 1 of 6 adrenal, 1 of 3 endometrial, and 1 of 4 hepatic sections. Based on these findings, SP-A and napsin A are useful markers of canine lung epithelial neoplasia. Of these, SP-A is the most sensitive and specific (a possible pitfall is the need to distinguish entrapped normal pulmonary epithelial cells or alveolar macrophages from neoplastic cells) and can be used in combination with TTF-1 or napsin A to improve detection and differentiation of pulmonary carcinomas from metastatic tumors in the canine lung.

  1. Integrin-dependent interaction of human vascular endothelial cells on biomimetic peptide surfactant polymers.

    PubMed

    Murugesan, Gurunathan; Ruegsegger, Mark A; Kligman, Faina; Marchant, Roger E; Kottke-Marchant, Kandice

    2002-01-01

    Biomimetic surfactant polymers designed by molecular grafting of pendant RGD peptides (Pep) and dextran oligosaccharides (Dex) in different ratios onto the backbone of poly(vinyl amine) (PVAm) were examined for their ability to promote endothelial cell (EC) growth. Adhesion, formation of focal contacts, and expression of integrin receptors were examined in EC seeded onto a series of novel surfactants containing 100% dextran (PVAm[Pep (0%)]) to 100% peptide (PVAm[Pep (100%)]) compared to fibronectin control. Interaction of EC on polymer was specific, as soluble GRGDSP, but not GRGESP, was able to inhibit both adhesion and spreading of EC. At three hours, EC attachment and spreading were rapid and comparable on fibronectin and PVAm[Pep (100%)], rounded on PVAm[Pep (0%)], and intermediate on PVAm[Pep (25%)], (PVAm[Pep (50%)], and PVAm[Pep (75%)], with increasing peptide ratio favoring more spreading, although all the substrates had similar hydrophilicity. Cells that spread well on fibronectin and PVAm[Pep (100%)] had sharp spikes of vinculin localized at the termination point of actin stress fibers. Formation of stress fibers and focal adhesions on other substrates were correlated with spreading pattern of EC and the peptide content. EC seeded on fibronectin expressed alpha5beta1 integrins all along the stress fibers and throughout the entire cytoskeleton, but this distribution pattern was less prominent on PVAm[Pep (100%)]. However, expression and distribution of vitronectin receptors (alpha(v)beta3) were similar on both fibronectin and PVAm[Pep (100%)], suggesting a strong cell adhesion on PVAm[Pep (100%)]. Viability of EC was also comparable on both fibronectin and PVAm[Pep (100%)] at 24 h. Substrates with high proportion of dextran limited cell adhesion, probably by decreasing protein adsorption. These results suggest that it may be possible to engineer substrates that promote cell adhesion in a receptor-dependent manner while blocking nonspecific protein

  2. Protein separation with surfactant-coated polystyrene involving Cibacron Blue 3GA-conjugated triton X-100.

    PubMed

    Saitoh, Tohru; Hattori, Naoto; Hiraide, Masataka

    2004-02-27

    Through mixing of porous polystyrene particles (Amberlite XAD-4), non-ionic surfactants, and surfactant-conjugated substrates (affinity ligand) in an aqueous solution led to the formation of a novel medium (affinity admicelle) for protein separation. The ligand (CB-Triton) was synthesized by mixing a triazine dye (Cibacron Blue 3GA (CB)) and a polyoxyethylene-type non-ionic surfactant (Triton X-100) in weakly alkaline solutions. Triton X-100 and CB-Triton were competitively sorbed onto XAD-4. Albumin (bovine serum), alcohol dehydrogenase (yeast), and lysozyme (chicken egg) having specific interaction to CB were collected onto the affinity admicelle. On the other hand, the collection of ovalubmin (chicken egg white), having no binding ability to CB, was negligibly small. Lysozyme in 100 microl of chicken egg white, diluted with 900 microl of 10 mM Tris-HCl (pH 7.4), was successfully collected on 18 mg of CB-Triton admicelles and, then, it was eluted with 1 ml of aqueous solution of 100 mM phosphate (pH 7.4). The recovery based on the activity for the lysis of micrococcus and the concentration factor were 60% and 40 (n = 3), respectively.

  3. Inherited surfactant deficiency due to uniparental disomy of rare mutations in the surfactant protein-B and ATP binding cassette, subfamily A, member 3 genes

    PubMed Central

    Hamvas, Aaron; Nogee, Lawrence M.; Wegner, Daniel J.; DePass, Kelcey; Christodoulou, John; Bennetts, Bruce; McQuade, Leon R.; Gray, Peter H.; Deterding, Robin R.; Carroll, Travis R.; Kammesheidt, Anja; Kasch, Laura M.; Kulkarni, Shashikant; Cole, F. Sessions

    2009-01-01

    Objective To characterize inheritance of homozygous, rare, recessive loss-of-function mutations in the surfactant protein-B (SFTPB) or ATP binding cassette, subfamily A, member 3 (ABCA3) genes in newborns with lethal respiratory failure. Study design We resequenced parents whose infants were homozygous for mutations in SFTPB or ABCA3. For infants with only one heterozygous parent, we performed microsatellite analysis for chromosomes 2 (SFTPB) and 16 (ABCA3). Results We identified one infant homozygous for the c.1549C>GAA mutation (121ins2) in SFTPB for whom only the mother was heterozygous and 3 infants homozygous for mutations in ABCA3 (p.K914R, p.P147L, and c.806_7insGCT) for whom only the fathers were heterozygous. For the SP-B deficient infant, microsatellite markers confirmed maternal heterodisomy with segmental isodisomy. Microsatellite analysis confirmed paternal isodisomy for the three ABCA3 deficient infants. Two ABCA3 deficient infants underwent lung transplantation at 3 and 5 months of age, respectively, and two infants died. None exhibited any non-pulmonary phenotype. Conclusions Uniparental disomy should be suspected in infants with rare homozygous mutations in SFTPB or ABCA3. Confirmation of parental carrier status is important to provide recurrence risk and to monitor expression of other phenotypes that may emerge through reduction to homozygosity of recessive alleles. PMID:19647838

  4. Enhanced Removal of a Human Norovirus Surrogate from Fresh Vegetables and Fruits by a Combination of Surfactants and Sanitizers▿

    PubMed Central

    Predmore, Ashley; Li, Jianrong

    2011-01-01

    Fruits and vegetables are major vehicles for transmission of food-borne enteric viruses since they are easily contaminated at pre- and postharvest stages and they undergo little or no processing. However, commonly used sanitizers are relatively ineffective for removing human norovirus surrogates from fresh produce. In this study, we systematically evaluated the effectiveness of surfactants on removal of a human norovirus surrogate, murine norovirus 1 (MNV-1), from fresh produce. We showed that a panel of surfactants, including sodium dodecyl sulfate (SDS), Nonidet P-40 (NP-40), Triton X-100, and polysorbates, significantly enhanced the removal of viruses from fresh fruits and vegetables. While tap water alone and chlorine solution (200 ppm) gave only <1.2-log reductions in virus titer in all fresh produce, a solution containing 50 ppm of surfactant was able to achieve a 3-log reduction in virus titer in strawberries and an approximately 2-log reduction in virus titer in lettuce, cabbage, and raspberries. Moreover, a reduction of approximately 3 logs was observed in all the tested fresh produce after sanitization with a solution containing a combination of 50 ppm of each surfactant and 200 ppm of chlorine. Taken together, our results demonstrate that the combination of a surfactant with a commonly used sanitizer enhanced the efficiency in removing viruses from fresh produce by approximately 100 times. Since SDS is an FDA-approved food additive and polysorbates are recognized by the FDA as GRAS (generally recognized as safe) products, implementation of this novel sanitization strategy would be a feasible approach for efficient reduction of the virus load in fresh produce. PMID:21622782

  5. Enhanced removal of a human norovirus surrogate from fresh vegetables and fruits by a combination of surfactants and sanitizers.

    PubMed

    Predmore, Ashley; Li, Jianrong

    2011-07-01

    Fruits and vegetables are major vehicles for transmission of food-borne enteric viruses since they are easily contaminated at pre- and postharvest stages and they undergo little or no processing. However, commonly used sanitizers are relatively ineffective for removing human norovirus surrogates from fresh produce. In this study, we systematically evaluated the effectiveness of surfactants on removal of a human norovirus surrogate, murine norovirus 1 (MNV-1), from fresh produce. We showed that a panel of surfactants, including sodium dodecyl sulfate (SDS), Nonidet P-40 (NP-40), Triton X-100, and polysorbates, significantly enhanced the removal of viruses from fresh fruits and vegetables. While tap water alone and chlorine solution (200 ppm) gave only <1.2-log reductions in virus titer in all fresh produce, a solution containing 50 ppm of surfactant was able to achieve a 3-log reduction in virus titer in strawberries and an approximately 2-log reduction in virus titer in lettuce, cabbage, and raspberries. Moreover, a reduction of approximately 3 logs was observed in all the tested fresh produce after sanitization with a solution containing a combination of 50 ppm of each surfactant and 200 ppm of chlorine. Taken together, our results demonstrate that the combination of a surfactant with a commonly used sanitizer enhanced the efficiency in removing viruses from fresh produce by approximately 100 times. Since SDS is an FDA-approved food additive and polysorbates are recognized by the FDA as GRAS (generally recognized as safe) products, implementation of this novel sanitization strategy would be a feasible approach for efficient reduction of the virus load in fresh produce.

  6. Acidic pH triggers conformational changes at the NH2-terminal propeptide of the precursor of pulmonary surfactant protein B to form a coiled coil structure.

    PubMed

    Bañares-Hidalgo, A; Pérez-Gil, J; Estrada, P

    2014-07-01

    Pulmonary surfactant protein SP-B is synthesized as a larger precursor, proSP-B. We report that a recombinant form of human SP-BN forms a coiled coil structure at acidic pH. The protonation of a residue with pK=4.8±0.06 is the responsible of conformational changes detected by circular dichroism and intrinsic fluorescence emission. Sedimentation velocity analysis showed protein oligomerisation at any pH condition, with an enrichment of the species compatible with a tetramer at acidic pH. Low 2,2,2,-trifluoroethanol concentration promoted β-sheet structures in SP-BN, which bind Thioflavin T, at acidic pH, whereas it promoted coiled coil structures at neutral pH. The amino acid stretch predicted to form β-sheet parallel association in SP-BN overlaps with the sequence predicted by several programs to form coiled coil structure. A synthetic peptide ((60)W-E(85)) designed from the sequence of the amino acid stretch of SP-BN predicted to form coiled coil structure showed random coil conformation at neutral pH but concentration-dependent helical structure at acidic pH. Sedimentation velocity analysis of the peptide indicated monomeric state at neutral pH (s20, w=0.55S; Mr~3kDa) and peptide association (s20, w=1.735S; Mr=~14kDa) at acidic pH, with sedimentation equilibrium fitting to a Monomer-Nmer-Mmer model with N=6 and M=4 (Mr=14692Da). We propose that protein oligomerisation through coiled-coil motifs could then be a general feature in the assembly of functional units in saposin-like proteins in general and in the organization of SP-B in a functional surfactant, in particular.

  7. Unique crystal structure of a novel surfactant protein from the foam nest of the frog Leptodactylus vastus.

    PubMed

    Cavalcante Hissa, Denise; Arruda Bezerra, Gustavo; Birner-Gruenberger, Ruth; Paulino Silva, Luciano; Usón, Isabel; Gruber, Karl; Maciel Melo, Vânia Maria

    2014-02-10

    Breeding by releasing eggs into stable biofoams ("foam nests") is a peculiar reproduction mode within anurans, fish, and tunicates; not much is known regarding the biochemistry or molecular mechanisms involved. Lv-ranaspumin (Lv-RSN-1) is the predominant protein from the foam nest of the frog Leptodactylus vastus. This protein shows natural surfactant activity, which is assumed to be crucial for stabilizing foam nests. We elucidated the amino acid sequence of Lv-RSN-1 by de novo sequencing with mass-spectrometry and determined the high-resolution X-ray structure of the protein. It has a unique fold mainly composed of a bundle of 11 α-helices and two small antiparallel β-strands. Lv-RSN-1 has a surface rich in hydrophilic residues and a lipophilic cavity in the region of the antiparallel β-sheet. It possesses intrinsic surface-active properties, reducing the surface tension of water from 73 to 61 mN m(-1) (15 μg mL(-1)). Lv-RSN-1 belongs to a new class of surfactants proteins for which little has been reported regarding structure or function.

  8. Engineering Halomonas spp. as A Low-Cost Production Host for Production of Bio-surfactant Protein PhaP.

    PubMed

    Lan, Lu-Hong; Zhao, Han; Chen, Jin-Chun; Chen, Guo-Qiang

    2016-12-01

    Halomonas spp. have been studied as a low cost production host for producing bulk materials such as polyhydroxyalkanoates (PHA) bioplastics, since they are able to grow at high pH and high NaCl concentration under unsterile and continuous conditions without microbial contamination. In this paper, Halomonas strain TD is used as a host to produce a protein named PHA phasin or PhaP which has a potential to be developed into a bio-surfactant. Four Halomonas TD expression strains are constructed based on a strong T7-family expression system. Of these, the strain with phaC deletion and chromosomal expression system resulted in the highest production of PhaP in soluble form, reaching 19% of total cellular soluble proteins and with a yield of 1.86 g/L in an open fed-batch fermentation process. A simple "heat lysis and salt precipitation" method is applied to allow rapid PhaP purification from a mixture of cellular proteins with a PhaP recovery rate of 63%. It clearly demonstrated that Halomonas TD could be used for high yield expression of a bio-surfactant protein PhaP for industrial application in an economical way.

  9. Protein Analysis with Human Hair

    SciTech Connect

    Hart, Brad; Anex, Deon; Parker, Glendon

    2016-09-07

    In an important breakthrough for the forensic science community, researchers have developed the first-ever biological identification method that exploits the information encoded in proteins of human hair.

  10. Protein Analysis with Human Hair

    ScienceCinema

    Hart, Brad; Anex, Deon; Parker, Glendon

    2016-09-09

    In an important breakthrough for the forensic science community, researchers have developed the first-ever biological identification method that exploits the information encoded in proteins of human hair.

  11. Viral Organization of Human Proteins

    PubMed Central

    Wuchty, Stefan; Siwo, Geoffrey; Ferdig, Michael T.

    2010-01-01

    Although maps of intracellular interactions are increasingly well characterized, little is known about large-scale maps of host-pathogen protein interactions. The investigation of host-pathogen interactions can reveal features of pathogenesis and provide a foundation for the development of drugs and disease prevention strategies. A compilation of experimentally verified interactions between HIV-1 and human proteins and a set of HIV-dependency factors (HDF) allowed insights into the topology and intricate interplay between viral and host proteins on a large scale. We found that targeted and HDF proteins appear predominantly in rich-clubs, groups of human proteins that are strongly intertwined among each other. These assemblies of proteins may serve as an infection gateway, allowing the virus to take control of the human host by reaching protein pathways and diversified cellular functions in a pronounced and focused way. Particular transcription factors and protein kinases facilitate indirect interactions between HDFs and viral proteins. Discerning the entanglement of directly targeted and indirectly interacting proteins may uncover molecular and functional sites that can provide novel perspectives on the progression of HIV infection and highlight new avenues to fight this virus. PMID:20827298

  12. Cationic surfactants in the form of nanoparticles and micelles elicit different human neutrophil responses: a toxicological study.

    PubMed

    Hwang, Tsong-Long; Sung, Calvin T; Aljuffali, Ibrahim A; Chang, Yuan-Ting; Fang, Jia-You

    2014-02-01

    Cationic surfactants are an ingredient commonly incorporated into nanoparticles for clinical practicability; however, the toxicity of cationic surfactants in nanoparticles is not fully elucidated. We aimed to evaluate the inflammatory responses of cationic nanobubbles and micelles in human neutrophils. Soyaethyl morpholinium ethosulfate (SME) and hexadecyltrimethyl-ammonium bromide (CTAB) are the two cationic surfactants employed in this study. The zeta potential of CTAB nanobubbles was 80 mV, which was the highest among all formulations. Nanobubbles, without cationic surfactants, showed no cytotoxic effects on neutrophils in terms of inflammatory responses. Cationic nanobubbles caused a concentration-dependent cytotoxicity of degranulation (elastase release) and membrane damage (release of lactate dehydrogenase, LDH). Among all nanoparticles and micelles, CTAB-containing nanosystems showed the greatest inflammatory responses. A CTAB nanobubble diluent (1/150) increased the LDH release 80-fold. Propidium iodide staining and scanning electron microscopy (SEM) verified cell death and morphological change of neutrophils treated by CTAB nanobubbles. SME, in a micelle form, strengthened the inflammatory response more than SME-loaded nanobubbles. Membrane interaction and subsequent Ca(2+) influx were the mechanisms that triggered inflammation. The information obtained from this work is beneficial in designing nanoparticulate formulations for balancing clinical activity and toxicity. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Crystallization and preliminary X-ray diffraction of the surfactant protein Lv-ranaspumin from the frog Leptodactylus vastus.

    PubMed

    Hissa, Denise Cavalcante; Bezerra, Gustavo Arruda; Obrist, Britta; Birner-Grünberger, Ruth; Melo, Vânia Maria Maciel; Gruber, Karl

    2012-03-01

    Lv-ranaspumin is a natural surfactant protein with a molecular mass of 23.5 kDa which was isolated from the foam nest of the frog Leptodactylus vastus. Only a partial amino-acid sequence is available for this protein and it shows it to be distinct from any protein sequence reported to date. The protein was purified from the natural source by ion-exchange and size-exclusion chromatography and was crystallized by sitting-drop vapour diffusion using the PEG/Ion screen at 293 K. A complete data set was collected to 3.5 Å resolution. The crystal belonged to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 51.96, b = 89.99, c = 106.00 Å. Assuming the presence of two molecules in the asymmetric unit, the solvent content was estimated to be 54%.

  14. Pulmonary Surfactant Phosphatidylglycerol Inhibits Mycoplasma pneumoniae-stimulated Eicosanoid Production from Human and Mouse Macrophages*

    PubMed Central

    Kandasamy, Pitchaimani; Zarini, Simona; Chan, Edward D.; Leslie, Christina C.; Murphy, Robert C.; Voelker, Dennis R.

    2011-01-01

    Mycoplasma pneumoniae is a human pathogen causing respiratory infections that are also associated with serious exacerbations of chronic lung diseases. Membranes and lipoproteins from M. pneumoniae induced a 4-fold increase in arachidonic acid (AA) release from RAW264.7 and a 2-fold increase in AA release from primary human alveolar macrophages. The bacterial lipoprotein mimic and TLR2/1 agonist Pam3Cys and the TLR2/6 agonist MALP-2 produced effects similar to those elicited by M. pneumoniae in macrophages by inducing the phosphorylation of p38MAPK and p44/42ERK1/2 MAP kinases and cyclooxygenase-2 (COX-2) expression. M. pneumoniae induced the generation of prostaglandins PGD2 and PGE2 from RAW264.7 cells and thromboxane B2 (TXB2) from human alveolar macrophages. Anti-TLR2 antibody completely abolished M. pneumoniae-induced AA release and TNFα secretion from RAW264.7 cells and human alveolar macrophages. Disruption of the phosphorylation of p44/42ERK1/2 or inactivation of cytosolic phospholipase A2α (cPLA2α) completely inhibited M. pneumoniae-induced AA release from macrophages. The minor pulmonary surfactant phospholipid, palmitoyl-oleoyl-phosphatidylglycerol (POPG), antagonized the proinflammatory actions of M. pneumoniae, Pam3Cys, and MALP-2 by reducing the production of AA metabolites from macrophages. The effect of POPG was specific, insofar as saturated PG, and saturated and unsaturated phosphatidylcholines did not have significant effect on M. pneumoniae-induced AA release. Collectively, these data demonstrate that M. pneumoniae stimulates the production of eicosanoids from macrophages through TLR2, and POPG suppresses this pathogen-induced response. PMID:21205826

  15. Expression, stabilization and purification of membrane proteins via diverse protein synthesis systems and detergents involving cell-free associated with self-assembly peptide surfactants.

    PubMed

    Zheng, Xuan; Dong, Shuangshuang; Zheng, Jie; Li, Duanhua; Li, Feng; Luo, Zhongli

    2014-01-01

    G-protein coupled receptors (GPCRs) are involved in regulating most of physiological actions and metabolism in the bodies, which have become most frequently addressed therapeutic targets for various disorders and diseases. Purified GPCR-based drug discoveries have become routine that approaches to structural study, novel biophysical and biochemical function analyses. However, several bottlenecks that GPCR-directed drugs need to conquer the problems including overexpression, solubilization, and purification as well as stabilization. The breakthroughs are to obtain efficient protein yield and stabilize their functional conformation which are both urgently requiring of effective protein synthesis system methods and optimal surfactants. Cell-free protein synthesis system is superior to the high yields and post-translation modifications, and early signs of self-assembly peptide detergents also emerged to superiority in purification of membrane proteins. We herein focus several predominant protein synthesis systems and surfactants involving the novel peptide detergents, and uncover the advantages of cell-free protein synthesis system with self-assembling peptide detergents in purification of functional GPCRs. This review is useful to further study in membrane proteins as well as the new drug exploration. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Surfactant protein C peptides with salt-bridges (“ion-locks”) promote high surfactant activities by mimicking the α-helix and membrane topography of the native protein

    PubMed Central

    Waring, Alan J.; Hernández-Juviel, José M.; Ruchala, Piotr; Wang, Zhengdong; Notter, Robert H.; Gordon, Larry M.

    2014-01-01

    Background. Surfactant protein C (SP-C; 35 residues) in lungs has a cationic N-terminal domain with two cysteines covalently linked to palmitoyls and a C-terminal region enriched in Val, Leu and Ile. Native SP-C shows high surface activity, due to SP-C inserting in the bilayer with its cationic N-terminus binding to the polar headgroup and its hydrophobic C-terminus embedded as a tilted, transmembrane α-helix. The palmitoylcysteines in SP-C act as ‘helical adjuvants’ to maintain activity by overriding the β-sheet propensities of the native sequences. Objective. We studied SP-C peptides lacking palmitoyls, but containing glutamate and lysine at 4-residue intervals, to assess whether SP-C peptides with salt-bridges (“ion-locks”) promote surface activity by mimicking the α-helix and membrane topography of native SP-C. Methods. SP-C mimics were synthesized that reproduce native sequences, but without palmitoyls (i.e., SP-Css or SP-Cff, with serines or phenylalanines replacing the two cysteines). Ion-lock SP-C molecules were prepared by incorporating single or double Glu−–Lys+ into the parent SP-C’s. The secondary structures of SP-C mimics were studied with Fourier transform infrared (FTIR) spectroscopy and PASTA, an algorithm that predicts β-sheet propensities based on the energies of the various β-sheet pairings. The membrane topography of SP-C mimics was investigated with orientated and hydrogen/deuterium (H/D) exchange FTIR, and also Membrane Protein Explorer (MPEx) hydropathy analysis. In vitro surface activity was determined using adsorption surface pressure isotherms and captive bubble surfactometry, and in vivo surface activity from lung function measures in a rabbit model of surfactant deficiency. Results. PASTA calculations predicted that the SP-Css and SP-Cff peptides should each form parallel β-sheet aggregates, with FTIR spectroscopy confirming high parallel β-sheet with ‘amyloid-like’ properties. The enhanced β-sheet properties

  17. Human decidua-derived mesenchymal stem cells differentiate into functional alveolar type II-like cells that synthesize and secrete pulmonary surfactant complexes.

    PubMed

    Cerrada, Alejandro; de la Torre, Paz; Grande, Jesús; Haller, Thomas; Flores, Ana I; Pérez-Gil, Jesús

    2014-01-01

    Lung alveolar type II (ATII) cells are specialized in the synthesis and secretion of pulmonary surfactant, a lipid-protein complex that reduces surface tension to minimize the work of breathing. Surfactant synthesis, assembly and secretion are closely regulated and its impairment is associated with severe respiratory disorders. At present, well-established ATII cell culture models are not available. In this work, Decidua-derived Mesenchymal Stem Cells (DMSCs) have been differentiated into Alveolar Type II- Like Cells (ATII-LCs), which display membranous cytoplasmic organelles resembling lamellar bodies, the organelles involved in surfactant storage and secretion by native ATII cells, and accumulate disaturated phospholipid species, a surfactant hallmark. Expression of characteristic ATII cells markers was demonstrated in ATII-LCs at gene and protein level. Mimicking the response of ATII cells to secretagogues, ATII-LCs were able to exocytose lipid-rich assemblies, which displayed highly surface active capabilities, including faster interfacial adsorption kinetics than standard native surfactant, even in the presence of inhibitory agents. ATII-LCs could constitute a highly useful ex vivo model for the study of surfactant biogenesis and the mechanisms involved in protein processing and lipid trafficking, as well as the packing and storage of surfactant complexes.

  18. Human MSH2 protein

    DOEpatents

    de la Chapelle, Albert; Vogelstein, Bert; Kinzler, Kenneth W.

    1997-01-01

    The human MSH2 gene, responsible for hereditary non-polyposis colorectal cancer, was identified by virtue of its homology to the MutS class of genes, which are involved in DNA mismatch repair. The sequence of cDNA clones of the human gene are provided, and the sequence of the gene can be used to demonstrate the existence of germ line mutations in hereditary non-polyposis colorectal cancer (HNPCC) kindreds, as well as in replication error.sup.+ (RER.sup.+) tumor cells.

  19. Human MSH2 protein

    DOEpatents

    Chapelle, A. de la; Vogelstein, B.; Kinzler, K.W.

    1997-01-07

    The human MSH2 gene, responsible for hereditary non-polyposis colorectal cancer, was identified by virtue of its homology to the MutS class of genes, which are involved in DNA mismatch repair. The sequence of cDNA clones of the human gene are provided, and the sequence of the gene can be used to demonstrate the existence of germ line mutations in hereditary non-polyposis colorectal cancer (HNPCC) kindreds, as well as in replication error{sup +} (RER{sup +}) tumor cells. 19 figs.

  20. Correlations of Ventricular Enlargement with Rheologically Active Surfactant Proteins in Cerebrospinal Fluid

    PubMed Central

    Schob, Stefan; Weiß, Alexander; Dieckow, Julia; Richter, Cindy; Pirlich, Mandy; Voigt, Peter; Surov, Alexey; Hoffmann, Karl-Titus; Quaeschling, Ulf; Preuß, Matthias

    2017-01-01

    Purpose: Surfactant proteins (SPs) are involved in the regulation of rheological properties of body fluids. Concentrations of SPs are altered in the cerebrospinal fluid (CSF) of hydrocephalus patients. The common hallmark of hydrocephalus is enlargement of the brain ventricles. The relationship of both phenomena has not yet been investigated. The aim of this study was to evaluate the association between SP concentrations in the CSF and enlargement of the brain ventricles. Procedures: Ninty-six individuals (41 healthy subjects and 55 hydrocephalus patients) were included in this retrospective analysis. CSF specimens were analyzed for SP-A, SP-B, SP-C and SP-D concentrations by use of enzyme linked immunosorbent assays (ELISA). Ventricular enlargement was quantified in T2 weighted (T2w) magnetic resonance imaging (MRI) sections using an uni-dimensional (Evans’ Index) and a two-dimensional approach (lateral ventricles area index, LVAI). Results: CSF-SP concentrations (mean ± standard deviation in ng/ml) were as follows: SP-A 0.71 ± 0.58, SP-B 0.18 ± 0.43, SP-C 0.89 ± 0.77 and SP-D 7.4 ± 5.4. Calculated values of Evans’ Index were 0.37 ± 0.11, a calculation of LVAI resulted in 0.18 ± 0.15 (each mean ± standard deviation). Significant correlations were identified for Evans’ Index with SP-A (r = 0.388, p < 0.001) and SP-C (r = 0.392, p < 0.001), LVAI with SP-A (r = 0.352, p = 0.001), SP-C (r = 0.471, p < 0.001) and SP-D (r = 0.233, p = 0.025). Furthermore, SP-C showed a clear inverse correlation with age (r = −0.357, p = 0.011). Conclusion: The present study confirmed significant correlations between SPs A, C and D in the CSF with enlargement of the inner CSF spaces. In conclusion, SPs clearly play an important role for CSF rheology. CSF rheology is profoundly altered in hydrocephalic diseases, however, diagnosis and therapy of hydrocephalic conditions are still almost exclusively based on ventricular enlargement. Until now it was unclear, whether the

  1. Surfactant protein secreted by the maturing mouse fetal lung acts as a hormone that signals the initiation of parturition.

    PubMed

    Condon, Jennifer C; Jeyasuria, Pancharatnam; Faust, Julie M; Mendelson, Carole R

    2004-04-06

    Parturition is timed to begin only after the developing embryo is sufficiently mature to survive outside the womb. It has been postulated that the signal for the initiation of parturition arises from the fetus although the nature and source of this signal remain obscure. Herein, we provide evidence that this signal originates from the maturing fetal lung. In the mouse, secretion of the major lung surfactant protein, surfactant protein A (SP-A), was first detected in amniotic fluid (AF) at 17 days postcoitum, rising progressively to term (19 days postcoitum). Expression of IL-1beta in AF macrophages and activation of NF-kappaB in the maternal uterus increased with the gestational increase in SP-A. SP-A stimulated IL-1beta and NF-kappaB expression in cultured AF macrophages. Studies using Rosa 26 Lac-Z (B6;129S-Gt(rosa)26Sor) (Lac-Z) mice revealed that fetal AF macrophages migrate to the uterus with the gestational increase in AF SP-A. Intraamniotic (i.a.) injection of SP-A caused preterm delivery of fetuses within 6-24 h. By contrast, injection of an SP-A antibody or NF-kappaB inhibitor into AF delayed labor by >24 h. We propose that augmented production of SP-A by the fetal lung near term causes activation and migration of fetal AF macrophages to the maternal uterus, where increased production of IL-1beta activates NF-kappaB, leading to labor. We have revealed a response pathway that ties augmented surfactant production by the maturing fetal lung to the initiation of labor. We suggest that SP-A secreted by the fetal lung serves as a hormone of parturition.

  2. New generation synthetic surfactants.

    PubMed

    Curstedt, Tore; Calkovska, Andrea; Johansson, Jan

    2013-01-01

    The treatment of preterm newborn rabbits with synthetic surfactants containing simple phospholipid mixtures and peptides gives similar tidal volumes to treatment with poractant alfa (Curosurf®). The addition of both surfactant protein B and C analogs to the phospholipid mixture will stabilize the alveoli, measured as lung gas volumes at end expiration, even if no positive end-expiratory pressure is applied. The effect on lung gas volumes seems to depend on the structure of the peptides as well as the phospholipid composition. It seems that synthetic surfactants containing two peptides and a more complex phospholipid composition will be able to replace natural surfactants within the near future, but more experiments need to be performed before any conclusion can be drawn about the ideal composition of this new generation of synthetic surfactants.

  3. Diseases of Pulmonary Surfactant Homeostasis

    PubMed Central

    Whitsett, Jeffrey A.; Wert, Susan E.; Weaver, Timothy E.

    2015-01-01

    Advances in physiology and biochemistry have provided fundamental insights into the role of pulmonary surfactant in the pathogenesis and treatment of preterm infants with respiratory distress syndrome. Identification of the surfactant proteins, lipid transporters, and transcriptional networks regulating their expression has provided the tools and insights needed to discern the molecular and cellular processes regulating the production and function of pulmonary surfactant prior to and after birth. Mutations in genes regulating surfactant homeostasis have been associated with severe lung disease in neonates and older infants. Biophysical and transgenic mouse models have provided insight into the mechanisms underlying surfactant protein and alveolar homeostasis. These studies have provided the framework for understanding the structure and function of pulmonary surfactant, which has informed understanding of the pathogenesis of diverse pulmonary disorders previously considered idiopathic. This review considers the pulmonary surfactant system and the genetic causes of acute and chronic lung disease caused by disruption of alveolar homeostasis. PMID:25621661

  4. Pulmonary surfactant for neonatal respiratory disorders.

    PubMed

    Merrill, Jeffrey D; Ballard, Roberta A

    2003-04-01

    Surfactant therapy has revolutionized neonatal care and is used routinely for preterm infants with respiratory distress syndrome. Recent investigation has further elucidated the function of surfactant-associated proteins and their contribution toward surfactant and lung immune defense functions. As the field of neonatology moves away from intubation and mechanical ventilation of preterm infants at birth toward more aggressive use of nasal continuous positive airway pressure, the optimal timing of exogenous surfactant therapy remains unclear. Evidence suggests that preterm neonates with bronchopulmonary dysplasia and prolonged mechanical ventilation also experience surfactant dysfunction; however, exogenous surfactant therapy beyond the first week of life has not been well studied. Surfactant replacement therapy has been studied for use in other respiratory disorders, including meconium aspiration syndrome and pneumonia. Commercial surfactant preparations currently available are not optimal, given the variability of surfactant protein content and their susceptibility to inhibition. Further progress in the treatment of neonatal respiratory disorders may include the development of "designer" surfactant preparations.

  5. Surfactant proteins, SP-A and SP-D, in respiratory fungal infections: their role in the inflammatory response.

    PubMed

    Carreto-Binaghi, Laura Elena; Aliouat, El Moukhtar; Taylor, Maria Lucia

    2016-06-01

    Pulmonary surfactant is a complex fluid that comprises phospholipids and four proteins (SP-A, SP-B, SP-C, and SP-D) with different biological functions. SP-B, SP-C, and SP-D are essential for the lungs' surface tension function and for the organization, stability and metabolism of lung parenchyma. SP-A and SP-D, which are also known as pulmonary collectins, have an important function in the host's lung immune response; they act as opsonins for different pathogens via a C-terminal carbohydrate recognition domain and enhance the attachment to phagocytic cells or show their own microbicidal activity by increasing the cellular membrane permeability. Interactions between the pulmonary collectins and bacteria or viruses have been extensively studied, but this is not the same for fungal pathogens. SP-A and SP-D bind glucan and mannose residues from fungal cell wall, but there is still a lack of information on their binding to other fungal carbohydrate residues. In addition, both their relation with immune cells for the clearance of these pathogens and the role of surfactant proteins' regulation during respiratory fungal infections remain unknown. Here we highlight the relevant findings associated with SP-A and SP-D in those respiratory mycoses where the fungal infective propagules reach the lungs by the airways.

  6. Changes in surfactant protein A mRNA levels in a rat model of insulin-treated diabetic pregnancy.

    PubMed

    Moglia, B B; Phelps, D S

    1996-02-01

    Maternal diabetes during pregnancy is associated with increased risk of neonatal respiratory distress syndrome (RDS). Previous studies using rat models for the diabetic pregnancy have documented decreased amounts of surfactant protein mRNA in the lungs of fetuses. In this study, we measured fetal lung surfactant-associated protein A (SP-A) mRNA from diabetic rats treated with insulin by daily injection or osmotic pump. Lungs were taken from fetuses on gestational d 20, and RNA was isolated and subjected to Northern blotting and densitometry to quantify SP-A mRNA. Fetal lung SP-A mRNA from untreated diabetic pregnancies was 34 +/- 2.9% of control. Insulin treatment increased levels to 55 +/- 4.2% of control values. Fetal lung SP-A mRNA levels were affected by the timing, length, and effectiveness of insulin treatment. Although levels from all treatment groups were still less than control values, insulin treatment during the last 5 or 10 d of pregnancy resulted in a substantial increase in SP-A mRNA levels over those of from untreated diabetic pregnancies. However, fetuses from the group with insulin treatment for the entire pregnancy showed decreases in fetal SP-A mRNA levels. Although the mechanism(s) responsible for the effects of diabetes and its treatment on fetal SP-A expression remain unclear, it appears unlikely that hyperglycemia is the principal cause.

  7. Synchrotron X-ray study of lung surfactant-specific protein SP-B in lipid monolayers.

    PubMed Central

    Lee, K Y; Majewski, J; Kuhl, T L; Howes, P B; Kjaer, K; Lipp, M M; Waring, A J; Zasadzinski, J A; Smith, G S

    2001-01-01

    This work reports the first x-ray scattering measurements to determine the effects of SP-B(1-25), the N-terminus peptide of lung surfactant-specific protein SP-B, on the structure of palmitic acid (PA) monolayers. In-plane diffraction shows that the peptide fluidizes a portion of the monolayer but does not affect the packing of the residual ordered phase. This implies that the peptide resides in the disordered phase, and that the ordered phase is essentially pure lipid, in agreement with fluorescence microscopy studies. X-ray reflectivity shows that the peptide is oriented in the lipid monolayer at an angle of approximately 56 degrees relative to the interface normal, with one end protruding past the hydrophilic region into the fluid subphase and the other end embedded in the hydrophobic region of the monolayer. The quantitative insights afforded by this study lead to a better understanding of the lipid/protein interactions found in lung surfactant systems. PMID:11423439

  8. Effects of Bufei Yishen Granules Combined with Acupoint Sticking Therapy on Pulmonary Surfactant Proteins in Chronic Obstructive Pulmonary Disease Rats.

    PubMed

    Tian, Yange; Li, Jiansheng; Li, Ya; Dong, Yuqiong; Yao, Fengjia; Mao, Jing; Li, Linlin; Wang, Lili; Luo, Shan; Wang, Minghang

    2016-01-01

    Our previous studies have demonstrated the beneficial effects of Bufei Yishen granules combined with acupoint sticking therapy (the integrated therapy) in chronic obstructive pulmonary disease (COPD), but the underlying mechanism remains unclear. Dysfunction of pulmonary surfactant proteins (SPs, including SP-A, SP-B, SP-C, and SP-D) may be included in pathophysiology of COPD. This study aimed to explore the mechanism of the integrated therapy on SPs. COPD rat models were established. The treatment groups received Bufei Yishen granules or acupoint sticking or their combination. Using aminophylline as a positive control drug. The levels of SPs in serum, BALF, and lung were measured. The results showed that the integrated therapy markedly reduced the levels of SPs in serum and increased these indicators in the lung. The integrated therapy was better than aminophylline in reducing the levels of SPs and was better than Bufei Yishen granules in reducing SP-A, SP-C, and SP-D in serum. The integrated therapy was better than aminophylline and Bufei Yishen granules in increasing SP-A, SP-B, and SP-D mRNA in the lung. SP-A and SP-D in BALF were positively correlated with PEF and EF50. The levels of SPs are associated with airway limitation. The beneficial effects of the integrated therapy may be involved in regulating pulmonary surfactant proteins.

  9. Intra-amniotic endotoxin increases pulmonary surfactant proteins and induces SP-B processing in fetal sheep.

    PubMed

    Bachurski, C J; Ross, G F; Ikegami, M; Kramer, B W; Jobe, A H

    2001-02-01

    Intra-amniotic (IA) endotoxin induces lung maturation within 6 days in fetal sheep of 125 days gestational age. To determine the early fetal lung response to IA endotoxin, the timing and characteristics of changes in surfactant components were evaluated. Fetal sheep were exposed to 20 mg of Escherichia coli 055:B5 endotoxin by IA injection from 1 to 15 days before preterm delivery at 125 days gestational age. Surfactant protein (SP) A, SP-B, and SP-C mRNAs were maximally induced at 2 days. SP-D mRNA was increased fourfold at 1 day and remained at peak levels for up to 7 days. Bronchoalveolar lavage fluid from control animals contained very little SP-B protein, 75% of which was a partially processed intermediate. The alveolar pool of SP-B was significantly increased between 4 and 7 days in conjunction with conversion to the fully processed active airway peptide. All SPs were significantly elevated in the bronchoalveolar lavage fluid by 7 days. IA endotoxin caused rapid and sustained increases in SP mRNAs that preceded the increase in alveolar saturated phosphatidylcholine processing of SP-B and improved lung compliance in prematurely delivered lambs.

  10. Nanotribological effects of silicone type, silicone deposition level, and surfactant type on human hair using atomic force microscopy.

    PubMed

    La Torre, Carmen; Bhushan, Bharat

    2006-01-01

    The atomic/friction force microscope (AFM/FFM) has recently become an important tool for studying the micro/nanoscale structure and tribological properties of human hair. Of particular interest to hair and beauty care science is how common hair-care materials, such as conditioner, deposit onto and change hair's tribological properties, since these properties are closely tied to product performance. Since a conditioner is a complex network of many different ingredients (including silicones for lubrication and cationic surfactants for static control and gel network formulation), studying the effects of these individual components can give insight into the significance each has on hair properties. In this study, AFM/FFM is used to conduct nanotribological studies of surface roughness, friction force, and adhesive forces as a function of silicone type, silicone deposition level, and cationic surfactant type. Changes in the coefficient of friction as a result of soaking hair in de-ionized water are also discussed.

  11. Surfactant-free purification of membrane protein complexes from bacteria: application to the staphylococcal penicillin-binding protein complex PBP2/PBP2a

    NASA Astrophysics Data System (ADS)

    Paulin, Sarah; Jamshad, Mohammed; Dafforn, Timothy R.; Garcia-Lara, Jorge; Foster, Simon J.; Galley, Nicola F.; Roper, David I.; Rosado, Helena; Taylor, Peter W.

    2014-07-01

    Surfactant-mediated removal of proteins from biomembranes invariably results in partial or complete loss of function and disassembly of multi-protein complexes. We determined the capacity of styrene-co-maleic acid (SMA) co-polymer to remove components of the cell division machinery from the membrane of drug-resistant staphylococcal cells. SMA-lipid nanoparticles solubilized FtsZ-PBP2-PBP2a complexes from intact cells, demonstrating the close physical proximity of these proteins within the lipid bilayer. Exposure of bacteria to (-)-epicatechin gallate, a polyphenolic agent that abolishes β-lactam resistance in staphylococci, disrupted the association between PBP2 and PBP2a. Thus, SMA purification provides a means to remove native integral membrane protein assemblages with minimal physical disruption and shows promise as a tool for the interrogation of molecular aspects of bacterial membrane protein structure and function.

  12. Proteins aggregation and human diseases

    NASA Astrophysics Data System (ADS)

    Hu, Chin-Kun

    2015-04-01

    Many human diseases and the death of most supercentenarians are related to protein aggregation. Neurodegenerative diseases include Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), frontotemporallobar degeneration, etc. Such diseases are due to progressive loss of structure or function of neurons caused by protein aggregation. For example, AD is considered to be related to aggregation of Aβ40 (peptide with 40 amino acids) and Aβ42 (peptide with 42 amino acids) and HD is considered to be related to aggregation of polyQ (polyglutamine) peptides. In this paper, we briefly review our recent discovery of key factors for protein aggregation. We used a lattice model to study the aggregation rates of proteins and found that the probability for a protein sequence to appear in the conformation of the aggregated state can be used to determine the temperature at which proteins can aggregate most quickly. We used molecular dynamics and simple models of polymer chains to study relaxation and aggregation of proteins under various conditions and found that when the bending-angle dependent and torsion-angle dependent interactions are zero or very small, then protein chains tend to aggregate at lower temperatures. All atom models were used to identify a key peptide chain for the aggregation of insulin chains and to find that two polyQ chains prefer anti-parallel conformation. It is pointed out that in many cases, protein aggregation does not result from protein mis-folding. A potential drug from Chinese medicine was found for Alzheimer's disease.

  13. Effect of Nonionic Surfactants (Dodecyl Maltoside and Polysorbate 20) on Prevention of Aggregation and Conformational Changes of Recombinant Human IFNβ_1b Induced by Light

    PubMed Central

    Mahjoubi, Najmeh; Fazeli, Ahmad; Dinarvand, Rassoul; Khoshayand, Mohammad Reza; Shekarchi, Maryam; Fazeli, Mohammad Reza

    2017-01-01

    Liquid protein formulations are prone to form aggregates. The effect of nonionic surfactants such as Polysorbate 20 (PS 20) and n-Dodecyl β-D-maltoside (DDM) on the prevention of aggregation and conformational changes of recombinant human IFNβ-1b (rhIFN β_1b) was explored. Polysorbate has been used in formulations of protein pharmaceuticals. There have been concerns about using PS 20 due to its residual peroxide content which may negatively affect protein efficacy. n-Dodecyl β-D-maltoside has been of interest and shown to be highly effective in prevention of aggregation. Fresh bulk of rhIFN β_1b was formulated using DDM or different concentrations of PS 20. Formulations were exposed to light stress condition according to the ICH guideline of Q1b. The overall conformational integrity of individual samples was characterized by a combination of Circular dichroism (CD), Fluorescence spectroscopy and RP_HPLC techniques. The CD spectrum depicting the conformational integrity of rhIFN β_1b showed 31.9% and 31.2% decreases in α-helix content of protein samples with 0.2% or 0.02% of PS20 compared to only18.2% of that containing 0.2% DDM. The RP-HPLC analysis also showed that the oxidized impurity in formulation containing DDM is less than those contain PS 20. Complementary analysis of the liquid formulations using IFR and UV methods also was in compliance with the data obtained by CD. Compared to PS 20, the sample of rhIFN β_1b formulation with DDM was more resistant to the destruction effect of light. Results were in accordance with previous studies and could suggest DDM as a reliable anti-aggregation surfactant in biopharmaceutical formulations. PMID:28496465

  14. Effect of Nonionic Surfactants (Dodecyl Maltoside and Polysorbate 20) on Prevention of Aggregation and Conformational Changes of Recombinant Human IFNβ_1b Induced by Light.

    PubMed

    Mahjoubi, Najmeh; Fazeli, Ahmad; Dinarvand, Rassoul; Khoshayand, Mohammad Reza; Shekarchi, Maryam; Fazeli, Mohammad Reza

    2017-01-01

    Liquid protein formulations are prone to form aggregates. The effect of nonionic surfactants such as Polysorbate 20 (PS 20) and n-Dodecyl β-D-maltoside (DDM) on the prevention of aggregation and conformational changes of recombinant human IFNβ-1b (rhIFN β_1b) was explored. Polysorbate has been used in formulations of protein pharmaceuticals. There have been concerns about using PS 20 due to its residual peroxide content which may negatively affect protein efficacy. n-Dodecyl β-D-maltoside has been of interest and shown to be highly effective in prevention of aggregation. Fresh bulk of rhIFN β_1b was formulated using DDM or different concentrations of PS 20. Formulations were exposed to light stress condition according to the ICH guideline of Q1b. The overall conformational integrity of individual samples was characterized by a combination of Circular dichroism (CD), Fluorescence spectroscopy and RP_HPLC techniques. The CD spectrum depicting the conformational integrity of rhIFN β_1b showed 31.9% and 31.2% decreases in α-helix content of protein samples with 0.2% or 0.02% of PS20 compared to only18.2% of that containing 0.2% DDM. The RP-HPLC analysis also showed that the oxidized impurity in formulation containing DDM is less than those contain PS 20. Complementary analysis of the liquid formulations using IFR and UV methods also was in compliance with the data obtained by CD. Compared to PS 20, the sample of rhIFN β_1b formulation with DDM was more resistant to the destruction effect of light. Results were in accordance with previous studies and could suggest DDM as a reliable anti-aggregation surfactant in biopharmaceutical formulations.

  15. Protein Crystal Recombinant Human Insulin

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The comparison of protein crystal, Recombiant Human Insulin; space-grown (left) and earth-grown (right). On STS-60, Spacehab II indicated that space-grown crystals are larger and of greater optical clarity than their earth-grown counterparts. Recombiant Human Insulin facilitates the incorporation of glucose into cells. In diabetics, there is either a decrease in or complete lack of insulin, thereby leading to several harmful complications. Principal Investigator is Larry DeLucas.

  16. Protein Crystal Recombinant Human Insulin

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The comparison of protein crystal, Recombiant Human Insulin; space-grown (left) and earth-grown (right). On STS-60, Spacehab II indicated that space-grown crystals are larger and of greater optical clarity than their earth-grown counterparts. Recombiant Human Insulin facilitates the incorporation of glucose into cells. In diabetics, there is either a decrease in or complete lack of insulin, thereby leading to several harmful complications. Principal Investigator is Larry DeLucas.

  17. FCS study of the thermodynamics of membrane protein insertion into the lipid bilayer chaperoned by fluorinated surfactants.

    PubMed

    Posokhov, Yevgen O; Rodnin, Mykola V; Das, Somes K; Pucci, Bernard; Ladokhin, Alexey S

    2008-10-01

    Experimental determination of the free energy (DeltaG) stabilizing the structure of membrane proteins (MPs) in their native environment has been hampered by the aggregation and precipitation of MPs outside the lipid bilayer. We recently demonstrated that the latter process can be prevented by the use of fluorinated surfactants, FTACs, that act as chaperones for MP insertion without partitioning in the membrane themselves. Here we combine the advantages of the chaperone-like ability of FTACs with the sensitivity of fluorescence correlation spectroscopy measurements to determine DeltaG of bilayer insertion of model MPs. First, we calibrate our approach by examining the effects of chaperoned insertion on DeltaG of transmembrane insertion of Annexin B12. We find that a shorter-chained surfactant, FTAC-C6, for which the working concentration range of 0.05-0.2 mM falls below CMC = 0.33 mM, has a mild effect on an apparent DeltaG. In contrast, additions of a longer-chained FTAC-C8 (CMC = 0.03 mM) result in a steep and nonlinear concentration dependence of DeltaG. We then apply the same methodology to the pH-triggered insertion of diphtheria toxin T-domain, which is known to be affected by nonproductive aggregation in solution. We find that the correction of the DeltaG value needed to compensate for unchaperoned insertion of the T-domain exceeds 3 kcal/mole. A relatively shallow and linear dependence of the DeltaG for Annexin B12 and T-domain insertion on FTAC-C6 concentration is encouraging for future applications of this surfactant in thermodynamic studies of the stability of other MPs.

  18. FCS Study of the Thermodynamics of Membrane Protein Insertion into the Lipid Bilayer Chaperoned by Fluorinated Surfactants

    PubMed Central

    Posokhov, Yevgen O.; Rodnin, Mykola V.; Das, Somes K.; Pucci, Bernard; Ladokhin, Alexey S.

    2008-01-01

    Experimental determination of the free energy (ΔG) stabilizing the structure of membrane proteins (MPs) in their native environment has been hampered by the aggregation and precipitation of MPs outside the lipid bilayer. We recently demonstrated that the latter process can be prevented by the use of fluorinated surfactants, FTACs, that act as chaperones for MP insertion without partitioning in the membrane themselves. Here we combine the advantages of the chaperone-like ability of FTACs with the sensitivity of fluorescence correlation spectroscopy measurements to determine ΔG of bilayer insertion of model MPs. First, we calibrate our approach by examining the effects of chaperoned insertion on ΔG of transmembrane insertion of Annexin B12. We find that a shorter-chained surfactant, FTAC-C6, for which the working concentration range of 0.05–0.2 mM falls below CMC = 0.33 mM, has a mild effect on an apparent ΔG. In contrast, additions of a longer-chained FTAC-C8 (CMC = 0.03 mM) result in a steep and nonlinear concentration dependence of ΔG. We then apply the same methodology to the pH-triggered insertion of diphtheria toxin T-domain, which is known to be affected by nonproductive aggregation in solution. We find that the correction of the ΔG value needed to compensate for unchaperoned insertion of the T-domain exceeds 3 kcal/mole. A relatively shallow and linear dependence of the ΔG for Annexin B12 and T-domain insertion on FTAC-C6 concentration is encouraging for future applications of this surfactant in thermodynamic studies of the stability of other MPs. PMID:18708456

  19. The human protein coevolution network.

    PubMed

    Tillier, Elisabeth R M; Charlebois, Robert L

    2009-10-01

    Coevolution maintains interactions between phenotypic traits through the process of reciprocal natural selection. Detecting molecular coevolution can expose functional interactions between molecules in the cell, generating insights into biological processes, pathways, and the networks of interactions important for cellular function. Prediction of interaction partners from different protein families exploits the property that interacting proteins can follow similar patterns and relative rates of evolution. Current methods for detecting coevolution based on the similarity of phylogenetic trees or evolutionary distance matrices have, however, been limited by requiring coevolution over the entire evolutionary history considered and are inaccurate in the presence of paralogous copies. We present a novel method for determining coevolving protein partners by finding the largest common submatrix in a given pair of distance matrices, with the size of the largest common submatrix measuring the strength of coevolution. This approach permits us to consider matrices of different size and scale, to find lineage-specific coevolution, and to predict multiple interaction partners. We used MatrixMatchMaker to predict protein-protein interactions in the human genome. We show that proteins that are known to interact physically are more strongly coevolving than proteins that simply belong to the same biochemical pathway. The human coevolution network is highly connected, suggesting many more protein-protein interactions than are currently known from high-throughput and other experimental evidence. These most strongly coevolving proteins suggest interactions that have been maintained over long periods of evolutionary time, and that are thus likely to be of fundamental importance to cellular function.

  20. A comparison between interactions of triglyceride oil and mineral oil with proteins and their ability to reduce cleanser surfactant-induced irritation.

    PubMed

    Mukherjee, S; Yang, L; Vincent, C; Lei, X; Ottaviani, M F; Ananthapadmanabhan, K P

    2015-08-01

    Skin irritation in personal cleansing has been correlated with surfactant binding with stratum corneum proteins. Polar and non-polar oils are increasingly being used in cleansing formulations which contain high (10-15%) level of anionic and non-ionic surfactants. However, the effects of oils in modulating skin damage from a cleansing product have not been studied in any detail. The objectives of this study are to determine whether low-viscosity polar and non-polar oils differ in their ability to reduce surfactant-induced skin irritation and, if so, how it might be related to their interactions with proteins. Surfactant-induced skin irritation was measured by a 14-day in vivo cumulative patch irritation test. The methodology was similar to the well-known soap chamber test. Surfactant interactions with the water-soluble protein, bovine serum albumin (BSA), in the presence of oils were measured by conductometric titration. The effects of low-viscosity polar and non-polar oils on stratum corneum protein dynamics in the sulfhydryl group region were studied by electron paramagnetic resonance (EPR) using the covalently bound spin-label 3-maleimido-proxyl (5-MSL). EPR measurements were performed with stratum corneums obtained from discarded skins of 3- to 4-week-old female pigs. Simulation of the complex spectra provided insights on the environment and mobility of the protein-bound spin label. Addition of 1% polar sunflower seed oil (viscosity 42 centipoise) reduced in vivo irritation of 1% sodium lauryl ether sulphate with two ethoxylate/cocamidopropyl betaine (SLES/CAPB) by 20%, whereas 1% non-polar mineral oil (viscosity 15 centipoise) had no effect. Polar oil glyceryl trioleate (a major component in sunflower seed oil) at 10% level reduced surfactant binding to BSA protein in water by 40%, whereas the non-polar oil dodecane (a major component of mineral oil) at a similar level did not have any effect. The mobility of the spin label in a dry corneum was very low and was

  1. Protective effects of surfactant protein D treatment in 1,3-β-glucan-modulated allergic inflammation.

    PubMed

    Fakih, Dalia; Pilecki, Bartosz; Schlosser, Anders; Jepsen, Christine S; Thomsen, Laura K; Ormhøj, Maria; Watson, Alastair; Madsen, Jens; Clark, Howard W; Barfod, Kenneth K; Hansen, Soren; Marcussen, Niels; Jounblat, Rania; Chamat, Soulaima; Holmskov, Uffe; Sorensen, Grith L

    2015-12-01

    Surfactant protein D (SP-D) is a pulmonary collectin important in lung immunity. SP-D-deficient mice (Sftpd(-/-)) are reported to be susceptible to ovalbumin (OVA)- and fungal allergen-induced pulmonary inflammation, while treatment with exogenous SP-D has therapeutic effects in such disease models. β-Glucans are a diverse group of polysaccharides previously suggested to serve as fungal ligands for SP-D. We set out to investigate if SP-D could interact with 1,3-β-glucan and attenuate allergic pulmonary inflammation in the presence of 1,3-β-glucan. Allergic airway disease was induced in Sftpd(-/-) and Sftpd(+/+) mice by OVA sensitization and subsequent challenge with OVA, 1,3-β-glucan, or OVA/1,3-β-glucan together. Mice in the combined treatment group were further treated with a high dose of recombinant fragment of human SP-D (rfhSP-D). We demonstrated direct interaction between SP-D and 1,3-β-glucan. OVA-induced mucous cell metaplasia was increased in Sftpd(-/-) mice, supporting previously reported protective effects of endogenous SP-D in allergy. OVA-induced parenchymal CCL11 levels and eosinophilic infiltration in bronchoalveolar lavage were unaffected by 1,3-β-glucan, but were reversed with rfhSP-D treatment. 1,3-β-Glucan treatment did, however, induce pulmonary neutrophilic infiltration and increased TNF-α levels in bronchoalveolar lavage, independently of OVA-induced allergy. This infiltration was also reversed by treatment with rfhSP-D. 1,3-β-Glucan reduced OVA-induced mucous cell metaplasia, T helper 2 cytokines, and IFN-γ production. rfhSP-D treatment further reduced mucous metaplasia and T helper 2 cytokine secretion to background levels. In summary, rfhSP-D treatment resulted in attenuation of both allergic inflammation and 1,3-β-glucan-mediated neutrophilic inflammation. Our data suggest that treatment with high-dose SP-D protects from mold-induced exacerbations of allergic asthma. Copyright © 2015 the American Physiological Society.

  2. Comparative surfactant reactivity of canine and human stratum corneum: a plea for the use of the corneosurfametry bioassay.

    PubMed

    Goffin, V; Fontaine, J; Piérard, G E

    1999-01-01

    Comparative dermatology has paid little attention to the physiopathology of the stratum corneum. In this study, we investigated the responses of human and canine horny layers to marketed animal wash products by using the corneosurfametry bioassay. Previous work has shown that, with increasing surfactant aggressiveness to the stratum corneum, the colorimetric index of mildness (CIM) decreases, while both the corneosurfametry index (CSMI) and the overall difference in corneosurfametry (ODC) increase. In the present study, stratum corneum reactivity to wash products and inter-individual variability were significantly higher in humans than in dogs. For the three corneosurfametry variables, linear correlations were found between data gathered in the two panel groups. In conclusion, this pilot study suggests that mean stratum corneum reactivity to surfactants is stronger in humans than in dogs. Inter-individual variation, indicative of sensitive skin, also appears to be broader in humans. As a consequence, data gathered from dogs by using the corneosurfametry bioassay cannot be extrapolated to humans. Such variation between species could be important in the assessment of product safety and in supporting claims for mildness.

  3. Identification of CD245 as myosin 18A, a receptor for surfactant A: A novel pathway for activating human NK lymphocytes

    PubMed Central

    De Masson, A.; Giustiniani, J.; Marie-Cardine, A.; Bouaziz, J. D.; Dulphy, N.; Gossot, D.; Validire, P.; Tazi, A.; Garbar, C.; Bagot, M.; Merrouche, Y.; Bensussan, A.

    2016-01-01

    ABSTRACT CD245 is a human surface antigen expressed on peripheral blood lymphocytes, initially delineated by two monoclonal antibodies DY12 and DY35. Until now, CD245 molecular and functional characteristics remained largely unknown. We combined immunological and proteomic approaches and identified CD245 as the unconventional myosin 18A, a highly conserved motor enzyme reported as a receptor for the surfactant protein A (SP-A), that plays a critical role in cytoskeleton organization and Golgi budding. We report that the recruitment of CD245 strongly enhanced NK cell cytotoxicity. Further, we show that the enhancement of the NK lymphocytes killing ability toward CD137-ligand expressing target cells could result from the induction of CD137 expression following CD245 engagement. The SP-A receptor could therefore represent a novel and promising target in cancer immunotherapy. PMID:27467939

  4. FOLDING OF DIPHTHERIA TOXIN T-DOMAIN IN THE PRESENCE OF AMPHIPOLS AND FLUORINATED SURFACTANTS: TOWARD THERMODYNAMIC MEASUREMENTS OF MEMBRANE PROTEIN FOLDING

    PubMed Central

    Kyrychenko, Alexander; Rodnin, Mykola V.; Vargas-Uribe, Mauricio; Sharma, Shivaji K.; Durand, Grégory; Pucci, Bernard; Popot, Jean-Luc; Ladokhin, Alexey S.

    2011-01-01

    Solubilizing membrane proteins for functional, structural and thermodynamic studies is usually achieved with the help of detergents, which tend to destabilize them, however. Several classes of non-detergent surfactants have been designed as milder substitutes for detergents, most prominently amphipathic polymers called 'amphipols' and fluorinated surfactants. Here we test the potential usefulness of these compounds for thermodynamic studies by examining their effect on conformational transitions of the diphtheria toxin T-domain. The advantage of the T-domain as a model system is that it exists as a soluble globular protein at neutral pH yet is converted into a membrane-competent form by acidification and inserts into the lipid bilayer as part of its physiological action. We have examined the effects of various surfactants on two conformational transitions of the T-domain, thermal unfolding and pH-induced transition to a membrane-competent form. All tested detergent and non-detergent surfactants lowered the cooperativity of the thermal unfolding of the T-domain. The dependence of enthalpy of unfolding on surfactant concentration was found to be least for fluorinated surfactants, thus making them useful candidates for thermodynamic studies. Circular dichroism measurements demonstrate that non-ionic homo-polymeric amphipols (NAhPols), unlike any other surfactants, can actively cause a conformational change of the T-domain. NAhPol-induced structural rearrangements are different from those observed during thermal denaturation and are suggested to be related to the formation of the membrane-competent form of the T-domain. Measurements of vesicle content leakage indicate that interaction with NAhPols not only does not prevent the T-domain from inserting into the bilayer, but it can make bilayer permeabilization even more efficient, whereas the pH-dependence of membrane permeabilization becomes more cooperative. PMID:21945883

  5. Surfactant Protein A in Exhaled Endogenous Particles Is Decreased in Chronic Obstructive Pulmonary Disease (COPD) Patients: A Pilot Study.

    PubMed

    Lärstad, Mona; Almstrand, Ann-Charlotte; Larsson, Per; Bake, Björn; Larsson, Sven; Ljungström, Evert; Mirgorodskaya, Ekaterina; Olin, Anna-Carin

    2015-01-01

    Exhaled, endogenous particles are formed from the epithelial lining fluid in small airways, where surfactant protein A (SP-A) plays an important role in pulmonary host defense. Based on the knowledge that chronic obstructive pulmonary disease (COPD) starts in the small airway epithelium, we hypothesized that chronic inflammation modulates peripheral exhaled particle SP-A and albumin levels. The main objective of this explorative study was to compare the SP-A and albumin contents in exhaled particles from patients with COPD and healthy subjects and to determine exhaled particle number concentrations. Patients with stable COPD ranging from moderate to very severe (n = 13), and healthy non-smoking subjects (n = 12) were studied. Subjects performed repeated breath maneuvers allowing for airway closure and re-opening, and exhaled particles were optically counted and collected on a membrane using the novel PExA® instrument setup. Immunoassays were used to quantify SP-A and albumin. COPD patients exhibited significantly lower SP-A mass content of the exhaled particles (2.7 vs. 3.9 weight percent, p = 0.036) and lower particle number concentration (p<0.0001) than healthy subjects. Albumin mass contents were similar for both groups. Decreased levels of SP-A may lead to impaired host defense functions of surfactant in the airways, contributing to increased susceptibility to COPD exacerbations. SP-A in exhaled particles from small airways may represent a promising non-invasive biomarker of disease in COPD patients.

  6. Effects of the conjugation of whey proteins with gellan polysaccharides on surfactant-induced competitive displacement from the air-water interface.

    PubMed

    Cai, B; Ikeda, S

    2016-08-01

    Whey proteins can be used to stabilize foams and emulsions against coalescence because of their ability to form viscoelastic films at the interface that resist film rupture on collision between colloidal particles. However, whey proteins are competitively displaced from the interface if small-molecule surfactants are added, leading to destabilization of the entire system. This is because surfactants are more effective in molecular packing at the interface, and they lower interfacial tension to a greater degree than whey proteins do, but their interfacial films are poor in viscoelasticity. We hypothesized that whey proteins would become more resistant to surfactant-induced competitive displacement if they were conjugated with network-forming polysaccharides. The protein moiety of the conjugate would be expected to enable its adsorption to the interface, and the polysaccharide moiety would be expected to form self-assembled networks, strengthening the interfacial film as a whole. In this study, whey proteins were conjugated with gellan polysaccharides using the Maillard reaction. Atomic force microscopy images of interfacial films formed by the whey protein-gellan conjugate at the air-water interface and transferred onto mica sheets using the Langmuir-Blodgett method revealed that gellan did form self-assembled networks at the interface and that interfacial films also contained a large number of unconjugated whey protein molecules. Following the addition of a small-molecule surfactant (Tween 20) to the sub-phase, surface pressure increased, indicating spontaneous adsorption of surfactants to the interface. Atomic force microscopy images showed decreases in interfacial area coverage by whey proteins as surface pressure increased. At a given surface pressure, the interfacial area coverage by whey protein-gellan conjugates was greater than coverage by unconjugated whey proteins, confirming that whey proteins became more resistant to surfactant-induced displacement after

  7. Study of protein-probe interaction and protective action of surfactant sodium dodecyl sulphate in urea-denatured HSA using charge transfer fluorescence probe methyl ester of N,N-dimethylamino naphthyl acrylic acid.

    PubMed

    Mahanta, Subrata; Singh, Rupashree Balia; Guchhait, Nikhil

    2009-03-01

    We have demonstrated that the intramolecular charge transfer (ICT) probe Methyl ester of N,N-dimethylamino naphthyl acrylic acid (MDMANA) serves as an efficient reporter of the proteinous microenvironment of Human Serum Albumin (HSA). This work reports the binding phenomenon of MDMANA with HSA and spectral modulation thereupon. The extent of binding and free energy change for complexation reaction along with efficient fluorescence resonance energy transfer from Trp-214 of HSA to MDMANA indicates strong binding between probe and protein. Fluorescence anisotropy, red edge excitation shift, acrylamide quenching and time resolved measurements corroborate the binding nature of the probe with protein and predicts that the probe molecule is located at the hydrophobic site of the protein HSA. Due to the strong binding ability of MDMANA with HSA, it is successfully utilized for the study of stabilizing action of anionic surfactant Sodium Dodecyl Sulphate to the unfolding and folding of protein with denaturant urea in concentration range 1M to 9M.

  8. The human protein coevolution network

    PubMed Central

    Tillier, Elisabeth R.M.; Charlebois, Robert L.

    2009-01-01

    Coevolution maintains interactions between phenotypic traits through the process of reciprocal natural selection. Detecting molecular coevolution can expose functional interactions between molecules in the cell, generating insights into biological processes, pathways, and the networks of interactions important for cellular function. Prediction of interaction partners from different protein families exploits the property that interacting proteins can follow similar patterns and relative rates of evolution. Current methods for detecting coevolution based on the similarity of phylogenetic trees or evolutionary distance matrices have, however, been limited by requiring coevolution over the entire evolutionary history considered and are inaccurate in the presence of paralogous copies. We present a novel method for determining coevolving protein partners by finding the largest common submatrix in a given pair of distance matrices, with the size of the largest common submatrix measuring the strength of coevolution. This approach permits us to consider matrices of different size and scale, to find lineage-specific coevolution, and to predict multiple interaction partners. We used MatrixMatchMaker to predict protein–protein interactions in the human genome. We show that proteins that are known to interact physically are more strongly coevolving than proteins that simply belong to the same biochemical pathway. The human coevolution network is highly connected, suggesting many more protein–protein interactions than are currently known from high-throughput and other experimental evidence. These most strongly coevolving proteins suggest interactions that have been maintained over long periods of evolutionary time, and that are thus likely to be of fundamental importance to cellular function. PMID:19696150

  9. Surfactant therapy for meconium aspiration syndrome: current status.

    PubMed

    Dargaville, Peter A; Mills, John F

    2005-01-01

    Meconium aspiration syndrome (MAS) is an important cause of respiratory distress in the term infant. Therapy for the disease remains problematic, and newer treatments such as high-frequency ventilation and inhaled nitric oxide are being applied with increasing frequency. There is a significant disturbance of the pulmonary surfactant system in MAS, with a wealth of experimental data indicating that inhibition of surfactant function in the alveolar space is an important element of the pathophysiology of the disease. This inhibition may be mediated by meconium, plasma proteins, haemoglobin and oedema fluid, and, at least in vitro, can be overcome by increasing surfactant phospholipid concentration. These observations have served as the rationale for administration of exogenous surfactant preparations in MAS, initially as standard bolus therapy and, more recently, in association with therapeutic lung lavage. Bolus surfactant therapy in ventilated infants with MAS has been found to improve oxygenation in most studies, although there are a significant proportion of nonresponders and in many cases the effect is transient. Pooled data from randomised controlled trials of surfactant therapy suggest a benefit in terms of a reduction in the requirement for extracorporeal membrane oxygenation (relative risk 0.48 in surfactant-treated infants) but no diminution of air leak or ventilator days. Current evidence would support the use of bolus surfactant therapy on a case by case basis in nurseries with a relatively high mortality associated with MAS, or the lack of availability of other forms of respiratory support such as high-frequency ventilation or nitric oxide. If used, bolus surfactant should be administered as early as practicable to infants who exhibit significant parenchymal disease, at a phospholipid dose of at least 100 mg/kg, rapidly instilled into the trachea. Natural surfactant or a third-generation synthetic surfactant should be used and the dosage repeated every 6

  10. Surfactant prevents quartz induced down-regulation of complement receptor 1 in human granulocytes.

    PubMed

    Zetterberg, G; Lundahl, J; Curstedt, T; Eklund, A

    1997-02-01

    Quartz is known to induce an inflammatory response in the alveolar space by recruitment of different effector cells. We investigated the interaction between granulocytes and quartz with respect to expression of complement receptor type 1 (CR1) and CR3, with and without the presence of surfactant. Granulocytes from hemolyzed blood were stimulated by N-formyl-methionyl-leucyl-phenylalanine (fMLP), which mobilize the intracellular pool of CR1 to the surface, and the mean fluorescence intensity (MFI) measured by cytofluorometry was 47.4 (46-63.6) (median; interquartile range). Quartz exposure reduced the CR1 expression to 23.2 (22.8-30.6) MFI units (P < 0.01), a porcine surfactant preparation added during quartz exposure abolished the down-regulation completely, 47.7 (43.2-62.3) MFI units (P < 0.001). Similar results were obtained after preincubation of the cells with surfactant followed by quartz exposure. No significant influence on CR1 expression was found by a synthetic lipid mixture, nor was the CR3 expression affected. In conclusion, this study demonstrates that the presence of surfactant inhibits quartz induced down-regulation of CR1 on activated granulocytes.

  11. Effects of common surfactants on protein digestion and matrix-assisted laser desorption/ionization mass spectrometric analysis of the digested peptides using two-layer sample preparation.

    PubMed

    Zhang, Nan; Li, Liang

    2004-01-01

    While surfactants are commonly used in preparing protein samples, their presence in a protein sample can potentially affect the enzymatic digestion process and the subsequent analysis of the resulting peptides by mass spectrometry. The extent of the tolerance of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) to surfactant interference in peptide analysis is very much dependent on the matrix/sample preparation method. In this work the effects of four commonly used surfactants, namely n-octyl glucoside (OG), Triton X-100 (TX-100), 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) and sodium dodecyl sulfate (SDS), for biological sample preparation on trypsin digestion and MALDI-MS of the resulting digest are examined in detail within the context of using a two-layer method for MALDI matrix/sample preparation. Non-ionic and mild surfactants, such as OG, TX-100 or CHAPS, are found to have no significant effect on trypsin digestion with surfactant concentrations up to 1%. However, TX-100 and CHAPS interfere with the subsequent peptide analysis by MALDI-MS and should be removed prior to peptide analysis. OG is an MS-friendly surfactant and no effect is observed for MALDI peptide analysis. The effect of SDS on trypsin digestion in terms of the number of peptides generated and the overall protein sequence coverage by these peptides is found to be protein dependent. The use of SDS to solubilize hydrophobic membrane proteins, followed by trypsin digestion in the presence of 0.1% SDS, results in a peptide mixture that can be analyzed directly by MALDI-MS. These peptides are shown to provide better sequence coverage compared with those obtained without the use of SDS in the case of bacteriorhodopsin, a very hydrophobic transmembrane protein. This work illustrates that MALDI-MS with the two-layer sample preparation method can be used for direct analysis of protein digests with no or minimum sample cleanup after proteins are digested in a

  12. Reduction of the surface-tension-lowering ability of surfactant after exposure to hypochlorous acid.

    PubMed Central

    Merritt, T A; Amirkhanian, J D; Helbock, H; Halliwell, B; Cross, C E

    1993-01-01

    The reactive species hypochlorous acid (HOCl/OCl-) is a major product of the respiratory burst in activated neutrophils. We studied the effects of HOCl/OCl- on human surfactant and upon surfactants Survanta, KL4 and Exosurf, utilizing a pulsating surfactometer for measuring surface tension. HOCl/OCl- induced a marked dose-dependent decrease in the surface-tension-lowering activity of human surfactant. The surfactant containing surfactant proteins B and C (Survanta) was less sensitive; however, synthetic surfactants with or without peptides were not affected by HOCl/OCl- (KL4, Exosurf). Ascorbic acid and GSH protected human surfactant against inactivation by HOCl/OC1-. We suggest that HOCl/OCl- produced by activated phagocytes in the alveolar compartment of the lung could damage endogenous surfactant and affect the function of exogenously administered natural or other surfactants, especially if ascorbic acid and GSH levels in the lung lining fluids are subnormal, as is known to be the case in some inflammatory lung diseases. PMID:8216215

  13. Identification of a segment in the precursor of pulmonary surfactant protein SP-B, potentially involved in pH-dependent membrane assembly of the protein.

    PubMed

    Serrano, Alicia G; Cabré, Elisa J; Pérez-Gil, Jesús

    2007-05-01

    In the present work, the hydrophobic properties of proSP-B, the precursor of pulmonary surfactant protein SP-B, have been analyzed under different pH conditions, and the sequence segment at position 111-135 of the N-terminal domain of the precursor has been detected as potentially possessing pH-dependent hydrophobic properties. We have studied the structure and lipid-protein interactions of the synthetic peptides BpH, with sequence corresponding to the segment 111-135 of proSP-B, and BpH-W, bearing the conservative substitution F127W to use the tryptophan as an intrinsic fluorescent probe. Peptide BpH-W interacts with both zwitterionic and anionic phospholipid vesicles at neutral pH, as monitored by the blue-shifted maximum emission of its tryptophan reporter. Insertion of tryptophan into the membranes is further improved at pH 5.0, especially in negatively-charged membranes. Peptides BpH and BpH-W also showed pH-dependent properties to insert into phospholipid monolayers. We have also found that the single sequence variation F120K decreases substantially the interaction of this segment with phospholipid surfaces as well as its pH-dependent insertion into deeper regions of the membranes. We hypothesize that this region could be involved in pH-triggered conformational changes occurring in proSP-B along the exocytic pathway of surfactant in type II cells, leading to the exposure of the appropriate segments for processing and assembly of SP-B within surfactant lipids.

  14. Lung surfactant.

    PubMed Central

    Rooney, S A

    1984-01-01

    Aspects of pulmonary surfactant are reviewed from a biochemical perspective. The major emphasis is on the lipid components of surfactant. Topics reviewed include surfactant composition, cellular and subcellular sites as well as pathways of biosynthesis of phosphatidylcholine, disaturated phosphatidylcholine and phosphatidylglycerol. The surfactant system in the developing fetus and neonate is considered in terms of phospholipid content and composition, rates of precursor incorporation, activities of individual enzymes of phospholipid synthesis and glycogen content and metabolism. The influence of the following hormones and other factors on lung maturation and surfactant production is discussed: glucocorticoids, thyroid hormone, estrogen, prolactin, cyclic AMP, beta-adrenergic and cholinergic agonists, prostaglandins and growth factors. The influence of maternal diabetes, fetal sex, stress and labor are also considered. Nonphysiologic and toxic agents which influence surfactant in the fetus, newborn and adult are reviewed. PMID:6145585

  15. Crystallization and preliminary X-ray diffraction of the surfactant protein Lv-ranaspumin from the frog Leptodactylus vastus

    PubMed Central

    Hissa, Denise Cavalcante; Bezerra, Gustavo Arruda; Obrist, Britta; Birner-Grünberger, Ruth; Melo, Vânia Maria Maciel; Gruber, Karl

    2012-01-01

    Lv-ranaspumin is a natural surfactant protein with a molecular mass of 23.5 kDa which was isolated from the foam nest of the frog Leptodactylus vastus. Only a partial amino-acid sequence is available for this protein and it shows it to be distinct from any protein sequence reported to date. The protein was purified from the natural source by ion-exchange and size-exclusion chromatography and was crystallized by sitting-drop vapour diffusion using the PEG/Ion screen at 293 K. A complete data set was collected to 3.5 Å resolution. The crystal belonged to the orthorhombic space group P212121, with unit-cell parameters a = 51.96, b = 89.99, c = 106.00 Å. Assuming the presence of two molecules in the asymmetric unit, the solvent content was estimated to be 54%. PMID:22442233

  16. Possible influence of surfactants and proteins on the efficiency of contact agar microbiological surface sampling.

    PubMed

    Deckers, Sylvie M; Sindic, Marianne; Anceau, Christine; Brostaux, Yves; Detry, Jean G

    2010-11-01

    Agar contact microbiological sampling techniques, based on a transfer of the microorganisms present on a surface to a culture medium, are widely used to assess and control surface cleanliness and to evaluate microbial contamination levels. The effectiveness of these techniques depends on many environmental parameters that influence the strength of attachment of the bacteria to the surface. In the present study, stainless steel and high density polyethylene surfaces were inoculated with known concentrations of Staphylococcus epidermidis. Following an experimental design, the surfaces were sampled with different types of replicate organism direct agar contact plates and Petrifilm; results indicated that recovery rates were influenced by the presence of egg white albumin or Tween 80 in the inoculum solutions or by the introduction of surfactants into the contact agar of the microbiological sampling techniques. The techniques yielded significantly different results, depending on sampling conditions, underlining the need for a standardization of laboratory experiments to allow relevant comparisons of such techniques.

  17. Interactions of surfactants with a water treatment protein from Moringa oleifera seeds in solution studied by zeta-potential and light scattering measurements.

    PubMed

    Kwaambwa, Habauka M; Rennie, Adrian R

    2012-04-01

    Protein extracted from Moringa oleifera (MO) seeds has been advocated as a cheap and environmental friendly alternative to ionic flocculants for water purification. However, the nature and mechanism of its interaction with particles in water, as well as with dissolved surface-active molecules, are not well understood. In this article, we report studies of the protein and its interaction with four surfactants using dynamic light scattering (DLS), zeta-potential and turbidity measurements. Zeta-potential measurements identified points of charge reversal and the turbidity and DLS measurements were used to characterize the microstructure and size of protein-surfactant complexes. From the points of charge reversal, it was estimated that 7 anions are required to neutralize the positive charges of each protein molecule at pH 7. For protein mixtures with sodium dodecyl sulfate and dodecyl di-acid sodium salt, the peak in turbidity corresponds to concentrations with a large change in zeta-potential. No turbidity was observed for protein mixtures with either the nonionic surfactant Triton X-100 or the zwitterionic surfactant N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate. Changes of pH in the range 4-10 have little effect on the zeta-potential, turbidity, and the hydrodynamic radius reflecting the high isoelectric point of the protein. Addition of small amounts of salt has little effect on the size of protein in solution. These results are discussed in the context of the use of the MO protein in water treatment. Copyright © 2011 Wiley Periodicals, Inc.

  18. Surfactants and the Mechanics of Respiration

    NASA Astrophysics Data System (ADS)

    Jbaily, Abdulrahman; Szeri, Andrew J.

    2016-11-01

    Alveoli are small sacs found at the end of terminal bronchioles in human lungs with a mean diameter of 200 μm. A thin layer of fluid (hypophase) coats the inner face of an alveolus and is in contact with the air in the lungs. The thickness of this layer varies among alveoli, but is in the range of 0.1 to 0.5 μm for many portions of the alveolar network. The interfacial tension σ at the air-hypophase interface tends to favor collapse of the alveolus, and resists its expansion during inhalation. Type II alveolar cells synthesize and secrete a mixture of phospholipids and proteins called pulmonary surfactant. These surfactant molecules adsorb to the interface causing σ of water at body temperature is 70 mN/m and falls to an equilibrium value of 25 mN/m when surfactants are present. Also, in a dynamic sense, it is known that σ is reduced to near 0 during exhalation when the surfactant film compresses. In this work, the authors develop a mechanical and transport model of the alveolus to study the effect of surfactants on various aspects of respiration. The model is composed of three principal parts: (i) air movement into and out of the alveolus; (ii) a balance of linear momentum across the two-layered membrane of the alveolus (hypophase and elastic wall); and (iii) a pulmonary surfactant transport problem in the hypophase. The goal is to evaluate the influence of pulmonary surfactant on respiratory mechanics.

  19. Adsorption of proteins at the solution/air interface influenced by added nonionic surfactants at very low concentrations for both components. 3. Dilational surface rheology.

    PubMed

    Fainerman, V B; Aksenenko, E V; Lylyk, S V; Lotfi, M; Miller, R

    2015-03-05

    The influence of the addition of the nonionic surfactants C12DMPO, C14DMPO, C10OH, and C10EO5 at concentrations between 10(-5) and 10(-1) mmol/L to solutions of β-casein (BCS) and β-lactoglobulin (BLG) at a fixed concentration of 10(-5) mmol/L on the dilational surface rheology is studied. A maximum in the viscoelasticity modulus |E| occurs at very low surfactant concentrations (10(-4) to 10(-3) mmol/L) for mixtures of BCS with C12DMPO and C14DMPO and for mixtures of BLG with C10EO5, while for mixture of BCS with C10EO5 the value of |E| only slightly increased. The |E| values calculated with a recently developed model, which assumes changes in the interfacial molar area of the protein molecules due to the interaction with the surfactants, are in satisfactory agreement with experimental data. A linear dependence exists between the ratio of the maximum modulus for the mixture to the modulus of the single protein solution and the coefficient reflecting the influence of the surfactants on the adsorption activity of the protein.

  20. Combinations of fluorescently labeled pulmonary surfactant proteins SP-B and SP-C in phospholipid films.

    PubMed Central

    Nag, K; Taneva, S G; Perez-Gil, J; Cruz, A; Keough, K M

    1997-01-01

    Hydrophobic pulmonary surfactant (PS) proteins B (SP-B) and C (SP-C) modulate the surface properties of PS lipids. Epifluorescence microscopy was performed on solvent-spread monolayers of fluorescently labeled porcine SP-B (R-SP-B, labeled with Texas Red) and SP-C (F-SP-C, labeled with fluorescein) in dipalmitoylphosphatidylcholine (DPPC) (at protein concentrations of 10 and 20 wt%, and 10 wt% of both) under conditions of cyclic compression and expansion. Matrix-assisted laser desorption/ionization (MALDI) spectroscopy of R-SP-B and F-SP-C indicated that the proteins were intact and labeled with the appropriate fluorescent probe. The monolayers were compressed and expanded for four cycles at an initial rate of 0.64 A2 x mol(-1) x s(-1) (333 mm2 x s x [-1]) up to a surface pressure pi approximately 65 mN/m, and pi-area per residue (pi-A) isotherms at 22 +/- 1 degrees C were obtained. The monolayers were microscopically observed for the fluorescence emission of the individual proteins present in the film lipid matrix, and their visual features were video recorded for image analysis. The pi-A isotherms of the DPPC/protein monolayers showed characteristic "squeeze out" effects at pi approximately 43 mN/m for R-SP-B and 55 mN/m for F-SP-C, as had previously been observed for monolayers of the native proteins in DPPC. Both proteins associated with the expanded (fluid) phase of DPPC monolayers remained in or associated with the monolayers at high pi (approximately 65 mN/m) and redispersed in the monolayer upon its reexpansion. At comparable pi and area/molecule of the lipid, the proteins reduced the amounts of condensed (gel-like) phase of DPPC monolayers, with F-SP-C having a greater effect on a weight basis than did R-SP-B. In any one of the lipid/protein monolayers the amounts of the DPPC in condensed phase were the same at equivalent pi during compression and expansion and from cycle to cycle. This indicated that only minor loss of components from these systems

  1. Differential partitioning of pulmonary surfactant protein SP-A into regions of monolayers of dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylcholine/dipalmitoylphosphatidylglycerol.

    PubMed Central

    Ruano, M L; Nag, K; Worthman, L A; Casals, C; Pérez-Gil, J; Keough, K M

    1998-01-01

    The interaction of the pulmonary surfactant protein SP-A fluorescently labeled with Texas Red (TR-SP-A) with monolayers of dipalmitoylphosphatidylcholine (DPPC) and DPPC/dipalmitoylphosphatidylglycerol 7:3 w/w has been investigated. The monolayers were spread on aqueous subphases containing TR-SP-A. TR-SP-A interacted with the monolayers of DPPC to accumulate at the boundary regions between liquid condensed (LC) and liquid expanded (LE) phases. Some TR-SP-A appeared in the LE phase but not in the LC phase. At intermediate surface pressures (10-20 mN/m), the protein caused the occurrence of more, smaller condensed domains, and it appeared to be excluded from the monolayers at surface pressure in the range of 30-40 mN/m. TR-SP-A interaction with DPPC/dipalmitoylphosphatidylglycerol monolayers was different. The protein did not appear in either LE or LC but only in large aggregates at the LC-LE boundary regions, a distribution visually similar to that of fluorescently labeled concanavalin A adsorbed onto monolayers of DPPC. The observations are consistent with a selectivity of interaction of SP-A with DPPC and for its accumulation in boundaries between LC and LE phase. PMID:9512012

  2. Surfactant Protein A in Exhaled Endogenous Particles Is Decreased in Chronic Obstructive Pulmonary Disease (COPD) Patients: A Pilot Study

    PubMed Central

    Lärstad, Mona; Almstrand, Ann-Charlotte; Larsson, Per; Bake, Björn; Larsson, Sven; Ljungström, Evert; Mirgorodskaya, Ekaterina; Olin, Anna-Carin

    2015-01-01

    Background Exhaled, endogenous particles are formed from the epithelial lining fluid in small airways, where surfactant protein A (SP-A) plays an important role in pulmonary host defense. Based on the knowledge that chronic obstructive pulmonary disease (COPD) starts in the small airway epithelium, we hypothesized that chronic inflammation modulates peripheral exhaled particle SP-A and albumin levels. The main objective of this explorative study was to compare the SP-A and albumin contents in exhaled particles from patients with COPD and healthy subjects and to determine exhaled particle number concentrations. Methods Patients with stable COPD ranging from moderate to very severe (n = 13), and healthy non-smoking subjects (n = 12) were studied. Subjects performed repeated breath maneuvers allowing for airway closure and re-opening, and exhaled particles were optically counted and collected on a membrane using the novel PExA® instrument setup. Immunoassays were used to quantify SP-A and albumin. Results COPD patients exhibited significantly lower SP-A mass content of the exhaled particles (2.7 vs. 3.9 weight percent, p = 0.036) and lower particle number concentration (p<0.0001) than healthy subjects. Albumin mass contents were similar for both groups. Conclusions Decreased levels of SP-A may lead to impaired host defense functions of surfactant in the airways, contributing to increased susceptibility to COPD exacerbations. SP-A in exhaled particles from small airways may represent a promising non-invasive biomarker of disease in COPD patients. PMID:26656890

  3. Impact of a Met(11)Thr single nucleotide polymorphism of surfactant protein D on allergic airway inflammation in a murine asthma model.

    PubMed

    Winkler, Carla; Bahlmann, Olaf; Viereck, Janika; Knudsen, Lars; Wedekind, Dirk; Hoymann, Heinz Gerd; Madsen, Jens; Thum, Thomas; Hohlfeld, Jens M; Ochs, Matthias

    2014-04-01

    The surfactant-associated proteins SP-A and D are pattern recognition molecules with collectin structure. A single nucleotide polymorphism (SNP) exchanging a methionine (Met) for a threonine (Thr) in the amino-terminal SP-D domain influences the oligomeric structure and function of the protein. In this study, we investigated the susceptibility of mice transgenic for the human SP-D Met(11)Thr SNP to allergic airway inflammation and consequences for microRNA (miRNA, miR) expression. Mice expressing either human Met or Thr SP-D were sensitized and challenged with ovalbumin (OVA) in an acute model of allergic asthma. The influence of the SP-D polymorphism on the allergic airway inflammation was evaluated by lung function measurement, pulmonary inflammation parameters, morphological analysis and miRNA expression. Airway hyperresponsiveness, allergic inflammation, and mucus metaplasia were not significantly different between mice expressing one or the other allelic variant of SP-D. OVA sensitization and challenge led to significant airway hyperresponsiveness in wildtype mice and significantly lower eosinophil numbers and interleukin 5 levels in Thr SP-D mice. OVA challenge induced an upregulation of miR-21 and 155 in Thr SP-D mice and a downregulation of miR-21 in Met SP-D mice. Our results show that murine expression of human polymorphic SP-D variants does not significantly influence the severity of allergic airway inflammation. MiR-21 and 155 are differentially regulated in transgenic mice in response to allergic inflammation. Further studies are required to elucidate the impact of this SNP on inflammatory conditions of the lung.

  4. Ion-exclusion/cation-exchange chromatographic determination of common inorganic ions in human saliva by using an eluent containing zwitterionic surfactant.

    PubMed

    Mori, Masanobu; Iwata, Tomotaka; Satori, Tatsuya; Ohira, Shin-Ichi; Itabashi, Hideyuki; Tanaka, Kazuhiko

    2008-12-12

    Ion-exclusion/cation-exchange chromatography with an eluent containing the bile salt-type zwitterionic surfactant CHAPS was performed in order to evaluate variations in anion (SO(4)(2-), NO(3)(-), and SCN(-)) and cation (Na(+), K(+), NH(4)(+), Mg(2+), and Ca(2+)) concentrations in human saliva. CHAPS prevents the adsorption of proteins to the stationary phase, i.e., weakly acidic cation-exchange resin, since it aggregates proteins without denaturing them. Addition of 1mM CHAPS to the eluent comprising 6mM tartaric acid and 7 mM 18-crown-6 yielded reproducible separations of anions and cations in protein-containing saliva. The resolutions of anions and cations were not significantly affected by the addition of CHAPS to the eluent. The concentrations of Na(+) and K(+) varied before and after meals; or that of SCN(-), upon smoking. The relative standard deviations of peak areas ranged from 0.3 to 5.1% in 1 day (n=20) and from 1.4 to 5.8% over 6 days (n=6).

  5. Aberrant processing forms of lung surfactant proteins SP-B and SP-C revealed by high-resolution mass spectrometry.

    PubMed

    Galetskiy, Dmitry; Woischnik, Markus; Ripper, Jan; Griese, Matthias; Przybylski, Michael

    2008-01-01

    The mutation (g.1286T>C) of the pulmonary surfactant-associated protein C gene (SFTPC) leads to the I73T substitution in the precursor protein (pro-SP-C) and results in interstitial lung disease with the histological pattern of non-specific interstitial pneumonia and pulmonary alveolar proteinosis. Central for the disease is the abnormal processing of the SP-C pro-protein to mature SP-C; however little is known about the nature of intermediates and processing products. We report here the application of high resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry to the characterization of processing intermediates of hydrophobic pulmonary surfactant proteins SP-B and SP-C in intra- alveolar surfactant material of a patient with I73T mutation. SP-C and SP-B processing forms were separated from broncho-alveolar lavage fluid using chloroform/methanol extraction and sodium dodecyl sulfate poly acrylamide gel electrophoreis, detected by Western blot and identified by electrospray- and matrix-assisted laser desorption/ionization-FT-ICR mass spectrometry. The mass spectrometric and immuno-analytical results show the intra-alveolar accumulation of an aberrant C-terminal SP-C processing products in which the mature SP-C protein part is missing and aberrant processing intermediates of SP-B.

  6. Surface free energy of the human skin and its critical surface tension of wetting in the skin/surfactant aqueous solution/air system.

    PubMed

    Krawczyk, J

    2015-05-01

    The purpose of these studies was to determine the surface free energy of the human skin and its critical surface tension of wetting in the skin--surfactant aqueous solution--air system in relation to different types of surfactants. The surface free energy of the skin and its components was calculated using the equilibrium advancing contact angle values of water, formamide, and diiodomethane on the forearm skin surface. Next, taking into account the measured values of the contact angle of aqueous solutions of SDDS, CTAB, TX-100 and TX-114 on the skin surface and data of their surface tension, the critical surface tension of the skin wetting was determined. We can classify the skin surface as low-energetic one. The critical surface tension of the skin wetting depends on the type of surfactant. It is possible to determine the critical surface tension of the human skin wetting on the basis of the values of the contact angle of aqueous solutions of surfactants and their surface tension. In this respect, nonionic surfactants seem to be the most appropriate. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Proteins, polysaccharides, and their complexes used as stabilizers for emulsions: alternatives to synthetic surfactants in the pharmaceutical field?

    PubMed

    Bouyer, Eléonore; Mekhloufi, Ghozlene; Rosilio, Véronique; Grossiord, Jean-Louis; Agnely, Florence

    2012-10-15

    Emulsions are widely used in pharmaceutics for the encapsulation, solubilization, entrapment, and controlled delivery of active ingredients. In order to answer the increasing demand for clean label excipients, natural polymers can replace the potentially irritative synthetic surfactants used in emulsion formulation. Indeed, biopolymers are currently used in the food industry to stabilize emulsions, and they appear as promising candidates in the pharmaceutical field too. All proteins and some polysaccharides are able to adsorb at a globule surface, thus decreasing the interfacial tension and enhancing the interfacial elasticity. However, most polysaccharides stabilize emulsions simply by increasing the viscosity of the continuous phase. Proteins and polysaccharides may also be associated either through covalent bonding or electrostatic interactions. The combination of the properties of these biopolymers under appropriate conditions leads to increased emulsion stability. Alternative layers of oppositely charged biopolymers can also be formed around the globules to obtain multi-layered "membranes". These layers can provide electrostatic and steric stabilization thus improving thermal stability and resistance to external treatment. The novel biopolymer-stabilized emulsions have a great potential in the pharmaceutical field for encapsulation, controlled digestion, and targeted release although several challenging issues such as storage and bacteriological concerns still need to be addressed. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Type IV pilus of Pseudomonas aeruginosa confers resistance to antimicrobial activities of the pulmonary surfactant protein-A.

    PubMed

    Tan, Rommel Max; Kuang, Zhizhou; Hao, Yonghua; Lau, Gee W

    2014-01-01

    Pseudomonas aeruginosa(PA) is a Gram-negative bacterial pathogen commonly associated with chronic lung infections. Previously, we have identified several PA virulence factors that are important for resistance to the surfactant protein-A (SP-A), a pulmonary innate immunity protein that mediates bacterial opsonization and membrane permeabilization. In this study, we demonstrate that the type IV pilus (Tfp) is important in the resistance of PA to the antibacterial effects of SP-A. The Tfp-deficient mutant ΔpilA is severely attenuated in an acute pneumonia model of infection in the lungs of wild-type mice, but is virulent in the lungs of SP-A(-/-) mice. The ΔpilA bacteria are more susceptible to SP-A-mediated aggregation and opsonization. In addition, the integrity of the outer membranes of ΔpilA bacteria is compromised, rendering them more susceptible to SP-A-mediated membrane permeabilization. By comparing Tfp extension and retraction mutants, we demonstrate that the increased susceptibility of ΔpilA to SP-A-mediated opsonization requires the total absence of Tfp from PA cells. Finally, we provide evidence of increased expression of nonpilus adhesin OprH that may serve as an SP-A ligand, resulting in increased phagocytosis and preferential pulmonary clearance of ΔpilA. Copyright © 2013 S. Karger AG, Basel

  9. Type IV Pilus of Pseudomonas aeruginosa Confers Resistance to Antimicrobial Activities of the Pulmonary Surfactant Protein-A

    PubMed Central

    Tan, Rommel Max; Kuang, Zhizhou; Hao, Yonghua; Lau, Gee W.

    2013-01-01

    Pseudomonas aeruginosa (PA) is a Gram-negative bacterial pathogen commonly associated with chronic lung infections. Previously, we have identified several PA virulence factors that are important for resistance to the surfactant protein-A (SP-A), a pulmonary innate immunity protein that mediates bacterial opsonization and membrane permeabilization. In this study, we demonstrate that the type IV pilus (Tfp) is important in the resistance of PA to antibacterial effects of SP-A. The Tfp-deficient mutant, ΔpilA, is severely attenuated in an acute pneumonia model of infection in the lungs of wild-type mice, but is virulent in the lungs of SP-A−/− mice. The ΔpilA bacteria are more susceptible to SP-A-mediated aggregation and opsonization. In addition, the integrity of the outer membranes of ΔpilA bacteria is compromised, rendering them more susceptible to SP-A-mediated membrane permeabilization. By comparing Tfp extension and retraction mutants, we demonstrate that the increased susceptibility of ΔpilA to SP-A-mediated opsonization requires the total absence of Tfp from PA cells. Finally, we provide evidence that increased expression of nonpilus adhesin OprH that may serve as SP-A ligand, resulting in increased phagocytosis and preferential pulmonary clearance of ΔpilA. PMID:24080545

  10. Cyclic AMP-responsive expression of the surfactant protein-A gene is mediated by increased DNA binding and transcriptional activity of thyroid transcription factor-1.

    PubMed

    Li, J; Gao, E; Mendelson, C R

    1998-02-20

    Surfactant protein (SP)-A gene transcription is stimulated by factors that increase cyclic AMP. In the present study, we observed that three thyroid transcription factor-1 (TTF-1) binding elements (TBEs) located within a 255 base pair region flanking the 5'-end of the baboon SP-A2 (bSP-A2) gene are required for maximal cyclic AMP induction of bSP-A2 promoter activity. We found that TTF-1 DNA binding activity was increased in nuclear extracts of pulmonary type II cells cultured in the presence of cyclic AMP. By contrast, the levels of immunoreactive TTF-1 protein were similar in nuclear extracts of control and cyclic AMP-treated type II cells. The incorporation of [32P]orthophosphate into immunoprecipitated TTF-1 protein also was markedly increased by cyclic AMP treatment. Moreover, exposure of nuclear extracts from cyclic AMP-treated type II cells either to potato acid phosphatase or alkaline phosphatase abolished the cyclic AMP-induced increase in TTF-1 DNA-binding activity. Interestingly, the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), known to activate protein kinase C, also enhanced incorporation of [32P]orthophosphate into TTF-1 protein; however, the DNA binding activity of TTF-1 was decreased in nuclear extracts of TPA-treated type II cells. Expression vectors encoding TTF-1 and the catalytic subunit of protein kinase A (PKA-cat) were cotransfected into A549 lung adenocarcinoma cells together with an SPA:human growth hormone fusion gene (255 base pairs of 5'-flanking DNA from the baboon SP-A2 gene linked to human growth hormone, as reporter) containing TBEs, or with a reporter gene construct containing three tandem TBEs fused upstream of the bSP-A2 gene TATA box and the transcription initiation site. Coexpression of TTF-1 and PKA-cat increased fusion gene expression 3-4-fold as compared with expression of TTF-1 in the absence of PKA-cat. Moreover, the transcriptional activity of TTF-1 was suppressed by cotransfection of a dominant negative form

  11. Human Antimicrobial Peptides and Proteins

    PubMed Central

    Wang, Guangshun

    2014-01-01

    As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs) play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between −3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism. The two hydrophobic domains in the long amphipathic α-helix of human cathelicidin LL-37 lays the basis for binding and disrupting the curved anionic bacterial membrane surfaces by forming pores or via the carpet model. Furthermore, dermcidin may serve as ion channel by forming a long helix-bundle structure. In addition, the C-type lectin RegIIIα can initially recognize bacterial peptidoglycans followed by pore formation in the membrane. Finally, histatin 5 and GAPDH(2-32) can enter microbial cells to exert their effects. It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin. This arsenal of human defense proteins not only keeps us healthy but also inspires the development of a new generation of personalized medicine to

  12. Genetic variation in Surfactant Protein-A2 (SP-A2) leads to differential binding to Mycoplasma pneumoniae membranes and regulation of host responses

    PubMed Central

    Ledford, Julie G.; Voelker, Dennis R.; Addison, Kenneth J.; Wang, Ying; Nikam, Vinayak; Degan, Simone; Kandasamy, Pitachaimani; Tanyaratsrisakul, Sasipa; Fischer, Bernard M.; Kraft, Monica; Hollingsworth, John W.

    2015-01-01

    Mycoplasma pneumoniae (Mp) is an extracellular pathogen that colonizes mucosal surfaces of the respiratory tract and is associated with asthma exacerbations. Previous reports demonstrate that surfactant protein-A (SP-A) binds live Mp and mycoplasma membranes (MMF) with high affinity. Humans express a repertoire of single amino acid genetic variants of SP-A that may be associated with lung disease, and our findings demonstrate that allelic differences in SP-A2 (Gln223Lys) affect the binding to MMF. We show that SP-A−/− mice are more susceptible to MMF exposure and have significant increases in mucin production and neutrophil recruitment. Novel humanized-SP-A2 transgenic mice harboring the hSP-A2 223K allele exhibit reduced neutrophil influx and mucin production in the lungs, when challenged with MMF, compared to SP-A−/− mice. Conversely, mice expressing hSP-A2 223Q have increased neutrophil influx and mucin production that is similar to SP-A−/− mice. Using tracheal epithelial cell cultures, we show that enhanced mucin production to MMF occurs in the absence of SP-A, and is not dependent upon neutrophil recruitment. Increased phosphorylation of the epidermal growth factor receptor (EGFR) was evident in the lungs of MMF-challenged mice when SP-A was absent. Pharmacologic inhibition of EGFR prior to MMF challenge dramatically reduced mucin production in SP-A−/− mice. These findings suggest a protective role for SP-A in limiting MMF-stimulated mucin production that occurs through interference with EGFR mediated signaling. The SP-A interaction with the EGFR signaling pathway appears to occur in an allele specific manner that may have important implications for SP-A polymorphisms in human diseases. PMID:25957169

  13. Molecular Characteristics and Biological Functions of Surface-Active and Surfactant Proteins.

    PubMed

    Sunde, Margaret; Pham, Chi L L; Kwan, Ann H

    2017-06-20

    Many critical biological processes take place at hydrophobic:hydrophilic interfaces, and a wide range of organisms produce surface-active proteins and peptides that reduce surface and interfacial tension and mediate growth and development at these boundaries. Microorganisms produce both small lipid-associated peptides and amphipathic proteins that allow growth across water:air boundaries, attachment to surfaces, predation, and improved bioavailability of hydrophobic substrates. Higher-order organisms produce surface-active proteins with a wide variety of functions, including the provision of protective foam environments for vulnerable reproductive stages, evaporative cooling, and gas exchange across airway membranes. In general, the biological functions supported by these diverse polypeptides require them to have an amphipathic nature, and this is achieved by a diverse range of molecular structures, with some proteins undergoing significant conformational change or intermolecular association to generate the structures that are surface active.

  14. Surfactant proteins A and D inhibit the growth of Gram-negative bacteria by increasing membrane permeability

    PubMed Central

    Wu, Huixing; Kuzmenko, Alexander; Wan, Sijue; Schaffer, Lyndsay; Weiss, Alison; Fisher, James H.; Kim, Kwang Sik; McCormack, Francis X.

    2003-01-01

    The pulmonary collectins, surfactant proteins A (SP-A) and D (SP-D), have been reported to bind lipopolysaccharide (LPS), opsonize microorganisms, and enhance the clearance of lung pathogens. In this study, we examined the effect of SP-A and SP-D on the growth and viability of Gram-negative bacteria. The pulmonary clearance of Escherichia coli K12 was reduced in SP-A–null mice and was increased in SP-D–overexpressing mice, compared with strain-matched wild-type controls. Purified SP-A and SP-D inhibited bacterial synthetic functions of several, but not all, strains of E. coli, Klebsiella pneumoniae, and Enterobacter aerogenes. In general, rough E. coli strains were more susceptible than smooth strains, and collectin-mediated growth inhibition was partially blocked by coincubation with rough LPS vesicles. Although both SP-A and SP-D agglutinated E. coli K12 in a calcium-dependent manner, microbial growth inhibition was independent of bacterial aggregation. At least part of the antimicrobial activity of SP-A and SP-D was localized to their C-terminal domains using truncated recombinant proteins. Incubation of E. coli K12 with SP-A or SP-D increased bacterial permeability. Deletion of the E. coli OmpA gene from a collectin-resistant smooth E. coli strain enhanced SP-A and SP-D–mediated growth inhibition. These data indicate that SP-A and SP-D are antimicrobial proteins that directly inhibit the proliferation of Gram-negative bacteria in a macrophage- and aggregation-independent manner by increasing the permeability of the microbial cell membrane. PMID:12750409

  15. Solubilization of growth hormone and other recombinant proteins from Escherichia coli inclusion bodies by using a cationic surfactant.

    PubMed Central

    Puri, N K; Crivelli, E; Cardamone, M; Fiddes, R; Bertolini, J; Ninham, B; Brandon, M R

    1992-01-01

    Recombinant pig growth hormone (rPGH) was solubilized from inclusion bodies by using the cationic surfactant cetyltrimethylammonium chloride (CTAC). The solubilizing action of CTAC appeared to be dependent on the presence of a positively charged head group, as a non-charged variant was inactive. Relatively low concentrations of CTAC were required for rapid solubilization, and protein-bound CTAC was easily removed by ion-exchange chromatography. Compared with solubilization and recovery of rPGH from inclusion bodies with 7.5 M-urea and 6 M-guanidinium chloride, the relative efficiency of solubilization was lower with CTAC. However, superior refolding efficiency resulted in final yields of purified rPGH being in the order of CTAC greater than urea greater than or equal to guanidinium chloride. Detailed comparison of the different rPGH preparations as well as pituitary-derived growth hormone by h.p.l.c., native PAGE, c.d. spectral analysis and radioreceptor-binding assay showed that the CTAC-derived rPGH was essentially indistinguishable from the urea and guanidinium chloride preparations. The CTAC-derived rPGH was of greater biopotency than pituitary-derived growth hormone. The advantages of CTAC over urea and guanidinium chloride for increasing recovery of monomeric rPGH by minimizing aggregation during refolding in vitro were also found with recombinant sheep interleukin-I beta and a sheep insulin-like growth factor II fusion protein. In addition, the bioactivity of the CTAC-derived recombinant interleukin-1 beta was approximately ten-fold greater than that of an equivalent amount obtained from urea and guanidinium chloride preparations. It is concluded that CTAC represents, in general, an excellent additional approach or a superior alternative to urea and in particular guanidinium chloride for solubilization and recovery of bioactive recombinant proteins from inclusion bodies. Images Fig. 1. Fig. 3. Fig. 5. Fig. 9. PMID:1497625

  16. Surfactant-free poly(styrene-co-glycidyl methacrylate) particles with surface-bound antibodies for activation and proliferation of human T cells.

    PubMed

    Thümmler, Katja; Häntzschel, Nadine; Skapenko, Alla; Schulze-Koops, Hendrik; Pich, Andrij

    2010-05-19

    In this article, we present our results on the design of new polymeric carriers for antibodies. Polymer colloids based on poly(styrene-co-glycidyl methacrylate) were synthesized by surfactant-free emulsion polymerization. Obtained polymer particles stabilized by grafted poly(ethylene glycol) (PEG) chains and carrying active epoxy groups were used for the covalent immobilization of activating antibodies against the human surface proteins CD (cluster of differentiation) 3 and CD28. The particle-antibody conjugates were employed for the stimulation of human CD4 memory T cells. This was analyzed by the up-regulation of the activation markers CD69 and CD25 on T cells and T cell proliferation as assessed by the dilution of a fluorescent dye on dividing daughter T cells. The particle-antibody conjugates were able to stimulate T cells at least as efficiently as conventional methods, e.g., surface-immobilized antibodies. Furthermore, an increase of the PEG chain length of the particles decreased the efficiency of the particle-antibody conjugates to activate T cells.

  17. The Ability of Pandemic Influenza Virus Hemagglutinins to Induce Lower Respiratory Pathology is Associated with Decreased Surfactant Protein D Binding

    PubMed Central

    Qi, Li; Kash, John C.; Dugan, Vivien G.; Jagger, Brett W.; Lau, Yuk-Fai; Sheng, Zhong-Mei; Crouch, Erika C.; Hartshorn, Kevan L.; Taubenberger, Jeffery K.

    2011-01-01

    Pandemic influenza viral infections have been associated with viral pneumonia. Chimeric influenza viruses with the hemagglutinin segment of the 1918, 1957, 1968 or 2009 pandemic influenza viruses in the context of a seasonal H1N1 influenza genome were constructed to analyze the role of hemagglutinin (HA) in pathogenesis and cell tropism in a mouse model. We also explored whether there was an association between the ability of lung surfactant protein D (SP-D) to bind to the HA and the ability of the corresponding chimeric virus to infect bronchiolar and alveolar epithelial cells of the lower respiratory tract. Viruses expressing the hemagglutinin of pandemic viruses were associated with significant pathology in the lower respiratory tract, including acute inflammation, and showed low binding activity for SP-D. In contrast, the virus expressing the HA of a seasonal influenza strain induced only mild disease with little lung pathology in infected mice and exhibited strong in vitro binding to SP-D. PMID:21334038

  18. Surfactant Protein D Binds to Coxiella burnetii and Results in a Decrease in Interactions with Murine Alveolar Macrophages.

    PubMed

    Soltysiak, Kelly A; van Schaik, Erin J; Samuel, James E

    2015-01-01

    Coxiella burnetii is a Gram-negative, obligate intracellular bacterium and the causative agent of Q fever. Infections are usually acquired after inhalation of contaminated particles, where C. burnetii infects its cellular target cells, alveolar macrophages. Respiratory pathogens encounter the C-type lectin surfactant protein D (SP-D) during the course of natural infection. SP-D is a component of the innate immune response in the lungs and other mucosal surfaces. Many Gram-negative pulmonary pathogens interact with SP-D, which can cause aggregation, bactericidal effects and aid in bacterial clearance. Here we show that SP-D binds to C. burnetii in a calcium-dependent manner with no detectable bacterial aggregation or bactericidal effects. Since SP-D interactions with bacteria often alter macrophage interactions, it was determined that SP-D treatment resulted in a significant decrease in C. burnetii interactions to a mouse alveolar macrophage model cell line MH-S indicating SP-D causes a significant decrease in phagocytosis. The ability of SP-D to modulate macrophage activation by C. burnetii was tested and it was determined that SP-D does not alter the correlates measured for macrophage activation. Taken together these studies support those demonstrating limited activation of alveolar macrophages with C. burnetii and demonstrate interactions with SP-D participate in reduction of phagocyte attachment and phagocytosis.

  19. A mutation in the surfactant protein B gene responsible for fatal neonatal respiratory disease in multiple kindreds.

    PubMed Central

    Nogee, L M; Garnier, G; Dietz, H C; Singer, L; Murphy, A M; deMello, D E; Colten, H R

    1994-01-01

    To determine the molecular defect accounting for the deficiency of pulmonary surfactant protein B (SP-B) in full-term neonates who died from respiratory failure associated with alveolar proteinosis, the sequence of the SP-B transcript in affected infants was ascertained. A frameshift mutation consisting of a substitution of GAA for C in codon 121 of the SP-B cDNA was identified. The three affected infants in the index family were homozygous for this mutation, which segregated in a fashion consistent with autosomal recessive inheritance of disease. The same mutation was found in two other unrelated infants who died from alveolar proteinosis, one of whom was also homozygous, and in the parents of an additional unrelated, affected infant, but was not observed in 50 control subjects. We conclude that this mutation is responsible for SP-B deficiency and neonatal alveolar proteinosis in multiple families and speculate that the disorder is more common than was recognized previously. Images PMID:8163685

  20. Interference from Proteins and Surfactants on Particle Size Distributions Measured by Nanoparticle Tracking Analysis (NTA).

    PubMed

    Bai, Kelvin; Barnett, Gregory V; Kar, Sambit R; Das, Tapan K

    2017-04-01

    Characterization of submicron protein particles continues to be challenging despite active developments in the field. NTA is a submicron particle enumeration technique, which optically tracks the light scattering signal from suspended particles undergoing Brownian motion. The submicron particle size range NTA can monitor in common protein formulations is not well established. We conducted a comprehensive investigation with several protein formulations along with corresponding placebos using NTA to determine submicron particle size distributions and shed light on potential non-particle origin of size distribution in the range of approximately 50-300 nm. NTA and DLS are performed on polystyrene size standards as well as protein and placebo formulations. Protein formulations filtered through a 20 nm filter, with and without polysorbate-80, show NTA particle counts. As such, particle counts above 20 nm are not expected in these solutions. Several other systems including positive and negative controls were studied using NTA and DLS. These apparent particles measured by NTA are not observed in DLS measurements and may not correspond to real particles. The intent of this article is to raise awareness about the need to interpret particle counts and size distribution from NTA with caution.

  1. Fractionation of protein, RNA, and plasmid DNA in centrifugal precipitation chromatography using cationic surfactant CTAB containing inorganic salts NaCl and NH(4)Cl.

    PubMed

    Tomanee, Panarat; Hsu, James T; Ito, Yoichiro

    2004-10-05

    Centrifugal precipitation chromatography (CPC) is a separation system that mainly employs a moving concentration gradient of precipitating agent along a channel and solutes of interest undergo repetitive precipitation-dissolution, fractionate at different locations, and elute out from the channel according to their solubility in the precipitating agent solution. We report here for the first time the use of a CPC system for fractionation of protein, RNA, and plasmid DNA in clarified lysate produced from bacterial culture. The cationic surfactant cetyltrimethylammonium bromide (CTAB) was initially used as a precipitating agent; however, all biomolecules showed no differential solubility in the moving concentration gradient of this surfactant and, as a result, no separation of protein, RNA, and plasmid DNA occurred. To overcome this problem, inorganic salts such as NaCl and NH(4)Cl were introduced into solution of CTAB. The protein and RNA were found to have higher solubility with the addition of these salts and separated from the plasmid DNA. Decreasing surface charge density of CTAB upon addition of NaCl and NH(4)Cl was believed to lead to lower surfactant complexation, and therefore caused differential solubility and fractionation of these biomolecules. Addition of CaCl(2) did not improve solubility and separation of RNA from plasmid DNA.

  2. Surfactant protein-A (SP-A) selectively inhibits prostaglandin F2alpha (PGF2alpha) production in term decidua: implications for the onset of labor.

    PubMed

    Snegovskikh, Victoria V; Bhandari, Vineet; Wright, Jo Rae; Tadesse, Serkalem; Morgan, Thomas; Macneill, Colin; Foyouzi, Nastaran; Park, Joong Shin; Wang, Yuguang; Norwitz, Errol R

    2011-04-01

    Labor is characterized by "decidual activation" with production of inflammatory mediators. Recent data suggest that surfactant protein-A (SP-A) may be critical to the onset of labor in mice. Whether this is also true in humans is unclear. The aim was to investigate: 1) the expression of SP-A at the maternal-fetal interface; 2) the effect of SP-A on the production of inflammatory mediators by human decidua; and 3) the association between single nucleotide polymorphisms in maternal SP-A genes and spontaneous preterm birth. In situ expression of SP-A was investigated by immunohistochemistry and quantitative RT-PCR. Term decidual stromal cells were isolated, purified, and treated with/without SP-A (1-100 μg/ml), IL-1β, and/or thrombin. Levels of inflammatory mediators [IL-6, IL-8, TNFα, matrix metalloproteinase-3, monocyte chemotactic protein-1, IL-1β, PGE(2), prostaglandin F(2α) (PGF(2α))] and angiogenic factors (soluble fms-like tyrosine kinase-1, vascular endothelial growth factor) were measured in conditioned supernatant by ELISA and corrected for protein content. The effect of SP-A on eicosanoid gene expression was measured by quantitative RT-PCR. SP-A localized to endometrium/decidua. High-dose SP-A (100 μg/ml) inhibited PGF(2α) by term decidual stromal cells without affecting the production of other inflammatory mediators, and this effect occurred at a posttranscriptional level. Decidual SP-A expression decreased significantly with labor. Single nucleotide polymorphisms in the SP-A genes do not appear to be associated with preterm birth. SP-A is produced by human endometrium/decidua, where it significantly and selectively inhibits PGF(2α) production. Its expression decreases with labor. These novel observations suggest that decidual SP-A likely plays a critical role in regulating prostaglandin production within the uterus, culminating at term in decidual activation and the onset of labor.

  3. An antibody against the surfactant protein A (SP-A)-binding domain of the SP-A receptor inhibits T cell-mediated immune responses to Mycobacterium tuberculosis.

    PubMed

    Samten, Buka; Townsend, James C; Sever-Chroneos, Zvjezdana; Pasquinelli, Virginia; Barnes, Peter F; Chroneos, Zissis C

    2008-07-01

    Surfactant protein A (SP-A) suppresses lymphocyte proliferation and IL-2 secretion, in part, by binding to its receptor, SP-R210. However, the mechanisms underlying this effect are not well understood. Here, we studied the effect of antibodies against the SP-A-binding (neck) domain (alpha-SP-R210n) or nonbinding C-terminal domain (alpha-SP-R210ct) of SP-R210 on human peripheral blood T cell immune responses against Mycobacterium tuberculosis. We demonstrated that both antibodies bind to more than 90% of monocytes and 5-10% of CD3+ T cells in freshly isolated PBMC. Stimulation of PBMC from healthy tuberculin reactors [purified protein derivative-positive (PPD+)] with heat-killed M. tuberculosis induced increased antibody binding to CD3+ cells. Increased antibody binding suggested enhanced expression of SP-R210, and this was confirmed by Western blotting. The antibodies (alpha-SP-R210n) cross-linking the SP-R210 through the SP-A-binding domain markedly inhibited cell proliferation and IFN-gamma secretion by PBMC from PPD+ donors in response to heat-killed M. tuberculosis, whereas preimmune IgG and antibodies (alpha-SP-R210ct) cross-linking SP-R210 through the non-SP-A-binding, C-terminal domain had no effect. Anti-SP-R210n also decreased M. tuberculosis-induced production of TNF-alpha but increased production of IL-10. Inhibition of IFN-gamma production by alpha-SP-R210n was abrogated by the combination of neutralizing antibodies to IL-10 and TGF-beta1. Together, these findings support the hypothesis that SP-A, via SP-R210, suppresses cell-mediated immunity against M. tuberculosis via a mechanism that up-regulates secretion of IL-10 and TGF-beta1.

  4. Natural Anti-Infective Pulmonary Proteins: In Vivo Cooperative Action of Surfactant Protein SP-A and the Lung Antimicrobial Peptide SP-BN.

    PubMed

    Coya, Juan Manuel; Akinbi, Henry T; Sáenz, Alejandra; Yang, Li; Weaver, Timothy E; Casals, Cristina

    2015-08-15

    The anionic antimicrobial peptide SP-B(N), derived from the N-terminal saposin-like domain of the surfactant protein (SP)-B proprotein, and SP-A are lung anti-infective proteins. SP-A-deficient mice are more susceptible than wild-type mice to lung infections, and bacterial killing is enhanced in transgenic mice overexpressing SP-B(N). Despite their potential anti-infective action, in vitro studies indicate that several microorganisms are resistant to SP-A and SP-B(N). In this study, we test the hypothesis that these proteins act synergistically or cooperatively to strengthen each other's microbicidal activity. The results indicate that the proteins acted synergistically in vitro against SP-A- and SP-B(N)-resistant capsulated Klebsiella pneumoniae (serotype K2) at neutral pH. SP-A and SP-B(N) were able to interact in solution (Kd = 0.4 μM), which enabled their binding to bacteria with which SP-A or SP-B(N) alone could not interact. In vivo, we found that treatment of K. pneumoniae-infected mice with SP-A and SP-B(N) conferred more protection against K. pneumoniae infection than each protein individually. SP-A/SP-B(N)-treated infected mice showed significant reduction of bacterial burden, enhanced neutrophil recruitment, and ameliorated lung histopathology with respect to untreated infected mice. In addition, the concentrations of inflammatory mediators in lung homogenates increased early in infection in contrast with the weak inflammatory response of untreated K. pneumoniae-infected mice. Finally, we found that therapeutic treatment with SP-A and SP-B(N) 6 or 24 h after bacterial challenge conferred significant protection against K. pneumoniae infection. These studies show novel anti-infective pathways that could drive development of new strategies against pulmonary infections.

  5. Study of the binding between lysozyme and C10-TAB: determination and interpretation of the partial properties of protein and surfactant at infinite dilution.

    PubMed

    Morgado, Jorge; Aquino-Olivos, Marco Antonio; Martínez-Hernández, Ranulfo; Corea, Mónica; Grolier, Jean Pierre E; del Río, José Manuel

    2008-06-01

    This work examines the binding in aqueous solution, through the experimental determination of specific volumes and specific adiabatic compressibility coefficients, of decyltrimethylammonium bromide to lysozyme and to non-charged polymeric particles (which have been specially synthesized by emulsion polymerization). A method was developed to calculate the specific partial properties at infinite dilution and it was shown that a Gibbs-Duhem type equation holds at this limit for two solutes. With this equation, it is possible to relate the behavior of the partial properties along different binding types at a constant temperature. It was found that the first binding type, specific with high affinity, is related to a significant reduction of surfactant compressibility. The second binding type is accompanied by the unfolding of the protein and the third one is qualitatively identical to the binding of the surfactant to non-charged polymeric particles.

  6. Interdependent TTF1 - ErbB4 interactions are critical for surfactant protein-B homeostasis in primary mouse lung alveolar type II cells.

    PubMed

    Marten, Elger; Nielsen, Heber C; Dammann, Christiane E L

    2015-09-01

    ErbB4 receptor and thyroid transcription factor (TTF)-1 are important modulators of fetal alveolar type II (ATII) cell development and injury. ErbB4 is an upstream regulator of TTF-1, promoting its expression in MLE-12 cells, an ATII cell line. Both proteins are known to promote surfactant protein-B gene (SftpB) and protein (SP-B) expression, but their feedback interactions on each other are not known. We hypothesized that TTF-1 expression has a feedback effect on ErbB4 expression in an in-vitro model of isolated mouse ATII cells. We tested this hypothesis by analyzing the effects of overexpressing HER4 and Nkx2.1, the genes of ErbB4 and TTF-1 on TTF-1 and ErbB4 protein expression, respectively, as well as SP-B protein expression in primary fetal mouse lung ATII cells. Transient ErbB4 protein overexpression upregulated TTF-1 protein expression in primary fetal ATII cells, similarly to results previously shown in MLE-12 cells. Transient TTF-1 protein overexpression down regulated ErbB4 protein expression in both cell types. TTF-1 protein was upregulated in primary transgenic ErbB4-depleted adult ATII cells, however SP-B protein expression in these adult transgenic ATII cells was not affected by the absence of ErbB4. The observation that TTF-1 is upregulated in fetal ATII cells by ErbB4 overexpression and also in ErbB4-deleted adult ATII cells suggests additional factors interact with ErbB4 to regulate TTF-1 levels. We conclude that the interdependency of TTF-1 and ErbB4 is important for surfactant protein levels. The interactive regulation of ErbB4 and TTF-1 needs further elucidation.

  7. How to overcome surfactant dysfunction in meconium aspiration syndrome?

    PubMed

    Mokra, Daniela; Calkovska, Andrea

    2013-06-01

    Surfactant dysfunction in meconium aspiration syndrome (MAS) is caused by meconium components, by plasma proteins leaking through the injured alveolocapillary membrane and by substances originated in meconium-induced inflammation. Surfactant inactivation in MAS may be diminished by several ways. Firstly, aspirated meconium should be removed from the lungs to decrease concentrations of meconium inhibitors coming into the contact with surfactant in the alveolar compartment. Once the endogenous surfactant becomes inactivated, components of surfactant should be substituted by exogenous surfactant at a sufficient dose, and surfactant administration should be repeated, if oxygenation remains compromised. To delay the inactivation by inhibitors, exogenous surfactants may be enriched with surfactant proteins, phospholipids, or other substances such as polymers. Finally, to diminish an adverse action of products of meconium-induced inflammation on both endogenous and exogenously delivered surfactant, anti-inflammatory drugs may be administered. A combined therapeutic approach may result in better outcome in patients with MAS and in lower costs of treatment.

  8. Evolution of pulmonary surfactants for the treatment of neonatal respiratory distress syndrome and paediatric lung diseases.

    PubMed

    Mazela, Jan; Merritt, T Allen; Gadzinowski, Janusz; Sinha, Sunil

    2006-09-01

    This review documents the evolution of surfactant therapy, beginning with observations of surfactant deficiency in respiratory distress syndrome, the basis of exogenous surfactant treatment and the development of surfactant-containing novel peptides patterned after SP-B. We critically analyse the molecular interactions of surfactant proteins and phospholipids contributing to surfactant function. Peptide-containing surfactant provides clinical efficacy in the treatment of respiratory distress syndrome and offers promise for treating other lung diseases in infancy.

  9. Comparison of diffusion by anionic surfactants through cellulose acetate and collagen membranes.

    PubMed

    García Ramón, M T; Ribosa, I; Leal, J S; Parra, J L

    1989-06-01

    Synopsis From a dermatological point of view, it is important to know what is the irritation potential of surfactants on human skin. Recent research trends have been oriented towards the establishment of new 'in vitro' techniques that will avoid animal experimentation. In this paper, some results on the rate of diffusion of different anionic surfactants through both cellulose acetate and collagen membranes are described. A correlation between results of diffusion through the protein membrane and results published on the same surfactants and their irritation potential during 'in vivo' experiments appears possible.

  10. Serum Surfactant Protein D as a Biomarker for Measuring Lung Involvement in Obese Type 2 Diabetic Patients.

    PubMed

    López-Cano, Carolina; Lecube, Albert; García-Ramírez, Marta; Muñoz, Xavier; Sánchez, Enric; Seminario, Asunción; Hernández, Marta; Ciudin, Andreea; Gutiérrez, Liliana; Hernández, Cristina; Simó, Rafael

    2017-09-13

    Lung impairment is a new target for late diabetic complications. Biomarkers that could facilitate the identification of patients requiring functional respiratory tests have not been reported. The aim of this study is to examine whether serum surfactant protein D (SP-D) and A (SP-A) could be useful biomarkers of lung damage in obese patients with type 2 diabetes without known lung disease. A case-control study conducted in an ambulatory obesity unit. 49 obese patients with type 2 diabetes and 98 non-diabetic subjects, matched by age, gender, BMI, and waist circumference were included. Serum SP-D and SP-A were measured using enzyme-linked immunosorbent assay. Forced spirometry and static pulmonary volume were assessed. Patients with T2D exhibited higher serum SP-D concentrations than control subjects (p=0.006). No differences in serum SP-A concentrations were observed. There was an inverse association between forced expiratory volume in one second (FEV1) and serum SP-D (r=-0.265, p=0.029), as well as a significant positive relation between SP-D and residual volume (r=0.293, p=0.043). From Receiver Operating Characteristic analysis, the best SP-D cut-off to identify a FEV1<80% of predicted was 132.3 ng/mL (area under the curve 0.725, sensitivity 77.7%, specificity 69.4%). Stepwise multivariate regression analysis showed that serum SP-D≥132.3 ng/mL was independently associated with a FEV1<80% of predicted (R2=0.406). Only the existence of type 2 diabetes contributed independently to serum SD-P variance among all subjects (R2=0.138). Serum SP-D can be considered a useful biomarker for detecting lung impairment in obese type 2 diabetic patients.

  11. Type IV pilus glycosylation mediates resistance of Pseudomonas aeruginosa to opsonic activities of the pulmonary surfactant protein A.

    PubMed

    Tan, Rommel M; Kuang, Zhizhou; Hao, Yonghua; Lee, Francis; Lee, Timothy; Lee, Ryan J; Lau, Gee W

    2015-04-01

    Pseudomonas aeruginosa is a major bacterial pathogen commonly associated with chronic lung infections in cystic fibrosis (CF). Previously, we have demonstrated that the type IV pilus (Tfp) of P. aeruginosa mediates resistance to antibacterial effects of pulmonary surfactant protein A (SP-A). Interestingly, P. aeruginosa strains with group I pilins are O-glycosylated through the TfpO glycosyltransferase with a single subunit of O-antigen (O-ag). Importantly, TfpO-mediated O-glycosylation is important for virulence in mouse lungs, exemplified by more frequent lung infection in CF with TfpO-expressing P. aeruginosa strains. However, the mechanism underlying the importance of Tfp glycosylation in P. aeruginosa pathogenesis is not fully understood. Here, we demonstrated one mechanism of increased fitness mediated by O-glycosylation of group 1 pilins on Tfp in the P. aeruginosa clinical isolate 1244. Using an acute pneumonia model in SP-A+/+ versus SP-A-/- mice, the O-glycosylation-deficient ΔtfpO mutant was found to be attenuated in lung infection. Both 1244 and ΔtfpO strains showed equal levels of susceptibility to SP-A-mediated membrane permeability. In contrast, the ΔtfpO mutant was more susceptible to opsonization by SP-A and by other pulmonary and circulating opsonins, SP-D and mannose binding lectin 2, respectively. Importantly, the increased susceptibility to phagocytosis was abrogated in the absence of opsonins. These results indicate that O-glycosylation of Tfp with O-ag specifically confers resistance to opsonization during host-mediated phagocytosis.

  12. The role of inducible nitric oxide synthase for interstitial remodeling of alveolar septa in surfactant protein D-deficient mice

    PubMed Central

    Atochina-Vasserman, Elena N.; Massa, Christopher B.; Birkelbach, Bastian; Guo, Chang-Jiang; Scott, Pamela; Haenni, Beat; Beers, Michael F.; Ochs, Matthias; Gow, Andrew J.

    2015-01-01

    Surfactant protein D (SP-D) modulates the lung's immune system. Its absence leads to NOS2-independent alveolar lipoproteinosis and NOS2-dependent chronic inflammation, which is critical for early emphysematous remodeling. With aging, SP-D knockout mice develop an additional interstitial fibrotic component. We hypothesize that this age-related interstitial septal wall remodeling is mediated by NOS2. Using invasive pulmonary function testing such as the forced oscillation technique and quasistatic pressure-volume perturbation and design-based stereology, we compared 29-wk-old SP-D knockout (Sftpd−/−) mice, SP-D/NOS2 double-knockout (DiNOS) mice, and wild-type mice (WT). Structural changes, including alveolar epithelial surface area, distribution of septal wall thickness, and volumes of septal wall components (alveolar epithelium, interstitial tissue, and endothelium) were quantified. Twenty-nine-week-old Sftpd−/− mice had preserved lung mechanics at the organ level, whereas elastance was increased in DiNOS. Airspace enlargement and loss of surface area of alveolar epithelium coexist with increased septal wall thickness in Sftpd−/− mice. These changes were reduced in DiNOS, and compared with Sftpd−/− mice a decrease in volumes of interstitial tissue and alveolar epithelium was found. To understand the effects of lung pathology on measured lung mechanics, structural data were used to inform a computational model, simulating lung mechanics as a function of airspace derecruitment, septal wall destruction (loss of surface area), and septal wall thickening. In conclusion, NOS2 mediates remodeling of septal walls, resulting in deposition of interstitial tissue in Sftpd−/−. Forward modeling linking structure and lung mechanics describes the complex mechanical properties by parenchymatous destruction (emphysema), interstitial remodeling (septal wall thickening), and altered recruitability of acinar airspaces. PMID:26320150

  13. The role of inducible nitric oxide synthase for interstitial remodeling of alveolar septa in surfactant protein D-deficient mice.

    PubMed

    Knudsen, Lars; Atochina-Vasserman, Elena N; Massa, Christopher B; Birkelbach, Bastian; Guo, Chang-Jiang; Scott, Pamela; Haenni, Beat; Beers, Michael F; Ochs, Matthias; Gow, Andrew J

    2015-11-01

    Surfactant protein D (SP-D) modulates the lung's immune system. Its absence leads to NOS2-independent alveolar lipoproteinosis and NOS2-dependent chronic inflammation, which is critical for early emphysematous remodeling. With aging, SP-D knockout mice develop an additional interstitial fibrotic component. We hypothesize that this age-related interstitial septal wall remodeling is mediated by NOS2. Using invasive pulmonary function testing such as the forced oscillation technique and quasistatic pressure-volume perturbation and design-based stereology, we compared 29-wk-old SP-D knockout (Sftpd(-/-)) mice, SP-D/NOS2 double-knockout (DiNOS) mice, and wild-type mice (WT). Structural changes, including alveolar epithelial surface area, distribution of septal wall thickness, and volumes of septal wall components (alveolar epithelium, interstitial tissue, and endothelium) were quantified. Twenty-nine-week-old Sftpd(-/-) mice had preserved lung mechanics at the organ level, whereas elastance was increased in DiNOS. Airspace enlargement and loss of surface area of alveolar epithelium coexist with increased septal wall thickness in Sftpd(-/-) mice. These changes were reduced in DiNOS, and compared with Sftpd(-/-) mice a decrease in volumes of interstitial tissue and alveolar epithelium was found. To understand the effects of lung pathology on measured lung mechanics, structural data were used to inform a computational model, simulating lung mechanics as a function of airspace derecruitment, septal wall destruction (loss of surface area), and septal wall thickening. In conclusion, NOS2 mediates remodeling of septal walls, resulting in deposition of interstitial tissue in Sftpd(-/-). Forward modeling linking structure and lung mechanics describes the complex mechanical properties by parenchymatous destruction (emphysema), interstitial remodeling (septal wall thickening), and altered recruitability of acinar airspaces.

  14. Effects of surfactant protein D on growth, adhesion and epithelial invasion of intestinal Gram-negative bacteria.

    PubMed

    Hogenkamp, Astrid; Herías, M Veronica; Tooten, Peter C J; Veldhuizen, Edwin J A; Haagsman, Henk P

    2007-07-01

    Surfactant protein D (SP-D) interacts with various different microorganisms and plays an important role in pulmonary innate immunity. SP-D expression has also been detected in extrapulmonary tissues, including the gastro-intestinal tract. However, its function in the intestine is unknown and may differ considerably from SP-D functions in the lung. Therefore, the effects of porcine SP-D (pSP-D) on several strains of intestinal bacteria were studied by means of bacterial growth assays, colony-count assays, radial diffusion assays and differential fluorescent staining. Furthermore, the effect of pSP-D on the adhesion- and invasion-characteristics was investigated. All bacterial strains tested in this study were aggregated by pSP-D, but only Escherichia coli K12 was susceptible to pSP-D-mediated growth inhibition. Bacterial membrane integrity of E. coli K12 was affected by pSP-D, but this did not lead to a reduced bacterial viability. Therefore, it is unlikely that pSP-D has a direct antimicrobial effect, and the observed effects are most likely due to pSP-D-mediated bacterial aggregation. The effects of pSP-D on bacterial adhesion and invasion were studied with the porcine intestinal epithelial cell line IPI-2I. Preincubation with pSP-D results in a several-fold increase in adhesion (E. coli and Salmonella) and invasion (Salmonella), but did not affect the IL-8 production induced by the bacteria. Results obtained in this study suggest that pSP-D promotes uptake of pathogenic bacteria by epithelial cells. This may reflect a scavenger function for pSP-D in the intestine, which enables the host to generate a more rapid response to infectious bacteria.

  15. Common genetic variants of surfactant protein-D (SP-D) are associated with type 2 diabetes.

    PubMed

    Pueyo, Neus; Ortega, Francisco J; Mercader, Josep M; Moreno-Navarrete, José M; Sabater, Monica; Bonàs, Sílvia; Botas, Patricia; Delgado, Elías; Ricart, Wifredo; Martinez-Larrad, María T; Serrano-Ríos, Manuel; Torrents, David; Fernández-Real, José M

    2013-01-01

    Surfactant protein-D (SP-D) is a primordial component of the innate immune system intrinsically linked to metabolic pathways. We aimed to study the association of single nucleotide polymorphisms (SNPs) affecting SP-D with insulin resistance and type 2 diabetes (T2D). We evaluated a common genetic variant located in the SP-D coding region (rs721917, Met(31)Thr) in a sample of T2D patients and non-diabetic controls (n = 2,711). In a subset of subjects (n = 1,062), this SNP was analyzed in association with circulating SP-D concentrations, insulin resistance, and T2D. This SNP and others were also screened in the publicly available Genome Wide Association (GWA) database of the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC). We found the significant association of rs721917 with circulating SP-D, parameters of insulin resistance and T2D. Indeed, G carriers showed decreased circulating SP-D (p = 0.004), decreased fasting glucose (p = 0.0002), glycated hemoglobin (p = 0.0005), and 33% (p = 0.002) lower prevalence of T2D, estimated under a dominant model, especially among women. Interestingly, these differences remained significant after controlling for origin, age, gender, and circulating SP-D. Moreover, this SNP and others within the SP-D genomic region (i.e. rs10887344) were significantly associated with quantitative measures of glucose homeostasis, insulin sensitivity, and T2D, according to GWAS datasets from MAGIC. SP-D gene polymorphisms are associated with insulin resistance and T2D. These associations are independent of circulating SP-D concentrations.

  16. Non-ionic Surfactants and Non-Catalytic Protein Treatment on Enzymatic Hydrolysis of Pretreated Creeping Wild Ryegrass

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Pan, Zhongli; Zhang, Ruihong; Wang, Donghai; Jenkins, Bryan

    Our previous research has shown that saline Creeping Wild Ryegrass (CWR), Leymus triticoides, has a great potential to be used for bioethanol production because of its high fermentable sugar yield, up to 85% cellulose conversion of pretreated CWR. However, the high cost of enzyme is still one of the obstacles making large-scale lignocellulosic bioethanol production economically difficult. It is desirable to use reduced enzyme loading to produce fermentable sugars with high yield and low cost. To reduce the enzyme loading, the effect of addition of non-ionic surfactants and non-catalytic protein on the enzymatic hydrolysis of pretreated CWR was investigated in this study. Tween 20, Tween 80, and bovine serum albumin (BSA) were used as additives to improve the enzymatic hydrolysis of dilute sulfuric-acid-pretreated CWR. Under the loading of 0.1 g additives/g dry solid, Tween 20 was the most effective additive, followed by Tween 80 and BSA. With the addition of Tween 20 mixed with cellulase loading of 15 FPU/g cellulose, the cellulose conversion increased 14% (from 75 to 89%), which was similar to that with cellulase loading of 30 FPU/g cellulose and without additive addition. The results of cellulase and BSA adsorption on the Avicel PH101, pretreated CWR, and lignaceous residue of pretreated CWR support the theory that the primary mechanism behind the additives is prevention of non-productive adsorption of enzymes on lignaceous material of pretreated CWR. The addition of additives could be a promising technology to improve the enzymatic hydrolysis by reducing the enzyme activity loss caused by non-productive adsorption.

  17. Effect of exogenous surfactant on the development of surfactant synthesis in premature rabbit lung.

    PubMed

    Amato, Maurizio; Petit, Kevin; Fiore, Humberto H; Doyle, Cynthia A; Frantz, Ivan D; Nielsen, Heber C

    2003-04-01

    Surfactant replacement is an effective therapy for neonatal respiratory distress syndrome. Full recovery from respiratory distress syndrome requires development of endogenous surfactant synthesis and metabolism. The influence of exogenous surfactant on the development of surfactant synthesis in premature lungs is not known. We hypothesized that different exogenous surfactants have different effects on the development of endogenous surfactant production in the premature lung. We treated organ cultures of d 25 fetal rabbit lung for 3 d with 100 mg/kg body weight of natural rabbit surfactant, Survanta, and Exosurf and measured their effects on the development of surfactant synthesis. Additional experiments tested how these surfactants and Curosurf affected surfactant protein (SP) SP-A, SP-B, and SP-C mRNA expression. Surfactant synthesis was measured as the incorporation of 3H-choline and 14C-glycerol into disaturated phosphatidylcholine recovered from lamellar bodies. Randomized-block ANOVA showed significant differences among treatments for incorporation of both labels (p < 0.01), with natural rabbit surfactant less than control, Survanta greater than control, and Exosurf unchanged. Additional experiments with natural rabbit surfactant alone showed no significant effects in doses up to 1000 mg/kg. Survanta stimulated disaturated phosphatidylcholine synthesis (173 +/- 41% of control; p = 0.01), increased total lamellar body disaturated phosphatidylcholine by 22% (p < 0.05), and increased 14C-disat-PC specific activity by 35% (p < 0.05). The response to Survanta was dose-dependent up to 1000 mg/kg. Survanta did not affect surfactant release. No surfactant altered the expression of mRNA for SP-A, SP-B, or SP-C. We conclude that surfactant replacement therapy can enhance the maturation of surfactant synthesis, but this potential benefit differs with different surfactant preparations.

  18. Increased surfactant protein D fails to improve bacterial clearance and inflammation in serpinB1-/- mice.

    PubMed

    Stolley, J Michael; Gong, Dapeng; Farley, Kalamo; Zhao, Picheng; Cooley, Jessica; Crouch, Erika C; Benarafa, Charaf; Remold-O'Donnell, Eileen

    2012-12-01

    Previously, we described the protective role of the neutrophil serine protease inhibitor serpinB1 in preventing early mortality of Pseudomonas aeruginosa lung infection by fostering bacterial clearance and limiting inflammatory cytokines and proteolytic damage. Surfactant protein D (SP-D), which maintains the antiinflammatory pulmonary environment and mediates bacterial removal, was degraded in infected serpinB1-deficient mice. Based on the hypothesis that increased SP-D would rescue or mitigate the pathological effects of serpinB1 deletion, we generated two serpinB1(-/-) lines overexpressing lung-specific rat SP-D and inoculated the mice with P. aeruginosa. Contrary to predictions, bacterial counts in the lungs of SP-D(low)serpinB1(-/-) and SP-D(high) serpinB1(-/-) mice were 4 logs higher than wild-type and not different from serpinB1(-/-) mice. SP-D overexpression also failed to mitigate inflammation (TNF-α), lung injury (free protein, albumin), or excess neutrophil death (free myeloperoxidase, elastase). These pathological markers were higher for infected SP-D(high)serpinB1(-/-) mice than for serpinB1(-/-) mice, although the differences were not significant after controlling for multiple comparisons. The failure of transgenic SP-D to rescue antibacterial defense of serpinB1-deficient mice occurred despite 5-fold or 20-fold increased expression levels, largely normal structure, and dose-dependent bacteria-aggregating activity. SP-D of infected wild-type mice was intact in 43-kD monomers by reducing SDS-PAGE. By contrast, proteolytic fragments of 35, 17, and 8 kD were found in infected SP-D(low)serpinB1(-/-), SP-D(high) serpinB1(-/-) mice, and serpinB1(-/-) mice. Thus, although therapies to increase lung concentration of SP-D may have beneficial applications, the findings suggest that therapy with SP-D may not be beneficial for lung inflammation or infection if the underlying clinical condition includes excess proteolysis.

  19. Increased Surfactant Protein D Fails to Improve Bacterial Clearance and Inflammation in serpinB1−/− Mice

    PubMed Central

    Stolley, J. Michael; Gong, Dapeng; Farley, Kalamo; Zhao, Picheng; Cooley, Jessica; Crouch, Erika C.; Benarafa, Charaf

    2012-01-01

    Previously, we described the protective role of the neutrophil serine protease inhibitor serpinB1 in preventing early mortality of Pseudomonas aeruginosa lung infection by fostering bacterial clearance and limiting inflammatory cytokines and proteolytic damage. Surfactant protein D (SP-D), which maintains the antiinflammatory pulmonary environment and mediates bacterial removal, was degraded in infected serpinB1-deficient mice. Based on the hypothesis that increased SP-D would rescue or mitigate the pathological effects of serpinB1 deletion, we generated two serpinB1−/− lines overexpressing lung-specific rat SP-D and inoculated the mice with P. aeruginosa. Contrary to predictions, bacterial counts in the lungs of SP-DlowserpinB1−/− and SP-Dhigh serpinB1−/− mice were 4 logs higher than wild-type and not different from serpinB1−/− mice. SP-D overexpression also failed to mitigate inflammation (TNF-α), lung injury (free protein, albumin), or excess neutrophil death (free myeloperoxidase, elastase). These pathological markers were higher for infected SP-DhighserpinB1−/− mice than for serpinB1−/− mice, although the differences were not significant after controlling for multiple comparisons. The failure of transgenic SP-D to rescue antibacterial defense of serpinB1-deficient mice occurred despite 5-fold or 20-fold increased expression levels, largely normal structure, and dose-dependent bacteria-aggregating activity. SP-D of infected wild-type mice was intact in 43-kD monomers by reducing SDS-PAGE. By contrast, proteolytic fragments of 35, 17, and 8 kD were found in infected SP-DlowserpinB1−/−, SP-Dhigh serpinB1−/− mice, and serpinB1−/− mice. Thus, although therapies to increase lung concentration of SP-D may have beneficial applications, the findings suggest that therapy with SP-D may not be beneficial for lung inflammation or infection if the underlying clinical condition includes excess proteolysis. PMID:23024061

  20. Surfactant as a critical factor when tuning the hydrophilicity in three-dimensional polyester-based scaffolds: impact of hydrophilicity on their mechanical properties and the cellular response of human osteoblast-like cells.

    PubMed

    Sun, Yang; Xing, Zhe; Xue, Ying; Mustafa, Kamal; Finne-Wistrand, Anna; Albertsson, Ann-Christine

    2014-04-14

    In tissue engineering, the hydrophilicity of porous scaffolds is essential and influences protein and cell adhesion as well as nutrient diffusion into the scaffold. The relative low hydrophilicity of degradable polyesters, which limits diffusion of nutrients, is a major drawback in large porous scaffolds of these materials when used for bone tissue engineering and repair of critical size defects. Designing porous biodegradable polymer scaffolds with improved hydrophilicity, while maintaining their mechanical, thermal, and degradation properties is therefore of clinical interest. Here, surfactants were used to tune the hydrophilicity and material properties. A total of 3-20% (w/w) of surfactant, polysorbate 80 (Tween 80), was used as an additive in poly(l-lactide-co-1,5-dioxepan-2-one) [poly(LLA-co-DXO)] and poly(l-lactide)-co-(ε-caprolactone) [poly(LLA-co-CL)] scaffolds. A significantly decreased water contact angle was recorded for all the blends and the crystallinity, glass transition temperature and crystallization temperature were reduced with increased amounts of surfactant. Copolymers with the addition of 3% Tween 80 had comparable mechanical properties as the pristine copolymers. However, the E-modulus and tensile stress of copolymers decreased significantly with the addition of 10 and 20% Tween 80. Initial cell response of the material was evaluated by seeding human osteoblast-like cells (HOB) on the scaffolds. The addition of 3% Tween 80 did not significantly influence cell attachment or proliferation, while 20% Tween 80 significantly inhibited osteoblast proliferation. RT-PCR results showed that 3% Tween 80 stimulated mRNA expression of alkaline phosphatase (ALP), osteoprotegerin (OPG), and bone morphogenetic protein-2 (BMP-2).

  1. Adverse biophysical effects of hydroxyapatite nanoparticles on natural pulmonary surfactant.

    PubMed

    Fan, Qihui; Wang, Yi E; Zhao, Xinxin; Loo, Joachim S C; Zuo, Yi Y

    2011-08-23

    Inhaled nanoparticles (NPs) must first interact with the pulmonary surfactant (PS) lining layer that covers the entire internal surface of the respiratory tract and plays an important role in surface tension reduction and host defense. Interactions with the PS film determine the subsequent clearance, retention, and translocation of the inhaled NPs and hence their potential toxicity. To date, little is known how NPs interact with PS, and whether or not NPs have adverse effects on the biophysical function of PS. We found a time-dependent toxicological effect of hydroxyapatite NPs (HA-NPs) on a natural PS, Infasurf, and the time scale of surfactant inhibition after particle exposure was comparable to the turnover period of surfactant metabolism. Using a variety of in vitro biophysicochemical characterization techniques, we have determined the inhibition mechanism to be due to protein adsorption onto the HA-NPs. Consequently, depletion of surfactant proteins from phospholipid vesicles caused conversion of original large vesicles into much smaller vesicles with poor surface activity. These small vesicles, in turn, inhibited biophysical function of surfactant films after adsorption at the air-water interface. Cytotoxicity study found that the HA-NPs at the studied concentration were benign to human bronchial epithelial cells, thereby highlighting the importance of evaluating biophysical effect of NPs on PS. The NP-PS interaction mechanism revealed by this study may not only provide new insight into the toxicological study of nanoparticles but also shed light on the feasibility of NP-based pulmonary drug delivery.

  2. Single-cell analysis reveals differential regulation of the alveolar macrophage actin cytoskeleton by surfactant proteins A1 and A2: implications of sex and aging.

    PubMed

    Tsotakos, Nikolaos; Phelps, David S; Yengo, Christopher M; Chinchilli, Vernon M; Floros, Joanna

    2016-01-01

    Surfactant protein A (SP-A) contributes to lung immunity by regulating inflammation and responses to microorganisms invading the lung. The huge genetic variability of SP-A in humans implies that this protein is highly important in tightly regulating the lung immune response. Proteomic studies have demonstrated that there are differential responses of the macrophages to SP-A1 and SP-A2 and that there are sex differences implicated in these responses. Purified SP-A variants were used for administration to alveolar macrophages from SP-A knockout (KO) mice for in vitro studies, and alveolar macrophages from humanized SP-A transgenic mice were isolated for ex vivo studies. The actin cytoskeleton was examined by fluorescence and confocal microscopy, and the macrophages were categorized according to the distribution of polymerized actin. In accordance with previous data, we report that there are sex differences in the response of alveolar macrophages to SP-A1 and SP-A2. The cell size and F-actin content of the alveolar macrophages are sex- and age-dependent. Importantly, there are different subpopulations of cells with differential distribution of polymerized actin. In vitro, SP-A2 destabilizes actin in female, but not male, mice, and the same tendency is observed by SP-A1 in cells from male mice. Similarly, there are differences in the distribution of AM subpopulations isolated from SP-A transgenic mice depending on sex and age. There are marked sex- and age-related differences in the alveolar macrophage phenotype as illustrated by F-actin staining between SP-A1 and SP-A2. Importantly, the phenotypic switch caused by the different SP-A variants is subtle, and pertains to the frequency of the observed subpopulations, demonstrating the need for single-cell analysis approaches. The differential responses of alveolar macrophages to SP-A1 and SP-A2 highlight the importance of genotype in immune regulation and the susceptibility to lung disease and the need for development of

  3. Human Protein and Amino Acid Requirements.

    PubMed

    Hoffer, L John

    2016-05-01

    Human protein and amino acid nutrition encompasses a wide, complex, frequently misunderstood, and often contentious area of clinical research and practice. This tutorial explains the basic biochemical and physiologic principles that underlie our current understanding of protein and amino acid nutrition. The following topics are discussed: (1) the identity, measurement, and essentiality of nutritional proteins; (2) the definition and determination of minimum requirements; (3) nutrition adaptation; (4) obligatory nitrogen excretion and the minimum protein requirement; (5) minimum versus optimum protein intakes; (6) metabolic responses to surfeit and deficient protein intakes; (7) body composition and protein requirements; (8) labile protein; (9) N balance; (10) the principles of protein and amino acid turnover, including an analysis of the controversial indicator amino acid oxidation technique; (11) general guidelines for evaluating protein turnover articles; (12) amino acid turnover versus clearance; (13) the protein content of hydrated amino acid solutions; (14) protein requirements in special situations, including protein-catabolic critical illness; (15) amino acid supplements and additives, including monosodium glutamate and glutamine; and (16) a perspective on the future of protein and amino acid nutrition research. In addition to providing practical information, this tutorial aims to demonstrate the importance of rigorous physiologic reasoning, stimulate intellectual curiosity, and encourage fresh ideas in this dynamic area of human nutrition. In general, references are provided only for topics that are not well covered in modern textbooks. © 2016 American Society for Parenteral and Enteral Nutrition.

  4. Nuclear Matrix Proteins in Human Colon Cancer

    NASA Astrophysics Data System (ADS)

    Keesee, Susan K.; Meneghini, Marc D.; Szaro, Robert P.; Wu, Ying-Jye

    1994-03-01

    The nuclear matrix is the nonchromatin scaffolding of the nucleus. This structure confers nuclear shape, organizes chromatin, and appears to contain important regulatory proteins. Tissue specific nuclear matrix proteins have been found in the rat, mouse, and human. In this study we compared high-resolution two-dimensional gel electropherograms of nuclear matrix protein patterns found in human colon tumors with those from normal colon epithelia. Tumors were obtained from 18 patients undergoing partial colectomy for adenocarcinoma of the colon and compared with tissue from 10 normal colons. We have identified at least six proteins which were present in 18 of 18 colon tumors and 0 of 10 normal tissues, as well as four proteins present in 0 of 18 tumors and in 10 of 10 normal tissues. These data, which corroborate similar findings of cancer-specific nuclear matrix proteins in prostate and breast, suggest that nuclear matrix proteins may serve as important markers for at least some types of cancer.

  5. A comparative human health risk assessment of p-dichlorobenzene-based toilet rimblock products versus fragrance/surfactant-based alternatives.

    PubMed

    Aronson, Dallas B; Bosch, Stephen; Gray, D Anthony; Howard, Philip H; Guiney, Patrick D

    2007-10-01

    A comparison of the human health risk to consumers using one of two types of toilet rimblock products, either a p-dichlorobenzene-based rimblock or two newer fragrance/surfactant-based alternatives, was conducted. Rimblock products are designed for global use by consumers worldwide and function by releasing volatile compounds into indoor air with subsequent exposure presumed to be mainly by inhalation of indoor air. Using the THERdbASE exposure model and experimentally determined emission data, indoor air concentrations and daily intake values were determined for both types of rimblock products. Modeled exposure concentrations from a representative p-dichlorobenzene rimblock product are an order of magnitude higher than those from the alternative rimblock products due to its nearly pure composition and high sublimation rate. Lifetime exposure to p-dichlorobenzene or the subset of fragrance components with available RfD values is not expected to lead to non-cancer-based adverse health effects based on the exposure concentrations estimated using the THERdbASE model. A similar comparison of cancer-based effects was not possible as insufficient data were available for the fragrance components.

  6. Regulators of G protein signalling proteins in the human myometrium.

    PubMed

    Ladds, Graham; Zervou, Sevasti; Vatish, Manu; Thornton, Steven; Davey, John

    2009-05-21

    The contractile state of the human myometrium is controlled by extracellular signals that promote relaxation or contraction. Many of these signals function through G protein-coupled receptors at the cell surface, stimulating heterotrimeric G proteins and leading to changes in the activity of effector proteins responsible for bringing about the response. G proteins can interact with multiple receptors and many different effectors and are key players in the response. Regulators of G protein signalling (RGS) proteins are GTPase activating proteins for heterotrimeric G proteins and help terminate the signal. Little is known about the function of RGS proteins in human myometrium and we have therefore analysed transcript levels for RGS proteins at various stages of pregnancy (non-pregnant, preterm, term non-labouring, term labouring). RGS2 and RGS5 were the most abundantly expressed isolates in each of the patient groups. The levels of RGS4 and RGS16 (and to a lesser extent RGS2 and RGS14) increased in term labouring samples relative to the other groups. Yeast two-hybrid analysis and co-immunoprecipitation in myometrial cells revealed that both RGS2 and RGS5 interact directly with the cytoplasmic tail of the oxytocin receptor, suggesting they might help regulate signalling through this receptor.

  7. Comparison of in vitro eye irritation potential by bovine corneal opacity and permeability (BCOP) assay to erythema scores in human eye sting test of surfactant-based formulations.

    PubMed

    Cater, Kathleen C; Harbell, John W

    2008-01-01

    The bovine corneal opacity and permeability (BCOP) assay can be used to predict relative eye irritation potential of surfactant-based personal care formulations relative to a corporate benchmark. The human eye sting test is typically used to evaluate product claims of no tears/no stinging for children's bath products. A preliminary investigation was conducted to test a hypothesis that the BCOP assay could be used as a prediction model for relative ranking of human eye irritation responses under conditions of a standard human eye sting test to surfactant-based formulations. BCOP assays and human eye sting tests were conducted on 4 commercial and 1 prototype body wash (BW) developed specifically for children or as mild bath products. In the human eye sting test, 10 mul of a 10% dosing solution is instilled into one eye of each panelist (n = 20), and the contralateral eye is dosed with sterile water as a control. Bulbar conjunctival erythema responses of each eye are graded at 30 seconds by an ophthalmologist. The BCOP assay permeability values (optical density at 490 nm [OD(490)]) for the 5 BWs ranged from 0.438 to 1.252 (i.e., least to most irritating). By comparison, the number of panelists exhibiting erythema responses (mild to moderately pink) ranged from 3 of 20 panelists for the least irritating BW to 10 of 20 panelists for the most irritating BW tested. The relative ranking of eye irritation potential of the 5 BWs in the BCOP assay compares favorably with the relative ranking of the BWs in the human eye sting test. Based on these findings, the permeability endpoint of the BCOP assay, as described for surfactant-based formulations, showed promise as a prediction model for relative ranking of conjunctival erythema responses in the human eye. Consequently, screening of prototype formulations in the BCOP assay would allow for formula optimization of mild bath products prior to investment in a human eye sting test.

  8. Surfactant Protein A and B Gene Polymorphisms and Risk of Respiratory Distress Syndrome in Late-Preterm Neonates

    PubMed Central

    Tsitoura, Maria-Eleni I.; Stavrou, Eleana F.; Maraziotis, Ioannis A.; Sarafidis, Kosmas; Athanassiadou, Aglaia; Dimitriou, Gabriel

    2016-01-01

    Background and Objectives Newborns delivered late-preterm (between 340/7 and 366/7 weeks of gestation) are at increased risk of respiratory distress syndrome (RDS). Polymorphisms within the surfactant protein (SP) A and B gene have been shown to predispose to RDS in preterm neonates. The aim of this study was to investigate whether specific SP-A and/or SP-B genetic variants are also associated with RDS in infants born late-preterm. Methods This prospective cross-sectional study included 56 late-preterm infants with and 60 without RDS. Specific SP-A1/SP-A2 haplotypes and SP-B Ile131Thr polymorphic alleles were determined in blood specimens using polymerase-chain-reaction and DNA sequencing. Results The SP-A1 6A4 and the SP-A2 1A5 haplotypes were significantly overrepresented in newborns with RDS compared to controls (OR 2.86, 95%CI 1.20–6.83 and OR 4.68, 95%CI 1.28–17.1, respectively). The distribution of the SP-B Ile131Thr genotypes was similar between the two late-preterm groups. Overall, the SP-A1 6A4 or/and SP-A2 1A5 haplotype was present in 20 newborns with RDS (35.7%), resulting in a 4.2-fold (1.60–11.0) higher probability of RDS in carriers. Multivariable regression analysis revealed that the effect of SP-A1 6A4 and SP-A2 1A5 haplotypes was preserved when adjusting for known risk or protective factors, such as male gender, smaller gestational age, smaller weight, complications of pregnancy, and administration of antenatal corticosteroids. Conclusions Specific SP-A genetic variants may influence the susceptibility to RDS in late-preterm infants, independently of the effect of other perinatal factors. PMID:27835691

  9. [Pulmonary surfactant protein gene mutation associated with pediatric interstitial lung disease: a case study and the review of related literature].

    PubMed

    Zhu, Chun-mei; Cao, Ling; Huang, Rong-yan; Wang, Ya-jun; Zou, Ji-zhen; Yuan, Xin-yu; Song, Fang; Chen, Hui-zhong

    2013-02-01

    To report a case of pulmonary surfactant protein (SP) gene mutation associated with pediatric interstitial lung disease, and study the clinical diagnosis process and review of related literature, to understand the relationship between interstitial lung disease and SP gene mutation in infants and children. The clinical, radiological, histological, and genetic testing information of a case of SP gene mutation related pediatric interstitial lung disease were analyzed and related literature was reviewed. A 2-year-old girl without a history of serious illness was hospitalized because of the shortness of breath, cough, excessive sputum, and the progressive dyspnea. Physical examination on admission revealed tachypnea, slight cyanosis, and the retraction signs were positive, respiratory rate of 60 times/minute, fine crackles could be heard through the lower lobe of both lungs; heart rate was 132 beats/minute. No other abnormalities were noted, no clubbing was found. Laboratory test results: pathologic examination was negative, multiple blood gas analysis suggested hypoxemia. Chest CT showed ground-glass like opacity, diffused patchy infiltration. Bronchoalveolar lavage fluid had a large number of neutrophils, and a few tissue cells. Eosinophil staining: negative. Fluconazole and methylprednisolone were given after admission, pulmonary symptoms and signs did not improve, reexamination showed no change in chest CT. Then lung biopsy was carried out through thoracoscopy. Histopathology suggested chronic interstitial pneumonia with fibrosis. The heterozygous mutation of R219W in the SFPTA1 and the S186N in SFTPC were identified by SP-related gene sequencing. The review of related literature showed that polymorphisms at the 219th amino acid in SP-A1 allele were found in adults with idiopathic pulmonary fibrosis (IPF), but there is no related literature in pediatric cases. The patient in this report had a mutation at the SP-A1 allele consistent with related literature. Data of

  10. Etiopathogenic role of surfactant protein d in the clinical and immunological expression of primary Sjögren syndrome.

    PubMed

    Soto-Cárdenas, María José; Gandía, Myriam; Brito-Zerón, Pilar; Arias, Maria Teresa; Armiger, Noelia; Bové, Albert; Bosch, Xavier; Retamozo, Soledad; Akasbi, Miriam; Pérez-De-Lis, Marta; Gueitasi, Hoda; Kostov, Belchin; Pérez-Alvarez, Roberto; Siso-Almirall, Antoni; Lozano, Francisco; Ramos-Casals, Manuel

    2015-01-01

    To analyze the etiopathogenic role of genetic polymorphisms and serum levels of surfactant protein-D (SP-D) in primary Sjögren syndrome (pSS). We analyzed 210 consecutive patients with pSS. SFTPD genotyping (M11T polymorphism rs721917) was analyzed by sequence-based typing and serum SP-D by ELISA. Thirty-two patients (15%) had the Thr11/Thr11 genotype, 80 (38%) the Met11/Met11 genotype, and 96 (46%) the Met11/Thr11 genotype; 2 patients could not be genotyped. Patients carrying the Thr11/Thr11 genotype had a higher prevalence of renal involvement (13% vs 1% and 4% in comparison with patients carrying the other genotypes, p = 0.014). Serum SP-D levels were analyzed in 119 patients (mean 733.94 ± 49.88 ng/ml). No significant association was found between serum SP-D levels and the SP-D genotypes. Higher mean values of serum SP-D were observed in patients with severe scintigraphic involvement (851.10 ± 685.69 vs 636.07 ± 315.93 ng/ml, p = 0.038), interstitial pulmonary disease (1053.60 ± 852.03 vs 700.36 ± 479.33 ng/ml, p = 0.029), renal involvement (1880.64 ± 1842.79 vs 716.42 ± 488.01 ng/ml, p = 0.002), leukopenia (899.83 ± 661.71 vs 673.13 ± 465.88 ng/ml, p = 0.038), positive anti-Ro/SS-A (927.26 ± 731.29 vs 642.75 ± 377.23 ng/ml, p = 0.006), and positive anti-La/SS-B (933.28 ± 689.63 vs 650.41 ± 428.14 ng/ml, p = 0.007), while lower mean values of serum SP-D were observed in patients with bronchiectasis (489.49 vs 788.81 ng/ml, p = 0.019). In pSS, high SP-D levels were found in patients with severe glandular involvement, hypergammaglobulinemia, leukopenia, extraglandular manifestations, and positive anti-Ro/La antibodies. The specific association between SP-D levels and pulmonary and renal involvements may have pathophysiological implications.

  11. Surfactant compositions

    SciTech Connect

    Novakovic, M.; Abend, P.G.

    1987-09-29

    A surfactant composition is described for subsequent addition to a soap slurring comprising an acyloxy alkane sulfonate salt. The sulfonate salt is present in an amount by weight of about 44 percent of about 56 percent. The polyol is present in an amount by weight of about 2 percent to about 6 percent, and water is present in an amount by weight of 26 to 36 percent. The composition constituting a solid reversible solution at ambient temperature and having a solids content of about 58 to 72 percent, whereby subsequent addition of the surfactant composition to a soap slurry results in formation of a soap/detergent bar having a smooth texture, uniform wear properties and a lack of grittiness.

  12. In vivo effect of surfactant on inflammatory cytokines during endotoxin-induced lung injury in rodents.

    PubMed

    Mittal, Neha; Sanyal, Sankar Nath

    2011-01-01

    Lipopolysaccharide (LPS) is a known inducer of acute respiratory distress syndrome (ARDS) in humans and animals. In this study, ARDS was developed in rats by intratracheal instillation of LPS and the effect of two types of surfactant (natural vs. synthetic) was examined to determine their potential corrective roles in general, as well as to compare the two surfactants against one another in particular, in endotoxin-induced lung injury. Sprague-Dawley male rats were divided into four groups, i.e., rats given: buffer controls; 055:B5 E. coli LPS only; LPS and then porcine surfactant (P-SF); or, LPS and then synthetic surfactant (S-SF). In vivo administration of LPS led to an increase in expression of the cytokines tumor necrosis factor-α, interleukin (IL)-1β, IL-2, IL-4, interferon-γ, monocyte chemotactic protein-1, and macrophage inflammatory protein-1β in the lungs of rats. These effects were confirmed by immunofluorescence in lung tissue sections and/or by protein (Western immunoblot) and mRNA expression (reverse transcription polymerase chain reaction) analyses of tissue samples. Apart from IL-4, concentrations of each of these cytokines in bronchoalveolar lavage fluid recovered from the animals were significantly increased in the LPS-treated hosts. Instillation of either surfactant (70 h after the LPS) into the airways diminished the expression of each of the inducible-cytokines, with the porcine (natural) form seeming having the greater inhibitory effect. These data suggest that surfactant can play an important role in the treatment of endotoxin-induced lung injury and might possess robust anti-inflammatory effects. Further, it seems that both the natural and synthetic surfactants prevent inflammatory outcomes in the lungs by controlling cytokine(s) production by various inflammatory cells. Last, the studies here clearly indicated that in this aspect, natural surfactant appears to be more beneficial compared to synthetic surfactant.

  13. Computational Prediction of Protein-Protein Interactions of Human Tyrosinase

    PubMed Central

    Wang, Su-Fang; Oh, Sangho; Si, Yue-Xiu; Wang, Zhi-Jiang; Han, Hong-Yan; Lee, Jinhyuk; Qian, Guo-Ying

    2012-01-01

    The various studies on tyrosinase have recently gained the attention of researchers due to their potential application values and the biological functions. In this study, we predicted the 3D structure of human tyrosinase and simulated the protein-protein interactions between tyrosinase and three binding partners, four and half LIM domains 2 (FHL2), cytochrome b-245 alpha polypeptide (CYBA), and RNA-binding motif protein 9 (RBM9). Our interaction simulations showed significant binding energy scores of −595.3 kcal/mol for FHL2, −859.1 kcal/mol for CYBA, and −821.3 kcal/mol for RBM9. We also investigated the residues of each protein facing toward the predicted site of interaction with tyrosinase. Our computational predictions will be useful for elucidating the protein-protein interactions of tyrosinase and studying its binding mechanisms. PMID:22577521

  14. Production of UCP1 a membrane protein from the inner mitochondrial membrane using the cell free expression system in the presence of a fluorinated surfactant.

    PubMed

    Blesneac, Iulia; Ravaud, Stéphanie; Juillan-Binard, Céline; Barret, Laure-Anne; Zoonens, Manuela; Polidori, Ange; Miroux, Bruno; Pucci, Bernard; Pebay-Peyroula, Eva

    2012-03-01

    Structural studies of membrane protein are still challenging due to several severe bottlenecks, the first being the overproduction of well-folded proteins. Several expression systems are often explored in parallel to fulfil this task, or alternately prokaryotic analogues are considered. Although, mitochondrial carriers play key roles in several metabolic pathways, only the structure of the ADP/ATP carrier purified from bovine heart mitochondria was determined so far. More generally, characterisations at the molecular level are restricted to ADP/ATP carrier or the uncoupling protein UCP1, another member of the mitochondrial carrier family, which is abundant in brown adipose tissues. Indeed, mitochondrial carriers have no prokaryotic homologues and very few efficient expression systems were described so far for these proteins. We succeeded in producing UCP1 using a cell free expression system based on E. coli extracts, in quantities that are compatible with structural approaches. The protein was synthesised in the presence of a fluorinated surfactant, which maintains the protein in a soluble form. Further biochemical and biophysical analysis such as size exclusion chromatography, circular dichroism and thermal stability, of the purified protein showed that the protein is non-aggregated, monodisperse and well-folded. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Pulmonary infections in swine induce altered porcine surfactant protein D expression and localization to dendritic cells in bronchial-associated lymphoid tissue

    PubMed Central

    Soerensen, Charlotte M; Holmskov, Uffe; Aalbaek, Bent; Boye, Mette; Heegaard, Peter M; Nielsen, Ole L

    2005-01-01

    Surfactant protein D (SP-D) is a pattern-recognition molecule of the innate immune system that recognizes various microbial surface-specific carbohydrate and lipid patterns. In vitro data has suggested that this binding may lead to increased microbial association with macrophages and dendritic cells. The aim of the present in vivo study was to study the expression of porcine SP-D (pSP-D) in the lung during different pulmonary bacterial infections, and the effect of the routes of infection on this expression was elucidated. Furthermore, the aim was to study the in vivo spatial relationship among pSP-D, pathogens, phagocytic cells and dendritic cells. Lung tissue was collected from experimental and natural bronchopneumonias caused by Actinobacillus pleuropneumoniae or Staphylococcus aureus, and from embolic and diffuse interstitial pneumonia, caused by Staph. aureus or Arcanobacterium pyogenes and Streptococcus suis serotype 2, respectively. By comparing normal and diseased lung tissue from the same lungs, increased diffuse pSP-D immunoreactivity was seen in the surfactant in both acute and chronic bronchopneumonias, while such increased expression of pSP-D was generally not present in the interstitial pneumonias. Co-localization of pSP-D, alveolar macrophages and bacteria was demonstrated, and pSP-D showed a patchy distribution on the membranes of alveolar macrophages. SP-D immunoreactivity was intracellular in dendritic cells. The dendritic cells were identified by their morphology, the absence of macrophage marker immunoreactivity and the presence of dendritic cell marker immunoreactivity. Increased expression of pSP-D in the surfactant coincided with presence of pSP-D-positive dendritic cells in bronchus-associated lymphoid tissue (BALT), indicating a possible transport of pSP-D through the specialized M cells overlying (BALT). In conclusion, we have shown that pSP-D expression in the lung surfactant is induced by bacterial infection by an aerogenous route rather

  16. Surfactant lipids regulate LPS-induced interleukin-8 production in A549 lung epithelial cells by inhibiting translocation of TLR4 into lipid raft domains

    PubMed Central

    Abate, Wondwossen; Alghaithy, Abdulaziz A.; Parton, Joan; Jones, Kenneth P.; Jackson, Simon K.

    2010-01-01

    In addition to providing mechanical stability, growing evidence suggests that surfactant lipid components can modulate inflammatory responses in the lung. However, little is known of the molecular mechanisms involved in the immunomodulatory action of surfactant lipids. This study investigates the effect of the lipid-rich surfactant preparations Survanta®, Curosurf®, and the major surfactant phospholipid dipalmitoylphosphatidylcholine (DPPC) on interleukin-8 (IL-8) gene and protein expression in human A549 lung epithelial cells using immunoassay and PCR techniques. To examine potential mechanisms of the surfactant lipid effects, Toll-like receptor 4 (TLR4) expression was analyzed by flow cytometry, and membrane lipid raft domains were separated by density gradient ultracentrifugation and analyzed by immunoblotting with anti-TLR4 antibody. The lipid-rich surfactant preparations Survanta®, Curosurf®, and DPPC, at physiological concentrations, significantly downregulated lipopolysaccharide (LPS)-induced IL-8 expression in A549 cells both at the mRNA and protein levels. The surfactant preparations did not affect the cell surface expression of TLR4 or the binding of LPS to the cells. However, LPS treatment induced translocation of TLR4 into membrane lipid raft microdomains, and this translocation was inhibited by incubation of the cells with the surfactant lipid. This study provides important mechanistic details of the immune-modulating action of pulmonary surfactant lipids. PMID:19648651

  17. Effect of irradiation/bone marrow transplantation on alveolar epithelial type II cells is aggravated in surfactant protein D deficient mice.

    PubMed

    Mühlfeld, Christian; Madsen, Jens; Mackay, Rose-Marie; Schneider, Jan Philipp; Schipke, Julia; Lutz, Dennis; Birkelbach, Bastian; Knudsen, Lars; Botto, Marina; Ochs, Matthias; Clark, Howard

    2017-01-01

    Irradiation followed by bone marrow transplantation (BM-Tx) is a frequent therapeutic intervention causing pathology to the lung. Although alveolar epithelial type II (AE2) cells are essential for lung function and are damaged by irradiation, the long-term consequences of irradiation and BM-Tx are not well characterized. In addition, it is unknown whether surfactant protein D (SP-D) influences the response of AE2 cells to the injurious events. Therefore, wildtype (WT) and SP-D(-/-) mice were subjected to a myeloablative whole body irradiation dose of 8 Gy and subsequent BM-Tx and compared with age- and sex-matched untreated controls. AE2 cell changes were investigated quantitatively by design-based stereology. Compared with WT, untreated SP-D(-/-) mice showed a higher number of larger sized AE2 cells and a greater amount of surfactant-storing lamellar bodies. Irradiation and BM-Tx induced hyperplasia and hypertrophy in WT and SP-D(-/-) mice as well as the formation of giant lamellar bodies. The experimentally induced alterations were more severe in the SP-D(-/-) than in the WT mice, particularly with respect to the surfactant-storing lamellar bodies which were sometimes extremely enlarged in SP-D(-/-) mice. In conclusion, irradiation and BM-Tx have profound long-term effects on AE2 cells and their lamellar bodies. These data may explain some of the clinical pulmonary consequences of this procedure. The data should also be taken into account when BM-Tx is used as an experimental procedure to investigate the impact of bone marrow-derived cells for the phenotype of a specific genotype in the mouse.

  18. Protein aggregation profile of the human kinome

    PubMed Central

    Graña-Montes, Ricardo; Sant'Anna de Oliveira, Ricardo; Ventura, Salvador

    2012-01-01

    Protein aggregation into amyloid fibrils is associated with the onset of an increasing number of human disorders, including Alzheimer's disease, diabetes, and some types of cancer. The ability to form toxic amyloids appears to be a property of most polypeptides. Accordingly, it has been proposed that reducing aggregation and its effect in cell fitness is a driving force in the evolution of proteins sequences. This control of protein solubility should be especially important for regulatory hubs in biological networks, like protein kinases. These enzymes are implicated in practically all processes in normal and abnormal cell physiology, and phosphorylation is one of the most frequent protein modifications used to control protein activity. Here, we use the AGGRESCAN algorithm to study the aggregation propensity of kinase sequences. We compared them with the rest of globular proteins to decipher whether they display differential aggregation properties. In addition, we compared the human kinase complement with the kinomes of other organisms to see if we can identify any evolutionary trend in the aggregational properties of this protein superfamily. Our analysis indicates that kinase domains display significant aggregation propensity, a property that decreases with increasing organism complexity. PMID:23181023

  19. Cationic ionic liquid surfactant-polyacrylamide gel electrophoresis for enhanced separation of acidic and basic proteins with single-step ribonuclease b glycoforms separation.

    PubMed

    Vidanapathirana, Punprabhashi; Hasan, Farhana; Mussio, Kaitlyn; Pande, Anuja; Brands, Michael; Siraj, Noureen; Grove, Anne; Warner, Isiah M

    2017-09-15

    Cationic ionic liquids-based surfactants (ILS), such as 4-methyl pyridinium bromide (CnPBr, where n=4,6,8), were used in preparation of polyacrylamide gels, sample buffer, and running buffer for cationic ILS polyacrylamide gel electrophoresis (ILS-PAGE). These ILS are liquids in the pure state and were selected for improved separation of ribonuclease b (Rib b) glycoforms in a single step and a protein mixture containing bovine serum albumin (BSA, pI-4.8, 66.5kDa), ovalbumin (Ova, pI-4.6, 44.3kDa), α-chymotrypsinogen (α-Chy, pI-8.8, 25.7kDa), myoglobin (Myo, pI-6.8, 16.9kDa), and cytochrome c (Cyt c, pI-10.0, 12.3kDa). Results acquired for Rib b glycoform separation by use of ILS were compared with conventional non-ILS surfactants-PAGE: sodium dodecylsulfate (SDS)-PAGE, cetyltrimethylammonium bromide (CTAB)-PAGE, and benzyldimethyl-n-hexadecylammonium chloride (16-BAC)-PAGE. A single protein band was observed with relatively short migration time in all the conventional PAGE techniques tested. In contrast, ILS-PAGE showed multiple bands with two distinct bands for Rib b protein. The two distinct bands of Rib b from ILS-PAGE were further analyzed using MALDI-MS. Examination of MALDI-MS spectral data revealed the presence of Rib b glycoforms. Furthermore, a two-dimensional isoelectric focusing (IEF)/SDS-PAGE map of Rib b protein revealed negative charge heterogeneity on the protein, which is a common observation for glycoproteins. This overall discovery greatly enhances the capability of using cationic ILS-PAGE for Rib b protein separation. Among all ILS tested, excellent protein separations were observed using C4PBr ILS at concentrations of 0.05% (w/v) in polyacrylamide gels, 0.01% (w/v) in protein sample buffer, and 0.1% (w/v) in running buffer. Under these optimum conditions, all other tested proteins were separated as sharp bands with good resolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. (PCG) Protein Crystal Growth Human Serum Albumin

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Human Serum Albumin. Contributes to many transport and regulatory processes and has multifunctional binding properties which range from various metals, to fatty acids, hormones, and a wide spectrum of therapeutic drugs. The most abundant protein of the circulatory system. It binds and transports an incredible variety of biological and pharmaceutical ligands throughout the blood stream. Principal Investigator on STS-26 was Larry DeLucas.

  1. Absorption-enhancing effects of gemini surfactant on the intestinal absorption of poorly absorbed hydrophilic drugs including peptide and protein drugs in rats.

    PubMed

    Alama, Tammam; Kusamori, Kosuke; Katsumi, Hidemasa; Sakane, Toshiyasu; Yamamoto, Akira

    2016-02-29

    In general, the intestinal absorption of small hydrophilic molecules and macromolecules like peptides, after oral administration is very poor. Absorption enhancers are considered to be one of the most promising agents to enhance the intestinal absorption of drugs. In this research, we focused on a gemini surfactant, a new type of absorption enhancer. The intestinal absorption of drugs, with or without sodium dilauramidoglutamide lysine (SLG-30), a gemini surfactant, was examined by an in situ closed-loop method in rats. The intestinal absorption of 5(6)-carboxyfluorescein (CF) and fluorescein isothiocyanate-dextrans (FDs) was significantly enhanced in the presence of SLG-30, such effect being reversible. Furthermore, the calcium levels in the plasma significantly decreased when calcitonin was co-administered with SLG-30, suggestive of the increased intestinal absorption of calcitonin. In addition, no significant increase in the of lactate dehydrogenase (LDH) activity or in protein release from the intestinal epithelium was observed in the presence of SLG-30, suggestive of the safety of this compound. These findings indicate that SLG-30 is an effective absorption-enhancer for improving the intestinal absorption of poorly absorbed drugs, without causing serious damage to the intestinal epithelium.

  2. New Anthocyanin-Human Salivary Protein Complexes.

    PubMed

    Ferrer-Gallego, Raúl; Soares, Susana; Mateus, Nuno; Rivas-Gonzalo, Julián; Escribano-Bailón, M Teresa; de Freitas, Victor

    2015-08-04

    The interaction between phenolic compounds and salivary proteins is considered the basis of the poorly understood phenomenon of astringency. Furthermore, this interaction is an important factor in relation to their bioavailability. In this work, interactions between anthocyanin and human salivary protein fraction were studied by mass spectrometry (MALDI-TOF-MS and FIA-ESI-MS) and saturation-transfer difference (STD) NMR spectroscopy. Anthocyanins were able to interact with saliva proteins. The dissociation constant (KD) between malvidin 3-glucoside and salivary proline-rich proteins was 1.92 mM for the hemiketal form (pH 3.4) and 1.83 mM for the flavylium cation (pH 1.0). New soluble complexes between these salivary proteins and malvidin 3-glucoside were identified for the first time.

  3. Nuclear matrix proteins in human colon cancer.

    PubMed Central

    Keesee, S K; Meneghini, M D; Szaro, R P; Wu, Y J

    1994-01-01

    The nuclear matrix is the nonchromatin scaffolding of the nucleus. This structure confers nuclear shape, organizes chromatin, and appears to contain important regulatory proteins. Tissue specific nuclear matrix proteins have been found in the rat, mouse, and human. In this study we compared high-resolution two-dimensional gel electropherograms of nuclear matrix protein patterns found in human colon tumors with those from normal colon epithelia. Tumors were obtained from 18 patients undergoing partial colectomy for adenocarcinoma of the colon and compared with tissue from 10 normal colons. We have identified at least six proteins which were present in 18 of 18 colon tumors and 0 of 10 normal tissues, as well as four proteins</