Sample records for human systems engineering

  1. Systems integrated human engineering on the Navy's rapid acquisition of manufactured parts/test and integration facility

    NASA Technical Reports Server (NTRS)

    Gallaway, Glen R.

    1987-01-01

    Human Engineering in many projects is at best a limited support function. In this Navy project the Human Engineering function is an integral component of the systems design and development process. Human Engineering is a member of the systems design organization. This ensures that people considerations are: (1) identified early in the project; (2) accounted for in the specifications; (3) incorporated into the design; and (4) the tested product meets the needs and expectations of the people while meeting the overall systems requirements. The project exemplifies achievements that can be made by the symbiosis between systems designers, engineers and Human Engineering. This approach increases Human Engineering's effectiveness and value to a project because it becomes an accepted, contributing team member. It is an approach to doing Human Engineering that should be considered for most projects. The functional and organizational issues giving this approach strength are described.

  2. The Systems Engineering Process for Human Support Technology Development

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2005-01-01

    Systems engineering is designing and optimizing systems. This paper reviews the systems engineering process and indicates how it can be applied in the development of advanced human support systems. Systems engineering develops the performance requirements, subsystem specifications, and detailed designs needed to construct a desired system. Systems design is difficult, requiring both art and science and balancing human and technical considerations. The essential systems engineering activity is trading off and compromising between competing objectives such as performance and cost, schedule and risk. Systems engineering is not a complete independent process. It usually supports a system development project. This review emphasizes the NASA project management process as described in NASA Procedural Requirement (NPR) 7120.5B. The process is a top down phased approach that includes the most fundamental activities of systems engineering - requirements definition, systems analysis, and design. NPR 7120.5B also requires projects to perform the engineering analyses needed to ensure that the system will operate correctly with regard to reliability, safety, risk, cost, and human factors. We review the system development project process, the standard systems engineering design methodology, and some of the specialized systems analysis techniques. We will discuss how they could apply to advanced human support systems development. The purpose of advanced systems development is not directly to supply human space flight hardware, but rather to provide superior candidate systems that will be selected for implementation by future missions. The most direct application of systems engineering is in guiding the development of prototype and flight experiment hardware. However, anticipatory systems engineering of possible future flight systems would be useful in identifying the most promising development projects.

  3. Tools to Support Human Factors and Systems Engineering Interactions During Early Analysis

    NASA Technical Reports Server (NTRS)

    Thronesbery, Carroll; Malin, Jane T.; Holden, Kritina; Smith, Danielle Paige

    2005-01-01

    We describe an approach and existing software tool support for effective interactions between human factors engineers and systems engineers in early analysis activities during system acquisition. We examine the tasks performed during this stage, emphasizing those tasks where system engineers and human engineers interact. The Concept of Operations (ConOps) document is an important product during this phase, and particular attention is paid to its influences on subsequent acquisition activities. Understanding this influence helps ConOps authors describe a complete system concept that guides subsequent acquisition activities. We identify commonly used system engineering and human engineering tools and examine how they can support the specific tasks associated with system definition. We identify possible gaps in the support of these tasks, the largest of which appears to be creating the ConOps document itself. Finally, we outline the goals of our future empirical investigations of tools to support system concept definition.

  4. Tools to Support Human Factors and Systems Engineering Interactions During Early Analysis

    NASA Technical Reports Server (NTRS)

    Thronesbery, Carroll; Malin, Jane T.; Holden, Kritina; Smith, Danielle Paige

    2006-01-01

    We describe an approach and existing software tool support for effective interactions between human factors engineers and systems engineers in early analysis activities during system acquisition. We examine the tasks performed during this stage, emphasizing those tasks where system engineers and human engineers interact. The Concept of Operations (ConOps) document is an important product during this phase, and particular attention is paid to its influences on subsequent acquisition activities. Understanding this influence helps ConOps authors describe a complete system concept that guides subsequent acquisition activities. We identify commonly used system engineering and human engineering tools and examine how they can support the specific tasks associated with system definition. We identify possible gaps in the support of these tasks, the largest of which appears to be creating the ConOps document itself. Finally, we outline the goals of our future empirical investigations of tools to support system concept definition.

  5. Human factors opportunities to improve Ohio's transportation system : executive summary report.

    DOT National Transportation Integrated Search

    2005-06-01

    Human factors engineering or ergonomics is the : area of engineering concerned with the humanmachine : interface. As Ohios road systems are : driven on by people, human factors engineering : is certainly relevant. However, human factors : have oft...

  6. Human Factors Interface with Systems Engineering for NASA Human Spaceflights

    NASA Technical Reports Server (NTRS)

    Wong, Douglas T.

    2009-01-01

    This paper summarizes the past and present successes of the Habitability and Human Factors Branch (HHFB) at NASA Johnson Space Center s Space Life Sciences Directorate (SLSD) in including the Human-As-A-System (HAAS) model in many NASA programs and what steps to be taken to integrate the Human-Centered Design Philosophy (HCDP) into NASA s Systems Engineering (SE) process. The HAAS model stresses systems are ultimately designed for the humans; the humans should therefore be considered as a system within the systems. Therefore, the model places strong emphasis on human factors engineering. Since 1987, the HHFB has been engaging with many major NASA programs with much success. The HHFB helped create the NASA Standard 3000 (a human factors engineering practice guide) and the Human Systems Integration Requirements document. These efforts resulted in the HAAS model being included in many NASA programs. As an example, the HAAS model has been successfully introduced into the programmatic and systems engineering structures of the International Space Station Program (ISSP). Success in the ISSP caused other NASA programs to recognize the importance of the HAAS concept. Also due to this success, the HHFB helped update NASA s Systems Engineering Handbook in December 2007 to include HAAS as a recommended practice. Nonetheless, the HAAS model has yet to become an integral part of the NASA SE process. Besides continuing in integrating HAAS into current and future NASA programs, the HHFB will investigate incorporating the Human-Centered Design Philosophy (HCDP) into the NASA SE Handbook. The HCDP goes further than the HAAS model by emphasizing a holistic and iterative human-centered systems design concept.

  7. Human Factors Engineering and Ergonomics in Systems Engineering

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban

    2017-01-01

    The study, discovery, and application of information about human abilities, human limitations, and other human characteristics to the design of tools, devices, machines, systems, job tasks and environments for effective human performance.

  8. A Holistic Approach to Systems Development

    NASA Technical Reports Server (NTRS)

    Wong, Douglas T.

    2008-01-01

    Introduces a Holistic and Iterative Design Process. Continuous process but can be loosely divided into four stages. More effort spent early on in the design. Human-centered and Multidisciplinary. Emphasis on Life-Cycle Cost. Extensive use of modeling, simulation, mockups, human subjects, and proven technologies. Human-centered design doesn t mean the human factors discipline is the most important Disciplines should be involved in the design: Subsystem vendors, configuration management, operations research, manufacturing engineering, simulation/modeling, cost engineering, hardware engineering, software engineering, test and evaluation, human factors, electromagnetic compatibility, integrated logistics support, reliability/maintainability/availability, safety engineering, test equipment, training systems, design-to-cost, life cycle cost, application engineering etc. 9

  9. Understanding safety and production risks in rail engineering planning and protection.

    PubMed

    Wilson, John R; Ryan, Brendan; Schock, Alex; Ferreira, Pedro; Smith, Stuart; Pitsopoulos, Julia

    2009-07-01

    Much of the published human factors work on risk is to do with safety and within this is concerned with prediction and analysis of human error and with human reliability assessment. Less has been published on human factors contributions to understanding and managing project, business, engineering and other forms of risk and still less jointly assessing risk to do with broad issues of 'safety' and broad issues of 'production' or 'performance'. This paper contains a general commentary on human factors and assessment of risk of various kinds, in the context of the aims of ergonomics and concerns about being too risk averse. The paper then describes a specific project, in rail engineering, where the notion of a human factors case has been employed to analyse engineering functions and related human factors issues. A human factors issues register for potential system disturbances has been developed, prior to a human factors risk assessment, which jointly covers safety and production (engineering delivery) concerns. The paper concludes with a commentary on the potential relevance of a resilience engineering perspective to understanding rail engineering systems risk. Design, planning and management of complex systems will increasingly have to address the issue of making trade-offs between safety and production, and ergonomics should be central to this. The paper addresses the relevant issues and does so in an under-published domain - rail systems engineering work.

  10. Reliability Analysis of Large Commercial Vessel Engine Room Automation Systems. Volume 1. Results

    DTIC Science & Technology

    1982-11-01

    analyzing the engine room automiations systems on two steam vessels and one diesel vessel, conducting a criticality evaluation, pre- paring...of automated engine room systems,° the effect of *. maintenance was also to be considered, as was the human inter- face and backup. Besides being...designed to replace the human element, the systems periorm more efficiently than the human watchstander. But as with any system, there is no such thing as

  11. Rasmussen's legacy: A paradigm change in engineering for safety.

    PubMed

    Leveson, Nancy G

    2017-03-01

    This paper describes three applications of Rasmussen's idea to systems engineering practice. The first is the application of the abstraction hierarchy to engineering specifications, particularly requirements specification. The second is the use of Rasmussen's ideas in safety modeling and analysis to create a new, more powerful type of accident causation model that extends traditional models to better handle human-operated, software-intensive, sociotechnical systems. Because this new model has a formal, mathematical foundation built on systems theory (as was Rasmussen's original model), new modeling and analysis tools become possible. The third application is to engineering hazard analysis. Engineers have traditionally either omitted human from consideration in system hazard analysis or have treated them rather superficially, for example, that they behave randomly. Applying Rasmussen's model of human error to a powerful new hazard analysis technique allows human behavior to be included in engineering hazard analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Optimal Configuration of Human Motion Tracking Systems: A Systems Engineering Approach

    NASA Technical Reports Server (NTRS)

    Henderson, Steve

    2005-01-01

    Human motion tracking systems represent a crucial technology in the area of modeling and simulation. These systems, which allow engineers to capture human motion for study or replication in virtual environments, have broad applications in several research disciplines including human engineering, robotics, and psychology. These systems are based on several sensing paradigms, including electro-magnetic, infrared, and visual recognition. Each of these paradigms requires specialized environments and hardware configurations to optimize performance of the human motion tracking system. Ideally, these systems are used in a laboratory or other facility that was designed to accommodate the particular sensing technology. For example, electromagnetic systems are highly vulnerable to interference from metallic objects, and should be used in a specialized lab free of metal components.

  13. Integrating the human element into the systems engineering process and MBSE methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tadros, Michael Samir

    In response to the challenges related to the increasing size and complexity of systems, organizations have recognized the need to integrate human considerations in the beginning stages of systems development. Human Systems Integration (HSI) seeks to accomplish this objective by incorporating human factors within systems engineering (SE) processes and methodologies, which is the focus of this paper. A representative set of HSI methods from multiple sources are organized, analyzed, and mapped to the systems engineering Vee-model. These methods are then consolidated and evaluated against the SE process and Models-Based Systems Engineering (MBSE) methodology to determine where and how they couldmore » integrate within systems development activities in the form of specific enhancements. Overall conclusions based on these evaluations are presented and future research areas are proposed.« less

  14. Patient safety - the role of human factors and systems engineering.

    PubMed

    Carayon, Pascale; Wood, Kenneth E

    2010-01-01

    Patient safety is a global challenge that requires knowledge and skills in multiple areas, including human factors and systems engineering. In this chapter, numerous conceptual approaches and methods for analyzing, preventing and mitigating medical errors are described. Given the complexity of healthcare work systems and processes, we emphasize the need for increasing partnerships between the health sciences and human factors and systems engineering to improve patient safety. Those partnerships will be able to develop and implement the system redesigns that are necessary to improve healthcare work systems and processes for patient safety.

  15. Launch Deployment Assembly Human Engineering Analysis

    NASA Technical Reports Server (NTRS)

    Loughead, T.

    1996-01-01

    This report documents the human engineering analysis performed by the Systems Branch in support of the 6A cargo element design. The human engineering analysis is limited to the extra vehicular activities (EVA) which are involved in removal of various cargo items from the LDA and specific activities concerning deployment of the Space Station Remote Manipulator System (SSRMS).

  16. NASA's Man-Systems Integration Standards: A Human Factors Engineering Standard for Everyone in the Nineties

    NASA Technical Reports Server (NTRS)

    Booher, Cletis R.; Goldsberry, Betty S.

    1994-01-01

    During the second half of the 1980s, a document was created by the National Aeronautics and Space Administration (NASA) to aid in the application of good human factors engineering and human interface practices to the design and development of hardware and systems for use in all United States manned space flight programs. This comprehensive document, known as NASA-STD-3000, the Man-Systems Integration Standards (MSIS), attempts to address, from a human factors engineering/human interface standpoint, all of the various types of equipment with which manned space flight crew members must deal. Basically, all of the human interface situations addressed in the MSIS are present in terrestrially based systems also. The premise of this paper is that, starting with this already created standard, comprehensive documents addressing human factors engineering and human interface concerns could be developed to aid in the design of almost any type of equipment or system which humans interface with in any terrestrial environment. Utilizing the systems and processes currently in place in the MSIS Development Facility at the Johnson Space Center in Houston, TX, any number of MSIS volumes addressing the human factors / human interface needs of any terrestrially based (or, for that matter, airborne) system could be created.

  17. Cognitive engineering models: A prerequisite to the design of human-computer interaction in complex dynamic systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1993-01-01

    This chapter examines a class of human-computer interaction applications, specifically the design of human-computer interaction for the operators of complex systems. Such systems include space systems (e.g., manned systems such as the Shuttle or space station, and unmanned systems such as NASA scientific satellites), aviation systems (e.g., the flight deck of 'glass cockpit' airplanes or air traffic control) and industrial systems (e.g., power plants, telephone networks, and sophisticated, e.g., 'lights out,' manufacturing facilities). The main body of human-computer interaction (HCI) research complements but does not directly address the primary issues involved in human-computer interaction design for operators of complex systems. Interfaces to complex systems are somewhat special. The 'user' in such systems - i.e., the human operator responsible for safe and effective system operation - is highly skilled, someone who in human-machine systems engineering is sometimes characterized as 'well trained, well motivated'. The 'job' or task context is paramount and, thus, human-computer interaction is subordinate to human job interaction. The design of human interaction with complex systems, i.e., the design of human job interaction, is sometimes called cognitive engineering.

  18. Where Are the People? The Human Viewpoint Approach for Architecting and Acquisition

    DTIC Science & Technology

    2014-10-01

    however, systems engineers currently do not have sufficient tools to quantitatively integrate human considerations into systems development ( Hardman ...Engineering, 13(1), 72–79. Hardman , N., & Colombi, J. (2012). An empirical methodology for human integration in the SE technical processes. Journal of Systems

  19. Human factors and systems engineering approach to patient safety for radiotherapy.

    PubMed

    Rivera, A Joy; Karsh, Ben-Tzion

    2008-01-01

    The traditional approach to solving patient safety problems in healthcare is to blame the last person to touch the patient. But since the publication of To Err is Human, the call has been instead to use human factors and systems engineering methods and principles to solve patient safety problems. However, an understanding of the human factors and systems engineering is lacking, and confusion remains about what it means to apply their principles. This paper provides a primer on them and their applications to patient safety.

  20. Engineering Technical Review Planning Briefing

    NASA Technical Reports Server (NTRS)

    Gardner, Terrie

    2012-01-01

    The general topics covered in the engineering technical planning briefing are 1) overviews of NASA, Marshall Space Flight Center (MSFC), and Engineering, 2) the NASA Systems Engineering(SE) Engine and its implementation , 3) the NASA Project Life Cycle, 4) MSFC Technical Management Branch Services in relation to the SE Engine and the Project Life Cycle , 5) Technical Reviews, 6) NASA Human Factor Design Guidance , and 7) the MSFC Human Factors Team. The engineering technical review portion of the presentation is the primary focus of the overall presentation and will address the definition of a design review, execution guidance, the essential stages of a technical review, and the overall review planning life cycle. Examples of a technical review plan content, review approaches, review schedules, and the review process will be provided and discussed. The human factors portion of the presentation will focus on the NASA guidance for human factors. Human factors definition, categories, design guidance, and human factor specialist roles will be addressed. In addition, the NASA Systems Engineering Engine description, definition, and application will be reviewed as background leading into the NASA Project Life Cycle Overview and technical review planning discussion.

  1. The Human Side of Information's Converging Technology.

    ERIC Educational Resources Information Center

    Williams, Berney

    1982-01-01

    Discusses current issues in the design of information systems, noting contributions from three professions--computer science, human factors engineering, and information science. The eclectic nature of human factors engineering and the difficulty of drawing together studies with human engineering or software psychological components from diverse…

  2. Patient Safety: The Role of Human Factors and Systems Engineering

    PubMed Central

    Carayon, Pascale; Wood, Kenneth E.

    2011-01-01

    Patient safety is a global challenge that requires knowledge and skills in multiple areas, including human factors and systems engineering. In this chapter, numerous conceptual approaches and methods for analyzing, preventing and mitigating medical errors are described. Given the complexity of healthcare work systems and processes, we emphasize the need for increasing partnerships between the health sciences and human factors and systems engineering to improve patient safety. Those partnerships will be able to develop and implement the system redesigns that are necessary to improve healthcare work systems and processes for patient safety. PMID:20543237

  3. GN&C Engineering Best Practices for Human-Rated Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; Lebsock, Kenneth; West, John

    2007-01-01

    The NASA Engineering and Safety Center (NESC) recently completed an in-depth assessment to identify a comprehensive set of engineering considerations for the Design, Development, Test and Evaluation (DDT&E) of safe and reliable human-rated spacecraft systems. Reliability subject matter experts, discipline experts, and systems engineering experts were brought together to synthesize the current "best practices" both at the spacecraft system and subsystems levels. The objective of this paper is to summarize, for the larger Community of Practice, the initial set of Guidance, Navigation and Control (GN&C) engineering Best Practices as identified by this NESC assessment process.

  4. GN&C Engineering Best Practices for Human-Rated Spacecraft System

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; Lebsock, Kenneth; West, John

    2008-01-01

    The NASA Engineering and Safety Center (NESC) recently completed an in-depth assessment to identify a comprehensive set of engineering considerations for the Design, Development, Test and Evaluation (DDT&E) of safe and reliable human-rated spacecraft systems. Reliability subject matter experts, discipline experts, and systems engineering experts were brought together to synthesize the current "best practices" both at the spacecraft system and subsystems levels. The objective of this paper is to summarize, for the larger Community of Practice, the initial set of Guidance, Navigation and Control (GN&C) engineering Best Practices as identified by this NESC assessment process.

  5. GN&C Engineering Best Practices For Human-Rated Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; Lebsock, Kenneth; West, John

    2007-01-01

    The NASA Engineering and Safety Center (NESC) recently completed an in-depth assessment to identify a comprehensive set of engineering considerations for the Design, Development, Test and Evaluation (DDT&E) of safe and reliable human-rated spacecraft systems. Reliability subject matter experts, discipline experts, and systems engineering experts were brought together to synthesize the current "best practices" both at the spacecraft system and subsystems levels. The objective of this paper is to summarize, for the larger Community of Practice, the initial set of Guidance, Navigation and Control (GN&C) engineering Best Practices as identified by this NESC assessment process.

  6. A demonstration of expert systems applications in transportation engineering : volume I, transportation engineers and expert systems.

    DOT National Transportation Integrated Search

    1987-01-01

    Expert systems, a branch of artificial-intelligence studies, is introduced with a view to its relevance in transportation engineering. Knowledge engineering, the process of building expert systems or transferring knowledge from human experts to compu...

  7. Buried waste integrated demonstration human engineered control station. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-09-01

    This document describes the Human Engineered Control Station (HECS) project activities including the conceptual designs. The purpose of the HECS is to enhance the effectiveness and efficiency of remote retrieval by providing an integrated remote control station. The HECS integrates human capabilities, limitations, and expectations into the design to reduce the potential for human error, provides an easy system to learn and operate, provides an increased productivity, and reduces the ultimate investment in training. The overall HECS consists of the technology interface stations, supporting engineering aids, platform (trailer), communications network (broadband system), and collision avoidance system.

  8. Human-technology Integration

    NASA Astrophysics Data System (ADS)

    Mullen, Katharine M.

    Human-technology integration is the replacement of human parts and extension of human capabilities with engineered devices and substrates. Its result is hybrid biological-artificial systems. We discuss here four categories of products furthering human-technology integration: wearable computers, pervasive computing environments, engineered tissues and organs, and prosthetics, and introduce examples of currently realized systems in each category. We then note that realization of a completely artificial sytem via the path of human-technology integration presents the prospect of empirical confirmation of an aware artificially embodied system.

  9. A systems engineering perspective on the human-centered design of health information systems.

    PubMed

    Samaras, George M; Horst, Richard L

    2005-02-01

    The discipline of systems engineering, over the past five decades, has used a structured systematic approach to managing the "cradle to grave" development of products and processes. While elements of this approach are typically used to guide the development of information systems that instantiate a significant user interface, it appears to be rare for the entire process to be implemented. In fact, a number of authors have put forth development lifecycle models that are subsets of the classical systems engineering method, but fail to include steps such as incremental hazard analysis and post-deployment corrective and preventative actions. In that most health information systems have safety implications, we argue that the design and development of such systems would benefit by implementing this systems engineering approach in full. Particularly with regard to bringing a human-centered perspective to the formulation of system requirements and the configuration of effective user interfaces, this classical systems engineering method provides an excellent framework for incorporating human factors (ergonomics) knowledge and integrating ergonomists in the interdisciplinary development of health information systems.

  10. Human Systems Integration (HSI) Practitioner's Guide

    NASA Technical Reports Server (NTRS)

    Zumbado, Jennifer Rochlis

    2015-01-01

    The NASA/SP-2015-3709, Human Systems Integration (HSI) Practitioner's Guide, also known as the "HSIPG," provides a tool for implementing HSI activities within the NASA systems engineering framework. The HSIPG is written to aid the HSI practitioner engaged in a program or project (P/P), and serves as a knowledge base to allow the practitioner to step into an HSI lead or team member role for NASA missions. Additionally, this HSIPG is written to address the role of HSI in the P/P management and systems engineering communities and aid their understanding of the value added by incorporating good HSI practices into their programs and projects. Through helping to build a community of knowledgeable HSI practitioners, this document also hopes to build advocacy across the Agency for establishing strong, consistent HSI policies and practices. Human Systems Integration (HSI) has been successfully adopted (and adapted) by several federal agencies-most notably the U.S. Department of Defense (DoD) and the Nuclear Regulatory Commission (NRC)-as a methodology for reducing system life cycle costs (LCCs). These cost savings manifest themselves due to reductions in required numbers of personnel, the practice of human-centered design, decreased reliance on specialized skills for operations, shortened training time, efficient logistics and maintenance, and fewer safety-related risks and mishaps due to unintended human/system interactions. The HSI process for NASA establishes how cost savings and mission success can be realized through systems engineering. Every program or project has unique attributes. This HSIPG is not intended to provide one-size-fits-all recommendations for HSI implementation. Rather, HSI processes should be tailored to the size, scope, and goals of individual situations. The instructions and processes identified here are best used as a starting point for implementing human-centered system concepts and designs across programs and projects of varying types, including manned and unmanned, human spaceflight, aviation, robotics, and environmental science missions. The practitioner using this guide should have expertise in Systems Engineering or other disciplines involved in producing systems with anticipated human interactions. (See section 1.6 of this guide for further discussion on HSI discipline domains.) The HSIPG provides an "HSI layer" to the NASA Systems Engineering Engine (SEE), detailed in NASA Procedural Requirement (NPR) 7123.1B, NASA Systems Engineering Processes and Requirements, and further explained in NASA/SP-2007-6105, Systems Engineering Handbook (see HSIPG Table 2.2-1, NASA Documents with HSI Content, for specific references and document versions).

  11. Using human factors engineering to improve the effectiveness of infection prevention and control.

    PubMed

    Anderson, Judith; Gosbee, Laura Lin; Bessesen, Mary; Williams, Linda

    2010-08-01

    Human factors engineering is a discipline that studies the capabilities and limitations of humans and the design of devices and systems for improved performance. The principles of human factors engineering can be applied to infection prevention and control to study the interaction between the healthcare worker and the system that he or she is working with, including the use of devices, the built environment, and the demands and complexities of patient care. Some key challenges in infection prevention, such as delayed feedback to healthcare workers, high cognitive workload, and poor ergonomic design, are explained, as is how human factors engineering can be used for improvement and increased compliance with practices to prevent hospital-acquired infections.

  12. Human Systems Integration in Practice: Constellation Lessons Learned

    NASA Technical Reports Server (NTRS)

    Zumbado, Jennifer Rochlis

    2012-01-01

    NASA's Constellation program provided a unique testbed for Human Systems Integration (HSI) as a fundamental element of the Systems Engineering process. Constellation was the first major program to have HSI mandated by NASA's Human Rating document. Proper HSI is critical to the success of any project that relies on humans to function as operators, maintainers, or controllers of a system. HSI improves mission, system and human performance, significantly reduces lifecycle costs, lowers risk and minimizes re-design. Successful HSI begins with sufficient project schedule dedicated to the generation of human systems requirements, but is by no means solely a requirements management process. A top-down systems engineering process that recognizes throughout the organization, human factors as a technical discipline equal to traditional engineering disciplines with authority for the overall system. This partners with a bottoms-up mechanism for human-centered design and technical issue resolution. The Constellation Human Systems Integration Group (HSIG) was a part of the Systems Engineering and Integration (SE&I) organization within the program office, and existed alongside similar groups such as Flight Performance, Environments & Constraints, and Integrated Loads, Structures and Mechanisms. While the HSIG successfully managed, via influence leadership, a down-and-in Community of Practice to facilitate technical integration and issue resolution, it lacked parallel top-down authority to drive integrated design. This presentation will discuss how HSI was applied to Constellation, the lessons learned and best practices it revealed, and recommendations to future NASA program and project managers. This presentation will discuss how Human Systems Integration (HSI) was applied to NASA's Constellation program, the lessons learned and best practices it revealed, and recommendations to future NASA program and project managers on how to accomplish this critical function.

  13. Human Systems Integration Competency Development for Navy Systems Commands

    DTIC Science & Technology

    2012-09-01

    cognizance of Applied Engineering /Psychology relative to knowledge engineering, training, teamwork, user interface design and decision sciences. KSA...cognizance of Applied Engineering /Psychology relative to knowledge engineering, training, teamwork, user interface design and decision sciences...requirements (as required). Fundamental cognizance of Applied Engineering / Psychology relative to knowledge engineering, training, team work, user

  14. Systems Engineering Applied to Training.

    ERIC Educational Resources Information Center

    Silvern, Leonard C.

    Written for training directors and human resource developers who have had experience and now need a systematic way to plan new programs, this book presents a new way of thinking about human learning and of organizing programs which has been developed from the systems engineering field. A first chapter explains what is meant by "systems"…

  15. Evolution of the Systems Engineering Education Development (SEED) Program at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Bagg, Thomas C., III; Brumfield, Mark D.; Jamison, Donald E.; Granata, Raymond L.; Casey, Carolyn A.; Heller, Stuart

    2003-01-01

    The Systems Engineering Education Development (SEED) Program at NASA Goddard Space Flight Center develops systems engineers from existing discipline engineers. The program has evolved significantly since the report to INCOSE in 2003. This paper describes the SEED Program as it is now, outlines the changes over the last year, discusses current status and results, and shows the value of human systems and leadership skills for practicing systems engineers.

  16. Computer aided systems human engineering: A hypermedia tool

    NASA Technical Reports Server (NTRS)

    Boff, Kenneth R.; Monk, Donald L.; Cody, William J.

    1992-01-01

    The Computer Aided Systems Human Engineering (CASHE) system, Version 1.0, is a multimedia ergonomics database on CD-ROM for the Apple Macintosh II computer, being developed for use by human system designers, educators, and researchers. It will initially be available on CD-ROM and will allow users to access ergonomics data and models stored electronically as text, graphics, and audio. The CASHE CD-ROM, Version 1.0 will contain the Boff and Lincoln (1988) Engineering Data Compendium, MIL-STD-1472D and a unique, interactive simulation capability, the Perception and Performance Prototyper. Its features also include a specialized data retrieval, scaling, and analysis capability and the state of the art in information retrieval, browsing, and navigation.

  17. On science versus engineering in hydrological modelling

    NASA Astrophysics Data System (ADS)

    Melsen, Lieke

    2017-04-01

    It is always stressed that hydrological modelling is very important, to prevent floods, to mitigate droughts, to ensure food production or nature conservation. All very true, but I believe that focussing so much on the application of our knowledge (which I call `the engineering approach'), does not stimulate thorough system understanding (which I call `the scientific approach'). In many studies, science and engineering approaches are mixed, which results in large uncertainty e.g. due to a lack of system understanding. To what extent engineering and science approached are mixed depends on the Philosophy of Science of the researcher; verificationism seems to be closer related to engineering, than falsificationism or Bayesianism. In order to grow our scientific knowledge, which means increasing our understanding of the system, we need to be more critical towards the models that we use, but also recognize all the processes that influence the hydrological cycle. In an era called 'The Anthropocene' the influence of humans on the water system can no longer be neglected, and if we choose a scientific approach we have to account for human-induced processes. Summarizing, I believe that we have to account for human impact on the hydrological system, but we have to resist the temptation to directly quantify the hydrological impact on the human system.

  18. Enhancements to the Engine Data Interpretation System (EDIS)

    NASA Technical Reports Server (NTRS)

    Hofmann, Martin O.

    1993-01-01

    The Engine Data Interpretation System (EDIS) expert system project assists the data review personnel at NASA/MSFC in performing post-test data analysis and engine diagnosis of the Space Shuttle Main Engine (SSME). EDIS uses knowledge of the engine, its components, and simple thermodynamic principles instead of, and in addition to, heuristic rules gathered from the engine experts. EDIS reasons in cooperation with human experts, following roughly the pattern of logic exhibited by human experts. EDIS concentrates on steady-state static faults, such as small leaks, and component degradations, such as pump efficiencies. The objective of this contract was to complete the set of engine component models, integrate heuristic rules into EDIS, integrate the Power Balance Model into EDIS, and investigate modification of the qualitative reasoning mechanisms to allow 'fuzzy' value classification. The results of this contract is an operational version of EDIS. EDIS will become a module of the Post-Test Diagnostic System (PTDS) and will, in this context, provide system-level diagnostic capabilities which integrate component-specific findings provided by other modules.

  19. Enhancements to the Engine Data Interpretation System (EDIS)

    NASA Technical Reports Server (NTRS)

    Hofmann, Martin O.

    1993-01-01

    The Engine Data Interpretation System (EDIS) expert system project assists the data review personnel at NASA/MSFC in performing post-test data analysis and engine diagnosis of the Space Shuttle Main Engine (SSME). EDIS uses knowledge of the engine, its components, and simple thermodynamic principles instead of, and in addition to, heuristic rules gathered from the engine experts. EDIS reasons in cooperation with human experts, following roughly the pattern of logic exhibited by human experts. EDIS concentrates on steady-state static faults, such as small leaks, and component degradations, such as pump efficiencies. The objective of this contract was to complete the set of engine component models, integrate heuristic rules into EDIS, integrate the Power Balance Model into EDIS, and investigate modification of the qualitative reasoning mechanisms to allow 'fuzzy' value classification. The result of this contract is an operational version of EDIS. EDIS will become a module of the Post-Test Diagnostic System (PTDS) and will, in this context, provide system-level diagnostic capabilities which integrate component-specific findings provided by other modules.

  20. The First Development of Human Factors Engineering Requirements for Application to Ground Task Design for a NASA Flight Program

    NASA Technical Reports Server (NTRS)

    Dischinger, H. Charles, Jr.; Stambolian, Damon B.; Miller, Darcy H.

    2008-01-01

    The National Aeronautics and Space Administration has long applied standards-derived human engineering requirements to the development of hardware and software for use by astronauts while in flight. The most important source of these requirements has been NASA-STD-3000. While there have been several ground systems human engineering requirements documents, none has been applicable to the flight system as handled at NASA's launch facility at Kennedy Space Center. At the time of the development of previous human launch systems, there were other considerations that were deemed more important than developing worksites for ground crews; e.g., hardware development schedule and vehicle performance. However, experience with these systems has shown that failure to design for ground tasks has resulted in launch schedule delays, ground operations that are more costly than they might be, and threats to flight safety. As the Agency begins the development of new systems to return humans to the moon, the new Constellation Program is addressing this issue with a new set of human engineering requirements. Among these requirements is a subset that will apply to the design of the flight components and that is intended to assure ground crew success in vehicle assembly and maintenance tasks. These requirements address worksite design for usability and for ground crew safety.

  1. Tactical Airspace Integration System Situation Awareness Integration Into the Cockpit: Phase 2

    DTIC Science & Technology

    2013-03-01

    ARL-TR-6371 March 2013 prepared by U.S. Army Research Laboratory Human Research and Engineering Directorate (AMCOM Field...Situation Awareness Integration Into the Cockpit: Phase II Michael Sage Jessee and Anthony Morris Human Research and Engineering Directorate, ARL...prepared by U.S. Army Research Laboratory Human Research and Engineering Directorate (AMCOM Field Element) Bldg 5400, Room C236

  2. Cognitive Systems Engineering: The Next 30 Years

    NASA Technical Reports Server (NTRS)

    Feary, Michael

    2012-01-01

    This presentation is part of panel discussion on Cognitive Systems Engineering. The purpose of this panel is to discuss the challenges and future directions of Cognitive Systems Engineering for the next 30 years. I intended to present the work we have been doing with the Aviation Safety program and Space Human Factors Engineering project on Work Domain Analysis and some areas of Research Focus. Specifically, I intend to focus on the shift on the need to understand and model attention in mixed-initiative systems, the need for methods which can generate results to be used in trade-off decisions, and the need to account for a range of human behavior in the design.

  3. Mechatronic System Design Course for Undergraduate Programmes

    ERIC Educational Resources Information Center

    Saleem, A.; Tutunji, T.; Al-Sharif, L.

    2011-01-01

    Technology advancement and human needs have led to integration among many engineering disciplines. Mechatronics engineering is an integrated discipline that focuses on the design and analysis of complete engineering systems. These systems include mechanical, electrical, computer and control subsystems. In this paper, the importance of teaching…

  4. Human Factors and Robotics: Current Status and Future Prospects.

    ERIC Educational Resources Information Center

    Parsons, H. McIlvaine; Kearsley, Greg P.

    The principal human factors engineering issue in robotics is the division of labor between automation (robots) and human beings. This issue reflects a prime human factors engineering consideration in systems design--what equipment should do and what operators and maintainers should do. Understanding of capabilities and limitations of robots and…

  5. An overview of NASA ISS human engineering and habitability: past, present, and future.

    PubMed

    Fitts, D; Architecture, B

    2000-09-01

    The International Space Station (ISS) is the first major NASA project to provide human engineering an equal system engineering an equal system engineering status to other disciplines. The incorporation and verification of hundreds of human engineering requirements applied across-the-board to the ISS has provided for a notably more habitable environment to support long duration spaceflight missions than might otherwise have been the case. As the ISS begins to be inhabited and become operational, much work remains in monitoring the effectiveness of the Station's built environment in supporting the range of activities required of a long-duration vehicle. With international partner participation, NASA's ISS Operational Habitability Assessment intends to carry human engineering and habitability considerations into the next phase of the ISS Program with constant attention to opportunities for cost-effective improvements that need to be and can be made to the on-orbit facility. Too, during its operations the ISS must be effectively used as an on-orbit laboratory to promote and expand human engineering/habitability awareness and knowledge to support the international space faring community with the data needed to develop future space vehicles for long-duration missions. As future space mission duration increases, the rise in importance of habitation issues make it imperative that lessons are captured from the experience of human engineering's incorporation into the ISS Program and applied to future NASA programmatic processes.

  6. Protein glycosylation in diverse cell systems: implications for modification and analysis of recombinant proteins.

    PubMed

    Brooks, Susan A

    2006-06-01

    A major challenge for the biotechnology industry is to engineer the glycosylation pathways of expression systems to synthesize recombinant proteins with human glycosylation. Inappropriate glycosylation can result in reduced activity, limited half-life in circulation and unwanted immunogenicity. In this review, the complexities of glycosylation in human cells are explained and compared with glycosylation in bacteria, yeasts, fungi, insects, plants and nonhuman mammalian species. Key advances in the engineering of the glycosylation of expression systems are highlighted. Advances in the challenging and technically complex field of glycan analysis are also described. The emergence of a new generation of expression systems with sophisticated engineering for humanized glycosylation of glycoproteins appears to be on the horizon.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Jun-hyung

    University education aims to supply qualified human resources for industries. In complex large scale engineering systems such as nuclear power plants, the importance of qualified human resources cannot be underestimated. The corresponding education program should involve many topics systematically. Recently a nuclear engineering program has been initiated in Dongguk University, South Korea. The current education program focuses on undergraduate level nuclear engineering students. Our main objective is to provide industries fresh engineers with the understanding on the interconnection of local parts and the entire systems of nuclear power plants and the associated systems. From the experience there is a hugemore » opportunity for chemical engineering disciple in the context of giving macroscopic overview on nuclear power plant and waste treatment management by strengthening the analyzing capability of fundamental situations. (authors)« less

  8. Development of a Systems Engineering Competency Model Tool for the Aviation and Missile Research, Development, And Engineering Center (AMRDEC)

    DTIC Science & Technology

    2017-06-01

    The Naval Postgraduate School has developed a competency model for the systems engineering profession and is implementing a tool to support high...stakes human resource functions for the U.S. Army. A systems engineering career competency model (SECCM), recently developed by the Navy and verified by...the Office of Personnel Management (OPM), defines the critical competencies for successful performance as a systems engineer at each general schedule

  9. Postures and Motions Library Development for Verification of Ground Crew Human Factors Requirements

    NASA Technical Reports Server (NTRS)

    Stambolian, Damon; Henderson, Gena; Jackson, Mariea Dunn; Dischinger, Charles

    2013-01-01

    Spacecraft and launch vehicle ground processing activities require a variety of unique human activities. These activities are being documented in a primitive motion capture library. The library will be used by human factors engineering analysts to infuse real to life human activities into the CAD models to verify ground systems human factors requirements. As the primitive models are being developed for the library, the project has selected several current human factors issues to be addressed for the Space Launch System (SLS) and Orion launch systems. This paper explains how the motion capture of unique ground systems activities is being used to verify the human factors engineering requirements for ground systems used to process the SLS and Orion vehicles, and how the primitive models will be applied to future spacecraft and launch vehicle processing.

  10. Human Engineering Modeling and Performance Lab Study Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J.

    2014-01-01

    The HEMAP (Human Engineering Modeling and Performance) Lab is a joint effort between the Industrial and Human Engineering group and the KAVE (Kennedy Advanced Visualiations Environment) group. The lab consists of sixteen camera system that is used to capture human motions and operational tasks, through te use of a Velcro suit equipped with sensors, and then simulate these tasks in an ergonomic software package know as Jac, The Jack software is able to identify the potential risk hazards.

  11. Human Systems Engineering: A Leadership Model for Collaboration and Change.

    ERIC Educational Resources Information Center

    Clark, Karen L.

    Human systems engineering (HSE) was created to introduce a new way of viewing collaboration. HSE emphasizes the role of leaders who welcome risk, commit to achieving positive change, and help others achieve change. The principles of HSE and its successful application to the collaborative process were illustrated through a case study representing a…

  12. Human Systems Engineering: A Learning Model Designed To Converge Education, Business, and Industry.

    ERIC Educational Resources Information Center

    Hanson, Karen L.

    The Human Systems Engineering (HSE) Model was created to facilitate collaboration among education, business, and industry. It emphasized the role of leaders who converge with others to accomplish their goals while paying attention to the key elements that create successful partnerships. The partnership of XXsys Technologies, Inc., University of…

  13. Human performance models for computer-aided engineering

    NASA Technical Reports Server (NTRS)

    Elkind, Jerome I. (Editor); Card, Stuart K. (Editor); Hochberg, Julian (Editor); Huey, Beverly Messick (Editor)

    1989-01-01

    This report discusses a topic important to the field of computational human factors: models of human performance and their use in computer-based engineering facilities for the design of complex systems. It focuses on a particular human factors design problem -- the design of cockpit systems for advanced helicopters -- and on a particular aspect of human performance -- vision and related cognitive functions. By focusing in this way, the authors were able to address the selected topics in some depth and develop findings and recommendations that they believe have application to many other aspects of human performance and to other design domains.

  14. Thermodynamic analysis of a gamma type Stirling engine in an energy recovery system.

    PubMed

    Sowale, Ayodeji; Kolios, Athanasios J; Fidalgo, Beatriz; Somorin, Tosin; Parker, Alison; Williams, Leon; Collins, Matt; McAdam, Ewan; Tyrrel, Sean

    2018-06-01

    The demand for better hygiene has increased the need for developing more effective sanitation systems and facilities for the safe disposal of human urine and faeces. Non-Sewered Sanitary systems are considered to be one of the promising alternative solutions to the existing flush toilet system. An example of these systems is the Nano Membrane Toilet (NMT) system being developed at Cranfield University, which targets the safe disposal of human waste while generating power and recovering water. The NMT will generate energy from the conversion of human waste with the use of a micro-combustor; the heat produced will power a Stirling engine connected to a linear alternator to generate electricity. This study presents a numerical investigation of the thermodynamic analysis and operational characteristics of a quasi steady state model of the gamma type Stirling engine integrated into a combustor in the back end of the NMT system. The effects of the working gas, at different temperatures, on the Stirling engine performance are also presented. The results show that with the heater temperature of 390 °C from the heat supply via conduction at 820 W from the flue gas, the Stirling engine generates a daily power output of 27 Wh/h at a frequency of 23.85 Hz.

  15. Human Systems Integration in Expeditionary Medical Treatment Facilities

    DTIC Science & Technology

    2010-04-01

    mental models and situation awareness Human Factors Engineering, Personnel, and Safety / Occupational Health The following issue is associated with...domains are human factors engineering, manpower, personnel, training, safety and occupational health , survivability, habitability, and environment...certain responsibilities to less-qualified personnel. Human error is a particularly sensitive topic across all sectors of health care, but the time

  16. NAS infrastructure management system build 1.5 computer-human interface

    DOT National Transportation Integrated Search

    2001-01-01

    Human factors engineers from the National Airspace System (NAS) Human Factors Branch (ACT-530) of the Federal Aviation Administration William J. Hughes Technical Center conducted an evaluation of the NAS Infrastructure Management System (NIMS) Build ...

  17. Engineering data compendium. Human perception and performance, volume 3

    NASA Technical Reports Server (NTRS)

    Boff, Kenneth R. (Editor); Lincoln, Janet E. (Editor)

    1988-01-01

    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design of military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by system designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is Volume 3, containing sections on Human Language Processing, Operator Motion Control, Effects of Environmental Stressors, Display Interfaces, and Control Interfaces (Real/Virtual).

  18. Knowledge-based personalized search engine for the Web-based Human Musculoskeletal System Resources (HMSR) in biomechanics.

    PubMed

    Dao, Tien Tuan; Hoang, Tuan Nha; Ta, Xuan Hien; Tho, Marie Christine Ho Ba

    2013-02-01

    Human musculoskeletal system resources of the human body are valuable for the learning and medical purposes. Internet-based information from conventional search engines such as Google or Yahoo cannot response to the need of useful, accurate, reliable and good-quality human musculoskeletal resources related to medical processes, pathological knowledge and practical expertise. In this present work, an advanced knowledge-based personalized search engine was developed. Our search engine was based on a client-server multi-layer multi-agent architecture and the principle of semantic web services to acquire dynamically accurate and reliable HMSR information by a semantic processing and visualization approach. A security-enhanced mechanism was applied to protect the medical information. A multi-agent crawler was implemented to develop a content-based database of HMSR information. A new semantic-based PageRank score with related mathematical formulas were also defined and implemented. As the results, semantic web service descriptions were presented in OWL, WSDL and OWL-S formats. Operational scenarios with related web-based interfaces for personal computers and mobile devices were presented and analyzed. Functional comparison between our knowledge-based search engine, a conventional search engine and a semantic search engine showed the originality and the robustness of our knowledge-based personalized search engine. In fact, our knowledge-based personalized search engine allows different users such as orthopedic patient and experts or healthcare system managers or medical students to access remotely into useful, accurate, reliable and good-quality HMSR information for their learning and medical purposes. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Exploration Medical Capability System Engineering Introduction and Vision

    NASA Technical Reports Server (NTRS)

    Mindock, J.; Reilly, J.

    2017-01-01

    Human exploration missions to beyond low Earth orbit destinations such as Mars will require more autonomous capability compared to current low Earth orbit operations. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is applying systems engineering principles and practices to accomplish its integrative goals. This talk will briefly introduce the discipline of systems engineering and key points in its application to exploration medical capability development. It will elucidate technical medical system needs to be met by the systems engineering work, and the structured and integrative science and engineering approach to satisfying those needs, including the development of shared mental and qualitative models within and external to the human health and performance community. These efforts are underway to ensure relevancy to exploration system maturation and to establish medical system development that is collaborative with vehicle and mission design and engineering efforts.

  20. NASA Tests RS-25 Flight Engine for Space Launch System

    NASA Image and Video Library

    2017-10-19

    Engineers at NASA’s Stennis Space Center in Mississippi on Oct. 19 completed a hot-fire test of RS-25 rocket engine E2063, a flight engine for NASA’s new Space Launch System (SLS) rocket. Engine E2063 is scheduled to help power SLS on its Exploration Mission-2 (EM-2), the first flight of the new rocket to carry humans.

  1. Direct 3D cell-printing of human skin with functional transwell system.

    PubMed

    Kim, Byoung Soo; Lee, Jung-Seob; Gao, Ge; Cho, Dong-Woo

    2017-06-06

    Three-dimensional (3D) cell-printing has been emerging as a promising technology with which to build up human skin models by enabling rapid and versatile design. Despite the technological advances, challenges remain in the development of fully functional models that recapitulate complexities in the native tissue. Moreover, although several approaches have been explored for the development of biomimetic human skin models, the present skin models based on multistep fabrication methods using polydimethylsiloxane chips and commercial transwell inserts could be tackled by leveraging 3D cell-printing technology. In this paper, we present a new 3D cell-printing strategy for engineering a 3D human skin model with a functional transwell system in a single-step process. A hybrid 3D cell-printing system was developed, allowing for the use of extrusion and inkjet modules at the same time. We began by revealing the significance of each module in engineering human skin models; by using the extrusion-dispensing module, we engineered a collagen-based construct with polycaprolactone (PCL) mesh that prevented the contraction of collagen during tissue maturation; the inkjet-based dispensing module was used to uniformly distribute keratinocytes. Taking these features together, we engineered a human skin model with a functional transwell system; the transwell system and fibroblast-populated dermis were consecutively fabricated by using the extrusion modules. Following this process, keratinocytes were uniformly distributed onto the engineered dermis by the inkjet module. Our transwell system indicates a supportive 3D construct composed of PCL, enabling the maturation of a skin model without the aid of commercial transwell inserts. This skin model revealed favorable biological characteristics that included a stabilized fibroblast-stretched dermis and stratified epidermis layers after 14 days. It was also observed that a 50 times reduction in cost was achieved and 10 times less medium was used than in a conventional culture. Collectively, because this single-step process opens up chances for versatile designs, we envision that our cell-printing strategy could provide an attractive platform in engineering various human skin models.

  2. Human factors engineering approaches to patient identification armband design.

    PubMed

    Probst, C Adam; Wolf, Laurie; Bollini, Mara; Xiao, Yan

    2016-01-01

    The task of patient identification is performed many times each day by nurses and other members of the care team. Armbands are used for both direct verification and barcode scanning during patient identification. Armbands and information layout are critical to reducing patient identification errors and dangerous workarounds. We report the effort at two large, integrated healthcare systems that employed human factors engineering approaches to the information layout design of new patient identification armbands. The different methods used illustrate potential pathways to obtain standardized armbands across healthcare systems that incorporate human factors principles. By extension, how the designs have been adopted provides examples of how to incorporate human factors engineering into key clinical processes. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  3. Software Engineering for Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Fredrickson, Steven E.

    2014-01-01

    The Spacecraft Software Engineering Branch of NASA Johnson Space Center (JSC) provides world-class products, leadership, and technical expertise in software engineering, processes, technology, and systems management for human spaceflight. The branch contributes to major NASA programs (e.g. ISS, MPCV/Orion) with in-house software development and prime contractor oversight, and maintains the JSC Engineering Directorate CMMI rating for flight software development. Software engineering teams work with hardware developers, mission planners, and system operators to integrate flight vehicles, habitats, robotics, and other spacecraft elements. They seek to infuse automation and autonomy into missions, and apply new technologies to flight processor and computational architectures. This presentation will provide an overview of key software-related projects, software methodologies and tools, and technology pursuits of interest to the JSC Spacecraft Software Engineering Branch.

  4. DEVELOPMENT OF OPERATIONAL CONCEPTS FOR ADVANCED SMRs: THE ROLE OF COGNITIVE SYSTEMS ENGINEERING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacques Hugo; David Gertman

    Advanced small modular reactors (AdvSMRs) will use advanced digital instrumentation and control systems, and make greater use of automation. These advances not only pose technical and operational challenges, but will inevitably have an effect on the operating and maintenance (O&M) cost of new plants. However, there is much uncertainty about the impact of AdvSMR designs on operational and human factors considerations, such as workload, situation awareness, human reliability, staffing levels, and the appropriate allocation of functions between the crew and various automated plant systems. Existing human factors and systems engineering design standards and methodologies are not current in terms ofmore » human interaction requirements for dynamic automated systems and are no longer suitable for the analysis of evolving operational concepts. New models and guidance for operational concepts for complex socio-technical systems need to adopt a state-of-the-art approach such as Cognitive Systems Engineering (CSE) that gives due consideration to the role of personnel. This approach we report on helps to identify and evaluate human challenges related to non-traditional concepts of operations. A framework - defining operational strategies was developed based on the operational analysis of Argonne National Laboratory’s Experimental Breeder Reactor-II (EBR-II), a small (20MWe) sodium-cooled reactor that was successfully operated for thirty years. Insights from the application of the systematic application of the methodology and its utility are reviewed and arguments for the formal adoption of CSE as a value-added part of the Systems Engineering process are presented.« less

  5. Human Factors Principles in Information Dashboard Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hugo, Jacques V.; St. Germain, Shawn

    When planning for control room upgrades, nuclear power plants have to deal with a multitude of engineering and operational impacts. This will inevitably include several human factors considerations, including physical ergonomics of workstations, viewing angles, lighting, seating, new communication requirements, and new concepts of operation. In helping nuclear power utilities to deal with these challenges, the Idaho National Laboratory (INL) has developed effective methods to manage the various phases of the upgrade life cycle. These methods focus on integrating human factors engineering processes with the plant’s systems engineering process, a large part of which is the development of end-state conceptsmore » for control room modernization. Such an end-state concept is a description of a set of required conditions that define the achievement of the plant’s objectives for the upgrade. Typically, the end-state concept describes the transition of a conventional control room, over time, to a facility that employs advanced digital automation technologies in a way that significantly improves system reliability, reduces human and control room-related hazards, reduces system and component obsolescence, and significantly improves operator performance. To make the various upgrade phases as concrete and as visible as possible, an end-state concept would include a set of visual representations of the control room before and after various upgrade phases to provide the context and a framework within which to consider the various options in the upgrade. This includes the various control systems, human-system interfaces to be replaced, and possible changes to operator workstations. This paper describes how this framework helps to ensure an integrated and cohesive outcome that is consistent with human factors engineering principles and also provide substantial improvement in operator performance. The paper further describes the application of this integrated approach in the strategic modernization program at a nuclear power plant where legacy systems are upgraded to advanced digital technologies through a systematic process that links human factors principles to the systems engineering process. This approach will help to create an integrated control room architecture beyond what is possible for individual subsystem upgrades alone. In addition, several human factors design and evaluation methods were used to develop the end-state concept, including interactive sessions with operators in INL’s Human System Simulation Laboratory, three-dimensional modeling to visualize control board changes.« less

  6. NASA Center for Intelligent Robotic Systems for Space Exploration

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's program for the civilian exploration of space is a challenge to scientists and engineers to help maintain and further develop the United States' position of leadership in a focused sphere of space activity. Such an ambitious plan requires the contribution and further development of many scientific and technological fields. One research area essential for the success of these space exploration programs is Intelligent Robotic Systems. These systems represent a class of autonomous and semi-autonomous machines that can perform human-like functions with or without human interaction. They are fundamental for activities too hazardous for humans or too distant or complex for remote telemanipulation. To meet this challenge, Rensselaer Polytechnic Institute (RPI) has established an Engineering Research Center for Intelligent Robotic Systems for Space Exploration (CIRSSE). The Center was created with a five year $5.5 million grant from NASA submitted by a team of the Robotics and Automation Laboratories. The Robotics and Automation Laboratories of RPI are the result of the merger of the Robotics and Automation Laboratory of the Department of Electrical, Computer, and Systems Engineering (ECSE) and the Research Laboratory for Kinematics and Robotic Mechanisms of the Department of Mechanical Engineering, Aeronautical Engineering, and Mechanics (ME,AE,&M), in 1987. This report is an examination of the activities that are centered at CIRSSE.

  7. Human Factors in the Design of the Crew Exploration Vehicle (CEV)

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Byrne, Vicky; Holden, Kritina

    2007-01-01

    NASA s Space Exploration vision for humans to venture to the moon and beyond provides interesting human factors opportunities and challenges. The Human Engineering group at NASA has been involved in the initial phases of development of the Crew Exploration Vehicle (CEV), Orion. Getting involved at the ground level, Human Factors engineers are beginning to influence design; this involvement is expected to continue throughout the development lifecycle. The information presented here describes what has been done to date, what is currently going on, and what is expected in the future. During Phase 1, prior to the contract award to Lockheed Martin, the Human Engineering group was involved in generating requirements, conducting preliminary task analyses based on interviews with subject matter experts in all vehicle systems areas, and developing preliminary concepts of operations based on the task analysis results. In addition, some early evaluations to look at CEV net habitable volume were also conducted. The program is currently in Phase 2, which is broken down into design cycles, including System Readiness Review, Preliminary Design Review, and Critical Design Review. Currently, there are ongoing Human Engineering Technical Interchange Meetings being held with both NASA and Lockheed Martin in order to establish processes, desired products, and schedules. Multiple design trades and quick-look evaluations (e.g. display device layout and external window size) are also in progress. Future Human Engineering activities include requirement verification assessments and crew/stakeholder evaluations of increasing fidelity. During actual flights of the CEV, the Human Engineering group is expected to be involved in in-situ testing and lessons learned reporting, in order to benefit human space flight beyond the initial CEV program.

  8. People or systems? To blame is human. The fix is to engineer.

    PubMed

    Holden, Richard J

    2009-12-01

    Person-centered safety theories that place the burden of causality on human traits and actions have been largely dismissed in favor of systems-centered theories. Students and practitioners are now taught that accidents are caused by multiple factors and occur due to the complex interactions of numerous work system elements, human and non-human. Nevertheless, person-centered approaches to safety management still prevail. This paper explores the notion that attributing causality and blame to people persists because it is both a fundamental psychological tendency as well as an industry norm that remains strong in aviation, health care, and other industries. Consequences of that possibility are discussed and a case is made for continuing to invest in whole-system design and engineering solutions.

  9. Human Factors Considerations in System Design

    NASA Technical Reports Server (NTRS)

    Mitchell, C. M. (Editor); Vanbalen, P. M. (Editor); Moe, K. L. (Editor)

    1983-01-01

    Human factors considerations in systems design was examined. Human factors in automated command and control, in the efficiency of the human computer interface and system effectiveness are outlined. The following topics are discussed: human factors aspects of control room design; design of interactive systems; human computer dialogue, interaction tasks and techniques; guidelines on ergonomic aspects of control rooms and highly automated environments; system engineering for control by humans; conceptual models of information processing; information display and interaction in real time environments.

  10. Generation of genetically-engineered animals using engineered endonucleases.

    PubMed

    Lee, Jong Geol; Sung, Young Hoon; Baek, In-Jeoung

    2018-05-17

    The key to successful drug discovery and development is to find the most suitable animal model of human diseases for the preclinical studies. The recent emergence of engineered endonucleases is allowing for efficient and precise genome editing, which can be used to develop potentially useful animal models for human diseases. In particular, zinc finger nucleases, transcription activator-like effector nucleases, and the clustered regularly interspaced short palindromic repeat systems are revolutionizing the generation of diverse genetically-engineered experimental animals including mice, rats, rabbits, dogs, pigs, and even non-human primates that are commonly used for preclinical studies of the drug discovery. Here, we describe recent advances in engineered endonucleases and their application in various laboratory animals. We also discuss the importance of genome editing in animal models for more closely mimicking human diseases.

  11. The Contribution of Cognitive Engineering to the Effective Design and Use of Information Systems.

    ERIC Educational Resources Information Center

    Garg-Janardan, Chaya; Salvendy, Gavriel

    1986-01-01

    Examines the role of human information processing and decision-making capabilities and limitations in the design of effective human-computer interfaces. Several cognitive engineering principles that should guide the design process are outlined. (48 references) (Author/CLB)

  12. A Simplified Model of Human Alcohol Metabolism That Integrates Biotechnology and Human Health into a Mass Balance Team Project

    ERIC Educational Resources Information Center

    Yang, Allen H. J.; Dimiduk, Kathryn; Daniel, Susan

    2011-01-01

    We present a simplified human alcohol metabolism model for a mass balance team project. Students explore aspects of engineering in biotechnology: designing/modeling biological systems, testing the design/model, evaluating new conditions, and exploring cutting-edge "lab-on-a-chip" research. This project highlights chemical engineering's impact on…

  13. Human Systems Engineering and Program Success - A Retrospective Content Analysis

    DTIC Science & Technology

    2016-01-01

    collected from the 546 documents and entered into SPSS Statistics Version 22.0 for Windows. HSI words within the sampled doc- uments ranged from zero to...engineers. The approach used a retrospective content analysis of documents from weapon systems acquisi- tion programs, namely Major Defense Acquisition...January 2016, Vol. 23 No. 1 : 78–101 January 2016 The interaction between humans and the systems they use affects program success, as well as life-cycle

  14. Unifying Human Centered Design and Systems Engineering for Human Systems Integration

    NASA Technical Reports Server (NTRS)

    Boy, Guy A.; McGovernNarkevicius, Jennifer

    2013-01-01

    Despite the holistic approach of systems engineering (SE), systems still fail, and sometimes spectacularly. Requirements, solutions and the world constantly evolve and are very difficult to keep current. SE requires more flexibility and new approaches to SE have to be developed to include creativity as an integral part and where the functions of people and technology are appropriately allocated within our highly interconnected complex organizations. Instead of disregarding complexity because it is too difficult to handle, we should take advantage of it, discovering behavioral attractors and the emerging properties that it generates. Human-centered design (HCD) provides the creativity factor that SE lacks. It promotes modeling and simulation from the early stages of design and throughout the life cycle of a product. Unifying HCD and SE will shape appropriate human-systems integration (HSI) and produce successful systems.

  15. NASA Tests 2nd RS-25 Flight Engine for Space Launch System

    NASA Image and Video Library

    2017-10-19

    Engineers at NASA’s Stennis Space Center in Mississippi on Oct. 19 completed a hot-fire test of RS-25 rocket engine E2063, a flight engine for NASA’s new Space Launch System (SLS) rocket. Engine E2063 is scheduled to help power SLS on its Exploration Mission-2 (EM-2), the first flight of the new rocket to carry humans. Flight engine E2059 was tested on March 10, 2016, also for use on the EM-2 flight.

  16. NASA Tests 2nd RS-25 Flight Engine For Space Launch System

    NASA Image and Video Library

    2017-10-19

    Engineers at NASA’s Stennis Space Center in Mississippi on Oct. 19 completed a hot-fire test of RS-25 rocket engine E2063, a flight engine for NASA’s new Space Launch System (SLS) rocket. Engine E2063 is scheduled to help power SLS on its Exploration Mission-2 (EM-2), the first flight of the new rocket to carry humans. Flight engine E2059 was tested on March 10, 2016, also for use on the EM-2 flight.

  17. Video File - NASA Tests 2nd RS-25 Flight Engine for Space Launch System

    NASA Image and Video Library

    2017-10-19

    Engineers at NASA’s Stennis Space Center in Mississippi on Oct. 19 completed a hot-fire test of RS-25 rocket engine E2063, a flight engine for NASA’s new Space Launch System (SLS) rocket. Engine E2063 is scheduled to help power SLS on its Exploration Mission-2 (EM-2), the first flight of the new rocket to carry humans. Flight engine E2059 was tested on March 10, 2016, also for use on the EM-2 flight.

  18. SU-E-T-785: Using Systems Engineering to Design HDR Skin Treatment Operation for Small Lesions to Enhance Patient Safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saw, C; Baikadi, M; Peters, C

    2015-06-15

    Purpose: Using systems engineering to design HDR skin treatment operation for small lesions using shielded applicators to enhance patient safety. Methods: Systems engineering is an interdisciplinary field that offers formal methodologies to study, design, implement, and manage complex engineering systems as a whole over their life-cycles. The methodologies deal with human work-processes, coordination of different team, optimization, and risk management. The V-model of systems engineering emphasize two streams, the specification and the testing streams. The specification stream consists of user requirements, functional requirements, and design specifications while the testing on installation, operational, and performance specifications. In implementing system engineering tomore » this project, the user and functional requirements are (a) HDR unit parameters be downloaded from the treatment planning system, (b) dwell times and positions be generated by treatment planning system, (c) source decay be computer calculated, (d) a double-check system of treatment parameters to comply with the NRC regulation. These requirements are intended to reduce human intervention to improve patient safety. Results: A formal investigation indicated that the user requirements can be satisfied. The treatment operation consists of using the treatment planning system to generate a pseudo plan that is adjusted for different shielded applicators to compute the dwell times. The dwell positions, channel numbers, and the dwell times are verified by the medical physicist and downloaded into the HDR unit. The decayed source strength is transferred to a spreadsheet that computes the dwell times based on the type of applicators and prescribed dose used. Prior to treatment, the source strength, dwell times, dwell positions, and channel numbers are double-checked by the radiation oncologist. No dosimetric parameters are manually calculated. Conclusion: Systems engineering provides methodologies to effectively design the HDR treatment operation that minimize human intervention and improve patient safety.« less

  19. Human Engineering Operations and Habitability Assessment: A Process for Advanced Life Support Ground Facility Testbeds

    NASA Technical Reports Server (NTRS)

    Connolly, Janis H.; Arch, M.; Elfezouaty, Eileen Schultz; Novak, Jennifer Blume; Bond, Robert L. (Technical Monitor)

    1999-01-01

    Design and Human Engineering (HE) processes strive to ensure that the human-machine interface is designed for optimal performance throughout the system life cycle. Each component can be tested and assessed independently to assure optimal performance, but it is not until full integration that the system and the inherent interactions between the system components can be assessed as a whole. HE processes (which are defining/app lying requirements for human interaction with missions/systems) are included in space flight activities, but also need to be included in ground activities and specifically, ground facility testbeds such as Bio-Plex. A unique aspect of the Bio-Plex Facility is the integral issue of Habitability which includes qualities of the environment that allow humans to work and live. HE is a process by which Habitability and system performance can be assessed.

  20. Ambulatory Antibiotic Stewardship through a Human Factors Engineering Approach: A Systematic Review.

    PubMed

    Keller, Sara C; Tamma, Pranita D; Cosgrove, Sara E; Miller, Melissa A; Sateia, Heather; Szymczak, Julie; Gurses, Ayse P; Linder, Jeffrey A

    2018-01-01

    In the United States, most antibiotics are prescribed in ambulatory settings. Human factors engineering, which explores interactions between people and the place where they work, has successfully improved quality of care. However, human factors engineering models have not been explored to frame what is known about ambulatory antibiotic stewardship (AS) interventions and barriers and facilitators to their implementation. We conducted a systematic review and searched OVID MEDLINE, Embase, Scopus, Web of Science, and CINAHL to identify controlled interventions and qualitative studies of ambulatory AS and determine whether and how they incorporated principles from a human factors engineering model, the Systems Engineering Initiative for Patient Safety 2.0 model. This model describes how a work system (ambulatory clinic) contributes to a process (antibiotic prescribing) that leads to outcomes. The work system consists of 5 components, tools and technology, organization, person, tasks, and environment, within an external environment. Of 1,288 abstracts initially identified, 42 quantitative studies and 17 qualitative studies met inclusion criteria. Effective interventions focused on tools and technology (eg, clinical decision support and point-of-care testing), the person (eg, clinician education), organization (eg, audit and feedback and academic detailing), tasks (eg, delayed antibiotic prescribing), the environment (eg, commitment posters), and the external environment (media campaigns). Studies have not focused on clinic-wide approaches to AS. A human factors engineering approach suggests that investigating the role of the clinic's processes or physical layout or external pressures' role in antibiotic prescribing may be a promising way to improve ambulatory AS. © Copyright 2018 by the American Board of Family Medicine.

  1. Human Factors Virtual Analysis Techniques for NASA's Space Launch System Ground Support using MSFC's Virtual Environments Lab (VEL)

    NASA Technical Reports Server (NTRS)

    Searcy, Brittani

    2017-01-01

    Using virtual environments to assess complex large scale human tasks provides timely and cost effective results to evaluate designs and to reduce operational risks during assembly and integration of the Space Launch System (SLS). NASA's Marshall Space Flight Center (MSFC) uses a suite of tools to conduct integrated virtual analysis during the design phase of the SLS Program. Siemens Jack is a simulation tool that allows engineers to analyze human interaction with CAD designs by placing a digital human model into the environment to test different scenarios and assess the design's compliance to human factors requirements. Engineers at MSFC are using Jack in conjunction with motion capture and virtual reality systems in MSFC's Virtual Environments Lab (VEL). The VEL provides additional capability beyond standalone Jack to record and analyze a person performing a planned task to assemble the SLS at Kennedy Space Center (KSC). The VEL integrates Vicon Blade motion capture system, Siemens Jack, Oculus Rift, and other virtual tools to perform human factors assessments. By using motion capture and virtual reality, a more accurate breakdown and understanding of how an operator will perform a task can be gained. By virtual analysis, engineers are able to determine if a specific task is capable of being safely performed by both a 5% (approx. 5ft) female and a 95% (approx. 6'1) male. In addition, the analysis will help identify any tools or other accommodations that may to help complete the task. These assessments are critical for the safety of ground support engineers and keeping launch operations on schedule. Motion capture allows engineers to save and examine human movements on a frame by frame basis, while virtual reality gives the actor (person performing a task in the VEL) an immersive view of the task environment. This presentation will discuss the need of human factors for SLS and the benefits of analyzing tasks in NASA MSFC's VEL.

  2. Systems Engineering and Integration for Advanced Life Support System and HST

    NASA Technical Reports Server (NTRS)

    Kamarani, Ali K.

    2005-01-01

    Systems engineering (SE) discipline has revolutionized the way engineers and managers think about solving issues related to design of complex systems: With continued development of state-of-the-art technologies, systems are becoming more complex and therefore, a systematic approach is essential to control and manage their integrated design and development. This complexity is driven from integration issues. In this case, subsystems must interact with one another in order to achieve integration objectives, and also achieve the overall system's required performance. Systems engineering process addresses these issues at multiple levels. It is a technology and management process dedicated to controlling all aspects of system life cycle to assure integration at all levels. The Advanced Integration Matrix (AIM) project serves as the systems engineering and integration function for the Human Support Technology (HST) program. AIM provides means for integrated test facilities and personnel for performance trade studies, analyses, integrated models, test results, and validated requirements of the integration of HST. The goal of AIM is to address systems-level integration issues for exploration missions. It will use an incremental systems integration approach to yield technologies, baselines for further development, and possible breakthrough concepts in the areas of technological and organizational interfaces, total information flow, system wide controls, technical synergism, mission operations protocols and procedures, and human-machine interfaces.

  3. Introduction to human factors considerations in system design

    NASA Technical Reports Server (NTRS)

    Chapanis, A.

    1983-01-01

    A definition for human factors or ergonomics and its industrial and domestic application is presented. Human factors engineering, which discovers and applies information about human abilities, limitations, and other characteristics to the design of tools, machines, systems, tasks, jobs, and environments for safe, comfortable, and effective human use, is outlined. The origins of human factors and ergonomics, the philosophy of human factors, goals and objectives, systems development and design, are reviewed.

  4. Medical Systems Engineering to Support Mars Mission Crew Autonomy

    NASA Technical Reports Server (NTRS)

    Antonsen, Erik; Mindock, Jennifer

    2017-01-01

    Human spaceflight missions to Mars face exceptionally challenging resource limitations that far exceed those faced before. Increasing transit times, decreasing opportunity for resupply, communications challenges, and extended time to evacuate a crew to definitive medical care dictate a level of crew autonomy in medical care that is beyond the current medical model. To approach this challenge, a medical systems engineering approach is proposed that relies on a clearly articulated Concept of Operations and risk analysis tools that are in development at NASA. This paper proposes an operational clinical model with key terminology and concepts translated to a controls theory paradigm to frame a common language between clinical and engineering teams. This common language will be used for design and validation of an exploration medical system that is fully integrated into a Mars transit vehicle. This approach merges medical simulation, human factors evaluation techniques, and human-in-the-loop testing in ground based analogs to tie medical hardware and software subsystem performance and overall medical system functionality to metrics of operational medical autonomy. Merging increases in operational clinical autonomy with a more restricted vehicle system resource scenario in interplanetary spaceflight will require an unprecedented level of medical and engineering integration. Full integration of medical capabilities into a Mars vehicle system may require a new approach to integrating medical system design and operations into the vehicle Program structure. Prior to the standing-up of a Mars Mission Program, proof of concept is proposed through the Human Research Program.

  5. HUMAN ENGINEERING FOR AN EFFECTIVE AIR-NAVIGATION AND TRAFFIC-CONTROL SYSTEM, AND APPENDIXES 1 THRU 3

    DTIC Science & Technology

    1951-03-14

    human "We have been very much occupied In perfect. engineering to the improvement of the air-navigation ing the machines and the tools which the...a man-machine system which will ever, if he were only considered as an instrument, yield optimal results in the way of efficiency and a tool , a motor...operation of machines and equipment and system development, which will permit tools , the emphasis has been upon the adjustment of an orderly and

  6. System Engineering Concept Demonstration, System Engineering Needs. Volume 2

    DTIC Science & Technology

    1992-12-01

    changeability, and invisibility. "Software entities are perhaps more complex for their size than any other human construct..." In addition, software is... human actions and interactions that often fail or insufficient in large organizations. Specific needs in this area include the following: " Each...needed to accomplish incremental review and critique of information. * Automi ..-’ metrics support is needed for the measuring ikey quality aspects of

  7. Research and Studies Directory for Manpower, Personnel, and Training

    DTIC Science & Technology

    1990-05-01

    COFOD R* LICA SYSTEMS INC 703-359-0996 SMART CONTRACT PREPARATION EXPEDITER COLLINS H* ARMY TRAINING AND DOCTRINE COMMAND 205-848-3174 BATTLEFIELD...TECHNICAL SUPPORT FORESTER J HUMAN ENGINEERING LAB 301-278-2946 SMART CONTRACT PREPARATION EXPEDITER FREZELL T LTCOL HUMAN ENGINEERING LAB 301-278-5998

  8. Medical Engineering and Microneurosurgery: Application and Future.

    PubMed

    Morita, Akio; Sora, Shigeo; Nakatomi, Hirofumi; Harada, Kanako; Sugita, Naohiko; Saito, Nobuhito; Mitsuishi, Mamoru

    2016-10-15

    Robotics and medical engineering can convert traditional surgery into digital and scientific procedures. Here, we describe our work to develop microsurgical robotic systems and apply engineering technology to assess microsurgical skills. With the collaboration of neurosurgeons and an engineering team, we have developed two types of microsurgical robotic systems. The first, the deep surgical systems, enable delicate surgical procedures such as vessel suturing in a deep and narrow space. The second type allows for super-fine surgical procedures such as anastomosing artificial vessels of 0.3 mm in diameter. Both systems are constructed with master and slave manipulator robots connected to local area networks. Robotic systems allowed for secure and accurate procedures in a deep surgical field. In cadaveric models, these systems showed a good potential of being useful in actual human surgeries, but mechanical refinements in thickness and durability are necessary for them to be established as clinical systems. The super-fine robotic system made the very intricate surgery possible and will be applied in clinical trials. Another trial included the digitization of surgical technique and scientific analysis of surgical skills. Robotic and human hand motions were analyzed in numerical fashion as we tried to define surgical skillfulness in a digital format. Engineered skill assessment is also feasible and should be useful for microsurgical training. Robotics and medical engineering should bring science into the surgical field and training of surgeons. Active collaboration between medical and engineering teams and academic and industry groups is mandatory to establish such medical systems to improve patient care.

  9. Medical Engineering and Microneurosurgery: Application and Future

    PubMed Central

    MORITA, Akio; SORA, Shigeo; NAKATOMI, Hirofumi; HARADA, Kanako; SUGITA, Naohiko; SAITO, Nobuhito; MITSUISHI, Mamoru

    2016-01-01

    Robotics and medical engineering can convert traditional surgery into digital and scientific procedures. Here, we describe our work to develop microsurgical robotic systems and apply engineering technology to assess microsurgical skills. With the collaboration of neurosurgeons and an engineering team, we have developed two types of microsurgical robotic systems. The first, the deep surgical systems, enable delicate surgical procedures such as vessel suturing in a deep and narrow space. The second type allows for super-fine surgical procedures such as anastomosing artificial vessels of 0.3 mm in diameter. Both systems are constructed with master and slave manipulator robots connected to local area networks. Robotic systems allowed for secure and accurate procedures in a deep surgical field. In cadaveric models, these systems showed a good potential of being useful in actual human surgeries, but mechanical refinements in thickness and durability are necessary for them to be established as clinical systems. The super-fine robotic system made the very intricate surgery possible and will be applied in clinical trials. Another trial included the digitization of surgical technique and scientific analysis of surgical skills. Robotic and human hand motions were analyzed in numerical fashion as we tried to define surgical skillfulness in a digital format. Engineered skill assessment is also feasible and should be useful for microsurgical training. Robotics and medical engineering should bring science into the surgical field and training of surgeons. Active collaboration between medical and engineering teams and academic and industry groups is mandatory to establish such medical systems to improve patient care. PMID:27464471

  10. Building a Formal Model of a Human-Interactive System: Insights into the Integration of Formal Methods and Human Factors Engineering

    NASA Technical Reports Server (NTRS)

    Bolton, Matthew L.; Bass, Ellen J.

    2009-01-01

    Both the human factors engineering (HFE) and formal methods communities are concerned with finding and eliminating problems with safety-critical systems. This work discusses a modeling effort that leveraged methods from both fields to use model checking with HFE practices to perform formal verification of a human-interactive system. Despite the use of a seemingly simple target system, a patient controlled analgesia pump, the initial model proved to be difficult for the model checker to verify in a reasonable amount of time. This resulted in a number of model revisions that affected the HFE architectural, representativeness, and understandability goals of the effort. If formal methods are to meet the needs of the HFE community, additional modeling tools and technological developments are necessary.

  11. Human Factors Technologies: Past Promises, Future Issues. Final Technical Paper.

    ERIC Educational Resources Information Center

    Alluisi, Earl A.

    This discussion of the major issues confronting the human factors profession begins by pointing out that the concepts of systems and system design are central to the roles and functions of the human factors specialist. Three related disciplines--human factors engineering, ergonomics, and human skilled performance--are briefly described, and the…

  12. Social, Economic, and Political Change: Portents for Reform in Engineering Curricula.

    ERIC Educational Resources Information Center

    Wenk, Edward, Jr.

    1988-01-01

    Discusses the needs and properties of human systems including issues of safety and the holistic approach in engineering. Lists a suggested introductory engineering curriculum. Describes characteristics of future realities in managing technology. (YP)

  13. Engineering human ventricular heart muscles based on a highly efficient system for purification of human pluripotent stem cell-derived ventricular cardiomyocytes.

    PubMed

    Li, Bin; Yang, Hui; Wang, Xiaochen; Zhan, Yongkun; Sheng, Wei; Cai, Huanhuan; Xin, Haoyang; Liang, Qianqian; Zhou, Ping; Lu, Chao; Qian, Ruizhe; Chen, Sifeng; Yang, Pengyuan; Zhang, Jianyi; Shou, Weinian; Huang, Guoying; Liang, Ping; Sun, Ning

    2017-09-29

    Most infarctions occur in the left anterior descending coronary artery and cause myocardium damage of the left ventricle. Although current pluripotent stem cells (PSCs) and directed cardiac differentiation techniques are able to generate fetal-like human cardiomyocytes, isolation of pure ventricular cardiomyocytes has been challenging. For repairing ventricular damage, we aimed to establish a highly efficient purification system to obtain homogeneous ventricular cardiomyocytes and prepare engineered human ventricular heart muscles in a dish. The purification system used TALEN-mediated genomic editing techniques to insert the neomycin or EGFP selection marker directly after the myosin light chain 2 (MYL2) locus in human pluripotent stem cells. Purified early ventricular cardiomyocytes were estimated by immunofluorescence, fluorescence-activated cell sorting, quantitative PCR, microelectrode array, and patch clamp. In subsequent experiments, the mixture of mature MYL2-positive ventricular cardiomyocytes and mesenchymal cells were cocultured with decellularized natural heart matrix. Histological and electrophysiology analyses of the formed tissues were performed 2 weeks later. Human ventricular cardiomyocytes were efficiently isolated based on the purification system using G418 or flow cytometry selection. When combined with the decellularized natural heart matrix as the scaffold, functional human ventricular heart muscles were prepared in a dish. These engineered human ventricular muscles can be great tools for regenerative therapy of human ventricular damage as well as drug screening and ventricular-specific disease modeling in the future.

  14. Modeling the lung: Design and development of tissue engineered macro- and micro-physiologic lung models for research use.

    PubMed

    Nichols, Joan E; Niles, Jean A; Vega, Stephanie P; Argueta, Lissenya B; Eastaway, Adriene; Cortiella, Joaquin

    2014-09-01

    Respiratory tract specific cell populations, or tissue engineered in vitro grown human lung, have the potential to be used as research tools to mimic physiology, toxicology, pathology, as well as infectious diseases responses of cells or tissues. Studies related to respiratory tract pathogenesis or drug toxicity testing in the past made use of basic systems where single cell populations were exposed to test agents followed by evaluations of simple cellular responses. Although these simple single-cell-type systems provided good basic information related to cellular responses, much more can be learned from cells grown in fabricated microenvironments which mimic in vivo conditions in specialized microfabricated chambers or by human tissue engineered three-dimensional (3D) models which allow for more natural interactions between cells. Recent advances in microengineering technology, microfluidics, and tissue engineering have provided a new approach to the development of 2D and 3D cell culture models which enable production of more robust human in vitro respiratory tract models. Complex models containing multiple cell phenotypes also provide a more reasonable approximation of what occurs in vivo without the confounding elements in the dynamic in vivo environment. The goal of engineering good 3D human models is the formation of physiologically functional respiratory tissue surrogates which can be used as pathogenesis models or in the case of 2D screening systems for drug therapy evaluation as well as human toxicity testing. We hope that this manuscript will serve as a guide for development of future respiratory tract model systems as well as a review of conventional models. © 2014 by the Society for Experimental Biology and Medicine.

  15. Engineering for All: Classroom Implementation

    ERIC Educational Resources Information Center

    Hacker, Michael; Cavanaugh, Sandra; DeHaan, Chris; Longware, Alta Jo; McGuire, Matt; Plummer, Matthew

    2018-01-01

    This is the second of two articles about the National Science Foundation-funded Engineering for All (EfA) program which focuses on engineering as a potential social good, revisits major Technology and Engineering (T&E) themes (design, modeling, systems, resources, and human values) in two authentic social contexts (Food and Water), and uses…

  16. Three-dimensional anthropometric techniques applied to the fabrication of burn masks and the quantification of wound healing

    NASA Astrophysics Data System (ADS)

    Whitestone, Jennifer J.; Geisen, Glen R.; McQuiston, Barbara K.

    1997-03-01

    Anthropometric surveys conducted by the military provide comprehensive human body measurement data that are human interface requirements for successful mission performance of weapon systems, including cockpits, protective equipment, and clothing. The application of human body dimensions to model humans and human-machine performance begins with engineering anthropometry. There are two critical elements to engineering anthropometry: data acquisition and data analysis. First, the human body is captured dimensionally with either traditional anthropometric tools, such as calipers and tape measures, or with advanced image acquisition systems, such as a laser scanner. Next, numerous statistical analysis tools, such as multivariate modeling and feature envelopes, are used to effectively transition these data for design and evaluation of equipment and work environments. Recently, Air Force technology transfer allowed researchers at the Computerized Anthropometric Research and Design (CARD) Laboratory at Wright-Patterson Air Force Base to work with the Dayton, Ohio area medical community in assessing the rate of wound healing and improving the fit of total contract burn masks. This paper describes the successful application of CARD Lab engineering anthropometry to two medically oriented human interface problems.

  17. SERC 2012 Annual Report

    DTIC Science & Technology

    2012-01-01

    Systems and Enterprises, Stevens Institute of Technology Dr. Abhijit Deshmukh James J. Solberg Head of Industrial Engineering and Professor of...SM Transformation Human Capital Development Human Capital Development TITLE PRINCIPAL INVESTIGATOR Valuing Flexibility Abhi Deshmukh Vehicle Systems

  18. Computational modeling for eco engineering: Making the connections between engineering and ecology (Invited)

    NASA Astrophysics Data System (ADS)

    Bowles, C.

    2013-12-01

    Ecological engineering, or eco engineering, is an emerging field in the study of integrating ecology and engineering, concerned with the design, monitoring, and construction of ecosystems. According to Mitsch (1996) 'the design of sustainable ecosystems intends to integrate human society with its natural environment for the benefit of both'. Eco engineering emerged as a new idea in the early 1960s, and the concept has seen refinement since then. As a commonly practiced field of engineering it is relatively novel. Howard Odum (1963) and others first introduced it as 'utilizing natural energy sources as the predominant input to manipulate and control environmental systems'. Mtisch and Jorgensen (1989) were the first to define eco engineering, to provide eco engineering principles and conceptual eco engineering models. Later they refined the definition and increased the number of principles. They suggested that the goals of eco engineering are: a) the restoration of ecosystems that have been substantially disturbed by human activities such as environmental pollution or land disturbance, and b) the development of new sustainable ecosystems that have both human and ecological values. Here a more detailed overview of eco engineering is provided, particularly with regard to how engineers and ecologists are utilizing multi-dimensional computational models to link ecology and engineering, resulting in increasingly successful project implementation. Descriptions are provided pertaining to 1-, 2- and 3-dimensional hydrodynamic models and their use at small- and large-scale applications. A range of conceptual models that have been developed to aid the in the creation of linkages between ecology and engineering are discussed. Finally, several case studies that link ecology and engineering via computational modeling are provided. These studies include localized stream rehabilitation, spawning gravel enhancement on a large river system, and watershed-wide floodplain modeling of the Sacramento River Valley.

  19. Tempus Pro Patient Monitoring System

    DTIC Science & Technology

    2015-04-03

    AFMSA SG5T, (AFMESA) Mr. John Ingram, AFMSA SG5T, AFMESA Mr. John Plaga , 711 HPW/HP Human Factors Engineering Mr. Paul Bailey, AMC SG/SGR Ms. Lynn...John Plaga , 711 HPW/HP Human Factors Engineering Mr. Paul Bailey, AMC SG/SGR Lt Col Cheryl Hale, AMC SG/SGK Mr. Graham Murphy, RDT Mr. Nigel

  20. Engineering Data Compendium. Human Perception and Performance, Volume 1

    NASA Technical Reports Server (NTRS)

    Boff, Kenneth R. (Editor); Lincoln, Janet E. (Editor)

    1988-01-01

    The concept underlying the Engineering Data Compendium was the product an R and D program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design of military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by system designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is Volume 1, which contains sections on Visual Acquisition of Information, Auditory Acquisition of Information, and Acquisition of Information by Other Senses.

  1. Engineering Data Compendium. Human Perception and Performance, Volume 2

    NASA Technical Reports Server (NTRS)

    Boff, Kenneth R. (Editor); Lincoln, Janet E. (Editor)

    1988-01-01

    The concept underlying the Engineering Data Compendium was the product of a Research and Development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design of military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by system designers. The present volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is Volume 2, which contains sections on Information Storage and Retrieval, Spatial Awareness, Perceptual Organization, and Attention and Allocation of Resources.

  2. Engineering data compendium. Human perception and performance. User's guide

    NASA Technical Reports Server (NTRS)

    Boff, Kenneth R. (Editor); Lincoln, Janet E. (Editor)

    1988-01-01

    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use.

  3. Evaluating a federated medical search engine: tailoring the methodology and reporting the evaluation outcomes.

    PubMed

    Saparova, D; Belden, J; Williams, J; Richardson, B; Schuster, K

    2014-01-01

    Federated medical search engines are health information systems that provide a single access point to different types of information. Their efficiency as clinical decision support tools has been demonstrated through numerous evaluations. Despite their rigor, very few of these studies report holistic evaluations of medical search engines and even fewer base their evaluations on existing evaluation frameworks. To evaluate a federated medical search engine, MedSocket, for its potential net benefits in an established clinical setting. This study applied the Human, Organization, and Technology (HOT-fit) evaluation framework in order to evaluate MedSocket. The hierarchical structure of the HOT-factors allowed for identification of a combination of efficiency metrics. Human fit was evaluated through user satisfaction and patterns of system use; technology fit was evaluated through the measurements of time-on-task and the accuracy of the found answers; and organization fit was evaluated from the perspective of system fit to the existing organizational structure. Evaluations produced mixed results and suggested several opportunities for system improvement. On average, participants were satisfied with MedSocket searches and confident in the accuracy of retrieved answers. However, MedSocket did not meet participants' expectations in terms of download speed, access to information, and relevance of the search results. These mixed results made it necessary to conclude that in the case of MedSocket, technology fit had a significant influence on the human and organization fit. Hence, improving technological capabilities of the system is critical before its net benefits can become noticeable. The HOT-fit evaluation framework was instrumental in tailoring the methodology for conducting a comprehensive evaluation of the search engine. Such multidimensional evaluation of the search engine resulted in recommendations for system improvement.

  4. Evaluating a Federated Medical Search Engine

    PubMed Central

    Belden, J.; Williams, J.; Richardson, B.; Schuster, K.

    2014-01-01

    Summary Background Federated medical search engines are health information systems that provide a single access point to different types of information. Their efficiency as clinical decision support tools has been demonstrated through numerous evaluations. Despite their rigor, very few of these studies report holistic evaluations of medical search engines and even fewer base their evaluations on existing evaluation frameworks. Objectives To evaluate a federated medical search engine, MedSocket, for its potential net benefits in an established clinical setting. Methods This study applied the Human, Organization, and Technology (HOT-fit) evaluation framework in order to evaluate MedSocket. The hierarchical structure of the HOT-factors allowed for identification of a combination of efficiency metrics. Human fit was evaluated through user satisfaction and patterns of system use; technology fit was evaluated through the measurements of time-on-task and the accuracy of the found answers; and organization fit was evaluated from the perspective of system fit to the existing organizational structure. Results Evaluations produced mixed results and suggested several opportunities for system improvement. On average, participants were satisfied with MedSocket searches and confident in the accuracy of retrieved answers. However, MedSocket did not meet participants’ expectations in terms of download speed, access to information, and relevance of the search results. These mixed results made it necessary to conclude that in the case of MedSocket, technology fit had a significant influence on the human and organization fit. Hence, improving technological capabilities of the system is critical before its net benefits can become noticeable. Conclusions The HOT-fit evaluation framework was instrumental in tailoring the methodology for conducting a comprehensive evaluation of the search engine. Such multidimensional evaluation of the search engine resulted in recommendations for system improvement. PMID:25298813

  5. Nuclear Thermal Propulsion Mars Mission Systems Analysis and Requirements Definition

    NASA Technical Reports Server (NTRS)

    Mulqueen, Jack; Chiroux, Robert C.; Thomas, Dan; Crane, Tracie

    2007-01-01

    This paper describes the Mars transportation vehicle design concepts developed by the Marshall Space Flight Center (MSFC) Advanced Concepts Office. These vehicle design concepts provide an indication of the most demanding and least demanding potential requirements for nuclear thermal propulsion systems for human Mars exploration missions from years 2025 to 2035. Vehicle concept options vary from large "all-up" vehicle configurations that would transport all of the elements for a Mars mission on one vehicle. to "split" mission vehicle configurations that would consist of separate smaller vehicles that would transport cargo elements and human crew elements to Mars separately. Parametric trades and sensitivity studies show NTP stage and engine design options that provide the best balanced set of metrics based on safety, reliability, performance, cost and mission objectives. Trade studies include the sensitivity of vehicle performance to nuclear engine characteristics such as thrust, specific impulse and nuclear reactor type. Tbe associated system requirements are aligned with the NASA Exploration Systems Mission Directorate (ESMD) Reference Mars mission as described in the Explorations Systems Architecture Study (ESAS) report. The focused trade studies include a detailed analysis of nuclear engine radiation shield requirements for human missions and analysis of nuclear thermal engine design options for the ESAS reference mission.

  6. 78 FR 6400 - Twenty Third Meeting: RTCA Special Committee 203, Unmanned Aircraft Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ..., Washington, DC 20036, or by telephone at (202) 833- 9339, fax at (202) 833-9434, or Web site at http://www...-Morning/Afternoon Workgroup Breakout Sessions System Engineering Workgroup Human Factors Subgroup C&C... Breakout Sessions System Engineering Workgroup C&C Workgroup S&A Workgroup Safety Workgroup Friday...

  7. A New Approach in Applying Systems Engineering Tools and Analysis to Determine Hepatocyte Toxicogenomics Risk Levels to Human Health.

    PubMed

    Gigrich, James; Sarkani, Shahryar; Holzer, Thomas

    2017-03-01

    There is an increasing backlog of potentially toxic compounds that cannot be evaluated with current animal-based approaches in a cost-effective and expeditious manner, thus putting human health at risk. Extrapolation of animal-based test results for human risk assessment often leads to different physiological outcomes. This article introduces the use of quantitative tools and methods from systems engineering to evaluate the risk of toxic compounds by the analysis of the amount of stress that human hepatocytes undergo in vitro when metabolizing GW7647 1 over extended times and concentrations. Hepatocytes are exceedingly connected systems that make it challenging to understand the highly varied dimensional genomics data to determine risk of exposure. Gene expression data of peroxisome proliferator-activated receptor-α (PPARα) 2 binding was measured over multiple concentrations and varied times of GW7647 exposure and leveraging mahalanombis distance to establish toxicity threshold risk levels. The application of these novel systems engineering tools provides new insight into the intricate workings of human hepatocytes to determine risk threshold levels from exposure. This approach is beneficial to decision makers and scientists, and it can help reduce the backlog of untested chemical compounds due to the high cost and inefficiency of animal-based models.

  8. Towards organ printing: engineering an intra-organ branched vascular tree.

    PubMed

    Visconti, Richard P; Kasyanov, Vladimir; Gentile, Carmine; Zhang, Jing; Markwald, Roger R; Mironov, Vladimir

    2010-03-01

    Effective vascularization of thick three-dimensional engineered tissue constructs is a problem in tissue engineering. As in native organs, a tissue-engineered intra-organ vascular tree must be comprised of a network of hierarchically branched vascular segments. Despite this requirement, current tissue-engineering efforts are still focused predominantly on engineering either large-diameter macrovessels or microvascular networks. We present the emerging concept of organ printing or robotic additive biofabrication of an intra-organ branched vascular tree, based on the ability of vascular tissue spheroids to undergo self-assembly. The feasibility and challenges of this robotic biofabrication approach to intra-organ vascularization for tissue engineering based on organ-printing technology using self-assembling vascular tissue spheroids including clinically relevantly vascular cell sources are analyzed. It is not possible to engineer 3D thick tissue or organ constructs without effective vascularization. An effective intra-organ vascular system cannot be built by the simple connection of large-diameter vessels and microvessels. Successful engineering of functional human organs suitable for surgical implantation will require concomitant engineering of a 'built in' intra-organ branched vascular system. Organ printing enables biofabrication of human organ constructs with a 'built in' intra-organ branched vascular tree.

  9. RS-25D engine

    NASA Image and Video Library

    2012-01-17

    Employees unload a RS25D rocket engine at NASA's John C. Stennis Space Center on Jan. 17. The engine - and 14 others - will be stored at the facility for future testing and use on NASA's new Space Launch System (SLS). The SLS is a new heavy-lift launch vehicle that will expand human presence beyond low-Earth orbit and enable new missions of exploration across the solar system. NASA's Marshall Space Flight Center in Huntsville, Ala., is leading the design and development of the Space Launch System for NASA, including the engine testing program. Delivery of the 15 RS-25 engines will continue throughout the next few months

  10. MIT January Operational Internship Experience 2011

    NASA Technical Reports Server (NTRS)

    DeLatte, Danielle; Furhmann, Adam; Habib, Manal; Joujon-Roche, Cecily; Opara, Nnaemeka; Pasterski, Sabrina Gonzalez; Powell, Christina; Wimmer, Andrew

    2011-01-01

    This slide presentation reviews the 2011 January Operational Internship experience (JOIE) program which allows students to study operational aspects of spaceflight, how design affects operations and systems engineering in practice for 3 weeks. Topics include: (1) Systems Engineering (2) NASA Organization (3) Workforce Core Values (4) Human Factors (5) Safety (6) Lean Engineering (7) NASA Now (8) Press, Media, and Outreach and (9) Future of Spaceflight.

  11. Group 3 Unmanned Aircraft Systems Maintenance Challenges Within The Naval Aviation Enterprise

    DTIC Science & Technology

    2017-12-01

    cross winds . We again went through the mishap processes and reviewed training and maintenance records. A couple months later, there was a third crash...gas turbine engines powering aircraft with humans on board (DON, 2017). Group 3 unmanned aircraft utilize a sealed fuel system. The tank is filled...aircraft do not use gas turbine engines. They use either rotary Wankle or piston driven engines with much simpler fuel delivery systems such as carburetors

  12. Controls, health assessment, and conditional monitoring for large, reusable, liquid rocket engines

    NASA Technical Reports Server (NTRS)

    Cikanek, H. A., III

    1986-01-01

    Past and future progress in the performance of control systems for large, liquid rocket engines typified such as current state-of-the-art, the Shuttle Main Engine (SSME), is discussed. Details of the first decade of efforts, which culminates in the F-1 and J-2 Saturn engines control systems, are traced, noting problem modes and improvements which were implemented to realize the SSME. Future control system designs, to accommodate the requirements of operation of engines for a heavy lift launch vehicle, an orbital transfer vehicle and the aerospace plane, are summarized. Generic design upgrades needed include an expanded range of fault detection, maintenance as-needed instead of as-scheduled, reduced human involvement in engine operations, and increased control of internal engine states. Current NASA technology development programs aimed at meeting the future control system requirements are described.

  13. Engineered in vitro disease models.

    PubMed

    Benam, Kambez H; Dauth, Stephanie; Hassell, Bryan; Herland, Anna; Jain, Abhishek; Jang, Kyung-Jin; Karalis, Katia; Kim, Hyun Jung; MacQueen, Luke; Mahmoodian, Roza; Musah, Samira; Torisawa, Yu-suke; van der Meer, Andries D; Villenave, Remi; Yadid, Moran; Parker, Kevin K; Ingber, Donald E

    2015-01-01

    The ultimate goal of most biomedical research is to gain greater insight into mechanisms of human disease or to develop new and improved therapies or diagnostics. Although great advances have been made in terms of developing disease models in animals, such as transgenic mice, many of these models fail to faithfully recapitulate the human condition. In addition, it is difficult to identify critical cellular and molecular contributors to disease or to vary them independently in whole-animal models. This challenge has attracted the interest of engineers, who have begun to collaborate with biologists to leverage recent advances in tissue engineering and microfabrication to develop novel in vitro models of disease. As these models are synthetic systems, specific molecular factors and individual cell types, including parenchymal cells, vascular cells, and immune cells, can be varied independently while simultaneously measuring system-level responses in real time. In this article, we provide some examples of these efforts, including engineered models of diseases of the heart, lung, intestine, liver, kidney, cartilage, skin and vascular, endocrine, musculoskeletal, and nervous systems, as well as models of infectious diseases and cancer. We also describe how engineered in vitro models can be combined with human inducible pluripotent stem cells to enable new insights into a broad variety of disease mechanisms, as well as provide a test bed for screening new therapies.

  14. Helicoidal multi-lamellar features of RGD-functionalized silk biomaterials for corneal tissue engineering.

    PubMed

    Gil, Eun Seok; Mandal, Biman B; Park, Sang-Hyug; Marchant, Jeffrey K; Omenetto, Fiorenzo G; Kaplan, David L

    2010-12-01

    RGD-coupled silk protein-biomaterial lamellar systems were prepared and studied with human cornea fibroblasts (hCFs) to match functional requirements. A strategy for corneal tissue engineering was pursued to replicate the structural hierarchy of human corneal stroma within thin stacks of lamellae-like tissues, in this case constructed from scaffolds constructed with RGD-coupled, patterned, porous, mechanically robust and transparent silk films. The influence of RGD-coupling on the orientation, proliferation, ECM organization, and gene expression of hCFs was assessed. RGD surface modification enhanced cell attachment, proliferation, alignment and expression of both collagens (type I and V) and proteoglycans (decorin and biglycan). Confocal and histological images of the lamellar systems revealed that the bio-functionalized silk human cornea 3D constructs exhibited integrated corneal stroma tissue with helicoidal multi-lamellar alignment of collagen-rich and proteoglycan-rich extracellular matrix, with transparency of the construct. This biomimetic approach to replicate corneal stromal tissue structural hierarchy and architecture demonstrates a useful strategy for engineering human cornea. Further, this approach can be exploited for other tissue systems due to the pervasive nature of such helicoids in most human tissues. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Conducting Closed Habitation Experiments: Experience from the Lunar Mars Life Support Test Project

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Edeen, Marybeth A.; Henninger, Donald L.

    2004-01-01

    The Lunar-Mars Life Support Test Project (LMLSTP) was conducted from 1995 through 1997 at the National Aeronautics and Space Administration s (NASA) Johnson Space Center (JSC) to demonstrate increasingly longer duration operation of integrated, closed-loop life support systems that employed biological and physicochemical techniques for water recycling, waste processing, air revitalization, thermal control, and food production. An analog environment for long-duration human space travel, the conditions of isolation and confinement also enabled studies of human factors, medical sciences (both physiology and psychology) and crew training. Four tests were conducted, Phases I, II, IIa and III, with durations of 15, 30,60 and 91 days, respectively. The first phase focused on biological air regeneration, using wheat to generate enough oxygen for one experimental subject. The systems demonstrated in the later phases were increasingly complex and interdependent, and provided life support for four crew members. The tests were conducted using two human-rated, atmospherically-closed test chambers, the Variable Pressure Growth Chamber (VPGC) and the Integrated Life Support Systems Test Facility (ILSSTF). Systems included test articles (the life support hardware under evaluation), human accommodations (living quarters, kitchen, exercise equipment, etc.) and facility systems (emergency matrix system, power, cooling, etc.). The test team was managed by a lead engineer and a test director, and included test article engineers responsible for specific systems, subsystems or test articles, test conductors, facility engineers, chamber operators and engineering technicians, medical and safety officers, and science experimenters. A crew selection committee, comprised of psychologists, engineers and managers involved in the test, evaluated male and female volunteers who applied to be test subjects. Selection was based on the skills mix anticipated for each particular test, and utilized information from psychological and medical testing, data on the knowledge, experience and skills of the applicants, and team building exercises. The design, development, buildup and operation of test hardware and documentation followed the established NASA processes and requirements for test buildup and operation.

  16. Conducting Closed Habitation Experiments: Experience from the Lunar Mars Life Support Test Project

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Edeen, Marybeth A.; Henninger, Donald L.

    2006-01-01

    The Lunar-Mars Life Support Test Project (LMLSTP) was conducted from 1995 through 1997 at the National Aeronautics and Space Administration s (NASA) Johnson Space Center (JSC) to demonstrate increasingly longer duration operation of integrated, closed-loop life support systems that employed biological and physicochemical techniques for water recycling, waste processing, air revitalization, thermal control, and food production. An analog environment for long-duration human space travel, the conditions of isolation and confinement also enabled studies of human factors, medical sciences (both physiology and psychology) and crew training. Four tests were conducted, Phases I, II, IIa and III, with durations of 15, 30, 60 and 91 days, respectively. The first phase focused on biological air regeneration, using wheat to generate enough oxygen for one experimental subject. The systems demonstrated in the later phases were increasingly complex and interdependent, and provided life support for four crew members. The tests were conducted using two human-rated, atmospherically-closed test chambers, the Variable Pressure Growth Chamber (VPGC) and the Integrated Life Support Systems Test Facility (ILSSTF). Systems included test articles (the life support hardware under evaluation), human accommodations (living quarters, kitchen, exercise equipment, etc.) and facility systems (emergency matrix system, power, cooling, etc.). The test team was managed by a lead engineer and a test director, and included test article engineers responsible for specific systems, subsystems or test articles, test conductors, facility engineers, chamber operators and engineering technicians, medical and safety officers, and science experimenters. A crew selection committee, comprised of psychologists, engineers and managers involved in the test, evaluated male and female volunteers who applied to be test subjects. Selection was based on the skills mix anticipated for each particular test, and utilized information from psychological and medical testing, data on the knowledge, experience and skills of the applicants, and team building exercises. The design, development, buildup and operation of test hardware and documentation followed the established NASA processes and requirements for test buildup and operation.

  17. Mechatronic system design course for undergraduate programmes

    NASA Astrophysics Data System (ADS)

    Saleem, A.; Tutunji, T.; Al-Sharif, L.

    2011-08-01

    Technology advancement and human needs have led to integration among many engineering disciplines. Mechatronics engineering is an integrated discipline that focuses on the design and analysis of complete engineering systems. These systems include mechanical, electrical, computer and control subsystems. In this paper, the importance of teaching mechatronic system design to undergraduate engineering students is emphasised. The paper offers the collaborative experience in preparing and delivering the course material for two universities in Jordan. A detailed description of such a course is provided and a case study is presented. The case study used is a final year project, where students applied a six-stage design procedure that is described in the paper.

  18. System Engineering and Technical Challenges Overcome in the J-2X Rocket Engine Development Project

    NASA Technical Reports Server (NTRS)

    Ballard, Richard O.

    2012-01-01

    Beginning in 2006, NASA initiated the J-2X engine development effort to develop an upper stage propulsion system to enable the achievement of the primary objectives of the Constellation program (CxP): provide continued access to the International Space Station following the retirement of the Space Station and return humans to the moon. The J-2X system requirements identified to accomplish this were very challenging and the time expended over the five years following the beginning of the J- 2X effort have been noteworthy in the development of innovations in both the fields for liquid rocket propulsion and system engineering.

  19. Automated Propulsion Data Screening demonstration system

    NASA Technical Reports Server (NTRS)

    Hoyt, W. Andes; Choate, Timothy D.; Whitehead, Bruce A.

    1995-01-01

    A fully-instrumented firing of a propulsion system typically generates a very large quantity of data. In the case of the Space Shuttle Main Engine (SSME), data analysis from ground tests and flights is currently a labor-intensive process. Human experts spend a great deal of time examining the large volume of sensor data generated by each engine firing. These experts look for any anomalies in the data which might indicate engine conditions warranting further investigation. The contract effort was to develop a 'first-cut' screening system for application to SSME engine firings that would identify the relatively small volume of data which is unusual or anomalous in some way. With such a system, limited and expensive human resources could focus on this small volume of unusual data for thorough analysis. The overall project objective was to develop a fully operational Automated Propulsion Data Screening (APDS) system with the capability of detecting significant trends and anomalies in transient and steady-state data. However, the effort limited screening of transient data to ground test data for throttle-down cases typical of the 3-g acceleration, and for engine throttling required to reach the maximum dynamic pressure limits imposed on the Space Shuttle. This APDS is based on neural networks designed to detect anomalies in propulsion system data that are not part of the data used for neural network training. The delivered system allows engineers to build their own screening sets for application to completed or planned firings of the SSME. ERC developers also built some generic screening sets that NASA engineers could apply immediately to their data analysis efforts.

  20. Human operator performance of remotely controlled tasks: Teleoperator research conducted at NASA's George C. Marshall Space Flight Center. Executive summary

    NASA Technical Reports Server (NTRS)

    Shields, N., Jr.; Piccione, F.; Kirkpatrick, M., III; Malone, T. B.

    1982-01-01

    The combination of human and machine capabilities into an integrated engineering system which is complex and interactive interdisciplinary undertaking is discussed. Human controlled remote systems referred to as teleoperators, are reviewed. The human factors requirements for remotely manned systems are identified. The data were developed in three principal teleoperator laboratories and the visual, manipulator and mobility laboratories are described. Three major sections are identified: (1) remote system components, (2) human operator considerations; and (3) teleoperator system simulation and concept verification.

  1. Stochastic Models of Human Errors

    NASA Technical Reports Server (NTRS)

    Elshamy, Maged; Elliott, Dawn M. (Technical Monitor)

    2002-01-01

    Humans play an important role in the overall reliability of engineering systems. More often accidents and systems failure are traced to human errors. Therefore, in order to have meaningful system risk analysis, the reliability of the human element must be taken into consideration. Describing the human error process by mathematical models is a key to analyzing contributing factors. Therefore, the objective of this research effort is to establish stochastic models substantiated by sound theoretic foundation to address the occurrence of human errors in the processing of the space shuttle.

  2. How can climate change and engineered water conveyance affect sediment dynamics in the San Francisco Bay-Delta system?

    USGS Publications Warehouse

    Achete, Fernanda; Van der Wegen, Mick; Roelvink, Jan Adriaan; Jaffe, Bruce E.

    2017-01-01

    Suspended sediment concentration is an important estuarine health indicator. Estuarine ecosystems rely on the maintenance of habitat conditions, which are changing due to direct human impact and climate change. This study aims to evaluate the impact of climate change relative to engineering measures on estuarine fine sediment dynamics and sediment budgets. We use the highly engineered San Francisco Bay-Delta system as a case study. We apply a process-based modeling approach (Delft3D-FM) to assess the changes in hydrodynamics and sediment dynamics resulting from climate change and engineering scenarios. The scenarios consider a direct human impact (shift in water pumping location), climate change (sea level rise and suspended sediment concentration decrease), and abrupt disasters (island flooding, possibly as the results of an earthquake). Levee failure has the largest impact on the hydrodynamics of the system. Reduction in sediment input from the watershed has the greatest impact on turbidity levels, which are key to primary production and define habitat conditions for endemic species. Sea level rise leads to more sediment suspension and a net sediment export if little room for accommodation is left in the system due to continuous engineering works. Mitigation measures like levee reinforcement are effective for addressing direct human impacts, but less effective for a persistent, widespread, and increasing threat like sea level rise. Progressive adaptive mitigation measures to the changes in sediment and flow dynamics resulting from sea level rise may be a more effective strategy. Our approach shows that a validated process-based model is a useful tool to address long-term (decades to centuries) changes in sediment dynamics in highly engineered estuarine systems. In addition, our modeling approach provides a useful basis for long-term, process-based studies addressing ecosystem dynamics and health.

  3. Human life support during interplanetary travel and domicile. I - System approach

    NASA Technical Reports Server (NTRS)

    Seshan, P. K.; Ferrall, Joseph; Rohatgi, Naresh

    1989-01-01

    The importance of mission-driven system definition and assessment for extraterrestrial human life support is examined. The tricotyledon theory for system engineering is applied to the physiochemical life support system of the Pathfinder project. The rationale and methodology for adopting the systems approach is discussed. The assessment of the system during technology development is considered.

  4. Borescope Inspection Management for Engine

    NASA Astrophysics Data System (ADS)

    Zhongda, Yuan

    2018-03-01

    In this paper, we try to explain the problems need to be improved from the two perspectives of maintenance program management and maintenance human risk control. On the basis of optimization analysis of borescope inspection maintenance scheme, the defect characteristics and expansion rules of engine heat terminal components are summarized, and some optimization measures are introduced. This paper analyses human risk problem of engine hole from the aspects of qualification management, training requirements and perfection of system, and puts forward some suggestions on management.

  5. Engineering management of large scale systems

    NASA Technical Reports Server (NTRS)

    Sanders, Serita; Gill, Tepper L.; Paul, Arthur S.

    1989-01-01

    The organization of high technology and engineering problem solving, has given rise to an emerging concept. Reasoning principles for integrating traditional engineering problem solving with system theory, management sciences, behavioral decision theory, and planning and design approaches can be incorporated into a methodological approach to solving problems with a long range perspective. Long range planning has a great potential to improve productivity by using a systematic and organized approach. Thus, efficiency and cost effectiveness are the driving forces in promoting the organization of engineering problems. Aspects of systems engineering that provide an understanding of management of large scale systems are broadly covered here. Due to the focus and application of research, other significant factors (e.g., human behavior, decision making, etc.) are not emphasized but are considered.

  6. Development of a Model-Based Systems Engineering Application for the Ground Vehicle Robotics Sustainment Industrial Base

    DTIC Science & Technology

    2013-02-04

    Ground Vehicle Systems Engineering Technology Symposium HC Human Capital HIIT Helsinki Institute of Information Technology UNCLASSIFIED vii...Technology (TKK), and the Helsinki Institute of Information Technology ( HIIT ), the report introduced the concept and the state-of-the-art in the market

  7. Systems Engineering Approach and Metrics for Evaluating Network-Centric Operations for U.S. Army Battle Command

    DTIC Science & Technology

    2013-07-01

    Systems Engineering Approach and Metrics for Evaluating Network-Centric Operations for U.S. Army Battle Command by Jock O. Grynovicki and...Battle Command Jock O. Grynovicki and Teresa A. Branscome Human Research and Engineering Directorate, ARL...NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jock O. Grynovicki and Teresa A. Branscome 5d. PROJECT NUMBER 622716H70 5e. TASK NUMBER

  8. Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector

    PubMed Central

    Kabadi, Ami M.; Ousterout, David G.; Hilton, Isaac B.; Gersbach, Charles A.

    2014-01-01

    Engineered DNA-binding proteins that manipulate the human genome and transcriptome have enabled rapid advances in biomedical research. In particular, the RNA-guided CRISPR/Cas9 system has recently been engineered to create site-specific double-strand breaks for genome editing or to direct targeted transcriptional regulation. A unique capability of the CRISPR/Cas9 system is multiplex genome engineering by delivering a single Cas9 enzyme and two or more single guide RNAs (sgRNAs) targeted to distinct genomic sites. This approach can be used to simultaneously create multiple DNA breaks or to target multiple transcriptional activators to a single promoter for synergistic enhancement of gene induction. To address the need for uniform and sustained delivery of multiplex CRISPR/Cas9-based genome engineering tools, we developed a single lentiviral system to express a Cas9 variant, a reporter gene and up to four sgRNAs from independent RNA polymerase III promoters that are incorporated into the vector by a convenient Golden Gate cloning method. Each sgRNA is efficiently expressed and can mediate multiplex gene editing and sustained transcriptional activation in immortalized and primary human cells. This delivery system will be significant to enabling the potential of CRISPR/Cas9-based multiplex genome engineering in diverse cell types. PMID:25122746

  9. Thermal, optical, and electrical engineering of an innovative tunable white LED light engine

    NASA Astrophysics Data System (ADS)

    Trivellin, Nicola; Meneghini, Matteo; Ferretti, Marco; Barbisan, Diego; Dal Lago, Matteo; Meneghesso, Gaudenzio; Zanoni, Enrico

    2014-02-01

    Color temperature, intensity and blue spectrum of the light affects the ganglion receptors in human brain stimulating the human nervous system. With this work we review different methods for obtaining tunable light emission spectra and propose an innovative white LED lighting system. By an in depth study of the thermal, electrical and optical characteristics of GaN and GaP based compound semiconductors for optoelectronics a specific tunable spectra has been designed. The proposed tunable white LED system is able to achieve high CRI (above 95) in a large CCT range (3000 - 5000K).

  10. RADON REMOVAL BY POINT-OF-ENTRY GRANULAR ACTIVATED CARBON SYSTEMS: DESIGN PERFORMANCE AND COST

    EPA Science Inventory

    The report summarizes previous research conducted by Lowry Engineering, Inc. (LEI), the Maine Department of Human Services, Division of Health Engineering, and the University of Maine, Department of Civil Engineering, on the removal of Rn from drinking water supplies using granul...

  11. Architecting Systems for Human Space Flight

    NASA Technical Reports Server (NTRS)

    Wocken, Gerald

    2002-01-01

    Human-system interactions have been largely overlooked in the traditional systems engineering process. Awareness of human factors (HF) has increased in the past few years, but the involvement of HF specialists is still often too little and too late. In systems involving long-duration human space flight, it is essential that the human component be properly considered in the initial architectural definition phase, as well as throughout the system design process. HF analysis must include not only the strengths and limitations of humans in general, but the variability between individuals and within an individual over time, and the dynamics of group interactions.

  12. Design Development Test and Evaluation (DDT and E) Considerations for Safe and Reliable Human Rated Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    Miller, James; Leggett, Jay; Kramer-White, Julie

    2008-01-01

    A team directed by the NASA Engineering and Safety Center (NESC) collected methodologies for how best to develop safe and reliable human rated systems and how to identify the drivers that provide the basis for assessing safety and reliability. The team also identified techniques, methodologies, and best practices to assure that NASA can develop safe and reliable human rated systems. The results are drawn from a wide variety of resources, from experts involved with the space program since its inception to the best-practices espoused in contemporary engineering doctrine. This report focuses on safety and reliability considerations and does not duplicate or update any existing references. Neither does it intend to replace existing standards and policy.

  13. 3D heterogeneous islet organoid generation from human embryonic stem cells using a novel engineered hydrogel platform.

    PubMed

    Candiello, Joseph; Grandhi, Taraka Sai Pavan; Goh, Saik Kia; Vaidya, Vimal; Lemmon-Kishi, Maya; Eliato, Kiarash Rahmani; Ros, Robert; Kumta, Prashant N; Rege, Kaushal; Banerjee, Ipsita

    2018-05-25

    Organoids, which exhibit spontaneous organ specific organization, function, and multi-cellular complexity, are in essence the in vitro reproduction of specific in vivo organ systems. Recent work has demonstrated human pluripotent stem cells (hPSCs) as a viable regenerative cell source for tissue-specific organoid engineering. This is especially relevant for engineering islet organoids, due to the recent advances in generating functional beta-like cells from human pluripotent stem cells. In this study, we report specific engineering of regenerative islet organoids of precise size and cellular heterogeneity, using a novel hydrogel system, Amikagel. Amikagel facilitated controlled and spontaneous aggregation of human embryonic stem cell derived pancreatic progenitor cells (hESC-PP) into robust homogeneous spheroids. This platform further allowed fine control over the integration of multiple cell populations to produce heterogeneous spheroids, which is a necessity for complex organoid engineering. Amikagel induced hESC-PP spheroid formation enhanced pancreatic islet-specific Pdx-1 and NKX6.1 gene and protein expression, while also increasing the percentage of committed population. hESC-PP spheroids were further induced towards mature beta-like cells which demonstrated increased Beta-cell specific INS1 gene and C-peptide protein expression along with functional insulin production in response to in vitro glucose challenge. Further integration of hESC-PP with biologically relevant supporting endothelial cells resulted in multicellular organoids which demonstrated spontaneous maturation towards islet-specific INS1 gene and C-peptide protein expression along with a significantly developed extracellular matrix support system. These findings establish Amikagel -facilitated platform ideal for islet organoid engineering. Copyright © 2018. Published by Elsevier Ltd.

  14. Third International Symposium on Space Mission Operations and Ground Data Systems, part 2

    NASA Technical Reports Server (NTRS)

    Rash, James L. (Editor)

    1994-01-01

    Under the theme of 'Opportunities in Ground Data Systems for High Efficiency Operations of Space Missions,' the SpaceOps '94 symposium included presentations of more than 150 technical papers spanning five topic areas: Mission Management, Operations, Data Management, System Development, and Systems Engineering. The symposium papers focus on improvements in the efficiency, effectiveness, and quality of data acquisition, ground systems, and mission operations. New technology, methods, and human systems are discussed. Accomplishments are also reported in the application of information systems to improve data retrieval, reporting, and archiving; the management of human factors; the use of telescience and teleoperations; and the design and implementation of logistics support for mission operations. This volume covers expert systems, systems development tools and approaches, and systems engineering issues.

  15. Aviation Careers Series: Aviation Maintenance and Avionics

    DOT National Transportation Integrated Search

    1996-01-30

    The NHTSA Office of Crash Avoidance Research is responsible for identifying and developing effective vehicle systems for helping drivers avoid crashes. Our work utilizes the expertise of human factors engineers and psychologists, mechanical engineers...

  16. Enhancing the Human Factors Engineering Role in an Austere Fiscal Environment

    NASA Technical Reports Server (NTRS)

    Stokes, Jack W.

    2003-01-01

    An austere fiscal environment in the aerospace community creates pressures to reduce program costs, often minimizing or sometimes even deleting the human interface requirements from the design process. With an assumption that the flight crew can recover real time from a poorly human factored space vehicle design, the classical crew interface requirements have been either not included in the design or not properly funded, though carried as requirements. Cost cuts have also affected quality of retained human factors engineering personnel. In response to this concern, planning is ongoing to correct the acting issues. Herein are techniques for ensuring that human interface requirements are integrated into a flight design, from proposal through verification and launch activation. This includes human factors requirements refinement and consolidation across flight programs; keyword phrases in the proposals; closer ties with systems engineering and other classical disciplines; early planning for crew-interface verification; and an Agency integrated human factors verification program, under the One NASA theme. Importance is given to communication within the aerospace human factors discipline, and utilizing the strengths of all government, industry, and academic human factors organizations in an unified research and engineering approach. A list of recommendations and concerns are provided in closing.

  17. Therapeutic genome engineering via CRISPR-Cas systems.

    PubMed

    Moreno, Ana M; Mali, Prashant

    2017-07-01

    Differences in genomes underlie most organismal diversity, and aberrations in genomes underlie many disease states. With the growing knowledge of the genetic and pathogenic basis of human disease, development of safe and efficient platforms for genome and epigenome engineering will transform our ability to therapeutically target human diseases and also potentially engineer disease resistance. In this regard, the recent advent of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) RNA-guided nuclease systems have transformed our ability to target nucleic acids. Here we review therapeutic genome engineering applications with a specific focus on the CRISPR-Cas toolsets. We summarize past and current work, and also outline key challenges and future directions. WIREs Syst Biol Med 2017, 9:e1380. doi: 10.1002/wsbm.1380 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  18. Intelligent Systems and Advanced User Interfaces for Design, Operation, and Maintenance of Command Management Systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1998-01-01

    Historically Command Management Systems (CMS) have been large, expensive, spacecraft-specific software systems that were costly to build, operate, and maintain. Current and emerging hardware, software, and user interface technologies may offer an opportunity to facilitate the initial formulation and design of a spacecraft-specific CMS as well as a to develop a more generic or a set of core components for CMS systems. Current MOC (mission operations center) hardware and software include Unix workstations, the C/C++ and Java programming languages, and X and Java window interfaces representations. This configuration provides the power and flexibility to support sophisticated systems and intelligent user interfaces that exploit state-of-the-art technologies in human-machine systems engineering, decision making, artificial intelligence, and software engineering. One of the goals of this research is to explore the extent to which technologies developed in the research laboratory can be productively applied in a complex system such as spacecraft command management. Initial examination of some of the issues in CMS design and operation suggests that application of technologies such as intelligent planning, case-based reasoning, design and analysis tools from a human-machine systems engineering point of view (e.g., operator and designer models) and human-computer interaction tools, (e.g., graphics, visualization, and animation), may provide significant savings in the design, operation, and maintenance of a spacecraft-specific CMS as well as continuity for CMS design and development across spacecraft with varying needs. The savings in this case is in software reuse at all stages of the software engineering process.

  19. Shaping the Future Landscape: Catchment Systems Engineering and the Decision Support Matrix Approach

    NASA Astrophysics Data System (ADS)

    Hewett, Caspar; Quinn, Paul; Wilkinson, Mark; Wainwright, John

    2017-04-01

    Land degradation is widely recognised as one of the great environmental challenges facing humanity today, much of which is directly associated with human activity. The negative impacts of climate change and of the way in which we have engineered the landscape through, for example, agriculture intensification and deforestation, need to be addressed. However, the answer is not a simple matter of doing the opposite of current practice. Nor is non-intervention a viable option. There is a need to bring together approaches from the natural and social sciences both to understand the issues and to act to solve real problems. We propose combining a Catchment Systems Engineering (CSE) approach that builds on existing approaches such as Natural Water Retention Measures, Green infrastructure and Nature-Based Solutions with a multi-scale framework for decision support that has been successfully applied to diffuse pollution and flood risk management. The CSE philosophy follows that of Earth Systems Engineering and Management, which aims to engineer and manage complex coupled human-natural systems in a highly integrated, rational manner. CSE is multi-disciplinary, and necessarily involves a wide range of subject areas including anthropology, engineering, environmental science, ethics and philosophy. It offers a rational approach which accepts the fact that we need to engineer and act to improve the functioning of the existing catchment entity on which we rely. The decision support framework proposed draws on physical and mathematical modelling; Participatory Action Research; and demonstration sites at which practical interventions are implemented. It is predicated on the need to work with stakeholders to co-produce knowledge that leads to proactive interventions to reverse the land degradation we observe today while sustaining the agriculture humanity needs. The philosophy behind CSE and examples of where it has been applied successfully are presented. The Decision Support Matrix (DSM) approach is introduced as a way to engage stakeholders at all scales, helping to inform decision making and motivate intervention. Two existing visualization and communication tools produced using the DSM approach are discussed: The FARM (Floods and Agriculture Risk Matrix) and CAVERTI (Communication And Visualizing Erosion-associated Risks to Infrastructure). Such tools can play a central role in encouraging a more holistic engineering approach to managing catchment system function that combines food production with a reversal of land degradation, providing a 'win-win' situation for all.

  20. Human factors opportunities to improve Ohio's transportation system : final report, June 2005.

    DOT National Transportation Integrated Search

    2005-06-01

    The aim of this study was to identify opportunities to apply human factors principles and research to improve : Ohios transportation system. The Office of Traffic Engineering assigned thirteen topic areas to provide information : and the study was...

  1. Human factor studies in evaluation of automated highway system attributes

    DOT National Transportation Integrated Search

    1997-01-01

    The goal of the Automated Highway System (AHS) is to blend engineering : ingenuity and technology to produce a new level of transportation services. : Human factors are difficult to integrate with AHS design because : they represent a variety of trai...

  2. Human-Systems Integration (HSI) and the Network Integration Evaluations (NIEs), Part 3: Mitigating Cognitive Load in Network-Enabled Mission Command

    DTIC Science & Technology

    2016-06-01

    ARL-TR-7698 ● JUNE 2016 US Army Research Laboratory Human -Systems Integration (HSI) and the Network Integration Evaluations...ARL-TR-7698 ● JUNE 2016 US Army Research Laboratory Human -Systems Integration (HSI) and the Network Integration Evaluations (NIEs), Part 3...Mitigating Cognitive Load in Network-Enabled Mission Command by John K Hawley Human Research and Engineering Directorate, ARL Michael W

  3. NASA Project Constellation Systems Engineering Approach

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2005-01-01

    NASA's Office of Exploration Systems (OExS) is organized to empower the Vision for Space Exploration with transportation systems that result in achievable, affordable, and sustainable human and robotic journeys to the Moon, Mars, and beyond. In the process of delivering these capabilities, the systems engineering function is key to implementing policies, managing mission requirements, and ensuring technical integration and verification of hardware and support systems in a timely, cost-effective manner. The OExS Development Programs Division includes three main areas: (1) human and robotic technology, (2) Project Prometheus for nuclear propulsion development, and (3) Constellation Systems for space transportation systems development, including a Crew Exploration Vehicle (CEV). Constellation Systems include Earth-to-orbit, in-space, and surface transportation systems; maintenance and science instrumentation; and robotic investigators and assistants. In parallel with development of the CEV, robotic explorers will serve as trailblazers to reduce the risk and costs of future human operations on the Moon, as well as missions to other destinations, including Mars. Additional information is included in the original extended abstract.

  4. System Engineering of Autonomous Space Vehicles

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Johnson, Stephen B.; Trevino, Luis

    2014-01-01

    Human exploration of the solar system requires fully autonomous systems when travelling more than 5 light minutes from Earth. This autonomy is necessary to manage a large, complex spacecraft with limited crew members and skills available. The communication latency requires the vehicle to deal with events with only limited crew interaction in most cases. The engineering of these systems requires an extensive knowledge of the spacecraft systems, information theory, and autonomous algorithm characteristics. The characteristics of the spacecraft systems must be matched with the autonomous algorithm characteristics to reliably monitor and control the system. This presents a large system engineering problem. Recent work on product-focused, elegant system engineering will be applied to this application, looking at the full autonomy stack, the matching of autonomous systems to spacecraft systems, and the integration of different types of algorithms. Each of these areas will be outlined and a general approach defined for system engineering to provide the optimal solution to the given application context.

  5. An Introductory Description of the ILLIAC IV System. Volume 1

    DTIC Science & Technology

    1971-07-15

    Difference Engine and Analytical Engine ■’’.! a. The Difference Engine M In 1812, when Charles Babbage was an undergraduate at Trinity- College...numbers, thus eliminating the possibility of a human transcription error. Babbage fabricated a small Difference Engine which could tabu- late a...decimal digits. His ambitious project was never com- pleted. Work stopped in 1833 when Babbage ran into financial difficulties with his engineer who

  6. Towards organ printing: engineering an intra-organ branched vascular tree

    PubMed Central

    Visconti, Richard P; Kasyanov, Vladimir; Gentile, Carmine; Zhang, Jing; Markwald, Roger R; Mironov, Vladimir

    2013-01-01

    Importance of the field Effective vascularization of thick three-dimensional engineered tissue constructs is a problem in tissue engineering. As in native organs, a tissue-engineered intra-organ vascular tree must be comprised of a network of hierarchically branched vascular segments. Despite this requirement, current tissue-engineering efforts are still focused predominantly on engineering either large-diameter macrovessels or microvascular networks. Areas covered in this review We present the emerging concept of organ printing or robotic additive biofabrication of an intra-organ branched vascular tree, based on the ability of vascular tissue spheroids to undergo self-assembly. What the reader will gain The feasibility and challenges of this robotic biofabrication approach to intra-organ vascularization for tissue engineering based on organ-printing technology using self-assembling vascular tissue spheroids including clinically relevantly vascular cell sources are analyzed. Take home message It is not possible to engineer 3D thick tissue or organ constructs without effective vascularization. An effective intra-organ vascular system cannot be built by the simple connection of large-diameter vessels and microvessels. Successful engineering of functional human organs suitable for surgical implantation will require concomitant engineering of a ‘built in’ intra-organ branched vascular system. Organ printing enables biofabrication of human organ constructs with a ‘built in’ intra-organ branched vascular tree. PMID:20132061

  7. Morphology of Design of Aerospace Systems with Inclusion of Human Factors

    DTIC Science & Technology

    1977-08-01

    Alternatives," AFHRL-TR-71-52, AD-741 766. Wright- Patterson AFB, OH: Advanced Systems Division, Air Force Human Resources Iaboratory; December 1971. 3...Askren, W.B., "Human Resources and Personnel Cost Deta in System Design Tradeoffs," AFHRL-TR-73-46, AD-770 737, Wright- Patterson AFB, OH: Advanced...Studies," Human Factors, February 1975, 17(0), pp. 4-12. 5 Askren, W.B., "Human Resources as Engineering Design Criteria," AFHRL-TR-76-1, Wright- Patterson

  8. Representing Human Expertise by the OWL Web Ontology Language to Support Knowledge Engineering in Decision Support Systems.

    PubMed

    Ramzan, Asia; Wang, Hai; Buckingham, Christopher

    2014-01-01

    Clinical decision support systems (CDSSs) often base their knowledge and advice on human expertise. Knowledge representation needs to be in a format that can be easily understood by human users as well as supporting ongoing knowledge engineering, including evolution and consistency of knowledge. This paper reports on the development of an ontology specification for managing knowledge engineering in a CDSS for assessing and managing risks associated with mental-health problems. The Galatean Risk and Safety Tool, GRiST, represents mental-health expertise in the form of a psychological model of classification. The hierarchical structure was directly represented in the machine using an XML document. Functionality of the model and knowledge management were controlled using attributes in the XML nodes, with an accompanying paper manual for specifying how end-user tools should behave when interfacing with the XML. This paper explains the advantages of using the web-ontology language, OWL, as the specification, details some of the issues and problems encountered in translating the psychological model to OWL, and shows how OWL benefits knowledge engineering. The conclusions are that OWL can have an important role in managing complex knowledge domains for systems based on human expertise without impeding the end-users' understanding of the knowledge base. The generic classification model underpinning GRiST makes it applicable to many decision domains and the accompanying OWL specification facilitates its implementation.

  9. Control system software, simulation, and robotic applications

    NASA Technical Reports Server (NTRS)

    Frisch, Harold P.

    1991-01-01

    All essential existing capabilities needed to create a man-machine interaction dynamics and performance (MMIDAP) capability are reviewed. The multibody system dynamics software program Order N DISCOS will be used for machine and musculo-skeletal dynamics modeling. The program JACK will be used for estimating and animating whole body human response to given loading situations and motion constraints. The basic elements of performance (BEP) task decomposition methodologies associated with the Human Performance Institute database will be used for performance assessment. Techniques for resolving the statically indeterminant muscular load sharing problem will be used for a detailed understanding of potential musculotendon or ligamentous fatigue, pain, discomfort, and trauma. The envisioned capacity is to be used for mechanical system design, human performance assessment, extrapolation of man/machine interaction test data, biomedical engineering, and soft prototyping within a concurrent engineering (CE) system.

  10. Improving air traffic control: Proving new tools or approving the joint human-machine system?

    NASA Technical Reports Server (NTRS)

    Gaillard, Irene; Leroux, Marcel

    1994-01-01

    From the description of a field problem (i.e., designing decision aids for air traffic controllers), this paper points out how a cognitive engineering approach provides the milestones for the evaluation of future joint human-machine systems.

  11. The Emergence of Land Use as a Global Force in the Earth System

    NASA Astrophysics Data System (ADS)

    Ellis, E. C.

    2015-12-01

    Human societies have emerged as a global force capable of transforming the biosphere, hydrosphere, lithosphere, atmosphere and climate. As a result, the long-term dynamics of the Earth system can no longer be understood or predicted without understanding their coupling with human societal dynamics. Here, a general causal theory is presented to explain why behaviorally modern humans, unlike any prior multicellular species, gained this unprecedented capacity to reshape the Earth system and how this societal capacity has changed from the Pleistocene to the present and future. Sociocultural niche construction theory, building on existing theories of ecosystem engineering, niche construction, the extended evolutionary synthesis, cultural evolution, ultrasociality and social change, can explain both the long-term upscaling of human societies and their unprecedented capacity to transform the Earth system. Regime shifts in human sociocultural niche construction, from the clearing of land using fire, to shifting cultivation, to intensive agriculture, to global food systems dependent on fossil fuel combustion, have enabled human societies to scale up while gaining the capacity to reshape the global patterns and processes of biogeography, ecosystems, landscapes, biomes, the biosphere, and ultimately the functioning of the Earth system. Just as Earth's geophysical climate system shapes the long-term dynamics of energy and material flow across the "spheres" of the Earth system, human societies, interacting at global scale to form "human systems", are increasingly shaping the global dynamics of energy, material, biotic and information flow across the spheres of the Earth system, including a newly emerged anthroposphere comprised of human societies and their material cultures. Human systems and the anthroposphere are strongly coupled with climate and other Earth systems and are dynamic in response to evolutionary changes in human social organization, cooperative ecosystem engineering, non-kin exchange relationships, and energy systems. It is hoped that intentional societal efforts to alter the dynamics of human systems can ultimately move Earth systems towards more beneficial and less detrimental outcomes for both human societies and nonhuman species.

  12. Effects of Human Factors in Engineering and Design for Teaching Mathematics: A Comparison Study of Online and Face-to-Face at a Technical College

    ERIC Educational Resources Information Center

    Mativo, John M.; Hill, Roger B.; Godfrey, Paul W.

    2013-01-01

    The focus of this study was to examine four characteristics for successful and unsuccessful students enrolled in basic mathematics courses at a technical college. The characteristics, considered to be in part effects of human factors in engineering and design, examined the preferred learning styles, computer information systems competency,…

  13. Socio-Technical Perspective on Interdisciplinary Interactions During the Development of Complex Engineered Systems

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria R.; Daly, Shanna; Baker, Wayne; Papalambros, panos; Seifert, Colleen

    2013-01-01

    This study investigates interdisciplinary interactions that take place during the research, development, and early conceptual design phases in the design of large-scale complex engineered systems (LaCES) such as aerospace vehicles. These interactions, that take place throughout a large engineering development organization, become the initial conditions of the systems engineering process that ultimately leads to the development of a viable system. This paper summarizes some of the challenges and opportunities regarding social and organizational issues that emerged from a qualitative study using ethnographic and survey data. The analysis reveals several socio-technical couplings between the engineered system and the organization that creates it. Survey respondents noted the importance of interdisciplinary interactions and their benefits to the engineered system as well as substantial challenges in interdisciplinary interactions. Noted benefits included enhanced knowledge and problem mitigation and noted obstacles centered on organizational and human dynamics. Findings suggest that addressing the social challenges may be a critical need in enabling interdisciplinary interactions

  14. Bridging the Engineering and Medicine Gap

    NASA Technical Reports Server (NTRS)

    Walton, M.; Antonsen, E.

    2018-01-01

    A primary challenge NASA faces is communication between the disparate entities of engineers and human system experts in life sciences. Clear communication is critical for exploration mission success from the perspective of both risk analysis and data handling. The engineering community uses probabilistic risk assessment (PRA) models to inform their own risk analysis and has extensive experience managing mission data, but does not always fully consider human systems integration (HSI). The medical community, as a part of HSI, has been working 1) to develop a suite of tools to express medical risk in quantitative terms that are relatable to the engineering approaches commonly in use, and 2) to manage and integrate HSI data with engineering data. This talk will review the development of the Integrated Medical Model as an early attempt to bridge the communication gap between the medical and engineering communities in the language of PRA. This will also address data communication between the two entities in the context of data management considerations of the Medical Data Architecture. Lessons learned from these processes will help identify important elements to consider in future communication and integration of these two groups.

  15. Human error and human factors engineering in health care.

    PubMed

    Welch, D L

    1997-01-01

    Human error is inevitable. It happens in health care systems as it does in all other complex systems, and no measure of attention, training, dedication, or punishment is going to stop it. The discipline of human factors engineering (HFE) has been dealing with the causes and effects of human error since the 1940's. Originally applied to the design of increasingly complex military aircraft cockpits, HFE has since been effectively applied to the problem of human error in such diverse systems as nuclear power plants, NASA spacecraft, the process control industry, and computer software. Today the health care industry is becoming aware of the costs of human error and is turning to HFE for answers. Just as early experimental psychologists went beyond the label of "pilot error" to explain how the design of cockpits led to air crashes, today's HFE specialists are assisting the health care industry in identifying the causes of significant human errors in medicine and developing ways to eliminate or ameliorate them. This series of articles will explore the nature of human error and how HFE can be applied to reduce the likelihood of errors and mitigate their effects.

  16. Muscular dystrophy in a dish: engineered human skeletal muscle mimetics for disease modeling and drug discovery

    PubMed Central

    Smith, Alec S.T.; Davis, Jennifer; Lee, Gabsang; Mack, David L.

    2016-01-01

    Engineered in vitro models using human cells, particularly patient-derived induced pluripotent stem cells (iPSCs), offer a potential solution to issues associated with the use of animals for studying disease pathology and drug efficacy. Given the prevalence of muscle diseases in human populations, an engineered tissue model of human skeletal muscle could provide a biologically accurate platform to study basic muscle physiology, disease progression, and drug efficacy and/or toxicity. Such platforms could be used as phenotypic drug screens to identify compounds capable of alleviating or reversing congenital myopathies, such as Duchene muscular dystrophy (DMD). Here, we review current skeletal muscle modeling technologies with a specific focus on efforts to generate biomimetic systems for investigating the pathophysiology of dystrophic muscle. PMID:27109386

  17. What Do We Really Need? Visions of an Ideal Human-Machine Interface for NOTES Mechatronic Support Systems From the View of Surgeons, Gastroenterologists, and Medical Engineers.

    PubMed

    Kranzfelder, Michael; Schneider, Armin; Fiolka, Adam; Koller, Sebastian; Wilhelm, Dirk; Reiser, Silvano; Meining, Alexander; Feussner, Hubertus

    2015-08-01

    To investigate why natural orifice translumenal endoscopic surgery (NOTES) has not yet become widely accepted and to prove whether the main reason is still the lack of appropriate platforms due to the deficiency of applicable interfaces. To assess expectations of a suitable interface design, we performed a survey on human-machine interfaces for NOTES mechatronic support systems among surgeons, gastroenterologists, and medical engineers. Of 120 distributed questionnaires, each consisting of 14 distinct questions, 100 (83%) were eligible for analysis. A mechatronic platform for NOTES was considered "important" by 71% of surgeons, 83% of gastroenterologist,s and 56% of medical engineers. "Intuitivity" and "simple to use" were the most favored aspects (33% to 51%). Haptic feedback was considered "important" by 70% of participants. In all, 53% of surgeons, 50% of gastroenterologists, and 33% of medical engineers already had experience with NOTES platforms or other surgical robots; however, current interfaces only met expectations in just more than 50%. Whereas surgeons did not favor a certain working posture, gastroenterologists and medical engineers preferred a sitting position. Three-dimensional visualization was generally considered "nice to have" (67% to 72%); however, for 26% of surgeons, 17% of gastroenterologists, and 7% of medical engineers it did not matter (P = 0.018). Requests and expectations of human-machine interfaces for NOTES seem to be generally similar for surgeons, gastroenterologist, and medical engineers. Consensus exists on the importance of developing interfaces that should be both intuitive and simple to use, are similar to preexisting familiar instruments, and exceed current available systems. © The Author(s) 2014.

  18. Development of a Prototype Human Resources Data Handbook for Systems Engineering: An Application to Fire Control Systems. Final Report for Period October 1971-June 1975.

    ERIC Educational Resources Information Center

    Reed, Lawrence E.; And Others

    The methods and problems encountered in the development of a prototype human resources data handbook are discussed. The goal of the research was to determine whether it was feasible to consolidate, in a single comprehensive handbook, human resources data applicable to system design and development. Selected for this purpose were data on the…

  19. Use of Human Modeling Simulation Software in the Task Analysis of the Environmental Control and Life Support System Component Installation Procedures

    NASA Technical Reports Server (NTRS)

    Estes, Samantha; Parker, Nelson C. (Technical Monitor)

    2001-01-01

    Virtual reality and simulation applications are becoming widespread in human task analysis. These programs have many benefits for the Human Factors Engineering field. Not only do creating and using virtual environments for human engineering analyses save money and time, this approach also promotes user experimentation and provides increased quality of analyses. This paper explains the human engineering task analysis performed on the Environmental Control and Life Support System (ECLSS) space station rack and its Distillation Assembly (DA) subsystem using EAI's human modeling simulation software, Jack. When installed on the International Space Station (ISS), ECLSS will provide the life and environment support needed to adequately sustain crew life. The DA is an Orbital Replaceable Unit (ORU) that provides means of wastewater (primarily urine from flight crew and experimental animals) reclamation. Jack was used to create a model of the weightless environment of the ISS Node 3, where the ECLSS is housed. Computer aided drawings of the ECLSS rack and DA system were also brought into the environment. Anthropometric models of a 95th percentile male and 5th percentile female were used to examine the human interfaces encountered during various ECLSS and DA tasks. The results of the task analyses were used in suggesting modifications to hardware and crew task procedures to improve accessibility, conserve crew time, and add convenience for the crew. This paper will address some of those suggested modifications and the method of presenting final analyses for requirements verification.

  20. Final RS-25 Engine Test of the Summer

    NASA Image and Video Library

    2017-08-30

    On Aug. 30, engineers at our Stennis Space Center wrapped up a summer of hot fire testing for flight controllers on RS-25 engines that will help power the new Space Launch System rocket being built to carry astronauts to deep-space destinations, including Mars. The 500-second hot fire of a flight controller or “brain” of the engine marked another step toward the nation’s return to human deep-space exploration missions. Four RS-25 engines, equipped with flight-worthy controllers will help power the first integrated flight of our Space Launch System rocket with our Orion spacecraft, known as Exploration Mission One.

  1. A Human Factors Perspective on Alarm System Research and Development 2000 to 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curt Braun; John Grimes; Eric Shaver

    By definition, alarms serve to notify human operators of out-of-parameter conditions that could threaten equipment, the environment, product quality and, of course, human life. Given the complexities of industrial systems, human machine interfaces, and the human operator, the understanding of how alarms and humans can best work together to prevent disaster is continually developing. This review examines advances in alarm research and development from 2000 to 2010 and includes the writings of trade professionals, engineering and human factors researchers, and standards organizations with the goal of documenting advances in alarms system design, research, and implementation.

  2. Human Systems Engineering for Launch processing at Kennedy Space Center (KSC)

    NASA Technical Reports Server (NTRS)

    Henderson, Gena; Stambolian, Damon B.; Stelges, Katrine

    2012-01-01

    Launch processing at Kennedy Space Center (KSC) is primarily accomplished by human users of expensive and specialized equipment. In order to reduce the likelihood of human error, to reduce personal injuries, damage to hardware, and loss of mission the design process for the hardware needs to include the human's relationship with the hardware. Just as there is electrical, mechanical, and fluids, the human aspect is just as important. The focus of this presentation is to illustrate how KSC accomplishes the inclusion of the human aspect in the design using human centered hardware modeling and engineering. The presentations also explain the current and future plans for research and development for improving our human factors analysis tools and processes.

  3. Human Centered Hardware Modeling and Collaboration

    NASA Technical Reports Server (NTRS)

    Stambolian Damon; Lawrence, Brad; Stelges, Katrine; Henderson, Gena

    2013-01-01

    In order to collaborate engineering designs among NASA Centers and customers, to in clude hardware and human activities from multiple remote locations, live human-centered modeling and collaboration across several sites has been successfully facilitated by Kennedy Space Center. The focus of this paper includes innovative a pproaches to engineering design analyses and training, along with research being conducted to apply new technologies for tracking, immersing, and evaluating humans as well as rocket, vehic le, component, or faci lity hardware utilizing high resolution cameras, motion tracking, ergonomic analysis, biomedical monitoring, wor k instruction integration, head-mounted displays, and other innovative human-system integration modeling, simulation, and collaboration applications.

  4. Decision Support System Requirements Definition for Human Extravehicular Activity Based on Cognitive Work Analysis

    PubMed Central

    Miller, Matthew James; McGuire, Kerry M.; Feigh, Karen M.

    2016-01-01

    The design and adoption of decision support systems within complex work domains is a challenge for cognitive systems engineering (CSE) practitioners, particularly at the onset of project development. This article presents an example of applying CSE techniques to derive design requirements compatible with traditional systems engineering to guide decision support system development. Specifically, it demonstrates the requirements derivation process based on cognitive work analysis for a subset of human spaceflight operations known as extravehicular activity. The results are presented in two phases. First, a work domain analysis revealed a comprehensive set of work functions and constraints that exist in the extravehicular activity work domain. Second, a control task analysis was performed on a subset of the work functions identified by the work domain analysis to articulate the translation of subject matter states of knowledge to high-level decision support system requirements. This work emphasizes an incremental requirements specification process as a critical component of CSE analyses to better situate CSE perspectives within the early phases of traditional systems engineering design. PMID:28491008

  5. Decision Support System Requirements Definition for Human Extravehicular Activity Based on Cognitive Work Analysis.

    PubMed

    Miller, Matthew James; McGuire, Kerry M; Feigh, Karen M

    2017-06-01

    The design and adoption of decision support systems within complex work domains is a challenge for cognitive systems engineering (CSE) practitioners, particularly at the onset of project development. This article presents an example of applying CSE techniques to derive design requirements compatible with traditional systems engineering to guide decision support system development. Specifically, it demonstrates the requirements derivation process based on cognitive work analysis for a subset of human spaceflight operations known as extravehicular activity . The results are presented in two phases. First, a work domain analysis revealed a comprehensive set of work functions and constraints that exist in the extravehicular activity work domain. Second, a control task analysis was performed on a subset of the work functions identified by the work domain analysis to articulate the translation of subject matter states of knowledge to high-level decision support system requirements. This work emphasizes an incremental requirements specification process as a critical component of CSE analyses to better situate CSE perspectives within the early phases of traditional systems engineering design.

  6. Assessment for Operator Confidence in Automated Space Situational Awareness and Satellite Control Systems

    NASA Astrophysics Data System (ADS)

    Gorman, J.; Voshell, M.; Sliva, A.

    2016-09-01

    The United States is highly dependent on space resources to support military, government, commercial, and research activities. Satellites operate at great distances, observation capacity is limited, and operator actions and observations can be significantly delayed. Safe operations require support systems that provide situational understanding, enhance decision making, and facilitate collaboration between human operators and system automation both in-the-loop, and on-the-loop. Joint cognitive systems engineering (JCSE) provides a rich set of methods for analyzing and informing the design of complex systems that include both human decision-makers and autonomous elements as coordinating teammates. While, JCSE-based systems can enhance a system analysts' understanding of both existing and new system processes, JCSE activities typically occur outside of traditional systems engineering (SE) methods, providing sparse guidance about how systems should be implemented. In contrast, the Joint Director's Laboratory (JDL) information fusion model and extensions, such as the Dual Node Network (DNN) technical architecture, provide the means to divide and conquer such engineering and implementation complexity, but are loosely coupled to specialized organizational contexts and needs. We previously describe how Dual Node Decision Wheels (DNDW) extend the DNN to integrate JCSE analysis and design with the practicalities of system engineering and implementation using the DNN. Insights from Rasmussen's JCSE Decision Ladders align system implementation with organizational structures and processes. In the current work, we present a novel approach to assessing system performance based on patterns occurring in operational decisions that are documented by JCSE processes as traces in a decision ladder. In this way, system assessment is closely tied not just to system design, but the design of the joint cognitive system that includes human operators, decision-makers, information systems, and automated processes. Such operationally relevant and integrated testing provides a sound foundation for operator trust in system automation that is required to safely operate satellite systems.

  7. Creating a monomeric endonuclease TALE-I-SceI with high specificity and low genotoxicity in human cells.

    PubMed

    Lin, Jianfei; Chen, He; Luo, Ling; Lai, Yongrong; Xie, Wei; Kee, Kehkooi

    2015-01-01

    To correct a DNA mutation in the human genome for gene therapy, homology-directed repair (HDR) needs to be specific and have the lowest off-target effects to protect the human genome from deleterious mutations. Zinc finger nucleases, transcription activator-like effector nuclease (TALEN) and CRISPR-CAS9 systems have been engineered and used extensively to recognize and modify specific DNA sequences. Although TALEN and CRISPR/CAS9 could induce high levels of HDR in human cells, their genotoxicity was significantly higher. Here, we report the creation of a monomeric endonuclease that can recognize at least 33 bp by fusing the DNA-recognizing domain of TALEN (TALE) to a re-engineered homing endonuclease I-SceI. After sequentially re-engineering I-SceI to recognize 18 bp of the human β-globin sequence, the re-engineered I-SceI induced HDR in human cells. When the re-engineered I-SceI was fused to TALE (TALE-ISVB2), the chimeric endonuclease induced the same HDR rate at the human β-globin gene locus as that induced by TALEN, but significantly reduced genotoxicity. We further demonstrated that TALE-ISVB2 specifically targeted at the β-globin sequence in human hematopoietic stem cells. Therefore, this monomeric endonuclease has the potential to be used in therapeutic gene targeting in human cells. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Intelligent Mining Engineering Systems in the Structure of Industry 4.0

    NASA Astrophysics Data System (ADS)

    Rylnikova, Marina; Radchenko, Dmitriy; Klebanov, Dmitriy

    2017-11-01

    The solution of the problem of improving the human environment and working conditions at mines is based on the provision of the rationale of parameters and conditions for the implementation of an environmentally balanced cycle of comprehensive development of mineral deposits on the basis of the design of mining engineering systems characterized by the minimization of the human factor effect in danger zones of mining operations. In this area, robotized technologies are being developed, machinery and mechanisms with the elements of artificial intelligence, and mining and transport system automatic controls are being put into service throughout the world. In the upcoming decades, mining machines and mechanisms will be virtually industrial robots. The article presents the results of zoning of open-pit and underground mine production areas, as well as mining engineering system of combined development depending on the fact and periodicity of human presence in zones of mining processes. As a surface geotechnology case study, the software structure based on a modular concept is described. The performance philosophy of mining and transport equipment with the elements of artificial intelligence is shown when it is put into service in an open pit.

  9. Guidance, Navigation and Control (GN&C): Best Practices for Human-Rated Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    Lebsock, Ken; West, John

    2008-01-01

    In 2007 the NESC completed an in-depth assessment to identify, define and document engineering considerations for the Design Development Test and Evaluation (DDT&E) of human-rated spacecraft systems. This study had been requested by the Astronaut Office at JSC to help them to better understand what is required to ensure safe, robust, and reliable human-rated spacecraft systems. The 22 GN&C engineering Best Practices described in this paper are a condensed version of what appears in the NESC Technical Report. These Best Practices cover a broad range from fundamental system architectural considerations to more specific aspects (e.g., stability margin recommendations) of GN&C system design and development. 15 of the Best Practices address the early phases of a GN&C System development project and the remaining 7 deal with the later phases. Some of these Best Practices will cross-over between both phases. We recognize that this set of GN&C Best Practices will not be universally applicable to all projects and mission applications.

  10. Translating Vision into Design: A Method for Conceptual Design Development

    NASA Technical Reports Server (NTRS)

    Carpenter, Joyce E.

    2003-01-01

    One of the most challenging tasks for engineers is the definition of design solutions that will satisfy high-level strategic visions and objectives. Even more challenging is the need to demonstrate how a particular design solution supports the high-level vision. This paper describes a process and set of system engineering tools that have been used at the Johnson Space Center to analyze and decompose high-level objectives for future human missions into design requirements that can be used to develop alternative concepts for vehicles, habitats, and other systems. Analysis and design studies of alternative concepts and approaches are used to develop recommendations for strategic investments in research and technology that support the NASA Integrated Space Plan. In addition to a description of system engineering tools, this paper includes a discussion of collaborative design practices for human exploration mission architecture studies used at the Johnson Space Center.

  11. Tissue engineering skeletal muscle for orthopaedic applications

    NASA Technical Reports Server (NTRS)

    Payumo, Francis C.; Kim, Hyun D.; Sherling, Michael A.; Smith, Lee P.; Powell, Courtney; Wang, Xiao; Keeping, Hugh S.; Valentini, Robert F.; Vandenburgh, Herman H.

    2002-01-01

    With current technology, tissue-engineered skeletal muscle analogues (bioartificial muscles) generate too little active force to be clinically useful in orthopaedic applications. They have been engineered genetically with numerous transgenes (growth hormone, insulinlike growth factor-1, erythropoietin, vascular endothelial growth factor), and have been shown to deliver these therapeutic proteins either locally or systemically for months in vivo. Bone morphogenetic proteins belonging to the transforming growth factor-beta superfamily are osteoinductive molecules that drive the differentiation pathway of mesenchymal cells toward the chondroblastic or osteoblastic lineage, and stimulate bone formation in vivo. To determine whether skeletal muscle cells endogenously expressing bone morphogenetic proteins might serve as a vehicle for systemic bone morphogenetic protein delivery in vivo, proliferating skeletal myoblasts (C2C12) were transduced with a replication defective retrovirus containing the gene for recombinant human bone morphogenetic protein-6 (C2BMP-6). The C2BMP-6 cells constitutively expressed recombinant human bone morphogenetic protein-6 and synthesized bioactive recombinant human bone morphogenetic protein-6, based on increased alkaline phosphatase activity in coincubated mesenchymal cells. C2BMP-6 cells did not secrete soluble, bioactive recombinant human bone morphogenetic protein-6, but retained the bioactivity in the cell layer. Therefore, genetically-engineered skeletal muscle cells might serve as a platform for long-term delivery of osteoinductive bone morphogenetic proteins locally.

  12. Understanding and Managing Causality of Change in Socio-Technical Systems II

    DTIC Science & Technology

    2011-01-25

    SUBJECT TERMS Cognition , Human Effectiveness, Information Science 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18...at large taking into account the cognitive interaction between humans and technology. 8 Hussein Abbass Professor Abbass leads the...Network Centric Operations Future Air Traffic Management Systems Cognitive Engineering including Human-Computer Integration In all of the

  13. Science of Test Research Consortium: Year Two Final Report

    DTIC Science & Technology

    2012-10-02

    July 2012. Analysis of an Intervention for Small Unmanned Aerial System ( SUAS ) Accidents, submitted to Quality Engineering, LQEN-2012-0056. Stone... Systems Engineering. Wolf, S. E., R. R. Hill, and J. J. Pignatiello. June 2012. Using Neural Networks and Logistic Regression to Model Small Unmanned ...Human Retina. 6. Wolf, S. E. March 2012. Modeling Small Unmanned Aerial System Mishaps using Logistic Regression and Artificial Neural Networks. 7

  14. Simplified Daylight Spectrum Approximation by Blending Two Light Emitting Diode Sources

    DTIC Science & Technology

    2012-03-01

    Iota Epsilon (SIE). Michael E. Miller, PhD is an Assistant Professor of Human Systems Integration at the Air Force Institute of Technology. His...USA. Dr Grimaila’s research interests include mission assurance, network management 49 and security , quantum information warfare, and systems...Engineers (SAME) and Sigma Iota Epsilon (SIE). John Colombi, Ph.D. is an Assistant Professor of Systems Engineering at the Air Force Institute of

  15. Human Factors Engineering: Current and Emerging Dual-Use Applications

    NASA Technical Reports Server (NTRS)

    Chandlee, G. O.; Goldsberry, B. S.

    1994-01-01

    Human Factors Engineering is a multidisciplinary endeavor in which information pertaining to human characteristics is used in the development of systems and machines. Six representatives considered to be experts from the public and private sectors were surveyed in an effort to identify the potential dual-use of human factors technology. Each individual was asked to provide a rating as to the dual-use of 85 identified NASA technologies. Results of the survey were as follows: nearly 75 percent of the technologies were identified at least once as high dual-use by one of the six survey respondents, and nearly 25 percent of the identified NASA technologies were identified as high dual-use technologies by a majority of the respondents. The perceived level of dual-use appeared to be independent of the technology category. Successful identification of dual-use technology requires expanded input from industry. As an adjunct, cost-benefit analysis should be conducted to identify the feasibility of the dual-use technology. Concurrent with this effort should be an examination of precedents established by other technologies in other industrial settings. Advances in human factors and systems engineering are critical to reduce risk in any workplace and to enhance industrial competitiveness.

  16. Systems Engineering and Integration for Technology Programs

    NASA Technical Reports Server (NTRS)

    Kennedy, Kruss J.

    2006-01-01

    The Architecture, Habitability & Integration group (AH&I) is a system engineering and integration test team within the NASA Crew and Thermal Systems Division (CTSD) at Johnson Space Center. AH&I identifies and resolves system-level integration issues within the research and technology development community. The timely resolution of these integration issues is fundamental to the development of human system requirements and exploration capability. The integration of the many individual components necessary to construct an artificial environment is difficult. The necessary interactions between individual components and systems must be approached in a piece-wise fashion to achieve repeatable results. A formal systems engineering (SE) approach to define, develop, and integrate quality systems within the life support community has been developed. This approach will allow a Research & Technology Program to systematically approach the development, management, and quality of technology deliverables to the various exploration missions. A tiered system engineering structure has been proposed to implement best systems engineering practices across all development levels from basic research to working assemblies. These practices will be implemented through a management plan across all applicable programs, projects, elements and teams. While many of the engineering practices are common to other industries, the implementation is specific to technology development. An accounting of the systems engineering management philosophy will be discussed and the associated programmatic processes will be presented.

  17. Mechanical Stimulation of Adipose-Derived Stem Cells for Functional Tissue Engineering of the Musculoskeletal System via Cyclic Hydrostatic Pressure, Simulated Microgravity, and Cyclic Tensile Strain.

    PubMed

    Nordberg, Rachel C; Bodle, Josie C; Loboa, Elizabeth G

    2018-01-01

    It is critical that human adipose stem cell (hASC) tissue-engineering therapies possess appropriate mechanical properties in order to restore function of the load bearing tissues of the musculoskeletal system. In an effort to elucidate the hASC response to mechanical stimulation and develop mechanically robust tissue engineered constructs, recent research has utilized a variety of mechanical loading paradigms including cyclic tensile strain, cyclic hydrostatic pressure, and mechanical unloading in simulated microgravity. This chapter describes methods for applying these mechanical stimuli to hASC to direct differentiation for functional tissue engineering of the musculoskeletal system.

  18. In vitro fabrication of a tissue engineered human cardiovascular patch for future use in cardiovascular surgery.

    PubMed

    Yang, Chao; Sodian, Ralf; Fu, Ping; Lüders, Cora; Lemke, Thees; Du, Jing; Hübler, Michael; Weng, Yuguo; Meyer, Rudolf; Hetzer, Roland

    2006-01-01

    One approach to tissue engineering has been the development of in vitro conditions for the fabrication of functional cardiovascular structures intended for implantation. In this experiment, we developed a pulsatile flow system that provides biochemical and biomechanical signals in order to regulate autologous, human patch-tissue development in vitro. We constructed a biodegradable patch scaffold from porous poly-4-hydroxy-butyrate (P4HB; pore size 80 to 150 microm). The scaffold was seeded with pediatric aortic cells. The cell-seeded patch constructs were placed in a self-developed bioreactor for 7 days to observe potential tissue formation under dynamic cell culture conditions. As a control, cell-seeded scaffolds were not conditioned in the bioreactor system. After maturation in vitro, the analysis of the tissue engineered constructs included biochemical, biomechanical, morphologic, and immunohistochemical examination. Macroscopically, all tissue engineered constructs were covered by cells. After conditioning in the bioreactor, the cells were mostly viable, had grown into the pores, and had formed tissue on the patch construct. Electron microscopy showed confluent smooth surfaces. Additionally, we demonstrated the capacity to generate collagen and elastin under in vitro pulsatile flow conditions in biochemical examination. Biomechanical testing showed mechanical properties of the tissue engineered human patch tissue without any statistical differences in strength or resistance to stretch between the static controls and the conditioned patches. Immunohistochemical examination stained positive for alpha smooth muscle actin, collagen type I, and fibronectin. There was minor tissue formation in the nonconditioned control samples. Porous P4HB may be used to fabricate a biodegradable patch scaffold. Human vascular cells attached themselves to the polymeric scaffold, and extracellular matrix formation was induced under controlled biomechanical and biodynamic stimuli in a self-developed pulsatile bioreactor system.

  19. Biologically-Inspired Concepts for Autonomic Self-Protection in Multiagent Systems

    NASA Technical Reports Server (NTRS)

    Sterritt, Roy; Hinchey, Mike

    2006-01-01

    Biologically-inspired autonomous and autonomic systems (AAS) are essentially concerned with creating self-directed and self-managing systems based on metaphors &om nature and the human body, such as the autonomic nervous system. Agent technologies have been identified as a key enabler for engineering autonomy and autonomicity in systems, both in terms of retrofitting into legacy systems and in designing new systems. Handing over responsibility to systems themselves raises concerns for humans with regard to safety and security. This paper reports on the continued investigation into a strand of research on how to engineer self-protection mechanisms into systems to assist in encouraging confidence regarding security when utilizing autonomy and autonomicity. This includes utilizing the apoptosis and quiescence metaphors to potentially provide a self-destruct or self-sleep signal between autonomic agents when needed, and an ALice signal to facilitate self-identification and self-certification between anonymous autonomous agents and systems.

  20. Students' Understanding of Connections between Human Engineered and Natural Environmental Systems

    ERIC Educational Resources Information Center

    Tsurusaki, Blakely K.; Anderson, Charles W.

    2010-01-01

    This research draws on developments in educational research where "learning progressions" are emerging as a strategy for synthesizing research on science learning and applying that research to policy and practice, and advances in the natural sciences, where "interdisciplinary research on coupled human and natural systems" has become increasingly…

  1. Master of Engineering Energy Systems Engineering Program: Smart Campus Energy Systems Demonstration DE-SC0005523

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodge, Martha; Coulter, John

    2014-09-25

    Program Purpose and Position: The mission of the Master of Engineering in Energy Systems Engineering program is to invigorate the pipeline of new engineering graduates interested in energy oriented careers and thus produce a new generation of technical leaders for the energy and power industries. Over the next decade, nearly 50% of the skilled workers and technical leaders in the gas and electric utility industries will retire -- a much larger void than the current available and qualified professionals could fill [CEWD, 2012 survey]. The Masters of Engineering in Energy System Engineering program provides an opportunity for cross-discipline education formore » graduates interested in a career in the energy industry. It focuses on electric power and the challenges and opportunities to develop a sustainable, reliable and resilient system that meets human needs in an increasingly sustainable manner through the use of environmentally sound energy resources and delivery. Both graduates and employers benefit from a well-trained professional workforce that is ready to hit the road running and be immediately productive in meeting these challenges, through this innovative and unique program.« less

  2. Human systems integration in remotely piloted aircraft operations.

    PubMed

    Tvaryanas, Anthony P

    2006-12-01

    The role of humans in remotely piloted aircraft (RPAs) is qualitatively different from manned aviation, lessening the applicability of aerospace medicine human factors knowledge derived from traditional cockpits. Aerospace medicine practitioners should expect to be challenged in addressing RPA crewmember performance. Human systems integration (HSI) provides a model for explaining human performance as a function of the domains of: human factors engineering; personnel; training; manpower; environment, safety, and occupational health (ESOH); habitability; and survivability. RPA crewmember performance is being particularly impacted by issues involving the domains of human factors engineering, personnel, training, manpower, ESOH, and habitability. Specific HSI challenges include: 1) changes in large RPA operator selection and training; 2) human factors engineering deficiencies in current RPA ground control station design and their impact on human error including considerations pertaining to multi-aircraft control; and 3) the combined impact of manpower shortfalls, shiftwork-related fatigue, and degraded crewmember effectiveness. Limited experience and available research makes it difficult to qualitatively or quantitatively predict the collective impact of these issues on RPA crewmember performance. Attending to HSI will be critical for the success of current and future RPA crewmembers. Aerospace medicine practitioners working with RPA crewmembers should gain first-hand knowledge of their task environment while the larger aerospace medicine community needs to address the limited information available on RPA-related aerospace medicine human factors. In the meantime, aeromedical decisions will need to be made based on what is known about other aerospace occupations, realizing this knowledge may have only partial applicability.

  3. Electrochemical energy engineering: a new frontier of chemical engineering innovation.

    PubMed

    Gu, Shuang; Xu, Bingjun; Yan, Yushan

    2014-01-01

    One of the grand challenges facing humanity today is a safe, clean, and sustainable energy system where combustion no longer dominates. This review proposes that electrochemical energy conversion could set the foundation for such an energy system. It further suggests that a simple switch from an acid to a base membrane coupled with innovative cell designs may lead to a new era of affordable electrochemical devices, including fuel cells, electrolyzers, solar hydrogen generators, and redox flow batteries, for which recent progress is discussed using the authors' work as examples. It also notes that electrochemical energy engineering will likely become a vibrant subdiscipline of chemical engineering and a fertile ground for chemical engineering innovation. To realize this vision, it is necessary to incorporate fundamental electrochemistry and electrochemical engineering principles into the chemical engineering curriculum.

  4. Engineering healthcare as a service system.

    PubMed

    Tien, James M; Goldschmidt-Clermont, Pascal J

    2010-01-01

    Engineering has and will continue to have a critical impact on healthcare; the application of technology-based techniques to biological problems can be defined to be technobiology applications. This paper is primarily focused on applying the technobiology approach of systems engineering to the development of a healthcare service system that is both integrated and adaptive. In general, healthcare services are carried out with knowledge-intensive agents or components which work together as providers and consumers to create or co-produce value. Indeed, the engineering design of a healthcare system must recognize the fact that it is actually a complex integration of human-centered activities that is increasingly dependent on information technology and knowledge. Like any service system, healthcare can be considered to be a combination or recombination of three essential components - people (characterized by behaviors, values, knowledge, etc.), processes (characterized by collaboration, customization, etc.) and products (characterized by software, hardware, infrastructures, etc.). Thus, a healthcare system is an integrated and adaptive set of people, processes and products. It is, in essence, a system of systems which objectives are to enhance its efficiency (leading to greater interdependency) and effectiveness (leading to improved health). Integration occurs over the physical, temporal, organizational and functional dimensions, while adaptation occurs over the monitoring, feedback, cybernetic and learning dimensions. In sum, such service systems as healthcare are indeed complex, especially due to the uncertainties associated with the human-centered aspects of these systems. Moreover, the system complexities can only be dealt with methods that enhance system integration and adaptation.

  5. CrossTalk: The Journal of Defense Software Engineering. Volume 20, Number 8, August 2007

    DTIC Science & Technology

    2007-08-01

    He challenged anyone to prove or disprove that the solar system was stable. Henri Poincaré, sometimes called the Father of Chaos, was awarded the...the human body and our planet. In other words, examples of open systems are the human body and or solar system where the human body is composed of...interact- ing biological cells and our solar system with planets, stars, etc. They are like an organization where each is engaged in active transactions

  6. Synthetic immunology: modulating the human immune system.

    PubMed

    Geering, Barbara; Fussenegger, Martin

    2015-02-01

    Humans have manipulated the immune system to dampen or boost the immune response for thousands of years. As our understanding of fundamental immunology and biotechnological methodology accumulates, we can capitalize on this combined knowledge to engineer biological devices with the aim of rationally manipulating the immune response. We address therapeutic approaches based on the principles of synthetic immunology that either ameliorate disorders of the immune system by interfering with the immune response, or improve diverse pathogenic conditions by exploiting immune cell effector functions. We specifically highlight synthetic proteins investigated in preclinical and clinical trials, summarize studies that have used engineered immune cells, and finish with a discussion of possible future therapeutic concepts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Automation based on knowledge modeling theory and its applications in engine diagnostic systems using Space Shuttle Main Engine vibrational data. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Kim, Jonnathan H.

    1995-01-01

    Humans can perform many complicated tasks without explicit rules. This inherent and advantageous capability becomes a hurdle when a task is to be automated. Modern computers and numerical calculations require explicit rules and discrete numerical values. In order to bridge the gap between human knowledge and automating tools, a knowledge model is proposed. Knowledge modeling techniques are discussed and utilized to automate a labor and time intensive task of detecting anomalous bearing wear patterns in the Space Shuttle Main Engine (SSME) High Pressure Oxygen Turbopump (HPOTP).

  8. Propulsion Progress for NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Lyles, Garry M.; Priskos, Alex S.; Kynard, Michael H.; Lavoie, Anthony R.

    2012-01-01

    Leaders from NASA's Space Launch System (SLS) will participate in a panel discussing the progress made on the program's propulsion systems. The SLS will be the nation's next human-rated heavy-lift vehicle for new missions beyond Earth's orbit. With a first launch slated for 2017, the SLS Program is turning plans into progress, with the initial rocket being built in the U.S.A. today, engaging the aerospace workforce and infrastructure. Starting with an overview of the SLS mission and programmatic status, the discussion will then delve into progress on each of the primary SLS propulsion elements, including the boosters, core stage engines, upper stage engines, and stage hardware. Included will be a discussion of the 5-segment solid rocket motors (ATK), which are derived from Space Shuttle and Ares developments, as well as the RS-25 core stage engines from the Space Shuttle inventory and the J- 2X upper stage engine now in testing (Pratt and Whitney Rocketdyne). The panel will respond to audience questions about this important national capability for human and scientific space exploration missions.

  9. Opportunities for Launch Site Integrated System Health Engineering and Management

    NASA Technical Reports Server (NTRS)

    Waterman, Robert D.; Langwost, Patricia E.; Waterman, Susan J.

    2005-01-01

    The launch site processing flow involves operations such as functional verification, preflight servicing and launch. These operations often include hazards that must be controlled to protect human life and critical space hardware assets. Existing command and control capabilities are limited to simple limit checking durig automated monitoring. Contingency actions are highly dependent on human recognition, decision making, and execution. Many opportunities for Integrated System Health Engineering and Management (ISHEM) exist throughout the processing flow. This paper will present the current human-centered approach to health management as performed today for the shuttle and space station programs. In addition, it will address some of the more critical ISHEM needs, and provide recommendations for future implementation of ISHEM at the launch site.

  10. [Engineering of a System for the Production of Mutant Human Alpha-Fetoprotein in the Methylotrophic Yeast Pichia pastoris].

    PubMed

    Morozkina, E V; Vavilova, E A; Zatsepin, S S; Klyachko, E V; Yagudin, T A; Chulkin, A M; Dudich, I V; Semenkova, L N; Churilova, I V; Benevolenskii, S V

    2016-01-01

    A system for the production of mutant recombinant human alpha-fetoprotein (rhAFPO) lacking the glycosylation site has been engineered in the yeast Pichia pastoris. A strain of the methylotrophic yeast Pichia pastoris GS 115/pPICZ?A/rhAFP0, which produces unglycosylated rhAFPO and secretes it to the culture medium, has been constructed. Optimization and scale-up of the fermentation technology have resulted in an increase in the rhAFP0 yield to 20 mg/L. A scheme of isolation and purification of biologically active rhAFP0 has been developed. The synthesized protein has the antitumor activity, which is analogous to the activity of natural human embryonic alpha-fetoprotein.

  11. Development of an integrated indicator system to assess the impacts of reclamation engineering on a river estuary.

    PubMed

    Xu, Yan; Cai, Yanpeng; Sun, Tao; Yin, Xin'An; Tan, Qian

    2017-06-30

    An integrated indicator system was developed for determining synthetic environmental responses under multiple types of coastal reclamation engineering in the Yellow River estuary, China. Four types of coastal engineering works were analyzed, namely port construction, petroleum exploitation, fishery and aquaculture, and seawall defense. In addition, two areas with limited human disturbances were considered for comparison. From the weights of the response value for each indicator, port construction was determined to be the primary impact contributor among the four engineering works studies. Specifically, hydrodynamic conditions, ecological status, economic costs, and engineering intensity were on average 72.78%, 65.03%, 75.03%, and 66.35% higher than those of other engineering types. Furthermore, fishery and aquaculture impact on water quality was 42.51% higher than that of other engineering types, whereas seawall defense impact on landscape variation was 51.75% higher than that of other engineering types. The proposed indicator system may provide effective coastal management in future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The Importance of Returned Martian Samples for Constraining Potential Hazards to Future Human Exploration

    NASA Astrophysics Data System (ADS)

    iMOST Team; Harrington, A. D.; Carrier, B. L.; Fernandez-Remolar, D. C.; Fogarty, J.; McCoy, J. T.; Rucker, M. A.; Spry, J. A.; Altieri, F.; Amelin, Y.; Ammannito, E.; Anand, M.; Beaty, D. W.; Benning, L. G.; Bishop, J. L.; Borg, L. E.; Boucher, D.; Brucato, J. R.; Busemann, H.; Campbell, K. A.; Czaja, A. D.; Debaille, V.; Des Marais, D. J.; Dixon, M.; Ehlmann, B. L.; Farmer, J. D.; Glavin, D. P.; Goreva, Y. S.; Grady, M. M.; Hallis, L. J.; Hausrath, E. M.; Herd, C. D. K.; Horgan, B.; Humayun, M.; Kleine, T.; Kleinhenz, J.; Mangold, N.; Mackelprang, R.; Mayhew, L. E.; McCubbin, F. M.; McLennan, S. M.; McSween, H. Y.; Moser, D. E.; Moynier, F.; Mustard, J. F.; Niles, P. B.; Ori, G. G.; Raulin, F.; Rettberg, P.; Schmitz, N.; Sefton-Nash, E.; Sephton, M. A.; Shaheen, R.; Shuster, D. L.; Siljestrom, S.; Smith, C. L.; Steele, A.; Swindle, T. D.; ten Kate, I. L.; Tosca, N. J.; Usui, T.; Van Kranendonk, M. J.; Wadhwa, M.; Weiss, B. P.; Werner, S. C.; Westall, F.; Wheeler, R. M.; Zipfel, J.; Zorzano, M. P.

    2018-04-01

    Thorough characterization and evaluation of returned martian regolith and airfall samples are critical to understanding the potential health and engineering system hazards during future human exploration.

  13. Bioelectronic nose and its application to smell visualization.

    PubMed

    Ko, Hwi Jin; Park, Tai Hyun

    2016-01-01

    There have been many trials to visualize smell using various techniques in order to objectively express the smell because information obtained from the sense of smell in human is very subjective. So far, well-trained experts such as a perfumer, complex and large-scale equipment such as GC-MS, and an electronic nose have played major roles in objectively detecting and recognizing odors. Recently, an optoelectronic nose was developed to achieve this purpose, but some limitations regarding the sensitivity and the number of smells that can be visualized still persist. Since the elucidation of the olfactory mechanism, numerous researches have been accomplished for the development of a sensing device by mimicking human olfactory system. Engineered olfactory cells were constructed to mimic the human olfactory system, and the use of engineered olfactory cells for smell visualization has been attempted with the use of various methods such as calcium imaging, CRE reporter assay, BRET, and membrane potential assay; however, it is not easy to consistently control the condition of cells and it is impossible to detect low odorant concentration. Recently, the bioelectronic nose was developed, and much improved along with the improvement of nano-biotechnology. The bioelectronic nose consists of the following two parts: primary transducer and secondary transducer. Biological materials as a primary transducer improved the selectivity of the sensor, and nanomaterials as a secondary transducer increased the sensitivity. Especially, the bioelectronic noses using various nanomaterials combined with human olfactory receptors or nanovesicles derived from engineered olfactory cells have a potential which can detect almost all of the smells recognized by human because an engineered olfactory cell might be able to express any human olfactory receptor as well as can mimic human olfactory system. Therefore, bioelectronic nose will be a potent tool for smell visualization, but only if two technologies are completed. First, a multi-channel array-sensing system has to be applied for the integration of all of the olfactory receptors into a single chip for mimicking the performance of human nose. Second, the processing technique of the multi-channel system signals should be simultaneously established with the conversion of the signals to visual images. With the use of this latest sensing technology, the realization of a proper smell-visualization technology is expected in the near future.

  14. Preparing for Flight Engine Test

    NASA Image and Video Library

    2015-11-04

    The first RS-25 flight engine, engine No. 2059, is lifted onto the A-1 Test Stand at Stennis Space Center on Nov. 4, 2015. The engine was tested in early 2016 to certify it for use on NASA’s new Space Launch System (SLS). The SLS core stage will be powered by four RS-25 engines, all tested at Stennis Space Center. NASA is developing the SLS to carry humans deeper into space than ever before, including on a journey to Mars.

  15. Exploration Life Support Critical Questions for Future Human Space Missions

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.; Barta, Daniel J.; McQuillan, Jeff

    2009-01-01

    Exploration Life Support (ELS) is a project under NASA s Exploration Technology Development Program. The ELS Project plans, coordinates and implements the development of advanced life support technologies for human exploration missions in space. Recent work has focused on closed loop atmosphere and water systems for a lunar outpost, including habitats and pressurized rovers. But, what are the critical questions facing life support system developers for these and other future human missions? This paper explores those questions and discusses how progress in the development of ELS technologies can help answer them. The ELS Project includes Atmosphere Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing, which includes the sub-elements Flight Experiments and Integrated Testing. Systems engineering analysis by ELS seeks to optimize the overall mission architecture by considering all the internal and external interfaces of the life support system and the potential for reduction or reuse of commodities. In particular, various sources and sinks of water and oxygen are considered along with the implications on loop closure and the resulting launch mass requirements.

  16. Generation of a conditional analog-sensitive kinase in human cells using CRISPR/Cas9-mediated genome engineering.

    PubMed

    Moyer, Tyler C; Holland, Andrew J

    2015-01-01

    The ability to rapidly and specifically modify the genome of mammalian cells has been a long-term goal of biomedical researchers. Recently, the clustered, regularly interspaced, short palindromic repeats (CRISPR)/Cas9 system from bacteria has been exploited for genome engineering in human cells. The CRISPR system directs the RNA-guided Cas9 nuclease to a specific genomic locus to induce a DNA double-strand break that may be subsequently repaired by homology-directed repair using an exogenous DNA repair template. Here we describe a protocol using CRISPR/Cas9 to achieve bi-allelic insertion of a point mutation in human cells. Using this method, homozygous clonal cell lines can be constructed in 5-6 weeks. This method can also be adapted to insert larger DNA elements, such as fluorescent proteins and degrons, at defined genomic locations. CRISPR/Cas9 genome engineering offers exciting applications in both basic science and translational research. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. NASA Marches on with Test of RS-25 Engine for New Space Launch System

    NASA Image and Video Library

    2016-07-29

    NASA engineers conducted a successful developmental test of RS-25 rocket engine No. 0528 July 29, 2016, to collect critical performance data for the most powerful rocket in the world – the Space Launch System (SLS). The engine roared to life for a full 650-second test on the A-1 Test Stand at NASA’s Stennis Space Center, near Bay St. Louis, Mississippi, marking another step forward in development of the SLS, which will launch humans deeper into space than ever before, including on the journey to Mars. Four RS-25 engines, joined with a pair of solid rocket boosters, will power the SLS core stage at launch. The RS-25 engines used on the first four SLS flights are former space shuttle main engines, modified to operate at a higher performance level and with a new engine controller, which allows communication between the vehicle and engine.

  18. Enhancing Interdisciplinary Human System Risk Research Through Modeling and Network Approaches

    NASA Technical Reports Server (NTRS)

    Mindock, Jennifer; Lumpkins, Sarah; Shelhamer, Mark

    2015-01-01

    NASA's Human Research Program (HRP) supports research to reduce human health and performance risks inherent in future human space exploration missions. Understanding risk outcomes and contributing factors in an integrated manner allows HRP research to support development of efficient and effective mitigations from cross-disciplinary perspectives, and to enable resilient human and engineered systems for spaceflight. The purpose of this work is to support scientific collaborations and research portfolio management by utilizing modeling for analysis and visualization of current and potential future interdisciplinary efforts.

  19. Engineering and commercialization of human-device interfaces, from bone to brain.

    PubMed

    Knothe Tate, Melissa L; Detamore, Michael; Capadona, Jeffrey R; Woolley, Andrew; Knothe, Ulf

    2016-07-01

    Cutting edge developments in engineering of tissues, implants and devices allow for guidance and control of specific physiological structure-function relationships. Yet the engineering of functionally appropriate human-device interfaces represents an intractable challenge in the field. This leading opinion review outlines a set of current approaches as well as hurdles to design of interfaces that modulate transfer of information, i.a. forces, electrical potentials, chemical gradients and haptotactic paths, between endogenous and engineered body parts or tissues. The compendium is designed to bridge across currently separated disciplines by highlighting specific commonalities between seemingly disparate systems, e.g. musculoskeletal and nervous systems. We focus on specific examples from our own laboratories, demonstrating that the seemingly disparate musculoskeletal and nervous systems share common paradigms which can be harnessed to inspire innovative interface design solutions. Functional barrier interfaces that control molecular and biophysical traffic between tissue compartments of joints are addressed in an example of the knee. Furthermore, we describe the engineering of gradients for interfaces between endogenous and engineered tissues as well as between electrodes that physically and electrochemically couple the nervous and musculoskeletal systems. Finally, to promote translation of newly developed technologies into products, protocols, and treatments that benefit the patients who need them most, regulatory and technical challenges and opportunities are addressed on hand from an example of an implant cum delivery device that can be used to heal soft and hard tissues, from brain to bone. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  20. Athena: Providing Insight into the History of the Universe

    NASA Technical Reports Server (NTRS)

    Murphy, Gloria A.

    2010-01-01

    The American Institute for Aeronautics and Astronautics has provided a Request for Proposal which calls for a manned mission to a Near-Earth Object. It is the goal of Team COLBERT to respond to their request by providing a reusable system that can be implemented as a solid stepping stone for future manned trips to Mars and beyond. Despite Team COLBERT consisting of only students in Aerospace Engineering, in order to achieve this feat, the team must employ the use of Systems Engineering. Tools and processes from Systems Engineering will provide quantitative and semi-quantitative tools for making design decisions and evaluating items such as budgets and schedules. This paper will provide an in-depth look at some of the Systems Engineering processes employed and will step through the design process of a Human Asteroid Exploration System.

  1. What do we mean by Human-Centered Design of Life-Critical Systems?

    PubMed

    Boy, Guy A

    2012-01-01

    Human-centered design is not a new approach to design. Aerospace is a good example of a life-critical systems domain where participatory design was fully integrated, involving experimental test pilots and design engineers as well as many other actors of the aerospace engineering community. This paper provides six topics that are currently part of the requirements of the Ph.D. Program in Human-Centered Design of the Florida Institute of Technology (FIT.) This Human-Centered Design program offers principles, methods and tools that support human-centered sustainable products such as mission or process control environments, cockpits and hospital operating rooms. It supports education and training of design thinkers who are natural leaders, and understand complex relationships among technology, organizations and people. We all need to understand what we want to do with technology, how we should organize ourselves to a better life and finally find out whom we are and have become. Human-centered design is being developed for all these reasons and issues.

  2. Concise review: humanized models of tumor immunology in the 21st century: convergence of cancer research and tissue engineering.

    PubMed

    Holzapfel, Boris Michael; Wagner, Ferdinand; Thibaudeau, Laure; Levesque, Jean-Pierre; Hutmacher, Dietmar Werner

    2015-06-01

    Despite positive testing in animal studies, more than 80% of novel drug candidates fail to proof their efficacy when tested in humans. This is primarily due to the use of preclinical models that are not able to recapitulate the physiological or pathological processes in humans. Hence, one of the key challenges in the field of translational medicine is to "make the model organism mouse more human." To get answers to questions that would be prognostic of outcomes in human medicine, the mouse's genome can be altered in order to create a more permissive host that allows the engraftment of human cell systems. It has been shown in the past that these strategies can improve our understanding of tumor immunology. However, the translational benefits of these platforms have still to be proven. In the 21st century, several research groups and consortia around the world take up the challenge to improve our understanding of how to humanize the animal's genetic code, its cells and, based on tissue engineering principles, its extracellular microenvironment, its tissues, or entire organs with the ultimate goal to foster the translation of new therapeutic strategies from bench to bedside. This article provides an overview of the state of the art of humanized models of tumor immunology and highlights future developments in the field such as the application of tissue engineering and regenerative medicine strategies to further enhance humanized murine model systems. © 2015 AlphaMed Press.

  3. Human impacts on fluvial systems - A small-catchment case study

    NASA Astrophysics Data System (ADS)

    Pöppl, Ronald E.; Glade, Thomas; Keiler, Margreth

    2010-05-01

    Regulations of nearly two-thirds of the rivers worldwide have considerable influences on fluvial systems. In Austria, nearly any river (or) catchment is affected by humans, e.g. due to changing land-use conditions and river engineering structures. Recent studies of human impacts on rivers show that morphologic channel changes play a major role regarding channelization and leveeing, land-use conversions, dams, mining, urbanization and alterations of natural habitats (ecomorphology). Thus 'natural (fluvial) systems' are scarce and humans are almost always inseparably interwoven with them playing a major role in altering them coincidentally. The main objective of this study is to identify human effects (i.e. different land use conditions and river engineering structures) on river bed sediment composition and to delineate its possible implications for limnic habitats. The study area watersheds of the 'Fugnitz' River (~ 140km²) and the 'Kaja' River (~ 20km²) are located in the Eastern part of the Bohemian Massif in Austria (Europe) and drain into the 'Thaya' River which is the border river to the Czech Republic in the north of Lower Austria. Furthermore the 'Thaya' River is eponymous for the local National Park 'Nationalpark Thayatal'. In order to survey river bed sediment composition and river engineering structures facies mapping techniques, i.e. river bed surface mapping and ecomorphological mapping have been applied. Additionally aerial photograph and airborne laserscan interpretation has been used to create land use maps. These maps have been integrated to a numerical DEM-based spatial model in order to get an impression of the variability of sediment input rates to the river system. It is hypothesized that this variability is primarily caused by different land use conditions. Finally river bed sites affected by river engineering structures have been probed and grain size distributions have been analyzed. With these data sedimentological and ecological/ecomorphological effects of various river engineering structures (i.e. dams, weirs, river bank- and river bed protection works) on river bed sediment composition and on limnic habitats are evaluated. First results reveal that 'land use' is a dominant factor concerning river bed sediment composition and limnic habitat conditions. Further outcomes will be presented on European Geosciences Union General Assembly, 2010.

  4. J-2X engine test

    NASA Image and Video Library

    2011-12-01

    NASA conducted a key stability test firing of the J-2X rocket engine on the A-2 Test Stand at Stennis Space Center on Dec. 1, marking another step forward in development of the upper-stage engine that will carry humans deeper into space than ever before. The J-2X will provide upper-stage power for NASA's new Space Launch System.

  5. Towards a framework of human factors certification of complex human-machine systems

    NASA Technical Reports Server (NTRS)

    Bukasa, Birgit

    1994-01-01

    As far as total automation is not realized, the combination of technical and social components in man-machine systems demands not only contributions from engineers but at least to an equal extent from behavioral scientists. This has been neglected far too long. The psychological, social and cultural aspects of technological innovations were almost totally overlooked. Yet, along with expected safety improvements the institutionalization of human factors is on the way. The introduction of human factors certification of complex man-machine systems will be a milestone in this process.

  6. Pilot interaction with automated airborne decision making systems

    NASA Technical Reports Server (NTRS)

    Rouse, W. B.; Hammer, J. M.; Morris, N. M.; Brown, E. N.; Yoon, W. C.

    1983-01-01

    The use of advanced software engineering methods (e.g., from artificial intelligence) to aid aircraft crews in procedure selection and execution is investigated. Human problem solving in dynamic environments as effected by the human's level of knowledge of system operations is examined. Progress on the development of full scale simulation facilities is also discussed.

  7. Probing the Effector and Suppressive Functions of Human T Cell Subsets Using Antigen-Specific Engineered T Cell Receptors

    PubMed Central

    Imberg, Keren; Mercer, Frances; Zhong, Shi; Krogsgaard, Michelle; Unutmaz, Derya

    2013-01-01

    Activation of T cells through the engagement of the T cell receptors (TCRs) with specific peptide-MHC complexes on antigen presenting cells (APCs) is the major determinant for their proliferation, differentiation and display of effector functions. To assess the role of quantity and quality of peptide-MHC presentation in eliciting T cell activation and suppression functions, we genetically engineered human T cells with two TCRs that recognize HLA-A*0201-restricted peptides derived from either HIV or melanoma antigens. The engineered-TCRs are highly functional in both CD8+ and CD4+ T cells as assessed by the upregulation of activation markers, induction of cytokine secretion and cytotoxicity. We further demonstrated that engineered-TCRs can also be expressed on naïve human T cells, which are stimulated through APCs presenting specific peptides to induce T cell proliferation and acquire effector functions. Furthermore, regulatory T cells (Tregs) ectopically expressing the engineered-TCRs are activated in an antigen-specific fashion and suppress T cell proliferation. In this system, the inhibitory activity of peptide-stimulated Tregs require the presence of dendritic cells (DCs) in the culture, either as presenters or as bystander cells, pointing to a critical role for DCs in suppression by Tregs. In conclusion, the engineered-TCR system reported here advances our ability to understand the differentiation pathways of naïve T cells into antigen-specific effector cells and the role of antigen-specific signaling in Treg-mediated immune suppression. PMID:23437112

  8. Mind Games: Game Engines as an Architecture for Intuitive Physics.

    PubMed

    Ullman, Tomer D; Spelke, Elizabeth; Battaglia, Peter; Tenenbaum, Joshua B

    2017-09-01

    We explore the hypothesis that many intuitive physical inferences are based on a mental physics engine that is analogous in many ways to the machine physics engines used in building interactive video games. We describe the key features of game physics engines and their parallels in human mental representation, focusing especially on the intuitive physics of young infants where the hypothesis helps to unify many classic and otherwise puzzling phenomena, and may provide the basis for a computational account of how the physical knowledge of infants develops. This hypothesis also explains several 'physics illusions', and helps to inform the development of artificial intelligence (AI) systems with more human-like common sense. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Genetic and metabolic engineering of microorganisms for the development of new flavor compounds from terpenic substrates.

    PubMed

    Bution, Murillo L; Molina, Gustavo; Abrahão, Meissa R E; Pastore, Gláucia M

    2015-01-01

    Throughout human history, natural products have been the basis for the discovery and development of therapeutics, cosmetic and food compounds used in industry. Many compounds found in natural organisms are rather difficult to chemically synthesize and to extract in large amounts, and in this respect, genetic and metabolic engineering are playing an increasingly important role in the production of these compounds, such as new terpenes and terpenoids, which may potentially be used to create aromas in industry. Terpenes belong to the largest class of natural compounds, are produced by all living organisms and play a fundamental role in human nutrition, cosmetics and medicine. Recent advances in systems biology and synthetic biology are allowing us to perform metabolic engineering at the whole-cell level, thus enabling the optimal design of microorganisms for the efficient production of drugs, cosmetic and food additives. This review describes the recent advances made in the genetic and metabolic engineering of the terpenes pathway with a particular focus on systems biotechnology.

  10. A Methodology for Investigating Adaptive Postural Control

    NASA Technical Reports Server (NTRS)

    McDonald, P. V.; Riccio, G. E.

    1999-01-01

    Our research on postural control and human-environment interactions provides an appropriate scientific foundation for understanding the skill of mass handling by astronauts in weightless conditions (e.g., extravehicular activity or EVA). We conducted an investigation of such skills in NASA's principal mass-handling simulator, the Precision Air-Bearing Floor, at the Johnson Space Center. We have studied skilled movement-body within a multidisciplinary context that draws on concepts and methods from biological and behavioral sciences (e.g., psychology, kinesiology and neurophysiology) as well as bioengineering. Our multidisciplinary research has led to the development of measures, for manual interactions between individuals and the substantial environment, that plausibly are observable by human sensory systems. We consider these methods to be the most important general contribution of our EVA investigation. We describe our perspective as control theoretic because it draws more on fundamental concepts about control systems in engineering than it does on working constructs from the subdisciplines of biomechanics and motor control in the bio-behavioral sciences. At the same time, we have attempted to identify the theoretical underpinnings of control-systems engineering that are most relevant to control by human beings. We believe that these underpinnings are implicit in the assumptions that cut across diverse methods in control-systems engineering, especially the various methods associated with "nonlinear control", "fuzzy control," and "adaptive control" in engineering. Our methods are based on these theoretical foundations rather than on the mathematical formalisms that are associated with particular methods in control-systems engineering. The most important aspects of the human-environment interaction in our investigation of mass handling are the functional consequences that body configuration and stability have for the pick up of information or the achievement of overt goals. It follows that an essential characteristic of postural behavior is the effective maintenance of the orientation and stability of the sensory and motor "platforms" (e.g., head or shoulders) over variations in the human, the environment and the task. This general skill suggests that individuals should be sensitive to the functional consequences of body configuration and stability. In other words, individuals should perceive the relation between configuration, stability, and performance so that they can adaptively control their interaction with the surroundings. Human-environment interactions constitute robust systems in that individuals can maintain the stability of such interactions over uncertainty about and variations in the dynamics of the interaction. Robust interactions allow individuals to adopt orientations and configurations that are not optimal with respect to purely energetic criteria. Individuals can tolerate variation in postural states, and such variation can serve an important function in adaptive systems. Postural variability generates stimulation which is "textured" by the dynamics of the human-environment system. The texture or structure in stimulation provides information about variation in dynamics, and such information can be sufficient to guide adaption in control strategies. Our method were designed to measure informative patterns of movement variability.

  11. Detection of Humans and Light Vehicles Using Acoustic-to-Seismic Coupling

    DTIC Science & Technology

    2009-08-31

    microphones, video cameras (regular and infrared), magnetic sensors, and active Doppler radar and sonar systems. These sensors could be located at... sonar systems due to dramatic absorption/reflection of electromagnetic/ultrasonic waves [8,9]. 6...engine was turned off, and the car continued moving. This eliminated the engine sound. A PCB microphone, 377B41, with preamplifier , 426A30, and with

  12. RATANA MEEKHAM, AN ELECTRICAL INTEGRATION TECHNICIAN FOR QUALIS CORP. OF HUNTSVILLE, ALABAMA, HELPS TEST AVIONICS -- COMPLEX VEHICLE SYSTEMS ENABLING NAVIGATION, COMMUNICATIONS AND OTHER FUNCTIONS CRITICAL TO HUMAN SPACEFLIGHT

    NASA Image and Video Library

    2015-01-08

    RATANA MEEKHAM, AN ELECTRICAL INTEGRATION TECHNICIAN FOR QUALIS CORP. OF HUNTSVILLE, ALABAMA, HELPS TEST AVIONICS -- COMPLEX VEHICLE SYSTEMS ENABLING NAVIGATION, COMMUNICATIONS AND OTHER FUNCTIONS CRITICAL TO HUMAN SPACEFLIGHT -- FOR THE SPACE LAUNCH SYSTEM PROGRAM AT NASA’S MARSHALL SPACE FLIGHT CENTER IN HUNTSVILLE, ALABAMA. HER WORK SUPPORTS THE NASA ENGINEERING & SCIENCE SERVICES AND SKILLS AUGMENTATION CONTRACT LED BY JACOBS ENGINEERING OF HUNTSVILLE. MEEKHAM WORKS FULL-TIME AT MARSHALL WHILE FINISHING HER ASSOCIATE'S DEGREE IN MACHINE TOOL TECHNOLOGY AT CALHOUN COMMUNITY COLLEGE IN DECATUR, ALABAMA. THE SPACE LAUNCH SYSTEM, NASA’S NEXT HEAVY-LIFT LAUNCH VEHICLE, IS THE WORLD’S MOST POWERFUL ROCKET, SET TO FLY ITS FIRST UNCREWED LUNAR ORBITAL MISSION IN 2018. ITS FIRST.

  13. C1q-Mediated Complement Activation and C3 Opsonization Trigger Recognition of Stealth Poly(2-methyl-2-oxazoline)-Coated Silica Nanoparticles by Human Phagocytes.

    PubMed

    Tavano, Regina; Gabrielli, Luca; Lubian, Elisa; Fedeli, Chiara; Visentin, Silvia; Polverino De Laureto, Patrizia; Arrigoni, Giorgio; Geffner-Smith, Alessandra; Chen, Fangfang; Simberg, Dmitri; Morgese, Giulia; Benetti, Edmondo M; Wu, Linping; Moghimi, Seyed Moein; Mancin, Fabrizio; Papini, Emanuele

    2018-05-23

    Poly(2-methyl-2-oxazoline) (PMOXA) is an alternative promising polymer to poly(ethylene glycol) (PEG) for design and engineering of macrophage-evading nanoparticles (NPs). Although PMOXA-engineered NPs have shown comparable pharmacokinetics and in vivo performance to PEGylated stealth NPs in the murine model, its interaction with elements of the human innate immune system has not been studied. From a translational angle, we studied the interaction of fully characterized PMOXA-coated vinyltriethoxysilane-derived organically modified silica NPs (PMOXA-coated NPs) of approximately 100 nm in diameter with human complement system, blood leukocytes, and macrophages and compared their performance with PEGylated and uncoated NP counterparts. Through detailed immunological and proteomic profiling, we show that PMOXA-coated NPs extensively trigger complement activation in human sera exclusively through the classical pathway. Complement activation is initiated by the sensing molecule C1q, where C1q binds with high affinity ( K d = 11 ± 1 nM) to NP surfaces independent of immunoglobulin binding. C1q-mediated complement activation accelerates PMOXA opsonization with the third complement protein (C3) through the amplification loop of the alternative pathway. This promoted NP recognition by human blood leukocytes and monocyte-derived macrophages. The macrophage capture of PMOXA-coated NPs correlates with sera donor variability in complement activation and opsonization but not with other major corona proteins, including clusterin and a wide range of apolipoproteins. In contrast to these observations, PMOXA-coated NPs poorly activated the murine complement system and were marginally recognized by mouse macrophages. These studies provide important insights into compatibility of engineered NPs with elements of the human innate immune system for translational steps.

  14. Efficient CRISPR/Cas9-Based Genome Engineering in Human Pluripotent Stem Cells.

    PubMed

    Kime, Cody; Mandegar, Mohammad A; Srivastava, Deepak; Yamanaka, Shinya; Conklin, Bruce R; Rand, Tim A

    2016-01-01

    Human pluripotent stem cells (hPS cells) are rapidly emerging as a powerful tool for biomedical discovery. The advent of human induced pluripotent stem cells (hiPS cells) with human embryonic stem (hES)-cell-like properties has led to hPS cells with disease-specific genetic backgrounds for in vitro disease modeling and drug discovery as well as mechanistic and developmental studies. To fully realize this potential, it will be necessary to modify the genome of hPS cells with precision and flexibility. Pioneering experiments utilizing site-specific double-strand break (DSB)-mediated genome engineering tools, including zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), have paved the way to genome engineering in previously recalcitrant systems such as hPS cells. However, these methods are technically cumbersome and require significant expertise, which has limited adoption. A major recent advance involving the clustered regularly interspaced short palindromic repeats (CRISPR) endonuclease has dramatically simplified the effort required for genome engineering and will likely be adopted widely as the most rapid and flexible system for genome editing in hPS cells. In this unit, we describe commonly practiced methods for CRISPR endonuclease genomic editing of hPS cells into cell lines containing genomes altered by insertion/deletion (indel) mutagenesis or insertion of recombinant genomic DNA. Copyright © 2016 John Wiley & Sons, Inc.

  15. Cognitive engineering in aerospace applications

    NASA Technical Reports Server (NTRS)

    Woods, David D.

    1993-01-01

    The progress that was made with respect to the objectives and goals of the research that is being carried out in the Cognitive Systems Engineering Laboratory (CSEL) under a Cooperative Agreement with NASA Ames Research Center is described. The major objective of this project is to expand the research base in Cognitive Engineering to be able to support the development and human-centered design of automated systems for aerospace applications. This research project is in support of the Aviation Safety/Automation Research plan and related NASA research goals in space applications.

  16. CRISPR/Cas9-Mediated Mutagenesis of Human Pluripotent Stem Cells in Defined Xeno-Free E8 Medium.

    PubMed

    Soh, Chew-Li; Huangfu, Danwei

    2017-01-01

    The recent advent of engineered nucleases including the CRISPR/Cas9 system has greatly facilitated genome manipulation in human pluripotent stem cells (hPSCs). In addition to facilitating hPSC-based disease studies, the application of genome engineering in hPSCs has also opened up new avenues for cell replacement therapy. To improve consistency and reproducibility of hPSC-based studies, and to meet the safety and regulatory requirements for clinical translation, it is necessary to use a defined, xeno-free cell culture system. This chapter describes protocols for CRISPR/Cas9 genome editing in an inducible Cas9 hPSC-based system, using cells cultured in chemically defined, xeno-free E8 Medium on a recombinant human vitronectin substrate. We detail procedures for the design and transfection of CRISPR guide RNAs, colony selection, and the expansion and validation of clonal mutant lines, all within this fully defined culture condition. These methods may be applied to a wide range of genome-engineering applications in hPSCs, including those that utilize different types of site-specific nucleases such as zinc finger nucleases (ZFNs) and TALENs, and form a closer step towards clinical utility of these cells.

  17. Using A Model-Based Systems Engineering Approach For Exploration Medical System Development

    NASA Technical Reports Server (NTRS)

    Hanson, A.; Mindock, J.; McGuire, K.; Reilly, J.; Cerro, J.; Othon, W.; Rubin, D.; Urbina, M.; Canga, M.

    2017-01-01

    NASA's Human Research Program's Exploration Medical Capabilities (ExMC) element is defining the medical system needs for exploration class missions. ExMC's Systems Engineering (SE) team will play a critical role in successful design and implementation of the medical system into exploration vehicles. The team's mission is to "Define, develop, validate, and manage the technical system design needed to implement exploration medical capabilities for Mars and test the design in a progression of proving grounds." Development of the medical system is being conducted in parallel with exploration mission architecture and vehicle design development. Successful implementation of the medical system in this environment will require a robust systems engineering approach to enable technical communication across communities to create a common mental model of the emergent engineering and medical systems. Model-Based Systems Engineering (MBSE) improves shared understanding of system needs and constraints between stakeholders and offers a common language for analysis. The ExMC SE team is using MBSE techniques to define operational needs, decompose requirements and architecture, and identify medical capabilities needed to support human exploration. Systems Modeling Language (SysML) is the specific language the SE team is utilizing, within an MBSE approach, to model the medical system functional needs, requirements, and architecture. Modeling methods are being developed through the practice of MBSE within the team, and tools are being selected to support meta-data exchange as integration points to other system models are identified. Use of MBSE is supporting the development of relationships across disciplines and NASA Centers to build trust and enable teamwork, enhance visibility of team goals, foster a culture of unbiased learning and serving, and be responsive to customer needs. The MBSE approach to medical system design offers a paradigm shift toward greater integration between vehicle and the medical system and directly supports the transition of Earth-reliant ISS operations to the Earth-independent operations envisioned for Mars. Here, we describe the methods and approach to building this integrated model.

  18. Multifunctional Bioreactor System for Human Intestine Tissues

    PubMed Central

    2017-01-01

    The three-dimensional (3D) cultivation of intestinal cells and tissues in dynamic bioreactor systems to represent in vivo intestinal microenvironments is essential for developing regenerative medicine treatments for intestinal diseases. We have previously developed in vitro human intestinal tissue systems using a 3D porous silk scaffold system with intestinal architectures and topographical features for the adhesion, growth, and differentiation of intestinal cells under static culture conditions. In this study, we designed and fabricated a multifunctional bioreactor system that incorporates pre-epithelialized 3D silk scaffolds in a dynamic culture environment for in vitro engineering of human intestine tissues. The bioreactor system allows for control of oxygen levels in perfusion fluids (aerobic simulated intestinal fluid (SIF), microaerobic SIF, and anaerobic SIF), while ensuring control over the mechanical and chemical microenvironments present in native human intestines. The bioreactor system also enables 3D cell culture with spatial separation and cultivation of cocultured epithelial and stromal cells. Preliminary functional analysis of tissues housed in the bioreactor demonstrated that the 3D tissue constructs survived and maintained typical phenotypes of intestinal epithelium, including epithelial tight junction formation, intestinal biomarker expression, microvilli formation, and mucus secretion. The unique combination of a dynamic bioreactor and 3D intestinal constructs offers utility for engineering human intestinal tissues for the study of intestinal diseases and discovery options for new treatments. PMID:29333491

  19. Large space antennas: A systems analysis case history

    NASA Technical Reports Server (NTRS)

    Keafer, Lloyd S. (Compiler); Lovelace, U. M. (Compiler)

    1987-01-01

    The value of systems analysis and engineering is aptly demonstrated by the work on Large Space Antennas (LSA) by the NASA Langley Spacecraft Analysis Branch. This work was accomplished over the last half-decade by augmenting traditional system engineering, analysis, and design techniques with computer-aided engineering (CAE) techniques using the Langley-developed Interactive Design and Evaluation of Advanced Spacecraft (IDEAS) system. This report chronicles the research highlights and special systems analyses that focused the LSA work on deployable truss antennas. It notes developmental trends toward greater use of CAE techniques in their design and analysis. A look to the future envisions the application of improved systems analysis capabilities to advanced space systems such as an advanced space station or to lunar and Martian missions and human habitats.

  20. In Situ Wetland Restoration Demonstration

    DTIC Science & Technology

    2014-07-01

    Program (ESTCP) has funded the Naval Facilities Engineering and Expeditionary Warfare Center (NAVFAC EXWC) and its DoD partners: U.S. Army Public Health ...Command Engineering Service Center [NAVFAC ESC]) and its DoD partners U.S. Army Public Health Command, Naval Facilities Engineering Command Atlantic...made that unacceptable risks to human health or the environment may be present in portions of the Canal Creek system. Innovative technologies

  1. Cognitive Functioning in Space Exploration Missions: A Human Requirement

    NASA Technical Reports Server (NTRS)

    Fiedler, Edan; Woolford, Barbara

    2005-01-01

    Solving cognitive issues in the exploration missions will require implementing results from both Human Behavior and Performance, and Space Human Factors Engineering. Operational and research cognitive requirements need to reflect a coordinated management approach with appropriate oversight and guidance from NASA headquarters. First, this paper will discuss one proposed management method that would combine the resources of Space Medicine and Space Human Factors Engineering at JSC, other NASA agencies, the National Space Biomedical Research Institute, Wyle Labs, and other academic or industrial partners. The proposed management is based on a Human Centered Design that advocates full acceptance of the human as a system equal to other systems. Like other systems, the human is a system with many subsystems, each of which has strengths and limitations. Second, this paper will suggest ways to inform exploration policy about what is needed for optimal cognitive functioning of the astronaut crew, as well as requirements to ensure necessary assessment and intervention strategies for the human system if human limitations are reached. Assessment strategies will include clinical evaluation and fitness-to-perform evaluations. Clinical intervention tools and procedures will be available to the astronaut and space flight physician. Cognitive performance will be supported through systematic function allocation, task design, training, and scheduling. Human factors requirements and guidelines will lead to well-designed information displays and retrieval systems that reduce crew time and errors. Means of capturing process, design, and operational requirements to ensure crew performance will be discussed. Third, this paper will describe the current plan of action, and future challenges to be resolved before a lunar or Mars expedition. The presentation will include a proposed management plan for research, involvement of various organizations, and a timetable of deliverables.

  2. An Overview and History of Glyco-Engineering in Insect Expression Systems.

    PubMed

    Geisler, Christoph; Mabashi-Asazuma, Hideaki; Jarvis, Donald L

    2015-01-01

    Insect systems, including the baculovirus-insect cell and Drosophila S2 cell systems are widely used as recombinant protein production platforms. Historically, however, no insect-based system has been able to produce glycoproteins with human-type glycans, which often influence the clinical efficacy of therapeutic glycoproteins and the overall structures and functions of other recombinant glycoprotein products. In addition, some insect cell systems produce N-glycans with immunogenic epitopes. Over the past 20 years, these problems have been addressed by efforts to glyco-engineer insect-based expression systems. These efforts have focused on introducing the capacity to produce complex-type, terminally sialylated N-glycans and eliminating the capacity to produce immunogenic N-glycans. Various glyco-engineering approaches have included genetically engineering insect cells, baculoviral vectors, and/or insects with heterologous genes encoding the enzymes required to produce various glycosyltransferases, sugars, nucleotide sugars, and nucleotide sugar transporters, as well as an enzyme that can deplete GDP-fucose. In this chapter, we present an overview and history of glyco-engineering in insect expression systems as a prelude to subsequent chapters, which will highlight various methods used for this purpose.

  3. Effect of organic carbon on sorption of human adenovirus to soil particles and laboratory containers

    EPA Science Inventory

    A key factor controlling the relationship between virus release and human exposure is how virus particles interact with soils, sediments and other solid particles in the environment and in engineered treatment systems. Finding no previous investigations of human adenovirus (HAdV)...

  4. A Research Program on the Potential for Effects of Engineered Nanomaterials on Biological Systems

    EPA Science Inventory

    The US Environmental Protection Agency (EPA), Office of Research and Development, has developed a research program to evaluate the potential implications of engineered nanomaterials for human health and the environment. Among the major themes of the program are evaluating the in...

  5. Building an experimental model of the human body with non-physiological parameters.

    PubMed

    Labuz, Joseph M; Moraes, Christopher; Mertz, David R; Leung, Brendan M; Takayama, Shuichi

    2017-03-01

    New advances in engineering and biomedical technology have enabled recent efforts to capture essential aspects of human physiology in microscale, in-vitro systems. The application of these advances to experimentally model complex processes in an integrated platform - commonly called a 'human-on-a-chip (HOC)' - requires that relevant compartments and parameters be sized correctly relative to each other and to the system as a whole. Empirical observation, theoretical treatments of resource distribution systems and natural experiments can all be used to inform rational design of such a system, but technical and fundamental challenges (e.g. small system blood volumes and context-dependent cell metabolism, respectively) pose substantial, unaddressed obstacles. Here, we put forth two fundamental principles for HOC design: inducing in-vivo -like cellular metabolic rates is necessary and may be accomplished in-vitro by limiting O 2 availability and that the effects of increased blood volumes on drug concentration can be mitigated through pharmacokinetics-based treatments of solute distribution. Combining these principles with natural observation and engineering workarounds, we derive a complete set of design criteria for a practically realizable, physiologically faithful, five-organ millionth-scale (× 10 -6 ) microfluidic model of the human body.

  6. Building an experimental model of the human body with non-physiological parameters

    PubMed Central

    Labuz, Joseph M.; Moraes, Christopher; Mertz, David R.; Leung, Brendan M.; Takayama, Shuichi

    2017-01-01

    New advances in engineering and biomedical technology have enabled recent efforts to capture essential aspects of human physiology in microscale, in-vitro systems. The application of these advances to experimentally model complex processes in an integrated platform — commonly called a ‘human-on-a-chip (HOC)’ — requires that relevant compartments and parameters be sized correctly relative to each other and to the system as a whole. Empirical observation, theoretical treatments of resource distribution systems and natural experiments can all be used to inform rational design of such a system, but technical and fundamental challenges (e.g. small system blood volumes and context-dependent cell metabolism, respectively) pose substantial, unaddressed obstacles. Here, we put forth two fundamental principles for HOC design: inducing in-vivo-like cellular metabolic rates is necessary and may be accomplished in-vitro by limiting O2 availability and that the effects of increased blood volumes on drug concentration can be mitigated through pharmacokinetics-based treatments of solute distribution. Combining these principles with natural observation and engineering workarounds, we derive a complete set of design criteria for a practically realizable, physiologically faithful, five-organ millionth-scale (× 10−6) microfluidic model of the human body. PMID:28713851

  7. Exploration Life Support Critical Questions for Future Human Space Missions

    NASA Technical Reports Server (NTRS)

    Kwert, Michael K.; Barta, Daniel J.; McQuillan, Jeff

    2010-01-01

    Exploration Life Support (ELS) is a current project under NASA's Exploration Systems Mission Directorate. The ELS Project plans, coordinates and implements the development of advanced life support technologies for human exploration missions in space. Recent work has focused on closed loop atmosphere and water systems for long duration missions, including habitats and pressurized rovers. But, what are the critical questions facing life support system developers for these and other future human missions? This paper explores those questions and how progress in the development of ELS technologies can help answer them. The ELS Project includes the following Elements: Atmosphere Revitalization Systems, Water Recovery Systems, Waste Management Systems, Habitation Engineering, Systems Integration, Modeling and Analysis, and Validation and Testing, which includes the Sub-Elements Flight Experiments and Integrated Testing. Systems engineering analysis by ELS seeks to optimize overall mission architectures by considering all the internal and external interfaces of the life support system and the potential for reduction or reuse of commodities. In particular, various sources and sinks of water and oxygen are considered along with the implications on loop closure and the resulting launch mass requirements. Systems analysis will be validated through the data gathered from integrated testing, which will demonstrate the interfaces of a closed loop life support system. By applying a systematic process for defining, sorting and answering critical life support questions, the ELS project is preparing for a variety of future human space missions

  8. Summary of Liquid Propulsion System Needs in Support of the Constellation Program

    NASA Technical Reports Server (NTRS)

    Lorier, Terry; Sumrall, Phil; Baine, Michael

    2008-01-01

    In January 2004, the President of the United States established the Vision for Space Exploration (VSE) to complete the International Space Station, retire the Space Shuttle and develop its replacement, and expand the human presence on the Moon as a stepping stone to human exploration of Mars and worlds beyond. In response, NASA developed the Constellation Program, consisting of the components shown in Figure 1. This paper will summarize the manned spaceflight liquid propulsion system needs in support of the Constellation Program over the next 10 years. It will address all liquid engine needs to support human exploration from low Earth orbit (LEO) to the lunar surface, including an overview of engines currently under contract, those baselined but not yet under contract, and those propulsion needs that have yet to be initiated. There may be additional engine needs for early demonstrators, but those will not be addressed as part of this paper. Also, other portions of the VSE architecture, including the planned Orion abort test boosters and the Lunar Precursor Robotic Program, are not addressed here as they either use solid motors or are focused on unmanned elements of returning humans to the Moon.

  9. Reduced Order Modeling of SLS Liquid Hydrogen Pre-Valve Flow Guide to Enable Rapid Transient Analysis

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; Mulder, Andrew

    2017-01-01

    NASA is developing a new launch vehicle, called the Space Launch System (SLS), which is intended on taking humans out of low earth orbit to destinations including the moon, asteroids, and Mars. The propulsion system for the core stage of this vehicle includes four RS-25 Liquid Hydrogen/Oxygen rocket engines. These engines are upgraded versions of the Space Shuttle Main Engines (SSME); the upgrades include higher power levels and affordability enhancements. As with any new vehicle, the Main Propulsion System (MPS), which include the feedlines and ancillary hardware connecting the engines to the fuel and oxidizer tanks, had to be redesigned (figure 1 - export clearance in progress), as the previous MPS for the SSME's was inherently part of the Space Shuttle System, which had a completely different overall configuration.

  10. Manned Mars mission crew factors

    NASA Technical Reports Server (NTRS)

    Santy, Patricia A.

    1986-01-01

    Crew factors include a wide range of concerns relating to the human system and its role in a Mars mission. There are two important areas which will play a large part in determining the crew for a Mars mission. The first relates to the goals and priorities determined for such a vast endeavor. The second is the design of the vehicle for the journey. The human system cannot be separated from the other systems in that vehicle. In fact it will be the human system which drives the development of many of the technical breakthroughs necessary to make a Mars mission successful. As much as possible, the engineering systems must adapt to the needs of the human system and its individual components.

  11. Human factors systems approach to healthcare quality and patient safety

    PubMed Central

    Carayon, Pascale; Wetterneck, Tosha B.; Rivera-Rodriguez, A. Joy; Hundt, Ann Schoofs; Hoonakker, Peter; Holden, Richard; Gurses, Ayse P.

    2013-01-01

    Human factors systems approaches are critical for improving healthcare quality and patient safety. The SEIPS (Systems Engineering Initiative for Patient Safety) model of work system and patient safety is a human factors systems approach that has been successfully applied in healthcare research and practice. Several research and practical applications of the SEIPS model are described. Important implications of the SEIPS model for healthcare system and process redesign are highlighted. Principles for redesigning healthcare systems using the SEIPS model are described. Balancing the work system and encouraging the active and adaptive role of workers are key principles for improving healthcare quality and patient safety. PMID:23845724

  12. User type certification for advanced flight control systems

    NASA Technical Reports Server (NTRS)

    Gilson, Richard D.; Abbott, David W.

    1994-01-01

    Advanced avionics through flight management systems (FMS) coupled with autopilots can now precisely control aircraft from takeoff to landing. Clearly, this has been the most important improvement in aircraft since the jet engine. Regardless of the eventual capabilities of this technology, it is doubtful that society will soon accept pilotless airliners with the same aplomb they accept driverless passenger trains. Flight crews are still needed to deal with inputing clearances, taxiing, in-flight rerouting, unexpected weather decisions, and emergencies; yet it is well known that the contribution of human errors far exceed those of current hardware or software systems. Thus human errors remain, and are even increasing in percentage as the largest contributor to total system error. Currently, the flight crew is regulated by a layered system of certification: by operation, e.g., airline transport pilot versus private pilot; by category, e.g., airplane versus helicopter; by class, e.g., single engine land versus multi-engine land; and by type (for larger aircraft and jet powered aircraft), e.g., Boeing 767 or Airbus A320. Nothing in the certification process now requires an in-depth proficiency with specific types of avionics systems despite their prominent role in aircraft control and guidance.

  13. Organizational Influences on Interdisciplinary Interactions during Research and Design of Large-Scale Complex Engineered Systems

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria R.; Seifert, Colleen M.; Papalambros, Panos Y.

    2012-01-01

    The design of large-scale complex engineered systems (LaCES) such as an aircraft is inherently interdisciplinary. Multiple engineering disciplines, drawing from a team of hundreds to thousands of engineers and scientists, are woven together throughout the research, development, and systems engineering processes to realize one system. Though research and development (R&D) is typically focused in single disciplines, the interdependencies involved in LaCES require interdisciplinary R&D efforts. This study investigates the interdisciplinary interactions that take place during the R&D and early conceptual design phases in the design of LaCES. Our theoretical framework is informed by both engineering practices and social science research on complex organizations. This paper provides preliminary perspective on some of the organizational influences on interdisciplinary interactions based on organization theory (specifically sensemaking), data from a survey of LaCES experts, and the authors experience in the research and design. The analysis reveals couplings between the engineered system and the organization that creates it. Survey respondents noted the importance of interdisciplinary interactions and their significant benefit to the engineered system, such as innovation and problem mitigation. Substantial obstacles to interdisciplinarity are uncovered beyond engineering that include communication and organizational challenges. Addressing these challenges may ultimately foster greater efficiencies in the design and development of LaCES and improved system performance by assisting with the collective integration of interdependent knowledge bases early in the R&D effort. This research suggests that organizational and human dynamics heavily influence and even constrain the engineering effort for large-scale complex systems.

  14. Generation of mature T cells from human hematopoietic stem and progenitor cells in artificial thymic organoids.

    PubMed

    Seet, Christopher S; He, Chongbin; Bethune, Michael T; Li, Suwen; Chick, Brent; Gschweng, Eric H; Zhu, Yuhua; Kim, Kenneth; Kohn, Donald B; Baltimore, David; Crooks, Gay M; Montel-Hagen, Amélie

    2017-05-01

    Studies of human T cell development require robust model systems that recapitulate the full span of thymopoiesis, from hematopoietic stem and progenitor cells (HSPCs) through to mature T cells. Existing in vitro models induce T cell commitment from human HSPCs; however, differentiation into mature CD3 + TCR-αβ + single-positive CD8 + or CD4 + cells is limited. We describe here a serum-free, artificial thymic organoid (ATO) system that supports efficient and reproducible in vitro differentiation and positive selection of conventional human T cells from all sources of HSPCs. ATO-derived T cells exhibited mature naive phenotypes, a diverse T cell receptor (TCR) repertoire and TCR-dependent function. ATOs initiated with TCR-engineered HSPCs produced T cells with antigen-specific cytotoxicity and near-complete lack of endogenous TCR Vβ expression, consistent with allelic exclusion of Vβ-encoding loci. ATOs provide a robust tool for studying human T cell differentiation and for the future development of stem-cell-based engineered T cell therapies.

  15. Generation of mature T cells from human hematopoietic stem/progenitor cells in artificial thymic organoids

    PubMed Central

    Seet, Christopher S.; He, Chongbin; Bethune, Michael T.; Li, Suwen; Chick, Brent; Gschweng, Eric H.; Zhu, Yuhua; Kim, Kenneth; Kohn, Donald B.; Baltimore, David; Crooks, Gay M.; Montel-Hagen, Amélie

    2017-01-01

    Studies of human T cell development require robust model systems that recapitulate the full span of thymopoiesis, from hematopoietic stem and progenitor cells (HSPCs) through to mature T cells. Existing in vitro models induce T cell commitment from human HSPCs; however, differentiation into mature CD3+TCRab+ single positive (SP) CD8+ or CD4+ cells is limited. We describe here a serum-free, artificial thymic organoid (ATO) system that supports highly efficient and reproducible in vitro differentiation and positive selection of conventional human T cells from all sources of HSPCs. ATO-derived T cells exhibited mature naïve phenotypes, a diverse TCR repertoire, and TCR-dependent function. ATOs initiated with TCR-engineered HSPCs produced T cells with antigen specific cytotoxicity and near complete lack of endogenous TCR Vβ expression, consistent with allelic exclusion of Vβ loci. ATOs provide a robust tool for studying human T cell development and stem cell based approaches to engineered T cell therapies. PMID:28369043

  16. The telerobot workstation testbed for the shuttle aft flight deck: A project plan for integrating human factors into system design

    NASA Technical Reports Server (NTRS)

    Sauerwein, Timothy

    1989-01-01

    The human factors design process in developing a shuttle orbiter aft flight deck workstation testbed is described. In developing an operator workstation to control various laboratory telerobots, strong elements of human factors engineering and ergonomics are integrated into the design process. The integration of human factors is performed by incorporating user feedback at key stages in the project life-cycle. An operator centered design approach helps insure the system users are working with the system designer in the design and operation of the system. The design methodology is presented along with the results of the design and the solutions regarding human factors design principles.

  17. USCS and the USDA Soil Classification System: Development of a Mapping Scheme

    DTIC Science & Technology

    2015-03-01

    important to human daily living. A variety of disciplines (geology, agriculture, engineering, etc.) require a sys- tematic categorization of soil, detailing...it is often important to also con- sider parameters that indicate soil strength. Two important properties used for engineering-related problems are...that many textural clas- sification systems were developed to meet specifics needs. In agriculture, textural classification is used to determine crop

  18. Cost Benefit Analysis: Cost Benefit Analysis for Human Effectiveness Research: Bioacoustic Protection

    DTIC Science & Technology

    2001-07-21

    APPENDIX A. ACRONYMS ACCES Attenuating Custom Communication Earpiece System ACEIT Automated Cost estimating Integrated Tools AFSC Air Force...documented in the ACEIT cost estimating tool developed by Tecolote, Inc. The factor used was 14 percent of PMP. 1.3 System Engineering/ Program...The data source is the ASC Aeronautical Engineering Products Cost Factor Handbook which is documented in the ACEIT cost estimating tool developed

  19. Modeling Complex Cross-Systems Software Interfaces Using SysML

    NASA Technical Reports Server (NTRS)

    Mandutianu, Sanda; Morillo, Ron; Simpson, Kim; Liepack, Otfrid; Bonanne, Kevin

    2013-01-01

    The complex flight and ground systems for NASA human space exploration are designed, built, operated and managed as separate programs and projects. However, each system relies on one or more of the other systems in order to accomplish specific mission objectives, creating a complex, tightly coupled architecture. Thus, there is a fundamental need to understand how each system interacts with the other. To determine if a model-based system engineering approach could be utilized to assist with understanding the complex system interactions, the NASA Engineering and Safety Center (NESC) sponsored a task to develop an approach for performing cross-system behavior modeling. This paper presents the results of applying Model Based Systems Engineering (MBSE) principles using the System Modeling Language (SysML) to define cross-system behaviors and how they map to crosssystem software interfaces documented in system-level Interface Control Documents (ICDs).

  20. Towards Engineering Biological Systems in a Broader Context.

    PubMed

    Venturelli, Ophelia S; Egbert, Robert G; Arkin, Adam P

    2016-02-27

    Significant advances have been made in synthetic biology to program information processing capabilities in cells. While these designs can function predictably in controlled laboratory environments, the reliability of these devices in complex, temporally changing environments has not yet been characterized. As human society faces global challenges in agriculture, human health and energy, synthetic biology should develop predictive design principles for biological systems operating in complex environments. Natural biological systems have evolved mechanisms to overcome innumerable and diverse environmental challenges. Evolutionary design rules should be extracted and adapted to engineer stable and predictable ecological function. We highlight examples of natural biological responses spanning the cellular, population and microbial community levels that show promise in synthetic biology contexts. We argue that synthetic circuits embedded in host organisms or designed ecologies informed by suitable measurement of biotic and abiotic environmental parameters could be used as engineering substrates to achieve target functions in complex environments. Successful implementation of these methods will broaden the context in which synthetic biological systems can be applied to solve important problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Ecological Engineering Practices for the Reduction of Excess Nitrogen in Human-Influenced Landscapes: A Guide for Watershed Managers

    EPA Science Inventory

    Excess nitrogen (N) in freshwater systems, estuaries, and coastal areas has well-documented deleterious effects on ecosystems. Ecological engineering practices (EEPs) may be effective at decreasing nonpoint source N leaching to surface and groundwater. However, few studies have s...

  2. The Many Faces of a Software Engineer in a Research Community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marinovici, Maria C.; Kirkham, Harold

    2013-10-14

    The ability to gather, analyze and make decisions based on real world data is changing nearly every field of human endeavor. These changes are particularly challenging for software engineers working in a scientific community, designing and developing large, complex systems. To avoid the creation of a communications gap (almost a language barrier), the software engineers should possess an ‘adaptive’ skill. In the science and engineering research community, the software engineers must be responsible for more than creating mechanisms for storing and analyzing data. They must also develop a fundamental scientific and engineering understanding of the data. This paper looks atmore » the many faces that a software engineer should have: developer, domain expert, business analyst, security expert, project manager, tester, user experience professional, etc. Observations made during work on a power-systems scientific software development are analyzed and extended to describe more generic software development projects.« less

  3. The Tol2 transposon system mediates the genetic engineering of T-cells with CD19-specific chimeric antigen receptors for B-cell malignancies.

    PubMed

    Tsukahara, T; Iwase, N; Kawakami, K; Iwasaki, M; Yamamoto, C; Ohmine, K; Uchibori, R; Teruya, T; Ido, H; Saga, Y; Urabe, M; Mizukami, H; Kume, A; Nakamura, M; Brentjens, R; Ozawa, K

    2015-02-01

    Engineered T-cell therapy using a CD19-specific chimeric antigen receptor (CD19-CAR) is a promising strategy for the treatment of advanced B-cell malignancies. Gene transfer of CARs to T-cells has widely relied on retroviral vectors, but transposon-based gene transfer has recently emerged as a suitable nonviral method to mediate stable transgene expression. The advantages of transposon vectors compared with viral vectors include their simplicity and cost-effectiveness. We used the Tol2 transposon system to stably transfer CD19-CAR into human T-cells. Normal human peripheral blood lymphocytes were co-nucleofected with the Tol2 transposon donor plasmid carrying CD19-CAR and the transposase expression plasmid and were selectively propagated on NIH3T3 cells expressing human CD19. Expanded CD3(+) T-cells with stable and high-level transgene expression (~95%) produced interferon-γ upon stimulation with CD19 and specifically lysed Raji cells, a CD19(+) human B-cell lymphoma cell line. Adoptive transfer of these T-cells suppressed tumor progression in Raji tumor-bearing Rag2(-/-)γc(-/-) immunodeficient mice compared with control mice. These results demonstrate that the Tol2 transposon system could be used to express CD19-CAR in genetically engineered T-cells for the treatment of refractory B-cell malignancies.

  4. Software Re-Engineering of the Human Factors Analysis and Classification System - (Maintenance Extension) Using Object Oriented Methods in a Microsoft Environment

    DTIC Science & Technology

    2001-09-01

    replication) -- all from Visual Basic and VBA . In fact, we found that the SQL Server engine actually had a plethora of options, most formidable of...2002, the new SQL Server 2000 database engine, and Microsoft Visual Basic.NET. This thesis describes our use of the Spiral Development Model to...versions of Microsoft products? Specifically, the pending release of Microsoft Office 2002, the new SQL Server 2000 database engine, and Microsoft

  5. Video File - RS-25 Engine Test 2017-08-30

    NASA Image and Video Library

    2017-08-30

    NASA engineers closed a summer of hot fire testing Aug. 30 for flight controllers on RS-25 engines that will help power the new Space Launch System (SLS) rocket being built to carry astronauts to deep-space destinations, including Mars. The 500-second hot fire an RS-25 engine flight controller unit on the A-1 Test Stand at Stennis Space Center near Bay St. Louis, Mississippi marked another step toward the nation’s return to human deep-space exploration missions.

  6. The Challenges of Human-Autonomy Teaming

    NASA Technical Reports Server (NTRS)

    Vera, Alonso

    2017-01-01

    Machine intelligence is improving rapidly based on advances in big data analytics, deep learning algorithms, networked operations, and continuing exponential growth in computing power (Moores Law). This growth in the power and applicability of increasingly intelligent systems will change the roles humans, shifting them to tasks where adaptive problem solving, reasoning and decision-making is required. This talk will address the challenges involved in engineering autonomous systems that function effectively with humans in aeronautics domains.

  7. Intelligent Systems For Aerospace Engineering: An Overview

    NASA Technical Reports Server (NTRS)

    KrishnaKumar, K.

    2003-01-01

    Intelligent systems are nature-inspired, mathematically sound, computationally intensive problem solving tools and methodologies that have become extremely important for advancing the current trends in information technology. Artificially intelligent systems currently utilize computers to emulate various faculties of human intelligence and biological metaphors. They use a combination of symbolic and sub-symbolic systems capable of evolving human cognitive skills and intelligence, not just systems capable of doing things humans do not do well. Intelligent systems are ideally suited for tasks such as search and optimization, pattern recognition and matching, planning, uncertainty management, control, and adaptation. In this paper, the intelligent system technologies and their application potential are highlighted via several examples.

  8. Intelligent Systems for Aerospace Engineering: An Overview

    NASA Technical Reports Server (NTRS)

    Krishnakumar, Kalmanje

    2002-01-01

    Intelligent systems are nature-inspired, mathematically sound, computationally intensive problem solving tools and methodologies that have become extremely important for advancing the current trends in information technology. Artificially intelligent systems currently utilize computers to emulate various faculties of human intelligence and biological metaphors. They use a combination of symbolic and sub-symbolic systems capable of evolving human cognitive skills and intelligence, not just systems capable of doing things humans do not do well. Intelligent systems are ideally suited for tasks such as search and optimization, pattern recognition and matching, planning, uncertainty management, control, and adaptation. In this paper, the intelligent system technologies and their application potential are highlighted via several examples.

  9. Efficient and Controlled Generation of 2D and 3D Bile Duct Tissue from Human Pluripotent Stem Cell-Derived Spheroids.

    PubMed

    Tian, Lipeng; Deshmukh, Abhijeet; Ye, Zhaohui; Jang, Yoon-Young

    2016-08-01

    While in vitro liver tissue engineering has been increasingly studied during the last several years, presently engineered liver tissues lack the bile duct system. The lack of bile drainage not only hinders essential digestive functions of the liver, but also leads to accumulation of bile that is toxic to hepatocytes and known to cause liver cirrhosis. Clearly, generation of bile duct tissue is essential for engineering functional and healthy liver. Differentiation of human induced pluripotent stem cells (iPSCs) to bile duct tissue requires long and/or complex culture conditions, and has been inefficient so far. Towards generating a fully functional liver containing biliary system, we have developed defined and controlled conditions for efficient 2D and 3D bile duct epithelial tissue generation. A marker for multipotent liver progenitor in both adult human liver and ductal plate in human fetal liver, EpCAM, is highly expressed in hepatic spheroids generated from human iPSCs. The EpCAM high hepatic spheroids can, not only efficiently generate a monolayer of biliary epithelial cells (cholangiocytes), in a 2D differentiation condition, but also form functional ductal structures in a 3D condition. Importantly, this EpCAM high spheroid based biliary tissue generation is significantly faster than other existing methods and does not require cell sorting. In addition, we show that a knock-in CK7 reporter human iPSC line generated by CRISPR/Cas9 genome editing technology greatly facilitates the analysis of biliary differentiation. This new ductal differentiation method will provide a more efficient method of obtaining bile duct cells and tissues, which may facilitate engineering of complete and functional liver tissue in the future.

  10. Postures and Motions Library Development for Verification of Ground Crew Human Systems Integration Requirements

    NASA Technical Reports Server (NTRS)

    Jackson, Mariea Dunn; Dischinger, Charles; Stambolian, Damon; Henderson, Gena

    2012-01-01

    Spacecraft and launch vehicle ground processing activities require a variety of unique human activities. These activities are being documented in a Primitive motion capture library. The Library will be used by the human factors engineering in the future to infuse real to life human activities into the CAD models to verify ground systems human factors requirements. As the Primitive models are being developed for the library the project has selected several current human factors issues to be addressed for the SLS and Orion launch systems. This paper explains how the Motion Capture of unique ground systems activities are being used to verify the human factors analysis requirements for ground system used to process the STS and Orion vehicles, and how the primitive models will be applied to future spacecraft and launch vehicle processing.

  11. Determination of viable legionellae in engineered water systems: Do we find what we are looking for?

    PubMed Central

    Kirschner, Alexander K.T.

    2016-01-01

    In developed countries, legionellae are one of the most important water-based bacterial pathogens caused by management failure of engineered water systems. For routine surveillance of legionellae in engineered water systems and outbreak investigations, cultivation-based standard techniques are currently applied. However, in many cases culture-negative results are obtained despite the presence of viable legionellae, and clinical cases of legionellosis cannot be traced back to their respective contaminated water source. Among the various explanations for these discrepancies, the presence of viable but non-culturable (VBNC) Legionella cells has received increased attention in recent discussions and scientific literature. Alternative culture-independent methods to detect and quantify legionellae have been proposed in order to complement or even substitute the culture method in the future. Such methods should detect VBNC Legionella cells and provide a more comprehensive picture of the presence of legionellae in engineered water systems. However, it is still unclear whether and to what extent these VBNC legionellae are hazardous to human health. Current risk assessment models to predict the risk of legionellosis from Legionella concentrations in the investigated water systems contain many uncertainties and are mainly based on culture-based enumeration. If VBNC legionellae should be considered in future standard analysis, quantitative risk assessment models including VBNC legionellae must be proven to result in better estimates of human health risk than models based on cultivation alone. This review critically evaluates current methods to determine legionellae in the VBNC state, their potential to complement the standard culture-based method in the near future, and summarizes current knowledge on the threat that VBNC legionellae may pose to human health. PMID:26928563

  12. Determination of viable legionellae in engineered water systems: Do we find what we are looking for?

    PubMed

    Kirschner, Alexander K T

    2016-04-15

    In developed countries, legionellae are one of the most important water-based bacterial pathogens caused by management failure of engineered water systems. For routine surveillance of legionellae in engineered water systems and outbreak investigations, cultivation-based standard techniques are currently applied. However, in many cases culture-negative results are obtained despite the presence of viable legionellae, and clinical cases of legionellosis cannot be traced back to their respective contaminated water source. Among the various explanations for these discrepancies, the presence of viable but non-culturable (VBNC) Legionella cells has received increased attention in recent discussions and scientific literature. Alternative culture-independent methods to detect and quantify legionellae have been proposed in order to complement or even substitute the culture method in the future. Such methods should detect VBNC Legionella cells and provide a more comprehensive picture of the presence of legionellae in engineered water systems. However, it is still unclear whether and to what extent these VBNC legionellae are hazardous to human health. Current risk assessment models to predict the risk of legionellosis from Legionella concentrations in the investigated water systems contain many uncertainties and are mainly based on culture-based enumeration. If VBNC legionellae should be considered in future standard analysis, quantitative risk assessment models including VBNC legionellae must be proven to result in better estimates of human health risk than models based on cultivation alone. This review critically evaluates current methods to determine legionellae in the VBNC state, their potential to complement the standard culture-based method in the near future, and summarizes current knowledge on the threat that VBNC legionellae may pose to human health. Copyright © 2016 The Author. Published by Elsevier Ltd.. All rights reserved.

  13. Aeronautics Technology Possibilities for 2000: Report of a Workshop

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Topics discussed include: Aerodynamics; Propulsion; Structural Analysis and Design Technology; Materials for Structural Members, Propulsion Systems, and Subsystems; Guidance, Navigation, and Control; Computer and Information Technology; Human Factors Engineering; Systems Integration.

  14. Tension stimulation drives tissue formation in scaffold-free systems

    NASA Astrophysics Data System (ADS)

    Lee, Jennifer K.; Huwe, Le W.; Paschos, Nikolaos; Aryaei, Ashkan; Gegg, Courtney A.; Hu, Jerry C.; Athanasiou, Kyriacos A.

    2017-08-01

    Scaffold-free systems have emerged as viable approaches for engineering load-bearing tissues. However, the tensile properties of engineered tissues have remained far below the values for native tissue. Here, by using self-assembled articular cartilage as a model to examine the effects of intermittent and continuous tension stimulation on tissue formation, we show that the application of tension alone, or in combination with matrix remodelling and synthesis agents, leads to neocartilage with tensile properties approaching those of native tissue. Implantation of tension-stimulated tissues results in neotissues that are morphologically reminiscent of native cartilage. We also show that tension stimulation can be translated to a human cell source to generate anisotropic human neocartilage with enhanced tensile properties. Tension stimulation, which results in nearly sixfold improvements in tensile properties over unstimulated controls, may allow the engineering of mechanically robust biological replacements of native tissue.

  15. Lighting up the Night

    NASA Image and Video Library

    2015-01-09

    Year 2015 got off to a blazing start as NASA conducted its first test of an RS-25 rocket engine on the A-1 Test Stand at Stennis Space Center on Jan. 9, 2015. The 500-second test provided critical data on engine performance. RS-25 engines will help power the core stage of NASA’s new Space Launch System vehicle, being developed to carry humans deeper into space than ever before.

  16. Studying Kidney Disease Using Tissue and Genome Engineering in Human Pluripotent Stem Cells.

    PubMed

    Garreta, Elena; González, Federico; Montserrat, Núria

    2018-01-01

    Kidney morphogenesis and patterning have been extensively studied in animal models such as the mouse and zebrafish. These seminal studies have been key to define the molecular mechanisms underlying this complex multistep process. Based on this knowledge, the last 3 years have witnessed the development of a cohort of protocols allowing efficient differentiation of human pluripotent stem cells (hPSCs) towards defined kidney progenitor populations using two-dimensional (2D) culture systems or through generating organoids. Kidney organoids are three-dimensional (3D) kidney-like tissues, which are able to partially recapitulate kidney structure and function in vitro. The current possibility to combine state-of-the art tissue engineering with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated systems 9 (Cas9)-mediated genome engineering provides an unprecedented opportunity for studying kidney disease with hPSCs. Recently, hPSCs with genetic mutations introduced through CRISPR/Cas9-mediated genome engineering have shown to produce kidney organoids able to recapitulate phenotypes of polycystic kidney disease and glomerulopathies. This mini review provides an overview of the most recent advances in differentiation of hPSCs into kidney lineages, and the latest implementation of the CRISPR/Cas9 technology in the organoid setting, as promising platforms to study human kidney development and disease. © 2017 S. Karger AG, Basel.

  17. CD44-engineered mesoporous silica nanoparticles for overcoming multidrug resistance in breast cancer

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Liu, Ying; Wang, Shouju; Shi, Donghong; Zhou, Xianguang; Wang, Chunyan; Wu, Jiang; Zeng, Zhiyong; Li, Yanjun; Sun, Jing; Wang, Jiandong; Zhang, Longjiang; Teng, Zhaogang; Lu, Guangming

    2015-03-01

    Multidrug resistance is a major impediment for the successful chemotherapy in breast cancer. CD44 is over-expressed in multidrug resistant human breast cancer cells. CD44 monoclonal antibody exhibits anticancer potential by inhibiting proliferation and regulating P-glycoprotein-mediated drug efflux activity in multidrug resistant cells. Thereby, CD44 monoclonal antibody in combination with chemotherapeutic drug might be result in enhancing chemosensitivity and overcoming multidrug resistance. The purpose of this study is to investigate the effects of the CD44 monoclonal antibody functionalized mesoporous silica nanoparticles containing doxorubicin on human breast resistant cancer MCF-7 cells. The data showed that CD44-modified mesoporous silica nanoparticles increased cytotoxicity and enhanced the downregulation of P-glycoprotein in comparison to CD44 antibody. Moreover, CD44-engineered mesoporous silica nanoparticles provided active target, which promoted more cellular uptake of DOX in the resistant cells and more retention of DOX in tumor tissues than unengineered counterpart. Animal studies of the resistant breast cancer xenografts demonstrated that CD44-engineered drug delivery system remarkably induced apoptosis and inhibited the tumor growth. Our results indicated that the CD44-engineered mesoporous silica nanoparticle-based drug delivery system offers an effective approach to overcome multidrug resistance in human breast cancer.

  18. Chimeric antigen receptor–engineered T cells as oncolytic virus carriers

    PubMed Central

    VanSeggelen, Heather; Tantalo, Daniela GM; Afsahi, Arya; Hammill, Joanne A; Bramson, Jonathan L

    2015-01-01

    The use of engineered T cells in adoptive transfer therapies has shown significant promise in treating hematological cancers. However, successes treating solid tumors are much less prevalent. Oncolytic viruses (OVs) have the capacity to induce specific lysis of tumor cells and indirectly impact tumor growth via vascular shutdown. These viruses bear natural abilities to associate with lymphocytes upon systemic administration, but therapeutic doses must be very high in order to evade antibodies and other components of the immune system. As T cells readily circulate through the body, using these cells to deliver OVs directly to tumors may provide an ideal combination. Our studies demonstrate that loading chimeric antigen receptor–engineered T cells with low doses of virus does not impact receptor expression or function in either murine or human T cells. Engineered T cells can deposit virus onto a variety of tumor targets, which can enhance the tumoricidal activity of the combination treatment. This concept appears to be broadly applicable, as we observed similar results using murine or human T cells, loaded with either RNA or DNA viruses. Overall, loading of engineered T cells with OVs represents a novel combination therapy that may increase the efficacy of both treatments. PMID:27119109

  19. Cell biology and biotechnology research for exploration of the Moon and Mars

    NASA Astrophysics Data System (ADS)

    Pellis, N.; North, R.

    Health risks generated by human long exposure to radiation, microgravity, and unknown factors in the planetary environment are the major unresolved issues for human space exploration. A complete characterization of human and other biological systems adaptation processes to long-duration space missions is necessary for the development of countermeasures. The utilization of cell and engineered tissue cultures in space research and exploration complements research in human, animal, and plant subjects. We can bring a small number of humans, animals, or plants to the ISS, Moon, and Mars. However, we can investigate millions of their cells during these missions. Furthermore, many experiments can not be performed on humans, e.g. radiation exposure, cardiac muscle. Cells from critical tissues and tissue constructs per se are excellent subjects for experiments that address underlying mechanisms important to countermeasures. The development of cell tissue engineered for replacement, implantation of biomaterial to induce tissue regeneration (e.g. absorbable collagen matrix for guiding tissue regeneration in periodontal surgery), and immunoisolation (e.g. biopolymer coating on transplanted tissues to ward off immunological rejection) are good examples of cell research and biotechnology applications. NASA Cell Biology and Biotechnology research include Bone/Muscle and Cardiovascular cell culture and tissue engineering; Environmental Health and Life Support Systems; Immune System; Radiation; Gravity Thresholds ; and Advanced Biotechnology Development to increase the understanding of animal and plant cell adaptive behavior when exposed to space, and to advance technologies that facilitates exploration. Cell systems can be used to investigate processes related to food, microbial proliferation, waste management, biofilms and biomaterials. The NASA Cell Science Program has the advantage of conducting research in microgravity based on significantly small resources, and the ability to conduct experiments in the early phase of the development of requirements for exploration. Supporting the NASA concept of stepping stones, we believe that ground based, International Space Station, robotic and satellite missions offer the ideal environment to perform experiments and secure answers necessary for human exploration.

  20. Design for human factors (DfHF): a grounded theory for integrating human factors into production design processes.

    PubMed

    Village, Judy; Searcy, Cory; Salustri, Filipo; Patrick Neumann, W

    2015-01-01

    The 'design for human factors' grounded theory explains 'how' human factors (HF) went from a reactive, after-injury programme in safety, to being proactively integrated into each step of the production design process. In this longitudinal case study collaboration with engineers and HF Specialists in a large electronics manufacturer, qualitative data (e.g. meetings, interviews, observations and reflections) were analysed using a grounded theory methodology. The central tenet in the theory is that when HF Specialists acclimated to the engineering process, language and tools, and strategically aligned HF to the design and business goals of the organisation, HF became a means to improve business performance. This led to engineers 'pulling' HF Specialists onto their team. HF targets were adopted into engineering tools to communicate HF concerns quantitatively, drive continuous improvement, visibly demonstrate change and lead to benchmarking. Senior management held engineers accountable for HF as a key performance indicator, thus integrating HF into the production design process. Practitioner Summary: Research and practice lack explanations about how HF can be integrated early in design of production systems. This three-year case study and the theory derived demonstrate how ergonomists changed their focus to align with design and business goals to integrate HF into the design process.

  1. A human factors engineering paradigm for patient safety: designing to support the performance of the healthcare professional

    PubMed Central

    Karsh, B‐T; Holden, R J; Alper, S J; Or, C K L

    2006-01-01

    The goal of improving patient safety has led to a number of paradigms for directing improvement efforts. The main paradigms to date have focused on reducing injuries, reducing errors, or improving evidence based practice. In this paper a human factors engineering paradigm is proposed that focuses on designing systems to improve the performance of healthcare professionals and to reduce hazards. Both goals are necessary, but neither is sufficient to improve safety. We suggest that the road to patient and employee safety runs through the healthcare professional who delivers care. To that end, several arguments are provided to show that designing healthcare delivery systems to support healthcare professional performance and hazard reduction should yield significant patient safety benefits. The concepts of human performance and hazard reduction are explained. PMID:17142611

  2. Women Working in Engineering and Science

    NASA Technical Reports Server (NTRS)

    Luna, Bernadette; Kliss, Mark (Technical Monitor)

    1998-01-01

    The presentation will focus on topics of interest to young women pursuing an engineering or scientific career, such as intrinsic personality traits of most engineers, average salaries for the various types of engineers, appropriate preparation classes at the high school and undergraduate levels, gaining experience through internships, summer jobs and graduate school, skills necessary but not always included in engineering curricula (i.e., multimedia, computer skills, communication skills), the work environment, balancing family and career, and sexual harassment. Specific examples from the speaker's own experience in NASA's Space Life Sciences Program will be used to illustrate the above topics. In particular, projects from Extravehicular Activity and Protective Systems research and Regenerative Life Support research will be used as examples of real world problem-solving to enable human exploration of the solar system.

  3. Human Factors Engineering as a System in the Vision for Exploration

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Smith, Danielle; Holden, Kritina

    2006-01-01

    In order to accomplish NASA's Vision for Exploration, while assuring crew safety and productivity, human performance issues must be well integrated into system design from mission conception. To that end, a two-year Technology Development Project (TDP) was funded by NASA Headquarters to develop a systematic method for including the human as a system in NASA's Vision for Exploration. The specific goals of this project are to review current Human Systems Integration (HSI) standards (i.e., industry, military, NASA) and tailor them to selected NASA Exploration activities. Once the methods are proven in the selected domains, a plan will be developed to expand the effort to a wider scope of Exploration activities. The methods will be documented for inclusion in NASA-specific documents (such as the Human Systems Integration Standards, NASA-STD-3000) to be used in future space systems. The current project builds on a previous TDP dealing with Human Factors Engineering processes. That project identified the key phases of the current NASA design lifecycle, and outlined the recommended HFE activities that should be incorporated at each phase. The project also resulted in a prototype of a webbased HFE process tool that could be used to support an ideal HFE development process at NASA. This will help to augment the limited human factors resources available by providing a web-based tool that explains the importance of human factors, teaches a recommended process, and then provides the instructions, templates and examples to carry out the process steps. The HFE activities identified by the previous TDP are being tested in situ for the current effort through support to a specific NASA Exploration activity. Currently, HFE personnel are working with systems engineering personnel to identify HSI impacts for lunar exploration by facilitating the generation of systemlevel Concepts of Operations (ConOps). For example, medical operations scenarios have been generated for lunar habitation in order to identify HSI requirements for the lunar communications architecture. Throughout these ConOps exercises, HFE personnel are testing various tools and methodologies that have been identified in the literature. A key part of the effort is the identification of optimal processes, methods, and tools for these early development phase activities, such as ConOps, requirements development, and early conceptual design. An overview of the activities completed thus far, as well as the tools and methods investigated will be presented.

  4. Cognitive engineering and health informatics: Applications and intersections.

    PubMed

    Hettinger, A Zachary; Roth, Emilie M; Bisantz, Ann M

    2017-03-01

    Cognitive engineering is an applied field with roots in both cognitive science and engineering that has been used to support design of information displays, decision support, human-automation interaction, and training in numerous high risk domains ranging from nuclear power plant control to transportation and defense systems. Cognitive engineering provides a set of structured, analytic methods for data collection and analysis that intersect with and complement methods of Cognitive Informatics. These methods support discovery of aspects of the work that make performance challenging, as well as the knowledge, skills, and strategies that experts use to meet those challenges. Importantly, cognitive engineering methods provide novel representations that highlight the inherent complexities of the work domain and traceable links between the results of cognitive analyses and actionable design requirements. This article provides an overview of relevant cognitive engineering methods, and illustrates how they have been applied to the design of health information technology (HIT) systems. Additionally, although cognitive engineering methods have been applied in the design of user-centered informatics systems, methods drawn from informatics are not typically incorporated into a cognitive engineering analysis. This article presents a discussion regarding ways in which data-rich methods can inform cognitive engineering. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. DEWEY: the DICOM-enabled workflow engine system.

    PubMed

    Erickson, Bradley J; Langer, Steve G; Blezek, Daniel J; Ryan, William J; French, Todd L

    2014-06-01

    Workflow is a widely used term to describe the sequence of steps to accomplish a task. The use of workflow technology in medicine and medical imaging in particular is limited. In this article, we describe the application of a workflow engine to improve workflow in a radiology department. We implemented a DICOM-enabled workflow engine system in our department. We designed it in a way to allow for scalability, reliability, and flexibility. We implemented several workflows, including one that replaced an existing manual workflow and measured the number of examinations prepared in time without and with the workflow system. The system significantly increased the number of examinations prepared in time for clinical review compared to human effort. It also met the design goals defined at its outset. Workflow engines appear to have value as ways to efficiently assure that complex workflows are completed in a timely fashion.

  6. Synthetic Biology in Cell and Organ Transplantation.

    PubMed

    Stevens, Sean

    2017-02-01

    The transplantation of cells and organs has an extensive history, with blood transfusion and skin grafts described as some of the earliest medical interventions. The speed and efficiency of the human immune system evolved to rapidly recognize and remove pathogens; the human immune system also serves as a barrier against the transplant of cells and organs from even highly related donors. Although this shows the remarkable effectiveness of the immune system, the engineering of cells and organs that will survive in a host patient over the long term remains a steep challenge. Progress in the understanding of host immune responses to donor cells and organs, combined with the rapid advancement in synthetic biology applications, allows the rational engineering of more effective solutions for transplantation. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  7. Teamed for Success: The Imperative for Aligning Systems Engineering and Life Cycle Logistics

    DTIC Science & Technology

    2013-02-01

    January-February 2013 Kobren is director of the DAU Logistics & Sustainment Center, and the DoD Product Support Assessment Human Capital IPT lead...engineering colleagues, here are 10 key life-cycle logistics, product support, and system sustainment tenets to be cognizant of: Decisions You Make Will...and updates to the Life Cycle Sustainment Plan (LCSP). A vast majority of a weapon systems’ total ownership costs are determined by decisions made

  8. Two-D results on human operator perception

    NASA Technical Reports Server (NTRS)

    Siapkara, A. A.; Sheridan, T. B.

    1981-01-01

    The application of multidimensional scaling methodology in human factors engineering is presented. The nonorthogonality of internally perceived task variables is exhibited for first and second order plants with both dependent and independent task variables. Directions of operator preference are shown for actual performance, pilot opinion rating, and subjective measures of fatigue, adaptability, and system recognition. Improvement of performance in second order systems is exhibited by the use of bang-bang feedback information. Dissimilarity measures for system comparison are suggested in order to account for human operator rotations and subjective sense of time.

  9. Camera systems in human motion analysis for biomedical applications

    NASA Astrophysics Data System (ADS)

    Chin, Lim Chee; Basah, Shafriza Nisha; Yaacob, Sazali; Juan, Yeap Ewe; Kadir, Aida Khairunnisaa Ab.

    2015-05-01

    Human Motion Analysis (HMA) system has been one of the major interests among researchers in the field of computer vision, artificial intelligence and biomedical engineering and sciences. This is due to its wide and promising biomedical applications, namely, bio-instrumentation for human computer interfacing and surveillance system for monitoring human behaviour as well as analysis of biomedical signal and image processing for diagnosis and rehabilitation applications. This paper provides an extensive review of the camera system of HMA, its taxonomy, including camera types, camera calibration and camera configuration. The review focused on evaluating the camera system consideration of the HMA system specifically for biomedical applications. This review is important as it provides guidelines and recommendation for researchers and practitioners in selecting a camera system of the HMA system for biomedical applications.

  10. Treatment of colitis with a commensal gut bacterium engineered to secrete human TGF-beta1 under the control of dietary xylan

    USDA-ARS?s Scientific Manuscript database

    Background: Growth factors have shown promise in treating inflammatory bowel disease. They are unstable when administered orally and required in higher doses with systemic administration. In consideration of these problems, we have engineered the commensal bacterium Bacteroides ovatus for the con...

  11. New frontiers in design synthesis

    NASA Technical Reports Server (NTRS)

    Goldin, D. S.; Venneri, S. L.; Noor, A. K.

    1999-01-01

    The Intelligent Synthesis Environment (ISE), which is one of the major strategic technologies under development at NASA centers and the University of Virginia, is described. One of the major objectives of ISE is to significantly enhance the rapid creation of innovative affordable products and missions. ISE uses a synergistic combination of leading-edge technologies, including high performance computing, high capacity communications and networking, human-centered computing, knowledge-based engineering, computational intelligence, virtual product development, and product information management. The environment will link scientists, design teams, manufacturers, suppliers, and consultants who participate in the mission synthesis as well as in the creation and operation of the aerospace system. It will radically advance the process by which complex science missions are synthesized, and high-tech engineering Systems are designed, manufactured and operated. The five major components critical to ISE are human-centered computing, infrastructure for distributed collaboration, rapid synthesis and simulation tools, life cycle integration and validation, and cultural change in both the engineering and science creative process. The five components and their subelements are described. Related U.S. government programs are outlined and the future impact of ISE on engineering research and education is discussed.

  12. A conceptual review on systems biology in health and diseases: from biological networks to modern therapeutics.

    PubMed

    Somvanshi, Pramod Rajaram; Venkatesh, K V

    2014-03-01

    Human physiology is an ensemble of various biological processes spanning from intracellular molecular interactions to the whole body phenotypic response. Systems biology endures to decipher these multi-scale biological networks and bridge the link between genotype to phenotype. The structure and dynamic properties of these networks are responsible for controlling and deciding the phenotypic state of a cell. Several cells and various tissues coordinate together to generate an organ level response which further regulates the ultimate physiological state. The overall network embeds a hierarchical regulatory structure, which when unusually perturbed can lead to undesirable physiological state termed as disease. Here, we treat a disease diagnosis problem analogous to a fault diagnosis problem in engineering systems. Accordingly we review the application of engineering methodologies to address human diseases from systems biological perspective. The review highlights potential networks and modeling approaches used for analyzing human diseases. The application of such analysis is illustrated in the case of cancer and diabetes. We put forth a concept of cell-to-human framework comprising of five modules (data mining, networking, modeling, experimental and validation) for addressing human physiology and diseases based on a paradigm of system level analysis. The review overtly emphasizes on the importance of multi-scale biological networks and subsequent modeling and analysis for drug target identification and designing efficient therapies.

  13. Graphical analysis of power systems for mobile robotics

    NASA Astrophysics Data System (ADS)

    Raade, Justin William

    The field of mobile robotics places stringent demands on the power system. Energetic autonomy, or the ability to function for a useful operation time independent of any tether, refueling, or recharging, is a driving force in a robot designed for a field application. The focus of this dissertation is the development of two graphical analysis tools, namely Ragone plots and optimal hybridization plots, for the design of human scale mobile robotic power systems. These tools contribute to the intuitive understanding of the performance of a power system and expand the toolbox of the design engineer. Ragone plots are useful for graphically comparing the merits of different power systems for a wide range of operation times. They plot the specific power versus the specific energy of a system on logarithmic scales. The driving equations in the creation of a Ragone plot are derived in terms of several important system parameters. Trends at extreme operation times (both very short and very long) are examined. Ragone plot analysis is applied to the design of several power systems for high-power human exoskeletons. Power systems examined include a monopropellant-powered free piston hydraulic pump, a gasoline-powered internal combustion engine with hydraulic actuators, and a fuel cell with electric actuators. Hybrid power systems consist of two or more distinct energy sources that are used together to meet a single load. They can often outperform non-hybrid power systems in low duty-cycle applications or those with widely varying load profiles and long operation times. Two types of energy sources are defined: engine-like and capacitive. The hybridization rules for different combinations of energy sources are derived using graphical plots of hybrid power system mass versus the primary system power. Optimal hybridization analysis is applied to several power systems for low-power human exoskeletons. Hybrid power systems examined include a fuel cell and a solar panel coupled with lithium polymer batteries. In summary, this dissertation describes the development and application of two graphical analysis tools for the intuitive design of mobile robotic power systems. Several design examples are discussed involving human exoskeleton power systems.

  14. A Robotics Systems Design Need: A Design Standard to Provide the Systems Focus that is Required for Longterm Exploration Efforts

    NASA Technical Reports Server (NTRS)

    Dischinger, H. Charles., Jr.; Mullins, Jeffrey B.

    2005-01-01

    The United States is entering a new period of human exploration of the inner Solar System, and robotic human helpers will be partners in that effort. In order to support integration of these new worker robots into existing and new human systems, a new design standard should be developed, to be called the Robot-Systems Integration Standard (RSIS). It will address the requirements for and constraints upon robotic collaborators with humans. These workers are subject to the same functional constraints as humans of work, reach, and visibility/situational awareness envelopes, and they will deal with the same maintenance and communication interfaces. Thus, the RSIS will be created by discipline experts with the same sort of perspective on these and other interface concerns as human engineers.

  15. Design engineer perceptions and attitudes regarding human factors application to nuclear power plant design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, R.; Jones, J. M.

    2006-07-01

    With the renewed interest in nuclear power and the possibility of constructing new reactors within the next decade in the U.S., there are several challenges for the regulators, designers, and vendors. One challenge is to ensure that Human Factors Engineering (HFE) is involved, and correctly applied in the life-cycle design of the Nuclear Power Plant (NPP). As an important part of the effort, people would ask: 'is the system-design engineer effectively incorporating HFE in the NPPs design?' The present study examines the sagacity of Instrumentation and Control design engineers on issues relating to awareness, attitude, and application of HFE inmore » NPP design. A questionnaire was developed and distributed, focusing on the perceptions and attitudes of the design engineers. The responses revealed that, while the participants had a relatively high positive attitude about HFE, their awareness and application of HFE were moderate. The results also showed that senior engineers applied HFE more frequently in their design work than young engineers. This study provides some preliminary results and implications for improved HFE education and application in NPP design. (authors)« less

  16. What to Do Until the Money Runs Out: A Refinement Framework for Cognitive Engineering in the Real World

    NASA Technical Reports Server (NTRS)

    Shafto, Michael G.; Remington, Roger W.; Trimble, Jay W.

    1994-01-01

    A case study is presented to illustrate some of the problems of applying cognitive science to complex human-machine systems. Disregard for facts about human cognition often undermines the safety, reliability, and cost-effectiveness of complex systems. Yet single-point methods (for example, better user-interface design), whether rooted in computer science or in experimental psychology, fall far short of addressing systems-level problems in a timely way using realistic resources. A model-based methodology is proposed for organizing and prioritizing the cognitive engineering effort, focusing appropriate expertise on major problems first, then moving to more sophisticated refinements if time and resources permit. This case study is based on a collaborative effort between the Human Factors Division at NASA-Ames and the Spaceborne Imaging Radar SIR-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) Project at the Jet Propulsion Laboratory (JPL), California institute of Technology. The first SIR-C/X-SAR Shuttle mission flew successfully in April, 1994. A series of such missions is planned to provide radar data to study Earth's ecosystems, climatic and geological processes, hydrologic cycle, and ocean circulation. In addition to JPL and NASA personnel, the SIR-C/X-SAR operations team included Scientists and engineers from the German and Italian space agencies.

  17. Advanced Computational Methods in Bio-Mechanics.

    PubMed

    Al Qahtani, Waleed M S; El-Anwar, Mohamed I

    2018-04-15

    A novel partnership between surgeons and machines, made possible by advances in computing and engineering technology, could overcome many of the limitations of traditional surgery. By extending surgeons' ability to plan and carry out surgical interventions more accurately and with fewer traumas, computer-integrated surgery (CIS) systems could help to improve clinical outcomes and the efficiency of healthcare delivery. CIS systems could have a similar impact on surgery to that long since realised in computer-integrated manufacturing. Mathematical modelling and computer simulation have proved tremendously successful in engineering. Computational mechanics has enabled technological developments in virtually every area of our lives. One of the greatest challenges for mechanists is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences, and medicine. Biomechanics has significant potential for applications in orthopaedic industry, and the performance arts since skills needed for these activities are visibly related to the human musculoskeletal and nervous systems. Although biomechanics is widely used nowadays in the orthopaedic industry to design orthopaedic implants for human joints, dental parts, external fixations and other medical purposes, numerous researches funded by billions of dollars are still running to build a new future for sports and human healthcare in what is called biomechanics era.

  18. Network Analysis of Reconnaissance and Intrusion of an Industrial Control System

    DTIC Science & Technology

    2016-09-01

    simulated a plant engineer using the engineering workstation web browser to authenticate to the vegetable cooker HMI. While the engineer established the...observed the vegetable cooker HMI web display, the attacker stopped capturing network traffic. Acting as the attacker, we searched the attacker’s pcap...manually controlled by human activity. In this testbed network, only web browser traffic (HTTP) is created by an operator to view an HMI status

  19. Human-factors engineering for smart transport: design support for car drivers and train traffic controllers.

    PubMed

    Lenior, Dick; Janssen, Wiel; Neerincx, Mark; Schreibers, Kirsten

    2006-07-01

    The theme Smart Transport can be described as adequate human-system symbiosis to realize effective, efficient and human-friendly transport of goods and information. This paper addresses how to attune automation to human (cognitive) capacities (e.g. to take care of information uncertainty, operator trust and mutual man-machine adaptations). An introduction to smart transport is presented, including examples of best practice for engineering human factors in the vehicle ergonomics and train traffic control domain. The examples are representative of an ongoing trend in automation and they show how the human role changes from controller to supervisor. Section 2 focuses on the car driver and systems that support, or sometimes even take over, critical parts of the driving task. Due to the diversity of driver ability, driving context and dependence between driver and context factors, there is a need for personalised, adaptive and integrated support. Systematic research is needed to establish sound systems. Section 3 focuses on the train dispatcher support systems that predict train movements, detect potential conflicts and show the dispatcher the possibilities available to solve the detected problems. Via thorough analysis of both the process to be controlled and the dispatcher's tasks and cognitive needs, support functions were developed as part of an already very complex supervision and control system. The two examples, although from a different field, both show the need for further development in cognitive modelling as well as for the value of sound ergonomics task analysis in design practice.

  20. Work System Assessment to Facilitate the Dissemination of a Quality Improvement Program for Optimizing Blood Culture Use: A Case Study Using a Human Factors Engineering Approach.

    PubMed

    Xie, Anping; Woods-Hill, Charlotte Z; King, Anne F; Enos-Graves, Heather; Ascenzi, Judy; Gurses, Ayse P; Klaus, Sybil A; Fackler, James C; Milstone, Aaron M

    2017-11-20

    Work system assessments can facilitate successful implementation of quality improvement programs. Using a human factors engineering approach, we conducted a work system assessment to facilitate the dissemination of a quality improvement program for optimizing blood culture use in pediatric intensive care units at 2 hospitals. Semistructured face-to-face interviews were conducted with clinicians from Johns Hopkins All Children's Hospital and University of Virginia Medical Center. Interview data were analyzed using qualitative content analysis. Blood culture-ordering practices are influenced by various work system factors, including people, tasks, tools and technologies, the physical environment, organizational conditions, and the external environment. A clinical decision-support tool could facilitate implementation by (1) standardizing blood culture-ordering practices, (2) ensuring that prescribing clinicians review the patient's condition before ordering a blood culture, (3) facilitating critical thinking, and (4) empowering nurses to communicate with physicians and advocate for adherence to blood culture-ordering guidelines. The success of interventions for optimizing blood culture use relies heavily on the local context. A work system analysis using a human factors engineering approach can identify key areas to be addressed for the successful dissemination of quality improvement interventions. © The Author 2017. Published by Oxford University Press on behalf of The Journal of the Pediatric Infectious Diseases Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Using Life-Cycle Human Factors Engineering to Avoid $2.4 Million in Costs: Lessons Learned from NASA's Requirements Verification Process for Space Payloads

    NASA Technical Reports Server (NTRS)

    Carr, Daniel; Ellenberger, Rich

    2008-01-01

    The Human Factors Implementation Team (HFIT) process has been used to verify human factors requirements for NASA International Space Station (ISS) payloads since 2003, resulting in $2.4 million in avoided costs. This cost benefit has been realized by greatly reducing the need to process time-consuming formal waivers (exceptions) for individual requirements violations. The HFIT team, which includes astronauts and their technical staff, acts as the single source for human factors requirements integration of payloads. HFIT has the authority to provide inputs during early design phases, thus eliminating many potential requirements violations in a cost-effective manner. In those instances where it is not economically or technically feasible to meet the precise metric of a given requirement, HFIT can work with the payload engineers to develop common sense solutions and formally document that the resulting payload design does not materially affect the astronaut s ability to operate and interact with the payload. The HFIT process is fully ISO 9000 compliant and works concurrently with NASA s formal systems engineering work flow. Due to its success with payloads, the HFIT process is being adapted and extended to ISS systems hardware. Key aspects of this process are also being considered for NASA's Space Shuttle replacement, the Crew Exploration Vehicle.

  2. Dimensions of Human-Work Domain Interaction: A Preliminary Analysis for the Design of a Corporate Digital Library.

    ERIC Educational Resources Information Center

    Xie, Hong

    2003-01-01

    Applies the cognitive system engineering approach to investigate human-work interaction at a corporate setting. Reports preliminary analysis of data collected from diary analysis and interview of 20 subjects. Results identify three dimensions for each of four interactive activities involved in human-work interaction and their relationships.…

  3. APPLICATIONS OF FISHER INFORMATION TO THE MANAGEMENT OF SUSTAINABLE ENVIRONMENTAL SYSTEMS

    EPA Science Inventory

    All organisms alter their surroundings, and humans now have the ability to affect environments at increasingly larger temporal and spatial scales. Indeed, mechanical and engineering advances of the 20th century greatly enhanced the scale of human activities, particular...

  4. An Investigation of Expert Systems Usage for Software Requirements Development in the Strategic Defense Initiative Environment.

    DTIC Science & Technology

    1986-06-10

    the solution of the base could be the solution of the target. If expert systems are to mimic humans , then they should inherently utilize analogy. In the...expert systems environment, the theory of frames for representing knowledge developed partly because humans usually solve problems by first seeing if...Goals," Computer, May 1975, p. 17. 8. A.I. Wasserman, "Some Principles of User Software Engineering for Information Systems ," Digest of Papers, COMPCON

  5. User interface design principles for the SSM/PMAD automated power system

    NASA Technical Reports Server (NTRS)

    Jakstas, Laura M.; Myers, Chris J.

    1991-01-01

    Martin Marietta has developed a user interface for the space station module power management and distribution (SSM/PMAD) automated power system testbed which provides human access to the functionality of the power system, as well as exemplifying current techniques in user interface design. The testbed user interface was designed to enable an engineer to operate the system easily without having significant knowledge of computer systems, as well as provide an environment in which the engineer can monitor and interact with the SSM/PMAD system hardware. The design of the interface supports a global view of the most important data from the various hardware and software components, as well as enabling the user to obtain additional or more detailed data when needed. The components and representations of the SSM/PMAD testbed user interface are examined. An engineer's interactions with the system are also described.

  6. Signal Analysis of Automotive Engine Spark Ignition System using Case-Based Reasoning (CBR) and Case-based Maintenance (CBM)

    NASA Astrophysics Data System (ADS)

    Huang, H.; Vong, C. M.; Wong, P. K.

    2010-05-01

    With the development of modern technology, modern vehicles adopt electronic control system for injection and ignition. In traditional way, whenever there is any malfunctioning in an automotive engine, an automotive mechanic usually performs a diagnosis in the ignition system of the engine to check any exceptional symptoms. In this paper, we present a case-based reasoning (CBR) approach to help solve human diagnosis problem. Nevertheless, one drawback of CBR system is that the case library will be expanded gradually after repeatedly running the system, which may cause inaccuracy and longer time for the CBR retrieval. To tackle this problem, case-based maintenance (CBM) framework is employed so that the case library of the CBR system will be compressed by clustering to produce a set of representative cases. As a result, the performance (in retrieval accuracy and time) of the whole CBR system can be improved.

  7. User engineering: A new look at system engineering

    NASA Technical Reports Server (NTRS)

    Mclaughlin, Larry L.

    1987-01-01

    User Engineering is a new System Engineering perspective responsible for defining and maintaining the user view of the system. Its elements are a process to guide the project and customer, a multidisciplinary team including hard and soft sciences, rapid prototyping tools to build user interfaces quickly and modify them frequently at low cost, and a prototyping center for involving users and designers in an iterative way. The main consideration is reducing the risk that the end user will not or cannot effectively use the system. The process begins with user analysis to produce cognitive and work style models, and task analysis to produce user work functions and scenarios. These become major drivers of the human computer interface design which is presented and reviewed as an interactive prototype by users. Feedback is rapid and productive, and user effectiveness can be measured and observed before the system is built and fielded. Requirements are derived via the prototype and baselined early to serve as an input to the architecture and software design.

  8. Creative Engineering Based Education with Autonomous Robots Considering Job Search Support

    NASA Astrophysics Data System (ADS)

    Takezawa, Satoshi; Nagamatsu, Masao; Takashima, Akihiko; Nakamura, Kaeko; Ohtake, Hideo; Yoshida, Kanou

    The Robotics Course in our Mechanical Systems Engineering Department offers “Robotics Exercise Lessons” as one of its Problem-Solution Based Specialized Subjects. This is intended to motivate students learning and to help them acquire fundamental items and skills on mechanical engineering and improve understanding of Robotics Basic Theory. Our current curriculum was established to accomplish this objective based on two pieces of research in 2005: an evaluation questionnaire on the education of our Mechanical Systems Engineering Department for graduates and a survey on the kind of human resources which companies are seeking and their expectations for our department. This paper reports the academic results and reflections of job search support in recent years as inherited and developed from the previous curriculum.

  9. Enhancing healthcare process design with human factors engineering and reliability science, part 2: applying the knowledge to clinical documentation systems.

    PubMed

    Boston-Fleischhauer, Carol

    2008-02-01

    The demand to redesign healthcare processes that achieve efficient, effective, and safe results is never-ending. Part 1 of this 2-part series introduced human factors engineering and reliability science as important knowledge to enhance existing operational and clinical process design methods in healthcare organizations. In part 2, the author applies this knowledge to one of the most common operational processes in healthcare: clinical documentation. Specific implementation strategies and anticipated results are discussed, along with organizational challenges and recommended executive responses.

  10. Indonesia ergonomics roadmap: where we are going?

    PubMed

    Wignjosoebroto, Sritomo

    2007-12-01

    There are so many definitions for ergonomics terms such as human factors, human factors engineering, human engineering, human factors psychology, engineering psychology, applied ergonomics, occupational ergonomics, industrial ergonomics and industrial engineering. The most inclusive terms are ergonomics and human factors. Both represent the study of work and the interaction between people and their work environmental systems. The main objective is especially fitting with the need to design, develop, implement and evaluate human-machine and environment systems that are productive, comfortable, safe and satisfying to use. The work of the ergonomists in Indonesia--most of them are academicians--have one thing in common, i.e. with the appropriate type of ergonomic approaches to interventions; there would be improvements in productivity, quality of working conditions, occupational safety and health (OSH), costs reduction, better environment, and increase in profits. So many researches, training, seminars and socialization about ergonomics and OSH have been done concerning micro-to-macro themes; but it seems that we are practically still running at the same place up to now. In facts, workers are still working using their traditional or obsolete methods in poor working conditions. Accidents are still happening inside and outside industry with the main root-cause being human "unsafe behavior" and errors. Industrial products cannot compete in the global market, and so many manufacturing industries collapsed or relocated to foreign countries. This paper discusses such a roadmap and review what we ergonomists in Indonesia have done and where we are going to? This review will be treated in the field of ergonomics and OSH to take care the future Indonesia challenges. Some of the challenges faced are care for the workers, care for the people, care for the quality and productivity of work, care for the new advanced technologies, care for the environment, and last but not least care for the nation.

  11. Crew Exercise Fact Sheet

    NASA Technical Reports Server (NTRS)

    Rafalik, Kerrie

    2017-01-01

    Johnson Space Center (JSC) provides research, engineering, development, integration, and testing of hardware and software technologies for exercise systems applications in support of human spaceflight. This includes sustaining the current suite of on-orbit exercise devices by reducing maintenance, addressing obsolescence, and increasing reliability through creative engineering solutions. Advanced exercise systems technology development efforts focus on the sustainment of crew's physical condition beyond Low Earth Orbit for extended mission durations with significantly reduced mass, volume, and power consumption when compared to the ISS.

  12. Crew Exercise

    NASA Technical Reports Server (NTRS)

    Rafalik, Kerrie K.

    2017-01-01

    Johnson Space Center (JSC) provides research, engineering, development, integration, and testing of hardware and software technologies for exercise systems applications in support of human spaceflight. This includes sustaining the current suite of on-orbit exercise devices by reducing maintenance, addressing obsolescence, and increasing reliability through creative engineering solutions. Advanced exercise systems technology development efforts focus on the sustainment of crew's physical condition beyond Low Earth Orbit for extended mission durations with significantly reduced mass, volume, and power consumption when compared to the ISS.

  13. A Path to Planetary Protection Requirements for Human Exploration: A Literature Review and Systems Engineering Approach

    NASA Technical Reports Server (NTRS)

    Johnson, James E.; Conley, Cassie; Siegel, Bette

    2015-01-01

    As systems, technologies, and plans for the human exploration of Mars and other destinations beyond low Earth orbit begin to coalesce, it is imperative that frequent and early consideration is given to how planetary protection practices and policy will be upheld. While the development of formal planetary protection requirements for future human space systems and operations may still be a few years from fruition, guidance to appropriately influence mission and system design will be needed soon to avoid costly design and operational changes. The path to constructing such requirements is a journey that espouses key systems engineering practices of understanding shared goals, objectives and concerns, identifying key stakeholders, and iterating a draft requirement set to gain community consensus. This paper traces through each of these practices, beginning with a literature review of nearly three decades of publications addressing planetary protection concerns with respect to human exploration. Key goals, objectives and concerns, particularly with respect to notional requirements, required studies and research, and technology development needs have been compiled and categorized to provide a current 'state of knowledge'. This information, combined with the identification of key stakeholders in upholding planetary protection concerns for human missions, has yielded a draft requirement set that might feed future iteration among space system designers, exploration scientists, and the mission operations community. Combining the information collected with a proposed forward path will hopefully yield a mutually agreeable set of timely, verifiable, and practical requirements for human space exploration that will uphold international commitment to planetary protection.

  14. Engineered cartilaginous tubes for tracheal tissue replacement via self-assembly and fusion of human mesenchymal stem cell constructs.

    PubMed

    Dikina, Anna D; Strobel, Hannah A; Lai, Bradley P; Rolle, Marsha W; Alsberg, Eben

    2015-06-01

    There is a critical need to engineer a neotrachea because currently there are no long-term treatments for tracheal stenoses affecting large portions of the airway. In this work, a modular tracheal tissue replacement strategy was developed. High-cell density, scaffold-free human mesenchymal stem cell-derived cartilaginous rings and tubes were successfully generated through employment of custom designed culture wells and a ring-to-tube assembly system. Furthermore, incorporation of transforming growth factor-β1-delivering gelatin microspheres into the engineered tissues enhanced chondrogenesis with regard to tissue size and matrix production and distribution in the ring- and tube-shaped constructs, as well as luminal rigidity of the tubes. Importantly, all engineered tissues had similar or improved biomechanical properties compared to rat tracheas, which suggests they could be transplanted into a small animal model for airway defects. The modular, bottom up approach used to grow stem cell-based cartilaginous tubes in this report is a promising platform to engineer complex organs (e.g., trachea), with control over tissue size and geometry, and has the potential to be used to generate autologous tissue implants for human clinical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Combined enzyme/prodrug treatment by genetically engineered AT-MSC exerts synergy and inhibits growth of MDA-MB-231 induced lung metastases.

    PubMed

    Matuskova, Miroslava; Kozovska, Zuzana; Toro, Lenka; Durinikova, Erika; Tyciakova, Silvia; Cierna, Zuzana; Bohovic, Roman; Kucerova, Lucia

    2015-04-09

    Metastatic spread of tumor cells remains a serious problem in cancer treatment. Gene-directed enzyme/prodrug therapy mediated by tumor-homing genetically engineered mesenchymal stromal cells (MSC) represents a promising therapeutic modality for elimination of disseminated cells. Efficacy of gene-directed enzyme/prodrug therapy can be improved by combination of individual systems. We aimed to define the combination effect of two systems of gene therapy mediated by MSC, and evaluate the ability of systemically administered genetically engineered mesenchymal stromal cells to inhibit the growth of experimental metastases derived from human breast adenocarcinoma cells MDA-MB-231/EGFP. Human adipose tissue-derived mesenchymal stromal cells (AT-MSC) were retrovirally transduced with fusion yeast cytosine deaminase::uracil phosphoribosyltransferase (CD::UPRT) or with Herpes simplex virus thymidine kinase (HSVtk). Engineered MSC were cocultured with tumor cells in the presence of prodrugs 5-fluorocytosin (5-FC) and ganciclovir (GCV). Combination effect of these enzyme/prodrug approaches was calculated. SCID/bg mice bearing experimental lung metastases were treated with CD::UPRT-MSC, HSVtk-MSC or both in combination in the presence of respective prodrug(s). Treatment efficiency was evaluated by EGFP-positive cell detection by flow cytometry combined with real-time PCR quantification of human cells in mouse organs. Results were confirmed by histological and immunohistochemical examination. We demonstrated various extent of synergy depending on tested cell line and experimental setup. The strongest synergism was observed on breast cancer-derived cell line MDA-MB-231/EGFP. Systemic administration of CD::UPRT-MSC and HSVtk-MSC in combination with 5-FC and GCV inhibited growth of MDA-MB-231 induced lung metastases. Combined gene-directed enzyme/prodrug therapy mediated by MSC exerted synergic cytotoxic effect and resulted in high therapeutic efficacy in vivo.

  16. Vaccination with Irradiated Autologous Melanoma Cells Engineered to Secrete Human Granulocyte--Macrophage Colony-Stimulating Factor Generates Potent Antitumor Immunity in Patients with Metastatic Melanoma

    NASA Astrophysics Data System (ADS)

    Soiffer, Robert; Lynch, Thomas; Mihm, Martin; Jung, Ken; Rhuda, Catherine; Schmollinger, Jan C.; Hodi, F. Stephen; Liebster, Laura; Lam, Prudence; Mentzer, Steven; Singer, Samuel; Tanabe, Kenneth K.; Benedict Cosimi, A.; Duda, Rosemary; Sober, Arthur; Bhan, Atul; Daley, John; Neuberg, Donna; Parry, Gordon; Rokovich, Joseph; Richards, Laurie; Drayer, Jan; Berns, Anton; Clift, Shirley; Cohen, Lawrence K.; Mulligan, Richard C.; Dranoff, Glenn

    1998-10-01

    We conducted a Phase I clinical trial investigating the biologic activity of vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte--macrophage colony-stimulating factor in patients with metastatic melanoma. Immunization sites were intensely infiltrated with T lymphocytes, dendritic cells, macrophages, and eosinophils in all 21 evaluable patients. Although metastatic lesions resected before vaccination were minimally infiltrated with cells of the immune system in all patients, metastatic lesions resected after vaccination were densely infiltrated with T lymphocytes and plasma cells and showed extensive tumor destruction (at least 80%), fibrosis, and edema in 11 of 16 patients examined. Antimelanoma cytotoxic T cell and antibody responses were associated with tumor destruction. These results demonstrate that vaccination with irradiated autologous melanoma cells engineered to secrete granulocyte--macrophage colony-stimulating factor stimulates potent antitumor immunity in humans with metastatic melanoma.

  17. Development of 3-Year Roadmap to Transform the Discipline of Systems Engineering

    DTIC Science & Technology

    2010-03-31

    quickly humans could physically construct them. Indeed, magnetic core memory was entirely constructed by human hands until it was superseded by...For their mainframe computers, IBM develops the applications, operating system, computer hardware and microprocessors (off the shelf standard memory ...processor developers work on potential computational and memory pipelines to support the required performance capabilities and use the available transistors

  18. Tissue-engineered human bioartificial muscles expressing a foreign recombinant protein for gene therapy

    NASA Technical Reports Server (NTRS)

    Powell, C.; Shansky, J.; Del Tatto, M.; Forman, D. E.; Hennessey, J.; Sullivan, K.; Zielinski, B. A.; Vandenburgh, H. H.

    1999-01-01

    Murine skeletal muscle cells transduced with foreign genes and tissue engineered in vitro into bioartificial muscles (BAMs) are capable of long-term delivery of soluble growth factors when implanted into syngeneic mice (Vandenburgh et al., 1996b). With the goal of developing a therapeutic cell-based protein delivery system for humans, similar genetic tissue-engineering techniques were designed for human skeletal muscle stem cells. Stem cell myoblasts were isolated, cloned, and expanded in vitro from biopsied healthy adult (mean age, 42 +/- 2 years), and elderly congestive heart failure patient (mean age, 76 +/- 1 years) skeletal muscle. Total cell yield varied widely between biopsies (50 to 672 per 100 mg of tissue, N = 10), but was not significantly different between the two patient groups. Percent myoblasts per biopsy (73 +/- 6%), number of myoblast doublings prior to senescence in vitro (37 +/- 2), and myoblast doubling time (27 +/- 1 hr) were also not significantly different between the two patient groups. Fusion kinetics of the myoblasts were similar for the two groups after 20-22 doublings (74 +/- 2% myoblast fusion) when the biopsy samples had been expanded to 1 to 2 billion muscle cells, a number acceptable for human gene therapy use. The myoblasts from the two groups could be equally transduced ex vivo with replication-deficient retroviral expression vectors to secrete 0.5 to 2 microg of a foreign protein (recombinant human growth hormone, rhGH)/10(6) cells/day, and tissue engineered into human BAMs containing parallel arrays of differentiated, postmitotic myofibers. This work suggests that autologous human skeletal myoblasts from a potential patient population can be isolated, genetically modified to secrete foreign proteins, and tissue engineered into implantable living protein secretory devices for therapeutic use.

  19. A Case Study of the United States Navy’s Enterprise Resource Planning System

    DTIC Science & Technology

    2006-06-01

    incarnations, MRP-II added the capabilities of shop-floor management and distribution management activities. Later versions included the ability to manage ... finances , human resources, engineering, and project management. Enterprise Resource Planning systems were then developed as an integrated system

  20. Knowledge Engineering Aspects of Affective Bi-Modal Educational Applications

    NASA Astrophysics Data System (ADS)

    Alepis, Efthymios; Virvou, Maria; Kabassi, Katerina

    This paper analyses the knowledge and software engineering aspects of educational applications that provide affective bi-modal human-computer interaction. For this purpose, a system that provides affective interaction based on evidence from two different modes has been developed. More specifically, the system's inferences about students' emotions are based on user input evidence from the keyboard and the microphone. Evidence from these two modes is combined by a user modelling component that incorporates user stereotypes as well as a multi criteria decision making theory. The mechanism that integrates the inferences from the two modes has been based on the results of two empirical studies that were conducted in the context of knowledge engineering of the system. The evaluation of the developed system showed significant improvements in the recognition of the emotional states of users.

  1. Automation of Shuttle Tile Inspection - Engineering methodology for Space Station

    NASA Technical Reports Server (NTRS)

    Wiskerchen, M. J.; Mollakarimi, C.

    1987-01-01

    The Space Systems Integration and Operations Research Applications (SIORA) Program was initiated in late 1986 as a cooperative applications research effort between Stanford University, NASA Kennedy Space Center, and Lockheed Space Operations Company. One of the major initial SIORA tasks was the application of automation and robotics technology to all aspects of the Shuttle tile processing and inspection system. This effort has adopted a systems engineering approach consisting of an integrated set of rapid prototyping testbeds in which a government/university/industry team of users, technologists, and engineers test and evaluate new concepts and technologies within the operational world of Shuttle. These integrated testbeds include speech recognition and synthesis, laser imaging inspection systems, distributed Ada programming environments, distributed relational database architectures, distributed computer network architectures, multimedia workbenches, and human factors considerations.

  2. Managing bioengineering complexity with AI techniques.

    PubMed

    Beal, Jacob; Adler, Aaron; Yaman, Fusun

    2016-10-01

    Our capabilities for systematic design and engineering of biological systems are rapidly increasing. Effectively engineering such systems, however, requires the synthesis of a rapidly expanding and changing complex body of knowledge, protocols, and methodologies. Many of the problems in managing this complexity, however, appear susceptible to being addressed by artificial intelligence (AI) techniques, i.e., methods enabling computers to represent, acquire, and employ knowledge. Such methods can be employed to automate physical and informational "routine" work and thus better allow humans to focus their attention on the deeper scientific and engineering issues. This paper examines the potential impact of AI on the engineering of biological organisms through the lens of a typical organism engineering workflow. We identify a number of key opportunities for significant impact, as well as challenges that must be overcome. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Producing human ceramide-NS by metabolic engineering using yeast Saccharomyces cerevisiae.

    PubMed

    Murakami, Suguru; Shimamoto, Toshi; Nagano, Hideaki; Tsuruno, Masahiro; Okuhara, Hiroaki; Hatanaka, Haruyo; Tojo, Hiromasa; Kodama, Yukiko; Funato, Kouichi

    2015-11-17

    Ceramide is one of the most important intercellular components responsible for the barrier and moisture retention functions of the skin. Because of the risks involved with using products of animal origin and the low productivity of plants, the availability of ceramides is currently limited. In this study, we successfully developed a system that produces sphingosine-containing human ceramide-NS in the yeast Saccharomyces cerevisiae by eliminating the genes for yeast sphingolipid hydroxylases (encoded by SUR2 and SCS7) and introducing the gene for a human sphingolipid desaturase (encoded by DES1). The inactivation of the ceramidase gene YDC1, overexpression of the inositol phosphosphingolipid phospholipase C gene ISC1, and endoplasmic reticulum localization of the DES1 gene product resulted in enhanced production of ceramide-NS. The engineered yeast strains can serve as hosts not only for providing a sustainable source of ceramide-NS but also for developing further systems to produce sphingosine-containing sphingolipids.

  4. Engineering innovation in healthcare: technology, ethics and persons.

    PubMed

    Bowen, W Richard

    2011-01-01

    Engineering makes profound contributions to our health. Many of these contributions benefit whole populations, such as clean water and sewage treatment, buildings, dependable sources of energy, efficient harvesting and storage of food, and pharmaceutical manufacture. Thus, ethical assessment of these and other engineering activities has often emphasized benefits to communities. This is in contrast to medical ethics, which has tended to emphasize the individual patient affected by a doctor's actions. However technological innovation is leading to an entanglement of the activities, and hence ethical responsibilities, of healthcare professionals and engineering professionals. The article outlines three categories of innovation: assistive technologies, telehealthcare and quasi-autonomous systems. Approaches to engineering ethics are described and applied to these innovations. Such innovations raise a number of ethical opportunities and challenges, especially as the complexity of the technology increases. In particular the design and operation of the technologies require engineers to seek closer involvement with the persons benefiting from their work. Future innovation will require engineers to have a good knowledge of human biology and psychology. More particularly, healthcare engineers will need to prioritize each person's wellbeing, agency, human relationships and ecological self rather than technology, in the same way that doctors prioritize the treatment of persons rather than their diseases.

  5. The mismeasure of machine: Synthetic biology and the trouble with engineering metaphors.

    PubMed

    Boudry, Maarten; Pigliucci, Massimo

    2013-12-01

    The scientific study of living organisms is permeated by machine and design metaphors. Genes are thought of as the "blueprint" of an organism, organisms are "reverse engineered" to discover their functionality, and living cells are compared to biochemical factories, complete with assembly lines, transport systems, messenger circuits, etc. Although the notion of design is indispensable to think about adaptations, and engineering analogies have considerable heuristic value (e.g., optimality assumptions), we argue they are limited in several important respects. In particular, the analogy with human-made machines falters when we move down to the level of molecular biology and genetics. Living organisms are far more messy and less transparent than human-made machines. Notoriously, evolution is an opportunistic tinkerer, blindly stumbling on "designs" that no sensible engineer would come up with. Despite impressive technological innovation, the prospect of artificially designing new life forms from scratch has proven more difficult than the superficial analogy with "programming" the right "software" would suggest. The idea of applying straightforward engineering approaches to living systems and their genomes-isolating functional components, designing new parts from scratch, recombining and assembling them into novel life forms-pushes the analogy with human artifacts beyond its limits. In the absence of a one-to-one correspondence between genotype and phenotype, there is no straightforward way to implement novel biological functions and design new life forms. Both the developmental complexity of gene expression and the multifarious interactions of genes and environments are serious obstacles for "engineering" a particular phenotype. The problem of reverse-engineering a desired phenotype to its genetic "instructions" is probably intractable for any but the most simple phenotypes. Recent developments in the field of bio-engineering and synthetic biology reflect these limitations. Instead of genetically engineering a desired trait from scratch, as the machine/engineering metaphor promises, researchers are making greater strides by co-opting natural selection to "search" for a suitable genotype, or by borrowing and recombining genetic material from extant life forms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Certification of tactics and strategies in aviation

    NASA Technical Reports Server (NTRS)

    Koelman, Hartmut

    1994-01-01

    The paper suggests that the 'tactics and strategies' notion is a highly suitable paradigm to describe the cognitive involvement of human operators in advanced aviation systems (far more suitable than classical functional analysis), and that the workload and situational awareness of operators are intimately associated with the planning and execution of their tactics and strategies. If system designers have muddled views about the collective tactics and strategies to be used during operation, they will produce sub-optimum designs. If operators use unproven and/or inappropriate tactics and strategies, the system may fail. The author wants to make a point that, beyond certification of people or system designs, there may be a need to go into more detail and examine (certify?) the set of tactics and strategies (i.e., the Operational Concept) which makes the people and systems perform as expected. The collective tactics and strategies determine the information flows and situational awareness which exists in organizations and composite human-machine systems. The available infrastructure and equipment (automation) enable these information flows and situational awareness, but are at the same time the constraining factor. Frequently, the tactics and strategies are driven by technology, whereas we would rather like to see a system designed to support an optimized Operational Concept, i.e., to support a sufficiently coherent, cooperative and modular set of anticipation and planning mechanisms. Again, in line with the view of MacLeod and Taylor (1993), this technology driven situation may be caused by the system designer's and operator job designer's over-emphasis on functional analysis (a mechanistic engineering concept), at the expense of a subject which does not seem to be well understood today: the role of the (human cognitive and/or automated) tactics and strategies which are embedded in composite human-machine systems. Research would be needed to arrive at a generally accepted 'planning theory' which can elevate the analysis, description and design of tactics and strategies from today's cottage industry methods to an engineering discipline. The available infrastructure and equipment (automation) enable these information flows and situational awareness, but are at the same time the constraining factor. Frequently, the tactics and strategies are driven by technology, whereas we would rather like to see a system designed to support an optimized Operational Concept, i.e., to support a sufficiently coherent, cooperative and modular set of anticipation and planning mechanisms. Again, in line with the view of MacLeod and Taylor (1993), this technology driven situation may be caused by the system designer's and operator job designer's over-emphasis on functional analysis (a mechanistic engineering concept), at the expense of a subject which does not seem to be well understood today: the role of the (human cognitive and/or automated) tactics and strategies which are embedded in composite human-machine systems. Research would be needed to arrive at a generally accepted 'planning theory' which can evaluate the analysis, description and design of tactics and strategies from today's cottage industry methods to an engineering discipline.

  7. Potential of Cognitive Computing and Cognitive Systems

    NASA Astrophysics Data System (ADS)

    Noor, Ahmed K.

    2015-01-01

    Cognitive computing and cognitive technologies are game changers for future engineering systems, as well as for engineering practice and training. They are major drivers for knowledge automation work, and the creation of cognitive products with higher levels of intelligence than current smart products. This paper gives a brief review of cognitive computing and some of the cognitive engineering systems activities. The potential of cognitive technologies is outlined, along with a brief description of future cognitive environments, incorporating cognitive assistants - specialized proactive intelligent software agents designed to follow and interact with humans and other cognitive assistants across the environments. The cognitive assistants engage, individually or collectively, with humans through a combination of adaptive multimodal interfaces, and advanced visualization and navigation techniques. The realization of future cognitive environments requires the development of a cognitive innovation ecosystem for the engineering workforce. The continuously expanding major components of the ecosystem include integrated knowledge discovery and exploitation facilities (incorporating predictive and prescriptive big data analytics); novel cognitive modeling and visual simulation facilities; cognitive multimodal interfaces; and cognitive mobile and wearable devices. The ecosystem will provide timely, engaging, personalized / collaborative, learning and effective decision making. It will stimulate creativity and innovation, and prepare the participants to work in future cognitive enterprises and develop new cognitive products of increasing complexity. http://www.aee.odu.edu/cognitivecomp

  8. A review of human factors challenges of complex adaptive systems: discovering and understanding chaos in human performance.

    PubMed

    Karwowski, Waldemar

    2012-12-01

    In this paper, the author explores a need for a greater understanding of the true nature of human-system interactions from the perspective of the theory of complex adaptive systems, including the essence of complexity, emergent properties of system behavior, nonlinear systems dynamics, and deterministic chaos. Human performance, more often than not, constitutes complex adaptive phenomena with emergent properties that exhibit nonlinear dynamical (chaotic) behaviors. The complexity challenges in the design and management of contemporary work systems, including service systems, are explored. Examples of selected applications of the concepts of nonlinear dynamics to the study of human physical performance are provided. Understanding and applications of the concepts of theory of complex adaptive and dynamical systems should significantly improve the effectiveness of human-centered design efforts of a large system of systems. Performance of many contemporary work systems and environments may be sensitive to the initial conditions and may exhibit dynamic nonlinear properties and chaotic system behaviors. Human-centered design of emergent human-system interactions requires application of the theories of nonlinear dynamics and complex adaptive system. The success of future human-systems integration efforts requires the fusion of paradigms, knowledge, design principles, and methodologies of human factors and ergonomics with those of the science of complex adaptive systems as well as modern systems engineering.

  9. SP-100 power system conceptual design for lunar base applications

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.; Bloomfield, Harvey S.; Hainley, Donald C.

    1989-01-01

    A conceptual design is presented for a nuclear power system utilizing an SP-100 reactor and multiple Stirling cycle engines for operation on the lunar surface. Based on the results of this study, it was concluded that this power plant could be a viable option for an evolutionary lunar base. The design concept consists of a 2500 kWt (kilowatt thermal) SP-100 reactor coupled to eight free-piston Stirling engines. Two of the engines are held in reserve to provide conversion system redundancy. The remaining engines operate at 91.7 percent of their rated capacity of 150 kWe. The design power level for this system is 825 kWe. Each engine has a pumped heat-rejection loop connected to a heat pipe radiator. Power system performance, sizing, layout configurations, shielding options, and transmission line characteristics are described. System components and integration options are compared for safety, high performance, low mass, and ease of assembly. The power plant was integrated with a proposed human lunar base concept to ensure mission compatibility. This study should be considered a preliminary investigation; further studies are planned to investigate the effect of different technologies on this baseline design.

  10. EARS: An Online Bibliographic Search and Retrieval System Based on Ordered Explosion.

    ERIC Educational Resources Information Center

    Ramesh, R.; Drury, Colin G.

    1987-01-01

    Provides overview of Ergonomics Abstracts Retrieval System (EARS), an online bibliographic search and retrieval system in the area of human factors engineering. Other online systems are described, the design of EARS based on inverted file organization is explained, and system expansions including a thesaurus are discussed. (Author/LRW)

  11. Architecting the Human Space Flight Program with Systems Modeling Language (SysML)

    NASA Technical Reports Server (NTRS)

    Jackson, Maddalena M.; Fernandez, Michela Munoz; McVittie, Thomas I.; Sindiy, Oleg V.

    2012-01-01

    The next generation of missions in NASA's Human Space Flight program focuses on the development and deployment of highly complex systems (e.g., Orion Multi-Purpose Crew Vehicle, Space Launch System, 21st Century Ground System) that will enable astronauts to venture beyond low Earth orbit and explore the moon, near-Earth asteroids, and beyond. Architecting these highly complex system-of-systems requires formal systems engineering techniques for managing the evolution of the technical features in the information exchange domain (e.g., data exchanges, communication networks, ground software) and also, formal correlation of the technical architecture to stakeholders' programmatic concerns (e.g., budget, schedule, risk) and design development (e.g., assumptions, constraints, trades, tracking of unknowns). This paper will describe how the authors have applied System Modeling Language (SysML) to implement model-based systems engineering for managing the description of the End-to-End Information System (EEIS) architecture and associated development activities and ultimately enables stakeholders to understand, reason, and answer questions about the EEIS under design for proposed lunar Exploration Missions 1 and 2 (EM-1 and EM-2).

  12. A surety engineering framework to reduce cognitive systems risks.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caudell, Thomas P.; Peercy, David Eugene; Caldera, Eva O.

    Cognitive science research investigates the advancement of human cognition and neuroscience capabilities. Addressing risks associated with these advancements can counter potential program failures, legal and ethical issues, constraints to scientific research, and product vulnerabilities. Survey results, focus group discussions, cognitive science experts, and surety researchers concur technical risks exist that could impact cognitive science research in areas such as medicine, privacy, human enhancement, law and policy, military applications, and national security (SAND2006-6895). This SAND report documents a surety engineering framework and a process for identifying cognitive system technical, ethical, legal and societal risks and applying appropriate surety methods to reducemore » such risks. The framework consists of several models: Specification, Design, Evaluation, Risk, and Maturity. Two detailed case studies are included to illustrate the use of the process and framework. Several Appendices provide detailed information on existing cognitive system architectures; ethical, legal, and societal risk research; surety methods and technologies; and educing information research with a case study vignette. The process and framework provide a model for how cognitive systems research and full-scale product development can apply surety engineering to reduce perceived and actual risks.« less

  13. Engineering challenges for instrumenting and controlling integrated organ-on-chip systems.

    PubMed

    Wikswo, John P; Block, Frank E; Cliffel, David E; Goodwin, Cody R; Marasco, Christina C; Markov, Dmitry A; McLean, David L; McLean, John A; McKenzie, Jennifer R; Reiserer, Ronald S; Samson, Philip C; Schaffer, David K; Seale, Kevin T; Sherrod, Stacy D

    2013-03-01

    The sophistication and success of recently reported microfabricated organs-on-chips and human organ constructs have made it possible to design scaled and interconnected organ systems that may significantly augment the current drug development pipeline and lead to advances in systems biology. Physiologically realistic live microHuman (μHu) and milliHuman (mHu) systems operating for weeks to months present exciting and important engineering challenges such as determining the appropriate size for each organ to ensure appropriate relative organ functional activity, achieving appropriate cell density, providing the requisite universal perfusion media, sensing the breadth of physiological responses, and maintaining stable control of the entire system, while maintaining fluid scaling that consists of ~5 mL for the mHu and ~5 μL for the μHu. We believe that successful mHu and μHu systems for drug development and systems biology will require low-volume microdevices that support chemical signaling, microfabricated pumps, valves and microformulators, automated optical microscopy, electrochemical sensors for rapid metabolic assessment, ion mobility-mass spectrometry for real-time molecular analysis, advanced bioinformatics, and machine learning algorithms for automated model inference and integrated electronic control. Toward this goal, we are building functional prototype components and are working toward top-down system integration.

  14. Understanding the Current State of Infection Prevention to Prevent Clostridium difficile Infection: A Human Factors and Systems Engineering Approach

    PubMed Central

    Yanke, Eric; Zellmer, Caroline; Van Hoof, Sarah; Moriarty, Helene; Carayon, Pascale; Safdar, Nasia

    2015-01-01

    Background Achieving and sustaining high levels of healthcare worker (HCW) compliance with contact isolation precautions is challenging. The aim of this study was to determine HCW work system barriers to, and facilitators of, adherence to contact isolation for patients with suspected or confirmed Clostridium difficile infection (CDI) using a human factors and systems engineering approach. Methods Prospective cohort study from September 2013 to November 2013 at a large academic medical center (hospital A) and an affiliated Veterans Administration (VA) hospital (hospital B). A human factors engineering (HFE) model for patient safety – the Systems Engineering Initiative for Patient Safety (SEIPS) model – was used to guide work system analysis and direct observation data collection. 288 observations were conducted. HCWs and visitors were assessed for compliance with all components of contact isolation precautions (hand hygiene, gowning, and gloving) before and after patient contact. Time required to complete contact isolation precautions was measured and adequacy of contact isolation supplies was assessed. Results Full compliance with contact isolation precautions was low at both hospitals: hospital A, 7%; hospital B, 22%. Lack of appropriate hand hygiene prior to room entry (Compliance: hospital A, 18%; hospital B, 29%) was the most common reason for lack of full compliance. More time was required for full compliance as compared to compliance with no components of contact isolation precautions before patient room entry, inside patient room, and after patient room exit (59.9 sec vs. 3.2 sec; P < .001; 507.3 sec vs. 149.7 sec; P = .006; 15.2 sec vs. 1.3 sec; P < .001). Compliance was lower when contact isolation supplies were inadequate (4% vs. 16%; P = .005). Conclusions Adherence to contact isolation precautions for CDI is a complex, time-consuming process. HFE analysis indicates multiple work system components serve as barriers and facilitators to full compliance with contact isolation precautions and should be addressed further to prevent CDI. PMID:25728149

  15. Understanding the current state of infection prevention to prevent Clostridium difficile infection: a human factors and systems engineering approach.

    PubMed

    Yanke, Eric; Zellmer, Caroline; Van Hoof, Sarah; Moriarty, Helene; Carayon, Pascale; Safdar, Nasia

    2015-03-01

    Achieving and sustaining high levels of health care worker (HCW) compliance with contact isolation precautions is challenging. The aim of this study was to determine HCW work system barriers to and facilitators of adherence to contact isolation for patients with suspected or confirmed Clostridium difficile infection (CDI) using a human factors and systems engineering approach. This prospective cohort study took place between September 2013 and November 2013 at a large academic medical center (hospital A) and an affiliated Veterans Administration hospital (hospital B). A human factors engineering (HFE) model for patient safety, the Systems Engineering Initiative for Patient Safety model, was used to guide work system analysis and direct observation data collection. There were 288 observations conducted. HCWs and visitors were assessed for compliance with all components of contact isolation precautions (hand hygiene, gowning, and gloving) before and after patient contact. Time required to complete contact isolation precautions was measured, and adequacy of contact isolation supplies was assessed. Full compliance with contact isolation precautions was low at both hospitals A (7%) and B (22%). Lack of appropriate hand hygiene prior to room entry (compliance for hospital A: 18%; compliance for hospital B: 29%) was the most common reason for lack of full compliance. More time was required for full compliance compared with compliance with no components of contact isolation precautions before patient room entry, inside patient room, and after patient room exit (59.9 vs 3.2 seconds, P < .001; 507.3 vs 149.7 seconds, P = .006; 15.2 vs 1.3 seconds, P < .001, respectively). Compliance was lower when contact isolation supplies were inadequate (4% vs 16%, P = .005). Adherence to contact isolation precautions for CDI is a complex, time-consuming process. HFE analysis indicates that multiple work system components serve as barriers and facilitators to full compliance with contact isolation precautions and should be addressed further to prevent CDI. Published by Elsevier Inc.

  16. Meganucleases Revolutionize the Production of Genetically Engineered Pigs for the Study of Human Diseases.

    PubMed

    Redel, Bethany K; Prather, Randall S

    2016-04-01

    Animal models of human diseases are critically necessary for developing an in-depth knowledge of disease development and progression. In addition, animal models are vital to the development of potential treatments or even cures for human diseases. Pigs are exceptional models as their size, physiology, and genetics are closer to that of humans than rodents. In this review, we discuss the use of pigs in human translational research and the evolving technology that has increased the efficiency of genetically engineering pigs. With the emergence of the clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated (Cas) protein 9 system technology, the cost and time it takes to genetically engineer pigs has markedly decreased. We will also discuss the use of another meganuclease, the transcription activator-like effector nucleases , to produce pigs with severe combined immunodeficiency by developing targeted modifications of the recombination activating gene 2 (RAG2).RAG2mutant pigs may become excellent animals to facilitate the development of xenotransplantation, regenerative medicine, and tumor biology. The use of pig biomedical models is vital for furthering the knowledge of, and for treating human, diseases. © The Author(s) 2015.

  17. Interactive Model-Centric Systems Engineering (IMCSE) Phase 5

    DTIC Science & Technology

    2018-02-28

    Conducting Program Team Launches ................................................................................................. 12 Informing Policy...research advances knowledge relevant to human interaction with models and model-generated information . Figure 1 highlights several questions the...stakeholders interact using models and model generated information ; facets of human interaction with visualizations and large data sets; and underlying

  18. Research Directory for Manpower, Personnel, Training, and Human Factors.

    DTIC Science & Technology

    1991-01-01

    Enhance Automatic Recognition of Speech in Noisy, Highly Stressful Environments Cofod R* Lica Systems Inc 703-359-0996 Smart Contract Preparation...Lab 301-278-2946 Smart Contract Preparation Expediter Frezell T LTCOL Human Engineering Lab 301-278-5998 Impulse Noise Hazard Information Processing R&D

  19. Wear particle analysis using the ferrograph

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1983-01-01

    The use of the Ferrograph in analyzing wear particles from a variety of different sources is reported. Examples of wear particles from gas turbine engines, bearing tests, friction and wear tests, hydraulic systems, and human joints are illustrated. In addition, the separation of bacteria and human cells is described.

  20. Limits to Stability

    ERIC Educational Resources Information Center

    Cottey, Alan

    2012-01-01

    The author reflects briefly on what limited degree of global ecological stability and human cultural stability may be achieved, provided that humanity retains hope and does not give way to despair or hide in denial. These thoughts were triggered by a recent conference on International Stability and Systems Engineering. (Contains 5 notes.)

  1. NASA Engineering Design Challenges: Thermal Protection Systems. EP-2008-09-122-MSFC

    ERIC Educational Resources Information Center

    Haddad, Nick; McWilliams, Harold; Wagoner, Paul

    2007-01-01

    National Aeronautics and Space Administration (NASA) Engineers at Marshall Space Flight Center, and their partners at other NASA centers and in private industry, are designing and beginning to develop the next generation of spacecraft to transport cargo, equipment, and human explorers to space. These vehicles--the Ares I and Ares V launch…

  2. Software Engineering for User Interfaces. Technical Report.

    ERIC Educational Resources Information Center

    Draper, Stephen W.; Norman, Donald A.

    The discipline of software engineering can be extended in a natural way to deal with the issues raised by a systematic approach to the design of human-machine interfaces. The user should be treated as part of the system being designed and projects should be organized to take into account the current lack of a priori knowledge of user interface…

  3. Cognitive engineering models in space systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1992-01-01

    NASA space systems, including mission operations on the ground and in space, are complex, dynamic, predominantly automated systems in which the human operator is a supervisory controller. The human operator monitors and fine-tunes computer-based control systems and is responsible for ensuring safe and efficient system operation. In such systems, the potential consequences of human mistakes and errors may be very large, and low probability of such events is likely. Thus, models of cognitive functions in complex systems are needed to describe human performance and form the theoretical basis of operator workstation design, including displays, controls, and decision support aids. The operator function model represents normative operator behavior-expected operator activities given current system state. The extension of the theoretical structure of the operator function model and its application to NASA Johnson mission operations and space station applications is discussed.

  4. Quantifying the Metrics That Characterize Safety Culture of Three Engineered Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tucker, Julie; Ernesti, Mary; Tokuhiro, Akira

    2002-07-01

    With potential energy shortages and increasing electricity demand, the nuclear energy option is being reconsidered in the United States. Public opinion will have a considerable voice in policy decisions that will 'road-map' the future of nuclear energy in this country. This report is an extension of the last author's work on the 'safety culture' associated with three engineered systems (automobiles, commercial airplanes, and nuclear power plants) in Japan and the United States. Safety culture, in brief is defined as a specifically developed culture based on societal and individual interpretations of the balance of real, perceived, and imagined risks versus themore » benefits drawn from utilizing a given engineered systems. The method of analysis is a modified scale analysis, with two fundamental Eigen-metrics, time- (t) and number-scales (N) that describe both engineered systems and human factors. The scale analysis approach is appropriate because human perception of risk, perception of benefit and level of (technological) acceptance are inherently subjective, therefore 'fuzzy' and rarely quantifiable in exact magnitude. Perception of risk, expressed in terms of the psychometric factors 'dread risk' and 'unknown risk', contains both time- and number-scale elements. Various engineering system accidents with fatalities, reported by mass media are characterized by t and N, and are presented in this work using the scale analysis method. We contend that level of acceptance infers a perception of benefit at least two orders larger magnitude than perception of risk. The 'amplification' influence of mass media is also deduced as being 100- to 1000-fold the actual number of fatalities/serious injuries in a nuclear-related accident. (authors)« less

  5. Liquid rocket propulsion: Retrospective and prospects

    NASA Astrophysics Data System (ADS)

    Rosenberg, Sanders D.

    1993-02-01

    Rocket propulsion has made a fundamental contribution to change in the human condition during the second half of the 20th Century. This paper presents a survey of the basic elements of and future prospects for liquid rocket propulsion systems, with emphasis placed on their bipropellant engines, which have contributed profoundly to the successes of this 'aerospace century.' Many technologies had to reach maturity simultaneously to enable our current progress: materials, electronics, guidance and control, systems engineering, and propulsion, made major contributions. However, chemical propellants and the engine systems required to extract and control their propulsive power successfully are at the heart of all that humankind has accomplished through space flight and the use of space for the betterment of all. And it is a fascinating story to tell.

  6. Design, Development, Testing, and Evaluation: Human Factors Engineering

    NASA Technical Reports Server (NTRS)

    Adelstein, Bernard; Hobbs, Alan; OHara, John; Null, Cynthia

    2006-01-01

    While human-system interaction occurs in all phases of system development and operation, this chapter on Human Factors in the DDT&E for Reliable Spacecraft Systems is restricted to the elements that involve "direct contact" with spacecraft systems. Such interactions will encompass all phases of human activity during the design, fabrication, testing, operation, and maintenance phases of the spacecraft lifespan. This section will therefore consider practices that would accommodate and promote effective, safe, reliable, and robust human interaction with spacecraft systems. By restricting this chapter to what the team terms "direct contact" with the spacecraft, "remote" factors not directly involved in the development and operation of the vehicle, such as management and organizational issues, have been purposely excluded. However, the design of vehicle elements that enable and promote ground control activities such as monitoring, feedback, correction and reversal (override) of on-board human and automation process are considered as per NPR8705.2A, Section 3.3.

  7. Humans vs Hardware: The Unique World of NASA Human System Risk Assessment

    NASA Technical Reports Server (NTRS)

    Anton, W.; Havenhill, M.; Overton, Eric

    2016-01-01

    Understanding spaceflight risks to crew health and performance is a crucial aspect of preparing for exploration missions in the future. The research activities of the Human Research Program (HRP) provide substantial evidence to support most risk reduction work. The Human System Risk Board (HSRB), acting on behalf of the Office of Chief Health and Medical Officer (OCHMO), assesses these risks and assigns likelihood and consequence ratings to track progress. Unfortunately, many traditional approaches in risk assessment such as those used in the engineering aspects of spaceflight are difficult to apply to human system risks. This presentation discusses the unique aspects of risk assessment from the human system risk perspective and how these limitations are accommodated and addressed in order to ensure that reasonable inputs are provided to support the OCHMO's overall risk posture for manned exploration missions.

  8. Reflections on human error - Matters of life and death

    NASA Technical Reports Server (NTRS)

    Wiener, Earl L.

    1989-01-01

    The last two decades have witnessed a rapid growth in the introduction of automatic devices into aircraft cockpits, and eleswhere in human-machine systems. This was motivated in part by the assumption that when human functioning is replaced by machine functioning, human error is eliminated. Experience to date shows that this is far from true, and that automation does not replace humans, but changes their role in the system, as well as the types and severity of the errors they make. This altered role may lead to fewer, but more critical errors. Intervention strategies to prevent these errors, or ameliorate their consequences include basic human factors engineering of the interface, enhanced warning and alerting systems, and more intelligent interfaces that understand the strategic intent of the crew and can detect and trap inconsistent or erroneous input before it affects the system.

  9. Tissue engineering, stem cells, and cloning for the regeneration of urologic organs.

    PubMed

    Atala, Anthony

    2003-10-01

    Tissue engineering efforts are currently being undertaken for every type of tissue and organ within the urinary system. Most of the effort expended to engineer genitourinary tissues has occurred within the last decade. Tissue engineering techniques require a cell culture facility designed for human application. Personnel who have mastered the techniques of cell harvest, culture, and expansion as well as polymer design are essential for the successful application of this technology. Various engineered genitourinary tissues are at different stages of development, with some already being used clinically, a few in preclinical trials, and some in the discovery stage. Recent progress suggests that engineered urologic tissues may have an expanded clinical applicability in the future.

  10. Mechanical stimulation improves tissue-engineered human skeletal muscle

    NASA Technical Reports Server (NTRS)

    Powell, Courtney A.; Smiley, Beth L.; Mills, John; Vandenburgh, Herman H.

    2002-01-01

    Human bioartificial muscles (HBAMs) are tissue engineered by suspending muscle cells in collagen/MATRIGEL, casting in a silicone mold containing end attachment sites, and allowing the cells to differentiate for 8 to 16 days. The resulting HBAMs are representative of skeletal muscle in that they contain parallel arrays of postmitotic myofibers; however, they differ in many other morphological characteristics. To engineer improved HBAMs, i.e., more in vivo-like, we developed Mechanical Cell Stimulator (MCS) hardware to apply in vivo-like forces directly to the engineered tissue. A sensitive force transducer attached to the HBAM measured real-time, internally generated, as well as externally applied, forces. The muscle cells generated increasing internal forces during formation which were inhibitable with a cytoskeleton depolymerizer. Repetitive stretch/relaxation for 8 days increased the HBAM elasticity two- to threefold, mean myofiber diameter 12%, and myofiber area percent 40%. This system allows engineering of improved skeletal muscle analogs as well as a nondestructive method to determine passive force and viscoelastic properties of the resulting tissue.

  11. Recent Progress in Hepatocyte Culture Models and Their Application to the Assessment of Drug Metabolism, Transport, and Toxicity in Drug Discovery: The Value of Tissue Engineering for the Successful Development of a Microphysiological System.

    PubMed

    Tetsuka, Kazuhiro; Ohbuchi, Masato; Tabata, Kenji

    2017-09-01

    Tissue engineering technology has provided many useful culture models. This article reviews the merits of this technology in a hepatocyte culture system and describes the applications of the sandwich-cultured hepatocyte model in drug discovery. In addition, we also review recent investigations of the utility of the 3-dimensional bioprinted human liver tissue model and spheroid model. Finally, we present the future direction and developmental challenges of a hepatocyte culture model for the successful establishment of a microphysiological system, represented as an organ-on-a-chip and even as a human-on-a-chip. A merit of advanced culture models is their potential use for detecting hepatotoxicity through repeated exposure to chemicals as they allow long-term culture while maintaining hepatocyte functionality. As a future direction, such advanced hepatocyte culture systems can be connected to other tissue models for evaluating tissue-to-tissue interaction beyond cell-to-cell interaction. This combination of culture models could represent parts of the human body in a microphysiological system. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. Spaceport Command and Control System Software Development

    NASA Technical Reports Server (NTRS)

    Glasser, Abraham

    2017-01-01

    The Spaceport Command and Control System (SCCS) is the National Aeronautics and Space Administration's (NASA) launch control system for the Orion capsule and Space Launch System, the next generation manned rocket currently in development. This large system requires a large amount of intensive testing that will properly measure the capabilities of the system. Automating the test procedures would save the project money from human labor costs, as well as making the testing process more efficient. Therefore, the Exploration Systems Division (formerly the Electrical Engineering Division) at Kennedy Space Center (KSC) has recruited interns for the past two years to work alongside full-time engineers to develop these automated tests, as well as innovate upon the current automation process.

  13. In vivo delivery of recombinant human growth hormone from genetically engineered human fibroblasts implanted within Baxter immunoisolation devices.

    PubMed

    Josephs, S F; Loudovaris, T; Dixit, A; Young, S K; Johnson, R C

    1999-01-01

    Continuous delivery of therapeutic peptide to the systemic circulation would be the optimal treatment for a variety of diseases. The Baxter TheraCyte system is a membrane encapsulation system developed for implantation of tissues, cells such as endocrine cells or cell lines genetically engineered for therapeutic peptide delivery in vivo. To demonstrate the utility of this system, cell lines were developed which expressed human growth hormone (hGH) at levels exceeding 1 microgram per million cells per day. These were loaded into devices which were then implanted into juvenile nude rats. Significant levels of hGH of up to 2.5 ng/ml were detected in plasma throughout the six month duration of the study. In contrast, animals implanted with free cells showed peak plasma levels of 0.5 to 1.2 ng four days after implantation with no detectable hGH beyond 10 days. Histological examination of explanted devices showed they were vascularized and contained cells that were viable and morphologically healthy. After removal of the implants, no hGH could be detected which confirmed that the source of hGH was from cells contained within the device. The long term expression of human growth hormone as a model peptide has implications for the peptide therapies for a variety of human diseases using membrane encapsulated cells.

  14. Differential genomic effects of six different TiO2 nanomaterials on human liver HepG2 cells

    EPA Science Inventory

    Engineered nanoparticles are reported to cause liver toxicity in vivo. To better assess the mechanism of the in vivo liver toxicity, we used the human hepatocarcinoma cells (HepG2) as a model system. Human HepG2 cells were exposed to 6 TiO2 nanomaterials (with dry primary partic...

  15. 3D Miniaturization of Human Organs for Drug Discovery.

    PubMed

    Park, Joseph; Wetzel, Isaac; Dréau, Didier; Cho, Hansang

    2018-01-01

    "Engineered human organs" hold promises for predicting the effectiveness and accuracy of drug responses while reducing cost, time, and failure rates in clinical trials. Multiorgan human models utilize many aspects of currently available technologies including self-organized spherical 3D human organoids, microfabricated 3D human organ chips, and 3D bioprinted human organ constructs to mimic key structural and functional properties of human organs. They enable precise control of multicellular activities, extracellular matrix (ECM) compositions, spatial distributions of cells, architectural organizations of ECM, and environmental cues. Thus, engineered human organs can provide the microstructures and biological functions of target organs and advantageously substitute multiscaled drug-testing platforms including the current in vitro molecular assays, cell platforms, and in vivo models. This review provides an overview of advanced innovative designs based on the three main technologies used for organ construction leading to single and multiorgan systems useable for drug development. Current technological challenges and future perspectives are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Just Culture: A Foundation for Balanced Accountability and Patient Safety

    PubMed Central

    Boysen, Philip G.

    2013-01-01

    Background The framework of a just culture ensures balanced accountability for both individuals and the organization responsible for designing and improving systems in the workplace. Engineering principles and human factors analysis influence the design of these systems so they are safe and reliable. Methods Approaches for improving patient safety introduced here are (1) analysis of error, (2) specific tools to enhance safety, and (3) outcome engineering. Conclusion The just culture is a learning culture that is constantly improving and oriented toward patient safety. PMID:24052772

  17. I.C. Engine emission reduction by copper oxide catalytic converter

    NASA Astrophysics Data System (ADS)

    Venkatesan, S. P.; Shubham Uday, Desai; Karan Hemant, Borana; Rajarshi Kushwanth Goud, Kagita; Lakshmana Kumar, G.; Pavan Kumar, K.

    2017-05-01

    The toxic gases emitted from diesel engines are more than petrol engines. Predicting the use of diesel engines, even more in future, this system is developed and can be used to minimize the harmful gases. Toxic gases include NOX, CO, HC and Smoke which are harmful to the atmosphere as well as to the human beings. The main aim of this work is to fabricate system, where the level of intensity of toxic gases is controlled through chemical reaction to more agreeable level. This system acts itself as an exhaust system; hence there is no needs to fit separate the silencer. The whole assembly is fitted in the exhaust pipe from engine. In this work, catalytic converter with copper oxide as a catalyst, by replacing noble catalysts such as platinum, palladium and rhodium is fabricated and fitted in the engine exhaust. With and without catalytic converter, the experimentations are carried out at different loads such as 0%, 25%, 50%, 75%, and 100% of maximum rated load. From the experimental results it is found that the maximum reduction is 32%, 61% and 21% for HC, NOx and CO respectively at 100% of maximum rated load when compared to that of without catalytic converter. This catalytic converter system is cash effective and more economical than the existing catalytic converter.

  18. Aircraft-vehicle system interaction. An evaluation of NASA's program in human factors research

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Research in the areas of man machine interaction and human factors engineering are assessed in relation to improved effeciency and aviation safety. The appropriateness, relevance, adequacy, and timeliness of the research is evaluated, and recommendations are provided regarding the objectives, approach and content.

  19. The MSFC Collaborative Engineering Process for Preliminary Design and Concept Definition Studies

    NASA Technical Reports Server (NTRS)

    Mulqueen, Jack; Jones, David; Hopkins, Randy

    2011-01-01

    This paper describes a collaborative engineering process developed by the Marshall Space Flight Center's Advanced Concepts Office for performing rapid preliminary design and mission concept definition studies for potential future NASA missions. The process has been developed and demonstrated for a broad range of mission studies including human space exploration missions, space transportation system studies and in-space science missions. The paper will describe the design team structure and specialized analytical tools that have been developed to enable a unique rapid design process. The collaborative engineering process consists of integrated analysis approach for mission definition, vehicle definition and system engineering. The relevance of the collaborative process elements to the standard NASA NPR 7120.1 system engineering process will be demonstrated. The study definition process flow for each study discipline will be will be outlined beginning with the study planning process, followed by definition of ground rules and assumptions, definition of study trades, mission analysis and subsystem analyses leading to a standardized set of mission concept study products. The flexibility of the collaborative engineering design process to accommodate a wide range of study objectives from technology definition and requirements definition to preliminary design studies will be addressed. The paper will also describe the applicability of the collaborative engineering process to include an integrated systems analysis approach for evaluating the functional requirements of evolving system technologies and capabilities needed to meet the needs of future NASA programs.

  20. Introduction to System Health Engineering and Management in Aerospace

    NASA Technical Reports Server (NTRS)

    Johnson, Stephen B.

    2005-01-01

    This paper provides a technical overview of Integrated System Health Engineering and Management (ISHEM). We define ISHEM as "the paper provides a techniques, and technologies used to design, analyze, build, verify, and operate a system to prevent faults and/or minimize their effects." This includes design and manufacturing techniques as well operational and managerial methods. ISHEM is not a "purely technical issue" as it also involves and must account for organizational, communicative, and cognitive f&ms of humans as social beings and as individuals. Thus the paper will discuss in more detail why all of these elements, h m the technical to the cognitive and social, are necessary to build dependable human-machine systems. The paper outlines a functional homework and architecture for ISHEM operations, describes the processes needed to implement ISHEM in the system life-cycle, and provides a theoretical framework to understand the relationship between the different aspects of the discipline. It then derives from these and the social and cognitive bases a set of design and operational principles for ISHEM.

  1. A Systems Engineering Approach to Address Human Capital Management Issues in the Shipbuilding Industry

    DTIC Science & Technology

    2008-09-01

    gathering and prioritization of their inputs, system development and implementation would become chaotic at best, and the developmental cost 74...for shipbuilding. This study investigated current DoD Human Capital Management (HCM) strategies for attracting, developing , retaining and managing...employed by these stakeholders. The result of the analysis was the development , via a functional analysis, of a notional HCM architecture for the

  2. Metis Hub: The Development of an Intuitive Project Planning System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConnell, Rachael M.; Lawrence Livermore National Lab.

    2015-08-26

    The goal is to develop an intuitive, dynamic, and consistent interface for the Metis Planning System by combining user requirements and human engineering concepts. The system is largely based upon existing systems so some tools already have working models that we can follow. However, the web-based interface is completely new.

  3. Design and assessment of engineered CRISPR-Cpf1 and its use for genome editing.

    PubMed

    Li, Bin; Zeng, Chunxi; Dong, Yizhou

    2018-05-01

    Cpf1, a CRISPR endonuclease discovered in Prevotella and Francisella 1 bacteria, offers an alternative platform for CRISPR-based genome editing beyond the commonly used CRISPR-Cas9 system originally discovered in Streptococcus pyogenes. This protocol enables the design of engineered CRISPR-Cpf1 components, both CRISPR RNAs (crRNAs) to guide the endonuclease and Cpf1 mRNAs to express the endonuclease protein, and provides experimental procedures for effective genome editing using this system. We also describe quantification of genome-editing activity and off-target effects of the engineered CRISPR-Cpf1 in human cell lines using both T7 endonuclease I (T7E1) assay and targeted deep sequencing. This protocol enables rapid construction and identification of engineered crRNAs and Cpf1 mRNAs to enhance genome-editing efficiency using the CRISPR-Cpf1 system, as well as assessment of target specificity within 2 months. This protocol may also be appropriate for fine-tuning other types of CRISPR systems.

  4. Utilization of a Multi-Disciplinary Approach to Building Effective Command Centers: Process and Products

    DTIC Science & Technology

    2005-06-01

    cognitive task analysis , organizational information dissemination and interaction, systems engineering, collaboration and communications processes, decision-making processes, and data collection and organization. By blending these diverse disciplines command centers can be designed to support decision-making, cognitive analysis, information technology, and the human factors engineering aspects of Command and Control (C2). This model can then be used as a baseline when dealing with work in areas of business processes, workflow engineering, information management,

  5. NASA Concludes Summer of RS-25 Testing

    NASA Image and Video Library

    2017-08-30

    NASA engineers closed a summer of hot fire testing Aug. 30 for flight controllers on RS-25 engines that will help power the new Space Launch System (SLS) rocket being built to carry astronauts to deep-space destinations, including Mars. The 500-second hot fire an RS-25 engine flight controller unit on the A-1 Test Stand at Stennis Space Center near Bay St. Louis, Mississippi marked another step toward the nation’s return to human deep-space exploration missions.

  6. An exploration of the biomedical optics course construction of undergraduate biomedical engineering program in medical colleges

    NASA Astrophysics Data System (ADS)

    Guo, Shijun; Lyu, Jie; Zhang, Peiming

    2017-08-01

    In this paper, the teaching goals, teaching contents and teaching methods in biomedical optics course construction are discussed. From the dimension of teaching goals, students should master the principle of optical inspection on the human body, diagnosis and treatment of methodology and instruments, through the study of the theory and practice of this course, and can utilize biomedical optics methods to solve practical problems in the clinical medical engineering practice. From the dimension of teaching contents, based on the characteristics of biomedical engineering in medical colleges, the organic integration of engineering aspects, medical optical instruments, and biomedical aspects dispersed in human anatomy, human physiology, clinical medicine fundamental related to the biomedical optics is build. Noninvasive measurement of the human body composition and noninvasive optical imaging of the human body were taken as actual problems in biomedical optics fields. Typical medical applications such as eye optics and laser medicine were also integrated into the theory and practice teaching. From the dimension of teaching methods, referencing to organ-system based medical teaching mode, optical principle and instrument principle were taught by teachers from school of medical instruments, and the histological characteristics and clinical actual need in areas such as digestive diseases and urinary surgery were taught by teachers from school of basic medicine or clinical medicine of medical colleges. Furthermore, clinical application guidance would be provided by physician and surgeons in hospitals.

  7. Smoke and fire Rocket-engine ablaze on This Week @NASA – August 14, 2015

    NASA Image and Video Library

    2015-08-14

    On Aug. 13, NASA conducted a test firing of the RS-25 rocket engine at Stennis Space Center. The 535 second test was the sixth in the current series of seven developmental tests of the former space shuttle main engine. Four RS-25 engines will power the core stage of the new Space Launch System (SLS) rocket, which will carry humans deeper into space than ever before, including to an asteroid and Mars. Also, Veggies in space, Russian spacewalk, Supply ship undocks from ISS, Smallest giant black hole, 10th anniversary of MRO launch and more!

  8. Human supervision and microprocessor control of an optical tracking system

    NASA Technical Reports Server (NTRS)

    Bigley, W. J.; Vandenberg, J. D.

    1981-01-01

    Gunners using small calibre anti-aircraft systems have not been able to track high-speed air targets effectively. Substantial improvement in the accuracy of surface fire against attacking aircraft has been realized through the design of a director-type weapon control system. This system concept frees the gunner to exercise a supervisory/monitoring role while the computer takes over continuous target tracking. This change capitalizes on a key consideration of human factors engineering while increasing system accuracy. The advanced system design, which uses distributed microprocessor control, is discussed at the block diagram level and is contrasted with the previous implementation.

  9. Development of the Functional Flow Block Diagram for the J-2X Rocket Engine System

    NASA Technical Reports Server (NTRS)

    White, Thomas; Stoller, Sandra L.; Greene, WIlliam D.; Christenson, Rick L.; Bowen, Barry C.

    2007-01-01

    The J-2X program calls for the upgrade of the Apollo-era Rocketdyne J-2 engine to higher power levels, using new materials and manufacturing techniques, and with more restrictive safety and reliability requirements than prior human-rated engines in NASA history. Such requirements demand a comprehensive systems engineering effort to ensure success. Pratt & Whitney Rocketdyne system engineers performed a functional analysis of the engine to establish the functional architecture. J-2X functions were captured in six major operational blocks. Each block was divided into sub-blocks or states. In each sub-block, functions necessary to perform each state were determined. A functional engine schematic consistent with the fidelity of the system model was defined for this analysis. The blocks, sub-blocks, and functions were sequentially numbered to differentiate the states in which the function were performed and to indicate the sequence of events. The Engine System was functionally partitioned, to provide separate and unique functional operators. Establishing unique functional operators as work output of the System Architecture process is novel in Liquid Propulsion Engine design. Each functional operator was described such that its unique functionality was identified. The decomposed functions were then allocated to the functional operators both of which were the inputs to the subsystem or component performance specifications. PWR also used a novel approach to identify and map the engine functional requirements to customer-specified functions. The final result was a comprehensive Functional Flow Block Diagram (FFBD) for the J-2X Engine System, decomposed to the component level and mapped to all functional requirements. This FFBD greatly facilitates component specification development, providing a well-defined trade space for functional trades at the subsystem and component level. It also provides a framework for function-based failure modes and effects analysis (FMEA), and a rigorous baseline for the functional architecture.

  10. Engineering bone tissue substitutes from human induced pluripotent stem cells.

    PubMed

    de Peppo, Giuseppe Maria; Marcos-Campos, Iván; Kahler, David John; Alsalman, Dana; Shang, Linshan; Vunjak-Novakovic, Gordana; Marolt, Darja

    2013-05-21

    Congenital defects, trauma, and disease can compromise the integrity and functionality of the skeletal system to the extent requiring implantation of bone grafts. Engineering of viable bone substitutes that can be personalized to meet specific clinical needs represents a promising therapeutic alternative. The aim of our study was to evaluate the utility of human-induced pluripotent stem cells (hiPSCs) for bone tissue engineering. We first induced three hiPSC lines with different tissue and reprogramming backgrounds into the mesenchymal lineages and used a combination of differentiation assays, surface antigen profiling, and global gene expression analysis to identify the lines exhibiting strong osteogenic differentiation potential. We then engineered functional bone substitutes by culturing hiPSC-derived mesenchymal progenitors on osteoconductive scaffolds in perfusion bioreactors and confirmed their phenotype stability in a subcutaneous implantation model for 12 wk. Molecular analysis confirmed that the maturation of bone substitutes in perfusion bioreactors results in global repression of cell proliferation and an increased expression of lineage-specific genes. These results pave the way for growing patient-specific bone substitutes for reconstructive treatments of the skeletal system and for constructing qualified experimental models of development and disease.

  11. Application of Disposable Bag Bioreactors in Tissue Engineering and for the Production of Therapeutic Agents

    NASA Astrophysics Data System (ADS)

    Eibl, R.; Eibl, D.

    In order to increase process efficiency, many pharmaceutical and biotechnology companies have introduced disposable bag technology over the last 10 years. Because this technology also greatly reduces the risk of cross-contamination, disposable bags are preferred in applications in which an absolute or improved process safety is a necessity, namely the production of functional tissue for implantation (tissue engineering), the production of human cells for the treatment of cancer and immune system diseases (cellular therapy), the production of viruses for gene therapies, the production of therapeutic proteins, and veterinary as well as human vaccines.

  12. Crew exploration vehicle (CEV) attitude control using a neural-immunology/memory network

    NASA Astrophysics Data System (ADS)

    Weng, Liguo; Xia, Min; Wang, Wei; Liu, Qingshan

    2015-01-01

    This paper addresses the problem of the crew exploration vehicle (CEV) attitude control. CEVs are NASA's next-generation human spaceflight vehicles, and they use reaction control system (RCS) jet engines for attitude adjustment, which calls for control algorithms for firing the small propulsion engines mounted on vehicles. In this work, the resultant CEV dynamics combines both actuation and attitude dynamics. Therefore, it is highly nonlinear and even coupled with significant uncertainties. To cope with this situation, a neural-immunology/memory network is proposed. It is inspired by the human memory and immune systems. The control network does not rely on precise system dynamics information. Furthermore, the overall control scheme has a simple structure and demands much less computation as compared with most existing methods, making it attractive for real-time implementation. The effectiveness of this approach is also verified via simulation.

  13. Complex scenes and situations visualization in hierarchical learning algorithm with dynamic 3D NeoAxis engine

    NASA Astrophysics Data System (ADS)

    Graham, James; Ternovskiy, Igor V.

    2013-06-01

    We applied a two stage unsupervised hierarchical learning system to model complex dynamic surveillance and cyber space monitoring systems using a non-commercial version of the NeoAxis visualization software. The hierarchical scene learning and recognition approach is based on hierarchical expectation maximization, and was linked to a 3D graphics engine for validation of learning and classification results and understanding the human - autonomous system relationship. Scene recognition is performed by taking synthetically generated data and feeding it to a dynamic logic algorithm. The algorithm performs hierarchical recognition of the scene by first examining the features of the objects to determine which objects are present, and then determines the scene based on the objects present. This paper presents a framework within which low level data linked to higher-level visualization can provide support to a human operator and be evaluated in a detailed and systematic way.

  14. Engineered human vaccines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandhu, J.S.

    1994-01-01

    The limitations of human vaccines in use at present and the design requirements for a new generation of human vaccines are discussed. The progress in engineering of human vaccines for bacteria, viruses, parasites, and cancer is reviewed, and the data from human studies with the engineered vaccines are discussed, especially for cancer and AIDS vaccines. The final section of the review deals with the possible future developments in the field of engineered human vaccines and the requirement for effective new human adjuvants.

  15. The Potential Impact of Mars' Atmospheric Dust on Future Human Exploration of the Red Planet

    NASA Astrophysics Data System (ADS)

    Winterhalter, D.; Levine, J. S.; Kerschmann, R.; Beaty, D. W.; Carrier, B. L.; Ashley, J. W.

    2017-12-01

    With the increasing focus by NASA and other space agencies on a crewed mission to Mars in the 2039 time-frame, many Mars-specific environmental factors are now starting to be considered by NASA and other engineering teams. Learning from NASA's Apollo Missions to the Moon, where lunar dust turned out to be a significant challenge to mission and crew safety, attention is now turning to the dust in Mars' atmosphere and regolith. To start the process of identifying possible dust-caused challenges to the human presence on Mars, and thus aid early engineering and mission design efforts, the NASA Engineering and Safety Center (NESC) Robotic Spacecraft Technical Discipline Team organized and conducted a Workshop on the "Dust in Mars' Atmosphere and Its Impact on the Human Exploration of Mars", held at the Lunar and Planetary Institute (LPI), Houston, TX, June 13-15, 2017. The workshop addressed the following general areas: 1. What is known about Mars' dust in terms of its physical and chemical properties, its local and global abundance and composition, and its variability.2. What is the impact of Mars atmospheric dust on human health.3. What is the impact of Mars atmospheric dust on surface mechanical systems (e.g., spacesuits, habitats, mobility systems, etc.). We present the top priority issues identified in the workshop.

  16. R and D Productivity: New Challenges for the US Space Program

    NASA Technical Reports Server (NTRS)

    Baskin, O. W. (Editor); Sullivan, L. J. (Editor)

    1985-01-01

    Various topics related to research and development activities applicable to their U.S. space program are discussed. Project management, automatic control technology, human resources, management information systems, computer aided design, systems engineering, and personnel management were among the topics covered.

  17. Artificial Intelligence and Expert Systems.

    ERIC Educational Resources Information Center

    Lawlor, Joseph

    Artificial intelligence (AI) is the field of scientific inquiry concerned with designing machine systems that can simulate human mental processes. The field draws upon theoretical constructs from a wide variety of disciplines, including mathematics, psychology, linguistics, neurophysiology, computer science, and electronic engineering. Some of the…

  18. Integration of MSFC Usability Lab with Usability Testing

    NASA Technical Reports Server (NTRS)

    Cheng, Yiwei; Richardson, Sally

    2010-01-01

    As part of the Stage Analysis Branch, human factors engineering plays an important role in relating humans to the systems of hardware and structure designs of the new launch vehicle. While many branches are involved in the technical aspects of creating a launch vehicle, human factors connects humans to the scientific systems with the goal of improving operational performance and safety while reducing operational error and damage to the hardware. Human factors engineers use physical and computerized models to visualize possible areas for improvements to ensure human accessibility to components requiring maintenance and that the necessary maintenance activities can be accomplished with minimal risks to human and hardware. Many methods of testing are used to fulfill this goal, such as physical mockups, computerized visualization, and usability testing. In this analysis, a usability test is conducted to test how usable a website is to users who are and are not familiar with it. The testing is performed using participants and Morae software to record and analyze the results. This analysis will be a preliminary test of the usability lab in preparation for use in new spacecraft programs, NASA Enterprise, or other NASA websites. The usability lab project is divided into two parts: integration of the usability lab and a preliminary test of the usability lab.

  19. Human Engineering of Space Vehicle Displays and Controls

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Holden, Kritina L.; Boyer, Jennifer; Stephens, John-Paul; Ezer, Neta; Sandor, Aniko

    2010-01-01

    Proper attention to the integration of the human needs in the vehicle displays and controls design process creates a safe and productive environment for crew. Although this integration is critical for all phases of flight, for crew interfaces that are used during dynamic phases (e.g., ascent and entry), the integration is particularly important because of demanding environmental conditions. This panel addresses the process of how human engineering involvement ensures that human-system integration occurs early in the design and development process and continues throughout the lifecycle of a vehicle. This process includes the development of requirements and quantitative metrics to measure design success, research on fundamental design questions, human-in-the-loop evaluations, and iterative design. Processes and results from research on displays and controls; the creation and validation of usability, workload, and consistency metrics; and the design and evaluation of crew interfaces for NASA's Crew Exploration Vehicle are used as case studies.

  20. Design, fabrication and control of soft robots.

    PubMed

    Rus, Daniela; Tolley, Michael T

    2015-05-28

    Conventionally, engineers have employed rigid materials to fabricate precise, predictable robotic systems, which are easily modelled as rigid members connected at discrete joints. Natural systems, however, often match or exceed the performance of robotic systems with deformable bodies. Cephalopods, for example, achieve amazing feats of manipulation and locomotion without a skeleton; even vertebrates such as humans achieve dynamic gaits by storing elastic energy in their compliant bones and soft tissues. Inspired by nature, engineers have begun to explore the design and control of soft-bodied robots composed of compliant materials. This Review discusses recent developments in the emerging field of soft robotics.

  1. Integrated Evaluation of Closed Loop Air Revitalization System Components

    NASA Technical Reports Server (NTRS)

    Murdock, K.

    2010-01-01

    NASA s vision and mission statements include an emphasis on human exploration of space, which requires environmental control and life support technologies. This Contractor Report (CR) describes the development and evaluation of an Air Revitalization System, modeling and simulation of the components, and integrated hardware testing with the goal of better understanding the inherent capabilities and limitations of this closed loop system. Major components integrated and tested included a 4-Bed Modular Sieve, Mechanical Compressor Engineering Development Unit, Temperature Swing Adsorption Compressor, and a Sabatier Engineering and Development Unit. The requisite methodolgy and technical results are contained in this CR.

  2. Demonstration of a Safety Analysis on a Complex System

    NASA Technical Reports Server (NTRS)

    Leveson, Nancy; Alfaro, Liliana; Alvarado, Christine; Brown, Molly; Hunt, Earl B.; Jaffe, Matt; Joslyn, Susan; Pinnell, Denise; Reese, Jon; Samarziya, Jeffrey; hide

    1997-01-01

    For the past 17 years, Professor Leveson and her graduate students have been developing a theoretical foundation for safety in complex systems and building a methodology upon that foundation. The methodology includes special management structures and procedures, system hazard analyses, software hazard analysis, requirements modeling and analysis for completeness and safety, special software design techniques including the design of human-machine interaction, verification, operational feedback, and change analysis. The Safeware methodology is based on system safety techniques that are extended to deal with software and human error. Automation is used to enhance our ability to cope with complex systems. Identification, classification, and evaluation of hazards is done using modeling and analysis. To be effective, the models and analysis tools must consider the hardware, software, and human components in these systems. They also need to include a variety of analysis techniques and orthogonal approaches: There exists no single safety analysis or evaluation technique that can handle all aspects of complex systems. Applying only one or two may make us feel satisfied, but will produce limited results. We report here on a demonstration, performed as part of a contract with NASA Langley Research Center, of the Safeware methodology on the Center-TRACON Automation System (CTAS) portion of the air traffic control (ATC) system and procedures currently employed at the Dallas/Fort Worth (DFW) TRACON (Terminal Radar Approach CONtrol). CTAS is an automated system to assist controllers in handling arrival traffic in the DFW area. Safety is a system property, not a component property, so our safety analysis considers the entire system and not simply the automated components. Because safety analysis of a complex system is an interdisciplinary effort, our team included system engineers, software engineers, human factors experts, and cognitive psychologists.

  3. Capturing Requirements for Autonomous Spacecraft with Autonomy Requirements Engineering

    NASA Astrophysics Data System (ADS)

    Vassev, Emil; Hinchey, Mike

    2014-08-01

    The Autonomy Requirements Engineering (ARE) approach has been developed by Lero - the Irish Software Engineering Research Center within the mandate of a joint project with ESA, the European Space Agency. The approach is intended to help engineers develop missions for unmanned exploration, often with limited or no human control. Such robotics space missions rely on the most recent advances in automation and robotic technologies where autonomy and autonomic computing principles drive the design and implementation of unmanned spacecraft [1]. To tackle the integration and promotion of autonomy in software-intensive systems, ARE combines generic autonomy requirements (GAR) with goal-oriented requirements engineering (GORE). Using this approach, software engineers can determine what autonomic features to develop for a particular system (e.g., a space mission) as well as what artifacts that process might generate (e.g., goals models, requirements specification, etc.). The inputs required by this approach are the mission goals and the domain-specific GAR reflecting specifics of the mission class (e.g., interplanetary missions).

  4. Supporting the human life-raft in confronting the juggernaut of technology: Jens Rasmussen, 1961-1986.

    PubMed

    Kant, Vivek

    2017-03-01

    Jens Rasmussen's contribution to the field of human factors and ergonomics has had a lasting impact. Six prominent interrelated themes can be extracted from his research between 1961 and 1986. These themes form the basis of an engineering epistemology which is best manifested by his abstraction hierarchy. Further, Rasmussen reformulated technical reliability using systems language to enable a proper human-machine fit. To understand the concept of human-machine fit, he included the operator as a central component in the system to enhance system safety. This change resulted in the application of a qualitative and categorical approach for human-machine interaction design. Finally, Rasmussen's insistence on a working philosophy of systems design as being a joint responsibility of operators and designers provided the basis for averting errors and ensuring safe and correct system functioning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Inhabiting the solar system

    NASA Astrophysics Data System (ADS)

    Sherwood, Brent

    2011-03-01

    The new field of space architecture is introduced. Defined as the "theory and practice of designing and building inhabited environments in outer space," the field synthesizes human space flight systems engineering subjects with the long tradition of making environments that support human living, work, and aspiration. The scope of the field is outlined, and its three principal domains differentiated. The current state of the art is described in terms of executed projects. Foreseeable options for 21st century developments in human space flight provide a framework to tease out potential space architecture opportunities for the next century.

  6. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids.

    PubMed

    Matano, Mami; Date, Shoichi; Shimokawa, Mariko; Takano, Ai; Fujii, Masayuki; Ohta, Yuki; Watanabe, Toshiaki; Kanai, Takanori; Sato, Toshiro

    2015-03-01

    Human colorectal tumors bear recurrent mutations in genes encoding proteins operative in the WNT, MAPK, TGF-β, TP53 and PI3K pathways. Although these pathways influence intestinal stem cell niche signaling, the extent to which mutations in these pathways contribute to human colorectal carcinogenesis remains unclear. Here we use the CRISPR-Cas9 genome-editing system to introduce multiple such mutations into organoids derived from normal human intestinal epithelium. By modulating the culture conditions to mimic that of the intestinal niche, we selected isogenic organoids harboring mutations in the tumor suppressor genes APC, SMAD4 and TP53, and in the oncogenes KRAS and/or PIK3CA. Organoids engineered to express all five mutations grew independently of niche factors in vitro, and they formed tumors after implantation under the kidney subcapsule in mice. Although they formed micrometastases containing dormant tumor-initiating cells after injection into the spleen of mice, they failed to colonize in the liver. In contrast, engineered organoids derived from chromosome-instable human adenomas formed macrometastatic colonies. These results suggest that 'driver' pathway mutations enable stem cell maintenance in the hostile tumor microenvironment, but that additional molecular lesions are required for invasive behavior.

  7. Virtual Environment Computer Simulations to Support Human Factors Engineering and Operations Analysis for the RLV Program

    NASA Technical Reports Server (NTRS)

    Lunsford, Myrtis Leigh

    1998-01-01

    The Army-NASA Virtual Innovations Laboratory (ANVIL) was recently created to provide virtual reality tools for performing Human Engineering and operations analysis for both NASA and the Army. The author's summer research project consisted of developing and refining these tools for NASA's Reusable Launch Vehicle (RLV) program. Several general simulations were developed for use by the ANVIL for the evaluation of the X34 Engine Changeout procedure. These simulations were developed with the software tool dVISE 4.0.0 produced by Division Inc. All software was run on an SGI Indigo2 High Impact. This paper describes the simulations, various problems encountered with the simulations, other summer activities, and possible work for the future. We first begin with a brief description of virtual reality systems.

  8. Cyber-Informed Engineering: The Need for a New Risk Informed and Design Methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Joseph Daniel; Anderson, Robert Stephen

    Current engineering and risk management methodologies do not contain the foundational assumptions required to address the intelligent adversary’s capabilities in malevolent cyber attacks. Current methodologies focus on equipment failures or human error as initiating events for a hazard, while cyber attacks use the functionality of a trusted system to perform operations outside of the intended design and without the operator’s knowledge. These threats can by-pass or manipulate traditionally engineered safety barriers and present false information, invalidating the fundamental basis of a safety analysis. Cyber threats must be fundamentally analyzed from a completely new perspective where neither equipment nor human operationmore » can be fully trusted. A new risk analysis and design methodology needs to be developed to address this rapidly evolving threatscape.« less

  9. In vitro enteroid-derived three-dimensional tissue model of human small intestinal epithelium with innate immune responses.

    PubMed

    Chen, Ying; Zhou, Wenda; Roh, Terrence; Estes, Mary K; Kaplan, David L

    2017-01-01

    There is a need for functional in vitro 3D human intestine systems that can bridge the gap between conventional cell culture studies and human trials. The successful engineering in vitro of human intestinal tissues relies on the use of the appropriate cell sources, biomimetic scaffolds, and 3D culture conditions to support vital organ functions. We previously established a compartmentalized scaffold consisting of a hollow space within a porous bulk matrix, in which a functional and physiologically relevant intestinal epithelium system was generated using intestinal cell lines. In this study, we adopt the 3D scaffold system for the cultivation of stem cell-derived human small intestinal enteriods (HIEs) to engineer an in vitro 3D model of a nonstransformed human small intestinal epithelium. Characterization of tissue properties revealed a mature HIE-derived epithelium displaying four major terminally differentiated epithelial cell types (enterocytes, Goblet cells, Paneth cells, enteroendocrine cells), with tight junction formation, microvilli polarization, digestive enzyme secretion, and low oxygen tension in the lumen. Moreover, the tissue model demonstrates significant antibacterial responses to E. coli infection, as evidenced by the significant upregulation of genes involved in the innate immune response. Importantly, many of these genes are activated in human patients with inflammatory bowel disease (IBD), implicating the potential application of the 3D stem-cell derived epithelium for the in vitro study of host-microbe-pathogen interplay and IBD pathogenesis.

  10. Pure random search for ambient sensor distribution optimisation in a smart home environment.

    PubMed

    Poland, Michael P; Nugent, Chris D; Wang, Hui; Chen, Liming

    2011-01-01

    Smart homes are living spaces facilitated with technology to allow individuals to remain in their own homes for longer, rather than be institutionalised. Sensors are the fundamental physical layer with any smart home, as the data they generate is used to inform decision support systems, facilitating appropriate actuator actions. Positioning of sensors is therefore a fundamental characteristic of a smart home. Contemporary smart home sensor distribution is aligned to either a) a total coverage approach; b) a human assessment approach. These methods for sensor arrangement are not data driven strategies, are unempirical and frequently irrational. This Study hypothesised that sensor deployment directed by an optimisation method that utilises inhabitants' spatial frequency data as the search space, would produce more optimal sensor distributions vs. the current method of sensor deployment by engineers. Seven human engineers were tasked to create sensor distributions based on perceived utility for 9 deployment scenarios. A Pure Random Search (PRS) algorithm was then tasked to create matched sensor distributions. The PRS method produced superior distributions in 98.4% of test cases (n=64) against human engineer instructed deployments when the engineers had no access to the spatial frequency data, and in 92.0% of test cases (n=64) when engineers had full access to these data. These results thus confirmed the hypothesis.

  11. Destination: Space

    NASA Image and Video Library

    2016-05-20

    RS-25 rocket engine No. 2059 is removed from the A-1 Test Stand at Stennis Space Center on May 19, 2016. The engine was tested March 10 on the stand and is ready for use on NASA’s new Space Launch System (SLS) vehicle. NASA is developing the SLS to carry humans deeper into space than ever before. The SLS core stage will be powered by four RS-25 engines. Engine No. 2059 is scheduled for use on the first crewed SLS mission, Exploration Mission-2, which will carry American astronauts beyond low-Earth orbit for the first time since 1972. The photo above shows the engine, as well as the yellow thrust frame adapter above it, which holds the engine in place for testing.

  12. The chorioallantoic membrane (CAM) assay for the study of human bone regeneration: a refinement animal model for tissue engineering

    NASA Astrophysics Data System (ADS)

    Moreno-Jiménez, Inés; Hulsart-Billstrom, Gry; Lanham, Stuart A.; Janeczek, Agnieszka A.; Kontouli, Nasia; Kanczler, Janos M.; Evans, Nicholas D.; Oreffo, Richard Oc

    2016-08-01

    Biomaterial development for tissue engineering applications is rapidly increasing but necessitates efficacy and safety testing prior to clinical application. Current in vitro and in vivo models hold a number of limitations, including expense, lack of correlation between animal models and human outcomes and the need to perform invasive procedures on animals; hence requiring new predictive screening methods. In the present study we tested the hypothesis that the chick embryo chorioallantoic membrane (CAM) can be used as a bioreactor to culture and study the regeneration of human living bone. We extracted bone cylinders from human femoral heads, simulated an injury using a drill-hole defect, and implanted the bone on CAM or in vitro control-culture. Micro-computed tomography (μCT) was used to quantify the magnitude and location of bone volume changes followed by histological analyses to assess bone repair. CAM blood vessels were observed to infiltrate the human bone cylinder and maintain human cell viability. Histological evaluation revealed extensive extracellular matrix deposition in proximity to endochondral condensations (Sox9+) on the CAM-implanted bone cylinders, correlating with a significant increase in bone volume by μCT analysis (p < 0.01). This human-avian system offers a simple refinement model for animal research and a step towards a humanized in vivo model for tissue engineering.

  13. The Integrated Mission-Planning Station: Functional Requirements, Aviator-Computer Dialogue, and Human Engineering Design Criteria.

    DTIC Science & Technology

    1983-08-01

    AD- R136 99 THE INTEGRATED MISSION-PLNNING STATION: FUNCTIONAL 1/3 REQUIREMENTS AVIATOR-..(U) RNACAPR SCIENCES INC SANTA BARBARA CA S P ROGERS RUG...Continue on reverse side o necess.ar and identify by btock number) Interactive Systems Aviation Control-Display Functional Require- Plan-Computer...Dialogue Avionics Systems ments Map Display Army Aviation Design Criteria Helicopters M4ission Planning Cartography Digital Map Human Factors Navigation

  14. Performance considerations for high-definition head-mounted displays

    NASA Technical Reports Server (NTRS)

    Edwards, Oliver J.; Larimer, James; Gille, Jennifer

    1992-01-01

    Design image-optimization for helmet-mounted displays (HMDs) for military systems is presently discussed within the framework of a systems-engineering approach that encompasses (1) a description of natural targets in the field; (2) the characteristics of human visual perception; and (3) device specifications that directly relate to these ecological and human-factors parameters. Attention is given to target size and contrast and the relationship of the modulation transfer function to image resolution.

  15. Bridging the engineering gap: integrated systems thinking

    NASA Astrophysics Data System (ADS)

    Weintré, J. R.; Delfi, M.

    2017-09-01

    On visits to rural Indonesia it is apparent that the advances made possible by technical engineered solutions, are rarely at the same pace as the human captivation of technical development. This uneven pace has limited the application of labour-saving equipment and efficiency. It is suggested to be of primary importance to advance technical application skills among communities as part of the continuous advancement cycle in our human environment. A creative approach to inclusive technology and internal transfer of equipment knowledge in society, reduces barriers and could diminish structural or societal undesired situations. Earlier theoretical concepts provide us a lens for describing the practices of habitus, conceptualization of social capital and integrated systems thinking. The interrelationship and complexities in technical and social systems requires to be investigated. This paper aims to describe those, combined with technological applications in an empirical ethnographic approach. The study analyses the negotiations of community members with the available technology. It intends to foster a better understanding of the various cultural-economic values by exploring the systems thinking theory, with a focus on rice cultivation in Indonesia, Japan and Australia. This research suggests that cultural, economic and technical advances vary considerably and human expectations are strongly influenced by local culture.

  16. A Model for Professional Education in the 21st Century: Integrating Humanities and Engineering through Writing.

    ERIC Educational Resources Information Center

    Olds, Barbara M.; Miller, Ronald L.

    The "HumEn" (Humanities/Engineering Integration) program developed at the Colorado School of Mines integrates humanities and engineering through reading and writing. Through integrative reading and writing engineering students are led to make appropriate connections between the humanities and their technical work, connections that will…

  17. Human Motion Tracking and Glove-Based User Interfaces for Virtual Environments in ANVIL

    NASA Technical Reports Server (NTRS)

    Dumas, Joseph D., II

    2002-01-01

    The Army/NASA Virtual Innovations Laboratory (ANVIL) at Marshall Space Flight Center (MSFC) provides an environment where engineers and other personnel can investigate novel applications of computer simulation and Virtual Reality (VR) technologies. Among the many hardware and software resources in ANVIL are several high-performance Silicon Graphics computer systems and a number of commercial software packages, such as Division MockUp by Parametric Technology Corporation (PTC) and Jack by Unigraphics Solutions, Inc. These hardware and software platforms are used in conjunction with various VR peripheral I/O (input / output) devices, CAD (computer aided design) models, etc. to support the objectives of the MSFC Engineering Systems Department/Systems Engineering Support Group (ED42) by studying engineering designs, chiefly from the standpoint of human factors and ergonomics. One of the more time-consuming tasks facing ANVIL personnel involves the testing and evaluation of peripheral I/O devices and the integration of new devices with existing hardware and software platforms. Another important challenge is the development of innovative user interfaces to allow efficient, intuitive interaction between simulation users and the virtual environments they are investigating. As part of his Summer Faculty Fellowship, the author was tasked with verifying the operation of some recently acquired peripheral interface devices and developing new, easy-to-use interfaces that could be used with existing VR hardware and software to better support ANVIL projects.

  18. Development of an on-line exposure system to determine freshly produced diesel engine emission-induced cellular effects.

    PubMed

    Oostingh, Gertie J; Papaioannou, Eleni; Chasapidis, Leonidas; Akritidis, Theofylaktos; Konstandopoulos, Athanasios G; Duschl, Albert

    2013-09-01

    Diesel engine emission particle filters are often placed at exhaust outlets to remove particles from the exhaust. The use of filters results in the exposure to a reduced number of nanometer-sized particles, which might be more harmful than the exposure to a larger number of micrometer-sized particles. An in vitro exposure system was established to expose human alveolar epithelial cells to freshly generated exhaust. Computer simulations were used to determine the optimal flow characteristics and ensure equal exposure conditions for each well of a 6-well plate. A selective particle size sampler was used to continuously deliver diesel soot particles with different particle size distributions to cells in culture. To determine, whether the system could be used for cellular assays, alterations in cytokine production and cell viability of human alveolar A549 cells were determined after 3h on-line exposure followed by a 21-h conventional incubation period. Data indicated that complete diesel engine emission slightly affected pre-stimulated cells, but naive cells were not affected. The fractions containing large or small particles never affected the cells. The experimental set-up allowed a reliable exposure of the cells to the complete exhaust fraction or to the fractions containing either large or small diesel engine emission particles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. NASA Experience with Pogo in Human Spaceflight Vehicles

    NASA Technical Reports Server (NTRS)

    Larsen, Curtis E.

    2008-01-01

    An overview of more than 45 years of NASA human spaceflight experience is presented with respect to the thrust axis vibration response of liquid fueled rockets known as pogo. A coupled structure and propulsion system instability, pogo can result in the impairment of the astronaut crew, an unplanned engine shutdown, loss of mission, or structural failure. The NASA history begins with the Gemini Program and adaptation of the USAF Titan II ballistic missile as a spacecraft launch vehicle. It continues with the pogo experienced on several Apollo-Saturn flights in both the first and second stages of flight. The defining moment for NASA s subsequent treatment of pogo occurred with the near failure of the second stage on the ascent of the Apollo 13 mission. Since that time NASA has had a strict "no pogo" philosophy that was applied to the development of the Space Shuttle. The "no pogo" philosophy lead to the first vehicle designed to be pogo-free from the beginning and the first development of an engine with an integral pogo suppression system. Now, more than 30 years later, NASA is developing two new launch vehicles, the Ares I crew launch vehicle propelling the Orion crew excursion vehicle, and the Ares V cargo launch vehicle. A new generation of engineers must again exercise NASA s system engineering method for pogo mitigation during design, development and verification.

  20. Signal Analysis of Automotive Engine Spark Ignition System using Case-Based Reasoning (CBR) and Case-based Maintenance (CBM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, H.; Vong, C. M.; Wong, P. K.

    2010-05-21

    With the development of modern technology, modern vehicles adopt electronic control system for injection and ignition. In traditional way, whenever there is any malfunctioning in an automotive engine, an automotive mechanic usually performs a diagnosis in the ignition system of the engine to check any exceptional symptoms. In this paper, we present a case-based reasoning (CBR) approach to help solve human diagnosis problem. Nevertheless, one drawback of CBR system is that the case library will be expanded gradually after repeatedly running the system, which may cause inaccuracy and longer time for the CBR retrieval. To tackle this problem, case-based maintenancemore » (CBM) framework is employed so that the case library of the CBR system will be compressed by clustering to produce a set of representative cases. As a result, the performance (in retrieval accuracy and time) of the whole CBR system can be improved.« less

  1. Human-factors engineering control-room design review/audit: Waterford 3 SES Generating Station, Louisiana Power and Light Company

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, J.W.

    1983-03-10

    A human factors engineering design review/audit of the Waterford-3 control room was performed at the site on May 10 through May 13, 1982. The report was prepared on the basis of the HFEB's review of the applicant's Preliminary Human Engineering Discrepancy (PHED) report and the human factors engineering design review performed at the site. This design review was carried out by a team from the Human Factors Engineering Branch, Division of Human Factors Safety. The review team was assisted by consultants from Lawrence Livermore National Laboratory (University of California), Livermore, California.

  2. Dan Goldin Presentation: Pathway to the Future

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the "Path to the Future" presentation held at NASA's Langley Center on March 31, 1999, NASA's Administrator Daniel S. Goldin outlined the future direction and strategies of NASA in relation to the general space exploration enterprise. NASA's Vision, Future System Characteristics, Evolutions of Engineering, and Revolutionary Changes are the four main topics of the presentation. In part one, the Administrator talks in detail about NASA's vision in relation to the NASA Strategic Activities that are Space Science, Earth Science, Human Exploration, and Aeronautics & Space Transportation. Topics discussed in this section include: space science for the 21st century, flying in mars atmosphere (mars plane), exploring new worlds, interplanetary internets, earth observation and measurements, distributed information-system-in-the-sky, science enabling understanding and application, space station, microgravity, science and exploration strategies, human mars mission, advance space transportation program, general aviation revitalization, and reusable launch vehicles. In part two, he briefly talks about the future system characteristics. He discusses major system characteristics like resiliencey, self-sufficiency, high distribution, ultra-efficiency, and autonomy and the necessity to overcome any distance, time, and extreme environment barriers. Part three of Mr. Goldin's talk deals with engineering evolution, mainly evolution in the Computer Aided Design (CAD)/Computer Aided Engineering (CAE) systems. These systems include computer aided drafting, computerized solid models, virtual product development (VPD) systems, networked VPD systems, and knowledge enriched networked VPD systems. In part four, the last part, the Administrator talks about the need for revolutionary changes in communication and networking areas of a system. According to the administrator, the four major areas that need cultural changes in the creativity process are human-centered computing, an infrastructure for distributed collaboration, rapid synthesis and simulation tools, and life-cycle integration and validation. Mr. Goldin concludes his presentation with the following maxim "Collaborate, Integrate, Innovate or Stagnate and Evaporate." He also answers some questions after the presentation.

  3. AUTOMOUSE: AN IMPROVEMENT TO THE MOUSE COMPUTERIZED UNCERTAINTY ANALYSIS SYSTEM OPERATIONAL MANUAL.

    EPA Science Inventory

    Under a mandate of national environmental laws, the agency strives to formulate and implement actions leading to a compatible balance between human activities and the ability of natural systems to support and nurture life. The Risk Reduction Engineering Laboratory is responsible ...

  4. Scenarios for Evolution of Air Traffic Control,

    DTIC Science & Technology

    1981-11-01

    decisionmaking systems. We have thus approached it from the perspectives of computer science, engineering, human-factors psychology , and the emerging field of...assurance monitor or indepen- dent collision-avoidance system like ATARS could prevent the acci- 35 dent), but there will undoubtedly be other situations

  5. Human factors engineering verification and validation for APR1400 computerized control room

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Y. C.; Moon, H. K.; Kim, J. H.

    2006-07-01

    This paper introduces the Advanced Power Reactor 1400 (APR1400) HFE V and V activities the Korea Hydro Nuclear Plant Co. LTD. (KHNP) has performed for the last 10 years and some of the lessons learned through these activities. The features of APR1400 main control room include large display panel, redundant compact workstations, computer-based procedure, and safety console. Several iterations of human factors evaluations have been performed from small scale proof of concept tests to large scale integrated system tests for identifying human engineering deficiencies in the human system interface design. Evaluations in the proof of concept test were focused onmore » checking the presence of any show stopper problems in the design concept. Later evaluations were mostly for finding design problems and for assuring the resolution of human factors issues of advanced control room. The results of design evaluations were useful not only for refining the control room design, but also for licensing the standard design. Several versions of APR1400 mock-ups with dynamic simulation models of currently operating Korea Standard Nuclear Plant (KSNP) have been used for the evaluations with the participation of operators from KSNP plants. (authors)« less

  6. Proceedings of the international conference on cybernetics and societ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-01-01

    This book presents the papers given at a conference on artificial intelligence, expert systems and knowledge bases. Topics considered at the conference included automating expert system development, modeling expert systems, causal maps, data covariances, robot vision, image processing, multiprocessors, parallel processing, VLSI structures, man-machine systems, human factors engineering, cognitive decision analysis, natural language, computerized control systems, and cybernetics.

  7. The use of the general image quality equation in the design and evaluation of imaging systems

    NASA Astrophysics Data System (ADS)

    Cota, Steve A.; Florio, Christopher J.; Duvall, David J.; Leon, Michael A.

    2009-08-01

    The design of any modern imaging system is the end result of many trade studies, each seeking to optimize image quality within real world constraints such as cost, schedule and overall risk. The National Imagery Interpretability Rating Scale (NIIRS) is a useful measure of image quality, because, by characterizing the overall interpretability of an image, it combines into one metric those contributors to image quality to which a human interpreter is most sensitive. The main drawback to using a NIIRS rating as a measure of image quality in engineering trade studies is the fact that it is tied to the human observer and cannot be predicted from physical principles and engineering parameters alone. The General Image Quality Equation (GIQE) of Leachtenauer et al. 1997 [Appl. Opt. 36, 8322-8328 (1997)] is a regression of actual image analyst NIIRS ratings vs. readily calculable engineering metrics, and provides a mechanism for using the expected NIIRS rating of an imaging system in the design and evaluation process. In this paper, we will discuss how we use the GIQE in conjunction with The Aerospace Corporation's Parameterized Image Chain Analysis & Simulation SOftware (PICASSO) to evaluate imager designs, taking a hypothetical high resolution commercial imaging system as an example.

  8. A novel architecture for information retrieval system based on semantic web

    NASA Astrophysics Data System (ADS)

    Zhang, Hui

    2011-12-01

    Nowadays, the web has enabled an explosive growth of information sharing (there are currently over 4 billion pages covering most areas of human endeavor) so that the web has faced a new challenge of information overhead. The challenge that is now before us is not only to help people locating relevant information precisely but also to access and aggregate a variety of information from different resources automatically. Current web document are in human-oriented formats and they are suitable for the presentation, but machines cannot understand the meaning of document. To address this issue, Berners-Lee proposed a concept of semantic web. With semantic web technology, web information can be understood and processed by machine. It provides new possibilities for automatic web information processing. A main problem of semantic web information retrieval is that when these is not enough knowledge to such information retrieval system, the system will return to a large of no sense result to uses due to a huge amount of information results. In this paper, we present the architecture of information based on semantic web. In addiction, our systems employ the inference Engine to check whether the query should pose to Keyword-based Search Engine or should pose to the Semantic Search Engine.

  9. Developing Advanced Human Support Technologies for Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Berdich, Debra P.; Campbell, Paul D.; Jernigan, J. Mark

    2004-01-01

    The United States Vision for Space Exploration calls for sending robots and humans to explore the Earth's moon, the planet Mars, and beyond. The National Aeronautics and Space Administration (NASA) is developing a set of design reference missions that will provide further detail to these plans. Lunar missions are expected to provide a stepping stone, through operational research and evaluation, in developing the knowledge base necessary to send crews on long duration missions to Mars and other distant destinations. The NASA Exploration Systems Directorate (ExSD), in its program of bioastronautics research, manages the development of technologies that maintain human life, health, and performance in space. Using a system engineering process and risk management methods, ExSD's Human Support Systems (HSS) Program selects and performs research and technology development in several critical areas and transfers the results of its efforts to NASA exploration mission/systems development programs in the form of developed technologies and new knowledge about the capabilities and constraints of systems required to support human existence beyond Low Earth Orbit. HSS efforts include the areas of advanced environmental monitoring and control, extravehicular activity, food technologies, life support systems, space human factors engineering, and systems integration of all these elements. The HSS Program provides a structured set of deliverable products to meet the needs of exploration programs. These products reduce the gaps that exist in our knowledge of and capabilities for human support for long duration, remote space missions. They also reduce the performance gap between the efficiency of current space systems and the greater efficiency that must be achieved to make human planetary exploration missions economically and logistically feasible. In conducting this research and technology development program, it is necessary for HSS technologists and program managers to develop a common currency for decision making and the allocation of funding. A high level assessment is made of both the knowledge gaps and the system performance gaps across the program s technical project portfolio. This allows decision making that assures proper emphasis areas and provides a key measure of annual technological progress, as exploration mission plans continue to mature.

  10. Affordable Development and Qualification Strategy for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P., Jr.; Doughty, Glen E.; Bhattacharyya, Samit K.

    2013-01-01

    Nuclear Thermal Propulsion (NTP) is a concept which uses a nuclear reactor to heat a propellant to high temperatures without combustion and can achieve significantly greater specific impulse than chemical engines. NTP has been considered many times for human and cargo missions beyond low earth orbit. A lot of development and technical maturation of NTP components took place during the Rover/NERVA program of the 60's and early 70's. Other NTP programs and studies followed attempting to further mature the NTP concept and identify a champion customer willing to devote the funds and support the development schedule to a demonstration mission. Budgetary constraints require the use of an affordable development and qualification strategy that takes into account all the previous work performed on NTP to construct an existing database, and include lessons learned and past guidelines followed. Current guidelines and standards NASA uses for human rating chemical rocket engines is referenced. The long lead items for NTP development involve the fuel elements of the reactor and ground testing the engine system, subsystem, and components. Other considerations which greatly impact the development plans includes the National Space Policy, National Environmental Policy Act, Presidential Directive/National Security Council Memorandum #25 (Scientific or Technological Experiments with Possible Large-Scale Adverse Environmental Effects and Launch of Nuclear Systems into Space), and Safeguards and Security. Ground testing will utilize non-nuclear test capabilities to help down select components and subsystems before testing in a nuclear environment to save time and cost. Existing test facilities with minor modifications will be considered to the maximum extent practical. New facilities will be designed to meet minimum requirements. Engine and test facility requirements are based on the driving mission requirements with added factors of safety for better assurance and reliability. Emphasis will be placed on small engines, since the smaller the NTP engine, the easier it is to transport, assemble/disassemble, and filter the exhaust during tests. A new ground test concept using underground bore holes (modeled after the underground nuclear test program) to filter the NTP engine exhaust is being considered. The NTP engine system design, development, test, and evaluation plan includes many engine components and subsystems, which are very similar to those used in chemical engines, and can be developed in conjunction with them Other less mature NTP engine components and subsystems (e.g., reactor) will be thoroughly analyzed and tested to acceptable levels recommended by the referenced standards and guidelines. The affordable development strategy also considers a prototype flight test, as a final step in the development process. Preliminary development schedule estimates show that an aggressive development schedule (without much margin) will be required to be flight ready for a 2033 human mission to Mars.

  11. A computerized system to monitor resilience indicators in organizations.

    PubMed

    de Carvalho, Paulo Victor Rodrigues; de Souza, Alan Pinheiro; Gomes, Jose Orlando

    2012-01-01

    The concepts developed by resilience engineering allow the understanding and monitoring the functioning of organizations and, particularly, to map the role of human activities, in success or in failure, enabling a better comprehension about how people make decisions in unexpected situations. The capture of information about human activities in the various organization levels gives managers a deeper real-time understanding of what is influencing the people performance, providing awareness of the factors that influence positively or negatively the organizational goals initially projected. The monitoring is important because the correct functioning of complex systems depends on the knowledge that people have to perform their activities and how the system environment provides tools that actually support the human performance. Therefore, organizations should look forward through precursors in operating signals to identify possible problems or solutions in the structure of tasks and activities, safety, quality, schedule, rework, and maintenance. We apply the concepts of resilience engineering to understand the organization by the analysis of cognitive tasks and activities. The aim is the development of a computerized system to monitor human activities to produce indicators to access system resilience. The validation of the approach was made in a real organization and the results show the successful applicability of the system. Based on findings obtained after the experiment of the system in a real organization, and managers and workers opinions, it was possible to show that the use of system provided an anticipated (real-time) perception about how activities are effectively being performed, allowing managers and workers to make decisions more consistent with daily problems, and also to anticipate solutions to cope with unexpected situations.

  12. Therapeutic Genome Editing and its Potential Enhancement through CRISPR Guide RNA and Cas9 Modifications.

    PubMed

    Batzir, Nurit Assia; Tovin, Adi; Hendel, Ayal

    2017-06-01

    Genome editing with engineered nucleases is a rapidly growing field thanks to transformative technologies that allow researchers to precisely alter genomes for numerous applications including basic research, biotechnology, and human gene therapy. The genome editing process relies on creating a site-specific DNA double-strand break (DSB) by engineered nucleases and then allowing the cell's repair machinery to repair the break such that precise changes are made to the DNA sequence. The recent development of CRISPR-Cas systems as easily accessible and programmable tools for genome editing accelerates the progress towards using genome editing as a new approach to human therapeutics. Here we review how genome editing using engineered nucleases works and how using different genome editing outcomes can be used as a tool set for treating human diseases. We then review the major challenges of therapeutic genome editing and we discuss how its potential enhancement through CRISPR guide RNA and Cas9 protein modifications could resolve some of these challenges. Copyright© of YS Medical Media ltd.

  13. Engineering Design Handbook. Army Weapon Systems Analysis. Part 2

    DTIC Science & Technology

    1979-10-01

    EXPERIMENTAL DESIGN ............................... ............ 41-3 41-5 RESULTS OF THE ASARS lIX SIMULATIONS ........................... 41-4 41-6 LATIN...sciences and human factors engineering fields utilizing experimental methodology and multi-variable statistical techniques drawn from experimental ...randomly to grenades for the test design . The nine experimental types of hand grenades (first’ nine in Table 33-2) had a "pip" on their spherical

  14. Engineering, Life Sciences, and Health/Medicine Synergy in Aerospace Human Systems Integration: The Rosetta Stone Project

    NASA Technical Reports Server (NTRS)

    Williams, Richard S. (Editor); Doarn, Charles R. (Editor); Shepanek, Marc A.

    2017-01-01

    In the realm of aerospace engineering and the physical sciences, we have developed laws of physics based on empirical and research evidence that reliably guide design, research, and development efforts. For instance, an engineer designs a system based on data and experience that can be consistently and repeatedly verified. This reproducibility depends on the consistency and dependability of the materials on which the engineer works and is subject to physics, geometry and convention. In life sciences and medicine, these apply as well, but individuality introduces a host of variables into the mix, resulting in characteristics and outcomes that can be quite broad within a population of individuals. This individuality ranges from differences at the genetic and cellular level to differences in an individuals personality and abilities due to sex and gender, environment, education, etc.

  15. Combining cognitive engineering and information fusion architectures to build effective joint systems

    NASA Astrophysics Data System (ADS)

    Sliva, Amy L.; Gorman, Joe; Voshell, Martin; Tittle, James; Bowman, Christopher

    2016-05-01

    The Dual Node Decision Wheels (DNDW) architecture concept was previously described as a novel approach toward integrating analytic and decision-making processes in joint human/automation systems in highly complex sociotechnical settings. In this paper, we extend the DNDW construct with a description of components in this framework, combining structures of the Dual Node Network (DNN) for Information Fusion and Resource Management with extensions on Rasmussen's Decision Ladder (DL) to provide guidance on constructing information systems that better serve decision-making support requirements. The DNN takes a component-centered approach to system design, decomposing each asset in terms of data inputs and outputs according to their roles and interactions in a fusion network. However, to ensure relevancy to and organizational fitment within command and control (C2) processes, principles from cognitive systems engineering emphasize that system design must take a human-centered systems view, integrating information needs and decision making requirements to drive the architecture design and capabilities of network assets. In the current work, we present an approach for structuring and assessing DNDW systems that uses a unique hybrid DNN top-down system design with a human-centered process design, combining DNN node decomposition with artifacts from cognitive analysis (i.e., system abstraction decomposition models, decision ladders) to provide work domain and task-level insights at different levels in an example intelligence, surveillance, and reconnaissance (ISR) system setting. This DNDW structure will ensure not only that the information fusion technologies and processes are structured effectively, but that the resulting information products will align with the requirements of human decision makers and be adaptable to different work settings .

  16. Integrating Social Science, Environmental Science, and Engineering to Understand Vulnerability and Resilience to Environmental Hazards in the Bengal Delta

    NASA Astrophysics Data System (ADS)

    Gilligan, J. M.; Ackerly, B.; Goodbred, S. L.

    2013-12-01

    In populated delta environments, it is impossible to separate human and natural systems. Human activities change the landscape by altering the dynamics of water and sediment and in return, humans themselves are affected by the natural and anthropogenic changes to the landscape. Such interactions can also have significant impacts on the ecology and natural resources of a delta system, affecting local and regional food supply, livelihoods, and economies, particularly in developing nations. Successful adaptation to environmental change in a strongly coupled human-natural system, such as the Bengal delta, requires understanding how the physical environment and the changing social, political, and economic conditions of people's lives interact. Research on human-delta interactions has largely focused on macro-scale effects from major dams, water diversions, and catchment-scale land use; but at the smaller scale of households and communities, decisions, actions, and outcomes may occur abruptly and have significant local impacts (positive or negative). Southwest Bangladesh experiences profound environmental problems at the local human-landscape interface, including groundwater salinity, soil fertility, conflicting land-use practices, management of engineering structures, and declining land-surface elevations. The impacts of climate-induced sea-level rise, especially with respect to population migration, receive great attention and concern, but neither sea level rise nor migration occurs against a background of static physical or human environments. For example, changing land use (e.g., building embankments, which affect drainage, sediment transport, and the evolution of tidal channels; and the transformation of rice fields to shrimp aquaculture, which affects soil chemistry, labor markets, river ecology, and possibly the integrity of embankments) can significantly change the impact that sea level rise will have on flood hazards and the resulting effect on people living on the delta. Assessing the impacts of climate change and other environmental stresses on delta populations and designing effective responses will require understanding interactions between the physical and human environments at multiple scales. As part of a multidisciplinary research project drawing on sedimentology, hydrology, remote-sensing, engineering, political science, sociology, psychology, and anthropology we are studying the interactions of human and natural systems in coastal Bangladesh to understand conditions that contribute to vulnerability and resilience at both the household and the community level. Building on Elinor Ostrom's socioecological systems approach, we have developed a theoretical framework for studying vulnerability and resilience when coupled human-natural systems are subject to significant changes and exogenous forcings. We will report on this framework using examples of successful and unsuccessful interventions to manage or mitigate exposure to environmental hazards, and we will also report on progress toward using our framework to identify and understand factors that contribute to the success or failure of such projects.

  17. Software Assists in Responding to Anomalous Conditions

    NASA Technical Reports Server (NTRS)

    James, Mark; Kronbert, F.; Weiner, A.; Morgan, T.; Stroozas, B.; Girouard, F.; Hopkins, A.; Wong, L.; Kneubuhl, J.; Malina, R.

    2004-01-01

    Fault Induced Document Retrieval Officer (FIDO) is a computer program that reduces the need for a large and costly team of engineers and/or technicians to monitor the state of a spacecraft and associated ground systems and respond to anomalies. FIDO includes artificial-intelligence components that imitate the reasoning of human experts with reference to a knowledge base of rules that represent failure modes and to a database of engineering documentation. These components act together to give an unskilled operator instantaneous expert assistance and access to information that can enable resolution of most anomalies, without the need for highly paid experts. FIDO provides a system state summary (a configurable engineering summary) and documentation for diagnosis of a potentially failing component that might have caused a given error message or anomaly. FIDO also enables high-level browsing of documentation by use of an interface indexed to the particular error message. The collection of available documents includes information on operations and associated procedures, engineering problem reports, documentation of components, and engineering drawings. FIDO also affords a capability for combining information on the state of ground systems with detailed, hierarchically-organized, hypertext- enabled documentation.

  18. A HUMAN FACTORS ENGINEERING PROCESS TO SUPPORT HUMAN-SYSTEM INTERFACE DESIGN IN CONTROL ROOM MODERNIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovesdi, C.; Joe, J.; Boring, R.

    The primary objective of the United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program is to sustain operation of the existing commercial nuclear power plants (NPPs) through a multi-pathway approach in conducting research and development (R&D). The Advanced Instrumentation, Information, and Control (II&C) System Technologies pathway conducts targeted R&D to address aging and reliability concerns with legacy instrumentation and control (I&C) and other information systems in existing U.S. NPPs. Control room modernization is an important part following this pathway, and human factors experts at Idaho National Laboratory (INL) have been involved in conducting R&D to supportmore » migration of new digital main control room (MCR) technologies from legacy analog and legacy digital I&C. This paper describes a human factors engineering (HFE) process that supports human-system interface (HSI) design in MCR modernization activities, particularly with migration of old digital to new digital I&C. The process described in this work is an expansion from the LWRS Report INL/EXT-16-38576, and is a requirements-driven approach that aligns with NUREG-0711 requirements. The work described builds upon the existing literature by adding more detail around key tasks and decisions to make when transitioning from HSI Design into Verification and Validation (V&V). The overall objective of this process is to inform HSI design and elicit specific, measurable, and achievable human factors criteria for new digital technologies. Upon following this process, utilities should have greater confidence with transitioning from HSI design into V&V.« less

  19. APPLICATION OF EYE TRACKING FOR MEASUREMENT AND EVALUATION IN HUMAN FACTORS STUDIES IN CONTROL ROOM MODERNIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovesdi, C.; Spielman, Z.; LeBlanc, K.

    An important element of human factors engineering (HFE) pertains to measurement and evaluation (M&E). The role of HFE-M&E should be integrated throughout the entire control room modernization (CRM) process and be used for human-system performance evaluation and diagnostic purposes with resolving potential human engineering deficiencies (HEDs) and other human machine interface (HMI) design issues. NUREG-0711 describes how HFE in CRM should employ a hierarchical set of measures, particularly during integrated system validation (ISV), including plant performance, personnel task performance, situation awareness, cognitive workload, and anthropometric/ physiological factors. Historically, subjective measures have been primarily used since they are easier to collectmore » and do not require specialized equipment. However, there are pitfalls with relying solely on subjective measures in M&E such that negatively impact reliability, sensitivity, and objectivity. As part of comprehensively capturing a diverse set of measures that strengthen findings and inferences made of the benefits from emerging technologies like advanced displays, this paper discusses the value of using eye tracking as an objective method that can be used in M&E. A brief description of eye tracking technology and relevant eye tracking measures is provided. Additionally, technical considerations and the unique challenges with using eye tracking in full-scaled simulations are addressed. Finally, this paper shares preliminary findings regarding the use of a wearable eye tracking system in a full-scale simulator study. These findings should help guide future full-scale simulator studies using eye tracking as a methodology to evaluate human-system performance.« less

  20. The workload book: Assessment of operator workload to engineering systems

    NASA Technical Reports Server (NTRS)

    Gopher, D.

    1983-01-01

    The structure and initial work performed toward the creation of a handbook for workload analysis directed at the operational community of engineers and human factors psychologists are described. The goal, when complete, will be to make accessible to such individuals the results of theoretically-based research that are of practical interest and utility in the analysis and prediction of operator workload in advanced and existing systems. In addition, the results of laboratory study focused on the development of a subjective rating technique for workload that is based on psychophysical scaling techniques are described.

  1. Human Milk Management Redesign: Improving Quality and Safety and Reducing Neonatal Intensive Care Unit Nurse Stress.

    PubMed

    Settle, Margaret Doyle; Coakley, Amanda Bulette; Annese, Christine Donahue

    2017-02-01

    Human milk provides superior nutritional value for infants in the neonatal intensive care unit and is the enteral feeding of choice. Our hospital used the system engineering initiative for patient safety model to evaluate the human milk management system in our neonatal intensive care unit. Nurses described the previous process in a negative way, fraught with opportunities for error, increased stress for nurses, and the need to be away from the bedside and their patients. The redesigned process improved the quality and safety of human milk management and created time for the nurses to spend with their patients.

  2. MSFC Skylab Orbital Workshop, volume 3. [design and development of waste disposal system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The waste management system for the Skylab Orbital Workshop is discussed. The general requirements of the system are presented. Illustrations of the components of the system are provided. Data concerning maximum expected performance capabilities are developed. The results of performance tests on the system components are reported. Emphasis is placed on the human factors engineering aspects of the system.

  3. Human-Computer Interaction and Virtual Environments

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler)

    1995-01-01

    The proceedings of the Workshop on Human-Computer Interaction and Virtual Environments are presented along with a list of attendees. The objectives of the workshop were to assess the state-of-technology and level of maturity of several areas in human-computer interaction and to provide guidelines for focused future research leading to effective use of these facilities in the design/fabrication and operation of future high-performance engineering systems.

  4. CRISPR Genome Engineering for Human Pluripotent Stem Cell Research

    PubMed Central

    Chaterji, Somali; Ahn, Eun Hyun; Kim, Deok-Ho

    2017-01-01

    The emergence of targeted and efficient genome editing technologies, such as repurposed bacterial programmable nucleases (e.g., CRISPR-Cas systems), has abetted the development of cell engineering approaches. Lessons learned from the development of RNA-interference (RNA-i) therapies can spur the translation of genome editing, such as those enabling the translation of human pluripotent stem cell engineering. In this review, we discuss the opportunities and the challenges of repurposing bacterial nucleases for genome editing, while appreciating their roles, primarily at the epigenomic granularity. First, we discuss the evolution of high-precision, genome editing technologies, highlighting CRISPR-Cas9. They exist in the form of programmable nucleases, engineered with sequence-specific localizing domains, and with the ability to revolutionize human stem cell technologies through precision targeting with greater on-target activities. Next, we highlight the major challenges that need to be met prior to bench-to-bedside translation, often learning from the path-to-clinic of complementary technologies, such as RNA-i. Finally, we suggest potential bioinformatics developments and CRISPR delivery vehicles that can be deployed to circumvent some of the challenges confronting genome editing technologies en route to the clinic. PMID:29158838

  5. Students' Developing Understanding of Water in Environmental Systems

    ERIC Educational Resources Information Center

    Covitt, Beth A.; Gunckel, Kristin L.; Anderson, Charles W.

    2009-01-01

    The authors developed a framework of empirically grounded curricular goals for water-science literacy and documented the challenges that students face in achieving these goals. Water-related environmental science literacy requires an understanding of connected natural and human-engineered systems at multiple scales ranging from atomic-molecular…

  6. A Programmatic and Engineering Approach to the Development of a Nuclear Thermal Rocket for Space Exploration

    NASA Technical Reports Server (NTRS)

    Bordelon, Wayne J., Jr.; Ballard, Rick O.; Gerrish, Harold P., Jr.

    2006-01-01

    With the announcement of the Vision for Space Exploration on January 14, 2004, there has been a renewed interest in nuclear thermal propulsion. Nuclear thermal propulsion is a leading candidate for in-space propulsion for human Mars missions; however, the cost to develop a nuclear thermal rocket engine system is uncertain. Key to determining the engine development cost will be the engine requirements, the technology used in the development and the development approach. The engine requirements and technology selection have not been defined and are awaiting definition of the Mars architecture and vehicle definitions. The paper discusses an engine development approach in light of top-level strategic questions and considerations for nuclear thermal propulsion and provides a suggested approach based on work conducted at the NASA Marshall Space Flight Center to support planning and requirements for the Prometheus Power and Propulsion Office. This work is intended to help support the development of a comprehensive strategy for nuclear thermal propulsion, to help reduce the uncertainty in the development cost estimate, and to help assess the potential value of and need for nuclear thermal propulsion for a human Mars mission.

  7. Inspiring engineering minds to advance human health: the Henry Samueli School of Engineering's Department of BME.

    PubMed

    Lee, Abraham; Wirtanen, Erik

    2012-07-01

    The growth of biomedical engineering at The Henry Samueli School of Engineering at the University of California, Irvine (UCI) has been rapid since the Center for Biomedical Engineering was first formed in 1998 [and was later renamed as the Department of Biomedical Engineering (BME) in 2002]. Our current mission statement, “Inspiring Engineering Minds to Advance Human Health,” serves as a reminder of why we exist, what we do, and the core principles that we value and by which we abide. BME exists to advance the state of human health via engineering innovation and practices. To attain our goal, we are empowering our faculty to inspire and mobilize our students to address health problems. We treasure the human being, particularly the human mind and health. We believe that BME is where minds are nurtured, challenged, and disciplined, and it is also where the health of the human is held as a core mission value that deserves our utmost priority (Figure 1). Advancing human health is not a theoretical practice; it requires bridging between disciplines (engineering and medicine) and between communities (academic and industry).

  8. Design and engineering of water-soluble light-harvesting protein maquettes

    DOE PAGES

    Kodali, Goutham; Mancini, Joshua A.; Solomon, Lee A.; ...

    2017-01-01

    Design of nanometer scale artificial light harvesting and charge separating proteins enables reengineering to overcome the limitations of natural selection for efficient systems that better meet human energetic needs.

  9. Design and engineering of water-soluble light-harvesting protein maquettes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodali, Goutham; Mancini, Joshua A.; Solomon, Lee A.

    Design of nanometer scale artificial light harvesting and charge separating proteins enables reengineering to overcome the limitations of natural selection for efficient systems that better meet human energetic needs.

  10. Envisioning engineering education and practice in the coming intelligence convergence era — a complex adaptive systems approach

    NASA Astrophysics Data System (ADS)

    Noor, Ahmed K.

    2013-12-01

    Some of the recent attempts for improving and transforming engineering education are reviewed. The attempts aim at providing the entry level engineers with the skills needed to address the challenges of future large-scale complex systems and projects. Some of the frontier sectors and future challenges for engineers are outlined. The major characteristics of the coming intelligence convergence era (the post-information age) are identified. These include the prevalence of smart devices and environments, the widespread applications of anticipatory computing and predictive / prescriptive analytics, as well as a symbiotic relationship between humans and machines. Devices and machines will be able to learn from, and with, humans in a natural collaborative way. The recent game changers in learnscapes (learning paradigms, technologies, platforms, spaces, and environments) that can significantly impact engineering education in the coming era are identified. Among these are open educational resources, knowledge-rich classrooms, immersive interactive 3D learning, augmented reality, reverse instruction / flipped classroom, gamification, robots in the classroom, and adaptive personalized learning. Significant transformative changes in, and mass customization of, learning are envisioned to emerge from the synergistic combination of the game changers and other technologies. The realization of the aforementioned vision requires the development of a new multidisciplinary framework of emergent engineering for relating innovation, complexity and cybernetics, within the future learning environments. The framework can be used to treat engineering education as a complex adaptive system, with dynamically interacting and communicating components (instructors, individual, small, and large groups of learners). The emergent behavior resulting from the interactions can produce progressively better, and continuously improving, learning environment. As a first step towards the realization of the vision, intelligent adaptive cyber-physical ecosystems need to be developed to facilitate collaboration between the various stakeholders of engineering education, and to accelerate the development of a skilled engineering workforce. The major components of the ecosystems include integrated knowledge discovery and exploitation facilities, blended learning and research spaces, novel ultra-intelligent software agents, multimodal and autonomous interfaces, and networked cognitive and tele-presence robots.

  11. A Possible Approach for Addressing Neglected Human Factors Issues of Systems Engineering

    NASA Technical Reports Server (NTRS)

    Johnson, Christopher W.; Holloway, C. Michael

    2011-01-01

    The increasing complexity of safety-critical applications has led to the introduction of decision support tools in the transportation and process industries. Automation has also been introduced to support operator intervention in safety-critical applications. These innovations help reduce overall operator workload, and filter application data to maximize the finite cognitive and perceptual resources of system operators. However, these benefits do not come without a cost. Increased computational support for the end-users of safety-critical applications leads to increased reliance on engineers to monitor and maintain automated systems and decision support tools. This paper argues that by focussing on the end-users of complex applications, previous research has tended to neglect the demands that are being placed on systems engineers. The argument is illustrated through discussing three recent accidents. The paper concludes by presenting a possible strategy for building and using highly automated systems based on increased attention by management and regulators, improvements in competency and training for technical staff, sustained support for engineering team resource management, and the development of incident reporting systems for infrastructure failures. This paper represents preliminary work, about which we seek comments and suggestions.

  12. Flight simulator requirements for airline transport pilot training - An evaluation of motion system design alternatives

    NASA Technical Reports Server (NTRS)

    Lee, A. T.; Bussolari, S. R.

    1986-01-01

    The effect of motion platform systems on pilot behavior is considered with emphasis placed on civil aviation applications. A dynamic model for human spatial orientation based on the physiological structure and function of the human vestibular system is presented. Motion platform alternatives were evaluated on the basis of the following motion platform conditions: motion with six degrees-of-freedom required for Phase II simulators and two limited motion conditions. Consideration was given to engine flameout, airwork, and approach and landing scenarios.

  13. Human Skin Constructs with Spatially Controlled Vasculature Using Primary and iPSC-Derived Endothelial Cells.

    PubMed

    Abaci, Hasan E; Guo, Zongyou; Coffman, Abigail; Gillette, Brian; Lee, Wen-Han; Sia, Samuel K; Christiano, Angela M

    2016-07-01

    Vascularization of engineered human skin constructs is crucial for recapitulation of systemic drug delivery and for their long-term survival, functionality, and viable engraftment. In this study, the latest microfabrication techniques are used and a novel bioengineering approach is established to micropattern spatially controlled and perfusable vascular networks in 3D human skin equivalents using both primary and induced pluripotent stem cell (iPSC)-derived endothelial cells. Using 3D printing technology makes it possible to control the geometry of the micropatterned vascular networks. It is verified that vascularized human skin equivalents (vHSEs) can form a robust epidermis and establish an endothelial barrier function, which allows for the recapitulation of both topical and systemic delivery of drugs. In addition, the therapeutic potential of vHSEs for cutaneous wounds on immunodeficient mice is examined and it is demonstrated that vHSEs can both promote and guide neovascularization during wound healing. Overall, this innovative bioengineering approach can enable in vitro evaluation of topical and systemic drug delivery as well as improve the potential of engineered skin constructs to be used as a potential therapeutic option for the treatment of cutaneous wounds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. [Micro/nano-engineering to control growth of neuronal cells and tissue engineering applied to the central nervous system].

    PubMed

    Béduer, Amélie; Vaysse, Laurence; Loubinoux, Isabelle; Vieu, Christophe

    2013-01-01

    Central nervous system pathologies are often characterized by the loss of cell populations. A promising therapy now being developed consists in using bioactive materials, associating grafted cells to biopolymers which provide a scaffold for the in vitro building of new tissues, to be implanted in vivo. In the present article, the state of the art of this field, at crossroads between microtechnology and neuroscience, is described in detail; thereafter our own approach and results about interactions between adult human neural stem cells and microstructured polymers are summarized and discussed. In a second part, some central nervous system repair strategies, based on cerebral tissue engineering, are presented. We will report the main results of our studies to work out and characterize in vivo a cerebral bioprosthesis. © Société de Biologie, 2014.

  15. Upgrades to the NESS (Nuclear Engine System Simulation) Code

    NASA Technical Reports Server (NTRS)

    Fittje, James E.

    2007-01-01

    In support of the President's Vision for Space Exploration, the Nuclear Thermal Rocket (NTR) concept is being evaluated as a potential propulsion technology for human expeditions to the moon and Mars. The need for exceptional propulsion system performance in these missions has been documented in numerous studies, and was the primary focus of a considerable effort undertaken during the 1960's and 1970's. The NASA Glenn Research Center is leveraging this past NTR investment in their vehicle concepts and mission analysis studies with the aid of the Nuclear Engine System Simulation (NESS) code. This paper presents the additional capabilities and upgrades made to this code in order to perform higher fidelity NTR propulsion system analysis and design.

  16. Foundations for value education in engineering: the Indian experience.

    PubMed

    Gupta, Amitabha

    2015-04-01

    The objective of this paper is to discuss some of the foundational issues centering around the question of integrating education in human values with professional engineering education: its necessity and justification. The paper looks at the efforts in 'tuning' the technical education system in India to the national goals in the various phases of curriculum development. The contribution of the engineering profession in national development and India's self-sufficiency is crucially linked with the institutionalization of expertise and the role of morality and responsibility. This linkage can be created through a proper understanding of the social role of the profession-what motivates the professionals and what makes professional life meaningful. Value education facilitates the process of moral maturity and the development of a 'holistic' mindset. This paper deals with the need to create such a mindset, the human values associated with it and gives examples of efforts to impart such education through 'action-oriented' programmes introduced in some institutes of engineering in India.

  17. Genetic engineering with T cell receptors.

    PubMed

    Zhang, Ling; Morgan, Richard A

    2012-06-01

    In the past two decades, human gene transfer research has been translated from a laboratory technology to clinical evaluation. The success of adoptive transfer of tumor-reactive lymphocytes to treat the patients with metastatic melanoma has led to new strategies to redirect normal T cells to recognize tumor antigens by genetic engineering with tumor antigen-specific T cell receptor (TCR) genes. This new strategy can generate large numbers of defined antigen-specific cells for therapeutic application. Much progress has been made to TCR gene transfer systems by optimizing gene expression and gene transfer protocols. Vector and protein modifications have enabled excellent expression of introduced TCR chains in human lymphocytes with reduced mis-pairing between the introduced and endogenous TCR chains. Initial clinical studies have demonstrated that TCR gene-engineered T cells could mediate tumor regression in vivo. In this review, we discuss the progress and prospects of TCR gene-engineered T cells as a therapeutic strategy for treating patients with melanoma and other cancers. Published by Elsevier B.V.

  18. Living biointerfaces based on non-pathogenic bacteria support stem cell differentiation

    NASA Astrophysics Data System (ADS)

    Hay, Jake J.; Rodrigo-Navarro, Aleixandre; Hassi, Karoliina; Moulisova, Vladimira; Dalby, Matthew J.; Salmeron-Sanchez, Manuel

    2016-02-01

    Lactococcus lactis, a non-pathogenic bacteria, has been genetically engineered to express the III7-10 fragment of human fibronectin as a membrane protein. The engineered L. lactis is able to develop biofilms on different surfaces (such as glass and synthetic polymers) and serves as a long-term substrate for mammalian cell culture, specifically human mesenchymal stem cells (hMSC). This system constitutes a living interface between biomaterials and stem cells. The engineered biofilms remain stable and viable for up to 28 days while the expressed fibronectin fragment induces hMSC adhesion. We have optimised conditions to allow long-term mammalian cell culture, and found that the biofilm is functionally equivalent to a fibronectin-coated surface in terms of osteoblastic differentiation using bone morphogenetic protein 2 (BMP-2) added to the medium. This living bacteria interface holds promise as a dynamic substrate for stem cell differentiation that can be further engineered to express other biochemical cues to control hMSC differentiation.

  19. Genetically Engineered Mouse Models for Studying Inflammatory Bowel Disease

    PubMed Central

    Mizoguchi, Atsushi; Takeuchi, Takahito; Himuro, Hidetomo; Okada, Toshiyuki; Mizoguchi, Emiko

    2015-01-01

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that is mediated by very complex mechanisms controlled by genetic, immune, and environmental factors. More than 74 kinds of genetically engineered mouse strains have been established since 1993 for studying IBD. Although mouse models cannot fully reflect human IBD, they have provided significant contributions for not only understanding the mechanism, but also developing new therapeutic means for IBD. Indeed, 20 kinds of genetically engineered mouse models carry the susceptibility genes identified in human IBD, and the functions of some other IBD susceptibility genes have also been dissected out using mouse models. Cutting-edge technologies such as cell-specific and inducible knockout systems, which were recently employed to mouse IBD models, have further enhanced the ability of investigators to provide important and unexpected rationales for developing new therapeutic strategies for IBD. In this review article, we briefly introduce 74 kinds of genetically engineered mouse models that spontaneously develop intestinal inflammation. PMID:26387641

  20. Proven and novel strategies for efficient editing of the human genome.

    PubMed

    Mussolino, Claudio; Mlambo, Tafadzwa; Cathomen, Toni

    2015-10-01

    Targeted gene editing with designer nucleases has become increasingly popular. The most commonly used designer nuclease platforms are engineered meganucleases, zinc-finger nucleases, transcription activator-like effector nucleases and the clustered regularly interspaced short palindromic repeat/Cas9 system. These powerful tools have greatly facilitated the generation of plant and animal models for basic research, and harbor an enormous potential for applications in biotechnology and gene therapy. This review recapitulates proven concepts of targeted genome engineering in primary human cells and elaborates on novel concepts that became possible with the dawn of RNA-guided nucleases and RNA-guided transcription factors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. 10 CFR 63.51 - License amendment for permanent closure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., and archives elsewhere in the world, that would be likely to be consulted by potential human intruders..., interactions between natural and engineered systems, and any other tests, experiments, or analyses pertinent to...

  2. 10 CFR 63.51 - License amendment for permanent closure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., and archives elsewhere in the world, that would be likely to be consulted by potential human intruders..., interactions between natural and engineered systems, and any other tests, experiments, or analyses pertinent to...

  3. 10 CFR 63.51 - License amendment for permanent closure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., and archives elsewhere in the world, that would be likely to be consulted by potential human intruders..., interactions between natural and engineered systems, and any other tests, experiments, or analyses pertinent to...

  4. Extravehicular Activity Systems Education and Public Outreach in Support of NASA's STEM Initiatives

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.

    2011-01-01

    The exploration activities associated with NASA?s goals to return to the Moon, travel to Mars, or explore Near Earth Objects (NEOs) will involve the need for human-supported space and surface extravehicular activities (EVAs). The technology development and human element associated with these exploration missions provide fantastic content to promote science, technology, engineering, and math (STEM). As NASA Administrator Charles F. Bolden remarked on December 9, 2009, "We....need to provide the educational and experiential stepping-stones to inspire the next generation of scientists, engineers, and leaders in STEM fields." The EVA Systems Project actively supports this initiative by providing subject matter experts and hands-on, interactive presentations to educate students, educators, and the general public about the design challenges encountered as NASA develops EVA hardware for these missions. This paper summarizes these education and public efforts.

  5. Understanding immunology via engineering design: the role of mathematical prototyping.

    PubMed

    Klinke, David J; Wang, Qing

    2012-01-01

    A major challenge in immunology is how to translate data into knowledge given the inherent complexity and dynamics of human physiology. Both the physiology and engineering communities have rich histories in applying computational approaches to translate data obtained from complex systems into knowledge of system behavior. However, there are some differences in how disciplines approach problems. By referring to mathematical models as mathematical prototypes, we aim to highlight aspects related to the process (i.e., prototyping) rather than the product (i.e., the model). The objective of this paper is to review how two related engineering concepts, specifically prototyping and "fitness for use," can be applied to overcome the pressing challenge in translating data into improved knowledge of basic immunology that can be used to improve therapies for disease. These concepts are illustrated using two immunology-related examples. The prototypes presented focus on the beta cell mass at the onset of type 1 diabetes and the dynamics of dendritic cells in the lung. This paper is intended to illustrate some of the nuances associated with applying mathematical modeling to improve understanding of the dynamics of disease progression in humans.

  6. From Earth to Orbit: An assessment of transportation options

    NASA Technical Reports Server (NTRS)

    Gavin, Joseph G., Jr.; Blond, Edmund; Brill, Yvonne C.; Budiansky, Bernard; Cooper, Robert S.; Demisch, Wolfgang H.; Hawk, Clark W.; Kerrebrock, Jack L.; Lichtenberg, Byron K.; Mager, Artur

    1992-01-01

    The report assesses the requirements, benefits, technological feasibility, and roles of Earth-to-Orbit transportation systems and options that could be developed in support of future national space programs. Transportation requirements, including those for Mission-to-Planet Earth, Space Station Freedom assembly and operation, human exploration of space, space science missions, and other major civil space missions are examined. These requirements are compared with existing, planned, and potential launch capabilities, including expendable launch vehicles (ELV's), the Space Shuttle, the National Launch System (NLS), and new launch options. In addition, the report examines propulsion systems in the context of various launch vehicles. These include the Advanced Solid Rocket Motor (ASRM), the Redesigned Solid Rocket Motor (RSRM), the Solid Rocket Motor Upgrade (SRMU), the Space Shuttle Main Engine (SSME), the Space Transportation Main Engine (STME), existing expendable launch vehicle engines, and liquid-oxygen/hydrocarbon engines. Consideration is given to systems that have been proposed to accomplish the national interests in relatively cost effective ways, with the recognition that safety and reliability contribute to cost-effectiveness. Related resources, including technology, propulsion test facilities, and manufacturing capabilities are also discussed.

  7. The fusion of biology, computer science, and engineering: towards efficient and successful synthetic biology.

    PubMed

    Linshiz, Gregory; Goldberg, Alex; Konry, Tania; Hillson, Nathan J

    2012-01-01

    Synthetic biology is a nascent field that emerged in earnest only around the turn of the millennium. It aims to engineer new biological systems and impart new biological functionality, often through genetic modifications. The design and construction of new biological systems is a complex, multistep process, requiring multidisciplinary collaborative efforts from "fusion" scientists who have formal training in computer science or engineering, as well as hands-on biological expertise. The public has high expectations for synthetic biology and eagerly anticipates the development of solutions to the major challenges facing humanity. This article discusses laboratory practices and the conduct of research in synthetic biology. It argues that the fusion science approach, which integrates biology with computer science and engineering best practices, including standardization, process optimization, computer-aided design and laboratory automation, miniaturization, and systematic management, will increase the predictability and reproducibility of experiments and lead to breakthroughs in the construction of new biological systems. The article also discusses several successful fusion projects, including the development of software tools for DNA construction design automation, recursive DNA construction, and the development of integrated microfluidics systems.

  8. NATO Guidelines on Human Engineering Testing and Evaluation

    DTIC Science & Technology

    2001-05-01

    1980s and is known as Manpower, Personnel, and Training Integration (MANPRINT). The objective of this comprehensive management and technical effort is...systems under benign test conditions, using test subjects who are considerably more knowledeable of the system than the eventual users of the system will...Technical Management , Aeronautical Systems Division, Air Force Systems Command. Itoh, Y., Hayashi, Y., Tsukui, L, and Saito, S. (1989). Heart rate

  9. Technology Challenges for Deep-Throttle Cryogenic Engines for Space Exploration

    NASA Technical Reports Server (NTRS)

    Brown, Kendall K.; Nelson, Karl W.

    2005-01-01

    Historically, cryogenic rocket engines have not been used for in-space applications due to their additional complexity, the mission need for high reliability, and the challenges of propellant boil-off. While the mission and vehicle architectures are not yet defined for the lunar and Martian robotic and human exploration objectives, cryogenic rocket engines offer the potential for higher performance and greater architecture/mission flexibility. In-situ cryogenic propellant production could enable a more robust exploration program by significantly reducing the propellant mass delivered to low earth orbit, thus warranting the evaluation of cryogenic rocket engines versus the hypergolic bi-propellant engines used in the Apollo program. A multi-use engine. one which can provide the functionality that separate engines provided in the Apollo mission architecture, is desirable for lunar and Mars exploration missions because it increases overall architecture effectiveness through commonality and modularity. The engine requirement derivation process must address each unique mission application and each unique phase within each mission. The resulting requirements, such as thrust level, performance, packaging, bum duration, number of operations; required impulses for each trajectory phase; operation after extended space or surface exposure; availability for inspection and maintenance; throttle range for planetary descent, ascent, acceleration limits and many more must be addressed. Within engine system studies, the system and component technology, capability, and risks must be evaluated and a balance between the appropriate amount of technology-push and technology-pull must be addressed. This paper will summarize many of the key technology challenges associated with using high-performance cryogenic liquid propellant rocket engine systems and components in the exploration program architectures. The paper is divided into two areas. The first area describes how the mission requirements affect the engine system requirements and create system level technology challenges. An engine system architecture for multiple applications or a family of engines based upon a set of core technologies, design, and fabrication approaches may reduce overall programmatic cost and risk. The engine system discussion will also address the characterization of engine cycle figures of merit, configurations, and design approaches for some in-space vehicle alternatives under consideration. The second area evaluates the component-level technology challenges induced from the system requirements. Component technology issues are discussed addressing injector, thrust chamber, ignition system, turbopump assembly, and valve design for the challenging requirements of high reliability, robustness, fault tolerance, deep throttling, reasonable performance (with respect to weight and specific impulse).

  10. Technology Challenges for Deep-Throttle Cryogenic Engines for Space Exploration

    NASA Astrophysics Data System (ADS)

    Brown, Kendall K.; Nelson, Karl W.

    2005-02-01

    Historically, cryogenic rocket engines have not been used for in-space applications due to their additional complexity, the mission need for high reliability, and the challenges of propellant boil-off. While the mission and vehicle architectures are not yet defined for the lunar and Martian robotic and human exploration objectives, cryogenic rocket engines offer the potential for higher performance and greater architecture/mission flexibility. In-situ cryogenic propellant production could enable a more robust exploration program by significantly reducing the propellant mass delivered to low earth orbit, thus warranting the evaluation of cryogenic rocket engines versus the hypergolic bipropellant engines used in the Apollo program. A multi-use engine, one which can provide the functionality that separate engines provided in the Apollo mission architecture, is desirable for lunar and Mars exploration missions because it increases overall architecture effectiveness through commonality and modularity. The engine requirement derivation process must address each unique mission application and each unique phase within each mission. The resulting requirements, such as thrust level, performance, packaging, burn duration, number of operations; required impulses for each trajectory phase; operation after extended space or surface exposure; availability for inspection and maintenance; throttle range for planetary descent, ascent, acceleration limits and many more must be addressed. Within engine system studies, the system and component technology, capability, and risks must be evaluated and a balance between the appropriate amount of technology-push and technology-pull must be addressed. This paper will summarize many of the key technology challenges associated with using high-performance cryogenic liquid propellant rocket engine systems and components in the exploration program architectures. The paper is divided into two areas. The first area describes how the mission requirements affect the engine system requirements and create system level technology challenges. An engine system architecture for multiple applications or a family of engines based upon a set of core technologies, design, and fabrication approaches may reduce overall programmatic cost and risk. The engine system discussion will also address the characterization of engine cycle figures of merit, configurations, and design approaches for some in-space vehicle alternatives under consideration. The second area evaluates the component-level technology challenges induced from the system requirements. Component technology issues are discussed addressing injector, thrust chamber, ignition system, turbopump assembly, and valve design for the challenging requirements of high reliability, robustness, fault tolerance, deep throttling, reasonable performance (with respect to weight and specific impulse).

  11. What Friends Are For: Collaborative Intelligence Analysis and Search

    DTIC Science & Technology

    2014-06-01

    14. SUBJECT TERMS Intelligence Community, information retrieval, recommender systems , search engines, social networks, user profiling, Lucene...improvements over existing search systems . The improvements are shown to be robust to high levels of human error and low similarity between users ...precision NOLH nearly orthogonal Latin hypercubes P@ precision at documents RS recommender systems TREC Text REtrieval Conference USM user

  12. Physiological and engineering study of advanced thermoregulatory systems for extravehicular space suits

    NASA Technical Reports Server (NTRS)

    Chato, J. C.; Hertig, B. A.

    1972-01-01

    Investigations of thermal control for extravehicular space suits are reported. The characteristics of independent cooling of temperature and removal of excess heat from separate regions of the body, and the applications of heat pipes in protective suits are discussed along with modeling of the human thermal system.

  13. Development Research of a Teachers' Educational Performance Support System: The Practices of Design, Development, and Evaluation

    ERIC Educational Resources Information Center

    Hung, Wei-Chen; Smith, Thomas J.; Harris, Marian S.; Lockard, James

    2010-01-01

    This study adopted design and development research methodology (Richey & Klein, "Design and development research: Methods, strategies, and issues," 2007) to systematically investigate the process of applying instructional design principles, human-computer interaction, and software engineering to a performance support system (PSS) for behavior…

  14. Advanced technologies for Mission Control Centers

    NASA Technical Reports Server (NTRS)

    Dalton, John T.; Hughes, Peter M.

    1991-01-01

    Advance technologies for Mission Control Centers are presented in the form of the viewgraphs. The following subject areas are covered: technology needs; current technology efforts at GSFC (human-machine interface development, object oriented software development, expert systems, knowledge-based software engineering environments, and high performance VLSI telemetry systems); and test beds.

  15. International Instrumentation Symposium, 39th, Albuquerque, NM, May 2-6, 1993, Proceedings

    NASA Astrophysics Data System (ADS)

    Various papers on instrumentation are presented. The general topics addressed include: data acquisition and processing, wind tunnels, pressure measurements, thermal measurements, force measurements, aerospace, metrology, flow measurements, real-time systems, measurement uncertainty, data analysis and calibration, computer applications, special tests, reentry vehicle systems, and human engineering.

  16. "Human Nature": Chemical Engineering Students' Ideas about Human Relationships with the Natural World

    ERIC Educational Resources Information Center

    Goldman, Daphne; Assaraf, Orit Ben-Zvi; Shemesh, Julia

    2014-01-01

    While importance of environmental ethics, as a component of sustainable development, in preparing engineers is widely acknowledged, little research has addressed chemical engineers' environmental concerns. This study aimed to address this void by exploring chemical engineering students' values regarding human-nature relationships. The study was…

  17. Activating human genes with zinc finger proteins, transcription activator-like effectors and CRISPR/Cas9 for gene therapy and regenerative medicine.

    PubMed

    Gersbach, Charles A; Perez-Pinera, Pablo

    2014-08-01

    New technologies have recently been developed to control the expression of human genes in their native genomic context by engineering synthetic transcription factors that can be targeted to any DNA sequence. The ability to precisely regulate any gene as it occurs naturally in the genome provides a means to address a variety of diseases and disorders. This approach also circumvents some of the traditional challenges of gene therapy. In this editorial, we review the technologies that have enabled targeted human gene activation, including the engineering of transcription factors based on zinc finger proteins, transcription activator-like effectors and the CRISPR/Cas9 system. Additionally, we highlight examples in which these methods have been developed for therapeutic applications and discuss challenges and opportunities.

  18. Developing Advanced Support Technologies for Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Berdich, Debra P.; Campbel, Paul D.; Jernigan, J. Mark

    2004-01-01

    The United States Vision for Space Exploration calls for sending robots and humans to explore the Earth s moon, the planet Mars, and beyond. The National Aeronautics and Space Administration (NASA) is developing a set of design reference missions that will provide further detail to these plans. Lunar missions are expected to provide a stepping stone, through operational research and evaluation, in developing the knowledge base necessary to send crews on long duration missions to Mars and other distant destinations. The NASA Exploration Systems Directorate (ExSD), in its program of bioastronautics research, manages the development of technologies that maintain human life, health, and performance in space. Using a systems engineering process and risk management methods, ExSD s Human Support Systems (HSS) Program selects and performs research and technology development in several critical areas and transfers the results of its efforts to NASA exploration mission/systems development programs in the form of developed technologies and new knowledge about the capabilities and constraints of systems required to support human existence beyond Low Earth Orbit. HSS efforts include the areas of advanced environmental monitoring and control, extravehicular activity, food technologies, life support systems, space human factors engineering, and systems integration of all these elements. The HSS Program provides a structured set of deliverable products to meet the needs of exploration programs. these products reduce the gaps that exist in our knowledge of and capabilities for human support for long duration, remote space missions. They also reduce the performance gap between the efficiency of current space systems and the greater efficiency that must be achieved to make human planetary exploration missions economically and logistically feasible. In conducting this research and technology development program, it is necessary for HSS technologists and program managers to develop a common currency for decision making and the allocation of funding. A high level assessment is made of both the knowledge gaps and the system performance gaps across the program s technical project portfolio. This allows decision making that assures proper emphasis areas and provides a key measure of annual technological progress, as exploration mission plans continue to mature.

  19. Production of human lactoferrin and lysozyme in the milk of transgenic dairy animals: past, present, and future.

    PubMed

    Cooper, Caitlin A; Maga, Elizabeth A; Murray, James D

    2015-08-01

    Genetic engineering, which was first developed in the 1980s, allows for specific additions to animals' genomes that are not possible through conventional breeding. Using genetic engineering to improve agricultural animals was first suggested when the technology was in the early stages of development by Palmiter et al. (Nature 300:611-615, 1982). One of the first agricultural applications identified was generating transgenic dairy animals that could produce altered or novel proteins in their milk. Human milk contains high levels of antimicrobial proteins that are found in low concentrations in the milk of ruminants, including the antimicrobial proteins lactoferrin and lysozyme. Lactoferrin and lysozyme are both part of the innate immune system and are secreted in tears, mucus, and throughout the gastrointestinal (GI) tract. Due to their antimicrobial properties and abundance in human milk, multiple lines of transgenic dairy animals that produce either human lactoferrin or human lysozyme have been developed. The focus of this review is to catalogue the different lines of genetically engineered dairy animals that produce either recombinant lactoferrin or lysozyme that have been generated over the years as well as compare the wealth of research that has been done on the in vitro and in vivo effects of the milk they produce. While recent advances including the development of CRISPRs and TALENs have removed many of the technical barriers to predictable and efficient genetic engineering in agricultural species, there are still many political and regulatory hurdles before genetic engineering can be used in agriculture. It is important to consider the substantial amount of work that has been done thus far on well established lines of genetically engineered animals evaluating both the animals themselves and the products they yield to identify the most effective path forward for future research and acceptance of this technology.

  20. Noninvasive metabolic imaging of engineered 3D human adipose tissue in a perfusion bioreactor.

    PubMed

    Ward, Andrew; Quinn, Kyle P; Bellas, Evangelia; Georgakoudi, Irene; Kaplan, David L

    2013-01-01

    The efficacy and economy of most in vitro human models used in research is limited by the lack of a physiologically-relevant three-dimensional perfused environment and the inability to noninvasively quantify the structural and biochemical characteristics of the tissue. The goal of this project was to develop a perfusion bioreactor system compatible with two-photon imaging to noninvasively assess tissue engineered human adipose tissue structure and function in vitro. Three-dimensional (3D) vascularized human adipose tissues were engineered in vitro, before being introduced to a perfusion environment and tracked over time by automated quantification of endogenous markers of metabolism using two-photon excited fluorescence (TPEF). Depth-resolved image stacks were analyzed for redox ratio metabolic profiling and compared to prior analyses performed on 3D engineered adipose tissue in static culture. Traditional assessments with H&E staining were used to qualitatively measure extracellular matrix generation and cell density with respect to location within the tissue. The distribution of cells within the tissue and average cellular redox ratios were different between static and perfusion cultures, while the trends of decreased redox ratio and increased cellular proliferation with time in both static and perfusion cultures were similar. These results establish a basis for noninvasive optical tracking of tissue structure and function in vitro, which can be applied to future studies to assess tissue development or drug toxicity screening and disease progression.

  1. Role of Human Factors and Engineering Psychology in Undergraduate and Graduate Engineering Curriculum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piyush Sabharwall; Jesse Rebol

    The engineering discipline is a profession of acquiring and applying technical knowledge, and the focus of engineering psychology is to optimize the effectiveness and efficiency with which human activities are conducted. Having human factors and engineering psychology be a permanent part of the engineering curriculum will make students aware of them, so they can learn from past experiences and avoid making the same mistakes their peers made. (Should be close to 200 words)

  2. Mitigating Climate Change at the Carbon Water Nexus: A Call to Action for the Environmental Engineering Community

    PubMed Central

    Clarens, Andres F.; Peters, Catherine A.

    2016-01-01

    Abstract Environmental engineers have played a critical role in improving human and ecosystem health over the past several decades. These contributions have focused on providing clean water and air as well as managing waste streams and remediating polluted sites. As environmental problems have become more global in scale and more deeply entrenched in sociotechnical systems, the discipline of environmental engineering must grow to be ready to respond to the challenges of the coming decades. Here we make the case that environmental engineers should play a leadership role in the development of climate change mitigation technologies at the carbon-water nexus (CWN). Climate change, driven largely by unfettered emissions of fossil carbon into the atmosphere, is a far-reaching and enormously complex environmental risk with the potential to negatively affect food security, human health, infrastructure, and other systems. Solving this problem will require a massive mobilization of existing and innovative new technology. The environmental engineering community is uniquely positioned to do pioneering work at the CWN using a skillset that has been honed, solving related problems. The focus of this special issue, on “The science and innovation of emerging subsurface energy technologies,” provides one example domain within which environmental engineers and related disciplines are beginning to make important contributions at the CWN. In this article, we define the CWN and describe how environmental engineers can bring their considerable expertise to bear in this area. Then we review some of the topics that appear in this special issue, for example, mitigating the impacts of hydraulic fracturing and geologic carbon storage, and we provide perspective on emergent research directions, for example, enhanced geothermal energy, energy storage in sedimentary formations, and others. PMID:28031695

  3. Mitigating Climate Change at the Carbon Water Nexus: A Call to Action for the Environmental Engineering Community.

    PubMed

    Clarens, Andres F; Peters, Catherine A

    2016-10-01

    Environmental engineers have played a critical role in improving human and ecosystem health over the past several decades. These contributions have focused on providing clean water and air as well as managing waste streams and remediating polluted sites. As environmental problems have become more global in scale and more deeply entrenched in sociotechnical systems, the discipline of environmental engineering must grow to be ready to respond to the challenges of the coming decades. Here we make the case that environmental engineers should play a leadership role in the development of climate change mitigation technologies at the carbon-water nexus (CWN). Climate change, driven largely by unfettered emissions of fossil carbon into the atmosphere, is a far-reaching and enormously complex environmental risk with the potential to negatively affect food security, human health, infrastructure, and other systems. Solving this problem will require a massive mobilization of existing and innovative new technology. The environmental engineering community is uniquely positioned to do pioneering work at the CWN using a skillset that has been honed, solving related problems. The focus of this special issue, on "The science and innovation of emerging subsurface energy technologies," provides one example domain within which environmental engineers and related disciplines are beginning to make important contributions at the CWN. In this article, we define the CWN and describe how environmental engineers can bring their considerable expertise to bear in this area. Then we review some of the topics that appear in this special issue, for example, mitigating the impacts of hydraulic fracturing and geologic carbon storage, and we provide perspective on emergent research directions, for example, enhanced geothermal energy, energy storage in sedimentary formations, and others.

  4. Assessment of Intelligent Tutoring Systems Technologies and Opportunities (Evaluation et opportunites des technologies des systemes de tutorat intelligents)

    DTIC Science & Technology

    2018-01-01

    His research designs adaptive systems for online content, by integrating research in psychology and education, human- ANNEX A − INTELLIGENT TUTORING...related scientific activities that include systems engineering, operational research and analysis, synthesis, integration and validation of knowledge...System Analysis and Studies Panel • SCI Systems Concepts and Integration Panel • SET Sensors and Electronics Technology Panel These Panels and Group

  5. DRUMS: a human disease related unique gene mutation search engine.

    PubMed

    Li, Zuofeng; Liu, Xingnan; Wen, Jingran; Xu, Ye; Zhao, Xin; Li, Xuan; Liu, Lei; Zhang, Xiaoyan

    2011-10-01

    With the completion of the human genome project and the development of new methods for gene variant detection, the integration of mutation data and its phenotypic consequences has become more important than ever. Among all available resources, locus-specific databases (LSDBs) curate one or more specific genes' mutation data along with high-quality phenotypes. Although some genotype-phenotype data from LSDB have been integrated into central databases little effort has been made to integrate all these data by a search engine approach. In this work, we have developed disease related unique gene mutation search engine (DRUMS), a search engine for human disease related unique gene mutation as a convenient tool for biologists or physicians to retrieve gene variant and related phenotype information. Gene variant and phenotype information were stored in a gene-centred relational database. Moreover, the relationships between mutations and diseases were indexed by the uniform resource identifier from LSDB, or another central database. By querying DRUMS, users can access the most popular mutation databases under one interface. DRUMS could be treated as a domain specific search engine. By using web crawling, indexing, and searching technologies, it provides a competitively efficient interface for searching and retrieving mutation data and their relationships to diseases. The present system is freely accessible at http://www.scbit.org/glif/new/drums/index.html. © 2011 Wiley-Liss, Inc.

  6. 1-G Human Factors for Optimal Processing and Operability of Ground Systems Up to CxP GOP PDR

    NASA Technical Reports Server (NTRS)

    Stambolian, Damon B.; Henderson, Gena; Miller, Darcy; Prevost, Gary; Tran, Donald; Barth, Tim

    2011-01-01

    This slide presentation reviews the development and use of a process and tool for developing these requirements and improve the design for ground operations. A Human Factors Engineering Analysis (HFEA) Tool was developed to create a dedicated subset of requirements from the FAA requirements for each subsystem. As an example the use of the human interface with an actuator motor is considered.

  7. Safe Operations of Unmanned Systems for Reconnaissance in Complex Environments-Army Technology Objective (SOURCE ATO) Field Experimentation Observations and Soldier Feedback

    DTIC Science & Technology

    2012-07-01

    intent during mission activities. Autonomous assets will have interactions with humans in several different relationships that could benefit from...RDRL HRM CN R SPENCER DCSFDI HF HQ USASOC BLDG E2929 FORT BRAGG NC 28310-5000 1 ARMY RSCH LABORATORY – HRED HUMAN RSRCH AND ENGRNG...A. William Evans, III Human Research and Engineering Directorate, ARL Approved for public release

  8. Marshall Engineers Use Virtual Reality

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. Marshall Spce Flight Center (MSFC) is begirning to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models are used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup is to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provides general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC).

  9. Translational Applications of Tissue Engineering in Cardiovascular Medicine.

    PubMed

    Dogan, Arin; Elcin, A Eser; Elcin, Y Murat

    2017-03-26

    Cardiovascular diseases are the leading cause of global deaths. The current paradigm in medicine seeks novel approaches for the treatment of progressive or end-stage diseases. The organ transplantation option is limited in availability, and unfortunately, a significant number of patients are lost while waiting for donor organs. Animal studies have shown that upon myocardial infarction, it is possible to stop adverse remodeling in its tracks and reverse with tissue engineering methods. Regaining the myocardium function and avoiding further deterioration towards heart failure can benefit millions of people with a significantly lesser burden on healthcare systems worldwide. The advent of induced pluripotent stem cells brings the unique advantage of testing candidate drug molecules on organ-on-chip systems, which mimics human heart in vitro. Biomimetic three-dimensional constructs that contain disease-specific or normal cardiomyocytes derived from human induced pluripotent stem cells are a useful tool for screening drug molecules and studying dosage, mode of action and cardio-toxicity. Tissue engineering approach aims to develop the treatments for heart valve deficiency, ischemic heart disease and a wide range of vascular diseases. Translational research seeks to improve the patient's quality of life, progressing towards developing cures, rather than treatments. To this end, researchers are working on tissue engineered heart valves, blood vessels, cardiac patches, and injectable biomaterials, hence developing new ways for engineering bio-artificial organs or tissue parts that the body will adopt as its own. In this review, we summarize translational methods for cardiovascular tissue engineering and present useful tables on pre-clinical and clinical applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Third International Symposium on Space Mission Operations and Ground Data Systems, part 1

    NASA Technical Reports Server (NTRS)

    Rash, James L. (Editor)

    1994-01-01

    Under the theme of 'Opportunities in Ground Data Systems for High Efficiency Operations of Space Missions,' the SpaceOps '94 symposium included presentations of more than 150 technical papers spanning five topic areas: Mission Management, Operations, Data Management, System Development, and Systems Engineering. The papers focus on improvements in the efficiency, effectiveness, productivity, and quality of data acquisition, ground systems, and mission operations. New technology, techniques, methods, and human systems are discussed. Accomplishments are also reported in the application of information systems to improve data retrieval, reporting, and archiving; the management of human factors; the use of telescience and teleoperations; and the design and implementation of logistics support for mission operations.

  11. Sensor Applications and Data Validation

    NASA Technical Reports Server (NTRS)

    Wiley, John

    2008-01-01

    The mechanical configuration of automobiles have changed marginally while improvements in sensors and control have dramatically improved engine efficiency, reliability and useful life. The aviation industry has also taken advantage of sensors and control systems to reduce operational costs. Sensors and high fidelity control systems fly planes at levels of performance beyond human capability. Sophisticated environmental controls allow a greater level of comfort and efficiency in our homes. Sensors have given the medical field a better understanding of the human body and the environment in which we live.

  12. Fourth Annual Workshop on Space Operations Applications and Research (SOAR 90)

    NASA Technical Reports Server (NTRS)

    Savely, Robert T. (Editor)

    1991-01-01

    The papers from the symposium are presented. Emphasis is placed on human factors engineering and space environment interactions. The technical areas covered in the human factors section include: satellite monitoring and control, man-computer interfaces, expert systems, AI/robotics interfaces, crew system dynamics, and display devices. The space environment interactions section presents the following topics: space plasma interaction, spacecraft contamination, space debris, and atomic oxygen interaction with materials. Some of the above topics are discussed in relation to the space station and space shuttle.

  13. An Internal Review and Operational Trial of a Human Factors Engineering Self-Paced Course in Accordance with the Instructional Systems Development Process.

    DTIC Science & Technology

    1983-12-01

    factors aspects of systems and equipments. 6. Identify the human factors principles which must be applied during the evaluation of a workspace and control...Curriculum Development Expert Questionnaires Three proven specialists in the field of curriculum evaluation who regularly apply the standards and criteria 67...which each terminal objective met each of the six criteria listed in Appendix E. Ordinal values ranging from 1 through 4, were applied to the verbal

  14. Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes.

    PubMed

    Yang, Xiulan; Pabon, Lil; Murry, Charles E

    2014-01-31

    The discovery of human pluripotent stem cells (hPSCs), including both human embryonic stem cells and human-induced pluripotent stem cells, has opened up novel paths for a wide range of scientific studies. The capability to direct the differentiation of hPSCs into functional cardiomyocytes has provided a platform for regenerative medicine, development, tissue engineering, disease modeling, and drug toxicity testing. Despite exciting progress, achieving the optimal benefits has been hampered by the immature nature of these cardiomyocytes. Cardiac maturation has long been studied in vivo using animal models; however, finding ways to mature hPSC cardiomyocytes is only in its initial stages. In this review, we discuss progress in promoting the maturation of the hPSC cardiomyocytes, in the context of our current knowledge of developmental cardiac maturation and in relation to in vitro model systems such as rodent ventricular myocytes. Promising approaches that have begun to be examined in hPSC cardiomyocytes include long-term culturing, 3-dimensional tissue engineering, mechanical loading, electric stimulation, modulation of substrate stiffness, and treatment with neurohormonal factors. Future studies will benefit from the combinatorial use of different approaches that more closely mimic nature's diverse cues, which may result in broader changes in structure, function, and therapeutic applicability.

  15. SAE J2735 standard : applying the systems engineering process.

    DOT National Transportation Integrated Search

    1998-11-01

    As part of the U.S. Department of Transportations Intelligent Vehicle Initiative (IVI) program, the Federal Highway Administration investigated the human factors research needs for integrating in-vehicle safety and driver information technologies ...

  16. Large Scale Expansion of Human Umbilical Cord Cells in a Rotating Bed System Bioreactor for Cardiovascular Tissue Engineering Applications

    PubMed Central

    Reichardt, Anne; Polchow, Bianca; Shakibaei, Mehdi; Henrich, Wolfgang; Hetzer, Roland; Lueders, Cora

    2013-01-01

    Widespread use of human umbilical cord cells for cardiovascular tissue engineering requires production of large numbers of well-characterized cells under controlled conditions. In current research projects, the expansion of cells to be used to create a tissue construct is usually performed in static cell culture systems which are, however, often not satisfactory due to limitations in nutrient and oxygen supply. To overcome these limitations dynamic cell expansion in bioreactor systems under controllable conditions could be an important tool providing continuous perfusion for the generation of large numbers of viable pre-conditioned cells in a short time period. For this purpose cells derived from human umbilical cord arteries were expanded in a rotating bed system bioreactor for up to 9 days. For a comparative study, cells were cultivated under static conditions in standard culture devices. Our results demonstrated that the microenvironment in the perfusion bioreactor was more favorable than that of the standard cell culture flasks. Data suggested that cells in the bioreactor expanded 39 fold (38.7 ± 6.1 fold) in comparison to statically cultured cells (31.8 ± 3.0 fold). Large-scale production of cells in the bioreactor resulted in more than 3 x 108 cells from a single umbilical cord fragment within 9 days. Furthermore cell doubling time was lower in the bioreactor system and production of extracellular matrix components was higher. With this study, we present an appropriate method to expand human umbilical cord artery derived cells with high cellular proliferation rates in a well-defined bioreactor system under GMP conditions. PMID:23847691

  17. Structured methods for identifying and correcting potential human errors in aviation operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, W.R.

    1997-10-01

    Human errors have been identified as the source of approximately 60% of the incidents and accidents that occur in commercial aviation. It can be assumed that a very large number of human errors occur in aviation operations, even though in most cases the redundancies and diversities built into the design of aircraft systems prevent the errors from leading to serious consequences. In addition, when it is acknowledged that many system failures have their roots in human errors that occur in the design phase, it becomes apparent that the identification and elimination of potential human errors could significantly decrease the risksmore » of aviation operations. This will become even more critical during the design of advanced automation-based aircraft systems as well as next-generation systems for air traffic management. Structured methods to identify and correct potential human errors in aviation operations have been developed and are currently undergoing testing at the Idaho National Engineering and Environmental Laboratory (INEEL).« less

  18. Human Exploration System Test-Bed for Integration and Advancement (HESTIA) Support of Future NASA Deep-Space Missions

    NASA Technical Reports Server (NTRS)

    Marmolejo, Jose; Ewert, Michael

    2016-01-01

    The Engineering Directorate at the NASA - Johnson Space Center is outfitting a 20-Foot diameter hypobaric chamber in Building 7 to support future deep-space Environmental Control & Life Support System (ECLSS) research as part of the Human Exploration System Test-bed for Integration and Advancement (HESTIA) Project. This human-rated chamber is the only NASA facility that has the unique experience, chamber geometry, infrastructure, and support systems capable of conducting this research. The chamber was used to support Gemini, Apollo, and SkyLab Missions. More recently, it was used to conduct 30-, 60-, and 90-day human ECLSS closed-loop testing in the 1990s to support the International Space Station and life support technology development. NASA studies show that both planetary surface and deep-space transit crew habitats will be 3-4 story cylindrical structures driven by human occupancy volumetric needs and launch vehicle constraints. The HESTIA facility offers a 3-story, 20-foot diameter habitat consistent with the studies' recommendations. HESTIA operations follow stringent processes by a certified test team that including human testing. Project management, analysis, design, acquisition, fabrication, assembly and certification of facility build-ups are available to support this research. HESTIA offers close proximity to key stakeholders including astronauts, Human Research Program (who direct space human research for the agency), Mission Operations, Safety & Mission Assurance, and Engineering Directorate. The HESTIA chamber can operate at reduced pressure and elevated oxygen environments including those proposed for deep-space exploration. Data acquisition, power, fluids and other facility resources are available to support a wide range of research. Recently completed HESTIA research consisted of unmanned testing of ECLSS technologies. Eventually, the HESTIA research will include humans for extended durations at reduced pressure and elevated oxygen to demonstrate very high reliability of critical ECLSS and other technologies.

  19. Intervention strategies for the management of human error

    NASA Technical Reports Server (NTRS)

    Wiener, Earl L.

    1993-01-01

    This report examines the management of human error in the cockpit. The principles probably apply as well to other applications in the aviation realm (e.g. air traffic control, dispatch, weather, etc.) as well as other high-risk systems outside of aviation (e.g. shipping, high-technology medical procedures, military operations, nuclear power production). Management of human error is distinguished from error prevention. It is a more encompassing term, which includes not only the prevention of error, but also a means of disallowing an error, once made, from adversely affecting system output. Such techniques include: traditional human factors engineering, improvement of feedback and feedforward of information from system to crew, 'error-evident' displays which make erroneous input more obvious to the crew, trapping of errors within a system, goal-sharing between humans and machines (also called 'intent-driven' systems), paperwork management, and behaviorally based approaches, including procedures, standardization, checklist design, training, cockpit resource management, etc. Fifteen guidelines for the design and implementation of intervention strategies are included.

  20. Nuclear Thermal Rocket (Ntr) Propulsion: A Proven Game-Changing Technology for Future Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2012-01-01

    The NTR represents the next evolutionary step in high performance rocket propulsion. It generates high thrust and has a specific impulse (Isp) of approx.900 seconds (s) or more V twice that of today s best chemical rockets. The technology is also proven. During the previous Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) nuclear rocket programs, 20 rocket reactors were designed, built and ground tested. These tests demonstrated: (1) a wide range of thrust; (2) high temperature carbide-based nuclear fuel; (3) sustained engine operation; (4) accumulated lifetime; and (5) restart capability V all the requirements needed for a human mission to Mars. Ceramic metal cermet fuel was also pursued, as a backup option. The NTR also has significant growth and evolution potential. Configured as a bimodal system, it can generate electrical power for the spacecraft. Adding an oxygen afterburner nozzle introduces a variable thrust and Isp capability and allows bipropellant operation. In NASA s recent Mars Design Reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower launch mass, simple assembly and mission operations. In contrast to other advanced propulsion options, NTP requires no large technology scale-ups. In fact, the smallest engine tested during the Rover program V the 25,000 lbf (25 klbf) Pewee engine is sufficient for human Mars missions when used in a clustered engine arrangement. The Copernicus crewed spacecraft design developed in DRA 5.0 has significant capability and a human exploration strategy is outlined here that uses Copernicus and its key components for precursor near Earth asteroid (NEA) and Mars orbital missions prior to a Mars landing mission. Initially, the basic Copernicus vehicle can enable reusable 1-year round trip human missions to candidate NEAs like 1991 JW and Apophis in the late 2020 s to check out vehicle systems. Afterwards, the Copernicus spacecraft and its 2 key components, now configured as an Earth Return Vehicle / propellant tanker, would be used for a short round trip (approx.18 - 20 months)/short orbital stay (60 days) Mars / Phobos survey mission in 2033 using a split mission approach. The paper also discusses NASA s current Foundational Technology Development activities and its pre-decisional plans for future system-level Technology Demonstrations that include ground testing a small (approx.7.5 klbf) scalable NTR before the decade is out with a flight test shortly thereafter.

  1. Toward Real-Time Classification of Wake Regimes from Sensor Measurements

    NASA Astrophysics Data System (ADS)

    Wang, Mengying; Hemati, Maziar S.

    2017-11-01

    Hydrodynamic signals can transmit information that can be used by marine swimmers to detect disturbances in the local environment. Biological swimmers are able to sense and detect these signals with their hydrodynamic receptor systems. Recently, similar flow sensing systems have been developed with an aim to improve swimming efficiency in human-engineered underwater vehicles. A key part of the sensing strategy is to first classify wake structures in the external fluid, then to execute suitable control actions accordingly. In our previous work, we showed that a variety of 2S and 2P wakes can be distinguished based on time signatures of surface sensor measurements. However, we assumed access to the full dataset. In this talk, we extend our previous findings to classify wake regimes from sensor measurements in real-time, using a recursive Fast Fourier Transform algorithm. Wakes in different dynamical regimes, which may also vary in time, can be distinguished using our approach. Our results provide insights for enhancing hydrodynamic sensory capabilities in human-engineered systems.

  2. Recent tissue engineering-based advances for effective rAAV-mediated gene transfer in the musculoskeletal system.

    PubMed

    Rey-Rico, Ana; Cucchiarini, Magali

    2016-04-01

    Musculoskeletal tissues are diverse and significantly different in their ability to repair upon injury. Current treatments often fail to reproduce the natural functions of the native tissue, leading to an imperfect healing. Gene therapy might improve the repair of tissues by providing a temporarily and spatially defined expression of the therapeutic gene(s) at the site of the injury. Several gene transfer vehicles have been developed to modify various human cells and tissues from musculoskeletal system among which the non-pathogenic, effective, and relatively safe recombinant adeno-associated viral (rAAV) vectors that have emerged as the preferred gene delivery system to treat human disorders. Adapting tissue engineering platforms to gene transfer approaches mediated by rAAV vectors is an attractive tool to circumvent both the limitations of the current therapeutic options to promote an effective healing of the tissue and the natural obstacles from these clinically adapted vectors to achieve an efficient and durable gene expression of the therapeutic sequences within the lesions.

  3. Preparing America for Deep Space Exploration Episode 16: Exploration On The Move

    NASA Image and Video Library

    2018-02-22

    Preparing America for Deep Space Exploration Episode 16: Exploration On The Move NASA is pressing full steam ahead toward sending humans farther than ever before. Take a look at the work being done by teams across the nation for NASA’s Deep Space Exploration System, including the Space Launch System, Orion, and Exploration Ground Systems programs, as they continue to propel human spaceflight into the next generation. Highlights from the fourth quarter of 2017 included Orion parachute drop tests at the Yuma Proving Ground in Arizona; the EM-1 Crew Module move from Cleanroom to Workstation at Kennedy Space Center; Crew Training, Launch Pad Evacuation Scenario, and Crew Module Vibration and Legibility Testing at NASA’s Johnson Space Center; RS-25 Rocket Engine Testing at Stennis Space Center; Core Stage Engine Section arrival, Core Stage Pathfinder; LH2 Qualification Tank; Core Stage Intertank Umbilical lift at Mobile Launcher; Crew Access Arm move to Mobile Launcher; Water Flow Test at Launch Complex 39-B.

  4. Human Factors Engineering Program Review Model

    DTIC Science & Technology

    2004-02-01

    Institute, 1993). ANSI HFS-100: American National Standard for Human Factors Engineering of Visual Display Terminal Workstations (American National... American National Standard for Human Factors Engineering of Visual Display Terminal Workstations (ANSI HFS-100-1988). Santa Monica, California

  5. Air and Space Operations Center (AOC) Facility Design Guidelines: A Human Factors Engineering Perspective

    DTIC Science & Technology

    2006-07-01

    31 July 1995 3. Human Engineering Guide to Equipment Design, Department of Defense, Washington D.C., 1972 4. American National Standard for Human Factors Engineering of Visual Display Terminal Workstations , ANSI

  6. Human impacts on morphodynamic thresholds in estuarine systems

    NASA Astrophysics Data System (ADS)

    Wang, Z. B.; Van Maren, D. S.; Ding, P. X.; Yang, S. L.; Van Prooijen, B. C.; De Vet, P. L. M.; Winterwerp, J. C.; De Vriend, H. J.; Stive, M. J. F.; He, Q.

    2015-12-01

    Many estuaries worldwide are modified, primarily driven by economic gain or safety. These works, combined with global climate changes heavily influence the morphologic development of estuaries. In this paper, we analyze the impact of human activities on the morphodynamic developments of the Scheldt Estuary and the Wadden Sea basins in the Netherlands and the Yangtze Estuary in China at various spatial scales, and identify mechanisms responsible for their change. Human activities in these systems include engineering works and dredging activities for improving and maintaining the navigation channels, engineering works for flood protection, and shoreline management activities such as land reclamations. The Yangtze Estuary is influenced by human activities in the upstream river basin as well, especially through the construction of many dams. The tidal basins in the Netherlands are also influenced by human activities along the adjacent coasts. Furthermore, all these systems are influenced by global changes through (accelerated) sea-level rise and changing weather patterns. We show that the cumulative impacts of these human activities and global changes may lead to exceeding thresholds beyond which the morphology of the tidal basins significantly changes, and loses its natural characteristics. A threshold is called tipping point when the changes are even irreversible. Knowledge on such thresholds or tipping points is important for the sustainable management of these systems. We have identified and quantified various examples of such thresholds and/or tipping points for the morphodynamic developments at various spatial and temporal scales. At the largest scale (mega-scale) we consider the sediment budget of a tidal basin as a whole. A smaller scale (macro-scale) is the development of channel structures in an estuary, especially the development of two competing channels. At the smallest scale (meso-scale) we analyze the developments of tidal flats and the connecting channels.

  7. Development and Testing of the Orion CEV Parachute Assembly System (CPAS)

    NASA Technical Reports Server (NTRS)

    Lichodziejewski, David; Taylor, Anthony P.; Sinclair, Robert; Olmstead, Randy; Kelley, Christopher; Johnson, Justin; Melgares, Michael; Morris, Aaron; Bledsoe, Kristin

    2009-01-01

    The Crew Exploration Vehicle (CEV) is an element of the Constellation Program that includes launch vehicles, spacecraft, and ground systems needed to embark on a robust space exploration program. As an anchoring capability of the Constellation Program, the CEV shall be human-rated and will carry human crews and cargo from Earth into space and back again. Coupled with transfer stages, landing vehicles, and surface exploration systems, the CEV will serve as an essential component of the architecture that supports human voyages to the Moon and beyond. In addition, the CEV will be modified, as required, to support International Space Station (ISS) mission requirements for crewed and pressurized cargo configurations. Headed by Johnson Space Center (JSC), NASA selected Jacobs Engineering as the support contractor to manage the overall CEV Parachute Assembly System (CPAS) program development. Airborne Systems was chosen to develop the parachute system components. General Dynamics Ordnance and Tactical Systems (GD-OTS) was subcontracted to Airborne Systems to provide the mortar systems. Thus the CPAS development team of JSC, Jacobs, Airborne Systems and GD-OTS was formed. The CPAS team has completed the first phase, or Generation I, of the design, fabrication, and test plan. This paper presents an overview of the CPAS program including system requirements and the development of the second phase, known as the Engineering Development Unit (EDU) architecture. We also present top level results of the tests completed to date. A significant number of ground and flight tests have been completed since the last CPAS presentation at the 2007 AIAA ADS Conference.

  8. Streamlined bioreactor-based production of human cartilage tissues.

    PubMed

    Tonnarelli, B; Santoro, R; Adelaide Asnaghi, M; Wendt, D

    2016-05-27

    Engineered tissue grafts have been manufactured using methods based predominantly on traditional labour-intensive manual benchtop techniques. These methods impart significant regulatory and economic challenges, hindering the successful translation of engineered tissue products to the clinic. Alternatively, bioreactor-based production systems have the potential to overcome such limitations. In this work, we present an innovative manufacturing approach to engineer cartilage tissue within a single bioreactor system, starting from freshly isolated human primary chondrocytes, through the generation of cartilaginous tissue grafts. The limited number of primary chondrocytes that can be isolated from a small clinically-sized cartilage biopsy could be seeded and extensively expanded directly within a 3D scaffold in our perfusion bioreactor (5.4 ± 0.9 doublings in 2 weeks), bypassing conventional 2D expansion in flasks. Chondrocytes expanded in 3D scaffolds better maintained a chondrogenic phenotype than chondrocytes expanded on plastic flasks (collagen type II mRNA, 18-fold; Sox-9, 11-fold). After this "3D expansion" phase, bioreactor culture conditions were changed to subsequently support chondrogenic differentiation for two weeks. Engineered tissues based on 3D-expanded chondrocytes were more cartilaginous than tissues generated from chondrocytes previously expanded in flasks. We then demonstrated that this streamlined bioreactor-based process could be adapted to effectively generate up-scaled cartilage grafts in a size with clinical relevance (50 mm diameter). Streamlined and robust tissue engineering processes, as the one described here, may be key for the future manufacturing of grafts for clinical applications, as they facilitate the establishment of compact and closed bioreactor-based production systems, with minimal automation requirements, lower operating costs, and increased compliance to regulatory guidelines.

  9. Space Human Factors Engineering Gap Analysis Project Final Report

    NASA Technical Reports Server (NTRS)

    Hudy, Cynthia; Woolford, Barbara

    2006-01-01

    Humans perform critical functions throughout each phase of every space mission, beginning with the mission concept and continuing to post-mission analysis (Life Sciences Division, 1996). Space missions present humans with many challenges - the microgravity environment, relative isolation, and inherent dangers of the mission all present unique issues. As mission duration and distance from Earth increases, in-flight crew autonomy will increase along with increased complexity. As efforts for exploring the moon and Mars advance, there is a need for space human factors research and technology development to play a significant role in both on-orbit human-system interaction, as well as the development of mission requirements and needs before and after the mission. As part of the Space Human Factors Engineering (SHFE) Project within the Human Research Program (HRP), a six-month Gap Analysis Project (GAP) was funded to identify any human factors research gaps or knowledge needs. The overall aim of the project was to review the current state of human factors topic areas and requirements to determine what data, processes, or tools are needed to aid in the planning and development of future exploration missions, and also to prioritize proposals for future research and technology development.

  10. Assessment of Human Factors

    NASA Technical Reports Server (NTRS)

    Mount, Frances; Foley, Tico

    1999-01-01

    Human Factors Engineering, often referred to as Ergonomics, is a science that applies a detailed understanding of human characteristics, capabilities, and limitations to the design, evaluation, and operation of environments, tools, and systems for work and daily living. Human Factors is the investigation, design, and evaluation of equipment, techniques, procedures, facilities, and human interfaces, and encompasses all aspects of human activity from manual labor to mental processing and leisure time enjoyments. In spaceflight applications, human factors engineering seeks to: (1) ensure that a task can be accomplished, (2) maintain productivity during spaceflight, and (3) ensure the habitability of the pressurized living areas. DSO 904 served as a vehicle for the verification and elucidation of human factors principles and tools in the microgravity environment. Over six flights, twelve topics were investigated. This study documented the strengths and limitations of human operators in a complex, multifaceted, and unique environment. By focusing on the man-machine interface in space flight activities, it was determined which designs allow astronauts to be optimally productive during valuable and costly space flights. Among the most promising areas of inquiry were procedures, tools, habitat, environmental conditions, tasking, work load, flexibility, and individual control over work.

  11. Expert Assessment of Human-Human Stigmergy

    DTIC Science & Technology

    2005-10-01

    paradigm for marker based stigmergy is the use of pheromones by certain social insects to coordinate their actions. Most insect species use a few...dozen distinct pheromone “flavors,” and thus use qualitative as well as quantitative decision-making. In engineered systems, stigmergic markers can...Gradient following in a single pheromone field Ant cemetery clustering Qualitative Decisions based on combinations of pheromones Wasp nest

  12. SHERLOCK: Simple Human Experiments Regarding Locally Observed Collective Knowledge

    DTIC Science & Technology

    2015-12-01

    ARL-RP-0560 ● DEC 2015 US Army Research Laboratory SHERLOCK: Simple Human Experiments Regarding Locally Observed Collective...report when it is no longer needed. Do not return it to the originator. ARL-RP-0560 ● DEC 2015 US Army Research Laboratory SHERLOCK... Research and Engineering Directorate, ARL Reprinted from the International Technology Alliance Collaboration System [accessed 2015 Dec 2]. https

  13. Fuzzy Logic-Based Audio Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Malcangi, M.

    2008-11-01

    Audio and audio-pattern recognition is becoming one of the most important technologies to automatically control embedded systems. Fuzzy logic may be the most important enabling methodology due to its ability to rapidly and economically model such application. An audio and audio-pattern recognition engine based on fuzzy logic has been developed for use in very low-cost and deeply embedded systems to automate human-to-machine and machine-to-machine interaction. This engine consists of simple digital signal-processing algorithms for feature extraction and normalization, and a set of pattern-recognition rules manually tuned or automatically tuned by a self-learning process.

  14. Conceptual design of a Mars transportation system

    NASA Astrophysics Data System (ADS)

    1992-08-01

    In conjunction with NASA Marshall Space Flight Center and several major aerospace corporations the University of Minnesota has developed a scenario to place humans on Mars by the year 2016. The project took the form of a year-long design course in the senior design curricula at the University's Aerospace Engineering and Mechanics Department. Students worked with the instructor, teaching assistants and engineers in industry to develop a vehicle and the associated mission profile to fulfill the requirements of the Mars Transportation System. This report is a summary of the final design and the process though which the final product was developed.

  15. Conceptual design of a Mars transportation system

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In conjunction with NASA Marshall Space Flight Center and several major aerospace corporations the University of Minnesota has developed a scenario to place humans on Mars by the year 2016. The project took the form of a year-long design course in the senior design curricula at the University's Aerospace Engineering and Mechanics Department. Students worked with the instructor, teaching assistants and engineers in industry to develop a vehicle and the associated mission profile to fulfill the requirements of the Mars Transportation System. This report is a summary of the final design and the process though which the final product was developed.

  16. A versatile modular bioreactor platform for Tissue Engineering

    PubMed Central

    Schuerlein, Sebastian; Schwarz, Thomas; Krziminski, Steffan; Gätzner, Sabine; Hoppensack, Anke; Schwedhelm, Ivo; Schweinlin, Matthias; Walles, Heike

    2016-01-01

    Abstract Tissue Engineering (TE) bears potential to overcome the persistent shortage of donor organs in transplantation medicine. Additionally, TE products are applied as human test systems in pharmaceutical research to close the gap between animal testing and the administration of drugs to human subjects in clinical trials. However, generating a tissue requires complex culture conditions provided by bioreactors. Currently, the translation of TE technologies into clinical and industrial applications is limited due to a wide range of different tissue‐specific, non‐disposable bioreactor systems. To ensure a high level of standardization, a suitable cost‐effectiveness, and a safe graft production, a generic modular bioreactor platform was developed. Functional modules provide robust control of culture processes, e.g. medium transport, gas exchange, heating, or trapping of floating air bubbles. Characterization revealed improved performance of the modules in comparison to traditional cell culture equipment such as incubators, or peristaltic pumps. By combining the modules, a broad range of culture conditions can be achieved. The novel bioreactor platform allows using disposable components and facilitates tissue culture in closed fluidic systems. By sustaining native carotid arteries, engineering a blood vessel, and generating intestinal tissue models according to a previously published protocol the feasibility and performance of the bioreactor platform was demonstrated. PMID:27492568

  17. A versatile modular bioreactor platform for Tissue Engineering.

    PubMed

    Schuerlein, Sebastian; Schwarz, Thomas; Krziminski, Steffan; Gätzner, Sabine; Hoppensack, Anke; Schwedhelm, Ivo; Schweinlin, Matthias; Walles, Heike; Hansmann, Jan

    2017-02-01

    Tissue Engineering (TE) bears potential to overcome the persistent shortage of donor organs in transplantation medicine. Additionally, TE products are applied as human test systems in pharmaceutical research to close the gap between animal testing and the administration of drugs to human subjects in clinical trials. However, generating a tissue requires complex culture conditions provided by bioreactors. Currently, the translation of TE technologies into clinical and industrial applications is limited due to a wide range of different tissue-specific, non-disposable bioreactor systems. To ensure a high level of standardization, a suitable cost-effectiveness, and a safe graft production, a generic modular bioreactor platform was developed. Functional modules provide robust control of culture processes, e.g. medium transport, gas exchange, heating, or trapping of floating air bubbles. Characterization revealed improved performance of the modules in comparison to traditional cell culture equipment such as incubators, or peristaltic pumps. By combining the modules, a broad range of culture conditions can be achieved. The novel bioreactor platform allows using disposable components and facilitates tissue culture in closed fluidic systems. By sustaining native carotid arteries, engineering a blood vessel, and generating intestinal tissue models according to a previously published protocol the feasibility and performance of the bioreactor platform was demonstrated. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Celebrating 50 Years of Testing

    NASA Image and Video Library

    2016-04-19

    What better way to mark 50 years of rocket engine testing than with a rocket engine test? Stennis Space Center employees enjoyed a chance to view an RS-68 engine test at the B-1 Test Stand on April 19, almost 50 years to the day that the first test was conducted at the south Mississippi site in 1966. The test viewing was part of a weeklong celebration of the 50th year of rocket engine testing at Stennis. The first test at the site occurred April 23, 1966, with a 15-second firing of a Saturn V second stage prototype (S-II-C) on the A-2 Test Stand. The center subsequently tested Apollo rocket stages that carried humans to the moon and every main engine used to power 135 space shuttle missions. It currently tests engines for NASA’s new Space Launch System vehicle.

  19. Human-rating Automated and Robotic Systems - (How HAL Can Work Safely with Astronauts)

    NASA Technical Reports Server (NTRS)

    Baroff, Lynn; Dischinger, Charlie; Fitts, David

    2009-01-01

    Long duration human space missions, as planned in the Vision for Space Exploration, will not be possible without applying unprecedented levels of automation to support the human endeavors. The automated and robotic systems must carry the load of routine housekeeping for the new generation of explorers, as well as assist their exploration science and engineering work with new precision. Fortunately, the state of automated and robotic systems is sophisticated and sturdy enough to do this work - but the systems themselves have never been human-rated as all other NASA physical systems used in human space flight have. Our intent in this paper is to provide perspective on requirements and architecture for the interfaces and interactions between human beings and the astonishing array of automated systems; and the approach we believe necessary to create human-rated systems and implement them in the space program. We will explain our proposed standard structure for automation and robotic systems, and the process by which we will develop and implement that standard as an addition to NASA s Human Rating requirements. Our work here is based on real experience with both human system and robotic system designs; for surface operations as well as for in-flight monitoring and control; and on the necessities we have discovered for human-systems integration in NASA's Constellation program. We hope this will be an invitation to dialog and to consideration of a new issue facing new generations of explorers and their outfitters.

  20. Low order climate models as a tool for cross-disciplinary collaboration

    NASA Astrophysics Data System (ADS)

    Newton, R.; Pfirman, S. L.; Tremblay, B.; Schlosser, P.

    2014-12-01

    Human impacts on climate are pervasive and significant and project future states cannot be projected without taking human influence into account. We recently helped convene a meeting of climatologists, policy analysts, lawyers and social scientists to discuss the dramatic loss in Arctic summer sea ice. A dialogue emerged around distinct time scales in the integrated human/natural climate system. Climate scientists tended to discuss engineering solutions as though they could be implemented immediately, whereas lags of 2 or more decades were estimated by social scientists for societal shifts and similar lags were cited for deployment by the engineers. Social scientists tended to project new climate states virtually overnight, while climatologists described time scales of decades to centuries for the system to respond to changes in forcing functions. For the conversation to develop, the group had to come to grips with an increasingly complex set of transient effect time scales and lags between decisions, changes in forcing, and system outputs. We use several low-order dynamical system models to explore mismatched timescales, ranges of lags, and uncertainty in cost estimates on climate outcomes, focusing on Arctic-specific issues. In addition to lessons regarding what is/isn't feasible from a policy and engineering perspective, these models provide a useful tool to concretize cross-disciplinary thinking. They are fast and easy to iterate through a large region of the problem space, while including surprising complexity in their evolution. Thus they are appropriate for investigating the implications of policy in an efficient, but not unrealistic physical setting. (Earth System Models, by contrast, can be too resource- and time-intensive for iteratively testing "what if" scenarios in cross-disciplinary collaborations.) Our runs indicate, for example, that the combined social, engineering and climate physics lags make it extremely unlikely that an ice-free summer ecology in the Arctic can be avoided. Further, if prospective remediation strategies are successful, a return to perennial ice conditions between one and two centuries from now is entirely likely, with interesting and large impacts on Northern economies.

  1. Energy and transportation(*)

    NASA Astrophysics Data System (ADS)

    Hermans, J.

    2015-08-01

    Transportation takes a considerable and increasing fraction of the energy use worldwide, and more than half the oil consumption. By far the largest part is used by cars powered by internal combustion engines. The advantage of using internal combustion engines is that the energy density of liquid fuels is extremely high. The disadvantage is that gasoline and diesel engines have a poor performance: 20 to 25% only. How does this compare with electric cars? What are the alternative transportation systems and their efficiencies anyway? In this lecture we analyse the efficiency of various transport systems, using elementary physics principles. We will look at cars, buses, trains and TGVs, ships and aircraft. In addition, the efficiency of human powered vehicles will be considered. New and promising developments in the field of Intelligent Transportation Systems, like Cooperative Adaptive Cruise Control, are also discussed.

  2. CRISPR-Cas: From the Bacterial Adaptive Immune System to a Versatile Tool for Genome Engineering.

    PubMed

    Kirchner, Marion; Schneider, Sabine

    2015-11-09

    The field of biology has been revolutionized by the recent advancement of an adaptive bacterial immune system as a universal genome engineering tool. Bacteria and archaea use repetitive genomic elements termed clustered regularly interspaced short palindromic repeats (CRISPR) in combination with an RNA-guided nuclease (CRISPR-associated nuclease: Cas) to target and destroy invading DNA. By choosing the appropriate sequence of the guide RNA, this two-component system can be used to efficiently modify, target, and edit genomic loci of interest in plants, insects, fungi, mammalian cells, and whole organisms. This has opened up new frontiers in genome engineering, including the potential to treat or cure human genetic disorders. Now the potential risks as well as the ethical, social, and legal implications of this powerful new technique move into the limelight. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Cardiac tissue engineering using perfusion bioreactor systems

    PubMed Central

    Radisic, Milica; Marsano, Anna; Maidhof, Robert; Wang, Yadong; Vunjak-Novakovic, Gordana

    2009-01-01

    This protocol describes tissue engineering of synchronously contractile cardiac constructs by culturing cardiac cell populations on porous scaffolds (in some cases with an array of channels) and bioreactors with perfusion of culture medium (in some cases supplemented with an oxygen carrier). The overall approach is ‘biomimetic’ in nature as it tends to provide in vivo-like oxygen supply to cultured cells and thereby overcome inherent limitations of diffusional transport in conventional culture systems. In order to mimic the capillary network, cells are cultured on channeled elastomer scaffolds that are perfused with culture medium that can contain oxygen carriers. The overall protocol takes 2–4 weeks, including assembly of the perfusion systems, preparation of scaffolds, cell seeding and cultivation, and on-line and end-point assessment methods. This model is well suited for a wide range of cardiac tissue engineering applications, including the use of human stem cells, and high-fidelity models for biological research. PMID:18388955

  4. Revolutionary Propulsion Systems for 21st Century Aviation

    NASA Technical Reports Server (NTRS)

    Sehra, Arun K.; Shin, Jaiwon

    2003-01-01

    The air transportation for the new millennium will require revolutionary solutions to meeting public demand for improving safety, reliability, environmental compatibility, and affordability. NASA's vision for 21st Century Aircraft is to develop propulsion systems that are intelligent, virtually inaudible (outside the airport boundaries), and have near zero harmful emissions (CO2 and Knox). This vision includes intelligent engines that will be capable of adapting to changing internal and external conditions to optimally accomplish the mission with minimal human intervention. The distributed vectored propulsion will replace two to four wing mounted or fuselage mounted engines by a large number of small, mini, or micro engines, and the electric drive propulsion based on fuel cell power will generate electric power, which in turn will drive propulsors to produce the desired thrust. Such a system will completely eliminate the harmful emissions. This paper reviews future propulsion and power concepts that are currently under development at NASA Glenn Research Center.

  5. Human factors in the Naval Air Systems Command: Computer based training

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seamster, T.L.; Snyder, C.E.; Terranova, M.

    1988-01-01

    Military standards applied to the private sector contracts have a substantial effect on the quality of Computer Based Training (CBT) systems procured for the Naval Air Systems Command. This study evaluated standards regulating the following areas in CBT development and procurement: interactive training systems, cognitive task analysis, and CBT hardware. The objective was to develop some high-level recommendations for evolving standards that will govern the next generation of CBT systems. One of the key recommendations is that there be an integration of the instructional systems development, the human factors engineering, and the software development standards. Recommendations were also made formore » task analysis and CBT hardware standards. (9 refs., 3 figs.)« less

  6. Human Factors Engineering Program for Intercontinental Ballistic Missile Systems, (MIL-STD-1794(USAF))

    DTIC Science & Technology

    1986-10-01

    opeational test and evaluation (OT&R). The OT&B Is comprised of Initial operational test and evaluation ( IOT &R) and follow-on test and evaluation (FOT&R). OT&I...BP HYL FVAC beating, ventilation and air conditioning am. ICBM Intercntinental ballistic missile an. IOT &R Initial operational test and *valuation so...and maintenance vehicles (stop- B pod, engine idle-exterior), facility equipment utility rooms, heating, ventilation and air conditioning ( HVAC

  7. Proceedings of the 1993 Conference on Intelligent Computer-Aided Training and Virtual Environment Technology

    NASA Technical Reports Server (NTRS)

    Hyde, Patricia R.; Loftin, R. Bowen

    1993-01-01

    The volume 2 proceedings from the 1993 Conference on Intelligent Computer-Aided Training and Virtual Environment Technology are presented. Topics discussed include intelligent computer assisted training (ICAT) systems architectures, ICAT educational and medical applications, virtual environment (VE) training and assessment, human factors engineering and VE, ICAT theory and natural language processing, ICAT military applications, VE engineering applications, ICAT knowledge acquisition processes and applications, and ICAT aerospace applications.

  8. Direct Fusion Drive for a Human Mars Orbital Mission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paluszek, Michael; Pajer, Gary; Razin, Yosef

    2014-08-01

    The Direct Fusion Drive (DFD) is a nuclear fusion engine that produces both thrust and electric power. It employs a field reversed configuration with an odd-parity rotating magnetic field heating system to heat the plasma to fusion temperatures. The engine uses deuterium and helium-3 as fuel and additional deuterium that is heated in the scrape-off layer for thrust augmentation. In this way variable exhaust velocity and thrust is obtained.

  9. Designing to Support Command and Control in Urban Firefighting

    DTIC Science & Technology

    2008-06-01

    complex human- machine systems. Keywords: Command and control, firefighting, cognitive systems engineering, cognitive task analysis 1...Elm, W. (2000). Bootstrapping multiple converging cognitive task analysis techniques for system design. In J.M.C. Schraagen, S.F. Chipman, & V.L...Shalin, (Eds.), Cognitive Task Analysis . (pp. 317-340). Mahwah, NJ: Lawrence Erlbaum. Rasmussen, J., Pejtersen, A., Goodman, L. (1994). Cognitive

  10. MH-53J/M Pave Low III/IV Systems Engineering. Case Study

    DTIC Science & Technology

    2010-01-01

    53H Black Knight ............................................................................................. 15 Figure 10. General Dynamics YF-16...boundary was defined; • they used disciplined methodologies for complex systems ; • human systems integration was accomplished; • problem solving ...wartime) • Power plant: 2× General Electric T64-GE-100 turboshaft, 4,330 shaft horsepower ( shp ) each Performance • Maximum speed: 170 knots (196

  11. [Applications of synthetic biology in materials science].

    PubMed

    Zhao, Tianxin; Zhong, Chao

    2017-03-25

    Materials are the basis for human being survival and social development. To keep abreast with the increasing needs from all aspects of human society, there are huge needs in the development of advanced materials as well as high-efficiency but low-cost manufacturing strategies that are both sustainable and tunable. Synthetic biology, a new engineering principle taking gene regulation and engineering design as the core, greatly promotes the development of life sciences. This discipline has also contributed to the development of material sciences and will continuously bring new ideas to future new material design. In this paper, we review recent advances in applications of synthetic biology in material sciences, with the focus on how synthetic biology could enable synthesis of new polymeric biomaterials and inorganic materials, phage display and directed evolution of proteins relevant to materials development, living functional materials, engineered bacteria-regulated artificial photosynthesis system as well as applications of gene circuits for material sciences.

  12. Ultrasonic neuromodulation

    NASA Astrophysics Data System (ADS)

    Naor, Omer; Krupa, Steve; Shoham, Shy

    2016-06-01

    Ultrasonic waves can be non-invasively steered and focused into mm-scale regions across the human body and brain, and their application in generating controlled artificial modulation of neuronal activity could therefore potentially have profound implications for neural science and engineering. Ultrasonic neuro-modulation phenomena were experimentally observed and studied for nearly a century, with recent discoveries on direct neural excitation and suppression sparking a new wave of investigations in models ranging from rodents to humans. In this paper we review the physics, engineering and scientific aspects of ultrasonic fields, their control in both space and time, and their effect on neuronal activity, including a survey of both the field’s foundational history and of recent findings. We describe key constraints encountered in this field, as well as key engineering systems developed to surmount them. In closing, the state of the art is discussed, with an emphasis on emerging research and clinical directions.

  13. The Simulation Computer Based Learning (SCBL) for Short Circuit Multi Machine Power System Analysis

    NASA Astrophysics Data System (ADS)

    Rahmaniar; Putri, Maharani

    2018-03-01

    Strengthening Competitiveness of human resources become the reply of college as a conductor of high fomal education. Electrical Engineering Program UNPAB (Prodi TE UNPAB) as one of the department of electrical engineering that manages the field of electrical engineering expertise has a very important part in preparing human resources (HR), Which is required by where graduates are produced by DE UNPAB, Is expected to be able to compete globally, especially related to the implementation of Asean Economic Community (AEC) which requires the active participation of graduates with competence and quality of human resource competitiveness. Preparation of HR formation Competitive is done with the various strategies contained in the Seven (7) Higher Education Standard, one part of which is the implementation of teaching and learning process in Electrical system analysis with short circuit analysis (SCA) This course is a course The core of which is the basis for the competencies of other subjects in the advanced semester at Development of Computer Based Learning model (CBL) is done in the learning of interference analysis of multi-machine short circuit which includes: (a) Short-circuit One phase, (B) Two-phase Short Circuit Disruption, (c) Ground Short Circuit Disruption, (d) Short Circuit Disruption One Ground Floor Development of CBL learning model for Electrical System Analysis course provides space for students to be more active In learning in solving complex (complicated) problems, so it is thrilling Ilkan flexibility of student learning how to actively solve the problem of short-circuit analysis and to form the active participation of students in learning (Student Center Learning, in the course of electrical power system analysis.

  14. Processing Of Visual Information In Primate Brains

    NASA Technical Reports Server (NTRS)

    Anderson, Charles H.; Van Essen, David C.

    1991-01-01

    Report reviews and analyzes information-processing strategies and pathways in primate retina and visual cortex. Of interest both in biological fields and in such related computational fields as artificial neural networks. Focuses on data from macaque, which has superb visual system similar to that of humans. Authors stress concept of "good engineering" in understanding visual system.

  15. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 353)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This bibliography lists 238 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System in August 1991. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, biotechnology, human factors engineering, and flight crew behavior and performance.

  16. Is There Computer Graphics after Multimedia?

    ERIC Educational Resources Information Center

    Booth, Kellogg S.

    Computer graphics has been driven by the desire to generate real-time imagery subject to constraints imposed by the human visual system. The future of computer graphics, when off-the-shelf systems have full multimedia capability and when standard computing engines render imagery faster than real-time, remains to be seen. A dedicated pipeline for…

  17. Environmental Systems Simulations for Carbon, Energy, Nitrogen, Water, and Watersheds: Design Principles and Pilot Testing

    ERIC Educational Resources Information Center

    Lant, Christopher; Pérez-Lapeña, Blanca; Xiong, Weidong; Kraft, Steven; Kowalchuk, Rhonda; Blair, Michael

    2016-01-01

    Guided by the Next Generation Science Standards and elements of problem-based learning, four human-environment systems simulations are described in brief--carbon, energy, water, and watershed--and a fifth simulation on nitrogen is described in more depth. These science, technology, engineering, and math (STEM) education simulations illustrate…

  18. Developing Models for Synchronizing the Interaction among Users, Systems and Content in Complex Information Spaces

    DTIC Science & Technology

    2009-10-02

    October. Jansen, B. J., Zhang, M., and Zhang, Y. (2007) Brand Awareness and the Evaluation of Search Results, 16th International World Wide Web...2007) The Effect of Brand Awareness on the Evaluation of Search Engine Results, Conference on Human Factors in Computing Systems (SIGCHI), Work-in

  19. Design and fabrication of the NASA HL-20 full scale research model

    NASA Technical Reports Server (NTRS)

    Driver, K. Dean; Vess, Robert J.

    1991-01-01

    A full-scale engineering model of the HL-20 Personnel Launch System (PLS) was constructed for systems and human factors evaluation. Construction techniques were developed to enable the vehicle to be constructed with a minimum of time and cost. The design and construction of the vehicle are described.

  20. Comparative Study of the MTFA, ICS, and SQRI Image Quality Metrics for Visual Display Systems

    DTIC Science & Technology

    1991-09-01

    reasonable image quality predictions across select display and viewing condition parameters. 101 6.0 REFERENCES American National Standard for Human Factors Engineering of ’ Visual Display Terminal Workstations . ANSI

Top