Science.gov

Sample records for human tendon fascicles

  1. Passive mechanical properties of human gastrocnemius muscle tendon units, muscle fascicles and tendons in vivo.

    PubMed

    Hoang, P D; Herbert, R D; Todd, G; Gorman, R B; Gandevia, S C

    2007-12-01

    This study provides the first in vivo measures of the passive length-tension properties of relaxed human muscle fascicles and their tendons. A new method was used to derive passive length-tension properties of human gastrocnemius muscle-tendon units from measures of ankle stiffness obtained at a range of knee angles. Passive length-tension curves of the muscle-tendon unit were then combined with ultrasonographic measures of muscle fascicle length and pennation to determine passive length-tension curves of the muscle fascicles and tendons. Mean slack lengths of the fascicles, tendons and whole muscle-tendon units were 3.3+/-0.5 cm, 39.5+/-1.6 cm and 42.3+/-1.5 cm, respectively (means +/- s.d., N=6). On average, the muscle-tendon units were slack (i.e. their passive tension was zero) over the shortest 2.3+/-1.2 cm of their range. With combined changes of knee and ankle angles, the maximal increase in length of the gastrocnemius muscle-tendon unit above slack length was 6.7+/-1.9 cm, of which 52.4+/-11.7% was due to elongation of the tendon. Muscle fascicles and tendons underwent strains of 86.4+/-26.8% and 9.2+/-4.1%, respectively, across the physiological range of lengths. We conclude that the relaxed human gastrocnemius muscle-tendon unit falls slack over about one-quarter of its in vivo length and that muscle fascicle strains are much greater than tendon strains. Nonetheless, because the tendons are much longer than the muscle fascicles, tendons contribute more than half of the total compliance of the muscle-tendon unit.

  2. In vivo passive mechanical behaviour of muscle fascicles and tendons in human gastrocnemius muscle-tendon units.

    PubMed

    Herbert, Robert D; Clarke, Jillian; Kwah, Li Khim; Diong, Joanna; Martin, Josh; Clarke, Elizabeth C; Bilston, Lynne E; Gandevia, Simon C

    2011-11-01

    Ultrasound imaging was used to measure the length of muscle fascicles in human gastrocnemius muscles while the muscle was passively lengthened and shortened by moving the ankle. In some subjects the muscle belly 'buckled' at short lengths. When the gastrocnemius muscle-tendon unit was passively lengthened from its shortest in vivo length by dorsiflexing the ankle, increases in muscle-tendon length were not initially accompanied by increases in muscle fascicle lengths (fascicle length remained constant), indicating muscle fascicles were slack at short muscle-tendon lengths. The muscle-tendon length at which slack is taken up differs among fascicles: some fascicles begin to lengthen at very short muscle-tendon lengths whereas other fascicles remain slack over a large range of muscle-tendon lengths. This suggests muscle fascicles are progressively 'recruited' and contribute sequentially to muscle-tendon stiffness during passive lengthening of the muscle-tendon unit. Even above their slack lengths muscle fascicles contribute only a small part (<~30%) of the total change in muscle-tendon length. The contribution of muscle fascicles to muscle-tendon length increases with muscle length. The novelty of this work is that it reveals a previously unrecognised phenomenon (buckling at short lengths), posits a new mechanism of passive mechanical properties of muscle (recruitment of muscle fascicles), and confirms with high-resolution measurements that the passive compliance of human gastrocnemius muscle-tendon units is due largely to the tendon. It would be interesting to investigate if adaptations of passive properties of muscles are associated with changes in the distribution of muscle lengths at which fascicles fall slack.

  3. Change in length of relaxed muscle fascicles and tendons with knee and ankle movement in humans

    PubMed Central

    Herbert, R D; Moseley, A M; Butler, J E; Gandevia, S C

    2002-01-01

    Ultrasonography was used to measure changes in length of muscle fascicles in relaxed human tibialis anterior and gastrocnemius during passively imposed changes in joint angle. Changes in the length of muscle fascicles were compared to changes in the length of the whole muscle-tendon units calculated from joint angles and anthropometric data. Relaxed muscle fascicles underwent much smaller changes in length than their muscle-tendon units. On average, muscle fascicles in tibialis anterior [saw] 55 ± 13 % (mean ± s.d.) of the total change in muscle-tendon length. This indicates nearly half of the total change in muscle-tendon length was taken up by stretch of tendon. In gastrocnemius, which has relatively long tendons, only 27 ± 9 % of the total change in muscle-tendon length was transmitted to muscle fascicles. Thus, the tendency for passive movement to be taken up by the tendon was greater for gastrocnemius than tibialis anterior (P = 0.002). For these muscles, the relatively large changes in tendon length across much of the physiological range of muscle-tendon lengths could not wholly be explained by tendon slackness, changes in fibre pennation, or stretch or contraction history of the muscle. Our data confirm that when joints are moved passively, length changes [seen] by muscle fascicles can be much less than changes in the distance between muscle origin and insertion. This occurs because tendons undergo significant changes in length, even at very low forces. PMID:11882694

  4. Fascicles of the adult human Achilles tendon - an anatomical study.

    PubMed

    Szaro, Paweł; Witkowski, Grzegorz; Smigielski, Robert; Krajewski, Paweł; Ciszek, Bogdan

    2009-12-01

    The Achilles or calcaneal tendon is the structural base for the biomechanical work of the ankle joint. The purpose of this study is to describe the internal structure of the human Achilles tendon. The anatomy of the Achilles tendon has been described in lower mammals in which it has three parts which can be dissected from its beginning to the insertion onto the calcaneus. The partial ruptures of each part suggest that the human Achilles tendon may also be composed of parts. The Achilles tendon is one of the most commonly torn tendons in the human body. Each segment of the Achilles tendon described by us can be ruptured separately, which can cause a partial dysfunction in flexion of the ankle joint as observed in clinical practice. We dissected 20 Achilles tendons previously fixed in 10% formaldehyde and 20 fresh-frozen Achilles tendons, paying particular attention to the relationship between the lateral and medial heads of the gastrocnemius and the soleus muscles. The layer-by-layer method and a microscope were used in our study. We found that the medial group of fibers from the medial head of the gastrocnemius muscle constitutes the posterior layer of the tendon. The lateral border of the tendon is composed of the fibers from the lateral part of the medial head of the gastrocnemius muscle. The fibers from the lateral head of the gastrocnemius muscle constitute the anterior layer of the Achilles tendon. The fibers from the soleus muscle are located in the anteromedial part of the Achilles tendon. Our findings are supported by clinical descriptions and observations of the partial rupture of the Achilles tendon. 2009 Elsevier GmbH.

  5. Optimal muscle fascicle length and tendon stiffness for maximising gastrocnemius efficiency during human walking and running.

    PubMed

    Lichtwark, G A; Wilson, A M

    2008-06-21

    Muscles generate force to resist gravitational and inertial forces and/or to undertake work, e.g. on the centre of mass. A trade-off in muscle architecture exists in muscles that do both; the fibres should be as short as possible to minimise activation cost but long enough to maintain an appropriate shortening velocity. Energetic cost is also influenced by tendon compliance which modulates the timecourse of muscle mechanical work. Here we use a Hill-type muscle model of the human medial gastrocnemius to determine the muscle fascicle length and Achilles tendon compliance that maximise efficiency during the stance phase of walking (1.2m/s) and running (3.2 and 3.9 m/s). A broad range of muscle fascicle lengths (ranging from 45 to 70 mm) and tendon stiffness values (150-500 N/mm) can achieve close to optimal efficiency at each speed of locomotion; however, efficient walking requires shorter muscle fascicles and a more compliant tendon than running. The values that maximise efficiency are within the range measured in normal populations. A non-linear toe-region region of the tendon force-length properties may further influence the optimal values, requiring a stiffer tendon with slightly longer muscle fascicles; however, it does not alter the main results. We conclude that muscle fibre length and tendon compliance combinations may be tuned to maximise efficiency under a given gait condition. Efficiency is maximised when the required volume of muscle is minimised, which may also help reduce limb inertia and basal metabolic costs.

  6. Shear Loads Induce Cellular Damage in Tendon Fascicles

    PubMed Central

    Kondratko-Mittnacht, Jaclyn; Lakes, Roderic; Vanderby, Ray

    2016-01-01

    Tendon is vital to musculoskeletal function, transferring loads from muscle to bone for joint motion and stability. It is an anisotropic, highly organized, fibrous structure containing primarily type I collagen in addition to tenocytes and other extracellular matrix components contributing to maintenance and function. Tendon is generally loaded via normal stress in a longitudinal direction. However, certain situations, including fiber breakage, enzymatic remodeling, or tendon pathology may introduce various degrees of other loading modalities, such as shear-lag at the fiber level, potentially affecting cellular response and subsequent function. Fascicles from rat tail tendon were dissected and placed in one of three paired groups: intact, single laceration, or double laceration. Each pair had a mechanically tested and control specimen. Single laceration fascicles contained one transverse laceration to mimic a partial tear. Double laceration fascicles had overlapping, longitudinally separated lacerations on opposite sides to cause intra-fascicular shear transfer to be the primary mechanism of loading. Elastic properties of the fascicle, e.g. peak load, steady state load, and stiffness, decreased from intact to single laceration to double laceration groups. Surprisingly, 45% of the intact strength was maintained when shear was the primary internal load transfer mechanism. Cellular viability decreased after mechanical testing in both laceration groups; cell death appeared primarily in a longitudinal plane where high shear load transfer occurred. This cell death extended far from the injury site and may further compromise an already damaged tendon via enzymatic factors and subsequent remodeling associated with cell necrosis. PMID:26162546

  7. Functionally distinct tendon fascicles exhibit different creep and stress relaxation behaviour

    PubMed Central

    Shepherd, Jennifer H; Legerlotz, Kirsten; Demirci, Taylan; Klemt, Christian; Riley, Graham P; Screen, Hazel RC

    2013-01-01

    Most overuse tendinopathies are thought to be associated with repeated microstrain below the failure threshold, analogous to the fatigue failure that affects materials placed under repetitive loading. Investigating the progression of fatigue damage within tendons is therefore of critical importance. There are obvious challenges associated with the sourcing of human tendon samples for in vitro analysis so animal models are regularly adopted. However, data indicates that fatigue life varies significantly between tendons of different species and with different stresses in life. Positional tendons such as rat tail tendon or the bovine digital extensor are commonly applied in in vitro studies of tendon overuse, but there is no evidence to suggest their behaviour is indicative of the types of human tendon particularly prone to overuse injuries. In this study, the fatigue response of the largely positional digital extensor and the more energy storing deep digital flexor tendon of the bovine hoof were compared to the semitendinosus tendon of the human hamstring. Fascicles from each tendon type were subjected to either stress or strain controlled fatigue loading (cyclic creep or cyclic stress relaxation respectively). Gross fascicle mechanics were monitored after cyclic stress relaxation and the mean number of cycles to failure investigated with creep loading. Bovine extensor fascicles demonstrated the poorest fatigue response, while the energy storing human semitendinosus was the most fatigue resistant. Despite the superior fatigue response of the energy storing tendons, confocal imaging suggested a similar degree of damage in all three tendon types; it appears the more energy storing tendons are better able to withstand damage without detriment to mechanics. PMID:24285289

  8. Functionally distinct tendon fascicles exhibit different creep and stress relaxation behaviour.

    PubMed

    Shepherd, Jennifer H; Legerlotz, Kirsten; Demirci, Taylan; Klemt, Christian; Riley, Graham P; Screen, Hazel R C

    2014-01-01

    Most overuse tendinopathies are thought to be associated with repeated microstrain below the failure threshold, analogous to the fatigue failure that affects materials placed under repetitive loading. Investigating the progression of fatigue damage within tendons is therefore of critical importance. There are obvious challenges associated with the sourcing of human tendon samples for in vitro analysis so animal models are regularly adopted. However, data indicates that fatigue life varies significantly between tendons of different species and with different stresses in life. Positional tendons such as rat tail tendon or the bovine digital extensor are commonly applied in in vitro studies of tendon overuse, but there is no evidence to suggest their behaviour is indicative of the types of human tendon particularly prone to overuse injuries. In this study, the fatigue response of the largely positional digital extensor and the more energy storing deep digital flexor tendon of the bovine hoof were compared to the semitendinosus tendon of the human hamstring. Fascicles from each tendon type were subjected to either stress or strain controlled fatigue loading (cyclic creep or cyclic stress relaxation respectively). Gross fascicle mechanics were monitored after cyclic stress relaxation and the mean number of cycles to failure investigated with creep loading. Bovine extensor fascicles demonstrated the poorest fatigue response, while the energy storing human semitendinosus was the most fatigue resistant. Despite the superior fatigue response of the energy storing tendons, confocal imaging suggested a similar degree of damage in all three tendon types; it appears the more energy storing tendons are better able to withstand damage without detriment to mechanics.

  9. Shear loads induce cellular damage in tendon fascicles.

    PubMed

    Kondratko-Mittnacht, Jaclyn; Lakes, Roderic; Vanderby, Ray

    2015-09-18

    Tendon is vital to musculoskeletal function, transferring loads from muscle to bone for joint motion and stability. It is an anisotropic, highly organized, fibrous structure containing primarily type I collagen in addition to tenocytes and other extracellular matrix components contributing to maintenance and function. Tendon is generally loaded via normal stress in a longitudinal direction. However, certain situations, including fiber breakage, enzymatic remodeling, or tendon pathology may introduce various degrees of other loading modalities, such as shear-lag at the fiber level, potentially affecting cellular response and subsequent function. Fascicles from rat tail tendon were dissected and placed in one of three paired groups: intact, single laceration, or double laceration. Each pair had a mechanically tested and control specimen. Single laceration fascicles contained one transverse laceration to mimic a partial tear. Double laceration fascicles had overlapping, longitudinally separated lacerations on opposite sides to cause intra-fascicular shear transfer to be the primary mechanism of loading. Elastic properties of the fascicle, e.g. peak load, steady state load, and stiffness, decreased from intact to single laceration to double laceration groups. Surprisingly, 45% of the intact strength was maintained when shear was the primary internal load transfer mechanism. Cellular viability decreased after mechanical testing in both laceration groups; cell death appeared primarily in a longitudinal plane where high shear load transfer occurred. This cell death extended far from the injury site and may further compromise an already damaged tendon via enzymatic factors and subsequent remodeling associated with cell necrosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Automatic tracking of medial gastrocnemius fascicle length during human locomotion.

    PubMed

    Cronin, Neil J; Carty, Christopher P; Barrett, Rod S; Lichtwark, Glen

    2011-11-01

    During human locomotion lower extremity muscle-tendon units undergo cyclic length changes that were previously assumed to be representative of muscle fascicle length changes. Measurements in cats and humans have since revealed that muscle fascicle length changes can be uncoupled from those of the muscle-tendon unit. Ultrasonography is frequently used to estimate fascicle length changes during human locomotion. Fascicle length analysis requires time consuming manual methods that are prone to human error and experimenter bias. To bypass these limitations, we have developed an automatic fascicle tracking method based on the Lucas-Kanade optical flow algorithm with an affine optic flow extension. The aims of this study were to compare gastrocnemius fascicle length changes during locomotion using the automated and manual approaches and to determine the repeatability of the automated approach. Ultrasound was used to examine gastrocnemius fascicle lengths in eight participants walking at 4, 5, 6, and 7 km/h and jogging at 7 km/h on a treadmill. Ground reaction forces and three dimensional kinematics were recorded simultaneously. The level of agreement between methods and the repeatability of the automated method were quantified using the coefficient of multiple correlation (CMC). Regardless of speed, the level of agreement between methods was high, with overall CMC values of 0.90 ± 0.09 (95% CI: 0.86-0.95). Repeatability of the algorithm was also high, with an overall CMC of 0.88 ± 0.08 (95% CI: 0.79-0.96). The automated fascicle tracking method presented here is a robust, reliable, and time-efficient alternative to the manual analysis of muscle fascicle length during gait.

  11. Cyclic tensile strain upregulates collagen synthesis in isolated tendon fascicles

    SciTech Connect

    Screen, Hazel R.C. . E-mail: H.R.C.Screen@qmul.ac.uk; Shelton, Julia C.; Bader, Dan L.; Lee, David A.

    2005-10-21

    Mechanical stimulation has been implicated as an important regulatory factor in tendon homeostasis. In this study, a custom-designed tensile loading system was used to apply controlled mechanical stimulation to isolated tendon fascicles, in order to examine the effects of 5% cyclic tensile strain at 1 Hz on cell proliferation and matrix synthesis. Sample viability and gross structural composition were maintained over a 24 h loading period. Data demonstrated no statistically significant differences in cell proliferation or glycosaminoglycan production, however, collagen synthesis was upregulated with the application of cyclic tensile strain over the 24 h period. Moreover, a greater proportion of the newly synthesised matrix was retained within the sample after loading. These data provide evidence of altered anabolic activity within tendon in response to mechanical stimuli, and suggest the importance of cyclic tensile loading for the maintenance of the collagen hierarchy within tendon.

  12. Capacity for sliding between tendon fascicles decreases with ageing in injury prone equine tendons: a possible mechanism for age-related tendinopathy?

    PubMed

    Thorpe, C T; Udeze, C P; Birch, H L; Clegg, P D; Screen, H Rc

    2013-01-08

    Age-related tendinopathy is common in both humans and horses; the initiation and progression of which is similar between species. The majority of tendon injuries occur to high-strain energy storing tendons, such as the human Achilles tendon and equine superficial digital flexor (SDFT). By contrast, the low-strain positional human anterior tibialis tendon and equine common digital extensor (CDET) are rarely injured. It has previously been established that greater extension occurs at the fascicular interface in the SDFT than in the CDET; this may facilitate the large strains experienced during locomotion in the SDFT without damage occurring to the fascicles. This study investigated the alterations in whole tendon, fascicle and interfascicular mechanical properties in the SDFT and CDET with increasing age. It was hypothesised that the amount of sliding at the fascicular interface in the SDFT would decrease with increasing horse age, whereas the properties of the interface in the CDET would remain unchanged with ageing. Data support the hypothesis; there were no alterations in the mechanical properties of the whole SDFT or its constituent fascicles with increasing age. However, there was significantly less sliding at the fascicular interface at physiological loads in samples from aged tendons. There was no relationship between fascicle sliding and age in the CDET. The increase in stiffness of the interfascicular matrix in aged SDFT may result in the fascicles being loaded at an earlier point in the stress strain curve, increasing the risk of damage. This may predispose aged tendons to tendinopathy.

  13. Interaction between gastrocnemius medialis fascicle and Achilles tendon compliance: a new insight on the quick-release method.

    PubMed

    Farcy, Stevy; Nordez, Antoine; Dorel, Sylvain; Hauraix, Hugo; Portero, Pierre; Rabita, Giuseppe

    2014-02-01

    The insufficient temporal resolution of imaging devices has made the analysis of very fast movements, such as those required to measure active muscle-tendon unit stiffness, difficult. Thus the relative contributions of tendon, aponeurosis, and fascicle to muscle-tendon unit compliance remain to be determined. The present study analyzed the dynamic interactions of fascicle, tendon, and aponeurosis in human gastrocnemius medialis during the first milliseconds of an ankle quick-release movement, using high-frame-rate ultrasonography (2,000 frames/s). Nine subjects performed the tests in random order at six levels of maximal voluntary contraction (MVC) (30% to 80% of MVC). These tests were carried out with the ultrasound probe placed on the muscle belly and on the myotendinous junction. Tendon, muscle fascicle, and aponeurosis length changes were quantified in relation to shortening of the muscle-tendon unit during the first few milliseconds following the release. The tendon was the main contributor (around 72%) to the shortening of the muscle-tendon unit, whereas the muscle fascicle and aponeurosis contributions were 18% and 10%, respectively. Because these structures can be considered in series, the quantified contributions can be regarded as relative contributions to muscle-tendon compliance. These contributions were not modified with the level of MVC or the time range used for the analysis between 10 and 25 ms. The constant contribution of tendon, muscle fascicle, and aponeurosis to muscle-tendon unit compliance may help to simplify the mechanism of compliance regulation and to maintain the important role of tendons in enhancing work output and movement efficiency.

  14. Fascicles from energy-storing tendons show an age-specific response to cyclic fatigue loading

    PubMed Central

    Thorpe, Chavaunne T.; Riley, Graham P.; Birch, Helen L.; Clegg, Peter D.; Screen, Hazel R. C.

    2014-01-01

    Some tendons, such as the human Achilles and equine superficial digital flexor tendon (SDFT), act as energy stores, stretching and recoiling to increase efficiency during locomotion. Our previous observations of rotation in response to applied strain in SDFT fascicles suggest a helical structure, which may provide energy-storing tendons with a greater ability to extend and recoil efficiently. Despite this specialization, energy-storing tendons are prone to age-related tendinopathy. The aim of this study was to assess the effect of cyclic fatigue loading (FL) on the microstructural strain response of SDFT fascicles from young and old horses. The data demonstrate two independent age-related mechanisms of fatigue failure; in young horses, FL caused low levels of matrix damage and decreased rotation. This suggests that loading causes alterations to the helix substructure, which may reduce their ability to recoil and recover. By contrast, fascicles from old horses, in which the helix is already compromised, showed greater evidence of matrix damage and suffer increased fibre sliding after FL, which may partially explain the age-related increase in tendinopathy. Elucidation of helix structure and the precise alterations occurring owing to both ageing and FL will help to develop appropriate preventative and repair strategies for tendinopathy. PMID:24402919

  15. A new strain energy function for modelling ligaments and tendons whose fascicles have a helical arrangement of fibrils.

    PubMed

    Shearer, Tom

    2015-09-18

    A new strain energy function for the hyperelastic modelling of ligaments and tendons whose fascicles have a helical arrangement of fibrils is derived. The stress-strain response of a single fascicle whose fibrils exhibit varying levels of crimp throughout its radius is calculated and used to determine the form of the strain energy function. The new constitutive law is used to model uniaxial extension test data for human patellar tendon and is shown to provide an excellent fit, with the average relative error being 9.8%. It is then used to model shear and predicts that the stresses required to shear a tendon are much smaller than those required to uniaxially stretch it to the same strain level. Finally, the strain energy function is used to model ligaments and tendons whose fascicles are helical, and the relative effects of the fibril helix angle, the fascicle helix angle and the fibril crimp variable are compared. It is shown that they all have a significant effect; the fibril crimp variable governs the non-linearity of the stress-strain curve, whereas the helix angles primarily affect its stiffness. Smaller values of the helix angles lead to stiffer tendons; therefore, the model predicts that one would expect to see fewer helical sub-structures in stiff positional tendons, and more in those that are required to be more flexible.

  16. Fascicles and the interfascicular matrix show decreased fatigue life with ageing in energy storing tendons.

    PubMed

    Thorpe, Chavaunne T; Riley, Graham P; Birch, Helen L; Clegg, Peter D; Screen, Hazel R C

    2017-03-16

    Tendon is composed of rope-like fascicles bound together by interfascicular matrix (IFM). The IFM is critical for the function of energy storing tendons, facilitating sliding between fascicles to allow these tendons to cyclically stretch and recoil. This capacity is required to a lesser degree in positional tendons. We have previously demonstrated that both fascicles and IFM in energy storing tendons have superior fatigue resistance compared with positional tendons, but the effect of ageing on the fatigue properties of these different tendon subunits has not been determined. Energy storing tendons become more injury-prone with ageing, indicating reduced fatigue resistance, hence we tested the hypothesis that the decline in fatigue life with ageing in energy storing tendons would be more pronounced in the IFM than in fascicles. We further hypothesised that tendon subunit fatigue resistance would not alter with ageing in positional tendons. Fascicles and IFM from young and old energy storing and positional tendons were subjected to cyclic fatigue testing until failure, and mechanical properties were calculated. The results show that both IFM and fascicles from the SDFT exhibit a similar magnitude of reduced fatigue life with ageing. By contrast, the fatigue life of positional tendon subunits was unaffected by ageing. The age-related decline in fatigue life of tendon subunits in energy storing tendons is likely to contribute to the increased risk of injury in aged tendons. Full understanding of the mechanisms resulting in this reduced fatigue life will aid in the development of treatments and interventions to prevent age-related tendinopathy.

  17. Concurrent deficits of soleus and gastrocnemius muscle fascicles and Achilles tendon post stroke.

    PubMed

    Zhao, Heng; Ren, Yupeng; Roth, Elliot J; Harvey, Richard L; Zhang, Li-Qun

    2015-04-01

    Calf muscles and Achilles tendon play important roles in functional activities. However, it is not clear how biomechanical properties of the uniarticular soleus (SOL) and biarticular gastrocnemius muscle and Achilles tendon, including the fascicle length, pennation angle, and stiffness, change concurrently post stroke. Biomechanical properties of the medial gastrocnemius (GM) and soleus muscles were evaluated bilaterally in 10 hemiparetic stroke survivors using combined ultrasonography-biomechanical measurements. Biomechanical properties of the Achilles tendon including the length, cross-sectional area (CSA), stiffness, and Young's modulus were evaluated, together with calf muscle biomechanical properties. Gastrocnemius and SOL contributions were separated using flexed and extended knee positions. The impaired side showed decreased fascicle length (GM: 6%, P = 0.002 and SOL: 9%, P = 0.03, at full knee extension and 0° ankle dorsiflexion) and increased fascicular stiffness (GM: 64%, P = 0.005 and SOL: 19%, P = 0.012, at a common 50 N force level). In contrast, Achilles tendon on the impaired side showed changes in the opposite direction as the muscle fascicles with increased tendon length (5%, P < 0.001), decreased tendon CSA (5%, P = 0.04), decreased tendon stiffness (42%, P < 0.001) and Young's modulus (30%, P < 0.001) compared with the unimpaired side. The fascicle and tendon stiffness changes were correlated negatively to the corresponding fascicle and tendon length changes, and decrease in Achilles tendon stiffness was correlated to the increases of SOL and GM fascicular stiffness (P < 0.05). Characterizations of calf muscle fascicles and Achilles tendon biomechanical properties help us better understand concurrent changes of fascicles and tendon as part of the calf muscle-tendon unit and facilitate development of more effective treatments.

  18. Concurrent deficits of soleus and gastrocnemius muscle fascicles and Achilles tendon post stroke

    PubMed Central

    Zhao, Heng; Ren, Yupeng; Roth, Elliot J.; Harvey, Richard L.

    2015-01-01

    Calf muscles and Achilles tendon play important roles in functional activities. However, it is not clear how biomechanical properties of the uniarticular soleus (SOL) and biarticular gastrocnemius muscle and Achilles tendon, including the fascicle length, pennation angle, and stiffness, change concurrently post stroke. Biomechanical properties of the medial gastrocnemius (GM) and soleus muscles were evaluated bilaterally in 10 hemiparetic stroke survivors using combined ultrasonography-biomechanical measurements. Biomechanical properties of the Achilles tendon including the length, cross-sectional area (CSA), stiffness, and Young's modulus were evaluated, together with calf muscle biomechanical properties. Gastrocnemius and SOL contributions were separated using flexed and extended knee positions. The impaired side showed decreased fascicle length (GM: 6%, P = 0.002 and SOL: 9%, P = 0.03, at full knee extension and 0° ankle dorsiflexion) and increased fascicular stiffness (GM: 64%, P = 0.005 and SOL: 19%, P = 0.012, at a common 50 N force level). In contrast, Achilles tendon on the impaired side showed changes in the opposite direction as the muscle fascicles with increased tendon length (5%, P < 0.001), decreased tendon CSA (5%, P = 0.04), decreased tendon stiffness (42%, P < 0.001) and Young's modulus (30%, P < 0.001) compared with the unimpaired side. The fascicle and tendon stiffness changes were correlated negatively to the corresponding fascicle and tendon length changes, and decrease in Achilles tendon stiffness was correlated to the increases of SOL and GM fascicular stiffness (P < 0.05). Characterizations of calf muscle fascicles and Achilles tendon biomechanical properties help us better understand concurrent changes of fascicles and tendon as part of the calf muscle-tendon unit and facilitate development of more effective treatments. PMID:25663670

  19. GAG depletion increases the stress-relaxation response of tendon fascicles, but does not influence recovery.

    PubMed

    Legerlotz, Kirsten; Riley, Graham P; Screen, Hazel R C

    2013-06-01

    Cyclic and static loading regimes are commonly used to study tenocyte metabolism in vitro and to improve our understanding of exercise-associated tendon pathologies. The aims of our study were to investigate if cyclic and static stress relaxation affected the mechanical properties of tendon fascicles differently, if this effect was reversible after a recovery period, and if the removal of glycosaminoglycans (GAGs) affected sample recovery. Tendon fascicles were dissected frombovine-foot extensors and subjected to 14% cyclic (1Hz) or static tensile strain for 30min. Additional fascicles were incubated overnight in buffer with 0.5U chondroitinase ABC or in buffer alone prior to the static stress-relaxation regime. To assess the effect of different stress-relaxation regimes, a quasi-static test to failure was carried out, either directly post loading or after a 2h recovery period, and compared with unloaded control fascicles. Both stress-relaxation regimes led to a significant reduction in fascicle failure stress and strain, but this was more pronounced in the cyclically loaded specimens. Removal of GAGs led to more stress relaxation and greater reductions in failure stress after static loading compared to controls. The reduction in mechanical properties was partially reversible in all samples, given a recovery period of 2h. This has implications for mechanical testing protocols, as a time delay between fatiguing specimens and characterization of mechanical properties will affect the results. GAGs appear to protect tendon fascicles from fatigue effects, possibly by enabling sample hydration.

  20. Muscle spindles in human tibialis anterior encode muscle fascicle length changes.

    PubMed

    Day, James; Bent, Leah R; Birznieks, Ingvars; Macefield, Vaughan G; Cresswell, Andrew G

    2017-04-01

    Muscle spindles provide exquisitely sensitive proprioceptive information regarding joint position and movement. Through passively driven length changes in the muscle-tendon unit (MTU), muscle spindles detect joint rotations because of their in-parallel mechanical linkage to muscle fascicles. In human microneurography studies, muscle fascicles are assumed to follow the MTU and, as such, fascicle length is not measured in such studies. However, under certain mechanical conditions, compliant structures can act to decouple the fascicles, and, therefore, the spindles, from the MTU. Such decoupling may reduce the fidelity by which muscle spindles encode joint position and movement. The aim of the present study was to measure, for the first time, both the changes in firing of single muscle spindle afferents and changes in muscle fascicle length in vivo from the tibialis anterior muscle (TA) during passive rotations about the ankle. Unitary recordings were made from 15 muscle spindle afferents supplying TA via a microelectrode inserted into the common peroneal nerve. Ultrasonography was used to measure the length of an individual fascicle of TA. We saw a strong correlation between fascicle length and firing rate during passive ankle rotations of varying rates (0.1-0.5 Hz) and amplitudes (1-9°). In particular, we saw responses observed at relatively small changes in muscle length that highlight the sensitivity of the TA muscle to small length changes. This study is the first to measure spindle firing and fascicle dynamics in vivo and provides an experimental basis for further understanding the link between fascicle length, MTU length, and spindle firing patterns.NEW & NOTEWORTHY Muscle spindles are exquisitely sensitive to changes in muscle length, but recordings from human muscle spindle afferents are usually correlated with joint angle rather than muscle fascicle length. In this study, we monitored both muscle fascicle length and spindle firing from the human tibialis

  1. Medial gastrocnemius and soleus muscle-tendon unit, fascicle, and tendon interaction during walking in children with cerebral palsy.

    PubMed

    Barber, Lee; Carty, Chris; Modenese, Luca; Walsh, John; Boyd, Roslyn; Lichtwark, Glen

    2017-08-01

    This study investigates the in vivo function of the medial gastrocnemius and soleus muscle-tendon units (MTU), fascicles, and tendons during walking in children with cerebral palsy (CP) and an equinus gait pattern. Fourteen children with CP (9 males, 5 females; mean age 10y 6mo, standard deviation [SD] 2y 11mo; GMFCS level I=8, II=6), and 10 typically developing (6 males, 4 females; mean age 10y, SD 2y 1mo) undertook full body 3D gait analysis and simultaneous B-mode ultrasound images of the medial gastrocnemius and soleus fascicles during level walking. Fascicle lengths were analysed using a semi-automated tracking algorithm and MTUs using OpenSim. Statistical parametric mapping (two-sample t-test) was used to compare differences between groups (p<0.05). In the CP group medial gastrocnemius fascicles lengthened during mid-stance gait and remained longer into late-stance compared to the typically developing group (p<0.001). CP medial gastrocnemius fascicles shortened less during stance (1.16mm [SD 1.47mm]) compared to the typically developing group (4.48mm [SD 1.94mm], p<0.001). In the CP group the medial gastrocnemius and soleus MTU and tendon were longer during early- and mid-stance (p<0.001). Ankle power during push-off (p=0.015) and positive work (p<0.002) and net work (p<0.001) were significantly lower in the CP group. Eccentric action of the CP medial gastrocnemius muscle fascicles during mid-stance walking is consistent with reduced volume and neuromuscular control of impaired muscle. Reduced ankle push-off power and positive work in the children with CP may be attributed to reduced active medial gastrocnemius fascicle shortening. These findings suggest a reliance on passive force generation for forward propulsion during equinus gait. © 2017 Mac Keith Press.

  2. The interfascicular matrix enables fascicle sliding and recovery in tendon, and behaves more elastically in energy storing tendons

    PubMed Central

    Thorpe, Chavaunne T.; Godinho, Marta S.C.; Riley, Graham P.; Birch, Helen L.; Clegg, Peter D.; Screen, Hazel R.C.

    2015-01-01

    While the predominant function of all tendons is to transfer force from muscle to bone and position the limbs, some tendons additionally function as energy stores, reducing the cost of locomotion. Energy storing tendons experience extremely high strains and need to be able to recoil efficiently for maximum energy storage and return. In the equine forelimb, the energy storing superficial digital flexor tendon (SDFT) has much higher failure strains than the positional common digital extensor tendon (CDET). However, we have previously shown that this is not due to differences in the properties of the SDFT and CDET fascicles (the largest tendon subunits). Instead, there is a greater capacity for interfascicular sliding in the SDFT which facilitates the greater extensions in this particular tendon (Thorpe et al., 2012). In the current study, we exposed fascicles and interfascicular matrix (IFM) from the SDFT and CDET to cyclic loading followed by a test to failure. The results show that IFM mechanical behaviour is not a result of irreversible deformation, but the IFM is able to withstand cyclic loading, and is more elastic in the SDFT than in the CDET. We also assessed the effect of ageing on IFM properties, demonstrating that the IFM is less able to resist repetitive loading as it ages, becoming stiffer with increasing age in the SDFT. These results provide further indications that the IFM is important for efficient function in energy storing tendons, and age-related alterations to the IFM may compromise function and predispose older tendons to injury. PMID:25958330

  3. The interfascicular matrix enables fascicle sliding and recovery in tendon, and behaves more elastically in energy storing tendons.

    PubMed

    Thorpe, Chavaunne T; Godinho, Marta S C; Riley, Graham P; Birch, Helen L; Clegg, Peter D; Screen, Hazel R C

    2015-12-01

    While the predominant function of all tendons is to transfer force from muscle to bone and position the limbs, some tendons additionally function as energy stores, reducing the cost of locomotion. Energy storing tendons experience extremely high strains and need to be able to recoil efficiently for maximum energy storage and return. In the equine forelimb, the energy storing superficial digital flexor tendon (SDFT) has much higher failure strains than the positional common digital extensor tendon (CDET). However, we have previously shown that this is not due to differences in the properties of the SDFT and CDET fascicles (the largest tendon subunits). Instead, there is a greater capacity for interfascicular sliding in the SDFT which facilitates the greater extensions in this particular tendon (Thorpe et al., 2012). In the current study, we exposed fascicles and interfascicular matrix (IFM) from the SDFT and CDET to cyclic loading followed by a test to failure. The results show that IFM mechanical behaviour is not a result of irreversible deformation, but the IFM is able to withstand cyclic loading, and is more elastic in the SDFT than in the CDET. We also assessed the effect of ageing on IFM properties, demonstrating that the IFM is less able to resist repetitive loading as it ages, becoming stiffer with increasing age in the SDFT. These results provide further indications that the IFM is important for efficient function in energy storing tendons, and age-related alterations to the IFM may compromise function and predispose older tendons to injury.

  4. Corticosteroid administration alters the mechanical properties of isolated collagen fascicles in rat-tail tendon.

    PubMed

    Haraldsson, B T; Aagaard, P; Crafoord-Larsen, D; Kjaer, M; Magnusson, S P

    2009-10-01

    Overload tendon injuries are frequent in recreational and elite sports. The optimal treatment strategy remains unknown, but local administration of corticosteroids is one common treatment option. The direct effects of the corticosteroid administration on the tissue are not fully understood. The present study examined the biomechanical effects of intratendinous corticosteroid injections on healthy rat-tail tendon collagen fascicles. A total of 24 Wistar male rats were divided into (A) a corticosteroid group where the animals were injected in the tail tendon with methylprednisolone acetate, 1.0 mL of 40 mg/mL mixed with 1.0 mL 9% saline (n=12), and (B) a control group that was injected with 9% saline (n=12). Three days after the injections, the animals were sacrificed and single individual collagen fascicles were collected and underwent displacement to failure. Corticosteroid administration significantly reduced tensile fascicle yield strength by 16% and Young's modulus by 14% compared with sham treatment (10.5+/-0.8 vs 12.4+/-0.5 MPa, P< or =0.05, and 537+/-27 vs 641+/-30 MPa, P<0.05, respectively), while the strain properties were unaffected. Peak stress was similar between the two groups. There was no difference in fascicle diameter between the two groups.

  5. Tendon fascicles exhibit a linear correlation between Poisson's ratio and force during uniaxial stress relaxation.

    PubMed

    Reese, Shawn P; Weiss, Jeffrey A

    2013-03-01

    The underlying mechanisms for the viscoelastic behavior of tendon and ligament tissue are poorly understood. It has been suggested that both a flow-dependent and flow-independent mechanism may contribute at different structural levels. We hypothesized that the stress relaxation response of a single tendon fascicle is consistent with the flow-dependent mechanism described by the biphasic theory (Armstrong et al., 1984, "An Analysis of the Unconfined Compression of Articular Cartilage," ASME J. Biomech. Eng., 106, pp. 165-173). To test this hypothesis, force, lateral strain, and Poisson's ratio were measured as a function of time during stress relaxation testing of six rat tail tendon fascicles from a Sprague Dawley rat. As predicted by biphasic theory, the lateral strain and Poisson's ratio were time dependent, a large estimated volume loss was seen at equilibrium and there was a linear correlation between the force and Poisson's ratio during stress relaxation. These results suggest that the fluid dependent mechanism described by biphasic theory may explain some or all of the apparent viscoelastic behavior of single tendon fascicles.

  6. Tensile Properties of Human Collagen Fibrils and Fascicles Are Insensitive to Environmental Salts

    PubMed Central

    Svensson, René B.; Hassenkam, Tue; Grant, Colin A.; Magnusson, S. Peter

    2010-01-01

    To carry out realistic in vitro mechanical testing on anatomical tissue, a choice has to be made regarding the buffering environment. Therefore, it is important to understand how the environment may influence the measurement to ensure the highest level of accuracy. The most physiologically relevant loading direction of tendon is along its longitudinal axis. Thus, in this study, we focus on the tensile mechanical properties of two hierarchical levels from human patellar tendon, namely: individual collagen fibrils and fascicles. Investigations on collagen fibrils and fascicles were made at pH 7.4 in solutions of phosphate-buffered saline at three different concentrations as well as two HEPES buffered solutions containing NaCl or NaCl + CaCl2. An atomic force microscope technique was used for tensile testing of individual collagen fibrils. Only a slight increase in relative energy dissipation was observed at the highest phosphate-buffered saline concentration for both the fibrils and fascicles, indicating a stabilizing effect of ionic screening, but changes were much less than reported for radial compression. Due to the small magnitude of the effects, the tensile mechanical properties of collagen fibrils and fascicles from the patellar tendon of mature humans are essentially insensitive to environmental salt concentration and composition at physiological pH. PMID:21156145

  7. Age-related greater Achilles tendon compliance is not associated with larger plantar flexor muscle fascicle strains in senior women

    PubMed Central

    Csapo, R.; Malis, V.; Hodgson, J.

    2014-01-01

    The aim of the present study was to test the hypothesis that the age-associated decrease of tendon stiffness would necessitate greater muscle fascicle strains to produce similar levels of force during isometric contraction. Greater fascicle strains could force sarcomeres to operate in less advantageous regions of their force-length and force-velocity relationships, thus impairing the capacity to generate strong and explosive contractions. To test this hypothesis, sagittal-plane dynamic velocity-encoded phase-contrast magnetic resonance images of the gastrocnemius medialis (GM) muscle and Achilles tendon (AT) were acquired in six young (YW; 26.1 ± 2.3 yr) and six senior (SW; 76.7 ± 8.3 yr) women during submaximal isometric contraction (35% maximum voluntary isometric contraction) of the plantar flexor muscles. Multiple GM fascicle lengths were continuously determined by automatically tracking regions of interest coinciding with the end points of muscle fascicles evenly distributed along the muscle's proximo-distal length. AT stiffness and Young's modulus were measured as the slopes of the tendon's force-elongation and stress-strain curves, respectively. Despite significantly lower AT stiffness at older age (YW: 120.2 ± 52.3 N/mm vs. SW: 53.9 ± 44.4 N/mm, P = 0.040), contraction-induced changes in GM fascicle lengths were similar in both age groups at equal levels of absolute muscular force (4–5% fascicle shortening in both groups), and even significantly larger in YW (YW: 11–12% vs. SW: 6–8% fascicle shortening) at equal percentage of maximum voluntary contraction. These results suggest that factors other than AT stiffness, such as age-associated changes in muscle composition or fascicle slack, might serve as compensatory adaptations, limiting the degree of fascicle strains upon contraction. PMID:24505104

  8. Age-related greater Achilles tendon compliance is not associated with larger plantar flexor muscle fascicle strains in senior women.

    PubMed

    Csapo, R; Malis, V; Hodgson, J; Sinha, S

    2014-04-15

    The aim of the present study was to test the hypothesis that the age-associated decrease of tendon stiffness would necessitate greater muscle fascicle strains to produce similar levels of force during isometric contraction. Greater fascicle strains could force sarcomeres to operate in less advantageous regions of their force-length and force-velocity relationships, thus impairing the capacity to generate strong and explosive contractions. To test this hypothesis, sagittal-plane dynamic velocity-encoded phase-contrast magnetic resonance images of the gastrocnemius medialis (GM) muscle and Achilles tendon (AT) were acquired in six young (YW; 26.1 ± 2.3 yr) and six senior (SW; 76.7 ± 8.3 yr) women during submaximal isometric contraction (35% maximum voluntary isometric contraction) of the plantar flexor muscles. Multiple GM fascicle lengths were continuously determined by automatically tracking regions of interest coinciding with the end points of muscle fascicles evenly distributed along the muscle's proximo-distal length. AT stiffness and Young's modulus were measured as the slopes of the tendon's force-elongation and stress-strain curves, respectively. Despite significantly lower AT stiffness at older age (YW: 120.2 ± 52.3 N/mm vs. SW: 53.9 ± 44.4 N/mm, P = 0.040), contraction-induced changes in GM fascicle lengths were similar in both age groups at equal levels of absolute muscular force (4-5% fascicle shortening in both groups), and even significantly larger in YW (YW: 11-12% vs. SW: 6-8% fascicle shortening) at equal percentage of maximum voluntary contraction. These results suggest that factors other than AT stiffness, such as age-associated changes in muscle composition or fascicle slack, might serve as compensatory adaptations, limiting the degree of fascicle strains upon contraction.

  9. Biomechanical properties of isolated fascicles of the Iliopsoas and Achilles tendons in African American and Caucasian men.

    PubMed

    Hanson, P; Aagaard, P; Magnusson, S P

    2012-09-01

    To investigate biomechanical properties of the Iliopsoas and Achilles tendons in young African American (AA) and Caucasian (CC) men, and attempt to clarify whether the difference in Achilles tendon ruptures between AA and CC can be explained by differences in material properties. Tissue from 12 young males (AA, n=6; CC, n=6) was obtained from routine forensic autopsies. Iliopsoas and Achilles tendon samples were obtained from cadavers that were age, height and weight matched. Tendon collagen fascicles were tested micromechanically in a Deben mechanical testing rig. Peak failure stress in Iliopsoas tendon fascicles was considerably higher (p<0.05) in AA (22.4 ± 7.2MPa) than CC (6.8 ± 2.1MPa) whereas peak strain did not differ (AA: 19.7 ± 5.2%, CC: 18.3 ± 3.5%). Likewise, Young's modulus was greater (p<0.05) in AA (165.3 ± 67.3MPa) than CC (63.6 ± 23.6MPa). In contrast, peak failure stress in Achilles tendon fascicles was similar (p>0.1) in AA (21.9 ± 9.9MPa) and CC (28.1 ± 9.8MPa), and peak strain did not differ (p>0.1) between AA (16.3 ± 3.5%) and CC (13.8 ± 4.4%). Young's modulus was slightly greater in CC (316.8 ± 110MPa) than AA (222.8 ± 84.6MPa), yet not significantly (p>0.1). These findings indicate that Iliopsoas tendon fascicles are stronger in young AA compared to CC males, which is suggested to reflect differences in muscle mass and force generating capacity. This could not be confirmed in Achilles tendon fascicles. Copyright © 2012. Published by Elsevier GmbH.

  10. Incorporating Plasticity of the Interfibrillar Matrix in Shear Lag Models is Necessary to Replicate the Multiscale Mechanics of Tendon Fascicles

    PubMed Central

    Szczesny, Spencer E.; Elliott, Dawn M.

    2015-01-01

    Despite current knowledge of tendon structure, the fundamental deformation mechanisms underlying tendon mechanics and failure are unknown. We recently showed that a shear lag model, which explicitly assumed plastic interfibrillar load transfer between discontinuous fibrils, could explain the multiscale fascicle mechanics, suggesting that fascicle yielding is due to plastic deformation of the interfibrillar matrix. However, it is unclear whether alternative physical mechanisms, such as elastic interfibrillar deformation or fibril yielding, also contribute to fascicle mechanical behavior. The objective of the current work was to determine if plasticity of the interfibrillar matrix is uniquely capable of explaining the multiscale mechanics of tendon fascicles including the tissue post-yield behavior. This was examined by comparing the predictions of a continuous fibril model and three separate shear lag models incorporating an elastic, plastic, or elastoplastic interfibrillar matrix with multiscale experimental data. The predicted effects of fibril yielding on each of these models were also considered. The results demonstrated that neither the continuous fibril model nor the elastic shear lag model can successfully predict the experimental data, even if fibril yielding is included. Only the plastic or elastoplastic shear lag models were capable of reproducing the multiscale tendon fascicle mechanics. Differences between these two models were small, although the elastoplastic model did improve the fit of the experimental data at low applied tissue strains. These findings suggest that while interfibrillar elasticity contributes to the initial stress response, plastic deformation of the interfibrillar matrix is responsible for tendon fascicle post-yield behavior. This information sheds light on the physical processes underlying tendon failure, which is essential to improve our understanding of tissue pathology and guide the development of successful repair. PMID:25262202

  11. Incorporating plasticity of the interfibrillar matrix in shear lag models is necessary to replicate the multiscale mechanics of tendon fascicles.

    PubMed

    Szczesny, Spencer E; Elliott, Dawn M

    2014-12-01

    Despite current knowledge of tendon structure, the fundamental deformation mechanisms underlying tendon mechanics and failure are unknown. We recently showed that a shear lag model, which explicitly assumed plastic interfibrillar load transfer between discontinuous fibrils, could explain the multiscale fascicle mechanics, suggesting that fascicle yielding is due to plastic deformation of the interfibrillar matrix. However, it is unclear whether alternative physical mechanisms, such as elastic interfibrillar deformation or fibril yielding, also contribute to fascicle mechanical behavior. The objective of the current work was to determine if plasticity of the interfibrillar matrix is uniquely capable of explaining the multiscale mechanics of tendon fascicles including the tissue post-yield behavior. This was examined by comparing the predictions of a continuous fibril model and three separate shear lag models incorporating an elastic, plastic, or elastoplastic interfibrillar matrix with multiscale experimental data. The predicted effects of fibril yielding on each of these models were also considered. The results demonstrated that neither the continuous fibril model nor the elastic shear lag model can successfully predict the experimental data, even if fibril yielding is included. Only the plastic or elastoplastic shear lag models were capable of reproducing the multiscale tendon fascicle mechanics. Differences between these two models were small, although the elastoplastic model did improve the fit of the experimental data at low applied tissue strains. These findings suggest that while interfibrillar elasticity contributes to the initial stress response, plastic deformation of the interfibrillar matrix is responsible for tendon fascicle post-yield behavior. This information sheds light on the physical processes underlying tendon failure, which is essential to improve our understanding of tissue pathology and guide the development of successful repair. Copyright

  12. Lubricin in human achilles tendon: The evidence of intratendinous sliding motion and shear force in achilles tendon.

    PubMed

    Sun, Yu-Long; Wei, Zhuang; Zhao, Chunfeng; Jay, Gregory D; Schmid, Thomas M; Amadio, Peter C; An, Kai-Nan

    2015-06-01

    Achilles tendon is one of the most commonly injured tendons. Mechanical force is regarded as a major causative factor. However, the biomechanics of Achilles tendon and mechanical mechanism of the injuries are unclear. Lubricin expresses at regions exposed to sliding motion and shear force in a number of tissues. This study investigated the distribution and concentration of lubricin in human Achilles tendons for better understanding the biomechanics of Achilles tendon. Achilles tendons were harvested from nine cadavers. Lubricin was extracted from various locations proximal to the calcaneal insertion and quantified with ELISA. The distribution of lubricin was investigated with immunohistochemistry. Lubricin was mainly identified at the interfaces of tendon fascicles, especially in the mid-portion of the tendon. The concentration of lubricin in Achilles tendons varied by individual and the distance from its calcaneal insertion. The distal portion of the tendon had a higher concentration of lubricin than the proximal regions of the tendon. This study suggests the presence of intratendinous sliding motion of fascicles and shear force at interfaces of fascicles in human Achilles tendon. Shear force could be an important mechanical factor for the development of Achilles tendinopathy and rupture. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  13. In situ cell-matrix mechanics in tendon fascicles and seeded collagen gels: implications for the multiscale design of biomaterials.

    PubMed

    Duncan, Neil A; Bruehlmann, Sabina B; Hunter, Christopher J; Shao, Xinxin; Kelly, Elizabeth J

    2014-01-01

    Designing biomaterials to mimic and function within the complex mechanobiological conditions of connective tissues requires a detailed understanding of the micromechanical environment of the cell. The objective of our study was to measure the in situ cell-matrix strains from applied tension in both tendon fascicles and cell-seeded type I collagen scaffolds using laser scanning confocal microscopy techniques. Tendon fascicles and collagen gels were fluorescently labelled to simultaneously visualise the extracellular matrix and cell nuclei under applied tensile strains of 5%. There were significant differences observed in the micromechanics at the cell-matrix scale suggesting that the type I collagen scaffold did not replicate the pattern of native tendon strains. In particular, although the overall in situ tensile strains in the matrix were quite similar (∼2.5%) between the tendon fascicles and the collagen scaffolds, there were significant differences at the cell-matrix boundary with visible shear across cell nuclei of >1 μm measured in native tendon which was not observed at all in the collagen scaffolds. Similarly, there was significant non-uniformity of intercellular strains with relative sliding observed between cell rows in tendon which again was not observed in the collagen scaffolds where the strain environment was much more uniform. If the native micromechanical environment is not replicated in biomaterial scaffolds, then the cells may receive incorrect or mixed mechanical signals which could affect their biosynthetic response to mechanical load in tissue engineering applications. This study highlights the importance of considering the microscale mechanics in the design of biomaterial scaffolds and the need to incorporate such features in computational models of connective tissues.

  14. Afferent contribution to locomotor muscle activity during unconstrained overground human walking: an analysis of triceps surae muscle fascicles.

    PubMed

    af Klint, R; Cronin, N J; Ishikawa, M; Sinkjaer, T; Grey, M J

    2010-03-01

    Plantar flexor series elasticity can be used to dissociate muscle-fascicle and muscle-tendon behavior and thus afferent feedback during human walking. We used electromyography (EMG) and high-speed ultrasonography concomitantly to monitor muscle activity and muscle fascicle behavior in 19 healthy volunteers as they walked across a platform. On random trials, the platform was dropped (8 cm, 0.9 g acceleration) or held at a small inclination (up to +/-3 degrees in the parasagittal plane) with respect to level ground. Dropping the platform in the mid and late phases of stance produced a depression in the soleus muscle activity with an onset latency of about 50 ms. The reduction in ground reaction force also unloaded the plantar flexor muscles. The soleus muscle fascicles shortened with a minimum delay of 14 ms. Small variations in platform inclination produced significant changes in triceps surae muscle activity; EMG increased when stepping on an inclined surface and decreased when stepping on a declined surface. This sensory modulation of the locomotor output was concomitant with changes in triceps surae muscle fascicle and gastrocnemius tendon length. Assuming that afferent activity correlates to these mechanical changes, our results indicate that within-step sensory feedback from the plantar flexor muscles automatically adjusts muscle activity to compensate for small ground irregularities. The delayed onset of muscle fascicle movement after dropping the platform indicates that at least the initial part of the soleus depression is more likely mediated by a decrease in force feedback than length-sensitive feedback, indicating that force feedback contributes to the locomotor activity in human walking.

  15. Hypoxia inhibits primary cilia formation and reduces cell-mediated contraction in stress-deprived rat tail tendon fascicles

    PubMed Central

    Lavagnino, Michael; Oslapas, Anna N.; Gardner, Keri L.; Arnoczky, Steven P.

    2016-01-01

    Summary Background Hypoxia, which is associated with chronic tendinopathy, has recently been shown to decrease the mechanosensitivity of some cells. Therefore, the purpose of this study was to determine the effect of hypoxia on the formation of elongated primary cilia (a mechanosensing organelle of tendon cells) in vitro and to determine the effect of hypoxia on cell-mediated contraction of stress-deprived rat tail tendon fascicles (RTTfs). Methods Tendon cells isolated from RTTfs were cultured under normoxic (21% O2) or hypoxic (1% O2) conditions for 24 hours. The cells were then stained for tubulin and the number of cells with elongated cilia counted. RTTfs from 1-month-old male Sprague-Dawley rats were also cultured under hypoxic and normoxic conditions for three days and tendon length measured daily. Results A significant (p=0.002) decrease in the percent of elongated cilia was found in cells maintained in hypoxic conditions (54.1%±12.2) when compared in normoxic conditions (71.7%±6.32). RTTfs in hypoxia showed a significant decrease in the amount of contraction compared to RTTfs in normoxia after two (p=0.007) and three (p=0.001) days. Conclusion The decreased incidence of elongated primary cilia in a hypoxic environment, as well as the decreased mechanoresponsiveness of tendon cells under these conditions may relate to the inability of some cases of chronic tendinopathy to respond to strain-based rehabilitation modalities (i.e. eccentric loading). PMID:27900292

  16. Human middle longitudinal fascicle: variations in patterns of anatomical connections

    PubMed Central

    Makris, N.; Preti, M. G.; Asami, T.; Pelavin, P.; Campbell, B.; Papadimitriou, G. M.; Kaiser, J.; Baselli, G.; Westin, C. F.; Shenton, M. E.; Kubicki, M.

    2012-01-01

    Based on high-resolution diffusion tensor magnetic resonance imaging (DTI) tractographic analyses in thirty-nine healthy adult subjects we derived patterns of connections and measures of volume and biophysical parameters, such as fractional anisotropy (FA) for the human middle longitudinal fascicle (MdLF). Compared to previous studies, we found that the cortical connections of the MdLF in humans appear to go beyond the superior temporal (STG) and angular (AG) gyri, extending to the temporal pole (TP), superior parietal lobule (SPL), supramarginal gyrus, precuneus and the occipital lobe (including the cuneus and lateral occipital areas). Importantly, the MdLF showed a striking lateralized pattern with predominant connections between the TP, STG and AG on the left and TP, STG and SPL on the right hemisphere. In light of the results of the present study, and of the known functional role of the cortical areas interconnected by the MdLF, we suggested that this fiber pathway might be related to language, high order auditory association, visuospatial and attention functions. PMID:22782432

  17. Effects of contraction intensity on muscle fascicle and stretch reflex behavior in the human triceps surae.

    PubMed

    Cronin, Neil J; Peltonen, Jussi; Ishikawa, Masaki; Komi, Paavo V; Avela, Janne; Sinkjaer, Thomas; Voigt, Michael

    2008-07-01

    The aims of this study were to examine changes in the distribution of a stretch to the muscle fascicles with changes in contraction intensity in the human triceps surae and to relate fascicle stretch responses to short-latency stretch reflex behavior. Thirteen healthy subjects were seated in an ankle ergometer, and dorsiflexion stretches (8 degrees ; 250 degrees /s) were applied to the triceps surae at different moment levels (0-100% of maximal voluntary contraction). Surface EMG was recorded in the medial gastrocnemius, soleus, and tibialis anterior muscles, and ultrasound was used to measure medial gastrocnemius and soleus fascicle lengths. At low forces, reflex amplitudes increased despite a lack of change or even a decrease in fascicle stretch velocities. At high forces, lower fascicle stretch velocities coincided with smaller stretch reflexes. The results revealed a decline in fascicle stretch velocity of over 50% between passive conditions and maximal force levels in the major muscles of the triceps surae. This is likely to be an important factor related to the decline in stretch reflex amplitudes at high forces. Because short-latency stretch reflexes contribute to force production and stiffness regulation of human muscle fibers, a reduction in afferent feedback from muscle spindles could decrease the efficacy of human movements involving the triceps surae, particularly where high force production is required.

  18. Is the human left middle longitudinal fascicle essential for language? A brain electrostimulation study.

    PubMed

    De Witt Hamer, Philip C; Moritz-Gasser, Sylvie; Gatignol, Peggy; Duffau, Hugues

    2011-06-01

    Human brain pathways required for language processing are poorly known. A new white matter tract in humans, the middle longitudinal fascicle, has recently been anatomically determined by diffusion tensor imaging and suggested to be essential for language. Our aim is to determine the importance of the middle longitudinal fascicle for language processing. This study is based on 8 patients with glioma resection at least involving the superior temporal gyrus of the left dominant hemisphere. Language is systematically examined pre- and postoperatively at 3 months. Intraoperative electrostimulation is used to map cortical and subcortical structures as functional boundaries of the glioma resection, including those essential for language processing. The resections are extensive (on average 62 ml, ranging from 21 to 111 ml) and include a large part of the middle longitudinal fascicle in all patients. Intraoperatively, no interference with picture naming is observed by electrostimulation of the middle longitudinal fascicle, while in all patients the inferior fronto-occipital fascicle is identified by eliciting semantic paraphasia as functional boundary. Postoperatively, no new permanent language deficits are detected by systematic language examination. Therefore, we suggest that the middle longitudinal fascicle may participate but is not essential for language processing.

  19. Lower strength of the human posterior patellar tendon seems unrelated to mature collagen cross-linking and fibril morphology.

    PubMed

    Hansen, Philip; Haraldsson, Bjarki Thor; Aagaard, Per; Kovanen, Vuokko; Avery, Nicholas C; Qvortrup, Klaus; Larsen, Jytte Overgaard; Krogsgaard, Michael; Kjaer, Michael; Peter Magnusson, S

    2010-01-01

    The human patellar tendon is frequently affected by tendinopathy, but the etiology of the condition is not established, although differential loading of the anterior and posterior tendon may be associated with the condition. We hypothesized that changes in fibril morphology and collagen cross-linking would parallel differences in material strength between the anterior and posterior tendon. Tendon fascicles were obtained from elective ACL surgery patients and tested micromechanically. Transmission electron microscopy was used to assess fibril morphology, and collagen cross-linking was determined by HPLC and calorimetry. Anterior fascicles were markedly stronger (peak stress: 54.3 +/- 21.2 vs. 39.7 +/- 21.3 MPa; P < 0.05) and stiffer (624 +/- 232 vs. 362 +/- 170 MPa; P < 0.01) than posterior fascicles. Notably, mature pyridinium type cross-links were less abundant in anterior fascicles (hydroxylysylpyridinoline: 0.859 +/- 0.197 vs. 1.416 +/- 0.250 mol/mol, P = 0.001; lysylpyridinoline: 0.023 +/- 0.006 vs. 0.035 +/- 0.006 mol/mol, P < 0.01), whereas pentosidine and pyrrole concentrations showed no regional differences. Fibril diameters tended to be larger in anterior fascicles (7.819 +/- 2.168 vs. 4.897 +/- 1.434 nm(2); P = 0.10). Material properties did not appear closely related to cross-linking or fibril morphology. These findings suggest region-specific differences in mechanical, structural, and biochemical properties of the human patellar tendon.

  20. Microneurography in relation to intraneural topography: somatotopic organisation of median nerve fascicles in humans.

    PubMed Central

    Hallin, R G

    1990-01-01

    Microneurography was performed in median nerve sensory fascicles with concentric needle electrodes and with conventional tungsten microneedles. The latter electrodes preferentially recorded activity from the myelinated fibres in the whole fascicle. By contrast, due to its special design, a concentric needle can record activity selectively from even a small part of a fascicle. High amplitude signals in C fibres can be discriminated close to Schwann cells that envelope unmyelinated axons. Apart from being biased for activity in thin fibres, the concentric needles can also record signals from nearby myelinated fibres. The palmar receptive fields of such fibre groups were not congruent with the areas traditionally attributed to multiunit skin afferents in humans, namely the innervation zone(s) of one or two adjacent digital nerve(s). Instead, the multiunit fields often comprised small parts of a digital nerve innervation area, frequently only the pulp of a finger. Single units were always localised within previously screened multiunit areas. Contrary to some previously accepted tenets it is probable that single unit activity in myelinated fibres in these studies is recorded extra-axonally near to a node of Ranvier. The findings also suggest the presence of a somatotopy in human limb nerve fascicles, comparable to that previously established in the spinal cord and the somatosensory cortex. Images PMID:2246655

  1. Human ankle plantar flexor muscle–tendon mechanics and energetics during maximum acceleration sprinting

    PubMed Central

    Schache, Anthony G.; Brown, Nicholas A. T.; Pandy, Marcus G.

    2016-01-01

    Tendon elastic strain energy is the dominant contributor to muscle–tendon work during steady-state running. Does this behaviour also occur for sprint accelerations? We used experimental data and computational modelling to quantify muscle fascicle work and tendon elastic strain energy for the human ankle plantar flexors (specifically soleus and medial gastrocnemius) for multiple foot contacts of a maximal sprint as well as for running at a steady-state speed. Positive work done by the soleus and medial gastrocnemius muscle fascicles decreased incrementally throughout the maximal sprint and both muscles performed more work for the first foot contact of the maximal sprint (FC1) compared with steady-state running at 5 m s−1 (SS5). However, the differences in tendon strain energy for both muscles were negligible throughout the maximal sprint and when comparing FC1 to SS5. Consequently, the contribution of muscle fascicle work to stored tendon elastic strain energy was greater for FC1 compared with subsequent foot contacts of the maximal sprint and compared with SS5. We conclude that tendon elastic strain energy in the ankle plantar flexors is just as vital at the start of a maximal sprint as it is at the end, and as it is for running at a constant speed. PMID:27581481

  2. Asymmetry, connectivity, and segmentation of the arcuate fascicle in the human brain.

    PubMed

    Fernández-Miranda, Juan C; Wang, Yibao; Pathak, Sudhir; Stefaneau, Lucia; Verstynen, Timothy; Yeh, Fang-Cheng

    2015-01-01

    The structure and function of the arcuate fascicle is still controversial. The goal of this study was to investigate the asymmetry, connectivity, and segmentation patterns of the arcuate fascicle. We employed diffusion spectrum imaging reconstructed by generalized q-sampling and we applied both a subject-specific approach (10 subjects) and a template approach (q-space diffeomorphic reconstruction of 30 subjects). We complemented our imaging investigation with fiber microdissection of five post-mortem human brains. Our results confirmed the highly leftward asymmetry of the arcuate fascicle. In the template, the left arcuate had a volume twice as large as the right one, and the left superior temporal gyrus provided five times more volume of fibers than its counterpart. We identified four cortical frontal areas of termination: pars opercularis, pars triangularis, ventral precentral gyrus, and caudal middle frontal gyrus. We found clear asymmetry of the frontal terminations at pars opercularis and ventral precentral gyrus. The analysis of patterns of connectivity revealed the existence of a strong structural segmentation in the left arcuate, but not in the right one. The left arcuate fascicle is formed by an inner or ventral pathway, which interconnects pars opercularis with superior and rostral middle temporal gyri; and an outer or dorsal pathway, which interconnects ventral precentral and caudal middle frontal gyri with caudal middle and inferior temporal gyri. The fiber microdissection results provided further support to our tractography studies. We propose the existence of primary and supplementary language pathways within the dominant arcuate fascicle with potentially distinct functional and lesional features.

  3. Adaptability of elderly human muscles and tendons to increased loading.

    PubMed

    Narici, Marco V; Maganaris, Constantinos N

    2006-04-01

    Senile sarcopenia, the loss of muscle mass associated with aging, is one of the main causes of muscle weakness and reduced locomotor ability in old age. Although this condition is mainly driven by neuropathic processes, nutritional, hormonal and immunological factors, as well as a reduction in physical activity, contribute to this phenomenon. Sarcopenia alone, however, does not fully account for the observed muscle weakness, as the loss of force is greater than that accounted for by the decrease in muscle size. As a consequence, a reduction in the force per unit area, both at single fibre and at whole muscle level, is observed. We recently suggested that at whole muscle level, this reduction in intrinsic force is the result of the combined effect of changes in (1) muscle architecture, (2) tendon mechanical properties, (3) neural drive (reduced agonist and increased antagonist muscle activity) and (4) single fibre-specific tension. Whereas several studies support the role of the last two factors in the loss of intrinsic muscle force with aging, alterations in muscle architecture and in tendon mechanical properties have also been shown to contribute to the above phenomenon. Indeed, sarcopenia of the human plantarflexors, represented by a 25% reduction in muscle volume, was found to be associated with a 10% reduction in fibre fascicle length and 13% reduction in pennation angle. These architectural alterations were accompanied by a 10% decrease in tendon stiffness, attributable to alterations in tendon material properties, as suggested by a 14% decrease in Young's modulus. Most of these changes may be reversed by 14 weeks of resistive training; both fibre fascicle length and tendon stiffness were found to be increased by 10 and 64%, respectively. Surprisingly, however, training had no effect on the estimated relative length-tension properties of the muscle, indicating that the effects of greater tendon stiffness and increased fascicle length cancelled out each other

  4. Modulation of muscle-tendon interaction in the human triceps surae during an energy dissipation task.

    PubMed

    Werkhausen, Amelie; Albracht, Kirsten; Cronin, Neil J; Meier, Rahel; Bojsen-Møller, Jens; Seynnes, Olivier R

    2017-09-07

    The compliance of elastic elements allows muscles to dissipate energy safely during eccentric contractions. This buffering function is well documented in animal models but our understanding of its mechanism in humans is confined to non-specific tasks, requiring a subsequent acceleration of the body. The present study aimed to examine the behaviour of the human triceps surae muscle-tendon unit (MTU) during a pure energy dissipation task, under two loading conditions.Thirty-nine subjects performed a single-leg landing task, with- and without added mass. Ultrasound measurements were combined with 3D kinematics and kinetics to determine instantaneous length changes of MTUs, muscle fascicles, Achilles tendon and combined elastic elements.Gastrocnemius and soleus MTUs lengthened during landing. After a small concentric action, fascicles contracted eccentrically during most of the task, when the highest muscle activity occurred. Combined elastic elements lengthened until peak ankle moment and recoiled thereafter, whilst no recoil was observed for the Achilles tendon. Adding mass resulted in greater negative work and MTU lengthening, which were accompanied by a greater stretch of tendon and elastic elements and a greater recruitment of the soleus muscle, without any further fascicle strain.Hence, the buffering action of elastic elements delimits the maximal strain and lengthening velocity of active muscle fascicles and is commensurate with loading constraints. In the present task, energy dissipation was modulated via greater MTU excursion and more forceful eccentric contractions. The distinct strain pattern of the Achilles tendon supports the notion that different elastic elements may not systematically fulfil the same function. © 2017. Published by The Company of Biologists Ltd.

  5. In vivo intramuscular fascicle-aponeuroses dynamics of the human medial gastrocnemius during plantarflexion and dorsiflexion of the foot

    PubMed Central

    Shin, David D.; Hodgson, John A.; Edgerton, V. Reggie

    2009-01-01

    Velocity-encoded phase-contrast magnetic resonance (MR) imaging techniques and a computer-controlled MR-compatible foot pedal device were used to investigate the medial gastrocnemius muscle and aponeurosis deformations during passive and active eccentric movements of the plantarflexors. Intrafascicular strain, measured as the ratio of strain in the fascicle segment at its insertion to strain at its origin, was nonuniform along the proximodistal axis of the muscle (P < 0.01), progressively increasing from the proximal to distal direction. The high intrafascicular strain regions appeared to correlate with the muscle regions that are likely to encounter high stress concentrations, i.e., the regions where the muscle physiological cross section decreases close to the tendons. The architectural gear ratio, i.e., the mechanical amplification ratio of fascicle length displacement to that of tendon/aponeuroses in a pennate muscle, also exhibited significant regional differences, with the highest ratios in the proximal region of the muscle accompanied by a higher initial pennation angle and a larger range of fascicular rotation about the origin. Values close to unity in the distal region of the muscle suggest that the aponeurosis separation may decrease in this region. Fascicle length and pennation angle changes were significantly influenced by force generation in the muscle, probably due to a shortening of the loaded muscle fibers relative to a passive condition. Overall, our data illustrate significant proximodistal intramuscular heterogeneity as supported by a regionally variable end-to-end strain ratio of fascicles and angle changes in the medial gastrocnemius muscle during passive and active ankle movements. These observations emphasize the need to reassess current conceptual models of muscle-tendon mechanics. PMID:19608924

  6. Iodine and freeze-drying enhanced high-resolution MicroCT imaging for reconstructing 3D intraneural topography of human peripheral nerve fascicles.

    PubMed

    Yan, Liwei; Guo, Yongze; Qi, Jian; Zhu, Qingtang; Gu, Liqiang; Zheng, Canbin; Lin, Tao; Lu, Yutong; Zeng, Zitao; Yu, Sha; Zhu, Shuang; Zhou, Xiang; Zhang, Xi; Du, Yunfei; Yao, Zhi; Lu, Yao; Liu, Xiaolin

    2017-08-01

    The precise annotation and accurate identification of the topography of fascicles to the end organs are prerequisites for studying human peripheral nerves. In this study, we present a feasible imaging method that acquires 3D high-resolution (HR) topography of peripheral nerve fascicles using an iodine and freeze-drying (IFD) micro-computed tomography (microCT) method to greatly increase the contrast of fascicle images. The enhanced microCT imaging method can facilitate the reconstruction of high-contrast HR fascicle images, fascicle segmentation and extraction, feature analysis, and the tracing of fascicle topography to end organs, which define fascicle functions. The complex intraneural aggregation and distribution of fascicles is typically assessed using histological techniques or MR imaging to acquire coarse axial three-dimensional (3D) maps. However, the disadvantages of histological techniques (static, axial manual registration, and data instability) and MR imaging (low-resolution) limit these applications in reconstructing the topography of nerve fascicles. Thus, enhanced microCT is a new technique for acquiring 3D intraneural topography of the human peripheral nerve fascicles both to improve our understanding of neurobiological principles and to guide accurate repair in the clinic. Additionally, 3D microstructure data can be used as a biofabrication model, which in turn can be used to fabricate scaffolds to repair long nerve gaps. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The occipitofrontal fascicle in humans: A quantitative, in vivo, DT-MRI study

    PubMed Central

    Makris, Nikos; Papadimitriou, George M.; Sorg, Scott; Kennedy, David N.; Caviness, Verne S.; Pandya, Deepak N.

    2013-01-01

    Since the existence of the occipitofrontal fascicle (OFF) in humans has remained controversial, we utilized diffusion tensor imaging (DT-MRI)-based segmentation and tractography to investigate its trajectory in vivo in the human. We found that the OFF is distinct from the subcallosal fasciculus or Muratoff’s bundle (MB) and extends from the dorsal and medial parts of the occipital lobe as well as the dorsal, medial and inferior parietal lobules to the dorsal and medial part of the prefrontal and premotor regions. In most of its course, it remains parallel to the corpus callosum, the caudate nucleus and the lateral ventricle. In the coronal plane, the OFF is discerned in the core of the white matter medial to the corona radiata and the superior longitudinal fascicle II (SLF II) and lateral to MB and the corpus callosum. The volumetric measurements of the stem portion of the OFF indicate that the OFF is smaller than the SLF II and the cingulum bundle. Since DT-MRI allows the visualization of OFF fibers leading to the projection areas but not to the origin or termination of these fibers, this has been extrapolated from the experimental data in non-human primates. The OFF may have a role in visual spatial processing along with SLF II. PMID:17681797

  8. In vivo maximal fascicle-shortening velocity during plantar flexion in humans.

    PubMed

    Hauraix, Hugo; Nordez, Antoine; Guilhem, Gaël; Rabita, Giuseppe; Dorel, Sylvain

    2015-12-01

    Interindividual variability in performance of fast movements is commonly explained by a difference in maximal muscle-shortening velocity due to differences in the proportion of fast-twitch fibers. To provide a better understanding of the capacity to generate fast motion, this study aimed to 1) measure for the first time in vivo the maximal fascicle-shortening velocity of human muscle; 2) evaluate the relationship between angular velocity and fascicle-shortening velocity from low to maximal angular velocities; and 3) investigate the influence of musculo-articular features (moment arm, tendinous tissues stiffness, and muscle architecture) on maximal angular velocity. Ultrafast ultrasound images of the gastrocnemius medialis were obtained from 31 participants during maximal isokinetic and light-loaded plantar flexions. A strong linear relationship between fascicle-shortening velocity and angular velocity was reported for all subjects (mean R(2) = 0.97). The maximal shortening velocity (V(Fmax)) obtained during the no-load condition (NLc) ranged between 18.8 and 43.3 cm/s. V(Fmax) values were very close to those of the maximal shortening velocity (V(max)), which was extrapolated from the F-V curve (the Hill model). Angular velocity reached during the NLc was significantly correlated with this V(Fmax) (r = 0.57; P < 0.001). This finding was in agreement with assumptions about the role of muscle fiber type, whereas interindividual comparisons clearly support the fact that other parameters may also contribute to performance during fast movements. Nevertheless, none of the biomechanical features considered in the present study were found to be directly related to the highest angular velocity, highlighting the complexity of the upstream mechanics that lead to maximal-velocity muscle contraction.

  9. Operating length and velocity of human M. vastus lateralis fascicles during vertical jumping

    PubMed Central

    Nikolaidou, Maria Elissavet; Marzilger, Robert; Bohm, Sebastian; Mersmann, Falk

    2017-01-01

    Humans achieve greater jump height during a counter-movement jump (CMJ) than in a squat jump (SJ). However, the crucial difference is the mean mechanical power output during the propulsion phase, which could be determined by intrinsic neuro-muscular mechanisms for power production. We measured M. vastus lateralis (VL) fascicle length changes and activation patterns and assessed the force–length, force–velocity and power–velocity potentials during the jumps. Compared with the SJ, the VL fascicles operated on a more favourable portion of the force–length curve (7% greater force potential, i.e. fraction of VL maximum force according to the force–length relationship) and more disadvantageous portion of the force–velocity curve (11% lower force potential, i.e. fraction of VL maximum force according to the force–velocity relationship) in the CMJ, indicating a reciprocal effect of force–length and force–velocity potentials for force generation. The higher muscle activation (15%) could therefore explain the moderately greater jump height (5%) in the CMJ. The mean fascicle-shortening velocity in the CMJ was closer to the plateau of the power–velocity curve, which resulted in a greater (15%) power–velocity potential (i.e. fraction of VL maximum power according to the power–velocity relationship). Our findings provide evidence for a cumulative effect of three different mechanisms—i.e. greater force–length potential, greater power–velocity potential and greater muscle activity—for an advantaged power production in the CMJ contributing to the marked difference in mean mechanical power (56%) compared with SJ. PMID:28573027

  10. Operating length and velocity of human M. vastus lateralis fascicles during vertical jumping.

    PubMed

    Nikolaidou, Maria Elissavet; Marzilger, Robert; Bohm, Sebastian; Mersmann, Falk; Arampatzis, Adamantios

    2017-05-01

    Humans achieve greater jump height during a counter-movement jump (CMJ) than in a squat jump (SJ). However, the crucial difference is the mean mechanical power output during the propulsion phase, which could be determined by intrinsic neuro-muscular mechanisms for power production. We measured M. vastus lateralis (VL) fascicle length changes and activation patterns and assessed the force-length, force-velocity and power-velocity potentials during the jumps. Compared with the SJ, the VL fascicles operated on a more favourable portion of the force-length curve (7% greater force potential, i.e. fraction of VL maximum force according to the force-length relationship) and more disadvantageous portion of the force-velocity curve (11% lower force potential, i.e. fraction of VL maximum force according to the force-velocity relationship) in the CMJ, indicating a reciprocal effect of force-length and force-velocity potentials for force generation. The higher muscle activation (15%) could therefore explain the moderately greater jump height (5%) in the CMJ. The mean fascicle-shortening velocity in the CMJ was closer to the plateau of the power-velocity curve, which resulted in a greater (15%) power-velocity potential (i.e. fraction of VL maximum power according to the power-velocity relationship). Our findings provide evidence for a cumulative effect of three different mechanisms-i.e. greater force-length potential, greater power-velocity potential and greater muscle activity-for an advantaged power production in the CMJ contributing to the marked difference in mean mechanical power (56%) compared with SJ.

  11. Treadmill versus overground and barefoot versus shod comparisons of triceps surae fascicle behaviour in human walking and running.

    PubMed

    Cronin, Neil J; Finni, Taija

    2013-07-01

    Studies of human locomotion are commonly performed on a treadmill or overground, as well as with or without footwear. These testing modalities have been suggested to influence kinematics, kinetics and/or spatio-temporal variables differently. However, it is unclear whether they influence contractile behaviour at the level of the muscle fascicles. This has major relevance because results from studies performed with different combinations of the testing modalities are often compared. The present study used ultrasound to examine fascicle behaviour of the medial gastrocnemius (MG) and soleus muscles of ten young, healthy males during walking and running on a treadmill and overground, as well as barefoot and shod. Barefoot conditions resulted in modestly shorter step durations than corresponding shod conditions, whereas no consistent temporal differences were observed between overground and treadmill locomotion. For both comparisons, no differences were observed in soleus or MG fascicle behaviour between corresponding conditions in walking or running, although soleus consistently exhibited smaller, lower velocity length changes than MG. It is concluded that the examined testing modalities are equally valid for studying muscle fascicle behaviour during locomotion. This conclusion is supported by a comparison of our data to the results of 16 previous studies that used various combinations of testing modalities; muscle fascicle behaviour is qualitatively similar between studies for a given muscle and gait.

  12. Effects of ballistic stretching training on the properties of human muscle and tendon structures.

    PubMed

    Konrad, Andreas; Tilp, Markus

    2014-07-01

    The purpose of this study was to investigate the influence of a 6-wk ballistic stretching training program on various parameters of the human gastrocnemius medialis muscle and the Achilles tendon. It is known that ballistic stretching is an appropriate means of increasing the range of motion (RoM), but information in the literature about the mechanical adaptation of the muscle-tendon unit (MTU) is scarce. Therefore, in this study, a total of 48 volunteers were randomly assigned into ballistic stretching and control groups. Before and following the stretching intervention, we determined the maximum dorsiflexion RoM with the corresponding fascicle length and pennation angle. Passive resistive torque (PRT) and maximum voluntary contraction (MVC) were measured with a dynamometer. Muscle-tendon junction (MTJ) displacement allowed us to determine the length changes in tendon and muscle, and hence to calculate stiffness. Mean RoM increased significantly from 33.8 ± 6.3° to 37.8 ± 7.2° only in the intervention group, but other functional (PRT, MVC) and structural (fascicle length, pennation angle, muscle stiffness, tendon stiffness) parameters were unaltered. Thus the increased RoM could not be explained by structural changes in the MTU and was likely due to increased stretch tolerance. Copyright © 2014 the American Physiological Society.

  13. Effect of Transducer Orientation on Errors in Ultrasound Image-Based Measurements of Human Medial Gastrocnemius Muscle Fascicle Length and Pennation

    PubMed Central

    Gandevia, Simon C.; Herbert, Robert D.

    2016-01-01

    Ultrasound imaging is often used to measure muscle fascicle lengths and pennation angles in human muscles in vivo. Theoretically the most accurate measurements are made when the transducer is oriented so that the image plane aligns with muscle fascicles and, for measurements of pennation, when the image plane also intersects the aponeuroses perpendicularly. However this orientation is difficult to achieve and usually there is some degree of misalignment. Here, we used simulated ultrasound images based on three-dimensional models of the human medial gastrocnemius, derived from magnetic resonance and diffusion tensor images, to describe the relationship between transducer orientation and measurement errors. With the transducer oriented perpendicular to the surface of the leg, the error in measurement of fascicle lengths was about 0.4 mm per degree of misalignment of the ultrasound image with the muscle fascicles. If the transducer is then tipped by 20°, the error increases to 1.1 mm per degree of misalignment. For a given degree of misalignment of muscle fascicles with the image plane, the smallest absolute error in fascicle length measurements occurs when the transducer is held perpendicular to the surface of the leg. Misalignment of the transducer with the fascicles may cause fascicle length measurements to be underestimated or overestimated. Contrary to widely held beliefs, it is shown that pennation angles are always overestimated if the image is not perpendicular to the aponeurosis, even when the image is perfectly aligned with the fascicles. An analytical explanation is provided for this finding. PMID:27294280

  14. Human tendon behaviour and adaptation, in vivo

    PubMed Central

    Magnusson, S Peter; Narici, Marco V; Maganaris, Constantinos N; Kjaer, Michael

    2008-01-01

    Tendon properties contribute to the complex interaction of the central nervous system, muscle–tendon unit and bony structures to produce joint movement. Until recently limited information on human tendon behaviour in vivo was available; however, novel methodological advancements have enabled new insights to be gained in this area. The present review summarizes the progress made with respect to human tendon and aponeurosis function in vivo, and how tendons adapt to ageing, loading and unloading conditions. During low tensile loading or with passive lengthening not only the muscle is elongated, but also the tendon undergoes significant length changes, which may have implications for reflex responses. During active loading, the length change of the tendon far exceeds that of the aponeurosis, indicating that the aponeurosis may more effectively transfer force onto the tendon, which lengthens and stores elastic energy subsequently released during unloading, in a spring-like manner. In fact, data recently obtained in vivo confirm that, during walking, the human Achilles tendon provides elastic strain energy that can decrease the energy cost of locomotion. Also, new experimental evidence shows that, contrary to earlier beliefs, the metabolic activity in human tendon is remarkably high and this affords the tendon the ability to adapt to changing demands. With ageing and disuse there is a reduction in tendon stiffness, which can be mitigated with resistance exercises. Such adaptations seem advantageous for maintaining movement rapidity, reducing tendon stress and risk of injury, and possibly, for enabling muscles to operate closer to the optimum region of the length–tension relationship. PMID:17855761

  15. Acute effect of static stretching on passive stiffness of the human gastrocnemius fascicle measured by ultrasound shear wave elastography.

    PubMed

    Hirata, Kosuke; Kanehisa, Hiroaki; Miyamoto, Naokazu

    2017-03-01

    Passive muscle stiffness and muscle architecture at a given joint angle, as well as slack angle of the muscle have been shown to change after an acute bout of stretching. However, it remains unclear whether passive muscle stiffness at a given fascicle length is reduced after stretching. We aimed to elucidate the acute effect of static stretching on the passive fascicle stiffness using ultrasound shear wave elastography. Shear modulus, fascicle length, and slack angle of the medial gastrocnemius (MG) as well as passive plantar flexion torque during passive dorsiflexion were measured before and after a 5-min static stretching in 14 healthy males. After stretching, passive torques were significantly reduced at >50% of range of motion (ROM). Shear modulus at a given fascicle length was significantly reduced at >80% of the change in fascicle length during passive dorsiflexion. Slack angle of MG was observed at the middle part of ROM and significantly shifted toward more dorsiflexed position after stretching. The present study showed the significant effectiveness of static stretching on the passive fascicle stiffness. Furthermore, the present results suggest that both the shift in slack angle and the reduction in passive fascicle stiffness contribute to produce the change in passive torque-joint angle relationship during passive dorsiflexion. Notably, the contribution of the reduced passive fascicle stiffness to the decrease in passive torque is substantial over the latter part of ROM.

  16. Effect of PNF stretching training on the properties of human muscle and tendon structures.

    PubMed

    Konrad, A; Gad, M; Tilp, M

    2015-06-01

    The purpose of this study was to investigate the influence of a 6-week proprioceptive neuromuscular facilitation (PNF) stretching training program on the various parameters of the human gastrocnemius medialis muscle and the Achilles tendon. Therefore, 49 volunteers were randomly assigned into PNF stretching and control groups. Before and after the stretching intervention, we determined the maximum dorsiflexion range of motion (RoM) with the corresponding fascicle length and pennation angle. Passive resistive torque (PRT) and maximum voluntary contraction (MVC) of the musculo-articular complex were measured with a dynamometer. Muscle-tendon junction (MTJ) displacement allowed us to determine the length changes in tendon and muscle, and hence to calculate stiffness. Mean RoM increased from 31.1 ± 7.2° to 33.1 ± 7.2° (P = 0.02), stiffness of the tendon decreased significantly in both active (from 21.1 ± 8.0 to 18.1 ± 5.5 N/mm) and passive (from 12.1 ± 4.9 to 9.6 ± 3.2 N/mm) conditions, and the pennation angle increased from 18.5 ± 1.8° to 19.5 ± 2.1° (P = 0.01) at the neutral ankle position (90°), only in the intervention group, whereas MVC and PRT values remained unchanged. We conclude that a 6-week PNF stretching training program increases RoM and decreases tendon stiffness, despite no change in PRT. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Superficial aponeurosis of human gastrocnemius is elongated during contraction: implications for modeling muscle-tendon unit.

    PubMed

    Muramatsu, Tadashi; Muraoka, Tetsuro; Kawakami, Yasuo; Fukunaga, Tetsuo

    2002-02-01

    Two questions were addressed in this study: (1) how much strain of the superficial aponeurosis of the human medial gastrocnemius muscle (MG) was obtained during voluntary isometric contractions in vivo, (2) whether there existed inhomogeneity of the strain along the superficial aponeurosis. Seven male subjects, whose knees were extended and ankles were flexed at right angle, performed isometric plantar flexion while elongation of superficial aponeurosis of MG was determined from the movements of the intersections made by the superficial aponeurosis and fascicles using ultrasonography. The strain of the superficial aponeurosis at the maximum voluntary contraction, estimated from the elongation and length data, was 5.6+/-1.2%. There was no significant difference in strain between the proximal and distal parts of the superficial aponeurosis. Based on the present result and that of our previous study for the same subjects (J. Appl. Physiol 90 (2001) 1671), a model was formulated for a contracting uni-pennate muscle-tendon unit. This model, which could be applied to isometric contractions at other angles and therefore of wide use, showed that similar strain between superficial and deep aponeuroses of MG contributed to homogeneous fascicle length change within MG during contractions. These findings would contribute to clarifying the functions of the superficial aponeurosis and the effects of the superficial aponeurosis elongation on the whole muscle behavior.

  18. Optimization of human tendon tissue engineering: peracetic acid oxidation for enhanced reseeding of acellularized intrasynovial tendon.

    PubMed

    Woon, Colin Y L; Pridgen, Brian C; Kraus, Armin; Bari, Sina; Pham, Hung; Chang, James

    2011-03-01

    Tissue engineering of human flexor tendons combines tendon scaffolds with recipient cells to create complete cell-tendon constructs. Allogenic acellularized human flexor tendon has been shown to be a useful natural scaffold. However, there is difficulty repopulating acellularized tendon with recipient cells, as cell penetration is restricted by a tightly woven tendon matrix. The authors evaluated peracetic acid treatment in optimizing intratendinous cell penetration. Cadaveric human flexor tendons were harvested, acellularized, and divided into experimental groups. These groups were treated with peracetic acid in varying concentrations (2%, 5%, and 10%) and for varying time periods (4 and 20 hours) to determine the optimal treatment protocol. Experimental tendons were analyzed for differences in tendon microarchitecture. Additional specimens were reseeded by incubation in a fibroblast cell suspension at 1 × 10(6) cells/ml. This group was then analyzed for reseeding efficacy. A final group underwent biomechanical studies for strength. The optimal treatment protocol comprising peracetic acid at 5% concentration for 4 hours produced increased scaffold porosity, improving cell penetration and migration. Treated scaffolds did not show reduced collagen or glycosaminoglycan content compared with controls (p = 0.37 and p = 0.65, respectively). Treated scaffolds were cytotoxic to neither attached cells nor the surrounding cell suspension. Treated scaffolds also did not show inferior ultimate tensile stress or elastic modulus compared with controls (p = 0.26 and p = 0.28, respectively). Peracetic acid treatment of acellularized tendon scaffolds increases matrix porosity, leading to greater reseeding. It may prove to be an important step in tissue engineering of human flexor tendon using natural scaffolds.

  19. Specialization of tendon mechanical properties results from interfascicular differences

    PubMed Central

    Thorpe, Chavaunne T.; Udeze, Chineye P.; Birch, Helen L.; Clegg, Peter D.; Screen, Hazel R. C.

    2012-01-01

    Tendons transfer force from muscle to bone. Specific tendons, including the equine superficial digital flexor tendon (SDFT), also store and return energy. For efficient function, energy-storing tendons need to be more extensible than positional tendons such as the common digital extensor tendon (CDET), and when tested in vitro have a lower modulus and failure stress, but a higher failure strain. It is not known how differences in matrix organization contribute to distinct mechanical properties in functionally different tendons. We investigated the properties of whole tendons, tendon fascicles and the fascicular interface in the high-strain energy-storing SDFT and low-strain positional CDET. Fascicles failed at lower stresses and strains than tendons. The SDFT was more extensible than the CDET, but SDFT fascicles failed at lower strains than CDET fascicles, resulting in large differences between tendon and fascicle failure strain in the SDFT. At physiological loads, the stiffness at the fascicular interface was lower in the SDFT samples, enabling a greater fascicle sliding that could account for differences in tendon and fascicle failure strain. Sliding between fascicles prior to fascicle extension in the SDFT may allow the large extensions required in energy-storing tendons while protecting fascicles from damage. PMID:22764132

  20. Specialization of tendon mechanical properties results from interfascicular differences.

    PubMed

    Thorpe, Chavaunne T; Udeze, Chineye P; Birch, Helen L; Clegg, Peter D; Screen, Hazel R C

    2012-11-07

    Tendons transfer force from muscle to bone. Specific tendons, including the equine superficial digital flexor tendon (SDFT), also store and return energy. For efficient function, energy-storing tendons need to be more extensible than positional tendons such as the common digital extensor tendon (CDET), and when tested in vitro have a lower modulus and failure stress, but a higher failure strain. It is not known how differences in matrix organization contribute to distinct mechanical properties in functionally different tendons. We investigated the properties of whole tendons, tendon fascicles and the fascicular interface in the high-strain energy-storing SDFT and low-strain positional CDET. Fascicles failed at lower stresses and strains than tendons. The SDFT was more extensible than the CDET, but SDFT fascicles failed at lower strains than CDET fascicles, resulting in large differences between tendon and fascicle failure strain in the SDFT. At physiological loads, the stiffness at the fascicular interface was lower in the SDFT samples, enabling a greater fascicle sliding that could account for differences in tendon and fascicle failure strain. Sliding between fascicles prior to fascicle extension in the SDFT may allow the large extensions required in energy-storing tendons while protecting fascicles from damage.

  1. Flexor tendon tissue engineering: acellularization of human flexor tendons with preservation of biomechanical properties and biocompatibility.

    PubMed

    Pridgen, Brian C; Woon, Colin Y L; Kim, Maxwell; Thorfinn, Johan; Lindsey, Derek; Pham, Hung; Chang, James

    2011-08-01

    Acellular human tendons are a candidate scaffold for tissue engineering flexor tendons of the hand. This study compared acellularization methods and their compatibility with allogeneic human cells. Human flexor tendons were pretreated with 0.1% ethylenediaminetetracetic acid (EDTA) for 4  h followed by 24  h treatments of 1% Triton X-100, 1% tri(n-butyl)phosphate, or 0.1% or 1% sodium dodecyl sulfate (SDS) in 0.1% EDTA. Outcomes were assessed histologically by hematoxylin and eosin and SYTO green fluorescent nucleic acid stains and biochemically by a QIAGEN DNeasy kit, Sircol collagen assay, and 1,9 dimethylmethylene blue glycosaminoglycan assay. Mechanical data were collected using a Materials Testing System to pull to failure tendons acellularized with 0.1% SDS. Acellularized tendons were re-seeded in a suspension of human dermal fibroblasts. Attachment of viable cells to acellularized tendon was assessed biochemically by a cell viability assay and histologically by a live/dead stain. Data are reported as mean±standard deviation. Compared with the DNA content of fresh tendons (551±212  ng DNA/mg tendon), only SDS treatments significantly decreased DNA content (1% SDS [202.8±37.4  ng DNA/mg dry weight tendon]; 0.1% SDS [189±104  ng DNA/mg tendon]). These findings were confirmed by histology. There was no decrease in glycosaminoglycans or collagen following acellularization with SDS. There was no difference in the ultimate tensile stress (55.3±19.2 [fresh] vs. 51.5±6.9 [0.1% SDS] MPa). Re-seeded tendons demonstrated attachment of viable cells to the tendon surface using a viability assay and histology. Human flexor tendons were acellularized with 0.1% SDS in 0.1% EDTA for 24  h with preservation of mechanical properties. Preservation of collagen and glycoaminoglycans and re-seeding with human cells suggest that this scaffold is biocompatible. This will provide a promising scaffold for future human flexor tendon tissue engineering studies to

  2. Mechanical properties of human patellar tendon at the hierarchical levels of tendon and fibril.

    PubMed

    Svensson, René B; Hansen, Philip; Hassenkam, Tue; Haraldsson, Bjarki T; Aagaard, Per; Kovanen, Vuokko; Krogsgaard, Michael; Kjaer, Michael; Magnusson, S Peter

    2012-02-01

    Tendons are strong hierarchical structures, but how tensile forces are transmitted between different levels remains incompletely understood. Collagen fibrils are thought to be primary determinants of whole tendon properties, and therefore we hypothesized that the whole human patellar tendon and its distinct collagen fibrils would display similar mechanical properties. Human patellar tendons (n = 5) were mechanically tested in vivo by ultrasonography. Biopsies were obtained from each tendon, and individual collagen fibrils were dissected and tested mechanically by atomic force microscopy. The Young's modulus was 2.0 ± 0.5 GPa, and the toe region reached 3.3 ± 1.9% strain in whole patellar tendons. Based on dry cross-sectional area, the Young's modulus of isolated collagen fibrils was 2.8 ± 0.3 GPa, and the toe region reached 0.86 ± 0.08% strain. The measured fibril modulus was insufficient to account for the modulus of the tendon in vivo when fibril content in the tendon was accounted for. Thus, our original hypothesis was not supported, although the in vitro fibril modulus corresponded well with reported in vitro tendon values. This correspondence together with the fibril modulus not being greater than that of tendon supports that fibrillar rather than interfibrillar properties govern the subfailure tendon response, making the fibrillar level a meaningful target of intervention. The lower modulus found in vitro suggests a possible adverse effect of removing the tissue from its natural environment. In addition to the primary work comparing the two hierarchical levels, we also verified the existence of viscoelastic behavior in isolated human collagen fibrils.

  3. Human flexor tendon tissue engineering: decellularization of human flexor tendons reduces immunogenicity in vivo.

    PubMed

    Raghavan, Shyam S; Woon, Colin Y L; Kraus, Armin; Megerle, Kai; Choi, Matthew S S; Pridgen, Brian C; Pham, Hung; Chang, James

    2012-04-01

    In mutilating hand injuries, tissue engineered tendon grafts may provide a reconstructive solution. We have previously described a method to decellularize cadaveric human flexor tendons while preserving mechanical properties and biocompatibility. The purpose of this study is to evaluate the immunogenicity and strength of these grafts when implanted into an immunocompetent rat model. Cadaveric human flexor tendons were divided into two groups. Group 1 was untreated, and Group 2 was decellularized by treatment with sodium dodecyl sulfate (SDS), ethylenediaminetetraacetic acid (EDTA), and peracetic acid (PAA). Both groups were then analyzed for the presence of major histocompatibility complexes by immunohistochemistry (IHC). Pair-matched tendons from each group were then placed into the dorsal subcutaneous tissue and anchored to the spinal ligaments of Wistar rats for 2 or 4 weeks, and harvested. The infiltration of B-cells and macrophages was determined using IHC. The explants where then subjected to mechanical testing to determine the ultimate tensile stress (UTS) and elastic modulus (EM). Statistical analysis was performed using a paired Student's t-test. The decellularization protocol successfully removed cells and MHC-1 complexes. At 2 weeks after implantation, there was increased infiltration of B-cells in Group 1 (untreated) compared with Group 2 (acellular), both in the capsule and tendon substance. There was improved ultimate tensile stress (UTS, 42.7 ± 8.3 vs. 22.8 ± 7.8 MPa, p<0.05) and EM (830.2 ± 206.7 vs. 421.2 ± 171.3 MPa, p<0.05) in tendons that were decellularized. At 4 weeks, there was continued B-cell infiltration in Group 1 (untreated) compared with Group 2 (acellular). There was no appreciable difference in macrophage infiltration at both time points. At 4 weeks Group 2 (acellular) demonstrated persistently greater UTS (40.5 ± 9.1 vs. 14.6 ± 4.2 MPa, p<0.05) and EM (454.05 ± 101.5 vs. 204.6 ± 91.3 MPa, p<0.05) compared with Group 1

  4. Functionally Distinct Tendons From Elastin Haploinsufficient Mice Exhibit Mild Stiffening and Tendon-Specific Structural Alteration.

    PubMed

    Eekhoff, Jeremy D; Fang, Fei; Kahan, Lindsey G; Espinosa, Gabriela; Cocciolone, Austin J; Wagenseil, Jessica E; Mecham, Robert P; Lake, Spencer P

    2017-11-01

    Elastic fibers are present in low quantities in tendon, where they are located both within fascicles near tenocytes and more broadly in the interfascicular matrix (IFM). While elastic fibers have long been known to be significant in the mechanics of elastin-rich tissue (i.e., vasculature, skin, lungs), recent studies have suggested a mechanical role for elastic fibers in tendons that is dependent on specific tendon function. However, the exact contribution of elastin to properties of different types of tendons (e.g., positional, energy-storing) remains unknown. Therefore, this study purposed to evaluate the role of elastin in the mechanical properties and collagen alignment of functionally distinct supraspinatus tendons (SSTs) and Achilles tendons (ATs) from elastin haploinsufficient (HET) and wild type (WT) mice. Despite the significant decrease in elastin in HET tendons, a slight increase in linear stiffness of both tendons was the only significant mechanical effect of elastin haploinsufficiency. Additionally, there were significant changes in collagen nanostructure and subtle alteration to collagen alignment in the AT but not the SST. Hence, elastin may play only a minor role in tendon mechanical properties. Alternatively, larger changes to tendon mechanics may have been mitigated by developmental compensation of HET tendons and/or the role of elastic fibers may be less prominent in smaller mouse tendons compared to the larger bovine and human tendons evaluated in previous studies. Further research will be necessary to fully elucidate the influence of various elastic fiber components on structure-function relationships in functionally distinct tendons.

  5. Effects of cold and hot water immersion on the mechanical properties of human muscle and tendon in vivo.

    PubMed

    Kubo, Keitaro; Kanehisa, Hiroaki; Fukunaga, Tetsuo

    2005-03-01

    Cooling and heating have been shown to affect the contractile properties of muscles. However, the reasons for these changes remain unclear. The present study aimed to quantify the mechanical properties of muscle and tendon during passive stretch and active contraction, and to investigate the effects of cooling and heating on the mechanical properties of muscle and tendon. Before and after these conditions, the elongation of the muscle fascicle, tendon and aponeurosis of the medial gastrocnemius muscle was directly measured by ultrasonography, while the ankle joint was passively moved within the joint range of +15 to -30 deg (0 deg = neutral anatomic position; positive values for plantar flexion) and subjects performed ramp isometric plantar flexion up to the voluntary maximum. While the muscle fascicle, tendon and aponeurosis stretched during passive dorsi-flexion, the elongation of the tendon was significantly greater than that of the aponeurosis. During isometric contraction, the maximal elongation of the tendon was significantly greater than that of the aponeurosis. After cooling and heating, no significant changes in the elongation of muscle fascicle, tendon and aponeurosis were found during passive stretch. Similarly, after both the immersions there were no changes in the relationship between the estimated muscle force and elongation of each structure (tendon-aponeurosis complex, tendon) during isometric contraction. These results implied that the general application of icing and hot pack did not change the mechanical properties of muscle and tendon.

  6. Effect of hydrogen peroxide on human tendon allograft.

    PubMed

    Gardner, E M H; VonderHeide, N; Fisher, R; Brooker, G; Yates, P J

    2013-12-01

    Bacterial contamination of tendon allografts at the completion of processing has historically been about 2 %, with tendons that are found to be culture positive being discarded. Treatment of tendon allograft with hydrogen peroxide at the beginning of tissue processing may reduce bacterial contamination, however, the potential side effects of hydrogen peroxide treatment include hydrolysis of the collagen and this may alter the mechanical properties of the graft. Pairs of human tendons were used. One was washed in 3 % hydrogen peroxide for 5 min and the untreated tendon was used as a control. The ultimate tensile strength of the tendons was determined using a material testing machine. A freeze clamp technique was used to hold the tendons securely at the high loads required to cause tendon failure. There was no statistical difference in the ultimate tensile strength between the treated and untreated tendons. Mean strength ranged from Extensor Hallucis Longus at 588 Newtons to Tibialis Posterior at 2,366 Newtons. Hydrogen peroxide washing may reduce bacterial contamination of tendon allograft and does not affect the strength of the tendon.

  7. Structural and material properties of human foot tendons.

    PubMed

    Morales-Orcajo, Enrique; Becerro de Bengoa Vallejo, Ricardo; Losa Iglesias, Marta; Bayod, Javier

    2016-08-01

    The aim of this study was to assess the mechanical properties of the main balance tendons of the human foot in vitro reporting mechanical structural properties and mechanical material properties separately. Tendon structural properties are relevant for clinical applications, for example in orthopedic surgery to elect suitable replacements. Tendon material properties are important for engineering applications such as the development of refined constitutive models for computational simulation or in the design of synthetic materials. One hundred uniaxial tensile tests were performed to obtain the mechanical response of the main intrinsic and extrinsic human foot tendons. The specimens were harvested from five frozen cadaver feet including: Extensor and Flexor tendons of all toes, Tibialis Anterior and Posterior tendons and Peroneus Brevis and Longus tendons. Cross-sectional area, load and strain failure, Young's modulus and ultimate tensile stress are reported as a reference of foot tendon mechanical properties. Two different behaviors could be differentiated. Tibialis and Peroneus tendons exhibited higher values of strain failure compared to Flexor and Extensor tendons which had higher Young's modulus and ultimate tensile stress. Stress-strain tendon curves exhibited proportionality between regions. The initial strain, the toe region and the yield point corresponded to the 15, 30 and 70% of the strain failure respectively. Mechanical properties of the lesser-studied human foot tendons are presented under the same test protocol for different engineering and clinical applications. The tendons that work at the inversion/eversion plane are more deformable at the same stress and strain rate than those that work at the flexion/extension plane. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. 3D curvature of muscle fascicles in triceps surae.

    PubMed

    Rana, Manku; Hamarneh, Ghassan; Wakeling, James M

    2014-12-01

    Muscle fascicles curve along their length, with the curvatures occurring around regions of high intramuscular pressure, and are necessary for mechanical stability. Fascicles are typically considered to lie in fascicle planes that are the planes visualized during dissection or two-dimensional (2D) ultrasound scans. However, it has previously been predicted that fascicles must curve in three-dimensional (3D) and thus the fascicle planes may actually exist as 3D sheets. 3D fascicle curvatures have not been explored in human musculature. Furthermore, if the fascicles do not lie in 2D planes, then this has implications for architectural measures that are derived from 2D ultrasound scans. The purpose of this study was to quantify the 3D curvatures of the muscle fascicles and fascicle sheets within the triceps surae muscles and to test whether these curvatures varied among different contraction levels, muscle length, and regions within the muscle. Six male subjects were tested for three torque levels (0, 30, and 60% maximal voluntary contraction) and four ankle angles (-15, 0, 15, and 30° plantar flexion), and fascicles were imaged using 3D ultrasound techniques. The fascicle curvatures significantly increased at higher ankle torques and shorter muscle lengths. The fascicle sheet curvatures were of similar magnitude to the fascicle curvatures but did not vary between contractions. Fascicle curvatures were regionalized within each muscle with the curvature facing the deeper aponeuroses, and this indicates a greater intramuscular pressure in the deeper layers of muscles. Muscle architectural measures may be in error when using 2D images for complex geometries such as the soleus.

  9. The effect of decellularized matrices on human tendon stem/progenitor cell differentiation and tendon repair.

    PubMed

    Yin, Zi; Chen, Xiao; Zhu, Ting; Hu, Jia-jie; Song, Hai-xin; Shen, Wei-liang; Jiang, Liu-yun; Heng, Boon Chin; Ji, Jun-feng; Ouyang, Hong-Wei

    2013-12-01

    It is reported that decellularized collagen matrices derived from dermal skin and bone have been clinically used for tendon repair. However, the varying biological and physical properties of matrices originating from different tissues may influence the differentiation of tendon stem cells, which has not been systematically evaluated. In this study, the effects of collagenous matrices derived from different tissues (tendon, bone and dermis) on the cell differentiation of human tendon stem/progenitor cells (hTSPCs) were investigated, in the context of tendon repair. It was found that all three matrices supported the adhesion and proliferation of hTSPCs despite differences in topography. Interestingly, tendon-derived decellularized matrix promoted the tendinous phenotype in hTSPCs and inhibited their osteogenesis, even under osteogenic induction conditions, through modulation of the teno- and osteolineage-specific transcription factors Scleraxis and Runx2. Bone-derived decellularized matrix robustly induced osteogenic differentiation of hTSPCs, whereas dermal skin-derived collagen matrix had no apparent effect on hTSPC differentiation. Based on the specific biological function of the tendon-derived decellularized matrix, a tissue-engineered tendon comprising TSPCs and tendon-derived matrix was successfully fabricated for Achilles tendon reconstruction. Implantation of this cell-scaffold construct led to a more mature structure (histology score: 4.08 ± 0.61 vs. 8.51 ± 1.66), larger collagen fibrils (52.2 ± 1.6 nm vs. 47.5 ± 2.8 nm) and stronger mechanical properties (stiffness: 21.68 ± 7.1 Nm m(-1) vs.13.2 ± 5.9 Nm m(-1)) of repaired tendons compared to the control group. The results suggest that stem cells promote the rate of repair of Achilles tendon in the presence of a tendinous matrix. This study thus highlights the potential of decellularized matrix for future tissue engineering applications, as well as developing a practical strategy for functional tendon

  10. Characterization of age-related changes of tendon stem cells from adult human tendons.

    PubMed

    Ruzzini, Laura; Abbruzzese, Franca; Rainer, Alberto; Longo, Umile Giuseppe; Trombetta, Marcella; Maffulli, Nicola; Denaro, Vincenzo

    2014-11-01

    The present study evaluated the presence of stem cells in hamstring tendons from adult subjects of different ages. The aim was to isolate, characterize and expand these cells in vitro, and to evaluate whether cell activities are influenced by age. Tendon stem cells (TSCs) were isolated through magnetic sorting from the hamstring tendons of six patients. TSC percentage, morphology and clonogenic potential were evaluated, as well as the expression of specific surface markers. TSC multi-potency was also investigated as a function of age, and quantitative polimerase chain reaction was used to evaluate gene expression of TSCs cultured in suitable differentiating media. The presence of easily harvestable stem cell population within adult human hamstring tendons was demonstrated. These cells exhibit features such as clonogenicity, multi-potency and mesenchymal stem cells markers expression. The age-related variations in human TSCs affect the number of isolated cells and their self-renewal potential, while multi-potency assays are not influenced by tendon ageing, even though cells from younger individuals expressed higher levels of osteogenic and adipogenic genes, while chondrogenic genes were highly expressed in cells from older individuals. These results may open new opportunities to study TSCs to better understand tendon physiology, healing and pathological processes such as tendinopathy and degenerative age-related changes opening new frontiers in the management of tendinopathy and tendon ruptures.

  11. 3-D ultrastructure and collagen composition of healthy and overloaded human tendon: evidence of tenocyte and matrix buckling

    PubMed Central

    Pingel, Jessica; Lu, Yinhui; Starborg, Tobias; Fredberg, Ulrich; Langberg, Henning; Nedergaard, Anders; Weis, MaryAnn; Eyre, David; Kjaer, Michael; Kadler, Karl E

    2014-01-01

    Achilles tendinopathies display focal tissue thickening with pain and ultrasonography changes. Whilst complete rupture might be expected to induce changes in tissue organization and protein composition, little is known about the consequences of non-rupture-associated tendinopathies, especially with regards to changes in the content of collagen type I and III (the major collagens in tendon), and changes in tendon fibroblast (tenocyte) shape and organization of the extracellular matrix (ECM). To gain new insights, we took biopsies from the tendinopathic region and flanking healthy region of Achilles tendons of six individuals with clinically diagnosed tendinopathy who had no evidence of cholesterol, uric acid and amyloid accumulation. Biochemical analyses of collagen III/I ratio were performed on all six individuals, and electron microscope analysis using transmission electron microscopy and serial block face-scanning electron microscopy were made on two individuals. In the tendinopathic regions, compared with the flanking healthy tissue, we observed: (i) an increase in the ratio of collagen III : I proteins; (ii) buckling of the collagen fascicles in the ECM; (iii) buckling of tenocytes and their nuclei; and (iv) an increase in the ratio of small-diameter : large-diameter collagen fibrils. In summary, load-induced non-rupture tendinopathy in humans is associated with localized biochemical changes, a shift from large-to small-diameter fibrils, buckling of the tendon ECM, and buckling of the cells and their nuclei. PMID:24571576

  12. Muscle fascicle shortening behaviour of vastus lateralis during a maximal force-velocity test.

    PubMed

    Hauraix, Hugo; Dorel, Sylvain; Rabita, Giuseppe; Guilhem, Gaël; Nordez, Antoine

    2017-02-01

    Muscle fascicles-tendon interactions are the main determinant in production of high joint velocity. Currently, no study has investigated the muscle fascicles behaviour of knee extensor muscles until the highest reachable velocity (e.g., unloaded knee extension). We aimed to track the changes in vastus lateralis fascicles length during knee extensions to quantify muscle fascicles and tendinous tissues contributions to muscle-tendon unit shortening and to determine maximal muscle fascicles shortening velocity. Fifteen participants performed isokinetic and isoinertial knee extensions, and ultrafast ultrasound imaging was used to observe the vastus lateralis fascicles from low to very high joint velocity. The muscle fascicles shortening velocity increased linearly with the increase in knee joint velocity up to the maximal joint velocity (mean R (2) = 0.93 ± 0.08). Muscle fascicles contribution to muscle-tendon unit shortening velocity was almost constant regardless of the condition (83 ± 23%). Using Hill's equation, the maximal velocity of knee joint and muscle fascicles was determined at 1000 ± 489°s(-1) and 5.1 ± 2.0 L0 s(-1) (47.4 ± 18.7 cm s(-1)), respectively. Contribution of muscle fascicles to the muscle-tendon unit shortening velocity was much higher for the vastus lateralis in this study compared to the gastrocnemius medialis in two previous studies. Moreover, this contribution of muscle fascicles shortening velocity was constant whatever the velocity condition, even at the highest reachable velocity. Thus, the vastus lateralis fascicles shortening velocity increases linearly with the knee joint velocity until high velocities and its behaviour strongly accorded with the classical Hill's force-velocity relationship.

  13. Animal Models for Tendon Repair Experiments: A Comparison of Pig, Sheep and Human Deep Flexor Tendons in Zone II.

    PubMed

    Peltz, Tim Sebastian; Hoffman, Stuart William; Scougall, Peter James; Gianoutsos, Mark Peter; Savage, Robert; Oliver, Rema Antoinette; Walsh, William Robert

    2017-09-01

    This laboratory study compared pig, sheep and human deep flexor tendons in regards to their biomechanical comparability. To investigate the relevant biomechanical properties for tendon repair experiments, the tendons resistance to cheese-wiring (suture drag/splitting) was assessed. Cheese-wiring of a suture through a tendon is an essential factor for repair gapping and failure in a tendon repair. Biomechanical testing showed that forces required to pulling a uniform suture loop through sheep or pig tendons in Zone II were higher than in human tendons. At time point zero of testing these differences did not reach statistical significance, but differences became more pronounced when forces were measured beyond initial cheese-wiring (2 mm, 5 mm and 10 mm). The stronger resistance to cheese-wiring was more pronounced in the pig tendons. Also regarding size and histology, sheep tendons were more comparable to human tendons than pig tendons. Differences in tendon bio-properties should be kept in mind when comparing and interpreting the results of laboratory tendon experiments.

  14. Tendon biomechanical properties enhance human wrist muscle specialization.

    PubMed

    Loren, G J; Lieber, R L

    1995-07-01

    Biomechanical properties of human wrist tendons were measured under loads predicted to be experienced by those tendons under physiological conditions. This was accomplished by measuring the architectural properties of the five prime wrist movers--extensors carpi radialis brevis (ECRB), extensor carpi radialis longus (ECRL), extensor carpi ulnaris (ECU), flexor carpi radials (FCR), flexor carpi ulnaris (FCU)--and predicting their maximum tension (P0) using a specific tension value (22.5 N cm-2. Loading the corresponding tendons to P0 resulted in significantly different strain among tendons (p < 0.01) with the largest strain observed in the FCU (3.68 +/- 0.31%) and the smallest strain observed in the ECRL (1.78 +/- 0.14%). Further, strain magnitude was significantly positively correlated with the tendon length-to-fiber length ratio of the muscle-tendon unit, a measure of the intrinsic compliance of the muscle-tendon unit. Theoretical modeling of the magnitude of muscle sarcomere shortening expected based on the measured biomechanical properties revealed a maximum sarcomere length decrease of about 0.6 micron for the FCU to a minimum of about 0.2 micron for the ECRB at P0. Thus, tendon compliance may, but does not necessarily, result in significant modification of muscle force generation. The significant variation in tendon biomechanical properties was not observed using traditional elongation-to-failure methods on the same specimens. Thus, the use of elongation-to-failure experiments for determination of tendon properties may not be reasonable when the purpose of such studies is to infer physiological function. These data indicate that muscle-tendon units show remarkable specialization and that tendon intrinsic properties accentuate the muscle architectural specialization already present.

  15. Turkey model for flexor tendon research: in vitro comparison of human, canine, turkey, and chicken tendons.

    PubMed

    Kadar, Assaf; Thoreson, Andrew R; Reisdorf, Ramona L; Amadio, Peter C; Moran, Steven L; Zhao, Chunfeng

    2017-08-01

    Flexor tendon injuries are one of the most common hand injuries and remain clinically challenging for functional restoration. Canine and chicken have been the most commonly used animal models for flexor tendon-related research but possess several disadvantages. The purpose of this study was to explore a potential turkey model for flexor tendon research. The third digit from human cadaveric hands, canine forepaws, turkey foot, and chicken foot were used for this study. Six digits in each of four species were studied in detail, comparing anatomy of the flexor apparatus, joint range of motioņ tendon excursion, tendon cross-sectional area, work of flexion, gliding resistance at the level of the A2 pulley, modulus of elasticity, suture retention strength, and histology across species. Anatomically, the third digit in the four species displayed structural similarities; however, the tendon cross-sectional area of the turkey and human were similar and larger than canine and chicken. Furthermore, the turkey digit resembles the human's finger with the lack of webbing between digits, similar vascularization, tendon excursion, work of flexion, gliding resistance, mechanical properties, and suture holding strength. More importantly, human and turkey tendons were most similar in histological appearance. Turkey flexor tendons have many properties that are comparable to human flexor tendons which would provide a clinically relevant, economical, nonhuman companion large animal model for flexor tendon research. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Temporal features of human tendon vibration illusions.

    PubMed

    Fuentes, Christina T; Gomi, Hiroaki; Haggard, Patrick

    2012-12-01

    Muscle spindles provide information about the position and movement of our bodies. One method for investigating spindle signals is tendon vibration. Vibration of flexor tendons can produce illusions of extension, and vibration of extensor tendons can produce illusions of flexion. Here we estimate the temporal resolution and persistence of these illusions. In Experiments 1 and 2, sequences of alternating vibration of wrist flexor and extensor tendons produced position illusions that varied with alternation period. When vibrations alternated at 1 Hz or slower, perceived position at the end of the sequence depended on the last vibration. When vibrations alternated every 0.3 s, perceived position was independent of the last vibration. Experiment 2 verified and extended these results using more trials and concurrent electromyographic recording. Although tendon vibrations sometimes induce reflexive muscle activity, we found no evidence that such activity contributed to these effects. Experiment 3 investigated how long position sense is retained when not updated by current information from spindles. Our first experiments suggested that vibrating antagonistic tendons simultaneously could produce conflicting inputs, leaving position sense reliant on memory of position prior to vibration onset. We compared variability in position sense after different durations of such double vibration. After 12 s of double vibration, variability across trials exceeded levels predicted from vibrations of flexor or extensor tendons alone. This suggests that position sense memory had decayed too much to substitute for the current conflicting sensory information. Together, our results provide novel, quantitative insight into the temporal properties of tendon vibration illusions.

  17. In vivo measurement of fascicle length and pennation of the human anconeus muscle at several elbow joint angles.

    PubMed

    Stevens, Daniel E; Smith, Cameron B; Harwood, Brad; Rice, Charles L

    2014-11-01

    Ultrasound imaging has facilitated the reliable measure of the architectural variables fascicle length (LF ) and pennation angle (PA), at rest and during static and dynamic contractions in many human skeletal muscles in vivo. Despite its small size and very modest contribution to elbow extension torque, the anconeus muscle has proven a useful model for the study of neuromuscular function in health and disease. Recent single motor unit (MU) studies in the anconeus have reported discrete and identifiable individual trains of MU potentials from intramuscular electromyography (EMG) recordings during dynamic elbow extensions. It is unknown whether the anconeus has unique architectural features related to alterations in LF and PA throughout the elbow joint range of motion that may help explain these high-quality recordings. Previous anatomical studies have investigated this muscle in cadavers and at mainly one elbow joint angle. The purpose of this study was to measure in vivo PA and LF of the anconeus muscle in a relaxed state at different degrees of elbow flexion using ultrasonography. Ultrasound images were collected from 10 healthy males (25 ± 3 years) at 135°, 120°, 90°, 45°, and 0° of elbow flexion. Average values of LF decreased by 6 mm (10%), 6 mm (12%), and 4 mm (9%) from 135-120°, 120-90°, and 90-45° of elbow flexion, respectively, whereas average PA values increased by 1° (9%), 1° (8%), and 2° (14%) from 135-120°, 120-90°, and 45-0°, respectively. The results indicate that anconeus muscle architecture is dynamic, undergoing moderate changes with elbow joint excursion that are similar to other limb muscles reported elsewhere. The data obtained here are more comprehensive and representative of architectural changes at various elbow joint positions than those data reported in cadaveric studies. Furthermore, the results of this study indicate that despite experiencing similar relative changes in muscle architecture to other skeletal muscles

  18. Evaluation of biomechanical properties: are porcine flexor tendons and bovine extensor tendons eligible surrogates for human tendons in in vitro studies?

    PubMed

    Domnick, C; Wieskötter, B; Raschke, M J; Schulze, M; Kronenberg, D; Wefelmeier, M; Langer, M F; Herbort, M

    2016-10-01

    Porcine flexor tendons, bovine extensor tendons, and human (semitendinosus) tendons are frequently used as substitutes for human ACL grafts in biomechanical in vitro studies. This study compares the biomechanical properties and structural differences of these tendons. In this biomechanical study, fresh-frozen porcine flexor tendons, bovine extensor tendons, and human semitendinosus tendons were used (n = 36). The tendons were mounted in a uniaxial testing machine (Zwick/Roell) with cryo-clamps, leaving a 60 mm tendon part free between the two clamps. Specimens have been loaded to failure to evaluate the biomechanical parameters stiffness, yield load, and maximum load. A Total Collagen Assay Kit was used to detect differences in the total collagen type I concentration (n = 30). A one-way ANOVA was performed to detect differences in the means. The significance level was set at p < 0.05. There were no significant differences in the stiffness between the groups (bovine 194 ± 43 N/mm, porcine 211 ± 63 N/mm, and human cadaveric 208 ± 58 N/mm). The yield and maximum loads were high (>1000 N) in all groups, but they were significantly increased in both animal specimens (means of 1681-1795 N) compared with human cadaveric specimen (means of 1289-1406 N; p < 0.01). No difference in the collagen type I concentration was detected (N.S.). Porcine flexor and bovine extensor tendons are eligible substitutes with similar stiffness and high failure loads compared with human cadaveric semitendinosus tendons in in vitro studies.

  19. Temperature-dependent viscoelastic properties of the human supraspinatus tendon.

    PubMed

    Huang, Chun-Yuh; Wang, Vincent M; Flatow, Evan L; Mow, Van C

    2009-03-11

    Temperature effects on the viscoelastic properties of the human supraspinatus tendon were investigated using static stress-relaxation experiments and the quasi-linear viscoelastic (QLV) theory. Twelve supraspinatus tendons were randomly assigned to one of two test groups for tensile testing using the following sequence of temperatures: (1) 37, 27, and 17 degrees C (Group I, n=6), or (2) 42, 32, and 22 degrees C (Group II, n=6). QLV parameter C was found to increase at elevated temperatures, suggesting greater viscous mechanical behavior at higher temperatures. Elastic parameters A and B showed no significant difference among the six temperatures studied, implying that the viscoelastic stress response of the supraspinatus tendon is not sensitive to temperature over shorter testing durations. Using regression analysis, an exponential relationship between parameter C and test temperature was implemented into QLV theory to model temperature-dependent viscoelastic behavior. This modified approach facilitates the theoretical determination of the viscoelastic behavior of tendons at arbitrary temperatures.

  20. Substantial creep in healing human Achilles tendons. A pilot study.

    PubMed

    Aspenberg, Per; Schepull, Thorsten

    2015-01-01

    healing after rupture of the Achilles tendon can be described in terms of mechanical properties of the new-formed tissue, constituting the tendon callus. In previous human studies, the elastic modulus and the density remained almost constant during 3 months after mobilization started, and then improved up to one year. So far, time-dependent deformation of the healing human tendon has not been reported. in a series of 16 patients, operated with Achilles tendon suture, we implanted tantalum beads into the tendon and measured the distance between them repeatedly during 3 min of constant loading, using an ordinary image intensifier. The patients unloaded their leg for 30 min before the test. To avoid bias, all images were investigated in a randomized and blinded order. total strain during 3 min of constant loading at 7 weeks post injury amounted to 5%, and at 19 weeks to 3%. About half of the strain, after the loading was applied, occurred during the second and third min. Considerable strain also occurred just before loading, when the patient was told that a load would be applied, but before this was actually done. the measurements were crude, and this study should be seen as a pilot. Still, visco-elastic properties seem to dominate the mechanical behavior the healing Achilles tendon from start of mobilization to 19 weeks, at least when tested after 30 min rest. This deserves further studies with more precise methods.

  1. Substantial creep in healing human Achilles tendons. A pilot study

    PubMed Central

    Aspenberg, Per; Schepull, Thorsten

    2015-01-01

    Summary Background healing after rupture of the Achilles tendon can be described in terms of mechanical properties of the new-formed tissue, constituting the tendon callus. In previous human studies, the elastic modulus and the density remained almost constant during 3 months after mobilization started, and then improved up to one year. So far, time-dependent deformation of the healing human tendon has not been reported. Methods in a series of 16 patients, operated with Achilles tendon suture, we implanted tantalum beads into the tendon and measured the distance between them repeatedly during 3 min of constant loading, using an ordinary image intensifier. The patients unloaded their leg for 30 min before the test. To avoid bias, all images were investigated in a randomized and blinded order. Results total strain during 3 min of constant loading at 7 weeks post injury amounted to 5%, and at 19 weeks to 3%. About half of the strain, after the loading was applied, occurred during the second and third min. Considerable strain also occurred just before loading, when the patient was told that a load would be applied, but before this was actually done. Conclusion the measurements were crude, and this study should be seen as a pilot. Still, visco-elastic properties seem to dominate the mechanical behavior the healing Achilles tendon from start of mobilization to 19 weeks, at least when tested after 30 min rest. This deserves further studies with more precise methods. PMID:26605187

  2. Human hamstring tenocytes survive when seeded into a decellularized porcine Achilles tendon extracellular matrix.

    PubMed

    Lohan, Anke; Stoll, Christiane; Albrecht, Marit; Denner, Andreas; John, Thilo; Krüger, Kay; Ertel, Wolfgang; Schulze-Tanzil, Gundula

    2013-01-01

    Tendon ruptures and defects remain major orthopaedic challenges. Tendon healing is a time-consuming process, which results in scar tissue with an altered biomechanical competence. Using a xenogeneic tendon extracellular matrix (ECM) as a natural scaffold, which can be reseeded with autologous human tenocytes, might be a promising approach to reconstruct damaged tendons. For this purpose, the porcine Achilles (AS) tendons serving as a scaffold were histologically characterized in comparison to human cell donor tendons. AS tendons were decellularized and then reseeded with primary human hamstring tenocytes using cell centrifuging, rotating culture and cell injection techniques. Vitality testing, histology and glycosaminoglycan/DNA quantifications were performed to document the success of tendon reseeding. Porcine AS tendons were characterized by a higher cell and sulfated glycosaminoglycan content than human cell donor tendons. Complete decellularization could be achieved, but led to a wash out of sulfated glycosaminoglycans. Nevertheless, porcine tendon could be recellularized with vital human tenocytes. The recellularization led to a slight increase in cell number compared to the native tendon and some glycosaminoglycan recovery. This study indicates that porcine tendon can be de- and recellularized using adult human tenocytes. Future work should optimize cell distribution within the recellularized tendon ECM and consider tendon- and donor species-dependent differences.

  3. Duration of fascicle shortening is affected by muscle architecture and sex.

    PubMed

    Simpson, C L; Arefin, S; Smart, R R; Harwood, B; Jakobi, Jennifer M

    2016-12-01

    The purpose of this study was to examine muscle fascicle properties of the gastrocnemius medialis (GM) during contraction and stretch between males and females. During contraction muscle fascicles shorten and pennation angles increase to generate force. Due to the elastic nature of the attached tendon, the fascicles continue to shorten when maximal force is achieved in order to sustain isometric force and this duration of fascicle shortening (DFS) can be observed with ultrasonography. Linear and curved muscle fascicles both display these kinetics; however, it is currently unknown if static stretch prior to a maximal voluntary contraction (MVC) alters the DFS and whether the effect differs between males and females. Subjects performed an isometric MVC of the plantar flexors before and after a 2-min maximal dorsi-flexion stretch. Plantar flexor force was measured and ultrasound videography used to record GM and Achilles tendon architecture. Males were stronger than females (p = 0.004). The DFS was longer for females compared to males (p = 0.001) and the addition of a static stretch increased the DFS for curved (p = 0.002), but not linear, fascicles. Curved fascicles were longer (p = 0.05) with larger pennation angles (p = 0.04) for both males and females when compared to linear fascicles. Tendon excursion was greater (p = 0.05) post-stretch during contraction when compared to pre-stretch. This study provides evidence that regardless of sex, curved muscle fascicles behave differently than linear fascicles and should be considered separately when muscle architecture is examined.

  4. Increased range of motion after static stretching is not due to changes in muscle and tendon structures.

    PubMed

    Konrad, Andreas; Tilp, Markus

    2014-06-01

    It is known that static stretching is an appropriate means of increasing the range of motion, but information in the literature about the mechanical adaptation of the muscle-tendon unit is scarce. Therefore, the purpose of this study was to investigate the influence of a six-week static stretching training program on the structural and functional parameters of the human gastrocnemius medialis muscle and the Achilles tendon. A total of 49 volunteers were randomly assigned into static stretching and control groups. Before and following the stretching intervention, we determined the maximum dorsiflexion range of motion with the corresponding fascicle length and pennation angle. Passive resistive torque and maximum voluntary contraction were measured with a dynamometer. Muscle-tendon junction displacement allowed us to determine the length changes in tendon and muscle, and hence to calculate stiffness. Fascicle length, pennation angle, and muscle tendon junction displacement were measured with ultrasound. Mean range of motion increased significantly from 30.9 (5.3) to 36.3 (6.1) in the intervention group, but other functional (passive resistive torque, maximum voluntary contraction) and structural (fascicle length, pennation angle, muscle stiffness, tendon stiffness) parameters were unaltered. The increased range of motion could not be explained by the structural changes in the muscle-tendon unit, and was likely due to increased stretch tolerance possibly due to adaptations of nociceptive nerve endings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Engineering human neo-tendon tissue in vitro with human dermal fibroblasts under static mechanical strain.

    PubMed

    Deng, Dan; Liu, Wei; Xu, Feng; Yang, Yang; Zhou, Guangdong; Zhang, Wen Jie; Cui, Lei; Cao, Yilin

    2009-12-01

    Proper cell source is one of the key issues for tendon engineering. Our previous study showed that dermal fibroblasts could be used to successfully engineer tendon in vivo and tenocytes could engineer neo-tendon in vitro with static strain. This study further investigated the possibility of engineering human neo-tendon tissue in vitro using dermal fibroblasts. Human dermal fibroblasts were seeded on polyglycolic acid (PGA) fibers pre-fixed on a U-shape as a mechanical loading group, or simply cultured in a dish as a tension-free group. In addition, human tenocytes were also seeded on PGA fibers with tension as a comparison to human dermal fibroblasts. The results showed that human neo-tendon tissue could be generated using dermal fibroblasts during in vitro culture under static strain and the tissue structure became more mature with the increase of culture time. Longitudinally aligned collagen fibers and spindle shape cells were observed histologically and collagen fibril diameter and tensile strength increased with time and reached a peak at 14 weeks. In contrast, the dermal fibroblast-PGA constructs failed to form neo-tendon, but formed disorganized fibrous tissue in tension-free condition with significantly weaker strength and poor collagen fiber formation. Interestingly, neo-tendon tissues generated with human dermal fibroblasts were indistinguishable from the counterpart engineered with human tenocytes, which supports the viewpoint that human dermal fibroblasts is likely to replace tenocytes for future tendon graft development in vitro with dynamic mechanical loading in a bioreactor system.

  6. Ultrasound elasticity imaging of human posterior tibial tendon

    NASA Astrophysics Data System (ADS)

    Gao, Liang

    Posterior tibial tendon dysfunction (PTTD) is a common degenerative condition leading to a severe impairment of gait. There is currently no effective method to determine whether a patient with advanced PTTD would benefit from several months of bracing and physical therapy or ultimately require surgery. Tendon degeneration is closely associated with irreversible degradation of its collagen structure, leading to changes to its mechanical properties. If these properties could be monitored in vivo, it could be used to quantify the severity of tendonosis and help determine the appropriate treatment. Ultrasound elasticity imaging (UEI) is a real-time, noninvasive technique to objectively measure mechanical properties in soft tissue. It consists of acquiring a sequence of ultrasound frames and applying speckle tracking to estimate displacement and strain at each pixel. The goals of my dissertation were to 1) use acoustic simulations to investigate the performance of UEI during tendon deformation with different geometries; 2) develop and validate UEI as a potentially noninvasive technique for quantifying tendon mechanical properties in human cadaver experiments; 3) design a platform for UEI to measure mechanical properties of the PTT in vivo and determine whether there are detectable and quantifiable differences between healthy and diseased tendons. First, ultrasound simulations of tendon deformation were performed using an acoustic modeling program. The effects of different tendon geometries (cylinder and curved cylinder) on the performance of UEI were investigated. Modeling results indicated that UEI accurately estimated the strain in the cylinder geometry, but underestimated in the curved cylinder. The simulation also predicted that the out-of-the-plane motion of the PTT would cause a non-uniform strain pattern within incompressible homogeneous isotropic material. However, to average within a small region of interest determined by principal component analysis (PCA

  7. Methods of Assessing Human Tendon Metabolism and Tissue Properties in Response to Changes in Mechanical Loading.

    PubMed

    Heinemeier, Katja M; Kjaer, Michael; Magnusson, S Peter

    2016-01-01

    In recent years a number of methodological developments have improved the opportunities to study human tendon. Microdialysis enables sampling of interstitial fluid in the peritendon tissue, while sampling of human tendon biopsies allows direct analysis of tendon tissue for gene- and protein expression as well as protein synthesis rate. Further the (14)C bomb-pulse method has provided data on long-term tissue turnover in human tendon. Non-invasive techniques allow measurement of tendon metabolism (positron emission tomography (PET)), tendon morphology (magnetic resonance imaging (MRI)), and tendon mechanical properties (ultrasonography combined with force measurement during movement). Finally, 3D cell cultures of human tendon cells provide the opportunity to investigate cell-matrix interactions in response to various interventions.

  8. Ultrasound-based subject-specific parameters improve fascicle behaviour estimation in Hill-type muscle model.

    PubMed

    Gerus, Pauline; Rao, Guillaume; Berton, Eric

    2015-01-01

    The estimation of muscle fascicle behaviour is decisive in a Hill-type model as they are related to muscle force by the force-length-velocity relationship and the tendon force-strain relationship. This study was aimed at investigating the influence of subject-specific tendon force-strain relationship and initial fascicle geometry (IFG) on the estimation of muscle forces and fascicle behaviour during isometric contractions. Ultrasonography was used to estimate the in vivo muscle fascicle behaviour and compare the muscle fascicle length and pennation angle estimated from the Hill-type model. The calibration-prediction process of the electromyography-driven model was performed using generic or subject-specific tendon definition with or without IFG as constraint. The combination of subject-specific tendon definition and IFG led to muscle fascicle behaviour closer to ultrasound data and significant lower forces of the ankle dorsiflexor and plantarflexor muscles compared to the other conditions. Thus, subject-specific ultrasound measurements improve the accuracy of Hill-type models on muscle fascicle behaviour.

  9. Unexpected Fascicle Length Changes In Denervated Feline Soleus Muscle During Stance Phase Of Walking

    PubMed Central

    Mehta, Ricky; Maas, Huub; Gregor, Robert J.; Prilutsky, Boris I.

    2015-01-01

    After surgical repair of traumatically severed peripheral nerves, associated muscles are paralyzed for weeks. Little is known about fascicle length changes in paralyzed muscles during locomotion. The aim of this study was to investigate to what extent, if any, muscle fascicles of denervated feline soleus (SO) change length during stance of walking when intact SO synergists are actively contracting. Hindlimb kinematics, SO fascicle and muscle-tendon unit (MTU) length, and EMG activity of SO, lateral gastrocnemius (LG) and medial gastrocnemius (MG) were measured during level and slope walking in adult cats. Measurements were taken before and 1–2 weeks following SO-LG denervation. Unexpectedly, SO fascicle lengthening and shortening during stance in all walking conditions were evident after denervation. The greatest SO fascicle shortening (17.3 ± 2.2% of a reference length) and least fascicle lengthening (1.5 ± 0.8%) after denervation were found during upslope walking, where MG EMG activity was greatest across slopes (P < 0.05) and greatest discrepancies between post denervation SO fascicle and MTU length changes occurred. These findings suggest that myofascial linkages between denervated SO and its active synergists might affect its fascicle length changes. Further studies are needed to directly test this suggestion. PMID:26635206

  10. TEMPERATURE-DEPENDENT VISCOELASTIC PROPERTIES OF THE HUMAN SUPRASPINATUS TENDON

    PubMed Central

    Huang, Chun-Yuh; Wang, Vincent M.; Flatow, Evan L.; Mow, Van C.

    2009-01-01

    Temperature effects on the viscoelastic properties of the human supraspinatus tendon were investigated using static stress-relaxation experiments and Quasi-Linear Viscoelastic (QLV) theory. Twelve supraspinatus tendons were randomly assigned to one of two test groups for tensile testing using the following sequence of temperatures: (1) 37°C, 27°C, and 17°C (Group I, n=6), or (2) 42°C, 32°C, and 22°C (Group II, n=6). QLV parameter C was found to increase at elevated temperatures, suggesting greater viscous mechanical behavior at higher temperatures. Elastic parameters A and B showed no significant difference among the six temperatures studied, implying that the viscoelastic stress response of the supraspinatus tendon is not sensitive to temperature over shorter testing durations. Using regression analysis, an exponential relationship between parameter C and test temperature was implemented into QLV theory to model temperature-dependent viscoelastic behavior. This modified approach facilitates the theoretical determination of the viscoelastic behavior of tendons at arbitrary temperatures. PMID:19159888

  11. Human iPSC-Derived Neural Crest Stem Cells Promote Tendon Repair in a Rat Patellar Tendon Window Defect Model

    PubMed Central

    Xu, Wei; Wang, Yequan; Liu, Erfu; Sun, Yanjun; Luo, Ziwei; Xu, Zhiling; Liu, Wanqian; Zhong, Li; Lv, Yonggang; Wang, Aijun; Tang, Zhenyu; Li, Song

    2013-01-01

    Induced pluripotent stem cells (iPSCs) hold great potential for cell therapy and tissue engineering. Neural crest stem cells (NCSCs) are multipotent that are capable of differentiating into mesenchymal lineages. In this study, we investigated whether iPSC-derived NCSCs (iPSC-NCSCs) have potential for tendon repair. Human iPSC-NCSCs were suspended in fibrin gel and transplanted into a rat patellar tendon window defect. At 4 weeks post-transplantation, macroscopical observation showed that the repair of iPSC-NCSC-treated tendons was superior to that of non-iPSC-NCSC-treated tendons. Histological and mechanical examinations revealed that iPSC-NCSCs treatment significantly enhanced tendon healing as indicated by the improvement in matrix synthesis and mechanical properties. Furthermore, transplanted iPSC-NCSCs produced fetal tendon-related matrix proteins, stem cell recruitment factors, and tenogenic differentiation factors, and accelerated the host endogenous repair process. This study demonstrates a potential strategy of employing iPSC-derived NCSCs for tendon tissue engineering. PMID:23815150

  12. Biaxial tensile testing and constitutive modeling of human supraspinatus tendon.

    PubMed

    Szczesny, Spencer E; Peloquin, John M; Cortes, Daniel H; Kadlowec, Jennifer A; Soslowsky, Louis J; Elliott, Dawn M

    2012-02-01

    The heterogeneous composition and mechanical properties of the supraspinatus tendon offer an opportunity for studying the structure-function relationships of fibrous musculoskeletal connective tissues. Previous uniaxial testing has demonstrated a correlation between the collagen fiber angle distribution and tendon mechanics in response to tensile loading both parallel and transverse to the tendon longitudinal axis. However, the planar mechanics of the supraspinatus tendon may be more appropriately characterized through biaxial tensile testing, which avoids the limitation of nonphysiologic traction-free boundary conditions present during uniaxial testing. Combined with a structural constitutive model, biaxial testing can help identify the specific structural mechanisms underlying the tendon's two-dimensional mechanical behavior. Therefore, the objective of this study was to evaluate the contribution of collagen fiber organization to the planar tensile mechanics of the human supraspinatus tendon by fitting biaxial tensile data with a structural constitutive model that incorporates a sample-specific angular distribution of nonlinear fibers. Regional samples were tested under several biaxial boundary conditions while simultaneously measuring the collagen fiber orientations via polarized light imaging. The histograms of fiber angles were fit with a von Mises probability distribution and input into a hyperelastic constitutive model incorporating the contributions of the uncrimped fibers. Samples with a wide fiber angle distribution produced greater transverse stresses than more highly aligned samples. The structural model fit the longitudinal stresses well (median R(2) ≥ 0.96) and was validated by successfully predicting the stress response to a mechanical protocol not used for parameter estimation. The transverse stresses were fit less well with greater errors observed for less aligned samples. Sensitivity analyses and relatively affine fiber kinematics suggest that

  13. Exercise-induced changes in triceps surae tendon stiffness and muscle strength affect running economy in humans.

    PubMed

    Albracht, Kirsten; Arampatzis, Adamantios

    2013-06-01

    The purpose of the present study was to investigate whether increased tendon-aponeurosis stiffness and contractile strength of the triceps surae (TS) muscle-tendon units induced by resistance training would affect running economy. Therefore, an exercise group (EG, n = 13) performed a 14-week exercise program, while the control group (CG, n = 13) did not change their training. Maximum isometric voluntary contractile strength and TS tendon-aponeurosis stiffness, running kinematics and fascicle length of the gastrocnemius medialis (GM) muscle during running were analyzed. Furthermore, running economy was determined by measuring the rate of oxygen consumption at two running velocities (3.0, 3.5 ms(-1)). The intervention resulted in a ∼7 % increase in maximum plantarflexion muscle strength and a ∼16 % increase in TS tendon-aponeurosis stiffness. The EG showed a significant ∼4 % reduction in the rate of oxygen consumption and energy cost, indicating a significant increase in running economy, while the CG showed no changes. Neither kinematics nor fascicle length and elongation of the series-elastic element (SEE) during running were affected by the intervention. The unaffected SEE elongation of the GM during the stance phase of running, in spite of a higher tendon-aponeurosis stiffness, is indicative of greater energy storage and return and a redistribution of muscular output within the lower extremities while running after the intervention, which might explain the improved running economy.

  14. 3D fascicle orientations in triceps surae.

    PubMed

    Rana, Manku; Hamarneh, Ghassan; Wakeling, James M

    2013-07-01

    The aim of this study was to determine the three-dimensional (3D) muscle fascicle architecture in human triceps surae muscles at different contraction levels and muscle lengths. Six male subjects were tested for three contraction levels (0, 30, and 60% of maximal voluntary contraction) and four ankle angles (-15, 0, 15, and 30° of plantar flexion), and the muscles were imaged with B-mode ultrasound coupled to 3D position sensors. 3D fascicle orientations were represented in terms of pennation angle relative to the major axis of the muscle and azimuthal angle (a new architectural parameter introduced in this study representing the radial angle around the major axis). 3D orientations of the fascicles, and the sheets along which they lie, were regionalized in all the three muscles (medial and lateral gastrocnemius and the soleus) and changed significantly with contraction level and ankle angle. Changes in the azimuthal angle were of similar magnitude to the changes in pennation angle. The 3D information was used for an error analysis to determine the errors in predictions of pennation that would occur in purely two-dimensional studies. A comparison was made for assessing pennation in the same plane for different contraction levels, or for adjusting the scanning plane orientation for different contractions: there was no significant difference between the two simulated scanning conditions for the gastrocnemii; however, a significant difference of 4.5° was obtained for the soleus. Correct probe orientation is thus more critical during estimations of pennation for the soleus than the gastrocnemii due to its more complex fascicle arrangement.

  15. The role of human ankle plantar flexor muscle-tendon interaction and architecture in maximal vertical jumping examined in vivo.

    PubMed

    Farris, Dominic James; Lichtwark, Glen A; Brown, Nicholas A T; Cresswell, Andrew G

    2016-02-01

    Humans utilise elastic tendons of lower limb muscles to store and return energy during walking, running and jumping. Anuran and insect species use skeletal structures and/or dynamics in conjunction with similarly compliant structures to amplify muscle power output during jumping. We sought to examine whether human jumpers use similar mechanisms to aid elastic energy usage in the plantar flexor muscles during maximal vertical jumping. Ten male athletes performed maximal vertical squat jumps. Three-dimensional motion capture and a musculoskeletal model were used to determine lower limb kinematics that were combined with ground reaction force data in an inverse dynamics analysis. B-mode ultrasound imaging of the lateral gastrocnemius (GAS) and soleus (SOL) muscles was used to measure muscle fascicle lengths and pennation angles during jumping. Our results highlighted that both GAS and SOL utilised stretch and recoil of their series elastic elements (SEEs) in a catapult-like fashion, which likely serves to maximise ankle joint power. The resistance of supporting of body weight allowed initial stretch of both GAS and SOL SEEs. A proximal-to-distal sequence of joint moments and decreasing effective mechanical advantage early in the extension phase of the jumping movement were observed. This facilitated a further stretch of the SEE of the biarticular GAS and delayed recoil of the SOL SEE. However, effective mechanical advantage did not increase late in the jump to aid recoil of elastic tissues. © 2016. Published by The Company of Biologists Ltd.

  16. Structural and mechanical properties of the human Achilles tendon: Sex and strength effects.

    PubMed

    Morrison, Sidney M; Dick, Taylor J M; Wakeling, James M

    2015-09-18

    Tendons are elastic structures that connect muscle to the skeletal system and transmit force relative to the amount of stretch they experience. The mechanical properties of human tendons are difficult to measure non-invasively, so generic values are often assumed in musculoskeletal models to represent all subjects. We aimed to determine the in vivo mechanical properties of the human Achilles tendon by calculating tendon stiffness and resting length in 10 male and 10 female trained cyclists. B-mode ultrasound coupled with motion capture was used to track the tendon lengths for the medial and lateral gastrocnemii concurrently with ankle torque measurements during ramped isometric contractions. Achilles tendon stiffness was calculated as the slope of the linear portion of the force-length curve, and this was extrapolated to zero force to yield the tendon resting length. Average Achilles tendon stiffness was 201.8 ± 5.9 N mm(-1). There was no difference in Achilles tendon stiffness or maximum isometric force between males and females, however tendon stiffness varied between individuals. The resting lengths of the MG and LG tendon were 0.209 ± 0.002 m and 0.222 ± 0.002 m respectively, and regression models determined that shank length was the best predictor of resting tendon length. Our results indicate that Achilles tendon stiffness varies with muscle strength and not sex. The variability in Achilles tendon stiffness between subjects support the need for experimentally measured subject-specific tendon properties as input parameters to improve the accuracy of musculoskeletal models. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The acute effect of stretching on the passive stiffness of the human gastrocnemius muscle tendon unit

    PubMed Central

    Morse, C I; Degens, H; Seynnes, O R; Maganaris, C N; Jones, D A

    2008-01-01

    Passive stretching is commonly used to increase limb range of movement prior to athletic performance but it is unclear which component of the muscle–tendon unit (MTU) is affected by this procedure. Movement of the myotendinous junction (MTJ) of the gastrocnemius medialis muscle was measured by ultrasonography in eight male participants (20.5 ± 0.9 years) during a standard stretch in which the ankle was passively dorsiflexed at 1 deg s−1 from 0 deg (the foot at right angles to the tibia) to the participants' volitional end range of motion (ROM). Passive torque, muscle fascicle length and pennation angle were also measured. Standard stretch measurements were made before (pre-) and after (post-) five passive conditioning stretches. During each conditioning stretch the MTU was taken to the end ROM and held for 1 min. Pre-conditioning the extension of the MTU during stretch was taken up almost equally by muscle and tendon. Following conditioning, ROM increased by 4.6 ± 1.5 deg (17%) and the passive stiffness of the MTU was reduced (between 20 and 25 deg) by 47% from 16.0 ± 3.6 to 10.2 ± 2.0 Nm deg−1. Distal MTJ displacement (between 0 and 25 deg) increased from 0.92 ± 0.06 to 1.16 ± 0.05 cm, accounting for all the additional MTU elongation and indicating that there was no change in tendon properties. Muscle extension pre-conditioning was explicable by change in length and pennation angle of the fascicles but post-conditioning this was not the case suggesting that at least part of the change in muscle with conditioning stretches was due to altered properties of connective tissue. PMID:17884924

  18. Microstructural stress relaxation mechanics in functionally different tendons.

    PubMed

    Screen, H R C; Toorani, S; Shelton, J C

    2013-01-01

    Tendons experience widely varying loading conditions in vivo. They may be categorised by their function as either positional tendons, which are used for intricate movements and experience lower stress, or as energy storage tendons which act as highly stressed springs during locomotion. Structural and compositional differences between tendons are thought to enable an optimisation of their properties to suit their functional environment. However, little is known about structure-function relationships in tendon. This study adopts porcine flexor and extensor tendon fascicles as examples of high stress and low stress tendons, comparing their mechanical behaviour at the micro-level in order to understand their stress relaxation response. Stress-relaxation was shown to occur predominantly through sliding between collagen fibres. However, in the more highly stressed flexor tendon fascicles, more fibre reorganisation was evident when the tissue was exposed to low strains. By contrast, the low load extensor tendon fascicles appears to have less capacity for fibre reorganisation or shearing than the energy storage tendon, relying more heavily on fibril level relaxation. The extensor fascicles were also unable to sustain loads without rapid and complete stress relaxation. These findings highlight the need to optimise tendon repair solutions for specific tendons, and match tendon properties when using grafts in tendon repairs.

  19. The arrangement of fascicles in whole muscle.

    PubMed

    Infantolino, Benjamin W; Neuberger, Thomas; Challis, John H

    2012-07-01

    The architecture of the muscle fascicles, here meaning their lengths and their arrangement relative to one another, has important implications for the force a muscle can produce. Therefore, quantifying this architectural arrangement and understanding the implications of the architecture are important for understanding muscle function in vivo. There were two purposes of this study: (1) to assess, via blunt dissection, the number and the length of all the fascicles comprising the First Dorsal Interosseous (FDI) muscle and (2) to visually identify, via magnetic resonance imaging (MRI), the arrangement of the fascicles comprising the FDI. Simple blunt dissection of all the fascicles comprising four FDI muscles and their subsequent measurement demonstrated that the fascicles comprising the whole muscle were not as long as the muscle belly from which they were extracted. Muscle fascicles are surrounded by connective tissue hence the paths of the fascicles in two whole FDI muscles were identified via MRI by tracking the connective tissue surrounding the fascicles. The fascicles had a spiral pattern along the length of each muscle, within both muscles many of the fascicles were arranged in series with other fascicles. These architectural features of the fascicles of the FDI have important implications for the force-length and force-velocity properties of the whole muscle. Copyright © 2012 Wiley Periodicals, Inc.

  20. Effect of muscle contraction levels on the force-length relationship of the human Achilles tendon during lengthening of the triceps surae muscle-tendon unit.

    PubMed

    Sugisaki, Norihide; Kawakami, Yasuo; Kanehisa, Hiroaki; Fukunaga, Tetsuo

    2011-07-28

    Findings from animal experiments are sometimes contradictory to the idea that the tendon structure is a simple elastic spring in series with muscle fibers, and suggest influence of muscle contraction on the tendon mechanical properties. The purpose of the present study was to investigate the influence of muscle contraction levels on the force-length relationship of the human Achilles tendon during lengthening of the triceps surae muscle-tendon unit. For seven subjects, ankle dorsiflexion was performed without (passive condition) and with contraction of plantar flexor muscles (eccentric conditions, at 3 contraction levels) on an isokinetic dynamometer. Deformation of the Achilles tendon during each trial was measured using ultrasonography. The Achilles tendon force corresponding to the tendon elongation of 10mm in the passive condition was significantly smaller than those in the eccentric conditions (p<0.05 or p<0.01). Within the eccentric conditions, the Achilles tendon force corresponding to the tendon elongation of 10mm was significantly greater in the maximal contraction level than those in submaximal eccentric conditions (p<0.05 or p<0.01). In addition, the tendon stiffness was greater in higher contraction levels (p<0.05 or p<0.01). Present results suggest that the human tendon structure is not a simple elastic spring in series with muscle fibers.

  1. Lovastatin-Mediated Changes in Human Tendon Cells.

    PubMed

    Kuzma-Kuzniarska, Maria; Cornell, Hannah R; Moneke, Michael C; Carr, Andrew J; Hulley, Philippa A

    2015-10-01

    Statins are among the most widely prescribed drugs worldwide. Numerous studies have shown their beneficial effects in prevention of cardiovascular disease through cholesterol-lowering and anti-atherosclerotic properties. Although some statin patients may experience muscle-related symptoms, severe side effects of statin therapy are rare, primarily due to extensive first-pass metabolism in the liver. Skeletal muscles appear to be the main site of side effects; however, recently some statin-related adverse effects have been described in tendon. The mechanism behind these side effects remains unknown. This is the first study that explores tendon-specific effects of statins in human primary tenocytes. The cells were cultured with different concentrations of lovastatin for up to 1 week. No changes in cell viability or morphology were observed in tenocytes incubated with therapeutic doses. Short-term exposure to lovastatin concentrations outside the therapeutic range had no effect on tenocyte viability; however, cell migration was reduced. Simvastatin and atorvastatin, two other drug family members, also reduced the migratory properties of the cells. Prolonged exposure to high concentrations of lovastatin induced changes in cytoskeleton leading to cell rounding and decreased levels of mRNA for matrix proteins, but increased BMP-2 expression. Gap junctional communication was impaired but due to cell shape change and separation rather than direct gap junction inhibition. These effects were accompanied by inhibition of prenylation of Rap1a small GTPase. Collectively, we showed that statins in a dose-dependent manner decrease migration of human tendon cells, alter their expression profile and impair the functional network, but do not inhibit gap junction function.

  2. Lack of tissue renewal in human adult Achilles tendon is revealed by nuclear bomb 14C

    PubMed Central

    Heinemeier, Katja Maria; Schjerling, Peter; Heinemeier, Jan; Magnusson, Stig Peter; Kjaer, Michael

    2013-01-01

    Tendons are often injured and heal poorly. Whether this is caused by a slow tissue turnover is unknown, since existing data provide diverging estimates of tendon protein half-life that range from 2 mo to 200 yr. With the purpose of determining life-long turnover of human tendon tissue, we used the 14C bomb-pulse method. This method takes advantage of the dramatic increase in atmospheric levels of 14C, produced by nuclear bomb tests in 1955–1963, which is reflected in all living organisms. Levels of 14C were measured in 28 forensic samples of Achilles tendon core and 4 skeletal muscle samples (donor birth years 1945–1983) with accelerator mass spectrometry (AMS) and compared to known atmospheric levels to estimate tissue turnover. We found that Achilles tendon tissue retained levels of 14C corresponding to atmospheric levels several decades before tissue sampling, demonstrating a very limited tissue turnover. The tendon concentrations of 14C approximately reflected the atmospheric levels present during the first 17 yr of life, indicating that the tendon core is formed during height growth and is essentially not renewed thereafter. In contrast, 14C levels in muscle indicated continuous turnover. Our observation provides a fundamental premise for understanding tendon function and pathology, and likely explains the poor regenerative capacity of tendon tissue.—Heinemeier, K. M., Schjerling, P., Heinemeier, J., Magnusson, S. P., Kjaer, M. Lack of tissue renewal in human adult Achilles tendon is revealed by nuclear bomb 14C. PMID:23401563

  3. Viscoelastic creep in the human skeletal muscle-tendon unit.

    PubMed

    Ryan, Eric D; Herda, Trent J; Costa, Pablo B; Walter, Ashley A; Hoge, Katherine M; Stout, Jeffery R; Cramer, Joel T

    2010-01-01

    The purposes of the present study were to (1) characterize viscoelastic creep in vivo in the human skeletal muscle-tendon unit and (2) to examine the consistency of these responses during a single 30-s stretch. Twelve volunteers (mean +/- SD = 22 +/- 3 years; height = 169 +/- 11 cm; mass = 70 +/- 17 kg) participated in two separate experimental trials. Each trial consisted of a 30-s constant-torque stretch of the plantar flexor muscles. Position (degrees) values were quantified at every 5-s period (0, 5, 10, 15, 20, 25, and 30 s) and the percent change in position was quantified for each 5-s epoch (0-5, 5-10, 10-15, 15-20, 20-25, and 25-30 s) relative to the total increase in the range of motion. In addition, the intraclass correlation coefficient (ICC) and standard errors of the measurement (SEM) were calculated for test-retest reliability. These results indicated that position increased over the entire 30-s stretch (P < 0.05), while the majority of the increases in position (73-85%) occurred during the first 15-20 s. ICC values were >or = 0.994 and SEM values (expressed as percentage of the mean) were human skeletal muscle-tendon unit and suggest that these responses may be reliable for future studies.

  4. Comparison of transforming growth factor beta expression in healthy and diseased human tendon.

    PubMed

    Goodier, Henry C J; Carr, Andrew J; Snelling, Sarah J B; Roche, Lucy; Wheway, Kim; Watkins, Bridget; Dakin, Stephanie G

    2016-02-17

    Diseased tendons are characterised by fibrotic scar tissue, which adversely affects tendon structure and function and increases the likelihood of re-injury. The mechanisms and expression profiles of fibrosis in diseased tendon is understudied compared to pulmonary and renal tissues, where transforming growth factor (TGF)β and its associated superfamily are known to be key drivers of fibrosis and modulate extracellular matrix homeostasis. We hypothesised that differential expression of TGFβ superfamily members would exist between samples of human rotator cuff tendons with established disease compared to healthy control tendons. Healthy and diseased rotator cuff tendons were collected from patients presenting to an orthopaedic referral centre. Diseased tendinopathic (intact) and healthy rotator cuff tendons were collected via ultrasound-guided biopsy and torn tendons were collected during routine surgical debridement. Immunohistochemistry and quantitative real-time polymerase chain reaction were used to investigate the protein and gene expression profiles of TGFβ superfamily members in these healthy and diseased tendons. TGFβ superfamily members were dysregulated in diseased compared to healthy tendons. Specifically, TGFβ-1, TGFβ receptor (R)1 and TGFβ R2 proteins were reduced (p < 0.01) in diseased compared to healthy tendons. At the mRNA level, TGFβ R1 was significantly reduced in samples of diseased tendons, whereas TGFβ R2 was increased (p < 0.01). BMP-2, BMP-7 and CTGF mRNA remained unchanged with tendon disease. We propose that downregulation of TGFβ pathways in established tendon disease may be a protective response to limit disease-associated fibrosis. The disruption of the TGFβ axis with disease suggests associated downstream pathways may be important for maintaining healthy tendon homeostasis. The findings from our study suggest that patients with established tendon disease would be unlikely to benefit from therapeutic TGFβ blockade, which has

  5. Strain and elongation of the human gastrocnemius tendon and aponeurosis during maximal plantarflexion effort.

    PubMed

    Arampatzis, A; Stafilidis, S; DeMonte, G; Karamanidis, K; Morey-Klapsing, G; Brüggemann, G P

    2005-04-01

    Regarding the strain and elongation distribution along the tendon and aponeurosis the literature is reporting different findings. Therefore, the purpose of this study was to examine in vivo the elongation and the strain of the human gastrocnemius medialis tendon and aponeurosis simultaneously at the same trial during maximal voluntary plantarflexion efforts. Twelve subjects participated in the study. The subjects performed isometric maximal voluntary contractions of their left leg on a Biodex-dynamometer. The kinematics of the leg were recorded using the Vicon 624 system with 8 cameras operating at 120 Hz. Two ultrasound probes were used to visualise the tendon (myotendinous junction region) and the distal aponeurosis of the gastrocnemius medialis respectively. The main findings were: (a) the absolute elongation of the gastrocnemius medialis tendon was different to that of the aponeurosis, (b) the strain of the gastrocnemius medialis tendon did not differ from the strain of the aponeurosis, (c) during the "isometric" plantarflexion the ankle angle exhibited significant changes, and (d) the non-rigidity of the dynamometer arm-foot system and the coactivity of the tibialis anterior both have a significant influence on the moment exerted at the ankle joint. Thus the strain of the human gastrocnemius medialis tendon and aponeurosis estimated in vivo using two-dimensional ultrasonography is uniform. To calculate the elongation of the whole tendon it is necessary to multiply the strain calculated for the examined part of the tendon by the total length of the tendon.

  6. Acute and prolonged effect of static stretching on the passive stiffness of the human gastrocnemius muscle tendon unit in vivo.

    PubMed

    Nakamura, Masatoshi; Ikezoe, Tome; Takeno, Yohei; Ichihashi, Noriaki

    2011-11-01

    Static stretching (SS) is commonly used to prevent or improve limited joint mobility. However, it is unclear whether the components of the muscle-tendon unit (MTU) are affected by 5 min of SS. This study investigated the acute and prolonged effect of SS on the mechanical properties of the MTU. The subjects comprised 15 male participants (mean age: 21.5 ± 1.6 years). MTU stiffness, muscle stiffness, tendon stiffness, and fascicle length of the gastrocnemius muscle were measured by ultrasonography and a dynamometer while the ankle was passively dorsiflexed. The measurements were performed prior to the 5 min of SS, immediately after the SS, and 10 min after the SS. MTU stiffness and muscle stiffness significantly decreased at both immediately and 10 min after SS, whereas no significant differences in MTU stiffness and muscle stiffness were found between immediately and 10 min after SS. Tendon stiffness immediately after SS was significantly higher than prior to and 10 min after SS. No significant change in the fascicle length occurred after SS. These results suggest that 5 min of SS affects MTU and muscle stiffness both immediately and 10 min after SS, which may be associated with a change in the connective tissue properties. Copyright © 2011 Orthopaedic Research Society.

  7. Optimization of human tendon tissue engineering: synergistic effects of growth factors for use in tendon scaffold repopulation.

    PubMed

    Raghavan, Shyam S; Woon, Colin Y L; Kraus, Armin; Megerle, Kai; Pham, Hung; Chang, James

    2012-02-01

    Tissue-engineered flexor tendon grafts may allow reconstruction of severe tendon losses. One critical factor is the optimization of cell proliferation and reseeding. Use of growth factors--basic fibroblast growth factor (bFGF), insulin-like growth factor (IGF)-1, and platelet-derived growth factor (PDGF)-BB--may improve culture conditions for human fibroblasts, tenocytes, and adipose-derived stem cells and increase repopulation of a tendon scaffold. All cell types were plated at a density of 10,000 cells per well and cultured in F12 media supplemented with varying concentrations of bFGF, IGF-1, and PDGF-BB. After 72 hours, cell proliferation was determined using the CellTiter assay. Human flexor tendon segments were acellularized and reseeded in a cell suspension of 5 × 10(5) cells/ml. After 5 days, tendon repopulation was determined using the MTS assay and histology. Statistical significance was determined with analysis of variance and a t test. For all cell types, there was enhanced proliferation with growth factors. Among single growth factors, PDGF-BB at 50 ng/ml was the most efficient stimulator of proliferation. With multiple growth factors, the optimal concentration was determined to be 5 ng/ml bFGF, 50 ng/ml IGF-1, and 50 ng/ml PDGF-BB (increase when compared with control: fibroblasts, 2.92-fold; tenocytes, 2.3-fold; and adipose-derived stem cells, 2.4-fold; p < 0.05). Tendons reseeded with this optimal combination of growth factors showed improved reseeding compared with the control group (fibroblasts, 2.01-fold; tenocytes, 1.78-fold; and adipose-derived stem cells, 1.76-fold; p < 0.05). bFGF, IGF-1, and PDGF-BB can be used to improve cellular proliferation and repopulation of an acellularized scaffold. The use of growth factors may be an important step in the tissue engineering of human flexor tendons.

  8. Tendon degeneration and chronic shoulder pain: changes in the collagen composition of the human rotator cuff tendons in rotator cuff tendinitis.

    PubMed Central

    Riley, G P; Harrall, R L; Constant, C R; Chard, M D; Cawston, T E; Hazleman, B L

    1994-01-01

    OBJECTIVES--To analyse the collagen composition of normal adult human supraspinatus tendon and to compare with: (1) a flexor tendon (the common biceps tendon) which is rarely involved in any degenerative pathology; (2) degenerate tendons from patients with chronic rotator cuff tendinitis. METHODS--Total collagen content, collagen solubility and collagen type were investigated by hydroxyproline analysis, acetic acid and pepsin digestion, cyanogen bromide peptide analysis, SDS-PAGE and Western blotting. RESULTS--The collagen content of the normal cadaver supraspinatus tendons (n = 60) was 96.3 micrograms HYPRO/mg dry weight (range 79.3-113.3) and there was no significant change across the age range 11 to 95 years. There was no significant difference from the common biceps tendon [93.3 (13.5) micrograms HYPRO/mg dry weight, n = 24]. Although extremely insoluble in both acetic acid and pepsin, much of the collagen was soluble after cyanogen bromide digestion [mean 47.9% (29.8)]. Seventeen per cent (10/60) of the 'normal' cadaver supraspinatus tendon sample contained more than 5% type III collagen, although none of the common biceps tendons had significant amounts. Degenerate supraspinatus and subscapularis tendons had a reduced collagen content [83.8 (13.9) micrograms/mg dry weight and 76.9 (16.8) micrograms/mg dry wt respectively) and were more soluble in acetic acid, pepsin and cyanogen bromide (p < 0.001). Eighty two per cent (14/17) of supraspinatus tendons and 100% (8/8) of subscapularis tendons from patients with tendinitis contained more than 5% type III collagen. CONCLUSIONS--The changes in collagen composition in rotator cuff tendinitis are consistent with new matrix synthesis, tissue remodelling and wound healing, in an attempt to repair the tendon defect, even in old and degenerate tendons. An increase in type III collagen in some 'normal' cadaver supraspinatus tendons is evidence that changes in collagen synthesis and turnover may precede tendon rupture

  9. Lack of tissue renewal in human adult Achilles tendon is revealed by nuclear bomb (14)C.

    PubMed

    Heinemeier, Katja Maria; Schjerling, Peter; Heinemeier, Jan; Magnusson, Stig Peter; Kjaer, Michael

    2013-05-01

    Tendons are often injured and heal poorly. Whether this is caused by a slow tissue turnover is unknown, since existing data provide diverging estimates of tendon protein half-life that range from 2 mo to 200 yr. With the purpose of determining life-long turnover of human tendon tissue, we used the (14)C bomb-pulse method. This method takes advantage of the dramatic increase in atmospheric levels of (14)C, produced by nuclear bomb tests in 1955-1963, which is reflected in all living organisms. Levels of (14)C were measured in 28 forensic samples of Achilles tendon core and 4 skeletal muscle samples (donor birth years 1945-1983) with accelerator mass spectrometry (AMS) and compared to known atmospheric levels to estimate tissue turnover. We found that Achilles tendon tissue retained levels of (14)C corresponding to atmospheric levels several decades before tissue sampling, demonstrating a very limited tissue turnover. The tendon concentrations of (14)C approximately reflected the atmospheric levels present during the first 17 yr of life, indicating that the tendon core is formed during height growth and is essentially not renewed thereafter. In contrast, (14)C levels in muscle indicated continuous turnover. Our observation provides a fundamental premise for understanding tendon function and pathology, and likely explains the poor regenerative capacity of tendon tissue.

  10. Lovastatin‐Mediated Changes in Human Tendon Cells

    PubMed Central

    Cornell, Hannah R.; Moneke, Michael C.; Carr, Andrew J.; Hulley, Philippa A.

    2015-01-01

    Statins are among the most widely prescribed drugs worldwide. Numerous studies have shown their beneficial effects in prevention of cardiovascular disease through cholesterol‐lowering and anti‐atherosclerotic properties. Although some statin patients may experience muscle‐related symptoms, severe side effects of statin therapy are rare, primarily due to extensive first‐pass metabolism in the liver. Skeletal muscles appear to be the main site of side effects; however, recently some statin‐related adverse effects have been described in tendon. The mechanism behind these side effects remains unknown. This is the first study that explores tendon‐specific effects of statins in human primary tenocytes. The cells were cultured with different concentrations of lovastatin for up to 1 week. No changes in cell viability or morphology were observed in tenocytes incubated with therapeutic doses. Short‐term exposure to lovastatin concentrations outside the therapeutic range had no effect on tenocyte viability; however, cell migration was reduced. Simvastatin and atorvastatin, two other drug family members, also reduced the migratory properties of the cells. Prolonged exposure to high concentrations of lovastatin induced changes in cytoskeleton leading to cell rounding and decreased levels of mRNA for matrix proteins, but increased BMP‐2 expression. Gap junctional communication was impaired but due to cell shape change and separation rather than direct gap junction inhibition. These effects were accompanied by inhibition of prenylation of Rap1a small GTPase. Collectively, we showed that statins in a dose‐dependent manner decrease migration of human tendon cells, alter their expression profile and impair the functional network, but do not inhibit gap junction function. J. Cell. Physiol. 230: 2543–2551, 2015. © 2015 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. PMID:25846724

  11. A novel diffusion-tensor MRI approach for skeletal muscle fascicle length measurements.

    PubMed

    Oudeman, Jos; Mazzoli, Valentina; Marra, Marco A; Nicolay, Klaas; Maas, Mario; Verdonschot, Nico; Sprengers, Andre M; Nederveen, Aart J; Strijkers, Gustav J; Froeling, Martijn

    2016-12-01

    Musculoskeletal (dys-)function relies for a large part on muscle architecture which can be obtained using Diffusion-Tensor MRI (DT-MRI) and fiber tractography. However, reconstructed tracts often continue along the tendon or aponeurosis when using conventional methods, thus overestimating fascicle lengths. In this study, we propose a new method for semiautomatic segmentation of tendinous tissue using tract density (TD). We investigated the feasibility and repeatability of this method to quantify the mean fascicle length per muscle. Additionally, we examined whether the method facilitates measuring changes in fascicle length of lower leg muscles with different foot positions. Five healthy subjects underwent two DT-MRI scans of the right lower leg, with the foot in 15° dorsiflexion, neutral, and 30° plantarflexion positions. Repeatability of fascicle length measurements was assessed using Bland-Altman analysis. Changes in fascicle lengths between the foot positions were tested using a repeated multivariate analysis of variance (MANOVA). Bland-Altman analysis showed good agreement between repeated measurements. The coefficients of variation in neutral position were 8.3, 16.7, 11.2, and 10.4% for soleus (SOL), fibularis longus (FL), extensor digitorum longus (EDL), and tibialis anterior (TA), respectively. The plantarflexors (SOL and FL) showed significant increase in fascicle length from plantarflexion to dorsiflexion, whereas the dorsiflexors (EDL and TA) exhibited a significant decrease. The use of a tract density for semiautomatic segmentation of tendinous structures provides more accurate estimates of the mean fascicle length than traditional fiber tractography methods. The method shows moderate to good repeatability and allows for quantification of changes in fascicle lengths due to passive stretch.

  12. Inflammation activation and resolution in human tendon disease.

    PubMed

    Dakin, Stephanie G; Martinez, Fernando O; Yapp, Clarence; Wells, Graham; Oppermann, Udo; Dean, Benjamin J F; Smith, Richard D J; Wheway, Kim; Watkins, Bridget; Roche, Lucy; Carr, Andrew J

    2015-10-28

    Improved understanding of the role of inflammation in tendon disease is required to facilitate therapeutic target discovery. We studied supraspinatus tendons from patients experiencing pain before and after surgical subacromial decompression treatment. Tendons were classified as having early, intermediate, or advanced disease, and inflammation was characterized through activation of pathways mediated by interferon (IFN), nuclear factor κB (NF-κB), glucocorticoid receptor, and signal transducer and activator of transcription 6 (STAT-6). Inflammation signatures revealed expression of genes and proteins induced by IFN and NF-κB in early-stage disease and genes and proteins induced by STAT-6 and glucocorticoid receptor activation in advanced-stage disease. The proresolving proteins FPR2/ALX and ChemR23 were increased in early-stage disease compared to intermediate- to advanced-stage disease. Patients who were pain-free after treatment had tendons with increased expression of CD206 and ALOX15 mRNA compared to tendons from patients who continued to experience pain after treatment, suggesting that these genes and their pathways may moderate tendon pain. Stromal cells from diseased tendons cultured in vitro showed increased expression of NF-κB and IFN target genes after treatment with lipopolysaccharide or IFNγ compared to stromal cells derived from healthy tendons. We identified 15-epi lipoxin A4, a stable lipoxin isoform derived from aspirin treatment, as potentially beneficial in the resolution of tendon inflammation. Copyright © 2015, American Association for the Advancement of Science.

  13. Inflammation activation and resolution in human tendon disease

    PubMed Central

    Dakin, Stephanie G; Martinez, Fernando O; Yapp, Clarence; Wells, Graham; Oppermann, Udo; Dean, Benjamin JF; Smith, Richard DJ; Wheway, Kim; Watkins, Bridget; Roche, Lucy; Carr, Andrew J

    2016-01-01

    Improved understanding of the role of inflammation in tendon disease is required to facilitate therapeutic target discovery. We studied supraspinatus tendons from patients experiencing pain before and after surgical subacromial decompression treatment. Tendons were classified as having early, intermediate or advanced disease and inflammation was characterized through activation of pathways mediated by Interferon, NF-κB, glucocorticoid receptor and STAT-6. Inflammation signatures revealed expression of genes and proteins induced by Interferon and NF-κB in early stage disease and genes and proteins induced by STAT-6 and glucocorticoid receptor activation in advanced stage disease. The pro-resolving proteins FPR2/ALX and ChemR23 were increased in early stage disease compared to intermediate-advanced stage disease. Patients who were pain-free post-treatment had tendons with increased expression of CD206 and ALOX15 mRNA compared to tendons from patients who continued to experience pain post-treatment, suggesting that these genes and their pathways may moderate tendon pain. Stromal cells from diseased tendons cultured in vitro showed increased expression of NF-κB and Interferon target genes after treatment with lipopolysaccharide or IFNγ compared to stromal cells derived from healthy tendons. We identified 15-epi Lipoxin A4, a stable lipoxin metabolite derived from aspirin treatment, as potentially beneficial in the resolution of tendon inflammation. PMID:26511510

  14. Whole-body vibration training induces hypertrophy of the human patellar tendon.

    PubMed

    Rieder, F; Wiesinger, H-P; Kösters, A; Müller, E; Seynnes, O R

    2016-08-01

    Animal studies suggest that regular exposure to whole-body vibration (WBV) induces an anabolic response in bone and tendon. However, the effects of this type of intervention on human tendon properties and its influence on the muscle-tendon unit function have never been investigated. The aim of this study was to investigate the effect of WBV training on the patellar tendon mechanical, material and morphological properties, the quadriceps muscle architecture and the knee extension torque-angle relationship. Fifty-five subjects were randomized into either a vibration, an active control, or an inactive control group. The active control subjects performed isometric squats on a vibration platform without vibration. Muscle and tendon properties were measured using ultrasonography and dynamometry. Vibration training induced an increase in proximal (6.3%) and mean (3.8%) tendon cross-sectional area, without any appreciable change in tendon stiffness and modulus or in muscle architectural parameters. Isometric torque at a knee angle of 90° increased in active controls (6.7%) only and the torque-angle relation remained globally unchanged in all groups. The present protocol did not appreciably alter knee extension torque production or the musculo-tendinous parameters underpinning this function. Nonetheless, this study shows for the first time that WBV elicits tendon hypertrophy in humans. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Estimation of tendon-plane orientation within human masseter muscle from reconstructed magnetic resonance images.

    PubMed

    Lam, E W; Hannam, A G; Christiansen, E L

    1991-01-01

    The human masseter is a powerful multipennate jaw elevator with complex internal architecture. The three-dimensional disposition of tendon planes within the muscle is thought to be an important determinant of function. We selected five adult subjects and used cephalometric radiography, magnetic resonance imaging and graphical, three-dimensional reconstruction to describe the organization of these planes within the muscle. Putative tendon planes were fitted to the surfaces of the three-dimensional reconstructions, and these were related to the mid-sagittal plane in the coronal and transverse views. To confirm whether putative planes disclosed by magnetic resonance represented true anatomical entities, a fresh human cadaver head was imaged and the magnetic resonance slices were compared with cryosections obtained in the same planes. Tendon-plane angulation appeared to be related to ramal length and lower face height measured cephalometrically. In the transverse view, the tendon planes appeared roughly to follow the angulations of the zygomatic arch and the lateral face of the mandibular ramus. These findings suggest that the angulation of tendon planes, and possibly pennation angles, are different depending on the viewing angle. Rather than reporting pennation angle as a single angle, alpha, which has been the convention, it may be more appropriate to express it as a three-dimensional angle relative to the normal of a particular tendon plane. The inference is that muscle fibres inserting on either side of a central tendon may need to develop different tensile forces if translation is to occur directly along the tendon axis.

  16. Distribution and expression of type VI collagen and elastic fibers in human rotator cuff tendon tears.

    PubMed

    Thakkar, Dipti; Grant, Tyler M; Hakimi, Osnat; Carr, Andrew J

    2014-01-01

    There is increasing evidence for a progressive extracellular matrix change in rotator cuff disease progression. Directly surrounding the cell is the pericellular matrix, where assembly of matrix aggregates typically occurs making it critical in the response of tendon cells to pathological conditions. Studies in animal models have identified type VI collagen, fibrillin-1 and elastin to be located in the pericellular matrix of tendon and contribute in maintaining the structural and biomechanical integrity of tendon. However, there have been no reports on the localization of these proteins in human tendon biopsies. This study aimed to characterize the distribution of these ECM components in human rotator cuffs and gain greater insight into the relationship of pathology to tear size by analyzing the distribution and expression profiles of these ECM components. Confocal microscopy confirmed the localization of these structural molecules in the pericellular matrix of the human rotator cuff. Tendon degeneration led to an increased visibility of these components with a significant disorganization in the distribution of type VI collagen. At the genetic level, an increase in tear size was linked to an increased transcription of type VI collagen and fibrillin-1 with no significant alteration in the elastin levels. This is the first study to confirm the localization of type VI collagen, elastin and fibrillin-1 in the pericellular region of human supraspinatus tendon and assesses the effect of tendon degeneration on these structures, thus providing a useful insight into the composition of human rotator cuff tears which can be instrumental in predicting disease prognosis.

  17. Glycosaminoglycans of human rotator cuff tendons: changes with age and in chronic rotator cuff tendinitis.

    PubMed Central

    Riley, G P; Harrall, R L; Constant, C R; Chard, M D; Cawston, T E; Hazleman, B L

    1994-01-01

    OBJECTIVES--To analyse the glycosaminoglycans of the adult human rotator cuff tendon matrix, to characterise changes in the glycosaminoglycan composition with age and in chronic rotator cuff tendinitis. METHODS--Rotator cuff (supraspinatus) tendons (n = 84) and common biceps tendons (n = 26) were obtained from cadavers with no history of tendon pathology (age range 11-95 years). Biopsies of rotator cuff tendons (supraspinatus and subscapularis tendons, n = 53) were obtained during open shoulder surgery to repair shoulder lesions (age range 38-80 years). Glycosaminoglycans were extracted by papain digestion and analysed by cellulose acetate electrophoresis, the carbazole assay for uronic acid and the dimethylmethylene blue dye-binding assay for sulphated glycosaminoglycans. Some digests were analysed for keratan sulphate by 5D4 monoclonal antibody ELISA. Soluble proteoglycans were extracted in 4M guanidine hydrochloride and analysed by 4-15% SDS PAGE. RESULTS--The mean (SD) sulphated glycosaminoglycan (GAG) content of the normal cadaver supraspinatus tendon was 12.3 (4.3) micrograms/mg dry weight, between three and ten times greater than in the common biceps tendon [1.2 (0.6) micrograms/mg dry weight]. The major GAG was chondroitin sulphate [6.9 (2.6) micrograms/mg dry weight], with a smaller proportion of dermatan sulphate [2.5 (1.2) micrograms/mg dry weight]. In contrast, the common biceps tendon contained predominantly dermatan sulphate [0.8 (0.2) microgram/mg dry weight] with less chondroitin sulphate [0.2 (0.2) microgram/mg dry weight]. There was no difference in the concentration of hyaluronan in these tendons [9.3 (2.8) micrograms/mg dry weight and 10.8 (4.3) micrograms/mg dry weight respectively] and there was no significant change of hyaluronan with age. Keratan sulphate was a small but significant component of the supraspinatus tendon [0.43 (0.33) microgram/mg dry weight, n = 25], whereas there was little or none in the common biceps tendon [0.04 (0

  18. Elastic properties of Thiel-embalmed human ankle tendon and ligament.

    PubMed

    Liao, Xiaochun; Kemp, Sandy; Corner, George; Eisma, Roos; Huang, Zhihong

    2015-10-01

    Thiel embalming is recommended as an alternative to formalin-based embalming because it preserves tissue elasticity, color, and flexibility in the long term, with low infection and toxicity risk. The degree to which Thiel embalming preserves elasticity has so far been assessed mainly by subjective scoring, with little quantitative verification. The aim of this study is to quantify the effect of Thiel embalming on the elastic properties of human ankle tendons and ligament. Biomechanical tensile tests were carried out on six Thiel-embalmed samples each of the peroneus longus, peroneus brevis, and calcaneal tendons, and the calcaneofibular ligament, with strain rates of 0.25%s(-1), 2%s(-1), and 8%s(-1). The stress-strain relationship was calculated from the force-extension response with cross-sectional area and gauge length. Young's modulus was determined from the stress-strain curve. The results showed that the tendon and ligament elasticity were lower after Thiel embalming than the literature values for fresh nonembalmed tendons and ligament. The biomechanical tensile test showed that the measured elasticity of Thiel-embalmed tendons and ligaments increased with the strain rate. The Thiel embalming method is useful for preserving human ankle tendons and ligaments for anatomy and surgery teaching and research, but users need to be aware of its softening effects. The method retains the mechanical strain rate effect on tendons and ligament. © 2015 Wiley Periodicals, Inc.

  19. Human flexor tendon tissue engineering: in vivo effects of stem cell reseeding.

    PubMed

    Schmitt, Taliah; Fox, Paige M; Woon, Colin Y; Farnebo, Simon J; Bronstein, Joel A; Behn, Anthony; Pham, Hung; Chang, James

    2013-10-01

    Tissue-engineered human flexor tendons may be an option to aid in reconstruction of complex upper extremity injuries with significant tendon loss. The authors hypothesize that human adipose-derived stem cells remain viable following reseeding on human tendon scaffolds in vivo and aid in graft integration. Decellularized human flexor tendons harvested from fresh-frozen cadavers and reseeded with green fluorescent protein-labeled pooled human adipose-derived stem cells were examined with bioluminescent imaging and immunohistochemistry. Reseeded repaired tendons were compared biomechanically with unseeded controls following implantation in athymic rats at 2 and 4 weeks. The ratio of collagen I to collagen III at the repair site was examined using Sirius red staining. To confirm cell migration, reseeded and unseeded tendons were placed either in contact or with a 1-mm gap for 12 days. Green fluorescent protein signal was then detected. Following reseeding, viable cells were visualized at 12 days in vitro and 4 weeks in vivo. Biomechanical testing revealed no significant difference in ultimate load to failure and 2-mm gap force. Histologic evaluation showed host cell invasion and proliferation of the repair sites. No increase in collagen III was noted in reseeded constructs. Cell migration was confirmed from reseeded constructs to unseeded tendon scaffolds with tendon contact. Human adipose-derived stem cells reseeded onto decellularized allograft scaffolds are viable over 4 weeks in vivo. The movement of host cells into the scaffold and movement of adipose-derived stem cells along and into the scaffold suggests biointegration of the allograft.

  20. Extracellular matrix expression of human tenocytes in three-dimensional air-liquid and PLGA cultures compared with tendon tissue: implications for tendon tissue engineering.

    PubMed

    Stoll, Christiane; John, Thilo; Endres, Michaela; Rosen, Christian; Kaps, Christian; Kohl, Benjamin; Sittinger, Michael; Ertel, Wolfgang; Schulze-Tanzil, Gundula

    2010-09-01

    Tenocyte transplantation may prove to be an approach to support healing of tendon defects. Cell-cell and cell-matrix contacts within three-dimensional (3D) cultures may prevent tenocyte dedifferentiation observed in monolayer (2D) culture. The present study compares both neotissue formation and tenocyte extracellular matrix (ECM) expression in 2D and 3D cultures directly with that of native tendon, in order to determine optimal conditions for tendon tissue engineering. Primary human tenocytes were embedded in poly[lactic-co-glycolic-acid] (PLGA)-scaffolds and high-density cultures. Neotissue formation was examined by hematoxyline-eosine (H&E) and immunofluorescence staining. Gene expression of ECM proteins and vascular endothelial growth factor (VEGF) was compared at days 0 (2D), 14, and 28 in 3D cultures and tendon. Histomorphology of 3D culture showed tendon-like tissue as tenocyte cell nuclei became more elongated and ECM accumulated. Type I collagen gene expression was higher in 2D culture than in tendon and decreased in 4-week-old 3D cultures, whereas type III collagen was only elevated in high-density culture compared with tendon. Decorin and COMP were reduced in 2D and increased in 3D culture almost to ex vivo level. These results suggest that the 3D high-density or biodegradable scaffolds cultures encourage the differentiation of expanded monolayer tenocytes in vitro to tendon-like tissue. (c) 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. Regional differences in elements of human peroneus longus tendons.

    PubMed

    Matsumoto, Norikazu; Kumai, Tsukasa; Isomoto, Shinji; Shinohara, Yasushi; Tanaka, Yasuhito; Azuma, Cho; Minami, Takeshi; Tohno, Yoshiyuki

    2013-08-01

    Many studies have been performed on the structure, molecular composition, and biochemical properties of tendons. However, comparatively little research has been conducted on the content of various trace elements within tendons. Six elements were analyzed in four regions of the peroneus longus tendon: the tensional part of the tendon immediately proximal to the lateral malleolus (region A), the compressive region of the tendon in contact with the lateral malleolus (region B), the compressive region of the tendon in contact with the deep surface of the cuboid (region C), and the tensional part of the tendon between the cuboid and first metatarsal, to which the tendon is attached (region D). Regions B and C are wraparound regions. The calcium content was higher in region C (2.10 ± 0.93 mg/g) than in both regions A (1.25 ± 0.51 mg/g) and D (1.43 ± 0.41 mg/g) (p < 0.05), indicating that it is likely related to regional differences in cartilage degeneration. The phosphorus content was also higher in region C, possibly because of low alkaline phosphatase activity in this region. The sulfur content was higher in the wraparound regions (region B: 0.98 ± 0.09 mg/g, region C: 1.24 ± 0.19 mg/g) than in both regions A (0.83 ± 0.11 mg/g) and D (0.83 ± 0.1 mg/g) (p < 0.01); sulfur content is thought to be influenced by tendon-bone compression. Finally, the magnesium content in the wraparound regions was also higher, which is probably related to a higher level of fibrocartilage. No significant relationships were found with regard to zinc or iron. Overall, the findings of the present study indicate that element contents are related to function and anatomical differences in tendons, and that they may even vary within the same tendon.

  2. Distinct muscle fascicle length changes in feline medial gastrocnemius and soleus muscles during slope walking.

    PubMed

    Maas, Huub; Gregor, Robert J; Hodson-Tole, Emma F; Farrell, Brad J; Prilutsky, Boris I

    2009-04-01

    On the basis of differences in physiology, e.g., histochemical properties and spindle density, and the structural design of the cat soleus (SO) and medial gastrocnemius (MG) muscles, we hypothesized that 1) fascicle length changes during overground walking would be both muscle and slope dependent, which would have implications for the muscles' force output as well as sensory function, and that 2) muscle-tendon unit (MTU) and fascicle length changes would be different, in which case MTU length could not be used as an indicator of muscle spindle strain. To test these hypotheses, we quantified muscle fascicle length changes and compared them with length changes of the whole MTU in the SO and MG during overground walking at various slopes (0, +/- 25, +/- 50, +75, and +100%). The SO and MG were surgically instrumented with sonomicrometry crystals and fine-wire electromyogram electrodes to measure changes in muscle fascicle length and muscle activity, respectively. MTU lengths were calculated using recorded ankle and knee joint angles and a geometric model of the hindlimb. The resultant joint moments were calculated using inverse dynamics analysis to infer muscle loading. It was found that although MTU length and velocity profiles of the SO and MG appeared similar, length changes and velocities of muscle fascicles were substantially different between the two muscles. Fascicle length changes of both SO and MG were significantly affected by slope intensity acting eccentrically in downslope walking (-25 to -50%) and concentrically in upslope walking (+25 to +100%). The differences in MTU and fascicle behaviors in both the SO and MG muscles during slope walking were explained by the three distinct features of these muscles: 1) the number of joints spanned, 2) the pennation angle, and 3) the in-series elastic component. It was further suggested that the potential role of length feedback from muscle spindles is both task and muscle dependent.

  3. Strain and elongation of the human semitendinosus muscle - tendon unit.

    PubMed

    Kellis, Eleftherios; Patsika, Glykeria; Karagiannidis, Evaggelos

    2013-12-01

    The semitendinosus (ST) consists of a long distal tendon and it is divided in two parts by a tendinous inscription (TI). The purpose of this study was to quantify strain and elongation of the TI and the distal tendon of ST. Fourteen subjects performed ramp isometric contractions of the knee flexors at 0°, 45° and 90° of knee flexion. Two ultrasound probes were used to visualize the displacement of the distal tendon and selected points across the TI and aponeuroses. Three-way analysis of variance designs indicated that: (a) strain and elongation of the ST distal muscle-tendon junction were higher than that of the aponeurosis - TI junction points (p < 0.05) (b) the long arm of the TI reach strain of 49.86 ± 7.77% which was significantly (p < 0.05) higher than that displayed by the short arm (28.35 ± 0.59%) (c) Strain of tendinous and TI-aponeuroses segments significantly increased from 90° to 0° of knee flexion while the inverse was observed for the TI arm length (p < 0.05). (d) Tendon strain was significantly higher than strain of the TI-aponeuroses segments at 45° and 90° of knee flexion while the opposite was observed at 0° of knee flexion. The arrangement of TI along ST length results in differential local strains, indicating that the mechanical properties of the ST muscle are affected by tendon, aponeuroses and tendinous inscription interactions.

  4. Intrinsic differentiation potential of adolescent human tendon tissue: an in-vitro cell differentiation study.

    PubMed

    de Mos, Marieke; Koevoet, Wendy J L M; Jahr, Holger; Verstegen, Monique M A; Heijboer, Marinus P; Kops, Nicole; van Leeuwen, Johannes P T M; Weinans, Harrie; Verhaar, Jan A N; van Osch, Gerjo J V M

    2007-02-23

    Tendinosis lesions show an increase of glycosaminoglycan amount, calcifications, and lipid accumulation. Therefore, altered cellular differentiation might play a role in the etiology of tendinosis. This study investigates whether adolescent human tendon tissue contains a population of cells with intrinsic differentiation potential. Cells derived from adolescent non-degenerative hamstring tendons were characterized by immunohistochemistry and FACS-analysis. Cells were cultured for 21 days in osteogenic, adipogenic, and chondrogenic medium and phenotypical evaluation was carried out by immunohistochemical and qPCR analysis. The results were compared with the results of similar experiments on adult bone marrow-derived stromal cells (BMSCs). Tendon-derived cells stained D7-FIB (fibroblast-marker) positive, but alpha-SMA (marker for smooth muscle cells and pericytes) negative. Tendon-derived cells were 99% negative for CD34 (endothelial cell marker), and 73% positive for CD105 (mesenchymal progenitor-cell marker). In adipogenic medium, intracellular lipid vacuoles were visible and tendon-derived fibroblasts showed upregulation of adipogenic markers FABP4 (fatty-acid binding protein 4) and PPARG (peroxisome proliferative activated receptor gamma). In chondrogenic medium, some cells stained positive for collagen 2 and tendon-derived fibroblasts showed upregulation of collagen 2 and collagen 10. In osteogenic medium Von Kossa staining showed calcium deposition although osteogenic markers remained unaltered. Tendon-derived cells and BMCSs behaved largely comparable, although some distinct differences were present between the two cell populations. This study suggests that our population of explanted human tendon cells has an intrinsic differentiation potential. These results support the hypothesis that there might be a role for altered tendon-cell differentiation in the pathophysiology of tendinosis.

  5. Mechanical properties of tendon and aponeurosis of human gastrocnemius muscle in vivo.

    PubMed

    Muramatsu, T; Muraoka, T; Takeshita, D; Kawakami, Y; Hirano, Y; Fukunaga, T

    2001-05-01

    Load-strain characteristics of tendinous tissues (Achilles tendon and aponeurosis) were determined in vivo for human medial gastrocnemius (MG) muscle. Seven male subjects exerted isometric plantar flexion torque while the elongation of tendinous tissues of MG was determined from the tendinous movements by using ultrasonography. The maximal strain of the Achilles tendon and aponeurosis, estimated separately from the elongation data, was 5.1 +/- 1.1 and 5.9 +/- 1.6%, respectively. There was no significant difference in strain between the Achilles tendon and aponeurosis. In addition, no significant difference in strain was observed between the proximal and distal regions of the aponeurosis. The results indicate that tendinous tissues of the MG are homogeneously stretched along their lengths by muscle contraction, which has functional implications for the operation of the human MG muscle-tendon unit in vivo.

  6. Insulin-like growth factor I enhances collagen synthesis in engineered human tendon tissue.

    PubMed

    Herchenhan, Andreas; Bayer, Monika L; Eliasson, Pernilla; Magnusson, S Peter; Kjaer, Michael

    2015-02-01

    Isolated human tendon cells form 3D tendon constructs that demonstrate collagen fibrillogenesis and feature structural similarities to tendon when cultured under tensile load. The exact role of circulating growth factors for collagen formation in tendon is sparsely examined. We investigated the influence of insulin-like growth factor I (IGF-I) on tendon construct formation in 3D cell culture. Tendon constructs were grown in 0.5 or 10% FBS with or without IGF-I (250 mg/ml) supplementation. Collagen content (fluorometric), mRNA levels (PCR) and fibril diameter (transmission electron microscopy) were determined at 7, 10, 14, 21 and 28 days. IGF-I revealed a stimulating effect on fibril diameter (up to day 21), mRNA for collagen (to day 28), tenomodulin (to day 28) and scleraxis (at days 10 and 14), and on overall collagen content. 10% FBS diminished the development of fibril diameter (day 14), collagen content (at days 21 and 28) and mRNA expression for collagen, tenomodulin and scleraxis. IGF-I supplementation promotes early onset of tensile load induced collagen formation and tendon structural arrangement, whereas the FBS concentration routinely used in cultures diminishes collagen expression, collagen content and fibril formation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Relationship of medial gastrocnemius relative fascicle excursion and ankle joint power and work performance during gait in typically developing children

    PubMed Central

    Martín Lorenzo, Teresa; Albi Rodríguez, Gustavo; Rocon, Eduardo; Martínez Caballero, Ignacio; Lerma Lara, Sergio

    2017-01-01

    Abstract Muscle fascicles lengthen in response to chronic passive stretch through in-series sarcomere addition in order to maintain an optimum sarcomere length. In turn, the muscles’ force generating capacity, maximum excursion, and contraction velocity is enhanced. Thus, longer fascicles suggest a greater capacity to develop joint power and work. However, static fascicle length measurements may not be taking sarcomere length differences into account. Thus, we considered relative fascicle excursions through passive ankle dorsiflexion may better correlate with the capacity to generate joint power and work than fascicle length. Therefore, the aim of the present study was to determine if medial gastrocnemius relative fascicle excursions correlate with ankle joint power and work generation during gait in typically developing children. A sample of typically developing children (n = 10) were recruited for this study and data analysis was carried out on 20 legs. Medial gastrocnemius relative fascicle excursion from resting joint angle to maximum dorsiflexion was estimated from trigonometric relations of medial gastrocnemius pennation angle and thickness obtained from B-mode real-time ultrasonography. Furthermore, a three-dimensional motion capture system was used to obtain ankle joint work and power during the stance phase of gait. Significant correlations were found between relative fascicle excursion and peak power absorption (–) r(14) = −0.61, P = .012 accounting for 31% variability, positive work r(18) = 0.56, P = .021 accounting for 31% variability, and late stance positive work r(15) = 0.51, P = .037 accounting for 26% variability. The large unexplained variance may be attributed to mechanics of neighboring structures (e.g., soleus or Achilles tendon mechanics) and proximal joint kinetics which may also contribute to ankle joint power and work performance, and were not taken into account. Further studies are encouraged to provide

  8. Intratendinous Injection of Hydrogel for Reseeding Decellularized Human Flexor Tendons.

    PubMed

    Long, Chao; Galvez, Michael G; Legrand, Anais; Joubert, Lydia-Marie; Wang, Zhen; Chattopadhyay, Arhana; Chang, James; Fox, Paige M

    2017-06-01

    Decellularized cadaveric tendons are a potential source for reconstruction. Reseeding to enhance healing is ideal; however, cells placed on the tendon surface result in inadequate delivery. The authors used an injection technique to evaluate intratendinous cell delivery. Decellularized tendons were reseeded with adipose-derived stem cells in culture, and injected with fetal bovine serum or hydrogel. PKH26-stained cells in cross-section were quantified. To evaluate cell viability, the authors delivered luciferase-labeled cells and performed bioluminescent imaging. To evaluate synthetic ability, the authors performed immunohistochemistry of procollagen. Adipose-derived stem cells' ability to attract tenocytes was assessed using transwell inserts. Cell-to-cell interaction was assessed by co-culturing, measuring proliferation and collagen production, and quantifying synergy. Finally, tensile strength was tested. Both fetal bovine serum (p < 0.001) and hydrogel (p < 0.001) injection led to more cells inside the tendon compared with culturing. Hydrogel injection initially demonstrated greater bioluminescence than culturing (p < 0.005) and fetal bovine serum injection (p < 0.05). Injection groups demonstrated intratendinous procollagen staining correlating with the cells' location. Co-culture led to greater tenocyte migration (p < 0.05). Interaction index of proliferation and collagen production assays were greater than 1 for all co-culture ratios, demonstrating synergistic proliferation and collagen production compared with controls (p < 0.05). There were no differences in tensile strength. Hydrogel injection demonstrated the greatest intratendinous seeding efficiency and consistency, without compromising tensile strength. Intratendinous cells demonstrated synthetic capabilities and can potentially attract tenocytes inside the tendon, where synergy would promote intrinsic tendon healing. Therapeutic, V.

  9. Variation in the human Achilles tendon moment arm during walking.

    PubMed

    Rasske, Kristen; Thelen, Darryl G; Franz, Jason R

    2017-02-01

    The Achilles tendon (AT) moment arm is an important determinant of ankle moment and power generation during locomotion. Load and depth-dependent variations in the AT moment arm are generally not considered, but may be relevant given the complex triceps surae architecture. We coupled motion analysis and ultrasound imaging to characterize AT moment arms during walking in 10 subjects. Muscle loading during push-off amplified the AT moment arm by 10% relative to heel strike. AT moment arms also varied by 14% over the tendon thickness. In walking, AT moment arms are not strictly dependent on kinematics, but exhibit important load and spatial dependencies.

  10. In vitro tendon tissue development from human fibroblasts demonstrates collagen fibril diameter growth associated with a rise in mechanical strength.

    PubMed

    Herchenhan, Andreas; Bayer, Monika L; Svensson, René B; Magnusson, S Peter; Kjaer, Michael

    2013-01-01

    Collagen-rich tendons and ligaments are important for joint stability and force transmission, but the capacity to form new tendon is poorly understood. In the present study, we investigated mechanical strength, fibril size, and structure during development of tendon-like tissue from adult human tenocytes (termed tendon constructs) in vitro over 5 weeks in 3D tissue culture. The constructs displayed large elongated tendon cells aligned along the tendon axis together with collagen fibrils that increased in diameter by 50% from day 14 to 35, which approaches that observed in adult human tendon in vivo. The increase in diameter was accompanied by a 5-fold increase in mechanical strength (0.9±0.1 MPa to 4.9±0.6 MPa) and Young's modulus (5.8±0.9 MPa to 32.3±4.2 MPa), while the maximal strain at failure (16%) remained constant throughout the 5-week culture period. The present study demonstrates that 3D tendon constructs can be formed by isolated human tendon fibroblasts, and when these constructs are subjected to static self-generated tension, the fibrils will grow in size and strength approaching that of adult human tendon in vivo. Copyright © 2012 Wiley Periodicals, Inc.

  11. Torn human rotator cuff tendons have reduced collagen thermal properties on differential scanning calorimetry.

    PubMed

    Chaudhury, Salma; Holland, Christopher; Porter, David; Tirlapur, Uday K; Vollrath, Fritz; Carr, Andrew J

    2011-12-01

    The cause of the high failure rates often observed following rotator cuff tendon repairs, particularly massive tears, is not fully understood. Collagen structural changes have been shown to alter tendon thermal and mechanical properties. This study aimed to form a quantitative rather than qualitative assessment, of whether differences in collagen structure and integrity existed between small biopsies of normal, small, and massive rotator cuff tears using differential scanning calorimetry. Thermal properties were measured for 28 human biopsies taken intra-operatively from normal, small, and massive rotator cuff tendon tears in this powered study. Denaturation temperatures are represented by T(onset) (°C) and T(peak) (°C). The T(onset) is proposed to represent water-amide hydrogen bond breakage and resulting protein backbone mobility. T(peak) reportedly corresponds to the temperature at which the majority of proteins fall out of solution. Denaturation enthalpy (ΔH) should correlate with the amount of triple helical structure that is denatured. Fluorescence and confocal microscopy allowed quantitative validation. Small and massive rotator cuff tears had significantly higher T(onset), T(peak), and ΔH compared to controls. Polarized light microscopy of torn tendons confirmed greater collagen structural disruption compared to controls. These novel findings suggest greater quantifiable collagen structural disruption in rotator cuff tears, compared to controls. This study offers insight into possible mechanisms for the reduced strength of torn tendons and may explain why repaired tendons fail to heal.

  12. Length change of human gastrocnemius aponeurosis and tendon during passive joint motion.

    PubMed

    Muraoka, Tetsuro; Muramatsu, Tadashi; Takeshita, Daisuke; Kawakami, Yasuo; Fukunaga, Tetsuo

    2002-01-01

    The extent of elongation and slackness of aponeurosis and tendon, and muscle fiber length of human medial gastrocnemius muscle are determined in vivo using ultrasonography. The ankle joint is passively moved at 5 degrees /s within the joint range of -36 to 7 degrees (0 degrees = neutral anatomic position; positive values for dorsiflexion) by a dynamometer while the length change of the aponeurosis and tendon is determined using ultrasonography (n = 8 men). Strain is calculated as the length change relative to the reference length of aponeurosis and tendon when the passive joint moment is 0. Elongation (positive strain values) of aponeurosis and tendon at 7 degrees are 2.1 +/- 1.1 and 2.4 +/- 1.0%, respectively. The extent of slackness (negative strain values) of aponeurosis and tendon at -36 degrees are -1.8 +/- 1.1 and -3.5 +/- 1.6%, respectively, and there is a significant difference between them (p < 0.05). This may be related to the existence of muscle fibers that attach to the aponeurosis over its whole length and do not allow it to fold. The results indicate that the length change of aponeurosis and tendon of medial gastrocnemius muscle occurs over the range of ankle joint positions even during passive joint motions.

  13. Multipotent mesenchymal stem cells from human subacromial bursa: potential for cell based tendon tissue engineering.

    PubMed

    Song, Na; Armstrong, April D; Li, Feng; Ouyang, Hongsheng; Niyibizi, Christopher

    2014-01-01

    Rotator cuff injuries are a common clinical problem either as a result of overuse or aging. Biological approaches to tendon repair that involve use of scaffolding materials or cell-based approaches are currently being investigated. The cell-based approaches are focused on applying multipotent mesenchymal stem cells (MSCs) mostly harvested from bone marrow. In the present study, we focused on characterizing cells harvested from tissues associated with rotator cuff tendons based on an assumption that these cells would be more appropriate for tendon repair. We isolated MSCs from bursa tissue associated with rotator cuff tendons and characterized them for multilineage differentiation in vitro and in vivo. Human bursa was obtained from patients undergoing rotator cuff surgery and cells within were isolated using collagenase and dispase digestion. The cells isolated from the tissues were characterized for osteoblastic, adipogenic, chondrogenic, and tenogenic differentiation in vitro and in vivo. The results showed that the cells isolated from bursa tissue exhibited MSCs characteristics as evidenced by the expression of putative cell surface markers attributed to MSCs. The cells exhibited high proliferative capacity and differentiated toward cells of mesenchymal lineages with high efficiency. Bursa-derived cells expressed markers of tenocytes when treated with bone morphogenetic protein-12 (BMP-12) and assumed aligned morphology in culture. Bursa cells pretreated with BMP-12 and seeded in ceramic scaffolds formed extensive bone, as well as tendon-like tissue in vivo. Bone formation was demonstrated by histological analysis and immunofluorescence for DMP-1 in tissue sections made from the scaffolds seeded with the cells. Tendon-like tissue formed in vivo consisted of parallel collagen fibres typical of tendon tissues. Bursa-derived cells also formed a fibrocartilagenous tissue in the ceramic scaffolds. Taken together, the results demonstrate a new source of MSCs with a

  14. Tears of popliteomeniscal fascicles, diagnostic and clinical implications. A review of the evidence.

    PubMed

    Papalia, R; Simonetta, R; Di Vico, G; Torre, G; Saccone, L; Espregueira-Mendes, J; Denaro, V

    2016-01-01

    Postero-lateral corner of the knee is composed of several structures including the popliteo-meniscal fascicles (PMFs). These fibrous structures form a stable ligamentous complex around the popliteus tendon, which stabilize the lateral meniscus, increasing the strength of postero-lateral corner. Studies were retrieved through an electronic search of CINAHL, EMBASE, and Pub-Med, until May 2016. Studies in English, Italian, French, and Spanish were considered for inclusion. Randomized controlled trials, prospective and retrospective comparative studies, case series, and case reports were included. Studies eligible for inclusion concerned PMFs anatomy, biomechanics, diagnostic assessment of PMFs tears and clinical options for tears management. Thirteen studies were included in this review. There were: 7 case series, 4 case reports and 3 anatomical studies. Through anatomic dissection, two or three PMFs (antero-inferior fascicle, aiPMF; postero-superior fascicle, psPMF; postero-inferior fascicle, piPMF) can be indentified and isolated. Evaluation through MRI can be a useful diagnostic tool in detecting PMFs tears, especially using proton density (PD) sequences. The biomechanical analysis assessed that lateral meniscus (LM) motion is directly related with PMFs integrity and increased with section of one or both the fascicles. The clinical studies clearly state that a snapping syndrome, associated with lateral knee pain, can develop when one or both PMFs are torn. The three PMFs described are considered as relevant components of the popliteal hiatus, in the posterolateral aspect of the knee. MRI evaluation can detect these fibrous fascicles with good sensitivity. More studies with larger samples would be needed for a clear comprehension of PMFs function and clinical management of PMFs tears, especially with large case series and modern biomechanical testing.

  15. Human collagen-based multilayer scaffolds for tendon-to-bone interface tissue engineering.

    PubMed

    Kim, Beob Soo; Kim, Eun Ji; Choi, Ji Suk; Jeong, Ji Hoon; Jo, Chris Hyunchul; Cho, Yong Woo

    2014-11-01

    The natural tendon-to-bone region has a gradient in structure and composition, which is translated into a spatial variation of chemical, physical, and biological properties. This unique transitional tissue between bone and tendon is not normally recreated during natural bone-to-tendon healing. In this study, we have developed a human collagen-based multilayer scaffold mimicking the tendon-to-bone region. The scaffold consists of four different layers with the following composition gradient: (a) a tendon layer composed of collagen; (b) an uncalcified fibrocartilage layer composed of collagen and chondroitin sulfate; (c) a calcified fibrocartilage layer composed of collagen and less apatite; (d) a bone layer composed of collagen and apatite. The chemical, physical, and mechanical properties of the scaffold were characterized by a scanning electron microscope, porosimeter, universal tensile machine, Fourier transform infrared spectrometer, energy dispersive X-ray analysis apparatus, and thermogravimetric analysis apparatus. The multilayer scaffold provided a gradual transition of the physical, chemical, and mechanical environment and supported the adhesion and proliferation of human fibroblasts, chondrocytes, and osteoblasts toward each corresponding matrix. Overall, our results suggest the feasibility of a human collagen-based multilayer scaffold for regeneration of hard-to-soft interface tissues. © 2014 Wiley Periodicals, Inc.

  16. Muscle fascicle behavior during eccentric cycling and its relation to muscle soreness.

    PubMed

    Peñailillo, Luis; Blazevich, Anthony J; Nosaka, Kazunori

    2015-04-01

    A single bout of eccentric exercise confers a protective effect against muscle damage and soreness in subsequent eccentric exercise bouts, but the mechanisms underpinning this effect are unclear. This study compared vastus lateralis (VL) muscle-tendon behavior between two eccentric cycling bouts to test the hypothesis that muscle-tendon behavior would be different between bouts and would be associated with the protective effect. Eleven untrained men (27.1 ± 7.0 yr) performed two bouts of eccentric cycling (ECC1 and ECC2) separated by 2 wk for 10 min at 65% of maximal concentric workload (191.9 ± 44.2 W) each. Muscle soreness (by visual analog scale) and maximal voluntary isometric contraction (MVC) torque of the knee extensors were assessed before and 1-2 d after exercise. Using ultrasonography, VL fascicle length and angle changes during cycling were assessed, and tendinous tissue (TT) length changes were estimated. VL EMG amplitude, crank torque, and knee joint angles were measured during cycling. Soreness was greater (P < 0.0001) after ECC1 than ECC2, although MVC changes were not different between bouts (P = 0.47). No significant differences in peak EMG amplitude (normalized to EMG during MVC), crank peak torque, or knee angles were evident between bouts. However, fascicle elongation was 16% less during ECC2 than ECC1 (P < 0.01), indicating less fascicle strain in ECC2. Maximum TT length occurred at a smaller knee joint angle during ECC2 than ECC1 (P = 0.055). These results suggest that a lesser fascicle elongation and earlier TT elongation were associated with reduced muscle soreness after ECC2 than ECC1; thus, changes in muscle-tendon behavior may be an important mechanism underpinning the protective effect.

  17. Gender differences in fascicular lengthening during eccentric contractions: the role of the patella tendon stiffness.

    PubMed

    Hicks, K M; Onambele-Pearson, G L; Winwood, K; Morse, C I

    2013-11-01

    Elastic tendons have been suggested to attenuate fascicle lengthening during eccentric contractions; however, there is no in vivo evidence to support this hypothesis. Therefore, the aim of this study was to determine whether patella tendon stiffness modulates vastus lateralis (VL) fascicle lengthening during eccentric contractions in males and females. Vastus lateralis and patella tendon properties were measured in males and females owing to previously reported intrinsic gender differences in tendon properties. During maximal voluntary eccentric knee extensions, VL fascicle lengthening and torque were recorded at every 10° (range of motion 20-90°). A significant correlation between maximal patella tendon stiffness and change in fascicle length (r=0.476, P=0.023) was observed. Similarly, there was a significant correlation between maximal Young's modulus and change in fascicle length (r=0.470, P=0.049). As expected, patella tendon stiffness and Young's modulus were significantly higher in males compared with females (P<0.05). Interestingly, change in VL fascicle length during the eccentric contractions was significantly greater in males compared with females (P<0.05). Based on patella tendon moment arm measurements, VL muscle-tendon unit elongation was estimated to be significantly greater in males compared with females (5.24 and 4.84 cm respectively). The significant difference in fascicle lengthening during eccentric contractions may be partly explained by the significantly higher patella tendon moment arm, patella tendon stiffness and Young's modulus found in males compared with females. The current study provides in vivo evidence to support the hypothesis that the tendon acts as a 'mechanical buffer' during eccentric contractions. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  18. Morphological analysis of the hindlimb in apes and humans. I. Muscle architecture

    PubMed Central

    Payne, R C; Crompton, R H; Isler, K; Savage, R; Vereecke, E E; Günther, M M; Thorpe, S K S; D'Août, K

    2006-01-01

    We present quantitative data on the hindlimb musculature of Pan paniscus, Gorilla gorilla gorilla, Gorilla gorilla graueri, Pongo pygmaeus abelii and Hylobates lar and discuss the findings in relation to the locomotor habits of each. Muscle mass and fascicle length data were obtained for all major hindlimb muscles. Physiological cross-sectional area (PCSA) was estimated. Data were normalized assuming geometric similarity to allow for comparison of animals of different size/species. Muscle mass scaled closely to (body mass)1.0 and fascicle length scaled closely to (body mass)0.3 in most species. However, human hindlimb muscles were heavy and had short fascicles per unit body mass when compared with non-human apes. Gibbon hindlimb anatomy shared some features with human hindlimbs that were not observed in the non-human great apes: limb circumferences tapered from proximal-to-distal, fascicle lengths were short per unit body mass and tendons were relatively long. Non-human great ape hindlimb muscles were, by contrast, characterized by long fascicles arranged in parallel, with little/no tendon of insertion. Such an arrangement of muscle architecture would be useful for locomotion in a three dimensionally complex arboreal environment. PMID:16761973

  19. Ultrasonographic tissue characterisation of human Achilles tendons: quantification of tendon structure through a novel non-invasive approach.

    PubMed

    van Schie, H T M; de Vos, R J; de Jonge, S; Bakker, E M; Heijboer, M P; Verhaar, J A N; Tol, J L; Weinans, H

    2010-12-01

    To assess whether three-dimensional imaging of the Achilles tendon by ultrasonographic tissue characterisation (UTC) can differentiate between symptomatic and asymptomatic tendons. Case-control study. Sports Medical Department of the Hague Medical Centre. Twenty-six tendons from patients with chronic midportion Achilles tendinopathy were included. The "matched" control group consisted of 26 asymptomatic tendons. Symptomatic and asymptomatic tendons were scanned using the UTC procedure. One researcher performed the ultrasonographic data collection. These blinded data were randomised, and outcome measures were determined by two independent observers. The raw ultrasonographic images were analysed with a custom-designed algorithm that quantifies the three-dimensional stability of echo patterns, qua intensity and distribution over contiguous transverse images. This three-dimensional stability was related to tendon structure in previous studies. UTC categorises four different echotypes that represent (I) highly stable; (II) medium stable; (III) highly variable and (IV) constantly low intensity and variable distribution. The percentages of echo-types were calculated, and the maximum tendon thickness was measured. Finally, the inter-observer reliability of UTC was determined. Symptomatic tendons showed less pixels in echo-types I and II than asymptomatic tendons (51.5% vs 76.6%, p<0.001), thus less three-dimensional stability of the echo pattern. The mean maximum tendon thickness was 9.2 mm in the symptomatic group and 6.8 mm in the asymptomatic group (p<0.001). The Intraclass Correlation Coefficient (ICC) for the interobserver reliability of determining the echo-types I+II was 0.95. The ICC for tendon thickness was 0.84. UTC can quantitatively evaluate tendon structure and thereby discriminate symptomatic and asymptomatic tendons. As such, UTC might be useful to monitor treatment protocols.

  20. Modeling the tensile behavior of human Achilles tendon.

    PubMed

    Lewis, G; Shaw, K M

    1997-01-01

    Uniaxial quasi-static tensile stress, sigma versus strain, epsilon, data were obtained from 29 cadaveric Achilles tendons (donor ages: 36 to 100 years), at a strain rate of either 10 or 100%/s. These results were then used in modeling the elastic component of the tensile deformational behavior of this tissue. Two approaches were taken. In the first, it was shown that the following constitutive relation provided an excellent fit to the elastic section of the sigma-epsilon curve, sigma = C epsilon exp[D epsilon + F epsilon 2], with C, D and F being material constants, whose values for the present dataset were found to be C = 2.00 +/- 0.99, D = 0.089 +/- 0.087 and F = -0.0047 +/- 0.0095. The values of these coefficients were not statistically significantly affected by either donor age or test strain rate. In the second approach, the value of the modulus of elasticity of a filamentary polymer matrix composite material was computed as a function of various combinations of values of the modulus of elasticity of the fiber, the modulus of elasticity of the matrix, and angle of orientation of the principal material axes with respect to the reference coordinate axes (theta) for a fiber volume fraction of 0.6 and a material Poisson's ratio of 0.4. By comparing these results with the experimentally-obtained values of the tangent modulus of elasticity of the tendons (defined as the slope of the linear section of the post-toe zone in the sigma-epsilon plot), and assuming that the tendon may be idealized as a filamentary polymer matrix composite material, the suggestion is made that the winding angle of the fibers (collagen fibrils) in the tendon (taken to be equal to theta) is about 6 degrees.

  1. Mechanical properties of radiation-sterilised human Bone-Tendon-Bone grafts preserved by different methods.

    PubMed

    Kamiński, A; Gut, G; Marowska, J; Lada-Kozłowska, M; Biwejnis, W; Zasacka, M

    2009-08-01

    Patellar tendon auto- and allo-grafts are commonly used in orthopedic surgery for reconstruction of the anterior cruciate ligaments (ACL). Autografts are mainly used for primary reconstruction, while allografts are useful for revision surgery. To avoid the risk of infectious disease transmission allografts should be radiation-sterilised. As radiation-sterilisation supposedly decreases the mechanical strength of tendon it is important to establish methods of allograft preservation and sterilisation assuring the best quality of grafts and their safety at the same time. Therefore, the purpose of this study was to compare the tensile strength of human patellar tendon (cut out as for ACL reconstruction), preserved by various methods (deep fresh freezing, glycerolisation, lyophilisation) and subsequently radiation-sterilised with doses of 0, 25, 50 or 100 kGy. Bone-Tendon-Bone grafts (BTB) were prepared from cadaveric human patella tendons with both patellar and tibial attachments. BTB grafts were preserved by deep freezing, glycerolisation or lyophilisation and were subsequently radiation-sterilised with doses of 0 (control), 25, 50 or 100 kGy. All samples were subjected to mechanical failure tensile tests with the use of Instron system in order to estimate their mechanical properties. All lyophilised grafts were rehydrated before performing of those tests. Obtained mechanical tests results of examined grafts suggest that deep-frozen irradiated grafts retain their initial mechanical properties to an extent which does not exclude their clinical application.

  2. The initiation of embryonic-like collagen fibrillogenesis by adult human tendon fibroblasts when cultured under tension.

    PubMed

    Bayer, Monika L; Yeung, Chin-Yan C; Kadler, Karl E; Qvortrup, Klaus; Baar, Keith; Svensson, René B; Magnusson, S Peter; Krogsgaard, Michael; Koch, Manuel; Kjaer, Michael

    2010-06-01

    Tendon fibroblasts synthesize collagen and form fibrils during embryonic development, but to what extent mature fibroblasts are able to recapitulate embryonic development and develop normal tendon structure is unknown. The present study examined the capability of mature human tendon fibroblasts to initiate collagen fibrillogenesis when cultured in fixed-length fibrin gels. Fibroblasts were dissected from semitendinosus and gracilis tendons from healthy humans and cultured in 3D linear fibrin gels. The fibroblasts synthesized an extracellular matrix of parallel collagen fibrils that were aligned along the axis of tension. The fibrils had a homogeneous narrow diameter that was similar to collagen fibrils occurring in embryonic tendon. Immunostaining showed colocalization of collagen type I with collagen III, XII and XIV. A fibronectin network was formed in parallel with the collagen, and fibroblasts stained positive for integrin alpha(5). Finally, the presence of cell extensions into the extracellular space with membrane-enclosed fibrils in fibripositors indicated characteristics of embryonic tendon. We conclude that mature human tendon fibroblasts retain an intrinsic capability to perform collagen fibrillogenesis similar to that of developing tendon, which implies that the hormonal/mechanical milieu, rather than intrinsic cellular function, inhibits regenerative potential in mature tendon. (c) 2010 Elsevier Ltd. All rights reserved.

  3. Release of Tensile Strain on Engineered Human Tendon Tissue Disturbs Cell Adhesions, Changes Matrix Architecture, and Induces an Inflammatory Phenotype

    PubMed Central

    Bayer, Monika L.; Schjerling, Peter; Herchenhan, Andreas; Zeltz, Cedric; Heinemeier, Katja M.; Christensen, Lise; Krogsgaard, Michael; Gullberg, Donald; Kjaer, Michael

    2014-01-01

    Mechanical loading of tendon cells results in an upregulation of mechanotransduction signaling pathways, cell-matrix adhesion and collagen synthesis, but whether unloading removes these responses is unclear. We investigated the response to tension release, with regard to matrix proteins, pro-inflammatory mediators and tendon phenotypic specific molecules, in an in vitro model where tendon-like tissue was engineered from human tendon cells. Tissue sampling was performed 1, 2, 4 and 6 days after surgical de-tensioning of the tendon construct. When tensile stimulus was removed, integrin type collagen receptors showed a contrasting response with a clear drop in integrin subunit α11 mRNA and protein expression, and an increase in α2 integrin mRNA and protein levels. Further, specific markers for tendon cell differentiation declined and normal tendon architecture was disturbed, whereas pro-inflammatory molecules were upregulated. Stimulation with the cytokine TGF-β1 had distinct effects on some tendon-related genes in both tensioned and de-tensioned tissue. These findings indicate an important role of mechanical loading for cellular and matrix responses in tendon, including that loss of tension leads to a decrease in phenotypical markers for tendon, while expression of pro-inflammatory mediators is induced. PMID:24465881

  4. Human Leg Model Predicts Ankle Muscle-Tendon Morphology, State, Roles and Energetics in Walking

    PubMed Central

    Krishnaswamy, Pavitra; Brown, Emery N.; Herr, Hugh M.

    2011-01-01

    A common feature in biological neuromuscular systems is the redundancy in joint actuation. Understanding how these redundancies are resolved in typical joint movements has been a long-standing problem in biomechanics, neuroscience and prosthetics. Many empirical studies have uncovered neural, mechanical and energetic aspects of how humans resolve these degrees of freedom to actuate leg joints for common tasks like walking. However, a unifying theoretical framework that explains the many independent empirical observations and predicts individual muscle and tendon contributions to joint actuation is yet to be established. Here we develop a computational framework to address how the ankle joint actuation problem is resolved by the neuromuscular system in walking. Our framework is founded upon the proposal that a consideration of both neural control and leg muscle-tendon morphology is critical to obtain predictive, mechanistic insight into individual muscle and tendon contributions to joint actuation. We examine kinetic, kinematic and electromyographic data from healthy walking subjects to find that human leg muscle-tendon morphology and neural activations enable a metabolically optimal realization of biological ankle mechanics in walking. This optimal realization (a) corresponds to independent empirical observations of operation and performance of the soleus and gastrocnemius muscles, (b) gives rise to an efficient load-sharing amongst ankle muscle-tendon units and (c) causes soleus and gastrocnemius muscle fibers to take on distinct mechanical roles of force generation and power production at the end of stance phase in walking. The framework outlined here suggests that the dynamical interplay between leg structure and neural control may be key to the high walking economy of humans, and has implications as a means to obtain insight into empirically inaccessible features of individual muscle and tendons in biomechanical tasks. PMID:21445231

  5. Collagens, Proteoglycans, MMP-2, MMP-9 and TIMPs in Human Achilles Tendon Rupture

    PubMed Central

    Karousou, Evgenia; Ronga, Mario; Vigetti, Davide; Passi, Alberto

    2008-01-01

    Tendon integrity depends on the extracellular matrix (ECM) metabolism which is regulated by proteolytic enzymes. However, it is unclear which enzymes play a role in tendon rupture. We studied the ECM of 19 ruptured human Achilles tendons, comparing the composition of specimens harvested close to the rupture with specimens harvested from an apparently healthy area in the same tendon. We compared gene expression of collagen Type I, decorin, and versican including enzymes involved in their metabolism as matrix metalloproteases (MMP-2 and -9) and tissue inhibitory of metalloproteinase (TIMP-1 and -2) using real-time PCR, zymography and FACE analysis. We found greater gene expression of proteoglycan core protein decorin and versican, collagen Type I, MMPs and TIMPs in the tendon rupture. Zymography analysis, reflecting expression of enzymatic activity, confirmed the gene expression data at protein level. Carbohydrate content was greater in the macroscopically healthy area than in the ruptured area. In the ruptured area, we found increased core protein synthesis but without the normal glycosaminoglycan production. The tissue in the area of rupture undergoes marked rearrangement at molecular levels and supports the role of MMPs in the pathology. PMID:18425559

  6. Growth changes in morphological and mechanical properties of human patellar tendon in vivo.

    PubMed

    Kubo, Keitaro; Teshima, Takanori; Hirose, Norikazu; Tsunoda, Naoya

    2014-06-01

    The purpose of this study was to compare the morphological and mechanical properties of the human patellar tendon among elementary school children (prepubertal), junior high school students (pubertal), and adults. Twenty-one elementary school children, 18 junior high school students, and 22 adults participated in this study. The maximal strain, stiffness, Young's modulus, hysteresis, and cross-sectional area of the patellar tendon were measured using ultrasonography. No significant difference was observed in the relative length (to thigh length) or cross-sectional area (to body mass(2/3)) of the patellar tendon among the three groups. Stiffness and Young's modulus were significantly lower in elementary school children than in the other groups, while no significant differences were observed between junior high school students and adults. No significant differences were observed in maximal strain or hysteresis among the three groups. These results suggest that the material property (Young's modulus) of the patellar tendons of elementary school children was lower than that of the other groups, whereas that of junior high school students was already similar to that of adults. In addition, no significant differences were observed in the extensibility (maximal strain) or viscosity (hysteresis) of the patellar tendon among the three groups.

  7. Development of the human Achilles tendon enthesis organ.

    PubMed

    Shaw, H M; Vázquez, Osorio T; McGonagle, D; Bydder, G; Santer, R M; Benjamin, M

    2008-12-01

    The attachment of the Achilles tendon is part of an 'enthesis organ' that reduces stress concentration at the hard-soft tissue interface. The organ also includes opposing sesamoid and periosteal fibrocartilages, a bursa and Kager's fat pad. In addition, the deep crural and plantar fasciae contribute to Achilles stress dissipation and could also be regarded as components. Here we describe the sequence in which these various tissues differentiate. Serial sections of feet from spontaneously aborted foetuses (crown rump lengths 22-322 mm) were examined. All slides formed part of an existing collection of histologically sectioned embryological material, obtained under Spanish law and housed in the Universidad Complutense, Madrid. From the earliest stages, it was evident that the Achilles tendon and plantar fascia had a mutual attachment to the calcaneal perichondrium. The first components of the enthesis organ to appear (in the 45-mm foetus) were the retrocalcaneal bursa and the crural fascia. The former developed by cavitation within the mesenchyme that later gave rise to Kager's fat pad. The tip of the putative fat pad protruded into the developing bursa in the 110-mm foetus and fully differentiated adipocytes were apparent in the 17-mm foetus. All three fibrocartilages were first recognisable in the 332-mm foetus--at which time adipogenesis had commenced in the heel fat pad. The sequence in which the various elements became apparent suggests that bursal formation and the appearance of the crural fascia may be necessary to facilitate the foot movements that subsequently lead to fibrocartilage differentiation. The later commencement of adipogenesis in the heel than in Kager's pad probably reflects the non-weight environment in utero. The direct continuity between plantar fascia and Achilles tendon that is characteristic of the adult reflects the initial attachment of both structures to the calcaneal perichondrium rather than to the skeletal anlagen itself.

  8. Shear Load Transfer in High and Low Stress Tendons

    PubMed Central

    Kondratko-Mittnacht, Jaclyn; Duenwald-Kuehl, Sarah; Lakes, Roderic; Vanderby, Ray

    2016-01-01

    Background Tendon is an integral part of joint movement and stability, as it functions to transmit load from muscle to bone. It has an anisotropic, fibrous hierarchical structure that is generally loaded in the direction of its fibers/fascicles. Internal load distributions are altered when joint motion rotates an insertion site or when local damage disrupts fibers/fascicles, potentially causing inter-fiber (or inter-fascicular) shear. Tendons with different microstructure (helical versus linear) may redistribute loads differently. Method of Approach This study explored how shear redistributes axial loads in rat tail tendon (low stress tendons with linear microstructure) and porcine flexor tendon (high stress with helical microstructure) by creating lacerations on opposite sides of the tendon, ranging from about 20-60% of the tendon width, to create various magnitudes of shear. Differences in fascicular orientation were quantified using polarized light microscopy. Results and Conclusions Unexpectedly, both tendon types maintained about 20% of pre-laceration stress values after overlapping cuts of 60% of tendon width (no intact fibers end to end) suggesting that shear stress transfer can contribute more to overall tendon strength and stiffness than previously reported. All structural parameters for both tendon types decreased linearly with increasing laceration depth. The tail tendon had a more rapid decline in post-laceration elastic stress and modulus parameters as well as a more linear and less tightly packed fascicular structure, suggesting that positional tendons may be less well suited to redistribute loads via a shear mechanism. PMID:25700261

  9. Shear load transfer in high and low stress tendons.

    PubMed

    Kondratko-Mittnacht, Jaclyn; Duenwald-Kuehl, Sarah; Lakes, Roderic; Vanderby, Ray

    2015-05-01

    Tendon is an integral part of joint movement and stability, as it functions to transmit load from muscle to bone. It has an anisotropic, fibrous hierarchical structure that is generally loaded in the direction of its fibers/fascicles. Internal load distributions are altered when joint motion rotates an insertion site or when local damage disrupts fibers/fascicles, potentially causing inter-fiber (or inter-fascicular) shear. Tendons with different microstructures (helical versus linear) may redistribute loads differently. This study explored how shear redistributes axial loads in rat tail tendon (low stress tendons with linear microstructure) and porcine flexor tendon (high stress with helical microstructure) by creating lacerations on opposite sides of the tendon, ranging from about 20% to 60% of the tendon width, to create various magnitudes of shear. Differences in fascicular orientation were quantified using polarized light microscopy. Unexpectedly, both tendon types maintained about 20% of pre-laceration stress values after overlapping cuts of 60% of tendon width (no intact fibers end to end) suggesting that shear stress transfer can contribute more to overall tendon strength and stiffness than previously reported. All structural parameters for both tendon types decreased linearly with increasing laceration depth. The tail tendon had a more rapid decline in post-laceration elastic stress and modulus parameters as well as a more linear and less tightly packed fascicular structure, suggesting that positional tendons may be less well suited to redistribute loads via a shear mechanism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. No donor age effect of human serum on collagen synthesis signaling and cell proliferation of human tendon fibroblasts.

    PubMed

    Bayer, Monika L; Schjerling, Peter; Biskup, Edyta; Herchenhan, Andreas; Heinemeier, Katja M; Doessing, Simon; Krogsgaard, Michael; Kjaer, Michael

    2012-05-01

    The aging process of tendon tissue is associated with decreased collagen content and increased risk for injuries. An essential factor in tendon physiology is transforming growth factor-β1 (TGF-β1), which is presumed to be reduced systemically with advanced age. The aim of this study was to investigate whether human serum from elderly donors would have an inhibiting effect on the expression of collagen and collagen-related genes as well as on cell proliferative capacity in tendon cells from young individuals. There was no difference in systemic TGF-β1 levels in serum obtained from young and elderly donors, and we found no difference in collagen expression when cells were subjected to human serum from elderly versus young donors. In addition, tendon cell proliferation was similar when culture medium was supplemented with serum of different donor age. These findings suggest that factors such as the cell intrinsic capacity or the tissue-specific environment rather than systemic circulating factors are important for functional capacity throughout life in human tendon cells. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Acute and chronic effects of hyperbaric oxygen therapy on blood circulation of human muscle and tendon in vivo.

    PubMed

    Kubo, Keitaro; Ikebukuro, Toshihiro

    2012-10-01

    This study aimed to investigate the acute and chronic effects of hyperbaric oxygen therapy on blood circulation of human muscle and tendon in vivo. Using near-infrared spectroscopy and red laser lights, we determined acute changes in blood volume (THb) and oxygen saturation (StO2) of the medial gastrocnemius muscle and Achilles tendon during 60 minutes of hyperbaric oxygen therapy (1.3 atm absolute and 50% O2, experiment 1). In addition, we determined the chronic effects of hyperbaric oxygen therapy (60 minutes, 2 times per week, 6 weeks) on THb and StO2 of muscle and tendon (experiment 2). In experiment 1, THb of the muscle increased gradually from resting level, but StO2 did not change. On the other hand, THb and StO2 of the tendon increased during hyperbaric oxygen therapy. In experiment 2, the pattern of changes in the measured variables during 60 minutes of therapy was similar for both the muscle and tendon between the first and last therapies. During resting, THb and StO2 of the tendon were significantly lower after 6 weeks of therapy, although those of the muscle were not. In conclusion, oxygen saturation of the tendon increased during hyperbaric oxygen therapy, whereas that of the muscle did not. This result would be related to the difference in the treated effects between muscle and tendon. However, oxygen saturation of the tendon, but not the muscle, during resting decreased after 6 weeks of therapy.

  12. Effect of strength training on human patella tendon mechanical properties of older individuals

    PubMed Central

    Reeves, N D; Maganaris, C N; Narici, M V

    2003-01-01

    This study investigated the effect of strength training on the mechanical properties of the human patella tendon of older individuals. Subjects were assigned to training (n = 9; age 74.3 ± 3.5 years, body mass 69.7 ± 14.8 kg and height 163.4 ± 9.1 cm, mean ±s.d.) and control (n = 9; age 67.1 ± 2 years, body mass 73.5 ± 14.9 kg and height 168.3 ± 11.5 cm) groups. Strength training (two series of 10 repetitions at 80 % of five-repetition maximum) was performed three times per week for 14 weeks using leg extension and leg press exercises. Measurements of tendon elongation during a ramp isometric knee extension were performed before and after training and control periods in vivo using ultrasonography. Training caused a decreased tendon elongation and strain at all levels of force and stress (P < 0.01). Baseline tendon elongation and strain at maximal tendon load were 4.7 ± 1.1 mm and 9.9 ± 2.2 %, respectively (maximum force: 3346 ± 1168 N; maximum stress: 40 ± 11 MPa). After training, these values decreased to 2.9 ± 1.2 mm and 5.9 ± 2.4 % (P < 0.01), respectively (maximum force: 3555 ± 1257 N; maximum stress: 42 ± 11 MPa). Tendon stiffness increased by 65 % (2187 ± 713 to 3609 ± 1220 N mm−1; P < 0.05) and Young's modulus increased by 69 % (1.3 ± 0.3 to 2.2 ± 0.8 GPa; P < 0.01). As a result of these changes, the rate of torque development increased by 27 % (482.8 ± 302.5 to 612.6 ± 401 N m s−1; P < 0.01) following training. No significant changes occurred in any measured variables in the control group (P > 0.05). This study shows for the first time that strength training in old age increases the stiffness and Young's modulus of human tendons. This may reduce the risk of tendon injury in old age and has implications for contractile force production and the rapid execution of motor tasks. PMID:12626673

  13. Ultrasound Elasticity Imaging for Determining the Mechanical Properties of Human Posterior Tibial Tendon: A Cadaveric Study

    PubMed Central

    Yuan, Justin S.; Heden, Gregory J.; Szivek, John A.; Taljanovic, Mihra S.; Latt, L. Daniel; Witte, Russell S.

    2016-01-01

    Posterior tibial tendon dysfunction (PTTD) is a common degenerative condition leading to a severe impairment of gait. There is currently no effective method to determine whether a patient with advanced PTTD would benefit from several months of bracing and physical therapy or ultimately require surgery. Tendon degeneration is closely associated with irreversible degradation of its collagen structure, leading to changes to its mechanical properties. If these properties could be monitored in vivo, they could be used to quantify the severity of tendonosis and help determine the appropriate treatment. The goal of this cadaveric study was, therefore, to develop and validate ultrasound elasticity imaging (UEI) as a potentially noninvasive technique for quantifying tendon mechanical properties. Five human cadaver feet were mounted in a materials testing system (MTS), while the posterior tibial tendon (PTT) was attached to a force actuator. A portable ultrasound scanner collected 2-D data during loading cycles. Young’s modulus was calculated from the strain, loading force, and cross-sectional area of the PTT. Average Young’s modulus for the five tendons was (0.45 ± 0.16 GPa) using UEI, which was consistent with simultaneous measurements made by the MTS across the whole tendon (0.52 ± 0.18 GPa). We also calculated the scaling factor (0.12 ± 0.01) between the load on the PTT and the inversion force at the forefoot, a measurable quantity in vivo. This study suggests that UEI could be a reliable in vivo technique for estimating the mechanical properties of the PTT, and as a clinical tool, help guide treatment decisions for advanced PTTD and other tendinopathies. PMID:25532163

  14. Gene expression profiles of changes underlying different-sized human rotator cuff tendon tears.

    PubMed

    Chaudhury, Salma; Xia, Zhidao; Thakkar, Dipti; Hakimi, Osnat; Carr, Andrew J

    2016-10-01

    Progressive cellular and extracellular matrix (ECM) changes related to age and disease severity have been demonstrated in rotator cuff tendon tears. Larger rotator cuff tears demonstrate structural abnormalities that potentially adversely influence healing potential. This study aimed to gain greater insight into the relationship of pathologic changes to tear size by analyzing gene expression profiles from normal rotator cuff tendons, small rotator cuff tears, and large rotator cuff tears. We analyzed gene expression profiles of 28 human rotator cuff tendons using microarrays representing the entire genome; 11 large and 5 small torn rotator cuff tendon specimens were obtained intraoperatively from tear edges, which we compared with 12 age-matched normal controls. We performed real-time polymerase chain reaction and immunohistochemistry for validation. Torn rotator cuff tendons demonstrated upregulation of a number of key genes, such as matrix metalloproteinase 3, 10, 12, 13, 15, 21, and 25; a disintegrin and metalloproteinase (ADAM) 12, 15, and 22; and aggrecan. Amyloid was downregulated in all tears. Small tears displayed upregulation of bone morphogenetic protein 5. Chemokines and cytokines that may play a role in chemotaxis were altered; interleukins 3, 10, 13, and 15 were upregulated in tears, whereas interleukins 1, 8, 11, 18, and 27 were downregulated. The gene expression profiles of normal controls and small and large rotator cuff tear groups differ significantly. Extracellular matrix remodeling genes were found to contribute to rotator cuff tear pathogenesis. Rotator cuff tears displayed upregulation of a number of matrix metalloproteinase (3, 10, 12, 13, 15, 21, and 25), a disintegrin and metalloproteinase (ADAM 12, 15, and 22) genes, and downregulation of some interleukins (1, 8, and 27), which play important roles in chemotaxis. These gene products may potentially have a role as biomarkers of failure of healing or therapeutic targets to improve tendon

  15. Rooting of needle fascicles from western white pine seedlings

    Treesearch

    Ramond J. Hoff; Geral I. McDonald

    1968-01-01

    In one test, 45 out of 318 (14 percent) needle fascicles from 2-year-old seedlings of Pinus monticola Dougl. were rooted. Eight of the needle fascicles produced shoot growth. In another test, 392 out of 742 (53 percent) needle fascicles were rooted, but none of these produced shoot growth.

  16. Comparison of elasticity of human tendon and aponeurosis in knee extensors and ankle plantar flexors in vivo.

    PubMed

    Kubo, Keitaro; Kanehisa, Hiroaki; Fukunaga, Tetsuo

    2005-05-01

    The purposes of this study were to compare the elasticity of tendon and aponeurosis in human knee extensors and ankle plantar flexors in vivo and to examine whether the maximal strain of tendon was correlated to that of aponeurosis. The elongation of tendon and aponeurosis during isometric knee extension (n = 23) and ankle plantar flexion (n = 22), respectively, were determined using a real-time ultrasonic apparatus, while the participants performed ramp isometric contractions up to voluntary maximum. To calculate the strain values from the measured elongation, we measured the respective length of tendon and aponeurosis. For the knee extensors, the maximal strain of aponeurosis (12.1 +/- 2.8 %) was significantly greater than that of the patella tendon (8.3 +/- 2.4 %), p < 0.001. On the contrary, the maximal strain of Achilles tendon (5.9 +/- 1.4 %) was significantly greater than that of aponeurosis in ankle plantar flexors (2.7 +/- 1.4 %), p < 0.001. Furthermore, for both knee extensors and ankle plantar flexors there was no significant correlation between maximal strain of tendon and aponeurosis. These results would be important for understanding the different roles of tendon and aponeurosis during human movements and for more accurate muscle modeling.

  17. [Connective tissue reinforcing structures of the digital tendon sheaths of the human hand].

    PubMed

    Knott, C; Schmidt, H M

    1986-01-01

    At a greater number of humid preparated human hands, all the ligamentous supports of the digital tendon sheath were exposed and their dimensions were determined. The osteofibrous channels, which contain the long flexor tendons of the digits, were bounded on the one hand by transversely concave shaft areas of the phalanges and the palmar ligaments and on the other side by the fibrous parts of the tendon sheath. From the second to the 5th finger, it has a regular extension of length, which begins proximal at the heads of the metacarpal bones and runs distal to the base of the nail phalanx. In some cases, there is a continuous communication between the digital tendon sheath of the little finger and the carpal synovial sheath. The tendon sheath of the flexor pollicis longus muscle in comparison with it is always in an open communication with the radial synovial sac of the wrist. At the fibrous supports of the digital tendon sheath, one can find constant and inconstant ligamentous structures. Regular shaped ligaments consist of annular fibers (A1 to A5). The proximal complex of fiber supports is a formation of the A1 and A2 ligaments. The band A1 can be divided into 2 ligaments both of roughly equal length, which lay between the head of the metacarpal bone and the base of the proximal phalanx. The strongest fibrous support of the whole digital tendon sheath represents the band A2. It is attached to the midth of the proximal phalanx and increases in strength from proximal to distal. The middle length varies between 6.7 mm at the thumb and 18.7 mm at the middle finger. The distal margin is strengthened by fibrocartilage tissue to be in accordance with the important function as a pulley. The annular band A4 forms the distal supporting complex height above the shaft of the middle phalanx. At the 2nd to the 5th finger it is, with a middle length of 6 to 7 mm, very much shorter than A2 and restrains first of all the tendon of the flexor digitorum profundus muscle. In the area

  18. Dynamics of goat distal hind limb muscle–tendon function in response to locomotor grade

    PubMed Central

    McGuigan, M. Polly; Yoo, Edwin; Lee, David V.; Biewener, Andrew A.

    2009-01-01

    Summary The functional roles of the lateral gastrocnemius (LG), medial gastrocnemius (MG) and superficial digital flexor (SDF) muscle–tendon units (MTUs) in domestic goats (N=6) were studied as a function of locomotor grade, testing the hypothesis that changes in distal limb muscle work would reflect changes in mechanical work requirements while goats walked or trotted on the level, 15 deg. decline and 15 deg. incline. As steep terrain-adapted animals, changes in muscle work output are expected to be particularly important for goats. In vivo muscle–tendon forces, fascicle length changes and muscle activation were recorded via tendon force buckles, sonomicrometry and electromyography to evaluate the work performance and elastic energy recovery of the three distal MTUs. These recordings confirmed that fascicle strain and force within goat distal hind limb muscles are adjusted in response to changes in mechanical work demand associated with locomotor grade. In general, muscle work was modulated most consistently by changes in fascicle strain, with increased net shortening (P<0.001) observed as goats switched from decline to level to incline locomotion. Peak muscle stresses increased as goats increased speed from a walk to a trot within each grade condition (P<0.05), and also increased significantly with grade (P<0.05 to P<0.01). Due to the increase in net fascicle shortening and muscle force, net muscle work per cycle also increased significantly (P<0.05 to P<0.005) as goats switched from decline to level to incline conditions (LG work: 20 mJ to 56 mJ to 209 mJ; MG work: –7 mJ to 34 mJ to 179 mJ; SDF work: –42 mJ to 14 mJ to 71 mJ, at a 2.5 ms–1 trot). Although muscle work was modulated in response to changes in grade, the amount of work produced by these three distal pennate muscles was small (being <3%) in comparison with the change in mechanical energy required of the limb as a whole. Elastic energy recovery in the SDF and gastrocnemius (GA) tendons was

  19. Relationship of medial gastrocnemius relative fascicle excursion and ankle joint power and work performance during gait in typically developing children: A cross-sectional study.

    PubMed

    Martín Lorenzo, Teresa; Albi Rodríguez, Gustavo; Rocon, Eduardo; Martínez Caballero, Ignacio; Lerma Lara, Sergio

    2017-07-01

    Muscle fascicles lengthen in response to chronic passive stretch through in-series sarcomere addition in order to maintain an optimum sarcomere length. In turn, the muscles' force generating capacity, maximum excursion, and contraction velocity is enhanced. Thus, longer fascicles suggest a greater capacity to develop joint power and work. However, static fascicle length measurements may not be taking sarcomere length differences into account. Thus, we considered relative fascicle excursions through passive ankle dorsiflexion may better correlate with the capacity to generate joint power and work than fascicle length. Therefore, the aim of the present study was to determine if medial gastrocnemius relative fascicle excursions correlate with ankle joint power and work generation during gait in typically developing children. A sample of typically developing children (n = 10) were recruited for this study and data analysis was carried out on 20 legs. Medial gastrocnemius relative fascicle excursion from resting joint angle to maximum dorsiflexion was estimated from trigonometric relations of medial gastrocnemius pennation angle and thickness obtained from B-mode real-time ultrasonography. Furthermore, a three-dimensional motion capture system was used to obtain ankle joint work and power during the stance phase of gait. Significant correlations were found between relative fascicle excursion and peak power absorption (-) r(14) = -0.61, P = .012 accounting for 31% variability, positive work r(18) = 0.56, P = .021 accounting for 31% variability, and late stance positive work r(15) = 0.51, P = .037 accounting for 26% variability. The large unexplained variance may be attributed to mechanics of neighboring structures (e.g., soleus or Achilles tendon mechanics) and proximal joint kinetics which may also contribute to ankle joint power and work performance, and were not taken into account. Further studies are encouraged to provide greater insight

  20. X-ray computed tomography of the anterior cruciate ligament and patellar tendon.

    PubMed

    Shearer, Tom; Rawson, Shelley; Castro, Simon Joseph; Balint, Richard; Bradley, Robert Stephen; Lowe, Tristan; Vila-Comamala, Joan; Lee, Peter David; Cartmell, Sarah Harriet

    2014-04-01

    The effect of phosphotungstic acid (PTA) and iodine solution (IKI) staining was investigated as a method of enhancing contrast in the X-ray computed tomography of porcine anterior cruciate ligaments (ACL) and patellar tendons (PT). We show that PTA enhanced surface contrast, but was ineffective at penetrating samples, whereas IKI penetrated more effectively and enhanced contrast after 70 hours of staining. Contrast enhancement was compared when using laboratory and synchrotron based X-ray sources. Using the laboratory source, PT fascicles were tracked and their alignment was measured. Individual ACL fascicles could not be identified, but identifiable features were evident that were tracked. Higher resolution scans of fascicle bundles from the PT and ACL were obtained using synchrotron imaging techniques. These scans exhibited greater contrast between the fascicles and matrix in the PT sample, facilitating the identification of the fascicle edges; however, it was still not possible to detect individual fascicles in the ACL.

  1. Evaluation of affine fiber kinematics in human supraspinatus tendon using quantitative projection plot analysis.

    PubMed

    Lake, Spencer P; Cortes, Daniel H; Kadlowec, Jennifer A; Soslowsky, Louis J; Elliott, Dawn M

    2012-01-01

    Structural constitutive modeling approaches are often based on the assumption of affine fiber kinematics, even though this assumption has rarely been evaluated experimentally. We are interested in applying mathematical models to understand the mechanisms responsible for the inhomogeneous, anisotropic, and non-linear properties of human supraspinatus tendon (SST); however, the relationship between macroscopic and fiber-level deformation in this tendon remains unknown and current methods for making this assessment are inadequate. Therefore, the purpose of this study was to develop an improved method for quantitatively assessing agreement between two distributions and to examine the affine assumption in SST by comparing experimental fiber alignment to affine model predictions using this analysis approach. Measured fiber angle values of SST samples in uniaxial tensile tests were compared with predictions of affine fiber deformation using modified projection plots, which provide a method for qualitative and quantitative comparisons of two distributions. The projection plot metrics of offset and range, which were developed in this study, are of particular benefit by providing a quantitative representation of agreement that can be subjected to statistical comparisons. For SST, offset and range values varied by tendon location and test orientation, with more affine deformation evidenced for tendon regions of higher alignment. Results suggest that non-affine fiber behavior is dependent on specific tissue, orientation of the applied stretch relative to the fiber organization, and length scale of the observation. In addition, this study has established a method for evaluating the affine assumption in other tissues.

  2. Human middle longitudinal fascicle: Segregation and behavioral-clinical implications of two distinct fiber connections linking temporal pole and superior temporal gyrus with the angular gyrus or superior parietal lobule using multi-tensor tractography

    PubMed Central

    Makris, N.; Preti, M.G.; Wassermann, D.; Rathi, Y.; Papadimitriou, G. M.; Yergatian, C.; Dickerson, B. C.; Shenton, M. E.; Kubicki, M.

    2013-01-01

    The middle longitudinal fascicle (MdLF) is a major fiber connection running principally between the superior temporal gyrus and the parietal lobe, neocortical regions of great biological and clinical interest. Although one of the most prominent cerebral association fiber tracts it has only recently been discovered in humans. In this high angular resolution diffusion imaging (HARDI) MRI study, we delineated the two major fiber connections of the human MdLF, by examining morphology, topography, cortical connections, biophysical measures, volume and length in seventy-four brains. These two fiber connections course together through the dorsal temporal pole and the superior temporal gyrus maintaining a characteristic topographic relationship in the mediolateral and ventrodorsal dimensions. As these pathways course towards the parietal lobe, they split to form separate fiber pathways, one following a ventrolateral trajectory and connecting with the angular gyrus and the other following a dorsomedial route and connecting with the superior parietal lobule. Based on the functions of their cortical affiliations, we suggest that the superior temporal-angular connection of the MdLF, i.e., STG(MdLF)AG plays a role in language and attention, whereas the superior temporal-superior parietal connection of the MdLF, i.e., STG(MdLF)SPL is involved in visuospatial and integrative audiovisual functions. Furthermore, the MdLF may have clinical implications in neurodegenerative disorders such as primary progressive aphasia, frontotemporal dementia, posterior cortical atrophy, corticobulbar degeneration and Alzheimer’s disease as well as attention-deficit/hyperactivity disorder and schizophrenia. PMID:23686576

  3. Cyclic mechanical strain induces NO production in human patellar tendon fibroblasts--a possible role for remodelling and pathological transformation.

    PubMed

    van Griensven, Martijn; Zeichen, Johannes; Skutek, Michael; Barkhausen, Tanja; Krettek, Christian; Bosch, Ulrich

    2003-03-01

    The mechanism by which tendon fibroblasts can detect strain forces and respond to them is fairly unknown. Nitric oxide (NO) is a messenger molecule that among others can respond to shear stress in endothelial cells. Therefore, it was investigated whether cyclic mechanical strain induces NO in vitro in human patellar tendon fibroblasts. Human patellar tendon fibroblasts were cultured from remnants of patellar tendon transplants after reconstructive surgery. Fibroblasts were cultured on elastic silicone dishes. The cells were longitudinally strained (5%, 1 Hz) for 15' or 60'. As a control, no strain was applied. The experiments were finished after 0', 5', 15', and 30'. NO was determined using the Griess reaction. 15' strain showed at 0' and 5' 200% activation, which thereafter at 15' and 30' returned to normal levels. 60' strain showed a biphasic pattern. At 5' and 30', NO levels were increased to 175%. At 15', NO measurement displayed 120% increased levels. Mechanical strain induces NO production by tendon fibroblasts. Therefore, NO produced by tendon fibroblasts, as a response to alteration in their mechanical microenvironment, could modulate fibroblast function. The results of our study suggests that strain-related adaptive changes may, at least in part, be controlled by a process in which strain-related NO production from the fibroblast network may play a pivotal role. Moreover, these are basic findings that are important for further unravelling pathophysiology of tendon diseases.

  4. Determination of the fascicle length of the gastrocnemius muscle during calf raise exercise using ultrasonography

    PubMed Central

    Kudo, Shintarou; Hisada, Tomoyuki; Sato, Takanori

    2015-01-01

    [Purpose] The purpose of this study was to find a strength training protocol which maintains isometric contraction of the triceps surae during dorsal flexion of the ankle. [Subjects] The left feet of 22 young normal volunteers who did not have orthopedic injuries or lower limb pain participated in this study. [Methods] All subjects performed four sets of five repetitions of four sets calf-raise (CR) exercise at were (1) 60 bpm without a pedestal, (2) 60 bpm with a pedestal, (3) 90 bpm without a pedestal, and (4) 90 bpm with a pedestal. The fascicle length of the lateral head of the gastrocnemius and ankle angle were measured using ultrasonography and a video camera. The CR exercise was divided into two or three phases using the kinematics of the ankle. The average change in fascicle length over the five repetitions of each phase were compared. [Results] The change of the fascicle length during the hyper-dorsiflexion phase was significantly smaller than during the other two phases. [Conclusion] It is possible that eccentric CR exercises have progressed to motor learning of the isometric contraction during counter movement, and improved the release of elastic energy of the Achilles tendon during running, jumping, and other athletic activities. PMID:26834347

  5. The glial fascicle: an ontogenic and phylogenic unit guiding, supplying and distributing mammalian cortical neurons.

    PubMed

    Gressens, P; Evrard, P

    1993-12-17

    Neurons destined for the mammalian neocortex migrate along radial glial cells (RGCs). This paper describes a comparative study of RGCs in the mouse, rat, hamster, cat and human fetus, selected as representative species of mammalian evolution. The glial fascicles display constant features throughout these species: they consist of 4-10 RGCs filled with glycogen. The glial fascicle guides and probably supplies metabolites to the migrating neurons and organizes the vertical lamination of the developing neocortical plate. The neuronal-glial unit which consists of the RGCs and their affiliated migrating neurons is conserved throughout the species studied, suggesting a designation as a phylogenic unit.

  6. Acellular flexor tendon allografts: a new horizon for tendon reconstruction.

    PubMed

    Drake, David B; Tilt, Alexandra C; DeGeorge, Brent R

    2013-12-01

    Flexor tendon injuries continue to pose a significant challenge to the hand surgeon. In particular, chronic tendon ruptures with adhesions of the tendons and sheath, damage or loss of the intrasynovial flexor tendons in zone II, and combined soft tissue and bone injuries present especially difficult problems for restoring satisfactory digital function. This challenge in flexor tendon reconstruction has motivated hand surgeons to explore and develop novel solutions for nearly a century. Recent advances and techniques in processing and decellularizing allograft human flexor tendon constructs may prove to be a new horizon for tendon reconstruction. Copyright © 2013 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  7. [Effect of cyclical stretch on matrix synthesis of human patellar tendon cells].

    PubMed

    Bosch, U; Zeichen, J; Skutek, M; Albers, I; van Griensven, M; Gässler, N

    2002-05-01

    The significance of mobilization and loading for healing ligaments and tendons is generally accepted today. Local deformation of cells thereby represents the key stimulus for the cellular response. Less is known, however, about the effects of cyclic strain on the cellular and molecular level. The aim of the in vitro investigation was to determine the effect of cyclic mechanical strain on collagen type I and III and on fibronectin formation in human patellar tendon derived fibroblasts. Human patellar tendon derived fibroblasts from 5 donors (mean age 29.2 years) were cultured under standard conditions. Monolayers of subconfluently grown 3rd passage cells were stretched in rectangular silicone dishes with cyclic movement along their longitudinal axes. Cyclic strain (5%, 1 Hz) was applied for 30 min and 60 min, respectively. Carboxyterminal procollagen type I propeptide (P-I-CP) and aminoterminal procollagen type III propeptide (P-III-NP) release was measured by a radio-immunoassay 6 h and 12 h after stretching. The release of fibronectin was measured by nephelometry following immunoreaction with a specific antiserum. Cells from each donor without any cyclic stretching served as controls. Compared with the controls, only cyclic stretching for 60 min resulted in a significantly increased release of P-I-CP and fibronectin after 6 h. The release of P-III-NP was significantly increased 12 h after 30 min of cyclic stretching as well as 6 h and 12 h after 60 min of cyclic stretching, respectively. We conclude that cyclic stretching causes a time-dependent, differential regulation of formation of fibronectin and collagen type I and III. This may effect the quality and thus the mechanical properties of healing tendon and ligament tissues. In order to improve current treatment protocols and to enlarge our knowledge of tissue healing, it is necessary to understand the cellular response to cyclic strain.

  8. Reflex responses at the human ankle: the importance of tendon compliance.

    PubMed

    Rack, P M; Ross, H F; Thilmann, A F; Walters, D K

    1983-11-01

    Subjects with active stretch reflexes responded to an imposed sinusoidal movement of the ankle joint with a reflex force whose amplitude and timing varied widely with changes in the frequency of movement. At some frequency between 6 and 8 Hz, the reflex force tended to offset the non-reflex component of resistance, and thus to reduce the total resistance to movement. At this frequency the reflex response was particularly vigorous, with a deep modulation of electromyogram (e.m.g.) activity and a displacement of the joint stiffness vectors far from their high frequency values. The total resistance to movement might then be small, or it might be zero, or the reflex might actually assist the movement. As the frequency of movement was decreased through this critical range, the timing of the reflex response to movement changed rapidly with an abrupt advancement of the triceps surae e.m.g. signal, and a wide separation of the joint stiffness vectors as they passed close to the origin. This result was attributed to a changing distribution of the movement between the muscle fibres and an elastic Achilles tendon. It was assumed that at most frequencies the muscle fibres resisted extension, so that a major part of the imposed movement went into stretching the tendon; when, however, at 6-8 Hz, the reflex response was so timed as to reduce or abolish the resistance of the muscle fibres, more of the movement would take place in them. The muscle spindles would 'see' this larger movement of the muscle fibres, and generate correspondingly more reflex activity. A simplified model of the muscle-tendon combination behaves in a way that supports this view, and the available information about the human Achilles tendon indicates that it is sufficiently compliant for such an explanation. Therefore, movements imposed on the ankle joint would not necessarily be 'seen' by the muscle spindles, since they would be modified by transmission through a compliant tendon. By assuming a value for the

  9. Reflex responses at the human ankle: the importance of tendon compliance.

    PubMed Central

    Rack, P M; Ross, H F; Thilmann, A F; Walters, D K

    1983-01-01

    Subjects with active stretch reflexes responded to an imposed sinusoidal movement of the ankle joint with a reflex force whose amplitude and timing varied widely with changes in the frequency of movement. At some frequency between 6 and 8 Hz, the reflex force tended to offset the non-reflex component of resistance, and thus to reduce the total resistance to movement. At this frequency the reflex response was particularly vigorous, with a deep modulation of electromyogram (e.m.g.) activity and a displacement of the joint stiffness vectors far from their high frequency values. The total resistance to movement might then be small, or it might be zero, or the reflex might actually assist the movement. As the frequency of movement was decreased through this critical range, the timing of the reflex response to movement changed rapidly with an abrupt advancement of the triceps surae e.m.g. signal, and a wide separation of the joint stiffness vectors as they passed close to the origin. This result was attributed to a changing distribution of the movement between the muscle fibres and an elastic Achilles tendon. It was assumed that at most frequencies the muscle fibres resisted extension, so that a major part of the imposed movement went into stretching the tendon; when, however, at 6-8 Hz, the reflex response was so timed as to reduce or abolish the resistance of the muscle fibres, more of the movement would take place in them. The muscle spindles would 'see' this larger movement of the muscle fibres, and generate correspondingly more reflex activity. A simplified model of the muscle-tendon combination behaves in a way that supports this view, and the available information about the human Achilles tendon indicates that it is sufficiently compliant for such an explanation. Therefore, movements imposed on the ankle joint would not necessarily be 'seen' by the muscle spindles, since they would be modified by transmission through a compliant tendon. By assuming a value for the

  10. New Imaging Methods for Non-invasive Assessment of Mechanical, Structural, and Biochemical Properties of Human Achilles Tendon: A Mini Review

    PubMed Central

    Fouré, Alexandre

    2016-01-01

    The mechanical properties of tendon play a fundamental role to passively transmit forces from muscle to bone, withstand sudden stretches, and act as a mechanical buffer allowing the muscle to work more efficiently. The use of non-invasive imaging methods for the assessment of human tendon's mechanical, structural, and biochemical properties in vivo is relatively young in sports medicine, clinical practice, and basic science. Non-invasive assessment of the tendon properties may enhance the diagnosis of tendon injury and the characterization of recovery treatments. While ultrasonographic imaging is the most popular tool to assess the tendon's structural and indirectly, mechanical properties, ultrasonographic elastography, and ultra-high field magnetic resonance imaging (UHF MRI) have recently emerged as potentially powerful techniques to explore tendon tissues. This paper highlights some methodological cautions associated with conventional ultrasonography and perspectives for in vivo human Achilles tendon assessment using ultrasonographic elastography and UHF MRI. PMID:27512376

  11. A Comparison of the Quasi-static Mechanical and Nonlinear Viscoelastic Properties of the Human Semitendinosus and Gracilis Tendons

    PubMed Central

    Abramowitch, Steven D.; Zhang, Xiaoyan; Curran, Molly; Kilger, Robert

    2010-01-01

    Background Over fifty-percent of anterior cruciate ligament reconstructions are performed using semitendinosus and gracilis tendon autografts. Despite their increased use, there remains little quantitative data on their mechanical behavior. Therefore, the objective of this study was to investigate the quasi-static mechanical and nonlinear viscoelastic properties of human semitendinosus and gracilis tendons, as well as the variation of these properties along their length. Methods Specimens were subjected to a series of uniaxial tensile tests: one-hour static stress-relaxation test, 30-cycle cyclic stress-relaxation test and load to failure test. To describe the nonlinear viscoelastic behavior, the quasi-linear viscoelastic theory was utilized to model data from the static stress relaxation experiment. Findings The constants describing the viscoelastic behavior were similar between the proximal and distal halves of the gracilis tendon. The proximal half of the semitendinosus tendon, however, had a greater viscous response than its distal half, which was also significantly higher than the proximal gracilis tendon. In terms of the quasi-static mechanical properties, the properties were similar between the proximal and distal halves of the semitendinosus tendon. However, the distal gracilis tendon showed a significantly higher tangent modulus and ultimate stress compared to its proximal half, which was also significantly higher than the distal semitendinosus tendon. Interpretation The results of this study demonstrate differences between the semitendinosus and gracilis tendons in terms of their quasi-static mechanical and nonlinear viscoelastic properties. These results are important for establishing surgical preconditioning protocols and graft selection. PMID:20092917

  12. Prostaglandin E2 (PGE2) Exerts Biphasic Effects on Human Tendon Stem Cells

    PubMed Central

    Zhang, Jianying; Wang, James H-C.

    2014-01-01

    Prostaglandin E2 (PGE2) has been reported to exert different effects on tissues at low and high levels. In the present study, cell culture experiments were performed to determine the potential biphasic effects of PGE2 on human tendon stem/progenitor cells (hTSCs). After treatment with PGE2, hTSC proliferation, stemness, and differentiation were analyzed. We found that high concentrations of PGE2 (>1 ng/ml) decreased cell proliferation and induced non-tenocyte differentiation. However, at lower concentrations (<1 ng/ml), PGE2 markedly enhanced hTSC proliferation. The expression levels of stem cell marker genes, specifically SSEA-4 and Stro-1, were more extensive in hTSCs treated with low concentrations of PGE2 than in cells treated with high levels of PGE2. Moreover, high levels of PGE2 induced hTSCs to differentiate aberrantly into non-tenocytes, which was evident by the high levels of PPARγ, collagen type II, and osteocalcin expression in hTSCs treated with PGE2 at concentrations >1 ng/ml. The findings of this study reveal that PGE2 can exhibit biphasic effects on hTSCs, indicating that while high PGE2 concentrations may be detrimental to tendons, low levels of PGE2 may play a vital role in the maintenance of tendon homeostasis in vivo. PMID:24504456

  13. A model of the human triceps surae muscle-tendon complex applied to jumping.

    PubMed

    Bobbert, M F; Huijing, P A; van Ingen Schenau, G J

    1986-01-01

    The purpose of this study was to gain more insight into the behavior of the muscle-tendon complex of human m. triceps surae in jumping. During one-legged vertical jumps of ten subjects ground reaction forces as well as cinematographic data were registered, and electromyograms were recorded from m. soleus and m. gastrocnemius. A model was developed of m. triceps surae, incorporating assumptions concerning dimensions, architecture, force-length and force-velocity relationships of muscle fibers, as well as assumptions concerning dimensions and elastic behavior of tendinous tissue in series with the muscle fibers. The velocity with which origin approaches insertion (V OI) was calculated for m. soleus and m. gastrocnemius using cine film data, and served as input of the model. During the last part of the push-off phase EMG-levels were found to be more or less constant, V OI of m. soleus and m. gastrocnemius rapidly increased, and the plantar flexing moment obtained by solving equations concerning a free body diagram of the foot rapidly declined. A similar decline was observed in the plantar flexing moment obtained by multiplying force calculated with help of the model by estimated moment arm at the ankle. As a result of the decline of exerted force tendon length decreases. According to the model the shortening velocity of tendon reaches higher values than that of muscle fibers. The results of a kinetic analysis demonstrate that during the last part of the push-off phase a combination of high angular velocities with relatively large plantar flexing moments is required. It is concluded that without a compliant tendon m. triceps surae would not be able to satisfy this requirement.

  14. Doublet potentiation in the triceps surae is limited by series compliance and dynamic fascicle behavior.

    PubMed

    Mayfield, Dean L; Lichtwark, Glen A; Cronin, Neil J; Avela, Janne; Cresswell, Andrew G

    2015-10-01

    Activation of skeletal muscle twice in quick succession results in nonlinear force summation (i.e., doublet potentiation). The force contributed by a second activation is typically of augmented amplitude, longer in duration, and generated at a greater rate. The purpose of this study was to examine force summation in a muscle attached to a compliant tendon, where considerable internal shortening occurs during a fixed-end contraction. The triceps surae of 21 (Experiment 1) and 9 (Experiment 2) young adults were maximally activated with doublet stimulation of different interstimulus intervals (ISIs) (5-100 ms) at several muscle lengths. Ultrasound images acquired from lateral gastrocnemius and soleus muscles allowed quantification of dynamic fascicle behavior. Force summation was muscle length dependent. Force augmentation was limited to a short muscle length. Lateral gastrocnemius and soleus fascicles underwent large amounts of active shortening and achieved high velocities in response to doublet stimulation, dynamics unfavorable for force production. Summation amplitude and the sensitivity of summation to ISI were dramatically depressed in the triceps surae after comparison to muscles with less fixed-end compliance. We propose that the internal shortening permitted by high series compliance limited force augmentation by offsetting and/or interfering with activation and cross-bridge processes driving augmentation. High series compliance may also reduce the sensitivity of the summated response to ISI, an assertion supported by predictions from a Hill-type muscle model. These muscles may exhibit greater force augmentation during more accustomed stretch-shorten tasks (i.e., hopping), where the compliance of the Achilles tendon actually enables near-isometric fascicle behavior.

  15. Aligned nanofibers direct human dermal fibroblasts to tenogenic phenotype in vitro and enhance tendon regeneration in vivo.

    PubMed

    Wang, Wenbo; He, Jing; Feng, Bei; Zhang, Zhiyong; Zhang, Wenjie; Zhou, Guangdong; Cao, Yilin; Fu, Wei; Liu, Wei

    2016-05-01

    To explore the effect of aligned nanofibers on inducing tenogenic phenotype of human dermal fibroblasts (hDFs) in vitro and on inducing de novo tendon regeneration in vivo. Random and aligned nanofibers were electrospun, seeded with hDFs and cultured in vitro, and in vivo implanted without cell seeding to bridge segmental defect of rat Achilles tendon. In vitro, the well-aligned nanofibers could elongate hDFs, induce a tenogenic phenotype and form better organized neotendon respectively compared with random nanofibers. In vivo, the bridged nanofibers of aligned group could better recruit host cells and regenerate Achilles tendon de novo with enhanced tenogenic gene expression. Aligned nanofibers could induce tenogenic phenotype in vitro and regenerate tendon in vivo.

  16. Human medial gastrocnemius force-velocity behavior shifts with locomotion speed and gait.

    PubMed

    Farris, Dominic James; Sawicki, Gregory S

    2012-01-17

    Humans walk and run over a wide range of speeds with remarkable efficiency. For steady locomotion, moving at different speeds requires the muscle-tendon units of the leg to modulate the amount of mechanical power the limb absorbs and outputs in each step. How individual muscles adapt their behavior to modulate limb power output has been examined using computer simulation and animal models, but has not been studied in vivo in humans. In this study, we used a combination of ultrasound imaging and motion analysis to examine how medial gastrocnemius (MG) muscle-tendon unit behavior is adjusted to meet the varying mechanical demands of different locomotor speeds during walking and running in humans. The results highlighted key differences in MG fascicle-shortening velocity with both locomotor speed and gait. Fascicle-shortening velocity at the time of peak muscle force production increased with walking speed, impairing the ability of the muscle to produce high peak forces. Switching to a running gait at 2.0 m·s(-1) caused fascicle shortening at the time of peak force production to shift to much slower velocities. This velocity shift facilitated a large increase in peak muscle force and an increase in MG power output. MG fascicle velocity may be a key factor that limits the speeds humans choose to walk at, and may explain the transition from walking to running. This finding is consistent with previous modeling studies.

  17. Clinical failure after Dresden repair of mid-substance Achilles tendon rupture: human cadaveric testing.

    PubMed

    De la Fuente, Carlos; Carreño, Gabriel; Soto, Miguel; Marambio, Hugo; Henríquez, Hugo

    2017-06-01

    The purpose of this study was to describe the angle of clinical failure during cyclical mobilization exercises in the Achilles tendon of human cadaveric specimens that were repaired using the Dresden technique and FiberWire(®) No. 2. The secondary aim was to identify the secure limit of mobilization, the type of failure, and the type of apposition. The lower limbs of eight males (mean age: 60.3 ± 6.3 years) were repaired with the Dresden technique following complete, percutaneous mid-substance Achilles tendon rupture. A basal tension of 10 N at 30° of plantarflexion was placed on each specimen. The angle of the ankle during clinical failure (tendon ends separation >5 mm) was then tested via cyclical exercises (i.e. 100 cycles between 30° and 15° of plantarflexion; 100 cycles between 15° of plantarflexion and 0°; 100 cycles between 0° and 15° of dorsiflexion; and 100 cycles between 15° of dorsiflexion and full dorsiflexion). Clinical failure was determined using the Laplacian edge detection filter, and the angle of clinical failure was obtained using a rotatory potentiometer aligned in relation to the intermalleolar axis of each foot specimen. The type of failure (knot, tendon, or suture) and apposition (termino-terminal or non-termino-terminal) were determined. Descriptive statistics were used to obtain the mean; standard deviation; 95 % confidence interval; 1st, 25th, 50th, 75th, and 100th percentiles; and the standard error of the mean for angle data. Proportions were used to describe the type of failure and apposition. The main results were a mean angle of clinical failure equal to 12.5° of plantarflexion, a limit of mobilization equal to 14.0° of plantarflexion, tendon failure type, and non-termino-terminal apposition in all specimens. While the mean angle of clinical failure in human cadaveric models was 12.5° of plantarflexion, after 14.0° of plantarflexion, the percutaneous Dresden technique was found insecure for cyclical mobilization

  18. Tendon Tissue Engineering: Mechanism and Effects of Human Tenocyte Coculture With Adipose-Derived Stem Cells.

    PubMed

    Long, Chao; Wang, Zhen; Legrand, Anais; Chattopadhyay, Arhana; Chang, James; Fox, Paige M

    2017-09-06

    Adipose-derived stem cells (ASCs) are a potential candidate for cell-based therapy targeting tendon injury; however, their therapeutic benefit relies on their ability to interact with native tenocytes. This study examines the mechanism and effects of coculturing human tenocytes and ASCs. Tenocytes (T) were directly cocultured with either ASCs (A) or fibroblasts (F) (negative control) in the following ratios: 50% T/50% A or F; 25% T/75% A or F; and 75% T/25% A or F. Cells were indirectly cocultured using a transwell insert that allowed for exchange of soluble factors only. Proliferation and collagen I production were measured and compared with monoculture controls. Synergy was quantified using the interaction index (II), which normalizes measured values by the expected values assuming no interaction (no synergy when II = 1). The ability of ASCs to elicit tenocyte migration was examined in vitro using a transwell migration assay and ex vivo using decellularized human flexor tendon explants. Compared with monoculture controls, II of proliferation was greater than 1 for all tenocyte and ASC direct coculture ratios, but not for tenocyte and fibroblast direct coculture ratios or for tenocyte and ASC indirect coculture. The ASCs elicited greater tenocyte migration in vitro and ex vivo. The II of collagen I production was greater than 1 for direct coculture groups with 25% T/75% A and 75% T/25% A. Direct coculture of ASCs and tenocytes demonstrated synergistic proliferation and collagen I production, and ASCs elicited tenocyte migration in vitro and ex vivo. These interactions play a key role in tendon healing and were absent when ASCs were replaced with fibroblasts, supporting the use of ASCs for cell-based therapy targeting tendon injuries. When ASCs are delivered for cell-based therapy, they directly interact with native tenocytes to increase cell proliferation, collagen I production, and tenocyte migration, which may enhance tendon healing. Copyright © 2017

  19. UltraTrack: Software for semi-automated tracking of muscle fascicles in sequences of B-mode ultrasound images.

    PubMed

    Farris, Dominic James; Lichtwark, Glen A

    2016-05-01

    Dynamic measurements of human muscle fascicle length from sequences of B-mode ultrasound images have become increasingly prevalent in biomedical research. Manual digitisation of these images is time consuming and algorithms for automating the process have been developed. Here we present a freely available software implementation of a previously validated algorithm for semi-automated tracking of muscle fascicle length in dynamic ultrasound image recordings, "UltraTrack". UltraTrack implements an affine extension to an optic flow algorithm to track movement of the muscle fascicle end-points throughout dynamically recorded sequences of images. The underlying algorithm has been previously described and its reliability tested, but here we present the software implementation with features for: tracking multiple fascicles in multiple muscles simultaneously; correcting temporal drift in measurements; manually adjusting tracking results; saving and re-loading of tracking results and loading a range of file formats. Two example runs of the software are presented detailing the tracking of fascicles from several lower limb muscles during a squatting and walking activity. We have presented a software implementation of a validated fascicle-tracking algorithm and made the source code and standalone versions freely available for download. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Effects of a peracetic acid disinfection protocol on the biocompatibility and biomechanical properties of human patellar tendon allografts.

    PubMed

    Lomas, R J; Jennings, L M; Fisher, J; Kearney, J N

    2004-01-01

    Patellar tendon allografts, retrieved from cadaveric human donors, are widely used for replacement of damaged cruciate ligaments. In common with other tissue allografts originating from cadaveric donors, there are concerns regarding the potential for disease transmission from the donor to the recipient. Additionally, retrieval and subsequent processing protocols expose the graft to the risk of environmental contamination. For these reasons, disinfection or sterilisation protocols are necessary for these grafts before they are used clinically. A high-level disinfection protocol, utilising peracetic acid (PAA), has been developed and investigated for its effects on the biocompatibility and biomechanics of the patellar tendon allografts. PAA disinfection did not render the grafts either cytotoxic or liable to provoke an inflammatory response as assessed in vitro . However, the protocol was shown to increase the size of gaps between the tendon fibres in the matrix and render the grafts more susceptible to digestion with collagenase. Biomechanical studies of the tendons showed that PAA treatment had no effect on the ultimate tensile stress or Young's modulus of the tendons, and that ultimate strain was significantly higher in PAA treated tendons.

  1. Modeling the frictional interaction in the tendon-pulley system of the human finger for use in robotics.

    PubMed

    Dermitzakis, Konstantinos; Morales, Marco Roberto; Schweizer, Andreas

    2013-01-01

    Physiological studies of the human finger indicate that friction in the tendon-pulley system accounts for a considerable fraction of the total output force (9-12%) in a high-load static posteccentric configuration. Such a phenomenon can be exploited for robotic and prosthetic applications, as it can result in (1) an increase of output force or (2) a reduction of energy consumption and actuator weight. In this study, a simple frictional, two-link, one-degree-of-freedom model of a human finger was created. The model is validated against in vitro human finger data, and its behavior is examined with respect to select physiological parameters. The results point to clear benefits of incorporating friction in tendon-driven robotic fingers for actuator mass and output force. If it is indeed the case that the majority of high-load hand grasps are posteccentric, there is a clear benefit of incorporating friction in tendon-driven prosthetic hand replacements.

  2. Tendonitis (image)

    MedlinePlus

    ... tendon. It can occur as a result of injury, overuse, or with aging as the tendon loses elasticity. Any action that places prolonged repetitive strain on the forearm muscles can cause tendonitis. The ...

  3. Development of the stapedius muscle and unilateral agenesia of the tendon of the stapedius muscle in a human fetus.

    PubMed

    Rodríguez-Vázquez, J F; Mérida-Velasco, J R; Verdugo-López, S

    2010-01-01

    The objective was to analyze the development of the stapedius muscle to understand an isolated unilateral absence of the tendon of the stapedius muscle in a human fetus. The study was made on 50 human embryos and fetuses aged 38 days to 17 weeks post-conception. The stapedius muscle was formed by two anlagen, one for the tendon, which derives from the internal segment of the interhyale and another for the belly, located in the second pharyngeal arch, medially to the facial nerve and near the interhyale. In the interhyale, two segments were observed forming an angle and delimited by the attachment of the belly of the stapedius muscle. The internal segment will form the tendon. The lateral segment of the interhyale was attached to the cranial end of the Reichert's cartilage (laterohyale), and normally it disappears at the beginning of the fetal period. The right unilateral agenesia of the tendon of the stapedius muscle, observed for the first time in a human fetus of 14 weeks post-conception development (PCd), was brought about by the lack of formation or the regression of the internal segment of the interhyale. It presented a belly of the stapedius muscle with an anomalous arrangement, and with a pseudo tendon originated by the persistence of the external segment of the interhyale. (c) 2009 Wiley-Liss, Inc.

  4. Scleraxis-overexpressed human embryonic stem cell-derived mesenchymal stem cells for tendon tissue engineering with knitted silk-collagen scaffold.

    PubMed

    Chen, Xiao; Yin, Zi; Chen, Jia-Lin; Liu, Huan-Huan; Shen, Wei-Liang; Fang, Zhi; Zhu, Ting; Ji, Junfeng; Ouyang, Hong-Wei; Zou, Xiao-Hui

    2014-06-01

    Despite our previous study that demonstrates that human embryonic stem cells (hESCs) can be used as seed cells for tendon tissue engineering after stepwise induction, suboptimal tendon regeneration implies that a new strategy needs to be developed for tendon repair. We investigated whether overexpression of the tendon-specific transcription factor scleraxis (SCX) in hESC-derived mesenchymal stem cells (hESC-MSCs) together with knitted silk-collagen sponge scaffold could promote tendon regeneration. hESCs were initially differentiated into MSCs and then engineered with scleraxis (SCX+hESC-MSCs). Engineered tendons were constructed with SCX+hESC-MSCs and a knitted silk-collagen sponge scaffold and then mechanical stress was applied. SCX elevated tendon gene expression in hESC-MSCs and concomitantly attenuated their adipogenic and chondrogenic potential. Mechanical stress further augmented the expression of tendon-specific genes in SCX+hESC-MSC-engineered tendon. Moreover, in vivo mechanical stimulation promoted the alignment of cells and increased the diameter of collagen fibers after ectopic transplantation. In the in vivo tendon repair model, the SCX+hESC-MSC-engineered tendon enhanced the regeneration process as shown by histological scores and superior mechanical performance compared with control cells, especially at early stages. Our study offers new evidence concerning the roles of SCX in tendon differentiation and regeneration. We demonstrated a novel strategy of combining hESCs, genetic engineering, and tissue-engineering principles for tendon regeneration, which are important for the future application of hESCs and silk scaffolds for tendon repair.

  5. A quantitative label-free analysis of the extracellular proteome of human supraspinatus tendon reveals damage to the pericellular and elastic fibre niches in torn and aged tissue.

    PubMed

    Hakimi, Osnat; Ternette, Nicola; Murphy, Richard; Kessler, Benedikt M; Carr, Andrew

    2017-01-01

    Tears of the human supraspinatus tendon are common and often cause painful and debilitating loss of function. Progressive failure of the tendon leading to structural abnormality and tearing is accompanied by numerous cellular and extra-cellular matrix (ECM) changes in the tendon tissue. This proteomics study aimed to compare torn and aged rotator cuff tissue to young and healthy tissue, and provide the first ECM inventory of human supraspinatus tendon generated using label-free quantitative LC-MS/MS. Employing two digestion protocols (trypsin and elastase), we analysed grain-sized tendon supraspinatus biopsies from older patients with torn tendons and from healthy, young controls. Our findings confirm measurable degradation of collagen fibrils and associated proteins in old and torn tendons, suggesting a significant loss of tissue organisation. A particularly marked reduction of cartilage oligomeric matrix protein (COMP) raises the possibility of using changes in levels of this glycoprotein as a marker of abnormal tissue, as previously suggested in horse models. Surprisingly, and despite using an elastase digestion for validation, elastin was not detected, suggesting that it is not highly abundant in human supraspinatus tendon as previously thought. Finally, we identified marked changes to the elastic fibre, fibrillin-rich niche and the pericellular matrix. Further investigation of these regions may yield other potential biomarkers and help to explain detrimental cellular processes associated with tendon ageing and tendinopathy.

  6. Muscle and Tendon Adaptation in Adolescence: Elite Volleyball Athletes Compared to Untrained Boys and Girls

    PubMed Central

    Mersmann, Falk; Charcharis, Georgios; Bohm, Sebastian; Arampatzis, Adamantios

    2017-01-01

    Though the plasticity of human tendons is well explored in adults, it is still unknown how superimposed mechanical loading by means of athletic training affects the properties of tendons during maturation. Due to the increased responsiveness of muscle to mechanical loading, adolescence is an important phase to investigate the effects of training on the mechanical properties of tendons. Hence, in the present study we compared vastus lateralis (VL) architecture, muscle strength of the knee extensor muscles and patellar tendon mechanical properties of male and female adolescent elite athletes to untrained boys and girls. Twenty-one adolescent volleyball athletes (A; 16.7 ± 1 years; 12 boys, 9 girls) and 24 similar-aged controls (C; 16.7 ± 1 years; 12 boys and girls, respectively) performed maximum isometric contractions on a dynamometer for the assessment of muscle strength and, by integrating ultrasound imaging, patellar tendon mechanical properties. Respective joint moments were calculated using an inverse dynamics approach and an electromyography-based estimation of antagonistic contribution. Additionally, the VL pennation angle, fascicle length and muscle-thickness were determined in the inactive state by means of ultrasound. Adolescent athletes produced significantly greater knee extension moments (normalized to body mass) compared to controls (A: 4.23 ± 0.80 Nm/kg, C: 3.57 ± 0.67 Nm/kg; p = 0.004), and showed greater VL thickness and pennation angle (+38% and +27%; p < 0.001). Tendon stiffness (normalized to rest length) was also significantly higher in athletes (A: 86.0 ± 27.1 kN/strain, C: 70.2 ± 18.8 kN/strain; p = 0.04), yet less pronounced compared to tendon force (A: 5785 ± 1146 N, C: 4335 ± 1015 N; p < 0.001), which resulted in higher levels of tendon strain during maximum contractions in athletes (A: 8.0 ± 1.9%, C: 6.4 ± 1.8%; p = 0.008). We conclude that athletic volleyball training provides a more efficient stimulus for muscle compared to

  7. The series-elastic shock absorber: tendons attenuate muscle power during eccentric actions.

    PubMed

    Roberts, Thomas J; Azizi, Emanuel

    2010-08-01

    Elastic tendons can act as muscle power amplifiers or energy-conserving springs during locomotion. We used an in situ muscle-tendon preparation to examine the mechanical function of tendons during lengthening contractions, when muscles absorb energy. Force, length, and power were measured in the lateral gastrocnemius muscle of wild turkeys. Sonomicrometry was used to measure muscle fascicle length independently from muscle-tendon unit (MTU) length, as measured by a muscle lever system (servomotor). A series of ramp stretches of varying velocities was applied to the MTU in fully activated muscles. Fascicle length changes were decoupled from length changes imposed on the MTU by the servomotor. Under most conditions, muscle fascicles shortened on average, while the MTU lengthened. Energy input to the MTU during the fastest lengthenings was -54.4 J/kg, while estimated work input to the muscle fascicles during this period was only -11.24 J/kg. This discrepancy indicates that energy was first absorbed by elastic elements, then released to do work on muscle fascicles after the lengthening phase of the contraction. The temporary storage of energy by elastic elements also resulted in a significant attenuation of power input to the muscle fascicles. At the fastest lengthening rates, peak instantaneous power input to the MTU reached -2,143.9 W/kg, while peak power input to the fascicles was only -557.6 W/kg. These results demonstrate that tendons may act as mechanical buffers by limiting peak muscle forces, lengthening rates, and power inputs during energy-absorbing contractions.

  8. Effects of gamma irradiation and repetitive freeze-thaw cycles on the biomechanical properties of human flexor digitorum superficialis tendons.

    PubMed

    Ren, Dejie; Sun, Kang; Tian, Shaoqi; Yang, Xu; Zhang, Cailong; Wang, Wenhao; Huang, Hongjie; Zhang, Jihua; Deng, Yujie

    2012-01-10

    An increasing number of tissue banks have begun to focus on gamma irradiation and freeze-thaw in the reconstruction of anterior cruciate ligaments using allografts. The purpose of this study was to evaluate the biomechanical properties of human tendons after exposure to gamma radiation and repeated freeze-thaw cycles and to compare them with fresh specimens. Forty flexor digitorum superficialis tendons were surgically procured from five fresh cadavers and divided into four groups: fresh tendon, gamma irradiation, freeze-thaw and gamma irradiation+freeze-thaw. The dose of gamma irradiation was 25 kGy. Each freeze-thaw cycle consisted of freezing at -80 °C for 7 day and thawing at 25 °C for 6 h. These tendons underwent 4 freeze-thaw cycles. Biomechanical properties were analyzed during load-to-failure testing. The fresh tendons were found to be significantly different in ultimate load, stiffness and ultimate stress relative to the other three groups. The tendons of the gamma+freeze-thaw group showed a significant decrease in ultimate load, ultimate stress and stiffness compared with the other three groups. Gamma irradiation and repeated freezing-thawing (4 cycles) can change the biomechanical properties. However, no significant difference was found between these two processes on the effect of biomechanical properties. It is recommended that gamma irradiation (25 kGy) and repetitive freeze-thaw cycles (4 cycles) should not be adopted in the processing of the allograft tendons. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Isolation and characterization of 2 new human rotator cuff and long head of biceps tendon cells possessing stem cell-like self-renewal and multipotential differentiation capacity.

    PubMed

    Randelli, Pietro; Conforti, Erika; Piccoli, Marco; Ragone, Vincenza; Creo, Pasquale; Cirillo, Federica; Masuzzo, Pamela; Tringali, Cristina; Cabitza, Paolo; Tettamanti, Guido; Gagliano, Nicoletta; Anastasia, Luigi

    2013-07-01

    Stem cell therapy is expected to offer new alternatives to the traditional therapies of rotator cuff tendon tears. In particular, resident, tissue-specific, adult stem cells seem to have a higher regenerative potential for the tissue where they reside. Rotator cuff tendon and long head of the biceps tendon possess a resident stem cell population that, when properly stimulated, may be induced to proliferate, thus being potentially usable for tendon regeneration. Controlled laboratory study. Human tendon samples from the supraspinatus and the long head of the biceps were collected during rotator cuff tendon surgeries from 26 patients, washed with phosphate-buffered saline, cut into small pieces, and digested with collagenase type I and dispase. After centrifugation, cell pellets were resuspended in appropriate culture medium and plated. Adherent cells were cultured, phenotypically characterized, and then compared with human bone marrow stromal cells (BMSCs), as an example of adult stem cells, and human dermal fibroblasts, as normal proliferating cells with no stem cell properties. Two new adult stem cell populations from the supraspinatus and long head of the biceps tendons were isolated, characterized, and cultured in vitro. Cells showed adult stem cell characteristics (ie, they were self-renewing in vitro, clonogenic, and multipotent), as they could be induced to differentiate into different cell types--namely, osteoblasts, adipocytes, and skeletal muscle cells. This work demonstrated that human rotator cuff tendon stem cells and human long head of the biceps tendon stem cells can be isolated and possess a high regenerative potential, which is comparable with that of BMSCs. Moreover, comparative analysis of the sphingolipid pattern of isolated cells with that of BMSCs and fibroblasts revealed the possibility of using this class of lipids as new possible markers of the cell differentiation status. Rotator cuff and long head of the biceps tendons contain a stem cell

  10. The effects of test environment and cyclic stretching on the failure properties of human patellar tendons

    SciTech Connect

    Haut, R.C.; Powlison, A.C. )

    1990-07-01

    There is a need to document the mechanical properties of patellar tendon allografts used for reconstructive surgery of the damaged anterior cruciate ligament, especially the effects of irradiation sterilization. The purpose of this study was to investigate the influences of in vitro test environment and low-level cyclic stretching prior to failure tests on nonirradiated and irradiated human graft tissues. Bilateral patellar tendons were split and each half processed accordingly. Some graft tissues were stretched cyclically at 2.5 mm deformation before failure. Experiments were performed in a 37 degrees C saline bath or with tissues moistened with a drip of the same. The irradiated grafts relaxed less and generated less slack length in the drip environment than the nonirradiated controls. Cyclic stretching did not alter failure characteristics of either graft tissue. While no significant differences in the tensile responses or failure characteristics were noted for irradiated and nonirradiated grafts in the drip, in the bath environment the nonirradiated tissues had greater strength and modulus. This resulted in there being a significant difference between irradiated and nonirradiated tissue responses in a heated saline bath environment. These experimental results exemplify the need to control in vitro test environments in the evaluation of various sterilization and preservation protocols for soft tissue allografts.

  11. Efficiency of the flexor tendon pulley system in human cadaver hands.

    PubMed

    Rispler, D; Greenwald, D; Shumway, S; Allan, C; Mass, D

    1996-05-01

    The efficiency of the flexor tendon system was examined in a human cadaver model. Pulleys were randomly sectioned, and the results were evaluated on the basis of the tendon excursion, force generated at the fingertip, and the work (force multiplied by distance) involved, as compared to the intact pulley system. When a single minor pulley (A1 or A5) was cut, there was no statistical difference in work efficiency or excursion efficiency from controls. Cutting all minor pulleys (A1, A3, A5) lead to a significant loss in excursion efficiency. The intact three pulley systems of A2, A3, and A4 were near normal and statistically better than A2 and A4 together for work efficiency. Cutting one of the major pulleys (A2, A4) resulted in significant changes in efficiency, but what was unexpected was to find an 85% loss of both work and excursion efficiency for the loss of A4 but only an excursion difference of 94% for the loss of A2. Our findings demonstrated that in this model, with the influence of the skin removed, A4 absence produced the largest biomechanically measured efficiency changes and that a combination of A2, A3, and A4 was necessary to preserve both work and excursion efficiency.

  12. In vitro functional response of human tendon cells to different dosages of low-frequency pulsed electromagnetic field.

    PubMed

    de Girolamo, L; Viganò, M; Galliera, E; Stanco, D; Setti, S; Marazzi, M G; Thiebat, G; Corsi Romanelli, M M; Sansone, V

    2015-11-01

    Chronic tendinopathy is a degenerative process causing pain and disability. Current treatments include biophysical therapies, such as pulsed electromagnetic fields (PEMF). The aim of this study was to compare, for the first time, the functional in vitro response of human tendon cells to different dosages of PEMF, varying in field intensity and duration and number of exposures. Tendon cells, isolated from human semitendinosus and gracilis tendons (hTCs; n = 6), were exposed to different PEMF treatments (1.5 or 3 mT for 8 or 12 h, single or repeated treatments). Scleraxis (SCX), COL1A1, COL3A1 and vascular endothelial growth factor-A (VEGF-A) expression and cytokine production were assessed. None of the different dosages provoked apoptotic events. Proliferation of hTCs was enhanced by all treatments, whereas only 3 mT-PEMF treatment increased cell viability. However, the single 1.5 mT-PEMF treatment elicited the highest up-regulation of SCX, VEGF-A and COL1A1 expression, and it significantly reduced COL3A1 expression with respect to untreated cells. The treated hTCs showed a significantly higher release of IL-1β, IL-6, IL-10 and TGF-β. Interestingly, the repeated 1.5 mT-PEMF significantly further increased IL-10 production. 1.5 mT-PEMF treatment was able to give the best results in in vitro healthy human tendon cell culture. Although the clinical relevance is not direct, this investigation should be considered an attempt to clarify the effect of different PEMF protocols on tendon cells, in particular focusing on the potential applicability of this cell source for regenerative medicine purpose, both in surgical and in conservative treatment for tendon disorders.

  13. Recruitment of faster motor units is associated with greater rates of fascicle strain and rapid changes in muscle force during locomotion

    PubMed Central

    Lee, Sabrina S. M.; de Boef Miara, Maria; Arnold, Allison S.; Biewener, Andrew A.; Wakeling, James M.

    2013-01-01

    SUMMARY Animals modulate the power output needed for different locomotor tasks by changing muscle forces and fascicle strain rates. To generate the necessary forces, appropriate motor units must be recruited. Faster motor units have faster activation–deactivation rates than slower motor units, and they contract at higher strain rates; therefore, recruitment of faster motor units may be advantageous for tasks that involve rapid movements or high rates of work. This study identified motor unit recruitment patterns in the gastrocnemii muscles of goats and examined whether faster motor units are recruited when locomotor speed is increased. The study also examined whether locomotor tasks that elicit faster (or slower) motor units are associated with increased (or decreased) in vivo tendon forces, force rise and relaxation rates, fascicle strains and/or strain rates. Electromyography (EMG), sonomicrometry and muscle-tendon force data were collected from the lateral and medial gastrocnemius muscles of goats during level walking, trotting and galloping and during inclined walking and trotting. EMG signals were analyzed using wavelet and principal component analyses to quantify changes in the EMG frequency spectra across the different locomotor conditions. Fascicle strain and strain rate were calculated from the sonomicrometric data, and force rise and relaxation rates were determined from the tendon force data. The results of this study showed that faster motor units were recruited as goats increased their locomotor speeds from level walking to galloping. Slow inclined walking elicited EMG intensities similar to those of fast level galloping but different EMG frequency spectra, indicating that recruitment of the different motor unit types depended, in part, on characteristics of the task. For the locomotor tasks and muscles analyzed here, recruitment patterns were generally associated with in vivo fascicle strain rates, EMG intensity and tendon force. Together, these

  14. Polyphosphazene functionalized polyester fiber matrices for tendon tissue engineering: in vitro evaluation with human mesenchymal stem cells.

    PubMed

    Peach, M Sean; James, Roshan; Toti, Udaya S; Deng, Meng; Morozowich, Nicole L; Allcock, Harry R; Laurencin, Cato T; Kumbar, Sangamesh G

    2012-08-01

    Poly[(ethyl alanato)(1)(p-methyl phenoxy)(1)] phosphazene (PNEA-mPh) was used to modify the surface of electrospun poly(ε-caprolactone) (PCL) nanofiber matrices having an average fiber diameter of 3000 ± 1700 nm for the purpose of tendon tissue engineering and augmentation. This study reports the effect of polyphosphazene surface functionalization on human mesenchymal stem cell (hMSC) adhesion, cell-construct infiltration, proliferation and tendon differentiation, as well as long term cellular construct mechanical properties. PCL fiber matrices functionalized with PNEA-mPh acquired a rougher surface morphology and led to enhanced cell adhesion as well as superior cell-construct infiltration when compared to smooth PCL fiber matrices. Long-term in vitro hMSC cultures on both fiber matrices were able to produce clinically relevant moduli. Both fibrous constructs expressed scleraxis, an early tendon differentiation marker, and a bimodal peak in expression of the late tendon differentiation marker tenomodulin, a pattern that was not observed in PCL thin film controls. Functionalized matrices achieved a more prominent tenogenic differentiation, possessing greater tenomodulin expression and superior phenotypic maturity according to the ratio of collagen I to collagen III expression. These findings indicate that PNEA-mPh functionalization is an efficient method for improving cell interactions with electrospun PCL matrices for the purpose of tendon repair.

  15. Low frequency pulsed electromagnetic field affects proliferation, tissue-specific gene expression, and cytokines release of human tendon cells.

    PubMed

    de Girolamo, L; Stanco, D; Galliera, E; Viganò, M; Colombini, A; Setti, S; Vianello, E; Corsi Romanelli, M M; Sansone, V

    2013-07-01

    Low frequency pulsed electromagnetic field (PEMF) has proven to be effective in the modulation of bone and cartilage tissue functional responsiveness, but its effect on tendon tissue and tendon cells (TCs) is still underinvestigated. PEMF treatment (1.5 mT, 75 Hz) was assessed on primary TCs, harvested from semitendinosus and gracilis tendons of eight patients, under different experimental conditions (4, 8, 12 h). Quantitative PCR analyses were conducted to identify the possible effect of PEMF on tendon-specific gene transcription (scleraxis, SCX and type I collagen, COL1A1); the release of pro- and anti-inflammatory cytokines and of vascular endothelial growth factor (VEGF) was also assessed. Our findings show that PEMF exposure is not cytotoxic and is able to stimulate TCs' proliferation. The increase of SCX and COL1A1 in PEMF-treated cells was positively correlated to the treatment length. The release of anti-inflammatory cytokines in TCs treated with PEMF for 8 and 12 h was significantly higher in comparison with untreated cells, while the production of pro-inflammatory cytokines was not affected. A dramatically higher increase of VEGF-A mRNA transcription and of its related protein was observed after PEMF exposure. Our data demonstrated that PEMF positively influence, in a dose-dependent manner, the proliferation, tendon-specific marker expression, and release of anti-inflammatory cytokines and angiogenic factor in a healthy human TCs culture model.

  16. Molecular mechanisms in the formation of the medial longitudinal fascicle

    PubMed Central

    Ahsan, Mansoor; Riley, Kerry-lyn; Schubert, Frank R

    2007-01-01

    The first neurons in the vertebrate brain form a stereotypical array of longitudinal and transversal axon tracts, the early axon scaffold. This scaffold is thought to lay down the basic structure for the later, more complex neuronal pathways in the brain. The ventral longitudinal tract is pioneered by neurons located at the ventral midbrain–forebrain boundary, which form the medial longitudinal fascicle. Recent studies have shed some light on the molecular mechanisms that control the development of the medial longitudinal fascicle. Here, we show that patterning molecules, notably the ventralizing signalling molecule Shh, are involved in the formation of medial longitudinal fascicle neurons and in medial longitudinal fascicle axon guidance. Downstream of Shh, several homeobox genes are expressed in the tegmentum. We describe the expression patterns of Sax1, Emx2, Six3, Nkx2.2 and Pax6 in the mesencephalon and pretectum in detail. Furthermore, we review the evidence of their molecular interactions, and their involvement in neuronal fate specification. In particular, Sax1 plays a major role in fate determination of medial longitudinal fascicle neurons. Finally, we discuss the available data on axon guidance mechanisms for the medial longitudinal fascicle, which suggest that different guidance molecules such as class 3 Semaphorins, Slits and Netrins act to determine the caudal and ventral course of the medial longitudinal fascicle axons. PMID:17623036

  17. Distribution of proteins within different compartments of tendon varies according to tendon type.

    PubMed

    Thorpe, Chavaunne T; Karunaseelan, Kabelan J; Ng Chieng Hin, Jade; Riley, Graham P; Birch, Helen L; Clegg, Peter D; Screen, Hazel R C

    2016-09-01

    Although the predominant function of all tendons is to transfer force from muscle to bone and position the limbs, some tendons additionally function as energy stores, reducing the energetic cost of locomotion. To maximise energy storage and return, energy-storing tendons need to be more extensible and elastic than tendons with a purely positional function. These properties are conferred in part by a specialisation of a specific compartment of the tendon, the interfascicular matrix, which enables sliding and recoil between adjacent fascicles. However, the composition of the interfascicular matrix is poorly characterised and we therefore tested the hypothesis that the distribution of elastin and proteoglycans differs between energy-storing and positional tendons, and that protein distribution varies between the fascicular matrix and the interfascicular matrix, with localisation of elastin and lubricin to the interfascicular matrix. Protein distribution in the energy-storing equine superficial digital flexor tendon and positional common digital extensor tendon was assessed using histology and immunohistochemistry. The results support the hypothesis, demonstrating enrichment of lubricin in the interfascicular matrix in both tendon types, where it is likely to facilitate interfascicular sliding. Elastin was also localised to the interfascicular matrix, specifically in the energy-storing superficial digital flexor tendon, which may account for the greater elasticity of the interfascicular matrix in this tendon. A differential distribution of proteoglycans was identified between tendon types and regions, which may indicate a distinct role for each of these proteins in tendon. These data provide important advances into fully characterising structure-function relationships within tendon. © 2016 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.

  18. Tendon injuries

    PubMed Central

    Wu, Fan; Nerlich, Michael; Docheva, Denitsa

    2017-01-01

    Tendons connect muscles to bones, ensuring joint movement. With advanced age, tendons become more prone to degeneration followed by injuries. Tendon repair often requires lengthy periods of rehabilitation, especially in elderly patients. Existing medical and surgical treatments often fail to regain full tendon function. The development of novel treatment methods has been hampered due to limited understanding of basic tendon biology. Recently, it was discovered that tendons, similar to other mesenchymal tissues, contain tendon stem/progenitor cells (TSPCs) which possess the common stem cell properties. The current strategies for enhancing tendon repair consist mainly of applying stem cells, growth factors, natural and artificial biomaterials alone or in combination. In this review, we summarise the basic biology of tendon tissues and provide an update on the latest repair proposals for tendon tears. Cite this article: EFORT Open Rev 2017;2:332-342. DOI: 10.1302/2058-5241.2.160075 PMID:28828182

  19. An in vitro scratch tendon tissue injury model: effects of high frequency low magnitude loading.

    PubMed

    Adekanmbi, Isaiah; Zargar, Nasim; Hulley, Philippa

    2017-03-01

    The healing process of ruptured tendons is suboptimal, taking months to achieve tissue with inferior properties to healthy tendon. Mechanical loading has been shown to positively influence tendon healing. However, high frequency low magnitude (HFLM) loads, which have shown promise in maintaining healthy tendon properties, have not been studied with in vitro injury models. Here, we present and validate an in vitro scratch tendon tissue injury model to investigate effects of HFLM loading on the properties of injured rat tail tendon fascicles (RTTFs). A longitudinal tendon tear was simulated using a needle aseptically to scratch a defined length along individual RTTFs. Tissue viability, biomechanical, and biochemical parameters were investigated before and 7 days after culture . The effects of static, HFLM (20 Hz), and low frequency (1 Hz) cyclic loading or no load were also investigated. Tendon viability was confirmed in damaged RTTFs after 7 days of culture, and the effects of a 0.77 ± 0.06 cm scratch on the mechanical property (tangent modulus) and tissue metabolism in damaged tendons were consistent, showing significant damage severity compared with intact tendons. Damaged tendon fascicles receiving HFLM (20 Hz) loads displayed significantly higher mean tangent modulus than unloaded damaged tendons (212.7 ± 14.94 v 92.7 ± 15.59 MPa), and damaged tendons receiving static loading (117.9 ± 10.65 MPa). HFLM stimulation maintained metabolic activity in 7-day cultured damaged tendons at similar levels to fresh tendons immediately following damage. Only damaged tendons receiving HFLM loads showed significantly higher metabolism than unloaded damaged tendons (relative fluorescence units -7021 ± 635.9 v 3745.1 ± 641.7). These validation data support the use of the custom-made in vitro injury model for investigating the potential of HFLM loading interventions in treating damaged tendons.

  20. Elastic fibres are broadly distributed in tendon and highly localized around tenocytes

    PubMed Central

    Grant, Tyler M; Thompson, Mark S; Urban, Jill; Yu, Jing

    2013-01-01

    Elastic fibres have the unique ability to withstand large deformations and are found in numerous tissues, but their organization and structure have not been well defined in tendon. The objective of this study was to characterize the organization of elastic fibres in tendon to understand their function. Immunohistochemistry was used to visualize elastic fibres in bovine flexor tendon with fibrillin-1, fibrillin-2 and elastin antibodies. Elastic fibres were broadly distributed throughout tendon, and highly localized longitudinally around groups of cells and transversely between collagen fascicles. The close interaction of elastic fibres and cells suggests that elastic fibres are part of the pericellular matrix and therefore affect the mechanical environment of tenocytes. Fibres present between fascicles are likely part of the endotenon sheath, which enhances sliding between adjacent collagen bundles. These results demonstrate that elastic fibres are highly localized in tendon and may play an important role in cellular function and contribute to the tissue mechanics of the endotenon sheath. PMID:23587025

  1. The Use of Cryopreserved Human Skin Allograft for the Treatment of Wounds With Exposed Muscle, Tendon, and Bone.

    PubMed

    Wilson, Thomas C; Wilson, Jessica A; Crim, Brandon; Lowery, Nicholas J

    2016-04-01

    Wounds with exposed bone or tendon continue to be a challenge for wound care physicians, and there is little research pertaining to the treatment of these particular wounds with allograft skin. The purpose of this study was to evaluate the effectiveness and safety of a biologically active cryopreserved human skin allograft for treating wounds with exposed bone and/or tendon in the lower extremities. Fifteen patients with 15 wounds at a single hospital-based wound care center were included in the study. Eleven wounds had exposed bone, 1 wound had exposed ten- don, and 3 wounds had exposed bone and tendon. Standard treatment principles with adjunctive cadaveric allograft application were performed on all wounds in the study. In this study 14/15 (93.3%) of the wounds healed completely. The mean duration of days until coverage of the bone and/or tendon with granulation tissue was 36.14 (5.16 weeks) (range 5-117 days). Mean duration to complete healing of the wound was 133 days (19 weeks) (range 53-311 days). The mean number of grafts applied was 2. There were no adverse events directly related to the graft. Zero major amputations and 1 minor amputation occurred. This study found biologically active cryopreserved human skin allografts to be safe and effective in treating difficult wounds with exposed bone and/or tendon. To the authors' knowledge, this is the largest study to date focused on the utilization of allograft skin as an adjunct therapy for lower extremity wounds with exposed tendon and/or bone.

  2. Quantification of Internal Stress-Strain Fields in Human Tendon: Unraveling the Mechanisms that Underlie Regional Tendon Adaptations and Mal-Adaptations to Mechanical Loading and the Effectiveness of Therapeutic Eccentric Exercise.

    PubMed

    Maganaris, Constantinos N; Chatzistergos, Panagiotis; Reeves, Neil D; Narici, Marco V

    2017-01-01

    By virtue of their anatomical location between muscles and bones, tendons make it possible to transform contractile force to joint rotation and locomotion. However, tendons do not behave as rigid links, but exhibit viscoelastic tensile properties, thereby affecting the length and contractile force in the in-series muscle, but also storing and releasing elastic stain energy as some tendons are stretched and recoiled in a cyclic manner during locomotion. In the late 90s, advancements were made in the application of ultrasound scanning that allowed quantifying the tensile deformability and mechanical properties of human tendons in vivo. Since then, the main principles of the ultrasound-based method have been applied by numerous research groups throughout the world and showed that tendons increase their tensile stiffness in response to exercise training and chronic mechanical loading, in general, by increasing their size and improving their intrinsic material. It is often assumed that these changes occur homogenously, in the entire body of the tendon, but recent findings indicate that the adaptations may in fact take place in some but not all tendon regions. The present review focuses on these regional adaptability features and highlights two paradigms where they are particularly evident: (a) Chronic mechanical loading in healthy tendons, and (b) tendinopathy. In the former loading paradigm, local tendon adaptations indicate that certain regions may "see," and therefore adapt to, increased levels of stress. In the latter paradigm, local pathological features indicate that certain tendon regions may be "stress-shielded" and degenerate over time. Eccentric exercise protocols have successfully been used in the management of tendinopathy, without much sound understanding of the mechanisms underpinning their effectiveness. For insertional tendinopathy, in particular, it is possible that the effectiveness of a loading/rehabilitation protocol depends on the topography of the

  3. Quantification of Internal Stress-Strain Fields in Human Tendon: Unraveling the Mechanisms that Underlie Regional Tendon Adaptations and Mal-Adaptations to Mechanical Loading and the Effectiveness of Therapeutic Eccentric Exercise

    PubMed Central

    Maganaris, Constantinos N.; Chatzistergos, Panagiotis; Reeves, Neil D.; Narici, Marco V.

    2017-01-01

    By virtue of their anatomical location between muscles and bones, tendons make it possible to transform contractile force to joint rotation and locomotion. However, tendons do not behave as rigid links, but exhibit viscoelastic tensile properties, thereby affecting the length and contractile force in the in-series muscle, but also storing and releasing elastic stain energy as some tendons are stretched and recoiled in a cyclic manner during locomotion. In the late 90s, advancements were made in the application of ultrasound scanning that allowed quantifying the tensile deformability and mechanical properties of human tendons in vivo. Since then, the main principles of the ultrasound-based method have been applied by numerous research groups throughout the world and showed that tendons increase their tensile stiffness in response to exercise training and chronic mechanical loading, in general, by increasing their size and improving their intrinsic material. It is often assumed that these changes occur homogenously, in the entire body of the tendon, but recent findings indicate that the adaptations may in fact take place in some but not all tendon regions. The present review focuses on these regional adaptability features and highlights two paradigms where they are particularly evident: (a) Chronic mechanical loading in healthy tendons, and (b) tendinopathy. In the former loading paradigm, local tendon adaptations indicate that certain regions may “see,” and therefore adapt to, increased levels of stress. In the latter paradigm, local pathological features indicate that certain tendon regions may be “stress-shielded” and degenerate over time. Eccentric exercise protocols have successfully been used in the management of tendinopathy, without much sound understanding of the mechanisms underpinning their effectiveness. For insertional tendinopathy, in particular, it is possible that the effectiveness of a loading/rehabilitation protocol depends on the topography

  4. INDUCED REMODELING OF PORCINE TENDONS TO HUMAN ANTERIOR CRUCIATE LIGAMENTS BY α-GAL EPITOPE REMOVAL AND PARTIAL CROSSLINKING.

    PubMed

    Stone, Kevin Robert; Walgenbach, Ann; Galili, Uri

    2017-01-09

    This review describes a novel method developed for processing porcine tendon and other ligament implants which enables in situ remodeling into autologous ligaments in humans. The method differs from methods using extracellular matrices (ECM) which provide post-operative ortho-biologic support (i.e. augmentation grafts) for healing of injured ligaments, in that the porcine bone-patellar-tendon-bone itself serves as the graft replacing ruptured anterior cruciate ligament (ACL). The method allows for gradual remodeling of porcine tendon into autologous human ACL while maintaining the biomechanical integrity. The method was first evaluated in a pre-clinical model of monkeys and subsequently in patients. The method overcomes detrimental effects of the natural anti-Gal antibody and harnesses anti-non gal antibodies for the remodeling process in two steps: Step 1. Elimination of α-gal epitopes- This epitope which is abundant in pigs (as in other non-primate mammals) binds the natural anti-Gal antibody which is the most abundant natural antibody in humans. This interaction, which can induce fast resorption of the porcine implant, is avoided by enzymatic elimination of α-gal epitopes from the implant with recombinant α-galactosidase. Step 2. Partial crosslinking of porcine tendon with glutaraldehyde- This crosslinking generates covalent bonds in the ECM which slow infiltration of macrophages into the implant. Anti-non gal antibodies are produced in recipients against the multiple porcine antigenic proteins and proteoglycans because of sequence differences between human and porcine homologous proteins. Anti-non gal antibodies bind to the implant ECM, recruit macrophages and induce the implant destruction by directing proteolytic activity of macrophages. Partial crosslinking of the tendon ECM decreases the extent of macrophage infiltration and degradation of the implant and enables concomitant infiltration of fibroblasts which follow the infiltrating macrophages. These

  5. Asymmetric deformation of contracting human gastrocnemius muscle.

    PubMed

    Kinugasa, Ryuta; Hodgson, John A; Edgerton, V Reggie; Sinha, Shantanu

    2012-02-01

    Muscle fiber deformation is related to its cellular structure, as well as its architectural arrangement within the musculoskeletal system. While playing an important role in aponeurosis displacement, and efficiency of force transmission to the tendon, such deformation also provides important clues about the underlying mechanical structure of the muscle. We hypothesized that muscle fiber cross section would deform asymmetrically to satisfy the observed constant volume of muscle during a contraction. Velocity-encoded, phase-contrast, and morphological magnetic resonance imaging techniques were used to measure changes in fascicle length, pinnation angle, and aponeurosis separation of the human gastrocnemius muscle during passive and active eccentric ankle joint movements. These parameters were then used to subsequently calculate the in-plane muscle area subtended by the two aponeuroses and fascicles and to calculate the in-plane (dividing area by fascicle length), and through-plane (dividing muscle volume by area) thicknesses. Constant-volume considerations of the whole-muscle geometry require that, as fascicle length increases, the muscle fiber cross-sectional area must decrease in proportion to the length change. Our empirical findings confirm the definition of a constant-volume rule that dictates that changes in the dimension perpendicular to the plane, i.e., through-plane thickness, (-6.0% for passive, -3.3% for eccentric) equate to the reciprocal of the changes in area (6.8% for passive, 3.7% for eccentric) for both exercise paradigms. The asymmetry in fascicle cross-section deformation for both passive and active muscle fibers is established in this study with a ∼22% in-plane and ∼6% through-plane fascicle thickness change. These fiber deformations have functional relevance, not only because they affect the force production of the muscle itself, but also because they affect the characteristics of adjacent muscles by deflecting their line of pull.

  6. Is human Achilles tendon deformation greater in regions where cross-sectional area is smaller?

    PubMed

    Reeves, Neil D; Cooper, Glen

    2017-05-01

    The Achilles is a long tendon varying in cross-sectional area (CSA) considerably along its length. For the same force, a smaller CSA would experience higher tendon stress and we hypothesised that these areas would therefore undergo larger transverse deformations. A novel magnetic resonance imaging-based approach was implemented to quantify changes in tendon CSA from rest along the length of the Achilles tendon under load conditions corresponding to 10%, 20% and 30% of isometric plantar flexor maximum voluntary contraction (MVC). Reductions in tendon CSA occurring during contraction from the resting condition were assumed to be proportional to the longitudinal elongations within those regions (Poisson's ratio). Rather than tendon regions of smallest CSA undergoing the greatest deformations, the outcome was region specific, with the proximal (gastrocnemius) tendon portion showing larger transverse deformations upon loading compared with the distal portion of the Achilles (P<0.01). Transverse tendon deformation only occurred in selected regions of the distal Achilles tendon at 20% and 30% of MVC, but in contrast occurred throughout the proximal portion of the Achilles at all contraction levels (10%, 20% and 30% of MVC; P<0.01). Calculations showed that force on the proximal tendon portion was ∼60% lower, stress ∼70% lower, stiffness ∼30% lower and Poisson's ratio 6-fold higher compared with those for the distal portion of the Achilles tendon. These marked regional differences in mechanical properties may allow the proximal portion to function as a mechanical buffer to protect the stiffer, more highly stressed, distal portion of the Achilles tendon from injury. © 2017. Published by The Company of Biologists Ltd.

  7. Human Adipose Stem Cells Differentiated on Braided Polylactide Scaffolds Is a Potential Approach for Tendon Tissue Engineering.

    PubMed

    Vuornos, Kaisa; Björninen, Miina; Talvitie, Elina; Paakinaho, Kaarlo; Kellomäki, Minna; Huhtala, Heini; Miettinen, Susanna; Seppänen-Kaijansinkko, Riitta; Haimi, Suvi

    2016-03-01

    Growing number of musculoskeletal defects increases the demand for engineered tendon. Our aim was to find an efficient strategy to produce tendon-like matrix in vitro. To allow efficient differentiation of human adipose stem cells (hASCs) toward tendon tissue, we tested different medium compositions, biomaterials, and scaffold structures in preliminary tests. This is the first study to report that medium supplementation with 50 ng/mL of growth and differentiation factor-5 (GDF-5) and 280 μM l-ascorbic acid are essential for tenogenic differentiation of hASCs. Tenogenic medium (TM) was shown to significantly enhance tendon-like matrix production of hASCs compared to other tested media groups. Cell adhesion, proliferation, and tenogenic differentiation of hASCs were supported on braided poly(l/d)lactide (PLA) 96l/4d copolymer filament scaffolds in TM condition compared to foamed poly(l-lactide-co-ɛ-caprolactone) (PLCL) 70L/30CL scaffolds. A uniform cell layer formed on braided PLA 96/4 scaffolds when hASCs were cultured in TM compared to maintenance medium (MM) condition after 14 days of culture. Furthermore, total collagen content and gene expression of tenogenic marker genes were significantly higher in TM condition after 2 weeks of culture. The elastic modulus of PLA 96/4 scaffold was more similar to the elastic modulus reported for native Achilles tendon. Our study showed that the optimized TM is needed for efficient and rapid in vitro tenogenic extracellular matrix production of hASCs. PLA 96/4 scaffolds together with TM significantly stimulated hASCs, thus demonstrating the potential clinical relevance of this novel and emerging approach to tendon injury treatments in the future.

  8. Effect of acute resistance exercise and sex on human patellar tendon structural and regulatory mRNA expression.

    PubMed

    Sullivan, Bridget E; Carroll, Chad C; Jemiolo, Bozena; Trappe, Scott W; Magnusson, S Peter; Døssing, Simon; Kjaer, Michael; Trappe, Todd A

    2009-02-01

    Tendon is mainly composed of collagen and an aqueous matrix of proteoglycans that are regulated by enzymes called matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). Although it is known that resistance exercise (RE) and sex influence tendon metabolism and mechanical properties, it is uncertain what structural and regulatory components contribute to these responses. We measured the mRNA expression of tendon's main fibrillar collagens (type I and type III) and the main proteoglycans (decorin, biglycan, fibromodulin, and versican) and the regulatory enzymes MMP-2, MMP-9, MMP-3, and TIMP-1 at rest and after RE. Patellar tendon biopsy samples were taken from six individuals (3 men and 3 women) before and 4 h after a bout of RE and from a another six individuals (3 men and 3 women) before and 24 h after RE. Resting mRNA expression was used for sex comparisons (6 men and 6 women). Collagen type I, collagen type III, and MMP-2 were downregulated (P < 0.05) 4 h after RE but were unchanged (P > 0.05) 24 h after RE. All other genes remained unchanged (P > 0.05) after RE. Women had higher resting mRNA expression (P < 0.05) of collagen type III and a trend (P = 0.08) toward lower resting expression of MMP-3 than men. All other genes were not influenced (P > 0.05) by sex. Acute RE appears to stimulate a change in collagen type I, collagen type III, and MMP-2 gene regulation in the human patellar tendon. Sex influences the structural and regulatory mRNA expression of tendon.

  9. Effects of carpal tunnel release on the relative motion of tendon, nerve, and subsynovial connective tissue in a human cadaver model.

    PubMed

    Yoshii, Yuichi; Zhao, Chunfeng; Henderson, Jacqueline; Zhao, Kristin D; Zobitz, Mark E; An, Kai-Nan; Amadio, Peter C

    2008-11-01

    The purpose of this study was to evaluate the effect of flexor retinaculum division (simulated carpal tunnel release) on the relative motion of flexor tendon, subsynovial connective tissue, and median nerve in human cadaver specimens. Using fluoroscopy, we measured the relative motion of middle finger flexor digitorum superficialis tendon, subsynovial connective tissue, and median nerve in twelve human cadavers with simulated fist motion. Measurements were obtained for three wrist positions: neutral; 60 degrees flexion; and 60 degrees extension. The shear index was defined as the difference in motion between two tissues (tendon, subsynovial connective tissue, or nerve) relative to tendon excursion, expressed as a percentage. After testing with an intact carpal tunnel, the flexor retinaculum was cut and the testing procedure was repeated. With an intact flexor retinaculum, the wrist flexion position showed significantly less displacement for the subsynovial connective tissue and median nerve relative to tendon displacement, and thus the highest potential shear strain between subsynovial connective tissue-tendon, and tendon-nerve. The wrist extension position also had a significantly higher potential shear strain for tendon-nerve compared to the neutral position. After division of the flexor retinaculum, the differences in shear index among wrist positions were reduced. For the wrist flexion position, the subsynovial connective tissue and median nerve displacements significantly increased, indicating lower shear index values. These findings suggest that division of flexor retinaculum reduces the potential shear strain and thus possibly the risk of shear injury to tissues with the carpal tunnel.

  10. Effects of Carpal Tunnel Release on the Relative Motion of Tendon, Nerve, and Subsynovial Connective Tissue in a Human Cadaver Model

    PubMed Central

    Yoshii, Yuichi; Zhao, Chunfeng; Henderson, Jacqueline; Zhao, Kristin D.; Zobitz, Mark E.; An, Kai-Nan; Amadio, Peter C.

    2010-01-01

    Background The purpose of this study was to evaluate the effect of flexor retinaculum division (simulated carpal tunnel release) on the relative motion of flexor tendon, subsynovial connective tissue, and median nerve in human cadaver specimens. Methods Using fluoroscopy, we measured the relative motion of middle finger flexor digitorum superficialis tendon, subsynovial connective tissue, and median nerve in twelve human cadavers with simulated fist motion. Measurements were obtained for three wrist positions: neutral; 60 degrees flexion; and 60 degrees extension. The shear index was defined as the difference in motion between two tissues (tendon, subsynovial connective tissue, or nerve) relative to tendon excursion, expressed as a percentage. After testing with an intact carpal tunnel, the flexor retinaculum was cut and the testing procedure was repeated. Findings With an intact flexor retinaculum, the wrist flexion position showed significantly less displacement for the subsynovial connective tissue and median nerve relative to tendon displacement, and thus the highest potential shear strain between subsynovial connective tissue-tendon, and tendon-nerve. The wrist extension position also had a significantly higher potential shear strain for tendon-nerve compared to the neutral position. After division of the flexor retinaculum, the differences in shear index among wrist positions were reduced. For the wrist flexion position, the subsynovial connective tissue and median nerve displacements significantly increased, indicating lower shear index values. Interpretation These findings suggest that division of flexor retinaculum reduces the potential shear strain and thus possibly the risk of shear injury to tissues with the carpal tunnel. PMID:18644662

  11. Effects of the pulsed electromagnetic field PST® on human tendon stem cells: a controlled laboratory study.

    PubMed

    Randelli, Pietro; Menon, Alessandra; Ragone, Vincenza; Creo, Pasquale; Alfieri Montrasio, Umberto; Perucca Orfei, Carlotta; Banfi, Giuseppe; Cabitza, Paolo; Tettamanti, Guido; Anastasia, Luigi

    2016-08-18

    Current clinical procedures for rotator cuff tears need to be improved, as a high rate of failure is still observed. Therefore, new approaches have been attempted to stimulate self-regeneration, including biophysical stimulation modalities, such as low-frequency pulsed electromagnetic fields, which are alternative and non-invasive methods that seem to produce satisfying therapeutic effects. While little is known about their mechanism of action, it has been speculated that they may act on resident stem cells. Thus, the purpose of this study was to evaluate the effects of a pulsed electromagnetic field (PST®) on human tendon stem cells (hTSCs) in order to elucidate the possible mechanism of the observed therapeutic effects. hTSCs from the rotator cuff were isolated from tendon biopsies and cultured in vitro. Then, cells were exposed to a 1-h PST® treatment and compared to control untreated cells in terms of cell morphology, proliferation, viability, migration, and stem cell marker expression. Exposure of hTSCs to PST® did not cause any significant changes in proliferation, viability, migration, and morphology. Instead, while stem cell marker expression significantly decreased in control cells during cell culturing, PST®-treated cells did not have a significant reduction of the same markers. While PST® did not have significant effects on hTSCs proliferation, the treatment had beneficial effects on stem cell marker expression, as treated cells maintained a higher expression of these markers during culturing. These results support the notion that PST® treatment may increase the patient stem cell regenerative potential.

  12. Muscle - tendon unit mechanical and morphological properties and sprint performance.

    PubMed

    Stafilidis, Savvas; Arampatzis, Adamantios

    2007-07-01

    The objective of this study was to determine whether sprint performance is related to the mechanical (elongation - force relationship of the tendon and aponeurosis, muscle strength) and morphological (fascicle length, pennation angle, muscle thickness) properties of the quadriceps femoris and triceps surae muscle - tendon units. Two groups of sprinters (slow, n = 11; fast, n = 17) performed maximal isometric knee extension and plantar flexion contractions on a dynamometer at 11 different muscle - tendon unit lengths. Elongation of the tendon and aponeurosis of the gastrocnemius medialis and the vastus lateralis was measured using ultrasonography. We observed no significant differences in maximal joint moments at the ankle and knee joints or morphological properties of the gastrocnemius medialis and vastus lateralis between groups (P > 0.05). The fast group exhibited greater elongation of the vastus lateralis tendon and aponeurosis at a given tendon force, and greater maximal elongation of the vastus lateralis tendon and aponeurosis during maximum voluntary contraction (P < 0.05). Furthermore, maximal elongation of the vastus lateralis tendon and aponeurosis showed a significant correlation with 100-m sprint times (r = -0.567, P = 0.003). For the elongation - force relationship at the gastrocnemius medialis tendon and aponeurosis, the two groups recorded similar values. It is suggested that the greater elongation of the vastus lateralis tendon and aponeurosis of the fast group benefits energy storage and return as well as the shortening velocity of the muscle - tendon unit.

  13. Evidence for a vertebrate catapult: elastic energy storage in the plantaris tendon during frog jumping.

    PubMed

    Astley, Henry C; Roberts, Thomas J

    2012-06-23

    Anuran jumping is one of the most powerful accelerations in vertebrate locomotion. Several species are hypothesized to use a catapult-like mechanism to store and rapidly release elastic energy, producing power outputs far beyond the capability of muscle. Most evidence for this mechanism comes from measurements of whole-body power output; the decoupling of joint motion and muscle shortening expected in a catapult-like mechanism has not been demonstrated. We used high-speed marker-based biplanar X-ray cinefluoroscopy to quantify plantaris muscle fascicle strain and ankle joint motion in frogs in order to test for two hallmarks of a catapult mechanism: (i) shortening of fascicles prior to joint movement (during tendon stretch), and (ii) rapid joint movement during the jump without rapid muscle-shortening (during tendon recoil). During all jumps, muscle fascicles shortened by an average of 7.8 per cent (54% of total strain) prior to joint movement, stretching the tendon. The subsequent period of initial joint movement and high joint angular acceleration occurred with minimal muscle fascicle length change, consistent with the recoil of the elastic tendon. These data support the plantaris longus tendon as a site of elastic energy storage during frog jumping, and demonstrate that catapult mechanisms may be employed even in sub-maximal jumps.

  14. Ruptured human Achilles tendon has elevated metabolic activity up to 1 year after repair.

    PubMed

    Eliasson, Pernilla; Couppé, Christian; Lonsdale, Markus; Svensson, René B; Neergaard, Christian; Kjær, Michael; Friberg, Lars; Magnusson, S Peter

    2016-09-01

    Following Achilles tendon rupture, running is often allowed after 6 months. However, tendon healing is slow and the metabolic status of the tendon at this point is unknown. The purpose of this study was to investigate tendon metabolism (glucose uptake) and vascularization at 3, 6 and 12 months after Achilles tendon rupture as measured using PET and power Doppler ultrasonography (PDUS). The study group comprised 23 patients with surgically repaired Achilles tendon rupture who were investigated at 3 months (n = 7), 6 months (n = 7) and 12 months (n = 9) after surgery. The triceps surae complex was loaded over 20 min of slow treadmill walking while a radioactive tracer ((18)F-FDG) was administered prior to PET. Vascularization was measured in terms of PDUS flow activity, and patient-reported outcomes were scored using the Achilles tendon rupture score (ATRS) and sports assessment (VISA-A) questionnaire. Relative glucose uptake ((18)F-FDG) was higher in repaired tendons than in intact tendons at all time-points (6, 3 and 1.6 times higher at 3, 6 and 12 months, respectively; P ≤ 0.001), and was also higher in the tendon core than in the periphery at 3 and 6 months (P ≤ 0.02), but lower at 12 months (P = 0.06). Relative glucose uptake was negatively related to ATRS at 6 months after repair (r = -0.89, P ≤ 0.01). PDUS flow activity was higher in repaired tendons than in intact tendons at 3 and 6 months (P < 0.05 for both), but had normalized by 12 months. These data demonstrate that the healing process as determined by metabolic activity and vascularization continues for 6 months after injury when large loads are typically allowed on the tendon. Indeed, metabolic activity remained elevated for more than 1 year after injury despite normalized vascularization. The robust negative correlation between tendon metabolism and patient-reported outcome suggests that a high metabolic activity 6 months after the injury may be

  15. Tendon crimps and peritendinous tissues responding to tensional forces.

    PubMed

    Franchi, M; Quaranta, M; De Pasquale, V; Macciocca, M; Orsini, E; Trirè, A; Ottani, V; Ruggeri, A

    2007-01-01

    Tendons transmit forces generated from muscle to bone making joint movements possible. Tendon collagen has a complex supramolecular structure forming many hierarchical levels of association; its main functional unit is the collagen fibril forming fibers and fascicles. Since tendons are enclosed by loose connective sheaths in continuity with muscle sheaths, it is likely that tendon sheaths could play a role in absorbing/transmitting the forces created by muscle contraction. In this study rat Achilles tendons were passively stretched in vivo to be observed at polarized light microscope (PLM), scanning electron microscope (SEM) and transmission electron microscope (TEM). At PLM tendon collagen fibers in relaxed rat Achilles tendons ran straight and parallel, showing a periodic crimp pattern. Similarly tendon sheaths showed apparent crimps. At higher magnification SEM and TEM revealed that in each tendon crimp large and heterogeneous collagen fibrils running straight and parallel suddenly changed their direction undergoing localized and variable modifications. These fibril modifications were named fibrillar crimps. Tendon sheaths displayed small and uniform fibrils running parallel with a wavy course without any ultrastructural aspects of crimp. Since in passively stretched Achilles tendons fibrillar crimps were still observed, it is likely that during the tendon stretching, and presumably during the tendon elongation in muscle contraction, the fibrillar crimp may be the real structural component of the tendon crimp acting as shock absorber. The peritendinous sheath can be stretched as tendon, but is not actively involved in the mechanism of shock absorber as the fibrillar crimp. The different functional behaviour of tendons and sheaths may be due to the different structural and molecular arrangement of their fibrils.

  16. Expression of extracellular matrix components and related growth factors in human tendon and muscle after acute exercise.

    PubMed

    Heinemeier, K M; Bjerrum, S S; Schjerling, P; Kjaer, M

    2013-06-01

    Acute kicking exercise induces collagen synthesis in both tendon and muscle in humans, but it is not known if this relates to increased collagen transcription and if other matrix genes are regulated. Young men performed 1 h of one-leg kicking at 67% of max workload. Biopsies were taken from the patellar tendon and vastus lateralis muscle of each leg at 2 (n = 10), 6 (n = 11), or 26 h (n = 10) after exercise. Levels of messenger ribonucleic acid mRNA for collagens, noncollagenous matrix proteins, and growth factors were measured with real-time reverse transcription polymerase chain reaction. In tendon, gene expression was unchanged except for a decrease in insulin-like growth factor-IEa (IGF-IEa; P < 0.05). In muscle, collagen expression was not significantly altered, while levels of connective tissue growth factor (CTGF), IGF-IEa, transforming growth factor-β1, -2 (TGF-β), and the TGF-β receptor II mRNA were increased (P < 0.05). Matrix components tenascin-C, fibronectin, and decorin were also induced in loaded muscle (P < 0.05), while fibromodulin was unaffected. In conclusion, the relatively robust changes in matrix components and related growth factors in muscle indicate a stimulation of extracellular matrix even with moderate exercise. However, in tendon tissue, this exercise model does not appear to induce any anabolic response on the transcriptional level.

  17. Shortening behavior of the different components of muscle-tendon unit during isokinetic plantar flexions.

    PubMed

    Hauraix, Hugo; Nordez, Antoine; Dorel, Sylvain

    2013-10-01

    The torque-velocity relationship has been widely considered as reflecting the mechanical properties of the contractile apparatus, and the influence of tendinous tissues on this relationship obtained during in vivo experiments remains to be determined. This study describes the pattern of shortening of various muscle-tendon unit elements of the triceps surae at different constant angular velocities and quantifies the contributions of fascicles, tendon, and aponeurosis to the global muscle-tendon unit shortening. Ten subjects performed isokinetic plantar flexions at different preset angular velocities (i.e., 30, 90, 150, 210, 270, and 330°/s). Ultrafast ultrasound measurements were performed on the muscle belly and on the myotendinous junction of the medial and lateral gastrocnemius muscles. The contributions of fascicles, tendon, and aponeurosis to global muscle-tendon unit shortening velocity were calculated for velocity conditions for four parts of the total range of motion. For both muscles, the fascicles' contribution decreased throughout the motion (73.5 ± 21.5% for 100-90° angular range to 33.7 ± 20.2% for 80-70°), whereas the tendon contribution increased (25.8 ± 15.4 to 55.6 ± 16.8%). In conclusion, the tendon contribution to the global muscle-tendon unit shortening is significant even during a concentric contraction. However, this contribution depends on the range of motion analyzed. The intersubject variability found in the maximal fascicle shortening velocity, for a given angular velocity, suggests that some subjects might possess a more efficient musculoarticular complex to produce the movement velocity. These findings are of great interest for understanding the ability of muscle-tendon shortening velocity.

  18. Evidence against proteoglycan mediated collagen fibril load transmission and dynamic viscoelasticity in tendon.

    PubMed

    Fessel, Gion; Snedeker, Jess G

    2009-10-01

    The glycosaminoglycan (GAG) dermatan sulfate and chondroitin sulfate side-chains of small leucine-rich proteoglycans have been increasingly posited to act as molecular cross links between adjacent collagen fibrils and to directly contribute to tendon elasticity. GAGs have also been implicated in tendon viscoelasticity, supposedly affecting frictional loss during elongation or fluid flow through the extra cellular matrix. The current study sought to systematically test these theories of tendon structure-function by investigating the mechanical repercussions of enzymatic depletion of GAG complexes by chondroitinase ABC in a reproducible tendon structure-function model (rat tail tendon fascicles). The extent of GAG removal (at least 93%) was verified by relevant spectrophotometric assays and transmission electron microscopy. Dynamic viscoelastic tensile tests on GAG depleted rat tail tendon fascicle were not mechanically different from controls in storage modulus (elastic behavior) over a wide range of strain-rates (0.05, 0.5, and 5% change in length per second) in either the linear or nonlinear regions of the material curve. Loss modulus (viscoelastic behavior) was only affected in the nonlinear region at the highest strain-rate, and even this effect was marginal (19% increased loss modulus, p=0.035). Thus glycosaminoglycan chains of small leucine-rich proteoglycans do not appear to mediate dynamic elastic behavior nor do they appear to regulate the dynamic viscoelastic properties in rat tail tendon fascicles.

  19. Achilles Tendonitis

    MedlinePlus

    ... You Prevent Achilles Tendonitis? Take these steps to reduce your risk of Achilles tendonitis: Stay in good shape year-round and try to keep your muscles as strong as they can be. Strong, flexible muscles work more efficiently and put less stress on your tendon. Increase the intensity and length ...

  20. Exogenous collagen cross-linking recovers tendon functional integrity in an experimental model of partial tear.

    PubMed

    Fessel, Gion; Wernli, Jeremy; Li, Yufei; Gerber, Christian; Snedeker, Jess G

    2012-06-01

    We investigated the hypothesis that exogenous collagen cross-linking can augment intact regions of tendon to mitigate mechanical propagation of partial tears. We first screened the low toxicity collagen cross-linkers genipin, methylglyoxal and ultra-violet (UV) light for their ability to augment tendon stiffness and failure load in rat tail tendon fascicles (RTTF). We then investigated cross-linking effects in load bearing equine superficial digital flexor tendons (SDFT). Data indicated that all three cross-linking agents augmented RTTF mechanical properties but reduced native viscoelasticity. In contrast to effects observed in fascicles, methylglyoxal treatment of SDFT detrimentally affected tendon mechanical integrity, and in the case of UV did not alter tendon mechanics. As in the RTTF experiments, genipin cross-linking of SDFT resulted in increased stiffness, higher failure loads and reduced viscoelasticity. Based on this result we assessed the efficacy of genipin in arresting tendon tear propagation in cyclic loading to failure. Genipin cross-linking secondary to a mid-substance biopsy-punch significantly reduced tissue strains, increased elastic modulus and increased resistance to fatigue failure. We conclude that genipin cross-linking of injured tendons holds potential for arresting tendon tear progression, and that implications of the treatment on matrix remodeling in living tendons should now be investigated.

  1. Quantification of collagen fiber orientation in human tendons with the coefficient of variation of echogenicity.

    PubMed

    Ishigaki, Tomonobu; Kouno, Masahiro; Ikebukuro, Toshihiro; Kubo, Keitaro

    2016-12-08

    The grayscale distribution on the ultrasonic images of tendons may be reduced with alignment of collagen fibers, because ultrasound signal intensity changes with alterations in tendon collagen fiber orientation due to acoustic anisotropy in the tendons. The purpose of this study was to investigate changes in the coefficient of variation (CV) of echogenicity in the Achilles tendon during passive dorsiflexion (the angle task) and isometric plantar flexion (the contraction task). Achilles tendon transverse ultrasonic images were collected from 14 healthy individuals every 10° from 20° to -20° (positive values for plantar flexion) in the angle task and every 10% maximum voluntary contraction (MVC) from 0% to 70% MVC in the contraction task. The CV of echogenicity was measured in each image. In addition, relative changes in the measured variables between the former half (20-0° in the angle task, 0% to 30% MVC in the contraction task) and the latter half (0° to -20° in the angle task, 40% to 70% MVC in the contraction task) of each task were compared. The CV of echogenicity decreased with increases in the dorsiflexion angle and intensity of isometric contractions. Furthermore, relative changes in the CV of echogenicity were greater at more dorsiflexed positions in the angle task and at lower torque levels in the contraction task. These results suggested that decreases in the CV of echogenicity were partially related to the alignment of the tendon collagen fibers with tendon stretching. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Continuous, bilateral Achilles' tendon vibration is not detrimental to human walk.

    PubMed

    Courtine, G; Pozzo, T; Lucas, B; Schieppati, M

    2001-05-01

    Sensory feedback from the moving limbs contributes to the regulation of animal and human locomotion. However, the question of the specific role of the various modalities is still open. Further, functional loss of leg afferent fibres due to peripheral neuropathy does not always lead to major alteration in the gait pattern. In order to gain further insight on proprioceptive control of human gait, we applied vibratory tendon stimulation, known to recruit spindle primary afferent fibres, to both triceps surae muscles during normal floor walk. This procedure would disturb organisation and execution of walking, especially if spindles fire continuously and subjects are blindfolded. Vibration induced significant, though minor, changes in duration and length of stance and swing phase, and on speed of walking and kinematics of lower limb segments. No effect was induced on angular displacement of the ankle joint or trunk and head kinematics. This paucity of effects was at variance with the perception of the subjects, who reported illusion of leg stiffness and gait imbalance. These findings would speak for a selective gating of Ia input during locomotion and emphasise the notion that the central nervous system can cope with an unusual continuous input along the Ia fibres from a key muscle like the soleus.

  3. Inducing any virtual two-dimensional movement in humans by applying muscle tendon vibration.

    PubMed

    Roll, Jean-Pierre; Albert, Frédéric; Thyrion, Chloé; Ribot-Ciscar, Edith; Bergenheim, Mikael; Mattei, Benjamin

    2009-02-01

    In humans, tendon vibration evokes illusory sensation of movement. We developed a model mimicking the muscle afferent patterns corresponding to any two-dimensional movement and checked its validity by inducing writing illusory movements through specific sets of muscle vibrators. Three kinds of illusory movements were compared. The first was induced by vibration patterns copying the responses of muscle spindle afferents previously recorded by microneurography during imposed ankle movements. The two others were generated by the model. Sixteen different vibratory patterns were applied to 20 motionless volunteers in the absence of vision. After each vibration sequence, the participants were asked to name the corresponding graphic symbol and then to reproduce the illusory movement perceived. Results showed that the afferent patterns generated by the model were very similar to those recorded microneurographically during actual ankle movements (r=0.82). The model was also very efficient for generating afferent response patterns at the wrist level, if the preferred sensory directions of the wrist muscle groups were first specified. Using recorded and modeled proprioceptive patterns to pilot sets of vibrators placed at the ankle or wrist levels evoked similar illusory movements, which were correctly identified by the participants in three quarters of the trials. Our proprioceptive model, based on neurosensory data recorded in behaving humans, should then be a useful tool in fields of research such as sensorimotor learning, rehabilitation, and virtual reality.

  4. Differential strain patterns of the human Achilles tendon determined in vivo with freehand three-dimensional ultrasound imaging.

    PubMed

    Farris, Dominic James; Trewartha, Grant; McGuigan, M Polly; Lichtwark, Glen A

    2013-02-15

    The human Achilles tendon (AT) has often been considered to act as a single elastic structure in series with the muscles of the triceps surae. As such it has been commonly modelled as a Hookean spring of uniform stiffness. However, the free AT and the proximal AT have distinctly different structures that lend themselves to different elastic properties. This study aimed to use three-dimensional freehand ultrasound imaging to determine whether the proximal AT and the free AT exhibit different elastic behaviour during sub-maximal, fixed-end contractions of the triceps surae. Six male and five female participants (mean ± s.d. age=27 ± 5 years) performed fixed position contractions of the plantar-flexors on an isokinetic dynamometer at 50% of their maximum voluntary contraction in this position. Freehand three-dimensional ultrasound imaging was used to reconstruct the free-tendon and proximal AT at rest and during contraction. The free-tendon exhibited significantly (P=0.03) greater longitudinal strain (5.2 ± 1.7%) than the proximal AT (2.6 ± 2.0%). The lesser longitudinal strain of the proximal AT was linked to the fact that it exhibited considerable transverse (orthogonal to the longitudinal direction) strains (5.0 ± 4%). The transverse strain of the proximal AT is likely due to the triceps surae muscles bulging upon contraction, and thus the level of bulging may influence the elastic behaviour of the proximal AT. This might have implications for the understanding of triceps surae muscle-tendon interaction during locomotion, tendon injury mechanics and previous measurements of AT elastic properties.

  5. Mechanomyogram amplitude correlates with human gastrocnemius medialis muscle and tendon stiffness both before and after acute passive stretching.

    PubMed

    Longo, Stefano; Cè, Emiliano; Rampichini, Susanna; Devoto, Michela; Limonta, Eloisa; Esposito, Fabio

    2014-10-01

    The study aimed to assess the level of correlation between muscle-tendon unit (MTU) stiffness and mechanomyogram (MMG) signal amplitude of the human gastrocnemius medialis muscle, both before and after acute passive stretching. The passive torque (Tpass), electrically evoked peak torque (pT) and myotendinous junction displacement were determined at different angles of dorsiflexion (0, 10 and 20 deg), while maximum voluntary isometric torque (Tmax) was assessed only at 0 deg. Measurements were repeated after a bout of passive stretching. From the MMG signal, the root mean square (RMS) and peak to peak (p-p) were calculated. The MTU, muscle and tendon stiffness were determined by ultrasound and Tpass measurements. Before stretching, correlations between MMG RMS and MTU, muscle and tendon stiffness were found (R(2) = 0.22-0.46). After stretching, Tpass, Tmax, pT and MTU, muscle and tendon stiffness decreased by 25 ± 7, 16 ± 2, 9 ± 2, 22 ± 7, 23 ± 8 and 28 ± 5%, respectively (P < 0.05). During voluntary and electrically evoked contractions, MMG p-p decreased by 9 ± 2 and 5 ± 1%, while MMG RMS increased by 48 ± 7 and 50 ± 8%, respectively (P < 0.05). Correlations between MMG RMS and MTU, muscle and tendon stiffness were still present after stretching (R(2) = 0.44-0.60). In conclusion, correlations between MMG RMS and stiffness exist both before and after stretching, suggesting that a slacker MTU leads to larger muscle fibre oscillations. However, care must be taken in using MMG amplitude as an indirect index to estimate stiffness owing to the relatively small R(2) values of the investigated correlations. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.

  6. Effects of resistance and stretching training programmes on the viscoelastic properties of human tendon structures in vivo.

    PubMed

    Kubo, Keitaro; Kanehisa, Hiroaki; Fukunaga, Tetsuo

    2002-01-01

    The present study examined whether resistance and stretching training programmes altered the viscoelastic properties of human tendon structures in vivo. Eight subjects completed 8 weeks (4 days per week) of resistance training which consisted of unilateral plantar flexion at 70 % of one repetition maximum with 10 repetitions per set (5 sets per day). They performed resistance training (RT) on one side and resistance training and static stretching training (RST; 10 min per day, 7 days per week) on the other side. Before and after training, the elongation of the tendon structures in the medial gastrocnemius muscle was directly measured using ultrasonography, while the subjects performed ramp isometric plantar flexion up to the voluntary maximum, followed by a ramp relaxation. The relationship between estimated muscle force (F(m)) and tendon elongation (L) was fitted to a linear regression, the slope of which was defined as stiffness. The hysteresis was calculated as the ratio of the area within the F(m)-L loop to the area beneath the load portion of the curve. The stiffness increased significantly by 18.8 +/- 10.4 % for RT and 15.3 +/- 9.3 % for RST. There was no significant difference in the relative increase of stiffness between RT and RST. The hysteresis, on the other hand, decreased 17 +/- 20 % for RST, but was unchanged for RT. These results suggested that the resistance training increased the stiffness of tendon structures as well as muscle strength and size, and the stretching training affected the viscosity of tendon structures but not the elasticity.

  7. Effects of resistance and stretching training programmes on the viscoelastic properties of human tendon structures in vivo

    PubMed Central

    Kubo, Keitaro; Kanehisa, Hiroaki; Fukunaga, Tetsuo

    2002-01-01

    The present study examined whether resistance and stretching training programmes altered the viscoelastic properties of human tendon structures in vivo. Eight subjects completed 8 weeks (4 days per week) of resistance training which consisted of unilateral plantar flexion at 70 % of one repetition maximum with 10 repetitions per set (5 sets per day). They performed resistance training (RT) on one side and resistance training and static stretching training (RST; 10 min per day, 7 days per week) on the other side. Before and after training, the elongation of the tendon structures in the medial gastrocnemius muscle was directly measured using ultrasonography, while the subjects performed ramp isometric plantar flexion up to the voluntary maximum, followed by a ramp relaxation. The relationship between estimated muscle force (Fm) and tendon elongation (L) was fitted to a linear regression, the slope of which was defined as stiffness. The hysteresis was calculated as the ratio of the area within the Fm-L loop to the area beneath the load portion of the curve. The stiffness increased significantly by 18.8 ± 10.4 % for RT and 15.3 ± 9.3 % for RST. There was no significant difference in the relative increase of stiffness between RT and RST. The hysteresis, on the other hand, decreased 17 ± 20 % for RST, but was unchanged for RT. These results suggested that the resistance training increased the stiffness of tendon structures as well as muscle strength and size, and the stretching training affected the viscosity of tendon structures but not the elasticity. PMID:11773330

  8. Tendon regeneration in human and equine athletes: Ubi Sumus-Quo Vadimus (where are we and where are we going to)?

    PubMed

    Spaas, Jan H; Guest, Deborah J; Van de Walle, Gerlinde R

    2012-10-01

    Tendon injuries are one of the most common orthopaedic problems in both human and equine athletes. When a damaged tendon heals naturally, it loses a substantial part of the original strength and elasticity. Therefore, tendons recover structurally (reparation) but not functionally (regeneration) after conservative medical or surgical treatment. Since the structure and matrix composition of human and equine tendons share many similarities, the nature of tendon injuries are also strongly comparable in both species. Therefore, the evaluation of regenerative therapies in horses may have applications for future human medicine and vice versa. The current review focuses briefly on the physiology of human and equine tendon in order to better comprehend the modus operandi of this structure under pathophysiological circumstances. In addition, the reparative effects of conservative medical and surgical interventions are discussed concisely, and an extensive overview is given on the regenerative therapies that are currently being explored. For the latter, the results of equine clinical studies might prove invaluable for gaining additional insights into the treatment of human tendinopathies, since not all of these novel regenerative therapies have been evaluated in humans yet.

  9. Leukocyte-Reduced Platelet-Rich Plasma Normalizes Matrix Metabolism in Torn Human Rotator Cuff Tendons.

    PubMed

    Cross, Jessica A; Cole, Brian J; Spatny, Kaylan P; Sundman, Emily; Romeo, Anthony A; Nicholson, Greg P; Wagner, Bettina; Fortier, Lisa A

    2015-12-01

    The optimal platelet-rich plasma (PRP) for treatment of supraspinatus tendinopathy has not been determined. To evaluate the effect of low- versus high-leukocyte concentrated PRP products on catabolic and anabolic mediators of matrix metabolism in diseased rotator cuff tendons. Controlled laboratory study. Diseased supraspinatus tendons were treated with PRP made by use of 2 commercial systems: Arthrex Autologous Conditioned Plasma Double Syringe System (L(lo) PRP) and Biomet GPS III Mini Platelet Concentrate System (L(hi) PRP). Tendon explants were placed in 6-well plates and cultured in L(lo) PRP, L(hi) PRP, or control media (Dulbecco's Modified Eagle Medium + 10% fetal bovine serum) for 96 hours. Tendons were processed for hematoxylin-eosin histologic results and were scored with the modified Bonar scale. Group 1 tendons were defined as moderate tendinopathy (Bonar score <3); group 2 tendons were assessed as severely affected (Bonar score = 3). Transforming growth factor β-1 (TGFβ-1), interleukin-1β (IL-1β), interleukin-1 receptor antagonist (IL-1Ra), interleukin-6 (IL-6), interleukin-8 (IL-8), and matrix metalloproteinase-9 (MMP-9) concentrations in PRP media were measured by use of enzyme-linked immunosorbent assay after 96 hours of culture with diseased tendon. Tendon messenger RNA expression of collagen type I (COL1A1), collagen type III (COL3A1), cartilage oligomeric matrix protein (COMP), MMP-9, MMP-13, and IL-1β was measured with real-time quantitative polymerase chain reaction. Leukocytes and platelets were significantly more concentrated in L(hi) PRP compared with L(lo) PRP. Increased IL-1β was present in L(hi) PRP after culture with group 1 tendons. IL-6 was increased in L(hi) PRP after culture with group 2 tendons. Both TGFβ-1 and MMP-9 were increased in L(hi) PRP after culture with either tendon group. In L(lo) PRP cultures, IL-1Ra:IL-1β in PRP used as media and COL1A1:COL3A1 gene expression were increased for group 1 tendon cultures. Gene

  10. Extracorporeal Shock Wave Treatment (ESWT) enhances the in vitro-induced differentiation of human tendon-derived stem/progenitor cells (hTSPCs).

    PubMed

    Leone, Laura; Raffa, Salvatore; Vetrano, Mario; Ranieri, Danilo; Malisan, Florence; Scrofani, Cristina; Vulpiani, Maria Chiara; Ferretti, Andrea; Torrisi, Maria Rosaria; Visco, Vincenzo

    2016-02-09

    Extracorporeal shock wave therapy (ESWT) is a non-invasive and innovative technology for the management of specific tendinopathies. In order to elucidate the ESWT-mediated clinical benefits, human Tendon-derived Stem/Progenitor cells (hTSPCs) explanted from 5 healthy semitendinosus (ST) and 5 ruptured Achilles (AT) tendons were established. While hTSPCs from the two groups showed similar proliferation rates and stem cell surface marker profiles, we found that the clonogenic potential was maintained only in cells derived from healthy donors. Interestingly, ESWT significantly accelerated hTSPCs differentiation, suggesting that the clinical benefits of ESWT may be ascribed to increased efficiency of tendon repair after injury.

  11. A look inside the nerve - Morphology of nerve fascicles in healthy controls and patients with polyneuropathy.

    PubMed

    Grimm, Alexander; Winter, Natalie; Rattay, Tim W; Härtig, Florian; Dammeier, Nele M; Auffenberg, Eva; Koch, Marilin; Axer, Hubertus

    2017-09-19

    Polyneuropathies are increasingly analyzed by ultrasound. Summarizing, diffuse enlargement is typical in Charcot-Marie Tooth type 1 (CMT1a), regional enlargement occurs in inflammatory neuropathies. However, a distinction of subtypes is still challenging. Therefore, this study focused on fascicle size and pattern in controls and distinct neuropathies. Cross-sectional area (CSA) of the median, ulnar and peroneal nerve (MN, UN, PN) was measured at predefined landmarks in 50 healthy controls, 15 CMT1a and 13 MMN patients. Additionally, largest fascicle size and number of visible fascicles was obtained at the mid-upper arm cross-section of the MN and UN and in the popliteal fossa cross-section of the PN. Cut-off normal values for fascicle size in the MN, UN and PN were defined (<4.8mm(2), <2.8mm(2) and <3.5mm(2)). In CMT1a CSA and fascicle values are significantly enlarged in all nerves, while in MMN CSA and fascicles are regionally enlarged with predominance in the upper arm nerves. The ratio of enlarged fascicles and all fascicles was significantly increased in CMT1a (>50%) in all nerves (p<0.0001), representing diffuse fascicle enlargement, and moderately increased in MMN (>20%), representing differential fascicle enlargement (enlarged and normal fascicles at the same location) sparing the peroneal nerve (regional fascicle enlargement). Based on these findings distinct fascicle patterns were defined. Normal values for fascicle size could be evaluated; while CMT1a features diffuse fascicle enlargement, MMN shows regional and differential predominance with enlarged fascicles as single pathology. Pattern analysis of fascicles might facilitate distinction of several otherwise similar neuropathies. Copyright © 2017. Published by Elsevier B.V.

  12. Changes of calf muscle-tendon biomechanical properties induced by passive-stretching and active-movement training in children with cerebral palsy

    PubMed Central

    Zhao, Heng; Wu, Yi-Ning; Hwang, Miriam; Ren, Yupeng; Gao, Fan; Gaebler-Spira, Deborah

    2011-01-01

    Biomechanical properties of calf muscles and Achilles tendon may be altered considerably in children with cerebral palsy (CP), contributing to childhood disability. It is unclear how muscle fascicles and tendon respond to rehabilitation and contribute to improvement of ankle-joint properties. Biomechanical properties of the calf muscle fascicles of both gastrocnemius medialis (GM) and soleus (SOL), including the fascicle length and pennation angle in seven children with CP, were evaluated using ultrasonography combined with biomechanical measurements before and after a 6-wk treatment of passive-stretching and active-movement training. The passive force contributions from the GM and SOL muscles were separated using flexed and extended knee positions, and fascicular stiffness was calculated based on the fascicular force-length relation. Biomechanical properties of the Achilles tendon, including resting length, cross-sectional area, and stiffness, were also evaluated. The 6-wk training induced elongation of muscle fascicles (SOL: 8%, P = 0.018; GM: 3%, P = 0.018), reduced pennation angle (SOL: 10%, P = 0.028; GM: 5%, P = 0.028), reduced fascicular stiffness (SOL: 17%, P = 0.128; GM: 21%, P = 0.018), decreased tendon length (6%, P = 0.018), increased Achilles tendon stiffness (32%, P = 0.018), and increased Young's modulus (20%, P = 0.018). In vivo characterizations of calf muscles and Achilles tendon mechanical properties help us better understand treatment-induced changes of calf muscle-tendon and facilitate development of more effective treatments. PMID:21596920

  13. Changes of calf muscle-tendon biomechanical properties induced by passive-stretching and active-movement training in children with cerebral palsy.

    PubMed

    Zhao, Heng; Wu, Yi-Ning; Hwang, Miriam; Ren, Yupeng; Gao, Fan; Gaebler-Spira, Deborah; Zhang, Li-Qun

    2011-08-01

    Biomechanical properties of calf muscles and Achilles tendon may be altered considerably in children with cerebral palsy (CP), contributing to childhood disability. It is unclear how muscle fascicles and tendon respond to rehabilitation and contribute to improvement of ankle-joint properties. Biomechanical properties of the calf muscle fascicles of both gastrocnemius medialis (GM) and soleus (SOL), including the fascicle length and pennation angle in seven children with CP, were evaluated using ultrasonography combined with biomechanical measurements before and after a 6-wk treatment of passive-stretching and active-movement training. The passive force contributions from the GM and SOL muscles were separated using flexed and extended knee positions, and fascicular stiffness was calculated based on the fascicular force-length relation. Biomechanical properties of the Achilles tendon, including resting length, cross-sectional area, and stiffness, were also evaluated. The 6-wk training induced elongation of muscle fascicles (SOL: 8%, P = 0.018; GM: 3%, P = 0.018), reduced pennation angle (SOL: 10%, P = 0.028; GM: 5%, P = 0.028), reduced fascicular stiffness (SOL: 17%, P = 0.128; GM: 21%, P = 0.018), decreased tendon length (6%, P = 0.018), increased Achilles tendon stiffness (32%, P = 0.018), and increased Young's modulus (20%, P = 0.018). In vivo characterizations of calf muscles and Achilles tendon mechanical properties help us better understand treatment-induced changes of calf muscle-tendon and facilitate development of more effective treatments.

  14. Interaponeurosis shear strain modulates behavior of myotendinous junction of the human triceps surae

    PubMed Central

    Kinugasa, Ryuta; Oda, Toshiaki; Komatsu, Toshihiko; Edgerton, V Reggie; Sinha, Shantanu

    2013-01-01

    Muscle fascicles insert into a sheet-like aponeurosis. Adjacent aponeuroses are structurally in contact with each other, and ultimately merge into a common tendon. Consequently, fascicle shortening in planes of tissue layers in adjacent compartments must cause sliding between aponeuroses parallel to the acting forces. In this study, we used velocity-encoded, phase-contrast, and water-saturated spin-lattice relaxation time-weighted imaging to identify and track fascicle and aponeurosis behaviors of human medial gastrocnemius (MG) and soleus (Sol) during 15° dorsiflexion to 30° plantarflexion contractions of the ankle. Interaponeurosis shear strain, which was defined as the relative displacement of the aponeurosis at the fascicle end points (insertion) of the MG and Sol, was an average of 1.35 ± 0.27% (range 1.12 ∼ 1.87%), indicating that the strain is greater in the aponeurosis of MG fascicle insertion than the Sol. The myotendinous junction (MTJ) displacement increased significantly with decreasing interaponeurosis shear strain (P < 0.05). The magnitude of interaponeurosis shear strain had significant correlation with the temporal difference between the time at which the peak aponeurosis displacement of the MG and Sol occurred (P < 0.05). Our model also indicated that theoretical MTJ displacement varies in relation to temporal difference: no temporal difference caused the largest MTJ displacement and presence of temporal differences indicated a reduction in MTJ displacement. Therefore, we concluded that interaponeurosis shear strain is a mechanism enabling individual muscle contraction and thus specific loading of the tendon and joint. PMID:24400149

  15. Interaponeurosis shear strain modulates behavior of myotendinous junction of the human triceps surae.

    PubMed

    Kinugasa, Ryuta; Oda, Toshiaki; Komatsu, Toshihiko; Edgerton, V Reggie; Sinha, Shantanu

    2013-11-01

    Muscle fascicles insert into a sheet-like aponeurosis. Adjacent aponeuroses are structurally in contact with each other, and ultimately merge into a common tendon. Consequently, fascicle shortening in planes of tissue layers in adjacent compartments must cause sliding between aponeuroses parallel to the acting forces. In this study, we used velocity-encoded, phase-contrast, and water-saturated spin-lattice relaxation time-weighted imaging to identify and track fascicle and aponeurosis behaviors of human medial gastrocnemius (MG) and soleus (Sol) during 15° dorsiflexion to 30° plantarflexion contractions of the ankle. Interaponeurosis shear strain, which was defined as the relative displacement of the aponeurosis at the fascicle end points (insertion) of the MG and Sol, was an average of 1.35 ± 0.27% (range 1.12 ∼ 1.87%), indicating that the strain is greater in the aponeurosis of MG fascicle insertion than the Sol. The myotendinous junction (MTJ) displacement increased significantly with decreasing interaponeurosis shear strain (P < 0.05). The magnitude of interaponeurosis shear strain had significant correlation with the temporal difference between the time at which the peak aponeurosis displacement of the MG and Sol occurred (P < 0.05). Our model also indicated that theoretical MTJ displacement varies in relation to temporal difference: no temporal difference caused the largest MTJ displacement and presence of temporal differences indicated a reduction in MTJ displacement. Therefore, we concluded that interaponeurosis shear strain is a mechanism enabling individual muscle contraction and thus specific loading of the tendon and joint.

  16. Tendon's ultrastructure.

    PubMed

    Tresoldi, Ilaria; Oliva, Francesco; Benvenuto, Monica; Fantini, Massimo; Masuelli, Laura; Bei, Roberto; Modesti, Andrea

    2013-01-01

    The structure of a tendon is an important example of complexity of ECM three-dimensional organization. The extracellular matrix (ECM) is a macromolecular network with both structural and regulatory functions. ECM components belong to four major types of macromolecules: the collagens, elastin, proteoglycans, and noncollagenous glycoproteins. Tendons are made by a fibrous, compact connective tissue that connect muscle to bone designed to transmit forces and withstand tension during muscle contraction. Here we show the ultrastructural features of tendon's components.

  17. A comparison of the quasi-static mechanical and non-linear viscoelastic properties of the human semitendinosus and gracilis tendons.

    PubMed

    Abramowitch, Steven D; Zhang, Xiaoyan; Curran, Molly; Kilger, Robert

    2010-05-01

    Over 50-% of anterior cruciate ligament reconstructions are performed using semitendinosus and gracilis tendon autografts. Despite their increased use, there remains little quantitative data on their mechanical behavior. Therefore, the objective of this study was to investigate the quasi-static mechanical and non-linear viscoelastic properties of human semitendinosus and gracilis tendons, as well as the variation of these properties along their length. Specimens were subjected to a series of uniaxial tensile tests: 1-h static stress-relaxation test, 30 cycle cyclic stress-relaxation test and load to failure test. To describe the non-linear viscoelastic behavior, the quasi-linear viscoelastic theory was utilized to model data from the static stress-relaxation experiment. The constants describing the viscoelastic behavior were similar between the proximal and distal halves of the gracilis tendon. The proximal half of the semitendinosus tendon, however, had a greater viscous response than its distal half, which was also significantly higher than the proximal gracilis tendon. In terms of the quasi-static mechanical properties, the properties were similar between the proximal and distal halves of the semitendinosus tendon. However, the distal gracilis tendon showed a significantly higher tangent modulus and ultimate stress compared to its proximal half, which was also significantly higher than the distal semitendinosus tendon. The results of this study demonstrate differences between the semitendinosus and gracilis tendons in terms of their quasi-static mechanical and non-linear viscoelastic properties. These results are important for establishing surgical preconditioning protocols and graft selection. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. Comparison of the inhibitory response to tendon and cutaneous afferent stimulation in the human lower limb.

    PubMed

    Rogasch, Nigel C; Burne, John A; Türker, Kemal S

    2012-01-01

    A powerful early inhibition is seen in triceps surae after transcutaneous electrical stimulation of the Achilles tendon [tendon electrical stimulation (TES)]. The aim of the present study was to confirm results from surface electromyogram (SEMG) recordings that the inhibition is not wholly or partly due to stimulation of cutaneous afferents that may lie within range of the tendon electrodes. Because of methodological limitations, SEMG does not reliably identify the time course of inhibitory and excitatory reflex components. This issue was revisited here with an analysis of changes in single motor unit (SMU) firing rate [peristimulus frequencygram (PSF)] and probability [peristimulus time histogram (PSTH)] to reexamine the time course of inhibitory SMU events that follow purely cutaneous (superficial sural) nerve stimulation. Results were then compared with similar data from TES. When compared with the reflex response to TES, sural nerve stimulation resulted in a longer onset latency of the primary inhibition and a weaker effect on SMU firing probability and rate. PSF also revealed that decreased SMU firing rates persisted during the excitation phase in SEMG, suggesting that the initial inhibition was more prolonged than previously reported. In a further study, the transcutaneous SEMG Achilles tendon response was compared with that from direct intratendon stimulation with insulated needle electrodes. This method should attenuate the SEMG response if it is wholly or partly dependent on cutaneous afferents. However, subcutaneous stimulation of the tendon produced similar components in the SEMG, confirming that cutaneous afferents made little or no contribution to the initial inhibition following TES.

  19. Effects of estrogen on the mechanical behavior of the human Achilles tendon in vivo.

    PubMed

    Bryant, Adam L; Clark, Ross A; Bartold, Simon; Murphy, Aron; Bennell, Kim L; Hohmann, Erik; Marshall-Gradisnik, Sonya; Payne, Craig; Crossley, Kay M

    2008-10-01

    The purpose of this study was to elucidate the effect of normal fluctuating [non-monophasic oral contraceptive pill (MOCP) users] and low, consistent (MOCP users) endogenous plasma estrogen levels on the strain behavior of the Achilles tendon in vivo. Twenty women (age 28.0 +/- 4.2 yr, height 1.67 +/- 0.07 m, mass 61.6 +/- 6.8 kg) who had been using the MOCP for at least 12 mo together with 20 matched women who were non-MOCP users (age 31.9 +/- 7.3 yr, height 1.63 +/- 0.05 m, mass 62.5 +/- 5.9 kg) participated in this study. Non-MOCP users were tested at the time of lowest (menstruation) and highest (approximately same as ovulation) estrogen, whereas MOCP users, who exhibited constant and attenuated endogenous estrogen levels, were tested at day 1 and day 14 of their cycle. At each test session, maximal isometric plantarflexion efforts were performed on a calf-raise apparatus while synchronous real-time ultrasonography of the triceps surae aponeurosis was recorded. Achilles tendon strain (%) was calculated by dividing tendon displacement during plantarflexion by resting tendon length. Repeated-measures ANOVA revealed a significant (P < 0.05) main effect of subject group with significantly lower Achilles strain (25.5%) in the MOCP users compared with the non-MOCP users. In conclusion, acute fluctuations in plasma estrogen across the menstrual cycle in non-MOCP users did not alter the strain behavior of the Achilles tendon. Conversely, long-term exposure to attenuated estrogen in MOCP users resulted in a decrease in Achilles tendon strain, which is thought to be attributed to the effects of endogenous estrogen on collagen synthesis. These findings have a number of important functional and clinical implications.

  20. Modulation of cell functions of human tendon fibroblasts by different repetitive cyclic mechanical stress patterns.

    PubMed

    Barkhausen, Tanja; van Griensven, Martijn; Zeichen, Johannes; Bosch, Ulrich

    2003-09-01

    Mechanical stress is a factor that is thought to play an essential role in tissue generation and reparation processes. The aim of the present study was to investigate the influence of different repetitive cyclic longitudinal stress patterns on proliferation, apoptosis and expression of heat shock protein (HSP) 72. To perform this study, human tendon fibroblasts were seeded on flexible silicone dishes. After adherence to the dish, cells were longitudinally stressed with three different repetitive stress patterns having a frequency of 1 Hz and an amplitude of 5%. The proliferation and apoptosis rates were investigated 0, 6, 12 and 24 hours after application of cyclic mechanical longitudinal strain. Expression of HSP 72 was tested after 0, 2, 4 and 8 hours. Control cells were also grown on silicone dishes, but did not receive any stress. Stress patterns applied during one day resulted in a significant increase in proliferation and a slight increase in apoptosis. HSP 72 expression was rather unchanged. A stress pattern applied during two days resulted in a reduced proliferation and apoptosis rate whereas the expression of HSP 72 showed a significant increase. This study shows that different stress patterns result in different cellular reactions dependent on the strength of applied stress. Repetitive stress applied during one day stimulated proliferation and apoptosis in contrast to an extended stress duration. The latter induced an inhibition of proliferation and apoptosis probably through an increased HSP 72 activity. This may be related to an excess of applied stress. Our results may implicate future modulation techniques for tissue reparation and tissue engineering.

  1. Altered Protein Composition and Gene Expression in Strabismic Human Extraocular Muscles and Tendons

    PubMed Central

    Agarwal, Andrea B.; Feng, Cheng-Yuan; Altick, Amy L.; Quilici, David R.; Wen, Dan; Johnson, L. Alan; von Bartheld, Christopher S.

    2016-01-01

    Purpose To determine whether structural protein composition and expression of key regulatory genes are altered in strabismic human extraocular muscles. Methods Samples from strabismic horizontal extraocular muscles were obtained during strabismus surgery and compared with normal muscles from organ donors. We used proteomics, standard and customized PCR arrays, and microarrays to identify changes in major structural proteins and changes in gene expression. We focused on muscle and connective tissue and its control by enzymes, growth factors, and cytokines. Results Strabismic muscles showed downregulation of myosins, tropomyosins, troponins, and titin. Expression of collagens and regulators of collagen synthesis and degradation, the collagenase matrix metalloproteinase (MMP)2 and its inhibitors, tissue inhibitor of metalloproteinase (TIMP)1 and TIMP2, was upregulated, along with tumor necrosis factor (TNF), TNF receptors, and connective tissue growth factor (CTGF), as well as proteoglycans. Growth factors controlling extracellular matrix (ECM) were also upregulated. Among 410 signaling genes examined by PCR arrays, molecules with downregulation in the strabismic phenotype included GDNF, NRG1, and PAX7; CTGF, CXCR4, NPY1R, TNF, NTRK1, and NTRK2 were upregulated. Signaling molecules known to control extraocular muscle plasticity were predominantly expressed in the tendon rather than the muscle component. The two horizontal muscles, medial and lateral rectus, displayed similar changes in protein and gene expression, and no obvious effect of age. Conclusions Quantification of proteins and gene expression showed significant differences in the composition of extraocular muscles of strabismic patients with respect to important motor proteins, elements of the ECM, and connective tissue. Therefore, our study supports the emerging view that the molecular composition of strabismic muscles is substantially altered. PMID:27768799

  2. Viscoelastic and failure properties of spine ligament collagen fascicles.

    PubMed

    Lucas, Scott R; Bass, Cameron R; Crandall, Jeff R; Kent, Richard W; Shen, Francis H; Salzar, Robert S

    2009-12-01

    The microstructural volume fractions, orientations, and interactions among components vary widely for different ligament types. If these variations are understood, however, it is conceivable to develop a general ligament model that is based on microstructural properties. This paper presents a part of a much larger effort needed to develop such a model. Viscoelastic and failure properties of porcine posterior longitudinal ligament (PLL) collagen fascicles were determined. A series of subfailure and failure tests were performed at fast and slow strain rates on isolated collagen fascicles from porcine lumbar spine PLLs. A finite strain quasi-linear viscoelastic model was used to fit the fascicle experimental data. There was a significant strain rate effect in fascicle failure strain (P < 0.05), but not in failure force or failure stress. The corresponding average fast-rate and slow-rate failure strains were 0.098 ± 0.062 and 0.209 ± 0.081. The average failure force for combined fast and slow rates was 2.25 ± 1.17 N. The viscoelastic and failure properties in this paper were used to develop a microstructural ligament failure model that will be published in a subsequent paper.

  3. Achilles Tendonitis

    MedlinePlus

    ... up. Tight calf muscles or muscles that lack flexibility decrease a person's range of motion and put an extra strain on the tendon. Running or exercising on a hard or uneven surface or doing lunges or plyometrics without adequate training. A traumatic injury to the Achilles tendon. How ...

  4. Reciprocal activation of gastrocnemius and soleus motor units is associated with fascicle length change during knee flexion

    PubMed Central

    Lauber, Benedikt; Lichtwark, Glen A.; Cresswell, Andrew G.

    2014-01-01

    Abstract While medial gastrocnemius (MG) and soleus (SOL) are considered synergists, they are anatomically exclusive in that SOL crosses only the ankle, while MG crosses both the knee and ankle. Due to the force‐length properties of both active and passive structures, activation of SOL and MG must be constantly regulated to provide the required joint torques for any planned movement. As such, the aim of this study was to investigate the neural regulation of MG and SOL when independently changing their length by changing only the knee joint angle, thus exclusively altering the length of MG fibers. MG and SOL motor units (MU) were recorded intramuscularly along with ultrasound imaging of MG and SOL fascicle lengths, while moving the knee through 60° of rotation and maintaining a low level of voluntary plantar flexor torque. The results showed a reciprocal activation of MG and SOL as the knee was moved into flexion and extension. A clear reduction in MG MU firing rates occurred as the knee was flexed (MG fascicles shortening), with de‐recruitment of most MG MU occurring at close to full knee flexion. A concomitant increase in SOL MU activity was observed while no change in the length of its fascicles was found. The opposite effects were found when the knee was moved into extension. A strong correlation (ICC = 0.78) was found between the fascicle length at which MG MUs were de‐recruited and subsequently re‐recruited. This was stronger than the relationship of de‐recruitment and re‐recruitment with knee angle (ICC = 0.52), indicating that in this instance, muscle fascicle length rather than joint angle is more influential in regulating MG recruitment. Such a reciprocal arrangement like the one presented here for SOL and MG is essential for human voluntary movements such as walking or cycling. PMID:24920126

  5. Soft-focused extracorporeal shock waves increase the expression of tendon-specific markers and the release of anti-inflammatory cytokines in an adherent culture model of primary human tendon cells.

    PubMed

    de Girolamo, Laura; Stanco, Deborah; Galliera, Emanuela; Viganò, Marco; Lovati, Arianna Barbara; Marazzi, Monica Gioia; Romeo, Pietro; Sansone, Valerio

    2014-06-01

    Focused extracorporeal shock waves have been found to upregulate the expression of collagen and to initiate cell proliferation in healthy tenocytes and to positively affect the metabolism of tendons, promoting the healing process. Recently, soft-focused extracorporeal shock waves have also been found to have a significant effect on tissue regeneration. However, very few in vitro reports have dealt with the application of this type of shock wave to cells, and in particular, no previous studies have investigated the response of tendon cells to this impulse. We devised an original model to investigate the in vitro effects of soft-focused shock waves on a heterogeneous population of human resident tendon cells in adherent monolayer culture. Our results indicate that soft-focused extracorporeal shock wave treatment (0.17 mJ/mm(2)) is able to induce positive modulation of cell viability, proliferation and tendon-specific marker expression, as well as release of anti-inflammatory cytokines. This could prefigure a new rationale for routine employment of soft-focused shock waves to treat the failed healing status that distinguishes tendinopathies. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  6. Optical properties of human tendons characterized by PSOCT and their relation to tendinopathy: a clinical study

    NASA Astrophysics Data System (ADS)

    Bagnaninchi, P. O.; Churmakov, D.; Bonesi, M.; Yang, Y.; Phelan, C.; Maffulli, N.; Meglinski, I.; El Haj, A.

    2008-02-01

    Polarisation-sensitive optical coherence tomography (PSOCT) is a non destructive technique with great potential for tendinopathy diagnosis. Functional optical assessment can be used in operating theatres to delineate in depth the margin of the non-healthy area, and limit the amount of tissue to be removed. A clinical study of 21 patients has been undertaken to correlate the optical properties of tendons to their clinical conditions. Tendons were scanned ex vivo with a fibre based time domain PSOCT. The beam from a superluminescent diode with a bandwidth of 52nm is sent through a polarizer and a polarizer modulator, and split into a sample and reference arm. After passing through polarization beam splitter, the interferences fringes are detected with two balanced detectors, for horizontal and vertical polarization. Scattering, birefringence and in depth stokes vectors are extracted from the measurements. Direct microstructural variation and changes in scattering properties are correlated with different tendinopathy and presence of scar tissue, which is cross-validated by histology. Lack of tissue organization, detected as the disappearance of the bands of birefringence, is representative of tendon degeneration. Special attention is paid to the difference between crimp patterns of different patient's tendons. As in polarization microscopy, the crimp pattern appears as extinction bands, and is particularly important as its alteration is generally symptomatic and could be used as an early diagnosis. Its optical origin is investigated by varying polarization and scanning conditions.

  7. Nonuniform strain of human soleus aponeurosis-tendon complex during submaximal voluntary contractions in vivo.

    PubMed

    Finni, Taija; Hodgson, John A; Lai, Alex M; Edgerton, V Reggie; Sinha, Shantanu

    2003-08-01

    The distribution of strain along the soleus aponeurosis tendon was examined during voluntary contractions in vivo. Eight subjects performed cyclic isometric contractions (20 and 40% of maximal voluntary contraction). Displacement and strain in the apparent Achilles tendon and in the aponeurosis were calculated from cine phase-contrast magnetic resonance images acquired with a field of view of 32 cm. The apparent Achilles tendon lengthened 2.8 and 4.7% in 20 and 40% maximal voluntary contraction, respectively. The midregion of the aponeurosis, below the gastrocnemius insertion, lengthened 1.2 and 2.2%, but the distal aponeurosis shortened 2.1 and 2.5%, respectively. There was considerable variation in the three-dimensional anatomy of the aponeurosis and muscle-tendon junction. We suggest that the nonuniformity in aponeurosis strain within an individual was due to the presence of active and passive motor units along the length of the muscle, causing variable force along the measurement site. Force transmission along intrasoleus connective tissue may also be a significant source of nonuniform strain in the aponeurosis.

  8. Spring or string: does tendon elastic action influence wing muscle mechanics in bat flight?

    PubMed Central

    Konow, Nicolai; Cheney, Jorn A.; Roberts, Thomas J.; Waldman, J. Rhea S.; Swartz, Sharon M.

    2015-01-01

    Tendon springs influence locomotor movements in many terrestrial animals, but their roles in locomotion through fluids as well as in small-bodied mammals are less clear. We measured muscle, tendon and joint mechanics in an elbow extensor of a small fruit bat during ascending flight. At the end of downstroke, the tendon was stretched by elbow flexion as the wing was folded. At the end of upstroke, elastic energy was recovered via tendon recoil and extended the elbow, contributing to unfurling the wing for downstroke. Compared with a hypothetical ‘string-like’ system lacking series elastic compliance, the tendon spring conferred a 22.5% decrease in muscle fascicle strain magnitude. Our findings demonstrate tendon elastic action in a small flying mammal and expand our understanding of the occurrence and action of series elastic actuator mechanisms in fluid-based locomotion. PMID:26423848

  9. Effect of recombinant human platelet-derived growth factor-BB-coated sutures on Achilles tendon healing in a rat model: A histological and biomechanical study

    PubMed Central

    Cummings, Stephen H; Grande, Daniel A; Hee, Christopher K; Kestler, Hans K; Roden, Colleen M; Shah, Neil V; Razzano, Pasquale; Dines, David M; Chahine, Nadeen O

    2012-01-01

    Purpose: Repairing tendon injuries with recombinant human platelet-derived growth factor-BB has potential for improving surgical outcomes. Augmentation of sutures, a critical component of surgical tendon repair, by coating with growth factors may provide a clinically useful therapeutic device for improving tendon repair. Therefore, the purpose of this study was to (a) coat Vicryl sutures with a defined dose of recombinant human platelet-derived growth factor-BB without additional coating excipients (e.g. gelatin), (b) quantify the recombinant human platelet-derived growth factor-BB released from the suture, and (c) use the recombinant human platelet-derived growth factor-BB-coated sutures to enhance tendon repair in a rat Achilles tendon transection model. Methods: Vicryl sutures were coated with 0, 0.3, 1.0, and 10.0 mg/mL concentrations of recombinant human platelet-derived growth factor-BB using a dip-coating process. In vitro release was quantified by an enzyme-linked immunosorbent assay. Acutely transected rat Achilles tendons were repaired using one of the four suture groups (n = 12 per group). Four weeks following repair, the tensile biomechanical and histological (i.e. collagen organization and angiogenesis) properties were determined. Results: A dose-dependent bolus release of recombinant human platelet-derived growth factor-BB occurred within the first hour in vitro, followed by a gradual release over 48 h. There was a significant increase in ultimate tensile strength (p < 0.01) in the two highest recombinant human platelet-derived growth factor-BB dose groups (1.9 ± 0.5 and 2.1 ± 0.5 MPa) relative to controls (1.0 ± 0.2 MPa). The modulus significantly increased (p = 0.031) with the highest recombinant human platelet-derived growth factor-BB dose group (7.2 ± 3.8 MPa) relative to all other groups (control: 3.5 ± 0.9 MPa). No significant differences were identified for the maximum load or stiffness. The histological collagen and angiogenesis scores

  10. Age-related differences in Achilles tendon properties and triceps surae muscle architecture in vivo.

    PubMed

    Stenroth, Lauri; Peltonen, Jussi; Cronin, Neil J; Sipilä, Sarianna; Finni, Taija

    2012-11-01

    This study examined the concurrent age-related differences in muscle and tendon structure and properties. Achilles tendon morphology and mechanical properties and triceps surae muscle architecture were measured from 100 subjects [33 young (24 ± 2 yr) and 67 old (75 ± 3 yr)]. Motion analysis-assisted ultrasonography was used to determine tendon stiffness, Young's modulus, and hysteresis during isometric ramp contractions. Ultrasonography was used to measure muscle architectural features and size and tendon cross-sectional area. Older participants had 17% lower (P < 0.01) Achilles tendon stiffness and 32% lower (P < 0.001) Young's modulus than young participants. Tendon cross-sectional area was also 16% larger (P < 0.001) in older participants. Triceps surae muscle size was smaller (P < 0.05) and gastrocnemius medialis muscle fascicle length shorter (P < 0.05) in old compared with young. Maximal plantarflexion force was associated with tendon stiffness and Young's modulus (r = 0.580, P < 0.001 and r = 0.561, P < 0.001, respectively). Comparison between old and young subjects with similar strengths did not reveal a difference in tendon stiffness. The results suggest that regardless of age, Achilles tendon mechanical properties adapt to match the level of muscle performance. Old people may compensate for lower tendon material properties by increasing tendon cross-sectional area. Lower tendon stiffness in older subjects might be beneficial for movement economy in low-intensity locomotion and thus optimized for their daily activities.

  11. Frequency characteristics of human muscle and cortical responses evoked by noisy Achilles tendon vibration.

    PubMed

    Mildren, Robyn L; Peters, Ryan M; Hill, Aimee J; Blouin, Jean-Sébastien; Carpenter, Mark G; Inglis, J Timothy

    2017-05-01

    Noisy stimuli, along with linear systems analysis, have proven to be effective for mapping functional neural connections. We explored the use of noisy (10-115 Hz) Achilles tendon vibration to examine somatosensory reflexes in the triceps surae muscles in standing healthy young adults (n = 8). We also examined the association between noisy vibration and electrical activity recorded over the sensorimotor cortex using electroencephalography. We applied 2 min of vibration and recorded ongoing muscle activity of the soleus and gastrocnemii using surface electromyography (EMG). Vibration amplitude was varied to characterize reflex scaling and to examine how different stimulus levels affected postural sway. Muscle activity from the soleus and gastrocnemii was significantly correlated with the tendon vibration across a broad frequency range (~10-80 Hz), with a peak located at ~40 Hz. Vibration-EMG coherence positively scaled with stimulus amplitude in all three muscles, with soleus displaying the strongest coupling and steepest scaling. EMG responses lagged the vibration by ~38 ms, a delay that paralleled observed response latencies to tendon taps. Vibration-evoked cortical oscillations were observed at frequencies ~40-70 Hz (peak ~54 Hz) in most subjects, a finding in line with previous reports of sensory-evoked γ-band oscillations. Further examination of the method revealed 1) accurate reflex estimates could be obtained with <60 s of low-level (root mean square = 10 m/s(2)) vibration; 2) responses did not habituate over 2 min of exposure; and importantly, 3) noisy vibration had a minimal influence on standing balance. Our findings suggest noisy tendon vibration is an effective novel approach to characterize somatosensory reflexes during standing.NEW & NOTEWORTHY We applied noisy (10-115 Hz) vibration to the Achilles tendon to examine the frequency characteristics of lower limb somatosensory reflexes during standing. Ongoing muscle activity was coherent with the

  12. Snapping knee caused by a popliteomeniscal fascicle tear of the lateral meniscus in a professional Taekwondo athlete.

    PubMed

    Park, Jong-Hoon; Ro, Kyung-Han; Lee, Dae-Hee

    2012-07-01

    A 19-year-old male professional Taekwondo athlete presented with a 2-year history of pain-free snapping of his right knee. He reported that his right knee joint gave way during games and training and that he could induce pain-free snapping between the proximal-to-fibular head and the lateral knee joint line. None of these physical findings suggested a meniscal pathology or ligamentous instability. Routine radiographs were normal. Magnetic resonance imaging of his right knee joint showed that the shape of the lateral meniscus was normal, and no lateral meniscus tears existed. On arthroscopic examination, popliteal hiatus view showed a posterosuperior popliteomeniscal fascicle tear between the posterior horn of the lateral meniscus and the posterior joint capsule just posteromedial to the popliteus tendon. With medial traction by probing, this popliteomeniscal tear made visible the significant subluxation of the posterior horn of the lateral meniscus to the center or anterior half of the tibial plateau. Based on the diagnosis of a posterosuperior popliteomeniscal tear of the right knee, Fast-Fix (Smith & Nephew, Andover, Massachusetts) was used for the direct repair of the peripheral portion of the lateral meniscus and joint capsule, targeting the popliteomeniscal junction. At 24 months postoperatively, the patient was performing athletic exercises relevant to his profession and was taking part in Taekwondo games, with no pain or recurrence of snapping. To the authors' knowledge, this is the first report of snapping of the lateral aspect of the knee due to a popliteomeniscal fascicle tear.

  13. Regional variations in human patellar trabecular architecture and the structure of the proximal patellar tendon enthesis

    PubMed Central

    Toumi, H; Higashiyama, I; Suzuki, D; Kumai, T; Bydder, G; McGonagle, D; Emery, P; Fairclough, J; Benjamin, M

    2006-01-01

    Proximal patellar tendinopathy occurs as an overuse injury in sport and is also characteristic of ankylosing spondylitis patients. It particularly affects the posteromedial part of the patellar tendon enthesis, although the reason for this is unclear. We investigated whether there are regional differences in the trabecular architecture of the patella or in the histology of the patellar tendon enthesis that could suggest unequal force transmission from bone to tendon. Trabecular architecture was analysed from X-rays taken with a Faxitron radiography system of the patellae of dissecting room cadavers and in magnetic resonance images of the knees of living volunteers. Structural and fractal analyses were performed on the Faxitron digital images using MatLab software. Regional differences at the enthesis in the thickness of the uncalcified fibrocartilage and the subchondral plate were evaluated histologically in cadaveric material. The radiological studies showed that the quantity of bone and the apparent trabecular thickness in the patella were greatest medially, and that in the lateral part of the patella there were fewer trabeculae which were orientated either antero-posteriorly or superiorly inferiorly. The histological study showed that the uncalcified fibrocartilage was most prominent medially and that the subchondral plate was thinner laterally. Overall, the results indicate that mechanical stress at the proximal patellar tendon enthesis is asymmetrically distributed and greater on the medial than on the lateral side. Thus, we suggest that the functional anatomy of the knee is closely related to regional variations in force transmission, which in turn relates to the posteromedial site of pathology in proximal patellar tendinopathy. PMID:16420378

  14. Friction between human finger flexor tendons and pulleys at high loads.

    PubMed

    Schweizer, A; Frank, O; Ochsner, P E; Jacob, H A C

    2003-01-01

    A method was developed to indirectly measure friction between the flexor tendons and pulleys of the middle and ring finger in vivo. An isokinetic movement device to determine maximum force of wrist flexion, interphalangeal joint flexion (rolling in and out) and isolated proximal interphalangeal (PIP) joint flexion was built. Eccentric and concentric maximum force of these three different movements where gliding of the flexor tendon sheath was involved differently (least in wrist flexion) was measured and compared. Fifty-one hands in 26 male subjects were evaluated. The greatest difference between eccentric and concentric maximum force (29.9%) was found in flexion of the PIP joint. Differences in the rolling in and out movement (26.8%) and in wrist flexion (14.5%) were significantly smaller. The force of friction between flexor tendons and pulleys can be determined by the greater difference between eccentric and concentric maximum force provided by the same muscles in overcoming an external force during flexion of the interphalangeal joints and suggests the presence of a non-muscular force, such as friction. It constitutes of 9% of the eccentric flexion force in the PIP joint and therefore questions the low friction hypothesis at high loads. Copyright 2002 Elsevier Science Ltd.

  15. [Influence of Achilles tendon vibration on the human vertical posture during standing with asymmetrical leg loading].

    PubMed

    Kazennikov, O V; Kireeva, T B; Shlykov, V Iu

    2014-01-01

    The shift of center of pressure (CP) of body and CP of each leg was studied during Achilles tendon vibration of one or both legs while subject was standing with symmetrical load on the legs or with the load transferred on one leg. The CP shift of standing subject during unilateral Achilles tendon vibration depended both on the side of the tendon vibration and on the leg load. When standing with a load transferred on one leg the shift of common CP was larger than when the vibration was applied to the loaded leg. The CP shift of one leg was greater if the vibration, and the load was applied to it. Vibration of unloaded leg caused a CP shift in the contralateral loaded leg. In this case, the vibration of left unloaded leg caused no noticeable CP shift of left leg, while the vibration of the unloaded right leg caused CP shift of right foot. In the same conditions of load and vibration the CP displacement of right leg was larger than the CP shift of left foot. It can be assumed that the change in the load on the leg and unilateral vibration of leg muscles change of the internal representation of the vertical body axis, which affects the CP position of one leg during the muscles vibration.

  16. No midterm advantages in the middle term using small intestinal submucosa and human amniotic membrane in Achilles tendon transverse tenotomy.

    PubMed

    Liu, Yushu; Peng, Yinbo; Fang, Yong; Yao, Min; Redmond, Robert W; Ni, Tao

    2016-11-24

    The study was aimed to compare the effects of small intestinal submucosa (SIS) and human amniotic membrane (HAM) on Achilles tendon healing. A total of 48 New Zealand white rabbits were divided into two groups. A full-thickness transverse tenotomy was made at the right leg of the rabbits. Then, the laceration site was wrapped with HAM (P/A group) or SIS (P/S group). The ultimate stress (US) and Young's modulus (E) of the tendons were detected for biomechanical analysis. Histological evaluation was performed using hematoxylin and eosin, immunohistochemical, and immunofluorescent stain. Expression of collagen I was detected by western blot analysis, and levels of inflammatory cytokines IL-1β, IL-6, and TNF-α were measured. Finally, adhesion formation was evaluated. There were no significant differences in filamentous adhesion, cross-sectional areas of the laceration sites, levels of inflammatory response, and collagen type I expression between the P/A and P/S groups (p > 0.05). Compared with the P/A group, the US and E values were significantly higher in the P/S group at day 7 (p < 0.05) and at day 14 (p < 0.05). In addition, vascularity was significantly higher in the P/S group than that in the P/A group at day 3 (p < 0.05), day 7 (p < 0.01), and day 9 (p < 0.05). SIS showed superior biomechanical properties and neovascularization over HAM in treatment of Achilles tendon injury in the early stage of healing.

  17. The mitochondria targeted antioxidant MitoQ protects against fluoroquinolone-induced oxidative stress and mitochondrial membrane damage in human Achilles tendon cells.

    PubMed

    Lowes, Damon A; Wallace, Carol; Murphy, Michael P; Webster, Nigel R; Galley, Helen F

    2009-04-01

    Tendinitis and tendon rupture during treatment with fluoroquinolone antibiotics is thought to be mediated via oxidative stress. This study investigated whether ciprofloxacin and moxifloxacin cause oxidative stress and mitochondrial damage in cultured normal human Achilles' tendon cells and whether an antioxidant targeted to mitochondria (MitoQ) would protect against such damage better than a non-mitochondria targeted antioxidant. Human tendon cells from normal Achilles' tendons were exposed to 0-0.3 mM antibiotic for 24 h and 7 days in the presence of 1 microM MitoQ or an untargeted form, idebenone. Both moxifloxacin and ciprofloxacin resulted in up to a 3-fold increase in the rate of oxidation of dichlorodihydrofluorescein, a marker of general oxidative stress in tenocytes (p<0.0001) and loss of mitochondrial membrane permeability (p<0.001). In cells treated with MitoQ the oxidative stress was less and mitochondrial membrane potential was maintained. Mitochondrial damage to tenocytes during fluoroquinolone treatment may be involved in tendinitis and tendon rupture.

  18. The series elastic shock absorber: tendon elasticity modulates energy dissipation by muscle during burst deceleration.

    PubMed

    Konow, Nicolai; Roberts, Thomas J

    2015-04-07

    During downhill running, manoeuvring, negotiation of obstacles and landings from a jump, mechanical energy is dissipated via active lengthening of limb muscles. Tendon compliance provides a 'shock-absorber' mechanism that rapidly absorbs mechanical energy and releases it more slowly as the recoil of the tendon does work to stretch muscle fascicles. By lowering the rate of muscular energy dissipation, tendon compliance likely reduces the risk of muscle injury that can result from rapid and forceful muscle lengthening. Here, we examine how muscle-tendon mechanics are modulated in response to changes in demand for energy dissipation. We measured lateral gastrocnemius (LG) muscle activity, force and fascicle length, as well as leg joint kinematics and ground-reaction force, as turkeys performed drop-landings from three heights (0.5-1.5 m centre-of-mass elevation). Negative work by the LG muscle-tendon unit during landing increased with drop height, mainly owing to greater muscle recruitment and force as drop height increased. Although muscle strain did not increase with landing height, ankle flexion increased owing to increased tendon strain at higher muscle forces. Measurements of the length-tension relationship of the muscle indicated that the muscle reached peak force at shorter and likely safer operating lengths as drop height increased. Our results indicate that tendon compliance is important to the modulation of energy dissipation by active muscle with changes in demand and may provide a mechanism for rapid adjustment of function during deceleration tasks of unpredictable intensity.

  19. Tendon injury: from biology to tendon repair.

    PubMed

    Nourissat, Geoffroy; Berenbaum, Francis; Duprez, Delphine

    2015-04-01

    Tendon is a crucial component of the musculoskeletal system. Tendons connect muscle to bone and transmit forces to produce motion. Chronic and acute tendon injuries are very common and result in considerable pain and disability. The management of tendon injuries remains a challenge for clinicians. Effective treatments for tendon injuries are lacking because the understanding of tendon biology lags behind that of the other components of the musculoskeletal system. Animal and cellular models have been developed to study tendon-cell differentiation and tendon repair following injury. These studies have highlighted specific growth factors and transcription factors involved in tenogenesis during developmental and repair processes. Mechanical factors also seem to be essential for tendon development, homeostasis and repair. Mechanical signals are transduced via molecular signalling pathways that trigger adaptive responses in the tendon. Understanding the links between the mechanical and biological parameters involved in tendon development, homeostasis and repair is prerequisite for the identification of effective treatments for chronic and acute tendon injuries.

  20. Potential mechanisms of a periosteum patch as an effective and favourable approach to enhance tendon-bone healing in the human body.

    PubMed

    Li, Hong; Jiang, Jia; Wu, Yang; Chen, Shiyi

    2012-03-01

    Tendon-bone healing is a progressive and complex pathophysiological process after tendon graft transplantation into a bone tunnel. A fibrous scar tissue layer forms at the graft-bone interface, which means a weak bonding of the graft in the bone tunnel. Periosteum, a favourable autologous tissue, was confirmed to be effective in promoting tendon-bone healing in the human body. The advantages of a periosteum patch for tendon-bone repair include the fact that this tissue meets the three primary requirements for tissue engineering: a source of progenitor cells, a scaffold for recruiting cells and growth factors, and a source of local growth factors. Furthermore, the periosteum can prevent graft micromotion, alleviate inflammation and deter bone resorption. In this review, we highlight the role of progenitor cells in the periosteum, which contribute to the regeneration of new bone and/or fibrocartilage at the tendon-bone interface. In summary, the periosteum has shown significant potential for use in the enhancement of graft-bone healing. Our investigations may provoke further studies on the management of allograft-bone healing and artificial ligament graft healing using a periosteum patch in future.

  1. Extracorporeal Shock Wave Treatment (ESWT) enhances the in vitro-induced differentiation of human tendon-derived stem/progenitor cells (hTSPCs)

    PubMed Central

    Leone, Laura; Raffa, Salvatore; Vetrano, Mario; Ranieri, Danilo; Malisan, Florence; Scrofani, Cristina; Vulpiani, Maria Chiara; Ferretti, Andrea; Torrisi, Maria Rosaria; Visco, Vincenzo

    2016-01-01

    Extracorporeal shock wave therapy (ESWT) is a non-invasive and innovative technology for the management of specific tendinopathies. In order to elucidate the ESWT-mediated clinical benefits, human Tendon-derived Stem/Progenitor cells (hTSPCs) explanted from 5 healthy semitendinosus (ST) and 5 ruptured Achilles (AT) tendons were established. While hTSPCs from the two groups showed similar proliferation rates and stem cell surface marker profiles, we found that the clonogenic potential was maintained only in cells derived from healthy donors. Interestingly, ESWT significantly accelerated hTSPCs differentiation, suggesting that the clinical benefits of ESWT may be ascribed to increased efficiency of tendon repair after injury. PMID:26843618

  2. Does ankle joint power reflect type of muscle action of soleus and gastrocnemius during walking in cats and humans?

    PubMed

    Cronin, Neil J; Prilutsky, Boris I; Lichtwark, Glen A; Maas, Huub

    2013-04-26

    The main objective of this paper is to highlight the difficulties of identifying shortening and lengthening contractions based on analysis of power produced by resultant joint moments. For that purpose, we present net ankle joint powers and muscle fascicle/muscle-tendon unit (MTU) velocities for medial gastrocnemius (MG) and soleus (SO) muscles during walking in species of different size (humans and cats). For the cat, patterns of ankle joint power and MTU velocity of MG and SO during stance were similar: negative power (ankle moment×angular velocity<0), indicating absorption of mechanical energy, was associated with MTU lengthening, and positive power (generation of mechanical energy) was found during MTU shortening. This was also found for the general fascicle velocity pattern in SO. In contrast, substantial differences between ankle joint power and fascicle velocity patterns were observed for MG muscle. In humans, like cats, the patterns of ankle joint power and MTU velocity of SO and MG were similar. Unlike the cat, there were substantial differences between patterns of fascicle velocity and ankle joint power during stance in both muscles. These results indicate that during walking, only a small fraction of mechanical work of the ankle moment is either generated or absorbed by the muscle fascicles, thus confirming the contribution of in-series elastic structures and/or energy transfer via two-joint muscles. We conclude that ankle joint negative power does not necessarily indicate eccentric action of muscle fibers and that positive power cannot be exclusively attributed to muscle concentric action, especially in humans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. In vivo evaluation of the elastic anisotropy of the human Achilles tendon using shear wave dispersion analysis

    NASA Astrophysics Data System (ADS)

    Brum, J.; Bernal, M.; Gennisson, J. L.; Tanter, M.

    2014-02-01

    Non-invasive evaluation of the Achilles tendon elastic properties may enhance diagnosis of tendon injury and the assessment of recovery treatments. Shear wave elastography has shown to be a powerful tool to estimate tissue mechanical properties. However, its applicability to quantitatively evaluate tendon stiffness is limited by the understanding of the physics on the shear wave propagation in such a complex medium. First, tendon tissue is transverse isotropic. Second, tendons are characterized by a marked stiffness in the 400 to 1300 kPa range (i.e. fast shear waves). Hence, the shear wavelengths are greater than the tendon thickness leading to guided wave propagation. Thus, to better understand shear wave propagation in tendons and consequently to properly estimate its mechanical properties, a dispersion analysis is required. In this study, shear wave velocity dispersion was measured in vivo in ten Achilles tendons parallel and perpendicular to the tendon fibre orientation. By modelling the tendon as a transverse isotropic viscoelastic plate immersed in fluid it was possible to fully describe the experimental data (deviation<1.4%). We show that parallel to fibres the shear wave velocity dispersion is not influenced by viscosity, while it is perpendicularly to fibres. Elasticity (found to be in the range from 473 to 1537 kPa) and viscosity (found to be in the range from 1.7 to 4 Pa.s) values were retrieved from the model in good agreement with reported results.

  4. Interfibrillar shear stress is the loading mechanism of collagen fibrils in tendon.

    PubMed

    Szczesny, Spencer E; Elliott, Dawn M

    2014-06-01

    Despite the critical role tendons play in transmitting loads throughout the musculoskeletal system, little is known about the microstructural mechanisms underlying their mechanical function. Of particular interest is whether collagen fibrils in tendon fascicles bear load independently or if load is transferred between fibrils through interfibrillar shear forces. We conducted multiscale experimental testing and developed a microstructural shear lag model to explicitly test whether interfibrillar shear load transfer is indeed the fibrillar loading mechanism in tendon. Experimental correlations between fascicle macroscale mechanics and microscale interfibrillar sliding suggest that fibrils are discontinuous and share load. Moreover, for the first time, we demonstrate that a shear lag model can replicate the fascicle macroscale mechanics as well as predict the microscale fibrillar deformations. Since interfibrillar shear stress is the fundamental loading mechanism assumed in the model, this result provides strong evidence that load is transferred between fibrils in tendon and possibly other aligned collagenous tissues. Conclusively establishing this fibrillar loading mechanism and identifying the involved structural components should help develop repair strategies for tissue degeneration and guide the design of tissue engineered replacements. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Interfibrillar shear stress is the loading mechanism of collagen fibrils in tendon

    PubMed Central

    Szczesny, Spencer E.; Elliott, Dawn M.

    2014-01-01

    Despite the critical role tendons play in transmitting loads throughout the musculoskeletal system, little is known about the microstructural mechanisms underlying their mechanical function. Of particular interest is whether collagen fibrils in tendon fascicles bear load independently or if load is transferred between fibrils through interfibrillar shear forces. We conducted multiscale experimental testing and developed a microstructural shear lag model to explicitly test whether interfibrillar shear load transfer is indeed the fibrillar loading mechanism in tendon. Experimental correlations between fascicle macroscale mechanics and microscale interfibrillar sliding suggest that fibrils are discontinuous and share load. Moreover, for the first time, we demonstrate that a shear lag model can replicate the fascicle macroscale mechanics as well as predict the microscale fibrillar deformations. Since interfibrillar shear stress is the fundamental loading mechanism assumed in the model, this result provides strong evidence that load is transferred between fibrils in tendon and possibly other aligned collagenous tissues. Conclusively establishing this fibrillar loading mechanism and identifying the involved structural components should help develop repair strategies for tissue degeneration and guide the design of tissue engineered replacements. PMID:24530560

  6. The effects of dynamic stretching on plantar flexor muscle-tendon tissue properties.

    PubMed

    Samukawa, Mina; Hattori, Masaki; Sugama, Naoko; Takeda, Naoki

    2011-12-01

    Dynamic stretching is commonly used in warm-up routines for athletic activities. Even though several positive effects of dynamic stretching on athletic performance have been reported, the effects on the muscle-tendon unit (MTU) itself are still unclear. The objective of this study is to determine the effects of dynamic stretching on the ankle plantar flexor muscle-tendon properties by use of ultrasonography. Twenty healthy male subjects participated in the present study. The subjects were asked to engage in dynamic stretching of plantar flexors for 30 s and to repeat for 5 sets. Ankle dorsiflexion ROM was measured before and after the dynamic stretching. Changes in the displacement of the myotendinous junction (MTJ), pennation angle, and fascicle length were also determined by using ultrasonography. Ankle dorsiflexion ROM increased significantly after the dynamic stretching (p < 0.0001). A significant distal displacement of the MTJ was observed until the second stretching set (p < 0.001) with no significant changes thereafter. Pennation angle, and fascicle length were unaffected by the dynamic stretching. Dynamic stretching was shown to be effective in increasing ankle joint flexibility. Outcomes that could have indicated changes in muscle tissue (such as the pennation angle and fascicle length) were unaltered. However, a significant displacement of the MTJ was found, indicating some change in the tendon tissues. Therefore, dynamic stretching of the plantar flexors was considered an effective means of lengthening the tendon tissues.

  7. A nonlinear constitutive model for stress relaxation in ligaments and tendons.

    PubMed

    Davis, Frances M; De Vita, Raffaella

    2012-12-01

    A novel constitutive model that describes stress relaxation in transversely isotropic soft collagenous tissues such as ligaments and tendons is presented. The model is formulated within the nonlinear integral representation framework proposed by Pipkin and Rogers (J. Mech. Phys. Solids. 16:59-72, 1968). It represents a departure from existing models in biomechanics since it describes not only the strain dependent stress relaxation behavior of collagenous tissues but also their finite strains and transverse isotropy. Axial stress-stretch data and stress relaxation data at different axial stretches are collected on rat tail tendon fascicles in order to compute the model parameters. Toward this end, the rat tail tendon fascicles are assumed to be incompressible and undergo an isochoric axisymmetric deformation. A comparison with the experimental data proves that, unlike the quasi-linear viscoelastic model (Fung, Biomechanics: Mechanics of Living Tissues. Springer, New York, 1993) the constitutive law can capture the observed nonlinearities in the stress relaxation response of rat tail tendon fascicles.

  8. *Induced Remodeling of Porcine Tendons to Human Anterior Cruciate Ligaments by α-GAL Epitope Removal and Partial Cross-Linking

    PubMed Central

    Stone, Kevin R.; Walgenbach, Ann

    2017-01-01

    This review describes a novel method developed for processing porcine tendon and other ligament implants that enables in situ remodeling into autologous ligaments in humans. The method differs from methods using extracellular matrices (ECMs) that provide postoperative orthobiological support (i.e., augmentation grafts) for healing of injured ligaments, in that the porcine bone-patellar-tendon-bone itself serves as the graft replacing ruptured anterior cruciate ligament (ACL). The method allows for gradual remodeling of porcine tendon into autologous human ACL while maintaining the biomechanical integrity. The method was first evaluated in a preclinical model of monkeys and subsequently in patients. The method overcomes detrimental effects of the natural anti-Gal antibody and harnesses anti-non-gal antibodies for the remodeling process in two steps: Step 1. Elimination of α-gal epitopes—this epitope that is abundant in pigs (as in other nonprimate mammals) binds the natural anti-Gal antibody, which is the most abundant natural antibody in humans. This interaction, which can induce fast resorption of the porcine implant, is avoided by enzymatic elimination of α-gal epitopes from the implant with recombinant α-galactosidase. Step 2. Partial cross-linking of porcine tendon with glutaraldehyde—this cross-linking generates covalent bonds in the ECM, which slow infiltration of macrophages into the implant. Anti-non-gal antibodies are produced in recipients against the multiple porcine antigenic proteins and proteoglycans because of sequence differences between human and porcine homologous proteins. Anti-non-gal antibodies bind to the implant ECM, recruit macrophages, and induce the implant destruction by directing proteolytic activity of macrophages. Partial cross-linking of the tendon ECM decreases the extent of macrophage infiltration and degradation of the implant and enables concomitant infiltration of fibroblasts that follow the infiltrating macrophages. These

  9. Structural mechanical properties of radiation-sterilized human Bone-Tendon-Bone grafts preserved by different methods.

    PubMed

    Gut, Grzegorz; Marowska, Joanna; Jastrzebska, Anna; Olender, Ewa; Kamiński, Artur

    2016-06-01

    To avoid the risk of infectious disease transmission from donor to recipient, allografts should be terminally sterilized. In the previous paper (Kaminski et al. in Cell Tissue Bank 10:215-219, 2009) we presented the effect of various methods of preservation (deep fresh freezing, glycerolization, lyophilization), followed by irradiation with different doses of electron beam (EB), on material (intrinsic) mechanical properties of human patellar tendons cut out as for anterior cruciate ligament reconstruction, obtained in failure tensile test. As structural mechanical properties are equally important to predict the behaviour of the graft as a whole functional unit, the purpose of the present paper was to show the results for failure load and elongation, obtained in the same experiment. Paired Bone-Tendon-Bone grafts (BTB) were prepared from cadaveric human patella tendons with both patellar and tibial attachments. They were preserved by deep freezing, glycerolization or lyophilization and subsequently EB-irradiated with the doses of 25, 35, 50 or 100 kGy (fresh-frozen grafts) or a single dose of 35 kGy (glycerolized and lyophilized grafts). Each experimental (irradiated) group was provided with control (non-irradiated), donor-matched group. The specimens from all groups were subjected to mechanical failure tensile test with the use of Instron system in order to measure their structural properties (failure load and elongation). All lyophilized grafts were rehydrated before mechanical testing. In our study we did not observe significant deterioration of structural mechanical properties of BTB grafts processed by fresh-freezing and then terminal sterilized with growing doses of EB up to 100 kGy. In contrast, BTB grafts processed by glycerolization or lyophilization and irradiated with 35 kGy showed significant decrease of failure load. Obtained results suggest that deep-frozen irradiated grafts retain their initial mechanical properties to an extent which does not

  10. [Experiment of bone morphogenetic protein 2 induced chondrogenic differentiation of human Achilles tendon-derived stem cells in vitro].

    PubMed

    Rui, Yunfeng; Guo, Yonggang; Lin, Yucheng; Ma, Liangyu; Cheng, Xinkun; Chen, Hui; Wang, Chen

    2013-12-01

    To investigate the effects of bone morphogenetic protein 2 (BMP-2) on the chondrogenic differentiation of human Achilles tendon-derived stem cells (hATDSCs) in vitro. Achilles tendon was harvested from a voluntary donor with acute Achilles tendon rupture. And nucleated cells were obtained by digesting with collagenase and were cultured to the 3rd passage. The flow cytometry was used to measure the immunophenotyping; and Oil red O staining, alizarin red staining, and Safranin O/fast green staining were used to identify the adipogenic differentiation, osteogenic differentiation, and chondrogenic differentiation, respectively. The hATDSCs pellet was cultured in complete culture medium with (experimental group) or without recombinant human BMP-2 (rhBMP-2) (control grup) for 3 weeks. Chondrogenic differentiation of hATDSCs was evaluated by HE staining, Safranin O/fast green staining, and immunohistochemical staining for collagen type II; and the mRNA expressions of SOX9, collagen type II, and Aggrecan were detected by real-time fluorescence quantitative PCR. Primary hATDSCs cultured in vitro showed clonal growth; after cell passage, homogeneous spindle fibroblast-like cells were seen. The cells were positive for CD44, CD90, and CD105, while negative for CD34, CD45, and CD146. The results were positive for Oil red O staining at 3 weeks after adipogenic differentiation, for alizarin red staining at 4 weeks after osteogenic differentiation, and for Safranin O/fast green staining at 3 weeks after chondrogenic differentiation. After hATDSCs were induced with rhBMP-2 for 3 weeks, pellets formed in the experimental group, and the size of pellets was significantly larger than that in the control group; the results of HE staining, Safranin O/fast green staining, and immunohistochemical staining for collagen type II were all positive. The results of real-time fluorescence quantitative PCR showed that the mRNA expressions of SOX9, collagen type II, and Aggrecan in the experimental

  11. Human tendon adaptation in response to mechanical loading: a systematic review and meta-analysis of exercise intervention studies on healthy adults.

    PubMed

    Bohm, Sebastian; Mersmann, Falk; Arampatzis, Adamantios

    2015-12-01

    The present article systematically reviews recent literature on the in vivo adaptation of asymptomatic human tendons following increased chronic mechanical loading, and meta-analyzes the loading conditions, intervention outcomes, as well as methodological aspects. The search was performed in the databases PubMed, Web of Knowledge, and Scopus as well as in the reference lists of the eligible articles. A study was included if it conducted (a) a longitudinal exercise intervention (≥8 weeks) on (b) healthy humans (18 to 50 years), (c) investigating the effects on mechanical (i.e., stiffness), material (i.e., Young's modulus) and/or morphological properties (i.e., cross-sectional area (CSA)) of tendons in vivo, and was reported (d) in English language. Weighted average effect sizes (SMD, random-effects) and heterogeneity (Q and I (2) statistics) of the intervention-induced changes of tendon stiffness, Young's modulus, and CSA were calculated. A subgroup analysis was conducted regarding the applied loading intensity, muscle contraction type, and intervention duration. Further, the methodological study quality and the risk of bias were assessed. The review process yielded 27 studies with 37 separate interventions on either the Achilles or patellar tendon (264 participants). SMD was 0.70 (confidence interval: 0.51, 0.88) for tendon stiffness (N=37), 0.69 (0.36, 1.03) for Young's modulus (N=17), and 0.24 (0.07, 0.42) for CSA (N=33), with significant overall intervention effects (p<0.05). The heterogeneity analysis (stiffness: I (2) =30%; Young's modulus: I (2) =57%; CSA: I (2) =21%) indicated that differences in the loading conditions may affect the adaptive responses. The subgroup analysis confirmed that stiffness adaptation significantly (p<0.05) depends on loading intensity (I (2) =0%), but not on muscle contraction type. Although not significantly different, SMD was higher for interventions with longer duration (≥12 weeks). The average score of 71±9% in

  12. Tendon repair

    MedlinePlus

    ... the area to see if there are any injuries to nerves and blood vessels. When the repair is complete, the wound is closed. If the tendon damage is too severe, the repair and reconstruction ... to repair part of the injury. Another surgery will be done at a later ...

  13. Repair of full-thickness tendon injury using connective tissue progenitors efficiently derived from human embryonic stem cells and fetal tissues.

    PubMed

    Cohen, Shahar; Leshansky, Lucy; Zussman, Eyal; Burman, Michael; Srouji, Samer; Livne, Erella; Abramov, Natalie; Itskovitz-Eldor, Joseph

    2010-10-01

    The use of stem cells for tissue engineering (TE) encourages scientists to design new platforms in the field of regenerative and reconstructive medicine. Human embryonic stem cells (hESC) have been proposed to be an important cell source for cell-based TE applications as well as an exciting tool for investigating the fundamentals of human development. Here, we describe the efficient derivation of connective tissue progenitors (CTPs) from hESC lines and fetal tissues. The CTPs were significantly expanded and induced to generate tendon tissues in vitro, with ultrastructural characteristics and biomechanical properties typical of mature tendons. We describe a simple method for engineering tendon grafts that can successfully repair injured Achilles tendons and restore the ankle joint extension movement in mice. We also show the CTP's ability to differentiate into bone, cartilage, and fat both in vitro and in vivo. This study offers evidence for the possibility of using stem cell-derived engineered grafts to replace missing tissues, and sets a basic platform for future cell-based TE applications in the fields of orthopedics and reconstructive surgery.

  14. Effect of fiber distribution and realignment on the nonlinear and inhomogeneous mechanical properties of human supraspinatus tendon under longitudinal tensile loading.

    PubMed

    Lake, Spencer P; Miller, Kristin S; Elliott, Dawn M; Soslowsky, Louis J

    2009-12-01

    Tendon exhibits nonlinear stress-strain behavior that may be partly due to movement of collagen fibers through the extracellular matrix. While a few techniques have been developed to evaluate the fiber architecture of other soft tissues, the organizational behavior of tendon under load has not been determined. The supraspinatus tendon (SST) of the rotator cuff is of particular interest for investigation due to its complex mechanical environment and corresponding inhomogeneity. In addition, SST injury occurs frequently with limited success in treatment strategies, illustrating the need for a better understanding of SST properties. Therefore, the objective of this study was to quantitatively evaluate the inhomogeneous tensile mechanical properties, fiber organization, and fiber realignment under load of human SST utilizing a novel polarized light technique. Fiber distributions were found to become more aligned under load, particularly during the low stiffness toe-region, suggesting that fiber realignment may be partly responsible for observed nonlinear behavior. Fiber alignment was found to correlate significantly with mechanical parameters, providing evidence for strong structure-function relationships in tendon. Human SST exhibits complex, inhomogeneous mechanical properties and fiber distributions, perhaps due to its complex loading environment. Surprisingly, histological grade of degeneration did not correlate with mechanical properties.

  15. Effect of fiber distribution and realignment on the nonlinear and inhomogeneous mechanical properties of human supraspinatus tendon under longitudinal tensile loading

    PubMed Central

    Lake, Spencer P.; Miller, Kristin S.; Elliott, Dawn M.; Soslowsky, Louis J.

    2010-01-01

    Tendon exhibits nonlinear stress-strain behavior that may be due, in part, to movement of collagen fibers through the extracellular matrix. While a few techniques have been developed to evaluate the fiber architecture of other soft tissues, the organizational behavior of tendon under load has not been determined. The supraspinatus tendon (SST) of the rotator cuff is of particular interest for investigation due to its complex mechanical environment and corresponding inhomogeneity. In addition, SST injury occurs frequently with limited success in treatment strategies, illustrating the need for a better understanding of SST properties. Therefore, the objective of this study was to quantitatively evaluate the inhomogeneous tensile mechanical properties, fiber organization and fiber realignment under load of human SST utilizing a novel polarized light technique. Fiber distributions were found to become more aligned under load, particularly during the low stiffness toe-region, suggesting that fiber realignment may be partly responsible for observed nonlinear behavior. Fiber alignment was found to correlate significantly with mechanical parameters, providing evidence for strong structure-function relationships in tendon. Human SST exhibits complex, inhomogeneous mechanical properties and fiber distributions, perhaps due to its complex loading environment. Surprisingly, histological grade of degeneration did not correlate with mechanical properties. PMID:19544524

  16. Attachment, Proliferation, and Morphological Properties of Human Dermal Fibroblasts on Ovine Tendon Collagen Scaffolds: A Comparative Study.

    PubMed

    Busra, Fauzi Mh; Lokanathan, Yogeswaran; Nadzir, Masrina Mohd; Saim, Aminuddin; Idrus, Ruszymah Bt Hj; Chowdhury, Shiplu Roy

    2017-03-01

    Collagen type I is widely used as a biomaterial for tissue-engineered substitutes. This study aimed to fabricate different three-dimensional (3D) scaffolds using ovine tendon collagen type I (OTC-I), and compare the attachment, proliferation and morphological features of human dermal fibroblasts (HDF) on the scaffolds. This study was conducted between the years 2014 to 2016 at the Tissue Engineering Centre, UKM Medical Centre. OTC-I was extracted from ovine tendon, and fabricated into 3D scaffolds in the form of sponge, hydrogel and film. A polystyrene surface coated with OTC-I was used as the 2D culture condition. Genipin was used to crosslink the OTC-I. A non-coated polystyrene surface was used as a control. The mechanical strength of OTC-I scaffolds was evaluated. Attachment, proliferation and morphological features of HDF were assessed and compared between conditions. The mechanical strength of OTC-I sponge was significantly higher than that of the other scaffolds. OTC-I scaffolds and the coated surface significantly enhanced HDF attachment and proliferation compared to the control, but no differences were observed between the scaffolds and coated surface. In contrast, the morphological features of HDF including spreading, filopodia, lamellipodia and actin cytoskeletal formation differed between conditions. OTC-I can be moulded into various scaffolds that are biocompatible and thus could be suitable as scaffolds for developing tissue substitutes for clinical applications and in vitro tissue models. However, further study is required to determine the effect of morphological properties on the functional and molecular properties of HDF.

  17. Effect of Hypoxia on Self-Renewal Capacity and Differentiation in Human Tendon-Derived Stem Cells

    PubMed Central

    Yu, Yang; Lin, Lixiang; Zhou, Yifei; Lu, Xiaolang; Shao, Xiwen; Lin, Chuanlu; Yu, Kehe; Zhang, Xiaolei; Hong, Jianjun; Chen, Ying

    2017-01-01

    Background Hypoxic conditions play roles in functioning of human tendon-derived stem cells (hTSCs). The goal of this study was to investigate the effect of various hypoxic conditions in self-renewal capacity and differentiation of TSCs. Material/Methods hTSCs was obtain from supraspinatus tendon donors. Colony formation and cell proliferation assay were used to assess the self-renewal of hTSCs. qRT-PCT and Western blot analysis were used to examine stemness and multi-differentiation potential of hTSCs. Results We found that culturing at 5% O2 is more beneficial for the self-renewal of hTSCs than the other 3 culture conditions, with larger colony size and numbers. The proliferation of hTSCs in 5%, 10%, and 20% O2 cultures increased after seeding. The number of cells in the 5% O2 condition was higher than that in other culture; however, self-renewal capacity of hTSCs in 0.5% O2 was inhibited. The expression levels of stem cell markers, including NS, Nanog, Oct-4, and SSEA-4, were highest in 0.5% O2 culture. Furthermore, hTSCs cultured in 20% O2 exhibited significantly higher expression of the 3 markers (PPAR-γ, Sox-9, and Runx-2). Conclusions Hypoxic condition of culture encouraged self-renewal capacity of hTSCs, but inhibited their multi-differentiation potential, compared to normoxic condition of culture. Moreover, excessively low oxygen concentration impaired the capacity of hTSCs. PMID:28302994

  18. Acute effects of static stretching on muscle-tendon mechanics of quadriceps and plantar flexor muscles.

    PubMed

    Bouvier, Tom; Opplert, Jules; Cometti, Carole; Babault, Nicolas

    2017-07-01

    This study aimed to determine the acute effects of static stretching on stiffness indexes of two muscle groups with a contrasting difference in muscle-tendon proportion. Eleven active males were tested on an isokinetic dynamometer during four sessions randomly presented. Two sessions were dedicated to quadriceps and the two others to triceps surae muscles. Before and immediately after the stretching procedure (5 × 30 s), gastrocnemius medialis and rectus femoris fascicle length and myotendinous junction elongation were determined using ultrasonography. Passive and maximal voluntary torques were measured. Fascicle and myotendinous junction stiffness indexes were calculated. After stretching, maximal voluntary torque similarly decreased for both muscle groups. Passive torque significantly decreased on triceps surae and remained unchanged on quadriceps muscles. Fascicle length increased similarly for both muscles. However, myotendinous junction elongation remained unchanged for gastrocnemius medialis and increased significantly for rectus femoris muscle. Fascicle stiffness index significantly decreased on medial gastrocnemius and remained unchanged on rectus femoris muscle. In contrast, myotendinous junction stiffness index similarly decreased on both muscles. Depending on the muscle considered, the present results revealed different acute stretching effects. This muscle dependency appeared to affect primarily fascicle stiffness index rather than the myotendinous junction.

  19. Well-aligned chitosan-based ultrafine fibers committed teno-lineage differentiation of human induced pluripotent stem cells for Achilles tendon regeneration.

    PubMed

    Zhang, Can; Yuan, Huihua; Liu, Huanhuan; Chen, Xiao; Lu, Ping; Zhu, Ting; Yang, Long; Yin, Zi; Heng, Boon Chin; Zhang, Yanzhong; Ouyang, Hongwei

    2015-01-01

    Physical property of substrates such as stiffness and topography have been reported to induce mesenchymal stem cells differentiation into bone, muscle and neuron lineages. Human-induced pluripotent stem cells (hiPSCs) are a highly promising cell source for regenerative medicine. However, physical properties have not yet been reported to successfully induce pluripotent stem cells into specific lineages. This study aimed to develop a robust, stepwise topographic strategy to induce hiPSCs differentiate into teno-lineage. A novel spinning approach termed stable jet electrospinning (SJES), is utilized to fabricate continuous well-aligned ultrafine fibers (891 ± 71 nm), which mimic the native tendon's microstructure and mechanical properties. hiPSCs are first differentiated into MSCs on smooth plastic surface as confirmed by the differentiations into three mesenchymal lineages and expression of characteristic MSC surface markers through an EMT (Epithelial-Mesenchymal Transition) process. Subsequently, the hiPSC derived MSCs are seeded onto well-aligned fibers to differentiate into tenocyte-like cells through activating mechanic-signal pathway. The in situ tendon repair study further confirms that aligned fiber scaffold with hiPSC-MSCs had significant effect on improving the structural and mechanical properties of tendon injury repair. These findings indicate that the stepwise physical substrate change strategy can be adopted to induce hiPSCs differentiation for tendon tissue regeneration. Copyright © 2015. Published by Elsevier Ltd.

  20. Evolution of the Achilles tendon: The athlete's Achilles heel?

    PubMed

    Malvankar, S; Khan, W S

    2011-12-01

    The Achilles tendon is believed to have first developed two million years ago enabling humans to run twice as fast. However if the Achilles tendon is so important in terms of evolution, then why is this tendon so prone to injury - especially for those more active like athletes. The Achilles tendon had an integral role in evolving apes from a herbivorous diet to early humans who started hunting for food over longer distances, resulting in bipedal locomotion. Evolutionary advantages of the Achilles tendon includes it being the strongest tendon in the body, having an energy-saving mechanism for fast locomotion, allows humans to jump and run, and additionally is a spring and shock absorber during gait. Considering these benefits it is therefore not surprising that studies have shown athletes have thicker Achilles tendons than subjects who are less active. However, contradictory to these findings that show the importance of the Achilles tendon for athletes, it is well known that obtaining an Achilles tendon injury for an athlete can be career-altering. A disadvantage of the Achilles tendon is that the aetiology of its pathology is complicated. Achilles tendon ruptures are believed to be caused by overloading the tensed tendon, like during sports. However studies have also shown athlete Achilles tendon ruptures to have degenerative changes in the tendon. Other flaws of the Achilles tendon are its non-uniform vascularity and incomplete repair system which may suggest the Achilles tendon is on the edge of evolution. Research has shown that there is a genetic influence on the predisposition a person has towards Achilles tendon injuries. So if this tendon is here to stay in our anatomy, and it probably is due to the slow rate of evolution in humans, research in genetic modification could be used to decrease athletes' predisposition to Achilles tendinopathy.

  1. Peroneal Tendon Injuries

    MedlinePlus

    ... Basic types of peroneal tendon injuries are tendonitis, tears and subluxation. Tendonitis is an inflammation of one ... include: Pain Swelling Warm to the touch Acute tears are caused by repetitive activity or trauma. Immediate ...

  2. Achilles Tendon Rupture

    MedlinePlus

    Achilles tendon rupture Overview By Mayo Clinic Staff Achilles (uh-KILL-eez) tendon rupture is an injury that affects the back ... but it can happen to anyone. The Achilles tendon is a strong fibrous cord that connects the ...

  3. Achilles tendon repair

    MedlinePlus

    Achilles tendon rupture-surgery; Percutaneous Achilles tendon rupture repair ... To fix your torn Achilles tendon, the surgeon will: Make a cut down the back of your heel Make several small cuts rather than one large cut ...

  4. Imaging and simulation of Achilles tendon dynamics: Implications for walking performance in the elderly.

    PubMed

    Franz, Jason R; Thelen, Darryl G

    2016-06-14

    The Achilles tendon (AT) is a complex structure, consisting of distinct fascicle bundles arising from each triceps surae muscle that may act as mechanically independent structures. Advances in tissue imaging are rapidly accelerating our understanding of the complexities of functional Achilles tendon behavior, with potentially important implications for musculoskeletal injury and performance. In this overview of our recent contributions to these efforts, we present the results of complementary experimental and computational approaches to investigate AT behavior during walking and its potential relevance to reduced triceps surae mechanical performance due to aging. Our experimental evidence reveals that older tendons exhibit smaller differences in tissue deformations than young adults between regions of the AT presumed to arise from the gastrocnemius and soleus muscles. These observations are consistent with a reduced capacity for inter-fascicle sliding within the AT, which could have implications for the mechanical independence of the triceps surae muscles. More uniform AT deformations are also correlated with hallmark biomechanical features of elderly gait - namely, a loss of net ankle moment, power, and positive work during push-off. Simulating age-related reductions in the capacity for inter-fascicle sliding in the AT during walking predicts detriments in gastrocnemius muscle-tendon mechanical performance coupled with underlying shifts in fascicle kinematics during push-off. AT compliance, also suspected to vary due to age, systematically modulates those effects. By integrating in vivo imaging with computational modeling, we have gained theoretical insight into multi-scale biomechanical changes due to aging, hypotheses regarding their functional effects, and opportunities for experiments that validate or invalidate these assertions.

  5. Study of optical properties and proteoglycan content of tendons by polarization sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Rupani, Asha; Bagnaninchi, Pierre; Wimpenny, Ian; Weightman, Alan

    2012-08-01

    The highly orientated collagen fibers in tendons play a critical role for transferring tensile stress, and they demonstrate birefringent optical properties. However, the influence that proteoglycans (PGs) have on the optical properties of tendons is yet to be fully elucidated. PGs are the essential components of the tendon extracellular matrix; the changes in their quantities and compositions have been associated with tendinopathies. In this study, polarization sensitive optical coherence tomography (PS-OCT) has been used to reveal the relationship between PG content/location and birefringence properties of tendons. Fresh chicken tendons were imaged at regular intervals by PS-OCT and polarization light microscopy during the extraction of PGs, using guanidine hydrochloride (GuHCl). Complementary time-lapsed images taken from the two modalities mutually demonstrated that the extraction of PGs disturbed the local organization of collagen bundles. This corresponded with a decrease in birefringence and associated banding pattern observed by PS-OCT. Furthermore, this study revealed there was a higher concentration of PGs in the outer sheath region than in the fascicles, and therefore the change in birefringence was reduced when extraction was performed on unsheathed tendons. The results provide new insights of tendon structure and the role of PGs on the structural stability of tendons, which also demonstrates the great potential for using PS-OCT as a diagnostic tool to examine tendon pathology.

  6. Long-term use of high-heeled shoes alters the neuromechanics of human walking.

    PubMed

    Cronin, Neil J; Barrett, Rod S; Carty, Christopher P

    2012-03-01

    Human movement requires an ongoing, finely tuned interaction between muscular and tendinous tissues, so changes in the properties of either tissue could have important functional consequences. One condition that alters the functional demands placed on lower limb muscle-tendon units is the use of high-heeled shoes (HH), which force the foot into a plantarflexed position. Long-term HH use has been found to shorten medial gastrocnemius muscle fascicles and increase Achilles tendon stiffness, but the consequences of these changes for locomotor muscle-tendon function are unknown. This study examined the effects of habitual HH use on the neuromechanical behavior of triceps surae muscles during walking. The study population consisted of 9 habitual high heel wearers who had worn shoes with a minimum heel height of 5 cm at least 40 h/wk for a minimum of 2 yr, and 10 control participants who habitually wore heels for less than 10 h/wk. Participants walked at a self-selected speed over level ground while ground reaction forces, ankle and knee joint kinematics, lower limb muscle activity, and gastrocnemius fascicle length data were acquired. In long-term HH wearers, walking in HH resulted in substantial increases in muscle fascicle strains and muscle activation during the stance phase compared with barefoot walking. The results suggest that long-term high heel use may compromise muscle efficiency in walking and are consistent with reports that HH wearers often experience discomfort and muscle fatigue. Long-term HH use may also increase the risk of strain injuries.

  7. Characterization of progenitor cells derived from torn human rotator cuff tendons by gene expression patterns of chondrogenesis, osteogenesis, and adipogenesis.

    PubMed

    Nagura, Issei; Kokubu, Takeshi; Mifune, Yutaka; Inui, Atsuyuki; Takase, Fumiaki; Ueda, Yasuhiro; Kataoka, Takeshi; Kurosaka, Masahiro

    2016-03-31

    It is important to regenerate the tendon-to-bone interface after rotator cuff repair to prevent re-tears. The cells from torn human rotator cuff were targeted, and their capacity for multilineage differentiation was investigated. The edges of the rotator cuff were harvested during arthroscopic rotator cuff repair from nine patients, minced into pieces, and cultured on dishes. Adherent cells were cultured, phenotypically characterized. Then expandability, differentiation potential and gene expression were analyzed. Flow cytometry revealed that the mesenchymal stem cells (MSC)-related markers CD29, CD44, CD105, and CD166 were positive. However, CD14, CD34, and CD45 were negative. On RT-PCR analyses, the cells showed osteogenic, adipogenic, and chondrogenic potential after 3 weeks of culture under the respective differentiation conditions. In addition, SOX9, type II collagen, and type X collagen expression patterns during chondrogenesis were similar to those of endochondral ossification at the enthesis. The cells derived from torn human rotator cuff are multipotent mesenchymal stem cells with the ability to undergo multilineage differentiation, suggesting that MSCs form this tissue could be regenerative capacity for potential self-repair.

  8. Effect of chronic unloading and rehabilitation on human Achilles tendon properties: a velocity-encoded phase-contrast MRI study.

    PubMed

    Shin, Dongsuk; Finni, Taija; Ahn, Sinyeob; Hodgson, John A; Lee, Hae-Dong; Edgerton, V Reggie; Sinha, Shantanu

    2008-10-01

    The objective of this study was to measure and monitor changes in Achilles tendon mechanical properties and force production capability of triceps surae muscles after 4 wk of limb suspension and 6 wk of physical rehabilitation. Five healthy volunteers underwent unilateral lower limb suspension followed by weekly physiotherapy. A velocity-encoded, phase-contrast magnetic resonance imaging (VE-PC-MRI) technique was used to estimate the tendon strain as a function of force produced during the submaximal isometric contractions. After limb suspension, triceps surae muscle strength decreased to 53.2 +/- 15.6% (mean +/- SD) of the presuspension level (P < 0.05). Young's modulus, estimated from the slope of the tendon stress-strain relationship, decreased by 17.1% (from 140.50 +/- 29.33 to 119.95 +/- 36.07 MPa, P < 0.05), while the tendon transition point, reflecting the "toe region," increased by 55.7% (from 2.2 +/- 1.0% to 3.4 +/- 1.24%). Muscle strength, tendon stiffness, and transition point recovered to presuspension levels by the end of 6 wk of rehabilitation. Calcaneus movement was significant during the "isometric" contraction, accounting for 52.13 +/- 7.63% of the tendon displacement. Tendon cross-sectional area determined from anatomic magnetic resonance axial images remained unchanged, suggesting that the altered tendon elastic modulus and transition point were largely due to material deterioration. The increase in the transition point following chronic unloading as measured by the VE-PC-MRI technique has not been previously reported and offers new insights into the biomechanical changes that may occur in the tendon crimp structure.

  9. Effect of chronic unloading and rehabilitation on human Achilles tendon properties: a velocity-encoded phase-contrast MRI study

    PubMed Central

    Shin, Dongsuk; Finni, Taija; Ahn, Sinyeob; Hodgson, John A.; Lee, Hae-Dong; Edgerton, V. Reggie; Sinha, Shantanu

    2008-01-01

    The objective of this study was to measure and monitor changes in Achilles tendon mechanical properties and force production capability of triceps surae muscles after 4 wk of limb suspension and 6 wk of physical rehabilitation. Five healthy volunteers underwent unilateral lower limb suspension followed by weekly physiotherapy. A velocity-encoded, phase-contrast magnetic resonance imaging (VE-PC-MRI) technique was used to estimate the tendon strain as a function of force produced during the submaximal isometric contractions. After limb suspension, triceps surae muscle strength decreased to 53.2 ± 15.6% (mean ± SD) of the presuspension level (P < 0.05). Young's modulus, estimated from the slope of the tendon stress-strain relationship, decreased by 17.1% (from 140.50 ± 29.33 to 119.95 ± 36.07 MPa, P < 0.05), while the tendon transition point, reflecting the “toe region,” increased by 55.7% (from 2.2 ± 1.0% to 3.4 ± 1.24%). Muscle strength, tendon stiffness, and transition point recovered to presuspension levels by the end of 6 wk of rehabilitation. Calcaneus movement was significant during the “isometric” contraction, accounting for 52.13 ± 7.63% of the tendon displacement. Tendon cross-sectional area determined from anatomic magnetic resonance axial images remained unchanged, suggesting that the altered tendon elastic modulus and transition point were largely due to material deterioration. The increase in the transition point following chronic unloading as measured by the VE-PC-MRI technique has not been previously reported and offers new insights into the biomechanical changes that may occur in the tendon crimp structure. PMID:18687975

  10. Marked innervation but also signs of nerve degeneration in between the Achilles and plantaris tendons and presence of innervation within the plantaris tendon in midportion Achilles tendinopathy.

    PubMed

    Spang, C; Harandi, V M; Alfredson, H; Forsgren, S

    2015-06-01

    The plantaris tendon is increasingly recognised as an important factor in midportion Achilles tendinopathy. Its innervation pattern is completely unknown. Plantaris tendons (n=56) and associated peritendinous tissue from 46 patients with midportion Achilles tendinopathy and where the plantaris tendon was closely related to the Achilles tendon were evaluated. Morphological evaluations and stainings for nerve markers [general (PGP9.5), sensory (CGRP), sympathetic (TH)], glutamate NMDA receptor and Schwann cells (S-100β) were made. A marked innervation, as evidenced by evaluation for PGP9.5 reactions, occurred in the peritendinous tissue located between the plantaris and Achilles tendons. It contained sensory and to some extent sympathetic and NMDAR1-positive axons. There was also an innervation in the zones of connective tissue within the plantaris tendons. Interestingly, some of the nerve fascicles showed a partial lack of axonal reactions. New information on the innervation patterns for the plantaris tendon in situations with midportion Achilles tendinopathy has here been obtained. The peritendinous tissue was found to be markedly innervated and there was also innervation within the plantaris tendon. Furthermore, axonal degeneration is likely to occur. Both features should be further taken into account when considering the relationship between the nervous system and tendinopathy.

  11. Marked innervation but also signs of nerve degeneration in between the Achilles and plantaris tendons and presence of innervation within the plantaris tendon in midportion Achilles tendinopathy

    PubMed Central

    Spang, C.; Harandi, V.M.; Alfredson, H.; Forsgren, S.

    2015-01-01

    Objectives: The plantaris tendon is increasingly recognised as an important factor in midportion Achilles tendinopathy. Its innervation pattern is completely unknown. Methods: Plantaris tendons (n=56) and associated peritendinous tissue from 46 patients with midportion Achilles tendinopathy and where the plantaris tendon was closely related to the Achilles tendon were evaluated. Morphological evaluations and stainings for nerve markers [general (PGP9.5), sensory (CGRP), sympathetic (TH)], glutamate NMDA receptor and Schwann cells (S-100β) were made. Results: A marked innervation, as evidenced by evaluation for PGP9.5 reactions, occurred in the peritendinous tissue located between the plantaris and Achilles tendons. It contained sensory and to some extent sympathetic and NMDAR1-positive axons. There was also an innervation in the zones of connective tissue within the plantaris tendons. Interestingly, some of the nerve fascicles showed a partial lack of axonal reactions. Conclusion: New information on the innervation patterns for the plantaris tendon in situations with midportion Achilles tendinopathy has here been obtained. The peritendinous tissue was found to be markedly innervated and there was also innervation within the plantaris tendon. Furthermore, axonal degeneration is likely to occur. Both features should be further taken into account when considering the relationship between the nervous system and tendinopathy. PMID:26032213

  12. Glucocorticoids induce specific ion-channel-mediated toxicity in human rotator cuff tendon: a mechanism underpinning the ultimately deleterious effect of steroid injection in tendinopathy?

    PubMed

    Dean, Benjamin John Floyd; Franklin, Sarah Louise; Murphy, Richard J; Javaid, Muhammad K; Carr, Andrew Jonathan

    2014-12-01

    Glucocorticoid injection (GCI) and surgical rotator cuff repair are two widely used treatments for rotator cuff tendinopathy. Little is known about the way in which medical and surgical treatments affect the human rotator cuff tendon in vivo. We assessed the histological and immunohistochemical effects of these common treatments on the rotator cuff tendon. Controlled laboratory study. Supraspinatus tendon biopsies were taken before and after treatment from 12 patients undergoing GCI and 8 patients undergoing surgical rotator cuff repair. All patients were symptomatic and none of the patients undergoing local GCI had full thickness tears of the rotator cuff. The tendon tissue was then analysed using histological techniques and immunohistochemistry. There was a significant increase in nuclei count and vascularity after rotator cuff repair and not after GCI (both p=0.008). Hypoxia inducible factor 1α (HIF-1α) and cell proliferation were only increased after rotator cuff repair (both p=0.03) and not GCI. The ionotropic N-methyl-d-aspartate receptor 1 (NMDAR1) glutamate receptor was only increased after GCI and not rotator cuff repair (p=0.016). An increase in glutamate was seen in both groups following treatment (both p=0.04), while an increase in the receptor metabotropic glutamate receptor 7 (mGluR7) was only seen after rotator cuff repair (p=0.016). The increases in cell proliferation, vascularity and HIF-1α after surgical rotator cuff repair appear consistent with a proliferative healing response, and these features are not seen after GCI. The increase in the glutamate receptor NMDAR1 after GCI raises concerns about the potential excitotoxic tendon damage that may result from this common treatment. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  13. Effect of heat and cold on tendon flexibility and force to flex the human knee

    PubMed Central

    Petrofsky, Jerrold Scott; Laymon, Michael; Lee, Haneul

    2013-01-01

    Background It is commonly believed in medicine that using heat will increase the distensability and flexibility of soft tissue. If true, increased flexibility would be a positive factor to reduce injuries in sports. However, cold should have the opposite effect and is often used to treat sports injuries. This study was accomplished to quantify the effect of heat and cold on the force needed to flex the knee and laxness of the anterior and posterior cruciate ligaments. Material/Methods The present study examined 20 male and female subjects to determine if heat would increase extensibility of the anterior and posterior cruciate ligaments of the knee and reduce the force needed to flex the knee. Cold exposure was examined to see if it would have the opposite effect. There were 4 experiments in the series: The first was a room temperature series; the second was a series where cold was applied with an ice pack for 20 minutes; in the third, hydrocollator heat packs were applied for 20 minutes; and in the fourth, ThermaCare heat wraps were applied for 4 hours on the quadriceps and knee. Tendon extensibility was measured with a KT2000. The force for flexing the knee was measured by passive movement being applied (CPM) to the knee through 30° and the force required to move the leg was measured. Results The results show that the anterior and posterior cruciate ligament flexibility increased and the force needed to move the knee decreased with heat by about 25% compared to cold application. Conclusions Heat is beneficial in increasing muscle and ligament flexibility and may help reduce athletic injuries, but cold treatment may have the opposite effect. PMID:23933600

  14. Functional assessment of gap junctions in monolayer and three-dimensional cultures of human tendon cells using fluorescence recovery after photobleaching.

    PubMed

    Kuzma-Kuzniarska, Maria; Yapp, Clarence; Pearson-Jones, Thomas W; Jones, Andrew K; Hulley, Philippa A

    2014-01-01

    Gap junction-mediated intercellular communication influences a variety of cellular activities. In tendons, gap junctions modulate collagen production, are involved in strain-induced cell death, and are involved in the response to mechanical stimulation. The aim of the present study was to investigate gap junction-mediated intercellular communication in healthy human tendon-derived cells using fluorescence recovery after photobleaching (FRAP). The FRAP is a noninvasive technique that allows quantitative measurement of gap junction function in living cells. It is based on diffusion-dependent redistribution of a gap junction-permeable fluorescent dye. Using FRAP, we showed that human tenocytes form functional gap junctions in monolayer and three-dimensional (3-D) collagen I culture. Fluorescently labeled tenocytes following photobleaching rapidly reacquired the fluorescent dye from neighboring cells, while HeLa cells, which do not communicate by gap junctions, remained bleached. Furthermore, both 18 β-glycyrrhetinic acid and carbenoxolone, standard inhibitors of gap junction activity, impaired fluorescence recovery in tendon cells. In both monolayer and 3-D cultures, intercellular communication in isolated cells was significantly decreased when compared with cells forming many cell-to-cell contacts. In this study, we used FRAP as a tool to quantify and experimentally manipulate the function of gap junctions in human tenocytes in both two-dimensional (2-D) and 3-D cultures.

  15. Functional assessment of gap junctions in monolayer and three-dimensional cultures of human tendon cells using fluorescence recovery after photobleaching

    NASA Astrophysics Data System (ADS)

    Kuzma-Kuzniarska, Maria; Yapp, Clarence; Pearson-Jones, Thomas W.; Jones, Andrew K.; Hulley, Philippa A.

    2014-01-01

    Gap junction-mediated intercellular communication influences a variety of cellular activities. In tendons, gap junctions modulate collagen production, are involved in strain-induced cell death, and are involved in the response to mechanical stimulation. The aim of the present study was to investigate gap junction-mediated intercellular communication in healthy human tendon-derived cells using fluorescence recovery after photobleaching (FRAP). The FRAP is a noninvasive technique that allows quantitative measurement of gap junction function in living cells. It is based on diffusion-dependent redistribution of a gap junction-permeable fluorescent dye. Using FRAP, we showed that human tenocytes form functional gap junctions in monolayer and three-dimensional (3-D) collagen I culture. Fluorescently labeled tenocytes following photobleaching rapidly reacquired the fluorescent dye from neighboring cells, while HeLa cells, which do not communicate by gap junctions, remained bleached. Furthermore, both 18 β-glycyrrhetinic acid and carbenoxolone, standard inhibitors of gap junction activity, impaired fluorescence recovery in tendon cells. In both monolayer and 3-D cultures, intercellular communication in isolated cells was significantly decreased when compared with cells forming many cell-to-cell contacts. In this study, we used FRAP as a tool to quantify and experimentally manipulate the function of gap junctions in human tenocytes in both two-dimensional (2-D) and 3-D cultures.

  16. Age-related changes in the cellular, mechanical, and contractile properties of rat tail tendons.

    PubMed

    Lavagnino, Michael; Gardner, Keri; Arnoczky, Steven P

    2013-01-01

    Tendon laxity following injury, cyclic creep, or repair has been shown to alter the normal homeostasis of tendon cells, which can lead to degenerative changes in the extracellular matrix. While tendon cells have been shown to have an inherent contractile mechanism that gives them some ability to retighten lax tendons and reestablish a homeostatic cellular environment, the effect of age on this process is unknown. To determine the effect of aging on cell number, cell shape, and tensile modulus on tendons as well as the rate of cell-mediated contraction of lax tendons, tail tendon fascicles from 1-, 3-, and 12-month-old rats were analyzed. Aging results in a decrease (p < 0.001) in cell number per mm(2): 1 m (981 ± 119), 3 m (570 ± 108), and 12 m (453 ± 23), a more flattened (p < 0.001) cell nuclei shape and a higher (p < 0.001) tensile modulus (MPa) of the tendons: 1 m (291 ± 2), 3 m (527 ± 38), and 12 m (640 ± 102). Both the extent and rate of contraction over 7 days decreased with age (p = 0.007). This decrease in contraction rate with age correlates to the observed changes seen in aging tendons [increased modulus (r(2) = 0.95), decreased cell number (r(2) = 0.89)]. The ability of tendons to regain normal tension following injury or exercise-induced laxity is a key factor in the recovery of tendon function. The decreased contraction rate as a function of age observed in the current study may limit the ability of tendon cells to retighten lax tendons in older individuals. This, in turn, may place these structures at further risk for injury or altered function.

  17. Multidimensional models for predicting muscle structure and fascicle pennation.

    PubMed

    Randhawa, Avleen; Wakeling, James M

    2015-10-07

    Pennation angles change during muscle contraction and must be tracked by muscle models. When muscles contract they can change in depth (distance between the bounding sheets of aponeurosis) or width, and this is related to pennation angle and muscle fascicle length. As a simplification to these relationships, many models of pennate muscle assume a constant distance between aponeuroses during contraction (constant depth). It is possible that these 1D models do not recreate the internal structure of muscles adequately, whereas 2D panel models that assume a constant panel area, or 3D models that assume a constant muscle volume may better predict the structural changes that occur within muscle during contraction. However, these ideas have never been validated in man. The purpose of this study was to test the accuracy with which 1D, 2D or 3D structural models of muscle could predict the pennation and muscle depth within the medial gastrocnemius (MG) and lateral gastrocnemius (LG) in man during ankle plantarflexions. The 1D model, by definition, was unable to account for changes in muscle depth. The 2D model predicted change in depth as the aponeurosis was loaded, but could only allow a decrease in depth as the aponeurosis is stretched. This was not sufficient to predict the increases in depth that occur in the LG during plantarflexion. The 3D model had the ability to predict either increases or decreases in depth during the ankle plantarflexions and predicted opposing changes in depth that occurred between the MG and LG, whilst simultaneously predicting the pennation more accurately than the 1D or 2D models. However, when using mean parameters, the 3D model performed no better than the more simple 1D model, and so if the intent of a model is purely to establish a good relation between fascicle length and pennation then the 1D model is a suitable choice for these muscles.

  18. Tensile strength of a weave tendon suture using tendons of different sizes.

    PubMed

    Mazurek, Tomasz; Strankowski, Michał; Ceynowa, Marcin; Rocławski, Marek

    2011-05-01

    This study compared the maximum load, stress, elongation at failure and the mode of failure of three kinds of tendons most frequently used for tendon grafting and tendon transfers, using the Pulvertaft weave suture. Sixty tendons were used from fresh human cadaver upper and lower extremities. The performed repairs included: 9 specimens of flexor digitorum superficialis or profundus tendon with flexor digitorum superficialis or profundus tendon (thick-thick suture), 10 specimens of flexor digitorum superficialis or profundus tendon with palmaris longus tendon (thick-medium thin suture), and 10 specimens of flexor digitorum superficialis or profundus tendon with plantaris tendon (thick-thin suture). Material testing machine was used to test repairs to failure. The mean maximum load at failure increased with the thickness of donor tendon. For the thick-thick specimen, the maximum load at failure was 125 newtons (N), for the thick-medium thin specimen it was 86,8N, and for the thick-thin it was 65,2N. These differences were all statistically significant. The active rehabilitation protocol is possible only with thick-thick connections used, the strength of the thick-medium thin connection is on the border of indications for the active rehabilitation protocol, and the thick-thin connection strength is sufficient only for the passive rehabilitation protocol. Copyright © 2010. Published by Elsevier Ltd.

  19. Oxygen free radicals and tendon healing.

    PubMed

    Murrell, George A C

    2007-01-01

    Nitric oxide is a small free radical generated by a family of enzymes, the nitric oxide synthases (NOSs). In a series of experiments performed over the last 15 years, we showed that nitric oxide is induced by all 3 isoforms of NOS during tendon healing and that it plays a crucial beneficial role in restoring tendon function. In normal tendons, very little NOS activity was found, whereas in injured rat and human tendons, NOS activity was expressed in healing fibroblasts in a temporal fashion. In healing rat Achilles tendon fibroblasts, the first isoform to be expressed was endothelial NOS, followed by inducible NOS and then brain or neuronal NOS. Systemic inhibition of NOS activity decreased the cross-sectional area and mechanical properties of the healing rodent Achilles tendons. The addition of nitric oxide via nitric oxide-flurbiprofen enhanced rat Achilles tendon healing. The addition of nitric oxide to cultured human tendon cells via chemical means and via adenoviral transfection enhanced collagen synthesis, suggesting that one mechanism for the beneficial effect of nitric oxide on tendon healing might be via matrix synthesis. Most recently, 3 randomized, double-blind clinical trials evaluated the efficacy of nitric oxide donation via a patch in the management of the tendinopathy. In all 3 clinical trials, there was a significant positive beneficial effect of nitric oxide donation to the clinical symptoms and function of patients with Achilles tendinopathy, tennis elbow, and supraspinatus tendinitis.

  20. Hyaluronic acid and tendon lesions

    PubMed Central

    Kaux, Jean-François; Samson, Antoine; Crielaard, Jean-Michel

    2015-01-01

    Summary Introduction recently, the viscoelastic properties of hyaluronic acid (HA) on liquid connective tissue have been proposed for the treatment of tendinopathies. Some fundamental studies show encouraging results on hyaluronic acid’s ability to promote tendon gliding and reduce adhesion as well as to improve tendon architectural organisation. Some observations also support its use in a clinical setting to improve pain and function. This literature review analyses studies relating to the use of hyaluronic acid in the treatment of tendinopathies. Methods this review was constructed using the Medline database via Pubmed, Scopus and Google Scholar. The key words hyaluronic acid, tendon and tendinopathy were used for the research. Results in total, 28 articles (in English and French) on the application of hyaluronic acid to tendons were selected for their relevance and scientific quality, including 13 for the in vitro part, 7 for the in vivo animal part and 8 for the human section. Conclusions preclinical studies demonstrate encouraging results: HA permits tendon gliding, reduces adhesions, creates better tendon architectural organisation and limits inflammation. These laboratory observations appear to be supported by limited but encouraging short-term clinical results on pain and function. However, controlled randomised studies are still needed. PMID:26958533

  1. Management of Extensor Tendon Injuries

    PubMed Central

    Griffin, M; Hindocha, S; Jordan, D; Saleh, M; Khan, W

    2012-01-01

    Extensor tendon injuries are very common injuries, which inappropriately treated can cause severe lasting impairment for the patient. Assessment and management of flexor tendon injuries has been widely reviewed, unlike extensor injuries. It is clear from the literature that extensor tendon repair should be undertaken immediately but the exact approach depends on the extensor zone. Zone I injuries otherwise known as mallet injuries are often closed and treated with immobilisaton and conservative management where possible. Zone II injuries are again conservatively managed with splinting. Closed Zone III or ‘boutonniere’ injuries are managed conservatively unless there is evidence of displaced avulsion fractures at the base of the middle phalanx, axial and lateral instability of the PIPJ associated with loss of active or passive extension of the joint or failed non-operative treatment. Open zone III injuries are often treated surgically unless splinting enable the tendons to come together. Zone V injuries, are human bites until proven otherwise requires primary tendon repair after irrigation. Zone VI injuries are close to the thin paratendon and thin subcutaneous tissue which strong core type sutures and then splinting should be placed in extension for 4-6 weeks. Complete lacerations to zone IV and VII involve surgical primary repair followed by 6 weeks of splinting in extension. Zone VIII require multiple figure of eight sutures to repair the muscle bellies and static immobilisation of the wrist in 45 degrees of extension. To date there is little literature documenting the quality of repairing extensor tendon injuries however loss of flexion due to extensor tendon shortening, loss of flexion and extension resulting from adhesions and weakened grip can occur after surgery. This review aims to provide a systematic examination method for assessing extensor injuries, presentation and management of all type of extensor tendon injuries as well as guidance on

  2. Plyometric Training Favors Optimizing Muscle–Tendon Behavior during Depth Jumping

    PubMed Central

    Hirayama, Kuniaki; Iwanuma, Soichiro; Ikeda, Naoki; Yoshikawa, Ayumi; Ema, Ryoichi; Kawakami, Yasuo

    2017-01-01

    The purpose of the present study was to elucidate how plyometric training improves stretch–shortening cycle (SSC) exercise performance in terms of muscle strength, tendon stiffness, and muscle–tendon behavior during SSC exercise. Eleven men were assigned to a training group and ten to a control group. Subjects in the training group performed depth jumps (DJ) using only the ankle joint for 12 weeks. Before and after the period, we observed reaction forces at foot, muscle–tendon behavior of the gastrocnemius, and electromyographic activities of the triceps surae and tibialis anterior during DJ. Maximal static plantar flexion strength and Achilles tendon stiffness were also determined. In the training group, maximal strength remained unchanged while tendon stiffness increased. The force impulse of DJ increased, with a shorter contact time and larger reaction force over the latter half of braking and initial half of propulsion phases. In the latter half of braking phase, the average electromyographic activity (mEMG) increased in the triceps surae and decreased in tibialis anterior, while fascicle behavior of the gastrocnemius remained unchanged. In the initial half of propulsion, mEMG of triceps surae and shortening velocity of gastrocnemius fascicle decreased, while shortening velocity of the tendon increased. These results suggest that the following mechanisms play an important role in improving SSC exercise performance through plyometric training: (1) optimization of muscle–tendon behavior of the agonists, associated with alteration in the neuromuscular activity during SSC exercise and increase in tendon stiffness and (2) decrease in the neuromuscular activity of antagonists during a counter movement. PMID:28179885

  3. Plyometric Training Favors Optimizing Muscle-Tendon Behavior during Depth Jumping.

    PubMed

    Hirayama, Kuniaki; Iwanuma, Soichiro; Ikeda, Naoki; Yoshikawa, Ayumi; Ema, Ryoichi; Kawakami, Yasuo

    2017-01-01

    The purpose of the present study was to elucidate how plyometric training improves stretch-shortening cycle (SSC) exercise performance in terms of muscle strength, tendon stiffness, and muscle-tendon behavior during SSC exercise. Eleven men were assigned to a training group and ten to a control group. Subjects in the training group performed depth jumps (DJ) using only the ankle joint for 12 weeks. Before and after the period, we observed reaction forces at foot, muscle-tendon behavior of the gastrocnemius, and electromyographic activities of the triceps surae and tibialis anterior during DJ. Maximal static plantar flexion strength and Achilles tendon stiffness were also determined. In the training group, maximal strength remained unchanged while tendon stiffness increased. The force impulse of DJ increased, with a shorter contact time and larger reaction force over the latter half of braking and initial half of propulsion phases. In the latter half of braking phase, the average electromyographic activity (mEMG) increased in the triceps surae and decreased in tibialis anterior, while fascicle behavior of the gastrocnemius remained unchanged. In the initial half of propulsion, mEMG of triceps surae and shortening velocity of gastrocnemius fascicle decreased, while shortening velocity of the tendon increased. These results suggest that the following mechanisms play an important role in improving SSC exercise performance through plyometric training: (1) optimization of muscle-tendon behavior of the agonists, associated with alteration in the neuromuscular activity during SSC exercise and increase in tendon stiffness and (2) decrease in the neuromuscular activity of antagonists during a counter movement.

  4. Medial gastrocnemius muscle growth during adolescence is mediated by increased fascicle diameter rather than by longitudinal fascicle growth.

    PubMed

    Weide, Guido; Huijing, Peter A; Maas, Josina C; Becher, Jules G; Harlaar, Jaap; Jaspers, Richard T

    2015-06-01

    Using a cross-sectional design, the purpose of this study was to determine how pennate gastrocnemius medialis (GM) muscle geometry changes as a function of adolescent age. Sixteen healthy adolescent males (aged 10-19 years) participated in this study. GM muscle geometry was measured within the mid-longitudinal plane obtained from a 3D voxel-array composed of transverse ultrasound images. Images were taken at footplate angles corresponding to standardised externally applied footplate moments (between 4 Nm plantar flexion and 6 Nm dorsal flexion). Muscle activity was recorded using surface electromyography (EMG), expressed as a percentage of maximal voluntary contraction (%MVC). To minimise the effects of muscle excitation, EMG inclusion criteria were set at <10% of MVC. In practice, however, normalised EMG levels were much lower. For adolescent subjects with increasing ages, GM muscle (belly) length increased due to an increase in the length component of the physiological cross-sectional area measured within the mid-longitudinal plane. No difference was found between fascicles at different ages, but the aponeurosis length and pennation angle increased by 0.5 cm year(-1) and 0.5° per year, respectively. Footplate angles corresponding to externally applied 0 and 4 Nm plantarflexion moments were not associated with different adolescent ages. In contrast, footplate angles corresponding to externally applied 4 and 6 Nm dorsal flexion moments decreased by 10° between 10 and 19 years. In conclusion, we found that in adolescents' pennate GM muscles, longitudinal muscle growth is mediated predominantly by increased muscle fascicle diameter.

  5. Medial gastrocnemius muscle growth during adolescence is mediated by increased fascicle diameter rather than by longitudinal fascicle growth

    PubMed Central

    Weide, Guido; Huijing, Peter A; Maas, Josina C; Becher, Jules G; Harlaar, Jaap; Jaspers, Richard T

    2015-01-01

    Using a cross-sectional design, the purpose of this study was to determine how pennate gastrocnemius medialis (GM) muscle geometry changes as a function of adolescent age. Sixteen healthy adolescent males (aged 10–19 years) participated in this study. GM muscle geometry was measured within the mid-longitudinal plane obtained from a 3D voxel-array composed of transverse ultrasound images. Images were taken at footplate angles corresponding to standardised externally applied footplate moments (between 4 Nm plantar flexion and 6 Nm dorsal flexion). Muscle activity was recorded using surface electromyography (EMG), expressed as a percentage of maximal voluntary contraction (%MVC). To minimise the effects of muscle excitation, EMG inclusion criteria were set at < 10% of MVC. In practice, however, normalised EMG levels were much lower. For adolescent subjects with increasing ages, GM muscle (belly) length increased due to an increase in the length component of the physiological cross-sectional area measured within the mid-longitudinal plane. No difference was found between fascicles at different ages, but the aponeurosis length and pennation angle increased by 0.5 cm year−1 and 0.5 ° per year, respectively. Footplate angles corresponding to externally applied 0 and 4 Nm plantarflexion moments were not associated with different adolescent ages. In contrast, footplate angles corresponding to externally applied 4 and 6 Nm dorsal flexion moments decreased by 10 ° between 10 and 19 years. In conclusion, we found that in adolescents' pennate GM muscles, longitudinal muscle growth is mediated predominantly by increased muscle fascicle diameter. PMID:25879671

  6. Effect of wrist and interphalangeal thumb movement on zone T2 flexor pollicis longus tendon tension in a human cadaver model.

    PubMed

    Rappaport, Patricia O; Thoreson, Andrew R; Yang, Tai-Hua; Reisdorf, Ramona L; Rappaport, Stephen M; An, Kai-Nan; Amadio, Peter C

    2015-01-01

    Therapy after flexor pollicis longus (FPL) repair typically mimics finger flexor management, but this ignores anatomic and biomechanical features unique to the FPL. We measured FPL tendon tension in zone T2 to identify biomechanically appropriate exercises for mobilizing the FPL. Eight human cadaver hands were studied to identify motions that generated enough force to achieve FPL movement without exceeding hypothetical suture strength. With the carpometacarpal and metacarpophalangeal joints blocked, appropriate forces were produced for both passive interphalangeal (IP) motion with 30° wrist extension and simulated active IP flexion from 0° to 35° with the wrist in the neutral position. This work provides a biomechanical basis for safely and effectively mobilizing the zone T2 FPL tendon. Our cadaver study suggests that it is safe and effective to perform early passive and active exercise to an isolated IP joint. NA. Copyright © 2015 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  7. Development of the Human Biceps Brachii Tendon and Coracoglenoid Ligament (7th-12th Week of Development).

    PubMed

    de la Cuadra-Blanco, Crótida; Arráez-Aybar, Luis A; Murillo-González, Jorge A; Herrera-Lara, Manuel E; Mérida-Velasco, Juan A; Mérida-Velasco, José R

    2017-01-01

    The goal of this study is to clarify the development of the long head of the biceps brachii tendon (LHBT) and to verify the existence and development of the coracoglenoid ligament. Histological preparations of 22 human embryos (7-8 weeks of development) and 43 human fetuses (9-12 weeks of development) were studied bilaterally using a conventional optical microscope. The articular interzone gives rise to the LHBT, glenoid labrum, and articular capsule. During the fetal period, it was observed that in 50 cases (58%), the LHBT originated from both the glenoid labrum and the scapula, while in 36 cases (42%), it originated only from the glenoid labrum. The coracoglenoid ligament, first described by Sappey in 1867, is a constant structure that originates at the base of the coracoid process and projects toward the glenoid labrum zone, which is related to the origin of the LHBT. The coracoglenoid ligament was more easily identifiable in the 36 cases in which the LHBT originated only from the glenoid labrum. We suggest that the coracoglenoid ligament is a constant anatomical structure, is not derived from the articular interzone unlike the LHBT, and contributes to the fixation of the glenoid labrum in the scapula in cases in which the LHBT originated only from the glenoid labrum. We postulate that, when the LHBT is fixed only at the glenoid labrum, alterations in the coracoglenoid ligament could lead to a less sufficient attachment of the glenoid labrum to the scapula which could predispose to a superior labral lesion. © 2017 S. Karger AG, Basel.

  8. Endoscopic adhesiolysis for extensive tibialis posterior tendon and Achilles tendon adhesions following compound tendon rupture

    PubMed Central

    Lui, Tun Hing

    2013-01-01

    Tendon adhesion is one of the most common causes of disability following tendon surgery. A case of extensive peritendinous adhesions of the Achilles tendon and tibialis posterior tendon after compound rupture of the tendons was reported. This was managed by endoscopic adhesiolysis of both tendons. The endoscopic approach allows early postoperative mobilisation which can relieve the tendon adhesion. PMID:24045762

  9. In vivo fascicle behavior of the flexor hallucis longus muscle at different walking speeds.

    PubMed

    Péter, A; Hegyi, A; Finni, T; Cronin, N J

    2017-02-03

    Ankle plantar flexor muscles support and propel the body in the stance phase of locomotion. Besides the triceps surae, flexor hallucis longus muscle (FHL) may also contribute to this role, but very few in vivo studies have examined FHL function during walking. Here, we investigated FHL fascicle behavior at different walking speeds. Ten healthy males walked overground at three different speeds while FHL fascicle length changes were recorded with ultrasound and muscle activity was recorded with surface electromyography (EMG). Fascicle length at heel strike at toe off and at peak EMG activity did not change with speed. Range of FHL fascicle length change (3.5-4.5 and 1.9-2.9 mm on average in stance and push-off phase, respectively), as well as minimum (53.5-54.9 and 53.8-55.7 mm) and maximum (58-58.4 and 56.8-57.7 mm) fascicle length did not change with speed in the stance or push-off phase. Mean fascicle velocity did not change in the stance phase, but increased significantly in the push-off phase between slow and fast walking speeds (P=.021). EMG activity increased significantly in both phases from slow to preferred and preferred to fast speed (P<.02 in all cases). FHL muscle fascicles worked near-isometrically during the whole stance phase (at least during slow walking) and operated at approximately the same length at different walking speeds. FHL and medial gastrocnemius (MG) have similar fiber length to muscle belly length ratios and, according to our results, also exhibit similar fascicle behavior at different walking speeds. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Cervical Spine Muscle-Tendon Unit Length Differences Between Neutral and Forward Head Postures: Biomechanical Study Using Human Cadaveric Specimens.

    PubMed

    Khayatzadeh, Saeed; Kalmanson, Olivia A; Schuit, Dale; Havey, Robert M; Voronov, Leonard I; Ghanayem, Alexander J; Patwardhan, Avinash G

    2017-07-01

    Forward head posture (FHP) may be associated with neck pain and poor health-related quality of life. Literature describes only qualitative muscle length changes associated with FHP. The purpose of this study was to quantify how muscle-tendon unit lengths are altered when human cadaveric specimens are placed in alignments representing different severities of FHP. This biomechanical study used 13 fresh-frozen cadaveric cervical spine specimens (Occiput-T1, 54±15 y). Specimens' postural changes simulating increasing FHP severity while maintaining horizontal gaze were assessed. Specimen-specific anatomic models derived from computed tomography-based anatomic data were combined with postural data and specimen-specific anatomy of muscle attachment points to estimate the muscle length changes associated with FHP. Forward head posture was associated with flexion of the mid-lower cervical spine and extension of the upper cervical (sub-occipital) spine. Muscles that insert on the cervical spine and function as flexors (termed "cervical flexors") as well as muscles that insert on the cranium and function as extensors ("occipital extensors") shortened in FHP when compared to neutral posture. In contrast, muscles that insert on the cervical spine and function as extensors ("cervical extensors") as well as muscles that insert on the cranium and function as flexors ("occipital flexors") lengthened. The greatest shortening was seen in the major and minor rectus capitis posterior muscles. These muscles cross the Occiput-C2 segments, which exhibited extension to maintain horizontal gaze. The greatest lengthening was seen in posterior muscles crossing the C4-C6 segments, which exhibited the most flexion. This cadaver study did not incorporate the biomechanical influence of active musculature. This study offers a novel way to quantify postural alignment and muscle length changes associated with FHP. Model predictions are consistent with qualitative descriptions in the literature.

  11. Electromyographic reflexes evoked in human wrist flexors by tendon extension and by displacement of the wrist joint.

    PubMed Central

    Cody, F W; Plant, T

    1989-01-01

    1. The electromyographic (EMG) reflexes evoked in the wrist flexor muscle, flexor carpi radialis (FCR), by percutaneous extension of its tendon and by forcible extension of the wrist joint have been studied. Reflexes were elicited during steadily maintained voluntary flexor contraction of 10% of each subject's maximum. 2. Tendon extension, using 'ramp and hold' displacements, evoked fairly prolonged (ca 50 ms) increases in EMG activity. These responses were usually subdivided into two main excitatory peaks of respectively short (SL, ca 20 ms) and long (LL, ca 45 ms) latency. This pattern contrasted with that observed following brief tendon taps when only a single, SL peak was elicited. 3. 'Stretch' reflexes evoked by 'ramp and hold' wrist extensions, as has been noted by numerous earlier investigators, were also protracted and comprised two main excitatory components. These responses resembled those produced by tendon extension both in their general form and in their behaviour upon altering the velocity of mechanical stimuli. Quantitatively, however, two main differences were evident. The reflexes evoked by wrist extension, including their SL and LL peaks, were generally somewhat larger. Additionally, when parameters of the two modes of stimulation were adjusted to elicit SL responses of equivalent amplitude, the LL responses elicited by tendon extension were regularly smaller and of shorter duration than those elicited by wrist extension. 4. Termination of the two forms of mechanical stimulation, by releasing tendon or wrist extension, each elicited a SL reduction in EMG activity. Such troughs were more pronounced and more consistently observed upon release of wrist extension. 5. Neither local anaesthesia of the skin overlying the flexor tendons at the wrist nor ischaemia of the hand and lower forearm produced any systematic modification of reflex response patterns. 6. It is concluded that intramuscular receptors (presumably muscle spindles) in FCR mediate both

  12. Rethinking the role of the middle longitudinal fascicle in language and auditory pathways.

    PubMed

    Wang, Yibao; Fernández-Miranda, Juan C; Verstynen, Timothy; Pathak, Sudhir; Schneider, Walter; Yeh, Fang-Cheng

    2013-10-01

    The middle longitudinal fascicle (MdLF) was originally described in the monkey brain as a pathway that interconnects the superior temporal and angular gyri. Only recently have diffusion tensor imaging studies provided some evidence of its existence in humans, with a connectivity pattern similar to that in monkeys and a potential role in the language system. In this study, we combine high-angular-resolution fiber tractography and fiber microdissection techniques to determine the trajectory, cortical connectivity, and a quantitative analysis of the MdLF. Here, we analyze diffusion spectrum imaging (DSI) studies in 6 subjects (subject-specific approach) and in a template of 90 DSI studies (NTU-90 Atlas). Our tractography and microdissection results show that the human MdLF differs significantly from the monkey. Indeed, the human MdLF interconnects the superior temporal gyrus with the superior parietal lobule and parietooccipital region, and has only minor connections with the angular gyrus. On the basis of the roles of these interconnected cortical regions, we hypothesize that, rather than a language-related tract, the MdLF may contribute to the dorsal "where" pathway of the auditory system.

  13. Structure-mechanics relationships in mineralized tendons.

    PubMed

    Spiesz, Ewa M; Zysset, Philippe K

    2015-12-01

    In this paper, we review the hierarchical structure and the resulting elastic properties of mineralized tendons as obtained by various multiscale experimental and computational methods spanning from nano- to macroscale. The mechanical properties of mineralized collagen fibres are important to understand the mechanics of hard tissues constituted by complex arrangements of these fibres, like in human lamellar bone. The uniaxial mineralized collagen fibre array naturally occurring in avian tendons is a well studied model tissue for investigating various stages of tissue mineralization and the corresponding elastic properties. Some avian tendons mineralize with maturation, which results in a graded structure containing two zones of distinct morphology, circumferential and interstitial. These zones exhibit different amounts of mineral, collagen, pores and a different mineral distribution between collagen fibrillar and extrafibrillar space that lead to distinct elastic properties. Mineralized tendon cells have two phenotypes: elongated tenocytes placed between fibres in the circumferential zone and cuboidal cells with lower aspect ratios in the interstitial zone. Interestingly some regions of avian tendons seem to be predestined to mineralization, which is exhibited as specific collagen cross-linking patterns as well as distribution of minor tendon constituents (like proteoglycans) and loss of collagen crimp. Results of investigations in naturally mineralizing avian tendons may be useful in understanding the pathological mineralization occurring in some human tendons.

  14. Flexor tendon tissue engineering: acellularized and reseeded tendon constructs.

    PubMed

    Chong, Alphonsus K S; Riboh, Jonathan; Smith, R Lane; Lindsey, Derek P; Pham, Hung M; Chang, James

    2009-06-01

    Tissue engineering of flexor tendons requires scaffolds with adequate strength and biocompatibility. The biomechanical properties of acellularized and reseeded flexor tendon scaffolds are unknown. Acellularized tendons and reseeded constructs were tested to determine whether the treatment process had altered their biomechanical properties. Rabbit flexor tendons were acellularized using a freeze-thaw cycle followed by trypsin and Triton-X treatment. Complete acellularization of the tendon samples was confirmed by histology and by attempting to obtain viable cells by trypsin treatment of acellularized tendon. Reseeded constructs were obtained by incubating acellularized tendons in a tenocyte suspension. Tensile testing was performed to compare the ultimate tensile stress and elastic modulus of acellularized tendons and reseeded flexor tendon constructs to control flexor tendons. The treatment protocol successfully acellularized flexor tendons. No cells were seen within the tendon on histologic assessment, and no viable cells could be obtained from acellularized tendon. Acellularized tendon was successfully reseeded with tenocytes, although cell adhesion was limited to the surface of the tendon scaffold. Tensile testing showed that acellularized tendon had the same ultimate stress and elastic modulus as normal tendons. Reseeded tendons had the same elastic modulus as normal tendons, but hind-paw tendon constructs showed a decrease in ultimate stress compared with normal tendons (50.09 MPa versus 66.01 MPa, p = 0.026). Acellularized flexor tendons are a potential high-strength scaffold for flexor tendon tissue engineering. This approach of acellularization and reseeding of flexor tendons may provide additional intrasynovial graft material for hand reconstruction.

  15. The series elastic shock absorber: tendon elasticity modulates energy dissipation by muscle during burst deceleration

    PubMed Central

    Konow, Nicolai; Roberts, Thomas J.

    2015-01-01

    During downhill running, manoeuvring, negotiation of obstacles and landings from a jump, mechanical energy is dissipated via active lengthening of limb muscles. Tendon compliance provides a ‘shock-absorber’ mechanism that rapidly absorbs mechanical energy and releases it more slowly as the recoil of the tendon does work to stretch muscle fascicles. By lowering the rate of muscular energy dissipation, tendon compliance likely reduces the risk of muscle injury that can result from rapid and forceful muscle lengthening. Here, we examine how muscle–tendon mechanics are modulated in response to changes in demand for energy dissipation. We measured lateral gastrocnemius (LG) muscle activity, force and fascicle length, as well as leg joint kinematics and ground-reaction force, as turkeys performed drop-landings from three heights (0.5–1.5 m centre-of-mass elevation). Negative work by the LG muscle–tendon unit during landing increased with drop height, mainly owing to greater muscle recruitment and force as drop height increased. Although muscle strain did not increase with landing height, ankle flexion increased owing to increased tendon strain at higher muscle forces. Measurements of the length–tension relationship of the muscle indicated that the muscle reached peak force at shorter and likely safer operating lengths as drop height increased. Our results indicate that tendon compliance is important to the modulation of energy dissipation by active muscle with changes in demand and may provide a mechanism for rapid adjustment of function during deceleration tasks of unpredictable intensity. PMID:25716796

  16. Polarization-dependent optical second-harmonic imaging of a rat-tail tendon.

    PubMed

    Stoller, Patrick; Kim, Beop-Min; Rubenchik, Alexander M; Reiser, Karen M; Da Silva, Luiz B

    2002-04-01

    Using scanning confocal microscopy, we measure the backscattered second harmonic signal generated by a 100 fs laser in rat-tail tendon collagen. Damage to the sample is avoided by using a continuous scanning technique, rather than measuring the signal at discrete points. The second harmonic signal varies by about a factor of 2 across a single cross section of the rat-tail tendon fascicle. The signal intensity depends both on the collagen organization and the backscattering efficiency. This implies that we cannot use intensity measurements alone to characterize collagen structure. However, we can infer structural information from the polarization dependence of the second harmonic signal. Axial and transverse scans for different linear polarization angles of the input beam show that second harmonic generation (SHG) in the rat-tail tendon depends strongly on the polarization of the input laser beam. We develop an analytical model for the SHG as a function of the polarization angle in the rat-tail tendon. We apply this model in determining the orientation of collagen fibrils in the fascicle and the ratio gamma between the two independent elements of the second-order nonlinear susceptibility tensor. There is a good fit between our model and the measured data.

  17. Closed flexor tendon ruptures.

    PubMed

    Netscher, David T; Badal, Justin J

    2014-11-01

    We review different causes, diagnoses, and treatment options of closed flexor tendon disruptions in the hand. A classification of closed tendon ruptures based on their mechanism includes traumatic tendon avulsion, spontaneous midsubstance rupture, attrition rupture, infiltrative tenosynovial rupture, and iatrogenic. Certain conditions result in tendon disruption inflicted by more than 1 of these etiologies. In rheumatoid arthritis, tendon rupture may result from attrition on an exposed rough surface, proliferative tenosynovial tendon infiltration, or steroid use. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  18. Triceps surae muscle-tendon properties in older endurance- and sprint-trained athletes.

    PubMed

    Stenroth, Lauri; Cronin, Neil J; Peltonen, Jussi; Korhonen, Marko T; Sipilä, Sarianna; Finni, Taija

    2016-01-01

    Previous studies have shown that aging is associated with alterations in muscle architecture and tendon properties (Morse CI, Thom JM, Birch KM, Narici MV. Acta Physiol Scand 183: 291-298, 2005; Narici MV, Maganaris CN, Reeves ND, Capodaglio P. J Appl Physiol 95: 2229-2234, 2003; Stenroth L, Peltonen J, Cronin NJ, Sipila S, Finni T. J Appl Physiol 113: 1537-1544, 2012). However, the possible influence of different types of regular exercise loading on muscle architecture and tendon properties in older adults is poorly understood. To address this, triceps surae muscle-tendon properties were examined in older male endurance (OE, n = 10, age = 74.0 ± 2.8 yr) and sprint runners (OS, n = 10, age = 74.4 ± 2.8 yr), with an average of 42 yr of regular training experience, and compared with age-matched [older control (OC), n = 33, age = 74.8 ± 3.6 yr] and young untrained controls (YC, n = 18, age = 23.7 ± 2.0 yr). Compared with YC, Achilles tendon cross-sectional area (CSA) was 22% (P = 0.022), 45% (P = 0.001), and 71% (P < 0.001) larger in OC, OE, and OS, respectively. Among older groups, OS had significantly larger tendon CSA compared with OC (P = 0.033). No significant between-group differences were observed in Achilles tendon stiffness. In older groups, Young's modulus was 31-44%, and maximal tendon stress 44-55% lower, than in YC (P ≤ 0.001). OE showed shorter soleus fascicle length than both OC (P < 0.05) and YC (P < 0.05). These data suggest that long-term running does not counteract the previously reported age-related increase in tendon CSA, but, instead, may have an additive effect. The greatest Achilles tendon CSA was observed in OS followed by OE and OC, suggesting that adaptation to running exercise is loading intensity dependent. Achilles tendon stiffness was maintained in older groups, even though all older groups displayed larger tendon CSA and lower tendon Young's modulus. Shorter soleus muscle fascicles in OE runners may be an adaptation to life

  19. In vivo quantification of the shear modulus of the human Achilles tendon during passive loading using shear wave dispersion analysis

    NASA Astrophysics Data System (ADS)

    Helfenstein-Didier, C.; Andrade, R. J.; Brum, J.; Hug, F.; Tanter, M.; Nordez, A.; Gennisson, J.-L.

    2016-03-01

    The shear wave velocity dispersion was analyzed in the Achilles tendon (AT) during passive dorsiflexion using a phase velocity method in order to obtain the tendon shear modulus (C 55). Based on this analysis, the aims of the present study were (i) to assess the reproducibility of the shear modulus for different ankle angles, (ii) to assess the effect of the probe locations, and (iii) to compare results with elasticity values obtained with the supersonic shear imaging (SSI) technique. The AT shear modulus (C 55) consistently increased with the ankle dorsiflexion (N  =  10, p  <  0.05). Furthermore, the technique showed a very good reproducibility (all standard error of the mean values  <10.7 kPa and all coefficient of variation (CV) values  ⩽0.05%). In addition, independently from the ankle dorsiflexion, the shear modulus was significantly higher in the proximal location compared to the more distal one. The shear modulus provided by SSI was always lower than C55 and the difference increased with the ankle dorsiflexion. However, shear modulus values provided by both methods were highly correlated (R  =  0.84), indicating that the conventional shear wave elastography technique (SSI technique) can be used to compare tendon mechanical properties across populations. Future studies should determine the clinical relevance of the shear wave dispersion analysis, for instance in the case of tendinopathy or tendon tear.

  20. Elastin is Localised to the Interfascicular Matrix of Energy Storing Tendons and Becomes Increasingly Disorganised With Ageing.

    PubMed

    Godinho, Marta S C; Thorpe, Chavaunne T; Greenwald, Steve E; Screen, Hazel R C

    2017-08-30

    Tendon is composed of fascicles bound together by the interfascicular matrix (IFM). Energy storing tendons are more elastic and extensible than positional tendons; behaviour provided by specialisation of the IFM to enable repeated interfascicular sliding and recoil. With ageing, the IFM becomes stiffer and less fatigue resistant, potentially explaining why older tendons become more injury-prone. Recent data indicates enrichment of elastin within the IFM, but this has yet to be quantified. We hypothesised that elastin is more prevalent in energy storing than positional tendons, and is mainly localised to the IFM. Further, we hypothesised that elastin becomes disorganised and fragmented, and decreases in amount with ageing, especially in energy storing tendons. Biochemical analyses and immunohistochemical techniques were used to determine elastin content and organisation, in young and old equine energy storing and positional tendons. Supporting the hypothesis, elastin localises to the IFM of energy storing tendons, reducing in quantity and becoming more disorganised with ageing. These changes may contribute to the increased injury risk in aged energy storing tendons. Full understanding of the processes leading to loss of elastin and its disorganisation with ageing may aid in the development of treatments to prevent age related tendinopathy.

  1. Diseases of the tendons and tendon sheaths.

    PubMed

    Steiner, Adrian; Anderson, David E; Desrochers, André

    2014-03-01

    Contracted flexor tendon leading to flexural deformity is a common congenital defect in cattle. Arthrogryposis is a congenital syndrome of persistent joint contracture that occurs frequently in Europe as a consequence of Schmallenberg virus infection of the dam. Spastic paresis has a hereditary component, and affected cattle should not be used for breeding purposes. The most common tendon avulsion involves the deep digital flexor tendon. Tendon disruptions may be successfully managed by tenorrhaphy and external coaptation or by external coaptation alone. Medical management alone is unlikely to be effective for purulent tenosynovitis.

  2. Transverse Compression of Tendons.

    PubMed

    Salisbury, S T Samuel; Buckley, C Paul; Zavatsky, Amy B

    2016-04-01

    A study was made of the deformation of tendons when compressed transverse to the fiber-aligned axis. Bovine digital extensor tendons were compression tested between flat rigid plates. The methods included: in situ image-based measurement of tendon cross-sectional shapes, after preconditioning but immediately prior to testing; multiple constant-load creep/recovery tests applied to each tendon at increasing loads; and measurements of the resulting tendon displacements in both transverse directions. In these tests, friction resisted axial stretch of the tendon during compression, giving approximately plane-strain conditions. This, together with the assumption of a form of anisotropic hyperelastic constitutive model proposed previously for tendon, justified modeling the isochronal response of tendon as that of an isotropic, slightly compressible, neo-Hookean solid. Inverse analysis, using finite-element (FE) simulations of the experiments and 10 s isochronal creep displacement data, gave values for Young's modulus and Poisson's ratio of this solid of 0.31 MPa and 0.49, respectively, for an idealized tendon shape and averaged data for all the tendons and E = 0.14 and 0.10 MPa for two specific tendons using their actual measured geometry. The compression load versus displacement curves, as measured and as simulated, showed varying degrees of stiffening with increasing load. This can be attributed mostly to geometrical changes in tendon cross section under load, varying according to the initial 3D shape of the tendon.

  3. Tendon properties and muscle architecture for knee extensors and plantar flexors in boys and men.

    PubMed

    Kubo, Keitaro; Teshima, Takanori; Ikebukuro, Toshihiro; Hirose, Norikazu; Tsunoda, Naoya

    2014-05-01

    The purpose of this study was to compare the elastic properties and size of tendinous structures and muscle architecture for knee extensors and plantar flexors in boys and men. Twenty-two early pubescent boys (9.6-12.7yrs) and 23 young adult men (19.8-26.2yrs) participated in this study. The maximal strain and thickness of tendinous structures for knee extensors and plantar flexors were measured using ultrasonography. In addition, the fascicle lengths of vastus lateralis and medial gastrocnemius muscles were measured. The maximal strain of tendinous structures for plantar flexors was significantly greater in boys than in men, while there was no difference in the maximal strain for knee extensors between the two groups. The relative thickness (to body mass(1/3)) of Achilles tendon was significantly greater in boys than in men, although there was no difference in that of patellar tendon between the two groups. The relative fascicle length (to limb length) of vastus lateralis muscle was significantly lower in boys than in men, although there was no difference in that of medial gastrocnemius muscle between the two groups. These results suggest that the amount of changes in the elastic properties and sizes of tendinous structures and in the fascicle lengths from early pubescence to maturity is different for different muscle groups (in particular, the knee extensors and the plantar flexors). Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The Achilles Tendon Insertion is Crescent-shaped: An In Vitro Anatomic Investigation

    PubMed Central

    Arentz, Sabine; Nauck, Tanja; Dorn-Lange, Nadja V.; Konerding, Moritz A.

    2008-01-01

    Anatomic and operative textbooks and current literature do not clearly describe the Achilles tendon interface to the calcaneal tuberosity. We dissected 51 specimens to identify the detailed anatomy of the Achilles tendon insertion. Achilles tendon fascicles expanded from the anterior aspect of the distal Achilles tendon over the retrocalcaneal bursa to the anterior part of the Haglund’s tuberosity in nearly half of the specimens. The insertion of the transverse section of the Achilles tendon regularly had a crescent-shape corresponding to the posterior calcaneal prominence. In transverse sections, all specimens had a curved appearance with a radius of curvature ranging from 13.8 mm to 43.6 mm (mean, 20.4 mm) and Achilles tendon extensions to the lateral and medial calcaneal surfaces reached 1.0 mm (mean) and 3.5 mm (mean) anterior in relation to the most posterior point of the calcaneal tuberosity. Knowledge of the arcuate configuration and of the medial and lateral extensions of the plantaris and the Achilles tendon insertion with respect to the transverse plane is important to avoid iatrogenic complications during resection of Haglund’s tuberosity. PMID:18506561

  5. Angiopoietin-like 4 promotes angiogenesis in the tendon and is increased in cyclically loaded tendon fibroblasts.

    PubMed

    Mousavizadeh, Rouhollah; Scott, Alex; Lu, Alex; Ardekani, Gholamreza S; Behzad, Hayedeh; Lundgreen, Kirsten; Ghaffari, Mazyar; McCormack, Robert G; Duronio, Vincent

    2016-06-01

    Angiopoietin-like 4 (ANGPTL4) modulates tendon neovascularization. Cyclic loading stimulates the activity of transforming growth factor-β and hypoxia-inducible factor 1α and thereby increases the expression and release of ANGPTL4 from human tendon cells. Targeting ANGPTL4 and its regulatory pathways is a potential avenue for regulating tendon vascularization to improve tendon healing or adaptation. The mechanisms that regulate angiogenic activity in injured or mechanically loaded tendons are poorly understood. The present study examined the potential role of angiopoietin-like 4 (ANGPTL4) in the angiogenic response of tendons subjected to repetitive mechanical loading or injury. Cyclic stretching of human tendon fibroblasts stimulated the expression and release of ANGPTL4 protein via transforming growth factor-β (TGF-β) and hypoxia-inducible factor 1α (HIF-1α) signalling, and the released ANGPTL4 was pro-angiogenic. Angiogenic activity was increased following ANGPTL4 injection into mouse patellar tendons, whereas the patellar tendons of ANGPTL4 knockout mice displayed reduced angiogenesis following injury. In human rotator cuff tendons, the expression of ANGPTL4 was correlated with the density of tendon endothelial cells. To our knowledge, this is the first study characterizing a role of ANGPTL4 in the tendon. ANGPTL4 may assist in the regulation of vascularity in the injured or mechanically loaded tendon. TGF-β and HIF-1α comprise two signalling pathways that modulate the expression of ANGPTL4 by mechanically stimulated tendon fibroblasts and, in the future, these could be manipulated to influence tendon healing or adaptation. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  6. Measuring Regional Changes in Damaged Tendon

    NASA Astrophysics Data System (ADS)

    Frisch, Catherine Kayt Vincent

    Mechanical properties of tendon predict tendon health and function, but measuring these properties in vivo is difficult. An ultrasound-based (US) analysis technique called acoustoelastography (AE) uses load-dependent changes in the reflected US signal to estimate tissue stiffness non-invasively. This thesis explores whether AE can provide information about stiffness alteration resulting from tendon tears both ex vivo and in vivo. An ex vivo ovine infraspinatus tendon model suggests that the relative load transmitted by the different tendon layers transmit different fractions of the load and that ultrasound echo intensity change during cyclic loading decreases, becoming less consistent once the tendon is torn. An in vivo human tibialis anterior tendon model using electrically stimulated twitch contractions investigated the feasibility of measuring the effect in vivo. Four of the five subjects showed the expected change and that the muscle contraction times calculated using the average grayscale echo intensity change compared favorably with the times calculated based on the force data. Finally an AE pilot study with patients who had rotator cuff tendon tears found that controlling the applied load and the US view of the system will be crucial to a successful in vivo study.

  7. Achilles tendon: US examination

    SciTech Connect

    Fornage, B.D.

    1986-06-01

    Real-time ultrasonography (US) using linear-array probes and a stand-off pad as a ''waterpath'' was performed to evaluate the Achilles tendon in 67 patients (including 24 athletes) believed to have acute or chronic traumatic or inflammatory pathologic conditions. Tendons in 23 patients appeared normal on US scans. The 44 abnormal tendons comprised five complete and four partial ruptures, seven instances of postoperative change, and 28 cases of tendonitis. US depiction of the inner structure of the tendon resulted in the diagnosis of focal abnormalities, including partial ruptures, nodules, and calcifications. Tendonitis was characterized by enlargement and decreased echogenicity of the tendon. The normal US appearance of the Achilles tendon is described.

  8. Soft Pneumatic Actuator Fascicles for High Force and Reliability

    PubMed Central

    Robertson, Matthew A.; Sadeghi, Hamed; Florez, Juan Manuel

    2017-01-01

    Abstract Soft pneumatic actuators (SPAs) are found in mobile robots, assistive wearable devices, and rehabilitative technologies. While soft actuators have been one of the most crucial elements of technology leading the development of the soft robotics field, they fall short of force output and bandwidth requirements for many tasks. In addition, other general problems remain open, including robustness, controllability, and repeatability. The SPA-pack architecture presented here aims to satisfy these standards of reliability crucial to the field of soft robotics, while also improving the basic performance capabilities of SPAs by borrowing advantages leveraged ubiquitously in biology; namely, the structured parallel arrangement of lower power actuators to form the basis of a larger and more powerful actuator module. An SPA-pack module consisting of a number of smaller SPAs will be studied using an analytical model and physical prototype. Experimental measurements show an SPA pack to generate over 112 N linear force, while the model indicates the benefit of parallel actuator grouping over a geometrically equivalent single SPA scale as an increasing function of the number of individual actuators in the group. For a module of four actuators, a 23% increase in force production over a volumetrically equivalent single SPA is predicted and validated, while further gains appear possible up to 50%. These findings affirm the advantage of utilizing a fascicle structure for high-performance soft robotic applications over existing monolithic SPA designs. An example of high-performance soft robotic platform will be presented to demonstrate the capability of SPA-pack modules in a complete and functional system. PMID:28289573

  9. Soft Pneumatic Actuator Fascicles for High Force and Reliability.

    PubMed

    Robertson, Matthew A; Sadeghi, Hamed; Florez, Juan Manuel; Paik, Jamie

    2017-03-01

    Soft pneumatic actuators (SPAs) are found in mobile robots, assistive wearable devices, and rehabilitative technologies. While soft actuators have been one of the most crucial elements of technology leading the development of the soft robotics field, they fall short of force output and bandwidth requirements for many tasks. In addition, other general problems remain open, including robustness, controllability, and repeatability. The SPA-pack architecture presented here aims to satisfy these standards of reliability crucial to the field of soft robotics, while also improving the basic performance capabilities of SPAs by borrowing advantages leveraged ubiquitously in biology; namely, the structured parallel arrangement of lower power actuators to form the basis of a larger and more powerful actuator module. An SPA-pack module consisting of a number of smaller SPAs will be studied using an analytical model and physical prototype. Experimental measurements show an SPA pack to generate over 112 N linear force, while the model indicates the benefit of parallel actuator grouping over a geometrically equivalent single SPA scale as an increasing function of the number of individual actuators in the group. For a module of four actuators, a 23% increase in force production over a volumetrically equivalent single SPA is predicted and validated, while further gains appear possible up to 50%. These findings affirm the advantage of utilizing a fascicle structure for high-performance soft robotic applications over existing monolithic SPA designs. An example of high-performance soft robotic platform will be presented to demonstrate the capability of SPA-pack modules in a complete and functional system.

  10. Parametric representation of multiple white matter fascicles from cube and sphere diffusion MRI.

    PubMed

    Scherrer, Benoit; Warfield, Simon K

    2012-01-01

    The characterization of the complex diffusion signal arising from the brain remains an open problem. Many representations focus on characterizing the global shape of the diffusion profile at each voxel and are limited to the assessment of connectivity. In contrast, Multiple Fascicle Models (MFM) seek to represent the contribution from each white matter fascicle and may be useful in the investigation of both white matter connectivity and diffusion properties of each individual fascicle. However, the most appropriate representation of multiple fascicles remains unclear. In particular, a multiple tensor representation of multiple fascicles has frequently been reported to be numerically challenging and unstable. We provide here the first analytical demonstration that when using a diffusion MRI acquisition with only one non-zero b-value, such as in conventional single-shell HARDI acquisition, a co-linearity in model parameters makes the precise model estimation impossible. Motivated by this theoretical result, we propose the novel CUSP (CUbe and SPhere) optimal acquisition scheme to achieve multiple non-zero b-values. It combines the gradients of a single-shell HARDI with gradients in its enclosing cube, in which varying b-values can be acquired by modulation of the gradient strength, without modifying the minimum echo time. Compared to a multi-shell HARDI acquisition, our scheme has significantly increased signal-to-noise ratio. We propose a novel estimation algorithm that enables efficient, robust and accurate estimation of the parameters of a multi-tensor model. In conjunction with a CUSP acquisition, it enables full estimation of the multi-tensor model. We present an evaluation of CUSP-MFM on both synthetic phantoms and invivo data. We report qualitative and quantitative experimental evaluations which demonstrate the ability of CUSP-MFM to characterize multiple fascicles from short duration acquisitions. CUSP-MFM enables rapid and effective investigation of multiple

  11. Parametric Representation of Multiple White Matter Fascicles from Cube and Sphere Diffusion MRI

    PubMed Central

    Scherrer, Benoit; Warfield, Simon K.

    2012-01-01

    The characterization of the complex diffusion signal arising from the brain remains an open problem. Many representations focus on characterizing the global shape of the diffusion profile at each voxel and are limited to the assessment of connectivity. In contrast, Multiple Fascicle Models (MFM) seek to represent the contribution from each white matter fascicle and may be useful in the investigation of both white matter connectivity and diffusion properties of each individual fascicle. However, the most appropriate representation of multiple fascicles remains unclear. In particular, a multiple tensor representation of multiple fascicles has frequently been reported to be numerically challenging and unstable. We provide here the first analytical demonstration that when using a diffusion MRI acquisition with only one non-zero b-value, such as in conventional single-shell HARDI acquisition, a co-linearity in model parameters makes the precise model estimation impossible. Motivated by this theoretical result, we propose the novel CUSP (CUbe and SPhere) optimal acquisition scheme to achieve multiple non-zero b-values. It combines the gradients of a single-shell HARDI with gradients in its enclosing cube, in which varying b-values can be acquired by modulation of the gradient strength, without modifying the minimum echo time. Compared to a multi-shell HARDI acquisition, our scheme has significantly increased signal-to-noise ratio. We propose a novel estimation algorithm that enables efficient, robust and accurate estimation of the parameters of a multi-tensor model. In conjunction with a CUSP acquisition, it enables full estimation of the multi-tensor model. We present an evaluation of CUSP-MFM on both synthetic phantoms and invivo data. We report qualitative and quantitative experimental evaluations which demonstrate the ability of CUSP-MFM to characterize multiple fascicles from short duration acquisitions. CUSP-MFM enables rapid and effective investigation of multiple

  12. Relative fascicle excursion effects on dynamic strength generation during gait in children with cerebral palsy.

    PubMed

    Martín Lorenzo, T; Lerma Lara, S; Martínez-Caballero, I; Rocon, E

    2015-10-01

    Evaluation of muscle structure gives us a better understanding of how muscles contribute to force generation which is significantly altered in children with cerebral palsy (CP). While most muscle structure parameters have shown to be significantly correlated to different expressions of strength development in children with CP and typically developing (TD) children, conflicting results are found for muscle fascicle length. Muscle fascicle length determines muscle excursion and velocity, and contrary to what might be expected, correlations of fascicle length to rate of force development have not been found for children with CP. The lack of correlation between muscle fascicle length and rate of force development in children with CP could be due, on the one hand, to the non-optimal joint position adopted for force generation on the isometric strength tests as compared to the position of TD children. On the other hand, the lack of correlation could be due to the erroneous assumption that muscle fascicle length is representative of sarcomere length. Thus, the relationship between muscle architecture parameters reflecting sarcomere length, such as relative fascicle excursions and dynamic power generation, should be assessed. Understanding of the underlying mechanisms of weakness in children with CP is key for individualized prescription and assessment of muscle-targeted interventions. Findings could imply the detection of children operating on the descending limb of the sarcomere length-tension curve, which in turn might be at greater risk of developing crouch gait. Furthermore, relative muscle fascicle excursions could be used as a predictive variable of outcomes related to crouch gait prevention treatments such as strength training. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. The human patellar tendon moment arm assessed in vivo using dual-energy X-ray absorptiometry.

    PubMed

    Erskine, Robert M; Morse, Christopher I; Day, Stephen H; Williams, Alun G; Onambele-Pearson, Gladys L

    2014-04-11

    Accurate assessment of muscle-tendon forces in vivo requires knowledge of the muscle-tendon moment arm. Dual-energy X-ray absorptiometry (DXA) can produce 2D images suitable for visualising both tendon and bone, thereby potentially allowing the moment arm to be measured but there is currently no validated DXA method for this purpose. The aims of this study were (i) to compare in vivo measurements of the patellar tendon moment arm (dPT) assessed from 2D DXA and magnetic resonance (MR) images and (ii) to compare the reliability of the two methods. Twelve healthy adults (mean ± SD: 31.4 ± 9.5 yr; 174.0 ± 9.5 cm; 76.2 ± 16.6 kg) underwent two DXA and two MR scans of the fully extended knee at rest. The tibiofemoral contact point (TFCP) was used as the centre of joint rotation in both techniques, and the dPT was defined as the perpendicular distance from the patellar tendon axis to the TFCP. The dPT was consistently longer when assessed via DXA compared to MRI (+3.79 ± 1.25 mm or +9.78 ± 3.31%; P<0.001). The test-retest reliability of the DXA [CV=2.13%; ICC=0.94; ratio limits of agreement (RLA)=1.01 (*/÷1.07)] and MR [(CV=2.27%; ICC=0.96; RLA=1.00 (*/÷1.07)] methods was very high and comparable between techniques. Moreover, the RLA between the mean DXA and MRI dPT values [1.097 (*/÷1.061)] demonstrated very strong agreement between the two methods. In conclusion, highly reproducible dPT measurements can be determined from DXA imaging with the knee fully extended at rest. This has implications for the calculation of patellar tendon forces in vivo where MR equipment is not available. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Musculoskeletal diseases—tendon

    PubMed Central

    Sakabe, Tomoya; Sakai, Takao

    2011-01-01

    Introduction Tendons establish specific connections between muscles and the skeleton by transferring contraction forces from skeletal muscle to bone thereby allowing body movement. Tendon physiology and pathology are heavily dependent on mechanical stimuli. Tendon injuries clinically represent a serious and still unresolved problem since damaged tendon tissues heal very slowly and no surgical treatment can restore a damaged tendon to its normal structural integrity and mechanical strength. Understanding how mechanical stimuli regulate tendon tissue homeostasis and regeneration will improve the treatment of adult tendon injuries that still pose a great challenge in today's medicine. Source of data This review summarizes the current status of tendon treatment and discusses new directions from the point of view of cell-based therapy and regenerative medicine approach. We searched the available literature using PubMed for relevant original articles and reviews. Growing points Identification of tendon cell markers has enabled us to study precisely tendon healing and homeostasis. Clinically, tissue engineering for tendon injuries is an emerging technology comprising elements from the fields of cellular source, scaffold materials, growth factors/cytokines and gene delivering systems. Areas timely for developing research The clinical settings to establish appropriate microenvironment for injured tendons with the combination of these novel cellular- and molecular-based scaffolds will be critical for the treatment. PMID:21729872

  15. Biologics for tendon repair☆

    PubMed Central

    Docheva, Denitsa; Müller, Sebastian A.; Majewski, Martin; Evans, Christopher H.

    2015-01-01

    Tendon injuries are common and present a clinical challenge to orthopedic surgery mainly because these injuries often respond poorly to treatment and require prolonged rehabilitation. Therapeutic options used to repair ruptured tendons have consisted of suture, autografts, allografts, and synthetic prostheses. To date, none of these alternatives has provided a successful long-term solution, and often the restored tendons do not recover their complete strength and functionality. Unfortunately, our understanding of tendon biology lags far behind that of other musculoskeletal tissues, thus impeding the development of new treatment options for tendon conditions. Hence, in this review, after introducing the clinical significance of tendon diseases and the present understanding of tendon biology, we describe and critically assess the current strategies for enhancing tendon repair by biological means. These consist mainly of applying growth factors, stem cells, natural biomaterials and genes, alone or in combination, to the site of tendon damage. A deeper understanding of how tendon tissue and cells operate, combined with practical applications of modern molecular and cellular tools could provide the long awaited breakthrough in designing effective tendon-specific therapeutics and overall improvement of tendon disease management. PMID:25446135

  16. Effects of prolonged walking on neural and mechanical components of stretch responses in the human soleus muscle

    PubMed Central

    Cronin, Neil J; Ishikawa, Masaki; af Klint, Richard; Komi, Paavo V; Avela, Janne; Sinkjaer, Thomas; Voigt, Michael

    2009-01-01

    After repeated passive stretching, tendinous tissue compliance increases in the human soleus (SOL) muscle–tendon unit. During movement, such changes would have important consequences for neural and mechanical stretch responses. This study examined the existence of such effects in response to a 75 min walking intervention. Eleven healthy subjects walked on a treadmill at 4 km h−1 with a robotic stretch device attached to the left leg. Ultrasonography was used to measure SOL fascicle lengths, and surface EMG activity was recorded in the SOL and tibialis anterior (TA) muscles. Perturbations of 6 deg were imposed at three different measurement intervals: Pre (immediately before the walking intervention), Mid (after approximately 30 min of walking) and Post (immediately after the intervention). Between the Pre–Mid and Mid–Post intervals, subjects walked for 30 min at a gradient of 3%. After the intervention, the amplitude and velocity of fascicle stretch both decreased (by 46 and 59%, respectively; P < 0.001) in response to a constant external perturbation, as did short (33%; P < 0.01) and medium (25%; P < 0.01) latency stretch reflex amplitudes. A faster perturbation elicited at the end of the protocol resulted in a recovery of fascicle stretch velocities and short latency reflex amplitudes to the pre-exercise values. These findings suggest that repeated stretching and shortening of a muscle–tendon unit can induce short-term structural changes in the tendinous tissues during human walking. The data also highlight the effect of these changes on neural feedback from muscle sensory afferents. PMID:19622608

  17. Effects of prolonged walking on neural and mechanical components of stretch responses in the human soleus muscle.

    PubMed

    Cronin, Neil J; Ishikawa, Masaki; Af Klint, Richard; Komi, Paavo V; Avela, Janne; Sinkjaer, Thomas; Voigt, Michael

    2009-09-01

    After repeated passive stretching, tendinous tissue compliance increases in the human soleus (SOL) muscle-tendon unit. During movement, such changes would have important consequences for neural and mechanical stretch responses. This study examined the existence of such effects in response to a 75 min walking intervention. Eleven healthy subjects walked on a treadmill at 4 km h(1) with a robotic stretch device attached to the left leg. Ultrasonography was used to measure SOL fascicle lengths, and surface EMG activity was recorded in the SOL and tibialis anterior (TA) muscles. Perturbations of 6 deg were imposed at three different measurement intervals: Pre (immediately before the walking intervention), Mid (after approximately 30 min of walking) and Post (immediately after the intervention). Between the Pre-Mid and Mid-Post intervals, subjects walked for 30 min at a gradient of 3%. After the intervention, the amplitude and velocity of fascicle stretch both decreased (by 46 and 59%, respectively; P < 0.001) in response to a constant external perturbation, as did short (33%; P < 0.01) and medium (25%; P < 0.01) latency stretch reflex amplitudes. A faster perturbation elicited at the end of the protocol resulted in a recovery of fascicle stretch velocities and short latency reflex amplitudes to the pre-exercise values. These findings suggest that repeated stretching and shortening of a muscle-tendon unit can induce short-term structural changes in the tendinous tissues during human walking. The data also highlight the effect of these changes on neural feedback from muscle sensory afferents.

  18. Negative participation of the left posterior fascicle in the reentry circuit of verapamil-sensitive idiopathic left ventricular tachycardia.

    PubMed

    Morishima, Itsuro; Nogami, Akihiko; Tsuboi, Hideyuki; Sone, Takahito

    2012-05-01

    Left posterior fascicle and idiopathic Left VT. The left posterior fascicle may be a bystander of the circuit of verapamil-sensitive idiopathic left ventricular tachycardia. During ventricular tachycardia (VT), 3 sequences of potentials were seen at the left posterior septum: diastolic Purkinje potentials propagating from base to apex and presystolic left posterior fascicular potentials and systolic left ventricular (LV) myocardial potentials propagating in the reverse direction. Selective capture of the left posterior fascicle by the sinus beat did not affect the VT cycle length. Entrainment pacing revealed that the retrograde limb of the circuit was not the left posterior fascicle, but the LV myocardium.

  19. Relationship Between Sprint Performance of Front Crawl Swimming and Muscle Fascicle Length in Young Swimmers

    PubMed Central

    Nasirzade, Alireza; Ehsanbakhsh, Alireza; Ilbeygi, Saeed; Sobhkhiz, Azadeh; Argavani, Hamed; Aliakbari, Mehdi

    2014-01-01

    The purpose of this study was to investigate the relationship between 25-m sprint front crawl swimming performance and muscle fascicle length in young male swimmers. 23 swimmers were selected and divided into two groups according to their best records of 25-m sprint performance: 14.6-15.7 sec (S1, n = 11) and 15.8-17 sec (S2, n = 12). Muscle thickness and pennation angle of Biceps Brachii (BB; only muscle thickness), Triceps Brachii (TB), Vastus Lateralis (VL), Gastrocnemius Medialis (GM) and Lateralis (GL) muscles were measured by B-mode ultrasonography, and fascicle length was estimated. Although, there was no significant differences between groups in anthropometrical parameter as standing height, body mass, arm length, thigh length and leg length (p < 0.001), however, S1 significantly had a greater muscle thickness in VL, GL, and TB muscles (p < 0.05). Pennation angle only in TB was significantly smaller in S1 (p < 0.05). S1 in VL, GL, and TB muscles significantly had greater absolute fascicle length and in VL and TB muscles had relatively (relative to limb length) greater fascicle length (p < 0.05). Moreover, there was a significant relationship between sprint swimming time and absolute and relative fascicle length in VL (absolute: r = -0.49 and relative: r = -0.43, both p < 0.05) and GL (absolute: r = -0.47 and relative: r = -0.42, both p < 0.05). Potentially, it seems that fascicle geometry developed in muscles of faster young swimmers to help them to perform their high speed movement. Key Points This study investigated the relationship between muscle fascicle length and sprint front crawl performance in young male swimmers. It seems that young swimmers with faster front crawl sprint swimming performance trend to have smaller pennation angle and greater absolute and relative fascicle length (relative to limb length) in their locomotor muscles. Potentially, fascicle geometry developed in faster swimmers to help them to perform higher speed movement via higher

  20. Relationship between sprint performance of front crawl swimming and muscle fascicle length in young swimmers.

    PubMed

    Nasirzade, Alireza; Ehsanbakhsh, Alireza; Ilbeygi, Saeed; Sobhkhiz, Azadeh; Argavani, Hamed; Aliakbari, Mehdi

    2014-09-01

    The purpose of this study was to investigate the relationship between 25-m sprint front crawl swimming performance and muscle fascicle length in young male swimmers. 23 swimmers were selected and divided into two groups according to their best records of 25-m sprint performance: 14.6-15.7 sec (S1, n = 11) and 15.8-17 sec (S2, n = 12). Muscle thickness and pennation angle of Biceps Brachii (BB; only muscle thickness), Triceps Brachii (TB), Vastus Lateralis (VL), Gastrocnemius Medialis (GM) and Lateralis (GL) muscles were measured by B-mode ultrasonography, and fascicle length was estimated. Although, there was no significant differences between groups in anthropometrical parameter as standing height, body mass, arm length, thigh length and leg length (p < 0.001), however, S1 significantly had a greater muscle thickness in VL, GL, and TB muscles (p < 0.05). Pennation angle only in TB was significantly smaller in S1 (p < 0.05). S1 in VL, GL, and TB muscles significantly had greater absolute fascicle length and in VL and TB muscles had relatively (relative to limb length) greater fascicle length (p < 0.05). Moreover, there was a significant relationship between sprint swimming time and absolute and relative fascicle length in VL (absolute: r = -0.49 and relative: r = -0.43, both p < 0.05) and GL (absolute: r = -0.47 and relative: r = -0.42, both p < 0.05). Potentially, it seems that fascicle geometry developed in muscles of faster young swimmers to help them to perform their high speed movement. Key PointsThis study investigated the relationship between muscle fascicle length and sprint front crawl performance in young male swimmers.It seems that young swimmers with faster front crawl sprint swimming performance trend to have smaller pennation angle and greater absolute and relative fascicle length (relative to limb length) in their locomotor muscles.Potentially, fascicle geometry developed in faster swimmers to help them to perform higher speed movement via higher

  1. Influence of step-height and body mass on gastrocnemius muscle fascicle behavior during stair ascent.

    PubMed

    Spanjaard, M; Reeves, N D; van Dieën, J H; Baltzopoulos, V; Maganaris, C N

    2008-01-01

    To better understand the role of the ankle plantar flexor muscles in stair negotiation, we examined the effects of manipulation of kinematic and kinetic constraints on the behavior of the gastrocnemius medialis (GM) muscle during stair ascent. Ten subjects ascended a four-step staircase at four different step-heights (changing the kinematic constraints): standard (17 cm), 50% decreased, 50% increased and 75% increased. At the standard height, subjects also ascended the stairs wearing a weighted jacket, adding 20% of their body mass (changing the kinetic constraints). During stair ascent, kinematics and kinetics of the lower legs were determined using motion capture and ground reaction force measurements. The GM muscle fascicle length was measured during the task with ultrasonography. The amount of GM muscle fascicle shortening increased with step-height, coinciding with an increase in ankle joint moment. The increase in body mass resulted in an increased ankle joint moment, but the amount of GM muscle fascicle shortening during the lift-off phase did not increase, instead, the fascicles were shorter over the whole stride cycle. Increasing demands of stair ascent, by increasing step-height or body mass, requires higher joint moments. The increased ankle joint moment with increasing demands is, at least in part, produced by the increase in GM muscle fascicle shortening.

  2. Crimp length decreases in lax tendons due to cytoskeletal tension, but is restored with tensional homeostasis.

    PubMed

    Lavagnino, Michael; Brooks, Andrew E; Oslapas, Anna N; Gardner, Keri L; Arnoczky, Steven P

    2017-03-01

    Collagen crimp morphology is thought to contribute to the material behavior of tendons and may reflect the local mechanobiological environment of tendon cells. Following loss of collagen tension in tendons, tenocytes initiate a contraction response that shortens tendon length which, in turn, may alter crimp patterns. We hypothesized that changes in the crimp pattern of tendons are the result of cell-based contractions which are governed by relative tautness/laxity of the collagen matrix. To determine the relationship between crimp pattern and tensional homeostasis, rat tail tendon fascicles (RTTfs) were either allowed to freely contract or placed in clamps with 10% laxity for 7 days. The freely contracting RTTfs showed a significant decrease in percent crimp length on both day 5 (3.66%) and day 7 (7.70%). This decrease in crimp length significantly correlated with the decrease in freely contracting RTTf length. Clamped RTTfs demonstrated a significant decrease in percent crimp length on day 5 (1.7%), but no significant difference in percent crimp length on day 7 (0.57%). The results demonstrate that the tendon crimp pattern appears to be under cellular control and is a reflection of the local mechanobiological environment of the extracellular matrix. The ability of tenocytes to actively alter the crimp pattern of collagen fibers also suggests that tenocytes can influence the viscoelastic properties of tendon. Understanding the interactions between tenocytes and their extracellular matrix may lead to further insight into the role tendon cells play in maintaining tendon heath and homeostasis. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:573-579, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  3. The study of optical properties and proteoglycan content of tendons by PS-OCT

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Rupani, Asha; Weightman, Alan; Wimpenny, Ian; Bagnaninchi, Pierre; Ahearne, Mark

    2011-03-01

    Tendons are load-bearing collagenous tissues consisting mainly of type I collagen and various proteoglycans (PGs) including decorin and versican. It is widely accepted that highly orientated collagen fibers in tendons a play critical role for transferring tensile stress and demonstrate birefringent optical properties. However, the influence that proteoglycans have on the optical properties of tendons is yet to be fully elucidated. Tendinopathy (defined as a syndrome of tendon pain, tenderness and swelling that affects the normal function of the tissue) is a common disease associated with sporting injuries or degeneration. PG's are the essential components of the tendon extracellular matrix; changes in their quantities and compositions have been associated with tendinopathy. In this study, polarization sensitive optical coherence tomography (PS-OCT) has been used to reveal the relationship between proteoglycan content/location and birefringent properties of tendons. Tendons dissected from freshly slaughtered chickens were imaged at regular intervals by PS-OCT and polarizing light microscope during the extraction of PGs or glycosaminoglycans using established protocols (guanidine hydrochloride (GuHCl) or proteinase K solution). The macroscopic and microscopic time lapsed images are complimentary; mutually demonstrating that there was a higher concentration of PG's in the outer sheath region than in the fascicles; and the integrity of the sheath affected extraction process and the OCT birefringence bands. Extraction of PGs using GuHCl disturbed the organization of local collagen bundles, which corresponded to a reduction in the frequency of birefringence bands and the band width by PS-OCT. The feature of OCT penetration depth helped us to define the heterogeneous distribution of PG's in tendon, which was complimented by polarizing light microscopy. The results provide new insight of tendon structure and also demonstrate a great potential for using PS-OCT as a

  4. Strenuous resistance exercise effects on magnetic resonance diffusion parameters and muscle-tendon function in human skeletal muscle.

    PubMed

    Yanagisawa, Osamu; Kurihara, Toshiyuki; Kobayashi, Naoyuki; Fukubayashi, Toru

    2011-10-01

    To assess the effects of strenuous exercise on magnetic resonance diffusion parameters and muscle-tendon complex function in skeletal muscle. Six men performed ankle plantar flexion exercises with eccentric contraction. The fractional anisotropy (FA), λ(1) , λ(2) , λ(3) , mean diffusivity (MD), and T(2) values in the triceps surae muscles were measured by magnetic resonance diffusion tensor and spin-echo imaging. Passive torque of plantar flexors, maximal voluntary isometric plantar flexion torques (MVIP), and Achilles tendon stiffness during MVIP were measured by combined ultrasonography and dynamometry. Plasma creatine kinase and muscle soreness were also assessed. These parameters were measured before and 1-8 days postexercise. The medial gastrocnemius exhibited significantly decreased FA 2-5 days after, increased λ(2) 3 days after, and increased λ(3) 2 and 3 days after exercise. This muscle also showed significantly increased MD and T(2) values 3 days postexercise. MVIP significantly decreased 2 and 3 days postexercise, while passive torque significantly increased 2 days postexercise. Creatine kinase and muscle soreness increased 3-5 days and 1-5 days postexercise, respectively. Exercise-induced muscle damage manifested as significant changes in muscle diffusion parameters with muscle-tendon complex dysfunction and delayed-onset muscle soreness. Copyright © 2011 Wiley-Liss, Inc.

  5. The Role of Detraining in Tendon Mechanobiology

    PubMed Central

    Frizziero, Antonio; Salamanna, Francesca; Della Bella, Elena; Vittadini, Filippo; Gasparre, Giuseppe; Nicoli Aldini, Nicolò; Masiero, Stefano; Fini, Milena

    2016-01-01

    Introduction: Several conditions such as training, aging, estrogen deficiency and drugs could affect the biological and anatomo-physiological characteristics of the tendon. Additionally, recent preclinical and clinical studies examined the effect of detraining on tendon, showing alterations in its structure and morphology and in tenocyte mechanobiology. However, few data evaluated the importance that cessation of training might have on tendon. Basically, we do not fully understand how tendons react to a phase of training followed by sudden detraining. Therefore, within this review, we summarize the studies where tendon detraining was examined. Materials and Methods: A descriptive systematic literature review was carried out by searching three databases (PubMed, Scopus and Web of Knowledge) on tendon detraining. Original articles in English from 2000 to 2015 were included. In addition, the search was extended to the reference lists of the selected articles. A public reference manager (www.mendeley.com) was adopted to remove duplicate articles. Results: An initial literature search yielded 134 references (www.pubmed.org: 53; www.scopus.com: 11; www.webofknowledge.com: 70). Fifteen publications were extracted based on the title for further analysis by two independent reviewers. Abstracts and complete articles were after that reviewed to evaluate if they met inclusion criteria. Conclusions: The revised literature comprised four clinical studies and an in vitro and three in vivo reports. Overall, the results showed that tendon structure and properties after detraining are compromised, with an alteration in the tissue structural organization and mechanical properties. Clinical studies usually showed a lesser extent of tendon alterations, probably because preclinical studies permit an in-depth evaluation of tendon modifications, which is hard to perform in human subjects. In conclusion, after a period of sudden detraining (e.g., after an injury), physical activity should

  6. Achilles tendon disorders.

    PubMed

    Weinfeld, Steven B

    2014-03-01

    Achilles tendon disorders include tendinosis, paratenonitis, insertional tendinitis, retrocalcaneal bursitis, and frank rupture. Patients present with pain and swelling in the posterior aspect of the ankle. Magnetic resonance imaging and ultrasound are helpful in confirming the diagnosis and guiding treatment. Nonsurgical management of Achilles tendon disorders includes nonsteroidal anti-inflammatory drugs, physical therapy, bracing, and footwear modification. Surgical treatment includes debridement of the diseased area of the tendon with direct repair. Tendon transfer may be necessary to augment the strength of the Achilles tendon. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Fibrillins in Tendon

    PubMed Central

    Giusti, Betti; Pepe, Guglielmina

    2016-01-01

    Tendons among connective tissue, mainly collagen, contain also elastic fibers (EF) made of fibrillin 1, fibrillin 2 and elastin that are broadly distributed in tendons and represent 1–2% of the dried mass of the tendon. Only in the last years, studies on structure and function of EF in tendons have been performed. Aim of this review is to revise data on the organization of EF in tendons, in particular fibrillin structure and function, and on the clinical manifestations associated to alterations of EF in tendons. Indeed, microfibrils may contribute to tendon mechanics; therefore, their alterations may cause joint hypermobility and contractures which have been found to be clinical features in patients with Marfan syndrome (MFS) and Beals syndrome. The two diseases are caused by mutations in genes FBN1 and FBN2 encoding fibrillin 1 and fibrillin 2, respectively. PMID:27812333

  8. Scaffold-free Scleraxis-programmed tendon progenitors aid in significantly enhanced repair of full-size Achilles tendon rupture.

    PubMed

    Hsieh, Chi-Fen; Alberton, Paolo; Loffredo-Verde, Eva; Volkmer, Elias; Pietschmann, Matthias; Müller, Peter; Schieker, Matthias; Docheva, Denitsa

    2016-05-01

    Currently there is no effective approach to enhance tendon repair, hence we aimed to identify a suitable cell source for tendon engineering utilizing an established clinically relevant animal model for tendon injury. We compared, by in-depth histomorphometric evaluation, the regenerative potential of uncommitted human mesenchymal stem cells (hMSC) and Scleraxis (Scx)-programmed tendon progenitors (hMSC-Scx) in the healing of a full-size of rat Achilles tendon defect. Our analyses clearly demonstrated that implantation of hMSC-Scx, in contrast to hMSC and empty defect, results in smaller diameters, negligible ectopic calcification and advanced cellular organization and matrix maturation in the injured tendons. Scaffold-free delivery of hMSC-Scx aids in enhanced repair in a clinically translatable Achilles tendon injury model.

  9. A simple model to estimate plantarflexor muscle-tendon mechanics and energetics during walking with elastic ankle exoskeletons

    PubMed Central

    Sawicki, Gregory S.; Khan, Nabil S.

    2016-01-01

    Goal A recent experiment demonstrated that when humans wear unpowered elastic ankle exoskeletons with intermediate spring stiffness they can reduce their metabolic energy cost to walk by ~7%. Springs that are too compliant or too stiff have little benefit. The purpose of this study was to use modeling and simulation to explore the muscle-level mechanisms for the ‘sweet-spot’ in stiffness during exoskeleton assisted walking. Methods We developed a simple lumped, uniarticular musculoskeletal model of the plantarflexors operating in parallel with an elastic ‘exo-tendon’. Using an inverse approach with constrained kinematics and kinetics, we rapidly simulated human walking over a range of exoskeleton stiffness values and examined the underlying neuromechanics and energetics of the biological plantarflexors. Results Stiffer ankle exoskeleton springs resulted in larger decreases in plantarflexor muscle forces, activations and metabolic energy consumption. However, in the process of unloading the compliant biological muscle-tendon unit (MTU), the muscle fascicles (CE) experienced larger excursions that negatively impacted series elastic element (SEE) recoil that is characteristic of a tuned ‘catapult mechanism’. Conclusion The combination of disrupted muscle-tendon dynamics and the need to produce compensatory forces/moments to maintain overall net ankle moment invariance could explain the ‘sweet spot’ in metabolic performance at intermediate ankle exoskeleton stiffness. Future work will aim to provide experimental evidence to support the model predictions presented here using ultrasound imaging of muscle-level dynamics during walking with elastic ankle exoskeletons. Significance Engineers must account for the muscle-level effects of exoskeleton designs in order to achieve maximal performance objectives. PMID:26485350

  10. Fibrocartilage in tendons and ligaments — an adaptation to compressive load

    PubMed Central

    BENJAMIN, M.; RALPHS, J. R.

    1998-01-01

    Where tendons and ligaments are subject to compression, they are frequently fibrocartilaginous. This occurs at 2 principal sites: where tendons (and sometimes ligaments) wrap around bony or fibrous pulleys, and in the region where they attach to bone, i.e. at their entheses. Wrap-around tendons are most characteristic of the limbs and are commonly wider at their point of bony contact so that the pressure is reduced. The most fibrocartilaginous tendons are heavily loaded and permanently bent around their pulleys. There is often pronounced interweaving of collagen fibres that prevents the tendons from splaying apart under compression. The fibrocartilage can be located within fascicles, or in endo- or epitenon (where it may protect blood vessels from compression or allow fascicles to slide). Fibrocartilage cells are commonly packed with intermediate filaments which could be involved in transducing mechanical load. The ECM often contains aggrecan which allows the tendon to imbibe water and withstand compression. Type II collagen may also be present, particularly in tendons that are heavily loaded. Fibrocartilage is a dynamic tissue that disappears when the tendons are rerouted surgically and can be maintained in vitro when discs of tendon are compressed. Finite element analyses provide a good correlation between its distribution and levels of compressive stress, but at some locations fibrocartilage is a sign of pathology. Enthesis fibrocartilage is most typical of tendons or ligaments that attach to the epiphyses of long bones where it may also be accompanied by sesamoid and periosteal fibrocartilages. It is characteristic of sites where the angle of attachment changes throughout the range of joint movement and it reduces wear and tear by dissipating stress concentration at the bony interface. There is a good correlation between the distribution of fibrocartilage within an enthesis and the levels of compressive stress. The complex interlocking between calcified

  11. A mathematical framework for the registration and analysis of multi-fascicle models for population studies of the brain microstructure.

    PubMed

    Taquet, Maxime; Scherrer, Benoit; Commowick, Olivier; Peters, Jurriaan M; Sahin, Mustafa; Macq, Benoit; Warfield, Simon K

    2014-02-01

    Diffusion tensor imaging (DTI) is unable to represent the diffusion signal arising from multiple crossing fascicles and freely diffusing water molecules. Generative models of the diffusion signal, such as multi-fascicle models, overcome this limitation by providing a parametric representation for the signal contribution of each population of water molecules. These models are of great interest in population studies to characterize and compare the brain microstructural properties. Central to population studies is the construction of an atlas and the registration of all subjects to it. However, the appropriate definition of registration and atlasing methods for multi-fascicle models have proven challenging. This paper proposes a mathematical framework to register and analyze multi-fascicle models. Specifically, we define novel operators to achieve interpolation, smoothing and averaging of multi-fascicle models. We also define a novel similarity metric to spatially align multi-fascicle models. Our framework enables simultaneous comparisons of different microstructural properties that are confounded in conventional DTI. The framework is validated on multi-fascicle models from 24 healthy subjects and 38 patients with tuberous sclerosis complex, 10 of whom have autism. We demonstrate the use of the multi-fascicle models registration and analysis framework in a population study of autism spectrum disorder.

  12. Low-frequency pulsed electromagnetic fields significantly improve time of closure and proliferation of human tendon fibroblasts

    PubMed Central

    2014-01-01

    Background The promotion of the healing process following musculoskeletal injuries comprises growth factor signalling, migration, proliferation and apoptosis of cells. If these processes could be modulated, the healing of tendon tissue may be markedly enhanced. Here, we report the use of the Somagen™ device, which is certified for medical use according to European laws. It generates low-frequency pulsed electromagnetic fields that trigger effects of a nature that are yet to be determined. Methods A 1.5-cm wide, linear scrape was introduced into patellar tendon fibroblast cultures (N = 5 donors). Treatment was carried out every second day. The regimen was applied three times in total with 30 minutes comprising pulsed electromagnetic field packages with two fundamental frequencies (10 minutes of 33 Hz, 20 minutes of 7.8 Hz). Control cells remained untreated. All samples were analyzed for gap closure time, proliferation and apoptosis one week after induction of the scrape wound. Results The mean time for bridging the gap in the nontreated cells was 5.05 ± 0.33 days, and in treated cells, it took 3.35 ± 0.38 days (P <0.001). For cell cultures with scrape wounds, a mean value for BrdU incorporation of OD = 0.70 ± 0.16 was found. Whereas low-frequency pulsed electromagnetic fields treated samples showed OD = 1.58 ± 0.24 (P <0.001). However, the percentage of apoptotic cells did not differ between the two groups. Conclusions Our data demonstrate that low-frequency pulsed electromagnetic fields emitted by the Somagen™ device influences the in vitro wound healing of patellar tendon fibroblasts and, therefore, possibly increases wound healing potential. PMID:24996421

  13. Low-frequency pulsed electromagnetic fields significantly improve time of closure and proliferation of human tendon fibroblasts.

    PubMed

    Seeliger, Claudine; Falldorf, Karsten; Sachtleben, Jens; van Griensven, Martijn

    2014-07-05

    The promotion of the healing process following musculoskeletal injuries comprises growth factor signalling, migration, proliferation and apoptosis of cells. If these processes could be modulated, the healing of tendon tissue may be markedly enhanced. Here, we report the use of the Somagen™ device, which is certified for medical use according to European laws. It generates low-frequency pulsed electromagnetic fields that trigger effects of a nature that are yet to be determined. A 1.5-cm wide, linear scrape was introduced into patellar tendon fibroblast cultures (N = 5 donors). Treatment was carried out every second day. The regimen was applied three times in total with 30 minutes comprising pulsed electromagnetic field packages with two fundamental frequencies (10 minutes of 33 Hz, 20 minutes of 7.8 Hz). Control cells remained untreated. All samples were analyzed for gap closure time, proliferation and apoptosis one week after induction of the scrape wound. The mean time for bridging the gap in the nontreated cells was 5.05 ± 0.33 days, and in treated cells, it took 3.35 ± 0.38 days (P <0.001). For cell cultures with scrape wounds, a mean value for BrdU incorporation of OD = 0.70 ± 0.16 was found. Whereas low-frequency pulsed electromagnetic fields treated samples showed OD = 1.58 ± 0.24 (P <0.001). However, the percentage of apoptotic cells did not differ between the two groups. Our data demonstrate that low-frequency pulsed electromagnetic fields emitted by the Somagen™ device influences the in vitro wound healing of patellar tendon fibroblasts and, therefore, possibly increases wound healing potential.

  14. Neuromuscular and muscle-tendon system adaptations to isotonic and isokinetic eccentric exercise.

    PubMed

    Guilhem, G; Cornu, C; Guével, A

    2010-06-01

    To present the properties of an eccentric contraction and compare neuromuscular and muscle-tendon system adaptations induced by isotonic and isokinetic eccentric trainings. An eccentric muscle contraction is characterized by the production of muscle force associated to a lengthening of the muscle-tendon system. This muscle solicitation can cause micro lesions followed by a regeneration process of the muscle-tendon system. Eccentric exercise is commonly used in functional rehabilitation for its positive effect on collagen synthesis but also for resistance training to increase muscle strength and muscle mass in athletes. Indeed, eccentric training stimulates muscle hypertrophy, increases the fascicle pennation angle, fascicles length and neural activation, thus inducing greater strength gains than concentric or isometric training programs. Eccentric exercise is commonly performed either against a constant external load (isotonic) or at constant velocity (isokinetic), inducing different mechanical constraints. These different mechanical constraints could induce structural and neural adaptive strategies specific to each type of exercise. The literature tends to show that isotonic mode leads to a greater strength gain than isokinetic mode. This observation could be explained by a greater neuromuscular activation after IT training. However, the specific muscle adaptations induced by each mode remain difficult to determine due to the lack of standardized, comparative studies. 2010 Elsevier Masson SAS. All rights reserved.

  15. Ultrasound-Based Tendon Micromorphology Predicts Mechanical Characteristics of Degenerated Tendons.

    PubMed

    Kulig, Kornelia; Chang, Yu-Jen; Winiarski, Slawomir; Bashford, Gregory R

    2016-03-01

    The purpose of this study was to explore the relationship between tendon micro-morphology quantified from a sonogram and tendon mechanical characteristics measured in vivo. Nineteen adults (nine with unilateral Achilles tendinosis) participated. A commercial ultrasound scanner was used to capture longitudinal B-mode ultrasound images from the mid-portion of bilateral Achilles tendons and a custom image analysis program was used to analyze the spatial frequency content of manually defined regions of interest; in particular, the average peak spatial frequency of the regions of interest was acquired. In addition, a dynamometer and a motion analysis system indirectly measured the tendon mechanical (stiffness) and material (elastic modulus) properties. The peak spatial frequency correlated with tendon stiffness (r = 0.74, p = 0.02) and elastic modulus (r = 0.65, p = 0.05) in degenerated tendons, but not healthy tendons. This is the first study relating the mechanical characteristics of degenerated human Achilles tendon using a non-invasive micro-morphology analysis approach.

  16. Combined DTI Tractography and Functional MRI Study of the Language Connectome in Healthy Volunteers: Extensive Mapping of White Matter Fascicles and Cortical Activations

    PubMed Central

    Schneider, Fabien; Boutet, Claire; Jean, Betty

    2016-01-01

    Despite a better understanding of brain language organization into large-scale cortical networks, the underlying white matter (WM) connectivity is still not mastered. Here we combined diffusion tensor imaging (DTI) fiber tracking (FT) and language functional magnetic resonance imaging (fMRI) in twenty healthy subjects to gain new insights into the macroscopic structural connectivity of language. Eight putative WM fascicles for language were probed using a deterministic DTI-FT technique: the arcuate fascicle (AF), superior longitudinal fascicle (SLF), uncinate fascicle (UF), temporo-occipital fascicle, inferior fronto-occipital fascicle (IFOF), middle longitudinal fascicle (MdLF), frontal aslant fascicle and operculopremotor fascicle. Specific measurements (i.e. volume, length, fractional anisotropy) and precise cortical terminations were derived for each WM fascicle within both hemispheres. Connections between these WM fascicles and fMRI activations were studied to determine which WM fascicles are related to language. WM fascicle volumes showed asymmetries: leftward for the AF, temporoparietal segment of SLF and UF, and rightward for the frontoparietal segment of the SLF. The lateralization of the AF, IFOF and MdLF extended to differences in patterns of anatomical connections, which may relate to specific hemispheric abilities. The leftward asymmetry of the AF was correlated to the leftward asymmetry of fMRI activations, suggesting that the lateralization of the AF is a structural substrate of hemispheric language dominance. We found consistent connections between fMRI activations and terminations of the eight WM fascicles, providing a detailed description of the language connectome. WM fascicle terminations were also observed beyond fMRI-confirmed language areas and reached numerous cortical areas involved in different functional brain networks. These findings suggest that the reported WM fascicles are not exclusively involved in language and might be related to

  17. A passive exoskeleton with artificial tendons: design and experimental evaluation.

    PubMed

    van Dijk, Wietse; van der Kooij, Herman; Hekman, Edsko

    2011-01-01

    We developed a passive exoskeleton that was designed to minimize joint work during walking. The exoskeleton makes use of passive structures, called artificial tendons, acting in parallel with the leg. Artificial tendons are elastic elements that are able to store and redistribute energy over the human leg joints. The elastic characteristics of the tendons have been optimized to minimize the mechanical work of the human leg joints. In simulation the maximal reduction was 40 percent. The performance of the exoskeleton was evaluated in an experiment in which nine subjects participated. Energy expenditure and muscle activation were measured during three conditions: Normal walking, walking with the exoskeleton without artificial tendons, and walking with the exoskeleton with the artificial tendons. Normal walking was the most energy efficient. While walking with the exoskeleton, the artificial tendons only resulted in a negligibly small decrease in energy expenditure. © 2011 IEEE

  18. Engineering of extensor tendon complex by an ex vivo approach.

    PubMed

    Wang, Bin; Liu, Wei; Zhang, Yanjie; Jiang, Yongkang; Zhang, Wen Jie; Zhou, Guangdong; Cui, Lei; Cao, Yilin

    2008-07-01

    Engineering of extensor tendon complex remains an unexplored area in tendon engineering research. In addition, less is known about the mechanism of mechanical loading in human tendon development and maturation. In the current study, an ex vivo approach was developed to investigate these issues. Human fetal extensor tenocytes were isolated, expanded and seeded on polyglycolic acid (PGA) fibers that formed a scaffold with a shape mimicking human extensor tendon complex. After in vitro culture for 6 weeks, 7 cell-scaffold constructs were further in vitro cultured with dynamic mechanical loading for another 6 weeks in a bioreactor. The other 14 constructs were in vivo implanted subcutaneously to nude mice for another 14 weeks. Seven of them were implanted without loading, whereas the other 7 were sutured to mouse fascia and animal movement provided a natural dynamic loading in vivo. The results demonstrated that human fetal cells could form an extensor tendon complex structure in vitro and become further matured in vivo by mechanical stimulation. In contrast to in vitro loaded and in vivo non-loaded tendons, in vivo loaded tendons exhibited bigger tissue volume, better aligned collagen fibers, more mature collagen fibril structure with D-band periodicity, and stronger mechanical properties. These findings indicate that an extensor tendon complex like structure is possible to generate by an ex vivo approach and in vivo mechanical loading might be an optimal niche for engineering functional extensor tendon.

  19. Negative Poisson's ratios in tendons: An unexpected mechanical response.

    PubMed

    Gatt, Ruben; Vella Wood, Michelle; Gatt, Alfred; Zarb, Francis; Formosa, Cynthia; Azzopardi, Keith M; Casha, Aaron; Agius, Tonio P; Schembri-Wismayer, Pierre; Attard, Lucienne; Chockalingam, Nachiappan; Grima, Joseph N

    2015-09-01

    Tendons are visco-elastic structures that connect bones to muscles and perform the basic function of force transfer to and from the skeleton. They are essential for positioning as well as energy storing when involved in more abrupt movements such as jumping. Unfortunately, they are also prone to damage, and when injuries occur, they may have dilapidating consequences. For instance, there is consensus that injuries of tendons such as Achilles tendinopathies, which are common in athletes, are difficult to treat. Here we show, through in vivo and ex vivo tests, that healthy tendons are highly anisotropic and behave in a very unconventional manner when stretched, and exhibit a negative Poisson's ratio (auxeticity) in some planes when stretched up to 2% along their length, i.e. within their normal range of motion. Furthermore, since the Poisson's ratio is highly dependent on the material's microstructure, which may be lost if tendons are damaged or diseased, this property may provide a suitable diagnostic tool to assess tendon health. We report that human tendons including the Achilles tendons exhibits the very unusual mechanical property of a negative Poisson's ratio (auxetic) meaning that they get fatter rather than thinner when stretched. This report is backed by in vivo and ex vivo experiments we performed which clearly confirm auxeticity in this living material for strains which correspond to those experienced during most normal everyday activities. We also show that this property is not limited to the human Achilles tendon, as it was also found in tendons taken from sheep and pigs. This new information about tendons can form the scientific basis for a test for tendon health as well as enable the design of better tendon prosthesis which could replace damaged tendons. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Tendon and ligament imaging

    PubMed Central

    Hodgson, R J; O'Connor, P J; Grainger, A J

    2012-01-01

    MRI and ultrasound are now widely used for the assessment of tendon and ligament abnormalities. Healthy tendons and ligaments contain high levels of collagen with a structured orientation, which gives rise to their characteristic normal imaging appearances as well as causing particular imaging artefacts. Changes to ligaments and tendons as a result of disease and injury can be demonstrated using both ultrasound and MRI. These have been validated against surgical and histological findings. Novel imaging techniques are being developed that may improve the ability of MRI and ultrasound to assess tendon and ligament disease. PMID:22553301

  1. Fascicle Nutrient and Biomass Responses of Young Loblolly Pine to Control of Woody and Herbaceous Competitors

    Treesearch

    Bruce R. Zutter; James H. Miller; H.L. Allen; S.M. Xedaker; M.B. Edwards; R.A. Newbold

    1999-01-01

    Individual fascicle mass and foliar nutrient content and concentration of young loblolly pine (Pinus taeda L.) wen evaluated on 13 locations of a regionwide competition study in the southeastern United States. The study included a factorial combination of two levels of weed control txatmalt (none, treated) and two levels of woody treatment (none,...

  2. Light microscopic histology of supraspinatus tendon ruptures.

    PubMed

    Longo, Umile Giuseppe; Franceschi, Francesco; Ruzzini, Laura; Rabitti, Carla; Morini, Sergio; Maffulli, Nicola; Forriol, Francisco; Denaro, Vincenzo

    2007-11-01

    We analysed the morphological features of the human surgical specimens of supraspinatus tendon from patients with rotator cuff tears. Tendon samples were harvested from 31 subjects (21 men and 10 women; mean age 51 years, range 38-64) who underwent arthroscopic repair of a rotator cuff tear, and from five male patients who died of cardiovascular events (mean age, 69.6 years). Histological examination was performed using Haematoxylin and Eosin, Masson's Trichrome and Van Gieson's connective tissue stain. The specimens were examined twice by the same examiner under white light and polarized light microscopy. Particular effort was made to assess any evidence of the changes associated with tendinopathy. Within each specific category of tendon abnormalities, the chi-square test showed significant differences between the control and ruptured tendons (P < 0.05). Using the kappa statistics, the agreement between the two readings ranged from 0.57 to 0.84. We found thinning and disorientation of collagen fibres and chondroid metaplasia to be more pronounced on the articular side of the specimens from patients with rotator cuff tear (P < 0.05). The present study provides a description of the histological architecture of human surgical specimens of normal supraspinatus tendon from patients with rotator cuff tears and demonstrates more frequent tendon changes on the articular side of the rotator cuff.

  3. Effects of leg muscle tendon vibration on group Ia and group II reflex responses to stance perturbation in humans.

    PubMed

    Bove, Marco; Nardone, Antonio; Schieppati, Marco

    2003-07-15

    Stretching the soleus (Sol) muscle during sudden toe-up rotations of the supporting platform in a standing subject evokes a short-latency response (SLR) and a medium-latency response (MLR). The aim of the present investigation was to further explore the afferent and spinal pathways mediating the SLR and MLR in lower limb muscles by means of tendon vibration. In seven subjects, toe-up or toe-down rotations were performed under: (1) control, (2) continuous bilateral vibration at 90 Hz of Achilles' tendon or tibialis anterior (TA) tendon, and (3) post-vibration conditions. Sol and TA background EMG activity and reflex responses were bilaterally recorded and analysed. Toe-up rotations induced SLRs and MLRs in Sol at average latencies of 40 and 66 ms, respectively. During vibration, the latency of both responses increased by about 2 ms. The area of the SLR significantly decreased during vibration, regardless of the underlying background activity, and almost returned to control value post-vibration. The area of Sol MLR was less influenced by vibration than SLR, the reduction being negligible with relatively high background activity. However, contrary to SLR, MLR was even more reduced post-vibration. Toe-down rotations induced no SLR in the TA, while a MLR was evoked at about 81 ms. The area of TA MLR decreased slightly during vibration but much more post-vibration. SLRs and MLRs were differently affected by changing the vibration frequency to 30 Hz: vibration had a negligible effect on the SLR, but still produced a significant effect on the MLR. The independence from the background EMG of the inhibitory effect of vibration upon the SLR suggests that vibration removes a constant amount of the Ia afferent input. This can be accounted for by either presynaptic inhibition of group Ia fibres or a 'busy-line' phenomenon. The differential effect of vibration on SLRs and MLRs is compatible with the notions that spindle primaries have a higher sensitivity to vibration than

  4. Effects of leg muscle tendon vibration on group Ia and group II reflex responses to stance perturbation in humans

    PubMed Central

    Bove, Marco; Nardone, Antonio; Schieppati, Marco

    2003-01-01

    Stretching the soleus (Sol) muscle during sudden toe-up rotations of the supporting platform in a standing subject evokes a short-latency response (SLR) and a medium-latency response (MLR). The aim of the present investigation was to further explore the afferent and spinal pathways mediating the SLR and MLR in lower limb muscles by means of tendon vibration. In seven subjects, toe-up or toe-down rotations were performed under: (1) control, (2) continuous bilateral vibration at 90 Hz of Achilles' tendon or tibialis anterior (TA) tendon, and (3) post-vibration conditions. Sol and TA background EMG activity and reflex responses were bilaterally recorded and analysed. Toe-up rotations induced SLRs and MLRs in Sol at average latencies of 40 and 66 ms, respectively. During vibration, the latency of both responses increased by about 2 ms. The area of the SLR significantly decreased during vibration, regardless of the underlying background activity, and almost returned to control value post-vibration. The area of Sol MLR was less influenced by vibration than SLR, the reduction being negligible with relatively high background activity. However, contrary to SLR, MLR was even more reduced post-vibration. Toe-down rotations induced no SLR in the TA, while a MLR was evoked at about 81 ms. The area of TA MLR decreased slightly during vibration but much more post-vibration. SLRs and MLRs were differently affected by changing the vibration frequency to 30 Hz: vibration had a negligible effect on the SLR, but still produced a significant effect on the MLR. The independence from the background EMG of the inhibitory effect of vibration upon the SLR suggests that vibration removes a constant amount of the Ia afferent input. This can be accounted for by either presynaptic inhibition of group Ia fibres or a ‘busy-line' phenomenon. The differential effect of vibration on SLRs and MLRs is compatible with the notions that spindle primaries have a higher sensitivity to vibration than

  5. A 3D model of the Achilles tendon to determine the mechanisms underlying nonuniform tendon displacements.

    PubMed

    Handsfield, Geoffrey G; Inouye, Joshua M; Slane, Laura C; Thelen, Darryl G; Miller, G Wilson; Blemker, Silvia S

    2017-01-25

    The Achilles is the thickest tendon in the body and is the primary elastic energy-storing component during running. The form and function of the human Achilles is complex: twisted structure, intratendinous interactions, and differential motor control from the triceps surae muscles make Achilles behavior difficult to intuit. Recent in vivo imaging of the Achilles has revealed nonuniform displacement patterns that are not fully understood and may result from complex architecture and musculotendon interactions. In order to understand which features of the Achilles tendon give rise to the nonuniform deformations observed in vivo, we used computational modeling to predict the mechanical contributions from different features of the tendon. The aims of this study are to: (i) build a novel computational model of the Achilles tendon based on ultrashort echo time MRI, (ii) compare simulated displacements with published in vivo ultrasound measures of displacement, and (iii) use the model to elucidate the effects of tendon twisting, intratendon sliding, retrocalcaneal insertion, and differential muscle forces on tendon deformation. Intratendon sliding and differential muscle forces were found to be the largest factors contributing to displacement nonuniformity between tendon regions. Elimination of intratendon sliding or muscle forces reduced displacement nonuniformity by 96% and 85%, respectively, while elimination of tendon twist and the retrocalcaneal insertion reduced displacement nonuniformity by only 35% and 3%. These results suggest that changes in the complex internal structure of the tendon alter the interaction between muscle forces and tendon behavior and therefore may have important implications on muscle function during movement. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Elastographic characteristics of the metacarpal tendons in horses without clinical evidence of tendon injury.

    PubMed

    Lustgarten, Meghann; Redding, W Rich; Labens, Raphael; Morgan, Michel; Davis, Weston; Seiler, Gabriela S

    2014-01-01

    Tendon and ligament injuries are common causes of impaired performance in equine athletes. Gray-scale ultrasonography is the current standard method for diagnosing and monitoring these injuries, however this modality only provides morphologic information. Elastography is an ultrasound technique that allows detection and measurement of tissue strain, and may provide valuable mechanical information about equine tendon and ligament injuries. The purpose of this study was to determine the feasibility, reproducibility, and repeatability of elastography; and to describe elastographic characteristics of metacarpal tendons in sound horses. Nineteen legs for 17 clinically sound horses without evidence of musculoskeletal pathology were included. Elastographic images of the superficial and deep digital flexor tendons and the branches of the suspensory ligament (tendon of the interosseous muscle) were described quantitatively and qualitatively. There was no statistically significant difference between operators (P = 0.86) nor within operators (P = 0.93). For qualitative assessments, reproducibility (0.46) was moderate and repeatability (0.78) was good. Similar to human Achilles tendons, equine tendons were classified as predominantly hard using elastography. There was no statistically significant difference in stiffness of the flexor tendons (P = 0.96). No significant difference in stiffness was found with altered leg position during standing (P = 0.84) and while nonweight bearing (P = 0.61). The flexor tendons were softer when imaged in longitudinal versus transverse planes (P < 0.01) however, the suspensory branches were not (P = 0.67). Findings supported future clinical application of elastography as a noninvasive "stall-side" imaging modality for evaluation of the tendons and ligaments of the distal forelimb in horses.

  7. In vivo muscle function vs speed. I. Muscle strain in relation to length change of the muscle-tendon unit.

    PubMed

    Hoyt, Donald F; Wickler, Steven J; Biewener, Andrew A; Cogger, Edward A; De La Paz, Kristin L

    2005-03-01

    The activity of muscles can be concentric (shortening), eccentric (lengthening) or isometric (constant length). When studying muscle function it is important to know what the muscle fascicles are actually doing because the performance of muscle is strongly influenced by the type of activity: force decreases as a function of shortening velocity during concentric contractions; force produced during eccentric contractions can be stronger than maximum isometric force, and force production is enhanced if a concentric contraction follows an eccentric phase. It is well known that length changes of muscle fascicles may be different from length changes of the overall muscle-tendon unit because of the compliance of the series elasticity. Consequently, fascicles of joint extensor muscles may not undergo eccentric activity even when the joint flexes, but the extent to which this occurs may vary with the compliance of the series elasticity and may differ between species: the vastus lateralis, a knee extensor, shortens when active during trotting in dogs and lengthens in rats. Previous studies of kinematics of trotting in horses have shown that during stance, the elbow extends nearly continuously with a brief period of flexion near mid-stance and the knee exhibits two phases of flexion followed by extension. The lateral triceps (an elbow extensor) has no external tendon but the vastus lateralis has a relatively long external tendon and the fascicles insert on an aponeurosis. Thus, one might expect the relation between fascicle strain and overall length change of the muscle-tendon units to be quite different in these two muscles. In the present study in horses, fascicle length changes of the lateral triceps and vastus lateralis were measured with sonomicrometry and length changes of the muscle-tendon units were estimated from muscle architecture and joint kinematics for four horses trotting on a treadmill at nine speeds. Because the focus of this study was the relation between

  8. Reliable Selection of the Number of Fascicles in Diffusion Images by Estimation of the Generalization Error

    PubMed Central

    Scherrer, Benoit; Taquet, Maxime; Warfield, Simon K.

    2014-01-01

    A number of diffusion models have been proposed to overcome the limitations of diffusion tensor imaging (DTI) which cannot represent multiple fascicles with heterogeneous orientations at each voxel. Among them, generative models such as multi-tensor models, CHARMED or NODDI represent each fascicle with a parametric model and are of great interest to characterize and compare white matter properties. However, the identification of the appropriate model, and particularly the estimation of the number of fascicles, has proven challenging. In this context, different model selection approaches have been proposed to identify the number of fascicles at each voxel. Most approaches attempt to maximize the quality of fit while penalizing complex models to avoid overfitting. However, the choice of a penalization strategy and the trade-off between penalization and quality of fit are rather arbitrary and produce highly variable results. In this paper, we propose for the first time to determine the number of fascicles at each voxel by assessing the generalization error. This criterion naturally prevents overfitting by comparing how the models predict new data not included in the model estimation. Since the generalization error cannot be directly computed, we propose to estimate it by the 632 bootstrap technique which has low bias and low variance. Results on synthetic phantoms and in vivo data show that our approach performs better than existing techniques, and is robust to the choice of decision threshold. Together with generative models of the diffusion signal, this technique will enable accurate identification of the model complexity at each voxel and accurate assessment of the white matter characteristics. PMID:24684014

  9. Influences of Fascicle Length During Isometric Training on Improvement of Muscle Strength.

    PubMed

    Tanaka, Hiroki; Ikezoe, Tome; Umehara, Jun; Nakamura, Masatoshi; Umegaki, Hiroki; Kobayashi, Takuya; Nishishita, Satoru; Fujita, Kosuke; Araki, Kojiro; Ichihashi, Noriaki

    2016-11-01

    Tanaka, H, Ikezoe, T, Umehara, J, Nakamura, M, Umegaki, H, Kobayashi, T, Nishishita, S, Fujita, K, Araki, K, and Ichihashi, N. Influences of fascicle length during isometric training on improvement of muscle strength. J Strength Cond Res 30(11): 3249-3255, 2016-This study investigated whether low-intensity isometric training would elicit a greater improvement in maximum voluntary contraction (MVC) at the same fascicle length, rather than the joint angle, adopted during training. Sixteen healthy women (21.8 ± 1.5 years) were randomly divided into an intervention group and a control group. Before (Pre) and after (Post) training, isometric plantarflexion MVCs were measured every 10° through the range of ankle joint position from 20° dorsiflexion to 30° plantarflexion (i.e., 6 ankle angles). Medial gastrocnemius fascicle length was also measured at each position, using B-mode ultrasound under 3 conditions of muscle activation: at rest, 30%MVC at respective angles, and MVC. Plantarflexion resistance training at an angle of 20° plantarflexion was performed 3 days a week for 4 weeks at 30%MVC using 3 sets of twenty 3-second isometric contractions. Maximum voluntary contraction in the intervention group increased at 0 and 10° plantarflexion (0°; Pre: 81.2 ± 26.5 N·m, Post: 105.0 ± 21.6 N·m, 10°; Pre: 63.0 ± 23.6 N·m, Post: 81.3 ± 20.3 N·m), which was not the angle used in training (20°). However, the fascicle length adopted in training at 20° plantarflexion and 30%MVC was similar to the value at 0 or 10° plantarflexion at MVC. Low-intensity isometric training at a shortened muscle length may be effective for improving MVC at a lengthened muscle length because of specificity of the fascicle length than the joint angle.

  10. Gliding Resistance and Strength of a Braided Polyester/Monofilament Polyethylene Composite (FiberWire®) Suture in Human Flexor Digitorum Profundus Tendon Repair: An In-Vitro Biomechanical Study

    PubMed Central

    Silva, Jose M.; Zhao, Chunfeng; An, Kai-Nan; Zobitz, Mark E.; Amadio, Peter C.

    2009-01-01

    Purpose While the strength of a tendon repair is clearly important, the friction of the repair is also a relevant consideration. The purpose of this study was to characterize the frictional coefficient, gliding resistance and breaking strength of suture materials and a suture construct commonly used for flexor tendon repair. Methods We measured the friction coefficients of 3-0 braided nylon enclosed in a smooth nylon outer shell (Supramid, S. Jackson, Alexandria, VA), 3-0 braided polyester coated with polybutilate (Ethibond, Ethicon, Somerville, NJ), and a 3-0 braided polyester/monofilament polyethylene composite (FiberWire, Arthrex, Naples, FL) sutures. We also measured the gliding resistance, linear breaking strength and resistance to gapping of zone 2 modified Pennington tendon repairs with the two lowest friction sutures in 20 human cadaveric flexor digitorum profundus (FDP) tendons. Results The braided polyester/monofilament polyethylene composite had a significantly lower friction coefficient (0.054) than either the coated polyester (0.076) or nylon (0.130) sutures (p<0.001). The gliding resistances of the repaired tendons with braided/monofilament polyethylene composite suture and coated, braided polyester were similar (p> 0.05). The strength of the two repairs, force to produce a 2mm gap, and resistance to gap formation than coated, braided polyester repairs were also not significantly different. Conclusion Braided polyester composite is a low friction suture material. However, when this suture was used for tendon repair with a locking suture technique, it did not show a significant effect on the gliding resistance and repair strength compared with the same repair using coated polyester suture. PMID:19121735

  11. Evidence that interfibrillar load transfer in tendon is supported by small diameter fibrils and not extrafibrillar tissue components.

    PubMed

    Szczesny, Spencer E; Fetchko, Kristen L; Dodge, George R; Elliott, Dawn M

    2017-10-01

    Collagen fibrils in tendon are believed to be discontinuous and transfer tensile loads through shear forces generated during interfibrillar sliding. However, the structures that transmit these interfibrillar forces are unknown. Various extrafibrillar tissue components (e.g., glycosaminoglycans, collagens XII and XIV) have been suggested to transmit interfibrillar loads by bridging collagen fibrils. Alternatively, collagen fibrils may interact directly through physical fusions and interfibrillar branching. The objective of this study was to test whether extrafibrillar proteins are necessary to transmit load between collagen fibrils or if interfibrillar load transfer is accomplished directly by the fibrils themselves. Trypsin digestions were used to remove a broad spectrum of extrafibrillar proteins and measure their contribution to the multiscale mechanics of rat tail tendon fascicles. Additionally, images obtained from serial block-face scanning electron microscopy were used to determine the three-dimensional fibrillar organization in tendon fascicles and identify any potential interfibrillar interactions. While trypsin successfully removed several extrafibrillar tissue components, there was no change in the macroscale fascicle mechanics or fibril:tissue strain ratio. Furthermore, the imaging data suggested that a network of smaller diameter fibrils (<150 nm) wind around and fuse with their neighboring larger diameter fibrils. These findings demonstrate that interfibrillar load transfer is not supported by extrafibrillar tissue components and support the hypothesis that collagen fibrils are capable of transmitting loads themselves. Conclusively determining how fibrils bear load within tendon is critical for identifying the mechanisms that impair tissue function with degeneration and for restoring tissue properties via cell-mediated regeneration or engineered tissue replacements. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop

  12. Fetal development of the pulley for muscle insertion tendons: A review and new findings related to the tensor tympani tendon.

    PubMed

    Rodríguez-Vázquez, Jose Francisco; Honkura, Yohei; Katori, Yukio; Murakami, Gen; Abe, Hiroshi

    2017-01-01

    The existence of hard tissue pulleys that act to change the direction of a muscle insertion tendon is well known in the human body. These include (1) the trochlea for the extraocular obliquus superior muscle, (2) the pterygoid hamulus for the tensor veli palatini muscle, (3) the deep sulcus on the plantar aspect of the cuboid bone for the peroneus longus tendon, (4) the lesser sciatic notch for the obturator internus muscle, and (5) the bony trochleariformis process for the tensor tympani muscle tendon. In addition, (6) the stapedius muscle tendon shows a lesser or greater angulation at the pyramidal eminence of the temporal bone. Our recent studies have shown that the development of pulleys Nos. 1 and 2 can be explained by a change in the topographical relationship between the pulley and the tendon, that of pulley No. 3 by the rapidly growing calcaneus pushing the tendon, and that of pulley No. 4 by migration of the insertion along the sciatic nerve and gluteus medius tendon. Therefore, in Nos. 1-4, an initially direct tendon curves secondarily and obtains an attachment to the pulley. In case No. 6, the terminal part of the stapedius tendon originates secondarily from the interzone mesenchymal tissue of the incudostapedial joint. In the case of pulley No. 5, we newly demonstrated that its initial phase of development was similar to No. 6, but the tensor tympani tendon achieved a right-angled turn under guidance by a specific fibrous tissue and it migrated along the growing malleus manubrium.

  13. Forefoot tendon transfers.

    PubMed

    Veljkovic, Andrea; Lansang, Edward; Lau, Johnny

    2014-03-01

    Flexible forefoot deformities, such as hallux varus, clawed hallux, hammer toes, and angular lesser toe deformities, can be treated effectively with tendon transfers. Based on the presentation of the flexible forefoot deformities, tendon transfers can be used as the primary treatment or as adjuncts to bony procedures when there are components of fixed deformities.

  14. Reconstruction of muscle fascicle architecture from iodine-enhanced microCT images: A combined texture mapping and streamline approach.

    PubMed

    Kupczik, Kornelius; Stark, Heiko; Mundry, Roger; Neininger, Fabian T; Heidlauf, Thomas; Röhrle, Oliver

    2015-10-07

    Skeletal muscle models are used to investigate motion and force generation in both biological and bioengineering research. Yet, they often lack a realistic representation of the muscle's internal architecture which is primarily composed of muscle fibre bundles, known as fascicles. Recently, it has been shown that fascicles can be resolved with micro-computed tomography (µCT) following staining of the muscle tissue with iodine potassium iodide (I2KI). Here, we present the reconstruction of the fascicular spatial arrangement and geometry of the superficial masseter muscle of a dog based on a combination of pattern recognition and streamline computation. A cadaveric head of a dog was incubated in I2KI and µCT-scanned. Following segmentation of the masseter muscle a statistical pattern recognition algorithm was applied to create a vector field of fascicle directions. Streamlines were then used to transform the vector field into a realistic muscle fascicle representation. The lengths of the reconstructed fascicles and the pennation angles in two planes (frontal and sagittal) were extracted and compared against a tracked fascicle field obtained through cadaver dissection. Both fascicle lengths and angles were found to vary substantially within the muscle confirming the complex and heterogeneous nature of skeletal muscle described by previous studies. While there were significant differences in the pennation angle between the experimentally derived and µCT-reconstructed data, there was congruence in the fascicle lengths. We conclude that the presented approach allows for embedding realistic fascicle information into finite element models of skeletal muscles to better understand the functioning of the musculoskeletal system.

  15. The tibialis posterior tendon.

    PubMed

    Lhoste-Trouilloud, A

    2012-02-01

    The tibialis posterior tendon is the largest and anteriormost tendon in the medial ankle. It produces plantar flexion and supination of the ankle and stabilizes the plantar vault. Sonographic assessment of this tendon is done with high-frequency, linear-array transducers; an optimal examination requires transverse retromalleolar, longitudinal retromalleolar, and distal longitudinal scans, as well as dynamic studies. Disorders of the posterior tibial tendon include chronic tendinopathy with progressive rupture, tenosynovitis, acute rupture, dislocation and instability, enthesopathies. The most common lesion is a progressive "chewing gum" lesion that develops in a setting of chronic tendinopathy; it is usually seen in overweight women over 50 years of age with valgus flat feet. Medial ankle pain must also be carefully investigated, and the presence of instability assessed with dynamic maneuvers (forced inversion, or dorsiflexion) of the foot. Sonography plays an important role in the investigation of disorders involving the posterior tibial tendon.

  16. Zonal variation in primary cilia elongation correlates with localized biomechanical degradation in stress deprived tendon

    PubMed Central

    Rowson, Daniel; Screen, Hazel R.C.

    2016-01-01

    ABSTRACT Tenocytes express primary cilia, which elongate when tendon is maintained in the absence of biomechanical load. Previous work indicates differences in the morphology and metabolism of the tenocytes in the tendon fascicular matrix (FM) and the inter‐fascicular matrix (IFM). This study tests the hypothesis that primary cilia in these two regions respond differently to stress deprivation and that this is associated with differences in the biomechanical degradation of the extracellular matrix. Rat tail tendon fascicles were examined over a 7‐day period of either stress deprivation or static load. Seven days of stress deprivation induced cilia elongation in both regions. However, elongation was greater in the IFM compared to the FM. Stress deprivation also induced a loss of biomechanical integrity, primarily in the IFM. Static loading reduced both the biomechanical degradation and cilia elongation. The different responses to stress deprivation in the two tendon regions are likely to be important for the aetiology of tendinopathy. Furthermore, these data suggest that primary cilia elongate in response to biomechanical degradation rather than simply the removal of load. This response to degradation is likely to have important consequences for cilia signalling in tendon and as well as in other connective tissues. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 34:2146–2153, 2016. PMID:26969839

  17. Zonal variation in primary cilia elongation correlates with localized biomechanical degradation in stress deprived tendon.

    PubMed

    Rowson, Daniel; Knight, Martin M; Screen, Hazel R C

    2016-12-01

    Tenocytes express primary cilia, which elongate when tendon is maintained in the absence of biomechanical load. Previous work indicates differences in the morphology and metabolism of the tenocytes in the tendon fascicular matrix (FM) and the inter-fascicular matrix (IFM). This study tests the hypothesis that primary cilia in these two regions respond differently to stress deprivation and that this is associated with differences in the biomechanical degradation of the extracellular matrix. Rat tail tendon fascicles were examined over a 7-day period of either stress deprivation or static load. Seven days of stress deprivation induced cilia elongation in both regions. However, elongation was greater in the IFM compared to the FM. Stress deprivation also induced a loss of biomechanical integrity, primarily in the IFM. Static loading reduced both the biomechanical degradation and cilia elongation. The different responses to stress deprivation in the two tendon regions are likely to be important for the aetiology of tendinopathy. Furthermore, these data suggest that primary cilia elongate in response to biomechanical degradation rather than simply the removal of load. This response to degradation is likely to have important consequences for cilia signalling in tendon and as well as in other connective tissues. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 34:2146-2153, 2016.

  18. Tendon overload results in alterations in cell shape and increased markers of inflammation and matrix degradation.

    PubMed

    Thorpe, C T; Chaudhry, S; Lei, I I; Varone, A; Riley, G P; Birch, H L; Clegg, P D; Screen, H R C

    2015-08-01

    Tendon injury is thought to involve both damage accumulation within the matrix and an accompanying cell response. While several studies have characterized cell and matrix response in chronically injured tendons, few have assessed the initial response of tendon to overload-induced damage. In this study, we assessed cell response to cyclic loading. Fascicle bundles from the equine superficial digital flexor tendon were exposed to cyclic loading in vitro, designed to mimic a bout of high-intensity exercise. Changes in cell morphology and protein-level alterations in markers of matrix inflammation and degradation were investigated. Loading resulted in matrix damage, which was accompanied by cells becoming rounder. The inflammatory markers cyclooxygenase-2 and interleukin-6 were increased in loaded samples, as were matrix metalloproteinase-13 and the collagen degradation marker C1,2C. These results indicate upregulation of inflammatory and degradative pathways in response to overload-induced in vitro, which may be initiated by alterations in cell strain environment because of localized matrix damage. This provides important information regarding the initiation of tendinopathy, suggesting that inflammation may play an important role in the initial cell response to tendon damage. Full understanding of the early tenocyte response to matrix damage is critical in order to develop effective treatments for tendinopathy. © 2014 The Authors. Scandinavian Journal of Medicine & Science in Sports published by John Wiley & Sons Ltd.

  19. Collagen self-assembly and the development of tendon mechanical properties.

    PubMed

    Silver, Frederick H; Freeman, Joseph W; Seehra, Gurinder P

    2003-10-01

    The development of the musculoskeleton and the ability to locomote requires controlled cell division as well as spatial control over deposition of extracellular matrix. Self-assembly of procollagen and its final processing into collagen fibrils occurs extracellularly. The formation of crosslinked collagen fibers results in the conversion of weak liquid-like embryonic tissues to tough elastic solids that can store energy and do work. Collagen fibers in the form of fascicles are the major structural units found in tendon. The purpose of this paper is to review the literature on collagen self-assembly and tendon development and to relate this information to the development of elastic energy storage in non-mineralizing and mineralizing tendons. Of particular interest is the mechanism by which energy is stored in tendons during locomotion. In vivo, collagen self-assembly occurs by the deposition of thin fibrils in recesses within the cell membrane. These thin fibrils later grow in length and width by lateral fusion of intermediates. In vitro, collagen self-assembly occurs by both linear and lateral growth steps with parallel events seen in vivo; however, in the absence of cellular control and enzymatic cleavage of the propeptides, the growth mechanism is altered, and the fibrils are irregular in cross section. Results of mechanical studies suggest that prior to locomotion the mechanical response of tendon to loading is dominated by the viscous sliding of collagen fibrils. In contrast, after birth when locomotion begins, the mechanical response is dominated by elastic stretching of crosslinked collagen molecules.

  20. Intra- and intermuscular variation in human quadriceps femoris architecture assessed in vivo

    PubMed Central

    Blazevich, Anthony J; Gill, Nicholas D; Zhou, Shi

    2006-01-01

    Despite the functional importance of the human quadriceps femoris in movements such as running, jumping, lifting and climbing, and the known effects of muscle architecture on muscle function, no research has fully described the complex architecture of this muscle group. We used ultrasound imaging techniques to measure muscle thickness, fascicle angle and fascicle length at multiple regions of the four quadriceps muscles in vivo in 31 recreationally active, but non-strength-trained adult men and women. Our analyses revealed a reasonable similarity in the superficial quadriceps muscles, which is suggestive of functional similarity (at least during the uni-joint knee extension task) given that they act via a common tendon. The deep vastus intermedius (VI) is architecturally dissimilar and therefore probably serves a different function(s). Architecture varies significantly along the length of the superficial muscles, which has implications for the accuracy of models that assume a constant intramuscular architecture. It might also have consequences for the efficiency of intra- and intermuscular force transmission. Our results provide some evidence that subjects with a given architecture of one superficial muscle, relative to the rest of the subject sample, also have a similar architecture in other superficial muscles. However, this is not necessarily true for vastus lateralis (VL), and was not the case for VI. Therefore, the relative architecture of one muscle cannot confidently be used to estimate the relative architecture of another. To confirm this, we calculated a value of whole quadriceps architecture by four different methods. Regardless of the method used, we found that the absolute or relative architecture of one muscle could not be used as an indicator of whole quadriceps architecture, although vastus medialis, possibly in concert with VL and the anterior portion of VI, could be used to provide a useful snapshot. Importantly, our estimates of whole quadriceps

  1. Tendon Gradient Mineralization for Tendon to Bone Interface Integration

    PubMed Central

    Qu, Jin; Thoreson, Andrew R.; Chen, Qingshan; An, Kai-Nan; Amadio, Peter C.; Zhao, Chunfeng

    2014-01-01

    Tendon-to-bone integration is a great challenge for tendon or ligament reconstruction regardless of use of autograft or allograft tendons. We mineralized the tendon, thus transforming the tendon-to-bone into a “bone-to-bone” interface for healing. Sixty dog flexor digitorum profundus (FDP) tendons were divided randomly into 5 groups: 1) normal FDP tendon, 2) CaP (Non-extraction and mineralization without fetuin), 3) CaPEXT (Extraction by Na2HPO4 and mineralization without fetuin), 4) CaPFetuin (Non-extraction and mineralization with fetuin), and 5) CaPEXTFetuin (Extraction and mineralization with fetuin). The calcium and phosphate content significantly increased in tendons treated with combination of extraction and fetuin compared to the other treatments. Histology also revealed a dense mineral deposition throughout the tendon outer layers and penetrated into the tendon to a depth of 200 μm in a graded manner. Compressive moduli were significantly lower in the four mineralized groups compared with normal control group. No significant differences in maximum failure strength or stiffness were found in the suture pull-out test among all groups. Mineralization of tendon alters the interface from tendon to bone into mineralized tendon to bone, which may facilitate tendon-to-bone junction healing following tendon or ligament reconstruction. PMID:23939935

  2. Tendon gradient mineralization for tendon to bone interface integration.

    PubMed

    Qu, Jin; Thoreson, Andrew R; Chen, Qingshan; An, Kai-Nan; Amadio, Peter C; Zhao, Chunfeng

    2013-11-01

    Tendon-to-bone integration is a great challenge for tendon or ligament reconstruction regardless of use of autograft or allograft tendons. We mineralized the tendon, thus transforming the tendon-to-bone into a "bone-to-bone" interface for healing. Sixty dog flexor digitorum profundus (FDP) tendons were divided randomly into five groups: (1) normal FDP tendon, (2) CaP (non-extraction and mineralization without fetuin), (3) CaPEXT (Extraction by Na2 HPO4 and mineralization without fetuin), (4) CaPFetuin (non-extraction and mineralization with fetuin), and (5) CaPEXTFetuin (extraction and mineralization with fetuin). The calcium and phosphate content significantly increased in tendons treated with combination of extraction and fetuin compared to the other treatments. Histology also revealed a dense mineral deposition throughout the tendon outer layers and penetrated into the tendon to a depth of 200 µm in a graded manner. Compressive moduli were significantly lower in the four mineralized groups compared with normal control group. No significant differences in maximum failure strength or stiffness were found in the suture pull-out test among all groups. Mineralization of tendon alters the interface from tendon to bone into mineralized tendon to bone, which may facilitate tendon-to-bone junction healing following tendon or ligament reconstruction.

  3. Polarization-resolved SHG microscopy of rat-tail tendon with controlled mechanical strain

    NASA Astrophysics Data System (ADS)

    Gusachenko, I.; Goulam Houssen, Y.; Tran, V.; Allain, J.-M.; Schanne-Klein, M.-C.

    2013-06-01

    We combined polarization-resolved SHG microscopy with mechanical assays in rat-tail-tendon and measured collagen remodeling upon controlled stretching. This approach aimed to analyze the relationship between macroscopic response and sub-micrometer scale organization of collagen fibrils. We observed a straightening of the crimps followed by a sliding of the fibrils with increasing stretching of the tendon fascicles. Polarization resolution of the SHG images provided complementary information about the orientation dispersion of collagen fibrils within the focal volume and enabled monitoring of collagen remodeling at the sub-micrometer scale. Our approach can be readily generalized to other tissues and should bring new valuable information about biomechanics of microstructured tissues.

  4. How Obesity Affects Tendons?

    PubMed

    Abate, Michele; Salini, Vincenzo; Andia, Isabel

    Several epidemiological and clinical observations have definitely demonstrated that obesity has harmful effects on tendons. The pathogenesis of tendon damage is multi-factorial. In addition to overload, attributable to the increased body weight, which significantly affects load-bearing tendons, systemic factors play a relevant role. Several bioactive peptides (chemerin, leptin, adiponectin and others) are released by adipocytes, and influence tendon structure by means of negative activities on mesenchymal cells. The ensuing systemic state of chronic, sub-clinic, low-grade inflammation can damage tendon structure. Metabolic disorders (diabetes, impaired glucose tolerance, and dislipidemia), frequently associated with visceral adiposity, are concurrent pathogenetic factors. Indeed, high glucose levels increase the formation of Advanced Glycation End-products, which in turn form stable covalent cross-links within collagen fibers, modifying their structure and functionality.Sport activities, so useful for preventing important cardiovascular complications, may be detrimental for tendons if they are submitted to intense acute or chronic overload. Therefore, two caution rules are mandatory: first, to engage in personalized soft training program, and secondly to follow regular check-up for tendon pathology.

  5. Peroneal tendon disorders

    PubMed Central

    Davda, Kinner; Malhotra, Karan; O’Donnell, Paul; Singh, Dishan; Cullen, Nicholas

    2017-01-01

    Pathological abnormality of the peroneal tendons is an under-appreciated source of lateral hindfoot pain and dysfunction that can be difficult to distinguish from lateral ankle ligament injuries. Enclosed within the lateral compartment of the leg, the peroneal tendons are the primary evertors of the foot and function as lateral ankle stabilisers. Pathology of the tendons falls into three broad categories: tendinitis and tenosynovitis, tendon subluxation and dislocation, and tendon splits and tears. These can be associated with ankle instability, hindfoot deformity and anomalous anatomy such as a low lying peroneus brevis or peroneus quartus. A thorough clinical examination should include an assessment of foot type (cavus or planovalgus), palpation of the peronei in the retromalleolar groove on resisted ankle dorsiflexion and eversion as well as testing of lateral ankle ligaments. Imaging including radiographs, ultrasound and MRI will help determine the diagnosis. Treatment recommendations for these disorders are primarily based on case series and expert opinion. The aim of this review is to summarise the current understanding of the anatomy and diagnostic evaluation of the peroneal tendons, and to present both conservative and operative management options of peroneal tendon lesions. Cite this article: EFORT Open Rev 2017;2:281-292. DOI: 10.1302/2058-5241.2.160047 PMID:28736620

  6. Hamstring Tendon Regeneration After Harvesting: A Systematic Review.

    PubMed

    Suijkerbuijk, Mathijs A M; Reijman, Max; Lodewijks, Susanne J M; Punt, Jorien; Meuffels, Duncan E

    2015-10-01

    Hamstring tendons are often used as autografts for anterior cruciate ligament (ACL) reconstruction. However, no systematic review has been performed describing consequences such as hamstring tendon regeneration rate and determinants of hamstring tendon regeneration. To summarize the current literature regarding hamstring tendon rate regeneration, the time course of regeneration, and determinants of hamstring regeneration. Systematic review. A search was performed in the Embase, Medline (OvidSP), Web of Science, Cochrane, PubMed, and Google Scholar databases up to June 2014 to identify relevant articles. A study was eligible if it met the following inclusion criteria: tendons were harvested, regeneration at harvest site was assessed, population size was at least 10 human subjects, full-text article was available, and the study design was either a randomized controlled trial, prospective cohort study, retrospective cohort study, or case control study. A risk of bias assessment of the eligible articles was determined. Data describing hamstring tendon regeneration rates were pooled per time period. A total of 18 publications met the inclusion criteria. The mean regeneration rate for the semitendinosus and gracilis tendons was, in all cases, 70% or higher. More than 1 year after harvesting, 79% (median [IQR], 80 [75.5-90]) of the semitendinosus tendons and 72% (median [IQR], 80 [61-88.5]) of the gracilis tendons were regenerated. No significant differences in regeneration rate could be found considering patient sex, age, height, weight, or duration of immobilization. Results did not clearly show whether absence of regeneration disadvantages the subsequent hamstring function. Five studies measured the regeneration rate at different moments in time. Hamstring tendons regenerated in the majority of patients after ACL reconstruction. The majority of the hamstring tendon regeneration was found to occur between 1 month and 1 year after harvest. No significant determinants for

  7. Effects of Growth on Muscle, Tendon, and Aponeurosis Tissues in Rabbit Shank Musculature.

    PubMed

    Böl, Markus; Leichsenring, Kay; Siebert, Tobias

    2016-12-20

    There exist several studies using morphological analyses of skeletal muscles to obtain a better understanding of muscle structure. The structural information obtained are primarily determined from single muscle components using individual animals of discrete ages. Further, little is known about changing dimensions of the aponeurosis, which is an important load-transferring interface in muscle mechanics. Thus, the aim of the present study was to determine how the muscle, tendon, and particularly the aponeurosis geometry of the rabbit shank musculature (M. soleus, M. extensor digitorum longus, and M. plantaris) change during growth. In doing so, morphological studies on muscles of eighty-nine female rabbits aged between 18 and 108 days were conducted. We found an almost linear increase over time in all of the geometrical parameters observed. The aponeurosis of the muscles exhibited lower growth rates in width than in length. The distal and proximal aponeurosis areas were nearly identical. The ratio of aponeurosis area to the physiological cross-sectional area was 2.54, 2.54, and 1.88 for M. soleus, M. extensor digitorum longus, and M. plantaris, respectively. M. extensor digitorum longus and M. soleus exhibited a nearly similar tendon-muscle fascicle length ratio during growth, increasing from 2.86 to 5.30 and 3.48 to 6.16, respectively. Interestingly, the tendon-muscle fascicle length ratio of the M. plantaris started initially with a much higher value (∼8) and increased to ∼18. Taken together, these results provide insight into the structure of the muscle-tendon complex and thus, a general understanding of muscle growth. Anat Rec, 2016. © 2016 Wiley Periodicals, Inc.

  8. The promoting effect of pentadecapeptide BPC 157 on tendon healing involves tendon outgrowth, cell survival, and cell migration.

    PubMed

    Chang, Chung-Hsun; Tsai, Wen-Chung; Lin, Miao-Sui; Hsu, Ya-Hui; Pang, Jong-Hwei Su

    2011-03-01

    Pentadecapeptide BPC 157, composed of 15 amino acids, is a partial sequence of body protection compound (BPC) that is discovered in and isolated from human gastric juice. Experimentally it has been demonstrated to accelerate the healing of many different wounds, including transected rat Achilles tendon. This study was designed to investigate the potential mechanism of BPC 157 to enhance healing of injured tendon. The outgrowth of tendon fibroblasts from tendon explants cultured with or without BPC 157 was examined. Results showed that BPC 157 significantly accelerated the outgrowth of tendon explants. Cell proliferation of cultured tendon fibroblasts derived from rat Achilles tendon was not directly affected by BPC 157 as evaluated by MTT assay. However, the survival of BPC 157-treated cells was significantly increased under the H(2)O(2) stress. BPC 157 markedly increased the in vitro migration of tendon fibroblasts in a dose-dependent manner as revealed by transwell filter migration assay. BPC 157 also dose dependently accelerated the spreading of tendon fibroblasts on culture dishes. The F-actin formation as detected by FITC-phalloidin staining was induced in BPC 157-treated fibroblasts. The protein expression and activation of FAK and paxillin were determined by Western blot analysis, and the phosphorylation levels of both FAK and paxillin were dose dependently increased by BPC 157 while the total amounts of protein was unaltered. In conclusion, BPC 157 promotes the ex vivo outgrowth of tendon fibroblasts from tendon explants, cell survival under stress, and the in vitro migration of tendon fibroblasts, which is likely mediated by the activation of the FAK-paxillin pathway.

  9. Tendon Progenitor Cells in Injured Tendons Have Strong Chondrogenic Potential: The CD105-Negative Subpopulation Induces Chondrogenic Degeneration

    PubMed Central

    Asai, Shuji; Otsuru, Satoru; Candela, Maria Elena; Cantley, Leslie; Uchibe, Kenta; Hofmann, Ted J.; Zhang, Kairui; Wapner, Keith L.; Soslowsky, Louis J; Horwitz, Edwin M.; Enomoto-Iwamoto, Motomi

    2014-01-01

    To study the cellular mechanism of the tendon repair process, we used a mouse Achilles tendon injury model to focus on the cells recruited to the injured site. The cells isolated from injured tendon 1 week after the surgery and uninjured tendons contained the connective tissue progenitor populations as determined by colony-forming capacity, cell surface markers and multipotency. When the injured tendon-derived progenitor cells (inTPCs) were transplanted into injured Achilles tendons, they were not only integrated in the regenerating area expressing tenogenic phenotype but also trans-differentiated into chondrogenic cells in the degenerative lesion that underwent ectopic endochondral ossification. Surprisingly, the micromass culture of the inTPCs rapidly underwent chondrogenic differentiation even in the absence of exogenous BMPs or TGFβs. The cells isolated from human ruptured tendon tissues also showed connective tissue progenitor properties and exhibited stronger chondrogenic ability than bone marrow stromal cells. The mouse inTPCs contained two subpopulations one positive and one negative for CD105, a co-receptor of the TGFβ superfamily. The CD105-negative cells showed superior chondrogenic potential in vitro and induced larger chondroid degenerative lesions in mice as compared to the CD105-positive cells. These findings indicate that tendon progenitor cells are recruited to the injured site of tendons and have a strong chondrogenic potential and that the CD105-negative population of these cells would be the cause for chondroid degeneration in injured tendons. The newly identified cells recruited to the injured tendon may provide novel targets to develop therapeutic strategies to facilitate tendon repair. PMID:25220576

  10. Tendon progenitor cells in injured tendons have strong chondrogenic potential: the CD105-negative subpopulation induces chondrogenic degeneration.

    PubMed

    Asai, Shuji; Otsuru, Satoru; Candela, Maria Elena; Cantley, Leslie; Uchibe, Kenta; Hofmann, Ted J; Zhang, Kairui; Wapner, Keith L; Soslowsky, Louis J; Horwitz, Edwin M; Enomoto-Iwamoto, Motomi

    2014-12-01

    To study the cellular mechanism of the tendon repair process, we used a mouse Achilles tendon injury model to focus on the cells recruited to the injured site. The cells isolated from injured tendon 1 week after the surgery and uninjured tendons contained the connective tissue progenitor populations as determined by colony-forming capacity, cell surface markers, and multipotency. When the injured tendon-derived progenitor cells (inTPCs) were transplanted into injured Achilles tendons, they were not only integrated in the regenerating area expressing tenogenic phenotype but also trans-differentiated into chondrogenic cells in the degenerative lesion that underwent ectopic endochondral ossification. Surprisingly, the micromass culture of the inTPCs rapidly underwent chondrogenic differentiation even in the absence of exogenous bone morphogenetic proteins or TGFβs. The cells isolated from human ruptured tendon tissues also showed connective tissue progenitor properties and exhibited stronger chondrogenic ability than bone marrow stromal cells. The mouse inTPCs contained two subpopulations one positive and one negative for CD105, a coreceptor of the TGFβ superfamily. The CD105-negative cells showed superior chondrogenic potential in vitro and induced larger chondroid degenerative lesions in mice as compared to the CD105-positive cells. These findings indicate that tendon progenitor cells are recruited to the injured site of tendons and have a strong chondrogenic potential and that the CD105-negative population of these cells would be the cause for chondroid degeneration in injured tendons. The newly identified cells recruited to the injured tendon may provide novel targets to develop therapeutic strategies to facilitate tendon repair.

  11. Adequacy of palmaris longus and plantaris tendons for tendon grafting.

    PubMed

    Jakubietz, Michael G; Jakubietz, Danni F; Gruenert, Joerg G; Zahn, Robert; Meffert, Rainer H; Jakubietz, Rafael G

    2011-04-01

    The reconstruction of tendon defects is challenging. The palmaris longus and plantaris tendon are generally considered best for tendon grafting. Only a few studies have examined whether these tendons, when present, meet criteria for successful grafting. The purpose of this study was to evaluate these tendons in regard to adequacy as tendon grafts. To evaluate adequacy for grafting, the palmaris longus and plantaris tendons were harvested from 92 arms and legs of 46 cadavers. Macroscopic evaluation and measurements concerning presence, length, and diameter of the tendons were obtained. Criteria for adequacy were a minimum length of 15 cm with diameter of 3 mm or, alternatively, 30 cm with a diameter of 1.5 mm. The palmaris longus tendon was present bilaterally in 36 cases and was absent bilaterally in 4 cases. The plantaris tendon was present bilaterally in 38 cases and absent bilaterally in 4 cases. In 29 cadavers, the palmaris longus tendon did not meet the criteria to be used as a tendon graft. Only in 8 cases were the tendons satisfactory for grafting bilaterally. The plantaris tendon met criteria for grafting in 20 cases bilaterally. In 17 cases, the tendons were considered inadequate bilaterally. Despite their presence, the palmaris longus and plantaris tendons are adequate for grafting less often than previously thought. In less than 50%, the tendons, although present, would serve as useful grafts. Our findings underscore the importance of choosing a second donor site before surgery in case the primarily selected tendon is not found to be suitable. Copyright © 2011 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  12. Spatial arrangement of the heart muscle fascicles and intramyocardial connective tissue in the Spanish fighting bull (Bos taurus).

    PubMed Central

    Sánchez-Quintana, D; Climent, V; Garcia-Martinez, V; Rojo, M; Hurlé, J M

    1994-01-01

    The spatial arrangement of the muscle fascicles and intramyocardial connective tissue was examined in the ventricles of the heart of the Spanish fighting bull (Bos taurus). In both ventricles, the muscle fascicles of the myocardium are arranged in 3 main directions, forming 3 muscle layers within the ventricular wall. The preferentially vertical arrangement of the muscle fascicles in the superficial and deep layers at the level of the fibrous aortic rings and the base of the semilunar valve leaflets suggests that these fascicles are actively involved in valvular dynamics. After controlled digestion of myocytes and elastic fibres with NaOH, a 3-dimensional arrangement of the scaffolding of connective tissue that supports the muscle fascicles and myocytes was observed. The arrangement and structure of this scaffolding may influence the order of contraction of muscle fascicles in different layers of the ventricle. In addition, differences were observed between the connective tissue scaffolding surrounding the myocytes of the 2 ventricles; these variations were correlated with the different biomechanical properties. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 8 Fig. 9 Fig. 10 PMID:8014119

  13. Tissue characterization of equine tendons with clinical B-scan images using a shock filter thinning algorithm.

    PubMed

    Meghoufel, Ali; Cloutier, Guy; Crevier-Denoix, Nathalie; de Guise, Jacques A

    2011-03-01

    The fiber bundle density (FBD) calculated from ultrasound B-scan images of the equine superficial digital flexor tendon (SDFT) can serve as an objective measurement to characterize the three metacarpal sites of normal SDFTs, and also to discriminate a healthy SDFT from an injured one. In this paper, we propose a shock filter algorithm for the thinning of hyper-echoic structures observed in B-scan images of the SDFT. This algorithm is further enhanced by applying closing morphological operations on filtered images to facilitate extraction and quantification of fiber bundle fascicles. The mean FBD values were calculated from a clinical B-scan image dataset of eight normal and five injured SDFTs. The FBD values measured at three different tendon sites in normal cases show a highest density on the proximal site (five cases out of eight) and a lowest value on the distal part (seven cases out of eight). The mean FBD values measured on the entire tendon from the whole B-scan image dataset show a significant difference between normal and injured SDFTs: 51 (±9) for the normal SDFTs and 39 (±7) for the injured ones (p = 0.004) . This difference likely indicates disruption of some fiber fascicle bundles where lesions occurred. To conclude, the potential of this imaging technique is shown to be efficient for anatomical structural SDFT characterizations, and opens the way to clinically identifying the integrity of SDFTs.

  14. Tendon vs. ligament (image)

    MedlinePlus

    ... the eyeball. A tendon serves to move the bone or structure. A ligament is a fibrous connective tissue which attaches bone to bone, and usually serves to hold structures together and keep them stable.

  15. Inflamed shoulder tendons (image)

    MedlinePlus

    Tearing and inflammation of the tendons of the shoulder muscles can occur in sports which require the ... pitching, swimming, and lifting weights. Most often the shoulder will heal if a break is taken from ...

  16. Proximal Biceps Tendonitis

    MedlinePlus

    ... teens, biceps tendonitis is usually an overuse injury. Baseball pitchers, swimmers, tennis players, and people who have ... But if you swim or play tennis or baseball, that might not be an option! If your ...

  17. Achilles Tendon Rupture

    MedlinePlus

    ... shoes with proper cushioning in the heels. Increase training intensity slowly. Achilles tendon injuries commonly occur after abruptly increasing training intensity. Increase the distance, duration and frequency of your ...

  18. Percutaneous Achilles Tendon Lengthening

    MedlinePlus

    ... your primary doctor. Treatments of the Ankle Achilles Tendinosis Surgery Achilles Tendon Rupture Surgery Ankle Arthrodesis Ankle ... for Osteochondral Lesions of the Talus Insertional Achilles Tendinosis Surgery Lateral Ankle Ligament Reconstruction Lateral Ankle Stabilization ...

  19. Bilateral Patellar Tendon Rupture

    DTIC Science & Technology

    2009-07-01

    Basamania CJ: Incidence of major tendon ruptures and anterior cruciate ligament tears in US Army soldiers, Am J Sports Med2007; 35(8):1308-1314. 2... ligament or meniscus in is measurement is relatively independent of knee flex o of less than 0.80 indicates patella alta (Fig. Fig. 4: MRI of left...risk of tendon rupture after fluoroquinolone therapy , and requested that pharmaceutical manufacturers include boxed warnings. In healthy adults

  20. The influence of loading intensity on muscle-tendon unit behavior during maximal knee extensor stretch shortening cycle exercise.

    PubMed

    Earp, Jacob E; Newton, Robert U; Cormie, Prue; Blazevich, Anthony J

    2014-01-01

    Tendon stiffness increases as the magnitude and rate of loading increases, according to its viscoelastic properties. Thus, under some loading conditions tendons should become exceptionally stiff and act almost as rigid force transducers. Nonetheless, observations of tendon behavior during multi-joint sprinting and jumping tasks have shown that tendon strain increases whilst muscle strain decreases as the loading intensity increases. The purpose of the current study was to examine the influence of external loading intensity on muscle-tendon unit (MTU) behavior during a high-speed single-joint, stretch-shortening cycle (SSC) knee extension task. Eighteen men (n = 9) and women (n = 9) performed single-leg, maximum intensity SSC knee extensions at loads of 20, 60 and 90% of their one repetition maximum. Vastus lateralis fascicle length (L(f)) and velocity (v(f)) as well as MTU (L(MTU)) and tendinous tissue (L(t)) length were measured using high-speed ultrasonography (96 Hz). Patellar tendon force (F(t)) and rate of force development (RFDt) were estimated using inverse dynamics. Results showed that as loading intensity increased, concentric joint velocity and shortening v f decreased whilst F t and RFDt increased, but no significant differences were observed in eccentric joint velocity or peak L(MTU) or L(f). In addition, the tendon lengthened significantly less at the end of the eccentric phase at heavier loads. This is the first observation that tendon strain decreases significantly during a SSC movement as loading intensity increases in vivo, resulting in a shift in the tendon acting as a power amplifier at light loads to a more rigid force transducer at heavy loads.

  1. Continuous Shear Wave Elastography: a New Method to Measure in-vivo Viscoelastic Properties of Tendons

    PubMed Central

    Cortes, Daniel H.; Suydam, Stephen M.; Silbernagel, Karin Grävare; Buchanan, Thomas S.; Elliott, Dawn M.

    2015-01-01

    Viscoelastic mechanical properties are frequently altered after tendon injuries and during recovery. Therefore, non-invasive measurements of shear viscoelastic properties may help evaluate tendon recovery and compare the effectiveness of different therapies. The objectives of this study are to present an elastography method to measure localized viscoelastic properties of tendon and to present initial results in healthy and injured human Achilles and semitendinosus tendons. The technique used an external actuator to generate the shear waves in the tendon at different frequencies and plane wave imaging to measure shear wave displacements. For each of the excitation frequencies, maps of direction specific wave speeds were calculated using Local Frequency Estimation. Maps of viscoelastic properties were obtained using a pixel wise curve-fit of wave speed and frequency. The method was validated by comparing measurements of wave speed in agarose gels to those obtained using magnetic resonance elastography. Measurements in human healthy Achilles tendons revealed a pronounced increase in wave speed as function of frequency that highlights the importance of tendon viscoelasticity. Additionally, the viscoelastic properties of the Achilles tendon were larger than those reported for other tissues. Measurements in a tendinopathic Achilles tendon showed that it is feasible to quantify local viscoeasltic properties. Similarly, measurement in the semitendinosus tendon showed a substantial differences in viscoelastic properties between the healthy and contralateral tendons. Consequently, this technique has the potential of evaluating localized changes in tendon viscoelastic properties due to injury and during recovery in a clinical setting. PMID:25796414

  2. Does long-term passive stretching alter muscle-tendon unit mechanics in children with spastic cerebral palsy?

    PubMed

    Theis, Nicola; Korff, Thomas; Mohagheghi, Amir A

    2015-12-01

    Cerebral palsy causes motor impairments during development and many children may experience excessive neural and mechanical muscle stiffness. The clinical assumption is that excessive stiffness is thought to be one of the main reasons for functional impairments in cerebral palsy. As such, passive stretching is widely used to reduce stiffness, with a view to improving function. However, current research evidence on passive stretching in cerebral palsy is not adequate to support or refute the effectiveness of stretching as a management strategy to reduce stiffness and/or improve function. The purpose was to identify the effect of six weeks passive ankle stretching on muscle-tendon unit parameters in children with spastic cerebral palsy. Thirteen children (8-14 y) with quadriplegic/diplegic cerebral palsy were randomly assigned to either an experimental group (n=7) or a control group (n=6). The experimental group underwent an additional six weeks of passive ankle dorsiflexion stretching for 15 min (per leg), four days per week, whilst the control group continued with their normal routine, which was similar for the two groups. Measures of muscle and tendon stiffness, strain and resting length were acquired pre- and post-intervention. The experimental group demonstrated a 3° increase in maximum ankle dorsiflexion. This was accompanied by a 13% reduction in triceps surae muscle stiffness, with no change in tendon stiffness. Additionally, there was an increase in fascicle strain with no changes in resting length, suggesting muscle stiffness reductions were a result of alterations in intra/extra-muscular connective tissue. The results demonstrate that stretching can reduce muscle stiffness by altering fascicle strain but not resting fascicle length. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Intradiurnal Fluctuations of Off-Resonance Saturation Effects in Healthy Human Achilles Tendons Assessed with a 3D Ultrashort Echo Time MRI Sequence at 3 Tesla.

    PubMed

    Grosse, U; Syha, R; Partovi, S; Keßler, D E; Bongers, M; Seith, F; Nikolaou, K; Robbin, M; Schick, F; Springer, F

    2015-11-01

    The purpose of this study was to evaluate whether gravitational interstitial fluid accumulation in healthy subjects has an impact on off-resonance saturation ratios (OSR) or the volume of the Achilles tendon after a prolonged time of reduced levels of physical activity. 7 healthy volunteers were repeatedly investigated on 3 consecutive days on a 3 T whole body MR scanner using an ultrashort echo time (UTE) imaging sequence with a Gaussian off-resonance saturation pulse at a frequency offset of 2000 Hz to calculate OSR values. For accurate volumetric quantification of the Achilles tendon, a newly developed contour detection snake algorithm was applied on high-resolution isotropic T2-weighted SPACE sequence datasets. Single-measure intraclass correlation coefficients (ICC) were calculated to estimate test-retest reliability. For OSR and tendon volume measurements on three consecutive days, excellent reproducibility could be achieved with ICC values above 0.96 and 0.97, respectively. Comparing the results of all three days, a statistically significant mean individual percentage decrease (- 4.1  ± 1.5 %; p = 0.001) of calculated tendon OSR values was found for the evening measurements. No statistically significant difference between tendon volumes in the morning and the evening could be detected (p = 0.589). The results of this in-vivo study demonstrate a significant influence of gravitational interstitial fluid accumulation after reduced physical activity on OSR values in the Achilles tendon, but not on tendon volume. Taken together with the demonstrated excellent reproducibility, these findings are important for future studies investigating temporal changes of the Achilles tendon microstructure. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Management of tendon disorders in cattle.

    PubMed

    Anderson, David E; Desrochers, André; St Jean, Guy

    2008-11-01

    This article describes tendon disorders in cattle and treatments for such disorders. Tendon injuries causing loss of a production animal or a decreased level of production result in significant economic loss to the cattle producer. Tendon disorders may be congenital or acquired. Congenital abnormalities may include tendon laxity, contracted tendons, or tendon displacement. Acquired tendon disorders may include tendon laxity, contracture, luxation, tendinitis, laceration, avulsion, rupture, and tenosynovitis.

  5. Tendon transfer or tendon graft for ruptured finger extensor tendons in rheumatoid hands.

    PubMed

    Chung, U S; Kim, J H; Seo, W S; Lee, K H

    2010-05-01

    We evaluated the clinical outcome of tendon reconstruction using tendon graft or tendon transfer and the parameters related to clinical outcome in 51 wrists of 46 patients with rheumatoid arthritis with finger extensor tendon ruptures. At a mean follow-up of 5.6 years, the mean metacarpophalangeal (MP) joint extension lag was 8 degrees (range, 0-45) and the mean visual analogue satisfaction scale was 74 (range, 10-100). Clinical outcome did not differ significantly between tendon grafting and tendon transfer. The MP joint extension lag correlated with the patient's satisfaction score, but the pulp-to-palm distance did not correlate with patient satisfaction. We conclude that both tendon grafting and tendon transfer are reliable reconstruction methods for ruptured finger extensor tendons in rheumatoid hands.

  6. Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons.

    PubMed

    Murchison, Nicholas D; Price, Brian A; Conner, David A; Keene, Douglas R; Olson, Eric N; Tabin, Clifford J; Schweitzer, Ronen

    2007-07-01

    The scleraxis (Scx) gene, encoding a bHLH transcription factor, is expressed in the progenitors and cells of all tendon tissues. To determine Scx function, we produced a mutant null allele. Scx-/- mice were viable, but showed severe tendon defects, which manifested in a drastically limited use of all paws and back muscles and a complete inability to move the tail. Interestingly, although the differentiation of all force-transmitting and intermuscular tendons was disrupted, other categories of tendons, the function of which is mainly to anchor muscles to the skeleton, were less affected and remained functional, enabling the viability of Scx-/- mutants. The force-transmitting tendons of the limbs and tail varied in the severity to which they were affected, ranging from dramatic failure of progenitor differentiation resulting in the loss of segments or complete tendons, to the formation of small and poorly organized tendons. Tendon progenitors appeared normal in Scx-/- embryos and a phenotype resulting from a failure in the condensation of tendon progenitors to give rise to distinct tendons was first detected at embryonic day (E)13.5. In the tendons that persisted in Scx-/- mutants, we found a reduced and less organized tendon matrix and disorganization at the cellular level that led to intermixing of tenocytes and endotenon cells. The phenotype of Scx-/- mutants emphasizes the diversity of tendon tissues and represents the first molecular insight into the important process of tendon differentiation.

  7. Depth-dependent variations in Achilles tendon deformations with age are associated with reduced plantarflexor performance during walking.

    PubMed

    Franz, Jason R; Thelen, Darryl G

    2015-08-01

    The anatomical arrangement of the Achilles tendon (AT), with distinct fascicle bundles arising from the gastrocnemius and soleus muscles, may facilitate relatively independent behavior of the triceps surae muscles. A reduced capacity for sliding between adjacent tendon fascicles with age may couple gastrocnemius and soleus muscle behavior, thereby potentially contributing to diminished plantarflexor performance commonly observed in old adults. Nine healthy young (mean age, 23.9 yr) and eight healthy old (69.9 yr) adults walked at three speeds (0.75, 1.00, and 1.25 m/s) on a force-sensing treadmill. We coupled dynamic ultrasound imaging of the free AT with motion capture and inverse dynamic analyses to compute, in part: 1) depth-dependent variations in AT tissue displacements and elongations and 2) net ankle joint kinetics during push-off. The difference in displacements between superficial and deep AT regions, and in their corresponding elongations, did not differ between old and young adults at the slower two walking speeds (P > 0.61). However, old adults walked with 41% smaller depth-dependent variations in free AT displacements and elongations at 1.25 m/s (P = 0.02). These more uniform tendon deformations in old adults most strongly correlated with reduced peak ankle moment (R(2) = 0.40), but also significantly correlated with reduced peak power generation (R(2) = 0.15) and positive ankle work during push-off (R(2) = 0.19) (P > 0.01). Our findings: 1) demonstrate a potential role for nonuniform AT deformations in governing gastrocnemius and soleus muscle-tendon function and 2) allude to altered tendon behavior that may contribute to the age-related reduction in plantarflexor performance during walking.

  8. Biodegradable synthetic scaffolds for tendon regeneration

    PubMed Central

    Reverchon, Ernesto; Baldino, Lucia; Cardea, Stefano; De Marco, Iolanda

    2012-01-01

    Summary Tissue regeneration is aimed at producing biological or synthetic scaffolds to be implanted in the body for regenerate functional tissues. Several techniques and materials have been used to obtain biodegradable synthetic scaffolds, on which adhesion, growth, migration and differentiation of human cells has been attempted. Scaffolds for tendon regeneration have been less frequently proposed, because they have a complex hierarchical structure and it is very difficult to mimic their peculiar mechanical properties. In this review, we critically analyzed the proposed materials and fabrication techniques for tendon tissue engineering and we indicated new preparation processes, based on the use of supercritical fluids, to produce scaffolds with characteristics very similar to the native tendon structure. PMID:23738295

  9. Complete Achilles tendon ruptures.

    PubMed

    Landvater, S J; Renström, P A

    1992-10-01

    Achilles tendon ruptures can be treated nonsurgically in the nonathletic or low-end recreational athletic patient, particularly those more than 50 years of age, provided the treating physician does not delay in the diagnosis and treatment (preferably less than 48 hrs and possibly less than 1 week). The patient should be advised of the higher incidence of re-rupture of the tendon when treated nonsurgically. Surgical treatment is recommended for patients who are young and athletic. This is particularly true because the major criticism of surgical treatment has been the complication rate, which has decreased to a low level and to a mild degree, usually not significantly affecting the repair over time. Surgical treatment in these individuals seems to be superior not only in regard to re-rupture but also in assuring the correct apposition of the tendon ends and in placing the necessary tension on the tendon to secure appropriate orientation of the collagen fibers. This in turn allows them to regain full strength, power, endurance, and an early return to sports. Surgery is also recommended for late diagnosed ruptures where there is significant lengthening of the tendon. Surgical technique should involve a medial incision to avoid the sural nerve, absorbable suture, and augmentation with fascia or tendon where there is a gap or late rupture. Postoperatively, the immobilization should be 7 to 10 days in a splint. A walking boot with early motion in plantar flexion or a short leg cast with the tendon under slight tension should thereafter be used for 4 to 5 weeks. An early and well-supervi