Zhu, Shu; Lu, Yichen; Sinno, Talid; Diamond, Scott L
2016-10-28
Coagulation kinetics are well established for purified blood proteases or human plasma clotting isotropically. However, less is known about thrombin generation kinetics and transport within blood clots formed under hemodynamic flow. Using microfluidic perfusion (wall shear rate, 200 s -1 ) of corn trypsin inhibitor-treated whole blood over a 250-μm long patch of type I fibrillar collagen/lipidated tissue factor (TF; ∼1 TF molecule/μm 2 ), we measured thrombin released from clots using thrombin-antithrombin immunoassay. The majority (>85%) of generated thrombin was captured by intrathrombus fibrin as thrombin-antithrombin was largely undetectable in the effluent unless Gly-Pro-Arg-Pro (GPRP) was added to block fibrin polymerization. With GPRP present, the flux of thrombin increased to ∼0.5 × 10 -12 nmol/μm 2 -s over the first 500 s of perfusion and then further increased by ∼2-3-fold over the next 300 s. The increased thrombin flux after 500 s was blocked by anti-FXIa antibody (O1A6), consistent with thrombin-feedback activation of FXI. Over the first 500 s, ∼92,000 molecules of thrombin were generated per surface TF molecule for the 250-μm-long coating. A single layer of platelets (obtained with α IIb β 3 antagonism preventing continued platelet deposition) was largely sufficient for thrombin production. Also, the overall thrombin-generating potential of a 1000-μm-long coating became less efficient on a per μm 2 basis, likely due to distal boundary layer depletion of platelets. Overall, thrombin is robustly generated within clots by the extrinsic pathway followed by late-stage FXIa contributions, with fibrin localizing thrombin via its antithrombin-I activity as a potentially self-limiting hemostatic mechanism. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Kamisato, Chikako; Furugohri, Taketoshi; Morishima, Yoshiyuki
2016-05-01
We have demonstrated that antithrombin (AT)-independent thrombin inhibitors paradoxically increase thrombin generation (TG) in human plasma in a thrombomodulin (TM)- and protein C (PC)-dependent manner. We determined the effects of AT-independent thrombin inhibitors on the negative-feedback system, activation of PC and production and degradation of factor Va (FVa), as possible mechanisms underlying the paradoxical enhancement of TG. TG in human plasma containing 10nM TM was assayed by means of the calibrated automated thrombography. As an index of PC activation, plasma concentration of activated PC-PC inhibitor complex (aPC-PCI) was measured. The amounts of FVa heavy chain and its degradation product (FVa(307-506)) were examined by western blotting. AT-independent thrombin inhibitors, melagatran and dabigatran (both at 25-600nM) and 3-30μg/ml active site-blocked thrombin (IIai), increased peak levels of TG. Melagatran, dabigatran and IIai significantly decreased plasma concentration of aPC-PCI complex at 25nM or more, 75nM or more, and 10 and 30μg/ml, respectively. Melagatran (300nM) significantly increased FVa and decreased FVa(307-506). In contrast, a direct factor Xa inhibitor edoxaban preferentially inhibited thrombin generation (≥25nM), and higher concentrations were required to inhibit PC activation (≥150nM) and FVa degradation (300nM). The present study suggests that the inhibitions of protein C activation and subsequent degradation of FVa and increase in FVa by antithrombin-independent thrombin inhibitors may contribute to the paradoxical TG enhancement, and edoxaban may inhibit PC activation and FVa degradation as a result of TG suppression. Copyright © 2016 Elsevier Ltd. All rights reserved.
Madsen, Daniel Elenius; Nichols, Timothy C.; Merricks, Elizabeth P.; Waters, Emily K.; Wiinberg, Bo
2017-01-01
Introduction Canine models of severe haemophilia resemble their human equivalents both regarding clinical bleeding phenotype and response to treatment. Therefore pre-clinical studies in haemophilia dogs have allowed researchers to make valuable translational predictions regarding the potency and efficacy of new anti-haemophilia drugs (AHDs) in humans. To refine in vivo experiments and reduce number of animals, such translational studies are ideally preceded by in vitro prediction of compound efficacy using a plasma based global coagulation method. One such widely used method is the thrombin generation test (TGT). Unfortunately, commercially available TGTs are incapable of distinguishing between normal and haemophilia canine plasma, and therefore in vitro prediction using TGT has so far not been possible in canine plasma material. Aim Establish a modified TGT capable of: 1) distinguishing between normal and haemophilia canine plasma, 2) monitoring correlation between canine plasma levels of coagulation factor VIII (FVIII) and IX (FIX) and thrombin generation, 3) assessing for agreement between compound activity and thrombin generation in ex vivo samples. Methods A modified TGT assay was established where coagulation was triggered using a commercially available activated partial thromboplastin time reagent. Results With the modified TGT a significant difference was observed in thrombin generation between normal and haemophilia canine plasma. A dose dependent thrombin generation was observed when assessing haemophilia A and B plasma spiked with dilution series of FVIII and FIX, respectively. Correlation between FVIII activity and thrombin generation was observed when analyzing samples from haemophilia A dogs dosed with canine FVIII. Limit of detection was 0.1% (v/v) FVIII or FIX. Conclusion A novel modified TGT suitable for monitoring and prediction of replacement therapy efficacy in plasma from haemophilia A and B dogs was established. PMID:28384182
Heger, A; Janisch, S; Pock, K; Römisch, J
2016-10-01
The solvent/detergent treatment enables effective and robust inactivation of all lipid-enveloped viruses, but also inactivates partly sensitive plasma proteins such as protein S. The aim of this study was to investigate the thrombin generation capacity of octaplasLG ® , in particular focusing on the function of protein S in thrombin generation assay and the impact of assay settings. Sixteen octaplasLG ® batches and 32 units of single donor fresh frozen plasma (FFP) were investigated. For protein S, both functional activity and free antigen levels were measured. Thrombin generation assay was performed using two fluorogenic tests with different triggers. Finally, rotational thromboelastometry was performed. Mean protein S levels were lower in octaplasLG ® , but a wider range of values was found for FFP. Clotting parameters and thrombin generation capacities overlapped between the two plasma groups as demonstrated using both thrombin generation assays and different triggers. Spiking studies with protein S-depleted plasma, human purified protein S or antibodies against protein S confirmed a correlation between protein S and thrombin generation capacity under specific assay conditions, especially in an assay with low tissue factor concentration. Correlation between protein S and thrombin generation capacity was demonstrated in the TGA. Due to higher variability in protein S content in the FFP group, overlapping haemostatic potentials of the two plasma groups were found. © 2016 International Society of Blood Transfusion.
Waters, E K; Sigh, J; Friedrich, U; Hilden, I; Sørensen, B B
2017-09-01
Concizumab, a humanized monoclonal antibody against tissue factor pathway inhibitor (TFPI), is being developed as a subcutaneously (s.c.) administered treatment for haemophilia. It demonstrated a concentration-dependent procoagulant effect in functional TFPI assays; however, global haemostatic assays, such as the thrombin generation assay (TGA), offer a more complete picture of coagulation. We investigated how concizumab affects thrombin generation following ex vivo spiking in plasma from haemophilia patients using the TGA, and if the assay can detect the effect of multiple s.c. concizumab doses in healthy subjects. For the ex vivo spiking study, platelet-poor plasma (PPP) from 18 patients with severe haemophilia was spiked with 0.001-500 nm concizumab. For the multiple-dosing study, four healthy males received concizumab 250 μg kg -1 s.c. every other day for eight doses; blood was collected before and after dosing and processed into PPP. In both studies, thrombin generation was measured using a Calibrated Automated Thrombogram ® system with 1 pm tissue factor. In spiked samples from haemophilia patients, peak thrombin and endogenous thrombin potential (ETP) increased concentration dependently, reaching near-normal levels at concizumab concentrations >10 nm. Repeated s.c. doses of concizumab in healthy subjects increased both peak thrombin and ETP; these effects were sustained throughout the dosing interval. Thrombin generation assay demonstrated increased thrombin generation with concizumab after ex vivo spiking of haemophilia plasma and multiple s.c. doses in healthy subjects, supporting both the utility of the TGA in evaluating concizumab treatment and the potential of s.c. concizumab as a novel haemophilia therapy. © 2017 The Authors. Haemophilia Published by John Wiley & Sons Ltd.
Tawara, Shunsuke; Sakai, Takumi; Matsuzaki, Osamu
2016-11-01
Thrombomodulin (TM) alfa, a recombinant human soluble TM, enhances activation of pro-carboxypeptidase B2 (pro-CPB2) by thrombin. Activated pro-CPB2 (CPB2) exerts anti-inflammatory and anti-fibrinolytic activities. Therefore, TM alfa may also have anti-inflammatory and anti-fibrinolytic effects through CPB2. However, these effects of TM alfa have not been elucidated. In the present study, we investigated the effects of TM alfa on inactivation of complement component C5a as an anti-inflammatory effect and prolongation of clot lysis time as an anti-fibrinolytic effect via CPB2 in vitro. CPB2 activity and tissue factor-induced thrombin generation was examined by a chromogenic assay. C5a inactivation was evaluated by C-terminal cleavage of C5a and inhibition of C5a-induced human neutrophil migration. Clot lysis time prolongation was examined by a tissue-type plasminogen activator-induced clot lysis assay. CPB2 activity in human plasma was increased by TM alfa and thrombin in a concentration-dependent manner. TM alfa inhibited tissue factor-induced thrombin generation and enhanced pro-CPB2 activation in human plasma simultaneously. The mass spectrum of C5a treated with TM alfa, thrombin, and pro-CPB2 was decreased at 156m/z, indicating that TM alfa enhanced the processing of C5a to C-terminal-cleaved C5a, an inactive form of C5a. C5a-induced human neutrophil migration was decreased after C5a treatment with TM alfa, thrombin, and pro-CPB2. TM alfa prolonged the clot lysis time in human plasma, and this effect was completely abolished by addition of a CPB2 inhibitor. TM alfa exerts anti-inflammatory and anti-fibrinolytic effects through CPB2 in the presence of thrombin in vitro. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shapiro, John P; Guzeloglu-Kayisli, Ozlem; Kayisli, Umit A; Semerci, Nihan; Huang, S Joseph; Arlier, Sefa; Larsen, Kellie; Fadda, Paolo; Schatz, Frederick; Lockwood, Charles J
2017-06-01
Progestin-only contraceptives induce abnormal uterine bleeding, accompanied by prothrombin leakage from dilated endometrial microvessels and increased thrombin generation by human endometrial stromal cell (HESC)-expressed tissue factor. Initial studies of the thrombin-treated HESC secretome identified elevated levels of cleaved chondroitin sulfate proteoglycan 4 (CSPG4), impairing pericyte-endothelial interactions. Thus, we investigated direct and CSPG4-mediated effects of thrombin in eliciting abnormal uterine bleeding by disrupting endometrial angiogenesis. Liquid chromatography/tandem mass spectrometry, enzyme-linked immunosorbent assay (ELISA) and quantitative real-time-polymerase chain reaction (PCR) evaluated conditioned medium supernatant and cell lysates from control versus thrombin-treated HESCs. Pre- and post-Depo medroxyprogesterone acetate (DMPA)-administered endometria were immunostained for CSPG4. Proliferation, apoptosis and tube formation were assessed in human endometrial endothelial cells (HEECs) incubated with recombinant human (rh)-CSPG4 or thrombin or both. Thrombin induced CSPG4 protein expression in cultured HESCs as detected by mass spectrometry and ELISA (p<.02, n=3). Compared to pre-DMPA endometria (n=5), stromal cells in post-DMPA endometria (n=5) displayed stronger CSPG4 immunostaining. In HEEC cultures (n=3), total tube-formed mesh area was significantly higher in rh-CSPG4 versus control (p<.05). However, thrombin disrupted HEEC tube formation by a concentration- and time-dependent reduction of angiogenic parameters (p<.05), whereas CSPG4 co-treatment did not reverse these thrombin-mediated effects. These results suggest that disruption of HEEC tube formation by thrombin induces aberrant angiogenesis and abnormal uterine bleeding in DMPA users. Mass spectrometry analysis identified several HESC-secreted proteins regulated by thrombin. Therapeutic agents blocking angiogenic effects of thrombin in HESCs can prevent or minimize progestin-only contraceptive-induced abnormal uterine bleeding. Copyright © 2017. Published by Elsevier Inc.
Evaluation of procoagulant tissue factor expression in canine hemangiosarcoma cell lines.
Witter, Lauren E; Gruber, Erika J; Lean, Fabian Z X; Stokol, Tracy
2017-01-01
OBJECTIVE To evaluate expression of procoagulant tissue factor (TF) by canine hemangiosarcoma cells in vitro. SAMPLES 4 canine hemangiosarcoma cell lines (SB-HSA [mouse-passaged cutaneous tumor], Emma [primary metastatic brain tumor], and Frog and Dal-1 [primary splenic tumors]) and 1 nonneoplastic canine endothelial cell line (CnAoEC). PROCEDURES TF mRNA and TF antigen expression were evaluated by quantitative real-time PCR assay and flow cytometry, respectively. Thrombin generation was measured in canine plasma and in coagulation factor-replete or specific coagulation factor-deficient human plasma by calibrated automated thrombography. Corn trypsin inhibitor and annexin V were used to examine contributions of contact activation and membrane-bound phosphatidylserine, respectively, to thrombin generation. RESULTS All cell lines expressed TF mRNA and antigen, with significantly greater expression of both products in SB-HSA and Emma cells than in CnAoEC. A greater percentage of SB-HSA cells expressed TF antigen, compared with other hemangiosarcoma cell lines. All hemangiosarcoma cell lines generated significantly more thrombin than did CnAoEC in canine or factor-replete human plasma. Thrombin generation induced by SB-HSA cells was significantly lower in factor VII-deficient plasma than in factor-replete plasma and was abolished in factor X-deficient plasma; residual thrombin generation in factor VII-deficient plasma was abolished by incubation of cells with annexin V. Thrombin generation by SB-HSA cells was unaffected by the addition of corn trypsin inhibitor. CONCLUSIONS AND CLINICAL RELEVANCE Hemangiosarcoma cell lines expressed procoagulant TF in vitro. Further research is needed to determine whether TF can be used as a biomarker for hemostatic dysfunction in dogs with hemangiosarcoma.
Evaluation of procoagulant tissue factor expression in canine hemangiosarcoma cell lines
Witter, Lauren E.; Gruber, Erika J.; Lean, Fabian Z. X.; Stokol, Tracy
2017-01-01
OBJECTIVE To evaluate expression of procoagulant tissue factor (TF) by canine hemangiosarcoma cells in vitro. SAMPLES 4 canine hemangiosarcoma cell lines (SB-HSA [mouse-passaged cutaneous tumor], Emma [primary metastatic brain tumor], and Frog and Dal-1 [primary splenic tumors]) and 1 nonneoplastic canine endothelial cell line (CnAoEC). PROCEDURES TF mRNA and TF antigen expression were evaluated by quantitative real-time PCR assay and flow cytometry, respectively. Thrombin generation was measured in canine plasma and in coagulation factor–replete or specific coagulation factor–deficient human plasma by calibrated automated thrombography. Corn trypsin inhibitor and annexin V were used to examine contributions of contact activation and membrane-bound phosphatidylserine, respectively, to thrombin generation. RESULTS All cell lines expressed TF mRNA and antigen, with significantly greater expression of both products in SB-HSA and Emma cells than in CnAoEC. A greater percentage of SB-HSA cells expressed TF antigen, compared with other hemangiosarcoma cell lines. All hemangiosarcoma cell lines generated significantly more thrombin than did CnAoEC in canine or factor-replete human plasma. Thrombin generation induced by SB-HSA cells was significantly lower in factor VII-deficient plasma than in factor-replete plasma and was abolished in factor X–deficient plasma; residual thrombin generation in FVII-deficient plasma was abolished by incubation of cells with annexin V. Thrombin generation by SB-HSA cells was unaffected by the addition of corn trypsin inhibitor. CONCLUSIONS AND CLINICAL RELEVANCE Hemangiosarcoma cell lines expressed procoagulant TF in vitro. Further research is needed to determine whether TF can be used as a biomarker for hemostatic dysfunction in dogs with hemangiosarcoma. PMID:28029283
Frelinger, A L; Torres, A S; Caiafa, A; Morton, C A; Berny-Lang, M A; Gerrits, A J; Carmichael, S L; Neculaes, V B; Michelson, A D
2016-01-01
Therapeutic use of activated platelet-rich plasma (PRP) has been explored for wound healing, hemostasis and antimicrobial wound applications. Pulse electric field (PEF) stimulation may provide more consistent platelet activation and avoid complications associated with the addition of bovine thrombin, the current state of the art ex vivo activator of therapeutic PRP. The aim of this study was to compare the ability of PEF, bovine thrombin and thrombin receptor activating peptide (TRAP) to activate human PRP, release growth factors and induce cell proliferation in vitro. Human PRP was prepared in the Harvest SmartPreP2 System and treated with vehicle, PEF, bovine thrombin, TRAP or Triton X-100. Platelet activation and procoagulant markers and microparticle generation were measured by flow cytometry. Released growth factors were measured by ELISA. The releasates were tested for their ability to stimulate proliferation of human epithelial cells in culture. PEF produced more platelet-derived microparticles, P-selectin-positive particles and procoagulant annexin V-positive particles than bovine thrombin or TRAP. These differences were associated with higher levels of released epidermal growth factor after PEF than after bovine thrombin or TRAP but similar levels of platelet-derived, vascular-endothelial, and basic fibroblast growth factors, and platelet factor 4. Supernatant from PEF-treated platelets significantly increased cell proliferation compared to plasma. In conclusion, PEF treatment of fresh PRP results in generation of microparticles, exposure of prothrombotic platelet surfaces, differential release of growth factors compared to bovine thrombin and TRAP and significant cell proliferation. These results, together with PEF's inherent advantages, suggest that PEF may be a superior alternative to bovine thrombin activation of PRP for therapeutic applications.
Thrombin enhances herpes simplex virus infection of cells involving protease-activated receptor 1.
Sutherland, M R; Friedman, H M; Pryzdial, E L G
2007-05-01
We have previously shown that the surface of purified herpes family viruses can initiate thrombin production by expressing host-encoded and virus-encoded procoagulant factors. These enable the virus to bypass the normal cell-regulated mechanisms for initiating coagulation, and provide a link between infection and vascular disease. In the current study we investigated why these viruses may have evolved to generate thrombin. Using cytolytic viral plaque assays, the current study examines the effect of thrombin on human umbilical vein endothelial cell (HUVEC) or human foreskin fibroblast (HFF) infection by purified herpes simplex virus type 1 (HSV1) and type 2 (HSV2). Demonstrating that the availability of thrombin is an advantage to the virus, purified thrombin added to serum-free inoculation media resulted in up to a 3-fold enhancement of infection depending on the virus strain and cell type. The effect of thrombin on HUVEC infection was generally greater than its effect on HFF. To illustrate the involvement of thrombin produced during inoculation, hirudin was shown to inhibit the infection of each HSV strain, but only when serum containing clotting factors for thrombin production was present in media. The involvement of protease-activated receptor 1 (PAR1) was supported using PAR1-activating peptides in place of thrombin and PAR1-specific antibodies to inhibit the effects of thrombin. These data show that HSV1 and HSV2 initiate thrombin production to increase the susceptibility of cells to infection through a mechanism involving PAR1-mediated cell modulation.
A review of three stand-alone topical thrombins for surgical hemostasis.
Cheng, Christine M; Meyer-Massetti, Carla; Kayser, Steven R
2009-01-01
Topical thrombins are active hemostatic agents that can be used to minimize blood loss during surgery. Before 2007, the only topical thrombins available were derived from bovine plasma. Antibody formation to bovine thrombin and/or factor V, with subsequent risk of cross-reactivity with human factor V, and hemorrhagic complications associated with human factor-V deficiencies have been described in case reports of surgeries in which bovine thrombins were used. This risk is now included in the boxed warning section of the bovine thrombin prescribing information. In 2007 and 2008, 2 new topical thrombins from nonbovine sources received approval for use from the US Food and Drug Administration. The 3 active topical thrombins that are currently marketed are bovine plasma-derived thrombin, human plasma-derived thrombin, and human recombinant thrombin. The purpose of this review was to evaluate the literature on the efficacy and safety of topical thrombins and discuss the pharmacoeconomic considerations associated with their use. PubMed, EMBASE, and International Pharmaceutical Abstracts were searched for relevant papers published in English through October 10,2008, using the terms thrombin, human recombinant thrombin, bovine thrombin, plasma derived thrombin, and topical thrombin. Manufacturer-provided materials were also reviewed. Abstracts and unpublished data, as well as evaluations of sealants, adhesives, glues, and other hemostats that contain thrombin mixed with fibrinogen and other clotting factors, were excluded. Four randomized, double-blind studies involving the active, stand-alone topical thrombins were found. The bovine thrombin involved in these studies was the predecessor to the currently marketed, highly purified bovine formulation. No studies comparing the human products, studies involving the highly purified bovine preparation, or placebo-controlled studies involving bovine thrombin were found. In a Phase III comparison of human recombinant thrombin and bovine thrombin, the percentages of patients who achieved hemostasis within 10 minutes of topical thrombin application were 95.4% and 95.1%, respectively (95% CI, -3.7 to 5.0). The incidence of hemostasis within 10 minutes was also similar in a Phase III comparison of human plasma-derived thrombin and bovine thrombin (both, 97.4% [95% CI, 0.96 to 1.05]). In the study that compared human recombinant and bovine thrombin, the incidence of antiproduct antibody formation was 21.5% (43/200) in the bovine thrombin group and 1.5% (3/198) in the human recombinant thrombin group (P < 0.001); patients with antibodies to bovine thrombin had numerically higher incidences of bleeding or thromboembolic events than did patients without these antibodies (19% vs 13%; P value not reported). Human plasma-derived thrombin is available as a frozen sterile solution that must be thawed before application, whereas the human recombinant and bovine plasma-derived products are supplied as unrefrigerated sterile powders that must be reconstituted before use. The human thrombins are more costly than bovine thrombin on a per-vial basis. The average wholesale prices (US $, 2008) for 5000-IU vials of bovine thrombin and human recombinant thrombin were $87.85 and $103.20, respectively; the average wholesale price for a 4000- to 6000-IU vial of human plasma-derived thrombin was $96.00. Topical thrombins vary in the ways in which they are manufactured and their safety profiles, storage requirements, and costs. Human recombinant thrombin and human plasma-derived thrombin have each been shown to have hemostatic efficacy comparable to that of bovine thrombin. Bovine thrombin carries the risk of formation of cross-reactive antibodies to bovine thrombin, factor V, and other impurities that may be present in these formulations. Immunogenicity data for the currently marketed, highly purified bovine thrombin relative to older formulations of bovine thrombin could not be found. Whether the potential safety advantage justifies the added cost of the human products remains to be established.
Glycoprotein Ib activation by thrombin stimulates the energy metabolism in human platelets
Corona de la Peña, Norma; Gutiérrez-Aguilar, Manuel; Hernández-Reséndiz, Ileana; Marín-Hernández, Álvaro
2017-01-01
Thrombin-induced platelet activation requires substantial amounts of ATP. However, the specific contribution of each ATP-generating pathway i.e., oxidative phosphorylation (OxPhos) versus glycolysis and the biochemical mechanisms involved in the thrombin-induced activation of energy metabolism remain unclear. Here we report an integral analysis on the role of both energy pathways in human platelets activated by several agonists, and the signal transducing mechanisms associated with such activation. We found that thrombin, Trap-6, arachidonic acid, collagen, A23187, epinephrine and ADP significantly increased glycolytic flux (3–38 times vs. non-activated platelets) whereas ristocetin was ineffective. OxPhos (33 times) and mitochondrial transmembrane potential (88%) were increased only by thrombin. OxPhos was the main source of ATP in thrombin-activated platelets, whereas in platelets activated by any of the other agonists, glycolysis was the principal ATP supplier. In order to establish the biochemical mechanisms involved in the thrombin-induced OxPhos activation in platelets, several signaling pathways associated with mitochondrial activation were analyzed. Wortmannin and LY294002 (PI3K/Akt pathway inhibitors), ristocetin and heparin (GPIb inhibitors) as well as resveratrol, ATP (calcium-release inhibitors) and PP1 (Tyr-phosphorylation inhibitor) prevented the thrombin-induced platelet activation. These results suggest that thrombin activates OxPhos and glycolysis through GPIb-dependent signaling involving PI3K and Akt activation, calcium mobilization and protein phosphorylation. PMID:28817667
2012-11-01
proteins: Factor (F)II, FV, FVII , FVIII, F IX, and FX, as well as the anticoagulants antithrombin (AT) and TF pathway inhibi- tor (TFPI). The results...coagulation factors FII, FV, FVII , FVIIa, FVIII, F IX and FX, as well as the anticoagulants TFPI and AT and the throm- bin generation inducer TF. The model...scenario and tissue factor concentration. CONCLUSION: Dilutional effects on thrombin genera- tion in a human population can be predicted from trends
Involvement of human decidual cell-expressed tissue factor in uterine hemostasis and abruption.
Lockwood, C J; Paidas, M; Murk, W K; Kayisli, U A; Gopinath, A; Huang, S J; Krikun, G; Schatz, F
2009-11-01
Vascular injury increases access and binding of plasma-derived factor VII to perivascular cell membrane-bound tissue factor (TF). The resulting TF/VIIa complex promotes hemostasis by cleaving pro-thrombin to thrombin leading to the fibrin clot. In human pregnancy, decidual cell-expressed TF prevents decidual hemorrhage (abruption). During placentation, trophoblasts remodel decidual spiral arteries into high conductance vessels. Shallow trophoblast invasion impedes decidual vascular conversion, producing an inadequate uteroplacental blood flow that elicits abruption-related placental ischemia. Thrombin induces several biological effects via cell surface protease activated receptors. In first trimester human DCs thrombin increases synthesis of sFlt-1, which elicits placental ischemia by impeding angiogenesis-related decidual vascular remodeling. During pregnacy, the fibrillar collagen-rich amnion and choriodecidua extracellular matrix (ECM) provides greater than additive tensile strength and structural integrity. Thrombin acts as an autocrine/paracrine mediator that degrades these ECMs by augmenting decidual cell expression of: 1) matrix metalloproteinases and 2) interleukin-8, a key mediator of abruption-associated decidual infiltration of neutrophils, which express several ECM degrading proteases. Among the cell types at the maternal fetal interface at term, TF expression is highest in decidual cells indicating that this TF meets the hemostatic demands of labor and delivery. TF expression in cultured term decidual cells is enhanced by progestin and thrombin suggesting that the maintenance of elevated circulating progesterone provides hemostatic protection and that abruption-generated thrombin acts in an autocrine/paracrine fashion on decidual cells to promote hemostasis via enhanced TF expression.
Factor XI and Contact Activation as Targets for Antithrombotic Therapy
Gailani, David; Bane, Charles E.; Gruber, Andras
2015-01-01
Summary The most commonly used anticoagulants produce therapeutic antithrombotic effects either by inhibiting thrombin or factor Xa, or by lowering the plasma levels of the precursors of these key enzymes, prothrombin and factor X. These drugs do not distinguish between thrombin generation contributing to thrombosis from thrombin generation required for hemostasis. Thus, anticoagulants increase bleeding risk, and many patients who would benefit from therapy go untreated because of comorbidities that place them at unacceptable risk for hemorrhage. Studies in animals demonstrate that components of the plasma contact activation system contribute to experimentally-induced thrombosis, despite playing little or no role in hemostasis. Attention has focused on factor XII, the zymogen of a protease (factor XIIa) that initiates contact activation when blood is exposed to foreign surfaces; and factor XI, the zymogen of the protease factor XIa, which links contact activation to the thrombin generation mechanism. In the case of factor XI, epidemiologic data indicate this protein contributes to stroke and venous thromboembolism, and perhaps myocardial infarction, in humans. A phase 2 trial showing that reduction of factor XI may be more effective than low-molecular-weight heparin at preventing venous thrombosis during knee replacement surgery provides proof of concept for the premise that an antithrombotic effect can be uncoupled from an anticoagulant effect in humans by targeting components of contact activation. Here we review data on the role of factor XI and factor XII in thrombosis, and results of pre-clinical and human trials for therapies targeting these proteins. PMID:25976012
Morgan, Lloyd T; Thomas, Christopher P; Kühn, Hartmut; O'Donnell, Valerie B
2010-10-01
Arachidonate-containing oxidized phospholipids are acutely generated by 12-LOX (12-lipoxygenase) in agonist-activated platelets. In the present study, formation of structurally related lipids by oxidation of DHA (docosahexaenoic acid)-containing phospholipids is demonstrated using lipidomic approaches. Precursor scanning reverse-phase LC (liquid chromatography)-MS/MS (tandem MS) identified a new family of lipids that comprise phospholipid-esterified HDOHE (hydroxydocosahexaenoic acid). Two diacyl and two plasmalogen PEs (phosphatidylethanolamines) containing predominantly the 14-HDOHE positional isomer (18:0p/14-HDOHE-PE, 18:0a/14-HDOHE-PE, 16:0a/14-HDOHE-PE and 16:0p/14-HDOHE-PE) were structurally characterized using MS/MS and by comparison with biogenic standards. An involvement of 12-LOX was indicated as purified recombinant human 12-LOX also generated the 14-HDOHE isomer from DHA. Pharmacological studies using inhibitors and recombinant platelet 12-LOX indicate that they form via esterification of newly formed non-esterified HDOHE. HDOHE-PEs formed at significant rates (2-4 ng/4×10(7) cells) within 2-180 min of thrombin stimulation, and their formation was blocked by calcium chelation. In summary, a new family of oxidized phospholipid was identified in thrombin-activated human platelets.
Abdel Gader, Abdel Galil M.; Al Momen, Abdul Karim M.; Alhaider, Abdulqader; Brooks, Marjory B.; Catalfamo, James L.; Al Haidary, Ahmed A.; Hussain, Mansour F.
2013-01-01
The objective of this study was to characterize the highly elevated levels of clotting factor VIII (FVIII) in camel plasma. Whole blood was collected from healthy camels and factor VIII clotting activity (FVIII:C) assays were conducted using both the clotting and the chromogenic techniques. The anticoagulant citrate phosphate dextrose adenine (CPDA) produced the highest harvest of FVIII:C, the level of plasma factor VIII, compared to heparin:saline and heparin:CPDA anticoagulants. Camel FVIII can be concentrated 2 to 3 times in cryoprecipitate. There was a significant loss of camel FVIII when comparing levels of FVIII in camel plasma after 1 h of incubation at 37°C (533%), 40°C (364%), and 50°C (223%). Thrombin generation of camel plasma is comparable to that of human plasma. It was concluded that camel plasma contains very elevated levels of FVIII:C, approaching 8 times the levels in human plasma, and that these elevated levels could not be attributed to excessive thrombin generation. Unlike human FVIII:C, camel FVIII:C is remarkably heat stable. Taken together, these unique features of camel FVIII could be part of the physiological adaptation of hemostasis of the Arabian camel in order to survive in the hot desert environment. PMID:24082408
Mitrophanov, Alexander Y; Reifman, Jaques
2011-10-01
The therapeutic potential of a hemostatic agent can be assessed by investigating its effects on the quantitative parameters of thrombin generation. For recombinant activated factor VII (rFVIIa)--a promising hemostasis-inducing biologic--experimental studies addressing its effects on thrombin generation yielded disparate results. To elucidate the inherent ability of rFVIIa to modulate thrombin production, it is necessary to identify rFVIIa-induced effects that are compatible with the available biochemical knowledge about thrombin generation mechanisms. The existing body of knowledge about coagulation biochemistry can be rigorously represented by a computational model that incorporates the known reactions and parameter values constituting the biochemical network. We used a thoroughly validated numerical model to generate activated factor VII (FVIIa) titration curves in the cases of normal blood composition, hemophilia A and B blood, blood lacking factor VII, blood lacking tissue factor pathway inhibitor, and diluted blood. We utilized the generated curves to perform systematic fold-change analyses for five quantitative parameters characterizing thrombin accumulation. The largest fold changes induced by increasing FVIIa concentration were observed for clotting time, thrombin peak time, and maximum slope of the thrombin curve. By contrast, thrombin peak height was much less affected by FVIIa titrations, and the area under the thrombin curve stayed practically unchanged. Comparisons with experimental data demonstrated that the computationally derived patterns can be observed in vitro. rFVIIa modulates thrombin generation primarily by accelerating the process, without significantly affecting the total amount of generated thrombin. Copyright © 2011 Elsevier Ltd. All rights reserved.
Krajewski, Stefanie; Krauss, Sabrina; Kurz, Julia; Neumann, Bernd; Schlensak, Christian; Wendel, Hans P
2014-03-01
In patients undergoing cardiac surgery with heart-lung machine support, adequate anticoagulation to mitigate blood clotting caused by the artificial surfaces of the extracorporeal circulation (ECC) system is essential. These patients routinely receive heparin, whose effectiveness is monitored by measurements of the activated clotting time (ACT). However, ACT values only poorly correlate with the actual hemostatic status. The aim of our study was to evaluate the detection of free thrombin in heparinized human blood as a monitor of anticoagulation during ECC. Human whole blood was anticoagulated with different concentrations of heparin (0.75, 1, 2 or 3 IU/ml) and circulated in the Chandler-loop model for up to 240 min at 37 °C. Next to ACT, ECC-mediated changes in free active thrombin, prothrombin fragment 1+2 (F1+2) and thrombin-antithrombin-III (TAT) levels were measured before and during circulation. Platelet activation and cell count parameters were further investigated. Our study shows that detection of ECC-mediated changes in free thrombin is possible in blood anticoagulated with 0.75 or 1 IU/ml heparin, whereas no thrombin was detectable at higher heparin concentrations. Thrombin generation during 240 min of ECC is comparable to F 1+2 and TAT plasma levels during ECC. Thrombin is the key enzyme in the coagulation cascade and hence represents a promising marker for monitoring the coagulation status of patients. Although detection of free thrombin was not feasible at high heparin concentrations, the employed test represents an additional test to current laboratory methods investigating blood coagulation at low heparin concentrations. Copyright © 2013 Elsevier Ltd. All rights reserved.
Involvement of human decidual cell-expressed tissue factor in uterine hemostasis and abruption
Lockwood, C.J.; Paidas, M.; Murk, W.K.; Kayisli, U.A.; Gopinath, A.; Krikun, G.; Huang, S.J.; Schatz, F.
2009-01-01
Vascular injury increases access and binding of plasma-derived factor VII to perivascular cell membrane-bound tissue factor (TF). The resulting TF/VIIa complex promotes hemostasis by cleaving pro-thrombin to thrombin leading to the fibrin clot. In human pregnancy, decidual cell-expressed TF prevents decidual hemorrhage (abruption). During placentation, trophoblasts remodel decidual spiral arteries into high conductance vessels. Shallow trophoblast invasion impedes decidual vascular conversion, producing an inadequate uteroplacental blood flow that elicits abruption-related placental ischemia. Thrombin induces several biological effects via cell surface protease activated receptors. In first trimester human DCs thrombin increases synthesis of sFlt-1, which elicits placental ischemia by impeding angiogenesis-related decidual vascular remodeling. During pregnacy, the fibrillar collagen-rich amnion and choriodecidua extracellular matrix (ECM) provides greater than additive tensile strength and structural integrity. Thrombin acts as an autocrine/paracrine mediator that degrades these ECMs by augmenting decidual cell expression of: 1) matrix metalloproteinases and 2) interleukin-8, a key mediator of abruption-associated decidual infiltration of neutrophils, which express several ECM degrading proteases. Our recent observations that: 1) among the cell types at the maternal fetal interface at term TF expression is highest in decidual cells indicates that this TF meets the hemostatic demands of labor and delivery; 2) TF expression in cultured term decidual cells is enhanced by progestin and thrombin suggest that maintenance of elevated circulating progesterone at term provides hemostatic protection, whereas abruption-generated thrombin can act in autocrine/paracrine fashion on DCs to promote hemostasis via enhanced TF expression. PMID:19720393
Martin-Fernandez, Laura; Ziyatdinov, Andrey; Carrasco, Marina; Millon, Juan Antonio; Martinez-Perez, Angel; Vilalta, Noelia; Brunel, Helena; Font, Montserrat; Hamsten, Anders; Souto, Juan Carlos; Soria, José Manuel
2016-01-01
Background Venous thromboembolism (VTE) is a common disease where known genetic risk factors explain only a small portion of the genetic variance. Then, the analysis of intermediate phenotypes, such as thrombin generation assay, can be used to identify novel genetic risk factors that contribute to VTE. Objectives To investigate the genetic basis of distinct quantitative phenotypes of thrombin generation and its relationship to the risk of VTE. Patients/Methods Lag time, thrombin peak and endogenous thrombin potential (ETP) were measured in the families of the Genetic Analysis of Idiopathic Thrombophilia 2 (GAIT-2) Project. This sample consisted of 935 individuals in 35 extended families selected through a proband with idiopathic thrombophilia. We performed also genome wide association studies (GWAS) with thrombin generation phenotypes. Results The results showed that 67% of the variation in the risk of VTE is attributable to genetic factors. The heritabilities of lag time, thrombin peak and ETP were 49%, 54% and 52%, respectively. More importantly, we demonstrated also the existence of positive genetic correlations between thrombin peak or ETP and the risk of VTE. Moreover, the major genetic determinant of thrombin generation was the F2 gene. However, other suggestive signals were observed. Conclusions The thrombin generation phenotypes are strongly genetically determined. The thrombin peak and ETP are significantly genetically correlated with the risk of VTE. In addition, F2 was identified as a major determinant of thrombin generation. We reported suggestive signals that might increase our knowledge to explain the variability of this important phenotype. Validation and functional studies are required to confirm GWAS results. PMID:26784699
Modeling thrombin generation: plasma composition based approach.
Brummel-Ziedins, Kathleen E; Everse, Stephen J; Mann, Kenneth G; Orfeo, Thomas
2014-01-01
Thrombin has multiple functions in blood coagulation and its regulation is central to maintaining the balance between hemorrhage and thrombosis. Empirical and computational methods that capture thrombin generation can provide advancements to current clinical screening of the hemostatic balance at the level of the individual. In any individual, procoagulant and anticoagulant factor levels together act to generate a unique coagulation phenotype (net balance) that is reflective of the sum of its developmental, environmental, genetic, nutritional and pharmacological influences. Defining such thrombin phenotypes may provide a means to track disease progression pre-crisis. In this review we briefly describe thrombin function, methods for assessing thrombin dynamics as a phenotypic marker, computationally derived thrombin phenotypes versus determined clinical phenotypes, the boundaries of normal range thrombin generation using plasma composition based approaches and the feasibility of these approaches for predicting risk.
Lockwood, Charles J.; Krikun, Graciela; Hickey, Martha; Huang, S. Joseph; Schatz, Frederick
2011-01-01
Factor VII binds trans-membrane tissue factor to initiate hemostasis by forming thrombin. Tissue factor expression is enhanced in decidualized human endometrial stromal cells during the luteal phase. Long-term progestin only contraceptives elicit: 1) abnormal uterine bleeding from fragile vessels at focal bleeding sites, 2) paradoxically high tissue factor expression at bleeding sites; 3) reduced endometrial blood flow promoting local hypoxia and enhancing reactive oxygen species levels; and 4) aberrant angiogenesis reflecting increased stromal cell-expressed vascular endothelial growth factor, decreased Angiopoietin-1 and increased endothelial cell-expressed Angiopoietin-2. Aberrantly high local vascular permeability enhances circulating factor VII to decidualized stromal cell-expressed tissue factor to generate excess thrombin. Hypoxia-thrombin interactions augment expression of vascular endothelial growth factor and interleukin-8 by stromal cells. Thrombin, vascular endothelial growth factor and interlerukin-8 synergis-tically augment angiogenesis in a milieu of reactive oxygen species-induced endothelial cell activation. The resulting enhanced vessel fragility promotes abnormal uterine bleeding. PMID:19208784
Na[superscript +] binding to meizothrombin desF1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papaconstantinou, M.E.; Gandhi, P.S.; Chen, Z.
2009-06-10
Meizothrombin is the physiologically active intermediate generated by a single cleavage of prothrombin at R320 to separate the A and B chains. Recent evidence has suggested that meizothrombin, like thrombin, is a Na{sup +}-activated enzyme. In this study we present the first X-ray crystal structure of human meizothrombin desF1 solved in the presence of the active site inhibitor PPACK at 2.1 {angstrom} resolution. The structure reveals a Na{sup +} binding site whose architecture is practically identical to that of human thrombin. Stopped-flow measurements of Na{sup +} binding to meizothrombin desF1 document a slow phase of fluorescence change with a kmore » obs decreasing hyperbolically with increasing [Na{sup +}], consistent with the existence of three conformations in equilibrium, E*, E and E:Na{sup +}, as for human thrombin. Evidence that meizothrombin exists in multiple conformations provides valuable new information for studies of the mechanism of prothrombin activation.« less
Parsons, Martin Em; O'Connell, Karen; Allen, Seamus; Egan, Karl; Szklanna, Paulina B; McGuigan, Christopher; Ní Áinle, Fionnuala; Maguire, Patricia B
2017-01-01
Thrombin is well recognised for its role in the coagulation cascade but it also plays a role in inflammation, with enhanced thrombin generation observed in several inflammatory disorders. Although patients with multiple sclerosis (MS) have a higher incidence of thrombotic disease, thrombin generation has not been studied to date. The aim of this study was to characterise calibrated automated thrombography parameters in patients with relapsing-remitting MS (RRMS) and primary progressive MS (PPMS) in comparison to healthy controls (HCs). Calibrated automated thrombography was performed on platelet poor plasma from 15 patients with RRMS, 15 with PPMS and 19 HCs. We found that patients with RRMS generate thrombin at a significantly faster rate than the less inflammatory subtype, PPMS or HCs. In addition, the speed of thrombin generation was significantly correlated with time from clinical diagnosis in both subtypes. However, in RRMS the rate of thrombin generation was increased with increased time from clinical diagnosis, while in PPMS the rate of thrombin generation decreased with increased time from clinical diagnosis. These data likely reflect the differential active proinflammatory states in each MS subtype and provide novel mechanistic insights into the clinically relevant prothrombotic state observed in these patients.
Sugita, Chihiro; Yamashita, Atsushi; Matsuura, Yunosuke; Iwakiri, Takashi; Okuyama, Nozomi; Matsuda, Shuntaro; Matsumoto, Tomoko; Inoue, Osamu; Harada, Aya; Kitazawa, Takehisa; Hattori, Kunihiro; Shima, Midori; Asada, Yujiro
2013-07-01
Elevated plasma levels of factor VIII (FVIII) are associated with increased risk of deep venous thrombosis. The aim of this study is to elucidate how elevated FVIII levels affect venous thrombus formation and propagation in vivo. We examined rabbit plasma FVIII activity, plasma thrombin generation, whole blood coagulation, platelet aggregation and venous wall thrombogenicity before and one hour after an intravenous infusion of recombinant human FVIII (rFVIII). Venous thrombus induced by the endothelial denudation of rabbit jugular veins was histologically assessed. Thrombus propagation was evaluated as indocyanine green fluorescence intensity. Argatroban, a thrombin inhibitor, and neutralised antibodies for tissue factor (TF), factor XI (FXI), and von Willebrand factor (VWF) were infused before or after thrombus induction to investigate their effects on venous thrombus formation or propagation. Recombinant FVIII (100 IU/kg) increased rabbit plasma FVIII activity two-fold and significantly enhanced whole blood coagulation and total plasma thrombin generation, but did not affect initial thrombin generation time, platelet aggregation and venous wall thrombogenicity. The rFVIII infusion also increased the size of venous thrombus 1 hour after thrombus induction. Argatroban and the antibodies for TF, FXI or VWF inhibited such enhanced thrombus formation and all except TF suppressed thrombus propagation. In conclusion, elevated plasma FVIII levels enhance venous thrombus formation and propagation. Excess thrombin generation by FXI and VWF-mediated FVIII recruitment appear to contribute to the growth of FVIII-driven venous thrombus.
Percy, Charles L; Hartmann, Rudolf; Jones, Rhidian M; Balachandran, Subramaniam; Mehta, Dheeraj; Dockal, Michael; Scheiflinger, Friedrich; O'Donnell, Valerie B; Hall, Judith E; Collins, Peter W
2015-06-01
Recently, lower thrombin generation has been associated with excess bleeding post-cardiopulmonary bypass (CPB). Therefore, treatment to correct thrombin generation is a potentially important aspect of management of bleeding in this group of patients. The objective of the present study was to investigate the effects of fresh frozen plasma (FFP), recombinant factor VIIa (rFVIIa), prothrombin complex concentrate (PCC) and tissue factor pathway inhibitor (TFPI) inhibition on thrombin generation when added ex vivo to the plasma of patients who had undergone cardiac surgery requiring CPB. Patients undergoing elective cardiac surgery were recruited. Blood samples were collected before administration of heparin and 30 min after its reversal. Thrombin generation was measured in the presence and absence of different concentrations of FFP, rFVIIa, PCC and an anti-TFPI antibody. A total of 102 patients were recruited. Thrombin generation following CPB was lower compared with pre-CPB (median endogenous thrombin potential pre-CPB 339 nmol/l per min, post-CPB 155 nmol/l per min, P < 0.0001; median peak thrombin pre-CPB 35 nmol/l, post-CPB 11 nmol/l, P < 0.0001). Coagulation factors and anticoagulants decreased, apart from total TFPI, which increased (55-111 ng/ml, P < 0.0001), and VWF (144-170 IU/dl, P < 0.0001). Thrombin generation was corrected to pre-CPB levels by the equivalent of 15 ml/kg FFP, 45 μg/kg rFVIIa and 25 U/kg of PCC. Inhibition of TFPI resulted in an enhancement of thrombin generation significantly beyond pre-CPB levels. This study shows that FFP, rFVIIa, PCC and inhibition of TFPI correct thrombin generation in the plasma of patients who have undergone surgery requiring CPB. Inhibition of TFPI may be a further potential therapeutic strategy for managing bleeding in this group of patients.
Thomas, Christopher P; Morgan, Lloyd T; Maskrey, Benjamin H; Murphy, Robert C; Kühn, Hartmut; Hazen, Stanley L; Goodall, Alison H; Hamali, Hassan A; Collins, Peter W; O'Donnell, Valerie B
2010-03-05
Here, a group of specific lipids, comprising phosphatidylethanolamine (PE)- or phosphatidylcholine (PC)-esterified 12S-hydroxyeicosatetraenoic acid (12S-HETE), generated by 12-lipoxygenase was identified and characterized. 12S-HETE-PE/PCs were formed within 5 min of activation by thrombin, ionophore, or collagen. Esterified HETE levels generated in response to thrombin were 5.85 +/- 1.42 (PE) or 18.35 +/- 4.61 (PC), whereas free was 65.5 +/- 17.6 ng/4 x 10(7) cells (n = 5 separate donors, mean +/- S.E.). Their generation was stimulated by triggering protease-activated receptors-1 and -4 and signaling via Ca(2+) mobilization secretory phospholipase A2, platelet-activating factor-acetylhydrolase, src tyrosine kinases, and protein kinase C. Stable isotope labeling showed that they form predominantly by esterification that occurs on the same time scale as free acid generation. Unlike free 12S-HETE that is secreted, esterified HETEs remain cell-associated, with HETE-PEs migrating to the outside of the plasma membrane. 12-Lipoxygenase inhibition attenuated externalization of native PE and phosphatidylserine and HETE-PEs. Platelets from a patient with the bleeding disorder, Scott syndrome, did not externalize HETE-PEs, and liposomes supplemented with HETE-PC dose-dependently enhanced tissue factor-dependent thrombin generation in vitro. This suggests a role for these novel lipids in promoting coagulation. Thus, oxidized phospholipids form by receptor/agonist mechanisms, not merely as an undesirable consequence of vascular and inflammatory disease.
Orbe, Josune; Zudaire, Maite; Serrano, Rosario; Coma-Canella, Isabel; Martínez de Sizarrondo, Sara; Rodríguez, Jose A; Páramo, Jose A
2008-02-01
Atherosclerosis is the most common pathophysiologic substrate of coronary artery disease (CAD). Whereas plaque progression and arterial remodeling are critical components in chronic CAD, intracoronary thrombosis over plaque disruption is causally related to acute CAD. It was the objective of this study to investigate the differences between prior acute CAD and chronic CAD by a simple global coagulation assay measuring thrombin generation. A cross-sectional study involving 15 healthy controls, 35 patients with chronic stable CAD, and 60 patients after an episode of acute myocardial infarction (AMI) was performed. Thrombin generation was measured between three and 11 months after the initial diagnosis (mean 6 months) by a commercially available fluorogenic assay (Technothrombin TGA). In each patient the lag phase, velocity index and peak thrombin were obtained from the thrombogram profile. Traditional cardiovascular risk factors were recorded, and the inflammatory markers, fibrinogen and hs-C-reactive protein were determined. Compared with stable CAD patients, showing normal thrombograms, those with previous AMI showed earlier lag phase (p < 0.05) and significant increase of both the velocity index (p < 0.001) and peak thrombin (p < 0.05), indicating faster and higher thrombin generation in the AMI group. Differences in thrombin generation between stable and acute CAD patients remained significant (p < 0.001) after adjusting for conventional CAD risk factors (age, gender, diabetes, hypertension, smoking, and hypercholesterolemia). In conclusion, patients with a previous history of acute CAD showed earlier, faster and higher thrombin generation than stable chronic CAD patients. The thrombin generation test may be of clinical value to monitor hypercoagulable/vulnerable blood and/or guide therapy in CAD.
Mazzeffi, Michael; Szlam, Fania; Jakubowski, Joseph A; Tanaka, Kenichi A; Sugidachi, Atsuhiro; Levy, Jerrold H
2013-07-01
Prasugrel is a thienopyridyl P2Y12 antagonist with potent antiplatelet effects. At present, little is known about its effects on thrombin generation or what strategies may emergently reverse its anticoagulant effects. In the current study we evaluated whether recombinant activated factor VII may reverse prasugrel induced effects and increase thrombin generation in an in vitro model. The effect of prasugrel active metabolite, PAM (R-138727), was evaluated on platelet aggregation, thrombin generation, and rotational thromboelastometry parameters using blood from 20 healthy volunteers. Additionally, we evaluated the effects of adenosine diphosphate (ADP) and recombinant activated factor VII on restoring these parameters towards baseline values. PAM reduced maximum platelet aggregation and led to platelet disaggregation. It also decreased peak thrombin, increased lag time, and increased time to peak thrombin. Treatment with recombinant activated factor VII restored all three parameters of thrombin generation towards baseline. ADP decreased lag time and time to peak thrombin, but had no effect on peak thrombin. When recombinant activated factor VII and ADP were combined they had a greater effect on thrombin parameters than either drug alone. PAM also increased thromboelastometric clotting time and clot formation time, but had no effect on maximum clot firmness. Treatment with either recombinant activated factor VII or ADP restored these values towards baseline. Recombinant activated factor VII restores thrombin generation in the presence of PAM. In patients taking prasugrel with life-threatening refractory bleeding it has the potential to be a useful therapeutic approach. Additional clinical studies are needed to validate our findings. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kinetic Modeling Sheds Light on the Mode of Action of Recombinant Factor VIIa on Thrombin Generation
2011-01-01
Regular Article Kinetic modeling sheds light on the mode of action of recombinant factor VIIa on thrombin generation Alexander Y. Mitrophanov...its effects on the quantitative parameters of thrombin generation. For recombinant activated factor VII (rFVIIa) ― a promising hemostasis-inducing...modulate thrombin production , it is necessary to identify rFVIIa-induced effects that are compatible with the available biochemical knowledge about
The Effects of Thrombin on Adenyl Cyclase Activity and a Membrane Protein from Human Platelets
Brodie, G. N.; Baenziger, Nancy Lewis; Chase, Lewis R.; Majerus, Philip W.
1972-01-01
Washed human platelets were incubated with 0.1-1.0 U/ml human thrombin and the effects on adenyl cyclase activity and on a platelet membrane protein (designated thrombin-sensitive protein) were studied. Adenyl cyclase activity was decreased 70-90% when intact platelets were incubated with thrombin. The T½ for loss of adenyl cyclase activity was less than 15 sec at 1 U/ml thrombin. There was no decrease of adenyl cyclase activity when sonicated platelets or isolated membranes were incubated with these concentrations of thrombin. Loss of adenyl cyclase activity was relatively specific since the activities of other platelet membrane enzymes were unaffected by thrombin. Prior incubation of platelets with dibutyryl cyclic adenosine monophosphate (AMP), prostaglandin E1, or theophylline protected adenyl cyclase from inhibition by thrombin. Incubation of intact but not disrupted platelets with thrombin resulted in the release of thrombin-sensitive protein from the platelet membrane. The rapid release of this protein (T½ < 15 sec) at low concentrations of thrombin suggested that removal of thrombin-sensitive protein from the platelet membrane is an integral part of the platelet release reaction. This hypothesis is supported by the parallel effects of thrombin on adenyl cyclase activity and thrombin-sensitive protein release in the presence of dibutyryl cyclic AMP, prostaglandin E1, and theophylline at varying concentrations of thrombin. Images PMID:4331802
Thiele, Thomas; Hron, Gregor; Kellner, Sarah; Wasner, Christina; Westphal, Antje; Warkentin, Theodore E; Greinacher, Andreas; Selleng, Kathleen
2016-01-01
Methylene blue pathogen inactivation and storage of thawed plasma both lead to changes in the activity of several clotting factors. We investigated how this translates into a global loss of thrombin generation potential and alterations in the protein C pathway. Fifty apheresis plasma samples were thawed and each divided into three subunits. One subunit was stored for 7 days at 4 °C, one was stored for 7 days at 22 °C and one was stored at 4 °C after methylene blue/light treatment. Thrombin generation parameters, ProC(®)Global-NR, prothrombin time and activated partial thromboplastin time were assessed on days 0 and 7. The velocity of thrombin generation increased significantly after methylene blue treatment (increased thrombin generation rate; time to peak decreased) and decreased after storage (decreased thrombin generation rate and peak thrombin; increased lag time and time to peak). The endogenous thrombin generation potential remained stable after methylene blue treatment and storage at 4 °C. Methylene blue treatment and 7 days of storage at 4 °C activated the protein C pathway, whereas storage at room temperature and storage after methylene blue treatment decreased the functional capacity of the protein C pathway. Prothrombin time and activated partial thromboplastin time showed only modest alterations. The global clotting capacity of thawed plasma is maintained at 4 °C for 7 days and directly after methylene blue treatment of thawed plasma. Thrombin generation and ProC(®)Global are useful tools for investigating the impact of pathogen inactivation and storage on the clotting capacity of therapeutic plasma preparations.
Semeraro, Fabrizio; Ammollo, Concetta T.; Semeraro, Nicola; Colucci, Mario
2009-01-01
Background Thrombin is the main activator of the fibrinolysis inhibitor TAFI (thrombin activatable fibrinolysis inhibitor) and heightened clotting activation is believed to impair fibrinolysis through the increase of thrombin activatable fibrinolysis inhibitor activation. However, the enhancement of thrombin generation by soluble tissue factor was reported to have no effect on plasma fibrinolysis and it is not known whether the same is true for cell-associated tissue factor. The aim of this study was to evaluate the effect of tissue factor-expressing monocytes on plasma fibrinolysis in vitro. Design and Methods Tissue factor expression by human blood mononuclear cells (MNC) and monocytes was induced by LPS stimulation. Fibrinolysis was spectrophotometrically evaluated by measuring the lysis time of plasma clots containing LPS-stimulated or control cells and a low concentration of exogenous tissue plasminogen activator. Results LPS-stimulated MNC (LPS-MNC) prolonged fibrinolysis time as compared to unstimulated MNC (C-MNC) in contact-inhibited but not in normal citrated plasma. A significantly prolonged lysis time was observed using as few as 30 activated cells/μL. Fibrinolysis was also impaired when clots were generated on adherent LPS-stimulated monocytes. The antifibrinolytic effect of LPS-MNC or LPS-monocytes was abolished by an anti-tissue factor antibody, by an antibody preventing thrombin-mediated thrombin activatable fibrinolysis inhibitor activation, and by a TAFIa inhibitor (PTCI). Assays of thrombin and TAFIa in contact-inhibited plasma confirmed the greater generation of these enzymes in the presence of LPS-MNC. Finally, the profibrinolytic effect of unfractionated heparin and enoxaparin was markedly lower (~50%) in the presence of LPS-MNC than in the presence of a thromboplastin preparation displaying an identical tissue factor activity. Conclusions Our data indicate that LPS-stimulated monocytes inhibit fibrinolysis through a tissue factor-mediated enhancement of thrombin activatable fibrinolysis inhibitor activation and make clots resistant to the profibrinolytic activity of heparins, thus providing an additional mechanism whereby tissue factor-expressing monocytes/macrophages may favor fibrin accumulation and diminish the antithrombotic efficacy of heparins. PMID:19377079
Huebner, Benjamin R; Moore, Ernest E; Moore, Hunter B; Gonzalez, Eduardo; Kelher, Marguerite R; Sauaia, Angela; Banerjee, Anirban; Silliman, Christopher C
2018-05-01
Plasminogen activator inhibitor-1 (PAI-1) is a major regulator of the fibrinolytic system, covalently binding to tissue plasminogen activator and blocking its activity. Fibrinolysis shutdown is evident in the majority of severely injured patients in the first 24 h and is thought to be due to PAI-1. The source of this PAI-1 is thought to be predominantly endothelial cells, but there are known organ-specific differences, with higher levels thought to be in the liver. Thrombin generation is also elevated in injured patients and is a potent stimulus for PAI-1 release in human umbilical endothelial cells. We hypothesize that thrombin induces liver endothelial cells to release increased amounts of PAI-1, versus pulmonary endothelium, consisting of both stored PAI-1 and a larger contribution from de novo PAI-1 synthesis. Human liver sinusoidal endothelial cells (LSECs) and human microvascular lung endothelial cells (HMVECs) were stimulated in vitro ± thrombin (1 and 5 IU/mL) for 15-240 min, the supernatants were collected, and PAI-1 was measured by enzyme-linked immunosorbent assays. To elucidate the PAI-1 contribution from storage versus de novo synthesis, cycloheximide (10 μg/mL) was added before thrombin in separate experiments. While both LSECs and HMVECs rapidly stimulated PAI-1 release, LSECs released more PAI-1 than HMVECs in response to high-dose thrombin, whereas low-dose thrombin did not provoke immediate release. LSECs continued to release PAI-1 over the ensuing 240 min, whereas HMVECs did not. Cycloheximide did not inhibit early PAI-1 release from LSECs but did at the later time points (30-240 min). Thrombin elicits increased amounts of PAI-1 release from liver endothelium compared with lung, with a small presynthesized stored contribution and a later, larger increase in PAI-1 release via de novo synthesis. This study suggests that the liver may be an important therapeutic target for inhibition of the hypercoagulable surgical patient and the associated complications that result. Copyright © 2017 Elsevier Inc. All rights reserved.
Gissel, Matthew; Orfeo, Thomas; Foley, Jonathan H; Butenas, Saulius
2012-01-01
Summary Introduction In hemophilia, thrombin generation is significantly suppressed due to decreased factor (F)X activation. Clinical studies and experiments with transgenic mice have suggested that the severity of hemophilia is substantially reduced by tissue factor pathway inhibitor (TFPI) deficiency. Methods We evaluated the effect of TFPI antagonist aptamer BAX499 (formerly ARC19499) on TFPI function in purified systems and on thrombin generation and clot formation in plasma and blood. Results BAX499 effectively neutralized TFPI inhibition of FXa and FXa dependent inhibition of TF/FVIIa by TFPI. BAX499 did not inhibit FXa or TF/FVIIa when used up to 500 nM. In the synthetic coagulation proteome with TFPI at its mean physiologic concentration, BAX499 at 1 – 10 nM increased thrombin generation triggered with 5 pM relipidated TF in a concentration-dependent manner. In severe hemophilia A or B models using the synthetic coagulation proteome, the addition of BAX499 at 5 nM increased thrombin generation to the levels observed in normal control. Thrombin generation measured in induced hemophilia B plasma required ~100 nM BAX499 to restore thrombin levels to those seen in untreated plasma. In induced hemophilia B whole blood, BAX499 repaired the clotting time but failed to appreciably impact the propagation phase of thrombin generation. Conclusion These data suggest that inhibition of TFPI by BAX499 may have potential for hemophilia treatment but requires further study in blood-based hemophilia systems. PMID:22951415
Tarandovskiy, Ivan D.; Artemenko, Elena O.; Panteleev, Mikhail A.; Sinauridze, Elena I.; Ataullakhanov, Fazoil I.
2013-01-01
Background Thrombin generation assay is a convenient and widely used method for analysis of the blood coagulation system status. Thrombin generation curve (TGC) is usually bell-shaped with a single peak, but there are exceptions. In particular, TGC in platelet-rich plasma (PRP) can sometimes have two peaks. Objective We sought to understand the mechanism underlying the occurrence of two peaks in the PRP thrombin generation curve. Methods Tissue factor-induced thrombin generation in PRP and platelet-poor plasma (PPP) was monitored using continuous measurement of the hydrolysis rate of the thrombin-specific fluorogenic substrate Z-Gly-Gly-Arg-AMC. Expression of phosphatidylserine (PS) and CD62P on the surface of activated platelets was measured by flow cytometry using corresponding fluorescently labeled markers. Results The addition of the P2Y12 receptor antagonist MeS-AMP (160 µM), 83 nM prostaglandin E1 (PGE1), or 1.6% DMSO to PRP caused the appearance of two peaks in the TGC. The PS exposure after thrombin activation on washed platelets in a suspension supplemented with DMSO, PGE1 or MeS-AMP was delayed, which could indicate mechanism of the second peak formation. Supplementation of PRP with 1.6% DMSO plus 830 nM PGE1 mediated the disappearance of the second peak and decreased the amplitude of the first peak. Increasing the platelet concentration in the PRP promoted the consolidation of the two peaks into one. Conclusions Procoagulant tenase and prothrombinase complexes in PRP assemble on phospholipid surfaces containing PS of two types - plasma lipoproteins and the surface of activated platelets. Thrombin generation in the PRP can be two-peaked. The second peak appears in the presence of platelet antagonists as a result of delayed PS expression on platelets, which leads to delayed assembly of the membrane-dependent procoagulant complexes and a second wave of thrombin generation. PMID:23405196
Effect of Thrombin on Human Amnion Mesenchymal Cells, Mouse Fetal Membranes, and Preterm Birth*
Mogami, Haruta; Keller, Patrick W.; Shi, Haolin; Word, R. Ann
2014-01-01
Here, we investigated the effects of thrombin on matrix metalloproteinases (MMPs) and prostaglandin (PG) synthesis in fetal membranes. Thrombin activity was increased in human amnion from preterm deliveries. Treatment of mesenchymal, but not epithelial, cells with thrombin resulted in increased MMP-1 and MMP-9 mRNA and enzymatic activity. Thrombin also increased COX2 mRNA and PGE2 in these cells. Protease-activated receptor-1 (PAR-1) was localized to amnion mesenchymal and decidual cells. PAR-1-specific inhibitors and activating peptides indicated that thrombin-induced up-regulation of MMP-9 was mediated via PAR-1. In contrast, thrombin-induced up-regulation of MMP-1 and COX-2 was mediated through Toll-like receptor-4, possibly through thrombin-induced release of soluble fetal fibronectin. In vivo, thrombin-injected pregnant mice delivered preterm. Mmp8, Mmp9, and Mmp13, and PGE2 content was increased significantly in fetal membranes from thrombin-injected animals. These results indicate that thrombin acts through multiple mechanisms to activate MMPs and PGE2 synthesis in amnion. PMID:24652285
Cimenti, Christina; Schlagenhauf, Axel; Leschnik, Bettina; Fröhlich-Reiterer, Elke; Jasser-Nitsche, Hildegard; Haidl, Harald; Suppan, Elisabeth; Weinhandl, Gudrun; Leberl, Maximilian; Borkenstein, Martin; Muntean, Wolfgang E
2016-12-01
Micro- and macrovascular diseases are frequent complications in patients with diabetes. Hypercoagulability may contribute to microvascular alterations. In this study, we investigated whether type 1 diabetes in children is associated with a hypercoagulable state by performing a global function test of coagulation - the thrombin generation assay. 75 patients with type 1 diabetes aged between 2 and 19years were compared to an age-matched healthy control group. Diabetes patients were divided into high-dose and low-dose insulin cohorts with a cut-off at 0.8Ukg -1 d -1 . Measurements were performed with platelet poor plasma using Calibrated Automated Thrombography and 1 pM or 5 pM tissue factor. Additionally, we quantified prothrombin fragments F1+2, thrombin-antithrombin complex, prothrombin, tissue factor pathway inhibitor, and antithrombin. Patients with type 1 diabetes exhibited a significantly shorter of lag time as well as decreased thrombin peak and endogenous thrombin potential compared to control subjects with 5 pM but not with 1 pM tissue factor. In high-dose insulin patients peak thrombin generation was higher and time to peak shorter than in low-dose patients. Thrombin-antithrombin complex was decreased in patients with type 1 diabetes, whereas prothrombin fragments F1+2 was comparable in both groups. Thrombin generation parameters did not correlate with parameters of metabolic control and the duration of diabetes. Taken together, we found only minor changes of thrombin generation in children and adolescents with type 1 diabetes which - in contrast to type 2 diabetes - do not argue for a hypercoagulable state. Copyright © 2016 Elsevier Ltd. All rights reserved.
Procoagulant effects of lung cancer chemotherapy: impact on microparticles and cell-free DNA.
Lysov, Zakhar; Dwivedi, Dhruva J; Gould, Travis J; Liaw, Patricia C
2017-01-01
Lung cancer is the second leading type of cancer, with venous thromboembolism being the second leading cause of death. Studies have shown increased levels of microparticles and cell-free DNA (CFDNA) in cancer patients, which can activate coagulation through extrinsic and intrinsic pathways, respectively. However, the impact of lung cancer chemotherapy on microparticle and/or CFDNA generation is not completely understood. The aim of the study was to study the effects of platinum-based chemotherapeutic agents on generation of procoagulant microparticles and CFDNA in vitro and in vivo. Microparticles were isolated from chemotherapy-treated monocytes, human umbilical vein endothelial cells, or cancer cells. Tissue factor (TF) and phosphatidylserine levels were characterized and thrombin/factor Xa generation assays were used to determine microparticle procoagulant activity. CFDNA levels were isolated from cell supernatants and plasma. A murine xenograft model of human lung carcinoma was used to study the procoagulant effects of TF microparticles and CFDNA in vivo. In vitro, platinum-based chemotherapy induced TF/phosphatidylserine microparticle shedding from A549 and A427 lung cancers cells, which enhanced thrombin generation in plasma in a FVII-dependent manner. CFDNA levels were increased in supernatants of chemotherapy-treated neutrophils and plasma of chemotherapy-treated mice. TF microparticles were elevated in plasma of chemotherapy-treated tumour-bearing mice. Plasma CFDNA levels are increased in chemotherapy-treated tumour-free mice and correlate with increased thrombin generation. In tumour-bearing mice, chemotherapy increases plasma levels of CFDNA and TF/phosphatidylserine microparticles. Platinum-based chemotherapy induces the shedding of TF/phosphatidylserine microparticles from tumour cells and the release of CFDNA from host neutrophils.
Lau, L F; Pumiglia, K; Côté, Y P; Feinstein, M B
1994-01-01
Synthetic thrombin receptor peptides (TRPs), comprising the first 6-14 amino acids of the new N-terminus tethered ligand of the thrombin receptor that is generated by thrombin's proteolytic activity, were reported to activate platelets equally with thrombin itself and are considered to be full agonists [Vu et al. (1991) Cell 64, 1057-1068]. Using aspirin plus ADP-scavengers or the ADP-receptor antagonist adenosine 5'-[alpha-thio]triphosphate to prevent the secondary effects of the potent agonists that are normally released from stimulated platelets (i.e. ADP and thromboxane A2), we assessed the direct actions of thrombin and TRPs (i.e. TRP42-47 and TRP42-55). Compared with thrombin, under these conditions, TRPs: (1) failed to aggregate platelets completely; (2) produced less activation of glycoprotein (GP)IIb-IIIa; (3) did not cause association of GPIIb and pp60c-src with the cytoskeleton; and (4) caused less alpha-granule secretion, phosphorylation of cytoplasmic phospholipase A2, arachidonic acid release and phosphatidyl inositol (PtdOH) production. Furthermore, TRPs induced transient increases in protein phosphorylation mediated by protein kinase C and protein tyrosine phosphorylation, whereas these same responses to thrombin were greater and more sustained. Hirudin added after thrombin accelerated protein dephosphorylation, thereby mimicking the rate of spontaneous dephosphorylation seen after stimulation by TRPs. Platelets totally desensitized to very high concentrations of TRPs, by prior exposure to maximally effective concentrations of the peptides, remained responsive to alpha- and gamma-thrombins. Thrombin-stimulated PtdOH production in permeabilized platelets desensitized to TRPs was abolished by guanosine 5'-[beta-thio]diphosphate (GDP[beta S]), as in normal platelets. These results are discussed in terms of the allosteric Ternary Complex Model for G-protein linked receptors [Samama et al. (1993) J. Biol. Chem. 268, 4625-4636]. We conclude that: (1) TRPs are partial agonists for the thrombin receptor and produce incomplete receptor desensitization in keeping with their lower intrinsic activity; (2) thrombin's effects in platelets, even in TRP-desensitized platelets, are entirely mediated through the recently cloned G-protein linked receptor, and (3) thrombin's ability to produce sustained signals, compared with TRPs, may require the continued progressive proteolytic activation of naive thrombin receptors. Images Figure 3 PMID:7526841
2012-01-01
Factor VIIa tended to primarily impact clotting time, thrombin peak time, and maximum slope of the thrombin curve, whereas in the case of PCC- FVII ...constituents of existing PCCs are the four coagulation factors (F) II (prothrombin), FVII , FIX, and FX.3 Notably, FVII inhibits thrombin generation by...proposed PCC composition (coagulation factors [F] II, IX, and X and the anticoagulant antithrombin), designated PCC-AT, was compared with that of
Evaluating antithrombotic activity of HY023016 on rat hypercoagulable model.
Chen, Qiu-Fang; Li, Yun-Zhan; Wang, Xin-Hui; Su, You-Rui; Cui, Shuang; Miao, Ming-Xing; Jiang, Zhen-Zhou; Jiang, Mei-Ling; Jiang, Ai-Dou; Chen, Xiang; Xu, Yun-Gen; Gong, Guo-Qing
2016-06-15
The generation of thrombus is not considered as an isolated progression without other pathologic processes, which may also enhance procoagulant state. The purpose of this study was to assess whether HY023016, a novel dabigatran prodrug and an oral direct thrombin inhibitor, or dabigatran etexilate, another thrombin inhibitor can improve the state of whole blood hypercoagulability in vitro/vivo. By using whole blood flow cytometry we explored the effects of HY023016 and dabigatran etexilate on thrombin and ADP-induced human platelet-leukocyte aggregation generated in vitro. With the method of continuous infusion of thrombin intravenous, we successfully established a rat hypercoagulable model and evaluated the effect of HY023016 or dabigatran etexilate in vivo. HY023016 was able to inhibit thrombin- or ADP-induced platelet P-selectin or CD40L expression, leukocyte CD11b expression and formation of platelet-leukocyte aggregates in dose-dependent manner. Dabigatran etexilate was unable to affect ADP-induced platelet P-selectin or CD40L expression, leukocyte CD11b expression and formation of platelet-leukocyte aggregates. Based on rat hypercoagulable model, dabigatran etexilate could reverse thrombin-induced circulatory system hypercoagulable state in a concentration-dependent manner. Dabigatran etexilate also inhibited electrical stimulation induced formation of arterial thrombus in rat under hypercoagulable state, and extracorporal circulation-induced formation of thrombus in dose-dependent manner. Compared with dabigatran etexilate, HY023016 showed nearly equal or even better antithrombotic activity, regardless of reversing the cycle of rat hypercoagulable state or inhibiting platelet-leukocyte aggregation. In surrmary, HY023016 could effectively improve hypercoagulable state of circulatory system. Copyright © 2016. Published by Elsevier B.V.
Anticoagulants and the propagation phase of thrombin generation.
Orfeo, Thomas; Gissel, Matthew; Butenas, Saulius; Undas, Anetta; Brummel-Ziedins, Kathleen E; Mann, Kenneth G
2011-01-01
The view that clot time-based assays do not provide a sufficient assessment of an individual's hemostatic competence, especially in the context of anticoagulant therapy, has provoked a search for new metrics, with significant focus directed at techniques that define the propagation phase of thrombin generation. Here we use our deterministic mathematical model of tissue-factor initiated thrombin generation in combination with reconstructions using purified protein components to characterize how the interplay between anticoagulant mechanisms and variable composition of the coagulation proteome result in differential regulation of the propagation phase of thrombin generation. Thrombin parameters were extracted from computationally derived thrombin generation profiles generated using coagulation proteome factor data from warfarin-treated individuals (N = 54) and matching groups of control individuals (N = 37). A computational clot time prolongation value (cINR) was devised that correlated with their actual International Normalized Ratio (INR) values, with differences between individual INR and cINR values shown to derive from the insensitivity of the INR to tissue factor pathway inhibitor (TFPI). The analysis suggests that normal range variation in TFPI levels could be an important contributor to the failure of the INR to adequately reflect the anticoagulated state in some individuals. Warfarin-induced changes in thrombin propagation phase parameters were then compared to those induced by unfractionated heparin, fondaparinux, rivaroxaban, and a reversible thrombin inhibitor. Anticoagulants were assessed at concentrations yielding equivalent cINR values, with each anticoagulant evaluated using 32 unique coagulation proteome compositions. The analyses showed that no anticoagulant recapitulated all features of warfarin propagation phase dynamics; differences in propagation phase effects suggest that anticoagulants that selectively target fXa or thrombin may provoke fewer bleeding episodes. More generally, the study shows that computational modeling of the response of core elements of the coagulation proteome to a physiologically relevant tissue factor stimulus may improve the monitoring of a broad range of anticoagulants.
Intracellular Ascorbate Prevents Endothelial Barrier Permeabilization by Thrombin*
Parker, William H.; Qu, Zhi-chao; May, James M.
2015-01-01
Intracellular ascorbate (vitamin C) has previously been shown to tighten the endothelial barrier and maintain barrier integrity during acute inflammation in vitro. However, the downstream effectors of ascorbate in the regulation of endothelial permeability remain unclear. In this study, we evaluated ascorbate as a mediator of thrombin-induced barrier permeabilization in human umbilical vein endothelial cells and their immortalized hybridoma line, EA.hy926. We found that the vitamin fully prevented increased permeability to the polysaccharide inulin by thrombin in a dose-dependent manner, and it took effect both before and after subjection to thrombin. Thrombin exposure consumed intracellular ascorbate but not the endogenous antioxidant GSH. Likewise, the antioxidants dithiothreitol and tempol did not reverse permeabilization. We identified a novel role for ascorbate in preserving cAMP during thrombin stimulation, resulting in two downstream effects. First, ascorbate maintained the cortical actin cytoskeleton in a Rap1- and Rac1-dependent manner, thus preserving stable adherens junctions between adjacent cells. Second, ascorbate prevented actin polymerization and formation of stress fibers by reducing the activation of RhoA and phosphorylation of myosin light chain. Although ascorbate and thrombin both required calcium for their respective effects, ascorbate did not prevent thrombin permeabilization by obstructing calcium influx. However, preservation of cAMP by ascorbate was found to depend on both the production of nitric oxide by endothelial nitric-oxide synthase, which ascorbate is known to activate, and the subsequent generation cGMP by guanylate cyclase. Together, these data implicate ascorbate in the prevention of inflammatory endothelial barrier permeabilization and explain the underlying signaling mechanism. PMID:26152729
Iwanowicz, Edwin J; Kimball, S David; Lin, James; Lau, Wan; Han, W-C; Wang, Tammy C; Roberts, Daniel G M; Schumacher, W A; Ogletree, Martin L; Seiler, Steven M
2002-11-04
A series of retro-binding inhibitors of human alpha-thrombin was prepared to elucidate structure-activity relationships (SAR) and optimize in vivo performance. Compounds 9 and 11, orally active inhibitors of thrombin catalytic activity, were identified to be efficacious in a thrombin-induced lethality model in mice.
Rodrigues, Caroline Fabri Bittencourt; Gaeta, Henrique Hessel; Belchor, Mariana Novo; Ferreira, Marcelo José Pena; Pinho, Marcus Vinícius Terashima; de Oliveira Toyama, Daniela; Toyama, Marcos Hikari
2015-01-01
The aim of this work was to verify the effects of methanol (MeOH) and hydroalcoholic (HA) extracts and their respective partition phases obtained from white mangrove (Laguncularia racemosa (L.) C.F. Gaertn.) leaves on human thrombin activity. Among the extracts and phases tested, only the ethyl acetate and butanolic partitions significantly inhibited human thrombin activity and the coagulation of plasma in the presence of this enzyme. Chromatographic analyses of the thrombin samples incubated with these phases revealed that different compounds were able to interact with thrombin. The butanolic phase of the MeOH extract had the most potent inhibitory effects, reducing enzymatic activity and thrombin-induced plasma coagulation. Two glycosylated flavonoids in this partition were identified as the most potent inhibitors of human thrombin activity, namely quercetin-3-O-arabinoside (QAra) and quercetin-3-O-rhamnoside (Qn). Chromatographic analyses of thrombin samples incubated with these flavonoids demonstrated the chemical modification of this enzyme, suggesting that the MeOH extract contained other compounds that both induced structural changes in thrombin and diminished its activity. In this article, we show that despite the near absence of the medical use of mangrove compounds, this plant contains natural compounds with potential therapeutic applications. PMID:26197325
Tsujimoto, Masanori; Kuroyanagi, Gen; Matsushima-Nishiwaki, Rie; Kito, Yuko; Enomoto, Yukiko; Iida, Hiroki; Ogura, Shinji; Otsuka, Takanobu; Tokuda, Haruhiko; Kozawa, Osamu; Iwama, Toru
2016-01-01
Selective inhibitors of factor Xa (FXa) are widely recognized as useful therapeutic tools for stroke prevention in non-valvular atrial fibrillation or venous thrombosis. Thrombin, which is rapidly generated from pro-thrombin through the activation of factor X to FXa, acts as a potent activator of human platelets. Thus, the reduction of thrombin generation by FXa inhibitor eventually causes a suppressive effect on platelet aggregation. However, little is known whether FXa inhibitors directly affect the function of human platelets. We have previously reported that collagen induces the phosphorylation of heat shock protein 27 (HSP27), a low-molecular weight heat shock protein via Rac-dependent activation of p44/p42 mitogen-activated protein (MAP) kinase in human platelets, eventually resulting in the release of HSP27. In the present study, we investigated the direct effect of FXa inhibitor on the collagen-induced human platelet activation. Rivaroxaban as well as edoxaban significantly reduced the collagen-induced phosphorylation of both HSP27 and p44/p42 MAP kinase without affecting the platelet aggregation. Rivaroxaban significantly inhibited the release of phosphorylated HSP27 from collagen-stimulated platelets but not the secretion of platelet derived growth factor-AB. In patients administrated with rivaroxaban, the collagen-induced levels of phosphorylated HSP27 were markedly diminished after 2 days of administration, which failed to affect the platelet aggregation. These results strongly suggest that FXa inhibitor reduces the collagen-stimulated release of phosphorylated HSP27 from human platelets due to the inhibition of HSP27 phosphorylation via p44/p42 MAP kinase. PMID:26867010
Tsujimoto, Masanori; Kuroyanagi, Gen; Matsushima-Nishiwaki, Rie; Kito, Yuko; Enomoto, Yukiko; Iida, Hiroki; Ogura, Shinji; Otsuka, Takanobu; Tokuda, Haruhiko; Kozawa, Osamu; Iwama, Toru
2016-01-01
Selective inhibitors of factor Xa (FXa) are widely recognized as useful therapeutic tools for stroke prevention in non-valvular atrial fibrillation or venous thrombosis. Thrombin, which is rapidly generated from pro-thrombin through the activation of factor X to FXa, acts as a potent activator of human platelets. Thus, the reduction of thrombin generation by FXa inhibitor eventually causes a suppressive effect on platelet aggregation. However, little is known whether FXa inhibitors directly affect the function of human platelets. We have previously reported that collagen induces the phosphorylation of heat shock protein 27 (HSP27), a low-molecular weight heat shock protein via Rac-dependent activation of p44/p42 mitogen-activated protein (MAP) kinase in human platelets, eventually resulting in the release of HSP27. In the present study, we investigated the direct effect of FXa inhibitor on the collagen-induced human platelet activation. Rivaroxaban as well as edoxaban significantly reduced the collagen-induced phosphorylation of both HSP27 and p44/p42 MAP kinase without affecting the platelet aggregation. Rivaroxaban significantly inhibited the release of phosphorylated HSP27 from collagen-stimulated platelets but not the secretion of platelet derived growth factor-AB. In patients administrated with rivaroxaban, the collagen-induced levels of phosphorylated HSP27 were markedly diminished after 2 days of administration, which failed to affect the platelet aggregation. These results strongly suggest that FXa inhibitor reduces the collagen-stimulated release of phosphorylated HSP27 from human platelets due to the inhibition of HSP27 phosphorylation via p44/p42 MAP kinase.
The influence of prophylactic factor VIII in severe hemophilia A
Gissel, Matthew; Whelihan, Matthew F; Ferris, Lauren A; Mann, Kenneth G; Rivard, Georges E; Brummel-Ziedins, Kathleen E
2013-01-01
Introduction Hemophilia A individuals displaying a similar genetic defect have heterogeneous clinical phenotypes. Aim To evaluate the underlying effect of exogenous factor (f)VIII on tissue factor (Tf)-initiated blood coagulation in severe hemophilia utilizing both empirical and computational models. Methods We investigated twenty-five clinically severe hemophilia A patients. All individuals were on fVIII prophylaxis and had not received fVIII from 0.25 to 4 days prior to phlebotomy. Coagulation was initiated by the addition of Tf to contact-pathway inhibited whole blood ± an anti-fVIII antibody. Aliquots were quenched over 20 min and analyzed for thrombin generation and fibrin formation. Coagulation factor levels were obtained and used to computationally predict thrombin generation with fVIII set to either zero or its value at the time of the draw. Results Due to prophylactic fVIII, at the time of the blood draw, the individuals had fVIII levels that ranged from <1% to 22%. Thrombin generation (maximum level and rate) in both empirical and computational systems increased as the level of fVIII increased. FXIII activation rates also increased as the fVIII level increased. Upon suppression of fVIII, thrombin generation became comparable in both systems. Plasma composition analysis showed a negative correlation between bleeding history and computational thrombin generation in the absence of fVIII. Conclusion Residual prophylactic fVIII directly causes an increase in thrombin generation and fibrin cross-linking in individuals with clinically severe hemophilia A. The combination of each individual's coagulation factors (outside of fVIII) determine each individual's baseline thrombin potential and may affect bleeding risk. PMID:21899664
Bagot, C N; Leishman, E; Onyiaodike, C C; Jordan, F; Freeman, D J
2017-09-01
Pregnancy is a hypercoagulable state associated with an increased risk of venous thrombosis, which begins during the first trimester, but the exact time of onset is unknown. Thrombin generation, a laboratory marker of thrombosis risk, increases during normal pregnancy but it is unclear exactly how early this increase occurs. We assessed thrombin generation by Calibrated Automated Thrombography in women undergoing natural cycle in vitro fertilization, who subsequently gave birth at term following a normal pregnancy (n=22). Blood samples were taken just prior to conception and repeated five times during very early pregnancy, up to Day 59 estimated gestation. Mean Endogenous Thrombin Potential (ETP), peak thrombin generation and Velocity Index (VI) increased significantly from pre-pregnancy to Day 43 gestation (p=0.024-0.0004). This change persisted to Day 59 gestation. The mean of the percentage change from baseline, accounting for inter-individual variation, in ETP, peak thrombin and VI increased significantly from pre-pregnancy to Day 32 gestation (p=0.0351-<0.0001) with the mean increase from baseline persisting to Day 59 gestation. Thrombin generation increases significantly during the very early stages of normal pregnancy when compared to the pre-pregnancy state. The increased risk of venous thrombosis therefore likely begins very early in a woman's pregnancy, suggesting that women considered clinically to be at high thrombotic risk should start thromboprophylaxis as early as possible after a positive pregnancy test. Copyright © 2017 Elsevier Ltd. All rights reserved.
Thrombin Receptors and Protease-Activated Receptor-2 in Human Placentation
O’Brien, Peter J.; Koi, Hideki; Parry, Samuel; Brass, Lawrence F.; Strauss, Jerome F.; Wang, Li-Peng; Tomaszewski, John E.; Christenson, Lane K.
2003-01-01
Proteolysis of the thrombin receptor, protease activated receptor-1 (PAR1), may enhance normal and pathological cellular invasion, and indirect evidence suggests that activation of PAR1 expressed by invasive extravillous trophoblasts (EVTs) influences human placentation. Here we describe PAR1, PAR2, and PAR3 protein distribution in the developing human placenta and implicate PAR1 and PAR2 activation in functions central to EVT invasion. PAR1, PAR2, and PAR3 are expressed in cultured 8- to 13-week-old EVTs, and in situ in 18- to 20-week-old placental syncytiotrophoblasts and invasive trophoblasts. Thrombin, but not the PAR2 agonist peptide SLIGKV, inhibited proliferation in cultured EVTs, although both agonists stimulated phosphoinositide hydrolysis and EVT invasion through Matrigel barriers. Thrombin-induced phosphoinositide hydrolysis was completely inhibited and the thrombin effect on proliferation was prevented when PAR1 cleavage was first blocked with specific monoclonal antibodies, indicating that PAR1 is the predominant thrombin receptor on EVTs. Together these results support a role for PAR1, and potentially PAR2 and PAR3 in the invasive phase of human placentation. PMID:14507634
Intracellular Ascorbate Prevents Endothelial Barrier Permeabilization by Thrombin.
Parker, William H; Qu, Zhi-chao; May, James M
2015-08-28
Intracellular ascorbate (vitamin C) has previously been shown to tighten the endothelial barrier and maintain barrier integrity during acute inflammation in vitro. However, the downstream effectors of ascorbate in the regulation of endothelial permeability remain unclear. In this study, we evaluated ascorbate as a mediator of thrombin-induced barrier permeabilization in human umbilical vein endothelial cells and their immortalized hybridoma line, EA.hy926. We found that the vitamin fully prevented increased permeability to the polysaccharide inulin by thrombin in a dose-dependent manner, and it took effect both before and after subjection to thrombin. Thrombin exposure consumed intracellular ascorbate but not the endogenous antioxidant GSH. Likewise, the antioxidants dithiothreitol and tempol did not reverse permeabilization. We identified a novel role for ascorbate in preserving cAMP during thrombin stimulation, resulting in two downstream effects. First, ascorbate maintained the cortical actin cytoskeleton in a Rap1- and Rac1-dependent manner, thus preserving stable adherens junctions between adjacent cells. Second, ascorbate prevented actin polymerization and formation of stress fibers by reducing the activation of RhoA and phosphorylation of myosin light chain. Although ascorbate and thrombin both required calcium for their respective effects, ascorbate did not prevent thrombin permeabilization by obstructing calcium influx. However, preservation of cAMP by ascorbate was found to depend on both the production of nitric oxide by endothelial nitric-oxide synthase, which ascorbate is known to activate, and the subsequent generation cGMP by guanylate cyclase. Together, these data implicate ascorbate in the prevention of inflammatory endothelial barrier permeabilization and explain the underlying signaling mechanism. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Zhang, Jiang; Loo, Rachel R. Ogorzalek; Loo, Joseph A.
2017-09-01
Native mass spectrometry (MS) with electrospray ionization (ESI) has evolved as an invaluable tool for the characterization of intact native proteins and non-covalently bound protein complexes. Here we report the structural characterization by high resolution native top-down MS of human thrombin and its complex with the Bock thrombin binding aptamer (TBA), a 15-nucleotide DNA with high specificity and affinity for thrombin. Accurate mass measurements revealed that the predominant form of native human α-thrombin contains a glycosylation mass of 2205 Da, corresponding to a sialylated symmetric biantennary oligosaccharide structure without fucosylation. Native MS showed that thrombin and TBA predominantly form a 1:1 complex under near physiological conditions (pH 6.8, 200 mM NH4OAc), but the binding stoichiometry is influenced by the solution ionic strength. In 20 mM ammonium acetate solution, up to two TBAs were bound to thrombin, whereas increasing the solution ionic strength destabilized the thrombin-TBA complex and 1 M NH4OAc nearly completely dissociated the complex. This observation is consistent with the mediation of thrombin-aptamer binding through electrostatic interactions and it is further consistent with the human thrombin structure that contains two anion binding sites on the surface. Electron capture dissociation (ECD) top-down MS of the thrombin-TBA complex performed with a high resolution 15 Tesla Fourier transform ion cyclotron resonance (FTICR) mass spectrometer showed the primary binding site to be at exosite I located near the N-terminal sequence of the heavy chain, consistent with crystallographic data. High resolution native top-down MS is complementary to traditional structural biology methods for structurally characterizing native proteins and protein-DNA complexes. [Figure not available: see fulltext.
Orbe, Josune; Rodríguez, José A; Calvayrac, Olivier; Rodríguez-Calvo, Ricardo; Rodríguez, Cristina; Roncal, Carmen; Martínez de Lizarrondo, Sara; Barrenetxe, Jaione; Reverter, Juan C; Martínez-González, José; Páramo, José A
2009-12-01
Thrombin is a multifunctional serine protease that promotes vascular proinflammatory responses whose effect on endothelial MMP-10 expression has not previously been evaluated. Thrombin induced endothelial MMP-10 mRNA and protein levels, through a protease-activated receptor-1 (PAR-1)-dependent mechanism, in a dose- and time-dependent manner. This effect was mimicked by a PAR-1 agonist peptide (TRAP-1) and antagonized by an anti-PAR-1 blocking antibody. MMP-10 induction was dependent on extracellular regulated kinase1/2 (ERK1/2) and c-jun N-terminal kinase (JNK) pathways. By serial deletion analysis, site-directed mutagenesis and electrophoretic mobility shift assay an AP-1 site in the proximal region of MMP-10 promoter was found to be critical for thrombin-induced MMP-10 transcriptional activity. Thrombin and TRAP-1 upregulated MMP-10 in murine endothelial cells in culture and in vivo in mouse aorta. This effect of thrombin was not observed in PAR-1-deficient mice. Interestingly, circulating MMP-10 levels (P<0.01) were augmented in patients with endothelial activation associated with high (disseminated intravascular coagulation) and moderate (previous acute myocardial infarction) systemic thrombin generation. Thrombin induces MMP-10 through a PAR-1-dependent mechanism mediated by ERK1/2, JNK, and AP-1 activation. Endothelial MMP-10 upregulation could be regarded as a new proinflammatory effect of thrombin whose pathological consequences in thrombin-related disorders and plaque stability deserve further investigation.
Hérault, J-P; Cappelle, M; Bernat, A; Millet, L; Bono, F; Schaeffer, P; Herbert, J-M
2003-09-01
Factor (F)Xa and thrombin bound to the clot during its formation contribute to the propensity of thrombi to activate the coagulation system. The aim of this work was to study the inhibition of clot-bound FXa and clot-bound thrombin by SanOrg123781A, a synthetic hexadecasaccharide that enhances the inhibition of thrombin and FXa by antithrombin (AT). SanOrg123781A, designed to exhibit low non-specific binding to proteins other than AT, was compared with heparin. In buffer, heparin and SanOrg123781A inhibited FXa and thrombin at similar concentrations [concentration inhibiting 50% (IC50) of Xa and IIa activity were, respectively: heparin 120 +/- 7 and 3 +/- 1 ng mL-1; SanOrg123781A 77 +/- 5 and 4 +/- 1 ng mL-1]. In human plasma, the activity of both compounds was reduced, although the activity of heparin was much more affected than that of SanOrg123781A (IC50 values for inhibition of FXa and FIIa activity were, respectively: heparin 100 +/- 5 and 800 +/- 40 ng mL-1; SanOrg123781A 10 +/- 5 and 30 +/- 3 ng mL-1). We demonstrated, in agreement with our previous results, that the procoagulant activity of the clot is essentially due to clot-bound FXa and to some extent to clot-bound thrombin. We showed that heparin and SanOrg123781A were able to inhibit fragment F1+2 generation induced by clot-bound FXa with IC50 values of 2 +/- 0.5 micro g mL-1 and 0.6 +/- 0.2 micro g mL-1, respectively. Both compounds also inhibited clot-bound thrombin activity, the IC50 values of heparin and SanOrg123781A being 1 +/- 0.01 micro g mL-1 and 0.1 +/- 0.1 micro g mL-1, respectively. Moreover, both heparin and SanOrg123781A significantly inhibited fibrinopeptide A generated by the action of clot-bound thrombin on fibrinogen but also by free thrombin generated from prothrombin by clot-bound FXa with IC50 values of 4 +/- 0.6 and 1 +/- 0.1 micro g mL-1, respectively. As with clot-bound enzymatic activities, SanOrg123781A was three times more active than heparin in vivo on fibrinogen accretion onto a pre-existing thrombus and as activators of recombinant tissue-type plasminogen activator-induced thrombolysis. In conclusion, due to the specific activities of SanOrg123781A, this compound is much more active than heparin in the presence of plasma proteins, on clot-bound enzymes and in in vivo models of thrombosis/thrombolysis.
Erez, Offer; Romero, Roberto; Vaisbuch, Edi; Chaiworapongsa, Tinnakorn; Kusanovic, Juan Pedro; Mazaki-Tovi, Shali; Gotsch, Francesca; Gomez, Ricardo; Maymon, Eli; Pacora, Percy; Edwin, Samuel S.; Kim, Chong Jai; Than, Nandor Gabor; Mittal, Pooja; Yeo, Lami; Dong, Zhong; Yoon, Bo Hyun; Hassan, Sonia S; Mazor, Moshe
2012-01-01
Objective Preterm labor is associated with excessive maternal thrombin generation as evidenced by increased circulating thrombin–antithrombin (TAT) III complexes concentration. In addition to its hemostatic functions, thrombin has uterotonic properties that may participate in the mechanism leading to preterm birth in cases of intrauterine bleeding. Thrombin also has a proinflammatory role, and inflammation is associated with increased thrombin generation. The aim of this study was to determine whether intra-amniotic infection/inflammation (IAI) is associated with increased amniotic fluid (AF) thrombin generation in women with preterm and term deliveries. Study design This cross-sectional study included the following groups: 1) mid-trimester (n=74); 2) term not in labor (n=39); 3) term in labor (n=25); 4) term in labor with IAI (n=22); 5) spontaneous preterm labor (PTL) who delivered at term (n=62); 6) PTL without IAI who delivered preterm (n=59); 7) PTL with IAI (n=71). The AF TAT III complexes concentration was measured by ELISA. Non-parametric statistics were used for analysis. Results 1) TAT III complexes were identified in all AF samples; 2) patients with PTL who delivered preterm, with and without IAI, had a significantly higher median AF TAT III complexes concentration than those with an episode of PTL who delivered at term (p<0.001, p=0.03, respectively); 3) among patients with preterm labor without IAI, elevated AF TAT III complexes concentration were independently associated with a shorter amniocentesis-to-delivery interval (hazard ratio- 1.5, 95%CI, 1.07–2.1); 4) among patients at term, those with IAI had a higher median AF TAT III complexes concentration than those without IAI, whether in labor or not in labor (p=0.02); 5) there was no significant difference between the median AF TAT III complexes concentration of patients at term with and without labor; and 6) patients who had a mid-trimester amniocentesis had a lower median AF TAT III complexes concentration than that of patients at term not in labor (p<0.001). Conclusions We present herein a distinct difference in the pattern of intra-amniotic thrombin generation between term and preterm parturition. Preterm labor leading to preterm delivery is associated with an increased intra-amniotic thrombin generation, regardless of the presence of IAI. In contrast, term delivery is associated with an increased intra-amniotic thrombin generation only in patients with IAI. PMID:19900035
Diagnosing human blood clotting deficiency.
Ong, Chong Cheen; Gopinath, Subash C B; Rebecca, Leong Wei Xian; Perumal, Veeradasan; Lakshmipriya, Thangavel; Saheed, Mohamed Shuaib Mohamed
2018-05-15
There are different clotting factors present in blood, carries the clotting cascade and excessive bleeding may cause a deficiency in the clotting Diagnosis of this deficiency in clotting drastically reduces the potential fatality. For enabling a sensor to detect the clotting factors, suitable probes such as antibody and aptamer have been used to capture these targets on the sensing surface. Two major clotting factors were widely studied for the diagnosis of clotting deficiency, which includes factor IX and thrombin. In addition, factor IX is considered as the substitute for heparin and the prothrombotic associated with the increased thrombin generation are taking into account their prevalence. The biosensors, surface plasmon resonance, evanescent-field-coupled waveguide-mode sensor, metal-enhanced PicoGreen fluorescence and electrochemical aptasensor were well-documented and improvements have been made for high-performance sensing. We overviewed detecting factor IX and thrombin using these biosensors, for the potential application in medical diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.
A novel protocol for the production of recombinant LL-37 expressed as a thioredoxin fusion protein.
Li, Yifeng
2012-02-01
LL-37 is the only cathelicidin-derived antimicrobial peptide found in humans and it has a multifunctional role in host defense. The peptide has been shown to possess immunomodulatory functions in addition to antimicrobial activity. To provide sufficient material for biological and structural characterization of this important peptide, various systems were developed to produce recombinant LL-37 in Escherichia coli. In one previous approach, LL-37 coding sequence was cloned into vector pET-32a, allowing the peptide to be expressed as a thioredoxin fusion. The fusion protein contains two thrombin cleavage sites: a vector-encoded one that is 30-residue upstream of the insert and an engineered one that is immediately adjacent to LL-37. Cleavage at these two sites shall generate three fragments, one of which is the target peptide. However, when the fusion protein was treated with thrombin, cleavage only occurred at the remote upstream site. A plausible explanation is that the thrombin site adjacent to LL-37 is less accessible due to the peptide's aggregation tendency and cleavage at the remote site generates a fragment, which forms a large aggregate that buries the intended site. In this study, I deleted the vector-encoded thrombin site and S tag in pET-32a, and then inserted the coding sequence for LL-37 plus a thrombin site into the modified vector. Although removing the S tag did not change the oligomeric state of the fusion protein, deletion of the vector-encoded thrombin site allowed the fusion to be cleaved at the engineered site to release LL-37. The released peptide was separated from the carrier and cleavage enzyme by size-exclusion chromatography. This new approach enables a quick production of high quality active LL-37 with a decent amount. Copyright © 2011 Elsevier Inc. All rights reserved.
Müller, Jens; Sukhitashvili, Shorena; Welz, Julia; Kuhn, Walther C.; Oldenburg, Johannes; Rudlowski, Christian; Pötzsch, Bernd
2014-01-01
Introduction The increased thrombotic risk of oral contraceptives (OC) has been attributed to various alterations of the hemostatic system, including acquired resistance to activated protein C (APC). To evaluate to what extent OC-associated APC resistance induces a prothrombotic state we monitored plasma levels of thrombin and molecular markers specific for thrombin formation in women starting OC use. Elevated plasma levels of thrombin have been reported to characterize situations of high thrombotic risk such as trauma-induced hypercoagulability, but have not yet been studied during OC use. Patients and Methods Blood samples were collected prospectively from healthy women (n = 21) before and during three menstruation cycles after start of OC. APC resistance was evaluated using a thrombin generation-based assay. Plasma levels of thrombin and APC were directly measured using highly sensitive oligonucleotide-based enzyme capture assay (OECA) technology. Thrombin generation markers and other hemostasis parameters were measured additionally. Results All women developed APC resistance as indicated by an increased APC sensitivity ratio compared with baseline after start of OC (p = 0.0003). Simultaneously, plasma levels of thrombin, prothrombin fragment 1+2, and of thrombin-antithrombin complexes did not change, ruling out increased thrombin formation. APC plasma levels were also not influenced by OC use, giving further evidence that increased thrombin formation did not occur. Conclusions In the majority of OC users no enhanced thrombin formation occurs despite the development of APC resistance. It cannot be ruled out, however, that thrombin formation might occur to a greater extent in the presence of additional risk factors. If this were the case, endogenous thrombin levels might be a potential biomarker candidate to identify women at high thrombotic risk during OC treatment. Large-scale studies are required to assess the value of plasma levels of thrombin as predictors of OC-associated thrombotic risk. PMID:25121606
van der Meijden, Paola E J; Feijge, Marion A H; Swieringa, Frauke; Gilio, Karen; Nergiz-Unal, Reyhan; Hamulyák, Karly; Heemskerk, Johan W M
2012-10-01
The fibrin(ogen) receptor, integrin α(IIb)β(3), has a well-established role in platelet spreading, aggregation and clot retraction. How α(IIb)β(3) contributes to platelet-dependent coagulation is less well resolved. Here, we demonstrate that the potent suppressing effect of clinically used α(IIb)β(3) blockers on tissue factor-induced thrombin generation is linked to diminished platelet Ca(2+) responses and phosphatidylserine (PS) exposure. The same blockers suppress these responses in platelets stimulated with collagen and thrombin receptor agonists, whereas added fibrinogen potentiates these responses. In platelets spreading on fibrinogen, outside-in α(IIb)β(3) signaling similarly enhances thrombin-induced Ca(2+) rises and PS exposure. These responses are reduced in α(IIb)β(3)-deficient platelets from patients with Glanzmann's thrombasthenia. Furthermore, the contribution of α(IIb)β(3) to tissue factor-induced platelet Ca(2+) rises, PS exposure and thrombin generation in plasma are fully dependent on Syk kinase activity. Tyrosine phosphorylation analysis confirms a key role of Syk activation, which is largely but not exclusively dependent on α(IIb)β(3) activation. It is concluded that the majority of tissue factor-induced procoagulant activity of platelets relies on Syk activation and ensuing Ca(2+) signal generation, and furthermore that a considerable part of Syk activation relies on α(IIb)β(3) signaling. These results hence point to a novel role of Syk in integrin-dependent thrombin generation.
Schols, S E M; Lancé, M D; Feijge, M A H; Damoiseaux, J; Marcus, M A; Hamulyák, K; Ten Cate, H; Heemskerk, J W M; van Pampus, E C M
2010-02-01
Patients subjected to haemodilution during surgery are at increased risk of bleeding. We hypothesised that, in the acquired dilutional coagulopathy, insufficient haemostasis is due to either insufficient thrombin generation or insufficient fibrin clot formation. In tissue factor-activated plasmas from patients with coagulation deficiency, we measured time curves of thrombin generation and fibrin clot formation (thromboelastography). Investigated were in study A: 10 patients treated with vitamin K antagonist and five healthy subjects; in study B: 30 patients undergoing cardiopulmonary bypass (CPB) surgery and infused with on average 2,000 ml crystalloids and colloids (no major bleeding); in study C: 58 patients undergoing major general surgery, and transfused with >5,000 ml crystalloids, colloids and red cell concentrates, who experienced major bleeding and were post-transfused with fresh frozen plasma. The treatment with vitamin K antagonist led to a progressive reduction in thrombin generation but not fibrin clot formation. In CPB patients, plasma factor levels post-surgery were 53-60% of normal. This was accompanied by moderate reduction in both haemostatic processes. In plasmas from patients undergoing major surgery, factor levels were 38-41% of normal, and these levels increased after plasma transfusion. Taking preset thresholds for normal thrombin generation and fibrin clot formation, at least one of these processes was low in 88-93% of the patients with (persistent) bleeding, but only in 40-53% of the patients without bleeding. In conclusion, the ability of thrombin generation and fibrin clot formation is independently reduced in acquired dilutional coagulopathy, while minimal levels of both are required for adequate haemostasis.
Lu, Shi-Jiang; Li, Feng; Yin, Hong; Feng, Qiang; Kimbrel, Erin A; Hahm, Eunsil; Thon, Jonathan N; Wang, Wei; Italiano, Joseph E; Cho, Jaehyung; Lanza, Robert
2011-01-01
Platelets play an essential role in hemostasis and atherothrombosis. Owing to their short storage time, there is constant demand for this life-saving blood component. In this study, we report that it is feasible to generate functional megakaryocytes and platelets from human embryonic stem cells (hESCs) on a large scale. Differential-interference contrast and electron microscopy analyses showed that ultrastructural and morphological features of hESC-derived platelets were indistinguishable from those of normal blood platelets. In functional assays, hESC-derived platelets responded to thrombin stimulation, formed microaggregates, and facilitated clot formation/retraction in vitro. Live cell microscopy demonstrated that hESC-platelets formed lamellipodia and filopodia in response to thrombin activation, and tethered to each other as observed in normal blood. Using real-time intravital imaging with high-speed video microscopy, we have also shown that hESC-derived platelets contribute to developing thrombi at sites of laser-induced vascular injury in mice, providing the first evidence for in vivo functionality of hESC-derived platelets. These results represent an important step toward generating an unlimited supply of platelets for transfusion. Since platelets contain no genetic material, they are ideal candidates for early clinical translation involving human pluripotent stem cells. PMID:21221130
Role of the thrombin receptor in restenosis and atherosclerosis.
Baykal, D; Schmedtje, J F; Runge, M S
1995-02-23
Thrombus generation is central to thrombosis at vascular lesion sites, including post-PCTA acute reocclusion and chronic restenosis. Thrombin stimulates platelet activation, monocyte and neutrophil chemotaxis, and endothelial production of prothrombotic factors. The varied physiologic effects of thrombin are due to the widespread presence of thrombin receptors in many cell types. The receptor is uniquely activated: thrombin binds to the receptor at the thrombin anion-binding exosite, the receptor ligand ("tethered ligand") apparently being a sequence of 6 amino acids (SFLLRN). Thus, peptides corresponding to the sequence of the tethered ligand can stimulate almost all functions of native thrombin itself. Several intracellular signaling pathways have been identified as important in the restenosis process: the G protein-related pathway, cyclic adenosine monophosphate (cAMP) mediator pathway, and tyrosine kinase activation pathway. In situ hybridization has demonstrated an increase in thrombin receptor mRNA throughout the period of neointimal and vascular lesion development. The mechanism of this increase is unknown, but may be mediated by multiple inflammatory modulators. Several strategies have been tested in animal models for inhibiting thrombin: (1) Hirudin not only prevents thrombin from cleaving fibrinogen, but also prevents thrombin receptor activation. (2) Thrombin receptor antagonist peptides block platelet aggregation effects of thrombin. (3) Mono- and polyclonal antibodies inhibit thrombin receptor activation. (4) Antisense oligonucleotides block thrombin receptor expression.
Structure of a retro-binding peptide inhibitor complexed with human alpha-thrombin.
Tabernero, L; Chang, C Y; Ohringer, S L; Lau, W F; Iwanowicz, E J; Han, W C; Wang, T C; Seiler, S M; Roberts, D G; Sack, J S
1995-02-10
The crystallographic structure of the ternary complex between human alpha-thrombin, hirugen and the peptidyl inhibitor Phe-alloThr-Phe-O-CH3, which is acylated at its N terminus with 4-guanidino butanoic acid (BMS-183507), has been determined at 2.6 A resolution. The structure reveals a unique "retro-binding" mode for this tripeptide active site inhibitor. The inhibitor binds with its alkyl-guanidine moiety in the primary specificity pocket and its two phenyl rings occupying the hydrophobic proximal and distal pockets of the thrombin active site. In this arrangement the backbone of the tripeptide forms a parallel beta-strand to the thrombin main-chain at the binding site. This is opposite to the orientation of the natural substrate, fibrinogen, and all the small active site-directed thrombin inhibitors whose bound structures have been previously reported. BMS-183507 is the first synthetic inhibitor proved to bind in a retro-binding fashion to thrombin, in a fashion similar to that of the N-terminal residues of the natural inhibitor hirudin. Furthermore, this new potent thrombin inhibitor (Ki = 17.2 nM) is selective for thrombin over other serine proteases tested and may be a template to be considered in designing hirudin-based thrombin inhibitors with interactions at the specificity pocket.
Huang, Qi-Tao; Chen, Jian-Hong; Hang, Li-Lin; Liu, Shi-San; Zhong, Mei
2015-01-01
Preeclampsia was characterized by excessive thrombin generation in placentas and previous researches showed that thrombin could enhance soluble Fms-like tyrosine kinase 1 (sFlt-1) expression in first trimester trophoblasts. However, the detailed mechanism for the sFlt-1 over-production induced by thrombin was largely unknown. The purpose of this study was to explore the possible signaling pathway of thrombin-induced sFlt-1 production in extravillous trophoblasts (EVT). An EVT cell line (HRT-8/SVneo) was treated with various concentrations of thrombin. The mRNA expression and protein secretion of sFlt-1 in EVT were detected with real-time polymerase chain reaction and ELISA, respectively. The levels of intracellular reactive oxygen species (ROS) production were determined by DCFH-DA. Exposure of EVT to thrombin induced increased intracellular ROS generation and overexpression of sFlt-1 at both mRNA and protein levels in a dose dependent manner. Short interfering RNA (siRNA) directed against PAR-1 or apocynin (an inhibitor of NADPH oxidase) could decrease the intracellular ROS generation and subsequently suppressed the production of sFlt-1 at mRNA and protein levels. Our results suggested that thrombin increased sFlt-1 production in EVT via the PAR-1 /NADPH oxidase /ROS signaling pathway. This also highlights the PAR-1 / NADPH oxidase / ROS pathway might be a potential therapeutic target for the prevention of preeclampsia in the future. © 2015 S. Karger AG, Basel.
Yoo, Hyun Ju; Kim, Ji-Eun; Gu, Ja Yoon; Lee, Sae Bom; Lee, Hyun Joo; Hwang, Ho Young; Hwang, Yoohwa; Kim, Young Tae; Kim, Hyun Kyung
2016-11-01
Neutrophils play a role in xenograft rejection. When neutrophils are stimulated, they eject the DNA-histone complex into the extracellular space, called neutrophil extracellular traps (NET). We investigated whether NET formation actively occurs in the xenograft and contributes to coagulation and endothelial activation. Human whole blood was incubated with porcine aortic endothelial cells (pEC) from wild-type or α1,3-galactosyltransferase gene-knockout (GTKO) pigs. In the supernatant plasma from human blood, the level of the DNA-histone complex was measured by ELISA, and thrombin generation was measured using a calibrated automated thrombogram. Histone-induced tissue factor and adhesion molecule expression were measured by flow cytometry. pEC from both wild-type and GTKO pigs significantly induced DNA-histone complex formation in human whole blood. The DNA-histone complex produced shortened the thrombin generation time and clotting time. Histone alone dose-dependently induced tissue factor and adhesion molecule expression in pEC. Aurintricarboxylic acid pretreatment partially inhibited pEC-induced DNA-histone complex formation. DNA-histone complex actively generated upon xenotransplantation is a novel target to inhibit coagulation and endothelial activation. To prevent tissue factor and adhesion molecule expression, a strategy to block soluble histone may be required in xenotransplantation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Ammollo, Concetta T; Semeraro, Fabrizio; Milella, Rosa Anna; Antonacci, Donato; Semeraro, Nicola; Colucci, Mario
2017-12-01
Phytochemicals contained in grapes down-regulate several prothrombotic pathways in vitro. We evaluated the effect of grape consumption on coagulation and fibrinolysis in healthy volunteers. Thirty subjects were enrolled: 20 were given grape (5 g/kg body weight/day for 3 weeks), while 10 served as controls. Blood samples were taken at baseline (T0), at the end of the grape diet (T1) and after 4-week wash-out (T2). Grape intake caused a significant decrease of the procoagulant and inflammatory responses of whole blood and/or mononuclear cells to bacterial lipopolysaccharide at both T1 and T2. At plasma level, grape diet decreased thrombin generation at T1 and T2, largely through a reduction in the number and/or activity of procoagulant microparticles. This anticoagulant effect resulted in the formation of clots that were more susceptible to fibrinolysis, mainly because of a lesser activation of thrombin activatable fibrinolysis inhibitor. No difference in any variables was detected in controls at the time points considered. In conclusion, chronic grape consumption induces sustained anticoagulant and profibrinolytic effects with potential benefits for human health. Copyright © 2017 Elsevier Inc. All rights reserved.
Tillet, Solenne; Giraud, Sébastien; Kerforne, Thomas; Saint-Yves, Thibaut; Joffrion, Sandrine; Goujon, Jean-Michel; Cau, Jerôme; Mauco, Gérard; Petitou, Maurice; Hauet, Thierry
2016-12-01
Coagulation is an important pathway in the pathophysiology of ischemia-reperfusion injuries. In particular, deceased after circulatory death (DCD) donors undergo a no-flow period, a strong activator of coagulation. Hence, therapies influencing the coagulation cascade must be developed. We evaluated the effect of a new highly specific and effective anti-Xa/IIa molecule, with an integrated innovative antidote site (EP217609), in a porcine preclinical model mimicking injuries observed in DCD donor kidney transplantation. Kidneys were clamped for 60 minutes (warm ischemia), then flushed and preserved for 24 hours at 4°C in University of Wisconsin (UW) solution (supplemented or not). EP217609-supplemented UW solution (UW-EP), compared with unfractionated heparin-supplemented UW solution (UW-UFH) or UW alone (UW). A mechanistic investigation was conducted in vitro: addition of EP217609 to endothelial cells during hypoxia at 4°C in the UW solution inhibited thrombin generation during reoxygenation at 37°C in human plasma and reduced tumor necrosis factor alpha, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1 messenger RNA cell expressions. In vivo, function recovery was markedly improved in the UW-EP group. Interestingly, levels of thrombin-antithrombin complexes (reflecting thrombin generation) were reduced 60 minutes after reperfusion in the UW-EP group. In addition, 3 months after transplantation, lower fibrosis, epithelial-mesenchymal transition, inflammation, and leukocyte infiltration were observed. Using this new dual anticoagulant, anti-Xa/IIa activity during kidney flush and preservation is protected by reducing thrombin generation at revascularization, improving early function recovery, and decreasing chronic lesions. Such an easy-to-deploy clinical strategy could improve marginal graft outcome. Copyright © 2016 Elsevier Inc. All rights reserved.
Lisman, Ton; Kleiss, Simone; Patel, Vishal C; Fisher, Caleb; Adelmeijer, Jelle; Bos, Sarah; Singanayagam, Arjuna; Stoy, Sidsel Hyldgaard; Shawcross, Debbie L; Bernal, William
2018-05-16
A simultaneous decline in pro- and anticoagulant drivers in patients with liver diseases results in a 'rebalanced' hemostatic system, even in acutely ill patients. Nevertheless, both bleeding and thrombotic events are common. Here, we explored efficacy of pro- and antihemostatic strategies in compensated and acutely ill cirrhotics which may be unpredictable given the profound hemostatic changes. We tested the effects in vitro of the addition of clinically relevant doses of commonly used pro- and antihemostatic strategies in plasma from healthy individuals (n=30) and patients with compensated (n=18) and acutely decompensated cirrhosis (n=18), and acute-on-chronic liver failure (n=10). We used thrombin generation tests and fibrin clot permeability assays to assess potency of various approaches. Fresh frozen plasma and recombinant factor VIIa modestly increased thrombin generation (10-20%). Prothrombin complex concentrate increased thrombin generation 2-fold in controls and 2-4-fold in patients. Clot permeability decreased after addition of fibrinogen concentrate by 51% in controls and by 50-60% in patients. Low molecular weight heparin decreased thrombin generation by 18% in controls and by 23-54% in patients. Similarly, dabigatran decreased thrombin generation by 33% in controls and by 47-100% in patients. In contrast, rivaroxaban decreased thrombin generation by 55% in controls, but only by 11-38% in patients. These in vitro data suggest little prohemostatic effect of fresh frozen plasma and recombinant factor VIIa in acutely ill cirrhotics, whereas prothrombin complex concentrate and fibrinogen concentrate clearly improved hemostasis. Furthermore, our data suggest the requirement for dose-adjustments of commonly used anticoagulants in these patients. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Rapid and simple G-quadruplex DNA aptasensor with guanine chemiluminescence detection.
Cho, Sandy; Park, Lucienne; Chong, Richard; Kim, Young Teck; Lee, Ji Hoon
2014-02-15
Cost-effective and sensitive aptasensor with guanine chemiluminescence detection capable of simply quantifying thrombin in human serum was developed using thrombin aptamer (TBA), one of the G-quadruplex DNA aptamers, without expensive nanoparticles and complicated procedures. Guanines of G-quadruplex TBA-conjugated carboxyfluorescein (6-FAM) bound with thrombin do not react with 3,4,5-trimethoxylphenylglyoxal (TMPG) in the presence of tetra-n-propylammonium hydroxide (TPA), whereas guanines of free TBA- and TBA-conjugated 6-FAM immobilized on the surface of graphene oxide rapidly react with TMPG to emit light. Thus, guanine chemiluminescence in 5% human serum with thrombin was lower than that without thrombin when TBA-conjugated 6-FAM was added in two samples and incubated for 20 min. In other words, the brightness of guanine chemiluminescence was quenched due to the formation of G-quadruplex TBA-conjugated 6-FAM bound with thrombin in a sample. High-energy intermediate, capable of emitting dim light by itself, formed from the reaction between guanines of TBA and TMPG in the presence of TPA, transfers energy to 6-FAM to emit bright light based on the principle of chemiluminescence energy transfer (CRET). G-quadruplex TBA aptasensor devised using the rapid interaction between TBA-conjugated 6-FAM and thrombin quantified trace levels of thrombin without complicated procedures. The limit of detection (LOD = background + 3 × standard deviation) of G-quadruplex TBA aptasensor with good linear calibration curve, accuracy, precision, and recovery was as low as 12.3 nM in 5% human serum. Using the technology reported in this research, we expect that various types of G-quadruplex DNA aptasensors capable of specifically sensing a target molecule such as ATP, HIV, ochratoxin, potassium ions, and thrombin can be developed. © 2013 Elsevier B.V. All rights reserved.
Walford, T; Musa, F I; Harper, A G S
2016-01-01
Recently, we demonstrated that a pericellular Ca(2+) recycling system potentiates agonist-evoked Ca(2+) signalling and granule secretion in human platelets and hypothesized a role for the membrane complex (MC) in orchestrating the accumulation of Ca(2+) in the pericellular region. Previous work has demonstrated that treatment with high concentrations of nicergoline may disrupt the MC through an ability to trigger a re-organization of the dense tubular system. Experiments were therefore performed to assess whether nicergoline-induced changes in platelet ultrastructure affects thrombin-evoked Ca(2+) fluxes and dense granule secretion. Thrombin-evoked Ca(2+) fluxes were monitored in Fura-2- or Fluo-5N-loaded human platelets, or using platelet suspensions containing Fluo-4 or Rhod-5N K(+) salts. Fluorescence microscopy was utilized to monitor microtubule structure and intracellular Ca(2+) store distribution in TubulinTracker- and Fluo-5N-loaded platelets respectively. Dense granule secretion was monitored using luciferin-luciferase. Nicergoline treatment inhibited thrombin-evoked Ca(2+) signalling and induced alterations in the microtubule structure and the distribution of intracellular Ca(2+) stores in platelets. Nicergoline altered the generation and spreading of thrombin-induced pericellular Ca(2+) signals and almost completely prevented dense granule secretion. Stabilization of microtubules using taxol reversed most effects of nicergoline on platelet Ca(2+) signalling and partially reversed its effects on dense granule secretion. Nicergoline-induced alterations to platelet ultrastructure disrupt platelet Ca(2+) signalling in a manner that would be predicted if the MC had been disrupted. These data suggest that nicergoline may be a useful prototype for the discovery of novel MC-disrupting anti-thrombotics. © 2015 The British Pharmacological Society.
Chao, Chiao-Hsuan; Chen, Hong-Ru; Chuang, Yung-Chun; Yeh, Trai-Ming
2018-07-01
Vascular leakage contributes to the high morbidity and mortality associated with sepsis. Exposure of the endothelium to inflammatory mediators, such as thrombin and cytokines, during sepsis leads to hyperpermeability. We recently observed that autophagy, a cellular process for protein turnover, is involved in macrophage migration inhibitory factor (MIF)-induced endothelial hyperpermeability. Even though it is known that thrombin induces endothelial cells to secrete MIF and to increase vascular permeability, the possible role of autophagy in this process is unknown. In this study, we proposed and tested the hypothesis that MIF-induced autophagy plays an important role in thrombin-induced endothelial hyperpermeability. We evaluated the effects of thrombin on endothelial permeability, autophagy induction, and MIF secretion in vitro using the human microvascular endothelial cell line-1 and human umbilical vein endothelial cells. Several mechanisms/read outs of endothelial permeability and autophagy formation were examined. We observed that blocking autophagy attenuated thrombin-induced endothelial hyperpermeability. Furthermore, thrombin-induced MIF secretion was involved in this process because MIF inhibition reduced thrombin-induced autophagy and hyperpermeability. Finally, we showed that blocking MIF or autophagy effectively alleviated vascular leakage and mortality in endotoxemic mice. Thus, MIF-induced autophagy may represent a common mechanism causing vascular leakage in sepsis.
Russo Krauss, Irene; Merlino, Antonello; Randazzo, Antonio; Mazzarella, Lelio; Sica, Filomena
2010-01-01
The thrombin-binding aptamer (TBA) is a consensus DNA 15-mer that binds specifically to human α-thrombin at nanomolar concentrations and inhibits its procoagulant functions. Recently, a modified TBA (mTBA) containing a 5′–5′ inversion-of-polarity site has been shown to be more stable and to possess a higher thrombin affinity than its unmodified counterpart. The structure of the thrombin–TBA complex has previously been determined at low resolution, but did not provide a detailed picture of the aptamer conformation or of the protein–DNA assembly, while that of the complex with mTBA is unknown. Crystallographic analysis of the thrombin–mTBA complex has been attempted. The crystals diffracted to 2.15 Å resolution and belonged to space group I222. PMID:20693681
Sidibe, Fatoumata; Spanoudaki, Anastasia; Vanneaux, Valerie; Mbemba, Elisabeth; Larghero, Jerome; Van Dreden, Patrick; Lotz, Jean-Pierre; Elalamy, Ismail; Larsen, Annette K; Gerotziafas, Grigoris T
2018-05-01
The beneficial effect of autologous peripheral blood stem cell transplantation (APBSCT) may be compromised by acute vascular complications related to hypercoagulability. We studied the impact of graft product on thrombin generation of normal plasma and the expression of tissue factor (TF) and procoagulant platelet-derived procoagulant microparticles (Pd-MPs) in samples of graft products. Graft products from 10 patients eligible for APBSCT were mixed with platelet-poor plasma (PPP) or platelet-rich plasma (PRP) from healthy volunteers and assessed for in vitro thrombin generation. In control experiments, thrombin generation was assessed in (1) PPP and PRP without any exogenous TF and/or procoagulant phospholipids, (2) PPP with the addition of TF (5 pM) and procoagulant phospholipids (4 μM), (3) in PRP with the addition of TF (5 pM). Graft products were assessed with Western blot assay for TF expression, with a specific clotting assay for TF activity and with flow cytometry assay for Pd-MPs. The graft product enhanced thrombin generation and its procoagulant activity was related to the presence of Pd-MPs and TF. The concentration of Pd-MPs in the graft product was characterized by a significant interindividual variability. The present study reveals the need for a thorough quality control of the graft products regarding their procoagulant potential.
Das, Jagabandhu; Kimball, S David; Hall, Steven E; Han, Wen Ching; Iwanowicz, Edwin; Lin, James; Moquin, Robert V; Reid, Joyce A; Sack, John S; Malley, Mary F; Chang, Chiehying Y; Chong, Saeho; Wang-Iverson, David B; Roberts, Daniel G M; Seiler, Steven M; Schumacher, William A; Ogletree, Martin L
2002-01-07
A series of structurally novel small molecule inhibitors of human alpha-thrombin was prepared to elucidate their structure-activity relationships (SARs), selectivity and activity in vivo. BMS-189664 (3) is identified as a potent, selective, and orally active reversible inhibitor of human alpha-thrombin which is efficacious in vivo in a mouse lethality model, and at inhibiting both arterial and venous thrombosis in cynomolgus monkey models.
Thrombin Generating Capacity and Phenotypic Association in ABO Blood Groups.
Kremers, Romy M W; Mohamed, Abdulrahman B O; Pelkmans, Leonie; Hindawi, Salwa; Hemker, H Coenraad; de Laat, H Bas; Huskens, Dana; Al Dieri, Raed
2015-01-01
Individuals with blood group O have a higher bleeding risk than non-O blood groups. This could be explained by the lower levels of FVIII and von Willebrand Factor (VWF) levels in O individuals. We investigated the relationship between blood groups, thrombin generation (TG), prothrombin activation and thrombin inactivation. Plasma levels of VWF, FVIII, antithrombin, fibrinogen, prothrombin and α2Macroglobulin (α2M) levels were determined. TG was measured in platelet rich (PRP) and platelet poor plasma (PPP) of 217 healthy donors and prothrombin conversion and thrombin inactivation were calculated. VWF and FVIII levels were lower (75% and 78%) and α2M levels were higher (125%) in the O group. TG is 10% lower in the O group in PPP and PRP. Less prothrombin was converted in the O group (86%) and the thrombin decay capacity was lower as well. In the O group, α2M plays a significantly larger role in the inhibition of thrombin (126%). In conclusion, TG is lower in the O group due to lower prothrombin conversion, and a larger contribution of α2M to thrombin inactivation. The former is unrelated to platelet function because it is similar in PRP and PPP, but can be explained by the lower levels of FVIII.
Thrombin Generating Capacity and Phenotypic Association in ABO Blood Groups
Hindawi, Salwa; Hemker, H. Coenraad; de Laat, H. Bas; Huskens, Dana; Al Dieri, Raed
2015-01-01
Individuals with blood group O have a higher bleeding risk than non-O blood groups. This could be explained by the lower levels of FVIII and von Willebrand Factor (VWF) levels in O individuals. We investigated the relationship between blood groups, thrombin generation (TG), prothrombin activation and thrombin inactivation. Plasma levels of VWF, FVIII, antithrombin, fibrinogen, prothrombin and α2Macroglobulin (α2M) levels were determined. TG was measured in platelet rich (PRP) and platelet poor plasma (PPP) of 217 healthy donors and prothrombin conversion and thrombin inactivation were calculated. VWF and FVIII levels were lower (75% and 78%) and α2M levels were higher (125%) in the O group. TG is 10% lower in the O group in PPP and PRP. Less prothrombin was converted in the O group (86%) and the thrombin decay capacity was lower as well. In the O group, α2M plays a significantly larger role in the inhibition of thrombin (126%). In conclusion, TG is lower in the O group due to lower prothrombin conversion, and a larger contribution of α2M to thrombin inactivation. The former is unrelated to platelet function because it is similar in PRP and PPP, but can be explained by the lower levels of FVIII. PMID:26509437
Steen, V M; Tysnes, O B; Holmsen, H
1988-01-01
We have studied synergism between adrenaline (epinephrine) and low concentrations of thrombin in gel-filtered human platelets prelabelled with [32P]Pi. Suspensions of platelets, which did not contain added fibrinogen, were incubated at 37 degrees C to measure changes in the levels of 32P-labelled phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-phosphate (PIP) and phosphatidate (PA), aggregation and dense-granule secretion after stimulation. Adrenaline alone (3.5-4.0 microM) did not cause a change in any parameter (phosphoinositide metabolism, aggregation and dense-granule secretion), but markedly enhanced the thrombin-induced responses over a narrow range of thrombin concentrations (0.03-0.08 units/ml). The thrombin-induced hydrolysis of inositol phospholipids by phospholipase C, which was measured as the formation of [32P]PA, was potentiated by adrenaline, as was the increase in the levels of [32P]PIP2 and [32P]PIP. The presence of adrenaline caused a shift to the left for the thrombin-induced changes in the phosphoinositide metabolism, without affecting the maximal levels of 32P-labelled compounds obtained. A similar shift by adrenaline in the dose-response relationship was previously demonstrated for thrombin-induced aggregation and dense-granule secretion. Also, the narrow range of concentrations of thrombin over which adrenaline potentiates thrombin-induced platelet responses is the same for changes in phosphoinositide metabolism and physiological responses (aggregation and dense-granule secretion). Our observations clearly indicate that adrenaline directly or indirectly influences thrombin-induced changes in phosphoinositide metabolism. PMID:2845924
21 CFR 864.7875 - Thrombin time test.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Thrombin time test. 864.7875 Section 864.7875 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7875 Thrombin time test. (a...
21 CFR 864.7875 - Thrombin time test.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Thrombin time test. 864.7875 Section 864.7875 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7875 Thrombin time test. (a...
21 CFR 864.7875 - Thrombin time test.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Thrombin time test. 864.7875 Section 864.7875 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7875 Thrombin time test. (a...
21 CFR 864.7875 - Thrombin time test.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Thrombin time test. 864.7875 Section 864.7875 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7875 Thrombin time test. (a...
21 CFR 864.7875 - Thrombin time test.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Thrombin time test. 864.7875 Section 864.7875 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7875 Thrombin time test. (a...
Lee, Nuri; Kim, Ji-Eun; Gu, Ja-Yoon; Yoo, Hyun Ju; Kim, Inho; Yoon, Sung-Soo; Park, Seonyang; Han, Kyou-Sup; Kim, Hyun Kyung
2016-01-01
Disseminated intravascular coagulation (DIC) is characterized by consumption of coagulation factors and anticoagulants. Thrombin generation assay (TGA) gives useful information about global hemostatic status. We developed a new TGA system that anticoagulant addition can deplete thrombin generation in plasma, which may reflect defective anticoagulant system in DIC. TGAs were measured on the calibrated automated thrombogram with and without thrombomodulin or protein Z in 152 patients who were suspected of having DIC, yielding four parameters including lag time, endogenous thrombin potential, peak thrombin and time-to-peak in each experiment. Nonsurvivors showed significantly prolonged lag time and time-to-peak in TGA-protein Z system, which was performed with added protein Z. In multivariate Cox regression analysis, lag time and time-to-peak in TGA system were significant independent prognostic factors. In TGA-protein Z system, lag time and time-to-peak were revealed as independent prognostic factors of DIC. Protein Z addition could potentiate its anticoagulant effect in DIC with poor prognosis, suggesting the presence of defective protein Z system. The prolonged lag time and time-to-peak in both TGA and TGA-protein Z systems are expected to be used as independent prognostic factors of DIC.
Della Corte, Anna; Maugeri, Norma; Pampuch, Agnieszka; Cerletti, Chiara; de Gaetano, Giovanni; Rotilio, Domenico
2008-02-01
Thrombin is an agonist inducing platelet activation. We combined two-dimensional difference gel electrophoresis (2D-DIGE) and mass spectrometry (MALDI-TOF MS) to analyse differentially expressed proteins secreted from thrombin-stimulated platelets. Human washed platelets, from healthy volunteers, were stimulated with thrombin 0.5 U/ml at 37 degrees C without stirring and the secreted proteins were resolved by 2D-DIGE. By image analysis, 1094 spots were detected in the 2D gel. The spots whose mean intensity showed at least a five-fold change intensity increase or decrease in the thrombin-activated platelet gel in comparison with unstimulated control were digested by trypsin and subjected to MALDI-TOF MS analysis. Peptides from mass spectra of in-gel digest samples were matched against available databases, using the Mascot search engine (Matrix Science) for peptide mass fingerprint. In the activated platelet secretome, transferrin, glutathione-transferase, WD repeat protein, ER-60, thrombospondin-1 precursor and thrombospondin were the most abundant. Also lamin A, a nuclear protein, not previously identified in platelets, appeared to be released. The novel strategy to combine 2D-DIGE with MALDI-TOF MS is a useful approach for a quantitative analysis of the effect of thrombin on the secretome profile of human platelets.
Cuq, Benoît; Blois, Shauna L; Wood, R Darren; Monteith, Gabrielle; Abrams-Ogg, Anthony C; Bédard, Christian; Wood, Geoffrey A
2018-06-01
Thrombin plays a central role in hemostasis and thrombosis. Calibrated automated thrombography (CAT), a thrombin generation assay, may be a useful test for hemostatic disorders in dogs. To describe CAT results in a group of healthy dogs, and assess preanalytical variables and biological variability. Forty healthy dogs were enrolled. Lag time (Lag), time to peak (ttpeak), peak thrombin generation (peak), and endogenous thrombin potential (ETP) were measured. Direct jugular venipuncture and winged-needle catheter-assisted saphenous venipuncture were used to collect samples from each dog, and results were compared between methods. Sample stability at -80°C was assessed over 12 months in a subset of samples. Biological variability of CAT was assessed via nested ANOVA using samples obtained weekly from a subset of 9 dogs for 4 consecutive weeks. Samples for CAT were stable at -80°C over 12 months of storage. Samples collected via winged-needle catheter venipuncture showed poor repeatability compared to direct venipuncture samples; there was also poor agreement between the 2 sampling methods. Intra-individual variability of CAT parameters was below 25%; inter-individual variability ranged from 36.9% to 78.5%. Measurement of thrombin generation using CAT appears to be repeatable in healthy dogs, and samples are stable for at least 12 months when stored at -80°C. Direct venipuncture sampling is recommended for CAT. Low indices of individuality suggest that subject-based reference intervals are more suitable when interpreting CAT results. © 2018 American Society for Veterinary Clinical Pathology.
Researchers at the Eunice Kennedy Shriver National Institute of Child Health and Human Development (“NICHD”), seek CRADA partner or collaboration for development of agents to treat multiple sclerosis or other conditions associated with myelin remodeling by administering an agent that inhibits cleavage of Neurofascin 155 or Caspr1. The agent could be a thrombin inhibitor, an agent that inhibits thrombin expression, an anti-thrombin antibody that specifically inhibits thrombin mediated cleavage of Neurofascin 155, a mutated version or fragment of Neurofascin 155 or Caspr1, or antibodies to Neurofascin 155 or Caspr1.
Measurement of Factor V Activity in Human Plasma Using a Microplate Coagulation Assay
Tilley, Derek; Levit, Irina; Samis, John A.
2012-01-01
In response to injury, blood coagulation is activated and results in generation of the clotting protease, thrombin. Thrombin cleaves fibrinogen to fibrin which forms an insoluble clot that stops hemorrhage. Factor V (FV) in its activated form, FVa, is a critical cofactor for the protease FXa and accelerator of thrombin generation during fibrin clot formation as part of prothrombinase 1, 2. Manual FV assays have been described 3, 4, but they are time consuming and subjective. Automated FV assays have been reported 5-7, but the analyzer and reagents are expensive and generally provide only the clot time, not the rate and extent of fibrin formation. The microplate platform is preferred for measuring enzyme-catalyzed events because of convenience, time, cost, small volume, continuous monitoring, and high-throughput 8, 9. Microplate assays have been reported for clot lysis 10, platelet aggregation 11, and coagulation Factors 12, but not for FV activity in human plasma. The goal of the method was to develop a microplate assay that measures FV activity during fibrin formation in human plasma. This novel microplate method outlines a simple, inexpensive, and rapid assay of FV activity in human plasma. The assay utilizes a kinetic microplate reader to monitor the absorbance change at 405nm during fibrin formation in human plasma (Figure 1) 13. The assay accurately measures the time, initial rate, and extent of fibrin clot formation. It requires only μl quantities of plasma, is complete in 6 min, has high-throughput, is sensitive to 24-80pM FV, and measures the amount of unintentionally activated (1-stage activity) and thrombin-activated FV (2-stage activity) to obtain a complete assessment of its total functional activity (2-stage activity - 1-stage activity). Disseminated intravascular coagulation (DIC) is an acquired coagulopathy that most often develops from pre-existing infections 14. DIC is associated with a poor prognosis and increases mortality above the pre-existing pathology 15. The assay was used to show that in 9 patients with DIC, the FV 1-stage, 2-stage, and total activities were decreased, on average, by 54%, 44%, and 42%, respectively, compared with normal pooled human reference plasma (NHP). The FV microplate assay is easily adaptable to measure the activity of any coagulation factor. This assay will increase our understanding of FV biochemistry through a more accurate and complete measurement of its activity in research and clinical settings. This information will positively impact healthcare environments through earlier diagnosis and development of more effective treatments for coagulation disorders, such as DIC. PMID:22987015
Measurement of factor v activity in human plasma using a microplate coagulation assay.
Tilley, Derek; Levit, Irina; Samis, John A
2012-09-09
In response to injury, blood coagulation is activated and results in generation of the clotting protease, thrombin. Thrombin cleaves fibrinogen to fibrin which forms an insoluble clot that stops hemorrhage. Factor V (FV) in its activated form, FVa, is a critical cofactor for the protease FXa and accelerator of thrombin generation during fibrin clot formation as part of prothrombinase (1, 2). Manual FV assays have been described (3, 4), but they are time consuming and subjective. Automated FV assays have been reported (5-7), but the analyzer and reagents are expensive and generally provide only the clot time, not the rate and extent of fibrin formation. The microplate platform is preferred for measuring enzyme-catalyzed events because of convenience, time, cost, small volume, continuous monitoring, and high-throughput (8, 9). Microplate assays have been reported for clot lysis (10), platelet aggregation (11), and coagulation Factors (12), but not for FV activity in human plasma. The goal of the method was to develop a microplate assay that measures FV activity during fibrin formation in human plasma. This novel microplate method outlines a simple, inexpensive, and rapid assay of FV activity in human plasma. The assay utilizes a kinetic microplate reader to monitor the absorbance change at 405 nm during fibrin formation in human plasma (Figure 1) (13). The assay accurately measures the time, initial rate, and extent of fibrin clot formation. It requires only μl quantities of plasma, is complete in 6 min, has high-throughput, is sensitive to 24-80 pM FV, and measures the amount of unintentionally activated (1-stage activity) and thrombin-activated FV (2-stage activity) to obtain a complete assessment of its total functional activity (2-stage activity - 1-stage activity). Disseminated intravascular coagulation (DIC) is an acquired coagulopathy that most often develops from pre-existing infections (14). DIC is associated with a poor prognosis and increases mortality above the pre-existing pathology (15). The assay was used to show that in 9 patients with DIC, the FV 1-stage, 2-stage, and total activities were decreased, on average, by 54%, 44%, and 42%, respectively, compared with normal pooled human reference plasma (NHP). The FV microplate assay is easily adaptable to measure the activity of any coagulation factor. This assay will increase our understanding of FV biochemistry through a more accurate and complete measurement of its activity in research and clinical settings. This information will positively impact healthcare environments through earlier diagnosis and development of more effective treatments for coagulation disorders, such as DIC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connolly, T.M.; Majerus, P.W.
1986-05-01
Phosphoinositide breakdown in response to thrombin stimulation of human platelets generates messenger molecules that activate PKC (diglyceride) and mobilize Ca/sup + +/ (inositol tris-phosphates). The water soluble products of phospholipase C-mediated metabolism of phosphatidylinositol 4,5-diphosphate are inositol 1,4,5 P/sub 3/ (IP/sub 3/) and inositol 1:2-cyclic 4,5 P/sub 3/ (cIP/sub 3/). A specific phosphatase, IP/sub 3/ 5'-p'tase, cleaves the 5 phosphate from IP/sub 3/ or cIP/sub 3/ to form IP/sub 2/ or cIP/sub 2/ and P/sub i/, none of which mobilizes Ca/sup + +/. Thus, the IP/sub 3/ 5'-p'tase may regulate cellular responses to IP/sub 3/ or cIP/sub 3/. The authorsmore » find that IP/sub 3/ 5'-p'tase isolated from human platelets is phosphorylated by rat brain PKC, resulting in a 4-fold increase in IP/sub 3/ 5'-p'tase activity. The authors phosphorylated IP/sub 3/ 5'-p'tase using ..gamma.. /sup 32/P-ATP and found that the labeled enzyme comigrated on SDS-PAGE with the previously described 40K protein phosphorylated in response to thrombin stimulation of platelets. The similarity of the PKC-phosphorylated IP/sub 3/ 5'-p'tase observed in vitro and the thrombin-stimulated phosphorylated 40K protein known to be phosphorylated by PKC in vivo, suggests that these proteins may be the same. These results suggest that platelet Ca/sup + +/ mobilization maybe regulated by PKC phosphorylation of the IP/sub 3/ 5'-p'tase and can explain the observation that phorbol ester treatment of intact human platelets results in decreased production of IP/sub 3/ and decreased Ca/sup + +/ mobilization upon subsequent thrombin addition.« less
Design and characterization of hirulogs: A novel class of bivalent peptide inhibitors of thrombin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maraganore, J.M.; Bourdon, P.; Jablonski, J.
1990-07-31
A novel class of synthetic peptides has been designed that inhibit the thrombin catalytic site and exhibit specificity for the anion-binding exosite (ABE) of {alpha}-thrombin. These peptides, called hirulogs, consist of (i) an active-site specificity sequence with a restricted Arg-Pro scissile bond, (ii) a polymeric linker of glycyl residues from 6 to 18 {angstrom} in length, and (iii) an ABE recognition sequence such as that in the hirudin C-terminus. Hirulog-1 ((D-Phe)-Pro-Arg-Pro-(Gly){sub 4}-Asn-Gly-Asp-Phe-Glu-Glu-Ile-Pro-Glu-Tyr-Leu) inhibits the thrombin-catalyzed hydrolysis of a tripeptide p-nitroanilide substrate with K{sub i} = 2.3 nM. In contrast, the synthetic C-terminal hirudin peptide S-Hir{sub 53-64}, which binds to themore » thrombin ABE, blocked the fibrinogen clotting activity of the enzyme with K{sub i} = 144 nM but failed to inhibit the hydrolysis of p-nitroanilide substrates at concentrations as high as 1 mM. Hirulog-1, but not S-Hir{sub 53-64}, was found to inhibit the incorporation of ({sup 14}C)diisopropyl fluorophosphate in thrombin. Hirulog-1 appears specific for thrombin as it lacks inhibitory activities toward human factor Xa, human plasmin, and bovine trypsin at inhibitor:enzyme concentrations 3 orders of magnitude higher than those required to inhibit thrombin. The optimal inhibitory activity of hirulog-1 depends upon all three components of its structure. Comparison of anticoagulant activities of hirulog-1, hirudin, and S-Hir{sub 53-64} showed that the synthetic hirulog-1 is 2-fold more potent than hirudin and 100-fold more active than S-Hir{sub 53-64} in increasing the activated partial thromboplastin time of normal human plasma.« less
Liu, Yizhang; Jiang, Xuekai; Cao, Wenfeng; Sun, Junyong; Gao, Feng
2018-02-14
Carboxyl-functionalized semiconducting polymer dots (Pdots) were synthesized as an energy donor by the nanoprecipitation method. A black hole quenching dye (BHQ-labelled thrombin aptamers) was used as the energy acceptor, and fluorescence resonance energy transfer between the aptamers and Pdots was used for fluorescence quenching of the Pdots. The addition of thrombin restored the fluorescence intensity. Under the optimized experimental conditions, the fluorescence of the system was restored to the maximum when the concentration of thrombin reached 130 nM, with a linear range of 0-50 nM (R² = 0.990) and a detection limit of 0.33 nM. This sensor was less disturbed by impurities, showing good specificity and signal response to thrombin, with good application in actual samples. The detection of human serum showed good linearity in the range of 0-30 nM (R² = 0.997), with a detection limit of 0.56 nM and a recovery rate of 96.2-104.1%, indicating that this fluorescence sensor can be used for the detection of thrombin content in human serum.
Vassbotn, F S; Havnen, O K; Heldin, C H; Holmsen, H
1994-05-13
Human platelets contain platelet-derived growth factor (PDGF) in their alpha-granules which is released during platelet exocytosis. We show by immunoprecipitation and 125I-PDGF binding experiments that human platelets have functionally active PDGF alpha-receptors, but not beta-receptors. The PDGF alpha-receptor (PDGFR-alpha) was identified as a 170-kDa glycosylated protein-tyrosine kinase as found in other cell types. Stimulation of platelets with 0.1 unit/ml thrombin resulted in a significant increase (2-5-fold) of the tyrosine phosphorylation of the PDGFR-alpha, as determined by immunoprecipitation with phosphotyrosine antiserum as well as with PDGFR-alpha antiserum. The observed thrombin-induced autophosphorylation of the PDGFR-alpha was inhibited by the addition of a neutralizing monoclonal PDGF antibody. Thus, our results suggest that the platelet PDGFR-alpha is stimulated in an autocrine manner by PDGF secreted during platelet activation. Preincubation of platelets with PDGF inhibited thrombin-induced platelet aggregation and secretion of ATP + ADP and beta-hexosaminidase. Thrombin-induced platelet aggregation was also reversed when PDGF was added 30 s after thrombin stimulation. Inhibition of the autocrine PDGF pathway during platelet activation by the PDGF antibody led to a potentiation of thrombin-induced beta-hexosaminidase secretion. Thus, the PDGFR-alpha takes part in a negative feedback regulation during platelet activation. Our demonstration of PDGF alpha-receptors on human platelets and its inhibitory function during platelet activation identifies a new possible role of PDGF in the regulation of thrombosis.
Effect of platelet-derived β-thromboglobulins on coagulation.
Egan, Karl; van Geffen, Johanna P; Ma, Hui; Kevane, Barry; Lennon, Aine; Allen, Seamus; Neary, Elaine; Parsons, Martin; Maguire, Patricia; Wynne, Kieran; O' Kennedy, Richard; Heemskerk, Johan W M; Áinle, Fionnuala Ní
2017-06-01
β-thromboglobulins are derived from the cleavage of the CXC chemokine platelet basic protein and are released in high concentrations by activated platelets. Platelet-derived β-thromboglobulins (βTG) share 70% homology with platelet factor 4 (PF4), another CXC chemokine released by activated platelets. PF4 modulates coagulation by inhibiting heparin-antithrombin interactions, promoting protein C activation, and attenuating the activity of activated protein C. In contrast, the effect of βTG on coagulation is unknown. Clotting times, thrombin generation, chromogenic clotting factor assays, and surface plasmon resonance (SPR) were used to assess the effect of purified βTG on coagulation. In normal pooled plasma, βTG shortened the lagtime and time to peak thrombin generation of tissue factor (TF)-dependent and TF-independent thrombin generation. In factor VIII and factor IX-deficient plasmas, βTG induced thrombin generation in the absence of a TF stimulus and in the presence of anti-TF and factor VIIa inhibitory antibodies. The procoagulant effect was not observed when thrombin generation was independent of factor X activation (supplementation of factor X-deficient plasma with factor Xa). Cleavage of a factor Xa-specific chromogenic substrate was observed when βTG was incubated with factor X, suggesting a direct interaction between βTG and factor X. Using SPR, βTG were found to bind to immobilised factor X in a dose dependent manner. βTG modulate coagulation in vitro via an interaction with factor X. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hansson, K M; Gustafsson, D; Skärby, T; Frison, L; Berntorp, E
2015-07-01
The present study was carried out to investigate the impact of FII levels, and their increase, on the hemostatic potential in plasma from hemophilia A and B patients with and without inhibitors. Recombinant human factor (F) II (rhFII) was added ex vivo to plasma from 68 patients with hemophilia A and B, with or without inhibitors. The hemostatic potential as measured by thrombin generation (calibrated automated thrombogram [CAT]) was focused on the endogenous thrombin potential (ETP) as it has been shown to correlate with the clinical phenotype of bleeding in hemophilia patients and has also been used to guide bypassing therapy in hemophilia patients with inhibitors before elective surgery. The factor eight inhibitor bypassing agent (FEIBA(®) ) was used as a reference to the clinical situation. The study shows that rhFII concentration-dependently increased ETP by a similar magnitude in hemophilia A and B, both with and without inhibitors. Compared with FEIBA, rhFII showed a shallower concentration-response curve. In both types of hemophilia 100 mg L(-1) of rhFII roughly doubled the ETP. A corresponding response was obtained by 0.5 U mL(-1) of FEIBA. These data support the theory that FII is one of the major components responsible for the efficacy of FEIBA. The data also indicate that rhFII may be useful, alone or in combination with other coagulation factors, in some of the conditions for which FEIBA is used today, although more data are needed to substantiate this. © 2015 International Society on Thrombosis and Haemostasis.
Rau, Jill C.; Deans, Carolyn; Hoffman, Maureane R.; Thomas, David B.; Malcom, Gray T.; Zieske, Arthur W.; Strong, Jack P.; Koch, Gary G.; Church, Frank C.
2009-01-01
Heparin cofactor II (HCII) is a serine protease inhibitor (serpin) that has been shown to be a predictor of decreased atherosclerosis in the elderly and protective against atherosclerosis in mice. HCII inhibits thrombin in vitro and HCII-thrombin complexes have been detected in human plasma. Moreover, the mechanism of protection against atherosclerosis in mice was determined to be the inhibition of thrombin. Despite this evidence, the presence of HCII in human atherosclerotic tissue has not been reported. In this study, using samples of coronary arteries obtained from the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) study, we explore the local relationship between HCII and (pro)thrombin in atherosclerosis. We found that HCII and (pro)thrombin are co-localized in the lipid-rich necrotic core of atheromas. A significant positive correlation between each protein and the severity of the atherosclerotic lesion was present. These results suggest that HCII is in a position to inhibit thrombin in atherosclerotic lesions where thrombin can exert a proatherogenic inflammatory response. However, these results should be tempered by the additional findings from this, and other studies, that indicate the presence of other plasma proteins (antithrombin, albumin, and α1-protease inhibitor) in the same localized region of the atheroma. PMID:19747479
Wang, Yongzhi; Zhang, Su; Luo, Lingtao; Norström, Eva; Braun, Oscar Ö; Mörgelin, Matthias; Thorlacius, Henrik
2018-02-01
Sepsis is associated with dysfunctional coagulation. Recent data suggest that platelets play a role in sepsis by promoting neutrophil accumulation. Herein, we show that cecal ligation and puncture (CLP) triggered systemic inflammation, which is characterized by formation of IL-6 and CXC chemokines as well as neutrophil accumulation in the lung. Platelet depletion decreased neutrophil accumulation, IL-6, and CXC chemokines formation in septic lungs. Depletion of platelets increased peak thrombin formation and total thrombin generation (TG) in plasma from septic animals. CLP elevated circulating levels of platelet-derived microparticles (PMPs). In vitro generated PMPs were a potent inducer of TG. Interestingly, in vitro wild-type recombinant annexin V abolished PMP-induced thrombin formation whereas a mutant annexin V protein, which does not bind to phosphatidylserine (PS), had no effect. Administration of wild-type, but not mutant annexin V, significantly inhibited thrombin formation in septic animals. Moreover, CLP-induced formation of thrombin-antithrombin complexes were reduced in platelet-depleted mice and in animals pretreated with annexin V. PMP-induced TG attenuated in FXII- and FVII-deficient plasma. These findings suggest that sepsis-induced TG is dependent on platelets. Moreover, PMPs formed in sepsis are a potent inducer of TG via PS exposure, and activation of both the intrinsic and extrinsic pathway of coagulation. In conclusion, these observations suggest that PMPs and PS play an important role in dysfunctional coagulation in abdominal sepsis. © 2017 Wiley Periodicals, Inc.
Siles, Rogelio; Kawasaki, Yuko; Ross, Patrick; Freire, Ernesto
2011-01-01
A small library of 25 triazole/tetrazole-based sulfonamides have been synthesized and further evaluated for their inhibitory activity against thrombin, trypsin, tryptase and chymase. In general, the triazole-based sulfonamides inhibited thrombin more efficiently than the tetrazole counterparts. Particularly, compound 26 showed strong thrombin inhibition (Ki =880 nM) and significant selectivity against other human related serine proteases like trypsin (Ki =729 µM). Thrombin binding affinity of the same compound was determined by ITC and demonstrated that the binding of this new triazole-based scaffold is enthalpically driven, making it a good candidate for further development. PMID:21807511
Aptamer-based SERRS Sensor for Thrombin Detection
Cho, Hansang; Baker, Brian R.; Wachsmann-Hogiu, Sebastian; Pagba, Cynthia V.; Laurence, Ted A.; Lane, Stephen M.; Lee, Luke P.; Tok, Jeffrey B.-H.
2012-01-01
We describe an aptamer-based Surface Enhanced Resonance Raman Scattering (SERRS) sensor with high sensitivity, specificity, and stability for the detection of a coagulation protein, human α-thrombin. The sensor achieves high sensitivity and a limit of detection of 100 pM by monitoring the SERRS signal change upon the single step of thrombin binding to immobilized thrombin binding aptamer. The selectivity of the sensor is demonstrated by the specific discrimination of thrombin from other protein analytes. The specific recognition and binding of thrombin by the thrombin binding aptamer is essential to the mechanism of the aptamer-based sensor, as shown through measurements using negative control oligonucleotides. In addition, the sensor can detect 1 nM thrombin in the presence of complex biofluids, such as 10% fetal calf serum, demonstrating that the immobilized, 5'-capped, 3'-capped aptamer is sufficiently robust for clinical diagnostic applications. Furthermore, the proposed sensor may be implemented for multiplexed detection using different aptamer-Raman probe complexes. PMID:19367849
Dittmeier, Melanie; Wassmuth, Kathrin; Schuhmann, Michael K; Kraft, Peter; Kleinschnitz, Christoph; Fluri, Felix
2016-01-01
Dabigatran etexilate (DE), a direct-acting, oral inhibitor of thrombin, significantly reduces the risk of stroke compared with traditional anticoagulants, without increasing the risk of major bleeding. However, studies on the fate of cerebral tissue after ischemic stroke in patients receiving DE are sparse and the role of dabigatran-mediated reduction of thrombin in this context has not yet been investigated. Here, we investigated whether pretreatment with DE reduces thrombin-mediated pro-inflammatory mechanisms and leakage of the blood-brain barrier (BBB) following ischemic stroke in rats. Male Wistar rats received DE (15 mg/kg) or a vehicle solution 1 hour before transient middle cerebral artery occlusion (tMCAO) for 90 minutes. Infarct volume, neurologic outcome and intracranial hemorrhage (ICH) were determined after tMCAO. Thrombin generation was indirectly assessed by measuring thrombin/antithrombin III complex. Microvascular patency was evaluated histologically. Cytokine expression and immunoreactivity of cluster of differentiation (CD) 68 were examined to characterize inflammatory processes after pretreatment with DE. BBB integrity was examined by quantifying brain edema. Rats given DE revealed a significant reduction in infarct size without an increase in ICH and significant recovery of neurologic deficits compared to controls. Administration of DE decreased thrombin generation and thrombus formation, dampened the CD68-immunoreactivity and attenuated pro-inflammatory cytokine expression in the cerebral parenchyma ipsilateral to the ischemic lesion. BBB permeability was unaltered following treatment with DE. In summary, prophylactic anticoagulation with DE improves stroke outcome by reducing thrombin-induced inflammation and thrombus formation without increasing the rate of ICH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendelsohn, M.E.; Yan Zhu; O'Neill, S.
Thrombin plays a critical role in platelet activation, hemostasis, and thrombosis. Cellular activation by thrombin leads to the phosphorylation of multiple proteins, most of which are unidentified. The authors have characterized several 29-kDa proteins that are rapidly phosphorylated following exposure of intact human platelets to thrombin. A murine monoclonal antibody raised to an unidentified estrogen receptor-related 29-kDa protein selectively recognized these proteins as well as a more basic, unphosphorylated 27-kDa protein. Cellular activation by thrombin led to a marked shift in the proportion of protein from the 27-kDa unphosphorylated form to the 29-kDa phosphoprotein species. Using this antibody, they isolatedmore » and sequenced a human cDNA clone encoding a protein that was identical to the mammalian 27-kDa heat shock protein (HSP27), a protein of uncertain function that is known to be phosphorylated to several forms and to be transcriptionally induced by estrogen. The 29-kDa proteins were confirmed to be phosphorylated forms of HSP27 by immunoprecipitation studies. Thus, the estrogen receptor-related protein is HSP27, and the three major 20-kDa proteins phosphorylated in thrombin-activated platelets are forms of HSP27. These data suggest a role for HSP27 in the signal transduction events of platelet activation.« less
Tanaka, Kosuke; Tawara, Shunsuke; Tsuruta, Kazuhisa; Hoppensteadt, Debra; Fareed, Jawed
2018-01-01
Although thrombomodulin alfa (TM alfa), recombinant human soluble thrombomodulin, exerts antithrombogenic effects through activated protein C (APC), clinical trials suggested that TM alfa has a lower bleeding risk than does recombinant human APC. To address the mechanism explaining this difference, effects of TM alfa and APC on thrombogenic, coagulation, and fibrinolytic processes were compared in vitro. TM alfa and APC inhibited generation of thrombogenic markers, thrombin, and prothrombin fragment F1+2 and prolonged coagulation parameters, activated clotting time (ACT), and activated partial thromboplastin time (APTT). Concentrations of TM alfa effective for thrombin and F1+2 generation inhibition were comparable to those of APC. However, effects of TM alfa on ACT and APTT were clearly weaker than those of APC. TM alfa significantly prolonged clot lysis time (CLT) and decreased LY30, a parameter of degree of fibrinolysis in thromboelastography, whereas APC significantly shortened CLT and increased LY30. These results suggested that while the antithrombogenic effects of TM alfa were similar to those of APC, its anticoagulant effects were lower. In addition, effects of TM alfa were antifibrinolytic, while those of APC were profibrinolytic.
Andersson, Vincent; Bergström, Fredrik; Brånalt, Jonas; Grönberg, Gunnar; Gustafsson, David; Karlsson, Staffan; Polla, Magnus; Bergman, Joakim; Kihlberg, Jan
2016-07-28
The only oral direct thrombin inhibitors that have reached the market, ximelagatran and dabigatran etexilat, are double prodrugs with low bioavailability in humans. We have evaluated an alternative strategy: the preparation of a nonpeptidic, polar direct thrombin inhibitor as a single, macrocyclic esterase-cleavable (acyloxy)alkoxy prodrug. Two homologous prodrugs were synthesized and displayed high solubilities and Caco-2 cell permeabilities, suggesting high absorption from the intestine. In addition, they were rapidly and completely converted to the active zwitterionic thrombin inhibitor in human hepatocytes. Unexpectedly, the most promising prodrug displayed only moderately higher oral bioavailability in rat than the polar direct thrombin inhibitor, most likely due to rapid metabolism in the intestine or the intestinal wall. To the best of our knowledge, this is the first in vivo ADME study of macrocyclic (acyloxy)alkoxy prodrugs, and it remains to be established if the modest increase in bioavailability is a general feature of this category of prodrugs or not.
Pujadas-Mestres, Lluis; Lopez-Vilchez, Irene; Arellano-Rodrigo, Eduardo; Reverter, Joan Carles; Lopez-Farre, Antonio; Diaz-Ricart, Maribel; Badimon, Juan Jose; Escolar, Gines
2017-01-01
Mechanisms of action of direct oral anticoagulants (DOAC) suggest a potential therapeutic use in the prevention of thrombotic complications in arterial territories. However, effects of DOACs on platelet activation and aggregation have not been explored in detail. We have investigated the effects of apixaban on platelet and fibrin components of thrombus formation under static and flow conditions. We assessed the effects of apixaban (10, 40 and 160 ng/mL) on: 1) platelet deposition and fibrin formation onto a thrombogenic surface, with blood circulating at arterial shear-rates; 2) viscoelastic properties of forming clots, and 3) thrombin generation in a cell-model of coagulation primed by platelets. In studies with flowing blood, only the highest concentration of apixaban, equivalent to the therapeutic Cmax, was capable to significantly reduce thrombus formation, fibrin association and platelet-aggregate formation. Apixaban significantly prolonged thromboelastometry parameters, but did not affect clot firmness. Interestingly, results in a platelet-based model of thrombin generation under more static conditions, revealed a dose dependent persistent inhibitory action by apixaban, with concentrations 4 to 16 times below the therapeutic Cmax significantly prolonging kinetic parameters and reducing the total amount of thrombin generated. Our studies demonstrate the critical impact of rheological conditions on the antithrombotic effects of apixaban. Studies under flow conditions combined with modified thrombin generation assays could help discriminating concentrations of apixaban that prevent excessive platelet accumulation, from those that deeply impair fibrin formation and may unnecessarily compromise hemostasis.
Arellano-Rodrigo, Eduardo; Reverter, Joan Carles; Lopez-Farre, Antonio; Diaz-Ricart, Maribel; Badimon, Juan Jose; Escolar, Gines
2017-01-01
Introduction Mechanisms of action of direct oral anticoagulants (DOAC) suggest a potential therapeutic use in the prevention of thrombotic complications in arterial territories. However, effects of DOACs on platelet activation and aggregation have not been explored in detail. We have investigated the effects of apixaban on platelet and fibrin components of thrombus formation under static and flow conditions. Methods We assessed the effects of apixaban (10, 40 and 160 ng/mL) on: 1) platelet deposition and fibrin formation onto a thrombogenic surface, with blood circulating at arterial shear-rates; 2) viscoelastic properties of forming clots, and 3) thrombin generation in a cell-model of coagulation primed by platelets. Results In studies with flowing blood, only the highest concentration of apixaban, equivalent to the therapeutic Cmax, was capable to significantly reduce thrombus formation, fibrin association and platelet-aggregate formation. Apixaban significantly prolonged thromboelastometry parameters, but did not affect clot firmness. Interestingly, results in a platelet-based model of thrombin generation under more static conditions, revealed a dose dependent persistent inhibitory action by apixaban, with concentrations 4 to 16 times below the therapeutic Cmax significantly prolonging kinetic parameters and reducing the total amount of thrombin generated. Conclusions Our studies demonstrate the critical impact of rheological conditions on the antithrombotic effects of apixaban. Studies under flow conditions combined with modified thrombin generation assays could help discriminating concentrations of apixaban that prevent excessive platelet accumulation, from those that deeply impair fibrin formation and may unnecessarily compromise hemostasis. PMID:28192448
THROMBIN GENERATION AND BLEEDING IN HEMOPHILIA A
Brummel-Ziedins, Kathleen E.; Whelihan, Matthew F.; Gissel, Matthew; Mann, Kenneth G.; Rivard, Georges E.
2012-01-01
Introduction Hemophilia A displays phenotypic heterogeneity with respect to clinical severity. Aim To determine if tissue factor (TF)-initiated thrombin generation profiles in whole blood in the presence of corn trypsin inhibitor (CTI) are predictive of bleeding risk in hemophilia A. Methods We studied factor(F) VIII deficient individuals (11 mild, 4 moderate and 12 severe) with a well-characterized five-year bleeding history that included hemarthrosis, soft tissue hematoma and annual FVIII concentrate usage. This clinical information was used to generate a bleeding score. The bleeding scores (range 0–32) were separated into three groups (bleeding score groupings: 0, 0 and ≤9.6, >9.6), with the higher bleeding tendency having a higher score. Whole blood collected by phlebotomy and contact pathway suppressed by 100μg/mL CTI was stimulated to react by the addition of 5pM TF. Reactions were quenched at 20min by inhibitors. Thrombin generation, determined by ELISA for thrombin – antithrombin was evaluated in terms of clot time (CT), maximum level (MaxL) and maximum rate (MaxR) and compared to the bleeding score. Results Data are shown as the mean±SD. MaxL was significantly different (p<0.001) between the groups: 504±114nM, 315±117nM, and 194±91nM; with higher thrombin concentrations in the groups with lower bleeding scores. MaxR was higher in the groups with a lower bleeding score; 97±51nM/min, 86±60nM/min and 39±16nM/min (p=0.09). No significant difference was detected in CT among the groups, 5.6±1.3min, 4.7±0.7min, 5.6±1.3min. Conclusions Our empirical study in CTI-inhibited whole blood shows that the MaxL of thrombin generation appears to correlate with the bleeding phenotype of hemophilia A. PMID:19563500
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Huang-Joe; Division of Cardiology, Department of Medicine, China Medical University Hospital, No. 2, Yuh-Der Road, Taichung 40447, Taiwan; Lo, Wan-Yu
Patients with paclitaxel-eluting stents are concerned with stent thrombosis caused by premature discontinuation of dual antiplatelet therapy or clopidogrel resistance. This study investigates the effect of (-)-epigallocatechin-3-gallate (EGCG) on the expression of thrombin/paclitaxel-induced endothelial tissue factor (TF) expressions in human aortic endothelial cells (HAECs). EGCG was nontoxic to HAECs at 6 h up to a concentration of 25 {mu}mol/L. At a concentration of 25 {mu}mol/L, EGCG pretreatment potently inhibited both thrombin-stimulated and thrombin/paclitaxel-stimulated endothelial TF protein expression. Thrombin and thrombin/paclitaxel-induced 2.6-fold and 2.9-fold increases in TF activity compared with the control. EGCG pretreatment caused a 29% and 38% decrease inmore » TF activity on thrombin and thrombin/paclitaxel treatment, respectively. Real-time polymerase chain reaction (PCR) showed that thrombin and thrombin/paclitaxel-induced 3.0-fold and 4.6-fold TF mRNA expressions compared with the control. EGCG pretreatment caused an 82% and 72% decrease in TF mRNA expression on thrombin and thrombin/paclitaxel treatment, respectively. The c-Jun terminal NH2 kinase (JNK) inhibitor SP600125 reduced thrombin/paclitaxel-induced TF expression. Furthermore, EGCG significantly inhibited the phosphorylation of JNK to 49% of thrombin/paclitaxel-stimulated HAECs at 60 min. Immunofluorescence assay did not show an inhibitory effect of EGCG on P65 NF-{kappa}B nuclear translocation in the thrombin/paclitaxel-stimulated endothelial cells. In conclusion, EGCG can inhibit TF expression in thrombin/paclitaxel-stimulated endothelial cells via the inhibition of JNK phosphorylation. The unique property of EGCG may be used to develop a new drug-eluting stent by co-coating EGCG and paclitaxel.« less
Ceriello, A; Giugliano, D; Quatraro, A; Marchi, E; Barbanti, M; Lefèbvre, P
1990-03-01
In the presence of increased levels of fibrinopeptide A, decreased antithrombin III biological activity, and thrombin-antithrombin III complex levels are seen in diabetic patients. Induced-hyperglycaemia in diabetic and normal subjects decreased antithrombin III activity and thrombin-antithrombin III levels, and increased fibrinopeptide A plasma levels, while antithrombin III concentration did not change; heparin was shown to reduced these phenomena. In diabetic patients, euglycaemia induced by insulin infusion restored antithrombin III activity, thrombin-antithrombin III complex and fibrinopeptide A concentrations; heparin administration had the same effects. These data stress the role of a hyperglycaemia-dependent decrease of antithrombin III activity in precipitating thrombin hyperactivity in diabetes mellitus.
Chronic sleep deprivation markedly reduces coagulation factor VII expression
Pinotti, Mirko; Bertolucci, Cristiano; Frigato, Elena; Branchini, Alessio; Cavallari, Nicola; Baba, Kenkichi; Contreras-Alcantara, Susana; Ehlen, J. Christopher; Bernardi, Francesco; Paul, Ketema N.; Tosini, Gianluca
2010-01-01
Chronic sleep loss, a common feature of human life in industrialized countries, is associated to cardiovascular disorders. Variations in functional parameters of coagulation might contribute to explain this relationship. By exploiting the mouse model and a specifically designed protocol, we demonstrated that seven days of partial sleep deprivation significantly decreases (−30.5%) the thrombin generation potential in plasma evaluated upon extrinsic (TF/FVIIa pathway) but not intrinsic activation of coagulation. This variation was consistent with a decrease (−49.8%) in the plasma activity levels of factor VII (FVII), the crucial physiologicalal trigger of coagulation, which was even more pronounced at the liver mRNA level (−85.7%). The recovery in normal sleep conditions for three days completely restored thrombin generation and FVII activity in plasma. For the first time, we demonstrate that chronic sleep deprivation on its own reduces, in a reversible manner, the FVII expression levels, thus influencing the TF/FVIIa activation pathway efficiency. PMID:20418241
Phloretin suppresses thrombin-mediated leukocyte-platelet-endothelial interactions.
Kim, Min Soo; Park, Sin-Hye; Han, Seon-Young; Kim, Yun-Ho; Lee, Eun-Jung; Yoon Park, Jung Han; Kang, Young-Hee
2014-04-01
Thrombin playing a pivotal role in coagulation cascade may influence the onset and progression of atherosclerosis as a pro-inflammatory mediator. This study investigated whether phloretin found in apple tree leaves, severed a linkage between thrombosis and atherosclerosis by thrombin. Human endothelial cells were pre-treated with 1-20 μM phloretin and stimulated with 10 U/mL thrombin. Phloretin attenuated adhesion of THP-1 monocytes and platelets to thrombin-inflamed endothelial cells with concurrent inhibition of protease-activated receptor (PAR-1) induction. The thrombin induction of endothelial CD40, endothelial integrin β3 and P-selectin, and monocytic CD40L was dampened by phloretin. Additionally, phloretin inhibited monocyte secretion of MCP-1, IL-6 and IL-8 responsible for pro-inflammatory activity of thrombin inducing endothelial CD40. The monocyte COX-2 induction and PGE2 secretion due to thrombin were down-regulated by phloretin, deterring endothelial CD40 expression. Thrombin promoted production of PAI-1 and tissue factor in monocytes was attenuated by phloretin through blocking PAR-1 and CD40. Thrombin up-regulated the induction of endothelial connective tissue growth factor independent of PAR-1 activation, which was reversed by phloretin. Phloretin disturbed tethering and stable adhesion of monocytes and platelets onto endothelium during increased thrombosis by thrombin. Phloretin would be a potent agent preventing thrombosis and atherosclerosis. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Puy, Cristina; Tucker, Erik I; Ivanov, Ivan S; Gailani, David; Smith, Stephanie A; Morrissey, James H; Gruber, András; McCarty, Owen J T
2016-01-01
Factor (F) XI supports both normal human hemostasis and pathological thrombosis. Activated FXI (FXIa) promotes thrombin generation by enzymatic activation of FXI, FIX, FX, and FV, and inactivation of alpha tissue factor pathway inhibitor (TFPIα), in vitro. Some of these reactions are now known to be enhanced by short-chain polyphosphates (SCP) derived from activated platelets. These SCPs act as a cofactor for the activation of FXI and FV by thrombin and FXIa, respectively. Since SCPs have been shown to inhibit the anticoagulant function of TFPIα, we herein investigated whether SCPs could serve as cofactors for the proteolytic inactivation of TFPIα by FXIa, further promoting the efficiency of the extrinsic pathway of coagulation to generate thrombin. Purified soluble SCP was prepared by size-fractionation of sodium polyphosphate. TFPIα proteolysis was analyzed by western blot. TFPIα activity was measured as inhibition of FX activation and activity in coagulation and chromogenic assays. SCPs significantly accelerated the rate of inactivation of TFPIα by FXIa in both purified systems and in recalcified plasma. Moreover, platelet-derived SCP accelerated the rate of inactivation of platelet-derived TFPIα by FXIa. TFPIα activity was not affected by SCP in recalcified FXI-depleted plasma. Our data suggest that SCP is a cofactor for TFPIα inactivation by FXIa, thus, expanding the range of hemostatic FXIa substrates that may be affected by the cofactor functions of platelet-derived SCP.
Benistant, C; Rubin, R
1990-01-01
Ethanol is known to inhibit the activation of platelets in response to several physiological agonists, but the mechanism of this action is unclear. The addition of physiologically relevant concentrations of ethanol (25-150 mM) to suspensions of washed human platelets resulted in the inhibition of thrombin-induced secretion of 5-hydroxy[14C]tryptamine. Indomethacin was included in the incubation buffer to prevent feedback amplification by arachidonic acid metabolites. Ethanol had no effect on the activation of phospholipase C by thrombin, as determined by the formation of inositol phosphates and the mobilization of intracellular Ca2+. Moreover, ethanol did not interfere with the thrombin-induced formation of diacylglycerol or phosphatidic acid. Stimulation of platelets with phorbol ester (5-50 nM) resulted in 5-hydroxy[14C]tryptamine release comparable with those with threshold doses of thrombin. However, ethanol did not inhibit phorbol-ester-induced secretion. Ethanol also did not interfere with thrombin- or phorbol-ester-induced phosphorylation of myosin light chain (20 kDa) or a 47 kDa protein, a known substrate for protein kinase C. By electron microscopy, ethanol had no effect on thrombin-induced shape change and pseudopod formation, but prevented granule centralization and fusion. The results indicate that ethanol does not inhibit platelet secretion by interfering with the activation of phosphoinositide-specific phospholipase C or protein kinase C by thrombin. Rather, the data demonstrate an inhibition of a Ca2(+)-mediated event such as granule centralization. Images p495-a PMID:2117442
Welsh, J D; Colace, T V; Muthard, R W; Stalker, T J; Brass, L F; Diamond, S L
2012-11-01
Thrombin undergoes convective and diffusive transport, making it difficult to visualize during thrombosis. We developed the first sensor capable of revealing inner clot thrombin dynamics. An N-terminal-azido thrombin-sensitive fluorescent peptide (ThS-P) with a thrombin-releasable quencher was linked to anti-CD41 using click chemistry to generate a thrombin-sensitive platelet binding sensor (ThS-Ab). Rapid thrombin cleavage of ThS-P (K(m) = 40.3 μm, k(cat) = 1.5 s(-1) ) allowed thrombin monitoring by ThS-P or ThS-Ab in blood treated with 2-25 pm tissue factor (TF). Individual platelets had > 20-fold more ThS-Ab fluorescence after clotting. In a microfluidic assay of whole blood perfusion over collagen ± linked TF (wall shear rate = 100 s(-1) ), ThS-Ab fluorescence increased between 90 and 450 s for 0.1-1 molecule-TF μm(-2) and co-localized with platelets near fibrin. Without TF, neither thrombin nor fibrin was detected on the platelet deposits by 450 s. Using a microfluidic device to control the pressure drop across a thrombus forming on a porous collagen/TF plug (521 s(-1) ), thrombin and fibrin were detected at the thrombus-collagen interface at a zero pressure drop, whereas 80% less thrombin was detected at 3200 Pa in concert with fibrin polymerizing within the collagen. With anti-mouse CD41 ThS-Ab deployed in a mouse laser injury model, the highest levels of thrombin arose between 40 and 160 s nearest the injury site where fibrin co-localized and where the thrombus was most mechanically stable. ThS-Ab reveals thrombin locality, which depends on surface TF, flow and intrathrombus pressure gradients. © 2012 International Society on Thrombosis and Haemostasis.
Development of a microplate coagulation assay for Factor V in human plasma.
Tilley, Derek; Levit, Irina; Samis, John A
2011-06-28
Factor V (FV) in its activated form, FVa, is a critical regulator of thrombin generation during fibrin clot formation. There is a need of a simple, fast, and inexpensive microplate-based coagulation assay to measure the functional activity of FV in human plasma. The objective of this study was to develop a microplate-based assay that measures FV coagulation activity during clot formation in human plasma, which is currently not available. The FV assay requires a kinetic microplate reader to measure the change in absorbance at 405nm during fibrin formation in human plasma. The FV assay accurately measures the time, initial rate, and extent of fibrin clot formation in human plasma. The FV microplate assay is simple, fast, economical, sensitive to approx 24-80pM, and multiple samples may be analyzed simultaneously. All the required materials are commercially available. Standard curves of time or initial rate of fibrin clot formation vs FV activity in the 1-stage assay (Without activation by thrombin) may be used to measure FV activity in samples of human plasma. The assay was used to demonstrate that in nine patients with disseminated intravascular coagulation (DIC), the FV 1-stage, 2-stage (With activation by thrombin), and total (2-stage activity - 1-stage activity) activities were decreased, on average, by approximately 54%, 44%, and 42%, respectively, from prolonged clot times when compared to normal pooled human reference plasma (NHP). The results indicate that the FV in the DIC patient plasmas supported both a delayed and slower rate of fibrin clot formation compared with NHP; however, the extent of fibrin clot formation in the DIC patients remained largely unchanged from that observed with NHP. The FV microplate assay may be easily adapted to measure the activity of any coagulation factor using the appropriate factor-deficient plasma and clot initiating reagent. The microplate assay will find use in both research and clinical laboratories to provide measurement of the functional coagulation activity of FV in human plasma.
Equid Herpesvirus Type 1 Activates Platelets
Stokol, Tracy; Yeo, Wee Ming; Burnett, Deborah; DeAngelis, Nicole; Huang, Teng; Osterrieder, Nikolaus; Catalfamo, James
2015-01-01
Equid herpesvirus type 1 (EHV-1) causes outbreaks of abortion and neurological disease in horses. One of the main causes of these clinical syndromes is thrombosis in placental and spinal cord vessels, however the mechanism for thrombus formation is unknown. Platelets form part of the thrombus and amplify and propagate thrombin generation. Here, we tested the hypothesis that EHV-1 activates platelets. We found that two EHV-1 strains, RacL11 and Ab4 at 0.5 or higher plaque forming unit/cell, activate platelets within 10 minutes, causing α-granule secretion (surface P-selectin expression) and platelet microvesiculation (increased small events double positive for CD41 and Annexin V). Microvesiculation was more pronounced with the RacL11 strain. Virus-induced P-selectin expression required plasma and 1.0 mM exogenous calcium. P-selectin expression was abolished and microvesiculation was significantly reduced in factor VII- or X-deficient human plasma. Both P-selectin expression and microvesiculation were re-established in factor VII-deficient human plasma with added purified human factor VIIa (1 nM). A glycoprotein C-deficient mutant of the Ab4 strain activated platelets as effectively as non-mutated Ab4. P-selectin expression was abolished and microvesiculation was significantly reduced by preincubation of virus with a goat polyclonal anti-rabbit tissue factor antibody. Infectious virus could be retrieved from washed EHV-1-exposed platelets, suggesting a direct platelet-virus interaction. Our results indicate that EHV-1 activates equine platelets and that α-granule secretion is a consequence of virus-associated tissue factor triggering factor X activation and thrombin generation. Microvesiculation was only partly tissue factor and thrombin-dependent, suggesting the virus causes microvesiculation through other mechanisms, potentially through direct binding. These findings suggest that EHV-1-induced platelet activation could contribute to the thrombosis that occurs in clinically infected horses and provides a new mechanism by which viruses activate hemostasis. PMID:25905776
Protein kinase C activates non-capacitative calcium entry in human platelets
Rosado, Juan A; Sage, Stewart O
2000-01-01
In many non-excitable cells Ca2+ influx is mainly controlled by the filling state of the intracellular Ca2+ stores. It has been suggested that this store-mediated or capacitative Ca2+ entry is brought about by a physical and reversible coupling of the endoplasmic reticulum with the plasma membrane. Here we provide evidence for an additional, non-capacitative Ca2+ entry mechanism in human platelets. Changes in cytosolic Ca2+ and Sr2+ were measured in human platelets loaded with the fluorescent indicator fura-2. Depletion of the internal Ca2+ stores with thapsigargin plus a low concentration of ionomycin stimulated store-mediated cation entry, as demonstrated upon Ca2+ or Sr2+ addition. Subsequent treatment with thrombin stimulated further divalent cation entry in a concentration-dependent manner. Direct activation of protein kinase C (PKC) by phorbol-12-myristate-13-acetate or 1-oleoyl-2-acetyl-sn-glycerol also stimulated divalent cation entry, without evoking the release of Ca2+ from intracellular stores. Cation entry evoked by thrombin or activators of PKC was abolished by the PKC inhibitor Ro-31-8220. Unlike store-mediated Ca2+ entry, jasplakinolide, which reorganises actin filaments into a tight cortical layer adjacent to the plasma membrane, did not inhibit divalent cation influx evoked by thrombin when applied after Ca2+ store depletion, or by activators of PKC. Thrombin also activated Ca2+ entry in platelets in which the release from intracellular stores and store-mediated Ca2+ entry were blocked by xestospongin C. These results indicate that the non-capacitative divalent cation entry pathway is regulated independently of store-mediated entry and does not require coupling of the endoplasmic reticulum and the plasma membrane. These results support the existence of a mechanism for receptor-evoked Ca2+ entry in human platelets that is independent of Ca2+ store depletion. This Ca2+ entry mechanism may be activated by occupation of G-protein-coupled receptors, which activate PKC, or by direct activation of PKC, thus generating non-capacitative Ca2+ entry alongside that evoked following the release of Ca2+ from the intracellular stores. PMID:11080259
Tissue thrombin is associated with the pathogenesis of dilated cardiomyopathy.
Ito, Keiichi; Hongo, Kenichi; Date, Taro; Ikegami, Masahiro; Hano, Hiroshi; Owada, Mamiko; Morimoto, Satoshi; Kashiwagi, Yusuke; Katoh, Daisuke; Yoshino, Takuya; Yoshii, Akira; Kimura, Haruka; Nagoshi, Tomohisa; Kajimura, Ichige; Kusakari, Yoichiro; Akaike, Toru; Minamisawa, Susumu; Ogawa, Kazuo; Minai, Kosuke; Ogawa, Takayuki; Kawai, Makoto; Yajima, Junji; Matsuo, Seiichiro; Yamane, Teiichi; Taniguchi, Ikuo; Morimoto, Sachio; Yoshimura, Michihiro
2017-02-01
Thrombin is a serine protease known to be the final product of the coagulation cascade. However, thrombin plays other physiological roles in processes such as gastric contractions and vessel wound healing, and a state of coagulability is increased in patients with dilated cardiomyopathy (DCM). In this study, we investigate the role of thrombin in the pathogenesis of DCM. The purpose of this study is to clarify the role of thrombin in the pathogenesis of DCM and investigate the possibility of treatment against DCM by thrombin inhibition. We investigated the expression of thrombin in the left ventricles of five patients with DCM who underwent the Batista operation and four patients without heart disease. Furthermore, we investigated the involvement of thrombin in the development of DCM using knock-in mice with a deletion mutation of cardiac troponin T that causes human DCM (∆K210 knock-in mouse) (B6;129-Tnnt2 tm2Mmto ) and assessed the effects of a direct thrombin inhibitor, dabigatran on ∆K210 knock-in mice using echocardiographic examinations, the Kaplan-Meier method and Western blotting. The immunohistochemical analysis showed a strong thrombin expression in the DCM patients compared to the patients without heart disease. In immunohistochemical analysis, a strong thrombin expression was observed in the heart tissues analysis in the ∆K210 knock-in mice. Dabigatran administration significantly improved fractional shortening according to the echocardiographic examination and the survival outcomes in ∆K210 knock-in mice. Tissue thrombin is involved in the pathogenesis of DCM and thrombin inhibition can be beneficial for the treatment of DCM. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Moy, A B; Van Engelenhoven, J; Bodmer, J; Kamath, J; Keese, C; Giaever, I; Shasby, S; Shasby, D M
1996-01-01
We examined the contribution of actin-myosin contraction to the modulation of human umbilical vein endothelial cell focal adhesion caused by histamine and thrombin. Focal adhesion was measured as the electrical resistance across a cultured monolayer grown on a microelectrode. Actin-myosin contraction was measured as isometric tension of cultured monolayers grown on a collagen gel. Histamine immediately decreased electrical resistance but returned to basal levels within 3-5 min. Histamine did not increase isometric tension. Thrombin also immediately decreased electrical resistance, but, however, resistance did not return to basal levels for 40-60 min. Thrombin also increased isometric tension, ML-7, an inhibitor of myosin light chain kinase, prevented increases in myosin light chain phosphorylation and increases in tension development in cells exposed to thrombin. ML-7 did not prevent a decline in electrical resistance in cells exposed to thrombin. Instead, ML-7 restored the electrical resistance to basal levels in a shorter period of time (20 min) than cells exposed to thrombin alone. Also, histamine subsequently increased electrical resistance to above basal levels, and thrombin initiated an increase in resistance during the time of peak tension development. Hence, histamine and thrombin modulate endothelial cell focal adhesion through centripetal and centrifugal forces. PMID:8613524
Weerwind, Patrick W; Lindhout, Theo; Caberg, Nicole EH; de Jong, Dick S
2003-01-01
Background In spite of using heparin-coated extracorporeal circuits, cardiopulmonary bypass (CPB) is still associated with an extensive thrombin generation, which is only partially suppressed by the use of high dosages of heparin. Recent studies have focused on the origins of this thrombotic stimulus and the possible role of retransfused suctioned blood from the thoracic cavities on the activation of the extrinsic coagulation pathway. The present study was designed to find during CPB an association between retransfusion of suctioned blood from the pericardium and pleural space, containing activated factor VIIa and systemic thrombin generation. Methods Blood samples taken from 12 consenting patients who had elective cardiac surgery were assayed for plasma factor VIIa, prothrombin fragment 1+2 (F1+2), and thrombin-antithrombin (TAT) concentrations. Blood aspirated from the pericardium and pleural space was collected separately, assayed for F1+2, TAT, and factor VIIa and retransfused to the patient after the aorta occlusion. Results After systemic heparinization and during CPB thrombin generation was minimal, as indicated by the lower than base line plasma levels of F1+2, and TAT after correction for hemodilution. In contrast, blood aspirated from the thoracic cavities had significantly higher levels of factor VIIa, F1+2, and TAT compared to the simultaneous samples from the blood circulation (P < 0.05). Furthermore, after retransfusion of the suctioned blood (range, 200–1600 mL) circulating levels of F1+2, and TAT rose significantly from 1.6 to 2.9 nmol/L (P = 0.002) and from 5.1 to 37.5 μg/L (P = 0.01), respectively. The increase in both F1+2, and TAT levels correlated significantly with the amount of retransfused suctioned blood (r = 0.68, P = 0.021 and r = 0.90, P = 0.001, respectively). However, the circulating factor VIIa levels did not correlate with TAT and F1+2 levels. Conclusions These data suggest that blood aspirated from the thoracic cavities during CPB is highly thrombogenic. Retransfusion of this blood may, therefore, promote further systemic thrombin generation during CPB. PMID:12904260
Hu, Juan; Zheng, Peng-Cheng; Jiang, Jian-Hui; Shen, Guo-Li; Yu, Ru-Qin; Liu, Guo-Kun
2009-01-01
We have developed an electrostatic interaction based biosensor for thrombin detection using surface-enhanced Raman spectroscopy (SERS). This method utilized the electrostatic interaction between capture (thrombin aptamer) and probe (crystal violet, CV) molecules. The specific interaction between thrombin and aptamer could weaken the electrostatic barrier effect from the negative charged aptamer SAMs to the diffusion process of the positively charged CV from the bulk solution to the Au nanoparticle surface. Therefore, the more the bound thrombin, the more the CV molecules near the Au nanoparticle surface and the stronger the observed Raman signal of CV, provided the Raman detections were set at the same time point for each case. This procedure presented a highly specific selectivity and a linear detection of thrombin in the range from 0.1 nM to 10 nM with a detection limit of about 20 pM and realized the thrombin detection in human blood serum solution directly. The electrostatic interaction based technique provides an easy and fast-responding optical platform for a "signal-on" detection of proteins, which might be applicable for the real time assay of proteins.
Antithrombin activity of an algal polysaccharide.
Trento, F; Cattaneo, F; Pescador, R; Porta, R; Ferro, L
2001-06-01
In an effort to reduce the risks of a possible iatrogenic transmission of bovine spongiform encephalitis (BSE) through the use of bovine-derived medicinal products, we patented in the USA in 1999 a polysaccharide from brown algae, endowed with interesting pharmacological activities: (a) concentration-dependent inhibition of thromboplastin or cephalin-kaolin-induced thrombin generation from platelets, (b) concentration-dependent inhibition of thrombin-induced platelet aggregation, (c) thrombin has hypotensive effect, which was blunted and zeroed by our fucansulfate in a dose-dependent way, (d) when aortae are stimulated with thrombin, they become stickier for polymorphonucleated leukocytes (PMNs); our fucansulfate decreased concentration-dependently, PMNs sticking to autologous rabbit aortae, (e) dose-dependent inhibition of thrombin-induced thrombosis. All the above data suggest that our fucansulfate could be a heparin substitute endowed with antithrombotic and anti-inflammatory activities, devoid or the problems caused to heparin by its animal origin, i.e., possible prion protein contamination.
New synthetic thrombin inhibitors: molecular design and experimental verification.
Sinauridze, Elena I; Romanov, Alexey N; Gribkova, Irina V; Kondakova, Olga A; Surov, Stepan S; Gorbatenko, Aleksander S; Butylin, Andrey A; Monakov, Mikhail Yu; Bogolyubov, Alexey A; Kuznetsov, Yuryi V; Sulimov, Vladimir B; Ataullakhanov, Fazoyl I
2011-01-01
The development of new anticoagulants is an important goal for the improvement of thromboses treatments. The design, synthesis and experimental testing of new safe and effective small molecule direct thrombin inhibitors for intravenous administration. Computer-aided molecular design of new thrombin inhibitors was performed using our original docking program SOL, which is based on the genetic algorithm of global energy minimization in the framework of a Merck Molecular Force Field. This program takes into account the effects of solvent. The designed molecules with the best scoring functions (calculated binding energies) were synthesized and their thrombin inhibitory activity evaluated experimentally in vitro using a chromogenic substrate in a buffer system and using a thrombin generation test in isolated plasma and in vivo using the newly developed model of hemodilution-induced hypercoagulation in rats. The acute toxicities of the most promising new thrombin inhibitors were evaluated in mice, and their stabilities in aqueous solutions were measured. New compounds that are both effective direct thrombin inhibitors (the best K(I) was <1 nM) and strong anticoagulants in plasma (an IC(50) in the thrombin generation assay of approximately 100 nM) were discovered. These compounds contain one of the following new residues as the basic fragment: isothiuronium, 4-aminopyridinium, or 2-aminothiazolinium. LD(50) values for the best new inhibitors ranged from 166.7 to >1111.1 mg/kg. A plasma-substituting solution supplemented with one of the new inhibitors prevented hypercoagulation in the rat model of hemodilution-induced hypercoagulation. Activities of the best new inhibitors in physiological saline (1 µM solutions) were stable after sterilization by autoclaving, and the inhibitors remained stable at long-term storage over more than 1.5 years at room temperature and at 4°C. The high efficacy, stability and low acute toxicity reveal that the inhibitors that were developed may be promising for potential medical applications.
Platelet glycoprotein VI binds to polymerized fibrin and promotes thrombin generation.
Mammadova-Bach, Elmina; Ollivier, Véronique; Loyau, Stéphane; Schaff, Mathieu; Dumont, Bénédicte; Favier, Rémi; Freyburger, Geneviève; Latger-Cannard, Véronique; Nieswandt, Bernhard; Gachet, Christian; Mangin, Pierre H; Jandrot-Perrus, Martine
2015-07-30
Fibrin, the coagulation end product, consolidates the platelet plug at sites of vascular injury and supports the recruitment of circulating platelets. In addition to integrin αIIbβ3, another as-yet-unidentified receptor is thought to mediate platelet interaction with fibrin. Platelet glycoprotein VI (GPVI) interacts with collagen and several other adhesive macromolecules. We evaluated the hypothesis that GPVI could be a functional platelet receptor for fibrin. Calibrated thrombin assays using platelet-rich plasma (PRP) showed that tissue factor-triggered thrombin generation was impaired in GPVI-deficient patients and reduced by the anti-GPVI Fab 9O12. Assays on reconstituted PRP and PRP from fibrinogen-deficient patients revealed a fibrinogen-dependent enhancement of thrombin generation, which relied on functional GPVI. The effect of GPVI was found to depend on fibrin polymerization. A binding assay showed a specific interaction between GPVI-Fc and fibrin, inhibited by the Fab 9O12. This Fab also reduced platelet adhesion to fibrin at low (300 s(-1)) and high (1500 s(-1)) wall shear rates. Platelets adherent to fibrin displayed shape change, exposure of procoagulant phospholipids, and the formation of small clots. When hirudinated blood was perfused at 1500 s(-1) over preformed fibrin-rich clots, the Fab 9O12 decreased the recruitment of platelets by up to 85%. This study identifies GPVI as a platelet receptor for polymerized fibrin with 2 major functions: (1) amplification of thrombin generation and (2) recruitment of circulating platelets to clots. These so-far-unrecognized properties of GPVI confer on it a key role in thrombus growth and stabilization. © 2015 by The American Society of Hematology.
Pike, G N; Cumming, A M; Hay, C R M; Sempasa, B; Sutherland, M; Thachil, J; Burthem, J; Bolton-Maggs, P H B
2016-05-01
Bleeding risk in factor XI (FXI) deficiency following surgery may be reduced by treatment with either of two FXI concentrates, but indications for their use are unclear and treatment has been associated with thrombosis. To quantify and compare the effects of two different FXI concentrates on thrombin generation (TG) in major FXI deficiency (FXI:C < 15 IU dL(-1) ). Thrombin generation was measured in controls (n = 50), FXI-deficient individuals pre and post in vitro spiking with FXI concentrates (n = 10), and in ex vivo samples following treatment with FXI concentrate (n = 3). Thrombin generation was significantly impaired in FXI deficiency but improved following FXI replacement in vitro and in vivo. LFB Hemoleven(®) had greater effect on TG than BPL FXI concentrate in vitro (equivalent in vivo doses 10, 20 and 30 U kg(-1) ): higher endogenous thrombin potential (ETP) (P < 0.0001), peak height (P < 0.01) velocity (P < 0.0002) and shorter lag time and time to peak (both P < 0.003). Some measurements with LFB Hemoleven(®) exceeded the reference range. At lower dose (5 U kg(-1) ), BPL FXI concentrate normalized all TG parameters and LFB Hemoleven(®) normalized the ETP but exceeded the reference range with other parameters. Both FXI concentrates improve TG in vitro in major FXI deficiency but differ in dose response, and for both products, doses lower than previously recommended normalized TG in vitro. Comparison of in vitro spiked and ex vivo samples suggest that in vitro results could be used to estimate an expected in vivo response to FXI replacement. © 2015 John Wiley & Sons Ltd.
Murata, K; Sakon, M; Kambayashi, J; Yukawa, M; Yano, Y; Fujitani, K; Kawasaki, T; Shiba, E; Mori, T
1993-04-01
Protein phosphatase 1 is considered to be involved in thrombin-induced platelet activation (Murata et al., Biochem Int 26:327-334, 1992). To clarify the mechanism, we examined the effects of protein phosphatase 1 and 2A inhibitors (calyculin A, tautomycin, okadaic acid) on Ca2+ influx. In the presence of 1 mM Ca2+, thrombin- (0.1 U/ml) induced platelet aggregation and ATP release were inhibited by calyculin A, while this inhibitory effect was abolished in the absence of Ca2+ (EGTA 1 mM). Furthermore, thrombin-induced Mn2+ influx but not intracellular Ca2+ mobilization was inhibited by calyculin A in a dose-related manner. Calyculin A also blocked the ongoing Ca2+ influx when added 3 min after thrombin stimulation. Similar inhibitory effects were observed with okadaic acid and tautomycin in the same potency sequence as the reported one for protein phosphatase 1 (calyculin A > tautomycin > okadaic acid). These results suggest that the anti-platelet effects of phosphatase inhibitors are due to the inhibition of Ca2+ influx and that protein phosphatase 1 plays a key role in the regulation of receptor operated Ca2+ channel of human platelets.
Maryanoff, Bruce E; Zhang, Han-Cheng; Andrade-Gordon, Patricia; Derian, Claudia K
2003-03-01
Protease-activated receptors (PARs) represent a unique family of seven-transmembrane G-protein-coupled receptors, which are enzymatically cleaved to expose a new extracellular N-terminus that acts as a tethered activating ligand. PAR-1 is cleaved and activated by the serine protease alpha-thrombin, is expressed in various tissues (e.g. platelets and vascular cells), and is involved in cellular responses associated with hemostasis, proliferation, and tissue injury. By using a de novo design approach, we have discovered a series of potent heterocycle-based peptide-miimetic antagonists of PAR-1, exemplified by advanced leads RWJ-56110 (22) and RWJ-58259 (32). These compounds are potent, selective PAR-1 antagonists, devoid of PAR-1 agonist and thrombin inhibitory activity: they bind to PAR-1, interfere with calcium mobilization and cellular functions associated with PAR-1, and do not affect PAR-2, PAR-3, or PAR-4. RWJ-56110 was determined to be a direct inhibitor of PAR-1 activation and internalization, without affecting PAR-1 N-terminal cleavage. At high concentrations of alpha-thrombin, RWJ-56110 fully blocked activation responses in human vascular cells, but not in human platelets; whereas, at high concentrations of TRAP-6, RWJ-56110 blocked activation responses in both cell types. This result is consistent with the presence of another thrombin receptor on human platelets, namely PAR-4. RWJ-56110 and RWJ-58259 clearly interrupt the binding of a tethered ligand to its receptor. RWJ-58259 demonstrated antirestenotic activity in a rat balloon angioplasty model and antithrombotic activity in a cynomolgus monkey arterial injury model. Such PAR-1 antagonists should not only serve as useful tools to delineate the physiological and pathophysiological roles of PAR-1, but also may have therapeutic potential for treating thrombosis and restenosis in humans.
2012-06-06
Different recovery profiles of coagulation factors, thrombin generation, and coagulation function after hemorrhagic shock in pigs Wenjun Z. Martini ...Defense. Address for reprints: Wenjun Z. Martini , PhD, The US Army Institute of Surgical Research, 3698 Chambers Pass, Ft. Sam Houston, San Antonio, TX...control number 1. REPORT DATE 01 SEP 2015 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Different recovery profiles of
Effects of Rivaroxaban on Platelet Activation and Platelet–Coagulation Pathway Interaction
Heitmeier, Stefan; Laux, Volker
2015-01-01
Introduction: Activation of coagulation and platelets is closely linked, and arterial thrombosis involves coagulation activation as well as platelet activation and aggregation. In these studies, we investigated the possible synergistic effects of rivaroxaban in combination with antiplatelet agents on thrombin generation and platelet aggregation in vitro and on arterial thrombosis and hemostasis in rat models. Materials and Methods: Thrombin generation was measured by the Calibrated Automated Thrombogram method (0.5 pmol/L tissue factor) using human platelet-rich plasma (PRP) spiked with rivaroxaban (15, 30, or 60 ng/mL), ticagrelor (1.0 µg/mL), and acetylsalicylic acid (ASA; 100 µg/mL). Tissue factor-induced platelet aggregation was measured in PRP spiked with rivaroxaban (15 or 30 ng/mL), ticagrelor (1 or 3 µg/mL), or a combination of these. An arteriovenous (AV) shunt model in rats was used to determine the effects of rivaroxaban (0.01, 0.03, or 0.1 mg/kg), clopidogrel (1 mg/kg), ASA (3 mg/kg), and combinations on arterial thrombosis. Results: Rivaroxaban inhibited thrombin generation in a concentration-dependent manner and the effect was enhanced with ticagrelor and ticagrelor plus ASA. Rivaroxaban and ticagrelor also concentration-dependently inhibited tissue factor-induced platelet aggregation, and their combination increased the inhibition synergistically. In the AV shunt model, rivaroxaban dose-dependently reduced thrombus formation. Combining subefficacious or weakly efficacious doses of rivaroxaban with ASA or ASA plus clopidogrel increased the antithrombotic effect. Conclusion: These data indicate that the combination of rivaroxaban with single or dual antiplatelet agents works synergistically to reduce platelet activation, which may in turn lead to the delayed/reduced formation of coagulation complexes and vice versa, thereby enhancing antithrombotic potency. PMID:25848131
Effects of an acidic environment on coagulation dynamics.
Gissel, M; Brummel-Ziedins, K E; Butenas, S; Pusateri, A E; Mann, K G; Orfeo, T
2016-10-01
Essentials Acidosis, an outcome of traumatic injury, has been linked to impaired procoagulant efficiency. In vitro model systems were used to assess coagulation dynamics at pH 7.4 and 7.0. Clot formation dynamics are slightly enhanced at pH 7.0 in blood ex vivo. Acidosis induced decreases in antithrombin efficacy offset impairments in procoagulant activity. Background Disruption of hydrogen ion homeostasis is a consequence of traumatic injury often associated with clinical coagulopathy. Mechanisms by which acidification of the blood leads to aberrant coagulation require further elucidation. Objective To examine the effects of acidified conditions on coagulation dynamics using in vitro models of increasing complexity. Methods Coagulation dynamics were assessed at pH 7.4 and 7.0 as follows: (i) tissue factor (TF)-initiated coagulation proteome mixtures (±factor [F]XI, ±fibrinogen/FXIII), with reaction progress monitored as thrombin generation or fibrin formation; (ii) enzyme/inhibitor reactions; and (iii) TF-dependent or independent clot dynamics in contact pathway-inhibited blood via viscoelastometry. Results Rate constants for antithrombin inhibition of FXa and thrombin were reduced by ~ 25-30% at pH 7.0. At pH 7.0 (+FXI), TF-initiated thrombin generation showed a 20% increase in maximum thrombin levels and diminished thrombin clearance rates. Viscoelastic analyses showed a 25% increase in clot time and a 25% reduction in maximum clot firmness (MCF). A similar MCF reduction was observed at pH 7.0 when fibrinogen/FXIII were reacted with thrombin. In contrast, in contact pathway-inhibited blood (n = 6) at pH 7.0, MCF values were elevated 6% (95% confidence interval [CI]: 1%-11%) in TF-initiated blood and 15% (95% CI: 1%- 29%) in the absence of TF. Clot times at pH 7.0 decreased 32% (95% CI: 15%-49%) in TF-initiated blood and 51% (95% CI: 35%-68%) in the absence of TF. Conclusions Despite reported decreased procoagulant catalysis at pH 7.0, clot formation dynamics are slightly enhanced in blood ex vivo and suppression of thrombin generation is not observed. A decrease in antithrombin reactivity is one potential mechanism contributing to these outcomes. © 2016 International Society on Thrombosis and Haemostasis.
Vrij, Anton A; Oberndorff-Klein-Woolthuis, Ardi; Dijkstra, Gerard; de Jong, Andrea E; Wagenvoord, Rob; Hemker, Hendrik C; Stockbrügger, Reinhold W
2007-10-01
In ulcerative colitis (UC), a state of hypercoagulation has frequently been observed. Low molecular weight heparin (LMWH) has shown beneficial effects as an adjuvant treatment of steroid refractory UC in open trials. We assessed potential therapeutic effects of the LMWH reviparin in hospitalised patients with mesalazine refractory UC, as well as its influence on haemostasis factors. Twenty-nine patients with mild-to-moderately active UC were included in a double-blind placebo controlled trial. All patients had a flare-up of disease under mesalazine treatment. Reviparin (Clivarin) 3,436 IU anti-Xa/0.6 ml or placebo s.c. was added, and self-administered twice daily for 8 weeks. Patients were monitored for possible adverse events and changes in clinical symptoms. Endoscopical, histological, biochemical and haemostasis parameters were analysed. Tolerability and compliance were excellent and no serious adverse events occurred. No significant differences were observed on the clinical, endoscopical and histological outcome, as compared to placebo. A high intrinsic and extrinsic thrombin potential was found before LMWH therapy. However, the significant reduction in the thrombin generation by LMWH was not related to the reduction in disease activity. The LMWH reviparine reduces thrombin generation in patients with mild-to-moderately active, mesalazine refractory UC, but is not associated with a reduction in disease activity.
Chanakira, Alice; Westmark, Pamela R.; Ong, Irene M.; Sheehan, John P.
2017-01-01
Objective Enhanced tissue factor (TF) expression in epithelial ovarian cancer (EOC) is associated with aggressive disease. Our objective was to evaluate the role of the TF-factor VIIa-protease-activated receptor-2 (PAR-2) pathway in human EOC. Methods TCGA RNAseq data from EOC databases were analyzed for PAR expression. Cell and microparticle (MP) associated TF protein expression (Western blot) and MP-associated coagulant activity were determined in human EOC (SKOV-3, OVCAR-3 and CaOV-3) and control cell lines. PAR-1 and PAR-2 protein expression were similarly examined. The PAR dependence of VEGF-A release (ELISA) and chemotactic migration in response to FVIIa and cellular proliferation in response to thrombin was evaluated with small molecule antagonists. Results Relative mRNA expression consistently demonstrated PAR-2>PAR-1≫PAR-3/4 in multiple EOC datasets. Human EOC cell line lysates confirmed expression of TF, PAR-1 and PAR-2 proteins. MPs isolated from EOC cell lines demonstrated markedly enhanced (4–10 fold) TF coagulant activity relative to control cell lines. FVIIa induced a dose-dependent increase in VEGF-A release (2.5-3 fold) from EOC cell lines that was abrogated by the PAR-2 antagonist ENMD-1068. FVIIa treatment of CaOV-3 and OVCAR-3 cells resulted in increased chemotactic migration that was abolished by ENMD-1068. Thrombin induced dose-dependent EOC cell line proliferation was completely reversed by the PAR-1 antagonist vorapaxar. Small molecule antagonists had no effect on these phenotypes without protease present. Conclusions Enhanced activity of the TF-FVIIa-PAR-2 axis may contribute to the EOC progression via PAR-2 dependent signaling that supports an angiogenic and invasive phenotype and local thrombin generation supporting PAR-1 dependent proliferation. PMID:28148395
Optimisation and Characterisation of Anti-Fouling Ternary SAM Layers for Impedance-Based Aptasensors
Miodek, Anna; Regan, Edward M.; Bhalla, Nikhil; Hopkins, Neal A.E.; Goodchild, Sarah A.; Estrela, Pedro
2015-01-01
An aptasensor with enhanced anti-fouling properties has been developed. As a case study, the aptasensor was designed with specificity for human thrombin. The sensing platform was developed on screen printed electrodes and is composed of a self-assembled monolayer made from a ternary mixture of 15-base thiolated DNA aptamers specific for human thrombin co-immobilised with 1,6-hexanedithiol (HDT) and further passivated with 1-mercapto-6-hexanol (MCH). HDT binds to the surface by two of its thiol groups forming alkyl chain bridges and this architecture protects from non-specific attachment of molecules to the electrode surface. Using Electrochemical Impedance Spectroscopy (EIS), the aptasensor is able to detect human thrombin as variations in charge transfer resistance (Rct) upon protein binding. After exposure to a high concentration of non-specific Bovine Serum Albumin (BSA) solution, no changes in the Rct value were observed, highlighting the bio-fouling resistance of the surface generated. In this paper, we present the optimisation and characterisation of the aptasensor based on the ternary self-assembled monolayer (SAM) layer. We show that anti-fouling properties depend on the type of gold surface used for biosensor construction, which was also confirmed by contact angle measurements. We further studied the ratio between aptamers and HDT, which can determine the specificity and selectivity of the sensing layer. We also report the influence of buffer pH and temperature used for incubation of electrodes with proteins on detection and anti-fouling properties. Finally, the stability of the aptasensor was studied by storage of modified electrodes for up to 28 days in different buffers and atmospheric conditions. Aptasensors based on ternary SAM layers are highly promising for clinical applications for detection of a range of proteins in real biological samples. PMID:26426017
Miodek, Anna; Regan, Edward M; Bhalla, Nikhil; Hopkins, Neal A E; Goodchild, Sarah A; Estrela, Pedro
2015-09-29
An aptasensor with enhanced anti-fouling properties has been developed. As a case study, the aptasensor was designed with specificity for human thrombin. The sensing platform was developed on screen printed electrodes and is composed of a self-assembled monolayer made from a ternary mixture of 15-base thiolated DNA aptamers specific for human thrombin co-immobilised with 1,6-hexanedithiol (HDT) and further passivated with 1-mercapto-6-hexanol (MCH). HDT binds to the surface by two of its thiol groups forming alkyl chain bridges and this architecture protects from non-specific attachment of molecules to the electrode surface. Using Electrochemical Impedance Spectroscopy (EIS), the aptasensor is able to detect human thrombin as variations in charge transfer resistance (Rct) upon protein binding. After exposure to a high concentration of non-specific Bovine Serum Albumin (BSA) solution, no changes in the Rct value were observed, highlighting the bio-fouling resistance of the surface generated. In this paper, we present the optimisation and characterisation of the aptasensor based on the ternary self-assembled monolayer (SAM) layer. We show that anti-fouling properties depend on the type of gold surface used for biosensor construction, which was also confirmed by contact angle measurements. We further studied the ratio between aptamers and HDT, which can determine the specificity and selectivity of the sensing layer. We also report the influence of buffer pH and temperature used for incubation of electrodes with proteins on detection and anti-fouling properties. Finally, the stability of the aptasensor was studied by storage of modified electrodes for up to 28 days in different buffers and atmospheric conditions. Aptasensors based on ternary SAM layers are highly promising for clinical applications for detection of a range of proteins in real biological samples.
Cheng, You-Hong; Eby, Jonathan M; LaPorte, Heather M; Volkman, Brian F; Majetschak, Matthias
2017-01-01
Recent evidence suggests that chemokine CXCL12, the cognate agonist of chemokine receptors CXCR4 and ACKR3, reduces thrombin-mediated impairment of endothelial barrier function. A detailed characterization of the effects of CXCL12 on thrombin-mediated human lung endothelial hyperpermeability is lacking and structure-function correlations are not available. Furthermore, effects of other CXCR4/ACKR3 ligands on lung endothelial barrier function are unknown. Thus, we tested the effects of a panel of CXCR4/ACKR3 ligands (CXCL12, CXCL11, ubiquitin, AMD3100, TC14012) and compared the CXCR4/ACKR3 activities of CXCL12 variants (CXCL12α/β, CXCL12(3-68), CXCL121, CXCL122, CXCL12-S-S4V, CXCL12-R47E, CXCL12-K27A/R41A/R47A) with their effects on human lung endothelial barrier function in permeability assays. CXCL12α enhanced human primary pulmonary artery endothelial cell (hPPAEC) barrier function, whereas CXCL11, ubiquitin, AMD3100 and TC14012 were ineffective. Pre-treatment of hPPAEC with CXCL12α and ubiquitin reduced thrombin-mediated hyperpermeability. CXCL12α-treatment of hPPAEC after thrombin exposure reduced barrier function impairment by 70% (EC50 0.05-0.5nM), which could be antagonized with AMD3100; ubiquitin (0.03-3μM) was ineffective. In a human lung microvascular endothelial cell line (HULEC5a), CXCL12α and ubiquitin post-treatment attenuated thrombin-induced hyperpermeability to a similar degree. CXCL12(3-68) was inefficient to activate CXCR4 in Presto-Tango β-arrestin2 recruitment assays; CXCL12-S-S4V, CXCL12-R47E and CXCL12-K27A/R41A/R47A showed significantly reduced potencies to activate CXCR4. While the potencies of all proteins in ACKR3 Presto-Tango assays were comparable, the efficacy of CXCL12(3-68) to activate ACKR3 was significantly reduced. The potencies to attenuate thrombin-mediated hPPAEC barrier function impairment were: CXCL12α/β, CXCL121, CXCL12-K27A/R41A/R47A > CXCL12-S-S4V, CXCL12-R47E > CXCL122 > CXCL12(3-68). Our findings indicate that CXCR4 activation attenuates thrombin-induced lung endothelial barrier function impairment and suggest that protective effects of CXCL12 are dictated by its CXCR4 agonist activity and interactions of distinct protein moieties with heparan sulfate on the endothelial surface. These data may facilitate development of compounds with improved pharmacological properties to attenuate thrombin-induced vascular leakage in the pulmonary circulation.
Novel Role for p21-activated Kinase 2 in Thrombin-induced Monocyte Migration*
Gadepalli, Ravisekhar; Kotla, Sivareddy; Heckle, Mark R.; Verma, Shailendra K.; Singh, Nikhlesh K.; Rao, Gadiparthi N.
2013-01-01
To understand the role of thrombin in inflammation, we tested its effects on migration of THP-1 cells, a human monocytic cell line. Thrombin induced THP-1 cell migration in a dose-dependent manner. Thrombin induced tyrosine phosphorylation of Pyk2, Gab1, and p115 RhoGEF, leading to Rac1- and RhoA-dependent Pak2 activation. Downstream to Pyk2, Gab1 formed a complex with p115 RhoGEF involving their pleckstrin homology domains. Furthermore, inhibition or depletion of Pyk2, Gab1, p115 RhoGEF, Rac1, RhoA, or Pak2 levels substantially attenuated thrombin-induced THP-1 cell F-actin cytoskeletal remodeling and migration. Inhibition or depletion of PAR1 also blocked thrombin-induced activation of Pyk2, Gab1, p115 RhoGEF, Rac1, RhoA, and Pak2, resulting in diminished THP-1 cell F-actin cytoskeletal remodeling and migration. Similarly, depletion of Gα12 negated thrombin-induced Pyk2, Gab1, p115 RhoGEF, Rac1, RhoA, and Pak2 activation, leading to attenuation of THP-1 cell F-actin cytoskeletal remodeling and migration. These novel observations reveal that thrombin induces monocyte/macrophage migration via PAR1-Gα12-dependent Pyk2-mediated Gab1 and p115 RhoGEF interactions, leading to Rac1- and RhoA-targeted Pak2 activation. Thus, these findings provide mechanistic evidence for the role of thrombin and its receptor PAR1 in inflammation. PMID:24025335
Xu, Yunying; Zhou, Wenjiao; Zhou, Ming; Xiang, Yun; Yuan, Ruo; Chai, Yaqin
2015-02-15
Based on a new signal amplification strategy by the toehold strand displacement-driven cyclic assembly of G-quadruplex DNA, the development of an enzyme-free and non-label aptamer sensing approach for sensitive fluorescent detection of thrombin is described. The target thrombin associates with the corresponding aptamer of the partial dsDNA probes and liberates single stranded initiation sequences, which trigger the toehold strand displacement assembly of two G-quadruplex containing hairpin DNAs. This toehold strand displacement reaction leads to the cyclic reuse of the initiation sequences and the production of DNA assemblies with numerous G-quadruplex structures. The fluorescent dye, N-Methyl mesoporphyrin IX, binds to these G-quadruplex structures and generates significantly amplified fluorescent signals to achieve highly sensitive detection of thrombin down to 5 pM. Besides, this method shows high selectivity towards the target thrombin against other control proteins. The developed thrombin sensing method herein avoids the modification of the probes and the involvement of any enzyme or nanomaterial labels for signal amplification. With the successful demonstration for thrombin detection, our approach can be easily adopted to monitor other target molecules in a simple, low-cost, sensitive and selective way by choosing appropriate aptamer/ligand pairs. Copyright © 2014 Elsevier B.V. All rights reserved.
Mahlangu, J N; Coetzee, M J; Laffan, M; Windyga, J; Yee, T T; Schroeder, J; Haaning, J; Siegel, J E; Lemm, G
2012-05-01
BAY 86-6150 is a new human recombinant factor VIIa variant developed for high procoagulant activity and longer action in people with hemophilia with inhibitors. To investigate the safety, tolerability, pharmacodynamics, pharmacokinetics and immunogenicity of BAY 86-6150 in non-bleeding hemophilia subjects. The study included non-bleeding men (18-65 years of age) with moderate or severe hemophilia A or B with or without inhibitors. Sixteen subjects were randomized 3 : 1 to four cohorts of escalating doses of BAY 86-6150 (6.5, 20, 50 or 90 μg kg(-1) [n = 3 per cohort]) or placebo (n = 1 per cohort); an independent data-monitoring committee reviewed previous cohort data before the next dose escalation. Blood sampling was performed predose and postdose; subjects were monitored for 50 days postdose. At the tested doses, BAY 86-6150 was not associated with clinically significant adverse events or dose-limiting toxicities. BAY 86-6150 pharmacokinetics exhibited a linear dose response, with a half-life of 5-7 h. Subjects demonstrated consistent, dose-dependent thrombin generation ex vivo in platelet-poor plasma (PPP) (mean peak effect, 26-237 nm thrombin from 6.5 to 90 μg kg(-1)). Peak thrombin levels over time paralleled BAY 86-6150, with thrombin kinetics appearing to be slightly shorter; thus, circulating BAY 86-6150 retained activity. There were corresponding decreases in activated partial thromboplastin and prothrombin times. No subject developed de novo anti-BAY 86-6150 neutralizing antibodies during the 50-day follow-up. In this first-in-human, multicenter, randomized, double-blind, placebo-controlled, single-dose escalation study, BAY 86-6150 was tolerated at the highest dose (90 μg kg(-1)), with no safety concerns. Safety and efficacy will be further evaluated in phase II/III studies. © 2012 International Society on Thrombosis and Haemostasis.
Chang, J Y
1985-09-02
alpha-Thrombin cleavage of 30 polypeptide hormones and their derivatives were analysed by quantitative amino-terminal analysis. The polypeptides included secretin, vasoactive intestinal polypeptide, cholecystokinin fragment, dynorphin A, somatostatins, gastrin-releasing peptide, calcitonins and human parathyroid hormone fragment. Most of them were selected mainly on the ground that they contain sequence structures homologous to the well known tripeptide substrates of alpha-thrombin. All selected polypeptides have one single major cleavage site and both Arg-Xaa and Lys-Xaa bonds were found to be selectively cleaved by alpha-thrombin. Under fixed conditions (1 nmol polypeptide/0.5 NIH unit alpha-thrombin in 20 microliters of 50 mM ammonium bicarbonate at 25 degrees C), the time required for 50% cleavage ranges from less than 1 min to longer than 24 h. Heparin invariably enhanced thrombin cleavage on all polypeptide analysed. The optimum cleavage site for alpha-thrombin has the structures of (a) P4-P3-Pro-Arg-P1'-P2', where P3 and P4 are hydrophobic amino acid and P1', P2' are nonacidic amino acids and (b) P2-Arg-P1', where P2 or P1' are Gly. The requirement for hydrophobic P3 and P4 was further demonstrated by the drastic decrease of thrombin cleavage rates in both gastrin-releasing peptide and calcitonins after chemical removal of hydrophobic P3 and P4 residues. The requirement for nonacidic P1' and P2' residues was demonstrated by the drastic increase of thrombin cleavage rates in both calcitonin and parathyroid hormone fragments, after specific chemical modification of acidic P1' and P2' residues. These findings confirm the importance of hydrophobic P2-P4 residues for thrombin specificity and provide new evidence to indicate that apolar P1' and P2' residues are also crucial for thrombin specificity. It is concluded that specific cleavage of polypeptides by alpha-thrombin can be reasonably predicted and that chemical modification can be a useful tool in enhancing thrombin cleavage.
Development of a microplate coagulation assay for Factor V in human plasma
2011-01-01
Background Factor V (FV) in its activated form, FVa, is a critical regulator of thrombin generation during fibrin clot formation. There is a need of a simple, fast, and inexpensive microplate-based coagulation assay to measure the functional activity of FV in human plasma. The objective of this study was to develop a microplate-based assay that measures FV coagulation activity during clot formation in human plasma, which is currently not available. Methods The FV assay requires a kinetic microplate reader to measure the change in absorbance at 405nm during fibrin formation in human plasma. The FV assay accurately measures the time, initial rate, and extent of fibrin clot formation in human plasma. Results The FV microplate assay is simple, fast, economical, sensitive to approx 24-80pM, and multiple samples may be analyzed simultaneously. All the required materials are commercially available. Standard curves of time or initial rate of fibrin clot formation vs FV activity in the 1-stage assay (Without activation by thrombin) may be used to measure FV activity in samples of human plasma. The assay was used to demonstrate that in nine patients with disseminated intravascular coagulation (DIC), the FV 1-stage, 2-stage (With activation by thrombin), and total (2-stage activity - 1-stage activity) activities were decreased, on average, by approximately 54%, 44%, and 42%, respectively, from prolonged clot times when compared to normal pooled human reference plasma (NHP). The results indicate that the FV in the DIC patient plasmas supported both a delayed and slower rate of fibrin clot formation compared with NHP; however, the extent of fibrin clot formation in the DIC patients remained largely unchanged from that observed with NHP. Conclusions The FV microplate assay may be easily adapted to measure the activity of any coagulation factor using the appropriate factor-deficient plasma and clot initiating reagent. The microplate assay will find use in both research and clinical laboratories to provide measurement of the functional coagulation activity of FV in human plasma. PMID:21711555
Cowan, Colleen; Muraleedharan, Chithra K; O'Donnell, James J; Singh, Pawan K; Lum, Hazel; Kumar, Ashok; Xu, Shunbin
2014-07-01
Nuclear factor-κB (NF-κB), a key regulator of immune and inflammatory responses, plays important roles in diabetes-induced microvascular complications including diabetic retinopathy (DR). Thrombin activates NF-κB through protease-activated receptor (PAR)-1, a member of the G-protein-coupled receptor (GPCR) superfamily, and contributes to DR. The current study is to uncover the roles of microRNA (miRNA) in thrombin-induced NF-κB activation and retinal endothelial functions. Target prediction was performed using the TargetScan algorithm. Predicted target was experimentally validated by luciferase reporter assays. Human retinal endothelial cells (HRECs) were transfected with miRNA mimics or antimiRs and treated with thrombin. Expression levels of miR-146 and related protein-coding genes were analyzed by quantitative (q)RT-PCR. Functional changes of HRECs were analyzed by leukocyte adhesion assays. We identified that caspase-recruitment domain (CARD)-containing protein 10 (CARD10), an essential scaffold/adaptor protein of GPCR-mediated NF-κB activation pathway, is a direct target of miR-146. Thrombin treatment resulted in NF-κB-dependent upregulation of miR-146 in HRECs; while transfection of miR-146 mimics resulted in significant downregulation of CARD10 and prevented thrombin-induced NF-κB activation, suggest that a negative feedback regulation of miR-146 on thrombin-induced NF-κB through targeting CARD10. Furthermore, overexpression of miR-146 prevented thrombin-induced increased leukocyte adhesion to HRECs. We uncovered a novel negative feedback regulatory mechanism on thrombin-induced GPCR-mediated NF-κB activation by miR-146. In combination with the negative feedback regulation of miR-146 on the IL-1R/toll-like receptor (TLR)-mediated NF-κB activation in RECs that we reported previously, our results underscore a pivotal, negative regulatory role of miR-146 on multiple NF-κB activation pathways and related inflammatory processes in DR. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
Liu, Xiaoqing; Freeman, Ronit; Golub, Eyal; Willner, Itamar
2011-09-27
The incorporation of hemin into the thrombin/G-quadruplex aptamer assembly or into the ATP/G-quadruplex nanostructure yields active DNAzymes that catalyze the generation of chemiluminescence. These catalytic processes enable the detection of thrombin and ATP with detection limits corresponding to 200 pM and 10 μM, respectively. The conjugation of the antithrombin or anti-ATP aptamers to CdSe/ZnS semiconductor quantum dots (QDs) allowed the detection of thrombin or ATP through the luminescence of the QDs that is powered by a chemiluminescence resonance energy-transfer (CRET) process stimulated by the hemin/G-quadruplex/thrombin complex or the hemin/G-quadruplex/ATP nanostructure, in the presence of luminol/H(2)O(2). The advantages of applying the CRET process for the detection of thrombin or ATP, by the resulting hemin/G-quadruplex DNAzyme structures, are reflected by low background signals and the possibility to develop multiplexed aptasensor assays using different sized QDs. © 2011 American Chemical Society
Frelinger, Andrew L; Gerrits, Anja J; Garner, Allen L; Torres, Andrew S; Caiafa, Antonio; Morton, Christine A; Berny-Lang, Michelle A; Carmichael, Sabrina L; Neculaes, V Bogdan; Michelson, Alan D
2016-01-01
Activated autologous platelet-rich plasma (PRP) used in therapeutic wound healing applications is poorly characterized and standardized. Using pulsed electric fields (PEF) to activate platelets may reduce variability and eliminate complications associated with the use of bovine thrombin. We previously reported that exposing PRP to sub-microsecond duration, high electric field (SMHEF) pulses generates a greater number of platelet-derived microparticles, increased expression of prothrombotic platelet surfaces, and differential release of growth factors compared to thrombin. Moreover, the platelet releasate produced by SMHEF pulses induced greater cell proliferation than plasma. To determine whether sub-microsecond duration, low electric field (SMLEF) bipolar pulses results in differential activation of PRP compared to SMHEF, with respect to profiles of activation markers, growth factor release, and cell proliferation capacity. PRP activation by SMLEF bipolar pulses was compared to SMHEF pulses and bovine thrombin. PRP was prepared using the Harvest SmartPreP2 System from acid citrate dextrose anticoagulated healthy donor blood. PEF activation by either SMHEF or SMLEF pulses was performed using a standard electroporation cuvette preloaded with CaCl2 and a prototype instrument designed to take into account the electrical properties of PRP. Flow cytometry was used to assess platelet surface P-selectin expression, and annexin V binding. Platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), endothelial growth factor (EGF) and platelet factor 4 (PF4), and were measured by ELISA. The ability of supernatants to stimulate proliferation of human epithelial cells in culture was also evaluated. Controls included vehicle-treated, unactivated PRP and PRP with 10 mM CaCl2 activated with 1 U/mL bovine thrombin. PRP activated with SMLEF bipolar pulses or thrombin had similar light scatter profiles, consistent with the presence of platelet-derived microparticles, platelets, and platelet aggregates whereas SMHEF pulses primarily resulted in platelet-derived microparticles. Microparticles and platelets in PRP activated with SMLEF bipolar pulses had significantly lower annexin V-positivity than those following SMHEF activation. In contrast, the % P-selectin positivity and surface P-selectin expression (MFI) for platelets and microparticles in SMLEF bipolar pulse activated PRP was significantly higher than that in SMHEF-activated PRP, but not significantly different from that produced by thrombin activation. Higher levels of EGF were observed following either SMLEF bipolar pulses or SMHEF pulses of PRP than after bovine thrombin activation while VEGF, PDGF, and PF4 levels were similar with all three activating conditions. Cell proliferation was significantly increased by releasates of both SMLEF bipolar pulse and SMHEF pulse activated PRP compared to plasma alone. PEF activation of PRP at bipolar low vs. monopolar high field strength results in differential platelet-derived microparticle production and activation of platelet surface procoagulant markers while inducing similar release of growth factors and similar capacity to induce cell proliferation. Stimulation of PRP with SMLEF bipolar pulses is gentler than SMHEF pulses, resulting in less platelet microparticle generation but with overall activation levels similar to that obtained with thrombin. These results suggest that PEF provides the means to alter, in a controlled fashion, PRP properties thereby enabling evaluation of their effects on wound healing and clinical outcomes.
Kalia, Neena; Auger, Jocelyn M; Atkinson, Ben; Watson, Steve P
2008-05-01
The role of collagen receptor complex GPVI-FcR gamma-chain, PLCgamma2 and LAT in laser-induced thrombosis is unclear. Controversy surrounds whether collagen is exposed in this model or whether thrombosis is dependent on thrombin. This study hypothesized that collagen exposure plays a critical role in thrombus formation in this model, which was tested by investigating contributions of FcR gamma-chain, LAT, PLCgamma2 and thrombin. Thrombi were monitored using intravital microscopy in anesthetized wild-type and FcR gamma-chain, LAT and PLCgamma2 knockout mice. Hirudin (thrombin inhibitor) was administered to wild-type and FcR gamma-chain knockout mice. Significantly reduced thrombus formation was observed in FcR gamma-chain and PLCgamma2 knockouts with a greater decrease observed in LAT knockouts. Dramatic reduction was observed in wild-types treated with hirudin, with abolished thrombus formation only observed in FcR gamma-chain knockouts treated with hirudin. GPVI-FcR gamma-chain, LAT and PLCgamma2 are essential for thrombus generation and stability in this laser-induced model of injury. More importantly, a greater role for LAT was identified, which may reflect a role for it downstream of a second matrix protein receptor. However, inhibition of platelet activation by matrix proteins and thrombin generation are both required to maximally prevent thrombus formation.
Fujii, Toshihiro; Sakata, Asuka; Nishimura, Satoshi; Eto, Koji; Nagata, Shigekazu
2015-10-13
Phosphatidylserine (PtdSer) exposure on the surface of activated platelets requires the action of a phospholipid scramblase(s), and serves as a scaffold for the assembly of the tenase and prothrombinase complexes involved in blood coagulation. Here, we found that the activation of mouse platelets with thrombin/collagen or Ca(2+) ionophore at 20 °C induces PtdSer exposure without compromising plasma membrane integrity. Among five transmembrane protein 16 (TMEM16) members that support Ca(2+)-dependent phospholipid scrambling, TMEM16F was the only one that showed high expression in mouse platelets. Platelets from platelet-specific TMEM16F-deficient mice exhibited defects in activation-induced PtdSer exposure and microparticle shedding, although α-granule and dense granule release remained intact. The rate of tissue factor-induced thrombin generation by TMEM16F-deficient platelets was severely reduced, whereas thrombin-induced clot retraction was unaffected. The imaging of laser-induced thrombus formation in whole animals showed that PtdSer exposure on aggregated platelets was TMEM16F-dependent in vivo. The phenotypes of the platelet-specific TMEM16F-null mice resemble those of patients with Scott syndrome, a mild bleeding disorder, indicating that these mice may provide a useful model for human Scott syndrome.
Arumugam, Jayavel; Bukkapatnam, Satish T S; Narayanan, Krishna R; Srinivasa, Arun R
2016-01-01
Current methods for distinguishing acute coronary syndromes such as heart attack from stable coronary artery disease, based on the kinetics of thrombin formation, have been limited to evaluating sensitivity of well-established chemical species (e.g., thrombin) using simple quantifiers of their concentration profiles (e.g., maximum level of thrombin concentration, area under the thrombin concentration versus time curve). In order to get an improved classifier, we use a 34-protein factor clotting cascade model and convert the simulation data into a high-dimensional representation (about 19000 features) using a piecewise cubic polynomial fit. Then, we systematically find plausible assays to effectively gauge changes in acute coronary syndrome/coronary artery disease populations by introducing a statistical learning technique called Random Forests. We find that differences associated with acute coronary syndromes emerge in combinations of a handful of features. For instance, concentrations of 3 chemical species, namely, active alpha-thrombin, tissue factor-factor VIIa-factor Xa ternary complex, and intrinsic tenase complex with factor X, at specific time windows, could be used to classify acute coronary syndromes to an accuracy of about 87.2%. Such a combination could be used to efficiently assay the coagulation system.
Xu, Qingjun; Wang, Guixiang; Zhang, Mingming; Xu, Guiyun; Lin, Jiehua; Luo, Xiliang
2018-04-13
The authors describe an electrochemical aptasensor for thrombin that is based on the use of a glassy carbon electrode (GCE) modified with polydopamine that is loaded with silver nanoparticles (PDA/AgNPs). The use of AgNPs improves the conductivity of the film and increases the surface area of the GCE. PDA was deposited on the GCE via self-polymerization, and the thrombin binding aptamer was grafted onto the PDA-modified GCE by a single step reaction. Residual electrode surface was blocked with 6-mercapto-1-hexanol. On exposure to thrombin, the electrochemical impedance of the modified electrode increases gradually. Response is linear in the 0.1 pM to 5.0 nM thrombin concentration range, and the limit of detection is as low as 36 fM. The method is selective and capable of detecting thrombin in diluted human serum. In our perception, such a GCE modified with AgNP in a PDA matrix may be applied to many other analytes for which appropriate aptamers are available. Graphical abstract Schematic of an electrochemical aptasensor for sensitive and selective thrombin detection based on the use of a self-polymerized polydopamine film loaded with silver nanoparticles.
Voils, Stacy A; Martin, Erika J; Mohammed, Bassem M; Bayrlee, Ahmad; Brophy, Donald F
2015-06-01
We assess the in-vivo relationship between international normalized ratio (INR) and global coagulation tests in patients with life-threatening bleeding who received prothrombin complex concentrate (PCC) for warfarin reversal. This was a prospective pilot study in adult patients with intracranial bleeding related to anticoagulation with warfarin. Thromboelastography (TEG), thrombin generation parameters and INR were assessed at baseline, 30 min, 2 and 24 h after PCC. Changes in laboratory parameters and relationship between INR and global coagulation tests were assessed over time. Eight patients mean [standard deviation (SD)] age 72 (16) were included and received mean (SD) dose of PCC 24 (5) units/kg. Four patients died during the study, all with INR values more than 1.5 thirty minutes after PCC. Mean (SD) INR was 3.0 (1.3) and decreased significantly to 1.8 (0.48) thirty minutes after PCC (P < 0.01). Baseline endogenous thrombin potential and thrombin peak were 890 nmol/min and 123 nmol and increased significantly to 1943 nmol/min (P < 0.01) and 301 nmol (P < 0.01) 30 min after PCC administration. Reaction (R)-time decreased significantly (P = 0.02), and maximum amplitude and overall coagulation index (CI) significantly increased during treatment (P < 0.01, respectively). Thrombin generation and TEG values corrected after PCC administration; however, INR did not fully correct. Patients that died tended to be older with prolonged INR values across the study period. INR and TEG values correlated well with thrombin generation before administration of PCC, but this relationship was lost afterward.
Choi, Qute; Kim, Ji-Eun; Hyun, Jungwon; Han, Kyou-Sup; Kim, Hyun Kyung
2013-07-01
The effects of warfarin are measured with the international normalized ratio (INR). However, the thrombin generation assay (TGA) may offer more information about global coagulation. We analyzed the monitoring performance of the TGA and INR and investigated the impact of procoagulants (fibrinogen, factor (F)II, FVII, FIX, and FX) and anticoagulants (proteins C, S, and Z) on them. The TGA was performed on a calibrated automated thrombogram, producing lag time, endogenous thrombin potential (ETP), and peak thrombin in 239 patients treated with warfarin. Pro- and anticoagulant levels were also measured. The INR was significantly and inversely correlated with ETP. The therapeutic range of ETP comparable to an INR range of 2.0-3.0 was 290.1-494.6. ETP showed comparable performance to the INR as a warfarin-monitoring parameter with respect to clinical complication rate. The median levels of FII, FVII, FIX, and FX and proteins C and Z tended to decrease gradually with increasing anticoagulation intensity according to the INR or ETP. Of note, protein Z levels decreased dramatically with increasing anticoagulation status. INRs were significantly determined by FII, FVII, and protein Z. ETP was significantly dependent on FVII, and proteins C and Z concentration. Protein Z significantly reduced the total amount of thrombin generation and prolonged PT value in vitro. The INR and ETP exhibit similar efficacy for warfarin monitoring according to the clinical complication rate. Protein Z is considered to be a significant determinant of INR and ETP in patients on warfarin therapy. Copyright © 2013 Elsevier Ltd. All rights reserved.
1992-01-01
Generation of coagulation factor Xa by the intrinsic pathway protease complex is essential for normal activation of the coagulation cascade in vivo. Monocytes and platelets provide membrane sites for assembly of components of this protease complex, factors IXa and VIII. Under biologically relevant conditions, expression of functional activity by this complex is associated with activation of factor VIII to VIIIa. In the present studies, autocatalytic regulatory pathways operating on monocyte and platelet membranes were investigated by comparing the cofactor function of thrombin-activated factor VIII to that of factor Xa-activated factor VIII. Reciprocal functional titrations with purified human factor VIII and factor IXa were performed at fixed concentrations of human monocytes, CaCl2, factor X, and either factor IXa or factor VIII. Factor VIII was preactivated with either thrombin or factor Xa, and reactions were initiated by addition of factor X. Rates of factor X activation were measured using chromogenic substrate specific for factor Xa. The K1/2 values, i.e., concentration of factor VIIIa at which rates were half maximal, were 0.96 nM with thrombin- activated factor VIII and 1.1 nM with factor Xa-activated factor VIII. These values are close to factor VIII concentration in plasma. The Vsat, i.e., rates at saturating concentrations of factor VIII, were 33.3 and 13.6 nM factor Xa/min, respectively. The K1/2 and Vsat values obtained in titrations with factor IXa were not significantly different from those obtained with factor VIII. In titrations with factor X, the values of Michaelis-Menten coefficients (Km) were 31.7 nM with thrombin- activated factor VIII, and 14.2 nM with factor Xa-activated factor VIII. Maximal rates were 23.4 and 4.9 nM factor Xa/min, respectively. The apparent catalytic efficiency was similar with either form of factor VIIIa. Kinetic profiles obtained with platelets as a source of membrane were comparable to those obtained with monocytes. These kinetic profiles are consistent with a 1:1 stoichiometry for the functional interaction between cofactor and enzyme on the surface of monocytes and platelets. Taken together, these results indicate that autocatalytic pathways connecting the extrinsic, intrinsic, and common coagulation pathways can operate efficiently on the monocyte membrane. PMID:1613461
Molecular modeling studies of novel retro-binding tripeptide active-site inhibitors of thrombin.
Lau, W F; Tabernero, L; Sack, J S; Iwanowicz, E J
1995-08-01
A novel series of retro-binding tripeptide thrombin active-site inhibitors was recently developed (Iwanowicz, E. I. et al. J. Med. Chem. 1994, 37, 2111(1)). It was hypothesized that the binding mode for these inhibitors is similar to that of the first three N-terminal residues of hirudin. This binding hypothesis was subsequently verified when the crystal structure of a member of this series, BMS-183,507 (N-[N-[N-[4-(Aminoiminomethyl)amino[-1-oxobutyl]-L- phenylalanyl]-L-allo-threonyl]-L-phenylalanine, methyl ester), was determined (Taberno, L.J. Mol. Biol. 1995, 246, 14). The methodology for developing the binding models of these inhibitors, the structure-activity relationships (SAR) and modeling studies that led to the elucidation of the proposed binding mode is described. The crystal structure of BMS-183,507/human alpha-thrombin is compared with the crystal structure of hirudin/human alpha-thrombin (Rydel, T.J. et al. Science 1990, 249,227; Rydel, T.J. et al. J. Mol Biol. 1991, 221, 583; Grutter, M.G. et al. EMBO J. 1990, 9, 2361) and with the computational binding model of BMS-183,507.
Pericellular Ca2+ recycling potentiates thrombin-evoked Ca2+ signals in human platelets
Sage, Stewart O; Pugh, Nicholas; Farndale, Richard W; Harper, Alan G S
2013-01-01
We have previously demonstrated that Na+/Ca2+ exchangers (NCXs) potentiate Ca2+ signaling evoked by thapsigargin in human platelets, via their ability to modulate the secretion of autocoids from dense granules. This link was confirmed in platelets stimulated with the physiological agonist, thrombin, and experiments were performed to examine how Ca2+ removal by the NCX modulates platelet dense granule secretion. In cells loaded with the near-membrane indicator FFP-18, thrombin stimulation was observed to elicit an NCX-dependent accumulation of Ca2+ in a pericellular region around the platelets. To test whether this pericellular Ca2+ accumulation might be responsible for the influence of NCXs over platelet function, platelets were exposed to fast Ca2+ chelators or had their glycocalyx removed. Both manipulations of the pericellular Ca2+ rise reduced thrombin-evoked Ca2+ signals and dense granule secretion. Blocking Ca2+-permeable ion channels had a similar effect, suggesting that Ca2+ exported into the pericellular region is able to recycle back into the platelet cytosol. Single cell imaging with extracellular Fluo-4 indicated that thrombin-evoked rises in extracellular [Ca2+] occurred within the boundary described by the cell surface, suggesting their presence within the open canalicular system (OCS). FFP-18 fluorescence was similarly distributed. These data suggest that upon thrombin stimulation, NCX activity creates a rise in [Ca2+] within the pericellular region of the platelet from where it recycles back into the platelet cytosol, acting to both accelerate dense granule secretion and maintain the initial rise in cytosolic [Ca2+]. PMID:24303163
Boeri, D; Almus, F E; Maiello, M; Cagliero, E; Rao, L V; Lorenzi, M
1989-02-01
Because diabetic vascular disease is accompanied by a state of hypercoagulability, manifested by increased thrombin activity and foci of intravascular coagulation, we investigated whether a specific procoagulant property of the endothelium--production and surface expression of tissue factor--is modified by elevated glucose concentrations. In unperturbed human vascular endothelial cells, tissue factor mRNA and expression of the functional protein were undetectable and were not induced by 10-12 days of exposure to 30 mM glucose. In thrombin-stimulated cultures, tissue-factor expression was related inversely to cellular density, with confluent cultures producing (per 10(5) cells) half the amount of tissue factor measured in sparse cultures. Cells exposed to high glucose and studied when cell number and thymidine incorporation were identical to control cells manifested increased tissue-factor mRNA level and functional protein production in response to thrombin (P = .002). This effect was not attributable to hypertonicity and was not observed after short exposure to high glucose. In contrast, the tissue-factor response to interleukin 1, a modulator of endothelial function in the context of host defense, was decreased in cells cultured in high glucose (P = .04). These findings indicate that exposure to high glucose can alter tissue-factor gene expression in perturbed vascular endothelium. The reciprocal effects of high glucose on the tissue-factor response to thrombin and interleukin 1 points to different pathways of tissue-factor stimulation by the two agents and suggests functional consequences pertinent to the increased thrombin activity and compromised host-defense mechanisms observed in diabetes.
Fabrication and physical and biological properties of fibrin gel derived from human plasma.
Zhao, Haiguang; Ma, Lie; Zhou, Jie; Mao, Zhengwei; Gao, Changyou; Shen, Jiacong
2008-03-01
The fast development of tissue engineering and regenerative medicine drives the old biomaterials, for example, fibrin glue, to find new applications in these areas. Aiming at developing a commercially available hydrogel for cell entrapment and delivery, in this study we optimized the fabrication and gelation conditions of fibrin gel. Fibrinogen was isolated from human plasma by a freeze-thaw circle. Gelation of the fibrinogen was accomplished by mixing with thrombin. Absorbance of the fibrinogen/thrombin mixture at 550 nm as a function of reaction time was monitored by UV-VIS spectroscopy. It was found that the clotting time is significantly influenced by the thrombin concentration and the temperature, while less influenced by the fibrinogen concentration. After freeze-drying, the fibrin gel was characterized by scanning electron microscopy (SEM), revealing fibrous microstructure. Thermal gravimetric analysis found that the degradation temperature of the crosslinked fibrin gel starts from 288 degrees C, which is about 30 degrees C higher than that of the fibrinogen. The hydrogel has an initial water-uptake ratio of approximately 50, decreased to 30-40 after incubation in water for 11 h depending on the thrombin concentration. The fibrin gels lost their weights in PBS very rapidly, while slowly in DMEM/fetal bovine serum and DMEM. In vitro cell culture found that human fibroblasts could normally proliferate in the fibrin gel with spreading morphology. In conclusion, the fibrin gel containing higher concentration of fibrinogen (20 mg ml(-1)) and thrombin (5 U ml(-1)) has suitable gelation time and handling properties, and thus is applicable as a delivery vehicle for cells such as fibroblasts.
Fabrication and physical and biological properties of fibrin gel derived from human plasma
NASA Astrophysics Data System (ADS)
Zhao, Haiguang; Ma, Lie; Zhou, Jie; Mao, Zhengwei; Gao, Changyou; Shen, Jiacong
2008-03-01
The fast development of tissue engineering and regenerative medicine drives the old biomaterials, for example, fibrin glue, to find new applications in these areas. Aiming at developing a commercially available hydrogel for cell entrapment and delivery, in this study we optimized the fabrication and gelation conditions of fibrin gel. Fibrinogen was isolated from human plasma by a freeze-thaw circle. Gelation of the fibrinogen was accomplished by mixing with thrombin. Absorbance of the fibrinogen/thrombin mixture at 550 nm as a function of reaction time was monitored by UV-VIS spectroscopy. It was found that the clotting time is significantly influenced by the thrombin concentration and the temperature, while less influenced by the fibrinogen concentration. After freeze-drying, the fibrin gel was characterized by scanning electron microscopy (SEM), revealing fibrous microstructure. Thermal gravimetric analysis found that the degradation temperature of the crosslinked fibrin gel starts from 288 °C, which is about 30 °C higher than that of the fibrinogen. The hydrogel has an initial water-uptake ratio of ~50, decreased to 30-40 after incubation in water for 11 h depending on the thrombin concentration. The fibrin gels lost their weights in PBS very rapidly, while slowly in DMEM/fetal bovine serum and DMEM. In vitro cell culture found that human fibroblasts could normally proliferate in the fibrin gel with spreading morphology. In conclusion, the fibrin gel containing higher concentration of fibrinogen (20 mg ml-1) and thrombin (5 U ml-1) has suitable gelation time and handling properties, and thus is applicable as a delivery vehicle for cells such as fibroblasts.
DELIVERY OF WATER-SOLUBLE DRUGS USING ACOUSTICALLY-TRIGGERED, PERFLUOROCARBON DOUBLE EMULSIONS
Fabiilli, Mario L.; Lee, James A.; Kripfgans, Oliver D.; Carson, Paul L.; Fowlkes, J. Brian
2010-01-01
Purpose Ultrasound can be used to release a therapeutic payload encapsulated within a perfluorocarbon (PFC) emulsion via acoustic droplet vaporization (ADV), a process whereby the PFC phase is vaporized and the agent is released. ADV-generated microbubbles have been previously used to selectively occlude blood vessels in vivo. The coupling of ADV-generated drug delivery and occlusion has therapeutically, synergistic potentials. Methods Micron-sized, water-in-PFC-in-water (W1/PFC/W2) emulsions were prepared in a two-step process using perfluoropentane (PFP) or perfluorohexane (PFH) as the PFC phase. Fluorescein or thrombin was contained in the W1 phase. Results Double emulsions containing fluorescein in the W1 phase displayed a 5.7±1.4 fold and 8.2±1.3 fold increase in fluorescein mass flux, as measured using a Franz diffusion cell, after ADV for the PFP and PFH emulsions, respectively. Thrombin was stably retained in four out of five double emulsions. For three out of five formulations tested, the clotting time of whole blood decreased, in a statistically significant manner (p < 0.01), when incubated with thrombin-loaded emulsions exposed to ultrasound compared to emulsions not exposed to ultrasound. Conclusions ADV can be used to spatially and temporally control the delivery of water-soluble compounds formulated in PFC double emulsions. Thrombin release could extend the duration of ADV-generated, microbubble occlusions. PMID:20872050
Larson, Mark K; Tormoen, Garth W; Weaver, Lucinda J; Luepke, Kristen J; Patel, Ishan A; Hjelmen, Carl E; Ensz, Nicole M; McComas, Leah S; McCarty, Owen J T
2013-02-01
Several studies have implicated the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in inhibition of normal platelet function, suggesting a role for platelets in EPA- and DHA-mediated cardioprotection. However, it is unclear whether the cardioprotective mechanisms arise from alterations to platelet-platelet, platelet-matrix, or platelet-coagulation factor interactions. Our previous results led us to hypothesize that EPA and DHA alter the ability of platelets to catalyze the generation of thrombin. We tested this hypothesis by exogenously modifying platelet membranes with EPA and DHA, which resulted in compositional changes analogous to increased dietary EPA and DHA intake. Platelets treated with EPA and DHA showed reductions in the rate of thrombin generation and exposure of platelet phosphatidylserine. In addition, treatment of platelets with EPA and DHA decreased thrombus formation and altered the processing of thrombin precursor proteins. Furthermore, treatment of whole blood with EPA and DHA resulted in increased occlusion time and a sharply reduced accumulation of fibrin under flow conditions. These results demonstrate that EPA and DHA inhibit, but do not eliminate, the ability of platelets to catalyze thrombin generation in vitro. The ability of EPA and DHA to reduce the procoagulant function of platelets provides a possible mechanism behind the cardioprotective phenotype in individuals consuming high levels of EPA and DHA.
Newburg, David S; Tanritanir, Ayse C; Chakrabarti, Subrata
2016-07-01
Human milk strongly quenches inflammatory processes in vitro, and breastfed infants have lower incidence of inflammatory diseases than those fed artificially. Platelets from neonates, in contrast to those from adults, are less responsive to platelet agonists such as collagen, thrombin, ADP, and epinephrine. Breastfed infants absorb oligosaccharides intact from the human milk in their gut to the circulation. This study was to determine whether these oligosaccharides can attenuate platelet function and platelet secretion of pro-inflammatory proteins, and to identify the active component. The natural mixture of oligosaccharides from human milk and pure individual human milk oligosaccharides were tested for their ability to modulate responses of platelets isolated from human blood following exposure to thrombin, ADP, and collagen. Human milk and the natural mixture of human milk oligosaccharides inhibited platelet release of inflammatory proteins. Of the purified human milk oligosaccharides tested, only lactodifucotetraose (LDFT) significantly inhibited thrombin induced release of the pro-inflammatory proteins RANTES and sCD40L. LDFT also inhibited platelet adhesion to a collagen-coated surface, as well as platelet aggregation induced by ADP or collagen. These data indicate that LDFT may help modulate hemostasis by suppressing platelet-induced inflammatory processes in breastfed infants. This activity suggests further study of LDFT for its potential as a therapeutic agent in infants and adults.
Schatz, Frederick; Guzeloglu-Kayisli, Ozlem; Arlier, Sefa; Kayisli, Umit A; Lockwood, Charles J
2016-06-01
Human pregnancy requires robust hemostasis to prevent hemorrhage during extravillous trophoblast (EVT) invasion of the decidualized endometrium, modification of spiral arteries and post-partum processes. However, decidual hemorrhage (abruption) can occur throughout pregnancy from poorly transformed spiral arteries, causing fetal death or spontaneous preterm birth (PTB), or it can promote the aberrant placentation observed in intrauterine growth restriction (IUGR) and pre-eclampsia; all leading causes of perinatal or maternal morbidity and mortality. In non-fertile cycles, the decidua undergoes controlled menstrual bleeding. Abnormal uterine bleeding (AUB) accompanying progestin-only, long-acting, reversible contraception (pLARC) accounts for most discontinuations of these safe and highly effective agents, thereby contributing to unwanted pregnancies and abortion. The aim of this study was to investigate the role of decidual cells in uterine hemostasis, menstruation, inflammation, adverse pregnancy outcomes and abnormal uterine bleeding. We conducted a critical review of the literature arising from PubMed searches up to December 2015, regarding in situ and in vitro expression and regulation of several specific proteins involved in uterine hemostasis in decidua and cycling endometrium. In addition, we discussed clinical and molecular mechanisms associated with pLARC-induced AUB and pregnancy complications with abruptions, chorioamnionitis or pre-eclampsia. Progestin-induced decidualization of estradiol-primed human endometrial stromal cells (HESCs) increases in vivo and in vitro expression of tissue factor (TF) and type-1 plasminogen activator inhibitor (PAI-1) while inhibiting plasminogen activators (PAs), matrix metalloproteinases (MMPs), and the vasoconstrictor, endothelin-1 (ET-1). These changes in decidual cell-derived regulators of hemostasis, fibrinolysis, extracellular matrix (ECM) turnover, and vascular tone prevent hemorrhage during EVT invasion and vascular remodeling. In non-fertile cycles, progesterone withdrawal reduces TF and PAI-1 while increasing PA, MMPs and ET-1, causing menstrual-associated bleeding, fibrinolysis, ECM degradation and ischemia. First trimester decidual hemorrhage elicits later adverse outcomes including pregnancy loss, pre-eclampsia, abruption, IUGR and PTB. Decidual hemorrhage generates excess thrombin that binds to decidual cell-expressed protease-activated receptors (PARs) to induce chemokines promoting shallow placentation; such bleeding later in pregnancy generates thrombin to down-regulate decidual cell progesterone receptors and up-regulate cytokines and MMPs linked to PTB. Endometria of pLARC users display ischemia-induced excess vasculogenesis and progestin inhibition of spiral artery vascular smooth muscle cell proliferation and migration leading to dilated fragile vessels prone to bleeding. Moreover, aberrant TF-derived thrombin signaling also contributes to the pathogenesis of endometriosis via induction of angiogenesis, inflammation and cell survival. Perivascular decidualized HESCs promote endometrial hemostasis during placentation yet facilitate menstruation through progestational regulation of hemostatic, proteolytic, and vasoactive proteins. Pathological endometrial hemorrhage elicits excess local thrombin generation, which contributes to pLARC associated AUB, endometriosis and adverse pregnancy outcomes through several biochemical mechanisms. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Nabiullina, R M; Mustafin, I G; Ataullakhanov, F I; Litvinov, R I; Zubairova, L D
2015-07-01
The effects of blood microparticles (MPs) on the dynamics of fibrin polymerization, clot structure and susceptibility to fibrinolysis were studied. Kinetics of fibrin polymerization, fibrinolysis, thrombin generation in platelet-free, microparticle-depleted and microparticle-depleted plasma replenished with cephalin, from healthy donors were analyzed in parallel. MPs have profound effects on all stages of fibrin formation, decrease its turbidity. All parameters obtained in the absence of MPs were recovered after reconstitution of phospholipids. Thrombin generation rates were reduced in the absence of MPs. In the presence of MPs the fibrin networks had less poro us structures with thinner fibers, while clots formed in the absence of MPs had larger pores and were built of thicker fibers. Clots formed in the presence of MPs were significantly more resistant to fibrinolysis. Results show that normally circulating MPs can support the formation of stable clots at the sites of vascular injury.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oberdisse, E.; Lapetina, E.G.
1987-05-14
Guanosine 5'-O-thiotriphosphate (GTP gamma S) and thrombin stimulate the activity of phospholipase C in platelets that have been permeabilized with saponin and whose inositol phospholipids have been prelabeled with (/sup 3/H)inositol. Ca/sup 2 +/ has opposite effects on the formation of (/sup 3/H)inositol phosphates induced by thrombin or GTP gamma S. While the action of GTP gamma S on the formation of (/sup 3/H)inositol phosphates is inhibited by Ca/sup 2 +/, action of thrombin is stimulated by Ca/sup 2 +/. Guanosine 5'-O-(2-thiodiphosphate) (GDP beta S), which inhibits the function of GTP-binding proteins, also inhibits the effect of GTP gamma Smore » on phospholipase C stimulation but, surprisingly, increases the effect of thrombin. Ca/sup 2 +/ increases the inhibitory effect of GDP beta S on GTP gamma S activation of phospholipase C, but Ca/sup 2 +/ further enhances the stimulatory effect of GDP beta S on the thrombin activation of phospholipase C. This indicates that two mechanisms are responsible for the activation of phospholipase C in platelets. A GTP-binding protein is responsible for regulation of phospholipase C induced by GTP gamma S, while the effect of thrombin on the stimulation of phospholipase C is independent of GTP-binding proteins. However, the effect of thrombin may be modulated by the action of an inhibitory GTP-binding protein.« less
Effects of In Vitro Hemodilution, Hypothermia and rFVIIa Addition on Coagulation in Human Blood
2012-03-30
primary fluids used by many trauma units and the US Army for pre-hospital resuscitation [17]. HX, a hetastarch-based product in a balanced electro...and has been associated with dilution of coagulation factors and hypothermia. Recombinant activated Factor VII (rFVIIa) has been used, often as a...of rFVIIa results in an enhancement of thrombin generation on the platelet surface at the site of injury independent of the presence of Factor VIII
Reynolds, Matthew W; Clark, John; Crean, Sheila; Samudrala, Srinath
2008-01-01
Background One of the most anticipated, but potentially serious complications during or after surgery are bleeding events. Among the many potential factors associated with bleeding complications in surgery, the use of bovine thrombin has been anecdotally identified as a possible cause of increased bleeding risk. Most of these reports of bleeding events in association with the use of topical bovine thrombin have been limited to case reports lacking clear cause and effect relationship determination. Recent studies have failed to establish significant differences in the rates of bleeding events between those treated with bovine thrombin and those treated with either human or recombinant thrombin. Methods We conducted a search of MEDLINE for the most recent past 10 years (1997–2007) and identified all published studies that reported a study of surgical patients with a clear objective to examine the risk of bleeding events in surgical patients. We also specifically noted the reporting of any topical bovine thrombin used during surgical procedures. We aimed to examine whether there were any differences in the risk of bleeds in general surgical populations as compared to those studies that reported exposure to topical bovine thrombin. Results We identified 21 clinical studies that addressed the risk of bleeding in surgery. Of these, 5 studies analyzed the use of bovine thrombin sealants in surgical patients. There were no standardized definitions for bleeding events employed across these studies. The rates of bleeds in the general surgery studies ranged from 0.1%–20.2%, with most studies reporting rates between 2.6%–4%. The rates of bleeding events ranged from 0.0%–13% in the bovine thrombin studies with most studies reporting between a 2%–3% rate. Conclusion The risk of bleeds was not clearly different in those studies reporting use of bovine thrombin in all patients compared to the other surgical populations studied. A well-designed and well-controlled study is needed to accurately examine the bleeding risks in surgical patients treated and unexposed to topical bovine thrombin, and to evaluate the independent risk associated with topical bovine thrombin as well as other risk factors. PMID:18348725
Correlation to FVIII:C in Two Thrombin Generation Tests: TGA-CAT and INNOVANCE ETP.
Ljungkvist, Marcus; Berndtsson, Maria; Holmström, Margareta; Mikovic, Danijela; Elezovic, Ivo; Antovic, Jovan P; Zetterberg, Eva; Berntorp, Erik
2017-01-01
Several thrombin-generation tests are available, but few have been directly compared. Our primary aim was to investigate the correlation of two thrombin generation tests, thrombin generation assay-calibrated automated thrombogram (TGA-CAT) and INNOVANCE ETP, to factor VIII levels (FVIII:C) in a group of patients with hemophilia A. The secondary aim was to investigate inter-laboratory variation for the TGA-CAT method. Blood samples were taken from 45 patients with mild, moderate and severe hemophilia A. The TGA-CAT method was performed at both centers while the INNOVANCE ETP was only performed at the Stockholm center. Correlation between parameters was evaluated using Spearman's rank correlation test. For determination of the TGA-CAT inter-laboratory variability, Bland-Altman plots were used. The correlation for the INNOVANCE ETP and TGA-CAT methods with FVIII:C in persons with hemophilia (PWH) was r=0.701 and r=0.734 respectively.The correlation between the two methods was r=0.546.When dividing the study material into disease severity groups (mild, moderate and severe) based on FVIII levels, both methods fail to discriminate between them.The variability of the TGA-CAT results performed at the two centers was reduced after normalization; before normalization, 29% of values showed less than ±10% difference while after normalization the number increased to 41%. Both methods correlate in an equal manner to FVIII:C in PWH but show a poor correlation with each other. The level of agreement for the TGA-CAT method was poor though slightly improved after normalization of data. Further improvement of standardization of these methods is warranted.
Coagulation phenotypes in septic shock as evaluated by calibrated automated thrombography.
Perrin, Julien; Charron, Cyril; François, Jean-Hugues; Cramer-Bordé, Elisabeth; Lévy, Bruno; Borgel, Delphine; Vieillard-Baron, Antoine
2015-01-01
Sepsis induces alterations of coagulation suggesting both hypercoagulable or hypocoagulable features. The result of their combination remains unknown, making it difficult to predict whether one prevails over the other. Thrombin generation tests (TGTs) stand as an interesting tool to establish an integrative phenotype of coagulation. It has been reported that septic patients display a hypocoagulable trait using TGT. However, protein C (PC) system response was not evaluated. We aimed at describing the thrombin generation profile in patients with septic shock under conditions that are sensitive to PC system to evaluate the net results of coagulation abnormalities and to determine whether hypercoagulable or hypocoagulable traits coexist within a given individual. Thrombin generation was studied in plasma from patients presenting with septic shock at diagnosis and 6 h after a conventional therapeutic management using calibrated automated thrombography with or without thrombomodulin (TM) addition. Patients exhibit clear alterations of TGT that present as both consumption-related hypocoagulability (evidenced without TM addition) but also hypercoagulability by decreased sensitivity to the PC system evidenced with TM addition. No difference could be demonstrated between survivors and nonsurvivors at Day 28, but patients who do not respond to therapeutics at 6 h seem to be more hypercoagulable. More importantly, if our results evidence heterogeneity between patients, we show that alterations of coagulation result in an equilibrium in the majority of patients, thus suggesting "normocoagulability"; but, in the presence of a biological imbalance between baseline thrombin generation and sensitivity to TM, the global effect mostly tends toward hypercoagulability. Thus, TGT may help identify distinct biological coagulation phenotypes in the complex alterations induced by sepsis.
Dallaku, Kastriot; Shakur, Haleema; Edwards, Phil; Beaumont, Danielle; Roberts, Ian; Huque, Sumaya; Delius, Maria; Mansmann, Ulrich
2017-01-01
Background. Postpartum haemorrhage (PPH) is a potentially life-threatening complication for women, and the leading cause of maternal mortality. Tranexamic acid (TXA) is an antifibrinolytic used worldwide to treat uterine haemorrhage and to reduce blood loss in general surgery. TXA may have effects on thrombin generation, platelet function and coagulation factors as a result of its inhibition on the plasmin. Methods. WOMAN ETAPlaT is a sub-study of the World Maternal Antifibrinolitic trial (WOMAN trial). All adult women clinically diagnosed with PPH after a vaginal delivery or caesarean section, are eligible for inclusion in the study. Blood samples will be collected at the baseline and 30 minutes after the first dose of study treatment is given. Platelet function will be evaluated in whole blood immediately after sampling with Multiplate® tests (ADPtest and TRAPtest). Thrombin generation, fibrinogen, D-dimer, and coagulation factors vW, V and VIII will be analysed using platelet poor plasma. Results. Recruitment to WOMAN ETAPlaT started on 04 November 2013 and closed on 13 January 2015, during this time 188 patients were recruited. The final participant follow-up was completed on 04 March 2015. This article introduces the statistical analysis plan for the study, without reference to unblinded data. Conclusion. The data from this study will provide evidence for the effect of TXA on thrombin generation, platelet function and coagulation factors in women with PPH. Trial registration: ClinicalTrials.gov Identifier: NCT00872469; ISRCTN76912190 PMID:28413832
Ohlmann, Philippe; Hechler, Béatrice; Chafey, Philippe; Ravanat, Catherine; Isola, Hervé; Wiesel, Marie-Louise; Cazenave, Jean-Pierre; Gachet, Christian
2016-09-01
The INTERCEPT Blood System (IBS) using amotosalen-HCl and ultraviolet (UV)A inactivates a large spectrum of microbial pathogens and white blood cells in therapeutic plasma. Our aim was to evaluate to what extent IBS modifies the capacity of plasma to generate thrombin and induces qualitative or quantitative modifications of plasma proteins. Plasma units from four donors were collected by apheresis. Samples were taken before (control [CTRL]) and after IBS treatment and stored at -80°C until use. The activities of plasma coagulation factors and inhibitors and the thrombin generation potential were determined using assays measuring clotting times and the calibrated automated thrombogram (CAT), respectively. The proteomic profile of plasma proteins was examined using a two-dimensional differential in-gel electrophoresis (2D-DIGE) method. Nearly all of the procoagulant and antithrombotic factors tested retained at least 78% of their initial pre-IBS activity. Only FVII and FVIII displayed a lower level of conservation (67%), which nevertheless remained within the reference range for conventional plasma coagulation factors. The thrombin generation profile of plasma was conserved after IBS treatment. Among the 1331 protein spots revealed by 2D-DIGE analysis, only four were differentially expressed in IBS plasma compared to CTRL plasma and two were identified by mass spectrometric analysis as transthyretin and apolipoprotein A1. The IBS technique for plasma moderately decreases the activities of plasma coagulation factors and antithrombotic proteins, with no impact on the thrombin generation potential of plasma and very limited modifications of the proteomic profile. © 2016 AABB.
Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads.
Centi, Sonia; Tombelli, Sara; Minunni, Maria; Mascini, Marco
2007-02-15
The DNA thrombin aptamer has been extensively investigated, and the coupling of this aptamer to different transduction principles has demonstrated the wide applicability of aptamers as bioreceptors in bioanalytical assays. The goal of this work was to design an aptamer-based sandwich assay with electrochemical detection for thrombin analysis in complex matrixes, using a simple target capturing step by aptamer-functionalized magnetic beads. The conditions for the aptamer immobilization and for the protein binding have been first optimized by surface plasmon resonance, and then transferred to the electrochemical-based assay performed onto screen-printed electrodes. The assay was then applied to the analysis of thrombin in buffer, spiked serum, and plasma and high sensitivity and specificity were found. Moreover, thrombin was generated in situ in plasma by the conversion of its precursor prothrombin, and the formation of thrombin was followed at different times. The concentrations detected by the electrochemical assay were in agreement with a simulation software that mimics the formation of thrombin over time (thrombogram). The proposed work demonstrates that the high specificity of aptamers together with the use of magnetic beads are the key features for aptamer-based analysis in complex matrixes, opening the possibility of a real application to diagnostics or medical investigation.
Rodrigues, Silvia V; Acharya, Anirudh B; Thakur, Srinath L
2011-01-01
The efficacy of platelet-rich plasma (PRP) in periodontal regeneration is not well understood and the definite clinical viability of blood derived platelets lacks clarity. Also, the use of thrombin for platelet activation is disputed. Hence, the purpose of this study was to evaluate the efficacy of blood derived platelets without thrombin activation, alone or in combination with bovine anorganic bone mineral (ABM), in the treatment of human periodontal intrabony defects. PRP was prepared using a simple tabletop centrifuge and activated using calcium chloride without the addition of thrombin. This PRP was used alone (in Group A) and in combination with bovine ABM (in Group B) in the treatment of human periodontal angular defects. Both the control and the test groups showed definite improvement in clinical parameters. On comparison, however, there was a statistically significant improvement in the probing pocket depths and relative attachment level in Group B over Group A at 3 and 6 months intervals, whereas at the end of 9 months this difference was not statistically significant. There was no statistically significant difference between the groups with respect to the relative defect depth. Within the limitations of this study and the type of PRP used, i.e. without thrombin mediated activation, it can be concluded that both PRP and PRP combined with bovine ABM results in significant clinical improvement. Albeit statistically insignificant, there is a preponderance of better clinical results with the addition of ABM to PRP. Further studies need to be carried out on a larger sample size to confirm the results of the present study.
Shaw, Maureen A.; Kombrinck, Keith W.; McElhinney, Kathryn E.; Sweet, David R.; Flick, Matthew J.; Palumbo, Joseph S.; Cheng, Mei; Esmon, Naomi L.; Esmon, Charles T.; Brill, Alexander; Wagner, Denisa D.; Degen, Jay L.
2016-01-01
Thrombin-mediated proteolysis is central to hemostatic function but also plays a prominent role in multiple disease processes. The proteolytic conversion of fII to α-thrombin (fIIa) by the prothrombinase complex occurs through 2 parallel pathways: (1) the inactive intermediate, prethrombin; or (2) the proteolytically active intermediate, meizothrombin (fIIaMZ). FIIaMZ has distinct catalytic properties relative to fIIa, including diminished fibrinogen cleavage and increased protein C activation. Thus, fII activation may differentially influence hemostasis and disease depending on the pathway of activation. To determine the in vivo physiologic and pathologic consequences of restricting thrombin generation to fIIaMZ, mutations were introduced into the endogenous fII gene, resulting in expression of prothrombin carrying 3 amino acid substitutions (R157A, R268A, and K281A) to limit activation events to yield only fIIaMZ. Homozygous fIIMZ mice are viable, express fII levels comparable with fIIWT mice, and have reproductive success. Although in vitro studies revealed delayed generation of fIIaMZ enzyme activity, platelet aggregation by fIIMZ is similar to fIIWT. Consistent with prior analyses of human fIIaMZ, significant prolongation of clotting times was observed for fIIMZ plasma. Adult fIIMZ animals displayed significantly compromised hemostasis in tail bleeding assays, but did not demonstrate overt bleeding. More notably, fIIMZ mice had 2 significant phenotypic advantages over fIIWT animals: protection from occlusive thrombosis after arterial injury and markedly diminished metastatic potential in a setting of experimental tumor metastasis to the lung. Thus, these novel animals will provide a valuable tool to assess the role of both fIIa and fIIaMZ in vivo. PMID:27252233
Moore, S F; Hunter, R W; Hers, I
2014-05-01
Rapamycin, an inhibitor of mammalian target of rapamycin complex-1 (mTORC1), reduces platelet spreading, thrombus stability, and clot retraction. Despite an important role of mTORC1 in platelet function, little is known about how it is regulated. The objective of this study was to determine the signaling pathways that regulate mTORC1 in human platelets. Mammalian target of rapamycin complex-1 activation was assessed by measuring the phosphorylation of its downstream substrate ribosomal S6 kinase 1 (p70S6K). Thrombin or the protein kinase C (PKC) activator phorbal 12-myristate 13-acetate stimulated activation of mTORC1 in a PKC-dependent, Akt-independent manner that correlated with phosphorylation of tuberin/tuberous sclerosis 2 (TSC2) (Ser939 and Thr1462). In contrast, insulin-like growth factor 1 (IGF-1)-stimulated TSC2 phosphorylation was completely dependent on phosphoinositide 3 kinase (PI3 kinase)/Akt but did not result in any detectable mTORC1 activation. Early (Ser939 and Thr1462) and late (Thr1462) TSC2 phosphorylation in response to thrombin were directly PKC dependent, whereas later TSC2 (Ser939) and p70S6K phosphorylation were largely dependent on paracrine signaling through P2Y(12). PKC-mediated adenosine diphosphate (ADP) secretion was essential for thrombin-stimulated mTORC1 activation, as (i) ADP rescued p70S6K phosphorylation in the presence of a PKC inhibitor and (ii) P2Y(12) antagonism prevented thrombin-mediated mTORC1 activation. Rescue of mTORC1 activation with exogenous ADP was completely dependent on the Src family kinases but independent of PI3 kinase/Akt. Interestingly, although inhibition of Src blocked the ADP rescue, it had little effect on thrombin-stimulated p70S6K phosphorylation under conditions where PKC was not inhibited. These results demonstrate that thrombin activates the mTORC1 pathway in human platelets through PKC-mediated ADP secretion and subsequent activation of P2Y(12), in a manner largely independent of the canonical PI3 kinase/Akt pathway. © 2014 The Authors. Journal of Thrombosis and Haemostasis published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis.
Moore, S F; Hunter, R W; Hers, I
2014-01-01
Background Rapamycin, an inhibitor of mammalian target of rapamycin complex-1 (mTORC1), reduces platelet spreading, thrombus stability, and clot retraction. Despite an important role of mTORC1 in platelet function, little is known about how it is regulated. The objective of this study was to determine the signaling pathways that regulate mTORC1 in human platelets. Methods Mammalian target of rapamycin complex-1 activation was assessed by measuring the phosphorylation of its downstream substrate ribosomal S6 kinase 1 (p70S6K). Results Thrombin or the protein kinase C (PKC) activator phorbal 12-myristate 13-acetate stimulated activation of mTORC1 in a PKC-dependent, Akt-independent manner that correlated with phosphorylation of tuberin/tuberous sclerosis 2 (TSC2) (Ser939 and Thr1462). In contrast, insulin-like growth factor 1 (IGF-1)–stimulated TSC2 phosphorylation was completely dependent on phosphoinositide 3 kinase (PI3 kinase)/Akt but did not result in any detectable mTORC1 activation. Early (Ser939 and Thr1462) and late (Thr1462) TSC2 phosphorylation in response to thrombin were directly PKC dependent, whereas later TSC2 (Ser939) and p70S6K phosphorylation were largely dependent on paracrine signaling through P2Y12. PKC-mediated adenosine diphosphate (ADP) secretion was essential for thrombin-stimulated mTORC1 activation, as (i) ADP rescued p70S6K phosphorylation in the presence of a PKC inhibitor and (ii) P2Y12 antagonism prevented thrombin-mediated mTORC1 activation. Rescue of mTORC1 activation with exogenous ADP was completely dependent on the Src family kinases but independent of PI3 kinase/Akt. Interestingly, although inhibition of Src blocked the ADP rescue, it had little effect on thrombin-stimulated p70S6K phosphorylation under conditions where PKC was not inhibited. Conclusion These results demonstrate that thrombin activates the mTORC1 pathway in human platelets through PKC-mediated ADP secretion and subsequent activation of P2Y12, in a manner largely independent of the canonical PI3 kinase/Akt pathway. PMID:24612393
Matonick, John P; Hammond, Jeffrey
2014-12-01
First-generation single-component hemostats such as oxidized regenerated cellulose (ORC), fibrin, collagen, and gelatin have evolved into second and third generations of combination hemostats. This study compares two FDA approved products, EVARREST™, Fibrin Sealant Patch, a hemostat comprised of a matrix of nonwoven polyglactin 910 embedded in ORC coated with human fibrinogen and thrombin to TachoSil® medicated sponge, an equine collagen pad coated with human fibrinogen and thrombin. Swine were anticoagulated with heparin to 3X their baseline activated clotting time and a 15 mm long × 3 mm deep incision was made to create a consistent moderate bleeding pattern. Test material was then applied to the wound site and compressed manually for 3 min with just enough pressure to prevent continued bleeding. Hemostatic effectiveness was evaluated at 3 min and 10 min. At 3 min, the hemostasis success rate was 86% in the EVARREST™ group and 0% in the TachoSil® group, p < .0001. The overall success rate at 10 min was 100% with EVARREST™ and 4% with TachoSil®, p < .0001. Adhesive failure, in which the test material did not stick to the tissue, occurred in 96% of TachoSil® sites. In contrast, 100% of the EVARREST™ applications adhered to the test site. EVARREST™, Fibrin Sealant Patch demonstrated greater wound adhesion and more effective hemostasis than TachoSil®. Adhesive failure was the primary failure mode for TachoSil® in this model.
El-Battrawy, Ibrahim; Tülümen, Erol; Lang, Siegfried; Akin, Ibrahim; Behnes, Michael; Zhou, Xiabo; Mavany, Martin; Bugert, Peter; Bieback, Karen; Borggrefe, Martin; Elmas, Elif
2016-01-01
Cell-surface adhesion molecules regulate multiple intercellular and intracellular processes and play important roles in inflammation by facilitating leukocyte endothelial transmigration. Whether cardiomyocytes express surface-adhesion molecules related to inflammation and the effect of pro-inflammatory mediators remain unknown. In the present study, the expression of different cell-adhesion molecules (CD11a, CD11b, CD31, CD62P, CD162, F11 receptor and mucosal vascular addressin cell adhesion molecule 1 (MADCAM1)) and the effect of pro-inflammatory mediators were investigated in an in vitro model of human cardiomyocytes. Cells were supplied as a primary culture of cardiac alpha actin-positive cells from human heart tissue. The cells were incubated for 24 h with 1 U/ml thrombin or 700 ng/ml lipopolysaccharide (LPS) or with a combination of both. The expression of the cell adhesion molecules was measured by flow cytometry. In cultured human cardiomyocytes, 22.8% of cells expressed CD31, 7.1% MADCAM1 and 2.6% F11R. CD11a, CD11b, CD62P and CD162 were expressed by fewer than 2% of the cells at baseline. CD31 expression increased on incubation of cardiomyocytes with thrombin by 26% (p<0.05) and with LPS by 26% (p=0.06). The combination of thrombin and LPS did not result in increased levels of CD31 (p>0.10). The pro-inflammatory agents LPS and thrombin had no effect on the expression of MADCAM1 and F11R. Inflammation-related cell-adhesion molecules CD31, MADCAM1 and F11R were shown to be expressed on the surface of human cardiomyocytes in an in vitro model. Incubation with LPS or thrombin resulted in increased expression of CD31, however, it did not modify the expression of the cell adhesion molecules MADCAM1 and F11R. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Structure-activity studies and therapeutic potential of host defense peptides of human thrombin.
Kasetty, Gopinath; Papareddy, Praveen; Kalle, Martina; Rydengård, Victoria; Mörgelin, Matthias; Albiger, Barbara; Malmsten, Martin; Schmidtchen, Artur
2011-06-01
Peptides of the C-terminal region of human thrombin are released upon proteolysis and identified in human wounds. In this study, we wanted to investigate minimal determinants, as well as structural features, governing the antimicrobial and immunomodulating activity of this peptide region. Sequential amino acid deletions of the peptide GKYGFYTHVFRLKKWIQKVIDQFGE (GKY25), as well as substitutions at strategic and structurally relevant positions, were followed by analyses of antimicrobial activity against the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, the Gram-positive bacterium Staphylococcus aureus, and the fungus Candida albicans. Furthermore, peptide effects on lipopolysaccharide (LPS)-, lipoteichoic acid-, or zymosan-induced macrophage activation were studied. The thrombin-derived peptides displayed length- and sequence-dependent antimicrobial as well as immunomodulating effects. A peptide length of at least 20 amino acids was required for effective anti-inflammatory effects in macrophage models, as well as optimal antimicrobial activity as judged by MIC assays. However, shorter (>12 amino acids) variants also displayed significant antimicrobial effects. A central K14 residue was important for optimal antimicrobial activity. Finally, one peptide variant, GKYGFYTHVFRLKKWIQKVI (GKY20) exhibiting improved selectivity, i.e., low toxicity and a preserved antimicrobial as well as anti-inflammatory effect, showed efficiency in mouse models of LPS shock and P. aeruginosa sepsis. The work defines structure-activity relationships of C-terminal host defense peptides of thrombin and delineates a strategy for selecting peptide epitopes of therapeutic interest.
The effect of hirudin modification of silk fibroin on cell growth and antithrombogenicity.
Wang, Qiongyu; Tu, Fangfang; Liu, Yunfei; Zhang, Yujin; Li, Helei; Kang, Zhao; Yin, Yin; Wang, Jiannan
2017-06-01
Thrombus formation remains a particular challenge for small-diameter vascular grafts. In this study, the direct thrombin inhibitor hirudin (Hir) was used to modify silk fibroin films in an attempt to enhance its antithrombogenic properties. Hir was successfully attached to silk fibroin and uniformly distributed in the regenerative material. Hir-modified films showed good cytocompatibility, and supported adhesion and proliferation of fibroblasts (L929), human umbilical vascular endothelial cells (HUVECs) and human aortic smooth muscle cells (HASMCs). Proliferation of HAVSMCs was inhibited by increasing Hir concentration. Activated partial thrombin time (APTT), prothrombin time (PT) and thrombin time (TT) of Hir-modified silk fibroin tubular scaffolds (SFTSs) were all increased markedly compared with fresh rabbit blood, ethanol-treated SFTS and unmodified SFTS, demonstrating the improved antithrombogenicity of SFTSs following modification with Hir. Copyright © 2017 Elsevier B.V. All rights reserved.
Vargas, M; Segura, Á; Wu, Y-W; Herrera, M; Chou, M-L; Villalta, M; León, G; Burnouf, T
2015-02-01
Instituto Clodomiro Picado has developed an immunoglobulin G (IgG) plasma fractionation process combining a polyethylene glycol/phosphate aqueous two-phase system (ATPS), caprylic acid precipitation and anion-exchange membrane chromatography. We evaluated the purity and in vitro thrombogenicity of such IgG, in line with current international requirements. Contributions of the different production steps to reduce thrombogenicity were assessed at 0·2 l-scale, and then the methodology was scaled-up to a 10 l-scale and final products (n = 3) were analysed. Purity, immunoglobulin composition, and subclass distribution were determined by electrophoretic and immunochemical methods. The in vitro thrombogenic potential was determined by a thrombin generation assay (TGA) using a Technothrombin fluorogenic substrate. Prekallikrein activator (PKA), plasmin, factor Xa, thrombin and thrombin-like activities were assessed using S-2302, S-2251, S-2222, S-2238 and S-2288 chromogenic substrates, respectively, and FXI by an ELISA. The thrombogenicity markers were reduced mostly during the ATPS step and were found to segregate mostly into the discarded liquid upper phase. The caprylic acid precipitation eliminated the residual procoagulant activity. The IgG preparations made from the 10 l-batches contained 100% gamma proteins, low residual IgA and undetectable IgM. The IgG subclass distribution was not substantially affected by the process. TGA and amidolytic activities revealed an undetectable in vitro thrombogenic risk and the absence of proteolytic enzymes in the final product. Fractionating human plasma by an ATPS combined with caprylic acid and membrane chromatography resulted in an IgG preparation of high purity and free of a detectable in vitro thrombogenic risk. © 2014 International Society of Blood Transfusion.
U.S. Army Medical Department Journal, July-September 2004
2004-09-01
on the surface of intestinal, lung, and brain cells. The TF protein then converts FVII into an activated form. Activated factor VII then combines...and FIX, which limits generation of thrombin. Platelets are able to increase production of thrombin when increased FVIIa is present. Normally FVII ...hemorrhage in severe neonatal FVII deficiency. Hemophilia. 2000; 6: 50-54. 12. Gilchrist J. Use of recombinant factor VIIa to treat a severe
Olson, Emilia S.; Whitney, Michael A.; Friedman, Beth; Aguilera, Todd A.; Crisp, Jessica L.; Baik, Fred M.; Jiang, Tao; Baird, Stephen M.; Tsimikas, Sotirios; Tsien, Roger Y.
2012-01-01
Thrombin and other coagulation enzymes have been shown to be important during atherosclerotic disease development. Study of these proteases is currently limited because of lack of robust molecular imaging agents for imaging protease activity in vivo. Activatable cell penetrating peptides (ACPPs) have been used to monitor MMP activity in tumors and, in principle, can be modified to detect other proteases. We have developed a probe that incorporates the peptide sequence DPRSFL from the proteinase activated receptor 1 (PAR-1) into an ACPP and shown that it is preferentially cleaved by purified thrombin. Active thrombin in serum cleaves DPRSFL–ACPP with >90% inhibition by lepirudin or argatroban. The DPRSFL–ACPP cleavage product accumulated in advanced atherosclerotic lesions in living mice, with 85% reduction in retention upon pre-injection of mice with hirudin. Uptake of the ACPP cleavage product was highest in plaques with histological features associated with more severe disease. Freshly resected human atheromas bathed in DPRSFL–ACPP retained 63% greater cleavage product compared to control ACPP. In conclusion, DPRSFL–ACPP can be used to study thrombin activity in coagulation and atherosclerosis with good spatial and temporal resolution. Thrombin-sensitive ACPPs may be developed into probes for early detection and intraoperative imaging of high risk atherosclerotic plaques. PMID:22534729
Olson, Emilia S; Whitney, Michael A; Friedman, Beth; Aguilera, Todd A; Crisp, Jessica L; Baik, Fred M; Jiang, Tao; Baird, Stephen M; Tsimikas, Sotirios; Tsien, Roger Y; Nguyen, Quyen T
2012-06-01
Thrombin and other coagulation enzymes have been shown to be important during atherosclerotic disease development. Study of these proteases is currently limited because of lack of robust molecular imaging agents for imaging protease activity in vivo. Activatable cell penetrating peptides (ACPPs) have been used to monitor MMP activity in tumors and, in principle, can be modified to detect other proteases. We have developed a probe that incorporates the peptide sequence DPRSFL from the proteinase activated receptor 1 (PAR-1) into an ACPP and shown that it is preferentially cleaved by purified thrombin. Active thrombin in serum cleaves DPRSFL-ACPP with >90% inhibition by lepirudin or argatroban. The DPRSFL-ACPP cleavage product accumulated in advanced atherosclerotic lesions in living mice, with 85% reduction in retention upon pre-injection of mice with hirudin. Uptake of the ACPP cleavage product was highest in plaques with histological features associated with more severe disease. Freshly resected human atheromas bathed in DPRSFL-ACPP retained 63% greater cleavage product compared to control ACPP. In conclusion, DPRSFL-ACPP can be used to study thrombin activity in coagulation and atherosclerosis with good spatial and temporal resolution. Thrombin-sensitive ACPPs may be developed into probes for early detection and intraoperative imaging of high risk atherosclerotic plaques.
van Doorn, Peter; Rosing, Jan; Duckers, Connie; Hackeng, Tilman M; Simioni, Paolo; Castoldi, Elisabetta
2018-06-04
Activated factor V (FVa) is a potent procoagulant cofactor in the prothrombinase complex, whereas its precursor factor V (FV) stimulates the inhibition of factor Xa (FXa) by tissue factor pathway inhibitor-α (TFPIα), presumably by promoting TFPIα binding to phospholipids. Plasma FV comprises two glycosylation isoforms (FV1 and FV2) with low and high phospholipid-binding affinity, respectively. The FV1/FV2 ratio is increased in carriers of the FV R2 haplotype. This article demonstrates the TFPIα-cofactor function of FV in plasma and compares FV1 and FV2. Thrombin generation at low TF concentration was measured in FV-depleted plasma reconstituted with 0 to 100% FV, FV1 or FV2, and in 122 individuals genotyped for the R2 haplotype. The TFPIα-cofactor activities of FV1 and FV2 were also investigated in a model system of TFPIα-mediated FXa inhibition. In the FV titration, thrombin generation first increased (up to 5% FV) and then progressively decreased at higher FV concentrations. This anticoagulant effect of FV, which was also observed with FV2 but not with FV1, was largely abolished by anti-TFPIα antibodies, suggesting that it reflects TFPIα-cofactor activity of FV. In the model system of TFPIα-mediated FXa inhibition, FV2 was a more potent TFPIα-cofactor than FV1, in line with their respective phospholipid affinities. Accordingly, FV R2 carriers had higher thrombin generation than non-carriers, even after correction for demographics and plasma levels of coagulation factors and inhibitors. FV (and particularly its FV2 isoform) contributes to the TFPIα-dependent down-regulation of thrombin generation in plasma triggered with low TF. Schattauer GmbH Stuttgart.
Thrombin generation and fibrin formation under flow on biomimetic tissue factor-rich surfaces.
Onasoga-Jarvis, A A; Puls, T J; O'Brien, S K; Kuang, L; Liang, H J; Neeves, K B
2014-01-01
Blood flow regulates coagulation and fibrin assembly by controlling the rate of transport of zymogens, enzymes and plasma proteins to and from the site of an injury. The objective of this work was to define the hemodynamic conditions under which fibrin can form under flow on tissue factor (TF)-rich substrates. TF-coated silica beads (~ 800 nm) were patterned into 18-85-μm spots. Normal pooled plasma and factors VIII, IX and XI deficient plasmas were perfused over the beads coated with 0.08, 0.8 and 8 molecules-TF μm(-2) at shear rates of 50-1000 s(-1) . Fibrin deposition and thrombin generation were measured by fluorescence microscopy in a hydrodynamic focusing microfluidic device. Fibrin deposition was supported on patterned bead spots, but not planar TF substrates at the same surface TF concentration. There was a threshold spot size and a shear rate dependent TF concentration that was necessary to support fibrin polymerization. FVIII and FIX had minor effects on fibrin dynamics at 8 molecules-TF μm(-2) , but were essential at 0.8 molecules-TF μm(-2) . The absence of FXI influenced thrombin generation and fibrin deposition at both 0.8 and 8 molecules-TF μm(-2) . These results show that fibrin deposition requires perturbations in the flow field that protect reactions from dilution by flow under venous and arterial conditions. FVIII and FIX have a modest effect on fibrin deposition at high TF concentrations, but are necessary for fibrin deposition at low TF concentrations. FXI amplifies thrombin generation under flow at both low and high TF concentrations. © 2013 International Society on Thrombosis and Haemostasis.
Russo Krauss, Irene; Merlino, Antonello; Randazzo, Antonio; Novellino, Ettore; Mazzarella, Lelio; Sica, Filomena
2012-01-01
The G-quadruplex architecture is a peculiar structure adopted by guanine-rich oligonucleotidic sequences, and, in particular, by several aptamers, including the thrombin-binding aptamer (TBA) that has the highest inhibitory activity against human α-thrombin. A crucial role in determining structure, stability and biological properties of G-quadruplexes is played by ions. In the case of TBA, K+ ions cause an enhancement of the aptamer clotting inhibitory activity. A detailed picture of the interactions of TBA with the protein and with the ions is still lacking, despite the importance of this aptamer in biomedical field for detection and inhibition of α-thrombin. Here, we fill this gap by presenting a high-resolution crystallographic structural characterization of the thrombin–TBA complex formed in the presence of Na+ or K+ and a circular dichroism study of the structural stability of the aptamer both free and complexed with α-thrombin, in the presence of the two ionic species. The results indicate that the different effects exerted by Na+ and K+ on the inhibitory activity of TBA are related to a subtle perturbation of a few key interactions at the protein–aptamer interface. The present data, in combination with those previously obtained on the complex between α-thrombin and a modified aptamer, may allow the design of new TBA variants with a pharmacological performance enhancement. PMID:22669903
Characterization of the thrombin generation profile in systemic lupus erythematosus.
Kern, A; Barabás, E; Balog, A; Burcsár, Sz; Kiszelák, M; Vásárhelyi, B
2017-03-01
Systemic lupus erythematosus (SLE) is a multisystemic inflammatory autoimmune disorder. Thrombotic events occur at a higher incidence among SLE patients. The investigation of thrombin generation (TG) with calibrated automated thrombogram (CAT) test as a global hemostasis assay is applicable for the overall functional assessment of the hemostasis. The aim of this study was to characterize the hemostatic alterations observed in SLE by CAT assay. In this study, CAT parameters and basic coagulation parameters of SLE patients (n = 22) and healthy control subjects (n = 34) were compared. CAT area under the curve (i.e., endogenous thrombin potential) was lower than normal in SLE (807 vs. 1,159 nM*min, respectively), whereas other CAT parameters (peak, lag time, time to peak, and velocity index) and the basic coagulation tests were within the normal range. The presence of anti-phospholipid antibodies and the applied therapy was not associated with hemostasis parameters in SLE. We concluded that the reported high risk of thrombosis is not related to TG potential.
Recombinant activated factor VII: 30 years of research and innovation.
Hedner, Ulla
2015-06-01
Recombinant activated factor VII (rFVIIa) was initially developed to treat bleeding episodes in patients with congenital haemophilia and inhibitors. The story of its development began in the 1970s, when FVIIa was identified as one of the activated coagulation factors that has minimal potential for inducing thromboembolic side-effects. Extensive research over the last 30 years has greatly increased our knowledge of the characteristics of FVII, its activation, and the mechanisms by which rFVIIa restores haemostasis. In haemophilia, the haemostatic effect of rFVIIa is mediated via binding to thrombin-activated platelets at the site of injury, thereby enhancing thrombin generation also in the absence of factor (F) VIII or FIX. The mechanism of action of rFVIIa has also allowed its successful use in other clinical scenarios characterised by impaired thrombin generation, and its licensed uses have now been extended to acquired haemophilia, congenital FVII deficiency and Glanzmann's thrombasthenia. Copyright © 2015 Elsevier Ltd. All rights reserved.
EREZ, OFFER; ROMERO, ROBERTO; KIM, SUNG-SU; KIM, JUNG-SUN; KIM, YEON MEE; WILDMAN, DEREK E; THAN, NANDOR GABOR; MAZAKI-TOVI, SHALI; GOTSCH, FRANCESCA; PINELES, BETH; KUSANOVIC, JUAN PEDRO; ESPINOZA, JIMMY; MITTAL, POOJA; MAZOR, MOSHE; HASSAN, SONIA S.; KIM, CHONG JAI
2008-01-01
Objective Preeclampsia (PE) is characterized by excessive thrombin generation that has been implicated in the multiple organ damage associated with the disease. The biological effects of thrombin on coagulation and inflammation are mediated by protease activated receptor-1 (PAR-1), a G-protein coupled receptor. The aim of this study was to determine whether preterm preeclampsia (PE) is associated with changes in placental expression of PAR-1. Study design This cross-sectional study included two groups matched for gestational age at delivery: 1) patients with preterm PE (<37 weeks of gestation; n=26) and 2) a control group of patients with preterm labor without intraamniotic infection (n=26). Placental tissue microarrays were immunostained for PAR-1. Immunoreactivity of PAR-1 in the villous trophoblasts was graded as negative, weak-positive, or strong-positive. Results 1) The proportion of cases with strong PAR-1 immunoreactivity was significantly higher in placentas of patients with preeclampsia than in placentas from the control group [37.5% (9/24) vs. 8.7% (2/23); p=0.036, respectively]. 2) PAR-1 immunoreactivity was found in the cellular compartments of the placental villous tree, mainly in villous trophoblasts and stromal endothelial cells. 3) PAR-1 was detected in 92.3% (24/26) of the placentas of women with preeclampsia and in 88.5% (23/26) of the placentas from the control group (p=1). Conclusion Placentas from pregnancies complicated by preterm PE had a significantly higher frequency of strong PAR-1 expression than placentas from women with spontaneous PTL. This observation is consistent with a role for PAR-1 as a mediator of the effect of thrombin on coagulation and inflammation in preeclampsia. We propose that the effects of thrombin in PE are due to increased thrombin generation and higher expression of PAR-1, the major receptor for this enzyme. PMID:18570113
Guddorf, Vanessa; Kummerfeld, Norbert; Mischke, Reinhard
2014-01-01
The aim of this study was to examine the suitability of commercially available reagents for measurements of coagulation parameters in citrated plasma from birds. Therefore, plasma samples of 17 healthy donor birds of different species were used to determine prothrombin time (PT), activated partial thromboplastin time (aPTT) and thrombin time (TT) applying various commercial reagents which are routinely used in coagulation diagnostics in humans and mammals. A PT reagent based on human placental thromboplastin yielded not only shorter clotting times than a reagent containing recombinant human tissue factor (median 49 vs. 84 s), but also showed a minor range of distribution of values (43-55 s vs. 30-147 s, minimum-maximum, n = 5 turkeys). An aPTT reagent containing kaolin and phospholipids of animal origin delivered the shortest clotting times and the lowest range of variation in comparison to three other reagents of different composition. However, even when this reagent was used, aPTTs were partially extremely long (> 200 s). Thrombin time was 38 s (28-57 s, n = 5 chicken) when measured with bovine thrombin at a final concentration of 2 IU thrombin/ ml. Coefficients of variation for within-run precision analysis (20 repetitions) of PT was 8.0% and 4.7% for aPTT measurements using selected reagents of mammalian origin. In conclusion, of the commercially available reagents tested, a PT reagent based on human placental thromboplastin and an aPTT reagent including rabbit brain phospholipid and kaolin, show some promise for potential use in birds.
Structure-activity analysis of synthetic alpha-thrombin-receptor-activating peptides.
Van Obberghen-Schilling, E; Rasmussen, U B; Vouret-Craviari, V; Lentes, K U; Pavirani, A; Pouysségur, J
1993-06-15
alpha-Thrombin stimulates G-protein-coupled effectors leading to secretion and aggregation in human platelets, and to a mitogenic response in CCL39 hamster fibroblasts. alpha-Thrombin receptors can be activated by synthetic peptides corresponding to the receptor sequence starting with serine-42, at the proposed cleavage site. We have previously determined that the agonist domain of receptor-activating peptides resides within the five N-terminal residues [Vouret-Craviari, Van Obberghen-Schilling, Rasmussen, Pavirani, Lecocq and Pouysségur (1992) Mol. Biol. Cell. 3, 95-102], although the 7-residue peptide (SFFLRNP) corresponding to the hamster alpha-thrombin receptor was 10 times more potent than the 5-residue peptide for activation of human platelets. In the present study we have analysed the role of individual amino acids in receptor activation by using a series of modified hexa- or hepta-peptides derived from the human alpha-thrombin-receptor sequence. Cellular events examined here include phospholipase C activation, adenylyl cyclase inhibition and DNA synthesis stimulation in non-transformed CCL39 fibroblasts and a tumorigenic variant of that line (A71 cells). Modification of the peptide sequence had similar functional consequence for each of the assays described, indicating that either a unique receptor or pharmacologically indistinguishable receptor subtypes activate distinct G-protein signalling pathways. Furthermore, we found that: (1) the N-terminal serine can be replaced by small or intermediately sized amino acids (+/- hydroxyl groups) without loss of activity. However, its replacement by an aromatic side-chain or omission of the N-terminal amino group severely reduces activity. (2) An aromatic side-chain on the penultimate N-terminal residue appears to play a critical role since phenylalanine in this position can be substituted by tyrosine without complete loss of activity whereas an alanine in its place is not tolerated. (3) Deletion of the first, second or third N-terminal residue leads to a loss of activity, suggesting that a defined spacing of more than one structural component may be important for ligand-receptor interaction. Finally, we did not observe an antagonistic effect of the inactive peptides on phospholipase C activation or DNA synthesis induced by alpha-thrombin (1 nM) or SFLLRNP (3 microM).
Structure-activity analysis of synthetic alpha-thrombin-receptor-activating peptides.
Van Obberghen-Schilling, E; Rasmussen, U B; Vouret-Craviari, V; Lentes, K U; Pavirani, A; Pouysségur, J
1993-01-01
alpha-Thrombin stimulates G-protein-coupled effectors leading to secretion and aggregation in human platelets, and to a mitogenic response in CCL39 hamster fibroblasts. alpha-Thrombin receptors can be activated by synthetic peptides corresponding to the receptor sequence starting with serine-42, at the proposed cleavage site. We have previously determined that the agonist domain of receptor-activating peptides resides within the five N-terminal residues [Vouret-Craviari, Van Obberghen-Schilling, Rasmussen, Pavirani, Lecocq and Pouysségur (1992) Mol. Biol. Cell. 3, 95-102], although the 7-residue peptide (SFFLRNP) corresponding to the hamster alpha-thrombin receptor was 10 times more potent than the 5-residue peptide for activation of human platelets. In the present study we have analysed the role of individual amino acids in receptor activation by using a series of modified hexa- or hepta-peptides derived from the human alpha-thrombin-receptor sequence. Cellular events examined here include phospholipase C activation, adenylyl cyclase inhibition and DNA synthesis stimulation in non-transformed CCL39 fibroblasts and a tumorigenic variant of that line (A71 cells). Modification of the peptide sequence had similar functional consequence for each of the assays described, indicating that either a unique receptor or pharmacologically indistinguishable receptor subtypes activate distinct G-protein signalling pathways. Furthermore, we found that: (1) the N-terminal serine can be replaced by small or intermediately sized amino acids (+/- hydroxyl groups) without loss of activity. However, its replacement by an aromatic side-chain or omission of the N-terminal amino group severely reduces activity. (2) An aromatic side-chain on the penultimate N-terminal residue appears to play a critical role since phenylalanine in this position can be substituted by tyrosine without complete loss of activity whereas an alanine in its place is not tolerated. (3) Deletion of the first, second or third N-terminal residue leads to a loss of activity, suggesting that a defined spacing of more than one structural component may be important for ligand-receptor interaction. Finally, we did not observe an antagonistic effect of the inactive peptides on phospholipase C activation or DNA synthesis induced by alpha-thrombin (1 nM) or SFLLRNP (3 microM). PMID:7686363
Engels, A C; Hoylaerts, M F; Endo, M; Loyen, S; Verbist, G; Manodoro, S; DeKoninck, P; Richter, J; Deprest, J A
2013-02-01
We aimed to demonstrate local thrombin generation by fetal membranes, as well as its ability to generate fibrin from fibrinogen concentrate. Furthermore, we aimed to investigate the efficacy of collagen plugs, soaked with plasma and fibrinogen, to seal iatrogenic fetal membrane defects. Thrombin generation by homogenized fetal membranes was measured by calibrated automated thrombography. To identify the coagulation caused by an iatrogenic membrane defect, we analyzed fibrin formation by optical densitometry, upon various concentrations of fibrinogen. The ability of a collagen plug soaked with fibrinogen and plasma was tested in an ex vivo model for its ability to seal an iatrogenic fetal membrane defect. Fetal membrane homogenates potently induced thrombin generation in amniotic fluid and diluted plasma. Upon the addition of fibrinogen concentrate, potent fibrin formation was triggered. Measured by densiometry, fibrin formation was optimal at 1250 µg/mL fibrinogen in combination with 4% plasma. A collagen plug soaked with fibrinogen and plasma sealed an iatrogenic membrane defect about 35% better than collagen plugs without these additives (P = 0.037). These in vitro experiments suggest that the addition of fibrinogen and plasma may enhance the sealing efficacy of collagen plugs in closing iatrogenic fetal membrane defects. © 2013 John Wiley & Sons, Ltd.
Reversible thrombin detection by aptamer functionalized STING sensors
Actis, Paolo; Rogers, Adam; Nivala, Jeff; Vilozny, Boaz; Seger, R. Adam; Jejelowo, Olufisayo; Pourmand, Nader
2011-01-01
Signal Transduction by Ion NanoGating (STING) is a label-free technology based on functionalized quartz nanopipettes. The nanopipette pore can be decorated with a variety of recognition elements and the molecular interaction is transduced via a simple electrochemical system. A STING sensor can be easily and reproducibly fabricated and tailored at the bench starting from inexpensive quartz capillaries. The analytical application of this new biosensing platform, however, was limited due to the difficult correlation between the measured ionic current and the analyte concentration in solution. Here we show that STING sensors functionalized with aptamers allow the quantitative detection of thrombin. The binding of thrombin generates a signal that can be directly correlated to its concentration in the bulk solution. PMID:21636261
Honickel, Markus; Treutler, Stefanie; van Ryn, Joanne; Tillmann, Sabine; Rossaint, Rolf; Grottke, Oliver
2015-04-01
Urgent surgery or life-threatening bleeding requires prompt reversal of the anticoagulant effects of dabigatran. This study assessed the ability of three- and four-factor prothrombin complex concentrate (PCC) and idarucizumab (specific antidote for dabigatran) to reverse the anticoagulant effects of dabigatran in a porcine model of trauma. Twelve animals were given dabigatran etexilate (DE) orally and dabigatran intravenously, before infliction of trauma. Six animals received tranexamic acid plus fibrinogen concentrate 12 minutes post-injury. Six PCCs (each 30 and 60 U/kg) and idarucizumab (30 and 60 mg/kg) were added to blood samples ex vivo. Coagulation was assessed by several coagulation assays. All coagulation parameters were altered after dabigatran infusion (plasma level: 442 ± 138 ng/ml). Both three- and four-factor PCCs mostly or completely reversed the effects of dabigatran on thromboelastometry variables and PT but not on aPTT. Idarucizumab neutralised plasma concentrations of dabigatran, and reversed the effects of the drug on coagulation variables. Thrombin generation showed dose-dependent over-correction following the addition of PCC, implying that elevated levels of thrombin are required to overcome dabigatran-induced coagulopathy. In contrast, treatment with idarucizumab returned thrombin generation to baseline levels. Following trauma, therapy with tranexamic acid plus fibrinogen improved correction of coagulation parameters by PCC, and thromboelastometry parameters by idarucizumab. All investigated PCCs improved dabigatran- and trauma-induced coagulopathy to a similar degree. In conclusion, this study shows that three- and four-factor PCCs are similarly effective for dabigatran reversal. Idarucizumab also reversed the effects of dabigatran and, unlike PCCs, was not associated with over-correction of thrombin generation.
Scott, Benjamin M; Matochko, Wadim L; Gierczak, Richard F; Bhakta, Varsha; Derda, Ratmir; Sheffield, William P
2014-01-01
In spite of the power of phage display technology to identify variant proteins with novel properties in large libraries, it has only been previously applied to one member of the serpin superfamily. Here we describe phage display of human alpha-1 proteinase inhibitor (API) in a T7 bacteriophage system. API M358R fused to the C-terminus of T7 capsid protein 10B was directly shown to form denaturation-resistant complexes with thrombin by electrophoresis and immunoblotting following exposure of intact phages to thrombin. We therefore developed a biopanning protocol in which thrombin-reactive phages were selected using biotinylated anti-thrombin antibodies and streptavidin-coated magnetic beads. A library consisting of displayed API randomized at residues 357 and 358 (P2-P1) yielded predominantly Pro-Arg at these positions after five rounds of thrombin selection; in contrast the same degree of mock selection yielded only non-functional variants. A more diverse library of API M358R randomized at residues 352-356 (P7-P3) was also probed, yielding numerous variants fitting a loose consensus of DLTVS as judged by sequencing of the inserts of plaque-purified phages. The thrombin-selected sequences were transferred en masse into bacterial expression plasmids, and lysates from individual colonies were screening for API-thrombin complexing. The most active candidates from this sixth round of screening contained DITMA and AAFVS at P7-P3 and inhibited thrombin 2.1-fold more rapidly than API M358R with no change in reaction stoichiometry. Deep sequencing using the Ion Torrent platform confirmed that over 800 sequences were significantly enriched in the thrombin-panned versus naïve phage display library, including some detected using the combined phage display/bacterial lysate screening approach. Our results show that API joins Plasminogen Activator Inhibitor-1 (PAI-1) as a serpin amenable to phage display and suggest the utility of this approach for the selection of "designer serpins" with novel reactivity and/or specificity.
Scott, Benjamin M.; Matochko, Wadim L.; Gierczak, Richard F.; Bhakta, Varsha; Derda, Ratmir; Sheffield, William P.
2014-01-01
In spite of the power of phage display technology to identify variant proteins with novel properties in large libraries, it has only been previously applied to one member of the serpin superfamily. Here we describe phage display of human alpha-1 proteinase inhibitor (API) in a T7 bacteriophage system. API M358R fused to the C-terminus of T7 capsid protein 10B was directly shown to form denaturation-resistant complexes with thrombin by electrophoresis and immunoblotting following exposure of intact phages to thrombin. We therefore developed a biopanning protocol in which thrombin-reactive phages were selected using biotinylated anti-thrombin antibodies and streptavidin-coated magnetic beads. A library consisting of displayed API randomized at residues 357 and 358 (P2–P1) yielded predominantly Pro-Arg at these positions after five rounds of thrombin selection; in contrast the same degree of mock selection yielded only non-functional variants. A more diverse library of API M358R randomized at residues 352–356 (P7–P3) was also probed, yielding numerous variants fitting a loose consensus of DLTVS as judged by sequencing of the inserts of plaque-purified phages. The thrombin-selected sequences were transferred en masse into bacterial expression plasmids, and lysates from individual colonies were screening for API-thrombin complexing. The most active candidates from this sixth round of screening contained DITMA and AAFVS at P7–P3 and inhibited thrombin 2.1-fold more rapidly than API M358R with no change in reaction stoichiometry. Deep sequencing using the Ion Torrent platform confirmed that over 800 sequences were significantly enriched in the thrombin-panned versus naïve phage display library, including some detected using the combined phage display/bacterial lysate screening approach. Our results show that API joins Plasminogen Activator Inhibitor-1 (PAI-1) as a serpin amenable to phage display and suggest the utility of this approach for the selection of “designer serpins” with novel reactivity and/or specificity. PMID:24427287
Identification of functional VEGF receptors on human platelets.
Selheim, Frode; Holmsen, Holm; Vassbotn, Flemming S
2002-02-13
Platelets secrete platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) upon stimulation. We have demonstrated that platelets have functionally active PDGF alpha-receptors, a transmembrane tyrosine kinase involved in negative feedback regulation. Here we demonstrate the presence of the related VEGF receptors fms-like tyrosine kinase-1 and kinase-insert domain region on human platelets. VEGF itself did not cause platelet aggregation. However, addition of exogenous VEGF to SFRLLN or thrombin-stimulated platelets potentiated platelet aggregation. Moreover, thrombin-induced phosphoinositide 3-kinase and mitogen-activated protein kinase activity were enhanced in the presence of VEGF.
Contact system activation and high thrombin generation in hyperthyroidism.
Kim, Namhee; Gu, Ja-Yoon; Yoo, Hyun Ju; Han, Se Eun; Kim, Young Il; Nam-Goong, Il Sung; Kim, Eun Sook; Kim, Hyun Kyung
2017-05-01
Hyperthyroidism is associated with increased thrombotic risk. As contact system activation through formation of neutrophil extracellular traps (NET) has emerged as an important trigger of thrombosis, we hypothesized that the contact system is activated along with active NET formation in hyperthyroidism and that their markers correlate with disease severity. In 61 patients with hyperthyroidism and 40 normal controls, the levels of coagulation factors (fibrinogen, and factor VII, VIII, IX, XI and XII), D-dimer, thrombin generation assay (TGA) markers, NET formation markers (histone-DNA complex, double-stranded DNA and neutrophil elastase) and contact system markers (activated factor XII (XIIa), high-molecular-weight kininogen (HMWK), prekallikrein and bradykinin) were measured. Patients with hyperthyroidism showed higher levels of fibrinogen (median (interquartile range), 315 (280-344) vs 262 (223-300), P = 0.001), D-dimer (103.8 (64.8-151.5) vs 50.7 (37.4-76.0), P < 0.001), peak thrombin (131.9 (102.2-159.4) vs 31.6 (14.8-83.7), P < 0.001) and endogenous thrombin potential (649 (538-736) vs 367 (197-1147), P = 0.021) in TGA with 1 pM tissue factor, neutrophil elastase (1.10 (0.39-2.18) vs 0.23 (0.20-0.35), P < 0.001), factor XIIa (66.9 (52.8-87.0) vs 73.0 (57.1-86.6), P < 0.001), HMWK (6.11 (4.95-7.98) vs 3.83 (2.60-5.68), P < 0.001), prekallikrein (2.15 (1.00-6.36) vs 1.41 (0.63-2.22), P = 0.026) and bradykinin (152.4 (137.6-180.4) vs 118.3 (97.1-137.9), P < 0.001) than did normal controls. In age- and sex-adjusted logistic regression analysis, fibrinogen, factor VIII, IX and XIIa, D-dimer, peak thrombin, neutrophil elastase, HMWK and bradykinin showed significant odds ratios representing hyperthyroidism's contribution to coagulation and contact system activation. Free T4 was significantly correlated with factors VIII and IX, D-dimer, double-stranded DNA and bradykinin. This study demonstrated that contact system activation and abundant NET formation occurred in the high thrombin generation state in hyperthyroidism and were correlated with free T4 level. © 2017 European Society of Endocrinology.
Comparison of 10 Different Hemostatic Dressings in an Aortic Injury
2003-02-01
lateral peritoneal recesses of the abdomen bilaterally. The rate of bleeding was quantified (grams accumulated every 10 sec- onds) in the suction...used frequently for hemostasis in dental procedures19 D5 TachoComb S Nycomed Amersham, Linz, Austria Collagen -based ( collagen from horse tendons...product with human fibrinogen and thrombin Collagen attracts and activates platelets to achieve hemostasis. D5 also had fibrinogen and thrombin, but at a
Photoacoustic removal of occlusions from blood vessels
Visuri, Steven R.; Da Silva, Luiz B.; Celliers, Peter M.; London, Richard A.; Maitland, IV, Duncan J.; Esch, Victor C.
2002-01-01
Partial or total occlusions of fluid passages within the human body are removed by positioning an array of optical fibers in the passage and directing treatment radiation pulses along the fibers, one at a time, to generate a shock wave and hydrodynamics flows that strike and emulsify the occlusions. A preferred application is the removal of blood clots (thrombin and embolic) from small cerebral vessels to reverse the effects of an ischemic stroke. The operating parameters and techniques are chosen to minimize the amount of heating of the fragile cerebral vessel walls occurring during this photo acoustic treatment. One such technique is the optical monitoring of the existence of hydrodynamics flow generating vapor bubbles when they are expected to occur and stopping the heat generating pulses propagated along an optical fiber that is not generating such bubbles.
Berruyer, M; Amiral, J; Ffrench, P; Belleville, J; Bastien, O; Clerc, J; Kassir, A; Estanove, S; Dechavanne, M
1993-05-01
Brief case histories of three patients aged 58, 38, and 44 years are reported. All underwent cardiovascular operations. Subsequently hemostasis test abnormalities developed between the seventh and eighth postoperative days after exposure to bovine thrombin used with fibrin glue. These were characterized by an increased activated partial thromboplastin time (64 to 147 seconds), prothrombin time (19 to 24 seconds), bovine thrombin time (> 120 seconds) and a markedly reduced factor V level (< 10% in two patients and 16% in the third patient). A patient plasma dilution of 1 in 200 with a normal plasma pool was necessary to correct bovine thrombin time. No fast-acting or progressive inhibitor against factor V could be detected by coagulation tests, and fresh frozen plasma perfusion had no effect. Plasmapheresis was performed preventatively to avoid bleeding, and factor V levels stabilized at around 50% after two to four exchanges. Immunologic studies showed that the inhibitors were directed not only against bovine factors but also against human ones. Therefore factor V decrease could have been the result of rapid clearance from the circulation of complexes formed with a nonneutralizing inhibitor that is not detected by clotting tests. These antibodies were purified by standard methods and immunoaffinity. Fast immunization could be explained by a prior sensitization to bovine thrombin exposure during previous operations. It is suggested that bovine thrombin used with fibrin glue contains small amounts of factor V and may be responsible for these abnormalities. This is in agreement with previous literature reports. However, these described neutralizing factor V inhibitors, which were easily detected.
Liu, Yanyan; Fu, Jianjie; Pan, Wenxiao; Xue, Qiao; Liu, Xian; Zhang, Aiqian
2018-01-01
The studies on the human toxicity of nanoparticles (NPs) are far behind the rapid development of engineered functionalized NPs. Fullerene has been widely used as drug carrier skeleton due to its reported low risk. However, different from other kinds of NPs, fullerene-based NPs (C 60 NPs) have been found to have an anticoagulation effect, although the potential target is still unknown. In the study, both experimental and computational methods were adopted to gain mechanistic insight into the modulation of thrombin activity by nine kinds of C 60 NPs with diverse surface chemistry properties. In vitro enzyme activity assays showed that all tested surface-modified C 60 NPs exhibited thrombin inhibition ability. Kinetic studies coupled with competitive testing using 3 known inhibitors indicated that six of the C 60 NPs, of greater hydrophobicity and hydrogen bond (HB) donor acidity or acceptor basicity, acted as competitive inhibitors of thrombin by directly interacting with the active site of thrombin. A simple quantitative nanostructure-activity relationship model relating the surface substituent properties to the inhibition potential was then established for the six competitive inhibitors. Molecular docking analysis revealed that the intermolecular HB interactions were important for the specific binding of C 60 NPs to the active site canyon, while the additional stability provided by the surface groups through van der Waals interaction also play a key role in the thrombin binding affinity of the NPs. Our results suggest that thrombin is a possible target of the surface-functionalized C 60 NPs relevant to their anticoagulation effect. Copyright © 2017. Published by Elsevier B.V.
Lin, Lihua; Liu, Shengquan; Nie, Zhou; Chen, Yingzhuang; Lei, Chunyang; Wang, Zhen; Yin, Chao; Hu, Huiping; Huang, Yan; Yao, Shouzhuo
2015-04-21
Nowadays, large-scale screening for enzyme discovery, engineering, and drug discovery processes require simple, fast, and sensitive enzyme activity assay platforms with high integration and potential for high-throughput detection. Herein, a novel automatic and integrated micro-enzyme assay (AIμEA) platform was proposed based on a unique microreaction system fabricated by a engineered green fluorescence protein (GFP)-functionalized monolithic capillary column, with thrombin as an example. The recombinant GFP probe was rationally engineered to possess a His-tag and a substrate sequence of thrombin, which enable it to be immobilized on the monolith via metal affinity binding, and to be released after thrombin digestion. Combined with capillary electrophoresis-laser-induced fluorescence (CE-LIF), all the procedures, including thrombin injection, online enzymatic digestion in the microreaction system, and label-free detection of the released GFP, were integrated in a single electrophoretic process. By taking advantage of the ultrahigh loading capacity of the AIμEA platform and the CE automatic programming setup, one microreaction column was sufficient for many times digestion without replacement. The novel microreaction system showed significantly enhanced catalytic efficiency, about 30 fold higher than that of the equivalent bulk reaction. Accordingly, the AIμEA platform was highly sensitive with a limit of detection down to 1 pM of thrombin. Moreover, the AIμEA platform was robust and reliable to detect thrombin in human serum samples and its inhibition by hirudin. Hence, this AIμEA platform exhibits great potential for high-throughput analysis in future biological application, disease diagnostics, and drug screening.
Crosstalk between coagulation and inflammation in mastitis and metritis in dairy cows.
Bobowiec, Ryszard; Wessely-Szponder, Joanna; Hola, Piotr
2009-06-01
Coagulation and inflammation are closely related as part of the mechanisms of host defence during a severe infection. The aim of this study was to investigate the relation between thrombin as a factor in both the coagulative and inflammatory processes and neutrophil secretory function on the basis of lactoferrin (LF), elastase and myeloperoxidase release in the course of mastitis and metritis in cows. Thrombin generation was measured on the basis of hydrolysis of SAR-PRO-ARG-pNA and lactoferrin concentration was estimated by an ELISA method. The greatest thrombin generation was observed in the metritis group (1.18 +/- 0.62 IU). The level of LF was the highest in the group of cows with mastitis (0.74 +/- 0.55 mg/ml) in the first phase of the disease. In the second phase of the diseases the level of serum LF in cows with mastitis diminished to the value of 0.41 +/- 0.16 mg/ml, whereas in cows with metritis the level of LF increased to 0.51 +/- 0.17 mg/ml. This study reveals that the excessive production of thrombin not only causes hypercoagulatory disorders but also exaggerates neutrophil function by the release of some enzymes which may play a destructive role during disseminated intravascular coagulation (DIC). These enzymes also inhibit anticoagulative systems, thus potentially worsening the course of the disease.
Comparison of sea turtle thrombocyte aggregation to human platelet aggregation in whole blood.
Soslau, Gerald; Prest, Phillip J; Class, Reiner; George, Robert; Paladino, Frank; Violetta, Gary
2005-11-01
The endangered sea turtles are living "fossils" that afford us an opportunity to study the hemostatic process as it likely existed millions of years ago. There are essentially no data about turtle thrombocyte aggregation prior to our studies. Thrombocytes are nucleated cells that serve the same hemostatic functions as the anucleated mammalian platelet. Sea turtle thrombocytes aggregate in response to collagen and beta-thrombin. Ristocetin induces an agglutination/aggregation response indicating the presence of a von Willebrand-like receptor, GPIb, found in all mammalian platelets. Samples treated with alpha-thrombin plus gamma-thrombin followed by ristocetin results in a rapid, stronger response than ristocetin alone. These responses are inhibited by the RGDS peptide that blocks fibrinogen cross-linking of mammalian platelets via the fibrinogen receptor, GPIIb/IIIa. Three platelet-like proteins, GPIb, GPIIb/IIIa and P-selection are detected in sea turtle thrombocytes by fluorescence activated cell sorting. Turtle thrombocytes do not respond to ADP, epinephrine, serotonin, thromboxane A2 mimetic, U46619, trypsin, or alpha-thrombin and gamma-thrombin added alone. Comparison of hemostasis in sea turtles to other vertebrates could provide a framework for understanding the structure/function and evolution of these pathways and their individual components.
Schatz, Frederick; Guzeloglu-Kayisli, Ozlem; Arlier, Sefa; Kayisli, Umit A.; Lockwood, Charles J.
2016-01-01
BACKGROUND Human pregnancy requires robust hemostasis to prevent hemorrhage during extravillous trophoblast (EVT) invasion of the decidualized endometrium, modification of spiral arteries and post-partum processes. However, decidual hemorrhage (abruption) can occur throughout pregnancy from poorly transformed spiral arteries, causing fetal death or spontaneous preterm birth (PTB), or it can promote the aberrant placentation observed in intrauterine growth restriction (IUGR) and pre-eclampsia; all leading causes of perinatal or maternal morbidity and mortality. In non-fertile cycles, the decidua undergoes controlled menstrual bleeding. Abnormal uterine bleeding (AUB) accompanying progestin-only, long-acting, reversible contraception (pLARC) accounts for most discontinuations of these safe and highly effective agents, thereby contributing to unwanted pregnancies and abortion. The aim of this study was to investigate the role of decidual cells in uterine hemostasis, menstruation, inflammation, adverse pregnancy outcomes and abnormal uterine bleeding. METHODS We conducted a critical review of the literature arising from PubMed searches up to December 2015, regarding in situ and in vitro expression and regulation of several specific proteins involved in uterine hemostasis in decidua and cycling endometrium. In addition, we discussed clinical and molecular mechanisms associated with pLARC-induced AUB and pregnancy complications with abruptions, chorioamnionitis or pre-eclampsia. RESULTS Progestin-induced decidualization of estradiol-primed human endometrial stromal cells (HESCs) increases in vivo and in vitro expression of tissue factor (TF) and type-1 plasminogen activator inhibitor (PAI-1) while inhibiting plasminogen activators (PAs), matrix metalloproteinases (MMPs), and the vasoconstrictor, endothelin-1 (ET-1). These changes in decidual cell-derived regulators of hemostasis, fibrinolysis, extracellular matrix (ECM) turnover, and vascular tone prevent hemorrhage during EVT invasion and vascular remodeling. In non-fertile cycles, progesterone withdrawal reduces TF and PAI-1 while increasing PA, MMPs and ET-1, causing menstrual-associated bleeding, fibrinolysis, ECM degradation and ischemia. First trimester decidual hemorrhage elicits later adverse outcomes including pregnancy loss, pre-eclampsia, abruption, IUGR and PTB. Decidual hemorrhage generates excess thrombin that binds to decidual cell-expressed protease-activated receptors (PARs) to induce chemokines promoting shallow placentation; such bleeding later in pregnancy generates thrombin to down-regulate decidual cell progesterone receptors and up-regulate cytokines and MMPs linked to PTB. Endometria of pLARC users display ischemia-induced excess vasculogenesis and progestin inhibition of spiral artery vascular smooth muscle cell proliferation and migration leading to dilated fragile vessels prone to bleeding. Moreover, aberrant TF-derived thrombin signaling also contributes to the pathogenesis of endometriosis via induction of angiogenesis, inflammation and cell survival. CONCLUSION Perivascular decidualized HESCs promote endometrial hemostasis during placentation yet facilitate menstruation through progestational regulation of hemostatic, proteolytic, and vasoactive proteins. Pathological endometrial hemorrhage elicits excess local thrombin generation, which contributes to pLARC associated AUB, endometriosis and adverse pregnancy outcomes through several biochemical mechanisms. PMID:26912000
Apixaban decreases brain thrombin activity in a male mouse model of acute ischemic stroke.
Bushi, Doron; Chapman, Joab; Wohl, Anton; Stein, Efrat Shavit; Feingold, Ekaterina; Tanne, David
2018-05-14
Factor Xa (FXa) plays a critical role in the coagulation cascade by generation of thrombin. During focal ischemia thrombin levels increase in the brain tissue and cause neural damage. This study examined the hypothesis that administration of the FXa inhibitor, apixaban, following focal ischemic stroke may have therapeutic potential by decreasing brain thrombin activity and infarct volume. Male mice were divided into a treated groups that received different doses of apixaban (2, 20, 100 mg/kg administered I.P.) or saline (controls) immediately after blocking the middle cerebral artery (MCA). Thrombin activity was measured by a fluorescence assay on fresh coronal slices taken from the mice brains 24 hr following the MCA occlusion. Infarct volume was assessed using triphenyltetrazolium chloride staining. A high dose of apixaban (100 mg/kg) significantly decreased thrombin activity levels in the ipsilateral hemisphere compared to the control group (Slice#5, p = .016; Slice#6, p = .016; Slice#7, p = .016; Slice#8, p = .036; by the nonparametric Mann-Whitney test). In addition, treatment with apixaban doses of both 100 mg/kg (32 ± 8% vs. 76 ± 7% in the treatment vs. control groups respectively; p = .005 by the nonparametric Mann-Whitney test) and 20 mg/kg (43 ± 7% vs. 76 ± 7% in the treatment vs. control groups respectively; p = .019 by the nonparametric Mann-Whitney test) decreased infarct volumes in areas surrounding the ischemic core (Slices #3 and #8). No brain hemorrhages were observed either in the treated or control groups. In summary, I.P. administration of high dose of apixaban immediately after MCA occlusion decreases brain thrombin activity and reduces infarct size. © 2018 Wiley Periodicals, Inc.
Kwon, Sung-Pil; Jeon, Sangmin; Lee, Sung-Hoon; Yoon, Hong Yeol; Ryu, Ju Hee; Choi, Dayil; Kim, Jeong-Yeon; Kim, Jiwon; Park, Jae Hyung; Kim, Dong-Eog; Kwon, Ick Chan; Kim, Kwangmeyung; Ahn, Cheol-Hee
2018-01-01
Thrombosis is an important pathophysiologic phenomenon in various cardiovascular diseases, which can lead to oxygen deprivation and infarction of tissues by generation of a thrombus. Thus, direct thrombus imaging can provide beneficial in diagnosis and therapy of thrombosis. Herein, we developed thrombin-activatable fluorescent peptide (TAP) incorporated silica-coated gold nanoparticles (TAP-SiO 2 @AuNPs) for direct imaging of thrombus by dual near-infrared fluorescence (NIRF) and micro-computed tomography (micro-CT) imaging, wherein TAP molecules were used as targeted thrombin-activatable peptide probes for thrombin-specific NIRF imaging. The freshly prepared TAP-SiO 2 @AuNPs had an average diameter of 39.8 ± 2.55 nm and they showed the quenched NIRF signal in aqueous condition, due to the excellent quenching effect of TAP molecules on the silica-gold nanoparticle surface. However, 30.31-fold higher NIRF intensity was rapidly recovered in the presence of thrombin in vitro, due to the thrombin-specific cleavage of quenched TAP molecules on the gold particle surface. Furthermore, TAP-SiO 2 @AuNPs were successfully accumulated in thrombus by their particle size-dependent capturing property, and they presented a potential X-ray absorption property in a dose-dependent manner. Finally, thrombotic lesion was clearly distinguished from peripheral tissues by dual NIRF/micro-CT imaging after intravenous injection of TAP-SiO 2 @AuNPs in the in situ thrombotic mouse model, simultaneously. This study showed that thrombin-activatable fluorescent peptide incorporated silica-coated gold nanoparticles can be potentially used as a dual imaging probe for direct thrombus imaging and therapy in clinical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Agonists of proteinase-activated receptor 1 induce plasma extravasation by a neurogenic mechanism.
de Garavilla, L; Vergnolle, N; Young, S H; Ennes, H; Steinhoff, M; Ossovskaya, V S; D'Andrea, M R; Mayer, E A; Wallace, J L; Hollenberg, M D; Andrade-Gordon, P; Bunnett, N W
2001-08-01
Thrombin, generated in the circulation during injury, cleaves proteinase-activated receptor 1 (PAR1) to stimulate plasma extravasation and granulocyte infiltration. However, the mechanism of thrombin-induced inflammation in intact tissues is unknown. We hypothesized that thrombin cleaves PAR1 on sensory nerves to release substance P (SP), which interacts with the neurokinin 1 receptor (NK1R) on endothelial cells to cause plasma extravasation. PAR1 was detected in small diameter neurons known to contain SP in rat dorsal root ganglia by immunohistochemistry and in situ hybridization. Thrombin and the PAR1 agonist TFLLR-NH(2) (TF-NH(2)) increased [Ca(2+)](i) >50% of cultured neurons (EC(50)s 24 mu ml(-1) and 1.9 microM, respectively), assessed using Fura-2 AM. The PAR1 agonist completely desensitized responses to thrombin, indicating that thrombin stimulates neurons through PAR1. Injection of TF-NH(2) into the rat paw stimulated a marked and sustained oedema. An NK1R antagonist and ablation of sensory nerves with capsaicin inhibited oedema by 44% at 1 h and completely by 5 h. In wild-type but not PAR1(-/-) mice, TF-NH(2) stimulated Evans blue extravasation in the bladder, oesophagus, stomach, intestine and pancreas by 2 - 8 fold. Extravasation in the bladder, oesophagus and stomach was abolished by an NK1R antagonist. Thus, thrombin cleaves PAR1 on primary spinal afferent neurons to release SP, which activates the NK1R on endothelial cells to stimulate gap formation, extravasation of plasma proteins, and oedema. In intact tissues, neurogenic mechanisms are predominantly responsible for PAR1-induced oedema.
Möhle, Robert; Green, David; Moore, Malcolm A. S.; Nachman, Ralph L.; Rafii, Shahin
1997-01-01
We have shown that coculture of bone marrow microvascular endothelial cells with hematopoietic progenitor cells results in proliferation and differentiation of megakaryocytes. In these long-term cultures, bone marrow microvascular endothelial cell monolayers maintain their cellular integrity in the absence of exogenous endothelial growth factors. Because this interaction may involve paracrine secretion of cytokines, we evaluated megakaryocytic cells for secretion of vascular endothelial growth factor (VEGF). Megakaryocytes (CD41a+) were generated by ex vivo expansion of hematopoietic progenitor cells with kit-ligand and thrombopoietin for 10 days and further purified with immunomagnetic microbeads. Using reverse transcription–PCR, we showed that megakaryocytic cell lines (Dami, HEL) and purified megakaryocytes expressed mRNA of the three VEGF isoforms (121, 165, and 189 amino acids). Large quantities of VEGF (>1 ng/106 cells/3 days) were detected in the supernatant of Dami cells, ex vivo-generated megakaryocytes, and CD41a+ cells isolated from bone marrow. The constitutive secretion of VEGF by CD41a+ cells was stimulated by growth factors of the megakaryocytic lineage (interleukin 3, thrombopoietin). Western blotting of heparin–Sepharose-enriched supernatant mainly detected the isoform VEGF165. In addition, immunohistochemistry showed intracytoplasmic VEGF in polyploid megakaryocytes. Thrombin stimulation of megakaryocytes and platelets resulted in rapid release of VEGF within 30 min. We conclude that human megakaryocytes produce and secrete VEGF in an inducible manner. Within the bone marrow microenvironment, VEGF secreted by megakaryocytes may contribute to the proliferation of endothelial cells. VEGF delivered to sites of vascular injury by activated platelets may initiate angiogenesis. PMID:9012841
Nelson, P A; Powers, J N; Estridge, T D; Elder, E A; Alea, A D; Sidhu, P K; Sehl, L C; DeLustro, F A
2001-01-01
A randomized, controlled clinical study of the management of diffuse bleeding with CoStasis surgical hemostat, a new hemostat containing bovine thrombin and collagen with the patient's own plasma, included patients undergoing cardiac, hepatic, iliac, and general surgery. Sera from 92 patients treated with CoStasis and 84 control patients were collected preoperatively and at a post surgical follow-up of 8 weeks. Among the control group, 57 patients were treated with Instat collagen sponge in noncardiac indications. Results showed that antibody responses in the CoStasis clinical study were similar to the reported literature for all antigens screened and were not associated with any adverse reactions. The bovine thrombin preparations in CoStasis and other commercially available thrombins were compared with the use of SDS-PAGE and Western blot analyses. Within this clinical study, CoStasis was shown to be a safe and effective hemostatic product containing bovine thrombin and bovine collagen and no pooled human blood products. Copyright 2001 John Wiley & Sons, Inc.
Brzoska, Tomasz; Suzuki, Yuko; Mogami, Hideo; Sano, Hideto; Urano, Tetsumei
2013-01-01
Recently, by employing intra-vital confocal microscopy, we demonstrated that platelets expose phosphatidylserine (PS) and fibrin accumulate only in the center of the thrombus but not in its periphery. To address the question how exposure of platelet anionic phospholipids is regulated within the thrombus, an in-vitro experiment using diluted platelet-rich plasma was employed, in which the fibrin network was formed in the presence of platelets, and PS exposure on the platelet surface was analyzed using Confocal Laser Scanning Microscopy. Almost all platelets exposed PS after treatment with tissue factor, thrombin or ionomycin. Argatroban abrogated fibrin network formation in all samples, however, platelet PS exposure was inhibited only in tissue factor- and thrombin-treated samples but not in ionomycin-treated samples. FK633, an α(IIb)β₃ antagonist, and cytochalasin B impaired platelet binding to the fibrin scaffold and significantly reduced PS exposure evoked by thrombin. Gly-Pro-Arg-Pro amide abrogated not only fibrin network formation, but also PS exposure on platelets without suppressing platelet binding to fibrin/fibrinogen. These results suggest that outside-in signals in platelets generated by their binding to the rigid fibrin network are essential for PS exposure after thrombin treatment.
Brzoska, Tomasz; Suzuki, Yuko; Mogami, Hideo; Sano, Hideto; Urano, Tetsumei
2013-01-01
Recently, by employing intra-vital confocal microscopy, we demonstrated that platelets expose phosphatidylserine (PS) and fibrin accumulate only in the center of the thrombus but not in its periphery. To address the question how exposure of platelet anionic phospholipids is regulated within the thrombus, an in-vitro experiment using diluted platelet-rich plasma was employed, in which the fibrin network was formed in the presence of platelets, and PS exposure on the platelet surface was analyzed using Confocal Laser Scanning Microscopy. Almost all platelets exposed PS after treatment with tissue factor, thrombin or ionomycin. Argatroban abrogated fibrin network formation in all samples, however, platelet PS exposure was inhibited only in tissue factor- and thrombin-treated samples but not in ionomycin-treated samples. FK633, an αIIbβ3 antagonist, and cytochalasin B impaired platelet binding to the fibrin scaffold and significantly reduced PS exposure evoked by thrombin. Gly-Pro-Arg-Pro amide abrogated not only fibrin network formation, but also PS exposure on platelets without suppressing platelet binding to fibrin/fibrinogen. These results suggest that outside-in signals in platelets generated by their binding to the rigid fibrin network are essential for PS exposure after thrombin treatment. PMID:23383331
Reversible thrombin detection by aptamer functionalized STING sensors.
Actis, Paolo; Rogers, Adam; Nivala, Jeff; Vilozny, Boaz; Seger, R Adam; Jejelowo, Olufisayo; Pourmand, Nader
2011-07-15
Signal Transduction by Ion NanoGating (STING) is a label-free technology based on functionalized quartz nanopipettes. The nanopipette pore can be decorated with a variety of recognition elements and the molecular interaction is transduced via a simple electrochemical system. A STING sensor can be easily and reproducibly fabricated and tailored at the bench starting from inexpensive quartz capillaries. The analytical application of this new biosensing platform, however, was limited due to the difficult correlation between the measured ionic current and the analyte concentration in solution. Here we show that STING sensors functionalized with aptamers allow the quantitative detection of thrombin. The binding of thrombin generates a signal that can be directly correlated to its concentration in the bulk solution. Copyright © 2011 Elsevier B.V. All rights reserved.
[Factor V congenital deficiency: about a case].
Boujrad, Saloua; El Hasbaoui, Brahim; Echahdi, Hanae; Malih, Mohamed; Agadr, Aomar
2017-01-01
Factor V congenital deficiency is a rare coagulation disorder initially described by Owren in 1947 and known as para hemophilia. It is transmitted through autosomal-recessive inheritance and homozygous cases are usually symptomatic. Factor V is an essential cofactor in the conversion of prothrombin to thrombin by activated factor X. In the absence of factor V, thrombin generation is slowed down and fibrin formation is delayed. This results in a bleeding tendency. We report a case of factor V congenital deficiency in an infant with recurrent epistaxis.
Reddel, C J; Allen, J D; Ehteda, A; Taylor, R; Chen, V M Y; Curnow, J L; Kritharides, L; Robertson, G
2017-03-01
Essentials Cancer cachexia and cancer-associated thrombosis have not previously been mechanistically linked. We assessed thrombin generation and coagulation parameters in cachectic C26 tumor-bearing mice. C26 mice are hypercoagulable, partially corrected by blocking tumor derived interleukin-6. Coagulability and anti-inflammatory interventions may be clinically important in cancer cachexia. Background Cancer cachexia and cancer-associated thrombosis are potentially fatal outcomes of advanced cancer, which have not previously been mechanistically linked. The colon 26 (C26) carcinoma is a well-established mouse model of complications of advanced cancer cachexia, partially dependent on high levels of interleukin-6 (IL-6) produced by the tumor. Objectives To assess if cancer cachexia altered the coagulation state and if this was attributable to tumor IL-6 production. Methods In male BALB/c*DBA2 (F1 hybrid) mice with a C26 tumor we used modified calibrated automated thrombogram and fibrin generation (based on overall hemostatic potential) assays to assess the functional coagulation state, and also examined fibrinogen, erythrocyte sedimentation rate (ESR), platelet count, tissue factor pathway inhibitor (TFPI) and hepatic expression of coagulation factors by microarray. C26 mice were compared with non-cachectic NC26, pair-fed and sham control mice. IL-6 expression in C26 cells was knocked down by lentiviral shRNA constructs. Results C26 mice with significant weight loss and highly elevated IL-6 had elevated thrombin generation, fibrinogen, ESR, platelets and TFPI compared with all control groups. Fibrin generation was elevated compared with pair-fed and sham controls but not compared with NC26 tumor mice. Hepatic expression of coagulation factors and fibrinolytic inhibitors was increased. Silencing IL-6 in the tumor significantly, but incompletely, attenuated the increased thrombin generation, fibrinogen and TFPI. Conclusions Cachectic C26 tumor-bearing mice are in a hypercoagulable state, which is partly attributable to IL-6 release by the tumor. The findings support the importance of the coagulation state in cancer cachexia and the clinical utility of anti-inflammatory interventions. © 2017 International Society on Thrombosis and Haemostasis.
Coagulation indices in very preterm infants from cord blood and postnatal samples.
Neary, E; McCallion, N; Kevane, B; Cotter, M; Egan, K; Regan, I; Kirkham, C; Mooney, C; Coulter-Smith, S; Ní Áinle, F
2015-11-01
Very premature infants are at high risk of bleeding complications; however, few data exist on ranges for standard coagulation tests. The primary objective of this study was to measure standard plasma coagulation tests and thrombin generation in very premature infants compared with term infants. The secondary objective was to evaluate whether an association existed between coagulation indices and intraventricular hemorrhage (IVH). Cord and peripheral blood of neonates < 30 weeks gestational age (GA) was drawn at birth, on days 1 and 3 and fortnightly until 30 weeks corrected gestational age. Prothrombin time (PT), activated partial thromboplastin time (APTT), fibrinogen and coagulation factor levels were measured and tissue factor-stimulated thrombin generation was characterized. Control plasma was obtained from cord blood of term neonates. One hundred and sixteen infants were recruited. Median (range) GA was 27.7 (23.7-29.9) weeks and mean (SD) birth weight was 1020 (255) g. Median (5th-95th percentile) day 1 PT, APTT and fibrinogen were 17.5 (12.7-26.6) s, 78.7 (48.7-134.3) s and 1.4 (0.72-3.8) g L(-1) , respectively. No difference in endogenous thrombin potential between preterm and term plasma was observed, where samples were available. Levels of coagulation factors II, VII, IX and X, protein C, protein S and antithrombin were reduced in preterm compared with term plasma. Day 1 APTT and PT were not associated with IVH. In the largest cross-sectional study to date of very preterm infants, typical ranges for standard coagulation tests were determined. Despite long clotting times, thrombin generation was observed to be similar in very preterm and term infants. © 2015 International Society on Thrombosis and Haemostasis.
Shenkman, Boris; Livnat, Tami; Misgav, Mudi; Budnik, Ivan; Einav, Yulia; Martinowitz, Uriel
2012-01-01
Glanzmann's thrombasthenia (GT) is characterized by increased bleeding risk. The treatment options in GT are limited. The aim of this study was to test the effect of GT blood supplementation with fibrinogen and factor XIII on thrombin generation, blood clotting, and fibrinolysis. Whole blood samples of GT patients and normal donors treated with eptifibatide (GT model) were subjected to clotting by CaCl(2) and tissue factor. Thrombin generation was measured in platelet-rich plasma. Clot formation and tPA-induced fibrinolysis were evaluated in whole blood by rotation thromboelastometry (ROTEM). Blood was supplemented with fibrinogen (3 g/L) and/or FXIII (2 IU/mL). Thrombin generation analysis of blood derived from GT model and GT patients revealed decreased endogenous thrombin potential and peak height and extended lag time compared to control. However, this method was not sensitive to blood spiking with fibrinogen and FXIII. ROTEM revealed lower maximum clot firmness (MCF) and area under curve (AUC) in the blood of GT model and GT patients. In the absence of exogenous tPA, blood spiking with fibrinogen markedly enhanced clot quality while FXIII had no effect. Combination of fibrinogen and FXIII did not add to the effect of fibrinogen. In contrast, by the addition of tPA, both fibrinogen and FXIII separately and, to more extent, in combination enhanced clot quality as well as resistance against tPA-induced fibrinolysis (increasing MCF, AUC, and lysis onset time). In conclusion, fibrinogen and FXIII exerted stimulation of blood clotting and inhibition of fibrinolysis. Treating normal blood with eptifibatide mimics the changes of coagulopathy in GT blood.
Rousseau, Alexandra; Robert, Annie; Gerotziafas, Grigoris; Torchin, Dahlia; Zannad, Faiez; Lacut, Karine; Libersa, Christian; Dasque, Eric; Démolis, Jean-Louis; Elalamy, Ismail; Simon, Tabassome
2010-04-01
Oral hormone therapy is associated with an increased risk of venous thrombosis. Drug agencies recommend the use of the lowest efficient dose to treat menopausal symptoms for a better risk/ratio profile, although this profile has not been totally investigated yet. The aim of the study was to compare the effect of the standard dose of 17beta-estradiol to a lower one on thrombin generation (TG). In a 2-month study, healthy menopausal women were randomized to receive daily 1mg or 2 mg of 17beta-estradiol (E1, n = 24 and E2, n = 26; respectively) with 10 mg dydrogesterone or placebo (PL, n = 22). Plasma levels factors VII, X, VIII and II were assessed before and after treatment as well as Tissue factor triggered TG, which allows the investigation of the different phases of coagulation process. The peak of thrombin was higher in hormone therapy groups (E1: 42.39 +/- 50.23 nm, E2: 31.08 +/- 85.86 nm vs. 10.52 +/- 40.63 nm in PL, P = 0.002 and P = 0.01). Time to reach the peak was also shortened (PL: 0.26 +/- 0.69 min vs. E1: -0.26 +/- 0.80 min, E2: -0.55 +/- 0.79 min, P <10(-3) for both comparisons) and mean rate index of the propagation phase of TG was significantly increased. Among the studied clotting factors, only the levels of FVII were significantly increased after treatment administration. The two doses of 17beta-estradiol induced in a similar degree an acceleration of the initiation and propagation phase of tissue factor triggered thrombin generation and a significant increase of FVII coagulant activity.
Activation of platelet-rich plasma using soluble type I collagen.
Fufa, Duretti; Shealy, Blake; Jacobson, May; Kevy, Sherwin; Murray, Martha M
2008-04-01
Platelet-rich plasma (PRP) has recently been found to be a useful delivery system for growth factors important to oral tissue healing. But application of PRP in a liquid form to a wound site within the oral cavity can be complicated by significant loss of the PRP into the surrounding oral space unless gelation through the clotting mechanism is accomplished. Gelation is currently accomplished using bovine thrombin; however, rare but serious complications of this method have led to the search for alternative clotting mechanisms, including the use of soluble collagen as a clotting activator. In this work, our hypothesis was that soluble type I collagen would be as effective as bovine thrombin in causing clotting of the PRP and stimulating growth factor release from the platelets and granulocytes. PRP from human donors was clotted using type I collagen or bovine thrombin. Clot retraction was determined by measuring clot diameters over time. The release of platelet-derived growth factor (PDGF)-AB, transforming growth factor (TGF)-beta1, and vascular endothelial growth factor (VEGF) from both types of clots was measured over 10 days using enzyme-linked immunosorbent assasy. Clots formed using type I collagen exhibited far less retraction than those formed with bovine thrombin. Bovine thrombin and type I collagen stimulated similar release of PDGF-AB and VEGF between 1 and 10 days; however, thrombin activation resulted in a greater release of TGF-beta1 during the first 5 days after activation. The use of type I collagen to activate clotting of PRP may be a safe and effective alternative to bovine thrombin. The use of collagen results in less clot retraction and equal release of PDGF-AB and VEGF compared with currently available methods of clot activation.
ACTIVATION OF PLATELET-RICH PLASMA USING SOLUBLE TYPE I COLLAGEN
Fufa, Duretti; Shealy, Blake; Jacobson, May; Kevy, Sherwin; Murray, Martha M.
2008-01-01
PURPOSE Platelet-rich plasma (PRP) has recently been found to be a useful delivery system for growth factors important in oral tissue healing. However, application of PRP in a liquid form to a wound site within the oral cavity can be complicated by significant loss of the PRP into the surrounding oral space unless gelation via the clotting mechanism is accomplished. Gelation is currently accomplished using bovine thrombin; however, rare but serious complications of this method have led to the search for alternative clotting mechanisms, including the use of soluble collagen as a clotting activator. In this paper, our hypothesis was that soluble Type I collagen would be as effective as bovine thrombin in causing clotting of the PRP and of stimulating growth factor release from the platelets and granulocytes. MATERIALS AND METHODS PRP from human donors was clotted using Type I collagen or bovine thrombin. Clot retraction was determined by measuring clot diameters over time. The release of PDGF-AB, TGF-β1 and VEGF from both types of clots was measured over 10 days using ELISA. RESULTS Clots formed using Type I collagen had far less retraction than those formed with bovine thrombin. Bovine thrombin and Type I collagen stimulated similar release of PDGF-AB and VEGF between 1 and 10 days; however, thrombin activation resulted in a greater release of TGF-β1 during the first five days after activation. CONCLUSIONS The use of Type I collagen to activate clotting of PRP may be a safe and effective alternative to bovine thrombin. The use of collagen results in less clot retraction and equal release of PDGF-AB and VEGF when compared to currently available methods of clot activation. PMID:18355591
Paul, W.; Gresele, P.; Momi, S.; Bianchi, G.; Page, C. P.
1993-01-01
1. Administration of bovine thrombin (100 u kg-1) into the carotid artery of rabbits induces a sustained accumulation of 111 Indium-labelled platelets within the cranial vasculature over the subsequent 3 h. 2. Intracarotid (i.c.) administration of defibrotide (64 mg kg-1 bolus plus 64 mg kg-1 h-1 for 1 h) prior to i.c. thrombin (100 u kg-1) significantly reduces the ability of thrombin to induce cranial thromboembolism in rabbits. 3. Intravenous (i.v.) administration of thrombin (20 u kg-1) in rabbits induces a reversible accumulation of radiolabelled platelets into the thoracic circulation which is significantly reduced by i.v. administration of defibrotide (64 mg kg-1 bolus plus 64 mg kg-1 h-1 for 1 h) prior to i.v. thrombin. In contrast, platelet accumulation in response to adenosine diphosphate (ADP; 20 micrograms kg-1, i.v.) or platelet activating factor (PAF; 50 ng kg-1, i.v.) is not significantly affected by this treatment. 4. Intravenous administration of the nitric oxide (NO)-synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME; 10 mg kg-1) potentiates platelet accumulation induced by low dose thrombin (10 u kg-1, i.v.) within the pulmonary vasculature of rabbits. The potentiated response is significantly abrogated following pretreatment with defibrotide (64 mg kg-1 bolus plus 64 mg kg-1 h-1 for 1 h, i.v.). 5. Intravenous injection of human thrombin (1250 u kg-1) to mice induces death within the majority of animals which is significantly reduced by pretreatment with defibrotide (150-175 mg kg-1, i.v.).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8306102
Oral thrombin inhibitor aggravates platelet adhesion and aggregation during arterial thrombosis.
Petzold, Tobias; Thienel, Manuela; Konrad, Ildiko; Schubert, Irene; Regenauer, Ron; Hoppe, Boj; Lorenz, Michael; Eckart, Annekathrin; Chandraratne, Sue; Lennerz, Carsten; Kolb, Christof; Braun, Daniel; Jamasbi, Janina; Brandl, Richard; Braun, Siegmund; Siess, Wolfgang; Schulz, Christian; Massberg, Steffen
2016-11-30
In patients with atrial fibrillation, oral anticoagulation with oral thrombin inhibitors (OTIs), in contrast to vitamin K antagonists (VKAs), associates with a modest increase in acute coronary syndromes (ACSs). Whether this observation is causatively linked to OTI treatment and, if so, whether OTI action is the result of a lower antithrombotic efficacy of OTI compared to VKA or reflects a yet undefined prothrombotic activity of OTI remain unclear. We analyzed platelet function in patients receiving OTI or dose-adapted VKA under static and flow conditions. In vivo, we studied arterial thrombosis in OTI-, VKA-, and vehicle-treated mice using carotid ligation and wire injury models. Further, we examined thrombus formation on human atherosclerotic plaque homogenates under arterial shear to address the relevance to human pathology. Under static conditions, aggregation in the presence of ristocetin was increased in OTI-treated blood, whereas platelet reactivity and aggregation to other agonists were only marginally affected. Under flow conditions, firm platelet adhesion and thrombus formation on von Willebrand factor, collagen, and human atherosclerotic plaque were increased in the presence of OTI in comparison to VKA. OTI treatment was associated with increased thrombus formation in injured carotid arteries of mice. Inhibition or ablation of GPIbα-thrombin interactions abolished the effect of OTI on thrombus formation, suggesting a mechanistic role of the platelet receptor GPIbα and its thrombin-binding site. The effect of OTI was also abrogated in the presence of aspirin. In summary, OTI treatment has prothrombotic activity that might contribute to the increase in ACS observed clinically in patients. Copyright © 2016, American Association for the Advancement of Science.
Franco, Diogo; Franco, Talita; Schettino, Angélica Maria; Filho, João Medeiros Tavares; Vendramin, Fabiel Spani
2012-10-01
Plasma has been widely studied and used in many different situations to speed up healing with better tissue adherence and hemostasis. Research projects are now attempting to isolate platelet-rich plasma (PRP) and platelet-poor plasma (PPP), making better use of their properties, particularly during operations and for wounds that are slow to heal. In view of the wide diversity of industrial machines and extraction protocols, together with the variety of industrially produced biologic glues, this article suggests an option for obtaining PRP, PPP, and human thrombin for autologous use. A way of obtaining PRP, PPP, and thrombin is reproduced through a protocol defined and established by the authors. Autologous thrombin and plasma were obtained through the collection and successive centrifugation of ten whole blood samples, until the desired hemocomponents were isolated, followed by quantitative and qualitative analyses of the elements obtained. The mean platelet concentration obtained was 6.03 × 10(8) platelets/ml, with a mean thrombin concentration of 33.54 nM, both values compatible with reports in the literature when different protocols are applied. The protocol described is a good option for the preparation and application of PRP, PPP, and autologous thrombin, particularly as they can be obtained simultaneously, eliminating the possibilities of viral contamination and allergic reactions. Moreover, the cost of this procedure is low, it is easy to perform, and replicable. This journal requires that authors assign a level of evidence to each article.
Mlinsek, G; Novic, M; Hodoscek, M; Solmajer, T
2001-01-01
Thrombin is a serine protease which plays important roles in the human body, the key one being the control of thrombus formation. The inhibition of thrombin has become a target for new antithrombotics. The aim of our work was to (i) construct a model which would enable us to predict Ki values for the binding of an inhibitor into the active site of thrombin based on a database of known X-ray structures of inhibitor-enzyme complexes and (ii) to identify the structural and electrostatic characteristics of inhibitor molecules crucially important to their effective binding. To retain as much of the 3D structural information of the bound inhibitor as possible, we implemented the quantum mechanical/molecular mechanical (QM/MM) procedure for calculating the molecular electrostatic potential (MEP) at the van der Waals surfaces of atoms in the protein's active site. The inhibitor was treated quantum mechanically, while the rest of the complex was treated by classical means. The obtained MEP values served as inputs into the counter-propagation artificial neural network (CP-ANN), and a genetic algorithm was subsequently used to search for the combination of atoms that predominantly influences the binding. The constructed CP-ANN model yielded Ki values predictions with a correlation coefficient of 0.96, with Ki values extended over 7 orders of magnitude. Our approach also shows the relative importance of the various amino acid residues present in the active site of the enzyme for inhibitor binding. The list of residues selected by our automatic procedure is in good correlation with the current consensus regarding the importance of certain crucial residues in thrombin's active site.
Muthard, Ryan W.; Welsh, John D.; Brass, Lawrence F.; Diamond, Scott L.
2015-01-01
SUMMARY Objective Biological and physical factors interact to modulate blood response in a wounded vessel, resulting in a hemostatic clot or an occlusive thrombus. Flow and pressure differential (ΔP) across the wound from the lumen to the extravascular compartment may impact hemostasis and the observed core/shell architecture. We examined physical and biological factors responsible for regulating thrombin mediated clot growth. Approach and Results Using factor XIIa-inhibited human whole blood perfused in a microfluidic device over collagen/tissue factor at controlled wall shear rate and ΔP, we found thrombin to be highly localized in the P-selectin+ core of hemostatic clots. Increasing ΔP from 9 to 29 mm-Hg (wall shear rate = 400 s−1) reduced P-selectin+ core size and total clot size due to enhanced extravasation of thrombin. Blockade of fibrin polymerization with 5 mM GPRP dysregulated hemostasis by enhancing both P-selectin+ core size and clot size at 400 s−1 (20 mm-Hg). For whole blood flow (no GPRP), the thickness of the P-selectin-negative shell was reduced under arterial conditions (2000 s−1, 20 mm-Hg). Consistent with the antithrombin-1 activity of fibrin implicated with GPRP, anti-γ’-fibrinogen antibody enhanced core-localized thrombin, core size, and overall clot size, especially at venous (100 s−1) but not arterial wall shear rates (2000 s−1). Pathological shear (15,000 s−1) and GPRP synergized to exacerbate clot growth. Conclusions Hemostatic clotting was dependent on core-localized thrombin that (1) triggered platelet P-selectin display and (2) was highly regulated by fibrin and the trans-clot ΔP. Also, γ’-fibrinogen had a role in venous but not arterial conditions. PMID:25614284
Stokol, Tracy; Serpa, Priscila Beatriz da Silva; Zahid, Muhammad N; Brooks, Marjory B
2016-01-01
Equid herpes virus type-1 (EHV-1) is a major pathogen of horses, causing abortion storms and outbreaks of herpes virus myeloencephalopathy. These clinical syndromes are partly attributed to ischemic injury from thrombosis in placental and spinal vessels. The mechanism of thrombosis in affected horses is unknown. We have previously shown that EHV-1 activates platelets through virus-associated tissue factor-initiated thrombin generation. Activated platelets participate in thrombus formation by providing a surface to localize coagulation factor complexes that amplify and propagate thrombin generation. We hypothesized that coagulation inhibitors that suppress thrombin generation (heparins) or platelet inhibitors that impede post-receptor thrombin signaling [phosphodiesterase (PDE) antagonists] would inhibit EHV-1-induced platelet activation ex vivo . We exposed platelet-rich plasma (PRP) collected from healthy horses to the RacL11 abortigenic and Ab4 neuropathogenic strains of EHV-1 at 1 plaque-forming unit/cell in the presence or absence of unfractionated heparin (UFH), low-molecular-weight heparin (LMWH) or the PDE inhibitors, 3-isobutyl-1methylxanthine (IBMX), and cilostazol. We assessed platelet activation status in flow cytometric assays by measuring P-selectin expression. We found that all of the inhibitors blocked EHV-1- and thrombin-induced platelet activation in a dose-dependent manner. Platelet activation in PRP was maximally inhibited at concentrations of 0.05 U/mL UFH and 2.5 μg/mL LMWH. These concentrations represented 0.1-0.2 U/mL anti-factor Xa activity measured in chromogenic assays. Both IBMX and cilostazol showed maximal inhibition of platelet activation at the highest tested concentration of 50 μM, but inhibition was lower than that seen with UFH and LMWH. Our results indicate that heparin anticoagulants and strong non-selective (IBMX) or isoenzyme-3 selective (cilostazol) PDE antagonists inhibit ex vivo EHV-1-induced platelet activation. These drugs have potential as adjunctive therapy to reduce the serious complications associated with EHV-1-induced thrombosis. Treatment trials are warranted to determine whether these drugs yield clinical benefit when administered to horses infected with EHV-1.
Identification of protein–protein interfaces by decreased amide proton solvent accessibility
Mandell, Jeffrey G.; Falick, Arnold M.; Komives, Elizabeth A.
1998-01-01
Matrix-assisted laser desorption ionization–time-of-flight mass spectrometry was used to identify peptic fragments from protein complexes that retained deuterium under hydrogen exchange conditions due to decreased solvent accessibility at the interface of the complex. Short deuteration times allowed preferential labeling of rapidly exchanging surface amides so that primarily solvent accessibility changes and not conformational changes were detected. A single mass spectrum of the peptic digest mixture was analyzed to determine the deuterium content of all proteolytic fragments of the protein. The protein–protein interface was reliably indicated by those peptides that retained more deuterons in the complex compared with control experiments in which only one protein was present. The method was used to identify the kinase inhibitor [PKI(5–24)] and ATP-binding sites in the cyclic-AMP-dependent protein kinase. Three overlapping peptides identified the ATP-binding site, three overlapping peptides identified the glycine-rich loop, and two peptides identified the PKI(5–24)-binding site. A complex of unknown structure also was analyzed, human α-thrombin bound to an 83-aa fragment of human thrombomodulin [TMEGF(4–5)]. Five peptides from thrombin showed significantly decreased solvent accessibility in the complex. Three peptides identified the anion-binding exosite I, confirming ligand competition experiments. Two peptides identified a new region of thrombin near the active site providing a potential mechanism of how thrombomodulin alters thrombin substrate specificity. PMID:9843953
Rigidification of the autolysis loop enhances Na[superscript +] binding to thrombin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pozzi, Nicola; Chen, Raymond; Chen, Zhiwei
2011-09-20
Binding of Na{sup +} to thrombin ensures high activity toward physiological substrates and optimizes the procoagulant and prothrombotic roles of the enzyme in vivo. Under physiological conditions of pH and temperature, the binding affinity of Na{sup +} is weak due to large heat capacity and enthalpy changes associated with binding, and the K{sub d} = 80 mM ensures only 64% saturation of the site at the concentration of Na{sup +} in the blood (140 mM). Residues controlling Na{sup +} binding and activation have been identified. Yet, attempts to improve the interaction of Na{sup +} with thrombin and possibly increase catalyticmore » activity under physiological conditions have so far been unsuccessful. Here we report how replacement of the flexible autolysis loop of human thrombin with the homologous rigid domain of the murine enzyme results in a drastic (up to 10-fold) increase in Na{sup +} affinity and a significant improvement in the catalytic activity of the enzyme. Rigidification of the autolysis loop abolishes the heat capacity change associated with Na{sup +} binding observed in the wild-type and also increases the stability of thrombin. These findings have general relevance to protein engineering studies of clotting proteases and trypsin-like enzymes.« less
2013-01-01
Background Dengue cases have been classified according to disease severity into dengue fever (DF) and dengue hemorrhagic fever (DHF). Although DF is considered a non-severe manifestation of dengue, it has been recently demonstrated that DF represents a heterogeneous group of patients with varied clinical complications and grades of severity. Particularly, bleeding complications, commonly associated to DHF, can be detected in half of the patients with DF. Although a frequent complication, the causes of bleedings in DF have not been fully addressed. Thus, the aim of this study was to perform a comprehensive evaluation of possible pathophysiological mechanisms that could contribute to the bleeding tendency observed in patients with DF. Methods This is a case–control study that enrolled adults with DF without bleeding and adults with DF and bleeding complications during the defervescence period. Healthy controls were also included. Peripheral blood counts, inflammatory, fibrinolysis and endothelial cell activation markers, and thrombin generation were evaluated in patients and controls. Results We included 33 adults with DF without complications, 26 adults with DF and bleeding and 67 healthy controls. Bleeding episodes were mild in 15 (57.6%) and moderate in 11 (42.4%) patients, 8 (30.7%) patients had bleedings in multiple sites. Patients with DF and bleedings had lower platelet counts than DF without bleeding (median = 19,500 vs. 203,500/mm3, P < 0,0001). Levels of TNF-α, thrombomodulin and VWF were significantly increased in the two dengue groups than in healthy controls, but similar between patients with and without bleedings. Plasma levels of tPA and D-dimer were significantly increased in patients with bleedings (median tPA levels were 4.5, 5.2, 11.7 ng/ml, P < 0.0001 and median D-dimer levels were 515.5, 1028 and 1927 ng/ml, P < 0.0001). The thrombin generation test showed that patients with bleeding complications had reduced thrombin formation (total thrombin generated were 3753.4 in controls, 3367.5 in non-bleeding and 2274.5nM in bleeding patients, P < 0.002). Conclusions DF can manifest with spontaneous bleedings, which are associated with specific coagulation and fibrinolysis profiles that are not significantly present in DF without this complication. Particularly, thrombocytopenia, excessive fibrinolysis and reduced thrombin formation may contribute to the bleeding manifestations in DF. PMID:23890510
Orsi, Fernanda A; Angerami, Rodrigo N; Mazetto, Bruna M; Quaino, Susan K P; Santiago-Bassora, Fernanda; Castro, Vagner; de Paula, Erich V; Annichino-Bizzacchi, Joyce M
2013-07-28
Dengue cases have been classified according to disease severity into dengue fever (DF) and dengue hemorrhagic fever (DHF). Although DF is considered a non-severe manifestation of dengue, it has been recently demonstrated that DF represents a heterogeneous group of patients with varied clinical complications and grades of severity. Particularly, bleeding complications, commonly associated to DHF, can be detected in half of the patients with DF. Although a frequent complication, the causes of bleedings in DF have not been fully addressed. Thus, the aim of this study was to perform a comprehensive evaluation of possible pathophysiological mechanisms that could contribute to the bleeding tendency observed in patients with DF. This is a case-control study that enrolled adults with DF without bleeding and adults with DF and bleeding complications during the defervescence period. Healthy controls were also included. Peripheral blood counts, inflammatory, fibrinolysis and endothelial cell activation markers, and thrombin generation were evaluated in patients and controls. We included 33 adults with DF without complications, 26 adults with DF and bleeding and 67 healthy controls. Bleeding episodes were mild in 15 (57.6%) and moderate in 11 (42.4%) patients, 8 (30.7%) patients had bleedings in multiple sites. Patients with DF and bleedings had lower platelet counts than DF without bleeding (median = 19,500 vs. 203,500/mm3, P < 0,0001). Levels of TNF-α, thrombomodulin and VWF were significantly increased in the two dengue groups than in healthy controls, but similar between patients with and without bleedings. Plasma levels of tPA and D-dimer were significantly increased in patients with bleedings (median tPA levels were 4.5, 5.2, 11.7 ng/ml, P < 0.0001 and median D-dimer levels were 515.5, 1028 and 1927 ng/ml, P < 0.0001). The thrombin generation test showed that patients with bleeding complications had reduced thrombin formation (total thrombin generated were 3753.4 in controls, 3367.5 in non-bleeding and 2274.5nM in bleeding patients, P < 0.002). DF can manifest with spontaneous bleedings, which are associated with specific coagulation and fibrinolysis profiles that are not significantly present in DF without this complication. Particularly, thrombocytopenia, excessive fibrinolysis and reduced thrombin formation may contribute to the bleeding manifestations in DF.
Differential response of normal human fibroblasts to bombesin versus thrombin.
Hendey, B; Mamrack, M D
1988-09-01
Normal human diploid fibroblasts (WS-1 cells) were growth-arrested under serum-free conditions for 48 hr. The addition of fetal bovine serum (10% final concentration) to these cells stimulated [3H]-thymidine incorporation into DNA and phosphoinositide breakdown over nine-fold. Thrombin, at concentrations above 0.1 unit/ml (u/ml), was also effective at stimulating DNA synthesis and phosphoinositide breakdown as well as causing a rise in intracellular pH. In contrast, the peptide bombesin (concentrations ranging from 1 nM to 100 nM) stimulated phosphoinositide breakdown but did not enhance DNA synthesis or cause an increase in cytoplasmic pH. The time course of accumulation of inositol phosphates differed in response to these agents. The thrombin effect peaked rapidly and leveled off after 5 min while the bombesin effect showed a constant increase for 30 min. Serum showed an intermediate response. The different rates of inositol phosphate accumulation observed with the two growth factors is viewed as representing a difference in the mechanism of phosphoinositide turnover. The relationship between the difference in phosphoinositide turnover and the initiation of DNA synthesis is also discussed.
NASA Astrophysics Data System (ADS)
Kayton, Mark L.; Libutti, Steven K.; Bessler, Marc; Allendorf, John D. F.; Eiref, Simon D.; Marx, Gerard; Mou, Xiaode; Morales, Alfredo M.; Treat, Michael R.; Nowygrod, Roman
1994-09-01
To determine the relative strengths of various biologic adhesives at several timepoints, we compared thrombin-activated SD (solvent-detergent treated) cryoprecipitate with laser- activated SD cryoprecipitate and a laser-activated, albumin-based glue. Male Sprague-Dawley rats (n equals 79) received four, 3-cm, dorsal skin incisions which were closed with either laser- activated cryoprecipitate, laser-activated albumin solder, thrombin-activated cryoprecipitate, or standard skin staples. The cryoprecipitate was derived from pooled human plasma and was treated with a solvent-detergent process, rendering it free of envelope-coated viruses (i.e., HBV, HIV). An 808-nm diode laser was used to activate each solder with an average duration of exposure of 75 seconds per incision. Animals were sacrificed for evaluation of wound tensile strength and histology at 0 hours, 2 hours, 4 hours, and 4 days. At all timepoints tested, laser-activated solders were significantly stronger than thrombin-activated cryoprecipitate (p < 0.03) and control wounds (p < 0.003). There was no significant difference in tensile strength between the two types of laser-activated solder at any timepoint.
van Beers, Eduard J.; Schaap, Marianne C.L.; Berckmans, René J.; Nieuwland, Rienk; Sturk, Augueste; van Doormaal, Frederiek F.; Meijers, Joost C.M.; Biemond, Bart J.
2009-01-01
Background Sickle cell disease is characterized by a hypercoagulable state as a result of multiple factors, including chronic hemolysis and circulating cell-derived microparticles. There is still no consensus on the cellular origin of such microparticles and the exact mechanism by which they may enhance coagulation activation in sickle cell disease. Design and Methods In the present study, we analyzed the origin of circulating microparticles and their procoagulant phenotype during painful crises and steady state in 25 consecutive patients with sickle cell disease. Results The majority of microparticles originated from platelets (GPIIIa,CD61) and erythrocytes (glycophorin A,CD235), and their numbers did not differ significantly between crisis and steady state. Erythrocyte-derived microparticles strongly correlated with plasma levels of markers of hemolysis, i.e. hemoglobin (r=−0.58, p<0.001) and lactate dehydrogenase (r=0.59, p<0.001), von Willebrand factor as a marker of platelet/endothelial activation (r=0.44, p<0.001), and D-dimer and prothrombin fragment F1+2 (r=0.52, p<0.001 and r=0.59, p<0.001, respectively) as markers of fibrinolysis and coagulation activation. Thrombin generation depended on the total number of microparticles (r=0.63, p<0.001). Anti-human factor XI inhibited thrombin generation by about 50% (p<0.001), whereas anti-human factor VII was ineffective (p>0.05). The extent of factor XI inhibition was associated with erythrocyte-derived microparticles (r=0.50, p=0.023). Conclusions We conclude that the procoagulant state in sickle cell disease is partially explained by the factor XI-dependent procoagulant properties of circulating erythrocyte-derived microparticles. PMID:19815831
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldassare, J.J.; Henderson, P.A.; Fisher, G.J.
1989-01-10
The effects of thrombin and GTP{gamma}S on the hydrolysis of phosphoinositides by membrane-associated phospholipase C (PLC) from human platelets were examined with endogenous ({sup 3}H)inositol-labeled membranes or with lipid vesicles containing either ({sup 3}H)phosphatidylinositol or ({sup 3}H)phosphatidylinositol 4,5-bisphosphate. GTP{gamma}S (1 {mu}M) or thrombin (1 unit/mL) did not stimulate release of inositol trisphosphate (IP{sub 3}), inositol bisphosphate (IP{sub 2}), or inositol phosphate (IP) from ({sup 3}H)inositol-labeled membranes. IP{sub 2} and IP{sub 3}, but not IP, from ({sup 3}H)inositol-labeled membranes were, however, stimulated 3-fold by GTP{gamma}S (1 {mu}M) plus thrombin (1 unit/mL). A higher concentration of GTP{gamma}S (100 {mu}M) alone also stimulatedmore » IP{sub 2} and IP{sub 3}, but not IP, release. In the presence of 1 mM calcium, release of IP{sub 2} and IP{sub 3} was increased 6-fold over basal levels; however, formation of IP was not observed. At submicromolar calcium concentration, hydrolysis of exogenous phosphatidylinositol 4,5-bisphosphate (PIP{sub 2}) by platelet membrane associated PLC was also markedly enhanced by GTP{gamma}S (100 {mu}M) or GTP{gamma}S (1 {mu}M) plus thrombin (1 unit/mL). Under identical conditions, exogenous phosphatidylinositol (PI) was not hydrolyzed. The same substrate specificity was observed when the membrane-associated PLC was activated with 1 mM calcium. Thrombin-induced hydrolysis of PIP{sub 2} was inhibited by treatment of the membranes with pertussis toxin or pretreatment of intact platelets with 12-O-tetradecanoyl-13-acetate (TPA) prior to preparation of membranes. Pertussis toxin did not inhibit GTP{gamma}S (100 {mu}M) or calcium (1 mM) dependent PIP{sub 2} breakdown, while TPA inhibited GTP{gamma}S-dependent but not calcium-dependent phospholipase C activity.« less
Wood, Jeremy P.; Silveira, Jay R.; Maille, Nicole M.; Haynes, Laura M.
2011-01-01
Effective hemostasis relies on the timely formation of α-thrombin via prothrombinase, a Ca2+-dependent complex of factors Va and Xa assembled on the activated platelet surface, which cleaves prothrombin at Arg271 and Arg320. Whereas initial cleavage at Arg271 generates the inactive intermediate prethrombin-2, initial cleavage at Arg320 generates the enzymatically active intermediate meizothrombin. To determine which of these intermediates is formed when prothrombin is processed on the activated platelet surface, the cleavage of prothrombin, and prothrombin mutants lacking either one of the cleavage sites, was monitored on the surface of either thrombin- or collagen-activated platelets. Regardless of the agonist used, prothrombin was initially cleaved at Arg271 generating prethrombin-2, with α-thrombin formation quickly after via cleavage at Arg320. The pathway used was independent of the source of factor Va (plasma- or platelet-derived) and was unaffected by soluble components of the platelet releasate. When both cleavage sites are presented within the same substrate molecule, Arg271 effectively competes against Arg320 (with an apparent IC50 = 0.3μM), such that more than 90% to 95% of the initial cleavage occurs at Arg271. We hypothesize that use of the prethrombin-2 pathway serves to optimize the procoagulant activity expressed by activated platelets, by limiting the anticoagulant functions of the alternate intermediate, meizothrombin. PMID:21131592
Wood, Jeremy P; Silveira, Jay R; Maille, Nicole M; Haynes, Laura M; Tracy, Paula B
2011-02-03
Effective hemostasis relies on the timely formation of α-thrombin via prothrombinase, a Ca(2+)-dependent complex of factors Va and Xa assembled on the activated platelet surface, which cleaves prothrombin at Arg271 and Arg320. Whereas initial cleavage at Arg271 generates the inactive intermediate prethrombin-2, initial cleavage at Arg320 generates the enzymatically active intermediate meizothrombin. To determine which of these intermediates is formed when prothrombin is processed on the activated platelet surface, the cleavage of prothrombin, and prothrombin mutants lacking either one of the cleavage sites, was monitored on the surface of either thrombin- or collagen-activated platelets. Regardless of the agonist used, prothrombin was initially cleaved at Arg271 generating prethrombin-2, with α-thrombin formation quickly after via cleavage at Arg320. The pathway used was independent of the source of factor Va (plasma- or platelet-derived) and was unaffected by soluble components of the platelet releasate. When both cleavage sites are presented within the same substrate molecule, Arg271 effectively competes against Arg320 (with an apparent IC(50) = 0.3μM), such that more than 90% to 95% of the initial cleavage occurs at Arg271. We hypothesize that use of the prethrombin-2 pathway serves to optimize the procoagulant activity expressed by activated platelets, by limiting the anticoagulant functions of the alternate intermediate, meizothrombin.
Correction of microplate location effects improves performance of the thrombin generation test
2013-01-01
Background Microplate-based thrombin generation test (TGT) is widely used as clinical measure of global hemostatic potential and it becomes a useful tool for control of drug potency and quality by drug manufactures. However, the convenience of the microtiter plate technology can be deceiving: microplate assays are prone to location-based variability in different parts of the microtiter plate. Methods In this report, we evaluated the well-to-well consistency of the TGT variant specifically applied to the quantitative detection of the thrombogenic substances in the immune globulin product. We also studied the utility of previously described microplate layout designs in the TGT experiment. Results Location of the sample on the microplate (location effect) contributes to the variability of TGT measurements. Use of manual pipetting techniques and applications of the TGT to the evaluation of procoagulant enzymatic substances are especially sensitive. The effects were not sensitive to temperature or choice of microplate reader. Smallest location effects were observed with automated dispenser-based calibrated thrombogram instrument. Even for an automated instrument, the use of calibration curve resulted in up to 30% bias in thrombogenic potency assignment. Conclusions Use of symmetrical version of the strip-plot layout was demonstrated to help to minimize location artifacts even under the worst-case conditions. Strip-plot layouts are required for quantitative thrombin-generation based bioassays used in the biotechnological field. PMID:23829491
Correction of microplate location effects improves performance of the thrombin generation test.
Liang, Yideng; Woodle, Samuel A; Shibeko, Alexey M; Lee, Timothy K; Ovanesov, Mikhail V
2013-07-05
Microplate-based thrombin generation test (TGT) is widely used as clinical measure of global hemostatic potential and it becomes a useful tool for control of drug potency and quality by drug manufactures. However, the convenience of the microtiter plate technology can be deceiving: microplate assays are prone to location-based variability in different parts of the microtiter plate. In this report, we evaluated the well-to-well consistency of the TGT variant specifically applied to the quantitative detection of the thrombogenic substances in the immune globulin product. We also studied the utility of previously described microplate layout designs in the TGT experiment. Location of the sample on the microplate (location effect) contributes to the variability of TGT measurements. Use of manual pipetting techniques and applications of the TGT to the evaluation of procoagulant enzymatic substances are especially sensitive. The effects were not sensitive to temperature or choice of microplate reader. Smallest location effects were observed with automated dispenser-based calibrated thrombogram instrument. Even for an automated instrument, the use of calibration curve resulted in up to 30% bias in thrombogenic potency assignment. Use of symmetrical version of the strip-plot layout was demonstrated to help to minimize location artifacts even under the worst-case conditions. Strip-plot layouts are required for quantitative thrombin-generation based bioassays used in the biotechnological field.
Neri, Tommaso; Lombardi, Stefania; Faìta, Francesca; Petrini, Silvia; Balìa, Cristina; Scalise, Valentina; Pedrinelli, Roberto; Paggiaro, Pierluigi; Celi, Alessandro
2016-08-01
Pirfenidone is a drug recently approved for idiopathic pulmonary fibrosis but its mechanisms of action are partially unknown. We have previously demonstrated that the airways of patients with idiopathic pulmonary fibrosis contain procoagulant microparticles that activate coagulation factor X to its active form, Xa, a proteinase that signals fibroblast growth and differentiation, thus potentially contributing to the pathogenesis of the disease. We also reported that in vitro exposure of human alveolar cells to H2O2 causes microparticle generation. Since p38 activation is involved in microparticle generation in some cell models and p38 inhibition is one of the mechanisms of action of pirfenidone, we investigated the hypothesis that H2O2-induced generation of microparticles by alveolar cells is dependent on p38 phosphorylation and is inhibited by pirfenidone. H2O2 stimulation of alveolar cells caused p38 phosphorylation that was inhibited by pirfenidone. The drug also inhibited H2O2 induced microparticle generation as assessed by two independent methods (solid phase thrombin generation and flow cytometry). The shedding of microparticle-bound tissue factor activity was also inhibited by pirfenidone. Inhibition of p38-mediated generation of procoagulant microparticle is a previously unrecognized mechanism of action of the antifibrotic drug, pirfenidone. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sun, Yuanling; Wang, Yanhui; Li, Jianbo; Ding, Chaofan; Lin, Yanna; Sun, Weiyan; Luo, Chuannan
2017-11-01
In this work, an ultrasensitive chemiluminescence (CL) aptasensor was prepared for thrombin detection based on iron porphyrin catalyzing luminol - hydrogen peroxide luminescence under alkaline conditions, and iron porphyrin was desorbed from chitosan modified magnetic oxide graphene composite (CS@Fe 3 O 4 @GO). Firstly, CS@Fe 3 O 4 @GO was prepared. CS@Fe 3 O 4 @GO has advantages of the good biocompatibility and positively charged on its surface of CS, the large specific surface area of GO and the easy separation characteristics of Fe 3 O 4 . GO, Fe 3 O 4 and CS@Fe 3 O 4 @GO were confirmed by transmission electron microscopy (TEM), scanning electron microscope (SEM), fourier transform infrared (FTIR) and X-ray powder diffraction (XRD). Then, thrombin aptamer (T-Apt) and hemin (HM, an iron porphyrin) were sequentially modified on the surface of CS@Fe 3 O 4 @GO to form CS@Fe 3 O 4 @GO@T-Apt@HM. The immobilization properties of CS@Fe 3 O 4 @GO to T-Apt and adsorption properties of CS@Fe 3 O 4 @GO@T-Apt to HM were sequentially researched through the curves of kinetics and the curves of thermodynamics. When thrombin existed in solutions, HM was desorbed from the surface of CS@Fe 3 O 4 @GO@T-Apt@HM owing to the strong specific recognition ability between thrombin and T-Apt, causing the changes of CL signal. Under optimized CL conditions, thrombin could be measured with the linear concentration range of 5.0×10 -15 -2.5×10 -10 mol/L. The detection limit was 1.5×10 -15 mol/L (3δ) while the relative standard deviation (RSD) was 3.2%. Finally, the CS@Fe 3 O 4 @GO@T-Apt@HM-CL aptasensor was used for the determination of thrombin in practical serum samples and recoveries ranged from 95% to 103%. Those satisfactory results revealed potential application of the CS@Fe 3 O 4 @GO@T-Apt@HM-CL aptasensor for thrombin detection in monitoring and diagnosis of human blood diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
Weisshaar, Stefan; Litschauer, Brigitte; Bucher, Sebastian; Riesenhuber, Martin; Kapiotis, Stylianos; Kyrle, Paul Alexander; Wolzt, Michael
2016-01-01
Abstract Background: There is a need to optimize pharmacological treatment in patients with acute coronary syndrome and concomitant atrial fibrillation, in particular with newer antithrombotic medicines. We have therefore studied if dual or triple combination of antithrombotic agents exert similar effects on coagulation activation in an in vivo model in the skin microvasculature and in an ex vivo perfusion chamber. Methods and Results: Shed blood platelet activation (β-thromboglobulin [β-TG]), thrombin generation (thrombin-antithrombin complex [TAT]) and volume as well as markers of thrombus size (D-dimer) and its platelet content (P-selectin) in a perfusion chamber were studied in a sequential, open-label, parallel group trial in 40 healthy male volunteers (n = 20 per group). Subjects received ticagrelor and apixaban without or with acetylsalicylic acid (ASA). Outcome parameters were assessed at 3 hours after therapy dosing, and at steady-state trough and peak conditions. A triple or dual therapy induced a comparable decrease in shed blood β-TG at 3 hours after therapy dosing but was more pronounced at steady-state conditions with the more intense treatment combination. During both antithrombotic regimens a similarly sustained inhibition in thrombin generation was observed which was accompanied by comparable increases in shed blood volume. In contrast, no treatment effect could be observed in the perfusion chamber experiment. Conclusion: Ticagrelor and apixaban with or without ASA inhibit platelet activation and thrombin formation in vivo in healthy subjects. Platelet inhibition was greater at steady-state conditions after triple therapy administration. PMID:27399131
Fazal, Fabeha; Bijli, Kaiser M.; Minhajuddin, Mohd; Rein, Theo; Finkelstein, Jacob N.; Rahman, Arshad
2009-01-01
Activation of RhoA/Rho-associated kinase (ROCK) pathway and the associated changes in actin cytoskeleton induced by thrombin are crucial for activation of NF-κB and expression of its target gene ICAM-1 in endothelial cells. However, the events acting downstream of RhoA/ROCK to mediate these responses remain unclear. Here, we show a central role of cofilin-1, an actin-binding protein that promotes actin depolymerization, in linking RhoA/ROCK pathway to dynamic alterations in actin cytoskeleton that are necessary for activation of NF-κB and thereby expression of ICAM-1 in these cells. Stimulation of human umbilical vein endothelial cells with thrombin resulted in Ser3 phosphorylation/inactivation of cofilin and formation of actin stress fibers in a ROCK-dependent manner. RNA interference knockdown of cofilin-1 stabilized the actin filaments and inhibited thrombin- and RhoA-induced NF-κB activity. Similarly, constitutively inactive mutant of cofilin-1 (Cof1-S3D), known to stabilize the actin cytoskeleton, inhibited NF-κB activity by thrombin. Overexpression of wild type cofilin-1 or constitutively active cofilin-1 mutant (Cof1-S3A), known to destabilize the actin cytoskeleton, also impaired thrombin-induced NF-κB activity. Additionally, depletion of cofilin-1 was associated with a marked reduction in ICAM-1 expression induced by thrombin. The effect of cofilin-1 depletion on NF-κB activity and ICAM-1 expression occurred downstream of IκBα degradation and was a result of impaired RelA/p65 nuclear translocation and consequently, RelA/p65 binding to DNA. Together, these data show that cofilin-1 occupies a central position in RhoA-actin pathway mediating nuclear translocation of RelA/p65 and expression of ICAM-1 in endothelial cells. PMID:19483084
Fazal, Fabeha; Bijli, Kaiser M; Minhajuddin, Mohd; Rein, Theo; Finkelstein, Jacob N; Rahman, Arshad
2009-07-31
Activation of RhoA/Rho-associated kinase (ROCK) pathway and the associated changes in actin cytoskeleton induced by thrombin are crucial for activation of NF-kappaB and expression of its target gene ICAM-1 in endothelial cells. However, the events acting downstream of RhoA/ROCK to mediate these responses remain unclear. Here, we show a central role of cofilin-1, an actin-binding protein that promotes actin depolymerization, in linking RhoA/ROCK pathway to dynamic alterations in actin cytoskeleton that are necessary for activation of NF-kappaB and thereby expression of ICAM-1 in these cells. Stimulation of human umbilical vein endothelial cells with thrombin resulted in Ser(3) phosphorylation/inactivation of cofilin and formation of actin stress fibers in a ROCK-dependent manner. RNA interference knockdown of cofilin-1 stabilized the actin filaments and inhibited thrombin- and RhoA-induced NF-kappaB activity. Similarly, constitutively inactive mutant of cofilin-1 (Cof1-S3D), known to stabilize the actin cytoskeleton, inhibited NF-kappaB activity by thrombin. Overexpression of wild type cofilin-1 or constitutively active cofilin-1 mutant (Cof1-S3A), known to destabilize the actin cytoskeleton, also impaired thrombin-induced NF-kappaB activity. Additionally, depletion of cofilin-1 was associated with a marked reduction in ICAM-1 expression induced by thrombin. The effect of cofilin-1 depletion on NF-kappaB activity and ICAM-1 expression occurred downstream of IkappaBalpha degradation and was a result of impaired RelA/p65 nuclear translocation and consequently, RelA/p65 binding to DNA. Together, these data show that cofilin-1 occupies a central position in RhoA-actin pathway mediating nuclear translocation of RelA/p65 and expression of ICAM-1 in endothelial cells.
Russo Krauss, Irene; Napolitano, Valeria; Petraccone, Luigi; Troisi, Romualdo; Spiridonova, Vera; Mattia, Carlo Andrea; Sica, Filomena
2018-02-01
Recently, mixed duplex/quadruplex oligonucleotides have attracted great interest for use as biomedical aptamers. In the case of anti-thrombin aptamers, the addition of duplex-forming sequences to a G-quadruplex module identical or very similar to the best-known G-quadruplex of the Thrombin Binding Aptamer (HD1) results in new or improved biological properties, such as higher activity or different recognition properties with respect to HD1. Remarkably, this bimodular fold was hypothesized, based on its sequence, for the only anti-thrombin aptamer in advanced clinical trial, NU172. Whereas cation modulation of G-quadruplex conformation and stability is well characterized, only few data from similar analysis on duplex/quadruplex oligonucleotides exist. Here we have performed a characterization of structure and stability of four different duplex/quadruplex anti-thrombin aptamers, including NU172, in the presence of different cations and in physiological-mimicking conditions in comparison to HD1, by means of spectroscopic techniques (UV and circular dichroism) and differential scanning calorimetry. Our data show a strong reciprocal influence of each domain on the stability of the other and in particular suggest a stabilizing effect of the duplex region in the presence of solutions mimicking the physiological conditions, strengthening the idea that bimodular aptamers present better therapeutic potentialities than those containing a single G-quadruplex domain. Copyright © 2017 Elsevier B.V. All rights reserved.
Fernández, Paula V.; Quintana, Irene; Cerezo, Alberto S.; Caramelo, Julio J.; Pol-Fachin, Laercio; Verli, Hugo; Estevez, José M.; Ciancia, Marina
2013-01-01
A highly sulfated 3-linked β-arabinan (Ab1) with arabinose in the pyranose form was obtained from green seaweed Codium vermilara (Bryopsidales). It comprised major amounts of units sulfated on C-2 and C-4 and constitutes the first polysaccharide of this type isolated in the pure form and fully characterized. Ab1 showed anticoagulant activity by global coagulation tests. Less sulfated arabinans obtained from the same seaweed have less or no activity. Ab1 exerts its activity through direct and indirect (antithrombin- and heparin cofactor II-mediated) inhibition of thrombin. Direct thrombin inhibition was studied in detail. By native PAGE, it was possible to detect formation of a complex between Ab1 and human thrombin (HT). Ab1 binding to HT was measured by fluorescence spectroscopy. CD spectra of the Ab1 complex suggested that ligand binding induced a small conformational change on HT. Ab1-thrombin interactions were studied by molecular dynamic simulations using the persulfated octasaccharide as model compound. Most carbohydrate-protein contacts would occur by interaction of sulfate groups with basic amino acid residues on the surface of the enzyme, more than 60% of them being performed by the exosite 2-composing residues. In these interactions, the sulfate groups on C-2 were shown to interact more intensely with the thrombin structure. In contrast, the disulfated oligosaccharide does not promote major conformational modifications at the catalytic site when complexed to exosite 1. These results show that this novel pyranosic sulfated arabinan Ab1 exerts its anticoagulant activity by a mechanism different from those found previously for other sulfated polysaccharides and glycosaminoglycans. PMID:23161548
Thrombin-induced glucose transport via Src–p38 MAPK pathway in vascular smooth muscle cells
Kanda, Yasunari; Watanabe, Yasuhiro
2005-01-01
Thrombin is a mitogen for vascular smooth muscle cells (VSMC) and has been implicated in the development in atherosclerosis. However, little is known about the role of thrombin in glucose transport in VSMC. In this study, we examined the effect of thrombin on glucose uptake in rat A10 VSMC. We found that thrombin induced glucose uptake in a dose-dependent manner while hirudin, a potent thrombin inhibitor, prevented glucose uptake in the cells. PP2, a selective inhibitor of Src, prevented the thrombin-induced glucose uptake, but did not affect insulin-induced uptake. We also examined whether mitogen-activated protein kinase (MAPK) inhibitors influenced thrombin-induced glucose uptake. The p38 MAPK inhibitor (SB203580) inhibited thrombin-induced glucose uptake, but the MEK inhibitor (PD98059) did not. In contrast to thrombin, SB203580 did not affect insulin-induced glucose uptake. Furthermore, thrombin failed to translocate the insulin-sensitive glucose transporter GLUT4. These findings suggest that thrombin stimulates glucose transport via Src and subsequent p38 MAPK activation in VSMC. PMID:15951827
Theusinger, Oliver M; Goslings, David; Studt, Jan-Dirk; Brand-Staufer, Brigitte; Seifert, Burkhardt; Spahn, Donat R; Frey, Beat M
2017-03-01
Different types of fresh-frozen plasma (FFP) exist, and the concentrations of plasma proteins vary between individuals and blood groups. Furthermore, processing may also influence the content. Quarantine-stored plasma (qFFP) and plasma that was pathogen-reduced using blood-safety (Intercept) technology (piFFP) were analyzed regarding procoagulant and anticoagulant hemostasis proteins, including endogenous thrombin (thrombin-generation) potential (ETP). Thirty-five samples of each type of FFP were analyzed using only male Blood Group O donors. FFP units were stored frozen for comparable periods of time before plasma protein content was assessed. Once the units were thawed, all tests were completed within 4 hours. The results are presented as means ± standard deviations or as median (minimum; maximum) and were compared using independent-sample t tests (significance, p < 0.01). Significantly higher concentrations of adintegrin-like and metalloprotease with thrombospondin type-13 motifs (ADAMTS13), fibrinogen, Factor (F)V, FVIII, FXIII, protein S, protein S activity, antithrombin, microvesicle (<900 nm), and α2 antiplasmin were observed in qFFP. The variability of factors was significantly lower in piFFP. Tissue factor (TF) at 1 picomolar (pM) exhibited significantly longer lag time, a lower peak, lower ETP, and a lower velocity index in qFFP compared with piFFP. In TF at 5 pM, significant differences in lag time (longer in qFFP), velocity index (lower in qFFP), and peak (lower in qFFP) were observed. Rotational thromboelastometry revealed a significantly longer (p = 0.002) clot-formation time with intrinsic thromboelastometry for piFFP and a significantly shorter clotting time (p = 0.004) with thromboelastometry fibrinogen testing for piFFP. Pathogen reduction reduces procoagulant and anticoagulant coagulation factors as well as variability. A thrombin-generation assay showed no reduced ETP and no supraphysiological thrombin generation. None of the FFP preparations is likely to be effective for treating fibrinogen deficiency. © 2016 AABB.
Cheung, Y W; Barco, S; Hutten, B A; Meijers, J C M; Middeldorp, S; Coppens, M
2015-10-01
Four-factor prothrombin complex concentrate (PCC) (Cofact; Sanquin Blood Supply) 50 IU kg(-1) increased thrombin generation beyond baseline values in healthy, rivaroxaban-treated subjects. To assess whether infusion with doses of 37.5 IU kg(-1) and 25 IU kg(-1) PCC reverses the anticoagulant effect of high-dose apixaban, another oral direct factor Xa inhibitor. In a randomized, double-blind, placebo-controlled, crossover study, six healthy subjects received twice-daily apixaban 10 mg for 3.5 days followed by a single bolus of 37.5 IU kg(-1) PCC, 25 IU kg(-1) PCC, or placebo. The primary outcome was the effect of PCC 15 min after infusion on thrombin generation (endogenous thrombin potential [ETP]); secondary outcomes were the immediate effect of PCC on prothrombin time (PT) and the effect of PCC as compared with placebo over a period of 24 h on ETP and PT. Fifteen minutes after infusion of 37.5 IU kg(-1) and 25 IU kg(-1) PCC, ETP increased from 41% ± 11% to 56% ± 23% (P = 0.06) and from 44% ± 12% to 51% ± 15% (P = 0.03), respectively. ETP significantly differed over time between 37.5 IU kg(-1) PCC and placebo during 24 h after infusion (P < 0.01). Both PCC doses restored apixaban-induced PT prolongation after 15 min (P < 0.01), and this was sustained over a period of 24 h. Both 37.5 IU kg(-1) PCC and 25 IU/kg PCC improved coagulation parameters in healthy subjects, suggesting partial reversal of the anticoagulant effect of apixaban. This implies that PCC might be considered in patients with apixaban-associated bleeding. However, ETP was not immediately restored to pre-apixaban levels, suggesting that these doses are too low to instantly and fully restore hemostasis at peak apixaban levels. © 2015 International Society on Thrombosis and Haemostasis.
Use of global assays to understand clinical phenotype in congenital factor VII deficiency.
Greene, L A; Goldenberg, N A; Simpson, M L; Villalobos-Menuey, E; Bombardier, C; Acharya, S S; Santiago-Borrero, P J; Cambara, A; DiMichele, D M
2013-09-01
Congenital factor VII (FVII) deficiency is characterized by genotypic variability and phenotypic heterogeneity. Traditional screening and factor assays are unable to reliably predict clinical bleeding phenotype and guide haemorrhage prevention strategy. Global assays of coagulation and fibrinolysis may better characterize overall haemostatic balance and aid in haemorrhagic risk assessment. We evaluated the ability of novel global assays to better understand clinical bleeding severity in congenital FVII deficiency. Subjects underwent central determination of factor VII activity (FVII:C) as well as clot formation and lysis (CloFAL) and simultaneous thrombin and plasmin generation (STP) global assay analysis. A bleeding score was assigned to each subject through medical chart review. Global assay parameters were analysed with respect to bleeding score and FVII:C. Subgroup analyses were performed on paediatric subjects and subjects with FVII ≥ 1 IU dL(-1). CloFAL fibrinolytic index (FI2 ) inversely correlated with FVII:C while CloFAL maximum amplitude (MA) and STP maximum velocity of thrombin generation (VT max) varied directly with FVII:C. CloFAL FI2 directly correlated with bleeding score among subjects in both the total cohort and paediatric subcohort, but not among subjects with FVII ≥ 1 IU dL(-1) . Among subjects with FVII ≥ 1 IU dL(-1), STP time to maximum velocity of thrombin generation and time to maximum velocity of plasmin generation inversely correlated with bleeding score. These preliminary findings suggest a novel potential link between a hyperfibrinolytic state in bleeding severity and congenital FVII deficiency, an observation that should be further explored. © 2013 John Wiley & Sons Ltd.
Eker, İbrahim; Yılmaz, Soner; Çetinkaya, Rıza Aytaç; Pekel, Aysel; Ünlü, Aytekin; Gürsel, Orhan; Yılmaz, Sebahattin; Avcu, Ferit; Muşabak, Uğur; Pekoğlu, Ahmet; Ertaş, Zerrin; Açıkel, Cengizhan; Zeybek, Nazif; Kürekçi, Ahmet Emin; Avcı, İsmail Yaşar
2017-03-01
In the last decade, substantial evidence has accumulated about the use of cryopreserved platelet concentrates, especially in trauma. However, little reference has been made in these studies to the morphological and functional changes of platelets. Recently platelets have been shown to be activated by cryopreservation processes and to undergo procoagulant membrane changes resulting in the generation of platelet-derived microparticles (PMPs), platelet degranulation, and release of platelet-derived growth factors (PDGFs). We assessed the viabilities and the PMP and PDGF levels of cryopreserved platelets, and their relation with thrombin generation. Apheresis platelet concentrates (APCs) from 20 donors were stored for 1 day and cryopreserved with 6% dimethyl sulfoxide. Cryopreserved APCs were kept at -80 °C for 1 day. Thawed APCs (100 mL) were diluted with 20 mL of autologous plasma and specimens were analyzed for viabilities and PMPs by flow cytometry, for thrombin generation by calibrated automated thrombogram, and for PDGFs by enzyme-linked immunosorbent assay testing. The mean PMP and PDGF levels in freeze-thawed APCs were significantly higher (2763±399.4/µL vs. 319.9±80.5/µL, p<0.001 and 550.9±73.6 pg/mL vs. 96.5±49 pg/mL, p<0.001, respectively), but the viability rates were significantly lower (68.2±13.7% vs. 94±7.5%, p<.001) than those of fresh APCs. The mean endogenous thrombin potential (ETP) of freeze-thawed APCs was significantly higher than that of the fresh APCs (3406.1±430.4 nM.min vs. 2757.6±485.7 nM.min, p<0.001). Moreover, there was a significant positive poor correlation between ETP levels and PMP levels (r=0.192, p=0.014). Our results showed that, after cryopreservation, while levels of PMPs were increasing, significantly higher and earlier thrombin formation was occurring in the samples analyzed despite the significant decrease in viability. Considering the damage caused by the freezing process and the scarcity of evidence for their in vivo superiority, frozen platelets should be considered for use in austere environments, reserving fresh platelets for prophylactic use in blood banks.
Hunt, Beverley J; Parmar, Kiran; Horspool, Kimberley; Shephard, Neil; Nelson-Piercy, Catherine; Goodacre, Steve
2018-03-01
This study aimed to estimate the diagnostic utility of biomarkers for suspected venous thromboembolism (VTE) in pregnancy and the puerperium. Research nurses/midwives collected blood samples from 310 pregnant/postpartum women with suspected pulmonary emboli (PE) and 18 with diagnosed deep vein thrombosis (DVT). VTE was diagnosed using imaging, treatment and adverse outcome data. Primary analysis was limited to women with conclusive imaging (36 with VTE, 247 without). The area under the curve (AUC) for each biomarker was: activated partial thromboplastin time 0·669 (95% confidence interval 0·570-0·768), B-type natriuretic peptide 0·549 (0·453-0·645), C-reactive protein 0·542 (0·445-0·639), Clauss fibrinogen 0·589 (0·476-0·701), D-Dimer (by enzyme-linked immunosorbent assay) 0·668 (0·561-0·776), near-patient D-Dimer 0·651 (0·545-0·758), mid-regional pro-atrial natriuretic peptide 0·524 (0·418-0·630), prothrombin fragment 1 + 2 0·562 (0·462-0·661), plasmin-antiplasmin complexes 0·639 (0·536-0·742), prothombin time 0·613 (0·508-0·718), thrombin generation lag time 0·702 (0·598-0·806), thrombin generation endogenous potential 0·559 (0·437-0·681), thrombin generation peak 0·596 (0·478-0·715), thrombin generation time to peak 0·655 (0·541-0·769), soluble tissue factor 0·531 (0·424-0·638) and serum troponin 0·597 (0·499-0·695). No diagnostically useful threshold for diagnosing or ruling out VTE was identified. In pregnancy and the puerperium, conventional and candidate biomarkers have no utility either for their negative or positive predictive value in the diagnosis of VTE. © 2018 The Authors. British Journal of Haematology published by John Wiley & Sons Ltd.
Platelet-derived growth factor inhibits platelet activation in heparinized whole blood.
Selheim, F; Holmsen, H; Vassbotn, F S
1999-08-15
We previously have demonstrated that human platelets have functionally active platelet-derived growth factor alpha-receptors. Studies with gel-filtered platelets showed that an autocrine inhibition pathway is transduced through this tyrosine kinase receptor during platelet activation. The physiological significance of this inhibitory effect of platelet-derived growth factor on gel-filtered platelets activation is, however, not known. In the present study, we investigated whether platelet-derived growth factor inhibits platelet activation under more physiological conditions in heparinized whole blood, which represents a more physiological condition than gel-filtered platelets. Using flow cytometric assays, we demonstrate here that platelet-derived growth factor inhibits thrombin-, thrombin receptor agonist peptide SFLLRN-, and collagen-induced platelet aggregation and shedding of platelet-derived microparticles from the platelet plasma membrane during platelet aggregation in stirred heparinized whole blood. The inhibitory effect of platelet-derived growth factor was dose dependent. However, under nonaggregating conditions (no stirring), we could not demonstrate any significant effect of platelet-derived growth factor on thrombin- and thrombin receptor agonist peptide-induced platelet surface expression of P-selectin. Our results demonstrate that platelet-derived growth factor appears to be a true antithrombotic agent only under aggregating conditions in heparinized whole blood.
Does thrombin stimulation of human platelets proceed via a simultaneous Na/sup +/-H/sup +/ exchange
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, T.A.; Katona, E.; Vasilescu, V.
1986-03-05
Thrombin stimulation of human platelets initiates a membrane depolarization attributable to a Na/sup +/ influx into, and an alkalinization of, the cytoplasm, both of which follow a similar rapid time scale and thrombin dose dependence. These responses precede secretion of the contents of dense granules (serotonin) and, after 1 min, of lysosomes (..beta..-glucuronidase). These markers have been used to determine whether the Na/sup +/ influx and H/sup +/ efflux are sequential or simultaneous. They have examined these parameters in D/sub 2/O-Hepes buffers. NMR evidence indicates that equilibration is rapid, and virtually complete within the 3 minute pre-stimulation platelets equilibration period.more » The rate of depolarization is 70-80% slower in D/sub 2/O than in H/sub 2/O. The time to reach maximal depolarization is 5-10 sec longer, the extent of depolarization 60% inhibited, and the (H/sup +/) change 85-100% inhibited. The serotonin secretion is unaltered, and the ..beta..-glucuronidase secretion is 130-180% enhanced. 10/sup -4/ M amiloride inhibits Na/sup +/ influx, i.e. depolarization, and the pH change completely. Adjustment to pH/sub i/ 7.3 with NH/sub 4/Cl led to a 30-80% enhanced ..beta..-glucuronidase release upon thrombin exposure. These results suggest that the Na/sup +/ and H/sup +/ fluxes across the platelet membrane occur sequentially, the Na/sup +/ occurring first. Furthermore, granule secretion, previously shown by us to be independent of the existent Na/sup +/ gradient, depends on the cytoplasmic K/sup +/ and H/sup +/ concentrations.« less
Heger, A; Neisser-Svae, A; Trawnicek, L; Triulzi, D
2018-04-23
To enable rapid availability of plasma in emergency situations, the shelf-life of thawed fresh-frozen plasma (FFP) has been extended from 24 h to 5 days. The aim of this study was to evaluate the thrombin generation (TG) potential and clot-forming ability during 5 days of refrigerated storage of thawed FFP, plasma frozen within 24 h and solvent/detergent-treated plasma octaplasLG ® . During storage for 5 days, TG capacity decreased significantly over time, and rotational thromboelastometry showed significantly prolonged clotting times. However, the stability studies confirmed comparable in vitro haemostatic potentials of all three thawed plasma products at day 5. © 2018 International Society of Blood Transfusion.
van Geffen, Mark; Mathijssen, Natascha C J; Holme, Pål A; Laros-van Gorkom, Britta A P; van Kraaij, Marian G J; Masereeuw, Roselinde; Peyvandi, Flora; van Heerde, Waander L
2013-07-01
Recombinant activated factor VII (rFVIIa) and plasma-derived factor VII (pdFVII) are used to prevent bleedings in severe FVII deficient patients, despite their short half-lifes. It is suggested that FVII levels of 15-20 IU/dL are sufficient to maintain hemostasis. We analyzed the pharmacodynamic effects of FVII substitution therapy in the Nijmegen Hemostasis Assay (NHA) that simultaneously measures thrombin and plasmin generation. Ten severe FVII deficient patients were treated with 20 μg/kg rFVIIa or 25 IU/kg pdFVII in a cross-over design. Thrombin generation lag-time (TG-LT) was identified as an effect-response parameter. Pharmacodynamic analysis using a maximum effect model showed 50% reduction of the TG-LT effect at ~2 IU/dL FVII activity for both rFVIIa and pdFVII. The FVII activity to obtain TG-LT comparable to the upper limit of normal range in healthy controls (4 min) was given by the effective concentration (ECnormal), showing sufficient hemostasis at 3-4 IU/dL FVII activity. No association was seen between FVII activity and other thrombin or plasmin generation parameters as measured by NHA. In conclusion, 3-4 IU/dL FVII activity seems sufficient to maintain hemostasis in patients with severe FVII deficiency during prophylaxis. These data may suggest a potential value for measurement of TG-LT in the monitoring of FVII(a) therapy. Copyright © 2013 Elsevier Ltd. All rights reserved.
Coagulopathy in Zellweger spectrum disorders: a role for vitamin K.
Zeynelabidin, Sara; Klouwer, Femke C C; Meijers, Joost C M; Suijker, Monique H; Engelen, Marc; Poll-The, Bwee Tien; van Ommen, C Heleen
2018-03-01
Zellweger spectrum disorders (ZSDs) are caused by an impairment of peroxisome biogenesis, resulting in multiple metabolic abnormalities. This leads to a range of symptoms, including hepatic dysfunction and coagulopathy. This study evaluated the incidence and severity of coagulopathy and the effect of vitamin K supplementation orally and IV in ZSD. Data were retrospectively retrieved from the medical records of 30 ZSD patients to study coagulopathy and the effect of vitamin K orally on proteins induced by vitamin K absence (PIVKA-II) levels. Five patients from the cohort with a prolonged prothrombin time, low factor VII, and elevated PIVKA-II levels received 10 mg of vitamin K IV. Laboratory results, including thrombin generation, at baseline and 72 h after vitamin K administration were examined. In the retrospective cohort, four patients (13.3%) experienced intracranial bleedings and 14 (46.7%) reported minor bleeding. No thrombotic events occurred. PIVKA-II levels decreased 38% after start of vitamin K therapy orally. In the five patients with a coagulopathy, despite treatment with oral administration of vitamin K, vitamin K IV caused an additional decrease (23%) of PIVKA-II levels and increased thrombin generation. Bleeding complications frequently occur in ZSD patients due to liver disease and vitamin K deficiency. Vitamin K deficiency is partly corrected by vitamin K supplementation orally, and vitamin K administered IV additionally improves vitamin K status, as shown by further decrease of PIVKA-II and improved thrombin generation.
Circulating Microparticles Alter Formation, Structure, and Properties of Fibrin Clots.
Zubairova, Laily D; Nabiullina, Roza M; Nagaswami, Chandrasekaran; Zuev, Yuriy F; Mustafin, Ilshat G; Litvinov, Rustem I; Weisel, John W
2015-12-04
Despite the importance of circulating microparticles in haemostasis and thrombosis, there is limited evidence for potential causative effects of naturally produced cell-derived microparticles on fibrin clot formation and its properties. We studied the significance of blood microparticles for fibrin formation, structure, and susceptibility to fibrinolysis by removing them from platelet-free plasma using filtration. Clots made in platelet-free and microparticle-depleted plasma samples from the same healthy donors were analyzed in parallel. Microparticles accelerate fibrin polymerisation and support formation of more compact clots that resist internal and external fibrinolysis. These variations correlate with faster thrombin generation, suggesting thrombin-mediated kinetic effects of microparticles on fibrin formation, structure, and properties. In addition, clots formed in the presence of microparticles, unlike clots from the microparticle-depleted plasma, contain 0.1-0.5-μm size granular and CD61-positive material on fibres, suggesting that platelet-derived microparticles attach to fibrin. Therefore, the blood of healthy individuals contains functional microparticles at the levels that have a procoagulant potential. They affect the structure and stability of fibrin clots indirectly through acceleration of thrombin generation and through direct physical incorporation into the fibrin network. Both mechanisms underlie a potential role of microparticles in haemostasis and thrombosis as modulators of fibrin formation, structure, and resistance to fibrinolysis.
Circulating Microparticles Alter Formation, Structure, and Properties of Fibrin Clots
Zubairova, Laily D.; Nabiullina, Roza M.; Nagaswami, Chandrasekaran; Zuev, Yuriy F.; Mustafin, Ilshat G.; Litvinov, Rustem I.; Weisel, John W.
2015-01-01
Despite the importance of circulating microparticles in haemostasis and thrombosis, there is limited evidence for potential causative effects of naturally produced cell-derived microparticles on fibrin clot formation and its properties. We studied the significance of blood microparticles for fibrin formation, structure, and susceptibility to fibrinolysis by removing them from platelet-free plasma using filtration. Clots made in platelet-free and microparticle-depleted plasma samples from the same healthy donors were analyzed in parallel. Microparticles accelerate fibrin polymerisation and support formation of more compact clots that resist internal and external fibrinolysis. These variations correlate with faster thrombin generation, suggesting thrombin-mediated kinetic effects of microparticles on fibrin formation, structure, and properties. In addition, clots formed in the presence of microparticles, unlike clots from the microparticle-depleted plasma, contain 0.1–0.5-μm size granular and CD61-positive material on fibres, suggesting that platelet-derived microparticles attach to fibrin. Therefore, the blood of healthy individuals contains functional microparticles at the levels that have a procoagulant potential. They affect the structure and stability of fibrin clots indirectly through acceleration of thrombin generation and through direct physical incorporation into the fibrin network. Both mechanisms underlie a potential role of microparticles in haemostasis and thrombosis as modulators of fibrin formation, structure, and resistance to fibrinolysis. PMID:26635081
Sylman, Joanna L; Daalkhaijav, Uranbileg; Zhang, Ying; Gray, Elliot M; Farhang, Parsa A; Chu, Tiffany T; Zilberman-Rudenko, Jevgenia; Puy, Cristina; Tucker, Erik I; Smith, Stephanie A; Morrissey, James H; Walker, Travis W; Nan, Xiaolin L; Gruber, András; McCarty, Owen J T
2017-05-01
In the contact activation pathway of the coagulation, zymogen factor XII (FXII) is converted to FXIIa, which triggers activation of FXI leading to the activation of FIX and subsequent thrombin generation and fibrin formation. Feedback activation of FXI by thrombin has been shown to promote thrombin generation in a FXII-independent manner and FXIIa can bypass FXI to directly activate FX and prothrombin in the presence of highly negatively charged molecules, such as long-chain polyphosphates (LC polyP). We sought to determine whether activation of FXII or FXI differentially regulate the physical biology of fibrin formation. Fibrin formation was initiated with tissue factor, ellagic acid (EA), or LC polyP in the presence of inhibitors of FXI and FXII. Our data demonstrated that inhibition of FXI decreased the rate of fibrin formation and fiber network density, and increased the fibrin network strength and rate of fibrinolysis when gelation was initiated via the contact activation pathway with EA. FXII inhibition decreased the fibrin formation and fibrin density, and increased the fibrinolysis rate only when fibrin formation was initiated via the contact activation pathway with LC polyP. Overall, we demonstrate that inhibition of FXI and FXII distinctly alter the biophysical properties of fibrin.
Nagakura, Tadashi; Tabata, Kimiyo; Kira, Kazunobu; Hirota, Shinsuke; Clark, Richard; Matsuura, Fumiyoshi; Hiyoshi, Hironobu
2013-08-01
Many anticoagulant drugs target factors common to both the intrinsic and extrinsic coagulation pathways, which may lead to bleeding complications. Since the tissue factor (TF)/factor VIIa complex is associated with thrombosis onset and specifically activates the extrinsic coagulation pathway, compounds that inhibit this complex may provide therapeutic and/or prophylactic benefits with a decreased risk of bleeding. The in vitro enzyme profile and anticoagulation selectivity of the TF/VIIa complex inhibitor, ER-410660, and its prodrug E5539 were assessed using enzyme inhibitory and plasma clotting assays. In vivo effects of ER-410660 and E5539 were determined using a TF-induced, thrombin generation rhesus monkey model; a stasis-induced, venous thrombosis rat model; a photochemically induced, arterial thrombosis rat model; and a rat tail-cut bleeding model. ER-410660 selectively prolonged prothrombin time, but had a less potent anticoagulant effect on the intrinsic pathway. It also exhibited a dose-dependent inhibitory effect on thrombin generation caused by TF-injection in the rhesus monkey model. ER-410660 also reduced venous thrombus weights in the TF-administered, stasis-induced, venous thrombosis rat model and prolonged the occlusion time induced by arterial thrombus formation after vascular injury. The compound was capable of doubling the total bleeding time in the rat tail-cut model, albeit with a considerably higher dose compared to the effective dose in the venous and arterial thrombosis models. Moreover, E5539, an orally available ER-410660 prodrug, reduced the thrombin-anti-thrombin complex levels, induced by TF-injection, in a dose-dependent manner. Selective TF/VIIa inhibitors have potential as novel anticoagulants with a lower propensity for enhancing bleeding. Copyright © 2013 Elsevier Ltd. All rights reserved.
Endogenous Thrombin Potential Changes during the First Cycle of Oral Contraceptive Use
Westhoff, Carolyn L.; Pike, Malcolm C.; Cremers, Serge; Eisenberger, Andrew; Thomassen, Stella; Rosing, Jan
2017-01-01
Objectives Venous thromboembolism (VTE) risk increases within months of combination oral contraceptive (COC) initiation. Because elevated endogenous thrombin potential (ETP) has been found in several studies to be a VTE risk factor, we evaluated the extent of ETP changes during the initial cycle of an ethinyl estradiol (EE) and levonorgestrel (LNG) COC. We also assessed the relationship between ETP changes and systemic EE and LNG concentrations. Study Design Participants provided multiple blood samples during a first 21-day cycle of a 30 µg EE/150 µg LNG COC and after a further 7 days without an active COC. Thrombin generation measured with and without addition of activated protein C (APC) yielded ETP+APC and ETP−APC and the normalized APC sensitivity ratio (nAPCsr). EE and LNG pharmacokinetic analyses were conducted over 24 hours after the first COC tablet and again at steady state. Results Thrombin generation was determined in 16 of the 17 women who completed the study. Mean ETP−APC increased steadily to 21% above baseline at 24 hours after the 6th COC tablet (COC624; p < 0.001) and to 28% above baseline at steady state (COC21; p < 0.001). Mean ETP+APC increased considerably more – by 54% at COC624 and by 79% at steady state. Mean nAPCsr increased by 28% at COC624 and by 41% at steady state. Higher concentrations of EE or LNG were not correlated with greater increases in ETP. Conclusions ETP increases during the first COC cycle were substantial. Implications The early increases in ETP may provide biological support for the rapid increase in VTE risk during initial COC use. The lack of association between this clotting system perturbation and the systemic EE concentration is surprising and deserves further study. PMID:28088496
Hess, Katharina; Ajjan, Ramzi; Phoenix, Fladia; Dobó, József; Gál, Péter; Schroeder, Verena
2012-01-01
Background Numerous interactions between the coagulation and complement systems have been shown. Recently, links between coagulation and mannan-binding lectin-associated serine protease-1 (MASP-1) of the complement lectin pathway have been proposed. Our aim was to investigate MASP-1 activation of factor XIII (FXIII), fibrinogen, prothrombin, and thrombin-activatable fibrinolysis inhibitor (TAFI) in plasma-based systems, and to analyse effects of MASP-1 on plasma clot formation, structure and lysis. Methodology/Principal Findings We used a FXIII incorporation assay and specific assays to measure the activation products prothrombin fragment F1+2, fibrinopeptide A (FPA), and activated TAFI (TAFIa). Clot formation and lysis were assessed by turbidimetric assay. Clot structure was studied by scanning electron microscopy. MASP-1 activated FXIII and, contrary to thrombin, induced FXIII activity faster in the Val34 than the Leu34 variant. MASP-1-dependent generation of F1+2, FPA and TAFIa showed a dose-dependent response in normal citrated plasma (NCP), albeit MASP-1 was much less efficient than FXa or thrombin. MASP-1 activation of prothrombin and TAFI cleavage were confirmed in purified systems. No FPA generation was observed in prothrombin-depleted plasma. MASP-1 induced clot formation in NCP, affected clot structure, and prolonged clot lysis. Conclusions/Significance We show that MASP-1 interacts with plasma clot formation on different levels and influences fibrin structure. Although MASP-1-induced fibrin formation is thrombin-dependent, MASP-1 directly activates prothrombin, FXIII and TAFI. We suggest that MASP-1, in concerted action with other complement and coagulation proteins, may play a role in fibrin clot formation. PMID:22536427
Klintman, Jenny; Astermark, Jan; Berntorp, Erik
2010-11-01
The by-passing agents, recombinant activated factor VII (rFVIIa) and activated prothrombin complex concentrate (APCC), are important tools in the treatment of patients with haemophilia A and high-responding inhibitory antibodies. It has been observed clinically that in some patients undergoing immune tolerance induction the bleeding frequency decreases, hypothetically caused by a transient haemostatic effect of infused FVIII not measurable ex vivo. We evaluated how by-passing agents and factor VIII (FVIII) affect thrombin generation (TG) in vitro using plasma from 11 patients with severe haemophilia A and high titre inhibitors. Samples were spiked with combinations of APCC, rFVIIa and five different FVIII products. Combination of APCC and FVIII showed a synergistic effect in eliciting TG (P<0·005) for four FVIII products. When rFVIIa and FVIII were combined the interaction between the preparations was found to be additive. APCC and rFVIIa were then combined without FVIII, resulting in an additive effect on thrombin production. Each product separately increased TG above baseline. In conclusion, the amount of thrombin formed in vitro by adding a by-passing agent, was higher in the presence of FVIII. Our findings support the use of FVIII in by-passing therapy to optimize the haemostatic effect. © 2010 Blackwell Publishing Ltd.
Thrombin-induced apoptosis in neurons through activation of c-Jun-N-terminal kinase.
Bao, Lei; Zu, Jie; He, Qianqian; Zhao, Hui; Zhou, Su; Ye, Xinchun; Yang, Xinxin; Zan, Kun; Zhang, Zuohui; Shi, Hongjuan; Cui, Guiyun
2017-01-01
Studies have shown that thrombin activation played a central role in cell injuries associated with intracerebral hemorrhage (ICH). Here, our study investigated the cytotoxicity of thrombin on neurons, and determined the involvement of JNK pathways in thrombin-induced neuronal apoptosis. Primary cultured neurons were treated with different doses of thrombin. Some neurons were given either SP600125 or vehicle. LDH release assay and flow cytometry were used to measure neuronal apoptosis caused by thrombin. The activation of JNK and capases-3 were measured by Western blot. Our results showed large doses of thrombin that increased the LDH release, the level of cleaved caspase-3 and apoptosis rate of neurons. JNK was activated by thrombin in a time-dependent manner. Administration of SP600125 protects neurons from thrombin-induced apoptosis. These data indicate that the activation of JNK is crucial for thrombin-induced neuronal apoptosis, and inhibition of JNK may be a potential therapeutic target for ICH.
Brass, L F
1992-03-25
Loss of sensitivity to thrombin following an initial response is characteristic of a number of cell types, including platelets. It has recently been proposed that thrombin receptors resemble other G protein-coupled receptors, but that activation involves a novel mechanism in which thrombin cleaves the receptor, exposing a new N terminus that serves as the ligand for the receptor. Based upon this model, we have examined the mechanism of thrombin receptor desensitization by comparing the effects of thrombin with those of a peptide corresponding to the N-terminal sequence of the receptor following proteolysis by thrombin: SFLLRNPNDKYEPF or TRP42/55. Like thrombin, TRP42/55 stimulated pertussis toxin-sensitive inositol 1,4,5-trisphosphate formation, raised cytosolic Ca2+, and inhibited cAMP formation in the megakaryoblastic HEL cell line. Exposure to either thrombin or TRP42/55 desensitized the cells to both, but not to a third agonist, neuropeptide Y. The rate of recovery after desensitization depended upon the order of agonist addition. Resensitization of the cell to thrombin following a brief exposure to thrombin required up to 24 h and could be inhibited with cycloheximide. Resensitization to TRP42/55 after exposure to thrombin, or to thrombin after exposure to TRP42/55, on the other hand, was detectable within 30 min and could be inhibited by serine/threonine phosphatase inhibitors, but not by cycloheximide. Loss of responsiveness to thrombin and TRP42/55 was also observed following addition of the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA). However, while the protein kinase inhibitor staurosporine completely prevented the desensitization caused by TPA, it had only a limited effect on the desensitization caused by TRP42/55. These results demonstrate that the G protein-mediated effects of thrombin can be reproduced by a receptor-derived peptide and suggest that desensitization occurs by at least two mechanisms. The first, which is seen with thrombin, but not TRP42/55, involves proteolysis and requires protein synthesis for recovery. The second, which occurs with TRP42/55 and TPA, as well as with thrombin, involves phosphorylation, possibly of the receptor itself. Although protien kinase C is activated by thrombin and is presumably responsible for the desensitization caused by TPA, it does not appear to play a major role in receptor desensitization caused by thrombin and TRP42/55. This suggests that other kinases, such as those which inactivate adrenergic receptors and rhodopsin, are involved in the down-regulation of thrombin receptor function.
Glintborg, Dorte; Sidelmann, Johannes J; Altinok, Magda Lambaa; Mumm, Hanne; Andersen, Marianne
2015-10-01
Polycystic ovary syndrome (PCOS) is associated with risk factors for cardiovascular disease (CVD) which may be modified by the use of metformin and oral contraceptives (OC). Thrombin generation (TG) measures are risk markers of CVD and address the composite of multiple factors that influence blood coagulation. This prospective, randomized, intervention study evaluated the potential influence of PCOS on TG measures and the effect of OC and/or metformin on TG measures in women with PCOS. Ninety patients with PCOS and 35 controls were included. Patients were randomized to 12 months of treatment with metformin, metformin+OC or OC alone. C-reactive protein (CRP), fibrinogen, total cholesterol, trunk fat mass, body mass index, estradiol, testosterone, sex hormone binding globulin (SHBG) as well as TG measures, i.e. the lag time for formation of thrombin, the endogenous thrombin potential (ETP), peak thrombin concentration (peak) and time to peak were determined at baseline and after 12 months of treatment. CRP and total testosterone were significantly higher and SHBG significantly lower in PCOS women than in controls (P=0.012, P<0.001 and P=0.008, respectively). The TG measures ETP, peak and lag time were increased in women with PCOS compared to controls (P<0.01). Significant correlations were observed between TG measures and fibrinogen, CRP, SHBG and fat trunk mass (P>0.01). ETP (P=0.006), peak (P=0.003) and lag time (P=0.023) remained increased after adjustment for these potential confounders. Treatment with OC and metformin+OC further increased ETP (P<0.001) and peak (P<0.005) and reduced time to peak (P<0.04). The increase in ETP was significantly lower in the metformin+OC group than in the OC group (P<0.05). Metformin alone did not affect TG significantly. PCOS is associated with increase in TG measures independent of other risk factors of CVD. OC increase TG measures further and may thus add to the increased risk of CVD already present in women with PCOS. Copyright © 2015 Elsevier Inc. All rights reserved.
Ellery, Paul E. R.; Maroney, Susan A.; Cooley, Brian C.; Luyendyk, James P.; Zogg, Mark; Weiler, Hartmut
2015-01-01
Tissue factor pathway inhibitor (TFPI) is a critical anticoagulant protein present in endothelium and platelets. Mice lacking TFPI (Tfpi−/−) die in utero from disseminated intravascular coagulation. They are rescued by concomitant tissue factor (TF) deficiency, demonstrating that TFPI modulates TF function in vivo. Recent studies have found TFPI inhibits prothrombinase activity during the initiation of coagulation and limits platelet accumulation during thrombus formation, implicating TFPI in modulating platelet procoagulant activity. To examine whether altered platelet function would compensate for the lack of TFPI and rescue TFPI-null embryonic lethality, Tfpi+/− mice lacking the platelet thrombin receptor, protease activated receptor 4 (PAR4; Par4−/−), or its coreceptor, PAR3, were mated. PAR3 deficiency did not rescue Tfpi−/− embryos, but >40% of expected Tfpi−/−:Par4−/− offspring survived to adulthood. Adult Tfpi−/−:Par4−/− mice did not exhibit overt thrombosis. However, they had focal sterile inflammation with fibrin(ogen) deposition in the liver and elevated plasma thrombin-antithrombin complexes, indicating activation of coagulation at baseline. Tfpi−/−:Par4−/− mice have platelet and fibrin accumulation similar to Par4−/− mice following venous electrolytic injury but were more susceptible than Par4−/− mice to TF-induced pulmonary embolism. In addition, ∼30% of the Tfpi−/−:Par4−/− mice were born with short tails. Tfpi−/−:Par4−/− mice are the first adult mice described that lack TFPI with unaltered TF. They demonstrate that TFPI physiologically modulates thrombin-dependent platelet activation in a manner that is required for successful embryonic development and identify a role for TFPI in dampening intravascular procoagulant stimuli that lead to thrombin generation, even in the absence of thrombin-mediated platelet activation. PMID:25954015
Byeon, Ji-Yeon; Bailey, Ryan C
2011-09-07
High affinity capture agents recognizing biomolecular targets are essential in the performance of many proteomic detection methods. Herein, we report the application of a label-free silicon photonic biomolecular analysis platform for simultaneously determining kinetic association and dissociation constants for two representative protein capture agents: a thrombin-binding DNA aptamer and an anti-thrombin monoclonal antibody. The scalability and inherent multiplexing capability of the technology make it an attractive platform for simultaneously evaluating the binding characteristics of multiple capture agents recognizing the same target antigen, and thus a tool complementary to emerging high-throughput capture agent generation strategies.
Ponce, R; Armstrong, K; Andrews, K; Hensler, J; Waggie, K; Heffernan, J; Reynolds, T; Rogge, M
2005-01-01
Factor XIII (FXIII) is a thrombin-activated plasma coagulation factor critical for blood clot stabilization and longevity. Administration of exogenous FXIII to replenish depleted stores after major surgery, including cardiopulmonary bypass, may reduce bleeding complications and transfusion requirements. Thus, a model of extracorporeal circulation (ECC) was developed in adult male cynomolgus monkeys (Macaca fascicularis) to evaluate the nonclinical safety of recombinant human FXIII (rFXIII). The hematological and coagulation profile in study animals during and after 2 h of ECC was similar to that reported for humans during and after cardiopulmonary bypass, including observations of anemia, thrombocytopenia, and activation of coagulation and platelets. Intravenous slow bolus injection of 300 U/kg (2.1 mg/kg) or 1000 U/kg (7 mg/kg) rFXIII after 2 h of ECC was well tolerated in study animals, and was associated with a dose-dependent increase in FXIII activity. No clinically significant effects in respiration, ECG, heart rate, blood pressure, body temperature, clinical chemistry, hematology (including platelet counts), or indicators of thrombosis (thrombin:anti-thrombin complex and D-Dimer) or platelet activation (platelet factor 4 and beta-thromboglobulin) were related to rFXIII administration. Specific examination of brain, heart, lung, liver, and kidney from rFXIII-treated animals provided no evidence of histopathological alterations suggestive of subclinical hemorrhage or thrombosis. Taken as a whole, the results demonstrate the ECC model suitably replicated the clinical presentation reported for humans during and after cardiopulmonary bypass surgery, and do not suggest significant concerns regarding use of rFXIII in replacement therapy after extracorporeal circulation.
Weinstein, M J; Chute, L E
1984-01-01
We have characterized Factor VIII coagulant protein, present in normal human plasma, that reacts with a specific human 125I-labeled anti-human VIII:C antigen Fab antibody fragment. Two major Factor VIII coagulant antigen populations were present. The first, approximately 85% of the total antigen, was bound to von Willebrand factor and when tested in a standard one-stage assay had Factor VIII coagulant activity. The second antigenic population, eluting near fibrinogen when plasma was gel filtered, was not bound to von Willebrand protein, did not have Factor VIII coagulant activity unless activated, but did block anti-VIII:C Fab neutralization of clotting activity. The two antigenic populations were separable by cryoprecipitation and agarose gel electrophoresis. Although the two antigenic populations differed in their Factor VIII coagulant activity and in their binding to von Willebrand factor, the principal member of both populations is of mol wt 2.4 X 10(5). Both antigens, when proteolyzed by thrombin, were quickly converted to a 1 X 10(5)-mol wt form in association with the appearance of VIII:C activity. The 1 X 10(5)-mol wt antigen was further slowly degraded to an 8 X 10(4)-mol wt form while Factor VIII coagulant activity declined. These results demonstrate the presence of an inactive Factor VIII coagulant protein in plasma, not associated with von Willebrand factor, that can react with thrombin to yield Factor VIII coagulant activity. Images PMID:6421875
NASA Astrophysics Data System (ADS)
Wang, Xing; Zhang, Yuxin; Yang, Ying; Wu, Xia; Fan, Hantian; Qiao, Yanjiang
2017-03-01
Thrombin acts as a key enzyme in the blood coagulation cascade and represents a potential drug target for the treatment of several cardiovascular diseases. The aim of this study was to identify small-molecule direct thrombin inhibitors from herbs used in traditional Chinese medicine (TCM). A pharmacophore model and molecular docking were utilized to virtually screen a library of chemicals contained in compositions of traditional Chinese herbs, and these analyses were followed by in vitro bioassay validation and binding studies. Berberine (BBR) was first confirmed as a thrombin inhibitor using an enzymatic assay. The BBR IC50 value for thrombin inhibition was 2.92 μM. Direct binding studies using surface plasmon resonance demonstrated that BBR directly interacted with thrombin with a KD value of 16.39 μM. Competitive binding assay indicated that BBR could bind to the same argartroban/thrombin interaction site. A platelet aggregation assay demonstrated that BBR had the ability to inhibit thrombin-induced platelet aggregation in washed platelets samples. This study proved that BBR is a direct thrombin inhibitor that has activity in inhibiting thrombin-induced platelet aggregation. BBR may be a potential candidate for the development of safe and effective thrombin-inhibiting drugs.
Metabolic plasticity in resting and thrombin activated platelets.
Ravi, Saranya; Chacko, Balu; Sawada, Hirotaka; Kramer, Philip A; Johnson, Michelle S; Benavides, Gloria A; O'Donnell, Valerie; Marques, Marisa B; Darley-Usmar, Victor M
2015-01-01
Platelet thrombus formation includes several integrated processes involving aggregation, secretion of granules, release of arachidonic acid and clot retraction, but it is not clear which metabolic fuels are required to support these events. We hypothesized that there is flexibility in the fuels that can be utilized to serve the energetic and metabolic needs for resting and thrombin-dependent platelet aggregation. Using platelets from healthy human donors, we found that there was a rapid thrombin-dependent increase in oxidative phosphorylation which required both glutamine and fatty acids but not glucose. Inhibition of fatty acid oxidation or glutamine utilization could be compensated for by increased glycolytic flux. No evidence for significant mitochondrial dysfunction was found, and ATP/ADP ratios were maintained following the addition of thrombin, indicating the presence of functional and active mitochondrial oxidative phosphorylation during the early stages of aggregation. Interestingly, inhibition of fatty acid oxidation and glutaminolysis alone or in combination is not sufficient to prevent platelet aggregation, due to compensation from glycolysis, whereas inhibitors of glycolysis inhibited aggregation approximately 50%. The combined effects of inhibitors of glycolysis and oxidative phosphorylation were synergistic in the inhibition of platelet aggregation. In summary, both glycolysis and oxidative phosphorylation contribute to platelet metabolism in the resting and activated state, with fatty acid oxidation and to a smaller extent glutaminolysis contributing to the increased energy demand.
Kwon, Hyuk-Woo; Shin, Jung-Hae; Lee, Dong-Ha; Park, Hwa-Jin
2015-01-01
Intracellular Ca(2+) ([Ca(2+)] i ) is platelet aggregation-inducing molecule and is involved in activation of aggregation associated molecules. This study was carried out to understand the Ca(2+)-antagonistic effect of ginsenoside Ro (G-Ro), an oleanane-type saponin in Panax ginseng. G-Ro, without affecting leakage of lactate dehydrogenase, dose-dependently inhibited thrombin-induced platelet aggregation, and the half maximal inhibitory concentration was approximately 155 μM. G-Ro inhibited strongly thrombin-elevated [Ca(2+)] i , which was strongly increased by A-kinase inhibitor Rp-8-Br-cAMPS compared to G-kinase inhibitor Rp-8-Br-cGMPS. G-Ro increased the level of cAMP and subsequently elevated the phosphorylation of inositol 1, 4, 5-triphosphate receptor I (IP3RI) (Ser(1756)) to inhibit [Ca(2+)] i mobilization in thrombin-induced platelet aggregation. Phosphorylation of IP3RI (Ser(1756)) by G-Ro was decreased by PKA inhibitor Rp-8-Br-cAMPS. In addition, G-Ro inhibited thrombin-induced phosphorylation of ERK 2 (42 kDa), indicating inhibition of Ca(2+) influx across plasma membrane. We demonstrate that G-Ro upregulates cAMP-dependent IP3RI (Ser(1756)) phosphorylation and downregulates phosphorylation of ERK 2 (42 kDa) to decrease thrombin-elevated [Ca(2+)] i , which contributes to inhibition of ATP and serotonin release, and p-selectin expression. These results indicate that G-Ro in Panax ginseng is a beneficial novel Ca(2+)-antagonistic compound and may prevent platelet aggregation-mediated thrombotic disease.
Hall, Kellie J.; Jones, Matthew L.; Poole, Alastair W.
2007-01-01
PKC (protein kinase C)δ plays a complex role in platelets, having effects on both positive and negative signalling functions. It is phosphorylated on tyrosine residues in response to thrombin and collagen, and it has recently been shown that Tyr311 is phosphorylated in response to PAR (protease-activated receptor) 1 and PAR4 receptor activation. In the present study, we show that Tyr311 and Tyr565 are phosphorylated in response to thrombin, and have examined the interplay between phosphorylation and the classical lipid-mediated activation of PKCδ. Phosphorylation of both Tyr311 and Tyr565 is dependent on Src kinase and PLC (phospholipase C) activity in response to thrombin. Importantly, direct allosteric activation of PKCδ with PMA also induced phosphorylation of Tyr311 and Tyr565, and this was dependent on the activity of Src kinases, but not PLC. Membrane recruitment of PKCδ is essential for phosphorylation of this tyrosine residue, but tyrosine phosphorylation is not required for membrane recruitment of PKCδ. Both thrombin and PMA induce recruitment of PKCδ to the membrane, and for thrombin, this recruitment is a PLC-dependent process. In order to address the functional role of tyrosine residue phosphorylation of PKCδ, we demonstrate that phosphorylation can potentiate the activity of the kinase, although phosphorylation does not play a role in membrane recruitment of the kinase. PKCδ is therefore regulated in a coincident fashion, PLC-dependent signals recruiting it to the plasma membrane and by phosphorylation on tyrosine residues, potentiating its activity. PMID:17570831
Schoergenhofer, Christian; Schwameis, Michael; Gelbenegger, Georg; Buchtele, Nina; Thaler, Barbara; Mussbacher, Marion; Schabbauer, Gernot; Wojta, Johann; Jilma-Stohlawetz, Petra; Jilma, Bernd
2018-06-04
The protease-activated receptor-1 (PAR-1) is critically involved in the co-activation of coagulation and inflammatory responses. Vorapaxar is a reversible, orally active, low molecular weight, competitive antagonist of PAR-1.We investigated the effects of PAR-1 inhibition by vorapaxar on the inflammatory response, the activation of coagulation, fibrinolysis and endothelium during experimental endotoxemia. In this randomized, double blind, crossover trial, 16 healthy volunteers received a bolus infusion of 2 ng/kg lipopolysaccharide (LPS) ± placebo/vorapaxar with a washout period of 8 weeks. Vorapaxar dosing was guided by thrombin receptor-activating peptide-6-induced whole blood aggregometry. Participants received 10 mg vorapaxar or placebo as an initial dose and, depending on the aggregometry, potentially an additional 10 mg. Goal was > 80% inhibition of aggregation compared with baseline. Vorapaxar significantly reduced the LPS-induced increase in pro-thrombin fragments F1 + 2 by a median of 27% (quartiles: 11-49%), thrombin-anti-thrombin concentrations by 22% (-3 to 46%) and plasmin-anti-plasmin levels by 38% (23-53%). PAR-1 inhibition dampened peak concentrations of tumour necrosis factor -α, interleukin-6 and consequently C-reactive protein by 66% (-11-71%), 50% (15-79%) and 23% (16-38%), respectively. Vorapaxar decreased maximum von Willebrand factor levels by 29% (26-51%) and soluble E-selectin concentrations by 30% (25-38%) after LPS infusion. PAR-1 inhibition did not affect thrombomodulin, soluble P-selectin and platelet factor-4 concentrations.PAR-1 inhibition significantly reduced the activation of coagulation, fibrinolysis, the inflammatory response and endothelial activation during experimental human endotoxemia. Schattauer GmbH Stuttgart.
Shear stress reduces protease activated receptor-1 expression in human endothelial cells
NASA Technical Reports Server (NTRS)
Nguyen, K. T.; Eskin, S. G.; Patterson, C.; Runge, M. S.; McIntire, L. V.
2001-01-01
Shear stress has been shown to regulate several genes involved in the thrombotic and proliferative functions of endothelial cells. Thrombin receptor (protease-activated receptor-1: PAR-1) increases at sites of vascular injury, which suggests an important role for PAR-1 in vascular diseases. However, the effect of shear stress on PAR-1 expression has not been previously studied. This work investigates effects of shear stress on PAR-1 gene expression in both human umbilical vein endothelial cells (HUVECs) and microvascular endothelial cells (HMECs). Cells were exposed to different shear stresses using a parallel plate flow system. Northern blot and flow cytometry analysis showed that shear stress down-regulated PAR-1 messenger RNA (mRNA) and protein levels in both HUVECs and HMECs but with different thresholds. Furthermore, shear-reduced PAR-1 mRNA was due to a decrease of transcription rate, not increased mRNA degradation. Postshear stress release of endothelin-1 in response to thrombin was reduced in HUVECs and HMECs. Moreover, inhibitors of potential signaling pathways applied during shear stress indicated mediation of the shear-decreased PAR-1 expression by protein kinases. In conclusion, shear stress exposure reduces PAR-1 gene expression in HMECs and HUVECs through a mechanism dependent in part on protein kinases, leading to altered endothelial cell functional responses to thrombin.
Buchan, Alison M J; Lin, Chin-Yu; Choi, Jimmy; Barber, Diane L
2002-08-09
Somatostatin regulates multiple biological functions by acting through a family of five G protein-coupled receptors, somatostatin receptors (SSTRs) 1-5. Although all five receptor subtypes inhibit adenylate cyclase activity and decrease intracellular cAMP levels, specific receptor subtypes also couple to additional signaling pathways. In CCL39 fibroblasts expressing either human SSTR1 or SSTR2, we demonstrate that activation of SSTR1 (but not SSTR2) attenuated both thrombin- and integrin-stimulated Rho-GTP complex formation. The reduction in Rho-GTP formation in the presence of somatostatin was associated with decreased translocation of Rho and LIM kinase to the plasma membrane and fewer focal contacts. Activation of Rho resulted in the formation of intracellular actin stress fibers and cell migration. In CCL39-R1 cells, somatostatin treatment prevented actin stress fiber assembly and attenuated thrombin-stimulated cell migration through Transwell membranes to basal levels. To show that native SSTR1 shares the ability to inhibit Rho activation, we demonstrated that somatostatin treatment of human umbilical vein endothelial cells attenuated thrombin-stimulated Rho-GTP accumulation. These data show for the first time that a G protein-coupled receptor, SSTR1, inhibits the activation of Rho, the assembly of focal adhesions and actin stress fibers, and cell migration.
Human plasma platelet-derived exosomes: effects of aspirin.
Goetzl, Edward J; Goetzl, Laura; Karliner, Joel S; Tang, Norina; Pulliam, Lynn
2016-05-01
Platelet-derived exosomes mediate platelet atherogenic interactions with endothelial cells and monocytes. A new method for isolation of plasma platelet-derived exosomes is described and used to examine effects of aging and aspirin on exosome cargo proteins. Exosome secretion by purified platelets in vitro did not increase after exposure to thrombin or collagen, as assessed by exosome counts and quantification of the CD81 exosome marker. Thrombin and collagen increased exosome content of α-granule chemokines CXCL4 and CXCL7 and cytoplasmic high-mobility group box 1 (HMGB1) protein, but not membrane platelet glycoprotein VI (GPVI), with dependence on extracellular calcium. Aspirin consumption significantly blocked thrombin- and collagen-induced increases in exosome cargo levels of chemokines and HMGB1, without altering total exosome secretion or GPVI cargo. Plasma platelet-derived exosomes, enriched by absorption with mouse antihuman CD42b [platelet glycoprotein Ib (GPIb)] mAb, had sizes and cargo protein contents similar to those of exosomes from purified platelets. The plasma platelet-derived exosome number is lower and its chemokine and HMGB1 levels higher after age 65 yr. Aspirin consumption significantly suppressed cargo protein levels of plasma platelet-derived exosomes without altering total levels of exosomes. Cargo proteins of human plasma platelet-derived exosomes may biomark platelet abnormalities and in vivo effects of drugs.- Goetzl, E. J., Goetzl, L., Karliner, J. S., Tang, N., Pulliam, L. Human plasma platelet-derived exosomes: effects of aspirin. © FASEB.
Kim, Jiyoung; Lee, Jae-Won; Kim, Song-In; Choi, Yong-Joon; Lee, Won-Ki; Jeong, Myung-Ja; Cha, Sang-Hoon; Lee, Hee Jae; Chun, Wanjoo
2011-01-01
Glioblastoma multiforme is one of the most common and aggressive tumors in central nervous system. It often possesses characteristic necrotic lesions with hemorrhages, which increase the chances of exposure to thrombin. Thrombin has been known as a regulator of MMP-9 expression and cancer cell migration. However, the effects of thrombin on glioma cells have not been clearly understood. In the present study, influences of thrombin on glioma cell migration were examined using Boyden chamber migration assay and thrombin-induced changes in MMP-9 expression were measured using zymography, semi-quantitative RT-PCR, and Western blotting. Furthermore, underlying signaling pathways by which thrombin induces MMP-9 expression were examined. Thrombin-induced migration and MMP-9 expression were significantly potentiated in the presence of wortmannin, a PI3K inhibitor, whereas MAPK inhibitors suppressed thrombin-induced migration and MMP-9 expression in C6 glioma cells. The present data strongly demonstrate that MAPK and PI3K pathways evidently regulate thrombin-induced migration and MMP-9 expression of C6 glioma cells. Therefore, the control of these pathways might be a beneficial therapeutic strategy for treatment of invasive glioblastoma multiforme. PMID:21994479
Ahour, F; Ahsani, M K
2016-12-15
In this work, we tactfully constructed a novel label-free electrochemical aptasensor for rapid and facile detection of thrombin using graphene oxide (GO) and thrombin binding aptamer (TBA). The strategy relies on the preferential adsorption of single-stranded DNA (ssDNA) to GO over aptamer-target complexes. The TBA-thrombin complex formation was monitored by differential pulse voltammetry (DPV) using the guanine oxidation signal. In the absence of thrombin, the aptamers adsorbed onto the surface of GO leading to a strong background guanine oxidation signal. Conversely, in the presence of thrombin, the conformational transformation of TBA after incubating with the thrombin solution and formation of the aptamer-thrombin complexes which had weak binding ability to GO, leads to the desorption of TBA-thrombin complex from electrode surface and significant oxidation signal decrease. The selectivity of the biosensor was studied using other biological substances. The biosensor's signal was proportional to the thrombin concentration from 0.1 to 10nM with a detection limit of 0.07nM. Particularly, the proposed method could be widely applied to the aptamer-based determination of other target analytes. Copyright © 2016 Elsevier B.V. All rights reserved.
Wannez, Adeline; Bailly, Nicolas; Alpan, Lutfiye; Gheldof, Damien; Douxfils, Jonathan; Deneys, Véronique; Bihin, Benoît; Chatelain, Bernard; Dogné, Jean-Michel; Chatelain, Christian; Mullier, François
2018-01-01
Background Thrombotic effects are possible complications of red blood cell transfusion. The generation and accumulation of procoagulant red blood cell extracellular vesicles during storage may play an important role in these thrombotic effects. The objective of this study was to assess the value of a simple phospholipid-dependent clot-based assay (STA®-Procoag-PPL) to estimate the procoagulant activity of stored red blood cells and changes in this activity during storage of the blood component. Materials and methods Extracellular vesicles from 12 red blood cell concentrates were isolated at 13 storage time-points and characterised by quantitative and functional methods: the degree of haemolysis (direct spectrophotometry), the quantification and determination of cellular origin (flow cytometry) and the procoagulant activity (thrombin generation and STA®-Procoag-PPL assays) were assessed. Results The mean clotting time of extracellular vesicles isolated from red blood cell concentrates decreased from 117.2±3.6 sec on the day of collection to 33.8±1.3 sec at the end of the storage period. This illustrates the phospholipid-dependent procoagulant activity of these extracellular vesicles, as confirmed by thrombin generation. Results of the peak of thrombin and the STA®-Procoag-PPL were well correlated (partial r=−0.41. p<0.001). In parallel, an exponential increase of the number of red blood cell-derived extracellular vesicles from 1,779/μL to 218,451/μL was observed. Discussion The STA®-Procoag-PPL is a potentially useful technique for assessing the procoagulant activity of a red blood cell concentrate. PMID:28287378
Le Quellec, Sandra; Paris, Mickaël; Nougier, Christophe; Sobas, Frédéric; Rugeri, Lucia; Girard, Sandrine; Bordet, Jean-Claude; Négrier, Claude; Dargaud, Yesim
2017-05-01
Pneumatic tube system (PTS) in hospitals is commonly used for the transport of blood samples to clinical laboratories, as it is rapid and cost-effective. The aim was to compare the effects on haematology samples of a newly acquired ~2km-long PTS that links 2 hospitals with usual transport (non-pneumatic tube system, NPTS). Complete blood cell count, routine coagulation assays, platelet function tests (PFT) with light-transmission aggregometry and global coagulation assays including ROTEM® and thrombin generation assay (TGA) were performed on blood samples from 30 healthy volunteers and 9 healthy volunteers who agreed to take aspirin prior to blood sampling. The turnaround time was reduced by 31% (p<0.001) with the use of PTS. No statistically significant difference was observed for most routine haematology assays including PFT, and ROTEM® analysis. A statistically significant, but not clinically relevant, shortening of the APTT after sample transport by PTS was found (mean±SD: 30s±1.8 vs. 29.5s±2.1 for NPTS). D-dimer levels were 7.4% higher after transport through PTS but were not discordant. A statistically significant increase of thrombin generation was found in both platelet poor- and platelet rich- plasma samples after PTS transport compared to NPTS transport. PTS is suitable for the transport of samples prior to routine haematology assays including PFT, but should not be used for samples intended for thrombin generation measurement. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dodt, Johannes; Pasternack, Ralf; Seitz, Rainer; Volkers, Peter
2016-02-01
In a factor XIIIa (FXIIIa) generation assay with recombinant FXIII-A2 (rFXIII-A2 ) free FXIII activation peptide (fAP-FXII) prolonged the time to peak (TTP) but did not affect the area under the curve (AUC) or concentration at peak (CP). Addition of recombinant factorXIII-B2 (rFXIII-B2 ) restored the characteristics of the FXIIIa generation parameters (AUC, TTP and CP) to those observed for plasma FXIII (FXIII-A2 B2 ). FXIII-A2 B2 reconstituted from rFXIII-A2 and rFXIII-B2 showed a similar effect on AUC, TTP and CP in the presence of fAP-FXII as observed for plasma FXIII-A2 B2 , indicating a role for FXIII-B in this observation. An effect of fAP-FXIII on thrombin, the proteolytic activator of FXIII, was excluded by thrombin generation assays and clotting experiments. In a purified system, fAP-FXIII did not interfere with the FXIIIa activity development of thrombin-cleaved rFXIII-A2 (rFXIII-A2 ') also excluding direct inhibition of FXIIIa. However, FXIIIa activity development of FXIII-A2 'B2 was inhibited in a concentration-dependent manner by fAP-FXIII, indicating that an interaction between AP-FXIII and FXIII-B2 contributes to the overall stability of FXIII-A2 'B2 . In addition to its well-known role, FXIII-B also contributes to FXIII-A2 B2 stability or dissociation depending on fAP-FXIII and calcium concentrations. © 2015 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chien, Peter Tzu-Yu; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan; Lin, Chih-Chung
Carbon monoxide (CO) is one of the cytoprotective byproducts of heme oxygenase (HO)-1 and exerts anti-inflammatory action in various models. However, the detailed mechanisms underlying CO-induced HO-1 expression in primary human cardiomyocytes remain largely unidentified. We used primary left ventricle myocytes as a model and applied CO releasing molecule (CORM)-2 to investigate the relationship of CO and HO-1 expression. We herein used Western blot, real-time PCR, promoter activity and EIA to investigate the role of HO-1 expression protecting against thrombin-mediated responses. We found that thrombin-induced COX-2 expression, PGE{sub 2} release and cardiomyocyte hypertrophy markers (increase in ANF/BNP, α-actin expression andmore » cell surface area) was attenuated by pretreatment with CORM-2 which was partially reversed by hemoglobin (Hb) or ZnPP (an inhibitor of HO-1 activity), suggesting that HO-1/CO system may be of clinical importance to ameliorate heart failure through inhibition of inflammatory responses. CORM-2-induced HO-1 protein expression, mRNA and promoter was attenuated by pretreatment with the inhibitors of Pyk2 (PF431396), PDGFR (AG1296), PI3K (LY294002), Akt (SH-5), p38 (SB202530), JNK1/2 (SP600125), FoxO1 (AS1842856) and Sp1 (mithramycin A). The involvement of these signaling components was further confirmed by transfection with respective siRNAs, consistent with those of pharmacological inhibitors. These results suggested that CORM-2-induced HO-1 expression is mediated through a Pyk2/PDGFR/PI3K/Akt/FoxO1/Sp1-dependent manner and exerts a cytoprotective effect in human cardiomyocytes. - Graphical abstract: In summary, CORM-2 treatment induces Pyk2 transactivated PDGFR, which induces PI3K/Akt/MAPK activation, and then recruits Sp1/Foxo1 transcriptional factors to regulate HO-1 gene expression in primary human cardiomyocytes. - Highlights: • CORM-2 induces HO-1 expression. • Pyk2-dependent PDGFR activates PI3K/Akt/MAPK pathway in CORM-2-induced HO-1 expression. • Transcriptional regulation of HO-1 expression is mediated by Sp1/Foxo1. • CO/HO-1 systems ameliorate thrombin-induced human cardiomyocyte hypertrophy.« less
Chui, A; Murthi, P; Gunatillake, T; Brennecke, S P; Ignjatovic, V; Monagle, P T; Whitelock, J M; Said, J M
2014-08-01
Fetal growth restriction (FGR) is a key cause of adverse pregnancy outcome where maternal and fetal factors are identified as contributing to this condition. Idiopathic FGR is associated with altered vascular endothelial cell functions. Decorin (DCN) has important roles in the regulation of endothelial cell functions in vascular environments. DCN expression is reduced in FGR. The objectives were to determine the functional consequences of reduced DCN in a human microvascular endothelial cell line model (HMVEC), and to determine downstream targets of DCN and their expression in primary placental microvascular endothelial cells (PLECs) from control and FGR-affected placentae. Short-interference RNA was used to reduce DCN expression in HMVECs and the effect on proliferation, angiogenesis and thrombin generation was determined. A Growth Factor PCR Array was used to identify downstream targets of DCN. The expression of target genes in control and FGR PLECs was performed. DCN reduction decreased proliferation and angiogenesis but increased thrombin generation with no effect on apoptosis. The array identified three targets of DCN: FGF17, IL18 and MSTN. Validation of target genes confirmed decreased expression of VEGFA, MMP9, EGFR1, IGFR1 and PLGF in HMVECs and PLECs from control and FGR pregnancies. Reduction of DCN in vascular endothelial cells leads to disrupted cell functions. The targets of DCN include genes that play important roles in angiogenesis and cellular growth. Therefore, differential expression of these may contribute to the pathogenesis of FGR and disease states in other microvascular circulations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Diluted thrombin time reliably measures low to intermediate plasma dabigatran concentrations.
Božič-Mijovski, Mojca; Malmström, Rickard E; Malovrh, Petra; Antovic, Jovan P; Vene, Nina; Šinigoj, Petra; Mavri, Alenka
2016-07-01
Direct oral anticoagulant dabigatran was first introduced as a fixed-dose drug without routine coagulation monitoring, but current recommendations suggest that diluted thrombin time can be used to estimate plasma drug level. The aim of this study was to assess a diluted thrombin time assay based on the same thrombin reagent already used for traditional thrombin time measurements that reliably measure low to intermediate plasma dabigatran levels. We included 44 patients with atrial fibrillation who started treatment with dabigatran 150 mg (23 patients) or 110 mg (21 patients) twice a day. Blood samples were collected at baseline (no dabigatran) and 2-4 weeks after the beginning of dabigatran therapy at trough and at peak. Plasma dabigatran levels were measured with diluted thrombin time and compared to liquid chromatography with tandem mass spectrometry as the reference method. The performance of the diluted thrombin time was compared to Hemoclot® Thrombin Inhibitor and Ecarin Chromogenic Assay. In ex vivo plasma samples, diluted thrombin time highly correlated with the liquid chromatography with tandem mass spectrometry (Pearson's R = 0.9799). In the low to intermediate range (dabigatran concentration ≤ 100 µg/L) diluted thrombin time correlated significantly more closely to the liquid chromatography with tandem mass spectrometry (R = 0.964) than Hemoclot® Thrombin Inhibitor (R = 0.935, p = 0.05) or Ecarin Chromogenic Assay (R = 0.915, p < 0.01). It was also the only functional assay without any significant bias in the low to intermediate range. Both trough and peak diluted thrombin time values were similar to liquid chromatography with tandem mass spectrometry. We conclude that the diluted thrombin time assay presented in this study reliably detects dabigatran and that it is superior to the Hemoclot® Thrombin Inhibitor assay in the low to intermediate range. © The Author(s) 2015.
A novel histochemical method for the visualization of thrombin activity in the nervous system.
Bushi, D; Gera, O; Kostenich, G; Shavit-Stein, E; Weiss, R; Chapman, J; Tanne, D
2016-04-21
Although thrombin has an important role in both central and peripheral nerve diseases, characterization of the anatomical distribution of its proteolytic activity has been limited by available methods. This study presents the development, challenges, validation and implementation of a novel histochemical method for visualization of thrombin activity in the nervous system. The method is based on the cleavage of the substrate, Boc-Asp(OBzl)-Pro-Arg-4MβNA by thrombin to liberate free 4-methoxy-2-naphthylamine (4MβNA). In the presence of 5-nitrosalicylaldehyde, free 4MβNA is captured, yielding an insoluble yellow fluorescent precipitate which marks the site of thrombin activity. The sensitivity of the method was determined in vitro using known concentrations of thrombin while the specificity was verified using a highly specific thrombin inhibitor. Using this method we determined the spatial distribution of thrombin activity in mouse brain following transient middle cerebral artery occlusion (tMCAo) and in mouse sciatic nerve following crush injury. Fluorescence microscopy revealed well-defined thrombin activity localized to the right ischemic hemisphere in cortical areas and in the striatum compared to negligible thrombin activity contralaterally. The histochemical localization of thrombin activity following tMCAo was in good correlation with the infarct areas per triphenyltetrazolium chloride staining and to thrombin activity measured biochemically in tissue punches (85 ± 35 and 20 ± 3 mU/ml, in the cortical and striatum areas respectively, compared to 7 ± 2 and 13 ± 2 mU/ml, in the corresponding contralateral areas; mean ± SEM; p<0.05). In addition, 24 h following crush injury, focal areas of highly elevated thrombin activity were detected in teased sciatic fibers. This observation was supported by the biochemical assay and western blot technique. The histochemical method developed in this study can serve as an important tool for studying the role of thrombin in physiological and pathological conditions. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Regulation of long-term repopulating hematopoietic stem cells by EPCR/PAR1 signaling
Gur-Cohen, Shiri; Kollet, Orit; Graf, Claudine; Esmon, Charles T.; Ruf, Wolfram; Lapidot, Tsvee
2016-01-01
The common developmental origin of endothelial and hematopoietic cells is manifested by coexpression of several cell surface receptors. Adult murine bone marrow (BM) long-term repopulating hematopoietic stem cells (LT-HSCs), endowed with the highest repopulation and self-renewal potential, express endothelial protein C receptor (EPCR), which is used as a marker to isolate them. EPCR/PAR1 signaling in endothelial cells has anticoagulant and anti-inflammatory roles, while thrombin/PAR1 signaling induces coagulation and inflammation. Recent studies define two new PAR1-mediated signaling cascades that regulate EPCR+ LT-HSC BM retention and egress. EPCR/PAR1 signaling facilitates LT-HSC BM repopulation, retention, survival, and chemotherapy resistance by restricting nitric oxide (NO) production, maintaining NOlow LT-HSC BM retention with increased VLA4 expression, affinity, and adhesion. Conversely, acute stress and clinical mobilization upregulate thrombin generation and activate different PAR1 signaling which overcomes BM EPCR+ LT-HSC retention, inducing their recruitment to the bloodstream. Thrombin/PAR1 signaling induces NO generation, TACE-mediated EPCR shedding, and upregulation of CXCR4 and PAR1, leading to CXCL12-mediated stem and progenitor cell mobilization. This review discusses new roles for factors traditionally viewed as coagulation related, which independently act in the BM to regulate PAR1 signaling in bone- and blood-forming progenitor cells, navigating their fate by controlling NO production. PMID:26928241
Noubouossie, Denis; Key, Nigel S.; Ataga, Kenneth I.
2015-01-01
Sickle cell disease (SCD) is a hypercoagulable state. Patients exhibit increased platelet activation, high plasma levels of markers of thrombin generation, depletion of natural anticoagulant proteins, abnormal activation of the fibrinolytic system, and increased tissue factor expression, even in the non-crisis “steady state.” Furthermore, SCD is characterized by an increased risk of thrombotic complications. The pathogenesis of coagulation activation in SCD appears to be multi-factorial, with contributions from ischemia-reperfusion injury and inflammation, hemolysis and nitric oxide deficiency, and increased sickle RBC phosphatidylserine expression. Recent studies in animal models suggest that activation of coagulation may contribute to the pathogenesis of SCD, but the data on the contribution of coagulation and platelet activation to SCD-related complications in humans are limited. Clinical trials of new generations of anticoagulants and antiplatelet agents, using a variety of clinical endpoints are warranted. PMID:26776344
Enzymatic lipid oxidation by eosinophils propagates coagulation, hemostasis, and thrombotic disease
Uderhardt, Stefan; Ackermann, Jochen A.; Fillep, Tobias; Hammond, Victoria J.; Willeit, Johann; Stark, Konstantin; Rossaint, Jan; Schubert, Irene; Mielenz, Dirk; Dietel, Barbara; Raaz-Schrauder, Dorette; Ay, Cihan; Thaler, Johannes; Heim, Christian; Collins, Peter W.; Schabbauer, Gernot; Mackman, Nigel; Voehringer, David; Nadler, Jerry L.; Lee, James J.; Massberg, Steffen; Rauh, Manfred; O’Donnell, Valerie B.
2017-01-01
Blood coagulation is essential for physiological hemostasis but simultaneously contributes to thrombotic disease. However, molecular and cellular events controlling initiation and propagation of coagulation are still incompletely understood. In this study, we demonstrate an unexpected role of eosinophils during plasmatic coagulation, hemostasis, and thrombosis. Using a large-scale epidemiological approach, we identified eosinophil cationic protein as an independent and predictive risk factor for thrombotic events in humans. Concurrent experiments showed that eosinophils contributed to intravascular thrombosis by exhibiting a strong endogenous thrombin-generation capacity that relied on the enzymatic generation and active provision of a procoagulant phospholipid surface enriched in 12/15-lipoxygenase–derived hydroxyeicosatetraenoic acid–phosphatidylethanolamines. Our findings reveal a previously unrecognized role of eosinophils and enzymatic lipid oxidation as regulatory elements that facilitate both hemostasis and thrombosis in response to vascular injury, thus identifying promising new targets for the treatment of thrombotic disease. PMID:28566277
Gao, Fenglei; Du, Lili; Tang, Daoquan; Lu, Yao; Zhang, Yanzhuo; Zhang, Lixian
2015-04-15
A sensitive protocol for surface enhanced Raman spectroscopy (SERS) detection of thrombin is designed with R6G-Ag NPs as a signal tag by combining DNAzyme assistant DNA recycling and rolling circle amplification (RCA). Molecular beacon (MB) as recognition probe immobilizes on the glass slides and performs the amplification procedure. After thrombin-induced structure-switching DNA hairpins of probe 1, the DNAzyme is liberated from the caged structure, which hybridizes with the MB for cleavage of the MB in the presence of cofactor Zn(2+) and initiates the DNA recycling process, leading to the cleavage of a large number of MB and the generation of numerous primers for triggering RCA reaction. The long amplified RCA product which contained hundreds of tandem-repeat sequences, which can bind with oligonucleotide functionalized Ag NPs reporters. The attached signal tags can be easily read out by SERS. Because of the cascade signal amplification, these newly designed protocols provides a sensitive SERS detection of thrombin down to the femolar level (2.3fM) with a linear range of 5 orders of magnitude (from 10(-14) to 10(-9)M) and have high selectivity toward its target protein. The proposed method is expected to be a good clinical tool for the diagnosis of a thrombotic disease. Copyright © 2014 Elsevier B.V. All rights reserved.
O’Connor, Anne; Brasher, Christopher J.; Slatter, David A.; Meckelmann, Sven W.; Hawksworth, Jade I.; Allen, Stuart M.; O’Donnell, Valerie B.
2017-01-01
Accurate and high-quality curation of lipidomic datasets generated from plasma, cells, or tissues is becoming essential for cell biology investigations and biomarker discovery for personalized medicine. However, a major challenge lies in removing artifacts otherwise mistakenly interpreted as real lipids from large mass spectrometry files (>60 K features), while retaining genuine ions in the dataset. This requires powerful informatics tools; however, available workflows have not been tailored specifically for lipidomics, particularly discovery research. We designed LipidFinder, an open-source Python workflow. An algorithm is included that optimizes analysis based on users’ own data, and outputs are screened against online databases and categorized into LIPID MAPS classes. LipidFinder outperformed three widely used metabolomics packages using data from human platelets. We show a family of three 12-hydroxyeicosatetraenoic acid phosphoinositides (16:0/, 18:1/, 18:0/12-HETE-PI) generated by thrombin-activated platelets, indicating crosstalk between eicosanoid and phosphoinositide pathways in human cells. The software is available on GitHub (https://github.com/cjbrasher/LipidFinder), with full userguides. PMID:28405621
Ekdahl, Kristina N; Davoodpour, Padideh; Ekstrand-Hammarström, Barbro; Fromell, Karin; Hamad, Osama A; Hong, Jaan; Bucht, Anders; Mohlin, Camilla; Seisenbaeva, Gulaim A; Kessler, Vadim G; Nilsson, Bo
2018-04-01
Iron-oxide nanoparticles (NPs) generated by environmental events are likely to represent health problems. α-Fe 2 O 3 NPs were synthesized, characterized and tested in a model for toxicity utilizing human whole blood without added anticoagulant. MALDI-TOF of the corona was performed and activation markers for plasma cascade systems (complement, contact and coagulation systems), platelet consumption and release of growth factors, MPO, and chemokine/cytokines from blood cells were analyzed. The coronas formed on the pristine α-Fe 2 O 3 NPs contained contact system proteins and they induced massive activation of the contact (kinin/kallikrein) system, as well as thrombin generation, platelet activation, and release of two pro-angiogeneic growth factors: platelet-derived growth factor and vascular endothelial growth factor, whereas complement activation was unaffected. The α-Fe 2 O 3 NPs exhibited a noticeable toxicity, with kinin/kallikrein activation, which may be associated with hypotension and long-term angiogenesis in vivo, with implications for cancer, arteriosclerosis and pulmonary disease. Copyright © 2017 Elsevier Inc. All rights reserved.
A chemiluminescence biosensor for the detection of thrombin based on the aptamer composites
NASA Astrophysics Data System (ADS)
Lin, Yanna; Li, Jianbo; Wang, Yanhui; Sun, Yuanling; Ding, Chaofan; Sun, Weiyan; Luo, Chuannan
2018-03-01
An efficient, rapid, simple and ultrasensitive chemiluminescence (CL) approach was proposed for thrombin detection based on the aptamer-thrombin recognition. The aptamer composites were synthesized in this work using graphene oxide (GO) as the backing material. The thrombin was adsorbed on the aptamer composites based on the aptamer-thrombin recognition. Thus, thrombin could be quantified by the difference value of the CL intensity between supernate of the sample and the mixture which composed of thrombin and coexisted substances. The CL intensity exhibits a stable response to thrombin over a concentration range from 2.5 × 10- 10 to 1 × 10- 9 mol·L- 1 with a detection limit as low as 8.3 × 10- 11 mol·L- 1, the relative standard deviation (RSD) was found to be 4.9% for 11 determinations of 1.25 × 10- 9 mol·L- 1 thrombin. Finally, the applicability of the method was verified by applying to serum samples. The recoveries were in the range of 90.3-101.0% with RSD of 2.6-3.2%.
Francisco, Lloret Estañ; Asunción, López Conesa; Antonio, Capel Alemán; Ricardo, Robles Campos; Manuel, Reus Pintado; Caridad, Marín Hernández
2010-02-27
Post-traumatic hepatic artery pseudoaneurysm is uncommon, appearing in approximately 1% of hepatic trauma cases. Most are extrahepatic (80%) and have a late onset. Although they are usually asymptomatic, they should always be treated becasue of the high risk of complications, especially breakage. Currently the treatment of choice is endovascular embolization with coils or the exclusion of the pseudoaneurysm using other intravascular devices. Recently there have been accounts of a treatment that combines embolization with coils and image-guided percutaneous human thrombin injection. We present a case of post-traumatic hepatic artery pseudoaneurysm that was successfully treated using this combined technique.
Francisco, Lloret Estañ; Asunción, López Conesa; Antonio, Capel Alemán; Ricardo, Robles Campos; Manuel, Reus Pintado; Caridad, Marín Hernández
2010-01-01
Post-traumatic hepatic artery pseudoaneurysm is uncommon, appearing in approximately 1% of hepatic trauma cases. Most are extrahepatic (80%) and have a late onset. Although they are usually asymptomatic, they should always be treated becasue of the high risk of complications, especially breakage. Currently the treatment of choice is endovascular embolization with coils or the exclusion of the pseudoaneurysm using other intravascular devices. Recently there have been accounts of a treatment that combines embolization with coils and image-guided percutaneous human thrombin injection. We present a case of post-traumatic hepatic artery pseudoaneurysm that was successfully treated using this combined technique. PMID:21160978
Fibrin activates GPVI in human and mouse platelets
Alshehri, Osama M.; Montague, Samantha; Watson, Stephanie K.; Frampton, Jon; Bender, Markus; Watson, Steve P.
2015-01-01
The glycoprotein VI (GPVI)-Fc receptor γ (FcRγ) chain is the major platelet signaling receptor for collagen. Paradoxically, in a FeCl3 injury model, occlusion, but not initiation of thrombus formation, is delayed in GPVI-deficient and GPVI-depleted mice. In this study, we demonstrate that GPVI is a receptor for fibrin and speculate that this contributes to development of an occlusive thrombus. We observed a marked increase in tyrosine phosphorylation, including the FcRγ chain and Syk, in human and mouse platelets induced by thrombin in the presence of fibrinogen and the αIIbβ3 blocker eptifibatide. This was not seen in platelets stimulated by a protease activated receptor (PAR)-4 peptide, which is unable to generate fibrin from fibrinogen. The pattern of tyrosine phosphorylation was similar to that induced by activation of GPVI. Consistent with this, thrombin did not induce tyrosine phosphorylation of Syk and the FcRγ chain in GPVI-deficient mouse platelets. Mouse platelets underwent full spreading on fibrin but not fibrinogen, which was blocked in the presence of a Src kinase inhibitor or in the absence of GPVI. Spreading on fibrin was associated with phosphatidylserine exposure (procoagulant activity), and this too was blocked in GPVI-deficient platelets. The ectodomain of GPVI was shown to bind to immobilized monomeric and polymerized fibrin. A marked increase in embolization was seen following FeCl3 injury in GPVI-deficient mice, likely contributing to the delay in occlusion in this model. These results demonstrate that GPVI is a receptor for fibrin and provide evidence that this interaction contributes to thrombus growth and stability. PMID:26282541
Chen, Daxin; Shrivastava, Seema; Ma, Liang; Tham, El-Li; Abrahams, Joel; Coe, J David; Scott, Diane; Lechler, Robert I; McVey, John H; Dorling, Anthony
2012-01-01
The goal of this study was to use mice expressing human tissue factor pathway inhibitor (TFPI) on α-smooth muscle actin (α-SMA)(+) cells as recipients of allogeneic aortas to gain insights into the cellular mechanisms of intimal hyperplasia (IH). BALB/c aortas (H-2(d)) transplanted into α-TFPI-transgenic (Tg) mice (H-2(b)) regenerated a quiescent endothelium in contrast to progressive IH seen in C57BL/6 wild-type (WT) mice even though both developed aggressive anti-H-2(d) alloresponses, indicating similar vascular injuries. Adoptively transferred Tg CD34(+) (but not CD34(-)) cells inhibited IH in WT recipients, indicating the phenotype of α-TFPI-Tg mice was due to these cells. Compared with syngeneic controls, endogenous CD34(+) cells were mobilized in significant numbers after allogeneic transplantation, the majority showing sustained expression of tissue factor and protease-activated receptor-1 (PAR-1). In WT, most were CD45(+) myeloid progenitors coexpressing CD31, vascular endothelial growth factor receptor-2 and E-selectin; 10% of these cells coexpressed α-SMA and were recruited to the neointima. In contrast, the α-SMA(+) human TFPI(+) CD34(+) cells recruited in Tg recipients were from a CD45(-) lineage. WT CD34(+) cells incubated with a PAR-1 antagonist or taken from PAR-1-deficient mice inhibited IH as Tg cells did. Specific inhibition of thrombin generation or PAR-1 signaling on α-SMA(+) CD34(+) cells inhibits IH and promotes regenerative repair despite ongoing immune-mediated damage.
Kanda, Yasunari; Mizuno, Katsushige; Kuroki, Yasutomi; Watanabe, Yasuhiro
2001-01-01
Thrombin is a potent mitogen for vascular smooth muscle cells (VSMC) and has been implicated its pathogenic role in vascular remodelling. However, the signalling pathways by which thrombin mediates its mitogenic response are not fully understood.We have previously reported that thrombin activates p38 mitogen-activated protein kinase (p38 MAPK) by a tyrosine kinase-dependent mechanism, and that p38 MAPK has a role in thrombin-induced mitogenic response in rat VSMC.In the present study, we examine the involvement of epidermal growth factor (EGF) receptor in thrombin-induced p38 MAPK activation. We found that thrombin induced EGF receptor tyrosine phosphorylation (transactivation) in A10 cells, a clonal VSMC cell line. A selective inhibitor of EGF receptor kinase (AG1478) inhibited the p38 MAPK activation in a dose-dependent manner, whereas it had no effect on the response to platelet-derived growth factor (PDGF). EGF receptor phosphorylation induced by thrombin was inhibited by BAPTA-AM and GF109203X, which suggest a requirement for intracellular Ca2+ increase and protein kinase C.We next examined the effect of AG1478 on thrombin-induced DNA synthesis. AG1478 inhibited thrombin-induced DNA synthesis in a dose-dependent manner. In contrast, PDGF-induced DNA synthesis was not affected by AG1478.In conclusion, these data suggest that the EGF receptor transactivation and subsequent p38 MAPK activation is required for thrombin-induced proliferation of VSMC. PMID:11309236
NASA Astrophysics Data System (ADS)
Striggow, Frank; Riek, Monika; Breder, Jörg; Henrich-Noack, Petra; Reymann, Klaus G.; Reiser, Georg
2000-02-01
We have considered the extracellular serine protease thrombin and its receptor as endogenous mediators of neuronal protection against brain ischemia. Exposure of gerbils to prior mild ischemic insults, here two relatively short-lasting occlusions (2 min) of both common carotid arteries applied at 1-day intervals 2 days before a severe occlusion (6 min), caused a robust ischemic tolerance of hippocampal CA1 neurons. This resistance was impaired if the specific thrombin inhibitor hirudin was injected intracerebroventricularly before each short-lasting insult. Thus, efficient native neuroprotective mechanisms exist and endogenous thrombin seems to be involved therein. In vitro experiments using organotypic slice cultures of rat hippocampus revealed that thrombin can have protective but also deleterious effects on hippocampal CA1 neurons. Low concentrations of thrombin (50 pM, 0.01 unit/ml) or of a synthetic thrombin receptor agonist (10 μM) induced significant neuroprotection against experimental ischemia. In contrast, 50 nM (10 units/ml) thrombin decreased further the reduced neuronal survival that follows the deprivation of oxygen and glucose, and 500 nM even caused neuronal cell death by itself. Degenerative thrombin actions also might be relevant in vivo, because hirudin increased the number of surviving neurons when applied before a 6-min occlusion. Among the thrombin concentrations tested, 50 pM induced intracellular Ca2+ spikes in fura-2-loaded CA1 neurons whereas higher concentrations caused a sustained Ca2+ elevation. Thus, distinct Ca2+ signals may define whether or not thrombin initiates protection. Taken together, in vivo and in vitro data suggest that thrombin can determine neuronal cell death or survival after brain ischemia.
NASA Technical Reports Server (NTRS)
Kudryashov, B. A.; Uljanov, A. M.; Shapiro, F. B.; Bazazyan, G. G.
1981-01-01
Thrombin marked with I-131 resulted in a considerable increase of the thrombined clearance rate in healthy male rats during stress caused by an immobilization lasting 30 minutes, and in an increase of thrombin clearance occurred by a combination of immobilization and administration of adrenocorticotropin (ACTH). Contrary to ACTH, the thrombin clearance is not stimulated in healthy animals by hydrocortisone. The results of the examination are presented.
Vicentine, Fernando Pompeu Piza; Gonzalez, Adriano Miziara; Azevedo, Ramiro Anthero de; Benini, Barbara Burza; Linhares, Marcelo Moura; Lopes-Filho, Gaspar de Jesus; Martins, Jose Luiz; Salzedas-Netto, Alcides Augusto
2016-01-01
Surgical strategy to increase the number of liver transplants in the pediatric population is the ex-situ liver transection (reduction or split). However, it is associated with complications such as hemorrhage and leaks. The human fibrinogen and thrombin sponge is useful for improving hemostasis in liver surgery. Compare pediatric liver transplants with ex-situ liver transection (reduction or split) with or without the human fibrinogen and thrombin sponge. Was performed a prospective analysis of 21 patients submitted to liver transplantation with ex-situ liver transection with the application of the human fibrinogen and thrombin sponge in the wound area (group A) and retrospective analysis of 59 patients without the sponge (group B). The characteristics of recipients and donors were similar. There were fewer reoperations due to bleeding in the wound area in group A (14.2%) compared to group B (41.7%, p=0.029). There was no difference in relation to the biliary leak (group A: 17.6%, group B: 5.1%, p=0.14). There was a lower number of reoperations due to bleeding of the wound area of the hepatic graft when the human fibrinogen and thrombin sponge were used. Estratégia cirúrgica para aumentar o número de transplantes hepáticos na população pediátrica é a transecção hepática ex-situ (redução ou split). No entanto, ela está associada com complicações, tais como hemorragia e fístulas. A esponja de fibrinogênio e trombina humana é útil para melhorar a hemostasia nas operações hepáticas. Comparar transplantes hepáticos pediátricos com transecção hepática ex-situ (redução ou split) com ou sem a esponja de fibrinogênio e trombina humana. Foi realizada análise prospectiva de 21 pacientes submetidos ao transplante de fígado com transecção hepática ex-situ com a aplicação da esponja de fibrinogênio e trombina humana na área cruenta (grupo A) e análise retrospectiva de 59 pacientes sem a esponja (grupo B). As características dos receptores e doadores eram semelhantes. Observou-se menor número de reoperações devido à hemorragia na área da cruenta no grupo A (14,2%) em comparação com o grupo B (41,7%, p=0,029). Não houve diferença em relação à fístula biliar (grupo A: 17,6%, grupo B: 5,1%, p=0,14). Houve menor número de reoperações por sangramento da área cruenta do enxerto hepático quando a esponja de fibrinogênio e trombina humana foi utilizada.
Jadhav, Madhavi A; Goldsberry, Whitney N; Zink, Sara E; Lamb, Kelsey N; Simmons, Katelyn E; Riposo, Carmela M; Anokhin, Boris A; Maurer, Muriel C
2017-10-01
In blood coagulation, thrombin converts fibrinogen into fibrin monomers that polymerize into a clot network. Thrombin also activates Factor XIII by cleaving the R37-G38 peptide bond of the Activation Peptide (AP) segment. The resultant transglutaminase introduces covalent crosslinks into the fibrin clot. A strategy to modify clot architecture would be to design FXIII AP sequences that are easier or more difficult to be thrombin-cleaved thus controlling initiation of crosslinking. To aid in this design process, FXIII V34X (28-41) Activation Peptides were kinetically ranked for cleavage by wild-type thrombin and several anticoagulant mutants. Thrombin-catalyzed hydrolysis of aromatic FXIII F34, W34, and Y34 APs was compared with V34 and L34. Cardioprotective FXIII L34 remained the variant most readily cleaved by wild-type thrombin. The potent anticoagulant thrombins W215A and W215A/E217A (missing a key substrate platform for binding fibrinogen) were best able to hydrolyze FXIII F34 and W34 APs. Thrombin I174A and L99A could effectively accommodate FXIII W34 and Y34 APs yielding kinetic parameters comparable to FXIII AP L34 with wild-type thrombin. None of the aromatic FXIII V34X APs could be hydrolyzed by thrombin Y60aA. FXIII F34 and W34 are promising candidates for FXIII - anticoagulant thrombin systems that could permit FXIII-catalyzed crosslinking in the presence of reduced fibrin formation. By contrast, FXIII Y34 with thrombin (Y60aA or W215A/E217A) could help assure that both fibrin clot formation and protein crosslinking are hindered. Regulating the activation of FXIII is predicted to be a strategy for helping to control fibrin clot architecture and its neighboring environments. Copyright © 2017 Elsevier B.V. All rights reserved.
Prophylactic treatment of hereditary severe factor VII deficiency in pregnancy.
Pfrepper, Christian; Siegemund, Annelie; Hildebrandt, Sven; Kronberg, Juliane; Scholz, Ute; Niederwieser, Dietger
2017-09-01
: Severe hereditary factor VII deficiency is a rare bleeding disorder and may be associated with a severe bleeding phenotype. We describe a pregnancy in a 33-year-old woman with compound heterozygous factor VII deficiency and a history of severe menorrhagia and mucocutaneous bleedings. After discontinuation of contraceptives, menstruation was covered with recombinant activated factor VII (rFVIIa), and during pregnancy, rFVIIa had to be administered in first trimester in doses ranging from 15 to 90 μg/kg per day because of recurrent retroplacental hematomas and vaginal bleedings. Thrombin generation was measured in first trimester at different doses of rFVIIa and showed an increase in lag time when doses of less than 30 μg/kg/day were administered, whereas time to thrombin peak and peak thrombin were not influenced. A low-dose rFVIIa prophylactic treatment of 15 μg/kg every other day in the late second and in the third trimester was sufficient to allow a successful childbirth in this patient with severe factor VII deficiency.
Role of thrombin signalling in platelets in haemostasis and thrombosis
NASA Astrophysics Data System (ADS)
Sambrano, Gilberto R.; Weiss, Ethan J.; Zheng, Yao-Wu; Huang, Wei; Coughlin, Shaun R.
2001-09-01
Platelets are critical in haemostasis and in arterial thrombosis, which causes heart attacks and other events triggered by abnormal clotting. The coagulation protease thrombin is a potent activator of platelets ex vivo. However, because thrombin also mediates fibrin deposition and because multiple agonists can trigger platelet activation, the relative importance of platelet activation by thrombin in haemostasis and thrombosis is unknown. Thrombin triggers cellular responses at least in part through protease-activated receptors (PARs). Mouse platelets express PAR3 and PAR4 (ref. 9). Here we show that platelets from PAR4-deficient mice failed to change shape, mobilize calcium, secrete ATP or aggregate in response to thrombin. This result demonstrates that PAR signalling is necessary for mouse platelet activation by thrombin and supports the model that mouse PAR3 (mPAR3) does not by itself mediate transmembrane signalling but instead acts as a cofactor for thrombin cleavage and activation of mPAR4 (ref. 10). Importantly, PAR4-deficient mice had markedly prolonged bleeding times and were protected in a model of arteriolar thrombosis. Thus platelet activation by thrombin is necessary for normal haemostasis and may be an important target in the treatment of thrombosis.
Crystal Structure of Thrombin Bound to the Uncleaved Extracellular Fragment of PAR1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gandhi, Prafull S.; Chen, Zhiwei; Di Cera, Enrico
2010-05-11
Abundant structural information exists on how thrombin recognizes ligands at the active site or at exosites separate from the active site region, but remarkably little is known about how thrombin recognizes substrates that bridge both the active site and exosite I. The case of the protease-activated receptor PAR1 is particularly relevant in view of the plethora of biological effects associated with its activation by thrombin. Here, we present the 1.8 {angstrom} resolution structure of thrombin S195A in complex with a 30-residue long uncleaved extracellular fragment of PAR1 that documents for the first time a productive binding mode bridging the activemore » site and exosite I. The structure reveals two unexpected features of the thrombin-PAR1 interaction. The acidic P3 residue of PAR1, Asp{sup 39}, does not hinder binding to the active site and actually makes favorable interactions with Gly{sup 219} of thrombin. The tethered ligand domain shows a considerable degree of disorder even when bound to thrombin. The results fill a significant gap in our understanding of the molecular mechanisms of recognition by thrombin in ways that are relevant to other physiological substrates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porcellati, S.; Costantini, V.; Prosdocimi, M.
1987-07-01
The coumarin derivative AD6 is known to inhibit platelet aggregation and release and it possesses vasodilatory properties on coronary arteries of laboratory animals. Furthermore, the inhibition of the production of TxB2 from endogenous substrates after stimulation of human platelets with collagen has been demonstrated. The present report demonstrates that AD6 inhibits the production of labeled arachidonic acid and diglycerides from phospholipids of platelets stimulated with thrombin. This effect is dose-dependent and is already evident at a concentration of the drug (25 microM) which is unable to prevent the aggregation. Apparently, AD6 inhibits the release of arachidonic acid from phosphatidylinositol andmore » choline phosphoglycerides which are the main sources of the substrate for the synthesis of prostaglandins and thromboxanes.« less
Baum, Bernhard; Mohamed, Menshawy; Zayed, Mohamed; Gerlach, Christof; Heine, Andreas; Hangauer, David; Klebe, Gerhard
2009-07-03
The field of medicinal chemistry aims to design and optimize small molecule leads into drug candidates that may positively interfere with pathological disease situations in humans or combat the growth of infective pathogens. From the plethora of crystal structures of protein-inhibitor complexes we have learned how molecules recognize each other geometrically, but we still have rather superficial understanding of why they bind to each other. This contribution surveys a series of 26 thrombin inhibitors with small systematic structural differences to elucidate the rationale for their widely deviating binding affinity from 185 microM to 4 nM as recorded by enzyme kinetic measurements. Five well-resolved (resolution 2.30 - 1.47 A) crystal structures of thrombin-inhibitor complexes and an apo-structure of the uncomplexed enzyme (1.50 A) are correlated with thermodynamic data recorded by isothermal titration calorimetry with 12 selected inhibitors from the series. Taking solubility data into account, the variation in physicochemical properties allows conclusions to be reached about the relative importance of the enthalpic binding features as well as to estimate the importance of the parameters more difficult to capture, such as residual ligand entropy and desolvation properties. The collected data reveal a comprehensive picture of the thermodynamic signature that explains the so far poorly understood attractive force experienced by m-chloro-benzylamides to thrombin.
Protease-Resistant Peptide Ligands from a Knottin Scaffold Library
Getz, Jennifer A.; Rice, Jeffrey J.; Daugherty, Patrick S.
2011-01-01
Peptides within the knottin family have been shown to possess inherent stability, making them attractive scaffolds for the development of therapeutic and diagnostic agents. Given its remarkable stability to proteases, the cyclic peptide kalata B1 was employed as a scaffold to create a large knottin library displayed on the surface of E. coli. A library exceeding 109 variants was constructed by randomizing seven amino acids within a loop of the kalata B1 scaffold and screened using fluorescence-activated cell sorting to identify peptide ligands specific for the active site of human thrombin. Refolded thrombin binders exhibited high nanomolar affinities in solution, slow dissociation rates, and were able to inhibit thrombin’s enzymatic activity. Importantly, 80% of a knottin-based thrombin inhibitor remained intact after a two hour incubation both with trypsin and with chymotrypsin, demonstrating that modifying the kalata B1 sequence did not compromise its stability properties. In addition, the knottin variant mediated 20-fold enhanced affinity for thrombin, when compared to the same seven residue binding epitope constrained by a single disulfide bond. Our results indicate that peptide libraries derived from the kalata B1 scaffold can yield high affinity protein ligands that retain the remarkable protease resistance associated with the parent scaffold. More generally, this strategy may prove useful in the development of stable peptide ligands suitable for in vivo applications. PMID:21615106
Nossel, H. L.; Wasser, J.; Kaplan, K. L.; Lagamma, K. S.; Yudelman, I.; Canfield, R. E.
1979-01-01
Plasma fibrinopeptide B (Bβ1-14 or FPB) immunoreactivity was studied by radioimmunoassay in patients who received intrauterine infusion of hypertonic saline to terminate pregnancy. FPB immunoreactivity increased with thrombin treatment (TIFPB) suggesting the presence of a larger FPB-containing peptide, since purified FPB is not altered by thrombin, whereas thrombin increases the immunoreactivity of Bβ1-42 (which includes FPB) 10-fold. TIFPB immunoreactivity in plasma, drawn 4 h after hypertonic saline infusion eluted from Sephadex G-50 similarly to isolated Bβ1-42. Streptokinase, incubated with normal plasma progressively generated TIFPB immunoreactivity, which showed a major component which eluted from Sephadex G-50 similarly to Bβ1-42. Streptokinase generated TIFPB much more rapidly in reptilase-treated plasma that contains fibrin I, (which still includes FPB), indicating that fibrin I is preferred over fibrinogen as a substrate for plasmin cleavage of arginine (Bβ42)-alanine (Bβ43). Serial studies were then made in 10 patients receiving intrauterine hypertonic saline. Fibrinopeptide A (FPA) levels rose immediately, reached a peak between 1 and 2 h, were declining at 4 h, and were normal at 24 and 48 h. TIFPB levels rose slightly in the 1st h, reached a peak at 4 h, and had returned to base-line values at 24 h. Serum fibrinogen degradation product levels were unchanged at 1 h, reached their highest level at 4 h, and were still markedly elevated at 24 and 48 h. Fibrinogen levels dropped slightly being lowest at 4 and 24 h. Platelet counts declined in parallel with the fibrinogen levels over the first 4 h, but continued to decrease through 48 h. Beta thromboglobulin (βTG) levels generally paralleled FPA levels whereas platelet factor 4 (PF4) levels showed only slight changes. The data indicate that immediately after intrauterine hypertonic saline infusion thrombin is formed that cleaves FPA from fibrinogen to produce fibrin I and releases βTG and PF4 from platelets. Later plasmin cleaves Bβ1-42 from fibrin I to produce fragment X, which is further degraded to form serum fibrinogen degradation products. This sequence of proteolysis indicates that plasmin action on fibrin I serves as a mechanism that regulates fibrin II formation by removing the Bβ chain cleavage site, which is required for thrombin action in converting fibrin I to fibrin II. PMID:500818
Schjoldager, Birgit T B G; Mikkelsen, Emmeli; Lykke, Malene R; Præst, Jørgen; Hvas, Anne-Mette; Heslet, Lars; Secher, Niels J; Salvig, Jannie D; Uldbjerg, Niels
2017-06-01
During cesarean delivery in patients with placenta previa, hemorrhaging after removal of the placenta is often challenging. In this condition, the extraordinarily high concentration of tissue factor at the placenta site may constitute a principle of treatment as it activates coagulation very effectively. The presumption, however, is that tissue factor is bound to activated factor VII. We hypothesized that topical application of recombinant activated factor VII at the placenta site reduces bleeding without affecting intravascular coagulation. We included 5 cases with planned cesarean delivery for placenta previa. After removal of the placenta, the surgeon applied a swab soaked in recombinant activated factor VII containing saline (1 mg in 246 mL) to the placenta site for 2 minutes; this treatment was repeated once if the bleeding did not decrease sufficiently. We documented the treatment on video recordings and measured blood loss. Furthermore, we determined hemoglobin concentration, platelet count, international normalized ratio, activated partial thrombin time, fibrinogen (functional), factor VII:clot, and thrombin generation in peripheral blood prior to and 15 minutes after removal of the placenta. We also tested these blood coagulation variables in 5 women with cesarean delivery planned for other reasons. Mann-Whitney test was used for unpaired data. In all 5 cases, the uterotomy was closed under practically dry conditions and the median blood loss was 490 (range 300-800) mL. There were no adverse effects of recombinant activated factor VII and we did not measure factor VII to enter the circulation. Neither did we observe changes in thrombin generation, fibrinogen, activated partial thrombin time, international normalized ratio, and platelet count in the peripheral circulation (all P values >.20). This study indicates that in patients with placenta previa, topical recombinant activated factor VII may diminish bleeding from the placenta site without initiation of systemic coagulation. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Activated factor XI and tissue factor in aortic stenosis: Links with thrombin generation
Luszczak, Joanna; Undas, Anetta; Gissel, Matthew; Olszowska, Maria; Butenas, Saulius
2011-01-01
Introduction In our previous studies we showed that a significant proportion of patients with various cardiovascular diseases have active tissue factor (TF) and factor (F)XIa in their plasma. Objective To evaluate these two proteins in plasma from patients with aortic stenosis (AS) and established their relationship with the severity of the disease. Methods Fifty-four consecutive patients with AS, including 38 (70.4%) severe AS patients, were studied. Plasma FXIa and TF activity were determined in clotting assays by measuring the response to inhibitory monoclonal antibodies. Results TF activity was detectible in plasma from 14 of 54 patients (25.9%), including 13 of 38 with severe AS (34.2%) and 1 of 16 (6.25%) with moderate AS (p=0.052). FXIa activity was found in 12 (22.2%) patients, mostly in individuals with severe AS (11 of 38, 28.9%, p=0.067). All 12 patients with circulating FXIa had active TF in their plasma as well. Severe AS patients with detectable TF had higher maximal (111±20 vs 97±16 mm Hg, p=0.02) and mean (61±12 vs 53±8 mm Hg, p=0.02) transvalvular gradient, compared with those without such activity in plasma. In severe AS patients with detectable active TF, prothrombin fragment 1.2, a thrombin generation marker, was higher than in patients without TF (375±122 vs. 207±64 pM, p<0.001). Conclusions Detectable FXIa and TF activity was observed for the first time in AS patients, primarily in severe ones. This activity correlates with thrombin generation in those patients. PMID:21519234
Hellum, Marit; Øvstebø, Reidun; Brusletto, Berit S; Berg, Jens P; Brandtzaeg, Petter; Henriksson, Carola E
2014-03-01
The plasma level of bacterial lipopolysaccharides (LPS) is associated with activation of the coagulation system, inhibition of fibrinolysis and the nature of the clinical presentation and outcome in patients with meningococcal disease. Tissue factor (TF)-bearing microparticles (MPs) appear to contribute to the pathogenesis of disseminated intravascular coagulation (DIC). The aim of this study was to investigate the relationship between MP-associated TF activity and the level of bacterial LPS in plasma from patients with meningococcal septic shock and meningitis. MPs isolated from citrated plasmas were assessed for TF-dependent activity with both a plasma-based thrombin generation assay (CAT) and whole blood-based thromboelastometry (ROTEM). The LPS level was measured using a chromogenic Limulus amebocyte lysate assay. MPs obtained from patients with meningococcal septic shock initiated significantly more efficient and TF-dependent thrombin generation in the CAT assay compared to MPs from patients with meningococcal meningitis. Differences in MP-associated TF activity between the septic shock patients and the meningitis patients were also evident when MPs were added to whole blood using ROTEM. The level of plasma LPS in patients with septic shock (range 2-2,100 EU/mL) was correlated with thrombogram parameters in the CAT assay; lagtime (r(s)=-0.84), time to peak (rs=-0.83), peak (r(s)=0.85) and ETP (r(s)=0.83). MPs obtained from patients with meningococcal septic shock displayed more efficient TF-dependent thrombin generation and clot formation compared to MPs from meningitis patients. MP-associated TF activity was closely associated with plasma LPS levels in the septic shock group. Copyright © 2013 Elsevier Ltd. All rights reserved.
In vitro and in vivo characterization of a reversible synthetic heparin analog.
Whelihan, Matthew F; Cooley, Brian; Xu, Yongmei; Pawlinski, Rafal; Liu, Jian; Key, Nigel S
2016-02-01
The global supply of unfractionated heparin (UFH) and all commercially available low molecular weight heparins (LMWH) remain dependent on animal sources, such as porcine intestine or bovine lung. Recent experience has shown that contamination of the supply chain (with over-sulfated chondroitin sulfates) can result in lethal toxicity. Fondaparinux is currently the only commercially available synthetic analog of heparin. We recently described a new class of chemoenzymatically synthesized heparin analogs. One of these compounds (S12-mer) is a dodecasaccharide consisting of an antithrombin-binding moiety with repeating units of IdoA2S-GlcNS6S and two 3-O-sulfate groups that confer the ability to bind protamine. We sought to further characterize this new compound in vitro using biochemical and global coagulation assays and in vivo using thrombosis and hemostasis assays. The anticoagulant activities of the Super 12-mer (S12-mer) and Enoxaparin in anti-factor Xa and plasma-based thrombin generation assays were roughly equivalent with a 50% reduction in peak thrombin generation occurring at approximately 325nM. When protamine was titrated against a fixed concentration of S12-mer in plasma or blood, the S12-mer displayed a significant restitution of thrombin generation and clot formation. In vivo, S12-mer inhibited venous thrombosis to a similar extent as Enoxaparin, with similar bleeding profiles. These data show that the S12-mer has almost identical efficacy to Enoxaparin in terms of FXa inhibition, while displaying significant reversibility with protamine. Taken together with the ability to ensure purity and homogeneity from batch to batch, the S12-mer is a promising new synthetic heparin analog with a potentially enhanced safety profile. Copyright © 2015 Elsevier Ltd. All rights reserved.
Paparella, Domenico; Parolari, Alessandro; Rotunno, Crescenzia; Vincent, Jessica; Myasoedova, Veronica; Guida, Pietro; De Palo, Micaela; Margari, Vito; Devereaux, Philip J; Lamy, Andre; Alamanni, Francesco; Yusuf, Salim; Whitlock, Richard
2017-01-01
Cardiopulmonary bypass (CPB) surgery, despite heparin administration, elicits activation of coagulation system resulting in coagulopathy. Anti-inflammatory effects of steroid treatment have been demonstrated, but its effects on coagulation system are unknown. The primary objective of this study is to assess the effects of methylprednisolone on coagulation function by evaluating thrombin generation, fibrinolysis, and platelet activation in high-risk patients undergoing cardiac surgery with CPB. The Steroids In caRdiac Surgery study is a double-blind, randomized, controlled trial performed on 7507 patients worldwide who were randomized to receive either intravenous methylprednisolone, 250 mg at anesthetic induction and 250 mg at initiation of CPB (n = 3755), or placebo (n = 3752). A substudy was conducted in 2 sites to collect blood samples perioperatively to measure prothrombin fragment 1.2 (PF1+2, thrombin generation), plasmin-antiplasmin complex (PAP, fibrinolysis), platelet factor 4 (PF4 platelet activation), and fibrinogen. Eighty-one patients were enrolled in the substudy (37 placebo vs 44 in treatment group). No difference in clinical outcome was detected, including postoperative bleeding and need for blood products transfusion. All patients showed changes of all plasma biomarkers with greater values than baseline in both groups. This reaction was attenuated significantly in the treatment group for PF1.2 (P = 0.040) and PAP (P = 0.042) values at the first intraoperative measurement. No difference between groups was detected for PF4. Methylprednisolone treatment attenuates activation of coagulation system in high-risk patients undergoing CPB surgery. Reduction of thrombin generation and fibrinolysis activation may lead to reduced blood loss after surgery. Copyright © 2017 Elsevier Inc. All rights reserved.
Hyacinth, Hyacinth I.; Adams, Robert J.; Greenberg, Charles S.; Voeks, Jenifer H.; Hill, Allyson; Hibbert, Jacqueline M.; Gee, Beatrice E.
2015-01-01
Hypercoagulability in sickle cell disease (SCD) is associated with multiple SCD phenotypes, association with stroke risk has not been well described. We hypothesized that serum levels of biomarkers of coagulation activation correlate with high transcranial Doppler ultrasound velocity and decreases with blood transfusion therapy in SCD patients. Stored serum samples from subjects in the Stroke Prevention in Sickle Cell Anemia (STOP) trial were analyzed using ELISA and protein multiplexing techniques. 40 subjects from each treatment arm (Standard Care [SC] and Transfusion [Tx]) at three time points—baseline, study exit and one year post-trial and 10 each of age matched children with SCD but normal TCD (SNTCD) and with normal hemoglobin (HbAA) were analyzed. At baseline, median vWF, TAT and D-dimer levels were significantly higher among STOP subjects than either HbAA or SNTCD. At study exit, median hemoglobin level was significantly higher while median TCD velocity was significantly lower in Tx compared to SC subjects. Median vWF (409.6 vs. 542.9 μg/ml), TAT (24.8 vs. 40.0 ng/ml) and D-dimer (9.2 vs. 19.1 μg/ml) levels were also significantly lower in the Tx compared to the SC group at study exit. Blood levels of biomarkers coagulation activation/thrombin generation correlated positively with TCD velocity and negatively with number of blood transfusions. Biomarkers of coagulation activation/thrombin generation were significantly elevated in children with SCD, at high risk for stroke. Reduction in levels of these biomarkers correlated with reduction in stroke risk (lower TCD velocity), indicating a possible role for hypercoagulation in SCD associated stroke. PMID:26305570
Gando, Satoshi; Mayumi, Toshihiko; Ukai, Tomohiko
2018-01-01
The pathophysiological mechanisms of acute coagulopathy of trauma-shock (ACOTS) are reported to include activated protein C-mediated suppression of thrombin generation via the proteolytic inactivation of activated Factor V (FVa) and FVIIIa; an increased fibrinolysis via neutralization of plasminogen activator inhibitor-1 (PAI-1) by activated protein C. The aims of this study are to review the evidences for the role of activated protein C in thrombin generation and fibrinolysis and to validate the diagnosis of ACOTS based on the activated protein C dynamics. We conducted systematic literature search (2007-2017) using PubMed, the Cochrane Database of Systematic Reviews (CDSR), and the Cochrane Central Register of Controlled Trials (CENTRAL). Clinical studies on trauma that measured activated protein C or the circulating levels of activated protein C-related coagulation and fibrinolysis markers were included in our study. Out of 7613 studies, 17 clinical studies met the inclusion criteria. The levels of activated protein C in ACOTS were inconsistently decreased, showed no change, or were increased in comparison to the control groups. Irrespective of the activated protein C levels, thrombin generation was always preserved or highly elevated. There was no report on the activated protein C-mediated neutralization of PAI-1 with increased fibrinolysis. No included studies used unified diagnostic criteria to diagnose ACOTS and those studies also used different terms to refer to the condition known as ACOTS. None of the studies showed direct cause and effect relationships between activated protein C and the suppression of coagulation and increased fibrinolysis. No definitive diagnostic criteria or unified terminology have been established for ACOTS based on the activated protein C dynamics.
Golderman, Valery; Shavit-Stein, Efrat; Tamarin, Ilia; Rosman, Yossi; Shrot, Shai; Rosenberg, Nurit
2016-01-01
Organophosphates (OPs) are potentially able to affect serine proteases by reacting with their active site. The potential effects of OPs on coagulation factors such as thrombin and on coagulation tests have been only partially characterized and potential interactions with OPs antidotes such as oximes and muscarinic blockers have not been addressed. In the current study, we investigated the in vitro interactions between coagulation, thrombin, the OP paraoxon, and its antidotes obidoxime and atropine. The effects of these substances on thrombin activity were measured in a fluorescent substrate and on coagulation by standard tests. Both paraoxon and obidoxime but not atropine significantly inhibited thrombin activity, and prolonged prothrombin time, thrombin time, and partial thromboplastin time. When paraoxon and obidoxime were combined, a significant synergistic effect was found on both thrombin activity and coagulation tests. In conclusion, paraoxon and obidoxime affect thrombin activity and consequently alter the function of the coagulation system. Similar interactions may be clinically relevant for coagulation pathways in the blood and possibly in the brain. PMID:27689805
A host-guest-recognition-based electrochemical aptasensor for thrombin detection.
Fan, Hao; Li, Hui; Wang, Qingjiang; He, Pingang; Fang, Yuzhi
2012-05-15
A sensitive electrochemical aptasensor for thrombin detection is presented based on the host-guest recognition technique. In this sensing protocol, a 15 based thrombin aptamer (ab. TBA) was dually labeled with a thiol at its 3' end and a 4-((4-(dimethylamino)phenyl)azo) benzoic acid (dabcyl) at its 5' end, respectively, which was previously immobilized on one Au electrode surface by AuS bond and used as the thrombin probe during the protein sensing procedure. One special electrochemical marker was prepared by modifying CdS nanoparticle with β-cyclodextrins (ab. CdS-CDs), which employed as electrochemical signal provider and would conjunct with the thrombin probe modified electrode through the host-guest recognition of CDs to dabcyl. In the absence of thrombin, the probe adopted linear structure to conjunct with CdS-CDs. In present of thrombin, the TBA bond with thrombin and transformed into its special G-quarter structure, which forced CdS-CDs into the solution. Therefore, the target-TBA binding event can be sensitively transduced via detecting the electrochemical oxidation current signal of Cd of CdS nanoparticles in the solution. Using this method, as low as 4.6 pM thrombin had been detected. Copyright © 2012 Elsevier B.V. All rights reserved.
Dabigatran abrogates brain endothelial cell permeability in response to thrombin
Hawkins, Brian Thomas; Gu, Yu-Huan; Izawa, Yoshikane; del Zoppo, Gregory John
2015-01-01
Atrial fibrillation (AF) increases the risk and severity of thromboembolic stroke. Generally, antithrombotic agents increase the hemorrhagic risk of thromboembolic stroke. However, significant reductions in thromboembolism and intracerebral hemorrhage have been shown with the antithrombin dabigatran compared with warfarin. As thrombin has been implicated in microvessel injury during cerebral ischemia, we hypothesized that dabigatran decreases the risk of intracerebral hemorrhage by direct inhibition of the thrombin-mediated increase in cerebral endothelial cell permeability. Primary murine brain endothelial cells (mBECs) were exposed to murine thrombin before measuring permeability to 4-kDa fluorescein isothiocyanate-dextran. Thrombin increased mBEC permeability in a concentration-dependent manner, without significant endothelial cell death. Pretreatment of mBECs with dabigatran completely abrogated the effect of thrombin on permeability. Neither the expressions of the endothelial cell β1-integrins nor the tight junction protein claudin-5 were affected by thrombin exposure. Oxygen-glucose deprivation (OGD) also increased permeability; this effect was abrogated by treatment with dabigatran, as was the additive effect of thrombin and OGD on permeability. Taken together, these results indicate that dabigatran could contribute to a lower risk of intracerebral hemorrhage during embolism-associated ischemia from AF by protection of the microvessel permeability barrier from local thrombin challenge. PMID:25669912
Nakatsuka, Matthew A; Barback, Christopher V; Fitch, Kirsten R; Farwell, Alexander R; Esener, Sadik C; Mattrey, Robert F; Cha, Jennifer N; Goodwin, Andrew P
2013-12-01
The use of microbubbles as ultrasound contrast agents is one of the primary methods to diagnose deep venous thrombosis. However, current microbubble imaging strategies require either a clot sufficiently large to produce a circulation filling defect or a clot with sufficient vascularization to allow for targeted accumulation of contrast agents. Previously, we reported the design of a microbubble formulation that modulated its ability to generate ultrasound contrast from interaction with thrombin through incorporation of aptamer-containing DNA crosslinks in the encapsulating shell, enabling the measurement of a local chemical environment by changes in acoustic activity. However, this contrast agent lacked sufficient stability and lifetime in blood to be used as a diagnostic tool. Here we describe a PEG-stabilized, thrombin-activated microbubble (PSTA-MB) with sufficient stability to be used in vivo in circulation with no change in biomarker sensitivity. In the presence of actively clotting blood, PSTA-MBs showed a 5-fold increase in acoustic activity. Specificity for the presence of thrombin and stability under constant shear flow were demonstrated in a home-built in vitro model. Finally, PSTA-MBs were able to detect the presence of an active clot within the vena cava of a rabbit sufficiently small as to not be visible by current non-specific contrast agents. By activating in non-occlusive environments, these contrast agents will be able to detect clots not diagnosable by current contrast agents. Copyright © 2013 Elsevier Ltd. All rights reserved.
De Marco, L; Mazzucato, M; Masotti, A; Ruggeri, Z M
1994-03-04
Glycoprotein (GP) Ib alpha is required for expression of the highest affinity alpha-thrombin-binding site on platelets, possibly contributing to platelet activation through a pathway involving cleavage of a specific receptor. This function may be important for the initiation of hemostasis and may also play a role in the development of pathological vascular occlusion. We have now identified a discrete sequence in the extracytoplasmic domain of GP Ib alpha, including residues 271-284 of the mature protein, which appears to be part of the high affinity alpha-thrombin-binding site. Synthetic peptidyl mimetics of this sequence inhibit alpha-thrombin binding to GP Ib as well as platelet activation and aggregation induced by subnanomolar concentrations of the agonist; they also inhibit alpha-thrombin binding to purified glycocalicin, the isolated extracytoplasmic portion of GP Ib alpha. The inhibitory peptides interfere with the clotting of fibrinogen by alpha-thrombin but not with the amidolytic activity of the enzyme on a small synthetic substrate, a finding compatible with the concept that the identified GP Ib alpha sequence interacts with the anion-binding exosite of alpha-thrombin but not with its active proteolytic site. The crucial structural elements of this sequence necessary for thrombin binding appear to be a cluster of negatively charged residues as well as three tyrosine residues that, in the native protein, may be sulfated. GP Ib alpha has no significant overall sequence homology with the thrombin inhibitor, hirudin, nor with the specific thrombin receptor on platelets; all three molecules, however, possess a distinct region rich in negatively charged residues that appear to be involved in thrombin binding. This may represent a case of convergent evolution of unrelated proteins for high affinity interaction with the same ligand.
The pharmacological modulation of thrombin-induced cerebral thromboembolism in the rabbit.
May, G. R.; Paul, W.; Crook, P.; Butler, K. D.; Page, C. P.
1992-01-01
1. Intracarotid (i.c.) administration of thrombin induced a marked accumulation of 111indium-labelled platelets and 125I-labelled fibrinogen within the cranial vasculature of anaesthetized rabbits. 2. Thrombin (100 iu kg-1, i.c.) - induced platelet accumulation was completely abolished by pretreatment with desulphatohirudin (CGP 39393; 1 mg kg-1 i.c., 1 min prior to thrombin). Administration of CGP 39393 1 or 20 min after thrombin produced a significant reduction in platelet accumulation. 3. Intravenous (i.v.) administration of the platelet activating factor (PAF) receptor antagonist BN 52021 (10 mg kg-1) 5 min prior to thrombin (100 iu kg-1, i.c.) had no effect on platelet accumulation. 4. An inhibitor of NO biosynthesis, L-NG-nitro arginine methyl ester (L-NAME; 100 mg kg-1, i.c.), had no significant effect on the cranial platelet accumulation response to thrombin (10 iu kg-1, i.c.) when administered 5 min prior to thrombin. 5. Defibrotide (32 or 64 mg kg-1 bolus i.c. followed by 32 or 64 mg kg-1 h-1, i.c., infusion for 45 min) treatment begun 20 min after thrombin (100 iu kg-1, i.c.) did not significantly modify the cranial platelet accumulation response. 6. Cranial platelet accumulation induced by thrombin (100 iu kg-1, i.c.) was significantly reversed by the fibrinolytic drugs urokinase (20 iu kg-1, i.c., infusion for 45 min), anisoylated plasminogen streptokinase activator complex (APSAC) (200 micrograms kg-1, i.v. bolus) or recombinant tissue plasminogen activator (rt-PA; 100 micrograms kg-1, i.c. bolus followed by 20 micrograms kg-1 min-1, i.c., infusion for 45 min) administered 20 min after thrombin.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1504722
Computational Study of Thrombus Formation and Clotting Factor Effects under Venous Flow Conditions
Govindarajan, Vijay; Rakesh, Vineet; Reifman, Jaques; Mitrophanov, Alexander Y.
2016-01-01
A comprehensive understanding of thrombus formation as a physicochemical process that has evolved to protect the integrity of the human vasculature is critical to our ability to predict and control pathological states caused by a malfunctioning blood coagulation system. Despite numerous investigations, the spatial and temporal details of thrombus growth as a multicomponent process are not fully understood. Here, we used computational modeling to investigate the temporal changes in the spatial distributions of the key enzymatic (i.e., thrombin) and structural (i.e., platelets and fibrin) components within a growing thrombus. Moreover, we investigated the interplay between clot structure and its mechanical properties, such as hydraulic resistance to flow. Our model relied on the coupling of computational fluid dynamics and biochemical kinetics, and was validated using flow-chamber data from a previous experimental study. The model allowed us to identify the distinct patterns characterizing the spatial distributions of thrombin, platelets, and fibrin accumulating within a thrombus. Our modeling results suggested that under the simulated conditions, thrombin kinetics was determined predominantly by prothrombinase. Furthermore, our simulations showed that thrombus resistance imparted by fibrin was ∼30-fold higher than that imparted by platelets. Yet, thrombus-mediated bloodflow occlusion was driven primarily by the platelet deposition process, because the height of the platelet accumulation domain was approximately twice that of the fibrin accumulation domain. Fibrinogen supplementation in normal blood resulted in a nonlinear increase in thrombus resistance, and for a supplemented fibrinogen level of 48%, the thrombus resistance increased by ∼2.7-fold. Finally, our model predicted that restoring the normal levels of clotting factors II, IX, and X while simultaneously restoring fibrinogen (to 88% of its normal level) in diluted blood can restore fibrin generation to ∼78% of its normal level and hence improve clot formation under dilution. PMID:27119646
Meshkini, Azadeh; Tahmasbi, Masoumeh
2017-06-01
Walnut hull (wal hull) is an agricultural by-product that is widely used in traditional medicine for alleviating pain and treating skin diseases, however, recently it has gained much attention in modern pharmacology due to its antioxidant properties. The current study was aimed to determine the total phenolic, flavonoid, and tannin content of Persian wal hull extract and evaluate its biological effects on platelet function. Experimental data showed that acetone extract of wal hulls has a high content of polyphenolic compounds and antioxidant properties. The analytical study of crude extract by gas chromatography-mass spectrometry demonstrated different types of high- and low-molecular-weight compounds that are basically and biologically important. Moreover, an in vitro study revealed that wal hull extract at a concentration of 50 μg/mL inhibited thrombin-induced platelet aggregation and protein secretion by 50%, without any cytotoxic effects on platelets. The examined extract suppressed reactive oxygen species generation and also caspase activation in thrombin-stimulated platelets. Identically, N-acetylcysteine inhibited the increase of reactive oxygen species level induced by thrombin in platelets, and supported a link between cellular redox status and caspase activation in activated platelets. Presumably, the antiplatelet activity of wal hull extract is related to its polyphenolic compounds and their antioxidant properties. Therefore, wal hulls can be considered as a candidate for thrombotic disorders. Copyright © 2017. Published by Elsevier B.V.
Gibson, Kyle R; Neilson, Ilene L; Barrett, Fiona; Winterburn, Tim J; Sharma, Sushma; MacRury, Sandra M; Megson, Ian L
2009-10-01
N-Acetylcysteine (NAC) is a frequently used "antioxidant" in vitro, but the concentrations applied rarely correlate with those encountered with oral dosing in vivo. Here, we investigated the in vitro antioxidant and antiplatelet properties of NAC at concentrations (10-100 microM) that are achievable in plasma with tolerable oral dosing. The impact of NAC pretreatment (2 hours) on aggregation of platelets from healthy volunteers in response to thrombin and adenosine diphosphate and on platelet-derived nitric oxide (NO) was examined. NAC was found to be a weak reducing agent and a poor antioxidant compared with glutathione (reduced form) (GSH). However, platelets treated with NAC showed enhanced antioxidant activity and depression of reactive oxygen species generation associated with increases in intraplatelet GSH levels. An approximately 2-fold increase in NO synthase-derived nitrite was observed with 10 microM NAC treatment, but the effect was not concentration dependent. Finally, NAC significantly reduced both thrombin-induced and adenosine diphosphate-induced platelet aggregation. NAC should be considered a weak antioxidant that requires prior conversion to GSH to convey antioxidant and antithrombotic benefit at therapeutically relevant concentrations. Our results suggest that NAC might be an effective antiplatelet agent in conditions where increased oxidative stress contributes to heightened risk of thrombosis but only if the intraplatelet machinery to convert it to GSH is functional.
Van Meervelt, Veerle; Soskine, Misha; Maglia, Giovanni
2015-01-01
Protein-DNA interactions play critical roles in biological systems, and they often involve complex mechanisms and dynamics that are not easily measured by ensemble experiments. Recently, we have shown that folded proteins can be internalised inside ClyA nanopores and studied by ionic current recordings at the single-molecule level. Here, we use ClyA nanopores to sample the interaction between the G-quadruplex fold of the thrombin binding aptamer (TBA) and human thrombin (HT). Surprisingly, the internalisation of the HT:TBA complex inside the nanopore induced two types of current blockades with distinguished residual current and lifetime. Using single nucleobase substitutions to TBA we showed that these two types of blockades originate from TBA binding to thrombin with two isomeric orientations. Voltage dependencies and the use of ClyA nanopores with two different diameters allowed assessing the effect of the applied potential and confinement, and revealed that the two binding configurations of TBA to HT display different lifetimes. These results show that the ClyA nanopores might provide a new approach to probe conformational heterogeneity in protein:DNA interactions. PMID:25493908
Aptamer Based Microsphere Biosensor for Thrombin Detection
Zhu, Hongying; Suter, Jonathan D.; White, Ian M.; Fan, Xudong
2006-01-01
We have developed an optical microsphere resonator biosensor using aptamer as receptor for the measurement of the important biomolecule thrombin. The sphere surface is modified with anti-thrombin aptamer, which has excellent binding affinity and selectivity for thrombin. Binding of the thrombin at the sphere surface is monitored by the spectral position of the microsphere's whispering gallery mode resonances. A detection limit on the order of 1 NIH Unit/mL is demonstrated. Control experiments with non-aptamer oligonucleotide and BSA are also carried out to confirm the specific binding between aptamer and thrombin. We expect that this demonstration will lead to the development of highly sensitive biomarker sensors based on aptamer with lower cost and higher throughput than current technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawaguchi, Manami; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510; Kitajima, Kenji
Platelets are essential for blood circulation and coagulation. Previous study indicated that overexpression of Gata2 in differentiated mouse embryonic stem cells (ESCs) resulted in robust induction of megakaryocytes (Mks). To evaluate platelet production capacity of the Gata2-induced ESC-derived Mks, we generated iGata2-ESC line carrying the doxycycline-inducible Gata2 expression cassette. When doxycycline was added to day 5 hemogenic endothelial cells in the in vitro differentiation culture of iGata2-ESCs, c-Kit{sup −}Tie2{sup −}CD41{sup +} Mks were predominantly generated. These iGata2-ESC-derived Mks efficiently produced CD41{sup +}CD42b{sup +}CD61{sup +} platelets and adhered to fibrinogen-coated glass coverslips in response to thrombin stimulation. Transmission electron microscopy analysis demonstratedmore » that the iGata2-ESC-derived platelets were discoid-shaped with α-granules and an open canalicular system, but were larger than peripheral blood platelets in size. These results demonstrated that an enforced expression of Gata2 in late HECs of differentiated ESCs efficiently promotes megakaryopoiesis followed by platelet production. This study provides valuable information for ex vivo platelet production from human pluripotent stem cells in future. -- Highlights: •Megakaryocytes are efficiently induced by Gata2 from ESC-derived day 5 HECs. •Gata2-induced ESC-derived megakaryocytes are c-Kit{sup −}Tie2{sup −}CD41{sup +}. •Gata2-induced ESC-derived megakaryocytes produce larger discoid-shaped platelets. •Gata2-induced ESC-derived platelets bind fibrinogen upon thrombin stimulation.« less
γT -S195A thrombin reduces the anticoagulant effects of dabigatran in vitro and in vivo.
Sheffield, W P; Lambourne, M D; Eltringham-Smith, L J; Bhakta, V; Arnold, D M; Crowther, M A
2014-07-01
Dabigatran etexilate (DE) is an oral direct thrombin inhibitor used to prevent strokes in patients with atrial fibrillation. No licensed DE antidote is currently available. We hypothesized that active site-mutated S195A thrombin (S195A-IIa) and/or its trypsinized derivative (γT -S195A-IIa) would sequester dabigatran, the active form of DE, and reduce its anticoagulant effects. To assess active site-mutated S195A or γT -S195A-IIa as dabigatran reversal agents in vitro and in vivo. Diluted thrombin time (dTT) assays were performed using human or murine plasma containing dabigatran, combined with S195A-IIa, γT -S195A-IIa or FPR-chloromethyl ketone-treated thrombin (FPR-IIa). Bleeding times were determined in anesthetized DE-treated mice also receiving γT -S195A-IIa or vehicle 15 min prior to tail transection. The time to occlusion of carotid arteries of DE-treated mice also receiving S195A-IIa, γT -S195A-IIa, prothrombin complex concentrate (PCC) or vehicle, 15 min prior to topical FeCl3 , was determined using Doppler ultrasound. γT-S195A-IIa reduced dTT values of dabigatran-containing human and murine plasma more effectively than S195-IIa; FPR-IIa had no effect. A dose of 13 mg kg(-1) DE abrogated occlusive thrombus formation in the carotid arteries of FeCl3 -treated mice; γT -S195A-IIa (6 mg kg(-1) ) or PCC (14.3 IU kg(-1) ), but not saline vehicle or S195A-IIa (6 mg kg(-1) ), was equally effective in restoring thrombus formation. Bleeding times of mice treated with 60 mg kg(-1) DE and γT -S195A-IIa (6 mg kg(-1) ) or saline vehicle did not differ. Our data suggest that γT -S195A-IIa decreases the anticoagulant effects of dabigatran in vitro and is partially effective at restoring hemostasis-related thrombus formation in DE-treated mice in vivo. © 2014 International Society on Thrombosis and Haemostasis.
Thrombin Induces Inositol Trisphosphate-Mediated Spatially Extensive Responses in Lung Microvessels.
Escue, Rachel; Kandasamy, Kathirvel; Parthasarathi, Kaushik
2017-04-01
Activation of plasma membrane receptors initiates compartmentalized second messenger signaling. Whether this compartmentalization facilitates the preferential intercellular diffusion of specific second messengers is unclear. Toward this, the receptor-mediated agonist, thrombin, was instilled into microvessels in a restricted region of isolated blood-perfused mouse lungs. Subsequently, the thrombin-induced increase in endothelial F-actin was determined using confocal fluorescence microscopy. Increased F-actin was evident in microvessels directly treated with thrombin and in those located in adjoining thrombin-free regions. This increase was abrogated by inhibiting inositol trisphosphate-mediated calcium release with Xestospongin C (XeC). XeC also inhibited the thrombin-induced increase in the amplitude of endothelial cytosolic Ca 2+ oscillations. Instillation of thrombin and XeC into adjacent restricted regions increased F-actin in microvessels in the thrombin-treated and adjacent regions but not in those in the XeC-treated region. Thus, inositol trisphosphate, and not calcium, diffused interendothelially to the spatially remote thrombin-free microvessels. Thus, activation of plasma membrane receptors increased the ambit of inflammatory responses via a second messenger different from that used by stimuli that induce cell-wide increases in second messengers. Thrombin however failed to induce the spatially extensive response in microvessels of mice lacking endothelial connexin43, suggesting a role for connexin43 gap junctions. Compartmental second messenger signaling and interendothelial communication define the specific second messenger involved in exacerbating proinflammatory responses to receptor-mediated agonists. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Selheim, F; Idsøe, R; Fukami, M H; Holmsen, H; Vassbotn, F S
1999-10-05
Platelet activation by thrombin or collagen results in secretion and synthesis of several platelet agonists that enhance the responses to the primary agonists (autocrine stimulation). To disclose the effects of thrombin and collagen on the phosphorylation of 3-phosphoinositides per se we incubated platelets with five inhibitors of platelet autocrine stimulation (IAS) that act extracellularly. We found that IAS almost totally blocked thrombin-induced production of phosphatidylinositol 3,4-bisphosphate [PtdIns(3,4)P(2)] and phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)]. In contrast, collagen induced massive production of PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) in the presence of IAS. When testing the effect of each inhibitor individually we found the strongest inhibition of thrombin-induced PtdIns(3,4)P(2) production with the ADP scavenger system CP/CPK. Furthermore, we found a strong synergistic effect between exogenously added ADP and thrombin on production of PtdIns(3,4)P(2). In contrast to the results from 3-phosphorylated phosphoinositides, CP/CPK had little effect on thrombin-induced protein tyrosine phosphorylation. Our results show the importance of autocrine stimulation in thrombin-induced accumulation of 3-phosphorylated phosphoinositides and raise the question as to whether thrombin by itself is capable of inducing PI 3-K activation. In marked contrast to thrombin, collagen per se appears to be able to trigger increased production of PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3). Copyright 1999 Academic Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nygaard, Gyrid; Department of Biomedicine, University of Bergen, Bergen; Herfindal, Lars
Highlights: • We investigated the impact of cyclic nucleotide analogues on platelet activation. • Different time dependence were found for inhibition of platelet activation. • Additive effect was found using PKA- and PKG-activating analogues. • Our results may explain some of the discrepancies reported for cNMP signalling. - Abstract: In platelets, nitric oxide (NO) activates cGMP/PKG signalling, whereas prostaglandins and adenosine signal through cAMP/PKA. Cyclic nucleotide signalling has been considered to play an inhibitory role in platelets. However, an early stimulatory effect of NO and cGMP-PKG signalling in low dose agonist-induced platelet activation have recently been suggested. Here, we investigatedmore » whether different experimental conditions could explain some of the discrepancy reported for platelet cGMP-PKG-signalling. We treated gel-filtered human platelets with cGMP and cAMP analogues, and used flow cytometric assays to detect low dose thrombin-induced formation of small platelet aggregates, single platelet disappearance (SPD), platelet-derived microparticles (PMP) and thrombin receptor agonist peptide (TRAP)-induced P-selectin expression. All four agonist-induced platelet activation phases were blocked when platelets were costimulated with the PKG activators 8-Br-PET-cGMP or 8-pCPT-cGMP and low-doses of thrombin or TRAP. However, extended incubation with 8-Br-PET-cGMP decreased its inhibition of TRAP-induced P-selectin expression in a time-dependent manner. This effect did not involve desensitisation of PKG or PKA activity, measured as site-specific VASP phosphorylation. Moreover, PKG activators in combination with the PKA activator Sp-5,6-DCL-cBIMPS revealed additive inhibitory effect on TRAP-induced P-selectin expression. Taken together, we found no evidence for a stimulatory role of cGMP/PKG in platelets activation and conclude rather that cGMP/PKG signalling has an important inhibitory function in human platelet activation.« less
Human Platelet Lipidomics: Variance, Visualization, Flux, and Fuel.
FitzGerald, Garret A
2016-05-10
The cardioprotection afforded by low-dose aspirin reflects the biological importance of the platelet lipid thromboxane A2. In this issue of Cell Metabolism, Slatter et al. (2016) illuminate the breadth, complexity, and variability of the human platelet lipidome under conditions of thrombin activation and aspirin suppression, potentially facilitating the pursuit of precision medicine. Copyright © 2016 Elsevier Inc. All rights reserved.
2013-01-01
Background Heparin cofactor II (HCII) is a circulating protease inhibitor, one which contains an N-terminal acidic extension (HCII 1-75) unique within the serpin superfamily. Deletion of HCII 1-75 greatly reduces the ability of glycosaminoglycans (GAGs) to accelerate the inhibition of thrombin, and abrogates HCII binding to thrombin exosite 1. While a minor portion of HCII 1-75 can be visualized in a crystallized HCII-thrombin S195A complex, the role of the rest of the extension is not well understood and the affinity of the HCII 1-75 interaction has not been quantitatively characterized. To address these issues, we expressed HCII 1-75 as a small, N-terminally hexahistidine-tagged polypeptide in E. coli. Results Immobilized purified HCII 1-75 bound active α-thrombin and active-site inhibited FPR-ck- or S195A-thrombin, but not exosite-1-disrupted γT-thrombin, in microtiter plate assays. Biotinylated HCII 1-75 immobilized on streptavidin chips bound α-thrombin and FPR-ck-thrombin with similar KD values of 330-340 nM. HCII 1-75 competed thrombin binding to chip-immobilized HCII 1-75 more effectively than HCII 54-75 but less effectively than the C-terminal dodecapeptide of hirudin (mean Ki values of 2.6, 8.5, and 0.29 μM, respectively). This superiority over HCII 54-75 was also demonstrated in plasma clotting assays and in competing the heparin-catalysed inhibition of thrombin by plasma-derived HCII; HCII 1-53 had no effect in either assay. Molecular modelling of HCII 1-75 correctly predicted those portions of the acidic extension that had been previously visualized in crystal structures, and suggested that an α-helix found between residues 26 and 36 stabilizes one found between residues 61-67. The latter region has been previously shown by deletion mutagenesis and crystallography to play a crucial role in the binding of HCII to thrombin exosite 1. Conclusions Assuming that the KD value for HCII 1-75 of 330-340 nM faithfully predicts that of this region in intact HCII, and that 1-75 binding to exosite 1 is GAG-dependent, our results support a model in which thrombin first binds to GAGs, followed by HCII addition to the ternary complex and release of HCII 1-75 for exosite 1 binding and serpin mechanism inhibition. They further suggest that, in isolated or transferred form, the entire HCII 1-75 region is required to ensure maximal binding of thrombin exosite 1. PMID:23496873
Computational study of some benzamidine-based inhibitors of thrombin-like snake venom proteinases
NASA Astrophysics Data System (ADS)
Henriques, Elsa S.; Nascimento, Marco A. C.; Ramos, Maria João
Pit viper venoms contain a number of serine proteinases that, despite their observed coagulant thrombin-like action in vitro, exhibit a paradoxical benign defibrinogenating (anticoagulant) action in vivo, with clinical applications in preventing thrombi and improved blood circulation. Considering that several benzamidine-based inhibitors, some highly selective to thrombin, also inhibit the enzymatic activity of such venombins, the modeling of their enzyme-inhibitor interactions could provide valuable information on the topological factors that determine the divergences in activity. The first step, and the object of the present study, was to derive the necessary set of parameters, consistent with the CHARMM force field, and to perform molecular dynamics (MD) simulations on a few selected representatives of the inhibitors in question under physiological conditions. Bonding and van der Waals parameters were derived by analogy to similar ones in the existing force field. Net atomic charges were obtained with a restrained fitting to the molecular electrostatic potential generated at B3LYP/6-31G(d) level. The parameters were refined to reproduce the available experimental geometries and crystal data, and the MD simulations of the free inhibitors in aqueous solution at 298 K provided an insightful description of their available conformational space.
Bushi, Doron; Stein, Efrat Shavit; Golderman, Valery; Feingold, Ekaterina; Gera, Orna; Chapman, Joab; Tanne, David
2017-01-01
Brain thrombin activity is increased following acute ischemic stroke and may play a pathogenic role through the protease-activated receptor 1 (PAR1). In order to better assess these factors, we obtained a novel detailed temporal and spatial profile of thrombin activity in a mouse model of permanent middle cerebral artery occlusion (pMCAo). Thrombin activity was measured by fluorescence spectroscopy on coronal slices taken from the ipsilateral and contralateral hemispheres 2, 5, and 24 h following pMCAo ( n = 5, 6, 5 mice, respectively). Its spatial distribution was determined by punch samples taken from the ischemic core and penumbra and further confirmed using an enzyme histochemistry technique ( n = 4). Levels of PAR1 were determined using western blot. Two hours following pMCAo, thrombin activity in the stroke core was already significantly higher than the contralateral area (11 ± 5 vs. 2 ± 1 mU/ml). At 5 and 24 h, thrombin activity continued to rise linearly ( r = 0.998, p = 0.001) and to expand in the ischemic hemisphere beyond the ischemic core reaching deleterious levels of 271 ± 117 and 123 ± 14 mU/ml (mean ± SEM) in the basal ganglia and ischemic cortex, respectively. The peak elevation of thrombin activity in the ischemic core that was confirmed by fluorescence histochemistry was in good correlation with the infarcts areas. PAR1 levels in the ischemic core decreased as stroke progressed and thrombin activity increased. In conclusion, there is a time- and space-related increase in brain thrombin activity in acute ischemic stroke that is closely related to the progression of brain damage. These results may be useful in the development of therapeutic strategies for ischemic stroke that involve the thrombin-PAR1 pathway in order to prevent secondary thrombin related brain damage.
Thrombin-inhibiting nanoparticles rapidly constitute versatile and detectable anticlotting surfaces
NASA Astrophysics Data System (ADS)
Wheatley Myerson, Jacob; He, Li; Allen, John Stacy; Williams, Todd; Lanza, Gregory; Tollefsen, Douglas; Caruthers, Shelton; Wickline, Samuel
2014-09-01
Restoring an antithrombotic surface to suppress ongoing thrombosis is an appealing strategy for treatment of acute cardiovascular disorders such as erosion of atherosclerotic plaque. An antithrombotic surface would present an alternative to systemic anticoagulation with attendant risks of bleeding. We have designed thrombin-targeted nanoparticles (NPs) that bind to sites of active clotting to extinguish local thrombin activity and inhibit platelet deposition while exhibiting only transient systemic anticoagulant effects. Perfluorocarbon nanoparticles (PFC NP) were functionalized with thrombin inhibitors (either D-phenylalanyl-L-prolyl-L-arginyl-chloromethyl ketone or bivalirudin) by covalent attachment of more than 15 000 inhibitors to each PFC NP. Fibrinopeptide A (FPA) ELISA demonstrated that thrombin-inhibiting NPs prevented cleavage of fibrinogen by both free and clot-bound thrombin. Magnetic resonance imaging (MRI) confirmed that a layer of thrombin-inhibiting NPs prevented growth of clots in vitro. Thrombin-inhibiting NPs were administered in vivo to C57BL6 mice subjected to laser injury of the carotid artery. NPs significantly delayed thrombotic occlusion of the artery, whereas an equivalent bolus of free inhibitor was ineffective. For thrombin-inhibiting NPs, only a short-lived (˜10 min) systemic effect on bleeding time was observed, despite prolonged clot inhibition. Imaging and quantification of in vivo antithrombotic NP layers was demonstrated by MRI of the PFC NP. 19F MRI confirmed colocalization of particles with arterial thrombi, and quantitative 19F spectroscopy demonstrated specific binding and retention of thrombin-inhibiting NPs in injured arteries. The ability to rapidly form and image a new antithrombotic surface in acute vascular syndromes while minimizing risks of bleeding would permit a safer method of passivating active lesions than current systemic anticoagulant regimes.
Thrombostatin FM compounds: direct thrombin inhibitors - mechanism of action in vitro and in vivo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nieman, M T; Burke, F; Warnock, M
2008-04-29
Novel pentapeptides called Thrombostatin FM compounds consisting mostly of D-isomers and unusual amino acids were prepared based upon the stable angiotensin converting enzyme breakdown product of bradykinin - RPPGF. These peptides are direct thrombin inhibitors prolonging the thrombin clotting time, activated partial thromboplastin time, and prothrombin time at ≥0.78, 1.6, and 1.6 μm, respectively. They competitively inhibit α-thrombin-induced cleavage of a chromogenic substrate at 4.4--8.2 μm. They do not significantly inhibit plasma kallikrein, factor (F) XIIa, FXIa, FIXa, FVIIa-TF, FXa, plasmin or cathepsin G. One form, FM19 [rOicPaF(p-Me)], blocks α-thrombin-induced calcium flux in fibroblasts with an IC 50 of 6.9more » ± 1.2 μm. FM19 achieved 100% inhibition of threshold α- or γ-thrombin-induced platelet aggregation at 8.4 ± 4.7 μm and 16 ± 4 μm, respectively. The crystal structure of thrombin in complex with FM19 shows that the N-terminal D-Arg retrobinds into the S1 pocket, its second residue Oic interacts with His-57, Tyr-60a and Trp-60d, and its C-terminal p-methyl Phe engages thrombin's aryl binding site composed of Ile-174, Trp-215, and Leu-99. When administered intraperitoneal, intraduodenal, or orally to mice, FM19 prolongs thrombin clotting times and delays carotid artery thrombosis. FM19, a low affinity reversible direct thrombin inhibitor, might be useful as an add-on agent to address an unmet need in platelet inhibition in acute coronary syndromes in diabetics and others who with all current antiplatelet therapy still have reactive platelets.« less
Selheim, F; Frøyset, A K; Strand, I; Vassbotn, F S; Holmsen, H
2000-11-17
Adrenaline significantly potentiated late thrombin- and SFRLLN-induced PtdIns(3,4)P(2) production. Furthermore, the potentiating effect of adrenaline on thrombin-induced PtdIns(3, 4)P(2) production was independent on secreted ADP, whereas, the effect of adrenaline on SFRLLN-induced PtdIns(3,4)P(2) production was completely dependent of secreted ADP. However, the ADP-dependent accumulation of PtdIns(3,4)P(2) was not required for irreversible platelet aggregation induced by SFRLLN in the presence of adrenaline. It is concluded that adrenaline can replace secreted ADP to potentiate PtdIns(3,4)P(2) production in thrombin-stimulated but not in SFRLLN-stimulated platelets, thus demonstrating a qualitative difference between platelet stimulation by thrombin and the thrombin receptor activating peptide SFRLLN.
Raife, Thomas J; Dwyre, Denis M; Stevens, Jeff W; Erger, Rochelle A; Leo, Lorie; Wilson, Katina M; Fernández, Jose A; Wilder, Jennifer; Kim, Hyung-Suk; Griffin, John H; Maeda, Nobuyo; Lentz, Steven R
2011-11-01
We sought to develop a murine model to examine the antithrombotic and antiinflammatory functions of human thrombomodulin in vivo. Knock-in mice that express human thrombomodulin from the murine thrombomodulin gene locus were generated. Compared with wild-type mice, human thrombomodulin knock-in mice exhibited decreased protein C activation in the aorta (P<0.01) and lung (P<0.001). Activation of endogenous protein C following infusion of thrombin was decreased by 90% in knock-in mice compared with wild-type mice (P<0.05). Carotid artery thrombosis induced by photochemical injury occurred more rapidly in knock-in mice (12±3 minutes) than in wild-type mice (31±6 minutes; P<0.05). No differences in serum cytokine levels were detected between knock-in and wild-type mice after injection of endotoxin. When crossed with apolipoprotein E-deficient mice and fed a Western diet, knock-in mice had a further decrease in protein C activation but did not exhibit increased atherosclerosis. Expression of human thrombomodulin in place of murine thrombomodulin produces viable mice with a prothrombotic phenotype but unaltered responses to systemic inflammatory or atherogenic stimuli. This humanized animal model will be useful for investigating the function of human thrombomodulin under pathophysiological conditions in vivo.
Androutsou, Maria-Eleni; Saifeddine, Mahmoud; Hollenberg, Morley D; Matsoukas, John; Agelis, George
2010-04-01
In the present study, we report the synthesis and biological evaluation of a series of new non-peptide PAR(1) mimetic receptor antagonists, based on conformational analysis of the S(42)FLLR(46) tethered ligand (TL) sequence of PAR(1). These compounds incorporate the key pharmacophore groups in the TL sequence, guanidyl, amino and phenyl, which are essential for triggering receptor activity. Compounds 5 and 15 (50-100 microM) inhibited both TFLLR-amide (10 microM) and thrombin-mediated (0.5 and 1 U/ml; 5 and 10 microM) calcium signaling in a cultured human HEK cell assay.
NASA Astrophysics Data System (ADS)
Xie, Shunbi; Ye, Jiawei; Yuan, Yali; Chai, Yaqin; Yuan, Ruo
2015-10-01
A new type of multifunctional metal-organic framework (MOF) has been synthesized by encapsulating hemin into the nano-sized Fe-MIL-88 MOFs (hemin@MOFs) and first applied in an electrochemical aptasensor to detect thrombin (TB) with the aid of an enzyme for signal amplification. The gold nanoparticle functionalized hemin@MOFs (Au/hemin@MOFs) have not only simultaneously served as redox mediators and solid electrocatalysts, but have also been utilized as an ideal loading platform to immobilize a large number of biomolecules. In this aptasensor, Au/hemin@MOFs conjugated with glucose oxidase (GOD) and thrombin binding aptamer (TBA II) were used as the secondary aptamer bioconjugates (Au/hemin@MOF-TBA II-GOD bioconjugates), and TB was sandwiched between Au/hemin@MOF-TBA II-GOD bioconjugates and the amino-terminated TBA I which was self-assembled on the gold nanoparticle (AuNP) modified electrode. The GOD could oxidize glucose into gluconic acid accompanied by the generation of H2O2. The generated H2O2 on the electrode surface was further electrocatalyzed by hemin@MOFs to amplify the electrochemical signal of hemin contained in hemin@MOFs. Therefore, the synthesized hemin@MOFs represented a new paradigm for multifunctional materials since it combined three different functions including serving as catalysts, redox mediators and loading platforms within a single material. With such an ingenious design, a wide linear range of 0.0001 nM to 30 nM was acquired with a relatively low detection limit of 0.068 pM for TB detection.A new type of multifunctional metal-organic framework (MOF) has been synthesized by encapsulating hemin into the nano-sized Fe-MIL-88 MOFs (hemin@MOFs) and first applied in an electrochemical aptasensor to detect thrombin (TB) with the aid of an enzyme for signal amplification. The gold nanoparticle functionalized hemin@MOFs (Au/hemin@MOFs) have not only simultaneously served as redox mediators and solid electrocatalysts, but have also been utilized as an ideal loading platform to immobilize a large number of biomolecules. In this aptasensor, Au/hemin@MOFs conjugated with glucose oxidase (GOD) and thrombin binding aptamer (TBA II) were used as the secondary aptamer bioconjugates (Au/hemin@MOF-TBA II-GOD bioconjugates), and TB was sandwiched between Au/hemin@MOF-TBA II-GOD bioconjugates and the amino-terminated TBA I which was self-assembled on the gold nanoparticle (AuNP) modified electrode. The GOD could oxidize glucose into gluconic acid accompanied by the generation of H2O2. The generated H2O2 on the electrode surface was further electrocatalyzed by hemin@MOFs to amplify the electrochemical signal of hemin contained in hemin@MOFs. Therefore, the synthesized hemin@MOFs represented a new paradigm for multifunctional materials since it combined three different functions including serving as catalysts, redox mediators and loading platforms within a single material. With such an ingenious design, a wide linear range of 0.0001 nM to 30 nM was acquired with a relatively low detection limit of 0.068 pM for TB detection. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04532k
EMBOLIC MIDDLE CEREBRAL ARTERY OCCLUSION MODEL USING THROMBIN AND FIBRINOGEN COMPOSED CLOTS IN RAT
Ren, Ming; Lin, Zi-Jing; Qian, Hai; Gourav, Choudhury Roy; liu, Ran; Liu, Hanli; Yang, Shao-Hua
2012-01-01
Ischemic stroke accounts for over 80% in total human stroke which mostly affect middle cerebral artery (MCA) territory. Embolic stroke models induced by injection of homologous clots into the internal carotid artery and MCA closely mimic human stroke and have been commonly used in stroke research. Studies indicate that the size and composition of clots are critical for the reproducibility of the stroke model. In the present study, we modified the homologous clots formation by addition of thrombin and fibrinogen which produced even distribution of fibrin with tight cross linkage of red blood cells. We optimized the embolic MCA occlusion model in rats using different size of the mixed clots. A precise lodgment of the clots at the MCA bifurcation and highly reproducible ischemic lesion in the MCA territory were demonstrated in the embolic MCA occlusion model induced by injection of 10 pieces of 1-mm long mixed clots made in PE-60 catheter. We further tested the effect of recombinant tissue plasminogen activator (rtPA) in this embolic MCA occlusion model. rtPA induced thrombolysis, improved neurological outcome, and significantly reduced ischemic lesion volume when administered at 1 hour after embolism as compared with control. In summary, we have established a reproducible embolic MCA occlusion model using clots made of homologous blood, thrombin and fibrinogen. The mixed clots enable precise lodgment at the MCA bifurcation which is responsive to thrombolytic therapy of rtPA. PMID:22985597
Embolic middle cerebral artery occlusion model using thrombin and fibrinogen composed clots in rat.
Ren, Ming; Lin, Zi-Jing; Qian, Hai; Choudhury, Gourav Roy; Liu, Ran; Liu, Hanli; Yang, Shao-Hua
2012-11-15
Ischemic stroke accounts for over 80% in total human stroke which mostly affect middle cerebral artery (MCA) territory. Embolic stroke models induced by injection of homologous clots into the internal carotid artery and MCA closely mimic human stroke and have been commonly used in stroke research. Studies indicate that the size and composition of clots are critical for the reproducibility of the stroke model. In the present study, we modified the homologous clots formation by addition of thrombin and fibrinogen which produced even distribution of fibrin with tight cross linkage of red blood cells. We optimized the embolic MCA occlusion model in rats using different size of the mixed clots. A precise lodgment of the clots at the MCA bifurcation and highly reproducible ischemic lesion in the MCA territory were demonstrated in the embolic MCA occlusion model induced by injection of 10 pieces of 1-mm long mixed clots made in PE-60 catheter. We further tested the effect of recombinant tissue plasminogen activator (rtPA) in this embolic MCA occlusion model. rtPA induced thrombolysis, improved neurological outcome, and significantly reduced ischemic lesion volume when administered at 1h after embolism as compared with control. In summary, we have established a reproducible embolic MCA occlusion model using clots made of homologous blood, thrombin and fibrinogen. The mixed clots enable precise lodgment at the MCA bifurcation which is responsive to thrombolytic therapy of rtPA. Copyright © 2012 Elsevier B.V. All rights reserved.
Mechanism of the Anticoagulant Activity of Thrombin Mutant W215A/E217A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gandhi, Prafull S.; Page, Michael J.; Chen, Zhiwei
2009-09-15
The thrombin mutant W215A/E217A (WE) is a potent anticoagulant both in vitro and in vivo. Previous x-ray structural studies have shown that WE assumes a partially collapsed conformation that is similar to the inactive E* form, which explains its drastically reduced activity toward substrate. Whether this collapsed conformation is genuine, rather than the result of crystal packing or the mutation introduced in the critical 215-217 {beta}-strand, and whether binding of thrombomodulin to exosite I can allosterically shift the E* form to the active E form to restore activity toward protein C are issues of considerable mechanistic importance to improve themore » design of an anticoagulant thrombin mutant for therapeutic applications. Here we present four crystal structures of WE in the human and murine forms that confirm the collapsed conformation reported previously under different experimental conditions and crystal packing. We also present structures of human and murine WE bound to exosite I with a fragment of the platelet receptor PAR1, which is unable to shift WE to the E form. These structural findings, along with kinetic and calorimetry data, indicate that WE is strongly stabilized in the E* form and explain why binding of ligands to exosite I has only a modest effect on the E*-E equilibrium for this mutant. The E* {yields} E transition requires the combined binding of thrombomodulin and protein C and restores activity of the mutant WE in the anticoagulant pathway.« less
Mechanism of action of recombinant activated factor VII: an update.
Hedner, Ulla
2006-01-01
Bleeding episodes in patients with hemophilia and inhibitors must be managed using agents that are hemostatically active in the absence of factor VIII or IX. Activated prothrombin complex concentrates have long been used in this context. However, the search for safer and more effective agents has led to the development of recombinant activated factor VII (rFVIIa; NovoSeven, Novo Nordisk, Bagsvaerd, Denmark). This paper presents an update on the mechanism of action of rFVIIa, and describes how pharmacologic doses of this agent enhance thrombin production and thus contribute to the development of a stable, lysis-resistant fibrin plug at the site of vessel damage. This mechanism explains the reported efficacy of rFVIIa in a range of clinical situations characterized by impaired thrombin generation.
Bonifacio, Laura; Church, Frank C.; Jarstfer, Michael B.
2008-01-01
Here we tested the ability to augment the biological activity of the thrombin aptamer, d(GGTTGGTGTGGTTGG), by using locked nucleic acid (LNA) to influence its G-quadruplex structure. Compared to un-substituted control aptamer, LNA-containing aptamers displayed varying degrees of thrombin inhibition. Aptamers with LNA substituted in either positions G5, T7, or G8 showed decreased thrombin inhibition, whereas LNA at position G2 displayed activity comparable to un-substituted control aptamer. Interestingly, the thermal stability of the substituted aptamers does not correlate to activity – the more stable aptamers with LNA in position G5, T7, or G8 showed the least thrombin inhibition, while a less stable aptamer with LNA at G2 was as active as the un-substituted aptamer. These results suggest that LNA substitution at sites G5, T7, and G8 directly perturbs aptamer-thrombin affinity. This further implies that for the thrombin aptamer, activity is not dictated solely by the stability of the G-quadruplex structure, but by specific interactions between the central TGT loop and thrombin and that LNA can be tolerated in a biologically active nucleic acid structure albeit in a position dependent fashion. PMID:19325759
van de Locht, A; Lamba, D; Bauer, M; Huber, R; Friedrich, T; Kröger, B; Höffken, W; Bode, W
1995-11-01
Rhodniin is a highly specific inhibitor of thrombin isolated from the assassin bug Rhodnius prolixus. The 2.6 Angstrum crystal structure of the non-covalent complex between recombinant rhodniin and bovine alpha-thrombin reveals that the two Kazal-type domains of rhodniin bind to different sites of thrombin. The amino-terminal domain binds in a substrate-like manner to the narrow active-site cleft of thrombin; the imidazole group of the P1 His residue extends into the S1 pocket to form favourable hydrogen/ionic bonds with Asp189 at its bottom, and additionally with Glu192 at its entrance. The carboxy-terminal domain, whose distorted reactive-site loop cannot adopt the canonical conformation, docks to the fibrinogen recognition exosite via extensive electrostatic interactions. The rather acidic polypeptide linking the two domains is displaced from the thrombin surface, with none of its residues involved in direct salt bridges with thrombin. The tight (Ki = 2 x 10(-13) M) binding of rhodniin to thrombin is the result of the sum of steric and charge complementarity of the amino-terminal domain towards the active-site cleft, and of the electrostatic interactions between the carboxy-terminal domain and the exosite.
Determinants of hypofibrinolysis in patients with digestive tract cancer.
Gronostaj, Katarzyna; Richter, Piotr; Nowak, Wojciech; Undas, Anetta
2016-01-01
Recently, we demonstrated that digestive tract cancer (DTC) is associated with reduced fibrin clot permeability and impaired fibrinolysis. We investigated determinants of fibrinolysis in DTC patients. In 44 consecutive patients with DTC and 47 controls matched for age, sex, and cardiovascular risk, we evaluated fibrinolysis proteins, platelet activation markers, thrombin formation, together with plasma clot lysis time assays in the absence (CLT) and presence of carboxypeptidase potato inhibitor (CLT CPI) that blocks thrombin activatable fibrinolysis inhibitor (TAFI). In the DTC group CLT (by 22.3%) and CLT CPI (by 27.4%) were longer compared with controls. The DTC patients had higher plasma fibrinolysis inhibitors, plasminogen activator inhibitor 1 (PAI-1) (by 18.2%), TAFI activity (by 17.3%), and antigen (by 11.2%). The patients had markedly increased platelet markers - soluble CD40 ligand (by 338%) and P-selectin (by 97%), together with von Willebrand factor (vWF) antigen (by 61%). Thrombin-antithrombin complexes (TAT) (by 48.7%) and soluble thrombomodulin (sTM) (by 17.2%) were also increased in the DTC group (all p < 0.05). Patients with high-grade tumours (n = 26) compared with remainders (n = 18) had longer CLT, higher tissue-type plasminogen activator antigen, both TAFI antigen and activity levels, vWF, and sTM. Multiple regression analysis after adjustment for potential confounders showed that independent predictors of CLT in DTC patients were TAT, TAFI activity, and vWF. The only independent predictor of CLT CPI was TAT. Hypofibrinolysis in DTC patients is largely driven by enhanced thrombin generation, TAFI, and endothelial injury.
NASA Astrophysics Data System (ADS)
Nicolotti, Orazio; Giangreco, Ilenia; Miscioscia, Teresa Fabiola; Convertino, Marino; Leonetti, Francesco; Pisani, Leonardo; Carotti, Angelo
2010-02-01
A series of 27 benzamidine inhibitors covering a wide range of biological activity and chemical diversity was analysed to derive a Linear Interaction Energy in Continuum Electrostatics (LIECE) model for analysing the thrombin inhibitory activity. The main interactions occurring at the thrombin binding site and the preferred binding conformations of inhibitors were explicitly biased by including into the LIECE model 10 compounds extracted from X-ray solved thrombin-inhibitor complexes available from the Protein Data Bank (PDB). Supported by a robust statistics ( r 2 = 0.698; q 2 = 0.662), the LIECE model was successful in predicting the inhibitory activity for about 76% of compounds ( r ext 2 ≥ 0.600) from a larger external test set encompassing 88 known thrombin inhibitors and, more importantly, in retrieving, at high sensitivity and with better performance than docking and shape-based methods, active compounds from a thrombin combinatorial library of 10240 mimetic chemical products. The herein proposed LIECE model has the potential for successfully driving the design of novel thrombin inhibitors with benzamidine and/or benzamidine-like chemical structure.
Pulsatile equibiaxial stretch inhibits thrombin-induced RhoA and NF-{kappa}B activation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haga, Jason H.; Kaunas, Roland; Radeff-Huang, Julie
2008-07-18
This study investigated interactions between the effects of mechanical stretch and thrombin on RhoA activation in rat aortic smooth muscle cells (RASMC). Equibiaxial, pulsatile stretch, or thrombin produced a significant increase in RhoA activation. Surprisingly, in combination, 30 min of stretch inhibited the ability of thrombin to activate RhoA. NO donors and 8-bromo-cGMP significantly inhibited thrombin-induced RhoA activation. Interestingly, the nitric oxide synthase (NOS) inhibitor L-NAME increased basal RhoA activity, suggesting that NOS activity exerts a tonic inhibition on RhoA. Stretching RASMC increases nitrite production, consistent with the idea that NO contributes to the inhibitory effects of stretch. Thrombin stimulatesmore » MAP kinase and NF-{kappa}B pathways through Rho and these responses were blocked by 8-bromo-cGMP or stretch and restored by L-NAME. These data suggest that stretch, acting through NO and cGMP, can prevent the ability of thrombin to stimulate Rho signaling pathways that contribute to pathophysiological proliferative and inflammatory responses.« less
Rozen, Laurence; Noubouossie, Denis; Dedeken, Laurence; Huybrechts, Sophie; Lê, Phu Quoc; Ferster, Alina; Demulder, Anne
2017-02-01
Asparaginase (Asp) and corticosteroid (CS) treatment in patients with acute lymphoblastic leukaemia (ALL) is associated with an increased risk of thrombotic events. Characterization of global haemostatic phenotypes of patients with ALL during Asp therapy. Thrombin generation (TG) was monitored in platelet-poor plasma of 56 children treated for a B lineage ALL (36 with native, 20 with PEG Asp) using 1 pM tissue factor and 4 μM phospholipids, with and without thrombomodulin. Protein C activity (PC), free protein S (PS), antithrombin (AT) and fibrinogen levels were also measured. Elevated endogenous thrombin potential (ETP) and peak of TG were noted at diagnosis, throughout the Induction phase and Late Intensification but was significantly less for PEG than for native Asp (P < 0.001), while age, sex, type of corticosteroid during Induction and molecular response had no significant effect. The reduction of ETP after addition of thrombomodulin was significantly lower in ALL children compared with that in controls, suggesting impairment in PS/PC pathway. Three patients experienced thrombosis: two treated with native and one with PEG Asp. The two patients with native Asp had, at the time of thrombosis, a prothrombotic profile. Treatment with Asp, in combination with CS, enhances TG in children with ALL, more significantly with native than PEG Asp, which is present early at diagnosis, persists during Induction and reappears during Late Intensification. This is consistent with the high incidence of thrombotic events described during these phases of therapy. The less pronounced effect of PEG Asp remains to be elucidated. © 2016 Wiley Periodicals, Inc.
Kristensen, Anne F; Kristensen, Søren R; Falkmer, Ursula; Münster, Anna-Marie B; Pedersen, Shona
2018-05-01
The Calibrated Automated Thrombography (CAT) is an in vitro thrombin generation (TG) assay that holds promise as a valuable tool within clinical diagnostics. However, the technique has a considerable analytical variation, and we therefore, investigated the analytical and between-subject variation of CAT systematically. Moreover, we assess the application of an internal standard for normalization to diminish variation. 20 healthy volunteers donated one blood sample which was subsequently centrifuged, aliquoted and stored at -80 °C prior to analysis. The analytical variation was determined on eight runs, where plasma from the same seven volunteers was processed in triplicates, and for the between-subject variation, TG analysis was performed on plasma from all 20 volunteers. The trigger reagents used for the TG assays included both PPP reagent containing 5 pM tissue factor (TF) and PPPlow with 1 pM TF. Plasma, drawn from a single donor, was applied to all plates as an internal standard for each TG analysis, which subsequently was used for normalization. The total analytical variation for TG analysis performed with PPPlow reagent is 3-14% and 9-13% for PPP reagent. This variation can be minimally reduced by using an internal standard but mainly for ETP (endogenous thrombin potential). The between-subject variation is higher when using PPPlow than PPP and this variation is considerable higher than the analytical variation. TG has a rather high inherent analytical variation but considerable lower than the between-subject variation when using PPPlow as reagent.
Prospective study of hemostatic alterations in children with acute lymphoblastic leukemia.
Giordano, Paola; Molinari, Angelo Claudio; Del Vecchio, Giovanni Carlo; Saracco, Paola; Russo, Giovanna; Altomare, Maria; Perutelli, Paolo; Crescenzio, Nicoletta; Santoro, Nicola; Marchetti, Marina; De Mattia, Domenico; Falanga, Anna
2010-05-01
In a group of newly diagnosed acute lymphocytic leukemia (ALL) children we evaluated a number of hemostatic and inflammatory markers at diagnosis and at different time points during chemotherapy for the remission induction to identify alterations in the plasma levels of prothrombotic markers before and during the course of chemotherapy. The following plasma markers were evaluated: thrombin-antithrombin complex (TAT), D-Dimer, plasminogen activator inhibitor 1 (PAI-1), antithrombin, fibrinogen, von Willebrand factor (VWF) antigen and high molecular weight VWF (HMW-VWF) multimers, P-selectin, tumor necrosis factor alpha (TNF-alpha), and interleukin 6 (IL-6). Plasma samples were collected at the following time points: at T0 (baseline) and T1 (+24 days of therapy), T2 (+36 days therapy), and T3 (+64 days therapy). The results show that, at diagnosis, ALL children presented with laboratory signs of increased thrombin generation and fibrin formation (i.e. high TAT and D-dimer levels), fibrinolysis inhibition (i.e. high PAI-1 level), endothelial activation (i.e., high HMW-VWF and soluble P-selectin levels) and inflammation (i.e. high TNF-alpha and IL-6 levels). After starting induction therapy, the thrombin generation markers and inflammatory cytokines significantly decreased. To the opposite, PAI-1 and P-selectin significantly increased, suggesting an insult by chemotherapy on the vascular endothelium. These effects were more evident during steroid administration. Symptomatic venous thromboembolism (VTE) episodes developed in two cases during induction therapy, which did not allow the evaluation of the predictive value for VTE of laboratory markers. (c) 2010 Wiley-Liss, Inc.
Xie, Shunbi; Ye, Jiawei; Yuan, Yali; Chai, Yaqin; Yuan, Ruo
2015-11-21
A new type of multifunctional metal-organic framework (MOF) has been synthesized by encapsulating hemin into the nano-sized Fe-MIL-88 MOFs (hemin@MOFs) and first applied in an electrochemical aptasensor to detect thrombin (TB) with the aid of an enzyme for signal amplification. The gold nanoparticle functionalized hemin@MOFs (Au/hemin@MOFs) have not only simultaneously served as redox mediators and solid electrocatalysts, but have also been utilized as an ideal loading platform to immobilize a large number of biomolecules. In this aptasensor, Au/hemin@MOFs conjugated with glucose oxidase (GOD) and thrombin binding aptamer (TBA II) were used as the secondary aptamer bioconjugates (Au/hemin@MOF-TBA II-GOD bioconjugates), and TB was sandwiched between Au/hemin@MOF-TBA II-GOD bioconjugates and the amino-terminated TBA I which was self-assembled on the gold nanoparticle (AuNP) modified electrode. The GOD could oxidize glucose into gluconic acid accompanied by the generation of H2O2. The generated H2O2 on the electrode surface was further electrocatalyzed by hemin@MOFs to amplify the electrochemical signal of hemin contained in hemin@MOFs. Therefore, the synthesized hemin@MOFs represented a new paradigm for multifunctional materials since it combined three different functions including serving as catalysts, redox mediators and loading platforms within a single material. With such an ingenious design, a wide linear range of 0.0001 nM to 30 nM was acquired with a relatively low detection limit of 0.068 pM for TB detection.
Identification and Mechanistic Analysis of a Novel Tick-Derived Inhibitor of Thrombin
Jablonka, Willy; Kotsyfakis, Michalis; Mizurini, Daniella M.; Monteiro, Robson Q.; Lukszo, Jan; Drake, Steven K.; Ribeiro, José M. C.; Andersen, John F.
2015-01-01
A group of peptides from the salivary gland of the tick Hyalomma marginatum rufipes, a vector of Crimean Congo hemorrhagic fever show weak similarity to the madanins, a group of thrombin-inhibitory peptides from a second tick species, Haemaphysalis longicornis. We have evaluated the anti-serine protease activity of one of these H. marginatum peptides that has been given the name hyalomin-1. Hyalomin-1 was found to be a selective inhibitor of thrombin, blocking coagulation of plasma and inhibiting S2238 hydrolysis in a competitive manner with an inhibition constant (Ki) of 12 nM at an ionic strength of 150 mM. It also blocks the thrombin-mediated activation of coagulation factor XI, thrombin-mediated platelet aggregation, and the activation of coagulation factor V by thrombin. Hyalomin-1 is cleaved at a canonical thrombin cleavage site but the cleaved products do not inhibit coagulation. However, the C-terminal cleavage product showed non-competitive inhibition of S2238 hydrolysis. A peptide combining the N-terminal parts of the molecule with the cleavage region did not interact strongly with thrombin, but a 24-residue fragment containing the cleavage region and the C-terminal fragment inhibited the enzyme in a competitive manner and also inhibited coagulation of plasma. These results suggest that the peptide acts by binding to the active site as well as exosite I or the autolysis loop of thrombin. Injection of 2.5 mg/kg of hyalomin-1 increased arterial occlusion time in a mouse model of thrombosis, suggesting this peptide could be a candidate for clinical use as an antithrombotic. PMID:26244557
Yang, Wen; Li, Tengfei; Shu, Chang; Ji, Shunli; Wang, Lei; Wang, Yan; Li, Duo; Mtalimanja, Michael; Sun, Luning; Ding, Li
2018-05-10
A method is described for the determination of proteins with LC-MS/MS enabled by a small molecule (adenosine) barcode and based on a double-recognition sandwich structure. The coagulation protein thrombin was chosen as the model analyte. Magnetic nanoparticles were functionalized with aptamer29 (MNP/apt29) and used to capture thrombin from the samples. MNP/apt29 forms a sandwich with functionalized gold nanoparticles modified with (a) aptamer15 acting as thrombin-recognizing element and (b) a large number of adenosine as mass barcodes. The sandwich formed (MNP/apt29-thrombin-apt15/AuNP/adenosine) can ben magnetically separated from the sample. Mass barcodes are subsequently released from the sandwiched structure for further analysis by adding 11-mercaptoundecanoic acid. Adenosine is then detected by LC-MS/MS as it reflects the level of thrombin with impressively amplified signal. Numerous adenosines introduced into the sandwich proportional to the target concentration further amplify the signal. Under optimized conditions, the response is linearly proportional to the thrombin concentration in the range of 0.02 nM to 10 nM, with a detection limit of 9 fM. The application of this method to the determination of thrombin in spiked plasma samples gave recoveries that ranged from 92.3% to 104.7%. Graphical abstract Schematic representation of a method for the determination of thrombin with LC-MS/MS. The method is based on a double-recognition sandwiched structure. With LC-MS/MS, mass barcodes (adenosine) are detected to quantify thrombin, which amplifies the detection signal impressively.
Kalle, Martina; Papareddy, Praveen; Kasetty, Gopinath; Mörgelin, Matthias; van der Plas, Mariena J A; Rydengård, Victoria; Malmsten, Martin; Albiger, Barbara; Schmidtchen, Artur
2012-01-01
Gram-negative sepsis is accompanied by a disproportionate innate immune response and excessive coagulation mainly induced by endotoxins released from bacteria. Due to rising antibiotic resistance and current lack of other effective treatments there is an urgent need for new therapies. We here present a new treatment concept for sepsis and endotoxin-mediated shock, based on host defense peptides from the C-terminal part of human thrombin, found to have a broad and inhibitory effect on multiple sepsis pathologies. Thus, the peptides abrogate pro-inflammatory cytokine responses to endotoxin in vitro and in vivo. Furthermore, they interfere with coagulation by modulating contact activation and tissue factor-mediated clotting in vitro, leading to normalization of coagulation responses in vivo, a previously unknown function of host defense peptides. In a mouse model of Pseudomonas aeruginosa sepsis, the peptide GKY25, while mediating a modest antimicrobial effect, significantly inhibited the pro-inflammatory response, decreased fibrin deposition and leakage in the lungs, as well as reduced mortality. Taken together, the capacity of such thrombin-derived peptides to simultaneously modulate bacterial levels, pro-inflammatory responses, and coagulation, renders them attractive therapeutic candidates for the treatment of invasive infections and sepsis.
Hayakawa, Y; Hayashi, T; Hayashi, T; Niiya, K; Sakuragawa, N
1995-10-01
While checking anticoagulant activities in crude fractions from Wakan-Yakus (traditional herbal drugs), we detected antithrombin activity in the polysaccharide fraction of the leaves of Artemisia princeps Pamp. A sulfated polysaccharide purified from the crude fractions by ion-exchange chromatography on DEAE-cellulose and gel filtration on Sepharose 6B potentiated the heparin cofactor II (HC II)-dependent antithrombin activity but not the antithrombin activity of antithrombin III (AT III). The polysaccharide enhanced the HC II-thrombin reaction more than 6000-fold. The apparent second-order rate constant of thrombin inhibition by HC II increased from 3.8 x 10(4) (in the absence of the polysaccharide) to 2.5 x 10(8) M-1 min-1 in the presence of 25-125 micrograms/ml of the polysaccharide. In human plasma, the polysaccharide accelerated the formation of thrombin-HC II complex. The stimulating effect on HC II-dependent antithrombin activity was almost totally abolished by treatment with chondroitinase AC I, heparinase or heparitinase, while chondroitinase ABC or chondroitinase AC II had little or no effect. These results suggest that the polysaccharide is a glycosaminoglycan-like material with properties that are quite distinct from heparin or dermatan sulfate.
NASA Astrophysics Data System (ADS)
Skeaff, Clark Murray
Platelets are believed to play a significant role in the development of occlusive vascular diseases. Epidemiological reports have correlated the high intake of marine foods, rich in omega3 fatty acids, with diminished platelet responses and a low incidence of arterial thrombosis and myocardial infarction. The activation of platelet responses is mediated by the accelerated metabolism of membrane phospholipid; therefore, it was of interest to examine, in human volunteers, the effect of a dietary fish oil concentrate (MaxEPA), enriched in omega 3 polyunsaturated fatty acids, on platelet aggregation and phospholipid composition/metabolism. For the complete separation of cellular phospholipids, a one-dimensional thin-layer chromatography system using silica-gel pre-coated glass plates was developed. The solvent system consisted of CHCl_3/CH_3OH/CH _3COOH/H_2O (50/37.5/3.5/2.0, by vol), required approximately 90-120 minutes for full phospholipid separation, and was highly reproducible even under conditions of variable humidity and temperature. The consumption of a fish oil concentrate (MaxEPA) for 6 weeks (3.6 g of 20:5omega 3 and 2.4 g of 22:6omega3 per day) diminished both the collagen- and platelet activating factor-induced maximum aggregation responses in washed human platelet suspensions by 50.1% and 27.2%, respectively, as compared to initial unsupplemented baseline responses. Thrombin -induced aggregation remained unchanged. Thrombin stimulation of intact human platelets produced a significant decrease in the mass of phosphatidylinositol in plasma membrane. In platelets pre-labelled with (2-^3H) glycerol and stimulated with either thrombin or low-dose collagen, the loss of (^3H) phosphatidylinositol did not differ between those subjects consuming olive oil or fish oil. Likewise, the thrombin-stimulated accumulation of diacylglycerol, an activator of protein kinase C, was unaffected by fish oil consumption. The ratio of collagen -induced increase in radioactivity associated with ( ^3H) PIP_2/( ^3H) PIP was 0.41 in fish oil consumers and 1.14 in olive oil consumers. These results are consistent with a dampened collagen-induced phosphatidylinositol 4 -phosphate kinase activity in platelets of healthy individuals consuming dietary fish oil. This effect may be eicosanoid -related based on work with BW 755C, a dual inhibitor of the cyclooxygenase and lipoxygenase enzymes. The relevance of these findings to the altered production of inositol 1,4,5 trisphosphate remains to be determined.
Aptamer-crosslinked microbubbles: smart contrast agents for thrombin-activated ultrasound imaging.
Nakatsuka, Matthew A; Mattrey, Robert F; Esener, Sadik C; Cha, Jennifer N; Goodwin, Andrew P
2012-11-27
Thrombosis, or malignant blood clotting, is associated with numerous cardiovascular diseases and cancers. A microbubble contrast agent is presented that produces ultrasound harmonic signal only when exposed to elevated thrombin levels. Initially silent microbubbles are activated in the presence of both thrombin-spiked and freshly clotting blood in three minutes with detection limits of 20 nM thrombin and 2 aM microbubbles. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jadhav, Aparna; Dash, RadhaCharan; Hirwani, Raj; Abdin, Malik
2018-03-01
Despite the wide medical importance of serine protease inhibitors, many of kazal type proteins are still to be explored. These thrombin inhibiting proteins are found in the digestive system of hematophagous organisms mainly Arthropods. We studied one of such protein i.e. Kazal type-1 protein from sand-fly Phlebotomus papatasi as its structure and interaction with thrombin is unclear. Initially, Dipetalin a kazal-follistasin domain protein was run through PSI-BLAST to retrieve related sequences. Using this set of sequence a phylogenetic tree was constructed, which identified a distantly related kazal type-1 protein. A three-dimensional structure was predicted for this protein and was aligned with Rhodniin for further evaluation. To have a comparative understanding of it's binding at the thrombin active site, the aligned kazal model-thrombin and rhodniin-thrombin complexes were subjected to molecular dynamics simulations. Dynamics analysis with reference to main chain RMSD, H-chain residue RMSF and total energy showed rhodniin-thrombin complex as a more stable system. Further, the MM/GBSA method was applied that calculated the binding free energy (ΔG binding ) for rhodniin and kazal model as -220.32kcal/Mol and -90.70kcal/Mol, respectively. Thus, it shows that kazal model has weaker bonding with thrombin, unlike rhodniin. Copyright © 2017 Elsevier B.V. All rights reserved.
Esposito, Felice; Cappabianca, Paolo; Angileri, Filippo F; Cavallo, Luigi M; Priola, Stefano M; Crimi, Salvatore; Solari, Domenico; Germanò, Antonino F; Tomasello, Francesco
2016-07-26
Gelatin-thrombin hemostatic matrix (FloSeal®) use is associated with shorter surgical times and less blood loss, parameters that are highly valued in neurosurgical procedures. We aimed to assess the effectiveness of gelatin-thrombin in neurosurgical procedures and estimate its economic value. In a 6-month retrospective evaluation at 2 hospitals, intraoperative and postoperative information were collected from patients undergoing neurosurgical procedures where bleeding was controlled with gelatin-thrombin matrix or according to local bleeding control guidelines (control group). Study endpoints were: length of surgery, estimated blood loss, hospitalization duration, blood units utilized, intensive care unit days, postoperative complications, and time-to-recovery. Statistical methods compared endpoints between the gelatin-thrombin and control groups and resource utilization costs were estimated. Seventy-eight patients (38 gelatin-thrombin; 40 control) were included. Gelatin-thrombin was associated with a shorter surgery duration than control 166±40 versus 185±55, p=0.0839); a lower estimated blood loss (185±80 versus 250±95ml; p=0.0017); a shorter hospital stay (10±3 versus 13±3 days; p<0.001); fewer intensive care unit days (10 days/3 patients and 20 days/4 patients); and shorter time-to-recovery (3±2.2 versus 4±2.8 weeks; p=0861). Fewer gelatin-thrombin patients experienced postoperative complications (3 minor) than the control group (5 minor; 3 major). No gelatin-thrombin patient required blood transfusion; 5 units were administered in the control group. The cost of gelatin-thrombin (€268.40/unit) was offset by the shorter surgery duration (difference of 19 minutes at €858 per hour) and the economic value of improved the other endpoint outcomes (ie, shorter hospital stay, less blood loss/lack of need for transfusion, fewer intensive care unit days, and complications). Gelatin-thrombin hemostatic matrix use in patients undergoing neurosurgical procedures was associated with better intra- and post-operative parameters than conventional hemostasis methods, with these parameters having substantial economic benefits.
Effects of Aerobic Capacity on Thrombin-Induced Hydrocephalus and White Matter Injury.
Ni, Wei; Gao, Feng; Zheng, Mingzhe; Koch, Lauren G; Britton, Steven L; Keep, Richard F; Xi, Guohua; Hua, Ya
2016-01-01
We have previously shown that intracerebral hemorrhage-induced brain injury is less in rats bred for high aerobic capacity (high capacity runners; HCR) compared with those bred for low aerobic capacity (low capacity runners; LCRs). Thrombin, an essential component in the coagulation cascade, is produced after cerebral hemorrhage. Intraventricular injection of thrombin causes significant hydrocephalus and white matter damage. In the present study, we examined the effect of exercise capacity on thrombin-induced hydrocephalus and white matter damage. Mid-aged (13-month-old) female LCRs (n = 13) and HCRs (n = 12) rats were used in this study. Rats received an intraventricular injection of thrombin (3 U, 50 μl). All rats underwent magnetic resonance imaging (MRI) at 24 h and were then euthanized for brain histology and Western blot. The mortalities were 20 % in LCRs and 33 % in HCRs after thrombin injection (p > 0.05). No rats died after saline injection. Intraventricular thrombin injection resulted in hydrocephalus and periventricular white matter damage as determined on MRI. In LCR rats, thrombin induced significant ventricle enlargement (23.0 ± 2.3 vs12.8 ± 1.9 mm(3) in LCR saline group; p < 0.01) and white matter lesion (9.3 ± 7.6 vs 0.6 ± 0.5 mm(3) in LCR saline group, p < 0.05). In comparison, in HCR rats thrombin induced less ventricular enlargement (17.3 ± 3.9 vs 23.0 ± 2.3 mm(3) in LCRs, p < 0.01) and smaller white matter lesions (2.6 ± 1.2 mm(3) vs 9.3 ± 7.6 mm(3) in LCRs, p < 0.05). In LCR rats, there was also upregulation of heat shock protein-32, a stress marker, and microglial activation in the periventricular white matter. These changes were significantly reduced in HCR rats. Intraventricular injection of thrombin caused more white matter damage and hydrocephalus in rats with low aerobic capacity. A differential effect of thrombin may contribute to differences in the effects of cerebral hemorrhage with aerobic capacity.
Augustsson, Cecilia; Persson, Egon
2014-11-13
Successful competition of activated factor VII (FVIIa) with zymogen factor VII (FVII) for tissue factor (TF) and loading of the platelet surface with FVIIa are plausible driving forces behind the pharmacological effect of recombinant FVIIa (rFVIIa) in hemophilia patients. Thrombin generation measurements in platelet-rich hemophilia A plasma revealed competition for TF, which potentially could reduce the effective (r)FVIIa:TF complex concentration and thereby attenuate factor Xa production. However, (auto)activation of FVII apparently counteracted the negative effect of zymogen binding; a small impact was observed at endogenous concentrations of FVII and FVIIa but was virtually absent at pharmacological amounts of rFVIIa. Moreover, corrections of the propagation phase in hemophilia A required rFVIIa concentrations above the range where a physiological level of FVII was capable to downregulate thrombin generation. These data strongly suggest that rFVIIa acts independently of TF in hemophilia therapy and that FVII displacement by rFVIIa is a negligible mechanistic component. © 2014 by The American Society of Hematology.
Sayyah, Jacqueline; Bartakova, Alena; Nogal, Nekeisha; Quilliam, Lawrence A.; Stupack, Dwayne G.; Brown, Joan Heller
2014-01-01
Rap1 is a Ras family GTPase with a well documented role in ERK/MAP kinase signaling and integrin activation. Stimulation of the G-protein-coupled receptor PAR-1 with thrombin in human 1321N1 glioblastoma cells led to a robust increase in Rap1 activation. This response was sustained for up to 6 h and mediated through RhoA and phospholipase D (PLD). Thrombin treatment also induced a 5-fold increase in cell adhesion to fibronectin, which was blocked by down-regulating PLD or Rap1A or by treatment with a β1 integrin neutralizing antibody. In addition, thrombin treatment led to increases in phospho-focal adhesion kinase (tyrosine 397), ERK1/2 phosphorylation and cell proliferation, which were significantly inhibited in cells treated with β1 integrin antibody or Rap1A siRNA. To assess the role of Rap1A in tumor formation in vivo, we compared growth of 1321N1 cells stably expressing control, Rap1A or Rap1B shRNA in a mouse xenograft model. Deletion of Rap1A, but not of Rap1B, reduced tumor mass by >70% relative to control. Similar observations were made with U373MG glioblastoma cells in which Rap1A was down-regulated. Collectively, these findings implicate a Rap1A/β1 integrin pathway, activated downstream of G-protein-coupled receptor stimulation and RhoA, in glioblastoma cell proliferation. Moreover, our data demonstrate a critical role for Rap1A in glioblastoma tumor growth in vivo. PMID:24790104
Brennan, M
1991-12-01
Fibrin glue is a topical biological adhesive, the effect of which imitates the final stages of coagulation. The glue consists of a solution of concentrated human fibrinogen which is activated by the addition of bovine thrombin and calcium chloride. The resultant clot aids haemostasis and tissue sealing and is completely absorbed during wound healing without foreign body reaction or extensive fibrosis. The fibrinogen component of fibrin glue can be produced from fresh frozen plasma obtained from single unit donations thereby reducing the risks of transfusion transmitted infections encountered by exposure to pools from large numbers of donors. Methods involving precipitation of fibrinogen by cryoprecipitation, polyethylene glycol or ammonium sulphate have been described and evaluated. The risk of transmission of infection can be further reduced by using plasma from 'accredited donors' who are plasma donors regularly tested for ALT and markers of viral infection or by use of fibrinogen prepared in advance of surgery from autologous blood. The second component, a mixture of thrombin and CaCl2, is quantitatively and qualitatively well defined and commercially available (Armour Pharmaceutical Co., Thrombinar (bovine thrombin]. Thrombin is applied to the operation site simultaneously and in equal volume to the fibrinogen but from a separate syringe. In the UK a commercial heat treated fibrin glue prepared from pooled plasma is available on a doctor/named patient basis (Tisseel, Immuno, Vienna). The haemostatic and adhesive properties of fibrin glue can be employed in virtually every surgical specialty. The usefulness of the glue is particularly well documented in the fields of cardiovascular surgery, ENT and neurosurgery.(ABSTRACT TRUNCATED AT 250 WORDS)
BjussuSP-I: a new thrombin-like enzyme isolated from Bothrops jararacussu snake venom.
Sant' Ana, Carolina D; Ticli, Fabio K; Oliveira, Leandro L; Giglio, Jose R; Rechia, Carem G V; Fuly, André L; Selistre de Araújo, Heloisa S; Franco, João J; Stabeli, Rodrigo G; Soares, Andreimar M; Sampaio, Suely V
2008-11-01
A thrombin-like enzyme named BjussuSP-I, isolated from B. jararacussu snake venom, is an acidic single chain glycoprotein with approximately 6% sugar, Mr=61,000 under reducing conditions and pI approximately 3.8, representing 1.09% of the chromatographic A(280) recovery. BjussuSP-I is a glycosylated serine protease containing both N-linked carbohydrates and sialic acid in its structure. BjussuSP-I showed a high clotting activity upon human plasma, which was inhibited by PMSF, leupeptin, heparin and 1,10-phenantroline. This enzyme showed high stability regarding coagulant activity when analyzed at different temperatures (-70 to 37 degrees C), pHs (4.5 to 8.0), and presence of two divalent metal ions (Ca(2+) and Mg(2+)). It also displayed TAME esterase and proteolytic activities toward natural (fibrinogen and fibrin) and synthetic (BAPNA) substrates, respectively, being also inhibited by PMSF and leupeptin. BjussuSP-I can induce production of polyclonal antibodies able to inhibit its clotting activity, but unable to inhibit its proteolytic activity on fibrinogen. The enzyme also showed crossed immunoreactivity against 11 venom samples of Bothrops, 1 of Crotalus, and 1 of Calloselasma snakes, in addition of LAAO isolated from B. moojeni venom. It displayed neither hemorrhagic, myotoxic, edema-inducing profiles nor proteolytic activity on casein. BjussuSP-I showed an N-terminal sequence (VLGGDECDINEHPFLA FLYS) similar to other thrombin-like enzymes from snake venoms. Based on its biochemical, enzymatic and pharmacological characteristics, BjussuSP-I was identified as a new thrombin-like enzyme isoform from Bothrops jararacussu snake venom.
Baicalin protects against thrombin induced cell injury in SH-SY5Y cells
Ju, Xiao-Ning; Mu, Wei-Na; Liu, Yuan-Tao; Wang, Mei-Hong; Kong, Feng; Sun, Chao; Zhou, Qing-Bo
2015-01-01
Baicalin, an extract from the dried root of Scutellaria baicalensis Georgi, was shown to be neuroprotective. However, the precise mechanisms are incompletely known. In this study, we determined the effect of baicalin on thrombin induced cell injury in SH-SY5Y cells, and explored the possible mechanisms. SH-SY5Y cells was treated with thrombin alone or pre-treated with baicalin (5, 10, 20 μM) for 2 h followed by thrombin treatment. Cells without thrombin and baicalin treatment were used as controls. Cell viability was detected by MTT assay. Cell apoptosis was analyzed by flow cytometry. Real-time PCR was performed to determine the mRNA expression of protease-activated receptor-1 (PAR-1). Western blotting was conducted to determine the protein expression of PAR-1, Caspase-3 and NF-κB. Baicalin reduced cell death following thrombin treatment in a dose-dependent manner, with concomitant inhibition of NF-κB activation and suppression of PAR-1 expression. In addition, baicalin reduced Caspase-3 expression. The above findings indicated that baicalin prevents against cell injury after thrombin stimulation possibly through inhibition of PAR-1 expression and NF-κB activation. PMID:26823714
Gillrie, Mark R.; Avril, Marion; Brazier, Andrew J.; Davis, Shevaun P.; Stins, Monique F.; Smith, Joseph D.; Ho, May
2015-01-01
Summary P. falciparum-infected erythrocytes (IRBC) expressing the domain cassettes (DC) 8 and 13 of the cytoadherent ligand PfEMP1 adhere to the endothelial protein C receptor (EPCR). By interfering with EPCR anti-coagulant and pro-endothelial barrier functions, IRBC adhesion could promote coagulation and vascular permeability that contribute to the pathogenesis of cerebral malaria. In this study, we examined adhesion of DC8- and DC13-expressing parasite lines to endothelial cells from different microvasculature, and the consequences of EPCR engagement on endothelial cell function. We found that IRBC from IT4var19 (DC8) and IT4var07 (DC13) parasite lines adhered to human brain, lung, and dermal endothelial cells under shear stress. However, the relative contribution of EPCR to parasite cytoadherence on the different types of endothelial cell varied. We also observed divergent functional outcomes for DC8 CIDRα1.1 and DC13 CIDRα1.4 domains. IT4var07 CIDRα1.4 inhibited generation of activated protein C (APC) on lung and dermal endothelial cells and blocked the APC-EPCR binding interaction on brain endothelial cells. IT4var19 CIDRα1.1 inhibited thrombin-induced endothelial barrier dysfunction in lung endothelial cells, while IT4var07 CIDRα1.4- inhibited the protective effect of APC on thrombin-induced permeability. Overall, these findings reveal a much greater complexity of how CIDRα1-expressing parasites may modulate malaria pathogenesis through EPCR adhesion. PMID:26119044
2013-01-01
Background Alpha-1 proteinase inhibitor (API) is a plasma serpin superfamily member that inhibits neutrophil elastase; variant API M358R inhibits thrombin and activated protein C (APC). Fusing residues 1-75 of another serpin, heparin cofactor II (HCII), to API M358R (in HAPI M358R) was previously shown to accelerate thrombin inhibition over API M358R by conferring thrombin exosite 1 binding properties. We hypothesized that replacing HCII 1-75 region with the 13 C-terminal residues (triskaidecapeptide) of hirudin variant 3 (HV354-66) would further enhance the inhibitory potency of API M358R fusion proteins. We therefore expressed HV3API M358R (HV354-66 fused to API M358R) and HV3API RCL5 (HV354-66 fused to API F352A/L353V/E354V/A355I/I356A/I460L/M358R) API M358R) as N-terminally hexahistidine-tagged polypeptides in E. coli. Results HV3API M358R inhibited thrombin 3.3-fold more rapidly than API M358R; for HV3API RCL5 the rate enhancement was 1.9-fold versus API RCL5; neither protein inhibited thrombin as rapidly as HAPI M358R. While the thrombin/Activated Protein C rate constant ratio was 77-fold higher for HV3API RCL5 than for HV3API M358R, most of the increased specificity derived from the API F352A/L353V/E354V/A355I/I356A/I460L API RCL 5 mutations, since API RCL5 remained 3-fold more specific than HV3API RCL5. An HV3 54-66 peptide doubled the Thrombin Clotting Time (TCT) and halved the binding of thrombin to immobilized HCII 1-75 at lower concentrations than free HCII 1-75. HV3API RCL5 bound active site-inhibited FPR-chloromethyl ketone-thrombin more effectively than HAPI RCL5. Transferring the position of the fused HV3 triskaidecapeptide to the C-terminus of API M358R decreased the rate of thrombin inhibition relative to that mediated by HV3API M358R by 11-to 14-fold. Conclusions Fusing the C-terminal triskaidecapeptide of HV3 to API M358R-containing serpins significantly increased their effectiveness as thrombin inhibitors, but the enhancement was less than that seen in HCII 1-75–API M358R fusion proteins. HCII 1-75 was a superior fusion partner, in spite of the greater affinity of the HV3 triskaidecapeptide, manifested both in isolated and API-fused form, for thrombin exosite 1. Our results suggest that HCII 1-75 binds thrombin exosite 1 and orients the attached serpin scaffold for more efficient interaction with the active site of thrombin than the HV3 triskaidecapeptide. PMID:24215622
Kawaguchi, S
1989-01-01
The reactivity of mouse antibodies against bromelain-treated mouse erythrocytes (BrMRBC) with mouse platelets before and after thrombin treatment was assessed by flow cytometry. Anti-BrMRBC antibodies could bind to thrombin-treated platelets, although normal platelets were also weakly reactive with the antibodies. The binding of anti-BrMRBC antibodies to platelets was confirmed by complement-dependent lysis. It is suggested that thrombin-activated platelets may be a real target for anti-BrMRBC antibodies. PMID:2467876
Dynamic Consequences of Mutation of Tryptophan 215 in Thrombin.
Peacock, Riley B; Davis, Jessie R; Markwick, Phineus R L; Komives, Elizabeth A
2018-05-08
Thrombin normally cleaves fibrinogen to promote coagulation; however, binding of thrombomodulin to thrombin switches the specificity of thrombin toward protein C, triggering the anticoagulation pathway. The W215A thrombin mutant was reported to have decreased activity toward fibrinogen without significant loss of activity toward protein C. To understand how mutation of Trp215 may alter thrombin specificity, hydrogen-deuterium exchange experiments (HDXMS), accelerated molecular dynamics (AMD) simulations, and activity assays were carried out to compare the dynamics of Trp215 mutants with those of wild type (WT) thrombin. Variation in NaCl concentration had no detectable effect on the sodium-binding (220s CT ) loop, but appeared to affect other surface loops. Trp215 mutants showed significant increases in amide exchange in the 170s CT loop consistent with a loss of H-bonding in this loop identified by the AMD simulations. The W215A thrombin showed increased amide exchange in the 220s CT loop and in the N-terminus of the heavy chain. The AMD simulations showed that a transient conformation of the W215A thrombin has a distorted catalytic triad. HDXMS experiments revealed that mutation of Phe227, which engages in a π-stacking interaction with Trp215, also caused significantly increased amide exchange in the 170s CT loop. Activity assays showed that only the F227V mutant had wild type catalytic activity, whereas all other mutants showed markedly lower activity. Taken together, the results explain the reduced pro-coagulant activity of the W215A mutant and demonstrate the allosteric connection between Trp215, the sodium-binding loop, and the active site.
NASA Astrophysics Data System (ADS)
Qian, Zhao Sheng; Shan, Xiao Yue; Chai, Lu Jing; Chen, Jian Rong; Feng, Hui
2014-10-01
Convenient and simultaneous detection of multiple biomarkers such as DNA and proteins with biocompatible materials and good analytical performance still remains a challenge. Herein, we report the respective and simultaneous detection of DNA and bovine α-thrombin (thrombin) entirely based on biocompatible carbon materials through a specially designed fluorescence on-off-on process. Colorful fluorescence, high emission efficiency, good photostability and excellent compatibility enables graphene quantum dots (GQDs) as the best choice for fluorophores in bioprobes, and thus two-colored GQDs as labeling fluorophores were chemically bonded with specific oligonucleotide sequence and aptamer to prepare two probes targeting the DNA and thrombin, respectively. Each probe can be assembled on the graphene oxide (GO) platform spontaneously by π-π stacking and electrostatic attraction; as a result, fast electron transfer in the assembly efficiently quenches the fluorescence of probe. The presence of DNA or thrombin can trigger the self-recognition between capturing a nucleotide sequence and its target DNA or between thrombin and its aptamer due to their specific hybridization and duplex DNA structures or the formation of apatamer-substrate complex, which is taken advantage of in order to achieve a separate quantitative analysis of DNA and thrombin. A dual-functional biosensor for simultaneous detection of DNA and thrombin was also constructed by self-assembly of two probes with distinct colors and GO platform, and was further evaluated with the presence of various concentrations of DNA and thrombin. Both biosensors serving as a general detection model for multiple species exhibit outstanding analytical performance, and are expected to be applied in vivo because of the excellent biocompatibility of their used materials.
Effect of mood stabilizing agents on agonist-induced calcium mobilization in human platelets.
Kusumi, I; Koyama, T; Yamashita, I
1994-01-01
The effect of mood stabilizing agents such as lithium, carbamazepine, valproic acid and clonazepam on serotonin(5-HT)- or thrombin-induced intracellular calcium (Ca) mobilization was studied in the platelets of healthy subjects using the fluorescent Ca indicator fura-2. After incubating platelet-rich plasma with these drugs for one or four hours, there was no significant difference in either basal Ca2+ concentration or 5-HT-stimulated Ca response between each agent treatment and control. 5-HT- or thrombin-induced Ca mobilization was not altered by four weeks of lithium carbonate administration in healthy volunteers. These results indicate that these mood stabilizers fail to affect the agonist-stimulated intracellular Ca mobilizing pathway either in vitro or ex vivo in the platelets of healthy subjects. Images Fig. 1 PMID:8031747
Mastalerz, Lucyna; Celińska-Lӧwenhoff, Magdalena; Krawiec, Piotr; Batko, Bogdan; Tłustochowicz, Witold; Undas, Anetta
2015-01-01
Given reports on the increased prevalence of thromboembolic incidents in patients with eosinophilic granulomatosis with polyangiitis (EGPA; Churg-Strauss syndrome), we investigated whether fibrin clot properties are unfavorably altered in EGPA. Ex vivo plasma fibrin clot characteristics, including clot permeability, turbidimetry and efficiency of fibrinolysis using two assays, were investigated in 34 consecutive patients with remission in EGPA according to the Birmingham Vasculitis Activity Score version 3 (23 female, 11 male), aged 48 (range, 21-80) years. The control group comprised 34 age- and sex- matched volunteers. Compared with controls, patients with EGPA were characterized by denser fiber clots (estimated pore size, Ks, 7.30±0.93 vs 10.14±1.07 10-9 cm2), faster fibrin polymerization (lag phase in a turbidimetric curve, 41.8±3.6 vs 47.4±2.9 s), thicker fibrin fibers (maximum absorbance, ΔAbs, 0.87±0.09 vs 0.72±0.07), higher maximum levels of D-dimer released from clots (DDmax 4.10±0.46 vs 3.54±0.35 mg/L), and prolonged clot lysis time (t50%; 9.50±1.45 vs 7.56±0.87 min); all p<0.0001. Scanning electron microscopy images confirmed denser plasma fibrin networks composed of thinner fibers formed in EGPA. Antineutrophil cytoplasmic antibody status and C-reactive protein did not affect clot variables. Multivariate analysis adjusted for fibrinogen showed that Ks was predicted by eosinophil count, peak thrombin generation, factor VIII, and soluble CD40 ligand, whereas eosinophil count, peak thrombin generation and antiplasmin predicted t50%. This study is the first to show that EGPA is associated with prothrombotic plasma fibrin clot phenotype, which may contribute to thromboembolic manifestations reported in this disease.
Mastalerz, Lucyna; Celińska-Lӧwenhoff, Magdalena; Krawiec, Piotr; Batko, Bogdan; Tłustochowicz, Witold; Undas, Anetta
2015-01-01
Objectives Given reports on the increased prevalence of thromboembolic incidents in patients with eosinophilic granulomatosis with polyangiitis (EGPA; Churg-Strauss syndrome), we investigated whether fibrin clot properties are unfavorably altered in EGPA. Methods Ex vivo plasma fibrin clot characteristics, including clot permeability, turbidimetry and efficiency of fibrinolysis using two assays, were investigated in 34 consecutive patients with remission in EGPA according to the Birmingham Vasculitis Activity Score version 3 (23 female, 11 male), aged 48 (range, 21–80) years. The control group comprised 34 age- and sex- matched volunteers. Results Compared with controls, patients with EGPA were characterized by denser fiber clots (estimated pore size, Ks, 7.30±0.93 vs 10.14±1.07 10−9 cm2), faster fibrin polymerization (lag phase in a turbidimetric curve, 41.8±3.6 vs 47.4±2.9 s), thicker fibrin fibers (maximum absorbance, ΔAbs, 0.87±0.09 vs 0.72±0.07), higher maximum levels of D-dimer released from clots (DDmax 4.10±0.46 vs 3.54±0.35 mg/L), and prolonged clot lysis time (t50%; 9.50±1.45 vs 7.56±0.87 min); all p<0.0001. Scanning electron microscopy images confirmed denser plasma fibrin networks composed of thinner fibers formed in EGPA. Antineutrophil cytoplasmic antibody status and C-reactive protein did not affect clot variables. Multivariate analysis adjusted for fibrinogen showed that Ks was predicted by eosinophil count, peak thrombin generation, factor VIII, and soluble CD40 ligand, whereas eosinophil count, peak thrombin generation and antiplasmin predicted t50%. Conclusion This study is the first to show that EGPA is associated with prothrombotic plasma fibrin clot phenotype, which may contribute to thromboembolic manifestations reported in this disease. PMID:26540111
Hao, Xiuping; Cheng, XiaoLi; Ye, Jiajia; Wang, Yingyu; Yang, LiHong; Wang, Mingshan; Jin, Yanhui
2016-06-01
Congenital coagulation factor VII (FVII) deficiency is a rare disorder caused by mutation in F7 gene. Herein, we reported a patient who had unexplained hematuria and vertigo with consanguineous parents. He has been diagnosed as having FVII deficiency based on the results of reduced FVII activity (2.0%) and antigen (12.8%). The thrombin generation tests verified that the proband has obstacles in producing thrombin. Direct sequencing analysis revealed a novel homozygous missense mutation p.Trp284Gly. Also noteworthy is the fact that the mutational residue belongs to structurally conserved loop 140s, which majorly undergo rearrangement after FVII activation. Model analysis indicated that the substitution disrupts these native hydrophobic interactions, which are of great importance to the conformation in the activation domain of FVIIa.
Sage, S O; Jobson, T M; Rink, T J
1990-01-01
1. Cytosolic pH (pHi) and calcium concentration ([Ca2+]i) have been investigated in the presence and absence of physiological HCO3- in human platelets co-loaded with the fluorescent indicators BCECF and Fura-2. Basal pHi and changes evoked by butyrate, thrombin, platelet activating factor (PAF), ADP and phorbol ester were investigated, as were the effects of removing external Na+. 2. In the presence of physiological HCO3- and CO2, basal pHi was 7.02 +/- 0.04 compared with 7.15 +/- 0.05 in the absence of HCO3-. Estimated cytosolic buffering power was reduced from 35.6 +/- 3.0 to 14.5 +/- 0.4 mM/pH unit by the omission of HCO3-. 3. Thrombin evoked an immediate acidification of 0.03 +/- 0.01 pH units in the presence of HCO3- and 0.07 +/- 0.01 pH units in its absence. The acidifications were followed by a slow alkalinization. The final pHi was 0.10 +/- 0.01 units above basal in the presence of HCO3- and 0.08 +/- 0.02 units above basal in the absence of HCO3-. The initial acidification was significantly greater in the absence of HCO3-. The subsequent increase in pHi was similar in the presence and absence of this ion, but the calculated loss of proton equivalents was greater in the presence of HCO3-. 4. Replacement of extracellular Na+ with N-methyl-D-glucamine resulted in a fall in basal pHi and abolished recovery from thrombin-evoked acidification in both the presence and absence of HCO3-. 5. In the presence of HCO3-, PAF and ADP evoked an intracellular acidification similar to that caused by thrombin. However, with PAF and ADP, the subsequent recovery in pHi was slow and did not rise above basal levels. Phorbol dibutyrate, an activator of protein kinase C, evoked a similar elevation in pHi of 0.04 +/- 0.01 units over 3 min in the presence and absence of HCO3-. 6. Stopped-flow fluorimetric measurements were made of both BCECF and Fura-2 fluorescence in the presence of HCO3-. In the presence and absence of external Ca2+, thrombin-evoked rises in [Ca2+]i peaked before any cytoplasmic alkalinization occurred. ADP evoked rapid elevations in [Ca2+]i, but caused no alkalinization.(ABSTRACT TRUNCATED AT 400 WORDS)
Improvement of Aptamer Affinity by Dimerization
Hasegawa, Hijiri; Taira, Ken-ichi; Sode, Koji; Ikebukuro, Kazunori
2008-01-01
To increase the affinities of aptamers for their targets, we designed an aptamer dimer for thrombin and VEGF. This design is based on the avidity of the antibody, which enables the aptamer to connect easily since it is a single-strand nucleic acid. In this study, we connected a 15-mer thrombin-binding aptamer with a 29-mer thrombin-binding aptamer. Each aptamer recognizes a different part of the thrombin molecule, and the aptamer dimer has a Kd value which is 1/10 of that of the monomers from which it is composed. Also, the designed aptamer dimer has higher inhibitory activity than the reported (15-mer) thrombin-inhibiting aptamer. Additionally, we connected together two identical aptamers against vascular endothelial growth factor (VEGF165), which is a homodimeric protein. As in the case of the anti-thrombin aptamer, the dimeric anti-VEGF aptamer had a much lower Kd value than that of the monomer. This study demonstrated that the dimerization of aptamers effectively improves the affinities of those aptamers for their targets. PMID:27879754
Thrombin-induced activation of RhoA in platelet shape change.
Bodie, S L; Ford, I; Greaves, M; Nixon, G F
2001-09-14
Thrombin-induced activation of RhoA and its involvement in the regulation of myosin II light chain(20) phosphorylation (MLC-P) in alpha-toxin permeabilized platelets was investigated. Permeabilized platelets, expressing normal levels of P-selectin, displayed a Ca(2+)-dependent increase in shape change and MLC-P. Thrombin activated RhoA as measured by a rhotekin-binding assay within 30 s of stimulation under conditions of constant [Ca(2+)](i). Under the same conditions and timecourse, thrombin or GTPgammaS induced an increase in MLC-P and platelet shape change which was not dependent on an increase in [Ca(2+)](i). The thrombin- and GTPgammaS-induced MLC-P in constant [Ca(2+)](i) was inhibited by the addition of Y27632, a Rho-kinase inhibitor. This study directly demonstrates that thrombin can activate RhoA in platelets in a timecourse compatible with a role in increasing MLC-P and shape change (not involving an increase in [Ca(2+)](i)). This is also Rho-kinase-dependent. Copyright 2001 Academic Press.
Induction of apoptosis by thrombin in the cultured neurons of dorsal motor nucleus of the vagus.
Wu, X; Zhang, W; Li, J-Y; Chai, B-X; Peng, J; Wang, H; Mulholland, M W
2011-03-01
A previous study demonstrated the presence of protease-activated receptor (PAR) 1 and 2 in the dorsal motor nucleus of vagus (DMV). The aim of this study is to characterize the effect of thrombin on the apoptosis of DMV neurons. The dorsal motor nucleus of vagus neurons were isolated from neonatal rat brainstems using micro-dissection and enzymatic digestion and cultured. Apoptosis of DMV neurons were examined in cultured neurons. Apoptotic neuron was examined by TUNEL and ELISA. Data were analyzed using anova and Student's t-test. Exposure of cultured DMV neurons to thrombin (0.1 to 10 U mL(-1)) for 24 h significantly increased apoptosis. Pretreatment of DMV neurons with hirudin attenuated the apoptotic effect of thrombin. Similar induction of apoptosis was observed for the PAR1 receptor agonist SFLLR, but not for the PAR3 agonist TFRGAP, nor for the PAR4 agonist YAPGKF. Protease-activated receptors 1 receptor antagonist Mpr(Cha) abolished the apoptotic effect of thrombin, while YPGKF, a specific antagonist for PAR4, demonstrated no effect. After administration of thrombin, phosphorylation of JNK and P38 occurred as early as 15 min, and remained elevated for up to 45 min. Pretreatment of DMV neurons with SP600125, a specific inhibitor for JNK, or SB203580, a specific inhibitor for P38, significantly inhibited apoptosis induced by thrombin. Thrombin induces apoptosis in DMV neurons through a mechanism involving the JNK and P38 signaling pathways. © 2010 Blackwell Publishing Ltd.
Identification of a Monocyte Receptor on Herpesvirus-Infected Endothelial Cells
NASA Astrophysics Data System (ADS)
Etingin, Orli R.; Silverstein, Roy L.; Hajjar, David P.
1991-08-01
The adhesion of circulating blood cells to vascular endothelium may be an initial step in atherosclerosis, inflammation, and wound healing. One mechanism for promoting cell-cell adhesion involves the expression of adhesion molecules on the surface of the target cell. Herpes simplex virus infection of endothelium induces arterial injury and has been implicated in the development of human atherosclerosis. We now demonstrate that HSV-infected endothelial cells express the adhesion molecule GMP140 and that this requires cell surface expression of HSV glycoprotein C and local thrombin generation. Monocyte adhesion to HSV-infected endothelial cells was completely inhibited by anti-GMP140 antibodies but not by antibodies to other adhesion molecules such as VCAM and ELAM-1. The induction of GMP140 expression on HSV-infected endothelium may be an important pathophysiological mechanism in virus-induced cell injury and inflammation.
Yan, Jing; Wang, Lida; Tang, Longhua; Lin, Lei; Liu, Yang; Li, Jinghong
2015-08-15
Rapid and sensitive methodologies for the detection of protein are in urgent requirement for clinic diagnostics. Localized surface plasmon resonance (LSPR) of metal nanostructures has the potential to circumvent this problem due to its sensitive optical properties and strong electromagnetic near-field enhancements. In this work, an enzyme mediated plasmonic biosensor on the basis of a dual-functional nanohybrid was developed for the detection of thrombin. By utilizing LSPR-responsive nanohybrid and anaptamer-enzyme conjugated reporting probe, the sensing platform brings enhanced signal, stability as well as simplicity. Enzymatic reaction catalyzed the reduction of Au(3+) to Au° in situ, further leading to the rapid crystal growth of gold nanoparticles (AuNPs). The LSPR absorbance band and color changed company with the nanoparticle generation, which can be real-time monitoring by UV-visible spectrophotometer and naked eye. Nanohybrid constructed by gold and magnetic nanoparticles acts as a dual functional plasmonic unit, which not only plays the role of signal production, but also endows the sensor with the function of magnetic separation. Simultaneously, the introduction of enzyme effectively regulates the programming crystal growth of AuNPs. In addition, enzyme also serves as signal amplifier owing to its high catalysis efficiency. The response of the plasmonic sensor varies linearly with the logarithmic thrombin concentration up to 10nM with a limit of detection of 200 pM. The as-proposed strategy shows good analytical performance for thrombin determination. This simple, disposable method is promising in developing universal platforms for protein monitoring, drug discovery and point-of-care diagnostics. Copyright © 2015 Elsevier B.V. All rights reserved.
Gilio, Karen; van Kruchten, Roger; Braun, Attila; Berna-Erro, Alejandro; Feijge, Marion A H; Stegner, David; van der Meijden, Paola E J; Kuijpers, Marijke J E; Varga-Szabo, David; Heemskerk, Johan W M; Nieswandt, Bernhard
2010-07-30
In platelets, STIM1 has been recognized as the key regulatory protein in store-operated Ca(2+) entry (SOCE) with Orai1 as principal Ca(2+) entry channel. Both proteins contribute to collagen-dependent arterial thrombosis in mice in vivo. It is unclear whether STIM2 is involved. A key platelet response relying on Ca(2+) entry is the surface exposure of phosphatidylserine (PS), which accomplishes platelet procoagulant activity. We studied this response in mouse platelets deficient in STIM1, STIM2, or Orai1. Upon high shear flow of blood over collagen, Stim1(-/-) and Orai1(-/-) platelets had greatly impaired glycoprotein (GP) VI-dependent Ca(2+) signals, and they were deficient in PS exposure and thrombus formation. In contrast, Stim2(-/-) platelets reacted normally. Upon blood flow in the presence of thrombin generation and coagulation, Ca(2+) signals of Stim1(-/-) and Orai1(-/-) platelets were partly reduced, whereas the PS exposure and formation of fibrin-rich thrombi were normalized. Washed Stim1(-/-) and Orai1(-/-) platelets were deficient in GPVI-induced PS exposure and prothrombinase activity, but not when thrombin was present as co-agonist. Markedly, SKF96365, a blocker of (receptor-operated) Ca(2+) entry, inhibited Ca(2+) and procoagulant responses even in Stim1(-/-) and Orai1(-/-) platelets. These data show for the first time that: (i) STIM1 and Orai1 jointly contribute to GPVI-induced SOCE, procoagulant activity, and thrombus formation; (ii) a compensating Ca(2+) entry pathway is effective in the additional presence of thrombin; (iii) platelets contain two mechanisms of Ca(2+) entry and PS exposure, only one relying on STIM1-Orai1 interaction.
Tang, Mariann; Fenger-Eriksen, Christian; Wierup, Per; Greisen, Jacob; Ingerslev, Jørgen; Hjortdal, Vibeke; Sørensen, Benny
2017-06-01
Cardiac surgery may cause a serious coagulopathy leading to increased risk of bleeding and transfusion demands. Blood bank products are commonly first line haemostatic intervention, but has been associated with hazardous side effect. Coagulation factor concentrates may be a more efficient, predictable, and potentially a safer treatment, although prospective clinical trials are needed to further explore these hypotheses. This study investigated the haemostatic potential of ex vivo supplementation of coagulation factor concentrates versus blood bank products on blood samples drawn from patients undergoing cardiac surgery. 30 adults were prospectively enrolled (mean age=63.9, females=27%). Ex vivo haemostatic interventions (monotherapy or combinations) were performed in whole blood taken immediately after surgery and two hours postoperatively. Fresh-frozen plasma, platelets, cryoprecipitate, fibrinogen concentrate, prothrombin complex concentrate (PCC), and recombinant FVIIa (rFVIIa) were investigated. The haemostatic effect was evaluated using whole blood thromboelastometry parameters, as well as by thrombin generation. Immediately after surgery the compromised maximum clot firmness was corrected by monotherapy with fibrinogen or platelets or combination therapy with fibrinogen. At two hours postoperatively the coagulation profile was further deranged as illustrated by a prolonged clotting time, a reduced maximum velocity and further diminished maximum clot firmness. The thrombin lagtime was progressively prolonged and both peak thrombin and endogenous thrombin potential were compromised. No monotherapy effectively corrected all haemostatic abnormalities. The most effective combinations were: fibrinogen+rFVIIa or fibrinogen+PCC. Blood bank products were not as effective in the correction of the coagulopathy. Coagulation factor concentrates appear to provide a more optimal haemostasis profile following cardiac surgery compared to blood bank products. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kaur, Harmanpreet; Corscadden, Kathryn; Ware, Jerry; Othman, Maha
2017-02-28
Platelet defects due to hyper-responsive GPIbα causing enhanced VWF interaction, counter-intuitively result in bleeding rather than thrombosis. The historical explanation of platelet/VWF clearance fails to explain mechanisms of impaired haemostasis particularly in light of reported poor platelet binding to fibrinogen. This study aimed to evaluate the defects of platelets with hyper-responsive GPIbα and their contribution to impaired in vivo thrombosis. Using the PT-VWD mouse model, platelets from the hTg G233V were compared to control hTg WT mice. Platelets' pro-coagulant capacity was evaluated using flowcytometry assessment of P-selectin and annexin V. Whole blood platelet aggregation in response to ADP, collagen and thrombin was tested. Clot kinetics using laser injury thrombosis model and the effect of GPIbα inhibition in vivo using 6B4; a monoclonal antibody, were evaluated. Thrombin-induced platelet P-selectin and PS exposure were significantly reduced in hTg G233V compared to hTg WT and not significantly different when compared to unstimulated platelets. The hTg G233V platelets aggregated normally in response to collagen, and had a delayed response to ADP and thrombin, when compared to hTg WT platelets. Laser injury showed significant impairment of in vivo thrombus formation in hTg G233V compared to hTg WT mice. There was a significant lag in in vitro clot formation in turbidity assay but no impairment in thrombin generation was observed using thromboelastography. The in vivo inhibition of GPIbα facilitated new - unstable - clot formation but did not improve the lag. We conclude platelets with hyper-responsive GPIbα have complex intrinsic defects beyond the previously described mechanisms. Abnormal signalling through GPIbα and potential therapy using inhibitors require further investigations.
Veloso, D
2003-01-01
Many in vitro studies have shown that activation of prekallikrein (PK) to kallikrein (KAL) in normal plasma triggers rapid activation of the coagulation cascade. In agreement, the coagulation activation is impaired in PK-deficient plasma. Paradoxically, PK-deficient patients show a tendency to thrombosis. To investigate the discrepancy between the in vitro and in vivo findings, we analyzed the effect of KAL on the rate of platelet aggregation. For this research, physiologic concentrations of washed human platelets were incubated for 5 and/or 10 min with approximately 2.2 to 88 nM human plasma KAL (< 1/100 to approximately 1/3 of PK concentrations in plasma) prior to the addition of high concentrations of alpha-thrombin (54 nM) or fibrinogen plus ADP. KAL concentrations were arbitrarily selected on the assumption that concentrations of free KAL (the enzymatically active species) were minute in normal plasma and higher when KAL production was enhanced, and/or inhibitors were depleted. Full platelet aggregation was that seen in the absence of KAL or PK. Inhibition of platelet aggregation stimulated by thrombin was markedly increased with increased KAL concentrations and incubation times. The degree of inhibition by KAL was smaller when ADP was the agonist. The data suggest that KAL may play a role in the modulation of platelet aggregation in vivo under normal conditions as well as when prolonged, high concentrations of KAL occur in blood. The data may also help to explain the intriguing observation that PK-deficient patients show a tendency to thrombotic episodes and myocardial infarction whereas in vitro assays predict bleeding.
Investigation of the heparin-thrombin interaction by dynamic force spectroscopy.
Wang, Congzhou; Jin, Yingzi; Desai, Umesh R; Yadavalli, Vamsi K
2015-06-01
The interaction between heparin and thrombin is a vital step in the blood (anti)coagulation process. Unraveling the molecular basis of the interactions is therefore extremely important in understanding the mechanisms of this complex biological process. In this study, we use a combination of an efficient thiolation chemistry of heparin, a self-assembled monolayer-based single molecule platform, and a dynamic force spectroscopy to provide new insights into the heparin-thrombin interaction from an energy viewpoint at the molecular scale. Well-separated single molecules of heparin covalently attached to mixed self-assembled monolayers are demonstrated, whereby interaction forces with thrombin can be measured via atomic force microscopy-based spectroscopy. Further these interactions are studied at different loading rates and salt concentrations to directly obtain kinetic parameters. An increase in the loading rate shows a higher interaction force between the heparin and thrombin, which can be directly linked to the kinetic dissociation rate constant (koff). The stability of the heparin/thrombin complex decreased with increasing NaCl concentration such that the off-rate was found to be driven primarily by non-ionic forces. These results contribute to understanding the role of specific and nonspecific forces that drive heparin-thrombin interactions under applied force or flow conditions. Copyright © 2015 Elsevier B.V. All rights reserved.
Yang, Yuan; Zhang, Meikui; Kang, Xiaoni; Jiang, Chen; Zhang, Huan; Wang, Pei; Li, Jingjing
2015-09-26
To investigate the effects of microglia/macrophages activation induced by intrastriatal thrombin injection on dentate gyrus neurogenesis and spatial memory ability in mice. The male C57BL/6 mice were divided into 4 groups of 10: sham, intracerebral hemorrhage (ICH), ICH + hirudin (thrombin inhibitor), and ICH + indometacin (Indo, an anti-inflammation drug). ICH model was created by intrastriatal thrombin (1U) injection. BrdU (50 mg/kg) was administrated on the same day after surgery for 6 consecutive days. Motor functions were evaluated with rotarod and beam walking tests. The spatial memory deficit was measured with Morris water maze (MWM). Cell quantification was performed for doublecortin (DCX, immature neuron), BrdU (S-phase proliferating cell population) and CD68 (activated microglia/macrophage) immune-reactive cells. Microglia/macrophages activation induced by intrastriatal thrombin injection reduced hippocampal neurogenesis and impaired spatial memory ability, but did not affect the motor function at 3 and 5 days post-injury. Both hirudin and indometacin reduced microglia/macrophages activation, enhanced hippocampal neurogenesis, and improved spatial memory ability in mice. Microglia/macrophages activation induced by intrastriatal thrombin injection might be responsible for the spatial memory deficit. Targeting both thrombin and inflammation systems in acute phase of ICH might be important in alleviating the significant spatial memory deficits.
Activation of platelet-rich plasma using thrombin receptor agonist peptide.
Landesberg, Regina; Burke, Andrea; Pinsky, David; Katz, Ronald; Vo, Jennifer; Eisig, Sidney B; Lu, Helen H
2005-04-01
This study proposes an alternative preparation method of platelet-rich plasma (PRP). Specifically, we compare the use of thrombin receptor agonist peptide-6 (TRAP) and bovine thrombin as a clotting agent in the preparation of PRP. PRP was prepared by centrifugation and clotted with thrombin or TRAP. In vitro clotting times were monitored as a function of TRAP concentration, and clot retraction was determined by measuring clot diameter over time. Following the optimization of TRAP concentration, experiments were repeated with the addition of several commercially available bone substitutes. The release of PRP-relevant growth factors as a function of PRP preparation was also determined. The most rapid polymerization of PRP takes place with the addition of thrombin, followed by TRAP/Allogro (Ceramed, Lakewood, CO), TRAP/BioGlass (Mo-Sci, Rolla, MN), TRAP/BioOss (Osteohealth, Shirley, NY), and TRAP alone. Thrombin caused considerable clot retraction (43%), whereas TRAP alone resulted in only 15% retraction. TRAP/Allogro, TRAP/BioOss, and TRAP/BioGlass all exhibited minimal retraction (8%). The use of TRAP to activate clot formation in the preparation of PRP may be a safe alternative to bovine thrombin. It results in an excellent working time and significantly less clot retraction than the currently available methods of PRP production.
Kassassir, Hassan; Siewiera, Karolina; Talar, Marcin; Przygodzki, Tomasz; Watala, Cezary
2017-06-01
Recent studies have shown that it may be the concentration of thrombin, which is discriminative in determining of the mechanism of platelet activation via protease activated receptors (PARs). Whether the observed phenomenon of differentiated responses of mouse platelets to various thrombin concentrations in non-diabetic db/+ and diabetic db/db mice depends upon the concerted action of various PARs, remains to be established. We found elevated reactivity of platelets, as well as the enhanced PAR-3 expression in response to both the used concentrations of AYPGKF in db/db mice, as compared to db/+ heterozygotes. At low concentration of thrombin platelets from diabetic mice demonstrated hyperreactivity, reflected by higher expression of PAR-3. For higher thrombin concentration, blood platelets from db/db mice appeared hyporeactive, compared to db/+ animals, while no significant differences in PAR-3 expression were observed between diabetic and non-diabetic mice. The novel and previously unreported finding resulting from our study is that the increased expression of PAR-3 in response to either TRAP for PAR-4 or low thrombin (when PAR-4 is not the efficient thrombin receptor) may be one of the key events contributing to higher reactivity of platelets in db/db mice. Copyright © 2017 Elsevier Inc. All rights reserved.
Altman, Raul; Scazziota, Alejandra Silvia; Herrera, Maria de Lourdes; Gonzalez, Claudio
2006-01-01
Background Platelet activation is crucial in normal hemostasis. Using a clotting system free of external tissue factor, we investigated whether activated Factor VII in combination with platelet agonists increased thrombin generation (TG) in vitro. Methods and results TG was quantified by time parameters: lag time (LT) and time to peak (TTP), and by amount of TG: peak of TG (PTG) and area under thrombin formation curve after 35 minutes (AUC→35min) in plasma from 29 healthy volunteers using the calibrated automated thrombography (CAT) technique. TG parameters were measured at basal conditions and after platelet stimulation by sodium arachidonate (AA), ADP, and collagen (Col). In addition, the effects of recombinant activated FVII (rFVIIa) alone or combined with the other platelet agonists on TG parameters were investigated. We found that LT and TTP were significantly decreased (p < 0.05) and PTG and AUC→35min were significantly increased (p < 0.05) in platelet rich plasma activated with AA, ADP, Col, and rFVIIa compared to non-activated platelet rich plasma from normal subjects (p = 0.01). Furthermore platelet rich plasma activated by the combined effects of rFVIIa plus AA, ADP or Col had significantly reduced LT and TTP and increased AUC→35min (but not PTG) when compared to platelet rich plasma activated with agonists in the absence of rFVIIa. Conclusion Platelets activated by AA, ADP, Col or rFVIIa triggered TG. This effect was increased by combining rFVIIa with other agonists. Our intrinsic coagulation system produced a burst in TG independent of external tissue factor activity an apparent hemostatic effect with little thrombotic capacity. Thus we suggest a modification in the cell-based model of hemostasis. PMID:16630353
Augmentation of thrombin generation in neonates undergoing cardiopulmonary bypass.
Guzzetta, N A; Szlam, F; Kiser, A S; Fernandez, J D; Szlam, A D; Leong, T; Tanaka, K A
2014-02-01
Factor concentrates are currently available and becoming increasingly used off-label for treatment of bleeding. We compared recombinant activated factor VII (rFVIIa) with three-factor prothrombin complex concentrate (3F-PCC) for the ability to augment thrombin generation (TG) in neonatal plasma after cardiopulmonary bypass (CPB). First, we used a computer-simulated coagulation model to assess the impact of rFVIIa and 3F-PCC, and then performed similar measurements ex vivo using plasma from neonates undergoing CPB. Simulated TG was computed according to the coagulation factor levels from umbilical cord plasma and the therapeutic levels of rFVIIa, 3F-PCC, or both. Subsequently, 11 neonates undergoing cardiac surgery were enrolled. Two blood samples were obtained from each neonate: pre-CPB and post-CPB after platelet and cryoprecipitate transfusion. The post-CPB products sample was divided into control (no treatment), control plus rFVIIa (60 nM), and control plus 3F-PCC (0.3 IU ml(-1)) aliquots. Three parameters of TG were measured ex vivo. The computer-simulated post-CPB model demonstrated that rFVIIa failed to substantially improve lag time, TG rate and peak thrombin without supplementing prothrombin. Ex vivo data showed that addition of rFVIIa post-CPB significantly shortened lag time; however, rate and peak were not statistically significantly improved. Conversely, 3F-PCC improved all TG parameters in parallel with increased prothrombin levels in both simulated and ex vivo post-CPB samples. Our data highlight the importance of prothrombin replacement in restoring TG. Despite a low content of FVII, 3F-PCC exerts potent procoagulant activity compared with rFVIIa ex vivo. Further clinical evaluation regarding the efficacy and safety of 3F-PCC is warranted.
MECHANISMS INVOLVED IN FIBRIN FORMATION
Boyles, Paul W.; Ferguson, John H.; Muehlke, Paul H.
1951-01-01
That the role of thrombin in the conversion of fibrinogen to fibrin is essentially enzymatic, is established not only by the minute amounts of thrombin which are effective but also by the complete independence of fibrin yields and thrombin concentrations over a very wide range of thrombin dilutions and clotting times. The thrombin-fibrinogen reaction, in the phase beyond the "latent period" at least, seems fundamentally "first order." Technical requirements of the experiments leading to these conclusions include: (1) a highly purified (e.g. 97 per cent "clottable") fibrinogen, (2) absence of traces of thrombic impurities in the fibrinogen, (3) absence of fibrinolytic protease contaminant of the thrombin and the fibrinogen, and (4) sufficient stability of the thrombin even at very high dilutions. Four conditions affecting thrombin stability have been investigated. Fibrin yields are not significantly modified by numerous experimental circumstances that influence the clotting time, such as (1) temperature, (2) pH, (3) non-specific salt action due to electrical (ionic) charges, which alter the Coulomb forces involved in the fibrillar aggregation, (4) specific ion effects, whether clot-accelerating (e.g. Ca++) or clot-inhibitory (e.g. Fe(CN)6''''), (5) occluding (adsorptive) colloids, which have a "fibrinoplastic" action, e.g. (a) acacia and probably (b) fibrinogen which has been mildly "denatured" by salt-heating, acidification, etc. The data with which several European workers have attempted to substantiate the idea of a two-stage thrombin-fibrinogen reaction with an intermediary "profibrin" (allegedly partly "denatured") have been reanalyzed with controls which lead us to very different conclusions, viz. (1) denaturation and fibrin formation are independent; (2) partial denaturation is "fibrinoplastic" (see above); and (3) conditions of strong salinity and acid pH (5.1) usually do not completely prevent the thrombin-fibrinogen reaction but merely prolong the "latent" phase and lessen the time required for completion of essentially the same reaction (fibrin polymerization) when more favorable clotting conditions are restored. Thus, our experiments advance the modern concepts concerning the coagulation mechanisms along lines that, for the most part, agree with those of the Harvard physical chemists, and we oppose the European views concerning a two-stage reaction, "profibrin," and "the denaturase theory" of clotting. PMID:14832433
Vázquez-Juárez, E; Ramos-Mandujano, G; Lezama, R A; Cruz-Rangel, S; Islas, L D; Pasantes-Morales, H
2008-02-01
The present study in Swiss3T3 fibroblasts examines the effect of thrombin on hyposmolarity-induced osmolyte fluxes and RVD, and the contribution of the src/EGFR pathway. Thrombin (5 U/ml) added to a 30% hyposmotic medium markedly increased hyposmotic 3H-taurine efflux (285%), accelerated the volume-sensitive Cl- current (ICI-swell) and increased RVD rate. These effects were reduced (50-65%) by preventing the thrombin-induced intracellular Ca2+ [Ca2+]i rise with EGTA-AM, or with the phospholipase C (PLC) blocker U73122. Ca2+calmodulin (CaM) and calmodulin kinase II (CaMKII) also participate in this Ca2+-dependent pathway. Thrombin plus hyposmolarity increased src and EGFR phosphorylation, whose blockade by PP2 and AG1478, decreased by 30-50%, respectively, the thrombin effects on hyposmotic taurine efflux, ICI-swell and RVD. Ca2+- and src/EGFR-mediated pathways operate independently as shown by (1) the persistence of src and EGFR activation when [Ca2+]i rise is prevented and (2) the additive effect on taurine efflux, ICI-swell or RVD by simultaneous inhibition of the two pathways, which essentially suppressed these events. PLC-Ca2+- and src/EGFR-signaling pathways operate in the hyposmotic condition and because thrombin per se failed to increase taurine efflux and ICI-swell under isosmotic condition it seems that it is merely amplifying these previously activated mechanisms. The study shows that thrombin potentiates hyposmolarity-induced osmolyte fluxes and RVD by increasing src/EGFR-dependent signaling, in addition to the Ca2+-dependent pathway.
Chi, Chun-Wei; Lao, Yeh-Hsing; Li, Yi-Shan; Chen, Lin-Chi
2011-03-15
A new quantum dot (QD)-aptamer (apt) beacon that acts by folding-induced dissociation of a DNA intercalating dye, BOBO-3(B), is demonstrated with label-free thrombin detection. The beacon, denoted as QD-apt:B, is constructed by (1) coupling of a single-stranded thrombin aptamer to Qdot 565 via EDC/Sulfo-NHS chemistry and (2) staining the duplex regions of the aptamer on QD with excess BOBO-3 before thrombin binding. When mixing a thrombin sample with QD-apt:B, BOBO-3 is competed away from the beacon due to target-induced aptamer folding, which then causes a decrease in QD fluorescence resonance energy transfer (FRET)-mediated BOBO-3 emission and achieves thrombin quantitation. In this work, the effects of Mg(2+), coupling time, and aptamer type on the beacon's performances are investigated and discussed thoroughly with various methods, including transmission electron microscopy (TEM), dynamic light scattering (DLS), and two-color differential gel electrophoresis. Using the best aptamer beacon (HTQ37), we attain highly specific and wide-range detection (from nM to μM) of thrombin in buffer, and the beacon can sense nM-range thrombin in 15% diluted serum. Compared to the reported QD aptamer assays, our method is advantageous from the aspect of using a simple sensory unit design without losing the detection sensitivity. Therefore, we consider the QD-apt:B beacon a potential alternative to immuno-reagents and an effective tool to study nucleic acid folding on QD as well. Copyright © 2011 Elsevier B.V. All rights reserved.
Thrombin Cleavage of Plasmodium falciparum Erythrocyte Membrane Protein 1 Inhibits Cytoadherence
Gillrie, Mark R.; Renaux, Bernard; Russell-Goldman, Eleanor; Avril, Marion; Brazier, Andrew J.; Mihara, Koichiro; Di Cera, Enrico; Milner, Danny A.; Hollenberg, Morley D.; Smith, Joseph D.
2016-01-01
ABSTRACT Plasmodium falciparum malaria remains one of the most deadly infections worldwide. The pathogenesis of the infection results from the sequestration of infected erythrocytes (IRBC) in vital organs, including the brain, with resulting impairment of blood flow, hypoxia, and lactic acidosis. Sequestration occurs through the adhesion of IRBC to host receptors on microvascular endothelium by Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), a large family of variant surface antigens, each with up to seven extracellular domains that can bind to multiple host receptors. Consequently, antiadhesive therapies directed at single endothelial adhesion molecules may not be effective. In this study, we demonstrated that the serine protease thrombin, which is pivotal in the activation of the coagulation cascade, cleaved the major parasite adhesin on the surface of IRBC. As a result, adhesion under flow was dramatically reduced, and already adherent IRBC were detached. Thrombin cleavage sites were mapped to the Duffy binding-like δ1 (DBLδ1) domain and interdomains 1 and 2 in the PfEMP1 of the parasite line IT4var19. Furthermore, we observed an inverse correlation between the presence of thrombin and IRBC in cerebral malaria autopsies of children. We investigated a modified (R67A) thrombin and thrombin inhibitor, hirugen, both of which inhibit the binding of substrates to exosite I, thereby reducing its proinflammatory properties. Both approaches reduced the barrier dysfunction induced by thrombin without affecting its proteolytic activity on PfEMP1, raising the possibility that thrombin cleavage of variant PfEMP1 may be exploited as a broadly inhibitory antiadhesive therapy. PMID:27624125
Chen, Lifen; Chen, Zhong-Ning
2015-01-01
A multifunctional label-free biosensor for the detection of Hg(2+), adenosine triphosphate and thrombin has been developed based on the changing of the electrochemical impedance spectroscopy (EIS) from the modified electrodes when nucleic acid subunits interacting with different targets. The modified electrode consists of three interaction sections, including DNA with T-T mismatch recognizing Hg(2+) to form T-Hg(2+)-T complex, split DNA chip against ATP, and DNA domin against thrombin to form G-quadruplex. Upon DNA interaction with thrombin or ATP, an increased charge transfer resistance (Rct) had been detected. However, a decreased Rct against Hg(2+) was obtained. The Rct difference (ΔRct) has relationship with the concentration of the different targets, Hg(2+), ATP and thrombin can be selectively detected with the detection limit of 0.03, 0.25, and 0.20 nmol L(-1), respectively. To separately detect the three analytes existing in the same sample, ATP aptamer, G-rich DNA strands and EDTA were applied to mask ATP, Hg(2+) or thrombin separately. Copyright © 2014 Elsevier B.V. All rights reserved.
Inhibition of thrombin action ameliorates insulin resistance in type 2 diabetic db/db mice.
Mihara, Masatomo; Aihara, Ken-ichi; Ikeda, Yasumasa; Yoshida, Sumiko; Kinouchi, Mizuho; Kurahashi, Kiyoe; Fujinaka, Yuichi; Akaike, Masashi; Matsumoto, Toshio
2010-02-01
The binding of thrombin to its receptor stimulates inflammatory cytokines including IL-6 and monocyte chemoattractant protein-1 (MCP-1); both are associated with the development of insulin resistance. Because increased adiposity enhanced the expression of coagulation factor VII that stimulates the coagulation pathway in adipose tissue, we tested whether the inhibition of thrombin action ameliorates insulin resistance in obese diabetic (Lpr(-/-):db/db) mice. The 4-wk administration of argatroban, a selective thrombin inhibitor, reduced fasting plasma glucose and ameliorated insulin resistance in these mice. It also reduced adipocyte size and macrophage infiltration into adipose tissue. The aberrant gene expression of MCP-1, IL-6, adiponectin, and factor VII and suppressed insulin receptor substrate-1-Akt signaling in adipose tissue of db/db mice were reversed by argatroban treatment. These results demonstrate that increased adiposity enhances the production of thrombin in adipose tissue by stimulating factor VII expression and suggest that increased thrombin activity in adipose tissue plays an important role in the development of insulin resistance via enhancing MCP-1 production, leading to macrophage infiltration and insulin receptor substrate-1-Akt pathway inactivation.
Biocompatible coupling of therapeutic fusion proteins to human erythrocytes
Villa, Carlos H.; Pan, Daniel C.; Johnston, Ian H.; Greineder, Colin F.; Walsh, Landis R.; Hood, Elizabeth D.; Cines, Douglas B.; Poncz, Mortimer; Siegel, Don L.
2018-01-01
Carriage of drugs by red blood cells (RBCs) modulates pharmacokinetics, pharmacodynamics, and immunogenicity. However, optimal targets for attaching therapeutics to human RBCs and adverse effects have not been studied. We engineered nonhuman-primate single-chain antibody fragments (scFvs) directed to human RBCs and fused scFvs with human thrombomodulin (hTM) as a representative biotherapeutic cargo (hTM-scFv). Binding fusions to RBCs on band 3/glycophorin A (GPA; Wright b [Wrb] epitope) and RhCE (Rh17/Hr0 epitope) similarly endowed RBCs with hTM activity, but differed in their effects on RBC physiology. scFv and hTM-scFv targeted to band 3/GPA increased membrane rigidity and sensitized RBCs to hemolysis induced by mechanical stress, while reducing sensitivity to hypo-osmotic hemolysis. Similar properties were seen for other ligands bound to GPA and band 3 on human and murine RBCs. In contrast, binding of scFv or hTM-scFv to RhCE did not alter deformability or sensitivity to mechanical and osmotic stress at similar copy numbers bound per RBCs. Contrasting responses were also seen for immunoglobulin G antibodies against band 3, GPA, and RhCE. RBC-bound hTM-scFv generated activated protein C (APC) in the presence of thrombin, but RhCE-targeted hTM-scFv demonstrated greater APC generation per bound copy. Both Wrb- and RhCE-targeted fusion proteins inhibited fibrin deposition induced by tumor necrosis factor-α in an endothelialized microfluidic model using human whole blood. RhCE-bound hTM-scFv more effectively reduced platelet and leukocyte adhesion, whereas anti-Wrb scFv appeared to promote platelet adhesion. These data provide a translational framework for the development of engineered affinity ligands to safely couple therapeutics to human RBCs. PMID:29365311
Zhu, Shuyun; Liu, Zhongyuan; Hu, Lianzhe; Yuan, Yali; Xu, Guobao
2012-12-14
Proteases play a central role in several widespread diseases. Thus, there is a great need for the fast and sensitive detection of various proteolytic enzymes. Herein, we have developed a carbon nanotube (CNT)-based protease biosensing platform that uses peptides as a fluorescence probe for the first time. Single-walled carbon nanohorns (SWCNHs) and thrombin were used to demonstrate this detection strategy. SWCNHs can adsorb a fluorescein-based dye (FAM)-labeled peptide (FAM-pep) and quench the fluorescence of FAM. In contrast, thrombin can cleave FAM-pep on SWCNHs and recover the fluorescence of FAM, which allows the sensitive detection of thrombin. This biosensor has a high sensitivity and selectivity toward thrombin, with a detection limit of 100 pM. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Ying; Zhu, Yingjing; Binyam, Atsebeha; Liu, Misha; Wu, Yinan; Li, Fengting
2016-12-15
A label-free sensing strategy based on the enzyme-mimicking activity of MOF was demonstrated for colorimetric detection of biomolecules. Firstly obvious blue color was observed due to the high efficiency of peroxidase-like catalytic activity of Fe-MIL-88A (an ion-based MOF material) toward 3,3',5,5'-tetramethylbenzidine (TMB). Then in the presence of target biomolecule and corresponding aptamer, the mimetic activity of Fe-MIL-88A can be strongly inhibited and used directly to realize the colorimetric detection. On the basis of the interesting findings, we designed a straightforward, label-free and sensitive colorimetric method for biomolecule detection by using the enzyme mimetic property of MOF coupling with molecular recognition element. Compared with the existed publications, our work breaks the routine way by setting up an inorganic-organic MOF-aptamer hybrid platform for colorimetric determination of biomolecules, expanding the targets scope from H2O2 or glucose to biomolecules. As a proof of concept, thrombin and thrombin aptamer was used as a model analyte. The limit of detection of 10nM can be achieved with naked eyes and ultrahigh selectivity of thrombin toward numerous interfering substances with 10-fold concentration was demonstrated significantly. Of note, the method was further applied for the detection of thrombin in human serum samples, showing the results in agreement with those values obtained in an immobilization buffer by the colorimetric method. This inorganic-organic MOF-aptamer sensing strategy may in principle be universally applicable for the detection of a range of environmental or biomedical molecules of interests. Copyright © 2016 Elsevier B.V. All rights reserved.
Sayyah, Jacqueline; Bartakova, Alena; Nogal, Nekeisha; Quilliam, Lawrence A; Stupack, Dwayne G; Brown, Joan Heller
2014-06-20
Rap1 is a Ras family GTPase with a well documented role in ERK/MAP kinase signaling and integrin activation. Stimulation of the G-protein-coupled receptor PAR-1 with thrombin in human 1321N1 glioblastoma cells led to a robust increase in Rap1 activation. This response was sustained for up to 6 h and mediated through RhoA and phospholipase D (PLD). Thrombin treatment also induced a 5-fold increase in cell adhesion to fibronectin, which was blocked by down-regulating PLD or Rap1A or by treatment with a β1 integrin neutralizing antibody. In addition, thrombin treatment led to increases in phospho-focal adhesion kinase (tyrosine 397), ERK1/2 phosphorylation and cell proliferation, which were significantly inhibited in cells treated with β1 integrin antibody or Rap1A siRNA. To assess the role of Rap1A in tumor formation in vivo, we compared growth of 1321N1 cells stably expressing control, Rap1A or Rap1B shRNA in a mouse xenograft model. Deletion of Rap1A, but not of Rap1B, reduced tumor mass by >70% relative to control. Similar observations were made with U373MG glioblastoma cells in which Rap1A was down-regulated. Collectively, these findings implicate a Rap1A/β1 integrin pathway, activated downstream of G-protein-coupled receptor stimulation and RhoA, in glioblastoma cell proliferation. Moreover, our data demonstrate a critical role for Rap1A in glioblastoma tumor growth in vivo. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Importins α and β signaling mediates endothelial cell inflammation and barrier disruption.
Leonard, Antony; Rahman, Arshad; Fazal, Fabeha
2018-04-01
Nucleocytoplasmic shuttling via importins is central to the function of eukaryotic cells and an integral part of the processes that lead to many human diseases. In this study, we addressed the role of α and β importins in the mechanism of endothelial cell (EC) inflammation and permeability, important pathogenic features of many inflammatory diseases such as acute lung injury and atherosclerosis. RNAi-mediated knockdown of importin α4 or α3 each inhibited NF-κB activation, proinflammatory gene (ICAM-1, VCAM-1, and IL-6) expression, and thereby endothelial adhesivity towards HL-60 cells, upon thrombin challenge. The inhibitory effect of α4 and α3 knockdown was associated with impaired nuclear import and consequently, DNA binding of RelA/p65 subunit of NF-κB and occurred independently of IκBα degradation. Intriguingly, knockdown of importins α4 and α3 also inhibited thrombin-induced RelA/p65 phosphorylation at Ser 536 , showing a novel role of α importins in regulating transcriptional activity of RelA/p65. Similarly, knockdown of importin β1, but not β2, blocked thrombin-induced activation of RelA/p65 and its target genes. In parallel studies, TNFα-mediated inflammatory responses in EC were refractory to knockdown of importins α4, α3 or β1, indicating a stimulus-specific regulation of RelA/p65 and EC inflammation by these importins. Importantly, α4, α3, or β1 knockdown also protected against thrombin-induced EC barrier disruption by inhibiting the loss of VE-cadherin at adherens junctions and by regulating actin cytoskeletal rearrangement. These results identify α4, α3 and β1 as critical mediators of EC inflammation and permeability associated with intravascular coagulation. Copyright © 2018 Elsevier Inc. All rights reserved.
Vergis, James M.; Wiener, Michael C.
2011-01-01
Recombinant proteins typically include one or more affinity tags to facilitate purification and/or detection. Expression constructs with affinity tags often include an engineered protease site for tag removal. Like other enzymes, the activities of proteases can be affected by buffer conditions. The buffers used for integral membrane proteins contain detergents, which are required to maintain protein solubility. We examined the detergent sensitivity of six commonly-used proteases (Enterokinase, Factor Xa, Human Rhinovirus 3C Protease, SUMOstar, Tobacco Etch Virus Protease, and Thrombin) by use of a panel of ninety-four individual detergents. Thrombin activity was insensitive to the entire panel of detergents, thus suggesting it as the optimal choice for use with membrane proteins. Enterokinase and Factor Xa were only affected by a small number of detergents, making them good choices as well. PMID:21539919
Yang, Chien-Chung; Lin, Chih-Chung; Chien, Peter Tzu-Yu; Hsiao, Li-Der; Yang, Chuen-Mao
2016-11-01
Thrombin has been known to activate inflammatory genes including matrix metalloproteinases (MMPs). The elevated expression of MMP-9 has been observed in patients with neuroinflammatory diseases and may contribute to the pathology of brain diseases. However, the mechanisms underlying thrombin-induced MMP-9 expression in SK-N-SH cells remain unknown. The effects of thrombin on MMP-9 expression were examined in SK-N-SH cells by gelatin zymography, Western blot, real-time PCR, promoter activity assay, and cell migration assay. The detailed mechanisms were analyzed by using pharmacological inhibitors and small intefering RNA (siRNA) transfection. Here, we demonstrated that thrombin induced the expression of proform MMP-9 and migration of SK-N-SH cells, which were attenuated by pretreatment with the inhibitor of thrombin (PPACK), Gq (GPA2A), PC-PLC (D609), PI-PLC (ET-18-OCH 3 ), nonselective protien kinase C (PKC, GF109203X), PKCα/βII (Gö6983), PKCδ (Rottlerin), p38 mitogen-activated protein kinases (MAPK) (SB202190), JNK1/2 (SP600125), or NF-κB (Bay11-7082 or Helenalin) and transfection with siRNA of Gq, PKCα, PKCβ, PKCδ, p38, JNK1/2, IKKα, IKKβ, or p65. Moreover, thrombin-stimulated PKCα/βII, PKCδ, p38 MAPK, JNK1/2, or p65 phosphorylation was abrogated by their respective inhibitor of PPACK, GPA2A, D609, ET-18-OCH 3 , Gö6983, Rottlerin, SB202190, SP600125, Bay11-7082, or Helenalin. Pretreatment with these inhibitors or transfection with MMP-9 siRNA also blocked thrombin-induced SK-N-SH cell migration. Our results show that thrombin stimulates a Gq/PLC/PKCs/p38 MAPK and JNK1/2 cascade, which in turn triggers NF-κB activation and ultimately induces MMP-9 expression and cell migration in SK-N-SH cells.
Heydari-Bafrooei, Esmaeil; Amini, Maryam; Ardakani, Mehdi Hatefi
2016-11-15
A sensitive aptasensor based on a robust nanocomposite of titanium dioxide nanoparticles, multiwalled carbon nanotubes (MWCNT), chitosan and a novel synthesized Schiff base (SB) (TiO2/MWCNT/CHIT/SB) on the surface of a glassy carbon electrode (GCE) was developed for thrombin detection. The resultant nanocomposite can provide a large surface area, excellent electrocatalytic activity, and high stability, which would improve immobilization sites for biological molecules, allow remarkable amplification of the electrochemical signal and contribute to improved sensitivity. Thrombin aptamers were simply immobilized onto the TiO2-MWCNT/CHIT-SB nanocomposite matrix through simple π - π stacking and electrostatic interactions between CHIT/SB and aptamer strands. The electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to analyze the surface characterization of unmodified GCE and TiO2-MWCNT/CHIT-SB modified GCE, and also the interaction between aptamer and thrombin. In the presence of thrombin, the aptamer on the adsorbent layer captures the target on the electrode interface, which makes a barrier for electrons and inhibits electron transfer, thereby resulting in decreased DPV and increased impedance signals of the TiO2-MWCNT/CHIT-SB modified GCE. Furthermore, the proposed aptasensor has a very low LOD of 1.0fmolL(-1) thrombin within the detection range of 0.00005-10nmolL(-1). The aptasensor also presents high specificity and reproducibility for thrombin, which is unaffected by the coexistence of other proteins. Clinical application was performed with analysis of the thrombin levels in blood and CSF samples obtained from patients with MS, Parkinson, Epilepsy and Polyneuropathy using both the aptasensor and commercial ELISA kit. The results revealed the proposed system to be a promising candidate for clinical analysis of thrombin. Copyright © 2016 Elsevier B.V. All rights reserved.
Antiplatelet, anticoagulant, and profibrinolytic activities of withaferin A.
Ku, Sae-Kwang; Bae, Jong-Sup
2014-03-01
Withaferin A (WFA), an active compound from Withania somnifera, is widely researched for its anti-inflammatory, cardioactive and central nervous system effects. However, antiplatelet, anticoagulant, and profibrinolytic properties of WFA have not been studied. In this study, the anticoagulant activities of WFA were measured by monitoring activated partial thromboplastin-time (aPTT), prothrombin time (PT), fibrin polymerization, platelet aggregation, thrombus formation, and the activities of cell-based thrombin and activated factor X (FXa). The effects of WFA on the expressions of plasminogen activator inhibitor type 1 (PAI-1) and tissue-type plasminogen activator (t-PA) were also tested in tumor necrosis factor-α (TNF-α) activated human umbilical vein endothelial cells (HUVECs). Our data showed that WFA inhibited thrombin-catalyzed fibrin polymerization and platelet aggregation, FeCl3-induced thrombus formation, prolonged aPTT and PT significantly and inhibited the activities and production of thrombin and FXa. WFA prolonged in vivo and ex vivo bleeding time and inhibited TNF-α induced PAI-1 production. Furthermore, PAI-1/t-PA ratio was significantly decreased by WFA. Collectively, these results indicate that WFA possesses antithrombotic activities and suggest that the current study could provide bases for the development of new anticoagulant agents. Copyright © 2014 Elsevier Inc. All rights reserved.
Thrombin-induced contraction in alveolar epithelial cells probed by traction microscopy.
Gavara, Núria; Sunyer, Raimon; Roca-Cusachs, Pere; Farré, Ramon; Rotger, Mar; Navajas, Daniel
2006-08-01
Contractile tension of alveolar epithelial cells plays a major role in the force balance that regulates the structural integrity of the alveolar barrier. The aim of this work was to study thrombin-induced contractile forces of alveolar epithelial cells. A549 alveolar epithelial cells were challenged with thrombin, and time course of contractile forces was measured by traction microscopy. The cells exhibited basal contraction with total force magnitude 55.0 +/- 12.0 nN (mean +/- SE, n = 12). Traction forces were exerted predominantly at the cell periphery and pointed to the cell center. Thrombin (1 U/ml) induced a fast and sustained 2.5-fold increase in traction forces, which maintained peripheral and centripetal distribution. Actin fluorescent staining revealed F-actin polymerization and enhancement of peripheral actin rim. Disruption of actin cytoskeleton with cytochalasin D (5 microM, 30 min) and inhibition of myosin light chain kinase with ML-7 (10 microM, 30 min) and Rho kinase with Y-27632 (10 microM, 30 min) markedly depressed basal contractile tone and abolished thrombin-induced cell contraction. Therefore, the contractile response of alveolar epithelial cells to the inflammatory agonist thrombin was mediated by actin cytoskeleton remodeling and actomyosin activation through myosin light chain kinase and Rho kinase signaling pathways. Thrombin-induced contractile tension might further impair alveolar epithelial barrier integrity in the injured lung.
Barbič, M; Willer, E A; Rothenhöfer, M; Heilmann, J; Fürst, R; Jürgenliemk, G
2013-06-01
Rusci rhizoma extracts are traditionally used against chronic venous disorders (CVD). To determine the effect of its secondary plant metabolites on the endothelium, phenolic compounds and saponins from Butcher's broom were isolated from a methanolic extract, and their activity on the thrombin-induced hyperpermeability of human microvascular endothelial cells (HMEC-1) was investigated in vitro. In addition to the six known spirostanol saponins deglucoruscin (5), 22-O-methyl-deglucoruscoside (6), deglucoruscoside (7), ruscin (8), ruscogenin-1-O-(α-l-rhamnopyranosyl-(1→2)-β-d-galactopyranoside (9) and 1-O-sulpho-ruscogenin (10), three new spirostanol derivatives were isolated and identified: 3'-O-acetyl-4'-O-sulphodeglucoruscin (1), 4'-O-(2-hydroxy-3-methylpentanoyl)-deglucoruscin (2) and 4'-O-acetyl-deglucoruscin (3). Furthermore, the coumarin esculin (4), which is also prominently present in other medicinal plants used in the treatment of CVD, was isolated for the first time from Rusci rhizoma. Five of the isolated steroid derivatives (2, 5, 8, 9 and 10) and esculin (4) were tested for their ability to reduce the thrombin-induced hyperpermeability of endothelial cells in vitro, and the results were compared to those of the aglycone neoruscogenin (11). The latter compound showed a slight but concentration-dependent reduction in hyperpermeability to 71.8% at 100μM. The highest activities were observed for the spirostanol saponins 5 and 8 and for esculin (4) at 10μM, and these compounds resulted in a reduction of the thrombin-induced hyperpermeability to 41.9%, 42.6% and 53.3%, respectively. For 2, 5 and 8, the highest concentration tested (100μM) resulted in a drastic increase of the thrombin effect. The effect of esculin observed at a concentration of 10μM was diminished at 100μM. These in vitro data provide insight into the pharmacological mechanism by which the genuine spirostanol saponins and esculin can contribute to the efficacy of Butcher's broom against chronic venous disorders. Copyright © 2013 Elsevier Ltd. All rights reserved.
Nadir, Yona; Brenner, Benjamin; Fux, Liat; Shafat, Itay; Attias, Judith; Vlodavsky, Israel
2010-11-01
Heparanase is an endo-β-D-glucuronidase dominantly involved in tumor metastasis and angiogenesis. Recently, we demonstrated that heparanase is involved in the regulation of the hemostatic system. Our hypothesis was that heparanase is directly involved in activation of the coagulation cascade. Activated factor X and thrombin were studied using chromogenic assays, immunoblotting and thromboelastography. Heparanase levels were measured by enzyme-linked immunosorbent assay. A potential direct interaction between tissue factor and heparanase was studied by co-immunoprecipitation and far-western assays. Interestingly, addition of heparanase to tissue factor and activated factor VII resulted in a 3- to 4-fold increase in activation of the coagulation cascade as shown by increased activated factor X and thrombin production. Culture medium of human embryonic kidney 293 cells over-expressing heparanase and its derivatives increased activated factor X levels in a non-enzymatic manner. When heparanase was added to pooled normal plasma, a 7- to 8-fold increase in activated factor X level was observed. Subsequently, we searched for clinical data supporting this newly identified role of heparanase. Plasma samples from 35 patients with acute leukemia at presentation and 20 healthy donors were studied for heparanase and activated factor X levels. A strong positive correlation was found between plasma heparanase and activated factor X levels (r=0.735, P=0.001). Unfractionated heparin and an inhibitor of activated factor X abolished the effect of heparanase, while tissue factor pathway inhibitor and tissue factor pathway inhibitor-2 only attenuated the procoagulant effect. Using co-immunoprecipitation and far-western analyses it was shown that heparanase interacts directly with tissue factor. Overall, our results support the notion that heparanase is a potential modulator of blood hemostasis, and suggest a novel mechanism by which heparanase increases the generation of activated factor X in the presence of tissue factor and activated factor VII.
Outcomes of Ultrasound-Guided Thrombin Injection of Nongroin Arterial Pseudoaneurysms.
Valesano, Johnathan C; Schmitz, John J; Kurup, A Nicholas; Schmit, Grant D; Moynagh, Michael R; Atwell, Thomas D; Lewis, Bradley D; Lee, Robert A; Callstrom, Matthew R
2017-08-01
To evaluate success and complication rates of percutaneous ultrasound-guided thrombin injection of nongroin pseudoaneurysms (PSAs). Retrospective review of a prospectively maintained institutional database yielded 39 cases of arterial PSAs occurring at nongroin sites that were treated with percutaneous ultrasound-guided thrombin injection between 2000 and 2016 (average patient age 69.2 y ± 14.0). Of PSAs, 74.4% (29/39) arose in the upper extremities, and 92.3% (36/39) were iatrogenic. The brachial artery was the most commonly affected vessel (51.3% [20/39]), and arterial access was the most common cause (56.4% [22/39]). Average overall PSA size was 2.4 cm (range, 0.5-7.2 cm); average amount of thrombin injected was 320 IU (range, 50-2,000 IU). Technical success was defined as absence of flow within the PSA immediately after thrombin injection. Treatment success was defined as sustained thrombosis on follow-up imaging obtained at 1-3 days after treatment. Technical and treatment success rates of thrombin injections were 100% (39/39) and 84.8% (28/33), respectively. Longer term follow-up imaging (average 71 d; range, 12-201 d) was available for 7 of the treatment successes with 100% (7/7) showing sustained thrombosis. Comparing treatment successes and failures, there was no significant difference in average PSA size (2.3 cm vs 2.0 cm, P = .51) or average amount of thrombin injected (360 IU vs 180 IU, P = .14). There were no complications. Ultrasound-guided thrombin injection is a safe, efficacious treatment option for PSAs arising in nongroin locations. Copyright © 2017 SIR. Published by Elsevier Inc. All rights reserved.
Myerson, J.; He, L.; Lanza, G.; Tollefsen, D.; Wickline, S.
2013-01-01
Background As a regulator of the penultimate step in the coagulation cascade, thrombin represents a principal target of direct and specific anticoagulants. Objective A potent thrombin inhibitor complexed with a colloidal nanoparticle was devised as a first-in-class anticoagulant with prolonged and highly localized therapeutic impact conferred by its multivalent thrombin-absorbing particle surface. Methods PPACK (Phe(D)-Pro-Arg-Chloromethylketone) was secured covalently to the surface of perfluorocarbon-core nanoparticle structures. PPACK and PPACK nanoparticle inhibition of thrombin were assessed in vitro via thrombin activity against a chromogenic substrate. In vivo antithrombotic activity of PPACK, heparin, non-functionalized nanoparticles, and PPACK nanoparticles was assessed through IV administration prior to acute photochemical injury of the common carotid artery. Perfluorocarbon particle retention in extracted carotid arteries from injured mice was assessed via 19F magnetic resonance spectroscopy (MRS) and imaging (MRI) at 11.7 T. APTT measurements determined the systemic effects of the PPACK nanoparticles at various times after injection. Results Optical assay verified that PPACK nanoparticles exceeded PPACK’s intrinsic activity against thrombin. Application of the an in vivo acute arterial thrombosis model demonstrated that PPACK nanoparticles outperformed both heparin (p=.001) and uncomplexed PPACK (p=.0006) in inhibiting thrombosis. 19F MRS confirmed that PPACK nanoparticles specifically bound to sites of acute thrombotic injury. APTT normalized within twenty minutes of PPACK nanoparticles injection. Conclusions PPACK nanoparticles present thrombin-inhibiting surfaces at sites of acutely forming thrombi that continue to manifest local clot inhibition even as systemic effects rapidly diminish and thus represent a new platform for localized control of acute thrombosis. PMID:21605330
Kuperman, A A; Barg, A A; Fruchtman, Y; Shaoul, E; Rosenberg, N; Kenet, G; Livnat, T
2017-09-01
Severe congenital factor VII (FVII) deficiency is a rare bleeding disorder. Prophylaxis with replacement therapy has been suggested to patients, yet the most beneficial dosing regimens and therapy intervals are still to be defined. Due to the lack of evidence-based data, we hereby present our experience with long-term administration and monitoring primary prophylaxis in children with severe FVII deficiency and an extremely high bleeding risk. Four children with familial FVII deficiency, treated by prophylactic recombinant activated factor VII (rFVIIa), 15-30μg/kg/dose, given 2-3 times weekly since infancy, are discussed. Clinical follow up and monitoring laboratory assays, including thrombin generation, measured at various time points after prophylactic rFVIIa administration are presented. Among our treated patients neither FVII activity nor thrombin generation parameters (both already declined 24h post rFVIIa administration) were able to predict the impact of prophylaxis, and could not be used as surrogate markers in order to assess the most beneficial treatment frequency. However, the long clinical follow-up and comprehensive laboratory assessment performed, have shown that early primary prophylaxis as administered in our cohort was safe and effective. Copyright © 2016 Elsevier Inc. All rights reserved.
Muraki, Michiro; Honda, Shinya
2011-11-01
To achieve an efficient isolation of human Fas receptor extracellular domain (hFasRECD), a fusion protein of hFasRECD with human IgG1 heavy chain Fc domain containing thrombin cleavage sequence at the junction site was overexpressed using baculovirus-silkworm larvae expression system. The hFasRECD part was separated from the fusion protein by the effective cleavage of the recognition site with bovine thrombin. Protein G column treatment of the reaction mixture and the subsequent cation-exchange chromatography provided purified hFasRECD with a final yield of 13.5mg from 25.0 ml silkworm hemolymph. The functional activity of the product was examined by size-exclusion chromatography analysis. The isolated hFasRECD less strongly interacted with human Fas ligand extracellular domain (hFasLECD) than the Fc domain-bridged counterpart, showing the contribution of antibody-like avidity in the latter case. The purified glycosylated hFasRECD presented several discrete bands in the disulphide-bridge non-reducing SDS-PAGE analysis, and virtually all of the components were considered to participate in the binding to hFasLECD. The attached glycans were susceptible to PNGase F digestion, but mostly resistant to Endo Hf digestion under denaturing conditions. One of the components exhibited a higher susceptibility to PNGase F digestion under non-denaturing conditions. Copyright © 2011 Elsevier Inc. All rights reserved.
Comparing thrombin generation in patients with hemophilia A and patients on vitamin K antagonists.
de Koning, M L Y; Fischer, K; de Laat, B; Huisman, A; Ninivaggi, M; Schutgens, R E G
2017-05-01
Essentials It is unknown if hemophilia patients with atrial fibrillation need anticoagulation. Endogenous thrombin potentials (ETP) in hemophilia patients and patients on coumarins were compared. Severe hemophilia patients had comparable ETP to therapeutic international normalized ratio (INR). In non-severe hemophilia, 33% had higher ETP than therapeutic INR and may need anticoagulation. Click to hear Dr Negrier's perspective on global assays for assessing coagulation SUMMARY: Background It is unknown whether patients with hemophilia A with atrial fibrillation require treatment with vitamin K antagonists (VKAs) to the same extent as the normal population. Objective To compare hemostatic potential in hemophilia patients and patients on VKAs using thrombin generation (TG). Methods In this cross-sectional study, TG, initiated with 1pM tissue factor, was measured in 133 patients with severe (FVIII < 1%, n = 15) and non-severe (FVIII 1-50%, n = 118) hemophilia A, 97 patients on a VKA with an international normalized ratio (INR) ≥ 1.5 and healthy controls. Endogenous thrombin potential (ETP) (nm*min) was compared according to FVIII level (< 1%, 1-19% and 20-50%) with healthy controls and patients with sub-therapeutic INR (1.5-1.9) and therapeutic INR (≥ 2.0). Medians and interquartile ranges (IQRs) were calculated. Results Compared with healthy controls (898 [IQR 803-1004]), both hemophilia patients and patients on VKAs had lower median ETPs at 304 (196-449) and 176 (100-250), respectively. ETP was quite similar in severe hemophilia patients (185 [116-307]) and patients with a therapeutic INR (156 [90-225]). Compared with patients with therapeutic INR, ETP in patients with FVIII 1-19% and patients with FVIII 20-50% was higher at 296 (203-430) and 397 (219-632), respectively. All patients with therapeutic INR had an ETP < 400. Considering this threshold, 93% of severe hemophilia patients, 70% of patients with FVIII 1-19% and 52% of patients with FVIII 20-50% had an ETP < 400. Conclusion In severe hemophilia patients, TG was comparable to that in patients with a therapeutic INR. In one-third of non-severe hemophilia patients, TG was higher. These results suggest that anticoagulation therapy should be considered in a substantial proportion of non-severe hemophilia patients. © 2017 International Society on Thrombosis and Haemostasis.
Yan, Shengyong; Huang, Rong; Zhou, Yangyang; Zhang, Ming; Deng, Minggang; Wang, Xiaolin; Weng, Xiaocheng; Zhou, Xiang
2011-01-28
In this thrombin detection system, the bright fluorescence of TASPI is almost eliminated by the DNA aptamer TBA (turn-off); however, in the presence of thrombin, it specifically binds to TBA by folding unrestricted TBA into an anti-parallel G-quadruplex structure and then releasing TASPI molecules, resulting in vivid and facile fluorescence recovery (turn-on).
Traction force dynamics predict gap formation in activated endothelium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valent, Erik T.; Nieuw Amerongen, Geerten P. van; Hinsbergh, Victor W.M. van
In many pathological conditions the endothelium becomes activated and dysfunctional, resulting in hyperpermeability and plasma leakage. No specific therapies are available yet to control endothelial barrier function, which is regulated by inter-endothelial junctions and the generation of acto-myosin-based contractile forces in the context of cell-cell and cell-matrix interactions. However, the spatiotemporal distribution and stimulus-induced reorganization of these integral forces remain largely unknown. Traction force microscopy of human endothelial monolayers was used to visualize contractile forces in resting cells and during thrombin-induced hyperpermeability. Simultaneously, information about endothelial monolayer integrity, adherens junctions and cytoskeletal proteins (F-actin) were captured. This revealed a heterogeneousmore » distribution of traction forces, with nuclear areas showing lower and cell-cell junctions higher traction forces than the whole-monolayer average. Moreover, junctional forces were asymmetrically distributed among neighboring cells. Force vector orientation analysis showed a good correlation with the alignment of F-actin and revealed contractile forces in newly formed filopodia and lamellipodia-like protrusions within the monolayer. Finally, unstable areas, showing high force fluctuations within the monolayer were prone to form inter-endothelial gaps upon stimulation with thrombin. To conclude, contractile traction forces are heterogeneously distributed within endothelial monolayers and force instability, rather than force magnitude, predicts the stimulus-induced formation of intercellular gaps. - Highlights: • Endothelial monolayers exert dynamic- and heterogeneous traction forces. • High traction forces correlate with junctional areas and the F-actin cytoskeleton. • Newly formed inter-endothelial gaps are characterized by opposing traction forces. • Force stability is a key feature controlling endothelial permeability.« less
Duffy, Fergal J; O'Donovan, Darragh; Devocelle, Marc; Moran, Niamh; O'Connell, David J; Shields, Denis C
2015-03-23
Protein-protein and protein-peptide interactions are responsible for the vast majority of biological functions in vivo, but targeting these interactions with small molecules has historically been difficult. What is required are efficient combined computational and experimental screening methods to choose among a number of potential protein interfaces worthy of targeting lead macrocyclic compounds for further investigation. To achieve this, we have generated combinatorial 3D virtual libraries of short disulfide-bonded peptides and compared them to pharmacophore models of important protein-protein and protein-peptide structures, including short linear motifs (SLiMs), protein-binding peptides, and turn structures at protein-protein interfaces, built from 3D models available in the Protein Data Bank. We prepared a total of 372 reference pharmacophores, which were matched against 108,659 multiconformer cyclic peptides. After normalization to exclude nonspecific cyclic peptides, the top hits notably are enriched for mimetics of turn structures, including a turn at the interaction surface of human α thrombin, and also feature several protein-binding peptides. The top cyclic peptide hits also cover the critical "hot spot" interaction sites predicted from the interaction crystal structure. We have validated our method by testing cyclic peptides predicted to inhibit thrombin, a key protein in the blood coagulation pathway of important therapeutic interest, identifying a cyclic peptide inhibitor with lead-like activity. We conclude that protein interfaces most readily targetable by cyclic peptides and related macrocyclic drugs may be identified computationally among a set of candidate interfaces, accelerating the choice of interfaces against which lead compounds may be screened.
Han, Daehoon; Hong, Jinkee; Kim, Hyun Cheol; Sung, Jong Hwan; Lee, Jong Bum
2013-11-01
Many highly sensitive protein detection techniques have been developed and have played an important role in the analysis of proteins. Herein, we report a novel technique that can detect proteins sensitively and effectively using aptamer-based DNA nanostructures. Thrombin was used as a target protein and aptamer was used to capture fluorescent dye-labeled DNA nanobarcodes or thrombin on a microsphere. The captured DNA nanobarcodes were replaced by a thrombin and aptamer interaction. The detection ability of this approach was confirmed by flow cytometry with different concentrations of thrombin. Our detection method has great potential for rapid and simple protein detection with a variety of aptamers.
Aaldering, Lukas J; Poongavanam, Vasanthanathan; Langkjaer, Niels; Murugan, N Arul; Jørgensen, Per Trolle; Wengel, Jesper; Veedu, Rakesh N
2017-04-18
The thrombin-binding aptamer (TBA), which shows anticoagulant properties, is one of the most studied G-quadruplex-forming aptamers. In this study, we investigated the impact of different chemical modifications such as a three-carbon spacer (spacer-C 3 ), unlocked nucleic acid (UNA) and 3'-amino-modified UNA (amino-UNA) on the structural dynamics and stability of TBA. All three modifications were incorporated at three different loop positions (T3, T7, T12) of the TBA G-quadruplex structure to result in a series of TBA variants and their stability was studied by thermal denaturation; folding was studied by circular dichroism spectroscopy and thrombin clotting time. The results showed that spacer-C 3 introduction at the T7 loop position (TBA-SP7) significantly improved stability and thrombin clotting time while maintaining a similar binding affinity as TBA to thrombin. Detailed molecular modelling experiments provided novel insights into the experimental observations, further supporting the efficacy of TBA-SP7. The results of this study could provide valuable information for future designs of TBA analogues with superior thrombin inhibition properties. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Suleria, Hafiz Ansar Rasul; Hines, Barney M; Addepalli, Rama; Chen, Wei; Masci, Paul; Gobe, Glenda; Osborne, Simone A
2016-12-31
Waste generated from the processing of marine organisms for food represents an underutilized resource that has the potential to provide bioactive molecules with pharmaceutical applications. Some of these molecules have known anti-thrombotic and anti-coagulant activities and are being investigated as alternatives to common anti-thrombotic drugs, like heparin and warfarin that have serious side effects. In the current study, extracts prepared from blacklip abalone ( Haliotis rubra ) processing waste, using food grade enzymes papain and bromelain, were found to contain sulphated polysaccharide with anti-thrombotic activity. Extracts were found to be enriched with sulphated polysaccharides and assessed for anti-thrombotic activity in vitro through heparin cofactor-II (HCII)-mediated inhibition of thrombin. More than 60% thrombin inhibition was observed in response to 100 μg/mL sulphated polysaccharides. Anti-thrombotic potential was further assessed as anti-coagulant activity in plasma and blood, using prothrombin time (PT), activated partial thromboplastin time (aPTT), and thromboelastography (TEG). All abalone extracts had significant activity compared with saline control. Anion exchange chromatography was used to separate extracts into fractions with enhanced anti-thrombotic activity, improving HCII-mediated thrombin inhibition, PT and aPTT almost 2-fold. Overall this study identifies an alternative source of anti-thrombotic molecules that can be easily processed offering alternatives to current anti-thrombotic agents like heparin.
Suleria, Hafiz Ansar Rasul; Hines, Barney M.; Addepalli, Rama; Chen, Wei; Masci, Paul; Gobe, Glenda; Osborne, Simone A.
2016-01-01
Waste generated from the processing of marine organisms for food represents an underutilized resource that has the potential to provide bioactive molecules with pharmaceutical applications. Some of these molecules have known anti-thrombotic and anti-coagulant activities and are being investigated as alternatives to common anti-thrombotic drugs, like heparin and warfarin that have serious side effects. In the current study, extracts prepared from blacklip abalone (Haliotis rubra) processing waste, using food grade enzymes papain and bromelain, were found to contain sulphated polysaccharide with anti-thrombotic activity. Extracts were found to be enriched with sulphated polysaccharides and assessed for anti-thrombotic activity in vitro through heparin cofactor-II (HCII)-mediated inhibition of thrombin. More than 60% thrombin inhibition was observed in response to 100 μg/mL sulphated polysaccharides. Anti-thrombotic potential was further assessed as anti-coagulant activity in plasma and blood, using prothrombin time (PT), activated partial thromboplastin time (aPTT), and thromboelastography (TEG). All abalone extracts had significant activity compared with saline control. Anion exchange chromatography was used to separate extracts into fractions with enhanced anti-thrombotic activity, improving HCII-mediated thrombin inhibition, PT and aPTT almost 2-fold. Overall this study identifies an alternative source of anti-thrombotic molecules that can be easily processed offering alternatives to current anti-thrombotic agents like heparin. PMID:28042854
Inhibitory spectrum of alpha 2-plasmin inhibitor.
Saito, H; Goldsmith, G H; Moroi, M; Aoki, N
1979-01-01
alpha 2-Plasmin inhibitor (alpha 2PI) has been recently characterized as a fast-reacting inhibitor of plasmin in human plasma and appears to play an important role in the regulation of fibrinolysis in vivo. We have studied the effect of purified alpha 2PI upon various proteases participating in human blood coagulation and kinin generation. At physiological concentration (50 microgram/ml), alpha 2PI inhibited the clot-promoting and prekallikrein-activating activity of Hageman factor fragments, the amidolytic, kininogenase, and clot-promoting activities of plasma kallikrein, and the clot-promoting properties of activated plasma thromboplastin antecedent (PTA, Factor XIa) and thrombin. alpha 2PI had minimal inhibitory effect on surface-bound activated PTA and activated Stuart factor (Factor Xa). alpha 2PI did not inhibit the activity of activated Christmas factor (Factor IXa) or urinary kallikrein. Heparin (1.5-2.0 units/ml) did not enhance the inhibitory function of alpha 2PI. These results suggest that, like other plasma protease inhibitors, alpha 2PI possesses a broad in vitro spectrum of inhibitory properties. PMID:156364
NASA Astrophysics Data System (ADS)
Laloy, Julie; Haguet, Hélène; Alpan, Lutfiye; Mancier, Valérie; Mejia, Jorge; Levi, Samuel; Dogné, Jean-Michel; Lucas, Stéphane; Rousse, Céline; Fricoteaux, Patrick
2017-08-01
Copper/silver core/shell nanopowders with different metal ratio have been elaborated by electrochemistry (ultrasound-assisted electrolysis followed by a displacement reaction). Characterization was performed by several methods (X-ray diffraction, scanning electron microscope, energy-dispersive X-ray spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, centrifugal liquid sedimentation, and zeta potential measurements). The mean diameter of all nanoparticles is around 10 nm. The impact of each nanopowder on hemolysis, platelet aggregation, and coagulation has been studied on whole human blood. Hemolysis assays were performed with spectrophotometric measurement and platelet aggregation, with light transmission aggregometry and was compared to Cu/Pt core/shell nanoparticles with similar size as negative control. Calibrated thrombin generation test has been used for a coagulation study. They neither impact platelet aggregation nor hemolysis and have a procoagulant effect whatever their composition (i.e., metal ratio). These results highlight that such nanopowders have a potential use in medical applications (e.g., wound dressing).
Whole blood clots are more resistant to lysis than plasma clots--greater efficacy of rivaroxaban.
Varin, Rémi; Mirshahi, Shahsultan; Mirshahi, Pezhman; Klein, Christophe; Jamshedov, Jovid; Chidiac, Jean; Perzborn, Elisabeth; Mirshahi, Massoud; Soria, Claudine; Soria, Jeannette
2013-03-01
Defective thrombolysis, a thrombotic risk factor, can be attributed to the formation of a compact clot poorly accessible to fibrinolytic enzymes. Venous thrombi, rich in red blood cells (RBCs), and arterial thrombi containing various amounts of RBCS, plasma and whole blood (WB) clot permeability and degradability were compared. The effect of rivaroxaban, a potent direct factor Xa inhibitor, was also evaluated. Fibrin permeability was determined by flow measurement through the clot. Clot degradability was evaluated by the amount of D-dimer generated by clot perfusion with plasminogen and tissue plasminogen activator. Fibrin clot structure was assessed by confocal microscopy. WB clot permeability (KS) and degradability were 6.7- and 38-fold lower, respectively, compared with plasma clots. This is attributed to 1) occlusion of fibrin pores by RBCs and 2) a consistent increase in thrombin generation due to platelets and RBCs inducing formation of a tighter clot. Rivaroxaban added to plasma or WB before clotting, in reducing thrombin generation, led to the formation of a looser clot that is more degradable by fibrinolytic enzymes. Permeability and degradability of whole blood clots formed in the presence of rivaroxaban were very similar to those of plasma clots. The resistance to fibrinolysis of WB clots was reduced considerably when clots were formed with rivaroxaban. These results may have implications for the development of antithrombotic agents. Copyright © 2012 Elsevier Ltd. All rights reserved.
Complement Activation in Arterial and Venous Thrombosis is Mediated by Plasmin
Foley, Jonathan H.; Walton, Bethany L.; Aleman, Maria M.; O'Byrne, Alice M.; Lei, Victor; Harrasser, Micaela; Foley, Kimberley A.; Wolberg, Alisa S.; Conway, Edward M.
2016-01-01
Thrombus formation leading to vaso-occlusive events is a major cause of death, and involves complex interactions between coagulation, fibrinolytic and innate immune systems. Leukocyte recruitment is a key step, mediated partly by chemotactic complement activation factors C3a and C5a. However, mechanisms mediating C3a/C5a generation during thrombosis have not been studied. In a murine venous thrombosis model, levels of thrombin–antithrombin complexes poorly correlated with C3a and C5a, excluding a central role for thrombin in C3a/C5a production. However, clot weight strongly correlated with C5a, suggesting processes triggered during thrombosis promote C5a generation. Since thrombosis elicits fibrinolysis, we hypothesized that plasmin activates C5 during thrombosis. In vitro, the catalytic efficiency of plasmin-mediated C5a generation greatly exceeded that of thrombin or factor Xa, but was similar to the recognized complement C5 convertases. Plasmin-activated C5 yielded a functional membrane attack complex (MAC). In an arterial thrombosis model, plasminogen activator administration increased C5a levels. Overall, these findings suggest plasmin bridges thrombosis and the immune response by liberating C5a and inducing MAC assembly. These new insights may lead to the development of strategies to limit thrombus formation and/or enhance resolution. PMID:27077125
Investigation of the anticoagulant and antithrombotic effects of chlorogenic acid.
Choi, Jun-Hui; Kim, Seung
2017-03-01
Thrombosis is a leading cause of morbidity and mortality throughout the world. Thrombolytic agents are important for both the prevention and treatment of thrombosis. Fibrin clot and turbidity assays revealed that it was able to inhibit the formation of fibrin clot. Chlorogenic acid degraded blood clot and inhibited the enzymatic activity of procoagulant proteases, thrombin, activated factor X (FXa), and activated factor XIII (FXIIIa). Chlorogenic acid was found to delay activated partial thromboplastin time, prothrombin time, and thrombin time. PFA-100 assays showed that it prolonged the closure time of citrated whole human blood. It demonstrated the antithrombotic effect in collagen and epinephrine-induced acute thromboembolism mice model. These antithrombotic profiles together with its anticoagulant and platelet disaggregation properties, and lack of toxicity to NIH-3T3 and 3T3-L1 cells, make it a potential agent for thrombotic treatment and prevention. © 2016 Wiley Periodicals, Inc.
Lewandowski, Paweł; Maciejewski, Paweł; Wąsek, Wojciech; Pasierski, Tomasz; Budaj, Andrzej
2011-01-01
Thrombin injection is a widely accepted treatment of an iatrogenic arterial pseudoaneurysm. However, the optimal mode of injection and type of pseudoaneurysm amenable to this therapy have yet been established. To compare efficacy and safety of two approaches to ultrasound-guided thrombin injections into a femoral artery pseudoaneurysm with or without long neck that developed as an iatrogenic complication of cardiac catheterisation. Patients were randomised to thrombin administration in a bolus or slow injection. The length and width of aneurysm neck and blood flow velocity in the neck were measured with color Doppler ultrasonography before the closure procedure. Thrombin dose, time to thrombotic occlusion, blood oxygen saturation in a toe of the extremity with the pseudoaneurysm (a marker of silent microembolisation), and clinical signs of distal embolisation were recorded. Between 2006 and 2009, 73 consecutive patients (33 males; mean age 67.8 ± 11.9 years) with femoral pseudoaneurysms complicating cardiac catheterisation were randomised into two groups that were treated with thrombin bolus (n = 40) or slow injection (n = 33). The efficacy of aneurysm closure with either method was similarly high (100% vs 96.8%, NS, respectively) and did not depend on the length and width of the aneurysm neck. Independent risk factors for distal embolisation were: thrombin dose (OR 4.2; 95% CI 0.92-19.3), the length of aneurysm neck (OR 4.66; 95% CI 1.1-19.9), age above 80 years (OR 10.9; 95% CI 1.0-116.8), and bolus treatment (OR 7.6; 95% CI 1.3-44.9). We observed silent microembolisation phenomenon that was common (occurring in 38% of patients in the bolus group vs 33% of patients in the slow injection group) but in most cases asymptomatic. Femoral pseudoaneurysm closure with a low dose of thrombin is a valid and beneficial treatment. Either method (bolus or slow injection) was similarly efficacious and safe even in the subgroup of patients with neckless aneurysms. We observed and confirmed silent microembolisation phenomenon during thrombin injections.
Does Bicarbonate Correct Coagulation Function Impaired by Acidosis in Swine?
2006-07-01
requires sufficient fibrinogen available in the circulation . At any time, fibrinogen availabil- Fig. 4. Thrombin generation kinetics at baseline (T0... circulation can potentially impact physiologic function. As the precursor in the coagulation process, fibrinogen is primarily involved in maintaining...with different proteins. It is also possible that following acidosis insult, some of the albumin loss from the circulation was compensated for by
Microvesicle Production After Trauma and its Clinical Impact on Venothromboembolism
2016-03-01
Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Polytrauma is most often caused from explosive devices and accounts for about 65 percent...of injuries to our military personnel. The patients who have polytrauma are at increased risk of developing either bleeding and/or a clot in their...noted after traumatic injury relative to healthy volunteers. 15. SUBJECT TERMS Polytrauma , thrombin generation, venous thromboembolism 16. SECURITY
Tyrosine sulfation modulates activity of tick-derived thrombin inhibitors
NASA Astrophysics Data System (ADS)
Thompson, Robert E.; Liu, Xuyu; Ripoll-Rozada, Jorge; Alonso-García, Noelia; Parker, Benjamin L.; Pereira, Pedro José Barbosa; Payne, Richard J.
2017-09-01
Madanin-1 and chimadanin are two small cysteine-free thrombin inhibitors that facilitate blood feeding in the tick Haemaphysalis longicornis. Here, we report a post-translational modification—tyrosine sulfation—of these two proteins that is critical for potent anti-thrombotic and anticoagulant activity. Inhibitors produced in baculovirus-infected insect cells displayed heterogeneous sulfation of two tyrosine residues within each of the proteins. One-pot ligation-desulfurization chemistry enabled access to homogeneous samples of all possible sulfated variants of the proteins. Tyrosine sulfation of madanin-1 and chimadanin proved crucial for thrombin inhibitory activity, with the doubly sulfated variants three orders of magnitude more potent than the unmodified inhibitors. The three-dimensional structure of madanin-1 in complex with thrombin revealed a unique mode of inhibition, with the sulfated tyrosine residues binding to the basic exosite II of the protease. The importance of tyrosine sulfation within this family of thrombin inhibitors, together with their unique binding mode, paves the way for the development of anti-thrombotic drug leads based on these privileged scaffolds.
Bovine thrombin safety reporting: an example of study design and publication bias.
Crean, Sheila; Michels, Shannon L; Moschella, Kevin; Reynolds, Matthew W
2010-01-01
Bovine thrombin, a popular hemostat and sealant since 1945, has recently been subjected to clinical trial testing due to reformulations in 1998. We sought to compare adverse event rates of early observational studies with those of later interventional trials. A MEDLINE-based literature search in publications that report safety in bovine thrombin exposed surgical patients was extracted and reviewed. In 38 studies, about half were case reports and 31.5% were interventional trials. In case reports, 41% of authors reported severe coagulopathic adverse events. In contrast, whereas blood complications were common in large trials, no association of harm was established for bovine thrombin product exposure and/or immunization. In this review, later clinical trials failed to reproduce the common and severe coagulopathy predicted by earlier observational studies in bovine exposed patients. This example illustrates that perceptions of safety can change as a function of study design, even for a widely adopted, well established biologic such as thrombin. Caution must be exercised in interpreting evidence from observational studies alone.
Thrombin promotes diet-induced obesity through fibrin-driven inflammation.
Kopec, Anna K; Abrahams, Sara R; Thornton, Sherry; Palumbo, Joseph S; Mullins, Eric S; Divanovic, Senad; Weiler, Hartmut; Owens, A Phillip; Mackman, Nigel; Goss, Ashley; van Ryn, Joanne; Luyendyk, James P; Flick, Matthew J
2017-08-01
Obesity promotes a chronic inflammatory and hypercoagulable state that drives cardiovascular disease, type 2 diabetes, fatty liver disease, and several cancers. Elevated thrombin activity underlies obesity-linked thromboembolic events, but the mechanistic links between the thrombin/fibrin(ogen) axis and obesity-associated pathologies are incompletely understood. In this work, immunohistochemical studies identified extravascular fibrin deposits within white adipose tissue and liver as distinct features of mice fed a high-fat diet (HFD) as well as obese patients. Fibγ390-396A mice carrying a mutant form of fibrinogen incapable of binding leukocyte αMβ2-integrin were protected from HFD-induced weight gain and elevated adiposity. Fibγ390-396A mice had markedly diminished systemic, adipose, and hepatic inflammation with reduced macrophage counts within white adipose tissue, as well as near-complete protection from development of fatty liver disease and glucose dysmetabolism. Homozygous thrombomodulin-mutant ThbdPro mice, which have elevated thrombin procoagulant function, gained more weight and developed exacerbated fatty liver disease when fed a HFD compared with WT mice. In contrast, treatment with dabigatran, a direct thrombin inhibitor, limited HFD-induced obesity development and suppressed progression of sequelae in mice with established obesity. Collectively, these data provide proof of concept that targeting thrombin or fibrin(ogen) may limit pathologies in obese patients.
Rothwell, Stephen W.; Settle, Timothy; Wallace, Shannon; Dorsey, Jennifer; Simpson, David; Bowman, James R.; Janmey, Paul; Sawyer, Evelyn
2014-01-01
Experimental salmon thrombin/fibrinogen dressings have been shown to provide effective hemostasis in severe hemorrhage situations. The hypothesis for this study was that swine would still remain healthy without coagulopathy six months after exposure to salmon thrombin/fibrinogen dressings. Initial exposure was by insertion of the salmon dressing into the peritoneal cavity. Three months after the initial exposure, the same animals were subjected to two full thickness dermal wounds on the dorsal surface. One wound was bandaged with the salmon thrombin/fibrinogen bandage and the other wound was dressed with a standard bandage. The animals were monitored for an additional three months. Blood was drawn every 14 days over the six months for immunological and coagulation function analysis. All of the animals (8 pigs) remained healthy during the six month period and the dermal wounds healed without incidence. Lymph nodes and spleen showed signs of normal immune response and Western blots showed development of antibodies against salmon fibrinogen, but none of the animals made antibodies that recognized any species of thrombin. Coagulation parameters (fibrinogen concentration, thrombin time, PT and aPTT) and hematological parameters remained normal over the course of the study when compared to initial values of the subject swine. PMID:20705479
Basheer, A R; el-Asmar, M F; Soslau, G
1995-07-03
A potent, proteinaceous inducer of platelet aggregation designated as IVa, has been purified to homogeneity from Cerastes cerastes venom by molecular sieve and ion exchange chromatography. It is composed of 2 subunits with total M(r) of 62,000 as shown by native gel chromatography and chemical cross-linking with disuccinimidyl suberate. It is not clear at the present time whether both subunits are identical gene products, however, both have identical N-terminal sequences for the first 15 amino acids. The protein has a pI above 9.6. IVa (0.1 micrograms/ml) could aggregate platelets up to 80% and was inhibited by p-APMSF, leupeptin, iodoacetamide, protein kinase C inhibitor, phosphatase inhibitor, ATP and PGE1, while it was insensitive to acetylsalicylic acid, ADP scavenger system, protein kinase A inhibitor and hirudin. Protein IVa is a serine proteinase with thrombin-like activity as it hydrolysed thrombin chromogenic substrate CBS 34.47, its aggregatory activity was partially inhibited by monoclonal antibodies against GPIb and the thrombin receptor, as was the thrombin, and its ability to induce intracellular Ca2+ release was blocked by pretreating platelets with thrombin. Unlike thrombin, the IVa protein showed very weak coagulant activity as indicated by plasma recalcification time and fibrinogen clotting time although it could hydrolyse fibrinogen alpha-chains.
Thrombin promotes diet-induced obesity through fibrin-driven inflammation
Kopec, Anna K.; Abrahams, Sara R.; Thornton, Sherry; Palumbo, Joseph S.; Mullins, Eric S.; Weiler, Hartmut; Mackman, Nigel; Goss, Ashley; van Ryn, Joanne; Luyendyk, James P.; Flick, Matthew J.
2017-01-01
Obesity promotes a chronic inflammatory and hypercoagulable state that drives cardiovascular disease, type 2 diabetes, fatty liver disease, and several cancers. Elevated thrombin activity underlies obesity-linked thromboembolic events, but the mechanistic links between the thrombin/fibrin(ogen) axis and obesity-associated pathologies are incompletely understood. In this work, immunohistochemical studies identified extravascular fibrin deposits within white adipose tissue and liver as distinct features of mice fed a high-fat diet (HFD) as well as obese patients. Fibγ390–396A mice carrying a mutant form of fibrinogen incapable of binding leukocyte αMβ2-integrin were protected from HFD-induced weight gain and elevated adiposity. Fibγ390–396A mice had markedly diminished systemic, adipose, and hepatic inflammation with reduced macrophage counts within white adipose tissue, as well as near-complete protection from development of fatty liver disease and glucose dysmetabolism. Homozygous thrombomodulin-mutant ThbdPro mice, which have elevated thrombin procoagulant function, gained more weight and developed exacerbated fatty liver disease when fed a HFD compared with WT mice. In contrast, treatment with dabigatran, a direct thrombin inhibitor, limited HFD-induced obesity development and suppressed progression of sequelae in mice with established obesity. Collectively, these data provide proof of concept that targeting thrombin or fibrin(ogen) may limit pathologies in obese patients. PMID:28737512
A hypothesis: factor VII governs clot formation, tissue repair and apoptosis.
Coleman, Lewis S
2007-01-01
A hypothesis: thrombin is a "Universal Enzyme of Energy Transduction" that employs ATP energy in flowing blood to activate biochemical reactions and cell effects in both hemostasis and tissue repair. All cells possess PAR-1 (thrombin) receptors and are affected by thrombin elevations, and thrombin effects on individual cell types are determined by their unique complement of PAR-1 receptors. Disruption of the vascular endothelium (VE) activates a tissue repair mechanism (TRM) consisting of the VE, tissue factor (TF), and circulating Factors VII, IX and X that governs localized thrombin elevations to activate clot formation and cellular effects that repair tissue damage. The culmination of the repair process occurs with the restoration of the VE followed by declines in thrombin production that causes Apoptosis ("programmed cell death") in wound-healing fibroblasts, which functions as a mechanism to draw wound edges together. The location and magnitude of TRM activity governs the location and magnitude of Factor VIII activity and clot formation, but the large size of Factor VIII prevents it from penetrating the clot formed by its activity, so that its effects are self-limiting. Factors VII, IX and X function primarily as tissue repair enzymes, while Factor VIII and Factor XIII are the only serine protease enzymes in the "Coagulation Cascade" that are exclusively associated with hemostasis.
A Novel Photoelectrochemical Biosensor for Tyrosinase and Thrombin Detection
Chen, Jiexia; Liu, Yifan; Zhao, Guang-Chao
2016-01-01
A novel photoelectrochemical biosensor for step-by-step assay of tyrosinase and thrombin was fabricated based on the specific interactions between the designed peptide and the target enzymes. A peptide chain with a special sequence which contains a positively charged lysine-labeled terminal, tyrosine at the other end and a cleavage site recognized by thrombin between them was designed. The designed peptide can be fixed on surface of the CdTe quantum dots (QDs)-modified indium-tin oxide (ITO) electrode through electrostatic attraction to construct the photoelectrochemical biosensor. The tyrosinase target can catalyze the oxidization of tyrosine by oxygen into ortho-benzoquinone residues, which results in a decrease in the sensor photocurrent. Subsequently, the cleavage site could be recognized and cut off by another thrombin target, restoring the sensor photocurrent. The decrease or increase of photocurrent in the sensor enables us to assay tyrosinase and thrombin. Thus, the detection of tyrosinase and thrombin can be achieved in the linear range from 2.6 to 32 μg/mL and from 4.5 to 100 μg/mL with detection limits of 1.5 μg/mL and 1.9 μg/mL, respectively. Most importantly, this strategy shall allow us to detect different classes of enzymes simultaneously by designing various enzyme-specific peptide substrates. PMID:26805846
Gazzeri, Roberto; Galarza, Marcelo; Conti, Carlo; De Bonis, Costanzo
2018-01-01
Association between the use of hemostatic agents made from collagen/gelatin mixed with thrombin and thromboembolic events in patients undergoing tumor resection has been suggested. This study evaluates the relationship between flowable hemostatic matrix and deep vein thrombosis in a large cohort of patients treated for brain tumor removal. The authors conducted a retrospective, multicenter, clinical review of all craniotomies for tumor removal performed between 2013 and 2014. Patients were classified in three groups: group I (flowable gelatin hemostatic matrix with thrombin), group II (gelatin hemostatic without thrombin), and group III (classical hemostatic). A total of 932 patients were selected: tumor pathology included 441 gliomas, 296 meningiomas, and 195 metastases. Thromboembolic events were identified in 4.7% of patients in which gelatin matrix with thrombin was applied, in 8.4% of patients with gelatin matrix without thrombin, and in 3.6% of cases with classical methods of hemostasis. Patients with venous thromboembolism had an increased proportion of high-grade gliomas (7.2%). Patients receiving a greater dose than 10 ml gelatin hemostatic had a higher rate of thromboembolic events. Intracranial hematoma requiring reintervention occurred in 19 cases: 4.5% of cases of group III, while reoperation was performed in 1.3 and 1.6% of patients in which gelatin matrix with or without thrombin was applied. Gelatin matrix hemostat is an efficacious tool for neurosurgeons in cases of difficult intraoperative bleeding during cranial tumor surgery. This study may help to identify those patients at high risk for developing thromboembolism and to treat them accordingly.
Shangguan, Li; Zhu, Wei; Xue, Yanchun; Liu, Songqin
2015-02-15
A photoelectrochemical (PEC) aptasensor for highly sensitive and specific detection of thrombin was developed by using graphene–CdS nanocomposites multilayer as photoactive species and electroactive mediator hexaammineruthenium(III) chloride (Ru(NH(3))(6)(3+)) as signal enhancer. Graphene–CdS nanocomposites (G–CdS) were synthesized by one-pot reduction of oxide graphene and CdCl2 with thioacetamide. The photoactive multilayer was prepared by alternative assembly of the negatively charged 3-mercaptopropionic acid modified graphene–CdS nanocomposites (MPA-G–CdS) and the positively charged polyethylenimine (PEI) on ITO electrode. This layer-by-layer assembly method enhanced the stability and homogeneity of the photocurrent readout of G–CdS. Thrombin aptamer was covalently bound to the multilayer by using glutaraldehyde as cross-linking. Electroactive mediator (Ru(NH(3))(6)(3+)) could interact with the DNA phosphate backbone and thus facilitated the electron transfer between G–CdS multilayer and electrode and enhanced the photocurrent. Hybridizing of a long complementary DNA with thrombin aptamer could increase the adsorption amount of (Ru(NH(3))(6)(3+)), which in turn boosted the signal readout. In the presence of target thrombin, the affinity interaction between thrombin and its aptamer resulted in the long complementary DNA releasing from the G–CdS multilayer and decreasing of photocurrent signal. On the basis of G–CdS multilayer as the photoactive species, (Ru (NH(3))(6)(3+)) as an electroactive mediator, and aptamer as a recognition module, a high sensitive PEC aptasensor for thrombin detection was proposed. The thrombin aptasensor displayed a linear range from 2.0 pM to 600.0 pM and a detection limit of 1.0 pM. The present strategy provided a promising ideology for the future development of PEC biosensor. Copyright © 2014 Elsevier B.V. All rights reserved.
Alves de Sá Siqueira, Mariana; Martins, Marcela Anjos; Rodrigues Pereira, Natália; Bandeira Moss, Monique; Santos, Sérgio F F; Mann, Giovanni E; Mendes-Ribeiro, Antônio C; Brunini, Tatiana M C
2007-01-01
Nitric oxide (NO), a key endogenous mediator involved in the maintenance of platelet function, is synthesized from the amino acid L-arginine. We have shown that L-arginine transport in platelets is rate-limiting for NO synthesis. A disturbance in the L-arginine-NO pathway in platelets was previously described in chronic renal failure (CRF) patients. Detailed kinetic studies were performed in platelets from controls (n = 60) and hemodialysis patients (n = 26). The transport of L-arginine in platelets is mediated via system y+L, which is competitively inhibited by L-leucine in the presence of Na+ and by the irreversible inhibitor pCMB. In platelets, system y+L is markedly stimulated by an Na+/K+-ATPase inhibitor, ouabain, and by changes in surface potential, while it is downregulated by intraplatelet amino acid depletion (zero-trans) and by thrombin. In CRF patients, activation of L-arginine transport was limited to well-nourished patients compared to malnourished patients and controls, where it was reduced and did not differ significantly among the groups under zero-trans conditions. Our results provide the first evidence that system y+L in platelets is modulated by zero-trans conditions, surface potential, thrombin and intraplatelet Na+ concentration. Our findings suggest that enhanced transport in CRF involves increased L-arginine exchange with intraplatelet neutral amino acids.
Geng, Jinhai; Liu, Gangjun; Chen, Zhongping
2013-01-01
Optical properties of human blood during coagulation were studied using optical coherence tomography (OCT) and the parameter of clotting time derived from the 1/e light penetration depth (d1/e) versus time was developed in our previous work. In this study, in order to know if a new OCT test can characterize the blood-coagulation process under different treatments in vitro, the effects of two different activators (calcium ions and thrombin) and anticoagulants, i.e., acetylsalicylic acid (ASA, a well-known drug aspirin) and melagatran (a direct thrombin inhibitor), at various concentrations are evaluated. A swept-source OCT system with a 1300 nm center wavelength is used for detecting the blood-coagulation process in vitro under a static condition. A dynamic study of d1/e reveals a typical behavior due to coagulation induced by both calcium ions and thrombin, and the clotting time is concentration-dependent. Dose-dependent ASA and melagatran prolong the clotting times. ASA and melagatran have different effects on blood coagulation. As expected, melagatran is much more effective than ASA in anticoagulation by the OCT measurements. The OCT assay appears to be a simple method for the measurement of blood coagulation to assess the effects of activators and anticoagulants, which can be used for activator and anticoagulant screening. PMID:23392340
Xu, Xiangqun; Geng, Jinhai; Liu, Gangjun; Chen, Zhongping
2013-08-01
Optical properties of human blood during coagulation were studied using optical coherence tomography (OCT) and the parameter of clotting time derived from the 1/e light penetration depth (d(1/e)) versus time was developed in our previous work. In this study, in order to know if a new OCT test can characterize the blood-coagulation process under different treatments in vitro, the effects of two different activators (calcium ions and thrombin) and anticoagulants, i.e., acetylsalicylic acid (ASA, a well-known drug aspirin) and melagatran (a direct thrombin inhibitor), at various concentrations are evaluated. A swept-source OCT system with a 1300 nm center wavelength is used for detecting the blood-coagulation process in vitro under a static condition. A dynamic study of d1/e reveals a typical behavior due to coagulation induced by both calcium ions and thrombin, and the clotting time is concentration-dependent. Dose-dependent ASA and melagatran prolong the clotting times. ASA and melagatran have different effects on blood coagulation. As expected, melagatran is much more effective than ASA in anticoagulation by the OCT measurements. The OCT assay appears to be a simple method for the measurement of blood coagulation to assess the effects of activators and anticoagulants, which can be used for activator and anticoagulant screening.
Henry, Brian L; Abdel Aziz, May; Zhou, Qibing; Desai, Umesh R
2010-03-01
Recently we prepared sulfated, low-molecular-weight lignins (LMWLs) to mimic the biological activities of heparin and heparan sulfate. Chemo-enzymatically prepared sulfated LMWLs represent a library of diverse non-sugar, aromatic molecules with structures radically different from the heparins, and have been found to potently inhibit thrombin and factor Xa. To assess their effect on the fibrinolytic system, we studied the interaction of LMWLs with human plasmin. Enzyme inhibition studies indicate that the three sulfated LMWLs studied inhibit plasmin with IC50 values in the range of 0.24 and 1.3 mM, which are marginally affected in the presence of antithrombin. Similarly, plasmin degradation of polymeric fibrin is also inhibited by sulfated LMWLs. Michaelis-Menten kinetic studies indicate that maximal velocity of hydrolysis of chromogenic substrates decreases nearly 70% in the presence of LMWLs, while the effect on Michaelis constant is dependent on the nature of the substrate. Competitive binding studies indicate that the sulfated LMWLs compete with full-length heparin. Comparison with thrombin-heparin crystal structure identifies an anionic region on plasmin as a plausible sulfated LMWL binding site. Overall, the chemo-enzymatic origin coupled with coagulation and fibrinolysis inhibition properties of sulfated LMWLs present novel opportunities for designing new pharmaceutical agents that regulate complex pathologies in which both systems are known to play important roles such as disseminated intravascular coagulation.
Yu, Jane; Brisbois, Elizabeth; Handa, Hitesh; Annich, Gail; Meyerhoff, Mark; Bartlett, Robert; Major, Terry
2016-04-07
A biomaterial with both antithrombin and antiplatelet properties is the ideal surface for use in extracorporeal circulation (ECC) as it targets both fibrin generation and platelet adhesion. A hemocompatible surface coating avoids the need for systemic anticoagulation by providing a local anticoagulant effect at the polymer-blood interface. Previous work has demonstrated the potential use of argatroban, a direct thrombin inhibitor, as a nonthrombogenic material for extracorporeal devices. The work reported here focuses on the characterization of argatroban linked to a polyurethane-silicone polymer, CarboSil®. Chemical immobilization, the amount of argatroban, incubation times, and saturation point were evaluated to achieve maximal antithrombin activity at the polymer surface. Cross-linked polymer coatings reacted with 10 and 30 µmole of argatroban were prepared and tested. These coatings resulted in argatroban activity levels of 0.131 µM and 0.446 µM, respectively. After refining the cross-linking process, argatroban activity increased by approximately 3.6 fold. Maintenance of activity and leaching from the polymer surface were also evaluated. Using the refined process for linking argatroban to polymer, the resulting polymer was applied as a surface coating to the inner lumen of poly(vinyl chloride) ECC circuit tubing and its antithrombin effect evaluated using a 4 h rabbit ECC model. Following 4 h of blood exposure, the argatroban circuit demonstrated significantly less thrombus formation compared to the control CarboSil® coating with a 4.1 cm 2 thrombus average area for the control coating compared to 1.2 cm 2 for the argatroban coating (n=4). There was no significant change in thrombin time from baseline in plasma from animals in which the argatroban coated circuit was used, with a thrombin time of 16.2 s at t=0 and 14.5 s after 4 h. These results demonstrate the potential efficacy of immobilized argatroban as a hemocompatible biomaterial for extracorporeal life support devices.
Gilio, Karen; van Kruchten, Roger; Braun, Attila; Berna-Erro, Alejandro; Feijge, Marion A. H.; Stegner, David; van der Meijden, Paola E. J.; Kuijpers, Marijke J. E.; Varga-Szabo, David; Heemskerk, Johan W. M.; Nieswandt, Bernhard
2010-01-01
In platelets, STIM1 has been recognized as the key regulatory protein in store-operated Ca2+ entry (SOCE) with Orai1 as principal Ca2+ entry channel. Both proteins contribute to collagen-dependent arterial thrombosis in mice in vivo. It is unclear whether STIM2 is involved. A key platelet response relying on Ca2+ entry is the surface exposure of phosphatidylserine (PS), which accomplishes platelet procoagulant activity. We studied this response in mouse platelets deficient in STIM1, STIM2, or Orai1. Upon high shear flow of blood over collagen, Stim1−/− and Orai1−/− platelets had greatly impaired glycoprotein (GP) VI-dependent Ca2+ signals, and they were deficient in PS exposure and thrombus formation. In contrast, Stim2−/− platelets reacted normally. Upon blood flow in the presence of thrombin generation and coagulation, Ca2+ signals of Stim1−/− and Orai1−/− platelets were partly reduced, whereas the PS exposure and formation of fibrin-rich thrombi were normalized. Washed Stim1−/− and Orai1−/− platelets were deficient in GPVI-induced PS exposure and prothrombinase activity, but not when thrombin was present as co-agonist. Markedly, SKF96365, a blocker of (receptor-operated) Ca2+ entry, inhibited Ca2+ and procoagulant responses even in Stim1−/− and Orai1−/− platelets. These data show for the first time that: (i) STIM1 and Orai1 jointly contribute to GPVI-induced SOCE, procoagulant activity, and thrombus formation; (ii) a compensating Ca2+ entry pathway is effective in the additional presence of thrombin; (iii) platelets contain two mechanisms of Ca2+ entry and PS exposure, only one relying on STIM1-Orai1 interaction. PMID:20519511
Evaluation of thrombelastographic platelet-mapping in healthy cats.
Blois, Shauna L; Banerjee, Amrita; Wood, R Darren
2012-06-01
Thrombelastography (TEG) permits analysis of clot formation but it is not specific for platelet activity. TEG PlateletMapping (TEG-PM) is a modification of TEG that uses adenosine diphosphate (ADP) and arachidonic acid (AA) as platelet agonists to define the contribution of platelets to clot formation. The objectives of this study were to determine values for TEG-PM in healthy cats and the interassay variation of TEG-PM. TEG-PM analysis was performed on blood specimens collected from 12 healthy cats and was repeated using a second blood specimen collected 2 hours later. Maximum amplitudes generated by thrombin (MA(thrombin)), fibrin (MA(fibrin)), ADP-stimulated platelet activity (MA(ADP)), and AA-stimulated platelet activity (MA(AA)) were recorded. Mean ± SD for MA(thrombin) was 51.1 ± 8.5 mm, for MA(fibrin) was 32.3 ± 17.7 mm, for MA(ADP) was 32.3 ± 15.0 mm, and for MA(AA) was 24.5 ± 12.2 mm. Mean MA(ADP) and MA(fibrin) were not significantly different, whereas mean MA(AA) was significantly lower than mean MA(fibrin). Results from the first and second specimens were not significantly different. Correlation between the first and second specimens was moderate for MA(thrombin), MA(fibrin), and MA(ADP), but was poor for MA(AA). A high degree of variability (coefficient of variation 47.7-60.0%) was observed for MA(fibrin), MA(ADP), and MA(AA). As MA(ADP) and MA(AA) (AA) were the same as or lower than MA(fibrin), a valid baseline to determine platelet-stimulated clot formation could not be established. Considerable interassay variation and wide intervals for MA(fibrin), MA(ADP), and MA(AA) values in this study indicate that TEG-PM should be used cautiously in feline patients. Several preanalytical factors should be examined in further detail. © 2012 American Society for Veterinary Clinical Pathology.
Yu, Jane; Brisbois, Elizabeth; Handa, Hitesh; Annich, Gail; Meyerhoff, Mark; Bartlett, Robert; Major, Terry
2016-01-01
A biomaterial with both antithrombin and antiplatelet properties is the ideal surface for use in extracorporeal circulation (ECC) as it targets both fibrin generation and platelet adhesion. A hemocompatible surface coating avoids the need for systemic anticoagulation by providing a local anticoagulant effect at the polymer-blood interface. Previous work has demonstrated the potential use of argatroban, a direct thrombin inhibitor, as a nonthrombogenic material for extracorporeal devices. The work reported here focuses on the characterization of argatroban linked to a polyurethane-silicone polymer, CarboSil®. Chemical immobilization, the amount of argatroban, incubation times, and saturation point were evaluated to achieve maximal antithrombin activity at the polymer surface. Cross-linked polymer coatings reacted with 10 and 30 µmole of argatroban were prepared and tested. These coatings resulted in argatroban activity levels of 0.131 µM and 0.446 µM, respectively. After refining the cross-linking process, argatroban activity increased by approximately 3.6 fold. Maintenance of activity and leaching from the polymer surface were also evaluated. Using the refined process for linking argatroban to polymer, the resulting polymer was applied as a surface coating to the inner lumen of poly(vinyl chloride) ECC circuit tubing and its antithrombin effect evaluated using a 4 h rabbit ECC model. Following 4 h of blood exposure, the argatroban circuit demonstrated significantly less thrombus formation compared to the control CarboSil® coating with a 4.1 cm2 thrombus average area for the control coating compared to 1.2 cm2 for the argatroban coating (n=4). There was no significant change in thrombin time from baseline in plasma from animals in which the argatroban coated circuit was used, with a thrombin time of 16.2 s at t=0 and 14.5 s after 4 h. These results demonstrate the potential efficacy of immobilized argatroban as a hemocompatible biomaterial for extracorporeal life support devices. PMID:27458521
Satpathy, M; Gallagher, P; Lizotte-Waniewski, M; Srinivas, S P
2004-10-01
Phosphorylation of the regulatory light chain of myosin II (referred to as myosin light chain or MLC) leads to a loss of barrier integrity in cellular monolayers by an increase in the contractility of the cortical actin cytoskeleton. This effect has been examined in corneal endothelial (CE) cells. Experiments were performed using cultured bovine CE cells (BCEC). MLC phosphorylation was induced by a thrombin-mediated activation of the proteinase-activated receptor-1 (PAR-1). Expression of MLC kinase (MLCK), a Ca2+/calmodulin-dependent protein kinase that phosphorylates MLC at its Ser-19 and Thr-18 residues, was determined by RT-PCR and Western blotting. Expression of PAR-1, RhoA, and Rho kinase-1 (effector of RhoA) was ascertained by RT-PCR. MLC phosphorylation was assessed by urea-glycerol gel electrophoresis followed by immunoblotting. The effects of Rho kinase-1 and PKC were characterized by using their selective inhibitors, Y-27632 and chelerythrine, respectively. Reorganization of the cytoskeleton was evaluated by the phalloidin staining of actin. [Ca2+]i was measured using Fura-2. The barrier integrity was assayed as permeability of BCEC monolayers to horseradish peroxidase (HRP; 44 kDa). RT-PCR showed expression of MLCK, PAR-1, Rho kinase-1, and RhoA. Western blotting indicated expression of the non-muscle and smooth muscle isoforms of MLCK. Exposure to thrombin induced an increase in [Ca2+]i with the peak unaffected by an absence of extracellular Ca2+. Pre-exposure to thrombin (2 U ml(-1); 2 min) led to mono- and di-phosphorylation of MLC. Under both basal conditions and in the presence of thrombin, MLC phosphorylation was prevented by chelerythrine (10 microm) and Y-27632 (<25 microm). Thrombin led to inter-endothelial gaps secondary to the disruption of the cortical actin cytoskeleton, which under resting conditions was organized as a perijunctional actomyosin ring (PAMR). These responses were blocked by pre-treatment with Y-27632. Thrombin also increased permeability to HRP, which was abolished by pre-treatment with Y-27632. Thrombin induces MLC phosphorylation in BCEC. The consequent increase in the contractility of the actin cytoskeleton produces a centripetal force resulting in inter-endothelial gaps and a breakdown of barrier integrity. These responses are PKC- and Rho kinase-dependent. [Ca2+]i increase, as well as sensitivity of the thrombin response to PKC and Rho kinase inhibitors, are consistent with the expression of PAR-1 receptors in BCEC. Thrombin-induced hyperpermeability is a model to investigate barrier dysfunction induced by MLC phosphorylation.
Lipopolysaccharide interactions of C-terminal peptides from human thrombin.
Singh, Shalini; Kalle, Martina; Papareddy, Praveen; Schmidtchen, Artur; Malmsten, Martin
2013-05-13
Interactions with bacterial lipopolysaccharide (LPS), both in aqueous solution and in lipid membranes, were investigated for a series of amphiphilic peptides derived from the C-terminal region of human thrombin, using ellipsometry, dual polarization interferometry, fluorescence spectroscopy, circular dichroism (CD), dynamic light scattering, and z-potential measurements. The ability of these peptides to block endotoxic effects caused by LPS, monitored through NO production in macrophages, was compared to peptide binding to LPS and its endotoxic component lipid A, and to size, charge, and secondary structure of peptide/LPS complexes. While the antiendotoxic peptide GKY25 (GKYGFYTHVFRLKKWIQKVIDQFGE) displayed significant binding to both LPS and lipid A, so did two control peptides with either selected D-amino acid substitutions or with maintained composition but scrambled sequence, both displaying strongly attenuated antiendotoxic effects. Hence, the extent of LPS or lipid A binding is not the sole discriminant for the antiendotoxic effect of these peptides. In contrast, helix formation in peptide/LPS complexes correlates to the antiendotoxic effect of these peptides and is potentially linked to this functionality. Preferential binding to LPS over lipid membrane was furthermore demonstrated for these peptides and preferential binding to the lipid A moiety within LPS inferred.
Denadai-Souza, Alexandre; Bonnart, Chrystelle; Tapias, Núria Solà; Marcellin, Marlène; Gilmore, Brendan; Alric, Laurent; Bonnet, Delphine; Burlet-Schiltz, Odile; Hollenberg, Morley D; Vergnolle, Nathalie; Deraison, Céline
2018-05-18
While proteases are essential in gastrointestinal physiology, accumulating evidence indicates that dysregulated proteolysis plays a pivotal role in the pathophysiology of inflammatory bowel disease (IBD). Nonetheless, the identity of overactive proteases released by human colonic mucosa remains largely unknown. Studies of protease abundance have primarily investigated expression profiles, not taking into account their enzymatic activity. Herein we have used serine protease-targeted activity-based probes (ABPs) coupled with mass spectral analysis to identify active forms of proteases secreted by the colonic mucosa of healthy controls and IBD patients. Profiling of (Pro-Lys)-ABP bound proteases revealed that most of hyperactive proteases from IBD secretome are clustered at 28-kDa. We identified seven active proteases: the serine proteases cathepsin G, plasma kallikrein, plasmin, tryptase, chymotrypsin-like elastase 3 A, and thrombin and the aminopeptidase B. Only cathepsin G and thrombin were overactive in supernatants from IBD patient tissues compared to healthy controls. Gene expression analysis highlighted the transcription of genes encoding these proteases into intestinal mucosae. The functional ABP-targeted proteomic approach that we have used to identify active proteases in human colonic samples bears directly on the understanding of the role these enzymes may play in the pathophysiology of IBD.
Tchang, Laurent A; Pippenger, Benjamin E; Todorov, Atanas; Wolf, Francine; Burger, Maximilian G; Jaquiery, Claude; Bieback, Karen; Martin, Ivan; Schaefer, Dirk J; Scherberich, Arnaud
2017-05-01
The use of fetal bovine serum (FBS) as a culture medium supplement in cell therapy and clinical tissue engineering is challenged by immunological concerns and the risk of disease transmission. Here we tested whether human, thrombin-activated, pooled, platelet-rich plasma (tPRP) can be substituted for FBS in the engineering of osteogenic and vasculogenic grafts, using cells from the stromal vascular fraction (SVF) of human adipose tissue. SVF cells were cultured under perfusion flow into porous hydroxyapatite scaffolds for 5 days, with the medium supplemented with either 10% tPRP or 10% FBS and implanted in an ectopic mouse model. Following in vitro culture, as compared to FBS, the use of tPRP did not modify the fraction of clonogenic cells or the different cell phenotypes, but increased by 1.9-fold the total number of cells. After 8 weeks in vivo, bone tissue was formed more reproducibly and in higher amounts (3.7-fold increase) in constructs cultured with tPRP. Staining for human-specific ALU sequences and for the human isoforms of CD31/CD34 revealed the human origin of the bone, the formation of blood vessels by human vascular progenitors and a higher density of human cells in implants cultured with tPRP. In summary, tPRP supports higher efficiency of bone formation by SVF cells than FBS, likely by enhancing cell expansion in vitro while maintaining vasculogenic properties. The use of tPRP may facilitate the clinical translation of osteogenic grafts with intrinsic capacity for vascularization, based on the use of adipose-derived cells. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Coffey, Marcus J; Jarvis, Gavin E; Gibbins, Jonathan M; Coles, Barbara; Barrett, Natasha E; Wylie, Oliver R E; O'Donnell, Valerie B
2004-06-25
Lipoxygenases (LOX) contribute to vascular disease and inflammation through generation of bioactive lipids, including 12-hydro(pero)xyeicosatetraenoic acid (12-H(P)ETE). The physiological mechanisms that acutely control LOX product generation in mammalian cells are uncharacterized. Human platelets that contain a 12-LOX isoform (p12-LOX) were used to define pathways that activate H(P)ETE synthesis in the vasculature. Collagen and collagen-related peptide (CRP) (1 to 10 microg/mL) acutely induced platelet 12-H(P)ETE synthesis. This implicated the collagen receptor glycoprotein VI (GPVI), which signals via the immunoreceptor-based activatory motif (ITAM)-containing FcRgamma chain. Conversely, thrombin only activated at high concentrations (> 0.2 U/mL), whereas U46619 and ADP alone were ineffective. Collagen or CRP-stimulated 12-H(P)ETE generation was inhibited by staurosporine, PP2, wortmannin, BAPTA/AM, EGTA, and L-655238, implicating src-tyrosine kinases, PI3-kinase, Ca2+ mobilization, and p12-LOX translocation. In contrast, protein kinase C (PKC) inhibition potentiated 12-H(P)ETE generation. Finally, activation of the immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing platelet endothelial cell adhesion molecule (PECAM-1) inhibited p12-LOX product generation. This study characterizes a receptor-dependent pathway for 12-H(P)ETE synthesis via the collagen receptor GPVI, which is negatively regulated by PECAM-1 and PKC, and demonstrates a novel link between immune receptor signaling and lipid mediator generation in the vasculature.
Takeda, Y.; Parkhill, T. R.; Nakabayashi, M.
1972-01-01
The isotopic method described previously for quantification of plasmin- 125I by disc gel electrophoresis was modified by inclusion of euglobulin precipitation to expand its applicability to plasmas containing low radioactivity of plasmin- 125I and plasminogen- 125I. It was found that the euglobulin precipitation method precipitates 72.4±2.1 (sd)% of both plasmin- 125I and plasminogen- 125I. Using this method and plasminogen- 125I as a tracer, studies were first made of the effects of heparin and ε-aminocaproic acid in dogs on plasmin- 125I generation in responese to a single injection of urokinase and to venous injury; second, of the effects of venous occlusion and thrombosis on plasmin- 125I generation; and third, in vitro studies of plasminogen- 125I affinity to fibrin and its activation in blood clots. The venous injury was produced by the damage of venous endothelium by an injection of 90% phenol and the thrombosis by a thrombin injection into an occluded vein. Heparin and ε-aminocaproic acid under the present experimental conditions inhibited about 78 and 100%, respectively of plasmin- 125I generation by the urokinase injection. Similar inhibitory effects of heparin and ε-aminocaproic acid were observed on plasmin- 125I generation in response to venous injury. The venous occlusion caused a small degree of plasmin- 125I generation, but thrombin thrombosis did not seem to stimulate the generation of plasmin- 125I. The in vitro studies showed that plasminogen- 125I does not have a specific affinity to fibrin and is incorporated into blood clots in approximately equal concentrations as those in serum during clotting processes, and that blood clots per se do not stimulate plasmin- 125I generation. These results suggest that injured veins release considerable amounts of vascular plasminogen activators into circulation and that these play an important role in thrombus dissolution in vivo. PMID:4262519
Sharda, Anish; Kim, Sarah H.; Jasuja, Reema; Gopal, Srila; Flaumenhaft, Robert; Furie, Barbara C.
2015-01-01
Protein disulfide isomerase (PDI), secreted from platelets and endothelial cells after injury, is required for thrombus formation. The effect of platelet and endothelial cell granule contents on PDI-mediated thrombus formation was studied by intravital microscopy using a mouse model of Hermansky-Pudlak syndrome in which platelet dense granules are absent. Platelet deposition and fibrin generation were nearly absent, and extracellular PDI was significantly reduced in HPS6−/− mice after vascular injury. HPS6−/− platelets displayed impaired PDI secretion and impaired exocytosis of α granules, lysosomes, and T granules due to decreased sensitivity to thrombin, but these defects could be corrected by addition of subthreshold amounts of adenosine 5′-diphosphate (ADP). Human Hermansky-Pudlak syndrome platelets demonstrated similar characteristics. Infusion of wild-type platelets rescued thrombus formation in HPS6−/− mice. Human umbilical vein endothelial cells in which the HPS6 gene was silenced displayed impaired PDI secretion and exocytosis of Weibel-Palade bodies. Defective thrombus formation in Hermansky-Pudlak syndrome, associated with impaired exocytosis of residual granules in endothelial cells and platelets, the latter due to deficiency of ADP, is characterized by a defect in T granule secretion, a deficiency in extracellular PDI secretion, and impaired fibrin generation and platelet aggregation. Hermansky-Pudlak syndrome is an example of a hereditary disease whereby impaired PDI secretion contributes to a bleeding phenotype. PMID:25593336
Knockdown of prothrombin in zebrafish.
Day, Kenneth; Krishnegowda, Naveen; Jagadeeswaran, Pudur
2004-01-01
Thrombin is a serine protease generated from its zymogen, prothrombin, and plays a central role in the coagulation cascade. It is also important for mammalian development. The zebrafish has now been established as an excellent genetic model for studies on mammalian hemostasis and development. In this report, we used prothrombin-specific antisense morpholinos to knock down the levels of prothrombin to characterize the effects of prothrombin deficiency in the zebrafish embryo. Prothrombin morpholino-injected zebrafish embryos yielded an early phenotype exhibiting severe abnormalities that later showed occasional bleeding. In a second late phenotype, the embryos had no observable morphological abnormalities in early stages, but showed occasional bleeding at later stages. These phenotypes resembled characteristics shown by prothrombin knockout mice. Laser-induced vascular injury on some of the normal appearing phenotypic larvae showed a prolonged time to occlusion, and recombinant zebrafish prothrombin injected into these larvae restored a normal time to occlusion thus showing the specificity of the morpholino effect. The system developed here should be useful for investigation of the role of thrombin in vertebrate development.
Page, Michael J.; Lourenço, André L.; David, Tovo; LeBeau, Aaron M.; Cattaruzza, Fiore; Castro, Helena C.; VanBrocklin, Henry F.; Coughlin, Shaun R.; Craik, Charles S.
2015-01-01
Functional imaging of proteolytic activity is an emerging strategy to quantify disease and response to therapy at the molecular level. We present a new peptide-based imaging probe technology that advances these goals by exploiting enzymatic activity to deposit probes labelled with near-infrared (NIR) fluorophores or radioisotopes in cell membranes of disease-associated proteolysis. This strategy allows for non-invasive detection of protease activity in vivo and ex vivo by tracking deposited probes in tissues. We demonstrate non-invasive detection of thrombin generation in a murine model of pulmonary embolism using our protease-activated peptide probes in microscopic clots within the lungs with NIR fluorescence optical imaging and positron-emission tomography. Thrombin activity is imaged deep in tissue and tracked predominantly to platelets within the lumen of blood vessels. The modular design of our probes allows for facile investigation of other proteases, and their contributions to disease by tailoring the protease activation and cell-binding elements. PMID:26423607
Oxidation Inhibits Iron-Induced Blood Coagulation
Pretorius, Etheresia; Bester, Janette; Vermeulen, Natasha; Lipinski, Boguslaw
2013-01-01
Blood coagulation under physiological conditions is activated by thrombin, which converts soluble plasma fibrinogen (FBG) into an insoluble clot. The structure of the enzymatically-generated clot is very characteristic being composed of thick fibrin fibers susceptible to the fibrinolytic degradation. However, in chronic degenerative diseases, such as atherosclerosis, diabetes mellitus, cancer, and neurological disorders, fibrin clots are very different forming dense matted deposits (DMD) that are not effectively removed and thus create a condition known as thrombosis. We have recently shown that trivalent iron (ferric ions) generates hydroxyl radicals, which subsequently convert FBG into abnormal fibrin clots in the form of DMDs. A characteristic feature of DMDs is their remarkable and permanent resistance to the enzymatic degradation. Therefore, in order to prevent thrombotic incidences in the degenerative diseases it is essential to inhibit the iron-induced generation of hydroxyl radicals. This can be achieved by the pretreatment with a direct free radical scavenger (e.g. salicylate), and as shown in this paper by the treatment with oxidizing agents such as hydrogen peroxide, methylene blue, and sodium selenite. Although the actual mechanism of this phenomenon is not yet known, it is possible that hydroxyl radicals are neutralized by their conversion to the molecular oxygen and water, thus inhibiting the formation of dense matted fibrin deposits in human blood. PMID:23170793
Thrombin and factor Xa link the coagulation system with liver fibrosis.
Dhar, Ameet; Sadiq, Fouzia; Anstee, Quentin M; Levene, Adam P; Goldin, Robert D; Thursz, Mark R
2018-05-08
Thrombin activates hepatic stellate cells via protease-activated receptor-1. The role of Factor Xa (FXa) in hepatic fibrosis has not been elucidated. We aimed to evaluate the impact of FXa and thrombin in vitro on stellate cells and their respective inhibition in vivo using a rodent model of hepatic fibrosis. HSC-LX2 cells were incubated with FXa and/or thrombin in cell culture, stained for αSMA and relative gene expression and gel contraction calculated. C57BL/6 J mice were administered thioacetamide (TAA) for 8 weeks with Rivaroxaban (n = 15) or Dabigatran (n = 15). Control animals received TAA alone (n = 15). Fibrosis was scored and quantified using digital image analysis and hepatic tissue hydroxyproline estimated. Stellate cells treated with FXa and thrombin demonstrated upregulation of procollagen, TGF-beta, αSMA and significant cell contraction (43.48%+/- 4.12) compared to culturing with FXa or thrombin alone (26.90%+/- 8.90, p = 0.02; 13.1%+/- 9.84, p < 0.001). Mean fibrosis score, percentage area of fibrosis and hepatic hydroxyproline content (2.46 vs 4.08, p = 0.008; 2.02% vs 3.76%, p = 0.012; 276.0 vs 651.3, p = 0.0001) were significantly reduced in mice treated with the FXa inhibitor compared to control mice. FXa inhibition was significantly more effective than thrombin inhibition in reducing percentage area of fibrosis and hepatic hydroxyproline content (2.02% vs 3.70%,p = 0.031; 276.0 vs 413.1,p = 0.001). FXa promotes stellate cell contractility and activation. Early inhibition of coagulation using a FXa inhibitor significantly reduces TAA induced murine liver fibrosis and may be a viable treatment for liver fibrosis in patients.
Maybody, Majid; Madoff, David C.; Thornton, Raymond H; Morales, Steven A; Moskowitz, Chaya S; Hsu, Meier; Brody, Lynn A; Brown, Karen T; Covey, Anne M
2017-01-01
Purpose To report 3 new cases of catheter-directed endovascular application of thrombin and explore trends by analysis of published case series. Materials and Methods Institutional Review Board approved this retrospective study. All cases of non-tumoral arterial embolization performed from January 2003 to January 2015 at our institution were retrospectively reviewed. Thrombin was used in 7 of 589 cases. In 3 cases intra arterial thrombin was injected via catheter to treat active hemorrhage. Four cases were excluded due to percutaneous injection into visceral pseudoaneurysms (n=3) and making ex vivo autologous clot to be injected via catheter (n=1). Fisher’s exact and the Wilcoxon rank sum tests were used to assess for association with acute nontarget thrombosis. Results Catheter-directed thrombin was used in 3/589 (0.5%) cases at our institution. All three cases were technically successful with no further bleeding (100%). Nontarget thrombosis of proximal branches occurred in 2 patients (67%) with no significant clinical consequences. Including our 3 cases, a total of 28 cases were reviewed. Of the variables examined - location (p=0.99), size (p=0.66) and etiology of vascular lesion (p=0.92), pseudoaneurysm neck anatomy (p=0.14), thrombin units (p=0.47), volume (p=0.76) or technique of use of small doses (p=0.99), use of other embolic material (p=0.67) and use of adjunct techniques (p=0.99) - none were found to be significantly associated with acute nontarget thrombosis. Technical success was 96% with no reports of reperfusion after treatment. Conclusions Catheter-directed endovascular thrombin can be an additional tool to treat pseudoaneurysms not amenable to conventional embolization. Further studies are required to optimize technique and outcomes. PMID:27936421
Thrombin like activity of Asclepias curassavica L. latex: action of cysteine proteases.
Shivaprasad, H V; Rajesh, R; Nanda, B L; Dharmappa, K K; Vishwanath, B S
2009-05-04
To validate the scientific basis of plant latex to stop bleeding on fresh cuts. Cysteine protease(s) from Asclepias curassavica (Asclepiadaceae) plant latex was assessed for pro-coagulant and thrombin like activities. A waxy material from the latex of Asclepias curassavica latex was removed by freezing and thawing. The resulted latex enzyme fraction was assayed for proteolytic activity using denatured casein as substrate. Its coagulant activity and thrombin like activity were determined using citrated plasma and pure fibrinogen, respectively. Inhibition studies were performed using specific protease inhibitors to know the type of protease. The latex enzyme fraction exhibited strong proteolytic activity when compared to trypsin and exerted pro-coagulant action by reducing plasma clotting time from 195 to 58 s whereas trypsin reduced clotting time marginally from 195 to 155 s. The pro-coagulant activity of this enzyme fraction was exerted by selectively hydrolyzing A alpha and B beta subunits of fibrinogen to form fibrin clot when pure fibrinogen was used as substrate as assessed by fibrinogen-agarose plate method and fibrinogen polymerization assay. Trypsin failed to induce any fibrin clot under similar conditions. The electrophoretic pattern of latex enzyme fraction-induced fibrin clot was very much similar to that of thrombin-induced fibrin clot and mimic thrombin like action. The proteolytic activity including thrombin like activity of Asclepias curassavica latex enzyme fraction was completely inhibited by iodoaceticacid (IAA). Cysteine proteases from Asclepias curassavica latex exhibited strong pro-coagulant action and were found to be specific in its action (Thrombin like). This could be the basis for the use of plant latex in pharmacological applications that justify their use as folk medicine.
Ponert, Jan Moritz; Schwarz, Svenja; Haschemi, Reza; Müller, Jens; Pötzsch, Bernd; Bendas, Gerd
2018-01-01
Metastasis is responsible for the majority of cancer associated fatalities. Tumor cells leaving the primary tumor and entering the blood flow immediately interact with platelets. Activated platelets contribute in different ways to cancer cell survival and proliferation, e.g. in formation of the early metastatic niche by release of different growth factors and chemokines. Here we show that a direct interaction between platelets and MV3 melanoma or MCF7 breast cancer cells induces platelet activation and a VEGF release in citrated plasma that cannot be further elevated by the coagulation cascade and generated thrombin. In contrast, the release of platelet-derived chemokines CXCL5 and CXCL7 depends on both, a thrombin-mediated platelet activation and a direct interaction between tumor cells and platelets. Preincubation of platelets with therapeutic concentrations of unfractionated heparin reduces the tumor cell initiated VEGF release from platelets. In contrast, tumor cell induced CXCL5 and CXCL7 release from platelets was not impacted by heparin pretreatment in citrated plasma. In defibrinated, recalcified plasma, on the contrary, heparin is able to reduce CXCL5 and CXCL7 release from platelets by thrombin inhibition. Our data indicate that different chemokines and growth factors in diverse platelet granules are released in tightly regulated processes by various trigger mechanisms. We show for the first time that heparin is able to reduce the mediator release induced by different tumor cells both in a contact and coagulation dependent manner. PMID:29346400
Niwa, Kazuki; Mimuro, Jun; Miyata, Masaaki; Sugo, Teruko; Ohmori, Tsukasa; Madoiwa, Seiji; Tei, Chuwa; Sakata, Yoichi
2008-01-01
Emerging lines of evidence have suggested that certain dysfibrinogens present a significant risk of thrombosis. The thrombophilic nature of a new-type of dysfibrinogen Kagoshima identified in a 36-year-old female with deep vein thrombosis during the postpartum period was studied. Based on the analyses of the patient fibrinogen and the fibrinogen genes, fibrinogen Kagoshima was shown to have the amino acid substitution of gammaThr-314 to Ile that resulted in impaired function and hypofibrinogenemia. Polymerization of fibrin monomers derived from patient fibrinogen was severely impaired with a partial correction in the presence of calcium ions, causing very low clottability and delayed cross-linking of patient fibrin catalyzed by activated factor XIII. Because of the low clottability, a large amount of soluble fibrin was formed upon thrombin treatment, resulting in an increase of thrombin in the soluble fraction. Additionally, tPA-mediated plasmin generation on fibrin was impaired and calcium-ion-dependent integrity of the gamma-chain D domain of Kagoshima fibrinogen was perturbed. The presence of many tapered-fiber ends inside the tangled fibrin networks, observed by scanning electron microscopy, suggested early termination of fibrin polymerization and the structural alteration. These data suggest that fibrinogen Kagoshima is dysfunctional, giving rise to formation of fibrinolysis-resistant soluble fibrin polymers and entrance of soluble fibrin associating with thrombin to the circulation, partly accounting for the thrombophilic nature of the affected fibrinogen and fibrin molecules.
Cryopreservation alters the membrane and cytoskeletal protein profile of platelet microparticles.
Raynel, Sarah; Padula, Matthew P; Marks, Denese C; Johnson, Lacey
2015-10-01
Cryopreservation of platelets (PLTs) in dimethyl sulfoxide (DMSO) and storage at -80 °C extends the PLT shelf life to at least 2 years, allowing greater accessibility in military and rural environments. While cryopreserved PLTs have been extensively characterized, the microparticles formed as a result of cryopreservation are yet to be fully described. Apheresis PLTs were cryopreserved at -80 °C with 5% DMSO and sampled before freezing and after thawing. Microparticle number, size, surface receptor phenotype, and function were assessed by microscopy, flow cytometry, dynamic light scattering, and thrombin-generating capacity. Proteomic changes were examined using two-dimensional gel electrophoresis and Western blotting. PLT cryopreservation resulted in a 15-fold increase in the number of microparticles compared to fresh PLTs. The surface receptor phenotype of these microparticles differed to microparticles from fresh PLTs, with more microparticles expressing glycoprotein (GP)IV, GPIIb, and the GPIb-V-IX complex. Cryopreservation drastically altered the abundance of many cytoskeletal proteins in the PLT microparticles, including actin, filamin, gelsolin, and tropomyosin. Despite these changes, PLT microparticles were functional and contributed to phosphatidylserine- and tissue factor- induced thrombin generation. This study demonstrates that PLT microparticles formed by cryopreservation are phenotypically distinct from those present before freezing. These differences may be associated with the procoagulant properties of cryopreserved PLTs. © 2015 AABB.
Schaber, Marc; Leichtfried, Veronika; Fries, Dietmar; Wille, Maria; Gatterer, Hannes; Faulhaber, Martin; Würtinger, Philipp; Schobersberger, Wolfgang
2015-01-01
Introduction. The aim of the present study was to investigate whether a 12-hour exposure in a normobaric hypoxic chamber would induce changes in the hemostatic system and a procoagulant state in volunteers suffering from acute mountain sickness (AMS) and healthy controls. Materials and Methods. 37 healthy participants were passively exposed to 12.6% FiO2 (simulated altitude hypoxia of 4,500 m). AMS development was investigated by the Lake Louise Score (LLS). Prothrombin time, activated partial thromboplastin time, fibrinogen, and platelet count were measured and specific methods (i.e., thromboelastometry and a thrombin generation test) were used. Results. AMS prevalence was 62.2% (LLS cut off of 3). For the whole group, paired sample t-tests showed significant increase in the maximal concentration of generated thrombin. ROTEM measurements revealed a significant shortening of coagulation time and an increase of maximal clot firmness (InTEM test). A significant increase in maximum clot firmness could be shown (FibTEM test). Conclusions. All significant changes in coagulation parameters after exposure remained within normal reference ranges. No differences with regard to measured parameters of the hemostatic system between AMS-positive and -negative subjects were observed. Therefore, the hypothesis of the acute activation of coagulation by hypoxia can be rejected. PMID:26451374
Arterial thrombosis is accelerated in mice deficient in histidine-rich glycoprotein
Vu, Trang T.; Zhou, Ji; Leslie, Beverly A.; Stafford, Alan R.; Fredenburgh, James C.; Ni, Ran; Qiao, Shengjun; Vaezzadeh, Nima; Jahnen-Dechent, Willi; Monia, Brett P.; Gross, Peter L.; Weitz, Jeffrey I.
2015-01-01
Factor (F) XII, a key component of the contact system, triggers clotting via the intrinsic pathway, and is implicated in propagating thrombosis. Although nucleic acids are potent activators, it is unclear how the contact system is regulated to prevent uncontrolled clotting. Previously, we showed that histidine-rich glycoprotein (HRG) binds FXIIa and attenuates its capacity to trigger coagulation. To investigate the role of HRG as a regulator of the intrinsic pathway, we compared RNA- and DNA-induced thrombin generation in plasma from HRG-deficient and wild-type mice. Thrombin generation was enhanced in plasma from HRG-deficient mice, and accelerated clotting was restored to normal with HRG reconstitution. Although blood loss after tail tip amputation was similar in HRG-deficient and wild-type mice, carotid artery occlusion after FeCl3 injury was accelerated in HRG-deficient mice, and HRG administration abrogated this effect. To confirm that HRG modulates the contact system, we used DNase, RNase, and antisense oligonucleotides to characterize the FeCl3 model. Whereas DNase or FVII knockdown had no effect, carotid occlusion was abrogated with RNase or FXII knockdown, confirming that FeCl3-induced thrombosis is triggered by RNA in a FXII-dependent fashion. Therefore, in a nucleic acid–driven model, HRG inhibits thrombosis by modulating the intrinsic pathway of coagulation. PMID:25691157
Ahmad, Kareem M; Xiao, Yi; Soh, H Tom
2012-12-01
Multivalent molecular interactions can be exploited to dramatically enhance the performance of an affinity reagent. The enhancement in affinity and specificity achieved with a multivalent construct depends critically on the effectiveness of the scaffold that joins the ligands, as this determines their positions and orientations with respect to the target molecule. Currently, no generalizable design rules exist for construction of an optimal multivalent ligand for targets with known structures, and the design challenge remains an insurmountable obstacle for the large number of proteins whose structures are not known. As an alternative to such design-based strategies, we report here a directed evolution-based method for generating optimal bivalent aptamers. To demonstrate this approach, we fused two thrombin aptamers with a randomized DNA sequence and used a microfluidic in vitro selection strategy to isolate scaffolds with exceptionally high affinities. Within five rounds of selection, we generated a bivalent aptamer that binds thrombin with an apparent dissociation constant (K(d)) <10 pM, representing a ∼200-fold improvement in binding affinity over the monomeric aptamers and a ∼15-fold improvement over the best designed bivalent construct. The process described here can be used to produce high-affinity multivalent aptamers and could potentially be adapted to other classes of biomolecules.
Schaber, Marc; Leichtfried, Veronika; Fries, Dietmar; Wille, Maria; Gatterer, Hannes; Faulhaber, Martin; Würtinger, Philipp; Schobersberger, Wolfgang
2015-01-01
The aim of the present study was to investigate whether a 12-hour exposure in a normobaric hypoxic chamber would induce changes in the hemostatic system and a procoagulant state in volunteers suffering from acute mountain sickness (AMS) and healthy controls. 37 healthy participants were passively exposed to 12.6% FiO2 (simulated altitude hypoxia of 4,500 m). AMS development was investigated by the Lake Louise Score (LLS). Prothrombin time, activated partial thromboplastin time, fibrinogen, and platelet count were measured and specific methods (i.e., thromboelastometry and a thrombin generation test) were used. AMS prevalence was 62.2% (LLS cut off of 3). For the whole group, paired sample t-tests showed significant increase in the maximal concentration of generated thrombin. ROTEM measurements revealed a significant shortening of coagulation time and an increase of maximal clot firmness (InTEM test). A significant increase in maximum clot firmness could be shown (FibTEM test). All significant changes in coagulation parameters after exposure remained within normal reference ranges. No differences with regard to measured parameters of the hemostatic system between AMS-positive and -negative subjects were observed. Therefore, the hypothesis of the acute activation of coagulation by hypoxia can be rejected.
Manipulation of a DNA aptamer-protein binding site through arylation of internal guanine residues.
Van Riesen, Abigail J; Fadock, Kaila L; Deore, Prashant S; Desoky, Ahmed; Manderville, Richard A; Sowlati-Hashjin, Shahin; Wetmore, Stacey D
2018-05-23
Chemically modified aptamers have the opportunity to increase aptamer target binding affinity and provide structure-activity relationships to enhance our understanding of molecular target recognition by the aptamer fold. In the current study, 8-aryl-2'-deoxyguanosine nucleobases have been inserted into the G-tetrad and central TGT loop of the thrombin binding aptamer (TBA) to determine their impact on antiparallel G-quadruplex (GQ) folding and thrombin binding affinity. The aryl groups attached to the dG nucleobase vary greatly in aryl ring size and impact on GQ stability (∼20 °C change in GQ thermal melting (Tm) values) and thrombin binding affinity (17-fold variation in dissociation constant (Kd)). At G8 of the central TGT loop that is distal from the aptamer recognition site, the probes producing the most stable GQ structure exhibited the strongest thrombin binding affinity. However, within the G-tetrad, changes to the electron density of the dG component within the modified nucleobase can diminish thrombin binding affinity. Detailed molecular dynamics (MD) simulations on the modified TBA (mTBA) and mTBA-protein complexes demonstrate how the internal 8-aryl-dG modification can manipulate the interactions between the DNA nucleobases and the amino acid residues of thrombin. These results highlight the potential of internal fluorescent nuclobase analogs (FBAs) to broaden design options for aptasensor development.
Numakura, Mario; Kusakabe, Noriko; Ishige, Kazuya; Ohtake-Niimi, Shiori; Habuchi, Hiroko; Habuchi, Osami
2010-07-01
Chondroitin sulfate (CS) containing GlcA-GalNAc(4,6-SO(4)) (E unit) and CS containing GlcA(2SO(4))-GalNAc(6SO(4)) (D unit) have been implicated in various physiological functions. However, it has been poorly understood how the structure and contents of disulfated disaccharide units in CS contribute to these functions. We prepared CS libraries containing E unit or D unit in various proportions by in vitro enzymatic reactions using recombinant GalNAc 4-sulfate 6-O-sulfotransferase and uronosyl 2-O-sulfotransferase, and examined their inhibitory activity toward thrombin. The in vitro sulfated CSs containing disulfated disaccharide units showed concentration-dependent direct inhibition of thrombin when the proportion of E unit or D unit in the CSs was above 15-17%. The CSs containing both E unit and D unit exhibited higher inhibitory activity toward thrombin than the CSs containing either E unit or D unit alone, if the proportion of the total disulfated disaccharide units of these CSs was comparable. The thrombin-catalyzed degradation of fibrinogen, a physiological substrate for thrombin, was also inhibited by the CS containing both E unit and D unit. These observations indicate that the enzymatically prepared CS libraries containing various amounts of disulfated disaccharide units appear to be useful for elucidating the physiological function of disulfated disaccharide units in CS.
Ocaña, Cristina; Pacios, Mercè; del Valle, Manel
2012-01-01
Here, we report the application of a label-free electrochemical aptasensor based on a graphite-epoxy composite electrode for the detection of thrombin; in this work, aptamers were immobilized onto the electrodes surface using wet physical adsorption. The detection principle is based on the changes of the interfacial properties of the electrode; these were probed in the presence of the reversible redox couple [Fe(CN)6]3−/[Fe(CN)6]4− using impedance measurements. The electrode surface was partially blocked due to formation of aptamer-thrombin complex, resulting in an increase of the interfacial electron-transfer resistance detected by Electrochemical Impedance Spectroscopy (EIS). The aptasensor showed a linear response for thrombin in the range of 7.5 pM to 75 pM and a detection limit of 4.5 pM. The aptasensor was regenerated by breaking the complex formed between the aptamer and thrombin using 2.0 M NaCl solution at 42 °C, showing its operation for different cycles. The interference response caused by main proteins in serum has been characterized. PMID:22736991
The Small GTPase Rif Is Dispensable for Platelet Filopodia Generation in Mice
Goggs, Robert; Savage, Joshua S.; Mellor, Harry; Poole, Alastair W.
2013-01-01
Background Formation of filopodia and other shape change events are vital for platelet hemostatic function. The mechanisms regulating filopodia formation by platelets are incompletely understood however. In particular the small GTPase responsible for initiating filopodia formation by platelets remains elusive. The canonical pathway involving Cdc42 is not essential for filopodia formation in mouse platelets. The small GTPase Rif (RhoF) provides an alternative route to filopodia generation in other cell types and is expressed in both human and mouse platelets. Hypothesis/Objective We hypothesized that Rif might be responsible for generating filopodia by platelets and generated a novel knockout mouse model to investigate the functional role of Rif in platelets. Methodology/Principal Findings Constitutive RhoF−/− mice are viable and have normal platelet, leukocyte and erythrocyte counts and indices. RhoF−/− platelets form filopodia and spread normally on various agonist surfaces in static conditions and under arterial shear. In addition, RhoF−/− platelets have normal actin dynamics, are able to activate and aggregate normally and secrete from alpha and dense granules in response to collagen related peptide and thrombin stimulation. Conclusions The small GTPase Rif does not appear to be critical for platelet function in mice. Functional overlap between Rif and other small GTPases may be responsible for the non-essential role of Rif in platelets. PMID:23359340
Fibrin hydrogels to deliver dental stem cells of the apical papilla for regenerative medicine.
Germain, Loïc; De Berdt, Pauline; Vanacker, Julie; Leprince, Julian; Diogenes, Anibal; Jacobs, Damien; Vandermeulen, Gaëlle; Bouzin, Caroline; Préat, Véronique; Dupont-Gillain, Christine; des Rieux, Anne
2015-01-01
Evaluation of survival, proliferation and neurodifferentiation of dental stem cells from the apical papilla (SCAP) in fibrin hydrogels. We hypothesized that fibrin composition will influence cell behavior. Modulus, pore and fiber size were measured. SCAP in vitro viability, proliferation and neural differentiation, as well as in vivo proliferation and angiogenesis were studied. Hydrogel moduli were influenced by fibrin formulation but not hydrogel morphology, SCAP in vitro viability and proliferation. In total 60% of SCAP expressed PanNeurofilament in vitro without induction in Fibrinogen50-Thrombin10. SCAP proliferated when implanted in vivo and stimulated host endothelial cell infiltration. Fibrinogen30-Thrombin10 or Thrombin50 would be more favorable to in vitro SCAP viability and in vivo proliferation, while Fibrinogen 50-Thrombin50 would be more adapted to neurodifferentiation.
Changes in thrombin-stimulated platelet malondialdehyde production during the menstrual cycle.
Tindall, H; Zuzel, M; Paton, R C; McNicol, G P
1981-01-01
Forty normal women had thrombin-stimulated platelet malondialdehyde (MDA) production measured during their menstrual cycle. Twenty women in this group were taking the combined oral contraceptive pill (OCP). Platelet MDA production was found to fall by 30% during normal menstruation and the week when the subjects were not taking a combined OCP, but it remained constant throughout the remainder of the cycle. No significant change in initial platelet aggregation response to stimulation by thrombin, change in plasma thrombin clotting time, plasma heparin neutralising activity (HNA), or plasma antithrombin III (AT-III) activity was seen when the platelet MDA production was reduced. The bleeding time results showed some variation throughout the menstrual cycle but these did not appear to be related to the variation in platelet MDA production. PMID:7251901
Chobanian, Harry R; Pio, Barbara; Guo, Yan; Shen, Hong; Huffman, Mark A; Madeira, Maria; Salituro, Gino; Terebetski, Jenna L; Ormes, James; Jochnowitz, Nina; Hoos, Lizbeth; Zhou, Yuchen; Lewis, Dale; Hawes, Brian; Mitnaul, Lyndon; O'Neill, Kim; Ellsworth, Kenneth; Wang, Liangsu; Biftu, Tesfaye; Duffy, Joseph L
2015-05-14
Modification of the previously disclosed (S)-N-(2-(aminomethyl)-5-chlorobenzyl)-1-((R)-2-hydroxy-3,3-dimethylbutanoyl)pyrrolidine-2-carboxamide 2 by optimization of the P3 group afforded novel, low molecular weight thrombin inhibitors. Heterocycle replacement of the hydroxyl functional group helped maintain thrombin in vitro potency while improving the chemical stability and pharmacokinetic profile. These modifications led to the identification of compound 10, which showed excellent selectivity over related serine proteases as well as in vivo efficacy in the rat arteriovenous shunt. Compound 10 exhibited significantly improved chemical stability and pharmacokinetic properties over 2 and may be utilized as a structurally differentiated preclinical tool comparator to dabigatran etexilate (Pro-1) to interrogate the on- and off-target effects of oral direct thrombin inhibitors.
Red cell-derived microparticles (RMP) as haemostatic agent.
Jy, Wenche; Johansen, Max E; Bidot, Carlos; Horstman, Lawrence L; Ahn, Yeon S
2013-10-01
Among circulating cell-derived microparticles, those derived from red cells (RMP) have been least well investigated. To exploit potential haemostatic benefit of RMP, we developed a method of producing them in quantity, and here report on their haemostatic properties. High-pressure extrusion of washed RBC was employed to generate RMP. RMP were identified and enumerated by flow cytometry. Their size distribution was assessed by Doppler electrophoretic light scattering analysis (DELSA). Interaction with platelets was studied by platelet aggregometry, and shear-dependent adhesion by Diamed IMPACT-R. Thrombin generation and tissue factor (TF) expression was also measured. The effect of RMP on blood samples of patients with bleeding disorders was investigated ex vivo by thromboelastography (TEG). Haemostatic efficacy in vivo was assessed by measuring reduction of blood loss and bleeding time in rats and rabbits. RMP have mean diameter of 0.45 µm and 50% of them exhibit annexin V binding, a proxy for procoagulant phospholipids (PL). No TF could be detected by flow cytometry. At saturating concentrations of MPs, RMP generated thrombin robustly but after longer delay compared to PMP and EMP. RMP enhanced platelet adhesion and aggregation induced by low-dose ADP or AA. In TEG study, RMP corrected or improved haemostatic defects in blood of patients with platelet and coagulation disorders. RMP reduced bleeding time and blood loss in thrombocytopenic rabbits (busulfan-treated) and in Plavix-treated rats. In conclusion, RMP has broad haemostatic activity, enhancing both primary (platelet) and secondary (coagulation) haemostasis, suggesting potential use as haemostatic agent for treatment of bleeding.
Impact of Tissue Factor Localization on Blood Clot Structure and Resistance under Venous Shear.
Govindarajan, Vijay; Zhu, Shu; Li, Ruizhi; Lu, Yichen; Diamond, Scott L; Reifman, Jaques; Mitrophanov, Alexander Y
2018-02-27
The structure and growth of a blood clot depend on the localization of tissue factor (TF), which can trigger clotting during the hemostatic process or promote thrombosis when exposed to blood under pathological conditions. We sought to understand how the growth, structure, and mechanical properties of clots under flow are shaped by the simultaneously varying TF surface density and its exposure area. We used an eight-channel microfluidic device equipped with a 20- or 100-μm-long collagen surface patterned with lipidated TF of surface densities ∼0.1 and ∼2 molecules/μm 2 . Human whole blood was perfused at venous shear, and clot growth was continually measured. Using our recently developed computational model of clot formation, we performed simulations to gain insights into the clot's structure and its resistance to blood flow. An increase in TF exposure area resulted not only in accelerated bulk platelet, thrombin, and fibrin accumulation, but also in increased height of the platelet mass and increased clot resistance to flow. Moreover, increasing the TF surface density or exposure area enhanced platelet deposition by approximately twofold, and thrombin and fibrin generation by greater than threefold, thereby increasing both clot size and its viscous resistance. Finally, TF effects on blood flow occlusion were more pronounced for the longer thrombogenic surface than for the shorter one. Our results suggest that TF surface density and its exposure area can independently enhance both the clot's occlusivity and its resistance to blood flow. These findings provide, to our knowledge, new insights into how TF affects thrombus growth in time and space under flow. Copyright © 2018 Biophysical Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Jianbo; Yang, Xiaohai; Wang, Kemin; Wang, Qing; Liu, Wei; Wang, Dong
2013-10-01
The development of solid-phase surface-based single molecule imaging technology has attracted significant interest during the past decades. Here we demonstrate a sandwich hybridization method for highly sensitive detection of a single thrombin protein at a solid-phase surface based on the use of dual-color colocalization of fluorescent quantum dot (QD) nanoprobes. Green QD560-modified thrombin binding aptamer I (QD560-TBA I) were deposited on a positive poly(l-lysine) assembled layer, followed by bovine serum albumin blocking. It allowed the thrombin protein to mediate the binding of the easily detectable red QD650-modified thrombin binding aptamer II (QD650-TBA II) to the QD560-TBA I substrate. Thus, the presence of the target thrombin can be determined based on fluorescent colocalization measurements of the nanoassemblies, without target amplification or probe separation. The detection limit of this assay reached 0.8 pM. This fluorescent colocalization assay has enabled single molecule recognition in a separation-free detection format, and can serve as a sensitive biosensing platform that greatly suppresses the nonspecific adsorption false-positive signal. This method can be extended to other areas such as multiplexed immunoassay, single cell analysis, and real time biomolecule interaction studies.The development of solid-phase surface-based single molecule imaging technology has attracted significant interest during the past decades. Here we demonstrate a sandwich hybridization method for highly sensitive detection of a single thrombin protein at a solid-phase surface based on the use of dual-color colocalization of fluorescent quantum dot (QD) nanoprobes. Green QD560-modified thrombin binding aptamer I (QD560-TBA I) were deposited on a positive poly(l-lysine) assembled layer, followed by bovine serum albumin blocking. It allowed the thrombin protein to mediate the binding of the easily detectable red QD650-modified thrombin binding aptamer II (QD650-TBA II) to the QD560-TBA I substrate. Thus, the presence of the target thrombin can be determined based on fluorescent colocalization measurements of the nanoassemblies, without target amplification or probe separation. The detection limit of this assay reached 0.8 pM. This fluorescent colocalization assay has enabled single molecule recognition in a separation-free detection format, and can serve as a sensitive biosensing platform that greatly suppresses the nonspecific adsorption false-positive signal. This method can be extended to other areas such as multiplexed immunoassay, single cell analysis, and real time biomolecule interaction studies. Electronic supplementary information (ESI) available: Absorbance and fluorescence spectra of quantum dot nanoprobes, electrophoresis analysis, and experimental setup for fluorescence imaging with dual channels. See DOI: 10.1039/c3nr03291d
... Testing Leptin Levetiracetam Lipase Lipid Panel Lipoprotein (a) Lithium Liver Panel Lp-PLA2 Lupus Anticoagulant Testing Luteinizing ... thrombin time is just one component of the battery of tests typically required to evaluate a bleeding ...
Platelet Glycoprotein lb-1X and Malignancy
2011-09-01
Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proc Natl Acad Sci...JM, Hakim J, de Prost D. Vascular endothelial growth factor production by fibroblasts in response to factor VIIa binding to tissue factor involves...interactions in vitro. (14) The extrinsic pathway of coagulation triggered by factor VII ( FVII ) and tissue factor can be activated in cancer patients. (15
Phosphorothioate oligonucleotides inhibit the intrinsic tenase complex.
Sheehan, J P; Lan, H C
1998-09-01
Systemic administration of ISIS 2302, a 20-mer antisense phosphorothioate oligonucleotide targeting human intercellular adhesion molecule-1 mRNA, causes prolongation of plasma clotting times in both monkey and human studies. The anticoagulant effects of ISIS 2302 were investigated with both in vitro coagulation assays in human plasma and purified enzyme systems. At high oligonucleotide plasma concentrations (>100 microgram/mL), prolongation of the prothrombin and thrombin times was observed. In a thrombin time assay using purified components, high concentrations of ISIS 2302 inhibited thrombin clotting activity both by stimulating inhibition by heparin cofactor II and directly competing with fibrinogen for binding to anion binding exosite I. In contrast, low concentrations of ISIS 2302 (<100 microgram/mL) showed a selective, linear prolongation of the activated partial thromboplastin time (PTT). The rate limiting effect of 50 microgram/mL ISIS 2302, which prolonged the PTT to 1.5 times control, was identified by sequential modification of the clotting assay. Delaying addition of oligonucleotide until after contact activation failed to correct prolongation of the PTT. The calcium-dependent steps of the intrinsic pathway were individually assessed by adding sufficient activated coagulation factor to correct the PTT in plasma deficient in that specific factor. Addition of factor XIa, IXa, VIIIa, or Va failed to correct the PTT in the presence of ISIS 2302. In contrast, 0.2 nmol/L factor Xa corrected prolongation of the PTT in factor X-deficient plasma with or without oligonucleotide present. ISIS 2302 (50 microgram/mL) did not prolong a modified Russel viper venom time, suggesting no significant inhibition of prothrombinase. Thus, 50 microgram/mL ISIS 2302 prolonged the PTT by selectively inhibiting intrinsic tenase activity. ISIS 2302 showed partial inhibition of intrinsic tenase activity (to approximately 35% of control) at clinically relevant oligonucleotide concentrations in a chromogenic assay. This activity was oligonucleotide sequence-independent but required the phosphorothioate backbone, suggesting that inhibition of intrinsic tenase is a general property of this class of oligonucleotides. These results are relevant to both the therapeutic use of phosphorothioate oligonucleotides and the potential design of inhibitors of the intrinsic tenase complex, a novel target for anticoagulation. Copyright 1998 by The American Society of Hematology.
Moore, S; Pepper, D S; Cash, J D
1975-02-27
Platelet factor 4 was isolated by gel filtration from the soluble release products of thrombin-aggregated washed human platelets as a proteoglycan-platelet factor 4 complex of molecular weight 358 000, Stokes radius (r-s) of 14.0 nm, sedimentation coefficient (s) of 7.1 S and frictional ratio (f/f-o) of 3.04. The complex was dissociated at high ionic strength (I equals 0.75) and the proteoglycan separated from platelet factor 4 by gel filtration. Platelet factor 4 had a molecular weight of 27 100, r-s of 2.52 nm, s of 2.4 S and f/f-o of 1.26, was insoluble under physiological conditions but readily soluble at pH 3. Under these conditions platelet factor 4 dissociated into four subunits with a molecular weight of 6900, r-s of 1.92 nm, s of 0.8 S, and f/f-o of 1.52. Qualitative N-terminal amino acid analysis showed the presence of glutamic acid or glutamine as the major end group. Platelet factor 4 was compared with protamine sulphate, which has similar biological properties, by electrophoresis at pH 2.2, in which both migrated as single bands but with differing mobility, and by amino acid analysis which showed a more normal distribution of residues than occurred in protamine sulphate. Of the basic amino acids platelet factor 4 (molecular weight 27 100) contained 5.97% arginine, 3.18% histidine, and 12.31% lysine compared to protamine sulphate with 64.2% arginine, 0.6% lysine and no histidine. A partial specific volume (v) of 0.747 was calculated for platelet factor 4 from its amino acid analysis. A membrane fraction with antiheparin activity, an isopycnic density of 1.090-1.110 and r-s of 15-35 nm, was also isolated by sucrose density gradient centrifugation from the ultrasonicated insoluble platelet residue remaining after thrombin-induced aggregation of washed human platelets. Trypsin treatment of the membrane fraction neither solubilised nor destroyed the activity.
Favorable 2'-substitution in the loop region of a thrombin-binding DNA aptamer.
Awachat, Ragini; Wagh, Atish A; Aher, Manisha; Fernandes, Moneesha; Kumar, Vaijayanti A
2018-06-01
Simple 2'-OMe-chemical modification in the loop region of the 15mer G-rich DNA sequence GGTTGGTGTGGTTGG is reported. The G-quadruplex structure of this thrombin-binding aptamer (TBA), is stabilized by single modifications (T → 2'-OMe-U), depending on the position of the modification. The structural stability also renders significantly increased inhibition of thrombin-induced fibrin polymerization, a process closely associated with blood-clotting. Copyright © 2018 Elsevier Ltd. All rights reserved.
Whitney, Michael; Savariar, Elamprakash N; Friedman, Beth; Levin, Rachel A; Crisp, Jessica L; Glasgow, Heather L; Lefkowitz, Roy; Adams, Stephen R; Steinbach, Paul; Nashi, Nadia; Nguyen, Quyen T; Tsien, Roger Y
2013-01-02
In real time: thrombin activation in vivo can be imaged in real time with ratiometric activatable cell penetrating peptides (RACPPs). RACPPs are designed to combine 1) dual-emission ratioing, 2) far red to infrared wavelengths for in vivo mammalian imaging, and 3) cleavage-dependent spatial localization. The most advanced RACPP uses norleucine (Nle)-TPRSFL as a linker that increases sensitivity to thrombin by about 90-fold. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhu, Shu; Travers, Richard J.; Morrissey, James H.
2015-01-01
Factor XIIa (FXIIa) and factor XIa (FXIa) contribute to thrombosis in animal models, whereas platelet-derived polyphosphate (polyP) may potentiate contact or thrombin-feedback pathways. The significance of these mediators in human blood under thrombotic flow conditions on tissue factor (TF) –bearing surfaces remains inadequately resolved. Human blood (corn trypsin inhibitor treated [4 μg/mL]) was tested by microfluidic assay for clotting on collagen/TF at TF surface concentration ([TF]wall) from ∼0.1 to 2 molecules per μm2. Anti-FXI antibodies (14E11 and O1A6) or polyP-binding protein (PPXbd) were used to block FXIIa-dependent FXI activation, FXIa-dependent factor IX (FIX) activation, or platelet-derived polyP, respectively. Fibrin formation was sensitive to 14E11 at 0 to 0.1 molecules per µm2 and sensitive to O1A6 at 0 to 0.2 molecules per µm2. However, neither antibody reduced fibrin generation at ∼2 molecules per µm2 when the extrinsic pathway became dominant. Interestingly, PPXbd reduced fibrin generation at low [TF]wall (0.1 molecules per µm2) but not at zero or high [TF]wall, suggesting a role for polyP distinct from FXIIa activation and requiring low extrinsic pathway participation. Regardless of [TF]wall, PPXbd enhanced fibrin sensitivity to tissue plasminogen activator and promoted clot retraction during fibrinolysis concomitant with an observed PPXbd-mediated reduction of fibrin fiber diameter. This is the first detection of endogenous polyP function in human blood under thrombotic flow conditions. When triggered by low [TF]wall, thrombosis may be druggable by contact pathway inhibition, although thrombolytic susceptibility may benefit from polyP antagonism regardless of [TF]wall. PMID:26136249
Voils, Stacy A
2009-07-01
Thrombin has demonstrated utility in aiding surgical hemostasis since its introduction more than 60 years ago. It is used across a wide variety of surgical procedures by virtually every specialty. Only recently have new equally effective and safe products entered the market, causing decision makers to evaluate formulary selection among products with otherwise modest differences. This evaluation includes identifying costs beyond those of acquisition and storage, as well as indirect factors such as monitoring or specialized distribution requirements. One factor to consider specifically in selection of topical thrombin products is the potential for patients to develop an immune-mediated coagulopathy (IMC) after exposure to bovine-derived thrombin. Costs due to adverse drug events fall into the category of indirect costs and, in some instances, can be substantial if bleeding due to IMC occurs.
Akkaya, Alper; Pazarlioglu, Nurdan
2013-01-01
Poly(3-hydroxybutyrate) is nontoxic and biodegradable, with good biocompatibility and potential support for long-term implants. For this reason, it is a good support for enzyme immobilization. Enzyme immobilization could not be done directly because poly(3-hydroxybutyrate) has no functional groups. Therefore, modification should be done for enzyme immobilization. In this study, methacrylic acid was graft polymerized to poly(3-hydroxybutyrate) and thrombin was immobilized to polymethacrylic acid grafted poly(3-hydroxybutyrate). In fact, graft polymerization of methacrylic acid to poly(3-hydroxybutyrate) and thrombin immobilization was a model study. Biomolecule immobilized poly(3-hydroxybutyrate) could be used as an implant. Thrombin was selected as a biomolecule for this model study and it was immobilized to methacrylic acid grafted poly(3-hydroxybutyrate). Then the developed product was used to stop bleeding.
Bombesin and thrombin affect discrete pools of intracellular calcium through different G-proteins.
Wang, J L; Kalyanaraman, S; Vivo, M D; Gautam, N
1996-11-15
In mouse NIH 3T3 cells, the mitogens bombesin and thrombin induced Ca2+ release from intracellular stores. Ca2+ release induced by bombesin was inhibited by the Ca(2+)-ATPase inhibitor thapsigargin, while Ca2+ release induced by thrombin was unaffected by this agent. The Ca(2+)-release response to bombesin was not affected by pertussis toxin, but the response to thrombin was abolished by the toxin. Stable transfectants overexpressing the G-protein subunit type alpha 9 showed an accentuated response to bombesin, indicating that the bombesin receptor was coupled to a Gq-like G-protein. Together, these results show that the two mitogenic receptors are coupled to distinct G-proteins that affect functionally different pools of Ca2+. Organization of signalling pathways in this manner may allow cells to differentially encode information from different signals.
Pereira, Rebeca Cristina Costa; Lourenço, André Luiz; Terra, Luciana; Abreu, Paula Alvarez; Laneuville Teixeira, Valéria; Castro, Helena Carla
2017-01-01
Thrombosis related diseases are among the main causes of death and incapacity in the world. Despite the existence of antithrombotic agents available for therapy, they still present adverse effects like hemorrhagic risks which justify the search for new options. Recently, pachydictyol A, isopachydictyol A, and dichotomanol, three diterpenes isolated from Brazilian marine brown alga Dictyota menstrualis were identified as potent antithrombotic molecules through inhibition of thrombin, a key enzyme of coagulation cascade and a platelet agonist. Due to the biotechnological potential of these marine metabolites, in this work we evaluated their binding mode to thrombin in silico and identified structural features related to the activity in order to characterize their molecular mechanism. According to our theoretical studies including structure-activity relationship and molecular docking analysis, the highest dipole moment, polar surface area, and lowest electronic density of dichotomanol are probably involved in its higher inhibition percentage towards thrombin catalytic activity compared to pachydictyol A and isopachydictyol A. Interestingly, the molecular docking studies also revealed a good shape complementarity of pachydictyol A and isopachydictyol A and interactions with important residues and regions (e.g., H57, S195, W215, G216, and loop-60), which probably justify their thrombin inhibitor effects demonstrated in vitro. Finally, this study explored the structural features and binding mode of these three diterpenes in thrombin which reinforced their potential to be further explored and may help in the design of new antithrombotic agents. PMID:28335516
Pereira, Rebeca Cristina Costa; Lourenço, André Luiz; Terra, Luciana; Abreu, Paula Alvarez; Laneuville Teixeira, Valéria; Castro, Helena Carla
2017-03-20
Thrombosis related diseases are among the main causes of death and incapacity in the world. Despite the existence of antithrombotic agents available for therapy, they still present adverse effects like hemorrhagic risks which justify the search for new options. Recently, pachydictyol A, isopachydictyol A, and dichotomanol, three diterpenes isolated from Brazilian marine brown alga Dictyota menstrualis were identified as potent antithrombotic molecules through inhibition of thrombin, a key enzyme of coagulation cascade and a platelet agonist. Due to the biotechnological potential of these marine metabolites, in this work we evaluated their binding mode to thrombin in silico and identified structural features related to the activity in order to characterize their molecular mechanism. According to our theoretical studies including structure-activity relationship and molecular docking analysis, the highest dipole moment, polar surface area, and lowest electronic density of dichotomanol are probably involved in its higher inhibition percentage towards thrombin catalytic activity compared to pachydictyol A and isopachydictyol A. Interestingly, the molecular docking studies also revealed a good shape complementarity of pachydictyol A and isopachydictyol A and interactions with important residues and regions (e.g., H57, S195, W215, G216, and loop-60), which probably justify their thrombin inhibitor effects demonstrated in vitro. Finally, this study explored the structural features and binding mode of these three diterpenes in thrombin which reinforced their potential to be further explored and may help in the design of new antithrombotic agents.
FcγRIIa ligation induces platelet hypersensitivity to thrombotic stimuli.
Berlacher, Mark D; Vieth, Joshua A; Heflin, Brittany C; Gay, Steven R; Antczak, Adam J; Tasma, Brian E; Boardman, Holly J; Singh, Navinderjit; Montel, Angela H; Kahaleh, M Bashar; Worth, Randall G
2013-01-01
Platelets are known for their important role in hemostasis, however their significance in other functions, including inflammation and infection, are becoming more apparent. Patients with systemic lupus erythematosus (SLE) are known to have circulating IgG complexes in their blood and are highly susceptible to thrombotic events. Because platelets express a single receptor for IgG, we tested the hypothesis that ligation of this receptor (FcγRIIa) induces platelet hypersensitivity to thrombotic stimuli. Platelets from SLE patients were considerably more sensitive to thrombin compared to healthy volunteers, and this correlated with elevated levels of surface IgG on SLE platelets. To test whether FcγRIIa ligation stimulated thrombin hypersensitivity, platelets from healthy volunteers were incubated with buffer or heat-aggregated IgG, then stimulated with increasing concentrations of thrombin. Interestingly, heat-aggregated IgG-stimulated platelets, but not buffer-treated platelets, were hypersensitive to thrombin, and hypersensitivity was blocked by an anti-FcγRIIa monoclonal antibody (mAb). Thrombin hypersensitivity was not due to changes in thrombin receptor expression (GPIbα or PAR1) but is dependent on activation of shared signaling molecules. These observations suggest that ligation of platelet FcγRIIa by IgG complexes induces a hypersensitive state whereby small changes in thrombotic stimuli may result in platelet activation and subsequent vascular complications such as transient ischemic attacks or stroke. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Derkus, Burak; Arslan, Yavuz Emre; Emregul, Kaan C; Emregul, Emel
2016-09-01
In the present study, we describe the sonochemical isolation of nano-sized spherical hydroxyapatite (nHA) from egg shell and application towards thrombin aptasensing. In addition to the sonochemical method, two conventional methods present in literature were carried out to perform a comparative study. Various analysis methods including Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Energy-Dispersive Analysis of X-Rays (EDAX), and Thermal Gravimetric Analysis (TGA) have been applied for the characterization of nHA and its nanocomposite with marine-derived collagen isolated from Rhizostoma pulmo jellyfish. TEM micrographs revealed the sonochemically synthesized nHA nanoparticles to have a unique porous spherical shape with a diameter of approximately 60-80nm when compared to hydroxyapatite nanoparticles synthesized using the other two methods which had a typical needle shaped morphology. EDAX, XRD and FTIR results demonstrated that the obtained patterns belonged to hydroxyapatite. Electrochemical impedance spectroscopy (EIS) is the main analyzing technique of the developed thrombin aptasensor. The proposed aptasensor has a detection limit of 0.25nM thrombin. For clinical application of the developed aptasensor, thrombin levels in blood and cerebrospinal fluid (CSF) samples obtained from patients with Multiple Sclerosis, Myastenia Gravis, Epilepsy, Parkinson, polyneuropathy and healthy donors were analyzed using both the aptasensor and commercial ELISA kit. The results showed that the proposed system is a promising candidate for clinical analysis of thrombin. Copyright © 2016 Elsevier B.V. All rights reserved.
Niazov-Elkan, Angelica; Golub, Eyal; Sharon, Etery; Balogh, Dora; Willner, Itamar
2014-07-23
L-cysteine induces the aggregation of Au nanoparticles (NPs), resulting in a color transition from red to blue due to interparticle plasmonic coupling in the aggregated structure. The hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme catalyzes the aerobic oxidation of L-cysteine to cystine, a process that inhibits the aggregation of the NPs. The degree of inhibition of the aggregation process is controlled by the concentration of the DNAzyme in the system. These functions are implemented to develop sensing platforms for the detection of a target DNA, for the analysis of aptamer-substrate complexes, and for the analysis of L-cysteine in human urine samples. A hairpin DNA structure that includes a recognition site for the DNA analyte and a caged G-quadruplex sequence, is opened in the presence of the target DNA. The resulting self-assembled hemin/G-quadruplex acts as catalyst that controls the aggregation of the Au NPs. Also, the thrombin-binding aptamer folds into a G-quadruplex nanostructure upon binding to thrombin. The association of hemin to the resulting G-quadruplex aptamer-thrombin complex leads to a catalytic label that controls the L-cysteine-mediated aggregation of the Au NPs. The hemin/G-qaudruplex-controlled aggregation of Au NPs process is further implemented for visual and spectroscopic detection of L-cysteine concentration in urine samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thrombin-like enzymes from snake venom: Structural characterization and mechanism of action.
Ullah, Anwar; Masood, Rehana; Ali, Ijaz; Ullah, Kifayat; Ali, Hamid; Akbar, Haji; Betzel, Christian
2018-07-15
Snake venom thrombin-like enzymes (SVTLEs) constitute the major portion (10-24%) of snake venom and these are the second most abundant enzymes present in the crude venom. During envenomation, these enzymes had shown prominently the various pathological effects, such as disturbance in hemostatic system, fibrinogenolysis, fibrinolysis, platelet aggregation, thrombosis, neurologic disorders, activation of coagulation factors, coagulant, procoagulant etc. These enzymes also been used as a therapeutic agent for the treatment of various diseases such as congestive heart failure, ischemic stroke, thrombotic disorders etc. Although the crystal structures of five SVTLEs are available in the Protein Data Bank (PDB), there is no single article present in the literature that has described all of them. The current work describes the structural aspects, structure-based mechanism of action, processing and inhibition of these enzymes. The sequence analysis indicates that these enzymes show a high sequence identity (57-85%) with each other and low sequence identity with trypsin (36-43%), human alpha-thrombin (29-36%) and other snake venom serine proteinases (57-85%). Three-dimensional structural analysis indicates that the loops surrounding the active site are variable both in amino acids composition and length that may convey variable substrate specificity to these enzymes. The surface charge distributions also vary in these enzymes. Docking analysis with suramin shows that this inhibitor preferably binds to the C-terminal region of these enzymes and causes the destabilization of their three-dimensional structure. Copyright © 2018 Elsevier B.V. All rights reserved.
Mechanistic Modeling of the Effects of Acidosis on Thrombin Generation
2015-08-01
Telemedicine and Advanced Technology Research Center; U.S. Army Medical Research and Materiel Command, Ft. Detrick, MD; and Departments of...are the private views of the authors and are not to be construed as official or as reflecting the views of the U.S. Army or of the U.S. Department ...of Defense . This paper has been approved for public release with unlimited distribution. Reprints will not be available from the authors. Address
Use of fibrinogen and thrombin sponge in pediatric split liver transplantation.
Vicentine, Fernando Pompeu Piza; Gonzalez, Adriano Miziara; Beninni, Barbara Burza; Azevedo, Ramiro Anthero de; Linhares, Marcelo Moura; Goldenberg, Alberto; Lopes, Gaspar de Jesus; Martins, Jose Luiz; Salzedas, Alcides Augusto
2017-08-01
To analyze the use of this sponge in pediatric patients undergoing split-liver transplantation. Retrospective study, including 35 pediatric patients undergoing split-liver transplantation, divided into two groups according to the use of the sponge: 18 patients in Group A (no sponge) and 17 in Group B (with sponge). The characteristics of recipients and donors were similar. We observed greater number of reoperation due to bleeding in the wound area in Group A (10 patients - 55.5%) than in Group B (3 patients - 17.6%); p = 0.035. The median volume of red blood cells transfused in Group A was significantly higher (73.4 ± 102.38 mL/kg) than that in Group B (35.1 ± 41.67 mL/kg); p = 0.048. Regarding bile leak there was no statistical difference. The use of the human fibrinogen and thrombin sponge, required lower volume of red blood cell transfusion and presented lower reoperation rates due to bleeding in the wound area.
NASA Astrophysics Data System (ADS)
Villoutreix, Bruno O.; Teleman, Olle; Dahlbäck, Björn
1997-05-01
Protein S (PS), which functions as a species-specific anticoagulant cofactor to activated protein C (APC), is a mosaic protein that interacts with the phospholipid membrane via its γ-carboxyglutamate-rich (Gla) module. This module is followed by the thrombin-sensitive region (TSR), sensitive to thrombin cleavage, four epidermal growth factor (EGF)-like modules and a last region referred to as the sex hormone binding globulin (SHBG) domain. Of these, the TSR and the first EGF-like regions have been shown to be important for the species-specific interaction with APC. Difficulties in crystallising PS have so far hindered its study at the atomic level. Here, we report theoretical models for the Gla and EGF-1 modules of human PS constructed using prothrombin and factor X experimental structures. The TSR was built interactively. Analysis of the model linked with the large body of biochemical literature on PS and related proteins leads to suggestions that (i) the TSR stabilises the calcium-loaded Gla module through hydrophobic and ionic interactions and its conformation depends on the presence of the Gla module; (ii) the TSR does not form a calcium binding site but is protected from thrombin cleavage in the calcium-loaded form owing to short secondary structure elements and close contact with the Gla module; (iii) the PS missense mutations in this region are consistent with the structural data, except in one case which needs further investigation; and (iv) the two PS `faces' involving regions of residues Arg49-Gln52-Lys97 (TSR-EGF-1) and Thr103-Pro106 (EGF-1) may be involved in species-specific interactions with APC as they are richer in nonconservative substitution when comparing human and bovine protein S. This preliminary model helps to plan future experiments and the resulting data will be used to further validate and optimise the present structure.