Sato, K; Yamazaki, K; Shizume, K; Kanaji, Y; Obara, T; Ohsumi, K; Demura, H; Yamaguchi, S; Shibuya, M
1995-09-01
To elucidate the pathogenesis of thyroid gland hypervascularity in patients with Graves' disease, we studied the expression of mRNAs for vascular endothelial growth factor (VEGF) and its receptor, Flt family, using human thyroid follicles in vitro and thiouracil-fed rats in vivo. Human thyroid follicles, cultured in the absence of endothelial cells, secreted de novo-synthesized thyroid hormone in response to thyroid-stimulating hormone (TSH) and Graves' IgG. The thyroid follicles produced VEGF mRNA but not flt-1 mRNA. The expression of VEGF mRNA was enhanced by insulin, tumor-promoting phorbol ester, calcium ionophore, dibutyryl cAMP, TSH, and Graves' IgG. When rats were fed thiouracil for 4 wk, their serum levels of TSH were increased at day 3. VEGF mRNA was also increased on day 3, accompanied by an increase in flt family (flt-1 and KDR/ flk-1) mRNA expression. These in vitro and in vivo findings suggest that VEGF is produced by thyroid follicles in response to stimulators of TSH receptors, via the protein kinase A and C pathways. VEGF, a secretable angiogenesis factor, subsequently stimulates Flt receptors on endothelial cells in a paracrine manner, leading to their proliferation and producing hypervascularity of the thyroid gland, as seen in patients with Graves' disease.
Lehmann, Petra; Rank, Petra; Hallfeldt, Klaus L J; Krebs, Bjarne; Gärtner, Roland
2006-08-01
Apoptosis of thyroid follicular cells is induced by high doses of iodide, epidermal growth factor (EGF), transforming growth factor-beta (TGF-beta), as well as H2O2 and might be attenuated by antioxidants. Therefore, we examined the apoptotic index induced by these substances in selenium-treated vs untreated human thyroid follicular cells. Reconstituted human thyroid follicles were incubated with sodium selenite (10 or 100 nM) for 72 h; controls received none. The follicles were then distributed to 24-well plates and incubated with potassium iodide (5, 10, or 20 nM), EGF (5 ng/mL), TGF-beta (5 ng/mL), or H2O2 (100 muM). Apoptosis was determined by a mitochondrial potential assay and the number of apoptotic cells counted by two independent, experienced technicians and the glutathione peroxidase (GPx) activity was determined. Asignificant increase of apoptic cells was obtained in control thyroid follicles treated with iodine (5, 10, or 20 microM), thyroidstimulating hormone (TSH) 1, or 10 mU/mL in combination with 5 and 10 microM iodine, EGF (5 ng/mL) and TGF-beta (5 ng/mL), or H2O2 (100 microM) (p < 0.001). In contrast, in thyroid follicles preincubated with 10 or 100 nM sodium selenite, the apoptototic index was identical to the basal rate. In H2O2-treated follicles, the apoptotic index was still significantly elevated but 50% lower compared to control cells. The GPx activity increased from 1.4 +/- 0.2 to 2.25 +/- 0.4 mU/microg DNA with 10 nMselenite and 2.6 + 0.4 mU/microg DNA with 100 nM selenite. Sodium selenite might increase the antioxidative potential in human thyroid follicles in vitro and therefore diminish the apoptosis induced by TGF-beta, EGF, iodide, and even H2O2.
Misa-Agustiño, Maria J; Jorge-Mora, Teresa; Jorge-Barreiro, Francisco J; Suarez-Quintanilla, Juan; Moreno-Piquero, Eduardo; Ares-Pena, Francisco J
2015-01-01
Non-ionizing radiation at 2.45 GHz may modify the morphology and expression of genes that codify heat shock proteins (HSP) in the thyroid gland. Diathermy is the therapeutic application of non-ionizing radiation to humans for its beneficial effects in rheumatological and musculo-skeletal pain processes. We used a diathermy model on laboratory rats subjected to maximum exposure in the left front leg, in order to study the effects of radiation on the nearby thyroid tissue. Fifty-six rats were individually exposed once or repeatedly (10 times in two weeks) for 30 min to 2.45 GHz radiation in a commercial chamber at different non-thermal specific absorption rates (SARs), which were calculated using the finite difference time domain technique. We used immunohistochemistry methods to study the expression of HSP-90 and morphological changes in thyroid gland tissues. Ninety minutes after radiation with the highest SAR, the central and peripheral follicles presented increased size and the thickness of the peripheral septa had decreased. Twenty-four hours after radiation, only peripheral follicles radiated at 12 W were found to be smaller. Peripheral follicles increased in size with repeated exposure at 3 W power. Morphological changes in the thyroid tissue may indicate a glandular response to acute or repeated stress from radiation in the hypothalamic–pituitary–thyroid axis. Further research is needed to determine if the effect of this physical agent over time may cause disease in the human thyroid gland. PMID:25649190
Werion, Alexis; Joris, Virginie; Hepp, Michael; Papasokrati, Lida; Marique, Lancelot; de Ville de Goyet, Christine; Van Regemorter, Victoria; Mourad, Michel; Lengelé, Benoit; Daumerie, Chantal; Marbaix, Etienne; Brichard, Sonia; Many, Marie-Christine; Craps, Julie
2016-09-01
Peroxisome proliferator-activated receptor γ (PPARγ) is a transcription factor that regulates the expression of multiple target genes involved in several metabolic pathways as well as in inflammation. The expression and cell localization of caveolin-1 (Cav-1), thyroperoxidase (TPO), and dual oxidase (DUOX), involved in extracellular iodination, is modulated by Th1 cytokines in human normal thyroid cells and in Hashimoto's thyroiditis (HT). The objectives of this study were (i) to analyze the PPARγ protein and mRNA expression at the follicular level in HT versus controls in correlation with the one of Cav-1; (ii) to study the effects of Th1 cytokines on PPARγ and catalase expression in human thyrocyte primary cultures; and (iii) to study the effects of pioglitazone, a PPARγ agonist, on thyroxisome components (Cav-1, TPO, DUOX) and on catalase, involved in antioxidant defense. Although the global expression of PPARγ in the whole gland of patients with HT was not modified compared with controls, there was great heterogeneity among glands and among follicles within the same thyroid. Besides normal (type 1) follicles, there were around inflammatory zones, hyperactive (type 2) follicles with high PPARγ and Cav-1 expression, and inactive (type 3) follicles which were unable to form thyroxine and did not express PPARγ or Cav-1. In human thyrocytes in primary culture, Th1 cytokines decreased PPARγ and catalase expression; pioglitazone increased Cav-1, TPO, and catalase expression. PPARγ may play a central role in normal thyroid physiology by upregulating Cav-1, essential for the organization of the thyroxisome and extracellular iodination. By upregulating catalase, PPARγ may also contribute to cell homeostasis. The inhibitory effect of Th1 cytokines on PPARγ expression may be considered as a new pathogenetic mechanism for HT, and the use of PPARγ agonists could open a new therapeutic approach.
Pax2.1 is required for the development of thyroid follicles in zebrafish.
Wendl, Thomas; Lun, Klaus; Mione, Marina; Favor, Jack; Brand, Michael; Wilson, Stephen W; Rohr, Klaus B
2002-08-01
The thyroid gland is an organ primarily composed of endoderm-derived follicular cells. Although disturbed embryonic development of the thyroid gland leads to congenital hypothyroidism in humans and mammals, the underlying principles of thyroid organogenesis are largely unknown. In this study, we introduce zebrafish as a model to investigate the molecular and genetic mechanisms that control thyroid development. Marker gene expression suggests that the molecular pathways of early thyroid development are essentially conserved between fish and mammals. However during larval stages, we find both conserved and divergent features of development compared with mammals. A major difference is that in fish, we find evidence for hormone production not only in thyroid follicular cells, but also in an anterior non-follicular group of cells. We show that pax2.1 and pax8, members of the zebrafish pax2/5/8 paralogue group, are expressed in the thyroid primordium. Whereas in mice, only Pax8 has a function during thyroid development, analysis of the zebrafish pax2.1 mutant no isthmus (noi(-/-)) demonstrates that pax2.1 has a role comparable with mouse Pax8 in differentiation of the thyroid follicular cells. Early steps of thyroid development are normal in noi(-/-), but later expression of molecular markers is lost and the formation of follicles fails. Interestingly, the anterior non-follicular site of thyroid hormone production is not affected in noi(-/-). Thus, in zebrafish, some remaining thyroid hormone synthesis takes place independent of the pathway leading to thyroid follicle formation. We suggest that the noi(-/-) mutant serves as a new zebrafish model for hypothyroidism.
Culture Models for Studying Thyroid Biology and Disorders
Toda, Shuji; Aoki, Shigehisa; Uchihashi, Kazuyoshi; Matsunobu, Aki; Yamamoto, Mihoko; Ootani, Akifumi; Yamasaki, Fumio; Koike, Eisuke; Sugihara, Hajime
2011-01-01
The thyroid is composed of thyroid follicles supported by extracellular matrix, capillary network, and stromal cell types such as fibroblasts. The follicles consist of thyrocytes and C cells. In this microenvironment, thyrocytes are highly integrated in their specific structural and functional polarization, but monolayer and floating cultures cannot allow thyrocytes to organize the follicles with such polarity. In contrast, three-dimensional (3-D) collagen gel culture enables thyrocytes to form 3-D follicles with normal polarity. However, these systems never reconstruct the follicles consisting of both thyrocytes and C cells. Thyroid tissue-organotypic culture retains 3-D follicles with both thyrocytes and C cells. To create more appropriate experimental models, we here characterize four culture systems above and then introduce the models for studying thyroid biology and disorders. Finally, we propose a new approach to the cell type-specific culture systems on the basis of in vivo microenvironments of various cell types. PMID:22363871
Abduvaliev, A A; Gil'dieva, M S; Khidirov, B N; Saĭdalieva, M; Khasanov, A A; Musaeva, Sh N; Saatov, T S
2012-04-01
The article deals with the results of computational experiments in research of dynamics of proliferation of cells of thyroid gland follicle in normal condition and in the case of malignant neoplasm. The model studies demonstrated that the chronic increase of parameter of proliferation of cells of thyroid gland follicle results in abnormal behavior of numbers of cell cenosis of thyroid gland follicle. The stationary state interrupts, the auto-oscillations occur with transition to irregular oscillations with unpredictable cell proliferation and further to the "black hole" effect. It is demonstrated that the present medical biologic experimental data and theory propositions concerning the structural functional organization of thyroid gland on cell level permit to develop mathematical models for quantitative analysis of numbers of cell cenosis of thyroid gland follicle in normal conditions. The technique of modeling of regulative mechanisms of living systems and equations of cell cenosis regulations was used
Prolonged hypothyroidism severely reduces ovarian follicular reserve in adult rats.
Meng, Li; Rijntjes, Eddy; Swarts, Hans J M; Keijer, Jaap; Teerds, Katja J
2017-03-16
There is substantial evidence both in humans and in animals that a prolonged reduction in plasma thyroid hormone concentration leads to reproductive problems, including disturbed folliculogenesis, impaired ovulation and fertilization rates, miscarriage and pregnancy complications. The objective of the present study is to examine the consequences of chronic hypothyroidism, induced in adulthood, for the size of the ovarian follicle pool. In order to investigate this, adult female rats were provided either a control or an iodide deficient diet in combination with perchlorate supplementation to inhibit iodide uptake by the thyroid. Sixteen weeks later animals were sacrificed. Blood was collected for hormone analyses and ovaries were evaluated histologically. At the time of sacrifice, plasma thyroid-stimulating hormone concentrations were 20- to 40-fold increased, thyroxine concentrations were negligible while tri-iothyronin concentrations were decreased by 40% in the hypothyroid group, confirming that the animals were hypothyroid. Primordial, primary and preantral follicle numbers were significantly lower in the hypothyroid ovaries compared to the euthyroid controls, while a downward trend in antral follicle and corpora lutea numbers was observed. Surprisingly the percentage of atretic follicles was not significantly different between the two groups, suggesting that the reduced preantral and antral follicle numbers were presumably not the consequence of increased degeneration of these follicle types in the hypothyroid group. Plasma anti-Müllerian hormone (AMH) levels showed a significant correlation with the growing follicle population represented by the total ovarian number of primary, preantral and antral follicles, suggesting that also under hypothyroid conditions AMH can serve as a surrogate marker to assess the growing ovarian follicle population. The induction of a chronic hypothyroid condition in adult female rats negatively affects the ovarian follicular reserve and the size of the growing follicle population, which may impact fertility.
Thyroid gland development in Rachycentron canadum during early life stages.
Otero, Adriana P S; Rodrigues, Ricardo V; Sampaio, Luís A; Romano, Luis A; Tesser, Marcelo B
2014-09-01
The aim of this study was to describe the ontogeny of thyroid follicles in cobia Rachycentron canadum. Larvae were sampled daily (n=15 - 20) from hatching until 15 dah (days after hatching). Following, larvae were sampled every two days by 28 dah; a new sample was taken at 53 dah. The samples were dehydrated, embedded in Paraplast, and sections of 3 µm were dewaxed, rehydrated and stained with HE and PAS. A single follicle was already present 1 dah and three follicles were found 8 dah. The number of follicles increased up to 19 on 53 dah. The diameter of follicles and follicular cell height were lower 1 dah (6.83 ± 1.00 and 4.6 ± 0.01 µm), but increased from 8 dah (24.03 ± 0.46 µm e 6.43 ± 0.46 µm). From 8 dah, the presence of reabsorption vesicles was observed in the colloid and from the 19 dah some follicles did not present colloid. The early thyroid follicle appearance in cobia larvae as well as the high quantity of follicles without colloid and/or with vesicles even after the metamorphosis, might be the explanation of the fast growth of the cobia.
Armer, Jane; Giles, Diane; Lancaster, Ian; Brownbill, Kathryn
2017-09-01
Background Thyroid-stimulating hormone (TSH) is used as the first-line test of thyroid function. Siemens Healthcare Diagnostics recommend that Siemens Centaur reagents must be protected from light in the assay information and on reagent packaging. We have compared the effect of light exposure on results using Siemens TSH-3Ultra and follicle-stimulating hormone reagents. The thyroid-stimulating hormone reagent includes fluoroscein thiocyanate whereas the follicle-stimulating hormone reagent does not. Methods Three levels of quality controls were analysed using SiemensTSH-3Ultra and follicle-stimulating hormone reagent packs that had been kept protected from light or exposed to light at 6-h intervals for 48 h and then at 96 h. Results Thyroid-stimulating hormone results were significantly lower after exposure of TSH-3Ultra reagent packs to light. Results were >15% lower at all three levels of quality control following 18 h of light exposure and continued to decrease until 96 h. There was no significant difference in follicle-stimulating hormone results whether reagents had been exposed to or protected from light. Conclusions Thyroid-stimulating hormone results but not follicle-stimulating hormone results are lowered after exposure of reagent packs to light. Laboratories must ensure that TSH-3Ultra reagents are not exposed to light and analyse quality control samples on every reagent pack to check that there has not been light exposure prior to delivery. The labelling on TSH-3Ultra reagent packs should reflect the significant effect of light exposure compared with the follicle-stimulating hormone reagent. We propose that the effect of light exposure on binding of fluoroscein thiocyanate to the solid phase antibody causes the falsely low results.
Bravo, Susana B; Garcia-Rendueles, Maria E R; Garcia-Rendueles, Angela R; Rodrigues, Joana S; Perez-Romero, Sihara; Garcia-Lavandeira, Montserrat; Suarez-Fariña, Maria; Barreiro, Francisco; Czarnocka, Barbara; Senra, Ana; Lareu, Maria V; Rodriguez-Garcia, Javier; Cameselle-Teijeiro, Jose; Alvarez, Clara V
2013-06-01
Mechanisms of thyroid physiology and cancer are principally studied in follicular cell lines. However, human thyroid cancer lines were found to be heavily contaminated by other sources, and only one supposedly normal-thyroid cell line, immortalized with SV40 antigen, is available. In primary culture, human follicular cultures lose their phenotype after passage. We hypothesized that the loss of the thyroid phenotype could be related to culture conditions in which human cells are grown in medium optimized for rodent culture, including hormones with marked differences in its affinity for the relevant rodent/human receptor. The objective of the study was to define conditions that allow the proliferation of primary human follicular thyrocytes for many passages without losing phenotype. Concentrations of hormones, transferrin, iodine, oligoelements, antioxidants, metabolites, and ethanol were adjusted within normal homeostatic human serum ranges. Single cultures were identified by short tandem repeats. Human-rodent interspecies contamination was assessed. We defined an humanized 7 homeostatic additives medium enabling growth of human thyroid cultures for more than 20 passages maintaining thyrocyte phenotype. Thyrocytes proliferated and were grouped as follicle-like structures; expressed Na+/I- symporter, pendrin, cytokeratins, thyroglobulin, and thyroperoxidase showed iodine-uptake and secreted thyroglobulin and free T3. Using these conditions, we generated a bank of thyroid tumors in culture from normal thyroids, Grave's hyperplasias, benign neoplasms (goiter, adenomas), and carcinomas. Using appropriate culture conditions is essential for phenotype maintenance in human thyrocytes. The bank of thyroid tumors in culture generated under humanized humanized 7 homeostatic additives culture conditions will provide a much-needed tool to compare similarly growing cells from normal vs pathological origins and thus to elucidate the molecular basis of thyroid disease.
Fukayama, H; Murakami, S; Nasu, M; Sugawara, M
1991-01-01
We investigated the effect of hydrogen peroxide on the process of thyroid hormone formation in a physiologic culture system of porcine thyroid follicles that we recently established. Porcine thyroid follicles cultured in medium containing 1 mU/mL TSH were exposed to 0 to 500 microM hydrogen peroxide in the presence of 0.1 microCi carrier-free Na125 and sodium iodide for 2 h. Iodide uptake and iodine organification were measured in this incubation system. The kinetics of iodide uptake were used to explain the action of hydrogen peroxide. In addition, cAMP content and Na+,K(+)-ATPase activity (an enzyme necessary for iodide uptake) were measured to investigate the mechanism of hydrogen peroxide action. Hydrogen peroxide at concentrations of 100, 200, and 500 microM inhibited iodide uptake in a dose-dependent manner. Iodide organification was inhibited only when the concentration of hydrogen peroxide was greater than 200 microM. The kinetics of iodide uptake indicated that hydrogen peroxide was a noncompetitive inhibitor with iodide. Inhibition of iodide uptake and iodine organification by hydrogen peroxide were not mediated by alteration of cAMP content of Na+,K(+)-ATPase activity, since exposure to even 500 microM hydrogen peroxide did not change these parameters in the follicle when compared with those of control samples. Our results suggest that the iodide transport system in the thyroid follicle is inhibited at 200 microM hydrogen peroxide or greater.
Adly, Mohamed A
2010-12-01
Transthyretin is a serum and cerebrospinal fluid protein synthesized early in development by the liver, choroid plexus and several other tissues. It is a carrier protein for the antioxidant vitamins, retinol, and thyroid hormones. Transthyretin helps internalize thyroxine and retinol-binding protein into cells by binding to megalin, which is a multi-ligand receptor expressed on the luminal surface of various epithelia. We investigated the expression of transthyretin and its receptor megalin in the human skin; however, their expression pattern in the hair follicle is still to be elucidated. This study addresses this issue and tests the hypothesis that "the expression of transthyretin and megalin undergoes hair follicle cycle-dependent changes." A total of 50 normal human scalp skin biopsies were examined (healthy females, 53-62 years) using immunofluorescence staining methods and real-time PCR. In each case, 50 hair follicles were analyzed (35, 10, and 5 follicles in anagen, catagen, and telogen, respectively). Transthyretin and megalin were prominently expressed in the human scalp skin and hair follicles, on both gene and protein levels. The concentrations of transthyretin and megalin were 0.12 and 0.03 Ul/ml, respectively, as indicated by PCR. The expression showed hair follicle cycle-associated changes i.e., strong expression during early and mature anagen, very weak expression during catagen and moderate expression during telogen. The expression values of these proteins in the anagen were statistically significantly higher than those of either catagen or telogen hair follicles (P ≤ 0.001). This study provides the first morphologic indication that transthyretin and megalin are variably expressed in the human scalp skin and hair follicles. It also reports variations in the expression of these proteins during hair follicle cycling. The clinical ramifications of these findings are open for further investigations.
Petersen, Ann M.; Dillon, Danielle; Bernhardt, Richard A.; Torunsky, Roberta; Postlethwait, John H.; von Hippel, Frank A.; Buck, C. Loren; Cresko, William A.
2014-01-01
Perchlorate, an environmental contaminant, disrupts normal functioning of the thyroid. We previously showed that perchlorate disrupts behavior and gonad development, and induces external morphological changes in a vertebrate model organism, the threespine stickleback. Whether perchlorate alters these phenotypes via a thyroid-mediated mechanism, and the extent to which the effects depend on dose, are unknown. To address these questions, we chronically exposed stickleback to control conditions and to three concentrations of perchlorate (10, 30 and 100 ppm) at various developmental stages from fertilization to reproductive maturity. Adults chronically exposed to perchlorate had increased numbers of thyroid follicles and decreased numbers of thyrocytes. Surprisingly, T4 and T3 levels in larval, juvenile, and adult whole fish chronically exposed to perchlorate did not differ from controls, except at the lowest perchlorate dose, suggesting a non-monotonic dose response curve. We found no detectable abnormalities in external phenotype at any dose of perchlorate, indicating that the increased number of thyroid follicles compensated for the disruptive effects of these doses. In contrast to external morphology, gonadal development was altered substantially, with the highest dose of perchlorate causing the largest effects. Perchlorate increased the number both of early stage ovarian follicles in females and of advanced spermatogenic stages in males. Perchlorate also disrupted embryonic androgen levels. We conclude that chronic perchlorate exposure may not result in lasting adult gross morphological changes but can produce lasting modifications to gonads when compensation of T3 and T4 levels occurs by thyroid follicle hyperplasia. Perchlorate may therefore affect vertebrate development via both thyroidal and non-thyroidal mechanisms. PMID:25448260
Branchial cleft-like cysts in Hashimoto's thyroiditis: A case report and literature review.
Miyazaki, Masaya; Kiuchi, Shizuka; Fujioka, Yasunori
2016-05-01
We report an extremely rare case of branchial cleft-like cysts in Hashimoto's thyroiditis. The patient was a 77-year-old man with a growing mass in the anterior neck. Ultrasonography and computed tomography revealed a cystic lesion with septum in the left thyroid and multiple small cystic lesions in the right thyroid. Lymph node swelling of the cervical region, supraclavicular fossa and submandibular region was also observed. Left thyroidectomy and lymph node dissection were performed. Histologically, cysts were lined by stratified squamous epithelium and dense lymphoid tissue having conspicuous follicle formation surrounded the epithelial lining. Solid cell nest (SCN)-like aggregations were seen in the thyroid parenchyma adjacent to the cyst walls and a small number of thyroid follicles were observed in the fibrous wall. Immunohistochemically, it is suggested that both the cyst lining and SCN-like aggregations are originally from thyroid follicles. Although, the exact histogenesis of branchial cleft-like cysts remains unclear, there are probably two different processes for its development, one is of branchial cleft origin and the other is mere squamous metaplasia, while in our case the latter is suggested. Herein, we report our new case and update information about branchial cleft-like cysts that appears in the literature. © 2016 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.
Development of Grave's disease seven months after Hashimoto's thyroiditis: a rare occurrence.
Bravo-Llerena, Wilfredo Eddy; Valderrabano-Wagner, Rodrigo J; Quevedo-Quevedo, Juan; Reyes-Ortiz, Luis M
2010-01-01
Hashimoto's thyroiditis (HT) and Graves' disease (GD) are two opposite poles in the spectrum of autoimmune thyroid disease. On one extreme, HT or Chronic Lymphocytic thyroiditis (CLT) courses, as its name implies, with lymphocytic infiltrates replacing thyroid follicles, resulting in a loss of hormone-producing cells and, thus, primary hypothyroidism. On the other extreme, GD is characterized by primary hyperthyroidism due to stimulating autoantibodies against thyroid-stimulating hormone receptors (TSHRs) localized on thyrocytes' membranes of intact thyroid follicles. The presence of HT after GD or the concomitant combination of these two autoimmune entities ending in HT-depending hypothyroid state is well known. However, occurrence of GD after primary hypothyroidism due to CLT is very rare since thyrocytes with their TSHRs are promptly lost. We report a case in which hyperthyroidism occurred seven months after presentation of primary hypothyroidism and discuss potential mechanisms involved.
MicroRNAs in thyroid development, function and tumorigenesis.
Fuziwara, Cesar Seigi; Kimura, Edna Teruko
2017-11-15
MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression that modulate the vast majority of cellular processes. During development, the correct timing and expression of miRNAs in the tissue differentiation is essential for organogenesis and functionality. In thyroid gland, DICER and miRNAs are necessary for accurately establishing thyroid follicles and hormone synthesis. Moreover, DICER1 mutations and miRNA deregulation observed in human goiter influence thyroid tumorigenesis. The thyroid malignant transformation by MAPK oncogenes is accompanied by global miRNA changes, with a marked reduction of "tumor-suppressor" miRNAs and activation of oncogenic miRNAs. Loss of thyroid cell differentiation/function, and consequently iodine trapping impairment, is an important clinical characteristic of radioiodine-refractory thyroid cancer. However, few studies have addressed the direct role of miRNAs in thyroid gland physiology. Here, we focus on what we have learned in the thyroid follicular cell differentiation and function as revealed by cell and animal models and miRNA modulation in thyroid tumorigenesis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Chen, Shao-Jer; Yu, Sung-Nien; Tzeng, Jeh-En; Chen, Yen-Ting; Chang, Ku-Yaw; Cheng, Kuo-Sheng; Hsiao, Fu-Tsung; Wei, Chang-Kuo
2009-02-01
In this study, the characteristic sonographic textural feature that represents the major histopathologic components of the thyroid nodules was objectively quantified to facilitate clinical diagnosis and management. A total of 157 regions-of-interest thyroid ultrasound image was recruited in the study. The sonographic system used was the GE LOGIQ 700), (General Electric Healthcare, Chalfant St. Giles, UK). The parameters affecting image acquisition were kept in the same condition for all lesions. Commonly used texture analysis methods were applied to characterize thyroid ultrasound images. Image features were classified according to the corresponding pathologic findings. To estimate their relevance and performance to classification, ReliefF was used as a feature selector. Among the various textural features, the sum average value derived from co-occurrence matrix can well reflect echogenicity and can effectively differentiate between follicles and fibrosis base thyroid nodules. Fibrosis shows lowest echogenicity and lowest difference sum average value. Enlarged follicles show highest echogenicity and difference sum average values. Papillary cancer or follicular tumors show the difference sum average values and echogenicity between. The rule of thumb for the echogenicity is that the more follicles are mixed in, the higher the echo of the follicular tumor and papillary cancer will be and vice versa for fibrosis mixed. Areas with intermediate and lower echo should address the possibility of follicular or papillary neoplasm mixed with either follicles or fibrosis. These areas provide more cellular information for ultrasound guided aspiration
Bardosi, Sebastian; Bardosi, Attila; Nagy, Zsuzsanna; Reglodi, Dora
2016-10-01
Pituitary adenylate cyclase activating polypeptide (PACAP) belongs to the vasoactive intestinal peptide-secretin-glucagon peptide family, isolated first from ovine hypothalamus. The diverse physiological effects of PACAP are known mainly from animal experiments, including several actions in endocrine glands. Alteration of PACAP expression has been shown in several tumors, but changes in expression of PACAP and its specific PAC1 receptor in human thyroid gland pathologies have not yet been investigated. Therefore, the aim of the present study was to investigate expression of PACAP and its PAC1 receptor in human thyroid papillary carcinoma, the most common endocrine malignant tumor. PACAP and PAC1 receptor expressions were investigated from thyroid gland samples of patients with papillary carcinomas. The staining intensity of follicular epithelial cells and thyroid colloid of tumor tissue was compared to that of tumor-free tissue in the same thyroid glands in a semi-quantitative way. Our results reveal that both PACAP(-like) and PAC1 receptor(-like) immunoreactivities are altered in papillary carcinoma. Stronger PACAP immunoreactivity was observed in active follicles. Colloidal PACAP immunostaining was either lacking or very weak, and more tumorous cells displayed strong apical immunoreactivity. Regarding PAC1 receptor, cells of the normal thyroid tissue showed strong granular expression, which was lacking in the tumor cells. The cytoplasm of tumor cells displayed weak, minimal staining, while in a few tumor cells we observed strong PAC1 receptor expression. This pattern was similar to that observed in the PACAP expression, but fewer in number. In summary, we showed alteration of PACAP and PAC1 receptor expression in human thyroid papillary carcinoma, indicating that PACAP regulation is disturbed in tumorous tissue of the thyroid gland. The exact role of PACAP in thyroid tumor growth should be further explored.
Patino, R.; Wainscott, M.R.; Cruz-Li, E. I.; Balakrishnan, S.; McMurry, C.; Blazer, V.S.; Anderson, T.A.
2003-01-01
Adult zebrafish were reared up to eight weeks in control water or in water containing ammonium perchlorate (AP) at measured perchlorate concentrations of 18 (environmentally relevant, high) and 677 ppm. Groups of eight females were paired with four males on a weekly basis to assess AP effects on spawned egg volume, an index of reproductive performance. All treatments were applied to four to five spawning replicates. At 677 ppm, spawn volume was reduced within one week and became negligible after four weeks. At 18 ppm, spawn volume was unaffected even after eight weeks. Also, perchlorate at 18 ppm did not affect percentage egg fertilization. Fish were collected at the end of the exposures (677 ppm, four weeks; control and 18 ppm, eight weeks) for whole-body perchlorate content and thyroid histopathological analysis. Fish perchlorate levels were about one-hundredth of those of treatment water levels, indicating that waterborne perchlorate does not accumulate in whole fish. At 677 ppm for four weeks, perchlorate caused thyroid follicle cell (nuclear) hypertrophy and angiogenesis, whereas at 18 ppm for eight weeks, its effects were more pronounced and included hypertrophy, angiogenesis, hyperplasia, and colloid depletion. In conclusion, an eight-week exposure of adult zebrafish to 18 ppm perchlorate (high environmentally relevant concentrations) affected the histological condition of their thyroid follicles but not their reproductive performance. The effect of 677 ppm perchlorate on reproduction may be due to extrathyroidal toxicity. Further research is needed to determine if AP at lower environmentally relevant concentrations also affects the thyroid follicles of zebrafish.
Amerion, Maryam; Tahajjodi, Somayye; Hushmand, Zahra; Mahdavi Shahri, Nasser; Nikravesh, Mohammad Reza; Jalali, Mahdi
2013-01-01
Objective(s): Previous studies have shown that thyroid hormones are necessary for normal development of many organs and because of the importance of skin as the largest and the most important organ in human body protection in spite of external environment, the study of thyroid hormones effects on skin development is considerable. In this survey we have tried to study the effects of maternal hypothyroidism on skin development in fetus during pregnancy and lactation by immunohistochemistry technique. Materials and Methods: Rats were divided into 4 groups, hypothyroids, hyperthyroids, hypothyroids are treated with levothyroxin and a control group. The rat mothers were exposed to PTU with 50 mg/lit dosage and levothyroxin with 1 mg/lit dosage and PTU and levothyroxin simultaneously and with the same dosage respectively in hypothyroid, hyperthyroid and treated hypothyroids with levothyroxin groups. After 14 days, blood sample was taken from mothers, and if thyroid hormones level had change well, mating was allowed. After pregnancy and delivery, 1th day dorsal skin (as the sample for pregnancy assay) and 10th day skin (as for lactation assay) was used for immunohystochemical and morphometric studies. Results: In this study it was observed that maternal hypothyroidism during pregnancy and lactation causes significant increase in laminin expression, in most areas of skin, and maternal hyperthyroidism during pregnancy and lactation causes significant decrease in laminin expression. Also significant decrease was observed in hair follicles number and epidermis thickness in hypothyroidism groups. Conclusion: This study showed maternal hypothyroidism causes significant decrease in epidermis thickness and hair follicles number and it causes less hair in fetus. Also maternal hypothyroidism causes large changes in laminin expression in different parts of skin. At the same time,maternal hyperthyroidism causes opposite results. In fact, thyroid hormones regulate laminin expression negatively which means increase in thyroid hormone level, decreases laminin expression. So changes in thyroid hormones level can influence skin development significantly. PMID:23826487
Nilsson, M; Husmark, J; Nilsson, B; Tisell, L E; Ericson, L E
1996-10-01
Epithelial properties of thyrocytes are difficult to maintain in conventional cell culture systems. We used bicameral chambers (Transwell) in attempts to establish a functional epithelium of thyrocytes of human origin. Thyroid follicle segments were isolated by collagenase digestion of paradenomatous tissue obtained at surgery for follicular adenoma and of tissue from glands with Graves' disease. After careful separation from connective tissue and single cells by centrifugation, the follicles were plated at high density on the collagen-coated filter of the chambers and cultured in Eagle's essential medium (EMEM) containing 10% fetal calf serum (FCS) or Coon's modified Hams medium enriched with five or six factors (5H, 6H); the latter media contained 5% FCS without (5H) or with (6H) thyrotropin (TSH). The follicles were converted into a confluent cell layer, which had similar DNA content irrespective of type of medium, after 4-6 days. Cells grown in EMEM or 5H established a transepithelial electrical resistance (R) of 200-500 omega.cm2 and was impermeable to [3H]inulin, indicating the formation of epithelial junctions. Addition of 6H to confluent cells initially cultured in EMEM or 5H caused a further increase of R, maximally to 1500 omega.cm2, along with a rise of the transepithelial potential difference; 6H promoted the monolayer formation of cells, increased the number of apical microvilli and reinforced the junctional distribution of actin, cadherin and ZO-1; 6H also enhanced the polarized secretion of [3H]leucine-labeled thyroglobulin into the apical medium. Cells from Graves' thyroid tissue established an epithelium on the filter with similar characteristics to that of normal thyrocytes; some platings contained in addition large numbers of HLA-DR positive cells with a dendritic shape. HLA-DR expression was generally absent in EMEM-or 5H-grown thyrocytes, but appeared in limited areas of the cell layer after 6H and was expressed by all epithelial cells after interferon-gamma stimulation for 48 h. We conclude that human thyrocytes form a tight and polarized epithelium when cultured on permeable filters. The polarized structure and function of the cells are positively regulated by TSH. The culture system may be useful in studies addressing the role of the epithelial phenotype (cell polarity and tight barrier) in normal thyroid function as well as in pathological processes in the thyroid, such as autoimmunity, cell transformation and tumor progression.
Arauchi, Ayumi; Shimizu, Tatsuya; Yamato, Masayuki; Obara, Takao; Okano, Teruo
2009-12-01
For hormonal deficiency caused by endocrine organ diseases, continuous oral hormone administration is indispensable to supplement the shortage of hormones. In this study, as a more effective therapy, we have tried to reconstruct the three-dimensional thyroid tissue by the cell sheet technology, a novel tissue engineering approach. The cell suspension obtained from rat thyroid gland was cultured on temperature-responsive culture dishes, from which confluent cells detach as a cell sheet simply by reducing temperature without any enzymatic treatment. The 8-week-old Lewis rats were exposed to total thyroidectomy as hypothyroidism models and received thyroid cell sheet transplantation 1 week after total thyroidectomy. Serum levels of free triiodothyronine (fT(3)) and free thyroxine (fT(4)) significantly decreased 1 week after total thyroidectomy. On the other hand, transplantation of the thyroid cell sheets was able to restore the thyroid function 1 week after the cell sheet transplantation, and improvement was maintained for 4 weeks. Moreover, morphological analyses showed typical thyroid follicle organization, and anti-thyroid-transcription-factor-1 antibody staining demonstrated the presence of follicle epithelial cells. The presence of functional microvessels was also detected within the engineered thyroid tissues. In conclusion, our results indicate that thyroid cell sheets transplanted in a model of total thyroidectomy can reorganize histologically to resemble a typical thyroid gland and restore thyroid function in vivo. In this study, we are the first to confirm that engineered thyroid tissue can repair hypothyroidism models in rats and, therefore, cell sheet transplantation of endocrine organs may be suitable for the therapy of hormonal deficiency.
Wang, Ningjian; Zhang, Kun; Han, Bing; Li, Qin; Chen, Yi; Zhu, Chunfang; Chen, Yingchao; Xia, Fangzhen; Zhai, Hualing; Jiang, Boren; Shen, Zhoujun; Lu, Yingli
2017-06-01
Follicle stimulating hormone plays direct roles in a variety of nongonadal tissues and sex hormone binding globulin is becoming the convergence of the crosstalk among metabolic diseases. However, no studies have explored the association between follicle stimulating hormone and sex hormone binding globulin. We aimed to study this association among men and women. SPECT-China is a population-based study conducted since 2014. This study included 4206 men and 2842 postmenopausal women. Collected serum was assayed for gonadotropins, sex hormone binding globulin, sex hormones etc. Regression analyses were performed to assess the relationship between sex hormone binding globulin and follicle stimulating hormone and other variables including metabolic factors, thyroid function and sex hormones. Treatment with follicle stimulating hormone at different concentrations of 0, 5, 50 and 100 IU/L for 24 h was performed in HepG2 cells. In Spearman correlation, sex hormone binding globulin was significantly correlated with FSH, triglycerides, thyroxins, body mass index and blood pressure in men and postmenopausal women (all P < 0.05). In regression analyses, follicle stimulating hormone was a significant predictor of sex hormone binding globulin in men and postmenopausal women (P < 0.05), independent of above variables. Follicle stimulating hormone induced sex hormone binding globulin expression in a dose-dependent fashion in HepG2 cells. Serum follicle stimulating hormone levels were positively associated with circulating sex hormone binding globulin levels in men and postmenopausal women. This association is independent of age, insulin resistance, hepatic function, lipid profile, thyroid function, adiposity, blood pressure, and endogenous sex hormones.
Defective ciliogenesis in thyroid hürthle cell tumors is associated with increased autophagy
Lee, Junguee; Yi, Shinae; Kang, Yea Eun; Chang, Joon Young; Kim, Jung Tae; Sul, Hae Joung; Kim, Jong Ok; Kim, Jin Man; Kim, Joon; Porcelli, Anna Maria; Kim, Koon Soon; Shong, Minho
2016-01-01
Primary cilia are found in the apical membrane of thyrocytes, where they may play a role in the maintenance of follicular homeostasis. In this study, we examined the distribution of primary cilia in the human thyroid cancer to address the involvement of abnormal ciliogenesis in different thyroid cancers. We examined 92 human thyroid tissues, including nodular hyperplasia, Hashimoto's thyroiditis, follicular tumor, Hürthle cell tumor, and papillary carcinoma to observe the distribution of primary cilia. The distribution and length of primary cilia facing the follicular lumen were uniform across variable-sized follicles in the normal thyroid gland. However, most Hürthle cells found in benign and malignant thyroid diseases were devoid of primary cilia. Conventional variant of papillary carcinoma (PTC) displayed longer primary cilia than those of healthy tissue, whereas both the frequency and length of primary cilia were decreased in oncocytic variant of PTC. In addition, ciliogenesis was markedly defective in primary Hürthle cell tumors, including Hürthle cell adenomas and carcinomas, which showed higher level of autophagosome biogenesis. Remarkably, inhibition of autophagosome formation by Atg5 silencing or treatment with pharmacological inhibitors of autophagosome formation restored ciliogenesis in the Hürthle cell carcinoma cell line XTC.UC1 which exhibits a high basal autophagic flux. Moreover, the inhibition of autophagy promoted the accumulation of two factors critical for ciliogenesis, IFT88 and ARL13B. These results suggest that abnormal ciliogenesis, a common feature of Hürthle cells in diseased thyroid glands, is associated with increased basal autophagy. PMID:27816963
1996-02-01
RIA kit was purchased from Diagnostic Product Corporation (Los Angeles, CA), and canine T3 antibody-coated tubes were used. Sera from the female...0.0 0.1 0.0 0.0 Necrosis (%) 0 13 10 56b (severity) 0.0 0.1 0.1 0.6 Thyroid (N) 10 8 10 9 Dilated follicles (%) 0 13 10 100° (severity) 0.0 0.1 0.1...Necrosis (%) (severity)0 9 11 0.1 9 22 0.2 10 0 0.0 10 40 0.4 Thyroid (N) Dilated follicles (%) (severity) 9 0 0.0 10 10 0.1
Murata, Tsubasa; Iwadate, Manabu; Takizawa, Yoshinori; Miyakoshi, Masaaki; Hayase, Suguru; Yang, Wenjing; Cai, Yan; Yokoyama, Shigetoshi; Nagashima, Kunio; Wakabayashi, Yoshiyuki; Zhu, Jun
2017-01-01
Background: Studies of thyroid stem/progenitor cells have been hampered due to the small organ size and lack of tissue, which limits the yield of these cells. A continuous source that allows the study and characterization of thyroid stem/progenitor cells is desired to push the field forward. Method: A cell line was established from Hoechst-resistant side population cells derived from mouse thyroid that were previously shown to contain stem/progenitor-like cells. Characterization of these cells were carried out by using in vitro two- and three-dimensional cultures and in vivo reconstitution of mice after orthotopic or intravenous injection, in conjunction with quantitative reverse transcription polymerase chain reaction, Western blotting, immunohisto(cyto)chemistry/immunofluorescence, and RNA seq analysis. Results: These cells were named SPTL (side population cell-derived thyroid cell line). Under low serum culturing conditions, SPTL cells expressed the thyroid differentiation marker NKX2-1, a transcription factor critical for thyroid differentiation and function, while no expression of other thyroid differentiation marker genes were observed. SPTL cells formed follicle-like structures in Matrigel® cultures, which did not express thyroid differentiation marker genes. In mouse models of orthotopic and intravenous injection, the latter following partial thyroidectomy, a few SPTL cells were found in part of the follicles, most of which expressed NKX2-1. SPTL cells highly express genes involved in epithelial–mesenchymal transition, as demonstrated by RNA seq analysis, and exhibit a gene-expression pattern similar to anaplastic thyroid carcinoma. Conclusion: These results demonstrate that SPTL cells have the capacity to differentiate into thyroid to a limited degree. SPTL cells may provide an excellent tool to study stem cells, including cancer stem cells of the thyroid. PMID:28125936
Bioprinting of a functional vascularized mouse thyroid gland construct.
Bulanova, Elena A; Koudan, Elizaveta V; Degosserie, Jonathan; Heymans, Charlotte; Pereira, Frederico DAS; Parfenov, Vladislav A; Sun, Yi; Wang, Qi; Akhmedova, Suraya A; Sviridova, Irina K; Sergeeva, Natalia S; Frank, Georgy A; Khesuani, Yusef D; Pierreux, Christophe E; Mironov, Vladimir A
2017-08-18
Bioprinting can be defined as additive biofabrication of three-dimensional (3D) tissues and organ constructs using tissue spheroids, capable of self-assembly, as building blocks. The thyroid gland, a relatively simple endocrine organ, is suitable for testing the proposed bioprinting technology. Here we report the bioprinting of a functional vascularized mouse thyroid gland construct from embryonic tissue spheroids as a proof of concept. Based on the self-assembly principle, we generated thyroid tissue starting from thyroid spheroids (TS) and allantoic spheroids (AS) as a source of thyrocytes and endothelial cells (EC), respectively. Inspired by mathematical modeling of spheroid fusion, we used an original 3D bioprinter to print TS in close association with AS within a collagen hydrogel. During the culture, closely placed embryonic tissue spheroids fused into a single integral construct, EC from AS invaded and vascularized TS, and epithelial cells from the TS progressively formed follicles. In this experimental setting, we observed formation of a capillary network around follicular cells, as observed during in utero thyroid development when thyroid epithelium controls the recruitment, invasion and expansion of EC around follicles. To prove that EC from AS are responsible for vascularization of the thyroid gland construct, we depleted endogenous EC from TS before bioprinting. EC from AS completely revascularized depleted thyroid tissue. The cultured bioprinted construct was functional as it could normalize blood thyroxine levels and body temperature after grafting under the kidney capsule of hypothyroid mice. Bioprinting of functional vascularized mouse thyroid gland construct represents a further advance in bioprinting technology, exploring the self-assembling properties of tissue spheroids.
Gál, János; Csikó, György; Pásztor, István; Bölcskey-Molnár, Antal; Albert, Mihály
2010-03-01
Postmortem examination of the carcass of an approximately 10-year-old male Red-eared slider ( Trachemys scripta elegans ) was performed. The thyroid gland was enlarged, showed follicular structure, and shifted the base of the heart caudally. Histology revealed differently shaped and sized follicles in the thyroid gland. Based on the macroscopic appearance and histopathological changes of the thyroid gland, the pathological process was established as a papillary-cystic carcinoma. Neoplasia of the endocrine organs, especially of the thyroid gland, is rare in reptiles. The current case seems to be the first report of thyroid carcinoma in a Red-eared slider.
[Sub-acute thyroiditis in a patient on immunosuppressive treatment].
D'Amico, Giovanna; Di Crescenzo, Vincenzo; Caleo, Alessia; Garzi, Alfredo; Vitale, Mario
2013-01-01
Sub-acute thyroiditis or De Quervain's thyroiditis is a viral, inflammatory disease which causes the serum release of thyroidal hormones and hyperthyroidism. The pathogenesis of thyroid follicle damage is unclear because the exclusive viral action or a concomitant autoimmune component, determined by the lymphoid infiltrate remain to be assessed. We describe the case of a patient under immunosuppressive treatment, who developed sub-acute thyroiditis with hormone release and hyperthyroidism. The patient, while was under immunosuppressive treatment for kidney transplant, exhibited a clinical picture and hormonal profile of hyperthyroidism. Thyroid scintiscan exhibited an extremely low uptake. Fine-needle cytologic diagnosis was granulomatous sub-acute thyroiditis (De Quervain's thyroiditis). This case suggests the primary or even exclusive role of the viral infection in hormone release and hyperthyroidism in sub-acute thyroiditis, excluding an autoimmune component.
Sharma, Bibek; Patino, R.
2008-01-01
Xenopus laevis were exposed to 0-855 ??g cadmium (Cd)/l (measured concentrations) in FETAX medium from fertilization to 47 days postfertilization. Measurements included embryonic survival and, at 47 days, tadpole survival, snout-vent length, tail length, total length, hindlimb length, weight, Nieuwkoop-Faber (NF) stage of development, initiation of metamorphic climax (??? NF 58), and thyroid follicle cell height. Embryonic and larval survival were unaffected by Cd. Relative to control tadpoles, reduced tail and total length were observed at 0.1- 8 and at 855 ??g Cd/l; and reduced snout-vent length, hindlimb length, and weight were observed at 0.1-1 and at 855 ??g Cd/l. Mean stage of development and rate of initiation of climax were unaffected by Cd at 0-84 ??g/l; however, none of the tadpoles exposed to 855 ??g Cd/l progressed beyond mid-premetamorphosis (NF 51). Thyroid glands with fully formed follicles were observed in all tadpoles ??? NF 49 examined. Follicle cell height was unaffected by Cd at 0-84 ??g/l but it was reduced at 855 ??g/l; in the latter, cell height was reduced even when compared with NF 49-51 tadpoles pooled from the 0 to 84 ??g Cd/l groups. In conclusion, (1) Cd affected tadpole growth in a bimodal pattern with the first and second inhibitory modes at concentrations below and above 84 ??g Cd/l, respectively; (2) exposure to high Cd concentrations (855 ??g/l) reduced thyroid activity and arrested tadpole development at mid-premetamorphosis; and (3) unlike its effect on growth, Cd inhibited tadpole development and thyroid function in a seemingly monotonic pattern.
Postnatal fate of the ultimobranchial remnants in the rat thyroid gland.
Vázquez-Román, Victoria; Utrilla, José C; Fernández-Santos, José M; Conde, Esperanza; Bernabé, Reyes; Sampedro, Consuelo; Martín-Lacave, Inés
2013-07-01
The ultimobranchial follicles (UBFs) are considered embryonic remnants from the ultimobranchial body (UBB). They are follicular structures that vary in size and appearance depending on the age of the rat. The main objective of this article was to study the progressive changes in shape, size, and frequency of the UBFs in the postnatal rat, from birth to old-age. To accomplish that objective, a systematic morphometric and incidental study of the UBF has been carried out in 110 Wistar rats of different ages and both sexes, divided into three groups: 1) young rats (5-90-day-old); 2) adult rats (6-15-month-old), and 3) old rats (18-24-month-old). The glands were serially sectioned and immunostained for calcitonin at five equidistant levels. According to our results, UBFs were observed in all thyroid glands but a more exhaustive sampling was occasionally necessary in male rats. In young rats, immature UBFs predominantly appeared whereas in adult rats, mature UBFs with cystic appearance and variable luminal content prevailed. We frequently found spontaneous anomalous UBFs in old rats, which we have termed as "ultimobranchial cystadenomata." Additionally, in young rats, UBF areas significantly increased with age and they were larger when compared to that of normal thyroid follicles. Likewise, in adult rats, UBFs were significantly larger than normal thyroid follicles but only in female rats. In general, UBFs in females were also significantly larger than those found in male rats. Finally, all these differences related to UBFs together with a higher incidence in females of UB cystadenomata suggest a sexual dimorphism in regard to the destiny of these embryonic remnants during postnatal thyroid development. Copyright © 2013 Wiley Periodicals, Inc.
Datta, M; Roy, P; Banerjee, J; Bhattacharya, S
1998-09-01
Blood samples collected from 29 women (aged between 19 and 35 years) during the luteal phase of the menstrual cycle (between days 18 and 23 of the cycle) showed that deficiency in thyroid hormone level is related to a decrease in progesterone (P4) secretion. To observe the effect of thyroid hormone on human ovarian luteal cells, 3,5,3'-triiodothyronine (T3; 125 ng/ml) was added to luteal cells in vitro. T3 significantly stimulated progesterone release (P < 0.01) from luteal cells and this could be blocked by cycloheximide, indicating a protein mediator for the T3 effect. The T3 stimulatory effect was inhibited by anti-T3 antibody suggesting specificity of T3 action. Addition of T3 caused a more than threefold increase in cellular protein synthesis which was inhibited by cycloheximide. Preparation of partially purified thyroid hormone-induced factor (TIF) (from peak II of Sephadex G 100 chromatography of T3-incubated cells), and its addition to luteal cell incubations caused a significant increase in P4 release (P < 0.05). Incubation with trypsin or treatment with heat destroyed the stimulatory effect of TIF on P4 release, indicating the proteinaceous nature of TIF. Purified thyroid hormone-induced protein. (TIP) from rat granulosa cells and fish ovarian follicles greatly stimulated P4 release from human luteal cells. These results suggest that T3 stimulation of P4 release from human luteal cells is not direct, but is mediated through a putative protein factor, which appears to be a protein conserved through evolution as far as its biological activity is concerned.
Thyroxine differentially modulates the peripheral clock: lessons from the human hair follicle.
Hardman, Jonathan A; Haslam, Iain S; Farjo, Nilofer; Farjo, Bessam; Paus, Ralf
2015-01-01
The human hair follicle (HF) exhibits peripheral clock activity, with knock-down of clock genes (BMAL1 and PER1) prolonging active hair growth (anagen) and increasing pigmentation. Similarly, thyroid hormones prolong anagen and stimulate pigmentation in cultured human HFs. In addition they are recognized as key regulators of the central clock that controls circadian rhythmicity. Therefore, we asked whether thyroxine (T4) also influences peripheral clock activity in the human HF. Over 24 hours we found a significant reduction in protein levels of BMAL1 and PER1, with their transcript levels also decreasing significantly. Furthermore, while all clock genes maintained their rhythmicity in both the control and T4 treated HFs, there was a significant reduction in the amplitude of BMAL1 and PER1 in T4 (100 nM) treated HFs. Accompanying this, cell-cycle progression marker Cyclin D1 was also assessed appearing to show an induced circadian rhythmicity by T4 however, this was not significant. Contrary to short term cultures, after 6 days, transcript and/or protein levels of all core clock genes (BMAL1, PER1, clock, CRY1, CRY2) were up-regulated in T4 treated HFs. BMAL1 and PER1 mRNA was also up-regulated in the HF bulge, the location of HF epithelial stem cells. Together this provides the first direct evidence that T4 modulates the expression of the peripheral molecular clock. Thus, patients with thyroid dysfunction may also show a disordered peripheral clock, which raises the possibility that short term, pulsatile treatment with T4 might permit one to modulate circadian activity in peripheral tissues as a target to treat clock-related disease.
Badr El Dine, Fatma M M; Nabil, Iman M; Dwedar, Fatma I
2017-01-01
Tributyltin is one of the important and wide-spread persistent organic contaminants that accumulate in the food chain. It is suspected to cause endocrine-disrupting effects in mammals, due in part to its possible transfer through marine food chains and to the consumption of contaminated seafood. Was to study the possible toxic effect of Tributyltin on thyroid follicular cells of adult male albino rats and to evaluate the possible protective role of green tea. Forty-five adult male albino rats were included and randomly divided into 3 equal groups: a control group (Group I); Group II: received tributyltin chloride (TBT) dissolved in corn oil orally in a dose of 5 mg/kg for 30 days. Group III: received tributyltin chloride in the same dose with concomitant oral administration of green tea extract for 30 days. At the end of the experiment, the animals were sacrificed and blood samples were subjected to hormonal assay for T3, T4 and TSH levels. Malondialdehyde and reduced glutathione were assessed. The thyroid tissue was processed for histological and ultrastructure examination. The colloid area of thyroid follicles was evaluated morphometrically and statistically analyzed. A significant decrease in T3 and T4 levels and serum reduced glutathione in the group II when compared with the other groups. Furthermore, a significant increase in serum Malondialdehyde and TSH levels was recorded in group II treated group by comparison to the other two groups. Histopathological and ultrastructural changes of thyroid gland follicles were detected in tributyltin treated rats; the follicular cells appeared swollen and vacuolated. Epithelial stratification was noticed in some foci with excessive vacuolation of the colloid. Dilated rough endoplasmic reticulum filled with flocculent material and increased number of lysosomes were also detected together with variation in shape and size of the nuclei. A marked improvement in the histological features of thyroid follicles was noticed in group III. Tributyltin induces oxidative stress in rats as well as anti-thyroid effect. The green tea extract is useful in combating tissue injury that is a result of tributyltin toxicity.
Wang, Lu; Zhang, Wei-Ping; Yao, Li; Zhang, Wei; Zhu, Jin; Zhang, Wei-Chen; Zhang, Yue-Hua; Wang, Zhe; Yan, Qing-Guo; Guo, Ying; Fan, Lin-Ni; Liu, Yi-Xiong; Huang, Gao-Sheng
2015-12-01
Ectopic lymphoid follicle infiltration is a key event in Hashimoto thyroiditis (HT). Positive regulatory domain zinc finger protein 1 (PRDM1), which is induced by antigen stimulation, can regulate all lymphocyte lineages. Several groups independently demonstrated that human parvovirus B19 (PVB19) is closely associated with HT. Hence, we determined whether PRDM1 is expressed in HT thyroid tissue and whether there is any correlation between PRDM1 expression and PVB19 in the pathogenesis of HT. We detected PRDM1 expression in HT (n = 86), normal thyroid tissue (n = 30), and nontoxic nodular goiter (n = 20) samples using immunohistochemistry. We also detected PVB19 protein in HT samples in a double-blind manner and analyzed the correlation between the 2 proteins using immunofluorescence confocal detection and coimmunoprecipitation. Furthermore, we detected changes of the expression levels of PRDM1 and PVB19 in transfected primary thyroid follicular epithelial cells using real-time quantitative polymerase chain reaction. We found that PRDM1 protein is significantly highly expressed in the injured follicular epithelial cells in HT (83/86 cases) than in normal thyroid cells (0/30 cases) or in nontoxic nodular goiter cells (0/20 cases) (P < .001). In HT, the PRDM1 expression pattern was the same as that of PVB19, whereas PRDM1 and PVB19 were coexistent in the involved epithelial cells. Statistical analysis showed a significant correlation between PRDM1 and PVB19 (P < .001). In addition, primary thyroid epithelial cells also showed PRDM1 up-regulation after PVB19 NS1 transfection. Our findings suggest a previously unrecognized role of PRDM1 and PVB19 in the pathogenesis of HT. Copyright © 2015 Elsevier Inc. All rights reserved.
Polyakova, V S; Sizova, Ye A; Miroshnikov, S A; Notova, S V; Zavaleyeva, S M
2015-01-01
The study was conducted on 15 male Wistar rats, which were injected intramuscularly with copper nanoparticle lyosols at a dose of 2.0 mg/kg body weight once a week for 3 months. Thyroid gland was removed 7 days after the last injection and was studied using histological, morphometric and immunohistochemical methods (demonstration of Ki-67 and caspase-3). Animals of the control group (n = 15) were administered distilled water at the same time intervals. It was found that after 1, 2, 3 and 4 injections of copper nanoparticles, the thyroid gland contained an increased number of large cyst-like follicles, while the average thyrocyte height of and the volume of their nuclei were reduced, which indicate a decline in hormone production. After 12 injections of copper nanoparticles, the hyperplastic thyroid gland demonstrated small follicles lined with columnar epithelium, which contained no or small amount of the colloid. The number of mitotically dividing thyrocytes was increased. Parafollicular cells demonstrated an apoptotic dominant. Morphological data suggest goitrogenic effect of multiple doses of copper nanopartides. The data received indicating the readiness of the thyroid cells to the programmed death and its possible depression (absence of signs of thyrocyte apoptosis) at different stages of the experiment confirm the modulating effect of copper on apoptosis.
Kuznik, B I; Pateiuk, A V; Rusaeva, N S; Baranchugova, L M; Obydenko, V I
2010-01-01
Neonatal hypophysectomy in chicken produces enlarged follicles of the thyroid gland, accumulation of colloids, impressed follicular epithelium, increased nucleus-cytoplasm ratio in thyrocytes, atrophied inter-follicular epithelium, depressed immunity, development of hypercoagulation and depressed fibrinolysis. When hypophysectomy is performed in one-year-old birds the impairments developing in thyroid morphology, immunity and hemostasis are less pronounced. Peptides of the anterior (Lys-Glu-Asp-Gly) and posterior (Ala-Glu-Asp-Gly) thyroid lobes injected to hypophysectomized birds prevent atrophic changes of the thyroid gland, normalize immune and hemostatic parameters.
Follicular thyroglobulin induces cathepsin H expression and activity in thyrocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oda, Kenzaburo; Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama, Tokyo 189-0002; Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University, 5-21-16 Omorinishi, Ota, Tokyo 143-8540
Thyroglobulin (Tg) stored in thyroid follicles exerts a potent negative-feedback effect on each step of pre-hormone biosynthesis, including Tg gene transcription and iodine uptake and organification, by suppressing the expression of specific transcription factors that regulate these steps. Pre-hormones are stored in the follicular colloid before being reabsorbed. Following lysosomal proteolysis of its precursor, thyroid hormone (TH) is released from thyroid follicles. Although the suppressive effects of follicular Tg on each step of pre-hormone biosynthesis have been extensively characterized, whether follicular Tg accumulation also affects hormone reabsorption, proteolysis, and secretion is unclear. In this study we explored whether follicular Tgmore » can regulate the expression and function of the lysosomal endopeptidases cathepsins. We found that in the rat thyroid cell line FRTL-5 follicular Tg induced cathepsin H mRNA and protein expression, as well as cathepsin H enzyme activity. Double immunofluorescence staining showed that Tg endocytosis promoted cathepsin H translocalization into lysosomes where it co-localized with internalized Tg. These results suggest that cathepsin H is an active participant in lysosome-mediated pre-hormone degradation, and that follicular Tg stimulates mobilization of pre-hormones by activating cathepsin H-associated proteolysis pathways. - Highlights: • Follicular Tg increases cathepsin H mRNA and protein levels in rat thyroid cells. • Follicular Tg increases cathepsin H enzyme activity in rat thyroid cells. • After Tg stimulation cathepsin H co-localizes to lysosomes with follicular Tg. • Cathepsin H promotes hormone secretion by lysosome-mediated mechanisms.« less
Assessment of ovarian reserve in euthyroid adolescents with Hashimoto thyroiditis.
Pirgon, Ozgur; Sivrice, Cigdem; Demirtas, Hakan; Dundar, Bumin
2016-01-01
We aimed to investigate the ovarian function and reserve in euthyroid adolescents (TSH < 2.5 mIU/L) diagnosed with Hashimoto thyroiditis (HT). This case-control study included 30 adolescent girls (mean age 15.1 ± 1.4 years) newly diagnosed as HT with presence of high thyroid antibodies with gland heterogeneity in ultrasound and age-matched 30 healthy female subjects. Anti-ovarian antibody (AOAb), LH/FSH ratio, estradiol, anti-mullerian hormone (AMH), inhibin-B, total testosterone, antral follicle count, ovarian volumes and uterine length were measured. The clinical, laboratory, and ultrasound data of the HT and control groups were compared. There were no significant differences between the girls with HT and healthy controls in relation to LH/FSH ratio, estradiol and inhibin-B levels. AOAb (p = 0.02), AMH (p = 0.007) and total testosterone levels were higher in HT group than the control group (p = 0.03). AOAb level was found to be positively correlated with LH/FSH ratio (p = 0.03), AMH (p = 0.01) and inhibin-B (p < 0.001) in HT group. This study demonstrated that the adolescent girls diagnosed with autoimmune thyroiditis had normal ovarian reserve based on measurements of AMH, inhibin B, FSH, LH/FSH ratio, estradiol and antral follicle counts.
Khalaf, Hanaa A; Arafat, Eetmad A
2015-01-01
Monosodium glutamate (MSG) is a major flavor enhancer used as a food additive. The present study investigates the effects of different doses of MSG on the morphometric and histological changes of the thyroid gland. 28 male albino rats were used. The rats were divided into four groups: group I control, group II, III and IV treated with MSG (0.25 g/kg, 3 g/kg, 6 g/kg daily for one month) respectively. The thyroid glands were dissected out and prepared for light and electron microscopic examination. Light microscopic examination of thyroid gland of group II revealed increase in follicular epithelial height. Groups III & IV showed decrease in the follicular diameter and irregularity in the shape of some follicles with discontinuity of basement membrane. Follicular hyperplasia was detected in some follicles with appearance of multiple pyknotic nuclei in follicular and interfollicular cells and multiple exfoliated cells in the colloid. In addition, areas of loss of follicular pattern were appeared in group IV. Immunohistochemical examination of BCL2 immunoexpression of the thyroid glands of groups III & IV reveals weak positive reaction in the follicular cells cytoplasm. Ultrathin sections examination of groups III & IV revealed follicular cells with irregular hyperchromatic nuclei, marked dilatation of rER and increased lysosomes with areas of short or lost apical microvilli. In addition, vacuolation of mitochondria was detected in group IV. The results displayed that MSG even at low doses is capable of producing alterations in the body weights and thyroid tissue function and histology. PMID:26884820
Achouri, Younes; Hahn, Stephan; Many, Marie-Christine; Craps, Julie; Refetoff, Samuel; Liao, Xiao-Hui; Dumont, Jacques E.; Van Sande, Jacqueline; Corvilain, Bernard; Miot, Françoise; De Deken, Xavier
2016-01-01
Background: The dual oxidases (Duox) are involved in hydrogen peroxide generation, which is essential for thyroid hormone synthesis, and therefore they are markers of thyroid function. During inflammation, cytokines upregulate DUOX gene expression in the airway and the intestine, suggesting a role for these proteins in innate immunity. It was previously demonstrated that interleukin-4 (IL-4) upregulates DUOX gene expression in thyrocytes. Although the role of IL-4 in autoimmune thyroid diseases has been studied extensively, the effects of IL-4 on thyroid physiology remain largely unknown. Therefore, a new animal model was generated to study the impact of IL-4 on thyroid function. Methods: Transgenic (Thyr-IL-4) mice with thyroid-targeted expression of murine IL-4 were generated. Transgene expression was verified at the mRNA and protein level in thyroid tissues and primary cultures. The phenotype of the Thyr-IL-4 animals was characterized by measuring serum thyroxine (T4) and thyrotropin levels and performing thyroid morphometric analysis, immunohistochemistry, whole transcriptome sequencing, quantitative reverse transcription polymerase chain reaction, and ex vivo thyroid function assays. Results: Thyrocytes from two Thyr-IL-4 mouse lines (#30 and #52) expressed IL-4, which was secreted into the extracellular space. Although 10-month-old transgenic animals had T4 and thyrotropin serum levels in the normal range, they had altered thyroid follicular structure with enlarged follicles composed of elongated thyrocytes containing numerous endocytic vesicles. These follicles were positive for T4 staining the colloid, indicating their capacity to produce thyroid hormones. RNA profiling of Thyr-IL-4 thyroid samples revealed modulation of multiple genes involved in inflammation, while no major leukocyte infiltration could be detected. Upregulated expression of Duox1, Duoxa1, and the pendrin anion exchanger gene (Slc26a4) was detected. In contrast, the iodide symporter gene Slc5a5 was markedly downregulated resulting in impaired iodide uptake and reduced thyroid hormone levels in transgenic thyroid tissue. Hydrogen peroxide production was increased in Thyr-IL-4 thyroid tissue compared with wild-type animals, but no significant oxidative stress could be detected. Conclusions: This is the first study to show that ectopic expression of IL-4 in thyroid tissue upregulates Duox1/Duoxa1 and Slc26a4 expression in the thyroid. The present data demonstrate that IL-4 could affect thyroid morphology and function, mainly by downregulating Slc5a5 expression, while maintaining a normal euthyroid phenotype. PMID:27599561
Dysfunctional Uterine Bleeding: Questions to Discuss with Your Doctor
... exam Your Doctor Might Order the Following Lab Tests or Studies: Pregnancy test Blood tests such as complete blood count, coagulation (clotting) studies, and certain hormone tests (such as thyroid stimulating hormone, cortisol, prolactin, follicle ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taborda, A; Benabdallah, N; Desbree, A
2015-06-15
Purpose: To perform a dosimetry study at the sub-cellular scale of Auger-electron emitter 99m-Tc using a mouse single thyroid cellular model to investigate the contribution of the 99m-Tc Auger-electrons to the absorbed dose and possible link to the thyroid stunning in in vivo experiments in mice, recently reported in literature. Methods: The simulation of S-values for Auger-electron emitting radionuclides was performed using both the recent MCNP6 software and the Geant4-DNA extension of the Geant4 toolkit. The dosimetric calculations were validated through comparison with results from literature, using a simple model of a single cell consisting of two concentric spheres ofmore » unit density water and for six Auger-electron emitting radionuclides. Furthermore, the S-values were calculated using a single thyroid follicle model for uniformly distributed 123-I and 125-I radionuclides and compared with published S-values. After validation, the simulation of the S-values was performed for the 99m-Tc radionuclide within the several mouse thyroid follicle cellular compartments, considering the radiative and non-radiative transitions of the 99m-Tc radiation spectrum. Results: The calculated S-values using MCNP6 are in good agreement with the results from literature, validating its use for the 99m-Tc S-values calculations. The most significant absorbed dose corresponds to the case where the radionuclide is uniformly distributed in the follicular cell’s nucleus, with a S-value of 7.8 mGy/disintegration, due mainly to the absorbed Auger-electrons. The results show that, at a sub-cellular scale, the emitted X-rays and gamma particles do not contribute significantly to the absorbed dose. Conclusion: In this work, MCNP6 was validated for dosimetric studies at the sub-cellular scale. It was shown that the contribution of the Auger-electrons to the absorbed dose is important at this scale compared to the emitted photons’ contribution and can’t be neglected. The obtained S-values of Auger-electron emitting 99m-Tc radionuclide will be presented and discussed.« less
Water quality and amphibian health in the Big Bend region of the Rio Grande Basin
Sharma, Bibek; Hu, F.; Carr, J.A.; Patino, Reynaldo
2011-01-01
Male and female Rio Grande leopard frogs (Rana berlandieri) were collected in May 2005 from the main stem and tributaries of the Rio Grande in the Big Bend region of Texas. Frogs were examined for (1) incidence of testicular ovarian follicles in males; (2) thyroid epithelial cell height, a potential index of exposure to thyroid-disrupting contaminants; and (3) incidence of liver melanomacrophage aggregates, a general index of exposure to contaminants. Standard parameters of surface water quality and concentrations of selected elements, including heavy metals, were determined at each frog collection site. Heavy metals also were measured in whole-frog composite extracts. Water cadmium concentrations in most sites and chloride concentrations in the main stem exceeded federal criteria for freshwater aquatic life. Mercury was detected in frogs from the two collection sites in Terlingua Creek. There was a seventeen percent incidence of testicular ovarian follicles in male frogs. Mean thyroid epithelial cell height was greater in frogs from one of the Terlingua Creek sites (Terlingua Abajo). No differences were observed in the incidence of hepatic macrophage aggregates among sites. In conclusion, although potential cause-effect relationships between indices of habitat quality and amphibian health could not be established, the results of this study raise concerns about the general quality of the aquatic habitat and the potential long-term consequences to the aquatic biota of the Big Bend region. The presence of ovarian follicles in male frogs is noteworthy but further study is necessary to determine whether this phenomenon is natural or anthropogenically induced.
Çeliker, Metin; Beyazal Çeliker, Fatma; Turan, Arzu; Beyazal, Mehmet; Beyazal Polat, Hatice
2015-01-01
Ectopic thyroid can be encountered anywhere between the base of tongue and pretracheal region. The most common form is euthyroid neck mass. Herein, we aimed to present the findings of a female case with ectopic thyroid tissue localized in the left submandibular region. A 44-year-old female patient, who underwent bilateral subtotal thyroidectomy four years ago with the diagnosis of multinodular goiter, was admitted to our hospital due to a mass localized in the left submandibular area that gradually increased in the last six months. Neck ultrasonography, contrast-enhanced computed tomography, and scintigraphic examination were performed on the patient. On thyroid scintigraphy with Tc-99m pertechnetate, thyroid tissue activity uptake showing massive radioactivity was observed in the normal localization of the thyroid gland and in the submandibular localization. The focus in the submandibular region was excised. Pathological examination of the specimen showed normal thyroid follicle cells with no signs of malignancy. The submandibular mass is a rarely encountered lateral ectopic thyroid tissue. Accordingly, ectopic thyroid tissue should also be considered in the differential diagnosis of masses in the submandibular region. PMID:26634164
Johnson, Kenneth R; Marden, Coleen C; Ward-Bailey, Patricia; Gagnon, Leona H; Bronson, Roderick T; Donahue, Leah Rae
2007-07-01
Dual oxidases generate the hydrogen peroxide needed by thyroid peroxidase for the incorporation of iodine into thyroglobulin, an essential step in thyroid hormone synthesis. Mutations in the human dual oxidase 2 gene, DUOX2, have been shown to underlie several cases of congenital hypothyroidism. We report here the first mouse Duox2 mutation, which provides a new genetic model for studying the specific function of DUOX2 in the thyroid gland and in other organ systems where it is hypothesized to play a role. We mapped the new spontaneous mouse mutation to chromosome 2 and identified it as a T>G base pair change in exon 16 of Duox2. The mutation changes a highly conserved valine to glycine at amino acid position 674 (V674G) and was named "thyroid dyshormonogenesis" (symbol thyd) to signify a defect in thyroid hormone synthesis. Thyroid glands of mutant mice are goitrous and contain few normal follicles, and anterior pituitaries are dysplastic. Serum T(4) in homozygotes is about one-tenth the level of controls and is accompanied by a more than 100-fold increase in TSH. The weight of adult mutant mice is approximately half that of littermate controls, and serum IGF-I is reduced. The cochleae of mutant mice exhibit abnormalities characteristic of hypothyroidism, including a delayed formation of the inner sulcus and tunnel of Corti and an abnormally thickened tectorial membrane. Hearing thresholds of adult mutant mice are on average 50-60 decibels (dB) above those of controls.
Walker, Peter
1984-01-01
Silent or painless thyroiditis is a frequent cause of transient hyperthyroidism, which is characterized by recent onset of symptoms in a patient with a normal to modestly enlarged and firm thyroid gland. The hallmarks of the disease are the absence of thyroidal pain or tenderness and a markedly reduced radioiodine uptake. Histologically, the gland is characterized by an important lymphocytic infiltration, occasionally to the point of lymphoid follicle formation. However, other indices of an autoimmune cause are usually absent. The disease appears to have a predilection for the postpartum period. Relapses may occur with subsequent pregnancies. Otherwise, the course is usually benign and transient, requiring moderate doses of β-adrenergic blocking agents for symptomatic relief. No pathogenetic factors are known, but the disease may conceivably have an autoimmune basis, particularly in the postpartum patient. PMID:21278944
[Hypothyreodism. From the latent functional disorder up to coma].
Hintze, G; Derwahl, M
2010-05-01
An autoimmune thyroiditis represents the main reason of hypothyroidism, defined as a lack of thyroid hormone. This autoimmune process results in destruction of functioning thyroid follicles. While subclinical or latent hypothyroidism is defined on the basis of laboratory values (an elevation of TSH with normal peripheral hormone levels), the typical signs and symptoms are associated with hypothyroidism. In about 80% of cases antibodies against thyroid peroxidase can be measured, but only in about 40-50% of cases antibodies against thyroglobulin are detectable. If hypothyrodism has been diagnosed, substitution with levothyroxine should be initiated, with the therapeutic goal to decrease TSH level to the lower normal range. In cases of subclinical hypothyroidism, levothyroxine medication should be started in patients with a high TSH value, positive antibodies and/or the typical ultrasound of autoimmune thyroiditis. However, substitution with levothyroxine in any case of elevated TSH values should be avoided.
Thyroiditis: an integrated approach.
Sweeney, Lori B; Stewart, Christopher; Gaitonde, David Y
2014-09-15
Thyroiditis is a general term that encompasses several clinical disorders characterized by inflammation of the thyroid gland. The most common is Hashimoto thyroiditis; patients typically present with a nontender goiter, hypothyroidism, and an elevated thyroid peroxidase antibody level. Treatment with levothyroxine ameliorates the hypothyroidism and may reduce goiter size. Postpartum thyroiditis is transient or persistent thyroid dysfunction that occurs within one year of childbirth, miscarriage, or medical abortion. Release of preformed thyroid hormone into the bloodstream may result in hyperthyroidism. This may be followed by transient or permanent hypothyroidism as a result of depletion of thyroid hormone stores and destruction of thyroid hormone-producing cells. Patients should be monitored for changes in thyroid function. Beta blockers can treat symptoms in the initial hyperthyroid phase; in the subsequent hypothyroid phase, levothyroxine should be considered in women with a serum thyroid-stimulating hormone level greater than 10 mIU per L, or in women with a thyroid-stimulating hormone level of 4 to 10 mIU per L who are symptomatic or desire fertility. Subacute thyroiditis is a transient thyrotoxic state characterized by anterior neck pain, suppressed thyroid-stimulating hormone, and low radioactive iodine uptake on thyroid scanning. Many cases of subacute thyroiditis follow an upper respiratory viral illness, which is thought to trigger an inflammatory destruction of thyroid follicles. In most cases, the thyroid gland spontaneously resumes normal thyroid hormone production after several months. Treatment with high-dose acetylsalicylic acid or nonsteroidal anti-inflammatory drugs is directed toward relief of thyroid pain.
Long-term effects of treatment on endocrine function in children with brain tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duffner, P.K.; Cohen, M.E.; Anderson, S.W.
1983-11-01
Fourteen children with brain tumors received endocrine evaluations at least one year following completion of cranial irradiation. Treatment consisted of operation (13 patients), craniospinal irradiation (6), whole brain irradiation (5), posterior fossa irradiation (3), and chemotherapy (10). Endocrine evaluation included bone age roentgenography and measurement of growth hormone (using sequential arginine and insulin stimulation), thyroxine, thyroid-stimulating hormone, plasma cortisol, testosterone, prolactin, and urinary follicle-stimulating hormone and luteinizing hormone. Ten of 12 children (83%) had abnormal responses to both tests of growth hormone stimulation. All growth hormone-deficient patients treated prior to puberty and tested at least 2 years following completion ofmore » cranial irradiation had decelerated linear growth. Results of thyroid function tests were abnormal in 4 patients: 2 patients had evidence of primary hypothyroidism, and 2 showed secondary or tertiary hypothyroidism. Two patients had inadequate cortisol responses to insulin hypoglycemia. Urinary follicle-stimulating hormone and luteinizing hormone, serum prolactin, and serum testosterone levels were appropriate for age in all patients.« less
A branching morphogenesis program governs embryonic growth of the thyroid gland
Liang, Shawn; Johansson, Ellen; Barila, Guillermo; Altschuler, Daniel L.; Fagman, Henrik
2018-01-01
ABSTRACT The developmental program that regulates thyroid progenitor cell proliferation is largely unknown. Here, we show that branching-like morphogenesis is a driving force to attain final size of the embryonic thyroid gland in mice. Sox9, a key factor in branching organ development, distinguishes Nkx2-1+ cells in the thyroid bud from the progenitors that originally form the thyroid placode in anterior endoderm. As lobes develop the thyroid primordial tissue branches several generations. Sox9 and Fgfr2b are co-expressed distally in the branching epithelium prior to folliculogenesis. The thyroid in Fgf10 null mutants has a normal shape but is severely hypoplastic. Absence of Fgf10 leads to defective branching and disorganized angiofollicular units although Sox9/Fgfr2b expression and the ability of cells to differentiate and form nascent follicles are not impaired. These findings demonstrate a novel mechanism of thyroid development reminiscent of the Fgf10-Sox9 program that characterizes organogenesis in classical branching organs, and provide clues to aid understanding of how the endocrine thyroid gland once evolved from an exocrine ancestor present in the invertebrate endostyle. PMID:29361553
A branching morphogenesis program governs embryonic growth of the thyroid gland.
Liang, Shawn; Johansson, Ellen; Barila, Guillermo; Altschuler, Daniel L; Fagman, Henrik; Nilsson, Mikael
2018-01-25
The developmental program that regulates thyroid progenitor cell proliferation is largely unknown. Here, we show that branching-like morphogenesis is a driving force to attain final size of the embryonic thyroid gland in mice. Sox9, a key factor in branching organ development, distinguishes Nkx2-1 + cells in the thyroid bud from the progenitors that originally form the thyroid placode in anterior endoderm. As lobes develop the thyroid primordial tissue branches several generations. Sox9 and Fgfr2b are co-expressed distally in the branching epithelium prior to folliculogenesis. The thyroid in Fgf10 null mutants has a normal shape but is severely hypoplastic. Absence of Fgf10 leads to defective branching and disorganized angiofollicular units although Sox9/Fgfr2b expression and the ability of cells to differentiate and form nascent follicles are not impaired. These findings demonstrate a novel mechanism of thyroid development reminiscent of the Fgf10-Sox9 program that characterizes organogenesis in classical branching organs, and provide clues to aid understanding of how the endocrine thyroid gland once evolved from an exocrine ancestor present in the invertebrate endostyle. © 2018. Published by The Company of Biologists Ltd.
Takabayashi, Shuji; Umeki, Kazumi; Yamamoto, Etsuko; Suzuki, Tohru; Okayama, Akihiko; Katoh, Hideki
2006-10-01
Recently, we found a novel dwarf mutation in an ICR closed colony. This mutation was governed by a single autosomal recessive gene. In novel dwarf mice, plasma levels of the thyroid hormones, T3 and T4, were reduced; however, TSH was elevated. Their thyroid glands showed a diffuse goiter exhibiting colloid deficiency and abnormal follicle epithelium. The dwarfism was improved by adding thyroid hormone in the diet. Gene mapping revealed that the dwarf mutation was closely linked to the thyroid peroxidase (Tpo) gene on chromosome 12. Sequencing of the Tpo gene of the dwarf mice demonstrated a C to T substitution at position 1508 causing an amino acid change from arginine (Arg) to cysteine (Cys) at codon 479 (Arg479Cys). Western blotting revealed that TPO protein of the dwarf mice was detected in a microsomal fraction of thyroid tissue, but peroxidase activity was not detected. These findings suggested that the dwarf mutation caused a primary congenital hypothyroidism by TPO deficiency, resulting in a defect of thyroid hormone synthesis.
[Computer simulation of thyroid regulatory mechanisms in health and malignancy].
Abduvaliev, A A; Gil'dieva, M S; Khidirov, B N; Saĭdalieva, M; Saatov, T S
2010-07-01
The paper describes a computer model for regulation of the number of thyroid follicular cells in health and malignancy. The authors'computer program for mathematical simulation of the regulatory mechanisms of a thyroid follicular cellular community cannot be now referred to as good commercial products. For commercialization of this product, it is necessary to draw up a direct relation of the introduced corrected values from the actually existing normal values, such as the peripheral blood concentrations of thyroid hormones or the mean values of endocrine tissue mitotic activity. However, the described computer program has been also used in researches by our scientific group in the study of thyroid cancer. The available biological experimental data and theoretical provisions on thyroid structural and functional organization at the cellular level allow one to construct mathematical models for quantitative analysis of the regulation of the size of a cellular community of a thyroid follicle in health and abnormalities, by using the method for simulation of the regulatory mechanisms of living systems and the equations of cellular community regulatory communities.
[Presence of islands of fatty tissue in struma].
Lax, S; Beham, A; Langsteger, W; Schmid, C
1988-04-01
We examined 929 surgically obtained thyroid glands derived from 791 female and 138 male patients and found intrathyroidal adipose tissue in 18 cases (1.94%). Only the thyroid glands of middle aged and older women (mean age 51 years) were affected, as well as in the case of follicular adenomas and nodular and diffuse hyperplasia. With respect to localization in the interstitial connective tissue, as well as between thyroid follicles, interstitial, parenchymatous and mixed types are proposed. In addition to sex and age there is a high correlation with obesity, which is suggestive of hormonal influences. Knowledge of the presence of intrathyroidal fat tissue is of interest to the pathologist since it may lead to erroneous interpretations of histological and cytological specimens of the thyroid gland. In conclusion, not one case of hypothyroidism was detected amongst the 18 cases investigated in this study.
Short-term transplantation of isolated human ovarian follicles and cortical tissue into nude mice.
Dolmans, Marie-Madeleine; Martinez-Madrid, Belen; Gadisseux, Elodie; Guiot, Yves; Yuan, Wu Yuan; Torre, Antoine; Camboni, Alessandra; Van Langendonckt, Anne; Donnez, Jacques
2007-08-01
This study was designed to evaluate follicular survival and growth after short-term transplantation of fresh isolated human follicles and ovarian cortical tissue to nude mice. Ovarian biopsies were obtained from nine women undergoing laparoscopy. Twelve nude mice were xenografted with an ovarian cortical fragment in the right ovarian bursa, and a clot containing isolated follicles in the left, for a period of 7 days. One ungrafted fragment was used as a control. Histological sections were analyzed to determine follicle number and stage. The proliferative status of follicular cells was assessed by Ki-67 immunostaining. A total of 659 follicles was analyzed by histology and 545 follicles by immunohistochemistry. The percentage of primordial follicles was found to be markedly reduced 1 week post-grafting when compared with ungrafted tissue, while the percentage of primary follicles had significantly increased. Only 8% of follicles showed Ki-67-positive granulosa cells before grafting, whereas 1 week after grafting, 71% of follicles in fragments and 67% of isolated follicles were Ki-67-positive (P<0.001). Moreover, the histological aspect of isolated follicle grafts was similar to that of grafted fragments: follicles were surrounded by vimentin-positive stroma-like tissue of human origin, as confirmed by fluorescent in situ hybridization with human-specific probes. Our results demonstrate, for the first time, that isolated human follicles are able to survive and grow after xenografting. This study also shows massive in vivo follicular activation after transplantation of grafted fragments and isolated follicles. One week after grafting, well-structured stroma-like tissue of human origin was observed around the isolated follicles. The potential origin of this stroma is discussed.
Changes in the role of the thyroid axis during metamorphosis of the Japanese eel, Anguilla japonica.
Sudo, Ryusuke; Okamura, Akihiro; Kuroki, Mari; Tsukamoto, Katsumi
2014-08-01
To clarify the role of thyroid function during metamorphosis from leptocephalus to glass eel in the Japanese eel, we examined the histology of the thyroid gland and measured whole-body concentrations of thyroid hormones, thyroxine (T4) and triiodothyronine (T3), and thyroid stimulating hormone β-subunit TSH (TSHβ) mRNA expression levels in five stages of artificially hatched eels (leptocephalus, early-metamorphosis, late-metamorphosis, glass eel, and elver). During metamorphosis, the inner colloid of thyroid follicles showed positive immunoreactivity for T4, and both T4 and T3 levels were significantly increased, whereas a small peak of TSHβ mRNA level was observed at the early-metamorphosis stage. Similarly, TSHβ mRNA levels were highest in the glass eel stage, and then decreased markedly in the elver stage. In contrast to TSHβ mRNA expression, thyroid hormones (both T4 and T3) increased further from the glass eel to elver stages. These results indicated that thyroid function in the Japanese eel was active both during and after metamorphosis. Therefore, the thyrotropic axis may play important roles not only in metamorphosis but also in subsequent inshore or upstream migrations. © 2014 Wiley Periodicals, Inc.
Intrinsic Regulation of Thyroid Function by Thyroglobulin
Sellitti, Donald F.
2014-01-01
Background: The established paradigm for thyroglobulin (Tg) function is that of a high molecular weight precursor of the much smaller thyroid hormones, triiodothyronine (T3) and thyroxine (T4). However, speculation regarding the cause of the functional and morphologic heterogeneity of the follicles that make up the thyroid gland has given rise to the proposition that Tg is not only a precursor of thyroid hormones, but that it also functions as an important signal molecule in regulating thyroid hormone biosynthesis. Summary: Evidence supporting this alternative paradigm of Tg function, including the up- or downregulation by colloidal Tg of the transcription of Tg, iodide transporters, and enzymes employed in Tg iodination, and also the effects of Tg on the proliferation of thyroid and nonthyroid cells, is examined in the present review. Also discussed in detail are potential mechanisms of Tg signaling in follicular cells. Conclusions: Finally, we propose a mechanism, based on experimental observations of Tg effects on thyroid cell behavior, that could account for the phenomenon of follicular heterogeneity as a highly regulated cycle of increasing and decreasing colloidal Tg concentration that functions to optimize thyroid hormone production through the transcriptional activation or suppression of specific genes. PMID:24251883
Ion beam microanalysis of human hair follicles
NASA Astrophysics Data System (ADS)
Kertész, Zs.; Szikszai, Z.; Pelicon, P.; Simčič, J.; Telek, A.; Bíró, T.
2007-07-01
Hair follicle is an appendage organ of the skin which is of importance to the survival of mammals and still maintains significance for the human race - not just biologically, but also through cosmetic and commercial considerations. However data on composition of hair follicles are scarce and mostly limited to the hair shaft. In this study we provide detailed information on the elemental distribution in human hair follicles in different growth phases (anagen and catagen) using a scanning proton microprobe. The analysis of skin samples obtained from human adults undergoing plastic surgery and of organ-cultured human hair follicles may yield a new insight into the function, development and cyclic activity of the hair follicle.
TSH Receptor Function Is Required for Normal Thyroid Differentiation in Zebrafish
Opitz, Robert; Maquet, Emilie; Zoenen, Maxime; Dadhich, Rajesh
2011-01-01
TSH is the primary physiological regulator of thyroid gland function. The effects of TSH on thyroid cells are mediated via activation of its membrane receptor [TSH receptor (TSHR)]. In this study, we examined functional thyroid differentiation in zebrafish and characterized the role of TSHR signaling during thyroid organogenesis. Cloning of a cDNA encoding zebrafish Tshr showed conservation of primary structure and functional properties between zebrafish and mammalian TSHR. In situ hybridization confirmed that the thyroid is the major site of tshr expression during zebrafish development. In addition, we identified tpo, iyd, duox, and duoxa as novel thyroid differentiation markers in zebrafish. Temporal analyses of differentiation marker expression demonstrated the induction of an early thyroid differentiation program along with thyroid budding, followed by a delayed onset of duox and duoxa expression coincident with thyroid hormone synthesis. Furthermore, comparative analyses in mouse and zebrafish revealed for the first time a thyroid-enriched expression of cell death regulators of the B-cell lymphoma 2 family during early thyroid morphogenesis. Knockdown of tshr function by morpholino microinjection into embryos did not affect early thyroid morphogenesis but caused defects in later functional differentiation. The thyroid phenotype observed in tshr morphants at later stages comprised a reduction in number and size of functional follicles, down-regulation of differentiation markers, as well as reduced thyroid transcription factor expression. A comparison of our results with phenotypes observed in mouse models of defective TSHR and cAMP signaling highlights the value of zebrafish as a model to enhance the understanding of functional differentiation in the vertebrate thyroid. PMID:21737742
van Koppen, Chris J; de Gooyer, Marcel E; Karstens, Willem-Jan; Plate, Ralf; Conti, Paolo GM; van Achterberg, Tanja AE; van Amstel, Monique GA; Brands, Jolanda HGM; Wat, Jesse; Berg, Rob JW; Lane, J Robert D; Miltenburg, Andre MM; Timmers, C Marco
2012-01-01
BACKGROUND AND PURPOSE Graves' disease (GD) is an autoimmune disease in which the thyroid is overactive, producing excessive amounts of thyroid hormones, caused by thyroid-stimulating hormone (TSH) receptor-stimulating immunoglobulins (TSIs). Many GD patients also suffer from thyroid eye disease (Graves' ophthalmopathy or GO), as TSIs also activate TSH receptors in orbital tissue. We recently developed low molecular weight (LMW) TSH receptor antagonists as a novel therapeutic strategy for the treatment of GD and GO. Here, we determined the molecular pharmacology of a prototypic, nanomolar potent LMW TSH receptor antagonist, Org 274179-0. EXPERIMENTAL APPROACH Using CHO cells heterogeneously expressing human TSH receptors and rat FRTL-5 cells endogenously expressing rat TSH receptors, we determined the potency and efficacy of Org 274179-0 at antagonizing TSH- and TSI-induced TSH receptor signalling and its cross-reactivity at related follicle-stimulating hormone and luteinizing hormone receptors. We analysed the allosteric mode of interaction of Org 274179-0 and determined whether it is an inverse agonist at five naturally occurring, constitutively active TSH receptor mutants. KEY RESULTS Nanomolar concentrations of Org 274179-0 completely inhibited TSH (and TSI)-mediated TSH receptor activation with little effect on the potency of TSH, in accordance with an allosteric mechanism of action. Conversely, increasing levels of TSH receptor stimulation only marginally reduced the antagonist potency of Org 274179-0. Org 274179-0 fully blocked the increased basal activity of all the constitutively active TSH receptor mutants tested with nanomolar potencies. CONCLUSIONS AND IMPLICATIONS Nanomolar potent TSH receptor antagonists like Org 274179-0 have therapeutic potential for the treatment of GD and GO. PMID:22014107
Pathogenesis of thyroid nodules: histological classification?
Salabè, G B
2001-02-01
Thyroid nodule genesis may be considered as an amplification of thyroid heterogeneity due to genetic and/or epigenetic mechanisms. We classified the thyroid nodules in five types with distinct histological features: hyperplastic, neoplastic, colloid, cystic and thyroiditic nodules. Hyperplastic: Thyrocyte proliferation is under the control of TSH but several other paracrine and autocrine factors are secreted by follicular cells, the stromal apparatus and the lymphocytes, which are implicated in initiation and perpetuation of thyroid hyperplasia. Growth occurs mainly through TSHR, cAMP and PKA. Constitutive cAMP overproduction has been shown to be due to point mutation of the TSHR or Gs protein, producing overgrowth and hyperfunction. Neoplastic: Several activated oncogenes have been identified in thyroid malignancies. Oncogenes relevant to the thyroid carcinogenesis are: mutated TSHR and gsp (constitutive activation of cAMP); TRK (receptor for NGF); RET/PTC (phosphorylation of tyrosine kinase receptor)--an isoform of this oncogene is induced by radiation: ras (it encodes Gs proteins transducing mitogenic signals); and c-MET (receptor for hepatocyte growth factor). The evolution of a differentiated thyroid cancer towards an undifferentiated cancer is due to a mutation of a family of proteins (i.e., p53), which acts as a brake, preventing the genomic instability of cancer. It is suggested that a tumor initiates by RET or ras and possibly progresses--as a result of additional mutations and by p53 mutation--to anaplastic carcinoma. Colloid: Flattening of the epithelium and dilatation of follicles containing viscous material--made up by a concentrated solution of thyroglobulin (hTg)--is the characteristic of the colloid nodule. A defect of intraluminal reabsorption of hTg has been suggested but not proven. Experimentally, a load of iodine is able to change thyroid hyperplasia to a colloid feature; however, a load of iodine is rarely found in the clinical history of patients. A new clue to the pathogenesis comes from the finding that a relevant part of the colloid (10-20%) is made up of insoluble globules, where hTg is compacted in a polymeric form. It is suggested that stocking hTg into globules is defective in colloid nodules, leading to enormous enlargement of the follicle. Cystic: It is estimated that between 15 and 40% of thyroid nodules are partly or entirely cystic. The 'true cyst' is rare; most of the so-called cystic nodules are 'pseudocysts', which follow necrosis and colliquation. Necrosis issues as an imbalance between growth and the precisely regulated process of angiogenesis. More recently, the VEGF/VPF has been found to be at the origin of recent and recurrent cysts. Immunotoxic and apoptotic mechanisms have also been suggested. Chemical analysis of cystic fluid showed a 'denatured' and 'serum-like' pattern suggesting different mechanisms in the pathogenesis of the pseudocystic thyroid nodules. Thyroiditic: Nodular lymphocytic thyroiditis (NLT) includes two different entities: 1) lymphocyte thyroiditis growing as a nodule in a hyperplastic or normal gland, and 2) lymphocyte thyroiditis associated in the same nodule with other nodular diseases of the thyroid: papillary thyroid carcinoma and lymphoma have been found to be associated to chronic lymphocytic thyroiditis.
Anila, KR; Nayak, Nileena; Jayasree, K
2016-01-01
Introduction: Chronic lymphocytic thyroiditis [Hashimoto thyroiditis (HT)] is a common thyroid lesion diagnosed on fine-needle aspiration cytology (FNAC). Apart from FNAC, various other parameters, such as clinical features, ultrasonographic findings, antithyroid antibody levels, hormone profiles, and radionuclide thyroid scan, are also taken into consideration in making a diagnosis of HT. Aims: To grade lymphocytic thyroiditis based on the cytomorphology and to correlate the cytological grades with the levels of antithyroid peroxidase antibody (ATPO), antithyroglobulin antibody (ATG), and thyroid stimulating hormone (TSH). Materials and Methods: During a period of one and half years, 1,667 cases underwent FNAC of thyroid at our tertiary care center. Of these, 128 cases had cytological evidence of lymphocytic thyroiditis. Out of these, in 60 cases the levels of ATPO, ATG, and TSH were known. The cytological grades of lymphocytic thyroiditis in these cases were correlated with these parameters. Results: Out of the 60 cases, 55 were females. Age ranged from 5 years to 70 years, with majority of patients in third decade. Diffuse enlargement of thyroid was the commonest presentation. However, 14 cases presented with nodular disease. Majority of the patients had grade 1 thyroiditis (27 cases), followed by grade 2 thyroiditis (22 cases). Cytomorphology was diagnostic of thyroiditis in all 60 cases. ATPO was elevated in 57 cases and ATG was elevated in 40 cases. Elevated level of TSH was seen in only 18 cases. In 39 cases, TSH value was normal. There was no correlation between the cytological grades of thyroiditis and the levels of antithyroid antibodies and TSH. Conclusion: Lymphocytic infiltration of thyroid follicles is pathognomonic of lymphocytic thyroiditis. Positivity for antithyroid antibodies is strongly associated with HT but no correlation was observed between the grades of thyroiditis and the levels of ATPO, ATG, and TSH. PMID:27756987
Picut, Catherine A.; Dixon, Darlene; Simons, Michelle L.; Stump, Donald G.; Parker, George A.; Remick, Amera K.
2014-01-01
Histopathologic examination of the immature ovary is a required end point on juvenile toxicity studies and female pubertal and thyroid function assays. To aid in this evaluation and interpretation of the immature ovary, the characteristic histologic features of rat ovary through the developmental periods are described. These histologic features are correlated with published changes in neuroendocrine profiles as the hypothalamic–pituitary–gonadal axis matures. During the neonatal stage (postnatal day [PND] 0–7), ovarian follicle development is independent of pituitary gonadotropins (luteinizing hormone [LH] or follicle-stimulating hormone [FSH]), and follicles remain preantral. Antral development of “atypical” follicles occurs in the early infantile period (PND 8–14) when the ovary becomes responsive to pituitary gonadotropins. In the late infantile period (PND 15–20), the zona pellucida appears, the hilus forms, and antral follicles mature by losing their “atypical” appearance. The juvenile stage (PND 21–32) is the stage when atresia of medullary follicles occurs corresponding to a nadir in FSH levels. In the peripubertal period (PND 33–37), atresia subsides as FSH levels rebound, and LH begins its bimodal surge pattern leading to ovulation. This report will provide pathologists with baseline morphologic and endocrinologic information to aid in identification and interpretation of xenobiotic effects in the ovary of the prepubertal rat. PMID:25107574
Yanofsky, Stephen D; Shen, Emily S; Holden, Frank; Whitehorn, Erik; Aguilar, Barbara; Tate, Emily; Holmes, Christopher P; Scheuerman, Randall; MacLean, Derek; Wu, May M; Frail, Donald E; López, Francisco J; Winneker, Richard; Arey, Brian J; Barrett, Ronald W
2006-05-12
The pituitary glycoprotein hormones, luteinizing hormone and follicle-stimulating hormone (FSH), act through their cognate receptors to initiate a series of coordinated physiological events that results in germ cell maturation. Given the importance of FSH in regulating folliculogenesis and fertility, the development of FSH mimetics has been sought to treat infertility. Currently, purified and recombinant human FSH are the only FSH receptor (FSH-R) agonists available for infertility treatment. By screening unbiased combinatorial chemistry libraries, using a cAMP-responsive luciferase reporter assay, we discovered thiazolidinone agonists (EC50's = 20 microm) of the human FSH-R. Subsequent analog library screening and parallel synthesis optimization resulted in the identification of a potent agonist (EC50 = 2 nm) with full efficacy compared with FSH that was FSH-R-selective and -dependent. The compound mediated progesterone production in Y1 cells transfected with the human FSH-R (EC50 = 980 nm) and estradiol production from primary rat ovarian granulosa cells (EC50 = 10.5 nm). This and related compounds did not compete with FSH for binding to the FSH-R. Use of human FSH/thyroid-stimulating hormone (TSH) receptor chimeras suggested a novel mechanism for receptor activation through a binding site independent of the natural hormone binding site. This study is the first report of a high affinity small molecule agonist that activates a glycoprotein hormone receptor through an allosteric mechanism. The small molecule FSH receptor agonists described here could lead to an oral alternative to the current parenteral FSH treatments used clinically to induce ovarian stimulation for both in vivo and in vitro fertilization therapy.
Cao, Xin-Yuan; Hua, Xu; Xiong, Jian-Wei; Zhu, Wen-Ting; Zhang, Jun; Chen, Ling
2018-01-01
Triclosan (TCS), a broad-spectrum antimicrobial agent, is widely used in clinical settings and various personal care products. The aim of this study was to evaluate the influence of TCS on reproductive endocrine and function. Here, we show that the exposure of adult female mice to 10 or 100 mg/kg/day TCS caused prolongation of diestrus, and decreases in antral follicles and corpora lutea within 2 weeks. TCS mice showed decreases in the levels of serum luteinizing hormone (LH), follicle-stimulating hormone (FSH) and progesterone, and gonadotrophin-releasing hormone ( GnRH ) mRNA with the lack of LH surge and elevation of prolactin (PRL). TCS mice had lower kisspeptin immunoreactivity and kiss1 mRNA in anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC). Moreover, the estrogen (E2)-enhanced AVPV-kisspeptin expression was reduced in TCS mice. In addition, the serum thyroid hormones (triiodothyronine (T3) and thyroxine (T4)) in TCS mice were reduced with increases in levels of thyroid stimulating hormone (TSH) and thyroid releasing hormone (TRH). In TCS mice, the treatment with Levothyroxine (L-T4) corrected the increases in PRL, TSH and TRH; the administration of L-T4 or type-2 dopamine receptors agonist quinpirole inhibiting PRL release could rescue the decline of kisspeptin expression in AVPV and ARC; the treatment with L-T4, quinpirole or the GPR45 agonist kisspeptin-10 recovered the levels of serum LH and FSH and progesterone, and GnRH mRNA. Furthermore, TCS mice treated with L-T4 or quinpirole resumed regular estrous cycling, follicular development and ovulation. Together, these results indicate that exposing adult female mice to TCS (≥10 mg/kg) reduces thyroid hormones causing hyperprolactinemia that then suppresses hypothalamic kisspeptin expression, leading to deficits in reproductive endocrine and function.
Cao, Xin-Yuan; Hua, Xu; Xiong, Jian-Wei; Zhu, Wen-Ting; Zhang, Jun; Chen, Ling
2018-01-01
Triclosan (TCS), a broad-spectrum antimicrobial agent, is widely used in clinical settings and various personal care products. The aim of this study was to evaluate the influence of TCS on reproductive endocrine and function. Here, we show that the exposure of adult female mice to 10 or 100 mg/kg/day TCS caused prolongation of diestrus, and decreases in antral follicles and corpora lutea within 2 weeks. TCS mice showed decreases in the levels of serum luteinizing hormone (LH), follicle-stimulating hormone (FSH) and progesterone, and gonadotrophin-releasing hormone (GnRH) mRNA with the lack of LH surge and elevation of prolactin (PRL). TCS mice had lower kisspeptin immunoreactivity and kiss1 mRNA in anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC). Moreover, the estrogen (E2)-enhanced AVPV-kisspeptin expression was reduced in TCS mice. In addition, the serum thyroid hormones (triiodothyronine (T3) and thyroxine (T4)) in TCS mice were reduced with increases in levels of thyroid stimulating hormone (TSH) and thyroid releasing hormone (TRH). In TCS mice, the treatment with Levothyroxine (L-T4) corrected the increases in PRL, TSH and TRH; the administration of L-T4 or type-2 dopamine receptors agonist quinpirole inhibiting PRL release could rescue the decline of kisspeptin expression in AVPV and ARC; the treatment with L-T4, quinpirole or the GPR45 agonist kisspeptin-10 recovered the levels of serum LH and FSH and progesterone, and GnRH mRNA. Furthermore, TCS mice treated with L-T4 or quinpirole resumed regular estrous cycling, follicular development and ovulation. Together, these results indicate that exposing adult female mice to TCS (≥10 mg/kg) reduces thyroid hormones causing hyperprolactinemia that then suppresses hypothalamic kisspeptin expression, leading to deficits in reproductive endocrine and function. PMID:29403355
Novel biomarkers of perchlorate exposure in zebrafish
Mukhi, S.; Carr, J.A.; Anderson, T.A.; Patino, R.
2005-01-01
Perchlorate inhibits iodide uptake by thyroid follicles and lowers thyroid hormone production. Although several effects of perchlorate on the thyroid system have been reported, the utility of these pathologies as markers of environmental perchlorate exposures has not been adequately assessed. The present study examined time-course and concentration-dependent effects of perchlorate on thyroid follicle hypertrophy, colloid depletion, and angiogenesis; alterations in whole-body thyroxine (T4) levels; and somatic growth and condition factor of subadult and adult zebrafish. Changes in the intensity of the colloidal T4 ring previously observed in zebrafish also were examined immunohistochemically. Three-month-old zebrafish were exposed to ammonium perchlorate at measured perchlorate concentrations of 0, 11, 90, 1,131, and 11,480 ppb for 12 weeks and allowed to recover in clean water for 12 weeks. At two weeks of exposure, the lowest-observed-effective concentrations (LOECs) of perchlorate that induced angiogenesis and depressed the intensity of colloidal T4 ring were 90 and 1,131 ppb, respectively; other parameters were not affected (whole-body T4 was not determined at this time). At 12 weeks of exposure, LOECs for colloid depletion, hypertrophy, angiogenesis, and colloidal T4 ring were 11,480, 1,131, 90, and 11 ppb, respectively. All changes were reversible, but residual effects on angiogenesis and colloidal T4 ring intensity were still present after 12 weeks of recovery (LOEC, 11,480 ppb). Whole-body T 4 concentration, body growth (length and weight), and condition factor were not affected by perchlorate. The sensitivity and longevity of changes in colloidal T4 ring intensity and angiogenesis suggest their usefulness as novel markers of perchlorate exposure. The 12-week LOEC for colloidal T4 ring is the lowest reported for any perchlorate biomarker in aquatic vertebrates. ?? 2005 SETAC.
Wang, Tian-ren; Yan, Li-ying; Yan, Jie; Lu, Cui-ling; Xia, Xi; Yin, Tai-lang; Zhu, Xiao-hui; Gao, Jiang-man; Ding, Ting; Hu, Wei-hong; Guo, Hong-yan; Li, Rong; Qiao, Jie
2014-03-01
What is the effect of basic fibroblast growth factor (bFGF) on the growth of individual early human follicles in a three-dimensional (3D) culture system in vitro? The addition of 200 ng bFGF/ml improves human early follicle growth, survival and viability during growth in vitro. It has been demonstrated that bFGF enhances primordial follicle development in human ovarian tissue culture. However, the growth and survival of individual early follicles in encapsulated 3D culture have not been reported. The maturation in vitro of human ovarian follicles was investigated. Ovarian tissue (n= 11) was obtained from 11 women during laparoscopic surgery for gynecological disease, after obtaining written informed consent. One hundred and fifty-four early follicles were isolated by enzymic digestion and mechanical disruption. They were individually encapsulated into alginate (1% w/v) and randomly assigned to be cultured with 0, 100, 200 or 300 ng bFGF/ml for 8 days. Individual follicles were cultured in minimum essential medium α (αMEM) supplemented with bFGF. Follicle survival and growth were assessed by microscopy. Follicle viability was evaluated under confocal laser scanning microscope following Calcein-AM and Ethidium homodimer-I (Ca-AM/EthD-I) staining. After 8 days in culture, all 154 follicles had increased in size. The diameter and survival rate of the follicles and the percentage with good viability were significantly higher in the group cultured with 200 ng bFGF/ml than in the group without bFGF (P < 0.05). The percentage of follicles in the pre-antral stage was significantly higher in the 200 ng bFGF/ml group than in the group without bFGF (P < 0.05), while the percentages of primordial and primary follicles were significantly lower (P < 0.05). The study focuses on the effect of bFGF on the development of individual human early follicles in 3D culture in vitro and has limited ability to reveal the specific effect of bFGF at each different stage. The findings highlight the need to improve the acquisition and isolation of human ovarian follicles. The in vitro 3D culture of human follicles with appropriate dosage of bFGF offers an effective method to investigate their development. Moreover, it allows early follicles to be cultured to an advanced stage and therefore has the potential to become an important source of mature oocytes for assisted reproductive technology; particularly as an option for fertility preservation in women, including patients with cancer. This work was supported by the National Basic Research Program of China (2011|CB944504, 2011CB944503) and the National Natural Science Foundation of China (81200470, 81000275, 31230047, 8110197). There are no conflicts of interest to declare.
TSH Compensates Thyroid-Specific IGF-I Receptor Knockout and Causes Papillary Thyroid Hyperplasia
Müller, Kathrin; Führer, Dagmar; Mittag, Jens; Klöting, Nora; Blüher, Matthias; Weiss, Roy E.; Many, Marie-Christine; Schmid, Kurt Werner
2011-01-01
Although TSH stimulates all aspects of thyroid physiology IGF-I signaling through a tyrosine kinase-containing transmembrane receptor exhibits a permissive impact on TSH action. To better understand the importance of the IGF-I receptor in the thyroid in vivo, we inactivated the Igf1r with a Tg promoter-driven Cre-lox system in mice. We studied male and female mice with thyroidal wild-type, Igf1r+/−, and Igf1r−/− genotypes. Targeted Igf1r inactivation did transiently reduce thyroid hormone levels and significantly increased TSH levels in both heterozygous and homozygous mice without affecting thyroid weight. Histological analysis of thyroid tissue with Igf1r inactivation revealed hyperplasia and heterogeneous follicle structure. From 4 months of age, we detected papillary thyroid architecture in heterozygous and homozygous mice. We also noted increased body weight of male mice with a homozygous thyroidal null mutation in the Igf1r locus, compared with wild-type mice, respectively. A decrease of mRNA and protein for thyroid peroxidase and increased mRNA and protein for IGF-II receptor but no significant mRNA changes for the insulin receptor, the TSH receptor, and the sodium-iodide-symporter in both Igf1r+/− and Igf1r−/− mice were detected. Our results suggest that the strong increase of TSH benefits papillary thyroid hyperplasia and completely compensates the loss of IGF-I receptor signaling at the level of thyroid hormones without significant increase in thyroid weight. This could indicate that the IGF-I receptor signaling is less essential for thyroid hormone synthesis but maintains homeostasis and normal thyroid morphogenesis. PMID:21980075
Wang, Jian; Guli, Qie-Re; Ming, Xiao-Cui; Zhou, Hai-Tao; Cui, Yong-Jie; Jiang, Yue-Feng; Zhang, Di; Liu, Yang
2018-01-01
This study reports a case of primary mucinous carcinoma of the thyroid gland with signet-ring-cell differentiation, and reviews the literature to evaluate its real incidence and the prognosis of these patients. A 74-year-old Chinese woman, presenting with a mass in the right lobe of thyroid gland, came to the hospital. Computed tomography revealed a mass in the right lobe of the thyroid gland, accompanied with right neck lymphadenectasis and airway deviation caused by tumor compression. Thyroid imaging suggested a thyroid malignant tumor and suspicious lymph node metastasis. Histologically, the tumor was characterized by the tumor cells arranged in small nests or trabeculae with an abundant extracellular mucoid matrix. The tumor cells formed diffuse invasion among thyroid follicles. In the peripheral regions, prominent signet-ring-cells formed a sheet-like structure and extended into the extrathyroidal fat tissue. The tumor cells were diffusely positive for thyroid transcription factor-1 (TTF-1) and PAX8, while they were focally positive for pan-cytokeratin (AE1/AE3) and weakly expressed thyroglobulin. Based on the histological features and immunohistochemical profile, a diagnosis of primary mucinous carcinoma of the thyroid gland with signet-ring-cell differentiation was rendered. Using a panel of immunohistochemical markers may be helpful for differential diagnosis and for determining whether the tumor is primary or not.
Stubbs, Sharron A; Webber, Lisa J; Stark, Jaroslav; Rice, Suman; Margara, Raul; Lavery, Stuart; Trew, Geoffrey H; Hardy, Kate; Franks, Stephen
2013-08-01
Polycystic ovary syndrome (PCOS), the commonest cause of anovulatory infertility, is characterized by disordered follicle development including increased activation and accelerated growth of preantral follicles. Data from experimental animals and preliminary results from studies of human ovarian tissue suggest that IGFs affect preantral follicle development. Our objectives were to investigate the expression of the type-1 IGF receptor (IGFR-1) in the human ovary and to determine whether IGFs are involved in stimulating the transition of follicles from primordial to primary stage in normal and polycystic ovaries. We used archived ovarian tissue for protein expression studies and small cortical biopsies for follicle isolation and for tissue culture. This was a laboratory-based study, using clinical tissue samples. A total of 54 women, 33 with normal ovaries and 21 with polycystic ovaries, were classified by reference to menstrual cycle history and ultrasonography. We evaluated expression of IGFR-1 mRNA in isolated preantral follicles and of IGFR-1 protein in archived ovarian tissue samples from normal and polycystic ovaries and effects of exogenous IGF-1 on preantral follicle development and survival in cultured fragments of normal and polycystic ovaries. IGFR-1 mRNA and protein was expressed in preantral follicles at all stages of development and enhanced expression was noted in PCOS follicles during early preantral development. IGF-1 stimulated initiation of follicle growth in normal tissue but had little effect on preantral follicle growth in polycystic ovaries in which, characteristically, there was a higher proportion of follicles that had entered the growing phase even before culture. IGFs are plausible candidates in regulation of initiation of human follicle growth, and accelerated preantral follicle growth in PCOS may be due to increased activity of endogenous IGFs.
Flatfish metamorphosis: a hypothalamic independent process?
Campinho, Marco A; Silva, Nadia; Roman-Padilla, Javier; Ponce, Marian; Manchado, Manuel; Power, Deborah M
2015-03-15
Anuran and flatfish metamorphosis are tightly regulated by thyroid hormones that are the necessary and sufficient factors that drive this developmental event. In the present study whole mount in situ hybridization (WISH) and quantitative PCR in sole are used to explore the central regulation of flatfish metamorphosis. Central regulation of the thyroid in vertebrates is mediated by the hypothalamus-pituitary-thyroid (HPT) axis. Teleosts diverge from other vertebrates as hypothalamic regulation in the HPT axis is proposed to be through hypothalamic inhibition although the regulatory factor remains enigmatic. The dynamics of the HPT axis during sole metamorphosis revealed integration between the activity of the thyrotrophes in the pituitary and the thyroid follicles. No evidence was found supporting a role for thyroid releasing hormone (trh) or corticotrophin releasing hormone (crh) in hypothalamic control of TH production during sole metamorphosis. Intriguingly the results of the present study suggest that neither hypothalamic trh nor crh expression changes during sole metamorphosis and raises questions about the role of these factors and the hypothalamus in regulation of thyrotrophs. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Pathological changes in the thyroid gland in crush asphyxia.
Byard, Roger W
2013-12-01
To determine whether crush asphyxia may be associated with macro- and microscopic changes in the thyroid gland, four cases of death due to crush asphyxia were evaluated where the decedents (males aged 36, 37, 45, and 65 years respectively) suffered lethal chest compressions. The diagnosis of crush asphyxia in each case was suggested by the death scene description and confirmed by the finding of injuries to the torso, with marked congestion of the face, neck, and upper body associated with petechial and subconjunctival hemorrhages. In addition to other pathological findings, each decedent had intense congestion of their thyroid gland resulting in a dark/black appearance. Microscopically, stromal capillaries were engorged, with bulging of capillaries into the follicles. Rupture of these small vessels had created focal intrafollicular aggregates of erythrocytes within the colloid. As intense suffusion of the thyroid gland with blood in cases of crush asphyxia may impart an appearance of "black thyroid" this may be another feature of this condition to look for at autopsy, in addition to intrafollicular blood lakes on histology.
Iodide handling by the thyroid epithelial cell.
Nilsson, M
2001-01-01
Iodination of thyroglobulin, the key event in the synthesis of thyroid hormone, is an extracellular process that takes place inside the thyroid follicles at the apical membrane surface that faces the follicular lumen. The supply of iodide involves two steps of TSH-regulated transport, basolateral uptake and apical efflux, that imprint the polarized phenotype of the thyroid cell. Iodide uptake is generated by the sodium/iodide symporter present in the basolateral plasma membrane. A candidate for the apical iodide-permeating mechanism is pendrin, a chloride/iodide transporting protein recently identified in the apical membrane. In physiological conditions, transepithelial iodide transport occurs without intracellular iodination, despite the presence of large amounts of thyroglobulin and thyroperoxidase inside the cells. The reason is that hydrogen peroxide, serving as electron acceptor in iodide-protein binding and normally produced at the apical cell surface, is rapidly degraded by cytosolic glutathione peroxidase once it enters the cells. Iodinated thyroglobulin in the lumen stores not only thyroid hormone but iodine incorporated in iodotyrosine residues as well. After endocytic uptake and degradation of thyroglobulin, intracellular deiodination provides a mechanism for recycling of iodide to participate in the synthesis of new thyroid hormone at the apical cell surface.
Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells
NASA Astrophysics Data System (ADS)
Yang, Ruifeng; Zheng, Ying; Burrows, Michelle; Liu, Shujing; Wei, Zhi; Nace, Arben; Guo, Wei; Kumar, Suresh; Cotsarelis, George; Xu, Xiaowei
2014-01-01
Epithelial stem cells (EpSCs) in the hair follicle bulge are required for hair follicle growth and cycling. The isolation and propagation of human EpSCs for tissue engineering purposes remains a challenge. Here we develop a strategy to differentiate human iPSCs (hiPSCs) into CD200+/ITGA6+ EpSCs that can reconstitute the epithelial components of the hair follicle and interfollicular epidermis. The hiPSC-derived CD200+/ITGA6+ cells show a similar gene expression signature as EpSCs directly isolated from human hair follicles. Human iPSC-derived CD200+/ITGA6+ cells are capable of generating all hair follicle lineages including the hair shaft, and the inner and outer root sheaths in skin reconstitution assays. The regenerated hair follicles possess a KRT15+ stem cell population and produce hair shafts expressing hair-specific keratins. These results suggest an approach for generating large numbers of human EpSCs for tissue engineering and new treatments for hair loss, wound healing and other degenerative skin disorders.
Thyroid dysfunction and thyroid autoimmunity in euthyroid women in achieving fertility.
Medenica, S; Nedeljkovic, O; Radojevic, N; Stojkovic, M; Trbojevic, B; Pajovic, B
2015-01-01
Thyroid disease is the second most common endocrine condition in women of childbearing age. Thyroid hormones are involved in control of menstrual cycle and in achieving fertility affecting the actions of follicle-stimulating hormone and luteinizing hormone on steroid biosynthesis by specific triiodothyronine sites on oocytes; therefore, affect all aspects of reproduction. It remains controversial if pregnant women should be screened for thyroid dysfunction. Purpose of this review was to examine recent studies on the assessment of thyroid dysfunction in pregnancy, its treatment and newly perspective of thyroid autoimmunity in pregnant euthyroid women in achieving fertility. An electronic search was conducted using the internet medical databases: Medline/PubMed, EMBASE, EBSCO, and the Cochrane library. Thyroid gland faces great challenge in pregnancy when many hormonal changes occur. Precondition for normal follicular development and ovulation is pulsate gonadothropin realizing hormone secretion. Thyroid dysfunction in pregnancy is classified as forms of hypothyroidism (positivity of thyroid autoantibody, isolated hypothyroidism, and subclinical or overt hypothyroidism), hyperthyroidism, and autoimmune disease, but also thyroid nodules and cancer, iodine insufficiency and postpartum thyroiditis. These conditions can cause adverse effects on mother and fetus including pregnancy loss, gestational hypertension, or pre-eclampsia, pre-term delivery, low birth weight, placental abruption and postpartum hemorrhage. There is an evidence that thyroid autoimmunity, in thyroid dysfunction adversely affects conception and pregnancy outcomes, but it is unclear what impact has isolated eumetabolic thyroid autoimmunity in achieving fertility, especially in women undergoing in vitro fertilization. Treatment of euthyroid pregnant women with positive thyroid peroxides antibodies is still controverse, but not few studies show that levothyroxine substitution is able to lower the chance of miscarriage and premature delivery. Further randomized trials are needed to expand our knowledge of physiologic changes in thyroid function during the pregnancy and to reveal mechanisms by which thyroid autoimmunity in euthyroid women affect fertility, especially the success of assisted reproductive technology in achieving the same and validity of levothyroxine administration in thyroid autoimmunity positive women.
Luk, Cynthia T; Kovacs, Kalman; Rotondo, Fabio; Horvath, Eva; Cusimano, Michael; Booth, Gillian L
2012-01-01
To describe the case of a patient with an unusual plurihormonal pituitary adenoma with immunoreactivity for thyroid-stimulating hormone (TSH), growth hormone, follicle-stimulating hormone, prolactin, and α-subunit. We report the clinical, laboratory, imaging, and pathology findings of a patient symptomatic from a plurihormonal pituitary adenoma and describe her outcome after surgical treatment. A 60-year-old woman presented to the emergency department with headaches, blurry vision, fatigue, palpitations, sweaty hands, and weight loss. Her medical history was notable for hyperthyroidism, treated intermittently with methimazole. Magnetic resonance imaging disclosed a pituitary macroadenoma (2.3 by 2.2 by 2.0 cm), and preoperative blood studies revealed elevated levels of TSH at 6.11 mIU/L, free thyroxine at 3.6 ng/dL, and free triiodothyronine at 6.0 pg/mL. She underwent an uncomplicated transsphenoidal resection of the pituitary adenoma. Immunostaining of tumor tissue demonstrated positivity for not only TSH but also growth hormone, follicle-stimulating hormone, prolactin, and α-subunit. The Ki-67 index of the tumor was estimated at 2% to 5%, and DNA repair enzyme O6-methylguanine-DNA methyltransferase immunostaining was mostly negative. Electron microscopy showed the ultrastructural phenotype of a glycoprotein-producing adenoma. Postoperatively, her symptoms and hyperthyroidism resolved. Thyrotropin-secreting pituitary adenomas are rare. Furthermore, recent reports suggest that 31% to 36% of adenomas may show evidence of secretion of multiple pituitary hormones. This case emphasizes the importance of considering pituitary causes of thyrotoxicosis and summarizes the clinical and pathology findings in a patient with a plurihormonal pituitary adenoma.
Hashimoto thyroiditis: clinical and diagnostic criteria.
Caturegli, P; De Remigis, A; Rose, N R
2014-01-01
Hashimoto thyroiditis (HT), now considered the most common autoimmune disease, was described over a century ago as a pronounced lymphoid goiter affecting predominantly women. In addition to this classic form, several other clinico-pathologic entities are now included under the term HT: fibrous variant, IgG4-related variant, juvenile form, Hashitoxicosis, and painless thyroiditis (sporadic or post-partum). All forms are characterized pathologically by the infiltration of hematopoietic mononuclear cells, mainly lymphocytes, in the interstitium among the thyroid follicles, although specific features can be recognized in each variant. Thyroid cells undergo atrophy or transform into a bolder type of follicular cell rich in mitochondria called Hürthle cell. Most HT forms ultimately evolve into hypothyroidism, although at presentation patients can be euthyroid or even hyperthyroid. The diagnosis of HT relies on the demonstration of circulating antibodies to thyroid antigens (mainly thyroperoxidase and thyroglobulin) and reduced echogenicity on thyroid sonogram in a patient with proper clinical features. The treatment remains symptomatic and based on the administration of synthetic thyroid hormones to correct the hypothyroidism as needed. Surgery is performed when the goiter is large enough to cause significant compression of the surrounding cervical structures, or when some areas of the thyroid gland mimic the features of a nodule whose cytology cannot be ascertained as benign. HT remains a complex and ever expanding disease of unknown pathogenesis that awaits prevention or novel forms of treatment. Copyright © 2014 Elsevier B.V. All rights reserved.
Miranda, Benjamin H; Charlesworth, Matthew R; Tobin, Desmond J; Sharpe, David T; Randall, Valerie A
2018-02-01
Male sex hormones-androgens-regulate male physique development. Without androgen signaling, genetic males appear female. During puberty, increasing androgens harness the hair follicle's unique regenerative ability to replace many tiny vellus hairs with larger, darker terminal hairs ( e.g., beard). Follicle response is epigenetically varied: some remain unaffected ( e.g., eyelashes) or are inhibited, causing balding. How sex steroid hormones alter such developmental processes is unclear, despite high incidences of hormone-driven cancer, hirsutism, and alopecia. Unfortunately, existing development models are not androgen sensitive. Here, we use hair follicles to establish an androgen-responsive human organ culture model. We show that women's intermediate facial follicles respond to men's higher androgen levels by synthesizing more hair over several days, unlike donor-matched, androgen-insensitive, terminal follicles. We demonstrate that androgen receptors-androgen-activated gene transcription regulators-are required and are present in vivo within these follicles. This is the first human organ that involves multiple cell types that responds appropriately to hormones in prolonged culture, in a way which mirrors its natural behavior. Thus, intermediate hair follicles offer a hormone-switchable human model with exceptional, unique availability of genetically identical, but epigenetically hormone-insensitive, terminal follicles. This should enable advances in understanding sex steroid hormone signaling, gene regulation, and developmental and regenerative systems and facilitate better therapies for hormone-dependent disorders.-Miranda, B. H., Charlesworth, M. R., Tobin, D. J., Sharpe, D. T., Randall, V. A. Androgens trigger different growth responses in genetically identical human hair follicles in organ culture that reflect their epigenetic diversity in life.
Hormonal disturbances in visceral leishmaniasis (kala-azar).
Verde, Frederico Araujo Lima; Verde, Francisco Agenor Araujo Lima; Neto, Augusto Saboia; Almeida, Paulo César; Verde, Emir Mendonça Lima
2011-05-01
This study presents a cross-sectional analysis of the hormonal alterations of patients with visceral leishmaniasis. The diagnosis was established by the bone marrow aspiration and polymerase chain reaction test. Primary adrenal insufficiency was observed in 45.8% of patients; low aldosterone/renin plasma ratio in 69.4%; low daily urinary aldosterone excretion in 61.1%; and low transtubular potassium gradient in 68.0%. All patients had normal plasma antidiuretic hormone (ADH) concentrations, hyponatremia, and high urinary osmolality. Plasma parathyroid hormone was low in 63%; hypomagnesemia was present in 46.4%, and increased Mg(++)(EF) in 100%. Primary thyroid insufficiency was observed in 24.6%, and secondary thyroid insufficiency in 14.1%. Normal follicle-stimulating hormone plasma levels were present in 81.4%; high luteinizing hormone and low testosterone plasma levels in 58.2% of men. There are evidences of hypothalamus-pituitary-adrenal axis abnormalities, inappropriate aldosterone and ADH secretions, and presence of hypoparathyroidism, magnesium depletion, thyroid and testicular insufficiencies.
Testosterone replacement therapy: role of pituitary and thyroid in diagnosis and treatment
Crawford, Megan
2016-01-01
Crosstalk among hormones characterizes endocrine function, and assessment of the hypogonadal man should take that into consideration. In men for whom testosterone deficiency is a concern, initial evaluation should include a thorough history and physical exam in which other endocrinopathies are being considered. Hypogonadism can be associated with both pituitary and thyroid dysfunction, for which appropriate biochemical evaluation should be undertaken in certain clinical scenarios. If low serum testosterone is confirmed measurement of luteinizing and follicle stimulating hormones (LH and FSH respectively) is essential to establish whether the hypogonadism is primary or secondary. In secondary hypogonadism measurement of prolactin is always necessary, and measurement of other pituitary hormones, along with pituitary imaging, may be indicated. Checking thyroid function may also be enlightening, and can raise additional therapeutic considerations. Correction of other pituitary axes may attenuate the need for testosterone replacement therapy in some cases. PMID:28078216
Expression and function of glycogen synthase kinase-3 in human hair follicles.
Yamauchi, Koichi; Kurosaka, Akira
2010-05-01
Beta-catenin is involved in the hair follicle morphogenesis and stem cell differentiation, and inhibition of glycogen synthase kinase-3 (GSK-3) increases beta-catenin concentration in the cytoplasm. To examine the effects of GSK-3 inhibition on the hair follicle epithelium, we first examined the expression of GSK-3 in plucked human hair follicles by RT-PCR and found GSK-3 expression in hair follicles. Western blotting with a GSK-3beta-specific antibody, Y174, also demonstrated GSK-3beta expression in the follicles. Moreover, GSK-3beta immunostaining with Y174 showed that GSK-3beta colocalized with hair follicle bulge markers. Contrary to GSK-3beta, GSK-3 alpha was widely expressed throughout the follicles when immunostained with a specific antibody, EP793Y. We then investigated the influence of GSK-3 inhibition. A GSK-3 inhibitor, BIO, promoted the growth of human outer root sheath cells, which could be cultured for up to four passages. The BIO-treated cells exhibited smaller and more undifferentiated morphology than control cells. Moreover, in organ culture of plucked human hair, outer root sheath cells in the middle of a hair follicle proliferated when cultured with BIO. These results indicate that GSK-3beta is expressed in hair bulge stem cells and BIO promotes the growth of ORS cells, possibly by regulating the GSK-3 signaling pathway.
Dietary high-fat lard intake induces thyroid dysfunction and abnormal morphology in rats.
Shao, Shan-shan; Zhao, Yuan-fei; Song, Yong-feng; Xu, Chao; Yang, Jian-mei; Xuan, Shi-meng; Yan, Hui-li; Yu, Chun-xiao; Zhao, Meng; Xu, Jin; Zhao, Jia-jun
2014-11-01
Excess dietary fat intake can induce lipotoxicity in non-adipose tissues. The aim of this study was to observe the effects of dietary high-fat lard intake on thyroid in rats. Male Sprague-Dawley rats were fed a high-fat lard diet for 24 weeks, and then the rats were fed a normal control diet (acute dietary modification) or the high-fat lard diet for another 6 weeks. The serum lipid profile, total thyroxine (TT4), free thyroxine (FT4) and thyrotropin (TSH) levels were determined at the 12, 18, 24 and 30 weeks. High-frequency ultrasound scanning of the thyroid glands was performed at the 24 or 30 weeks. After the rats were sacrificed, the thyroid glands were collected for histological and immunohistochemical analyses. The high-fat lard diet significantly increased triglyceride levels in both the serum and thyroid, and decreased serum TT4 and FT4 levels in parallel with elevated serum TSH levels. Ultrasonic imaging revealed enlarged thyroid glands with lowered echotexture and relatively heterogeneous features in the high-fat lard fed rats. The thyroid glands from the high-fat lard fed rats exhibited enlarged follicle cavities and flattened follicular epithelial cells under light microscopy, and dilated endoplasmic reticulum cisternae, twisted nuclei, fewer microvilli and secretory vesicles under transmission electron microscopy. Furthermore, the thyroid glands from the high-fat lard fed rats showed markedly low levels of thyroid hormone synthesis-related proteins TTF-1 and NIS. Acute dietary modification by withdrawal of the high-fat lard diet for 6 weeks failed to ameliorate the high-fat lard diet-induced thyroid changes. Dietary high-fat lard intake induces significant thyroid dysfunction and abnormal morphology in rats, which can not be corrected by short-term dietary modification.
Blanton, Michael L; Specker, Jennifer L
2007-01-01
Bony fishes represent the largest vertebrate class and are a very diverse animal group. This chapter provides a thorough review of the available scientific literature on the thyroid system in these important vertebrate animals. The molecular components of the hypothalamic-pituitary-thyroid (HPT) axis in this group correspond closely to those of mammals. The thyroid tissue in the fishes is organized as diffuse follicles, with a few exceptions, rather than as an encapsulated gland as is found in most other vertebrate species. The features of this diffuse tissue in fishes are reviewed with an emphasis on feedback relationships within the HPT axis, the molecular biology of the thyroid system in fishes, and comparisons versus the thyroid systems of other vertebrate taxa. A review of the role of thyroid hormone in fish development and reproduction is included. Available information about the HPT axis in fishes is quite detailed for some species and rather limited or absent in others. This review focuses on species that have been intensively studied for their value as laboratory models in assays to investigate disruption in normal function of the thyroid system. In addition, in vitro and in vivo assay methods for screening chemicals for their potential to interfere with the thyroid system are reviewed. It is concluded that there are currently no in vitro or in vivo assays in fish species that are sufficiently developed to warrant recommendation for use to efficiently screen chemicals for thyroid disruption. Methods are available that can be used to measure thyroid hormones, although our ability to interpret the causes and implications of potential alterations in T4 or T3 levels in fishes is nonetheless limited without further research.
Zhou, Dan; Cheng, Hongjing; Liu, Jinyu; Zhang, Lei
2017-06-01
Chronic liver disease has become a major health problem that causes serious damage to human health. Since the existing treatment effect was not ideal, we need to seek new treatment methods. We utilized the gene recombination technology to obtain the human hair mesenchymal stem cells which overexpression of human hepatocyte growth factor (hHGF). Furthermore, we verified the property of transfected cells through detecting surface marker by flow cytometry. We show here establishment of the hHGF-overexpressing lentivirus vector, and successfully transfection to human hair follicle mesenchymal stem cells. The verified experiments could demonstrate the human hair follicle mesenchymal stem cells which have been transfected still have the properties of stem cells. We successfully constructed human hair follicle mesenchymal stem cells which overexpression hHGF, and maintain the same properties compared with pro-transfected cells.
Should we isolate human preantral follicles before or after cryopreservation of ovarian tissue?
Vanacker, Julie; Luyckx, Valérie; Amorim, Christiani; Dolmans, Marie-Madeleine; Van Langendonckt, Anne; Donnez, Jacques; Camboni, Alessandra
2013-04-01
To evaluate the survival and growth potential of human preantral follicles isolated before and after cryopreservation. Pilot study. Gynecology research unit in a university hospital. Six women aged 27 to 32 years. Six ovarian biopsy samples were cut into two equal parts, half subjected to slow-freezing followed by follicle isolation (cryo-iso group) and alginate-matrigel embedding, and half immediately processed for follicle isolation and alginate-matrigel embedding followed by slow-freezing (iso-cryo group) or used as fresh controls (fresh group). Follicle number, viability, diameter, and morphology. After 1,134 preantral follicles had been isolated from fresh biopsy samples and 1,132 from frozen specimens, the three groups were compared before and after 7 days of in vitro culture (IVC) in alginate-matrigel beads. No statistically significant differences in viability were found between the three groups before or after IVC, but follicle diameter increased in all three groups after IVC. Morphology analysis revealed well-preserved follicles in both the iso-cryo and cryo-iso groups after IVC. Human preantral follicles can be successfully cryopreserved before or after isolation without impairing their ability to survive and grow in vitro. This could lead to development of new protocols for follicle cryopreservation, IVC, and grafting in clinical and research settings for fertility preservation. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Higgins, Claire A.; Chen, James C.; Cerise, Jane E.; Jahoda, Colin A. B.; Christiano, Angela M.
2013-01-01
De novo organ regeneration has been observed in several lower organisms, as well as rodents; however, demonstrating these regenerative properties in human cells and tissues has been challenging. In the hair follicle, rodent hair follicle-derived dermal cells can interact with local epithelia and induce de novo hair follicles in a variety of hairless recipient skin sites. However, multiple attempts to recapitulate this process in humans using human dermal papilla cells in human skin have failed, suggesting that human dermal papilla cells lose key inductive properties upon culture. Here, we performed global gene expression analysis of human dermal papilla cells in culture and discovered very rapid and profound molecular signature changes linking their transition from a 3D to a 2D environment with early loss of their hair-inducing capacity. We demonstrate that the intact dermal papilla transcriptional signature can be partially restored by growth of papilla cells in 3D spheroid cultures. This signature change translates to a partial restoration of inductive capability, and we show that human dermal papilla cells, when grown as spheroids, are capable of inducing de novo hair follicles in human skin. PMID:24145441
van Erp, Y H; Koopmans, M J; Heirbaut, P R; van der Hoeven, J C; Weterings, P J
1992-06-01
A new method is described to investigate unscheduled DNA synthesis (UDS) in human tissue after exposure in vitro: the human hair follicle. A histological technique was applied to assess cytotoxicity and UDS in the same hair follicle cells. UDS induction was examined for 11 chemicals and the results were compared with literature findings for UDS in rat hepatocytes. Most chemicals inducing UDS in rat hepatocytes raised DNA repair at comparable concentrations in the hair follicle. However, 1 of 9 chemicals that gave a positive response in the rat hepatocyte UDS test, 2-acetylaminofluorene, failed to induce DNA repair in the hair follicle. Metabolizing potential of hair follicle cells was shown in experiments with indirectly acting compounds, i.e., benzo[a]pyrene, 7,12-dimethylbenz[a]anthracene and dimethylnitrosamine. The results support the conclusion that the test in its present state is valuable as a screening assay for the detection of unscheduled DNA synthesis. Moreover, the use of human tissues may result in a better extrapolation to man.
Shi, Ya-nan; Liu, Feng-hua; Yu, Xiu-jie; Liu, Ze-bing; Li, Qing-xin; Yuan, Ji-hong; Zang, Xiao-yi; Li, Lan-ying
2013-02-01
Excessive iodine intake and viral infection are recognized as both critical factors associated with autoimmune thyroid diseases. Toll-like receptors (TLRs) have been reported to play an important role in autoimmune and inflammatory disorders. In this study, we aimed to clarify the possible mechanism of TLR3 involved in polyinosine-polycytidylic acid (poly(I:C)) promoting excessive iodine intake induced thyroiditis in non-obese diabetic (NOD) mice. Both NOD and BALB/c mice were randomly assigned to four groups: control group (n = 5), high iodine intake (HI) group (n = 7), poly(I:C) group (n = 7) and combination of excessive iodine and poly(I:C) injection (HIP) group (n = 7). After 8 weeks, mice were weighed and blood samples were collected. All the mice were sacrificed before dissection of spleen and thyroid gland. Then, thyroid histology, thyroid secreted hormone, expression of CD3(+) cells and TLR3 as well as inflammatory mRNA level were evaluated. Both NOD and BALB/c mice from HI and HIP group represented goiter and increasing thyroid relative weight. Thyroid histology evidence indicated that only HIP group of NOD mice showed severe thyroiditis with lymphocytes infiltration in majority of thyroid tissue, severe damage of follicles and general fibrosis. Immunofluorescence staining results displayed a large number of CD3(+) cells in HIP NOD mice. Real-time polymerase chain reaction (PCR) results suggested interferon (IFN)-α increased over 30 folds and IFN-γ expression was doubled compared with control group, but interleukin (IL)-4 remained unchanged in HIP group of NOD mice thyroid. Meanwhile, over one third decrease of blood total thyroxine (TT4) and increased thyroid-stimulating hormone (TSH) was observed in HIP group of NOD mice. Only HIP group of NOD mice represented significantly elevation of TLR3 expression. Poly(I:C) enhanced excessive dietary iodine induced thyroiditis in NOD mice through increasing TLR3 mediated inflammation.
Yang, M Y; Cushman, R A; Fortune, J E
2017-05-01
Does anti-Müllerian hormone (AMH) inhibit activation (initiation of growth) of primordial follicles and attenuate the growth of primary follicles in cattle, an excellent animal model for human ovarian follicular development? AMH inhibited activation of bovine primordial follicles and attenuated the growth of activated follicles in vitro. In mice null mutant for AMH, the pool of primordial follicles is depleted prematurely and AMH inhibits follicle activation in vitro. Results of studies with human ovarian tissue in vitro were inconsistent. Our previous work provided indirect evidence that AMH inhibits follicle activation in bovine ovaries. Pieces of fetal bovine ovarian cortex (2 pieces/culture well), obtained during mid or late pregnancy, were cultured in control medium or with graded doses of AMH for 2, 10 or 12 days. Effects of treatment on follicle activation and growth were determined by histological morphometry; follicles in every 20th histological section were staged (primordial or primary), counted, and measured. In addition, AMH was immunolocalized in bovine ovaries obtained at various times during pregnancy (n = 20 ovaries). Bovine fetal ovaries at mid or late gestation were obtained at a commercial abattoir. Pieces of ovarian cortex were cultured without or with AMH and fixed for histological morphometry on Day 0 and at the end of culture. Treatments were applied to duplicate cultures from each of two or three fetuses. In 12-day cultures, addition of AMH was delayed until the third day. Histological analysis provided information about the types, numbers and sizes of follicles in cortical pieces before and after treatments. Ovaries obtained during the second and third trimesters were assessed for the presence of AMH by immunohistochemistry. AMH (100-500 ng/ml) inhibited follicle activation in response to an activator (insulin) in ovarian cortical pieces from fetal ovaries in late gestation. Dose-dependent inhibitory effects on the diameters of primary follicles and their oocytes were also observed. These results were obtained only when AMH was added to cultures in advance of insulin (presumably because it penetrates tissue more slowly than insulin). Results of experiments with cortical pieces from fetal ovaries at mid-gestation, when follicles are forming, showed that AMH did not inhibit the formation of follicles. Immunohistochemical localization of AMH showed that it is not present in fetal ovaries until the third trimester, when it was localized to the granulosa cells of secondary and small antral follicles. The experiments were performed with fetal ovaries because follicles form and follicle activation begins during fetal life in cattle (as it does in humans), so fetal ovarian cortex of later gestation provides tissue rich in primordial follicles. We assume, but have no experimental evidence, that our findings also apply to post-natal ovaries. Although circulating AMH is used as an indication of the follicular reserve in women, little is known about AMH in human ovaries. Cattle are an excellent non-primate model for human ovarian follicular development and, hence, the findings suggest similar roles for AMH in human follicular development. Not applicable. This research was supported by National Research Initiative Competitive Grants no. 00-35203-9151, 2003-35203-13532, and 2008-35203-05989) from the U.S. Dept. of Agriculture's National Institute of Food and Agriculture to JEF and by an NIH National Research Service Award (F32 HD08264) to RAC. There are no conflicts of interest or competing interests. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Oxygen consumption rate of early pre-antral follicles from vitrified human ovarian cortical tissue
ISHIKAWA, Takayuki; KYOYA, Toshihiko; NAKAMURA, Yusuke; SATO, Eimei; TOMIYAMA, Tatsuhiro; KYONO, Koichi
2014-01-01
The study of human ovarian tissue transplantation and cryopreservation has advanced significantly. Autotransplantation of human pre-antral follicles isolated from cryopreserved cortical tissue is a promising option for the preservation of fertility in young cancer patients. The purpose of the present study was to reveal the effect of vitrification after low-temperature transportation of human pre-antral follicles by using the oxygen consumption rate (OCR). Cortical tissues from 9 ovaries of female-to-male transsexuals were vitrified after transportation (6 or 18 h). The follicles were enzymatically isolated from nonvitrified tissue (group I, 18 h of transportation), vitrified-warmed tissue (group II, 6 and 18 h of transportation) and vitrified-warmed tissue that had been incubated for 24 h (group III, 6 and 18 h of transportation). OCR measurement and the LIVE/DEAD viability assay were performed. Despite the ischemic condition, the isolated pre-antral follicles in group I consumed oxygen, and the mean OCRs increased with developmental stage. Neither the transportation time nor patient age seemed to affect the OCR in this group. Meanwhile, the mean OCR was significantly lower (P < 0.05) in group II but was comparable to that of group I after 24 h of incubation. The integrity of vitrified-warmed primordial and primary follicles was clearly corroborated by the LIVE/DEAD viability assay. These results demonstrate that the OCR can be used to directly estimate the effect of vitrification on the viability of primordial and primary follicles and to select the viable primordial and primary follicles from vitrified-warmed follicles. PMID:25262776
γ-Aminobutyric acid ameliorates fluoride-induced hypothyroidism in male Kunming mice.
Yang, Haoyue; Xing, Ronge; Liu, Song; Yu, Huahua; Li, Pengcheng
2016-02-01
This study evaluated the protective effects of γ-aminobutyric acid (GABA), a non-protein amino acid and anti-oxidant, against fluoride-induced hypothyroidism in mice. Light microscope sample preparation technique and TEM sample preparation technique were used to assay thyroid microstructure and ultrastructure; enzyme immunoassay method was used to assay hormone and protein levels; immunohistochemical staining method was used to assay apoptosis of thyroid follicular epithelium cells. Subacute injection of sodium fluoride (NaF) decreased blood T4, T3 and thyroid hormone-binding globulin (TBG) levels to 33.98 μg/l, 3 2.8 ng/ml and 11.67 ng/ml, respectively. In addition, fluoride intoxication induced structural abnormalities in thyroid follicles. Our results showed that treatment of fluoride-exposed mice with GABA appreciably decreased metabolic toxicity induced by fluoride and restored the microstructural and ultrastructural organisation of the thyroid gland towards normalcy. Compared with the negative control group, GABA treatment groups showed significantly upregulated T4, T3 and TBG levels (42.34 μg/l, 6.54 ng/ml and 18.78 ng/ml, respectively; P<0.05), properly increased TSH level and apoptosis inhibition in thyroid follicular epithelial cells. To the best of our knowledge, this is the first study to establish the therapeutic efficacy of GABA as a natural antioxidant in inducing thyroprotection against fluoride-induced toxicity. Copyright © 2015 Elsevier Inc. All rights reserved.
Rodríguez-Castelán, Julia; Anaya-Hernández, Arely; Méndez-Tepepa, Maribel; Martínez-Gómez, Margarita; Castelán, Francisco; Cuevas-Romero, Estela
2017-02-01
Thyroid dysfunctions are related to anovulation, miscarriages, and infertility in women and laboratory animals. Mechanisms associated with these effects are unknown, although indirect or direct actions of thyroid hormones and thyrotropin could be assumed. The present study aimed to identify the distribution of thyroid hormones (TRs) and thyrotropin (TSHR) receptors in reproductive organs of female rabbits. Ovary of virgin and pregnant rabbits, as well as the oviduct, uterus, and vagina of virgin rabbits were excised, histologically processed, and cut. Slices from these organs were used for immunohistochemical studies for TRα1-2, TRß1, and TSHR. The presence of TRs and TSHR was found in the primordial, primary, secondary, tertiary, and Graafian follicles of virgin rabbits, as well as in the corpora lutea, corpora albicans, and wall of hemorrhagic cysts of pregnant rabbits. Oviductal regions (fimbria-infundibulum, ampulla, isthmus, and utero-tubal junction), uterus (endometrium and myometrium), and vagina (abdominal, pelvic, and perineal portions) of virgin rabbits showed anti-TRs and anti-TSHR immunoreactivity. Additionally, the distal urethra, paravaginal ganglia, levator ani and iliococcygeus muscles, dorsal nerve and body of the clitoris, perigenital skin, and prostate had TRs and TSHR. The wide presence of TRs and TSHR in female reproductive organs suggests varied effects of thyroid hormones and thyrotropin in reproduction.
Multiple roles for elastic fibers in the skin.
Starcher, Barry; Aycock, Ronnie L; Hill, Charles H
2005-04-01
Dermal elastic fibers are believed to have a primary role in providing elastic stretch and recoil to the skin. Here we compare the structural arrangement of dermal elastic fibers of chick skin and different animal species. Most elastic fibers in chick skin are derived from cells that line the feather follicle and/or smooth muscle that connects the pterial and apterial muscle bundles to feather follicles. Elastic fibers in the dermis of animals with single, primary hair follicles are derived from cells lining the hair follicle or from the ends of the pili muscle, which anchors the muscle to the matrix or to the hair follicle. Each follicle is interconnected with elastic fibers. Follicles of animals with primary and secondary (wool) hair follicles are also interconnected by elastic fibers, yet only the elastic fibers derived from the primary follicle are connected to each primary follicle. Only the primary hair follicles are connected to the pili muscle. Human skin, but not the skin of other primates, is significantly different from other animals with respect to elastic fiber organization and probably cell of origin. The data suggest that the primary role for elastic fibers in animals, with the possible exception of humans, is movement and/or placement of feathers or hair.
Metaphase II oocytes from human unilaminar follicles grown in a multi-step culture system.
McLaughlin, M; Albertini, D F; Wallace, W H B; Anderson, R A; Telfer, E E
2018-03-01
Can complete oocyte development be achieved from human ovarian tissue containing primordial/unilaminar follicles and grown in vitro in a multi-step culture to meiotic maturation demonstrated by the formation of polar bodies and a Metaphase II spindle? Development of human oocytes from primordial/unilaminar stages to resumption of meiosis (Metaphase II) and emission of a polar body was achieved within a serum free multi-step culture system. Complete development of oocytes in vitro has been achieved in mouse, where in vitro grown (IVG) oocytes from primordial follicles have resulted in the production of live offspring. Human oocytes have been grown in vitro from the secondary/multi-laminar stage to obtain fully grown oocytes capable of meiotic maturation. However, there are no reports of a culture system supporting complete growth from the earliest stages of human follicle development through to Metaphase II. Ovarian cortical biopsies were obtained with informed consent from women undergoing elective caesarean section (mean age: 30.7 ± 1.7; range: 25-39 years, n = 10). Laboratory setting. Ovarian biopsies were dissected into thin strips, and after removal of growing follicles were cultured in serum free medium for 8 days (Step 1). At the end of this period secondary/multi-laminar follicles were dissected from the strips and intact follicles 100-150 μm in diameter were selected for further culture. Isolated follicles were cultured individually in serum free medium in the presence of 100 ng/ml of human recombinant Activin A (Step 2). Individual follicles were monitored and after 8 days, cumulus oocyte complexes (COCs) were retrieved by gentle pressure on the cultured follicles. Complexes with complete cumulus and adherent mural granulosa cells were selected and cultured in the presence of Activin A and FSH on membranes for a further 4 days (Step 3). At the end of Step 3, complexes containing oocytes >100 μm diameter were selected for IVM in SAGE medium (Step 4) then fixed for analysis. Pieces of human ovarian cortex cultured in serum free medium for 8 days (Step 1) supported early follicle growth and 87 secondary follicles of diameter 120 ± 6 μm (mean ± SEM) could be dissected for further culture. After a further 8 days, 54 of the 87 follicles had reached the antral stage of development. COCs were retrieved by gentle pressure from the cultured follicles and those with adherent mural granulosa cells (n = 48) were selected and cultured for a further 4 days (Step 3). At the end of Step 3, 32 complexes contained oocytes >100 μm diameter were selected for IVM (Step 4). Nine of these complexes contained polar bodies within 24 h and all polar bodies were abnormally large. Confocal immuno-histochemical analysis showed the presence of a Metaphase II spindle confirming that these IVG oocytes had resumed meiosis but their developmental potential is unknown. This is a small number of samples but provides proof of concept that complete development of human oocytes can occur in vitro. Further optimization with morphological evaluation and fertilization potential of IVG oocytes is required to determine whether they are normal. The ability to develop human oocytes from the earliest follicular stages in vitro through to maturation and fertilization would benefit fertility preservation practice. Funded by MRC Grants (G0901839 and MR/L00299X/1). No competing interests.
Noninvasive method for assessing the human circadian clock using hair follicle cells
Akashi, Makoto; Soma, Haruhiko; Yamamoto, Takuro; Tsugitomi, Asuka; Yamashita, Shiko; Yamamoto, Takuya; Nishida, Eisuke; Yasuda, Akio; Liao, James K.; Node, Koichi
2010-01-01
A thorough understanding of the circadian clock requires qualitative evaluation of circadian clock gene expression. Thus far, no simple and effective method for detecting human clock gene expression has become available. This limitation has greatly hampered our understanding of human circadian rhythm. Here we report a convenient, reliable, and less invasive method for detecting human clock gene expression using biopsy samples of hair follicle cells from the head or chin. We show that the circadian phase of clock gene expression in hair follicle cells accurately reflects that of individual behavioral rhythms, demonstrating that this strategy is appropriate for evaluating the human peripheral circadian clock. Furthermore, using this method, we indicate that rotating shift workers suffer from a serious time lag between circadian gene expression rhythms and lifestyle. Qualitative evaluation of clock gene expression in hair follicle cells, therefore, may be an effective approach for studying the human circadian clock in the clinical setting. PMID:20798039
Franzen, Lutz; Mathes, Christiane; Hansen, Steffi; Windbergs, Maike
2013-06-01
Hair follicles have recently gained a lot of interest for dermal drug delivery. They provide facilitated penetration into the skin and a high potential to serve as a drug depot. In this area of research, excised pig ear is a widely accepted in vitro model to evaluate penetration of drug delivery into hair follicles. However, a comparison of human and porcine follicles in terms of chemical composition has not been performed so far. In this study, we applied confocal Raman microscopy as a chemically selective imaging technique to compare human and porcine follicle composition and to visualize component distribution within follicle cross-sections. Based on the evaluation of human and porcine Raman spectra optical similarity for both species was successfully confirmed. Furthermore, cyanoacrylate skin surface biopsies, which are generally used to determine the extent of follicular penetration, were imaged by a novel complementary analytical approach combining confocal Raman microscopy and optical profilometry. This all-encompassing analysis allows investigation of intactness and component distribution of the excised hair bulb in three dimensions. Confocal Raman microscopy shows a high potential as a noninvasive and chemically selective technique for the analysis of trans-follicular drug delivery.
NASA Astrophysics Data System (ADS)
Franzen, Lutz; Mathes, Christiane; Hansen, Steffi; Windbergs, Maike
2013-06-01
Hair follicles have recently gained a lot of interest for dermal drug delivery. They provide facilitated penetration into the skin and a high potential to serve as a drug depot. In this area of research, excised pig ear is a widely accepted in vitro model to evaluate penetration of drug delivery into hair follicles. However, a comparison of human and porcine follicles in terms of chemical composition has not been performed so far. In this study, we applied confocal Raman microscopy as a chemically selective imaging technique to compare human and porcine follicle composition and to visualize component distribution within follicle cross-sections. Based on the evaluation of human and porcine Raman spectra optical similarity for both species was successfully confirmed. Furthermore, cyanoacrylate skin surface biopsies, which are generally used to determine the extent of follicular penetration, were imaged by a novel complementary analytical approach combining confocal Raman microscopy and optical profilometry. This all-encompassing analysis allows investigation of intactness and component distribution of the excised hair bulb in three dimensions. Confocal Raman microscopy shows a high potential as a noninvasive and chemically selective technique for the analysis of trans-follicular drug delivery.
Yin, H; Kristensen, S G; Jiang, H; Rasmussen, A; Andersen, C Yding
2016-07-01
Can human pre-antral follicles isolated enzymatically from surplus medulla tissue survive and grow in vitro during long-term 3D culture? Secondary human follicles can develop to small antral follicles and remain hormonally active in an alginate-encapsulation culture system for more than 30 days. Ovarian tissue cryopreservation followed by transplantation is a promising fertility preservation approach for cancer patients. However, transplantation of cryopreserved tissue to patients may carry the risk of re-implanting malignant cells. Grafting of follicles enzymatically isolated from ovarian tissue or developing a method for follicular culture and maturation in vitro may provide fertility to such patients without the risk of reintroducing the malignancy. However, the growth of pre-antral follicles isolated by enzymatic digestion from medulla tissue during long-term culture has received only little attention. Two to ten human pre-antral follicles were encapsulated together within an alginate bead and cultured with or without ovarian interstitial tissue for either 7 days or >30 days. Follicles were cultured in either 20% oxygen or 5% oxygen or encapsulated in a lower concentration of alginate together with a lower concentration of FSH in high oxygen. A total of 395 pre-antral follicles from 16 cancer patients, aged 9-37 years, were co-cultured for either 7 days or >30 days. A proportion of follicle (64) were removed from culture on Day 7 and assessed for viability using confocal fluorescence microscopy following calcein-AM and ethidium homodimer-1 staining or histology. The remaining follicles (331) were continued in culture for >30 days then assessed for survival and growth. Anti-Müllerian hormone (AMH) and estradiol levels were quantified in the medium. An optimized protocol for isolation of intact healthy pre-antral follicles from ovarian medulla was developed. After 7 days of culture, secondary follicles had a significantly higher survival rates compared with primary and primordial follicles (70 versus <38%). Primordial and primary follicles did not develop into the antral follicle stage. In contrast, secondary follicles continued to develop in all culture conditions examined. Based on growth rate and morphology, four distinct cohorts of surviving follicles, 'fast growth', 'slow growth', 'no growth' and 'extruded oocyte' were identified. From Day 1 to Day 30, the mean diameter of follicles increased from 184 ± 35 to 661 ± 120 μm (significant from Day 18), 145 ± 19 to 318 ± 68 μm and 136 ± 15 to 162 ± 25 μm (mean ± SD) in the 'fast growth', 'slow growth' and 'no growth' patterns, respectively. The fast growth follicles also contained a larger diameter oocyte than other follicle groups. From the pre-antral follicle to antral stage, follicles became steroidogenically active and secretion of AMH and estradiol increased. No significant difference between the follicles cultured with or without ovarian interstitial tissue was observed. The number of surviving follicles at the end of study was low in each of the culture conditions therefore whether there is a benefit with any of the conditions is difficult to ascertain. Multiple pre-antral follicles were cultured within the same alginate bead which may affect the in vitro development of the secondary follicles. These findings show that pre-antral follicles, isolated enzymatically from surplus medulla tissue that is normally discarded, possess a developmental potential which may be used to devise safer fertility preservation methods for patients who are at high risk of malignant contamination of their ovarian tissue. The Child Cancer Foundation in Denmark (2012-26) and the EU interregional project ReproHigh are thanked for having funded this study; and the Key Program of Medical Science and Technology Innovation of Nanjing Military Area Command in China (14ZX06; 11Z010). They had no role in the study design, collection and analysis of data, data interpretation or in writing the report. The authors have no conflicts of interest to disclose. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Variation in ovarian follicle density during human fetal development.
Geber, Selmo; Megale, Rodrigo; Vale, Fabiene; Lanna, Ana Maria Arruda; Cabral, Antônio Carlos Vieira
2012-09-01
To obtain a precise estimate of ovarian follicle density and variation in the number of follicles at several gestational ages during human fetal development. Twelve necropsied ovaries from 9 fetuses (gestational age: 24 to 36 weeks) and 3 neonates (who died within the first hours of life) were studied. Ovaries were fixed with 4 % formaldehyde and embedded in paraffin. Serial, 7 mm thick sections of the ovaries were cut and evaluated at every 50 cuts. Follicles were counted in 10 regions (each measuring 625 μm(2)) of the ovarian cortex and the number of follicles per mm³ was calculated. The number of follicles per 0.25 mm² ranged from 10.9 (± 4.8) in a neonate to 34.7 (± 10.6) also in a neonate. Among fetuses, follicle density was lowest at 36 weeks of gestation (11.1 ± 6.2) and highest at 26 weeks (32 ± 8.9). The total number of follicles ranged from 500,000 at the age of 22 weeks to > 1,000,000 at the age of 39 weeks. Our results show a peak in the number of follicles during intrauterine life at approximately 26 weeks, followed by a rapid reduction in this number before birth, providing a step forward towards the understanding of primordial follicular assembly in humans and, ultimately, the identification of the determinants of reproductive capacity.
Ciornei, Radu Tudor; Hong, So-Hee; Fang, Yujiang; Zhu, Ziwen; Braley-Mullen, Helen
2016-01-01
IFN-γ(-/-) NOD.H-2h4 mice develop autoimmune disease with extensive hyperplasia and proliferation of thyroid epithelial cells (TEC H/P) and fibrosis. Splenic T cells from donors with severe TEC H/P transfer TEC H/P to SCID recipients. The goal of this study was to determine what factors control TEC H/P development/progression by examining T cells, markers of apoptosis, senescence and proliferation in thyroids of SCID recipients over time. At 28days, T cell infiltration was maximal, thyrocytes were proliferating, and fibrosis was moderate. At days 60 and 90, thyroids were larger with more fibrosis. T cells, cytokines and thyrocyte proliferation decreased, and cell cycle inhibitor proteins, and anti-apoptotic molecules increased. T cells and thyrocytes had foci of phosphorylated histone protein H2A.X, indicative of cellular senescence, when TEC H/P progressed and thyrocyte proliferation declined. Some thyrocytes were regenerating at day 90, with irregularly shaped empty follicles and ciliated epithelium. Proliferating thyrocytes were thyroid transcription factor (TTF1)-positive, suggesting they derived from epithelial cells and not brachial cleft remnants. Copyright © 2016 Elsevier Inc. All rights reserved.
el May, M; Jeusset, J; el May, A; Mtimet, S; Fragu, P
1996-06-01
We measured the 127I distribution within tyroid tissue to find out where intrathyroid iodine was deposited during iodine treatment in eight Tunisian female patients (aged 33-58 yr) with endemic euthyroid goiter. Before surgery, five patients were treated during 6 months either by Lugol's solution (group 1: three patients) or by Lugol's and L-thyroxine (group 2: two patients). All patients remained euthyroid during the course of the treatment, which supplied 3.8 mg/day iodine. Three other patients did not receive Lugol's solution (control group). Secondary ion mass spectrometry microscopy was used to map 127-I quantitatively on thyroid sections. Specimens obtained at thyroid surgery were divided macroscopically into nodular and extranodular tissue and chemically fixed to preserve organified iodine. The iodine profile of patients in group 1 did not differ from that in group 2: large amounts of iodine were localized in thyroid follicles and stroma of both nodular and extranodular tissues. In the control group, iodine within stroma was found only in the extranodular tissue. Despite the limited number of patients studied, these data suggest that stromal iodine might represent a storage compartment in times of large iodine supply.
Coexistence of brenner tumor and struma ovarii: case report.
Takeuchi, K; Ohbayashi, C; Kitazawa, S; Ohara, N; Maruo, T
2005-01-01
There has been controversy regarding the histogenesis of Brenner tumors. It is generally accepted that Brenner tumors are derived directly from ovarian surface epithelium, which undergoes metaplasia to form the typical urothelial-like components, whereas some investigators assume that Brenner tumors arise from immature germ cells. We describe a well-documented case of the coexistence of struma ovarii regarded as a form of teratoma and Brenner tumor in the same ovary. Immunohistologically, not only columnar cells of thyroid follicles, but also transitional cells of Brenner nests were positive for thyroglobulin. In the present case, Brenner tumors and thyroid elements coexisted and were positive for thyroglobulin. While there is strong evidence that pure Brenner tumors originate mostly from the ovarian surface, at least Brenner tumors associated with teratomatous elements may have a germ cell origin.
Glucagon Like Peptide-1 Receptor Expression in the Human Thyroid Gland
Gier, Belinda; Butler, Peter C.; Lai, Chi K.; Kirakossian, David; DeNicola, Matthew M.
2012-01-01
Background: Glucagon like peptide-1 (GLP-1) mimetic therapy induces medullary thyroid neoplasia in rodents. We sought to establish whether C cells in human medullary thyroid carcinoma, C cell hyperplasia, and normal human thyroid express the GLP-1 receptor. Methods: Thyroid tissue samples with medullary thyroid carcinoma (n = 12), C cell hyperplasia (n = 9), papillary thyroid carcinoma (n = 17), and normal human thyroid (n = 15) were evaluated by immunofluorescence for expression of calcitonin and GLP-1 receptors. Results: Coincident immunoreactivity for calcitonin and GLP-1 receptor was consistently observed in both medullary thyroid carcinoma and C cell hyperplasia. GLP-1 receptor immunoreactivity was also detected in 18% of papillary thyroid carcinoma (three of 17 cases). Within normal human thyroid tissue, GLP-1 receptor immunoreactivity was found in five of 15 of the examined cases in about 35% of the total C cells assessed. Conclusions: In humans, neoplastic and hyperplastic lesions of thyroid C cells express the GLP-1 receptor. GLP-1 receptor expression is detected in 18% papillary thyroid carcinomas and in C cells in 33% of control thyroid lobes. The consequence of long-term pharmacologically increased GLP-1 signaling on these GLP-1 receptor-expressing cells in the thyroid gland in humans remains unknown, but appropriately powered prospective studies to exclude an increase in medullary or papillary carcinomas of the thyroid are warranted. PMID:22031513
Javid, Mahsa; Sasanakietkul, Thanyawat; Nicolson, Norman G; Gibson, Courtney E; Callender, Glenda G; Korah, Reju; Carling, Tobias
2018-02-01
Efficient DNA damage repair by MutL-homolog DNA mismatch repair (MMR) enzymes, MLH1, MLH3, PMS1 and PMS2, are required to maintain thyrocyte genomic integrity. We hypothesized that persistent oxidative stress and consequent transcriptional dysregulation observed in thyroid follicles will lead to MMR deficiency and potentiate papillary thyroid tumorigenesis. MMR gene expression was analyzed by targeted microarray in 18 papillary thyroid cancer (PTC), 9 paracarcinoma normal thyroid (PCNT) and 10 normal thyroid (NT) samples. The findings were validated by qRT-PCR, and in follicular thyroid cancers (FTC) and follicular thyroid adenomas (FTA) for comparison. FOXO transcription factor expression was also analyzed. Protein expression was assessed by immunohistochemistry. Genomic integrity was evaluated by whole-exome sequencing-derived read-depth analysis and Mann-Whitney U test. Clinical correlations were assessed using Fisher's exact and t tests. Microarray and qRT-PCR revealed reduced expression of all four MMR genes in PTC compared with PCNT and of PMS2 compared with NT. FTC and FTA showed upregulation in MLH1, MLH3 and PMS2. PMS2 protein expression correlated with the mRNA expression pattern. FOXO1 showed lower expression in PMS2-deficient PTCs (log2-fold change -1.72 vs. -0.55, U = 11, p < 0.05 two-tailed). Rate of LOH, a measure of genomic instability, was higher in PMS2-deficient PTCs (median 3 and 1, respectively; U = 26, p < 0.05 two-tailed). No correlation was noted between MMR deficiency and clinical characteristics. MMR deficiency, potentially promoted by FOXO1 suppression, may explain the etiology for PTC development in some patients. FTC and FTA retain MMR activity and are likely caused by a different tumorigenic pathway.
Chebab, Samira; Mekircha, Fatiha; Leghouchi, Essaid
2017-12-01
The purpose of this study was to evaluate the protective effect of Pistacia lentiscus oil (PLO), known for its antioxidant properties, on chlorpyrifos (CPF)-induced alterations in the thyroid, reproductive hormone levels, and oxidative damage in the ovaries and thyroid of adult Wistar rats. The animals were treated with orally administered PLO (2 mL/kg), CPF (6.75 mg/kg), and a combination of CPF and PLO for 30 days. Serum levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), progesterone (Pg), estradiol (E 2 ), triiodothyronine (T3), thyroxine (T4), and thyroid-stimulating hormone (TSH) were assessed using chemiluminescence assay. Malondialdehyde (MDA), protein carbonyl (PC), and reduced glutathione (GSH) levels were examined in the ovaries and thyroid glands. The oil principal volatile compounds detected by gas chromatography analysis were: myrcene, α-pinene and limonene (26.21, 22.66 and 10.33%, respectively). No significant differences were observed between serum concentrations of TSH and FSH in the examined experimental groups. However, serum concentrations of LH, E 2 , Pg, T3, and T4 decreased significantly in CPF-treated rats in comparison with the controls. The body weight and relative weight of ovaries and thyroids in this group were also significantly reduced. The MDA and PC content increased significantly, while the GSH content was markedly depressed in the thyroid and ovaries of rats treated with CPF. Co-administration of PLO and CPF effectively ameliorated the adverse effects; the oxidative damage was reduced and the levels of thyroid and reproductive hormones restored to a normal range. In conclusion, it appears that PLO substantially alleviates the CPF-induced oxidative damage and hormonal alterations. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Kido, Nobuhide; Itagaki, Iori; Ono, Kaori; Omiya, Tomoko; Matsumoto, Rei
2015-12-01
The clinical and histologic features of thyroid carcinoma in raccoon dogs have not been previously reported. Three of four raccoon dogs (Nyctereutes procyonoides) over 8 yr of age at the Nogeyama Zoological Gardens developed thyroid follicular cell carcinomas that were detected at necropsy. The affected raccoon dogs were rescued from the wild and were housed at the Nogeyama Zoological Gardens for 8 yr 8 mo, 8 yr 10 mo, and 10 yr 3 mo, respectively. Although all of them appeared lethargic and developed partial alopecia or desquamation of their skin, they did not display any other specific clinical signs associated with a thyroid lesion. Serum thyroid hormone values were examined in two of the affected raccoon dogs and the average and standard deviation values (free-thyroxin [FT4]: 0.078 ± 0.077 pM/L and 0.062 ± 0.0039 pM/L; free-triiodothyronine [FT3]: 3.261 ± 0.765 pM/L and 3.407 ± 0.919 pM/L) were lower than the reference range (FT4: 0.141 ± 0.117 pM/L; FT3: 5.139 ± 2.412 pM/L) derived from a clinically normal raccoon dog. On necropsy, the thyroid lobes were markedly enlarged bilaterally. Histopathologically, the neoplastic cells in the thyroid gland appeared round or oval and columnar or cuboidal with minimal heteromorphism. Moreover, mostly small (but occasionally large) follicles were identified, and the neoplastic cells had infiltrated into the surrounding capsule and blood vessels. The histopathologic features of the thyroid tumors in the raccoon dogs revealed that the tumors were derived from follicular cells.
Terada, Masahiro; Seki, Masaya; Takahashi, Rika; Yamada, Shin; Higashibata, Akira; Majima, Hideyuki J.; Sudoh, Masamichi; Mukai, Chiaki; Ishioka, Noriaki
2016-01-01
Adaptation to the space environment can sometimes pose physiological problems to International Space Station (ISS) astronauts after their return to earth. Therefore, it is important to develop healthcare technologies for astronauts. In this study, we examined the feasibility of using hair follicles, a readily obtained sample, to assess gene expression changes in response to spaceflight adaptation. In order to investigate the gene expression changes in human hair follicles during spaceflight, hair follicles of 10 astronauts were analyzed by microarray and real time qPCR analyses. We found that spaceflight alters human hair follicle gene expression. The degree of changes in gene expression was found to vary among individuals. In some astronauts, genes related to hair growth such as FGF18, ANGPTL7 and COMP were upregulated during flight, suggesting that spaceflight inhibits cell proliferation in hair follicles. PMID:27029003
Terada, Masahiro; Seki, Masaya; Takahashi, Rika; Yamada, Shin; Higashibata, Akira; Majima, Hideyuki J; Sudoh, Masamichi; Mukai, Chiaki; Ishioka, Noriaki
2016-01-01
Adaptation to the space environment can sometimes pose physiological problems to International Space Station (ISS) astronauts after their return to earth. Therefore, it is important to develop healthcare technologies for astronauts. In this study, we examined the feasibility of using hair follicles, a readily obtained sample, to assess gene expression changes in response to spaceflight adaptation. In order to investigate the gene expression changes in human hair follicles during spaceflight, hair follicles of 10 astronauts were analyzed by microarray and real time qPCR analyses. We found that spaceflight alters human hair follicle gene expression. The degree of changes in gene expression was found to vary among individuals. In some astronauts, genes related to hair growth such as FGF18, ANGPTL7 and COMP were upregulated during flight, suggesting that spaceflight inhibits cell proliferation in hair follicles.
Evolution of specificity in cartilaginous fish glycoprotein hormones and receptors.
Buechi, Hanna B; Bridgham, Jamie T
2017-05-15
Glycoprotein hormones (GpH) interact very specifically with their receptors to mediate hypothalamic-pituitary-peripheral gland endocrine signaling. Vertebrates typically have three functionally distinct GpH endocrine signaling complexes: follicle-stimulating hormone, luteinizing hormone, and thyroid-stimulating hormone, and their receptors. Each hormone consists of a common α subunit bound to one of three different β subunits. Individual hormone subunits and receptors are present in genomes of early metazoans, and a subset of hormone subunits and receptors has been recently characterized in sea lamprey. However, it remains unclear when the full complement of hormone and receptor protein families first appeared, and when specificity of interactions between GpH hormones and receptors first evolved. Here we present phylogenetic analyses showing that the elephant shark (Callorhinchus milii) genome contains sequences representing the current diversity of all hormone subunits and receptors in these co-evolving protein families. We examined specificity of hormone and receptor interactions using functional assays testing reporter gene activation by elephant shark follicle-stimulating hormone, luteinizing hormone, and thyroid-stimulating hormone receptors. We show highly specific, dose-responsive hormone interactions for all three complexes. Our results suggest that co-evolution of specificity between proteins in these endocrine signaling complexes occurred prior to the divergence of Chondrichthyes from the chordate lineage. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Liang, Xue; Feng, Yanni; Lin, Laixiang; Abeysekera, Iruni Roshanie; Iqbal, Umar; Wang, Tingting; Wang, Ying; Yao, Xiaomei
2018-05-01
Our aim was to investigate thyroid function alterations attributed to high iodide supplementation in maternal rats and their offspring. Depending on their iodide intake, the pregnant rats were randomly divided into three groups: normal iodide intake (NI), 10 times high iodide intake (10 HI) and 100 times high iodide intake (100 HI) groups. Iodine concentration in the urine and maternal milk; iodine content and mitochondrial superoxide production; expression of TRα1, TRβ1, NIS and Dio1 in both the thyroid and mammary glands were all measured. The offspring were exposed to different iodide-containing water (NI, 10 HI and 100 HI) from weaning to postnatal day 180 (PN180). Serum thyroid hormone levels were measured in both maternal rats and their offspring. Iodine concentration in the urine and maternal milk, as well as iodine content in the thyroid and mammary glands was significantly increased in both the 10 HI and 100 HI groups (p < .05). In the 100 HI group of maternal rats, low FT3 levels, high FT4, TPOAb and TgAb levels were detected. In addition, an increased mitochondrial superoxide production and decreased expression of TRα1, TRβ1, NIS and Dio1 in the thyroid and mammary glands was found (p < .05). A positive staining of CD4 + that co-localized with TRβ1 in the infiltrated cells within the thyroid follicles was observed. At PN180 in the offspring, the FT3 and FT4 levels showed a significant decrease, while the levels of serum TSH, TPOAb and TgAb were significantly increased in both 10 HI and 100 HI groups (p < .05). In maternal rats, although normal thyroid function can be maintained following 10 HI, thyroiditis can be induced following 100 HI on lactation days 7, 14, and 21. In the offspring at PN180, hypothyroidism complicated with thyroiditis can occur in both the 10 HI and 100 HI groups. Copyright © 2018 Elsevier GmbH. All rights reserved.
Clinical features of a new disease concept, IgG4-related thyroiditis.
Watanabe, T; Maruyama, M; Ito, T; Fujinaga, Y; Ozaki, Y; Maruyama, M; Kodama, R; Muraki, T; Hamano, H; Arakura, N; Kadoya, M; Suzuki, S; Komatsu, M; Shimojo, H; Notohara, K; Uchida, M; Kawa, S
2013-01-01
Immunoglobulin (Ig)G4-related disease is a recently proposed systemic disorder that includes autoimmune pancreatitis (AIP), Mikulicz's disease, and various other organ lesions. In the present retrospective study, we examined whether thyroid lesions should also be included in IgG4-related disease (Ig4-RD) under the new term IgG4-related thyroiditis. We enrolled 114 patients with Ig4-RD, including 92 patients with AIP, 15 patients with Mikulicz's disease, and seven patients with IgG4-related cholangitis, and analysed clinical findings, function, serum values of activity markers, computed tomography (CT) images, and histology of the thyroid gland. Among the 22 patients (19%) in our cohort who were found to have hypothyroidism [thyroid stimulating hormone (TSH) > 4 mIU/L], 11 patients had clinical hypothyroidism [free thyroxine (FT4) < 1 ng/dL] and 11 patients had subclinical hypothyroidism (FT4 ≥ 1 ng/dL). Serum concentrations of IgG, IgG4, circulating immune complex (CIC), and β2-microglobulin (β2-MG) were significantly higher in the hypothyroidism group compared with the remaining 92 euthyroid patients, and serum C3 concentration was significantly lower. After prednisolone treatment, TSH values had decreased significantly (p = 0.005) in this group and FT4 values had increased significantly (p = 0.047). CT images showed that the thyroid glands of patients with clinical hypothyroidism had a significantly greater volume than those of the euthyroid and other groups. Pathological analysis of one resected thyroid gland disclosed a focused lesion with infiltration of lymphocytes and IgG4-bearing plasma cells and loss of thyroid follicles. Thyroid lesions associated with hypothyroidism can be considered as a new disease termed IgG4-related thyroiditis. Awareness of this condition should lead to appropriate corticosteroid treatment that may prevent progression to a fibrous state.
Arck, Petra Clara; Overall, Rupert; Spatz, Katharina; Liezman, Christiane; Handjiski, Bori; Klapp, Burghard F; Birch-Machin, Mark A; Peters, Eva Milena Johanne
2006-07-01
Oxidative stress is generated by a multitude of environmental and endogenous challenges such as radiation, inflammation, or psychoemotional stress. It also speeds the aging process. Graying is a prominent but little understood feature of aging. Intriguingly, the continuous melanin synthesis in the growing (anagen) hair follicle generates high oxidative stress. We therefore hypothesize that hair bulb melanocytes are especially susceptible to free radical-induced aging. To test this hypothesis, we subjected human scalp skin anagen hair follicles from graying individuals to macroscopic and immunohistomorphometric analysis and organ culture. We found evidence of melanocyte apoptosis and increased oxidative stress in the pigmentary unit of graying hair follicles. The "common" deletion, a marker mitochondrial DNA-deletion for accumulating oxidative stress damage, occurred most prominently in graying hair follicles. Cultured unpigmented hair follicles grew better than pigmented follicles of the same donors. Finally, cultured pigmented hair follicles exposed to exogenous oxidative stress (hydroquinone) showed increased melanocyte apoptosis in the hair bulb. We conclude that oxidative stress is high in hair follicle melanocytes and leads to their selective premature aging and apoptosis. The graying hair follicle, therefore, offers a unique model system to study oxidative stress and aging and to test antiaging therapeutics in their ability to slow down or even stop this process.
Differential expression of connexin 43 in human autoimmune thyroid disease.
Jiang, Xiao-Yan; Feng, Xiao-Hong; Li, Guo-Yan; Zhao, Qian; Yin, Hui-Qing
2010-05-01
Gap junctions provide a pathway for cell-to-cell communication. Reduced thyroid epithelial cell-cell communication has been reported in some animal models of autoimmune thyroid disease. In order to assess whether this change was similar to human autoimmune thyroid disease, we identified some connexin proteins and their corresponding mRNA in human thyroid gland. The aim of our study was to explore the expression of connexin 43 (Cx43) in the thyroid gland from normal and diseased human thyroid tissue by immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR). The expression levels of Cx43 in Grave's disease were significantly increased in comparison with those of normal thyroid tissue. There was a significant decrease in expression of Cx43 in Hashimoto's thyroiditis, compared with normal thyroid tissue. These data indicate that changes of Cx43 expression in human autoimmune thyroid disease were associated with variations in thyroid function and hormone secretion. 2009 Elsevier GmbH. All rights reserved.
Gonadotropin binding sites in human ovarian follicles and corpora lutea during the menstrual cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shima, K.; Kitayama, S.; Nakano, R.
Gonadotropin binding sites were localized by autoradiography after incubation of human ovarian sections with /sup 125/I-labeled gonadotropins. The binding sites for /sup 125/I-labeled human follicle-stimulating hormone (/sup 125/I-hFSH) were identified in the granulosa cells and in the newly formed corpora lutea. The /sup 125/I-labeled human luteinizing hormone (/sup 125/I-hLH) binding to the thecal cells increased during follicular maturation, and a dramatic increase was preferentially observed in the granulosa cells of the large preovulatory follicle. In the corpora lutea, the binding of /sup 125/I-hLH increased from the early luteal phase and decreased toward the late luteal phase. The changes in 3more » beta-hydroxysteroid dehydrogenase activity in the corpora lutea corresponded to the /sup 125/I-hLH binding. Thus, the changes in gonadotropin binding sites in the follicles and corpora lutea during the menstrual cycle may help in some important way to regulate human ovarian function.« less
Buscone, Serena; Mardaryev, Andrei N; Raafs, Bianca; Bikker, Jan W; Sticht, Carsten; Gretz, Norbert; Farjo, Nilofer; Uzunbajakava, Natallia E; Botchkareva, Natalia V
2017-09-01
Though devices for hair growth based on low levels of light have shown encouraging results, further improvements of their efficacy is impeded by a lack of knowledge on the exact molecular targets that mediate physiological response in skin and hair follicle. The aim of this study was to investigate the expression of selected light-sensitive receptors in the human hair follicle and to study the impact of UV-free blue light on hair growth ex vivo. The expression of Opsin receptors in human skin and hair follicles has been characterized using RT-qPCR and immunofluorescence approaches. The functional significance of Opsin 3 was assessed by silencing its expression in the hair follicle cells followed by a transcriptomic profiling. Proprietary LED-based devices emitting two discrete visible wavelengths were used to access the effects of selected optical parameters on hair growth ex vivo and outer root sheath cells in vitro. The expression of OPN2 (Rhodopsin) and OPN3 (Panopsin, Encephalopsin) was detected in the distinct compartments of skin and anagen hair follicle. Treatment with 3.2 J/cm 2 of blue light with 453 nm central wavelength significantly prolonged anagen phase in hair follicles ex vivo that was correlated with sustained proliferation in the light-treated samples. In contrast, hair follicle treatment with 3.2 J/cm 2 of 689 nm light (red light) did not significantly affect hair growth ex vivo. Silencing of OPN3 in the hair follicle outer root sheath cells resulted in the altered expression of genes involved in the control of proliferation and apoptosis, and abrogated stimulatory effects of blue light (3.2 J/cm 2 ; 453 nm) on proliferation in the outer root sheath cells. We provide the first evidence that (i) OPN2 and OPN3 are expressed in human hair follicle, and (ii) A 453 nm blue light at low radiant exposure exerts a positive effect on hair growth ex vivo, potentially via interaction with OPN3. Lasers Surg. Med. 49:705-718, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Deady, Lylah D; Li, Wei
2017-01-01
Follicle rupture, the final step in ovulation, utilizes conserved molecular mechanisms including matrix metalloproteinases (Mmps), steroid signaling, and adrenergic signaling. It is still unknown how follicles become competent for follicle rupture/ovulation. Here, we identify a zinc-finger transcription factor Hindsight (Hnt) as the first transcription factor regulating follicle’s competency for ovulation in Drosophila. Hnt is not expressed in immature stage-13 follicle cells but is upregulated in mature stage-14 follicle cells, which is essential for follicle rupture/ovulation. Hnt upregulates Mmp2 expression in posterior follicle cells (essential for the breakdown of the follicle wall) and Oamb expression in all follicle cells (the receptor for receiving adrenergic signaling and inducing Mmp2 activation). Hnt’s role in regulating Mmp2 and Oamb can be replaced by its human homolog Ras-responsive element-binding protein 1 (RREB-1). Our data suggest that Hnt/RREB-1 plays conserved role in regulating follicle maturation and competency for ovulation. PMID:29256860
Use of equine chorionic gonadotropin to control reproduction of the dairy cow: a review.
De Rensis, F; López-Gatius, F
2014-04-01
Equine chorionic gonadotropin (eCG) is a member of the glycoprotein family of hormones along with LH, FSH and thyroid-stimulating hormone. In non-equid species, eCG shows high LH- and FSH-like activities and has a high affinity for both FSH and LH receptors in the ovaries. On the granulosa and thecal cells of the follicle, eCG has long-lasting LH- and FSH-like effects that stimulate oestradiol and progesterone secretion. Thus, eCG administration in dairy cattle results in fewer atretic follicles, the recruitment of more small follicles showing an elevated growth rate, the sustained growth of medium and large follicles and improved development of the dominant and pre-ovulatory follicle. In consequence, the quality of the ensuing CL is improved, and thereby progesterone secretion increased. Based on these characteristics, eCG treatment is utilized in veterinary medicine to control the reproductive activity of the cow by i) improving reproductive performance during early post-partum stages; ii) increasing ovulation and pregnancy rates in non-cyclic cows; iii) improving the conception rate in cows showing delayed ovulation; and finally, iv) eCG is currently included in protocols for fixed-time artificial insemination since after inducing the synchrony of ovulation using a progesterone-releasing device, eCG has beneficial effects on embryo development and survival. The above effects are not always observed in cyclic animals, but they are evident in animals in which LH secretion and ovarian activity are reduced or compromised, for instance, during the early post-partum period, under seasonal heat stress, in anoestrus animals or in animals with a low body condition score. © 2014 Blackwell Verlag GmbH.
Patyra, Konrad; Jaeschke, Holger; Löf, Christoffer; Jännäri, Meeri; Ruohonen, Suvi T; Undeutsch, Henriette; Khalil, Moosa; Kero, Andreina; Poutanen, Matti; Toppari, Jorma; Chen, Min; Weinstein, Lee S; Paschke, Ralf; Kero, Jukka
2018-05-25
Thyroid function is controlled by thyroid-stimulating hormone (TSH), which binds to its G protein-coupled receptor [thyroid-stimulating hormone receptor (TSHR)] on thyrocytes. TSHR can potentially couple to all G protein families, but it mainly activates the G s - and G q/11 -mediated signaling cascades. To date, there is a knowledge gap concerning the role of the individual G protein cascades in thyroid pathophysiology. Here, we demonstrate that the thyrocyte-specific deletion of G s -protein α subunit (Gα s ) in adult mice [tamoxifen-inducible G s protein α subunit deficient (iTGα s KO) mice] rapidly impairs thyrocyte function and leads to hypothyroidism. Consequently, iTGα s KO mice show reduced food intake and activity. However, body weight and the amount of white adipose tissue were decreased only in male iTGα s KO mice. Unexpectedly, hyperplastic follicles and papillary thyroid cancer-like tumor lesions with increased proliferation and slightly increased phospho-ERK1/2 staining were found in iTGα s KO mice at an older age. These tumors developed from nonrecombined thyrocytes still expressing Gα s in the presence of highly elevated serum TSH. In summary, we report that partial thyrocyte-specific Gα s deletion leads to hypothyroidism but also to tumor development in thyrocytes with remaining Gα s expression. Thus, these mice are a novel model to elucidate the pathophysiological consequences of hypothyroidism and TSHR/G s /cAMP-mediated tumorigenesis.-Patyra, K., Jaeschke, H., Löf, C., Jännäri, M., Ruohonen, S. T., Undeutsch, H., Khalil, M., Kero, A., Poutanen, M., Toppari, J., Chen, M., Weinstein, L. S., Paschke, R., Kero, J. Partial thyrocyte-specific Gα s deficiency leads to rapid-onset hypothyroidism, hyperplasia, and papillary thyroid carcinoma-like lesions in mice.
Orchidectomy of middle-aged rats decreases liver deiodinase 1 and pituitary deiodinase 2 activity.
Sosic-Jurjevic, Branka; Filipovic, Branko; Renko, Kostja; Ajdzanovic, Vladimir; Manojlovic-Stojanoski, Milica; Milosevic, Verica; Köhrle, Josef
2012-11-01
Endogenous androgens are involved in regulation of thyroid function and metabolism of thyroid hormones. As serum testosterone level progressively declines with age, this regulation may change. We tested how androgen deprivation, achieved by orchidectomy, affects thyroid homeostasis in middle-aged rats. Fifteen-month-old Wistar rats were orchidectomized (Orx) or sham-operated under ketamine anesthesia (15 mg/kg body weight). Five weeks after the surgery, animals were decapitated. Thyroids were used for histomorphometric and ultrastructural examinations and together with livers and pituitaries for real-time quantitative PCR and deiodinase (DIO) activity measurements. Serum testosterone, TSH, l-thyroxine (T(4)), and cholesterol (Chol) levels were determined. As expected, middle-aged control rats had lower (P<0.05) testosterone and T(4) compared with 3-month-old males. In the Orx middle-aged group, we detected diminished serum testosterone (P<0.05), no change in TSH and T(4) levels, and higher Chol level (P<0.05), in comparison with age-matched controls. Histomorphometric analysis of thyroid tissue revealed decreased relative volume densities of follicles and colloid (P<0.05). Relevant gene expressions and DIO1 enzyme activity were not changed in the thyroids of Orx rats. Liver Dio1 gene expression and DIO1 activity were decreased (P<0.05) in comparison with the control values. Pituitary levels of TSHβ, Dio1, and Dio2 mRNAs did not change, while DIO2 activity decreased (P<0.05). In conclusion, orchidectomy of middle-aged rats affected thyroid structure with no effect on serum T(4) and TSH. However, decreased liver DIO1 and pituitary DIO2 enzyme activities indicate compensatory-adaptive changes in local T(3) production.
Chang, Jing; Li, Wei; Guo, Baoyuan; Xu, Peng; Wang, Yinghuan; Li, Jianzhong; Wang, Huili
2017-04-01
Flufenoxuron is a widely used pesticide to inhibit the synthesis of chitin during insect development and its effect on the growth of lizards has been little addressed. The hypothalamus-pituitary-thyroid (HPT) axis plays an important role on the development of lizards. In this study, the lizards at different development stages (proliferation and resting stages) were exposed to flufenoxuron for 21 days. The plasma thyroid hormone levels, thyroid gland histopathology and expression profiles of thyroid hormone receptors (trα, trβ), deiodinases (dio1, dio2), and transthyretin (ttr) genes were measured to evaluated the toxic effect of flufenoxuron on the HPT axis at different stages. The flufenoxuron exposure showed more seriously effect on the triiodothyronine (T3) level at resting phase than that at proliferation stage. The follicle epithelium cell height in the thyroid was only significantly increased when the exposed male lizards were at proliferation stage. The alteration of HPT axis-related genes expression was gender and tissue dependent after flufenoxuron treatment. The lizards exposed to flufenoxuron showed that the trα, trβ, dio1, dio2, and ttr genes in the female liver were more sensitive at the proliferation stage than that at the resting stage. In the male brain, the expressions of trα, trβ, dio1, and dio2 gene were significant decreased at proliferation stage while significant increased at resting stage after flufenoxuron exposure. Therefore, the thyroid endocrine system of lizards could be affected by the flufenoxuron exposure and the different development stage should also be considered when study the toxic effect of contaminants on the lizards. Copyright © 2017 Elsevier Ltd. All rights reserved.
Multifocal fibrosing thyroiditis: report of 55 cases of a poorly recognized entity.
Fellegara, Giovanni; Rosai, Juan
2015-03-01
During the course of our consultation activity, we have recognized a peculiar form of thyroiditis in which multiple foci of fibrosis, most of which were associated with reactive atypia of the surrounding follicles, are present. We have referred to this condition, both in our consultation reports and in the third series of A.F.I.P. Fascicle on Tumors of the Thyroid Gland, as "multifocal fibrosing thyroiditis" or (less frequently) "multifocal sclerosing thyroiditis," which are descriptive terms that highlight the benign/inflammatory nature of the process, its multiplicity, and its unknown pathogenesis. The aim of this study is to better define the morphologic features of this process and correlate it with some clinical data. With this purpose, the consultation files of one of the authors (J.R.) were searched for cases coded as multifocal fibrosing thyroiditis or multifocal sclerosing thyroiditis in a 20-year period ranging from January 1989 to December 2009. A total of 55 cases were identified that displayed the above-listed features. There were 51 (93%) female and 4 (7%) male patients (F/M=12.75), with ages ranging between 15 and 71 years (mean age, 47.03 y; median age, 44.5 y). Microscopically, multiple foci of fibrosis were identified in all cases, their number ranging from 2 to 51 per case (mean number, 16), with a mean diameter of 3 mm (range: 0.36 to 15.1 mm). Although heterogenous in shape and size, the individual foci were rather similar to each other in composition, being characterized by a fibrotic poorly cellular center that merged with a cellular peripheral zone. Some of the follicular structures present at the periphery of the scar and-to a lesser extent-those entrapped inside it underwent complex reactive and regenerative (atypical) changes that simulated malignancy. We discuss the differential diagnosis with other benign and malignant thyroid conditions and speculate about its pathogenesis and possible relationship with papillary thyroid microcarcinoma.
Fertility rescue and ovarian follicle growth promotion by bone marrow stem cell infusion.
Herraiz, Sonia; Buigues, Anna; Díaz-García, César; Romeu, Mónica; Martínez, Susana; Gómez-Seguí, Inés; Simón, Carlos; Hsueh, Aaron J; Pellicer, Antonio
2018-05-01
To assess if infusion of human bone marrow-derived stem cells (BMDSCs) could promote follicle development in patients with impaired ovarian functions. Experimental design. University research laboratories. Immunodeficient NOD/SCID female mice. Human BMDSCs were injected into mice with chemotherapy-induced ovarian damage and into immunodeficient mice xenografted with human cortex from poor-responder patients (PRs). Follicle development, ovulation, and offspring. Apoptosis, proliferation, and vascularization were evaluated in mouse and human ovarian stroma. Fertility rescue and spontaneous pregnancies were achieved in mice ovaries mimicking PRs and ovarian insufficiency, induced by chemotherapy, after BMDSC infusion. Furthermore, BMDSC treatment resulted in production of higher numbers of preovulatory follicles, metaphase II oocytes, 2-cell embryos, and healthy pups. Stem cells promoted ovarian vascularization and cell proliferation, along with reduced apoptosis. In xenografted human ovarian tissues from PRs, infusion of BMDSCs and their CD133+ fraction led to their engraftment close to follicles, resulting in promotion of follicular growth, increases in E 2 secretion, and enhanced local vascularization. Our results raised the possibility that promoting ovarian angiogenesis by BMDSC infusion could be an alternative approach to improve follicular development in women with impaired ovarian function. NCT02240342. Copyright © 2018 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Magerl, Markus; Paus, Ralf; Farjo, Nilofer; Müller-Röver, Sven; Peters, Eva M J; Foitzik, Kerstin; Tobin, Desmond J
2004-10-01
Minoxidil induces new hair growth in approximately one-third of patients with androgenetic alopecia after 1 year of treatment. With several conflicting reports in the literature based on small-scale studies, the current study aimed to clarify whether organ culture of human scalp anagen VI hair follicles is a suitable in vitro test system for reproducing, and experimentally dissecting, the recognized in vivo hair-growth-promoting capacity of minoxidil. Hair shaft elongation was studied in terminal anagen VI hair follicles microdissected from the occipital scalp of 36 healthy adults. A total of 2300 hair follicles, approximately 65 per individual, were tested using modifications of a basic organ culture protocol. It is shown here that minoxidil does not significantly increase hair shaft elongation or the duration of anagen VI in ex vivo culture despite several enhancements on the conventional methodology. This disparity to what is seen clinically in minoxidil responders may be explained by the following: (i) use of occipital (rather than frontotemporal or vertex) hair follicles; (ii) use of, already maximally growing, anagen VI hair follicles; (iii) a predominance of hair follicles from minoxidil unresponsive-donors; (iv) use of minoxidil rather than its sulfate metabolite; and/or (v) use of a suboptimal minoxidil dosage. This disparity questions the usefulness of standard human hair follicle organ culture in minoxidil research. Unexpectedly, minoxidil even inhibited hair shaft elongation in the absence of insulin, which may indicate that the actual hair-growth-modulatory effects of minoxidil depend on the concomitant local presence/absence of other growth modulators.
Wang, Ming; Chai, Lihong; Zhao, Hongfeng; Wu, Minyao; Wang, Hongyuan
2015-11-01
Chinese toad (Bufo gargarizans) tadpoles were exposed to nitrate (10, 50 and 100mg/L NO3-N) from the beginning of the larval period through metamorphic climax. We examined the effects of chronic nitrate exposure on metamorphosis, mortality, body size and thyroid gland. In addition, thyroid hormone (TH) levels, type II iodothyronine deiodinase (Dio2) and type III iodothyronine deiodinase (Dio3) mRNA levels were also measured to assess disruption of TH synthesis. Results showed that significant metamorphic delay and mortality increased were caused in larvae exposed to 100mg/L NO3-N. The larvae exposed to 100mg/L NO3-N clearly exhibited a greater reduction in thyroxine (T4) and 3,5,3'-triiodothyronine (T3) levels. Moreover, treatment with NO3-N induced down-regulation of Dio2 mRNA levels and up-regulation of Dio3 mRNA levels, reflecting the disruption of thyroid endocrine. It seems that increased mass and body size may be correlated with prolonged metamorphosis. Interestingly, we observed an exception that exposure to 100mg/L NO3-N did not exhibit remarkable alterations of thyroid gland size. Compared with control groups, 100mg/L NO3-N caused partial colloid depletion in the thyroid gland follicles. These results suggest that nitrate can act as a chemical stressor inducing retardation in development and metamorphosis. Therefore, we concluded that the presence of high concentrations nitrate can influence the growth, decline the survival, impair TH synthesis and induce metamorphosis retardation of B. gargarizans larvae. Copyright © 2015 Elsevier Ltd. All rights reserved.
Localisation of the neuropeptide PACAP and its receptors in the rat parathyroid and thyroid glands.
Fahrenkrug, Jan; Hannibal, Jens
2011-03-01
PACAP (pituitary adenylate cyclase activating polypeptide) is widely distributed neuropeptide acting via three subtypes of receptors, PAC(1), VPAC(1) and VPAC(2). Here we examined the localisation and nature of PACAP-immunoreactive nerves in the rat thyroid and parathyroid glands and defined the distribution of PAC(1), VPAC(1) and VPAC(2) receptor mRNA's. In the parathyroid gland a large number of nerve fibres displaying PACAP-immunoreactivity were distributed beneath the capsule, around blood vessels and close to glandular cells. Most of the PACAP-nerves were sensory, since they co-stored CGRP (calcitonin-gene-related peptide) and were sensitive to capsaicin-treatment. mRNA's for PAC(1) and VPAC(2) receptors occurred in the parathyroid gland, mainly located in the glandular cells. In the thyroid gland PACAP-immunoreactive nerve fibres were associated with blood vessels, thyroid follicles and parafollicular C-cells. A high degree of co-existence between PACAP and VIP (vasoactive intestinal polypeptide) was observed in the intrathyroid nerve fibres and cell bodies of the thyroid ganglion indicating a common origin for the two peptides. A minor population of PACAP-immunoreactive nerve fibres with relation to blood vessels co-stored NPY (neuropeptide Y), whereas only a few fibres co-stored CGRP. PAC(1) and VPAC(1) receptor mRNA's occurred in follicular cells and blood vessels, whereas the expression of the VPAC(2) receptor was low. The findings suggest that PACAP plays a role in the regulation of parathyroid and thyroid blood flow and hormone secretion. Copyright © 2010 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vickers, Alison E.M., E-mail: vickers_alison@allergan.com; Heale, Jason; Sinclair, John R.
Drug induced thyroid effects were evaluated in organotypic models utilizing either a rat thyroid lobe or human thyroid slices to compare rodent and human response. An inhibition of thyroid peroxidase (TPO) function led to a perturbation in the expression of key genes in thyroid hormone synthesis and release pathways. The clinically used thiourea drugs, methimazole (MMI) and 6-n-propyl-2-thioruacil (PTU), were used to evaluate thyroid drug response in these models. Inhibition of TPO occurred early as shown in rat thyroid lobes (2 h) and was sustained in both rat (24–48 h) and human (24 h) with ≥ 10 μM MMI. Thyroidmore » from rats treated with single doses of MMI (30–1000 mg/kg) exhibited sustained TPO inhibition at 48 h. The MMI in vivo thyroid concentrations were comparable to the culture concentrations (∼ 15–84 μM), thus demonstrating a close correlation between in vivo and ex vivo thyroid effects. A compensatory response to TPO inhibition was demonstrated in the rat thyroid lobe with significant up-regulation of genes involved in the pathway of thyroid hormone synthesis (Tpo, Dio1, Slc5a5, Tg, Tshr) and the megalin release pathway (Lrp2) by 24 h with MMI (≥ 10 μM) and PTU (100 μM). Similarly, thyroid from the rat in vivo study exhibited an up-regulation of Dio1, Slc5a5, Lrp2, and Tshr. In human thyroid slices, there were few gene expression changes (Slc5a5, ∼ 2-fold) and only at higher MMI concentrations (≥ 1500 μM, 24 h). Extended exposure (48 h) resulted in up-regulation of Tpo, Dio1 and Lrp2, along with Slc5a5 and Tshr. In summary, TPO was inhibited by similar MMI concentrations in rat and human tissue, however an increased sensitivity to drug treatment in rat is indicated by the up-regulation of thyroid hormone synthesis and release gene pathways at concentrations found not to affect human tissue. -- Highlights: ► Novel model of rat thyroid or human thyroid slices to evaluate pathways of injury. ► TPO inhibition by MMI or PTU altered hormone synthesis and release genes. ► Rat thyroid was more sensitive to the drug effects than human tissue.« less
Sphingosine-1-phosphate prevents chemotherapy-induced human primordial follicle death.
Li, Fang; Turan, Volkan; Lierman, Sylvie; Cuvelier, Claude; De Sutter, Petra; Oktay, Kutluk
2014-01-01
Can Sphingosine-1-phosphate (S1P), a ceramide-induced death pathway inhibitor, prevent cyclophosphamide (Cy) or doxorubicin (Doxo) induced apoptotic follicle death in human ovarian xenografts? S1P can block human apoptotic follicle death induced by both drugs, which have differing mechanisms of cytotoxicity. S1P has been shown to decrease the impact of chemotherapy and radiation on germinal vesicle oocytes in animal studies but no human translational data exist. Experimental human ovarian xenografting to test the in vivo protective effect of S1P on primordial follicle survival in the chemotherapy setting. The data were validated by assessing the same protective effect in the ovaries of xenografted mice in parallel. Xenografted mice were treated with Cy (75 mg/kg), Cy+S1P (200 μM), Doxo (10 mg/kg), Doxo+S1P or vehicle only (Control). S1P was administered via continuous infusion using a mini-osmotic pump beginning 24 h prior to and ending 72 h post-chemotherapy. Grafts were then recovered and stained with anti-caspase 3 antibody for the detection of apoptosis in primordial follicles. The percentage of apoptotic to total primordial follicles was calculated in each group. Both Cy and Doxo resulted in a significant increase in apoptotic follicle death in human ovarian xenografts compared with controls (62.0 ± 3.9% versus 25.7 ± 7.4%, P < 0.01 and 76.7 ± 7.4% versus 25.7 ± 7.4%, P < 0.01, respectively). This chemotherapy-induced apoptotic death was reduced both in the Cy+S1P (32.7 ± 4.4%, P < 0.01) and the Doxo+S1P group (27.1 ± 7.6%, P < 0.01) compared with Cy and Doxo groups, respectively. In the Doxo+S1P and Cy+S1P groups, the percentages of apoptotic follicles were similar to those of vehicle-treated controls (P > 0.05). The findings from the ovaries of the severe combined immunodeficient mice mirrored the findings with human tissue. The functionality of the rescued human ovarian follicles needs to be evaluated in future studies though the studies in rodents showed that rescued oocytes can result in healthy offspring. In addition, the impact of S1P on cancer cells should be further studied. S1P and its future analogs hold promise for preserving fertility by pharmacological means for patients undergoing chemotherapy. This research is supported by NIH's NICHD and NCI (5R01HD053112-06 and 5R21HD061259-02) and the Flemish Foundation for Scientific Research (FWO-Vlaanderen, grant number FWO G0.065.11N10). The authors have no conflicts of interest to disclose.
7-Phloroeckol promotes hair growth on human follicles in vitro.
Bak, Soon-Sun; Sung, Young Kwan; Kim, Se-Kwon
2014-08-01
7-Phloroeckol, phloroglucinol derivative isolated from marine brown algae, has anti-oxidative, anti-inflammatory responses and MMP inhibitory activities. In this study, we evaluated the hair growth-promoting effects of 7-phloroeckol in human hair follicles. To investigate cell viability of human dermal papilla cells (DPCs) and outer root sheath (ORS) cells in the presence or absence of 7-phloroeckol treatment, MTT assay was employed. Moreover, gene expression and protein concentration of insulin-like growth factor (IGF)-1 was measured by reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. 7-Phloroeckol induced an increase in proliferation of DPCs and ORS cells. In addition, hair shaft growth was measured using the hair-follicle organ culture system. 7-Phloroeckol resulted in elongation of the hair shaft in cultured human hair follicles. 7-Phloroeckol induced an IGF-1 mRNA expression and protein concentration in DPCs and conditioned media, respectively. These results suggest that 7-phloroeckol promotes hair growth through stimulation of DPCs and ORS cells.
Imaging of the thyroid in benign and malignant disease.
Intenzo, Charles M; Dam, Hung Q; Manzone, Timothy A; Kim, Sung M
2012-01-01
The thyroid gland was one of the first organs imaged in nuclear medicine, beginning in the 1940s. Thyroid scintigraphy is based on a specific phase or prelude to thyroid hormone synthesis, namely trapping of iodide or iodide analogues (ie, Tc99m pertechnetate), and in the case of radioactive iodine, eventual incorporation into thyroid hormone synthesis within the thyroid follicle. Moreover, thyroid scintigraphy is a reflection of the functional state of the gland, as well as the physiological state of any structure (ie, nodule) within the gland. Scintigraphy, therefore, provides information that anatomical imaging (ie, ultrasound, computed tomography [CT], magnetic resonance imaging) lacks. Thyroid scintigraphy plays an essential role in the management of patients with benign or malignant thyroid disease. In the former, the structure or architecture of the gland is best demonstrated by anatomical or cross-sectional imaging, such as ultrasound, CT, or even magnetic resonance imaging. The role of scintigraphy, however, is to display the functional state of the thyroid gland or that of a clinically palpable nodule within the gland. Such information is most useful in (1) patients with thyrotoxicosis, and (2) those patients whose thyroid nodules would not require tissue sampling if their nodules are hyperfunctioning. In neoplastic thyroid disease, thyroid scintigraphy is often standard of care for postthyroidectomy remnant evaluation and in subsequent thyroid cancer surveillance. Planar radioiodine imaging, in the form of the whole-body scan (WBS) and posttherapy scan (PTS), is a fundamental tool in differentiated thyroid cancer management. Continued controversy remains over the utility of WBS in a variety of patient risk groups and clinical scenarios. Proponents on both sides of the arguments compare WBS with PTS, thyroglobulin, and other imaging modalities with differing results. The paucity of large, randomized, prospective studies results in dependence on consensus expert opinion and retrospective analysis with inherent bias. With a growing trend not to ablate low-risk patients, so that a PTS cannot be performed, some thyroid carcinoma patients may never have radioiodine imaging. In routine clinical practice, however, imaging plays a critical role in patient management both before and after treatment. Moreover, as evidenced by the robust flow of publications concerning WBS and PTS, planar imaging of thyroid carcinoma remains a topic of great interest in this modern age of rapidly advancing cross sectional and hybrid imaging with single-photon emission computed tomography, single-photon emission computed tomography/CT, and positron emission tomography/CT. Copyright © 2012. Published by Elsevier Inc.
Yoon, Ji-Seon; Choi, Mira; Shin, Chang Yup; Paik, Seung Hwan; Kim, Kyu Han; Kwon, Ohsang
2016-03-01
Optimized research models are required to further understand the pathogenesis and prophylaxis of chemotherapy-induced alopecia. Our aim was to develop a mouse model for chemotherapy-induced alopecia by follicular unit transplantation of human hair follicles onto immunodeficient mice. Twenty-two weeks after transplantation, a single dose of cyclophosphamide (Cph) was administered to mice in the Cph100 (100 mg/kg) and Cph150 (150 mg/kg) groups. On day 6, hair follicles showed dystrophic changes, with swollen dermal papilla and ectopic melanin clumping in the hair bulb. In addition, upregulated expression of apoptotic regulators [P53, Fas/Fas-ligand, tumor necrosis factor-related apoptosis-inducing ligand/tumor necrosis factor-related apoptosis-inducing ligand receptor (TRAIL/TRAIL receptor), and Bax], increased apoptotic matrix keratinocytes, downregulated Ki67 expression, and decreased melanogenic protein in the hair bulb were noted in both groups. After 12 treatment days, hair follicles in Cph100 mice appeared to diminish dystrophic changes. In contrast, hair follicles of Cph150 mice prematurely entered a dystrophic catagen phase after 9 treatment days, and immunofluorescence staining for Ki67 and melanogenic protein expressions was barely visible. Two hair follicle damage response pathways were observed in this model, namely dystrophic anagen (Cph100) and catagen (Cph150) pathways. Our model might be useful for further understanding the impact of chemotherapy on human hair follicles. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Wang, Tian-ren; Yan, Jie; Lu, Cui-ling; Xia, Xi; Yin, Tai-lang; Zhi, Xu; Zhu, Xiao-hui; Ding, Ting; Hu, Wei-hong; Guo, Hong-yan; Li, Rong; Yan, Li-ying; Qiao, Jie
2016-04-01
What is the effect of human ovarian tissue cryopreservation on single follicular development in vitro? Vitrification had a greater negative effect on growth and gene expression of human ovarian follicles when compared with fresh follicles. For human ovarian cortex cryopreservation, the conventional option is slow freezing while more recently vitrification has been demonstrated to maintain good quality and function of ovarian tissues. Ovarian tissues were collected from 11 patients. For every patient, the ovarian cortex was divided into three samples: Fresh, slow-rate freezing (Slow) and vitrification (Vit). Tissue histology was performed and follicles were isolated for single-cell mRNA analysis and in vitro culture (IVC) in 1% alginate for 8 days. Follicle morphology was assessed with hematoxylin-eosin analysis. Follicles were individually embedded in alginate (1% w/v) and cultured in vitro for 8 days. Follicle survival and growth were assessed by microscopy. Follicle viability was observed after Calcein-AM and ethidium homodimer-I (Ca-AM/EthD-I) staining. Expression of genes, including GDF9 (growth differentiation factor 9), BMP15 (bone morphogenetic protein 15) and ZP3 (zona pellucida glycoprotein 3) in oocytes and AMH (anti-Mullerian hormone), FSHR (FSH receptor), CYP11A (cholesterol side-chain cleavage cytochrome P450) and STAR (steroidogenic acute regulatory protein) in GCs, was evaluated by single-cell mRNA analysis. A total of 129 follicles were separated from ovarian cortex (Fresh n = 44; Slow n = 40; Vit n = 45). The percentage of damaged oocytes and granulosa cells was significantly higher in both the Slow and Vit groups, as compared with Fresh control (P< 0.05). The growth of follicles in vitro was significantly delayed in the Vit group compared with the Fresh group (P< 0.05). Both slow freezing (P< 0.05) and vitrification (P< 0.05) down-regulated the mRNA levels of ZP3 and CYP11A compared with Fresh group, while there was no significant difference between the Slow and Vit groups (P> 0.05). Vitrification also down-regulates AMH mRNA levels compared with Fresh group (P< 0.05). Only short-term IVC studies (8 days) are reported. Further study should be performed to examine and improve follicular development in a long-term culture system after cryopreservation. This is the first comparison of gene expression and growth of single human ovarian follicles in vitro after either slow freezing or vitrification. With the decreased gene expression and growth during IVC, damage by cryopreservation still exists and needs to be minimized during the long-term IVC of follicles in the future for eventual clinical application. This work was supported by the National Natural Science Foundation of China (31230047, 81571386, 81471508, 31429004 and 81501247), National Natural Science Foundation of Beijing (7142166) and Mega-projects of Science Research for the 12th five-year plan (2012ba132b05). There are no conflicts of interest to declare. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Wang, Xiaoxiao; Wang, Xusheng; Liu, Jianjun; Cai, Ting; Guo, Ling; Wang, Shujuan; Wang, Jinmei; Cao, Yanpei; Ge, Jianfeng; Jiang, Yuyang; Tredget, Edward E; Cao, Mengjun; Wu, Yaojiong
2016-12-01
: Stem cell-based organ regeneration is purported to enable the replacement of impaired organs in the foreseeable future. Here, we demonstrated that a combination of cultured epidermal stem cells (Epi-SCs) derived from the epidermis and skin-derived precursors (SKPs) was capable of reconstituting functional hair follicles and sebaceous glands (SG). When Epi-SCs and SKPs were mixed in a hydrogel and implanted into an excisional wound in nude mice, the Epi-SCs formed de novo epidermis along with hair follicles, and SKPs contributed to dermal papilla in the neogenic hair follicles. Notably, a combination of culture-expanded Epi-SCs and SKPs derived from the adult human scalp were sufficient to generate hair follicles and hair. Bone morphogenetic protein 4, but not Wnts, sustained the expression of alkaline phosphatase in SKPs in vitro and the hair follicle-inductive property in vivo when SKPs were engrafted with neonatal epidermal cells into excisional wounds. In addition, Epi-SCs were capable of differentiating into sebocytes and formed de novo SGs, which excreted lipids as do normal SGs. Thus our results indicate that cultured Epi-SCs and SKPs are sufficient to generate de novo hair follicles and SGs, implying great potential to develop novel bioengineered skin substitutes with appendage genesis capacity. In postpartum humans, skin appendages lost in injury are not regenerated, despite the considerable achievement made in skin bioengineering. In this study, transplantation of a combination of culture-expanded epidermal stem cells and skin-derived progenitors from mice and adult humans led to de novo regeneration of functional hair follicles and sebaceous glands. The data provide transferable knowledge for the development of novel bioengineered skin substitutes with epidermal appendage regeneration capacity. ©AlphaMed Press.
Wang, Xiaoxiao; Wang, Xusheng; Liu, Jianjun; Cai, Ting; Guo, Ling; Wang, Shujuan; Wang, Jinmei; Cao, Yanpei; Ge, Jianfeng; Jiang, Yuyang; Tredget, Edward E.; Cao, Mengjun
2016-01-01
Stem cell-based organ regeneration is purported to enable the replacement of impaired organs in the foreseeable future. Here, we demonstrated that a combination of cultured epidermal stem cells (Epi-SCs) derived from the epidermis and skin-derived precursors (SKPs) was capable of reconstituting functional hair follicles and sebaceous glands (SG). When Epi-SCs and SKPs were mixed in a hydrogel and implanted into an excisional wound in nude mice, the Epi-SCs formed de novo epidermis along with hair follicles, and SKPs contributed to dermal papilla in the neogenic hair follicles. Notably, a combination of culture-expanded Epi-SCs and SKPs derived from the adult human scalp were sufficient to generate hair follicles and hair. Bone morphogenetic protein 4, but not Wnts, sustained the expression of alkaline phosphatase in SKPs in vitro and the hair follicle-inductive property in vivo when SKPs were engrafted with neonatal epidermal cells into excisional wounds. In addition, Epi-SCs were capable of differentiating into sebocytes and formed de novo SGs, which excreted lipids as do normal SGs. Thus our results indicate that cultured Epi-SCs and SKPs are sufficient to generate de novo hair follicles and SGs, implying great potential to develop novel bioengineered skin substitutes with appendage genesis capacity. Significance In postpartum humans, skin appendages lost in injury are not regenerated, despite the considerable achievement made in skin bioengineering. In this study, transplantation of a combination of culture-expanded epidermal stem cells and skin-derived progenitors from mice and adult humans led to de novo regeneration of functional hair follicles and sebaceous glands. The data provide transferable knowledge for the development of novel bioengineered skin substitutes with epidermal appendage regeneration capacity. PMID:27458264
Antonello, ZA; Nucera, C
2015-01-01
Molecular signature of advanced and metastatic thyroid carcinoma involves deregulation of multiple fundamental pathways activated in the tumor microenvironment. They include BRAFV600E and AKT that affect tumor initiation, progression and metastasis. Human thyroid cancer orthotopic mouse models are based on human cell lines that generally harbor genetic alterations found in human thyroid cancers. They can reproduce in vivo and in situ (into the thyroid) many features of aggressive and refractory human advanced thyroid carcinomas, including local invasion and metastasis. Humanized orthotopic mouse models seem to be ideal and commonly used for preclinical and translational studies of compounds and therapies not only because they may mimic key aspects of human diseases (e.g. metastasis), but also for their reproducibility. In addition, they might provide the possibility to evaluate systemic effects of treatments. So far, human thyroid cancer in vivo models were mainly used to test single compounds, non selective and selective. Despite the greater antitumor activity and lower toxicity obtained with different selective drugs in respect to non-selective ones, most of them are only able to delay disease progression, which ultimately could restart with similar aggressive behavior. Aggressive thyroid tumors (for example, anaplastic or poorly differentiated thyroid carcinoma) carry several complex genetic alterations that are likely cooperating to promote disease progression and might confer resistance to single-compound approaches. Orthotopic models of human thyroid cancer also hold the potential to be good models for testing novel combinatorial therapies. In this article, we will summarize results on preclinical testing of selective and nonselective single compounds in orthotopic mouse models based on validated human thyroid cancer cell lines harboring the BRAFV600E mutation or with wild-type BRAF. Furthermore, we will discuss the potential use of this model also for combinatorial approaches, which are expected to take place in the upcoming human thyroid cancer basic and clinical research. PMID:24362526
Bulge Region as a Putative Hair Follicle Stem Cells Niche: A Brief Review
JOULAI VEIJOUYE, Sanaz; YARI, Abazar; HEIDARI, Fatemeh; SAJEDI, Nayereh; GHOROGHI MOGHANI, Fatemeh; NOBAKHT, Maliheh
2017-01-01
Background: Hair follicle stem cells exist in different sites. Most of the hair follicle stem cells are reside in niche called bulge. Bulge region is located between the opening of sebaceous gland and the attachment site of the arrector pili muscle. Methods: Data were collected using databases and resources of PubMed, Web of Science, Science Direct, Scopus, MEDLINE and their references from the earliest available published to identify English observational studies on hair follicle bulge region. Results: Bulge stem cells are pluripotent with high proliferative capacity. Specific markers allow the bulge cells to be isolated from mouse or human hair follicle. Stem cells isolated from bulge region are label retaining and slow cycling hence these cells are defined as label-retaining cells. Bulge cell populations, due to their plasticity nature are able to differentiate into distinct linage and could contribute in tissue regeneration. Conclusion: The current review discuss about bulge stem cells characteristics and biology including their cycle, location, plasticity, specific markers and regenerative nature. Also the differences between mouse and human hair follicles are investigated. PMID:29026781
Vitrification and xenografting of human ovarian tissue.
Amorim, Christiani Andrade; Dolmans, Marie-Madeleine; David, Anu; Jaeger, Jonathan; Vanacker, Julie; Camboni, Alessandra; Donnez, Jacques; Van Langendonckt, Anne
2012-11-01
To assess the efficiency of two vitrification protocols to cryopreserve human preantral follicles with the use of a xenografting model. Pilot study. Gynecology research unit in a university hospital. Ovarian biopsies were obtained from seven women aged 30-41 years. Ovarian tissue fragments were subjected to one of three cryopreservation protocols (slow freezing, vitrification protocol 1, and vitrification protocol 2) and xenografted for 1 week to nude mice. The number of morphologically normal follicles after cryopreservation and grafting and fibrotic surface area were determined by histologic analysis. Apoptosis was assessed by the TUNEL method. Morphometric analysis of TUNEL-positive surface area also was performed. Follicle proliferation was evaluated by immunohistochemistry. After xenografting, a difference was observed between the cryopreservation procedures applied. According to TUNEL analysis, both vitrification protocols showed better preservation of preantral follicles than the conventional freezing method. Moreover, histologic evaluation showed a significantly higher proportion of primordial follicles in vitrified (protocol 2)-warmed ovarian tissue than in frozen-thawed tissue. The proportion of growing follicles and fibrotic surface area was similar in all groups. Vitrification procedures appeared to preserve not only the morphology and survival of preantral follicles after 1 week of xenografting, but also their ability to resume folliculogenesis. In addition, vitrification protocol 2 had a positive impact on the quiescent state of primordial follicles after xenografting. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
CD34 expression in human hair follicles and tricholemmoma: a comprehensive study.
Misago, Noriyuki; Toda, Shuji; Narisawa, Yutaka
2011-08-01
There has recently been controversy regarding whether clone My10 is superior to clone QBEND-10 for labeling cells of tricholemmal lineage. Moreover, there have been no previous reports on the CD34 expression in human vellus hair follicles. We performed a comprehensive study of the CD34 expression in human terminal and vellus hair follicles and in 10 tricholemmomas using both the QBEND-10 and the My10 clones. We also performed two different procedures of immunostaining, which included the using of the standard avidin-biotin-peroxidase (ABC) complex system and the Envision system. The most sensitive marker of CD34 for normal human hair follicles and tricholemmomas is QBEND-10 using the ABC system. The degree and strength of the CD34 positive staining mainly depended on the method being used (whether it was the ABC system or the Envision system) rather than the clone. CD34 staining was rarely (20-30%) seen in the anagen and catagen vellus hair follicles, and could only be seen by the QBEND-10 clone using the ABC system. CD34 expression in the tricholemmomas represented either a diffuse or peripheral pattern. CD34 may not be a tricholemmal lineage-specific antigen, but may be related to certain functions of the cells. Copyright © 2011 John Wiley & Sons A/S.
Georgopoulos, N A; Markou, K B; Pappas, A P; Protonatariou, A; Vagenakis, G A; Sykiotis, G P; Dimopoulos, P A; Tzingounis, V A
2001-12-01
Hypothalamic amenorrhea is a treatable cause of infertility. Our patient was presented with secondary amenorrhea and diabetes insipidus. Cortisol and prolactin responded normally to a combined insulin tolerance test (ITT) and thyrotropin-releasing hormone (TRH) challenge, while thyroid-stimulating hormone (TSH) response to TRH was diminished, and no response of growth hormone to ITT was detected. Both luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels increased following gonadotropin-releasing hormone (GnRH) challenge. No response of LH to clomiphene citrate challenge was detected. Magnetic resonance imaging findings demonstrated a midline mass occupying the inferior hypothalamus, with posterior lobe not visible and thickened pituitary stalk. Ovulation induction was carried out first with combined human menopausal gonadotropins (hMG/LH/FSH) (150 IU/day) and afterwards with pulsatile GnRH (150 ng/kg/pulse). Ovulation was achieved with both pulsatile GnRH and combine gonadotropin therapy. Slightly better results were achieved with the pulsatile GnRH treatment.
Camboni, A; Van Langendonckt, A; Donnez, J; Vanacker, J; Dolmans, M M; Amorim, C A
2013-08-01
One major concern of grafting cryopreserved ovarian tissue to restore fertility in cancer patients is the possibility of reintroducing tumor cells. Cryopreservation of isolated primordial/primary follicles (PFs) may circumvent this problem. The aim of our work was to compare dimethyl sulfoxide (ME2SO) and ethylene glycol (EG) as cryoprotectants (CPAs) for slow-freezing of isolated human PFs in alginate. Ovarian biopsies from four women were processed for follicle isolation. PFs were embedded in alginate (5-15 per group). Follicles were frozen-thawed using 1.4M ME2SO or 1.5M EG as CPAs. Fresh and cryopreserved isolated follicles were in vitro cultured (IVC) for 7 days. At different time periods (after isolation, cryopreservation and IVC), follicles were evaluated with live/dead assay (using fluorescent probes) and diameter measurement. Follicle viability was calculated according to the percentage of dead follicular cells and the presence of a live/dead oocyte. A total of 841 PFs were isolated, embedded in alginate and cryopreserved with ME2SO (n=424) or EG (n=259), or used as controls (n=158). After 7 days of IVC, a significant increase in follicle size was observed in the fresh and ME2SO groups, but not in the EG group. The percentage of totally viable PFs was not significantly different before or after seven days of culture in fresh (100% and 82%) or ME2SO (93.2% and 85.1%) tissue. The EG group showed significantly lower viability before (63.9%) and after IVC (66.2%) than the fresh and ME2SO groups. Our results show that 1.4M ME2SO yields better preservation of isolated PF viability after thawing and 7 days of IVC than 1.5M EG. Alginate constitutes an easy, safe hydrogel matrix to handle and cryopreserve isolated human follicles using ME2SO as a CPA. Copyright © 2013 Elsevier Inc. All rights reserved.
Andrade, Marcelle Novaes; Santos-Silva, Ana Paula; Rodrigues-Pereira, Paula; Paiva-Melo, Francisca Diana; de Lima Junior, Niedson Correa; Teixeira, Mariana Pires; Soares, Paula; Dias, Glaecir Roseni Munstock; Graceli, Jones Bernardes; de Carvalho, Denise Pires; Ferreira, Andrea Claudia Freitas; Miranda-Alves, Leandro
2018-06-11
Tributyltin is a biocide used in nautical paints, aiming to reduce fouling of barnacles in ships. Despite the fact that many effects of TBT on marine species are known, studies in mammals have been limited, especially those evaluating its effect on the function of the hypothalamus-pituitary-thyroid (HPT) axis. The aim of this study was to investigate the effects of subchronic exposure to TBT on the HPT axis in female rats. Female Wistar rats received vehicle, TBT 200 ng kg -1 BW d -1 or 1000 ng kg -1 BW d -1 orally by gavage for 40 d. Hypothalamus, pituitary, thyroid, liver and blood samples were collected. TBT200 and TBT1000 thyroids showed vacuolated follicular cells, with follicular hypertrophy and hyperplasia. An increase in epithelial height and a decrease in the thyroid follicle and colloid area were observed in TBT1000 rats. Moreover, an increase in the epithelium/colloid area ratio was observed in both TBT groups. Lower TRH mRNA expression was observed in the hypothalami of TBT200 and TBT1000 rats. An increase in Dio1 mRNA levels was observed in the hypothalamus and thyroid in TBT1000 rats only. TSH serum levels were increased in TBT200 rats. In TBT1000 rats, there was a decrease in total T4 serum levels compared to control rats, whereas T3 serum levels did not show significant alterations. We conclude that TBT exposure can promote critical abnormalities in the HPT axis, including changes in TRH mRNA expression and serum TSH and T4 levels, in addition to affecting thyroid morphology. These findings demonstrate that TBT disrupts the HPT axis. Additionally, the changes found in thyroid hormones suggest that TBT may interfere with the peripheral metabolism of these hormones, an idea corroborated by the observed changes in Dio1 mRNA levels. Therefore, TBT exposition might interfere not only with the thyroid axis but also with thyroid hormone metabolism. Copyright © 2018 Elsevier Ltd. All rights reserved.
Constitution and behavior of follicular structures in the human anterior pituitary gland.
Ciocca, D. R.; Puy, L. A.; Stati, A. O.
1984-01-01
The follicular structures present in the human pituitary gland were studied, at the light-microscopic level, using histochemical and immunocytochemical techniques. The antisera applied in the peroxidase-antiperoxidase procedure were anti-hFSH beta, anti-hLH beta, anti-hPRL, anti-hGH, anti-hTSH beta, anti-hLPH beta, anti-pACTH, and anti-hACTH. In the 10 normal pituitaries examined, follicles were always found in the three areas of the adenohypophysis. The wall of the pars distalis follicles showed the seven immunoreactive cell types studied, while follicle-stimulating hormone (FSH) and luteinizing hormone (LH) cells were the only ones present in the wall of the pars tuberalis follicles. Most of the cell types studied were also present in the wall of the intermediate area follicles, but these follicles had characteristics not found in the other two areas. They were very large, with frequent interconnections forming a three-dimensional network of anastomotic cavities, and the colloid had different histochemical affinity. None of the hormones studied could be detected by immunocytochemistry within the follicular colloid. Three of the ten pituitary adenomas examined showed numerous follicular structures. Some of the follicles in the adenomatous pituitaries were similar to those found in the normal adenohypophysis, but there were also follicles filled with only traces of colloid and numerous blood cells in the cavity, and follicles filled with neoformed connective tissue. In one of these cases, FSH/LH immunoreactive adenoma cells were seen in the wall of the follicles. The results obtained suggest that the finding of pituitary adenomas with follicular structures is not uncommon and that the follicles originate from the tumor cells. In addition, the follicles seem to have several functional stages, explaining the finding of different types of follicular formation. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 PMID:6326578
Synthetic PEG Hydrogel for Engineering the Environment of Ovarian Follicles.
Mendez, Uziel; Zhou, Hong; Shikanov, Ariella
2018-01-01
The functional unit within the ovary is the ovarian follicle, which is also a morphological unit composed of three basic cell types: the oocyte, granulosa, and theca cells. Similar to human ovarian follicles, mouse follicles can be isolated from their ovarian environment and cultured in vitro to study folliculogenesis, or follicle development for days or weeks. Over the course of the last decade, follicle culture in a three-dimensional (3D) environment exponentially improved the outcomes of in vitro folliculogenesis. Follicle culture in 3D environments preserves follicle architecture and promotes the cross talk between cells in the follicle. Hydrogels, such as polyethylene glycol (PEG), have been used for various physiological systems for regenerative purposes because they provide a 3D environment similar to soft tissues, allow diffusion of nutrients, and can be readily modified to present biological signals, including cell adhesion ligands and proteolytic degradation facilitated by enzymes secreted by the encapsulated cells. This chapter outlines the application of PEG hydrogels to the follicle culture, including the procedures to isolate, encapsulate, and culture mouse ovarian follicles. The tunable properties of PEG hydrogels support co-encapsulation of ovarian follicles with somatic cells, which further promote follicle survival and growth in vitro through paracrine and juxtacrine interactions.
Vickers, Alison E M; Heale, Jason; Sinclair, John R; Morris, Stephen; Rowe, Josh M; Fisher, Robyn L
2012-04-01
Drug induced thyroid effects were evaluated in organotypic models utilizing either a rat thyroid lobe or human thyroid slices to compare rodent and human response. An inhibition of thyroid peroxidase (TPO) function led to a perturbation in the expression of key genes in thyroid hormone synthesis and release pathways. The clinically used thiourea drugs, methimazole (MMI) and 6-n-propyl-2-thioruacil (PTU), were used to evaluate thyroid drug response in these models. Inhibition of TPO occurred early as shown in rat thyroid lobes (2 h) and was sustained in both rat (24-48 h) and human (24 h) with ≥ 10 μM MMI. Thyroid from rats treated with single doses of MMI (30-1000 mg/kg) exhibited sustained TPO inhibition at 48 h. The MMI in vivo thyroid concentrations were comparable to the culture concentrations (~15-84 μM), thus demonstrating a close correlation between in vivo and ex vivo thyroid effects. A compensatory response to TPO inhibition was demonstrated in the rat thyroid lobe with significant up-regulation of genes involved in the pathway of thyroid hormone synthesis (Tpo, Dio1, Slc5a5, Tg, Tshr) and the megalin release pathway (Lrp2) by 24h with MMI (≥ 10 μM) and PTU (100 μM). Similarly, thyroid from the rat in vivo study exhibited an up-regulation of Dio1, Slc5a5, Lrp2, and Tshr. In human thyroid slices, there were few gene expression changes (Slc5a5, ~2-fold) and only at higher MMI concentrations (≥ 1500 μM, 24h). Extended exposure (48 h) resulted in up-regulation of Tpo, Dio1 and Lrp2, along with Slc5a5 and Tshr. In summary, TPO was inhibited by similar MMI concentrations in rat and human tissue, however an increased sensitivity to drug treatment in rat is indicated by the up-regulation of thyroid hormone synthesis and release gene pathways at concentrations found not to affect human tissue. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Green, L. M.; Murray, D. K.; Tran, D. T.; Nelson, G. A.; Shah, M. M.; Luben, R. A.
2001-01-01
In this study we examine changes in the cellular properties of FRTL-5 cells as a function of passage number, with particular emphasis on gap junction expression, karyotype, morphology, growth rate and thyroxine (T(4)) release. Early passage FRTL-5 follicular cells transfer dye through gap junctions from injected cell(s) to third-order neighboring cells and beyond within their respective follicles and have immuno-detectable connexin32 (Cx32) type gap junctional plaques in their lateral contacting plasma membranes. By contrast, FRTL-5 cells established as monolayers, or as follicles from cultures passed more than 15 times, did not transfer microinjected Lucifer Yellow dye to contiguous neighboring cells and did not express any immuno-detectable rat thyroid specific connexins (Cx43, Cx32 or Cx26). Western blots confirmed that total, membrane and cytosolic Cx32 protein was present only in early pass follicular cultures. To better understand the passage-dependent loss of Cx32 expression, RT-PCR primers were made to the most unique sequences of the rat Cx32 molecule, the cytoplasmic and carboxyl-terminal regions. These primers were used to screen FRTL-5 RNA from cultures of various passage numbers. The results revealed that later passage cultures had a single base deletion in the middle of the Cx32 cytoplasmic loop region at nucleotide position 378. This base deletion was in the middle position of the codon for amino acid 116, which is normally a CAC (histidine) but read with the frame shift was a CCC (proline). The four amino acids that followed this deletion were also altered with the fourth one becoming UAA, the ochre translation stop codon. This premature stopping of translation resulted in a truncation of 60% of the protein, which included the remaining cytoplasmic loop, third and fourth transmembrane regions and the carboxyl-terminus. The later passage cultures did not produce a carboxyl-terminal RT-PCR product, indicating that the mRNA was also truncated. These regions of the Cx32 molecule contain the sequences and epitopes to which probes and antibodies are directed, and as such alterations of these regions with repeated passage explains reports by others that FRTL-5 cells do not express Cx32, and implies that cultures used for these assessments were passed more than 15 times. To determine if genetic or epigenetic abnormalities existed in FRTL-5 cells we performed chromosome spreads from various passage cultures. FRTL-5 cells have been reported to be diploid and more recently non-diploid; however, we found them to be fully tetraploid. This tetraploidy appears to be unstable in that later passes are tetraploid plus two or three extra chromosomes. There were no obvious translocations, breaks or large-scale interstitial deletions of any chromosomes in the FRTL-5 cultures tested. As FRTL-5 cells were repeatedly passed their morphology changed. Monolayer areas spread from beneath the follicles, and the follicles became flattened in appearance. These physical changes were coincident with dramatically increased growth rates. Early cultures (passed 3-12 times) divided on average every 49+/-1 h, whereas later passes (passes 20-25) divided every 28+/-3 h. To correlate these changes with a measure of thyroid function we assayed T(4) output. Early passage follicular cultures incubated for 6 h with sodium iodide, released on average 5.27+/- 0.33 ng/ml of T(4)/100 follicles. Later passes, or early passes treated with heptanol to down-regulate Cx32, released an average of 3.84+/-0.50 ng/ml of T(4)/100 follicles. There was a 27% difference in T(4) release between early follicular cultures, that were coupled by Cx32, and late or down-regulated early follicular cultures, that were uncoupled (P<0.0001). Collectively, the physical changes documented in this study were coincident with the loss of functional Cx32. This implies a relationship between the loss of intercellular communication and changes in morphogenic appearance, growth rate and reduced thyroid function and supports the previously postulated, tumor-suppressor role for Cx32. FRTL-5 cultures from low passage numbers are an excellent model of primary thyroid cells. However, many reports in the literature ascribe features to FRTL-5 cells that are mutually inconsistent. These differences may be resolved in the future by addressing the passage number and the conditional differences of the cultures being studied.
Fluoride-induced thyroid dysfunction in rats: roles of dietary protein and calcium level.
Wang, H; Yang, Z; Zhou, B; Gao, H; Yan, X; Wang, J
2009-02-01
To assess the roles of dietary protein (Pr) and calcium (Ca) level associated with excessive fluoride (F) intake and the impact of dietary Pr, Ca, and F on thyroid function, 144 30-day-old Wistar albino rats were randomly allotted to six groups of 24 (female:male = 1:1). The six groups were fed (1) a normal control (NC) diet (17.92% Pr, 0.85% Ca = NC group); (2) the NC diet and high F (338 mg NaF [=150 mg F ion]/L in their drinking water = NC+F group); (3) low Pr and low Ca diet (10.01% Pr, 0.24% Ca = LPrLCa group); (4) low Pr and low Ca diet plus high F = LPrLCa+F group; (5) high Pr and low Ca diet plus high F (25.52% Pr, 0.25% Ca = HPrLCa+F group); and (6) low Pr and high Ca diet plus high F (10.60% Pr, 1.93% Ca = LPrHCa+F group). The areas of thyroid follicles were determined by Image-Proplus 5.1, and triiodothyronine (T3), free T3 (FT3), thyroxine (T4), and free T4 (FT4) levels in serum were measured by radioimmunoassay. The histopathological study revealed obviously flatted follicular epithelia cells and hyperplastic nodules, consisting of thyroid parafollicular cells that appeared by excessive F ingestion, on the 120th day. Pr or Ca supplementation reverses the F-induced damage in malnutrition. The serum T3, FT3, T4, and FT4 levels in the NC+F group were significantly decreased and significantly increased in the LPrLCa+F group. Thus, excessive F administration induces thyroid dysfunction in rats; dietary Pr and Ca level play key roles in F-induced thyroid dysfunction.
Dong, Liang; Huang, Jiayu; Huang, Luke; Shi, Oumin; Liu, Qiang; Chen, Haige; Xue, Wei; Huang, Yiran
2016-04-01
Thyroid-like follicular carcinoma of the kidney (TLFCK) is an extremely rare subtype of renal cell carcinoma with close resemblance to the well-differentiated thyroid follicular neoplasms. TLFCK has not been included in the 2004 World Health Organization (WHO) classification due to the limited data available. Only 27 cases have been reported in the literature to date. Herein, we report a unique case of TLFCK that presented as a striking skull and meningeal metastasis 5 years after the initial diagnosis; this is the first case of TLFCK with such a novel metastasis pattern. A 68-year-old woman was found to have a right renal lesion using computed tomography (CT) during her regular clinical follow-up visit for bladder cancer, but she exhibited no obvious clinical symptoms. The CT scan showed a 4.4-cm diameter, slightly lobulated soft tissue mass in the right lower kidney, the pathological findings of which showed a TLFCK. Five years later, the patient had progressed to skull and meningeal metastasis. Both the renal tumor and the metastasis lesion were composed almost entirely of follicles with a dense, colloid-like material that resembled thyroid follicular carcinoma. However, no lesion was found in the thyroid gland. The neoplastic epithelial cells were strongly immunoreactive for cytokeratin 7 (and vimentin but negative for thyroid transcription factor-1 and thyroglobulin. This is the first reported case of TLFCK to consist of widespread metastases to the skull and meninges and provides evidence that this rare variant of renal cell carcinoma has uncertain malignant potential and can be more clinically aggressive than previously believed.
Cloutier, Christina T; Coxworth, James E; Hawkes, Kristen
2015-02-01
Similarity in oldest parturitions in humans and great apes suggests that we maintain ancestral rates of ovarian aging. Consistent with that hypothesis, previous counts of primordial follicles in postmortem ovarian sections from chimpanzees (Pan troglodytes) showed follicle stock decline at the same rate that human stocks decline across the same ages. Here, we correct that finding with a chimpanzee sample more than three times larger than the previous one, which also allows comparison into older ages. Analyses show depletion rates similar until about age 35, but after 35, the human counts continue to fall with age, while the change is much less steep in chimpanzees. This difference implicates likely effects on ovarian dynamics from other physiological systems that are senescing at different rates, and, potentially, different perimenopausal experience for chimpanzees and humans.
Chiu, H C; Chang, C H; Jee, S H; Chang, C C; Wu, Y C
1994-09-01
Human scalp specimens were incubated in 5 U/ml dispase solution at 4 degrees C overnight before the isolation of dermal papillae and follicle epithelium. This pretreatment not only facilitated the attachment and cell outgrowth of dermal papillae but also made it easier to pluck out hairs with intact follicle epithelium. The outer root sheath cells were released from the follicle epithelium and grown on a feeder layer of mitomycin C-treated human dermal fibroblasts. The subcultured outer root sheath cells were grown in a serum-free medium. When the mixtures of early-passage dermal papilla cells and outer root sheath cells were injected into the subcutis of nude mice, an epidermal cyst surrounded by layers of fibrous tissue was found in three weeks. No hair follicles were found when the mixtures were implanted onto the chorioallantoic membrane of nine-day-old chicken embryos. A keratinized mass lying on the chorionic epithelium with or without smaller similar masses in the chorioallantoic membrane was found in eight days. No hair follicle-like structure could be found. Possible factors contributing to the failure to undergo follicular differentiation in this study are discussed.
Sphingosine-1-phosphate prevents chemotherapy-induced human primordial follicle death
Li, Fang; Turan, Volkan; Lierman, Sylvie; Cuvelier, Claude; De Sutter, Petra; Oktay, Kutluk
2014-01-01
STUDY QUESTION Can Sphingosine-1-phosphate (S1P), a ceramide-induced death pathway inhibitor, prevent cyclophosphamide (Cy) or doxorubicin (Doxo) induced apoptotic follicle death in human ovarian xenografts? SUMMARY ANSWER S1P can block human apoptotic follicle death induced by both drugs, which have differing mechanisms of cytotoxicity. WHAT IS KNOWN ALREADY S1P has been shown to decrease the impact of chemotherapy and radiation on germinal vesicle oocytes in animal studies but no human translational data exist. STUDY DESIGN, SIZE, DURATION Experimental human ovarian xenografting to test the in vivo protective effect of S1P on primordial follicle survival in the chemotherapy setting. The data were validated by assessing the same protective effect in the ovaries of xenografted mice in parallel. PARTICIPANTS/MATERIALS, SETTING, METHODS Xenografted mice were treated with Cy (75 mg/kg), Cy+S1P (200 μM), Doxo (10 mg/kg), Doxo+S1P or vehicle only (Control). S1P was administered via continuous infusion using a mini-osmotic pump beginning 24 h prior to and ending 72 h post-chemotherapy. Grafts were then recovered and stained with anti-caspase 3 antibody for the detection of apoptosis in primordial follicles. The percentage of apoptotic to total primordial follicles was calculated in each group. MAIN RESULTS AND THE ROLE OF CHANCE Both Cy and Doxo resulted in a significant increase in apoptotic follicle death in human ovarian xenografts compared with controls (62.0 ± 3.9% versus 25.7 ± 7.4%, P < 0.01 and 76.7 ± 7.4% versus 25.7 ± 7.4%, P < 0.01, respectively). This chemotherapy-induced apoptotic death was reduced both in the Cy+S1P (32.7 ± 4.4%, P < 0.01) and the Doxo+S1P group (27.1 ± 7.6%, P < 0.01) compared with Cy and Doxo groups, respectively. In the Doxo+S1P and Cy+S1P groups, the percentages of apoptotic follicles were similar to those of vehicle-treated controls (P > 0.05). The findings from the ovaries of the severe combined immunodeficient mice mirrored the findings with human tissue. LIMITATIONS, REASONS FOR CAUTION The functionality of the rescued human ovarian follicles needs to be evaluated in future studies though the studies in rodents showed that rescued oocytes can result in healthy offspring. In addition, the impact of S1P on cancer cells should be further studied. WIDER IMPLICATIONS OF THE FINDINGS S1P and its future analogs hold promise for preserving fertility by pharmacological means for patients undergoing chemotherapy. STUDY FUNDING/COMPETING INTEREST(S) This research is supported by NIH's NICHD and NCI (5R01HD053112-06 and 5R21HD061259-02) and the Flemish Foundation for Scientific Research (FWO-Vlaanderen, grant number FWO G0.065.11N10). The authors have no conflicts of interest to disclose. PMID:24221908
Shi, Huahong; Zhu, Pan; Guo, Suzhen
2014-05-01
Tributyltin (TBT), a well known endocrine disruptor, has high teratogenicity to embryos of amphibian (Xenopus tropicalis). An amphibian metamorphosis assay (AMA) and a complete AMA (CAMA) were conducted for TBT. In AMA, the body weight, the snout-to-vent length and the hind limb length of X. laevis tadpoles were decreased in tributyltin chloride (TBTCl; 12.5-200 ng/L) treatment groups after 7 days exposure. TBT greatly retarded the development of tadpoles, decreased the number of follicle and induced thyroid follicle cell hyperplasia after 19 days exposure. In CAMA, 10 and 100 ng/L TBTCl led to various malformations of gonad, including intersex, segmental aplasia and multiple ovary cavities of X. laevis following exposure from stages 46 to stage 66. The sex ratio was male-biased in TBT treatment groups. These results suggest that TBT delayed the metamorphosis, inhibited the growth of tadpoles and disrupted the gonadal differentiation of X. laevis at environmentally relevant concentrations.
In Vitro Culture of Ovarian Follicles from Peromyscus
He, Xiaoming; Toth, Thomas L.
2016-01-01
The ovarian follicle is the fundamental functional tissue unit of mammalian ovary. Each ovarian follicle contains one single oocyte. Isolation and in vitro culture of ovarian follicles to obtain fertilizable oocytes have been regarded as a promising strategy for women to combat infertility. The follicles from Peromyscus are considered as a better model than that from inbred mice for studying follicle culture. This is because Peromyscus mice are outbred (as with humans) with an increased life span. In this article, we reviewed studies on this subject conducted using Peromyscus follicles. These studies show that the conventional 2D micro-drop and 3D hanging-drop approaches established for in vitro culture of early preantral follicles from inbred mice are not directly applicable for cultivating the follicles from Peromyscus However, the efficiency could be significantly improved by culturing multiple early preantral follicles in one hanging drop of Peromyscus ovarian cell-conditioned medium. It is further revealed that the mechanical heterogeneity in the extracellular matrix of ovary is crucial for developing early preantral follicles to the antral stage and for the subsequent ovulation to release cumulus-oocyte complex. These findings may provide valuable guidance for furthering the technology of in vitro follicle culture to restore fertility in the clinic. PMID:27397871
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, E.D.; Baenziger, J.U.
1988-01-05
The authors have elucidated the structures of the anionic asparagine-linked oligosaccharides present on the glycoprotein hormones lutropin (luteinizing hormone), follitropin (follicle-stimulating hormone), and thyrotropin (thyroid-stimulating hormone). Purified hormones, isolated from bovine, ovine, and human pituitaries, were digested with N-glycanase, and the released oligosaccharides were reduced with NaB(/sup 3/H)/sub 4/. The /sup 3/H-labeled oligosaccharides from each hormone were then fractionated by anion-exchange high performance liquid chromatography (HPLC) into populations differing in the number of sulfate and/or sialic acid moieties. The sulfated, sialylated, and sulfated/sialylated structures, which together comprised 67-90% of the asparagine-linked oligosaccharides on the pituitary glycoprotein hormones, were highly heterogeneousmore » and displayed hormone- as well as animal species-specific features. A previously uncharacterized dibranched oligosaccharide, bearing one residue each of sulfate and sialic acid, was found on all of the hormones except bovine lutropin. In this study, they describe the purification and detailed structural characterizations of the sulfated, sialylated, and sulfated/sialylated oligosaccharides found on lutropin, follitropin, and thyrotropin from several animal species.« less
Encapsulated Three-Dimensional Culture Supports Development of Nonhuman Primate Secondary Follicles1
Xu, Min; West-Farrell, Erin R.; Stouffer, Richard L.; Shea, Lonnie D.; Woodruff, Teresa K.; Zelinski, Mary B.
2009-01-01
In vitro ovarian follicle cultures may provide fertility-preserving options to women facing premature infertility due to cancer therapies. An encapsulated three-dimensional (3-D) culture system utilizing biomaterials to maintain cell-cell communication and support follicle development to produce a mature oocyte has been developed for the mouse. We tested whether this encapsulated 3-D system would also support development of nonhuman primate preantral follicles, for which in vitro growth has not been reported. Three questions were investigated: Does the cycle stage at which the follicles are isolated affect follicle development? Does the rigidity of the hydrogel influence follicle survival and growth? Do follicles require luteinizing hormone (LH), in addition to follicle-stimulating hormone (FSH), for steroidogenesis? Secondary follicles were isolated from adult rhesus monkeys, encapsulated within alginate hydrogels, and cultured individually for ≤30 days. Follicles isolated from the follicular phase of the menstrual cycle had a higher survival rate (P < 0.05) than those isolated from the luteal phase; however, this difference may also be attributed to differing sizes of follicles isolated during the different stages. Follicles survived and grew in two hydrogel conditions (0.5% and 0.25% alginate). Follicle diameters increased to a greater extent (P < 0.05) in the presence of FSH alone than in FSH plus LH. Regardless of gonadotropin treatment, follicles produced estradiol, androstenedione, and progesterone by 14–30 days in vitro. Thus, an alginate hydrogel maintains the 3-D structure of individual secondary macaque follicles, permits follicle growth, and supports steroidogenesis for ≤30 days in vitro. This study documents the first use of the alginate system to maintain primate tissue architecture, and findings suggest that encapsulated 3-D culture will be successful in supporting the in vitro development of human follicles. PMID:19474063
Amorim, Christiani A; Van Langendonckt, Anne; David, Anu; Dolmans, Marie-Madeleine; Donnez, Jacques
2009-01-01
Ovarian tissue cryopreservation is a promising technique to safeguard fertility in cancer patients. However, in some types of cancer, there is a risk of transmitting malignant cells present in the cryopreserved tissue. To avoid such a risk, pre-antral follicles could be isolated from ovarian tissue and grown in vitro. On the basis of this assumption, the aim of our study was to investigate in vitro survival and growth of pre-antral follicles after cryopreservation of ovarian tissue and follicular isolation, followed by encapsulation in alginate beads. Ovarian biopsies from four patients were frozen and thawed. Pre-antral follicles were then isolated and embedded in an alginate matrix before in vitro culture for 7 days. Small pre-antral follicles (42.98 +/- 9.06 microm) from frozen-thawed tissue can survive and develop after enzymatic isolation and in vitro culture. A total of 159 follicles were incubated in a three-dimensional system (alginate hydrogel) and, after 7 days, all of them showed an increase in size (final size 56.73 +/- 13.10 microm). The survival rate of the follicles was 90% (oocyte and all granulosa cells viable). Our preliminary results indicate that alginate hydrogels may be a suitable system for in vitro culture of isolated human pre-antral follicles. However, more studies are required to establish whether follicular morphology and functionality can be maintained using this matrix.
Intoxication by Cyanide in Pregnant Sows: Prenatal and Postnatal Evaluation
Gotardo, André T.; Hueza, Isis M.; Manzano, Helena; Maruo, Viviane M.; Maiorka, Paulo C.; Górniak, Silvana L.
2015-01-01
Cyanide is a ubiquitous chemical in the environment and has been associated with many intoxication episodes; however, little is known about its potentially toxic effects on development. The aim of this study was to evaluate the effects of maternal exposure to potassium cyanide (KCN) during pregnancy on both sows and their offspring. Twenty-four pregnant sows were allocated into four groups that orally received different doses of KCN (0.0, 2.0, 4.0, and 6.0 mg/kg of body weight) from day 21 of pregnancy to term. The KCN-treated sows showed histological lesions in the CNS, thyroid follicle enlargement, thyroid epithelial thickening, colloid reabsorption changes, and vacuolar degeneration of the renal tubular epithelium. Sows treated with 4.0 mg/kg KCN showed an increase in the number of dead piglets at birth. Weaned piglets from all KCN-treated groups showed histological lesions in the thyroid glands with features similar to those found in their mothers. The exposure of pregnant sows to cyanide thus caused toxic effects in both mothers and piglets. We suggest that swine can serve as a useful animal model to assess the neurological, goitrogenic, and reproductive effects of cyanide toxicosis. PMID:26101526
Hu, F.; Sharma, Bibek; Mukhi, S.; Patino, R.; Carr, J.A.
2006-01-01
The purpose of this study was to determine if changes in colloidal thyroxine (T4) immunoreactivity can be used as a biomarker of perchlorate exposure in amphibian thyroid tissue. Larval African clawed frogs (Xenopus laevis) were exposed to 0, 1, 8, 93, and 1131 ??g perchlorate/l for 38 and 69 days to cover the normal period of larval development and metamorphosis. The results of this study confirmed the presence of an immunoreactive colloidal T4 ring in thyroid follicles of X. laevis and demonstrated that the intensity of this ring is reduced in a concentration-dependent manner by perchlorate exposure. The smallest effective concentration of perchlorate capable of significantly reducing colloidal T4 ring intensity was 8 ??g perchlorate/l. The intensity of the immunoreactive colloidal T4 ring is a more sensitive biomarker of perchlorate exposure than changes in hind limb length, forelimb emergence, tail resorption, thyrocyte hypertrophy, or colloid depletion. We conclude that the colloidal T4 ring can be used as a sensitive biomarker of perchlorate-induced thyroid disruption in amphibians. ?? Copyright 2006 Oxford University Press.
Mouse models for human hair loss disorders
Porter, Rebecca M
2003-01-01
The outer surface of the hand, limb and body is covered by the epidermis, which is elaborated into a number of specialized appendages, evolved not only to protect and reinforce the skin but also for social signalling. The most prominent of these appendages is the hair follicle. Hair follicles are remarkable because of their prolific growth characteristics and their complexity of differentiation. After initial embryonic morphogenesis, the hair follicle undergoes repeated cycles of regression and regeneration throughout the lifetime of the organism. Studies of mouse mutants with hair loss phenotypes have suggested that the mechanisms controlling the hair cycle probably involve many of the major signalling molecules used elsewhere in development, although the complete pathway of hair follicle growth control is not yet understood. Mouse studies have also led to the discovery of genes underlying several human disorders. Future studies of mouse hair-loss mutants are likely to benefit the understanding of human hair loss as well as increasing our knowledge of mechanisms controlling morphogenesis and tumorigenesis. PMID:12587927
Recent developments in the investigation of thyroid regulation and thyroid carcinogenesis.
Hard, G C
1998-01-01
This review covers new mechanistic information spanning the past 10 years relevant to normal and abnormal thyroid growth and function that may assist in the risk assessment of chemicals inducing thyroid follicular cell neoplasia. Recent studies have shown that thyroid regulation occurs via a complex interactive network mediated through several different messenger systems. Increased thyroid-stimulating hormone (TSH) levels activate the signal transduction pathways to stimulate growth and differentiation of the follicular cell. The important role of TSH in growth as well as in function helps to explain how disruptions in the thyroid-pituitary axis may influence thyroid neoplasia in rodents. New investigations that couple mechanistic studies with information from animal cancer bioassays (e. g., sulfamethazine studies) confirm the linkage between prolonged disruption of the thyroid-pituitary axis and thyroid neoplasia. New initiation/promotion studies in rodents also support the concept that chronic stimulation of the thyroid induced by goitrogens can result in thyroid tumors. Some of these studies confirm previous suggestions regarding the importance of chemically induced thyroid peroxidase inhibition and the inhibition of 3,3',5, 5'-tetraiodothyronine (T4, thyroxine) deiodinases on disruption of the thyroid-pituitary axis leading to thyroid neoplasia. Some comparative physiologic and mechanistic data highlight certain differences between rodents and humans that could be expected to confer an increased vulnerability of rodents to chronic hypersecretion of TSH. New data from epidemiologic and molecular genetic studies in humans contribute further to an understanding of thyroid neoplasia. Acute exposure to ionizing radiation, especially in childhood, remains the only verified cause of thyroid carcinogenesis in humans. Iodine deficiency studies as a whole remain inconclusive, even though several new studies in humans examine the role of dietary iodine deficiency in thyroid cancer. Specific alterations in gene expression have been identified in human thyroid neoplasia, linked to tumor phenotype, and thus oncogene activation and tumor-suppressor gene inactivation may also be factors in the development and progression of thyroid cancer in humans. An analysis by the U.S. EPA Risk Assessment Forum, prepared as a draft report in 1988 and completed in 1997, focused on the use of a threshold for risk assessment of thyroid follicular tumors. New studies, involving several chemicals, provide further support that there will be no antithyroid activity until critical intracellular concentrations are reached. Thus, for chemically induced thyroid neoplasia linked to disruptions in the thyroid-pituitary axis, a practical threshold for thyroid cancer would be expected. More information on thyroid autoregulation, the role of oncogene mutations and growth factors, and studies directly linking persistently high TSH levels with the sequential cellular development of thyroid follicular cell neoplasia would provide further confirmation. PMID:9681969
Progesterone regulation of primordial follicle assembly in bovine fetal ovaries.
Nilsson, Eric E; Skinner, Michael K
2009-12-10
Fertility in mammals is dependant on females having an adequate primordial follicle pool to supply oocytes for fertilization. The formation of primordial follicles is called ovarian follicular assembly. In rats and mice progesterone and estradiol have been shown to inhibit follicle assembly with assembly occurring after birth when the pups are removed from the high-steroid maternal environment. In contrast, primordial follicle assembly in other species, such as cattle and humans, occurs during fetal development before birth. The objective of the current study is to determine if progesterone levels regulate primordial follicle assembly in fetal bovine ovaries. Ovaries and blood were collected from bovine fetuses. Interestingly, ovarian progesterone and estradiol concentrations were found to decrease with increasing fetal age and correlated to increased primordial follicle assembly. Microarray analysis of fetal ovary RNA suggests that progesterone membrane receptor and estrogen nuclear receptor are expressed. Treatment of fetal bovine ovary cultures with a higher progesterone concentration significantly decreased primordial follicle assembly. Observations indicate that progesterone affects ovarian primordial follicle assembly in cattle, as it does in rats and mice.
Progesterone Regulation of Primordial Follicle Assembly In Bovine Fetal Ovaries
Nilsson, Eric E.; Skinner, Michael K.
2009-01-01
Fertility in mammals is dependant on females having an adequate primordial follicle pool to supply oocytes for fertilization. The formation of primordial follicles is called ovarian follicular assembly. In rats and mice progesterone and estradiol have been shown to inhibit follicle assembly with assembly occurring after birth when the pups are removed from the high-steroid maternal environment. In contrast, primordial follicle assembly in other species, such as cattle and humans, occurs during fetal development before birth. The objective of the current study is to determine if progesterone levels regulate primordial follicle assembly in fetal bovine ovaries. Ovaries and blood were collected from bovine fetuses. Interestingly, ovarian progesterone and estradiol concentrations were found to decrease with increasing fetal age and correlated to increased primordial follicle assembly. Microarray analysis of fetal ovary RNA suggests that progesterone membrane receptor and estrogen nuclear receptor are expressed. Treatment of fetal bovine ovary cultures with a higher progesterone concentration significantly decreased primordial follicle assembly. Observations indicate that progesterone affects ovarian primordial follicle assembly in cattle, as it does in rats and mice. PMID:19747959
Crane, Helen M.; Pickford, Daniel B.; Hutchinson, Thomas H.; Brown, J. Anne
2005-01-01
Perchlorate is a known environmental contaminant, largely due to widespread military use as a propellant. Perchlorate acts pharmacologically as a competitive inhibitor of thyroidal iodide uptake in mammals, but the impacts of perchlorate contamination in aquatic ecosystems and, in particular, the effects on fish are unclear. Our studies aimed to investigate the effects of concentrations of ammonium perchlorate that can occur in the environment (1, 10, and 100 mg/L) on the development of fathead minnows, Pimephales promelas. For these studies, exposures started with embryos of < 24-hr postfertilization and were terminated after 28 days. Serial sectioning of thyroid follicles showed thyroid hyperplasia with increased follicular epithelial cell height and reduced colloid in all groups of fish that had been exposed to perchlorate for 28 days, compared with control fish. Whole-body thyroxine (T4) content (a measure of total circulating T4) in fish exposed to 100 mg/L perchlorate was elevated compared with the T4 content of control fish, but 3,5,3′-triiodothyronine (T3) content was not significantly affected in any exposure group. Despite the apparent regulation of T3, after 28 days of exposure to ammonium perchlorate, fish exposed to the two higher levels (10 and 100 mg/L) were developmentally retarded, with a lack of scales and poor pigmentation, and significantly lower wet weight and standard length than were control fish. Our study indicates that environmental levels of ammonium perchlorate affect thyroid function in fish and that in the early life stages these effects may be associated with developmental retardation. PMID:15811828
PRESENCE AND BIOSYNTHESIS OF THYROID HORMONES IN A TUNICATE, CIONA INTESTINALIS (in French)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roche, L.J.; Salvatore, G.; Rametta, G.
1962-09-10
A tunicate, Ciona intestinalis L., binds very actively I/sup 131/-ions. The labeled iodine is preferentially located (75%) in the external layer of the tunic. The iodine metabolism is there chiefly oriented toward the biosynthesis of iodothyronines (thyroid hormones). The presence of free thyroxine and 3,5,3'- triiodothyronine in the tissues of Ciona has been established. Biogenesis of 3,5,3'-triiodothyronine and thyroxine proceeds chiefly in the tunic, in which three fractions of iodoproteins were characterized. Two of these, one soluble in various media, the other bound to insoluble structure, contain 3,5,3'- triiodothyronine, thyroxine and their precursors, 3-monoiodo- and 3,5- diiodotyrosine. The four iodinatedmore » amino acids are freed from these proteins by action of pancreatic proteinases and papain. An insoluble residue of iodinated scleroprotein, not hydrolyzed by proteinases, does not take part to endocrine activity; 3-monoiodotyrosine and 3,5-diiodotyrosine only are found in the products of its alkaline hydrolysis. The mechanism of hormonogenesis seems identical in all chordata (urochordata, cephalochordata, and vertebrates). As thyroid hormones are found in these and not in invertebrates lower than urochordata, their appearance in this subphylum can be considered as a fundamental step of biochemical evolution of the thyroid function. Biosynthesis of iodothyronines is characteristic of chordata. It proceeds in all of these, including protochordata, by the same mechanism, but under conditions submitted to the evolution of the secretory tissue through a series of steps, the last of which is the thyroid follicle of vertebrates. (auth)« less
Brandt, Catherine; Burnett, Duncan C; Arcinas, Liane; Palace, Vince; Gary Anderson, W
2015-08-01
Chlorpyrifos is a widely used organophosphate pesticide that has previously been shown to enter waterways in biologically relevant concentrations and has the potential to disrupt both thyroid hormone and sex steroid biosynthesis in vertebrates. Because gonadal maturation and larval development in Lake Sturgeon, Acipenser fulvescens, potentially coincide with the application of chlorpyrifos we examined the effects of chlorpyrifos on both thyroid follicular development in larval Lake Sturgeon, and sex hormone synthesis in adult Lake Sturgeon. For the first time, the present study reports steroidogenesis from testicular and ovarian tissue in Lake Sturgeon using an established in vitro bioassay. Furthermore, incubating gonad tissue with 5, 500 or 2000ngmL(-1) chlorpyrifos revealed an inhibitory effect on testosterone synthesis in both testicular (control, 40.29pgmg(-1) tissue wet weight(-1)h(-1) compared to experimental, 21.84pgmg(-1) tissue wet weight(-1)h(-1)) and ovarian (control, 33.83pgmg(-1) tissue wet weight(-1)h(-1) compared to experimental, 15.19pgmg(-1) tissue wet weight(-1)h(-1)) tissue. In a second series of experiments, larval Lake Sturgeon were exposed to equivalent concentrations of chlorpyrifos as above for 10days (d) between hatch and the onset of exogenous feeding. Larvae from each treatment group were raised until 67days post hatch (dph) and growth rates were compared alongside key indicators of thyroid follicle growth. Chlorpyrifos treatment had no effect on the measured indicators of thyroid follicular development. Copyright © 2015 Elsevier Ltd. All rights reserved.
Thyroid hormone regulates vitellogenin by inducing estrogen receptor alpha in the goldfish liver.
Nelson, Erik R; Habibi, Hamid R
2016-11-15
Vitellogenin (Vtg) is an egg-yolk precursor protein that is synthesized in the liver of oviparous species and taken up from the circulation by the ovary. It is well known that Vtg is induced by circulating estrogens. However, other endocrine factors that regulate the expression of Vtg are less well characterized; factors that might play significant roles, especially in seasonal spawners such as the goldfish which require increased quantities of Vtg for the development of hundreds of follicles. In this regard, thyroid hormones have been shown to cycle with the reproductive season. Therefore, we hypothesized that the thyroid hormones might influence the synthesis of Vtg. Treatment of female goldfish with triiodothyronine (T3) resulted in increased Vtg, an observation that was absent in males. Furthermore, T3 failed to induce Vtg in cultured hepatocytes of either sex. Interestingly however, T3 consistently up-regulated the expression of the estrogen receptor alpha (ERα). The T3 mediated upregulation of ERα requires the presence of both thyroid receptor (TR) α-1 and TRβ. When goldfish or cultured hepatocytes were treated with T3 followed by estradiol, there was a synergistic increase in Vtg, a response which is dependent on the presence of ERα. Therefore, by upregulating ERα, T3 serves to prime the liver to subsequent stimuli from estradiol. This cross-talk likely reveals an important physiologic mechanism by which thyroid hormones, whose circulating levels are high during early gonadal recrudescence, facilitate the production of large amounts of Vtg required for egg development. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Role of maternal thyroid hormones in the developing neocortex and during human evolution
Stenzel, Denise; Huttner, Wieland B.
2013-01-01
The importance of thyroid hormones during brain development has been appreciated for many decades. In humans, low levels of circulating maternal thyroid hormones, e.g., caused by maternal hypothyroidism or lack of iodine in diet, results in a wide spectrum of severe neurological defects, including neurological cretinism characterized by profound neurologic impairment and mental retardation, underlining the importance of the maternal thyroid hormone contribution. In fact, iodine intake, which is essential for thyroid hormone production in the thyroid gland, has been related to the expansion of the brain, associated with the increased cognitive capacities during human evolution. Because thyroid hormones regulate transcriptional activity of target genes via their nuclear thyroid hormone receptors (THRs), even mild and transient changes in maternal thyroid hormone levels can directly affect and alter the gene expression profile, and thus disturb fetal brain development. Here we summarize how thyroid hormones may have influenced human brain evolution through the adaptation to new habitats, concomitant with changes in diet and, therefore, iodine intake. Further, we review the current picture we gained from experimental studies in rodents on the function of maternal thyroid hormones during developmental neurogenesis. We aim to evaluate the effects of maternal thyroid hormone deficiency as well as lack of THRs and transporters on brain development and function, shedding light on the cellular behavior conducted by thyroid hormones. PMID:23882187
Rosewell, Katherine L.; Li, Feixue; Puttabyatappa, Muraly; Akin, James W.; Brännström, Mats; Curry, Thomas E.
2013-01-01
ABSTRACT Ovulation involves reorganization of the extracellular matrix of the follicle. This study examines the expression, localization, and potential function of the tissue inhibitor of metalloproteinase 3 (TIMP3) during ovulation in women. The dominant follicle of the menstrual cycle was collected at specified times throughout the ovulatory process: pre-, early, late, and postovulatory. For quantitative studies, the follicle was bisected; granulosa and theca cells were separated and collected. For immunohistochemistry (IHC), the intact follicle was embedded and TIMP3 was localized. Additionally, granulosa cells were collected from women undergoing in vitro fertilization and treated with increasing concentrations of recombinant TIMP3, and cell viability was assessed. Real-time PCR for TIMP3 mRNA revealed an increase in TIMP3 mRNA expression in granulosa cells from the early to the late ovulatory stage. Thecal TIMP3 mRNA expression was constitutive across the periovulatory period. TIMP3 protein was localized by IHC to the granulosa and theca cell layers in pre-, early, and late ovulatory follicles as well as to the vascular bed. The staining was most intense in the granulosa and theca cells in the late ovulatory group. Treatment of human granulosa-lutein cells with exogenous recombinant TIMP3 for 24 h decreased cell viability by 60%. Using human follicles collected throughout the periovulatory period of the menstrual cycle, we have demonstrated that TIMP3 mRNA expression increases and that TIMP3 protein is in the appropriate cellular layers to regulate proteolytic remodeling as the follicle progresses toward ovulation. In addition, we have shown that elevated levels of TIMP3 lead to decreased cell viability. PMID:24048576
Rosewell, Katherine L; Li, Feixue; Puttabyatappa, Muraly; Akin, James W; Brännström, Mats; Curry, Thomas E
2013-11-01
Ovulation involves reorganization of the extracellular matrix of the follicle. This study examines the expression, localization, and potential function of the tissue inhibitor of metalloproteinase 3 (TIMP3) during ovulation in women. The dominant follicle of the menstrual cycle was collected at specified times throughout the ovulatory process: pre-, early, late, and postovulatory. For quantitative studies, the follicle was bisected; granulosa and theca cells were separated and collected. For immunohistochemistry (IHC), the intact follicle was embedded and TIMP3 was localized. Additionally, granulosa cells were collected from women undergoing in vitro fertilization and treated with increasing concentrations of recombinant TIMP3, and cell viability was assessed. Real-time PCR for TIMP3 mRNA revealed an increase in TIMP3 mRNA expression in granulosa cells from the early to the late ovulatory stage. Thecal TIMP3 mRNA expression was constitutive across the periovulatory period. TIMP3 protein was localized by IHC to the granulosa and theca cell layers in pre-, early, and late ovulatory follicles as well as to the vascular bed. The staining was most intense in the granulosa and theca cells in the late ovulatory group. Treatment of human granulosa-lutein cells with exogenous recombinant TIMP3 for 24 h decreased cell viability by 60%. Using human follicles collected throughout the periovulatory period of the menstrual cycle, we have demonstrated that TIMP3 mRNA expression increases and that TIMP3 protein is in the appropriate cellular layers to regulate proteolytic remodeling as the follicle progresses toward ovulation. In addition, we have shown that elevated levels of TIMP3 lead to decreased cell viability.
Shams Mofarahe, Zahra; Salehnia, Mojdeh; Ghaffari Novin, Marefat; Ghorbanmehr, Nassim; Fesharaki, Mohammad Gholami
2017-01-01
This study was designed to evaluate the effects of vitrification and in vitro culture of human ovarian tissue on the expression of oocytic and follicular cell-related genes. In this experimental study, ovarian tissue samples were obtained from eight transsexual women. Samples were cut into small fragments and were then assigned to vitrified and non-vitrified groups. In each group, some tissue fragments were divided into un-cultured and cultured (in α-MEM medium for 2 weeks) subgroups. The normality of follicles was assessed by morphological observation under a light microscope using hematoxylin and eosin (H&E) staining. Expression levels of factor in the germ line alpha ( FIGLA ), KIT ligand ( KL ), growth differentiation factor 9 ( GDF-9 ) and follicle stimulating hormone receptor ( FSHR ) genes were quantified in both groups by real-time reverse transcriptase polymerase chain reaction (RT-PCR) at the beginning and the end of culture. The percentage of normal follicles was similar between non-cultured vitrified and non-vitrified groups (P>0.05), however, cultured tissues had significantly fewer normal follicles than non-cultured tissues in both vitrified and non-vitrified groups (P<0.05). In both cultured groups the rate of primary and secondary follicles was significantly higher than non-cultured tissues (P<0.05). The expression of all examined genes was not significantly altered in both non-cultured groups. Whiles, in comparison with cultured tissues non-cultured tissues, the expression of FIGLA gene was significantly decreased, KL gene was not changed, GDF-9 and FSHR genes was significantly increased (P<0.05). Human ovarian vitrification following in vitro culture has no impairing effects on follicle normality and development and expression of related-genes. However, in vitro culture condition has deleterious effects on normality of follicles.
Is oxygen availability a limiting factor for in vitro folliculogenesis?
Sudhakaran, Sam; Barbato, Vincenza; Merolla, Anna; Braun, Sabrina; Di Nardo, Maddalena; Costanzo, Valentina; Ferraro, Raffaele; Iannantuoni, Nicola
2018-01-01
Transplantation of ovarian tissue for the preservation of fertility in oncological patients is becoming an accepted clinical practice. However, the risk of re-introducing tumour cells at transplantation has stirred an increased interest for complete in vitro folliculogenesis. This has not yet been achieved in humans possibly for the lack of knowledge on the environmental milieu that orchestrates folliculogenesis in vivo. The main aim of this study was to investigate the effect of oxygen availability on follicle health and growth during in vitro culture of ovarian tissue strips. To this end, a model was developed to predict the dissolved oxygen concentration in tissue under varying culture conditions. Ovarian cortical strips of bovine, adopted as an animal model, and human tissue were cultured in conventional (CD) and gas permeable (PD) dishes under different media column heights and gaseous oxygen tensions for 3, 6 and 9 days. Follicle quality, activation of primordial follicles to the primary stage, and progression to the secondary stage were analysed through histology. Follicle viability was assessed through a live-dead assay at the confocal scanning laser microscope. Findings showed a higher follicle quality and viability after culture of bovine ovarian strips in PD in adequate medium height and oxygen tensions. The best culture conditions found in the bovine were adopted for human ovarian strip culture and promoted a higher follicle quality, viability and progression. Overall, data demonstrated that modulation of oxygen availability in tissue plays a key role in maintaining follicles’ health and their ability to survive and progress to the secondary stage during ovarian tissue in vitro culture. Such culture conditions could increase the yield of healthy secondary follicles for subsequent dissection and individual culture to obtain competent oocytes. PMID:29425251
Paulini, Fernanda; Vilela, Janice M V; Chiti, Maria Costanza; Donnez, Jacques; Jadoul, Pascale; Dolmans, Marie-Madeleine; Amorim, Christiani A
2016-09-01
In women, chemotherapy and radiotherapy can be harmful to the ovaries, causing loss of endocrine and reproductive functions. When gonadotoxic treatment cannot be delayed, ovarian tissue cryobanking is the only way of preserving fertility. This technique, however, is not advisable for patients with certain types of cancer, because of the risk of reintroducing malignant cells present in the cryopreserved tissue. Our objective is therefore to develop a transplantable artificial ovary. To this end, cryopreserved human preantral follicles were isolated and embedded in fibrin formulations prepared with 50 mg/ml fibrinogen and 10 IU/ml thrombin supplemented or not with 3% hyaluronic acid, and respectively xenografted to specially created right and left peritoneal pockets in eight nude mice. On days 0 and 7, the animals were killed and the matrices retrieved. On day 7, no difference was observed in the recovery rate of follicles embedded in fibrin alone (23.4%) or fibrin-hyaluronic acid (20.5%). Ki67 staining confirmed growth of the grafted follicles and terminal deoxynucleotidyl transferase)-mediated dUDP nick-end labelling assay revealed 100% of the follicles to be viable in both groups on day 7. In conclusion, fibrin seems to be a promising material for creation of an artificial ovary, supporting follicle survival and development. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Choi, Jung Kyu; Agarwal, Pranay; He, Xiaoming
2013-12-01
The ovarian follicle (each contains a single oocyte) is the fundamental functional tissue unit of mammalian ovaries. In humans, it has been long held true that females are born with a maximum number of follicles (or oocytes) that are not only nonrenewable, but also undergoing degeneration with time with a sharply decreased oocyte quality after the age of ∼35. Therefore, it is of importance to isolate and bank ovarian follicles for in vitro culture to obtain fertilizable oocytes later, to preserve the fertility of professional women who may want to delay childbearing, young and unmarried women who may lose gonadal function because of exposure to environmental/occupational hazards or aggressive medical treatments, such as radiation and chemotherapy, and even endangered species and breeds. Although they contributed significantly to the understanding of follicle science and biology, most studies reported to date on this topic were done using the man-made, unnatural inbred animal species. It was found in this study that the conventional two-dimensional microliter drop and three-dimensional hanging drop (HD) methods, reported to be effective for in vitro culture of preantral follicles from inbred mice, are not directly transferrable to outbred deer mice. Therefore, a modified HD method was developed in this study to achieve a much higher (>5 times compared to the best conventional methods) percentage of developing early secondary preantral follicles from the outbred mice to the antral stage, for which, the use of an ovarian cell-conditioned medium and multiple follicles per HD were identified to be crucial. It was further found that the method for in vitro maturation of oocytes in antral follicles obtained by in vitro culture of preantral follicles could be very different from that for oocytes in antral follicles obtained by hormone stimulation in vivo. Therefore, this study should provide important guidance for establishing effective protocols of in vitro follicle culture to preserve the fertility of wildlife and humans outbred by nature.
Choi, Jung Kyu; Agarwal, Pranay
2013-01-01
The ovarian follicle (each contains a single oocyte) is the fundamental functional tissue unit of mammalian ovaries. In humans, it has been long held true that females are born with a maximum number of follicles (or oocytes) that are not only nonrenewable, but also undergoing degeneration with time with a sharply decreased oocyte quality after the age of ∼35. Therefore, it is of importance to isolate and bank ovarian follicles for in vitro culture to obtain fertilizable oocytes later, to preserve the fertility of professional women who may want to delay childbearing, young and unmarried women who may lose gonadal function because of exposure to environmental/occupational hazards or aggressive medical treatments, such as radiation and chemotherapy, and even endangered species and breeds. Although they contributed significantly to the understanding of follicle science and biology, most studies reported to date on this topic were done using the man-made, unnatural inbred animal species. It was found in this study that the conventional two-dimensional microliter drop and three-dimensional hanging drop (HD) methods, reported to be effective for in vitro culture of preantral follicles from inbred mice, are not directly transferrable to outbred deer mice. Therefore, a modified HD method was developed in this study to achieve a much higher (>5 times compared to the best conventional methods) percentage of developing early secondary preantral follicles from the outbred mice to the antral stage, for which, the use of an ovarian cell-conditioned medium and multiple follicles per HD were identified to be crucial. It was further found that the method for in vitro maturation of oocytes in antral follicles obtained by in vitro culture of preantral follicles could be very different from that for oocytes in antral follicles obtained by hormone stimulation in vivo. Therefore, this study should provide important guidance for establishing effective protocols of in vitro follicle culture to preserve the fertility of wildlife and humans outbred by nature. PMID:23789595
Human antral fluid IGF-I and oocyte maturity: effect of stimulation therapy.
Roussi, M; Royère, M; GuillonueauM; Lansac, J; Muh, J P
1989-07-01
Studies in animals have highlighted a possible role for growth factors, particularly IGF-I on cellular replication and cytodifferentiation in the ovary. At this time, few studies have been performed about IGF-I in the human ovary. From 38 women undergoing in Vitro Fertilization 293 antral antral fluids were collected and assessed for steroids (estradiol and progesterone), FSH and IGF-I. Two induction treatments were compared: clomiphene citrate hMG (group A,N = 15), triptoreline/hMG (group B,N = 23). We also studied relationships between quantitative parameters and oocyte collection or oocyte corona cumulus complex maturity, In group B, the highest antral estradiol levels were found in follicles yielding an oocyte (p less than 0.05). Concerning antral progesterone, higher levels were observed in follicles collected from group A than follicles collected from group B (p less than 0.05): for this parameter, the highest levels were observed when an oocyte was harvested, whatever the treatment (p less than 0.05). Highest antral FSH levels were observed in group B (p less than 0.05). IGF-I levels were higher in follicles collected from group B than in follicles collected from group A (p less than 0.05) and antral IGF-I levels differed between mature and immature oocyte corona cumulus complex in group B (p less than 0.05). These results, which are in keeping with studies about biological action of IGF-I in animal or human follicles or granulosa cells, led us to hypothesize a role for IGF-I in human follicular recruitment and maturation, a role that possible is enhanced during GnRH analogue and gonadotropin therapy.
NASA Astrophysics Data System (ADS)
Fini, Jean-Baptiste; Mughal, Bilal B.; Le Mével, Sébastien; Leemans, Michelle; Lettmann, Mélodie; Spirhanzlova, Petra; Affaticati, Pierre; Jenett, Arnim; Demeneix, Barbara A.
2017-03-01
Thyroid hormones are essential for normal brain development in vertebrates. In humans, abnormal maternal thyroid hormone levels during early pregnancy are associated with decreased offspring IQ and modified brain structure. As numerous environmental chemicals disrupt thyroid hormone signalling, we questioned whether exposure to ubiquitous chemicals affects thyroid hormone responses during early neurogenesis. We established a mixture of 15 common chemicals at concentrations reported in human amniotic fluid. An in vivo larval reporter (GFP) assay served to determine integrated thyroid hormone transcriptional responses. Dose-dependent effects of short-term (72 h) exposure to single chemicals and the mixture were found. qPCR on dissected brains showed significant changes in thyroid hormone-related genes including receptors, deiodinases and neural differentiation markers. Further, exposure to mixture also modified neural proliferation as well as neuron and oligodendrocyte size. Finally, exposed tadpoles showed behavioural responses with dose-dependent reductions in mobility. In conclusion, exposure to a mixture of ubiquitous chemicals at concentrations found in human amniotic fluid affect thyroid hormone-dependent transcription, gene expression, brain development and behaviour in early embryogenesis. As thyroid hormone signalling is strongly conserved across vertebrates the results suggest that ubiquitous chemical mixtures could be exerting adverse effects on foetal human brain development.
Hexamethylenebisacetamide (HMBA) is a growth factor for human, ovine and porcine thyroid cells.
Fayet, G; Amphoux-Fazekas, T; Aouani, A; Hovsépian, S
1996-03-01
Hexamethylenebisacetamide (HMBA) provokes in murine erythroleukemia cells (MELC) a commitment to terminal differentiation leading to the activation of the expression of hemoglobin. HMBA has been tested also in other cells from colon cancer, melanoma or lung cancer. However it has not yet been tested in the thyroid. We demonstrate in this paper that HMBA in kinetics and concentration-response experiments increases the proliferation of human thyroid cells isolated from Graves'-Basedow patients. It also acts like a growth factor for ovine and porcine thyroid cells, respectively, from the OVNIS line and the ATHOS line. This molecule which is a differentiating factor in the MELC system and a growth factor in human thyroid cell cultures represents a potential to get human thyroid cell lines expressing specialized functions.
Keum, Dong In; Pi, Long-Quan; Hwang, Sungjoo Tommy; Lee, Won-Soo
2015-01-01
Background Chemotherapy-induced alopecia (CIA) is one of the most distressing side effects for patients undergoing chemotherapy. This study evaluated the protective effect of Korean Red Ginseng (KRG) on CIA in a well-established in vitro human hair follicle organ culture model as it occurs in vivo. Methods We examined whether KRG can prevent premature hair follicle dystrophy in a human hair follicle organ culture model during treatment with a key cyclophosphamide metabolite, 4-hydroperoxycyclophosphamide (4-HC). Results 4-HC inhibited human hair growth, induced premature catagen development, and inhibited proliferation and stimulated apoptosis of hair matrix keratinocytes. In addition, 4-HC increased p53 and Bax protein expression and decreased Bcl2 protein expression. Pretreatment with KRG protected against 4-HC-induced hair growth inhibition and premature catagen development. KRG also suppressed 4-HC-induced inhibition of matrix keratinocyte proliferation and stimulation of matrix keratinocyte apoptosis. Moreover, KRG restored 4-HC-induced p53 and Bax/Bcl2 expression. Conclusion Overall, our results indicate that KRG may protect against 4-HC-induced premature catagen development through modulation of p53 and Bax/Bcl2 expression. PMID:27158238
Bols, P E J; Aerts, J M J; Langbeen, A; Goovaerts, I G F; Leroy, J L M R
2010-04-01
Nowadays, in vitro study of follicular dynamics of primordial and primary follicular stages is limited because in vitro culture systems for these follicles are lacking, both in domestic animal species and in human. Therefore, additional insights might be generated by grafting ovarian tissue into immunodeficient mice to study activation and maturation of early follicular stages. A considerable amount of data has already been gathered in laboratory animals and through clinical application of human assisted reproduction technologies where live births were reported recently after the use of (cryopreserved) ovarian grafts. However, given that human preantral follicles are difficult to obtain and that there are many similarities between the bovine and human species with regard to ovarian physiology, the bovine model offers exciting additional prospects and is therefore discussed in more detail. This review will focus on recent developments related to preantral follicle and (repeated) ovarian tissue retrieval and xenotransplantation of (bovine) ovarian tissue strips to immunodeficient mice as a model to study preantral follicular dynamics. Different grafting strategies will be discussed as well as the consequences of this procedure on the viability and dynamic behavior of the grafted tissue and follicles. 2010 Elsevier Inc. All rights reserved.
Ulmer, M; Patzelt, A; Vergou, T; Richter, H; Müller, G; Kramer, A; Sterry, W; Czaika, V; Lademann, J
2013-06-01
Skin antisepsis is a key element for the prevention of surgical site infections, as well as for infections after injection and punctures. Recent investigations have shown that about 25% of the resident bacterial flora of the human skin resides within the hair follicle. These findings strongly suggest that the skin appendages play the role of a bacterial reservoir. The bacteria within the hair follicles therefore may be the cause of endogenous germ repopulation after skin antisepsis, highlighting the need for new antiseptic formulations that can sufficiently penetrate into the hair follicles. Various experiments have found that nano-sized particles as well as oil-in-water emulsions are efficient carriers for substances into the hair follicles. In the present study, we investigated the in vivo antiseptic potential of the particle-associated and aqueous polihexanide on the human skin by monitoring bacterial growth after antisepsis over a period of 2.5h. The experiments suggest that the use of a particle-bound antiseptic can achieve a better and longer lasting antisepsis of the human skin than in non-particulate form. Copyright © 2012 Elsevier B.V. All rights reserved.
Keum, Dong In; Pi, Long-Quan; Hwang, Sungjoo Tommy; Lee, Won-Soo
2016-04-01
Chemotherapy-induced alopecia (CIA) is one of the most distressing side effects for patients undergoing chemotherapy. This study evaluated the protective effect of Korean Red Ginseng (KRG) on CIA in a well-established in vitro human hair follicle organ culture model as it occurs in vivo. We examined whether KRG can prevent premature hair follicle dystrophy in a human hair follicle organ culture model during treatment with a key cyclophosphamide metabolite, 4-hydroperoxycyclophosphamide (4-HC). 4-HC inhibited human hair growth, induced premature catagen development, and inhibited proliferation and stimulated apoptosis of hair matrix keratinocytes. In addition, 4-HC increased p53 and Bax protein expression and decreased Bcl2 protein expression. Pretreatment with KRG protected against 4-HC-induced hair growth inhibition and premature catagen development. KRG also suppressed 4-HC-induced inhibition of matrix keratinocyte proliferation and stimulation of matrix keratinocyte apoptosis. Moreover, KRG restored 4-HC-induced p53 and Bax/Bcl2 expression. Overall, our results indicate that KRG may protect against 4-HC-induced premature catagen development through modulation of p53 and Bax/Bcl2 expression.
Fgf9 from dermal γδ T cells induces hair follicle neogenesis after wounding
Gay, Denise; Kwon, Ohsang; Zhang, Zhikun; Spata, Michelle; Plikus, Maksim V; Holler, Phillip D; Ito, Mayumi; Yang, Zaixin; Treffeisen, Elsa; Kim, Chang D; Nace, Arben; Zhang, Xiaohong; Baratono, Sheena; Wang, Fen; Ornitz, David M; Millar, Sarah E; Cotsarelis, George
2014-01-01
Understanding molecular mechanisms for regeneration of hair follicles provides new opportunities for developing treatments for hair loss and other skin disorders. Here we show that fibroblast growth factor 9 (Fgf9), initially secreted by γδ T cells, modulates hair follicle regeneration after wounding the skin of adult mice. Reducing Fgf9 expression decreases this wound-induced hair neogenesis (WIHN). Conversely, overexpression of Fgf9 results in a two- to threefold increase in the number of neogenic hair follicles. We found that Fgf9 from γδ T cells triggers Wnt expression and subsequent Wnt activation in wound fibroblasts. Through a unique feedback mechanism, activated fibroblasts then express Fgf9, thus amplifying Wnt activity throughout the wound dermis during a crucial phase of skin regeneration. Notably, humans lack a robust population of resident dermal γδ T cells, potentially explaining their inability to regenerate hair after wounding. These findings highlight the essential relationship between the immune system and tissue regeneration. The importance of Fgf9 in hair follicle regeneration suggests that it could be used therapeutically in humans. PMID:23727932
Xu, J; Lawson, M S; Yeoman, R R; Molskness, T A; Ting, A Y; Stouffer, R L; Zelinski, M B
2013-08-01
Does fibrin introduced into the extracellular matrix affect the growth and maturation of individual primate follicles during encapsulated three-dimensional (3D) culture? While not altering follicle survival, fibrin-alginate (FIBRIN) improves macaque primary, but not secondary, follicle development during encapsulated 3D culture in terms of growth, steroidogenesis, anti-Müllerian hormone (AMH)/vascular endothelial growth factor (VEGF) production and oocyte maturation. Efforts to grow non-human primate ovarian follicles from the secondary to the antral stage during encapsulated 3D culture have been successful. However, the growth and maturation of primary follicles in vitro has not been reported in primates, especially in chemically defined conditions. In vitro follicle maturation was investigated using the rhesus macaque (Macaca mulatta). Ovaries (n = 7 pairs) were obtained during the early follicular phase of the menstrual cycle (cycle day 1-4). Primary (80-120 µm diameter) and secondary (125-225 µm diameter) follicles were isolated mechanically, randomly assigned to experimental groups, encapsulated into alginate (0.25% w/v) or FIBRIN (25 mg/ml fibrinogen-0.25% alginate) and cultured for 13 and 5 weeks, respectively. Individual follicles were cultured in alpha minimum essential medium supplemented with FSH. Follicle survival and growth were assessed by microscopy. Follicles that reached the antral stage were treated with recombinant hCG. Metaphase II (MII) oocytes were inseminated via ICSI. Follicle morphology was evaluated by hematoxylin and eosin (H&E) staining. Immunohistochemistry was performed for cytochrome P450 family 17 subfamily A polypeptide 1 (CYP17A1) and 19 subfamily A polypeptide 1 (CYP19A1). Culture medium was analyzed for estradiol (E2) and progesterone by chemiluminescence, androstenedione (A4) by radioimmunoassay, as well as anti-Müllerian hormone (AMH) and vascular endothelial growth factor (VEGF) by enzyme-linked immunosorbent assay. A total of 105 primary and 133 secondary follicles were collected. The presence of fibrin in the alginate matrix had no effect on either primary or secondary follicle survival. Growing primary and secondary follicles formed an antrum at Weeks 9 and 3, respectively. The percentage of growing follicles was higher (P < 0.05) for primary follicles cultured in FIBRIN than alginate at Week 13. The diameters were larger for the growing secondary follicles cultured in alginate than FIBRIN at Week 5 (P < 0.05). H&E staining revealed the typical morphology for small antral follicles. CPY17A1 immunostaining was detected in theca cells, while CYP19A1 was observed in granulosa cells. E2 increased (P < 0.05) during antrum formation in growing follicles at Week 9 for primary and Week 3 for secondary follicles. AMH levels in medium from growing primary follicles increased (P < 0.05) after Week 4 with peak levels at Weeks 9-11. AMH increased (P < 0.05) in growing secondary follicles at Weeks 3-5. VEGF levels in medium were elevated (P < 0.05) in growing primary follicles at Week 9. VEGF increased (P < 0.05) in medium from growing secondary follicles at Weeks 3-5. E2, AMH and VEGF production was higher (P < 0.05) in primary follicle culture with FIBRIN than alginate alone. One primary follicle cultured in FIBRIN (1 of 5 follicles harvested) and a secondary follicle cultured in alginate alone (1 of 15 follicles harvested) yielded an MII oocyte. The fertilized oocyte from primary follicle culture arrested without cell division after fertilization, while the oocyte from secondary follicle culture cleaved and reached the morula stage. The study reports on in vitro development and function of individual macaque follicles, that is limited to the interval from the primary and secondary stage to the small antral stage. The findings await translation to human ovarian follicles. The 3D model for primate follicle development offers a unique opportunity to investigate the growth and regulation of primate primary, as well as secondary follicles, and their enclosed oocytes, as they grow to the antral stage by monitoring and manipulating factors or signaling pathways in vitro. Since primate primary follicles, in addition to secondary follicles, can be cultured to the antral stage to provide mature oocytes, they represent an additional source of pre-antral follicles for in vitro follicle maturation with the potential to provide gametes for assisted reproductive technology as an option for fertility preservation in women, including patients with cancer. This work was supported by The Oncofertility Consortium (NIH U54 RR024347-HD058294, PL1-EB008542), NIH U54-HD18185 (Eunice Kennedy Shriver Specialized Cooperative Centers Program in Reproduction and Infertility Research), NIH ORWH/NICHD 2K12HD043488 (BIRCWH), Oregon National Primate Research Center 8P51OD011092. There are no conflicts of interest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeleznik, A.J.; Schuler, H.M.; Reichert, L.E. Jr.
These experiments were initiated to determine if differences exist in the vasculature of individual follicles in the rhesus monkey ovary during the late follicular phase of the menstrual cycle and to determine whether differences in vascularity result in differential exposure of certain follicles to gonadotropic hormones. The density of blood vessels within the thecal layer of the dominant follicle and other antral follicles was determined in ovaries from four animals removed on day 9 or 10 of the menstrual cycle. Blood vessels were identified using a histochemical stain for hemoglobin. Morphometric analysis indicated that the percentage of the thecal layermore » occupied by blood vessels in the dominant follicles (48%) was significantly greater (P less than 0.005) than that of other smaller antral follicles either within the same ovary as the dominant follicle (24%) or in the contralateral ovary (26%). To determine if differences in vascularity result in a differential supply of gonadotropins to the dominant follicle, we studied, by autoradiography, the in vivo and in vitro binding of (125I)hCG in four rhesus monkeys on day 9 of the menstrual cycle. Results of in vitro binding studies indicated that the thecal layer of virtually every antral follicle possessed hCG-binding sites. However, when (125I)hcg was injected iv into animals and allowed to distribute via the vasculature, the dominant follicle was heavily labeled while other smaller antral follicles accumulated little, if any, radioiodinated hCG. These observations indicate that increased vascularization of individual follicles results in preferential delivery of gonadotropins, and suggest that blood flow to individual follicles may play an instrumental role in the selective maturation of the preovulatory follicle in the rhesus monkey.« less
Stahl, Jessica; Niedorf, Frank; Wohlert, Mareike; Kietzmann, Manfred
2012-03-01
Recent studies on follicular permeation emphasise the importance of hair follicles as diffusion pathways, but only a limited amount of data are available about the follicular permeation of topically applied drugs. This study examines the use of a hair follicle closure technique in vitro, to determine the participation of hair follicles in transdermal drug penetration. Various substances, with different lipophilicities, were tested: caffeine, diclofenac, flufenamic acid, ibuprofen, paracetamol, salicylic acid and testosterone. Diffusion experiments were conducted with porcine skin, the most common replacement material for human skin, in Franz-type diffusion cells over 28 hours. Different experimental settings allowed the differentiation between interfollicular and follicular permeation after topical application of the test compounds. A comparison of the apparent permeability coefficients of the drugs demonstrates that the percutaneous permeations of caffeine and flufenamic acid were significantly higher along the hair follicles. In the cases of paracetamol and testosterone, the follicular pathway appears to be of importance, while no difference was found between interfollicular and follicular permeation for diclofenac, ibuprofen and salicylic acid. Thus, the hair follicle closure technique represents an adequate in vitro method for gaining information about follicular or percutaneous permeation, and can replace in vivo testing in animals or humans. 2012 FRAME.
Ultrastructure and composition of Call-Exner bodies in bovine follicles.
van Wezel, I L; Irving-Rodgers, H F; Sado, Y; Ninomiya, Y; Rodgers, R J
1999-05-01
Call-Exner bodies are present in ovarian follicles of a range of species including human and rabbit, and in a range of human ovarian tumors. We have also found structures resembling Call-Exner bodies in bovine preantral and small antral follicles. Hematoxylin and eosin staining of single sections of bovine ovaries has shown that 30% of preantral follicles with more than one layer of granulosa cells and 45% of small (less than 650 microns) antral follicles have at least one Call-Exner body composed of a spherical eosinophilic region surrounded by a rosette of granulosa cells. Alcian blue stains the spherical eosinophilic region of the Call-Exner bodies. Electron microscopy has demonstrated that some Call-Exner bodies contain large aggregates of convoluted basal lamina, whereas others also contain regions of unassembled basal-lamina-like material. Individual chains of the basal lamina components type IV collagen (alpha 1 to alpha 5) and laminin (alpha 1, beta 2 and delta 1) have been immunolocalized to Call-Exner bodies in sections of fresh-frozen ovaries. Bovine Call-Exner bodies are presumably analogous to Call-Exner bodies in other species but are predominantly found in preantral and small antral follicles, rather than large antral follicles. With follicular development, the basal laminae of Call-Exner bodies change in their apparent ratio of type IV collagen to laminin, similar to changes observed in the follicular basal lamina, suggesting that these structures have a common cellular origin.
Mahalingam, Sharada; Gao, Liying; Gonnering, Marni; Helferich, William; Flaws, Jodi A.
2016-01-01
Equol is a non-steroidal estrogen metabolite produced by microbial conversion of daidzein, a major soy isoflavone, in the gut of some humans and many animal species. Isoflavones and their metabolites can affect endogenous estradiol production, action, and metabolism, potentially influencing ovarian follicle function. However, no studies have examined the effects of equol on intact ovarian antral follicles, which are responsible for sex steroid synthesis and further development into ovulatory follicles. Thus, the present study tested the hypothesis that equol inhibits antral follicle growth, increases follicle atresia, and inhibits steroidogenesis in the adult mouse ovary. To test this hypothesis, antral follicles isolated from adult CD-1 mice were cultured with vehicle control (dimethyl sulfoxide; DMSO) or equol (600 nM, 6 μM, 36 μM, 100 μM) for 48 and 96 h. Every 24 h, follicle diameters were measured to monitor growth. At 48 and 96 h, the culture medium was subjected to measurement of hormone levels, and the cultured follicles were subjected to gene expression analysis. Additionally, follicles were histologically evaluated for signs of atresia after 96 h of culture. The results indicate that equol (100 μM) inhibited follicle growth, altered the mRNA levels of bcl2-associated X protein and B cell leukemia/lymphoma 2, and induced follicle atresia. Further, equol decreased the levels of estradiol, testosterone, androstenedione, and progesterone, and it decreased mRNA levels of cholesterol side-chain cleavage, steroid 17-α-hydroxalase, and aromatase. Collectively, these data indicate that equol inhibits growth, increases atresia, and inhibits steroidogenesis of cultured mouse antral follicles. PMID:26876617
Radioactive iodine therapy: Effect on functioning metastases of adenocarcinoma of the thyroid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seidlin, S.M.; Marinelli, L.D.; Oshry, E.
1990-09-01
A case of metastatic adenocarcinoma of the thyroid is reported in which treatment by means of radioactive iodine has been successful. The patient was completely thyroidectomized for malignant adenoma in 1923, with neither thyrotoxicosis then nor hypothyroidism postoperatively; 15 years later there developed classic symptoms of hyperthyroidism and severe pain in the lower back. In October 1939 a pulsating tumor removed from the level of the 12th thoracic vertebra proved to be metastatic thyroid adenocarcinoma (histologically well differentiated, with small follicles and colloid). In the next two years hyperthyroidism increased and roentgenograms revealed new metastases in the lungs, upper partmore » of the right femur, second rib on the left side, left ilium, and skull. Roentgenologic irradiation of the metastases proved ineffectual. In March 1943 a tracer dose of radioactive iodine revealed iodine retention by all the known lesions and no evidence of residual thyroid tissue in the neck. Therapeutic amounts of radioactive iodine were administered orally between May and October 1943. Definite and lasting clinical improvement followed. In April 1944 and March 1945 additional I* was administered with a resultant disappearance of pain, increase in weight, and progressive change in all clinical criteria in the direction of hypothyroidism. Roentgenographic evidence pointed to an arrest if not a regression of the disease. No untoward effects followed this therapy. Radioactive iodine seems to be an effective therapeutic agent in the control of this type of tumor.« less
Tonacchera, M; Vitti, P; Agretti, P; Giulianetti, B; Mazzi, B; Cavaliere, R; Ceccarini, G; Fiore, E; Viacava, P; Naccarato, A; Pinchera, A; Chiovato, L
1998-07-01
Activating thyrotropin (TSH) receptor mutations have been found in toxic adenomas and in hot nodules contained in toxic multinodular goiter. The typical feature of multinodular goiter is the heterogeneity in morphology and function of different follicles within the same enlarged gland. In this report we describe a patient with a huge multinodular goiter, normal free triiodothyronine (FT3) and free thyroxine (FT4) serum values, and subnormal TSH serum concentration. Thyroid scintiscan showed two hot areas corresponding to the basal and apical nodules of the left lobe. The right lobe was poorly visualized by the radioisotope. The patient underwent thyroidectomy, and histological examination of the tissue was performed. Genomic DNA was extracted from the tissue specimen and direct sequencing of the TSH receptor and Gs alpha genes was done. At histology, one hyperfunctioning nodule had the typical microscopic structure of thyroid adenomas, and the other contained multiple macrofollicular areas not confined by a capsule. In spite of this histological difference, both hyperfunctioning nodules harbored a mutation of the thyrotropin receptor (TSHr) gene: an isoleucine instead of a threonine in position 632 (T632I) in the first nodule and a methionine instead of an isoleucine in position 486 (I486M) in the second nodule. In conclusion, our findings show for the first time that gain-of-function TSHr mutations are not only present in hyperfunctioning thyroid nodules with the histological features of the true thyroid adenomas, but also in hyperfunctioning hyperplastic nodules contained in the same multinodular goiter.
Nasiri, S; Haghpanah, V; Taheri, E; Heshmat, R; Larijani, B; Saeedi, M
2012-05-01
Thyroid hormone receptors are expressed in hair follicles and it is known that thyroid hormones can have a positive effect on hair growth, i.e. process which is disrupted in alopecia areata. The aim of this study was to determine the efficacy of topical triiodothyronine in patients with patchy alopecia areata. Ten patients with patchy alopecia areata were treated with triiodothyronine and placebo applied twice daily to either of two bilaterally symmetrical patches for 12 weeks. The two sides were randomly assigned following simple randomization procedure to one of the two treatment groups. The patients and the investigator were blinded to the content of the tubes. Hair regrowth was evaluated every 4 weeks. Blood samples for measurements of complete blood count along with thyroid function (T3, T4 and TSH) and liver function tests were taken at the baseline and at the end of study. After 12 weeks of treatment, there was no statistically significant difference between the outcome in terms of reduction of the patch size and hair regrowth. No adverse effects were noted. Triiodothyronine in the studied dosage and formulation was safe but not more effective than placebo. However, newer thyroid hormone analogues might be more effective and evaluating their effects probably warrants further consideration. © 2011 The Authors. Journal of the European Academy of Dermatology and Venereology © 2011 European Academy of Dermatology and Venereology.
Purba, Talveen S; Haslam, Iain S; Poblet, Enrique; Jiménez, Francisco; Gandarillas, Alberto; Izeta, Ander; Paus, Ralf
2014-05-01
Epithelial hair follicle stem cells (eHFSCs) are required to generate, maintain and renew the continuously cycling hair follicle (HF), supply cells that produce the keratinized hair shaft and aid in the reepithelialization of injured skin. Therefore, their study is biologically and clinically important, from alopecia to carcinogenesis and regenerative medicine. However, human eHFSCs remain ill defined compared to their murine counterparts, and it is unclear which murine eHFSC markers really apply to the human HF. We address this by reviewing current concepts on human eHFSC biology, their immediate progeny and their molecular markers, focusing on Keratin 15 and 19, CD200, CD34, PHLDA1, and EpCAM/Ber-EP4. After delineating how human eHFSCs may be selectively targeted experimentally, we close by defining as yet unmet key challenges in human eHFSC research. The ultimate goal is to transfer emerging concepts from murine epithelial stem cell biology to human HF physiology and pathology. © 2014 WILEY Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Sakurai, Akihiro; Takeda, Kyoko; Ain, Kenneth; Ceccarelli, Paola; Nakai, Akira; Seino, Susumu; Bell, Graeme I.; Refetoff, Samuel; Degroot, Leslie J.
1989-11-01
The syndrome of generalized resistance to thyroid hormone is characterized by elevated circulating levels of thyroid hormone in the presence of an overall eumetabolic state and failure to respond normally to triiodothyronine. We have evaluated a family with inherited generalized resistance to thyroid hormone for abnormalities in the thyroid hormone nuclear receptors. A single guanine --> cytosine replacement in the codon for amino acid 340 resulted in a glycine --> arginine substitution in the hormone-binding domain of one of two alleles of the patient's thyroid hormone nuclear receptor β gene. In vitro translation products of this mutant human thyroid hormone nuclear receptor β gene did not bind triiodothyronine. Thus, generalized resistance to thyroid hormone can result from expression of an abnormal thyroid hormone nuclear receptor molecule.
Expression pattern of RAGE and IGF-1 in the human fetal ovary and ovarian serous carcinoma.
Poljicanin, Ana; Filipovic, Natalija; Vukusic Pusic, Tanja; Soljic, Violeta; Caric, Ana; Saraga-Babic, Mirna; Vukojevic, Katarina
2015-01-01
The expression pattern of RAGE and IGF-1 proteins in different ovarian cell lineages was histologically analyzed in six fetal, nine adult human ovaries, and nine serous ovarian carcinomas (OSC) using immunohistochemical methods. Mild expression of IGF-1 in ovarian surface epithelium (Ose) and oocytes in the 15-week human ovaries increased to moderate or strong in the stromal cells, oocytes and follicular cells in week 22. Occasional mild RAGE expression was observed in Ose during week 15, while strong expression characterized primordial follicles in week 22. In the reproductive human ovary, IGF-1 was mildly to moderately expressed in all ovarian cell lineages except in theca cells of the tertiary follicle where IGF-1 was negative. RAGE was strongly positive in the granulosa cells and some theca cells of the tertiary follicle, while negative to mildly positive in all cells of the secondary follicle. In the postmenopausal human ovary IGF-1 and RAGE were mildly expressed in Ose and stroma. In OSC, cells were strongly positive to IGF-1 and RAGE, except for some negative stromal cells. Different levels of IGF-1 and RAGE co-expression characterized fetal ovarian cells during development. In reproductive ovaries, IGF-1 and RAGE were co-localized in the granulosa and theca interna cells of tertiary follicles, while in postmenopausal ovaries and OSC, IGF-1 and RAGE were co-localized in Ose and OSC cells respectively. Our results indicate that intracellular levels of IGF-1 and RAGE protein might regulate the final destiny of the ovarian cell populations prior and during folliculogenesis, possibly controlling the metastatic potential of OSC as well. Copyright © 2015. Published by Elsevier GmbH.
Assessment of hormonal activity in patients with premature ejaculation
Canat, Lütfi; Erbin, Akif; Canat, Masum; Dinek, Mehmet; Çaşkurlu, Turhan
2017-01-01
ABSTRACT Purpose Premature ejaculation is considered the most common type of male sexual dysfunction. Hormonal controls of ejaculation have not been exactly elucidated. The aim of our study is to investigate the role of hormonal factors in patients with premature ejaculation. Materials and Methods Sixty-three participants who consulted our outpatient clinics with complaints of premature ejaculation and 39 healthy men as a control group selected from volunteers were included in the study. A total of 102 sexual active men aged between 21 and 76 years were included. Premature ejaculation diagnostic tool questionnaires were used to assessment of premature ejaculation. Serum levels of follicle stimulating hormone, luteinizing hormone, prolactin, total and free testosterone, thyroid-stimulating hormone, free triiodothyronine and thyroxine were measured. Results Thyroid-stimulating hormone, luteinizing hormone, and prolactin levels were significantly lower in men with premature ejaculation according to premature ejaculation diagnostic tool (p=0.017, 0.007 and 0.007, respectively). Luteinizing hormone level (OR, 1.293; p=0.014) was found to be an independent risk factor for premature ejaculation. Conclusions Luteinizing hormone, prolactin, and thyroid-stimulating hormone levels are associated with premature ejaculation which was diagnosed by premature ejaculation diagnostic tool questionnaires. The relationship between these findings have to be determined by more extensive studies. PMID:27619666
NASA Technical Reports Server (NTRS)
Green, Lora M.; Patel, Zarana; Murray, Deborah K.; Rightnar, Steven; Burell, Cheryl G.; Gridley, Daila S.; Nelson, Gregory A.
2002-01-01
Fischer rat thyroid cells were grown under low-shear stress in a bioreactor to a stage of organization composed of integrated follicles resembling small thyroid glands prior to exposure to 3 Gray-gamma radiation. Bioreactor tissues and controls (both irradiated and non-irradiated) were harvested at 24, 48, 96 and 144 hours post-exposure. Tissue samples were fixed and fluorescently labeled for actin and microtubules. Tissues were assessed for changes in cytoskeletal components induced by radiation and quantified by laser scanning cytometry. ELISA's were used to quantify transforming growth factor-beta and thyroxin released from cells to the culture supernatant. Tissue architecture was disrupted by exposure to radiation with the structural organization of actin and loss of follicular content the most obviously affected. With time post-irradiation the actin appeared disordered and the levels of fluorescence associated with filamentous-actin and microtubules cycled in the tissue analogs, but not in the flask-grown cultures. Active transforming growth factor-beta was higher in supernatants from the irradiated bioreactor tissue. Thyroxin release paralleled cell survival in the bioreactors and control cultures. Thus, the engineered tissue responses to radiation differed from those of conventional tissue culture making it a potentially better mimic of the in vivo situation.
Regeneration of fat cells from myofibroblasts during wound healing.
Plikus, Maksim V; Guerrero-Juarez, Christian F; Ito, Mayumi; Li, Yun Rose; Dedhia, Priya H; Zheng, Ying; Shao, Mengle; Gay, Denise L; Ramos, Raul; Hsi, Tsai-Ching; Oh, Ji Won; Wang, Xiaojie; Ramirez, Amanda; Konopelski, Sara E; Elzein, Arijh; Wang, Anne; Supapannachart, Rarinthip June; Lee, Hye-Lim; Lim, Chae Ho; Nace, Arben; Guo, Amy; Treffeisen, Elsa; Andl, Thomas; Ramirez, Ricardo N; Murad, Rabi; Offermanns, Stefan; Metzger, Daniel; Chambon, Pierre; Widgerow, Alan D; Tuan, Tai-Lan; Mortazavi, Ali; Gupta, Rana K; Hamilton, Bruce A; Millar, Sarah E; Seale, Patrick; Pear, Warren S; Lazar, Mitchell A; Cotsarelis, George
2017-02-17
Although regeneration through the reprogramming of one cell lineage to another occurs in fish and amphibians, it has not been observed in mammals. We discovered in the mouse that during wound healing, adipocytes regenerate from myofibroblasts, a cell type thought to be differentiated and nonadipogenic. Myofibroblast reprogramming required neogenic hair follicles, which triggered bone morphogenetic protein (BMP) signaling and then activation of adipocyte transcription factors expressed during development. Overexpression of the BMP antagonist Noggin in hair follicles or deletion of the BMP receptor in myofibroblasts prevented adipocyte formation. Adipocytes formed from human keloid fibroblasts either when treated with BMP or when placed with human hair follicles in vitro . Thus, we identify the myofibroblast as a plastic cell type that may be manipulated to treat scars in humans. Copyright © 2017, American Association for the Advancement of Science.
Surface plasmon resonance immunoassay analysis of pituitary hormones in urine and serum samples.
Treviño, Juan; Calle, Ana; Rodríguez-Frade, José Miguel; Mellado, Mario; Lechuga, Laura M
2009-05-01
Direct determination of four pituitary peptide hormones: human thyroid stimulating hormone (hTSH), growth hormone (hGH), follicle stimulating hormone (hFSH), and luteinizing hormone (hLH) has been carried out using a portable surface plasmon resonance (SPR) immunosensor. A commercial SPR biosensor was employed. The immobilization of the hormones was optimized and monoclonal antibodies were selected in order to obtain the best sensor performance. Assay parameters as running buffer and regeneration solution composition or antibody concentration were adjusted to achieve a sensitive analyte detection. The performance of the assays was assessed in buffer solution, serum and urine, showing sensitivity in the range from 1 to 6 ng/mL. The covalent attachment of the hormones ensured the stability of the SPR signal through repeated use in up to 100 consecutive assay cycles. Mean intra- and inter-day coefficients of variation were all <7%, while batch-assay variability using different sensor surfaces was <5%. Taking account both the excellent reutilization performance and the outstanding reproducibility, this SPR immunoassay method turns on a highly reliable tool for endocrine monitoring in laboratory and point-of-care (POC) settings.
Do flame retardant chemicals increase the risk for thyroid dysregulation and cancer?
Hoffman, Kate; Sosa, Julie A; Stapleton, Heather M
2017-01-01
Flame retardant chemicals are added to consumer products to reduce fire incidence and severity; approximately 1.5 million tons of these chemicals are used annually. However, their widespread use has led to their ubiquitous presence in the environment and chronic accumulation in human tissues. We summarize current trends in human flame retardant chemical exposure, and review recent data highlighting concerns for thyroid dysregulation and cancer risk in human populations. Polybrominated diphenyl ethers were once commonly used as flame retardant chemicals, but recently were phased out. Exposure is associated with thyroid dysregulation (mainly T4 reductions) in animals, with new work focusing on specific mechanisms of action. Polybrominated diphenyl ethers also impact human thyroid regulation and are related to clinical thyroid disease, but associations appear both dose and life-stage dependent. Emerging data suggest that common alternate flame retardant chemicals may be more potent thyroid disruptors than their predecessors, which is particularly concerning given increasing levels of exposure. Potential health impacts of flame retardant chemicals are only beginning to be understood for 'legacy flame retardant chemicals' (i.e., polybrominated diphenyl ethers), and are largely unevaluated for newer-use chemicals. Cumulatively, current data suggest impact on thyroid regulation is likely, potentially implicating flame retardant chemicals in thyroid disease and cancers for which thyroid dysregulation impacts risk or prognosis.
Bisphenol A alters early oogenesis and follicle formation in the fetal ovary of the rhesus monkey
Hunt, Patricia A.; Lawson, Crystal; Gieske, Mary; Murdoch, Brenda; Smith, Helen; Marre, Alyssa; Hassold, Terry; VandeVoort, Catherine A.
2012-01-01
Widespread use of the endocrine disrupting chemical bisphenol A (BPA) in consumer products has resulted in nearly continuous human exposure. In rodents, low-dose exposures have been reported to adversely affect two distinct stages of oogenesis in the developing ovary: the events of prophase at the onset of meiosis in the fetal ovary and the formation of follicles in the perinatal ovary. Because these effects could influence the reproductive longevity and success of the exposed individual, we conducted studies in the rhesus monkey to determine whether BPA induces similar disturbances in the developing primate ovary. The routes and levels of human exposure are unclear; hence, two different exposure protocols were used: single daily oral doses and continuous exposure via subdermal implant. Our analyses of second trimester fetuses exposed at the time of meiotic onset suggest that, as in mice, BPA induces subtle disturbances in the prophase events that set the stage for chromosome segregation at the first meiotic division. Our analyses of third-trimester fetuses exposed to single daily oral doses during the time of follicle formation revealed an increase in multioocyte follicles analogous to that reported in rodents. However, two unique phenotypes were evident in continuously exposed animals: persistent unenclosed oocytes in the medullary region and small, nongrowing oocytes in secondary and antral follicles. Because effects on both stages of oogenesis were elicited using doses that yield circulating levels of BPA analogous to those reported in humans, these findings raise concerns for human reproductive health. PMID:23012422
Shorter, Katie; Farjo, Nilofer P; Picksley, Steven M; Randall, Valerie A
2008-06-01
Hair disorders cause psychological distress but are generally poorly controlled; more effective treatments are required. Despite the long-standing use of minoxidil for balding, its mechanism is unclear; suggestions include action on vasculature or follicle cells. Similar drugs also stimulate hair, implicating ATP-sensitive potassium (K(ATP)) channels. To investigate whether K(ATP) channels are present in human follicles, we used organ culture, molecular biological, and immunohistological approaches. Minoxidil and tolbutamide, a K(ATP) channel blocker, opposed each other's effects on the growing phase (anagen) of scalp follicles cultured in media with and without insulin. Reverse transcriptase-polymerase chain reaction identified K(ATP) channel component gene expression including regulatory sulfonylurea receptors (SUR) SUR1 and SUR2B but not SUR2A and pore-forming subunits (Kir) Kir6.1 and Kir6.2. When hair bulb tissues were examined separately, epithelial matrix expressed SUR1 and Kir6.2, whereas both dermal papilla and sheath exhibited SUR2B and Kir6.1. Immunohistochemistry demonstrated similar protein distributions. Thus, human follicles respond biologically to K(ATP) channel regulators in culture and express genes and proteins for two K(ATP) channels, Kir6.2/SUR1 and Kir6.1/SUR2B; minoxidil only stimulates SUR2 channels. These findings indicate that human follicular dermal papillae contain K(ATP) channels that can respond to minoxidil and that tolbutamide may suppress hair growth clinically; novel drugs designed specifically for these channels could treat hair disorders.
Kwack, M H; Shin, S H; Kim, S R; Im, S U; Han, I S; Kim, M K; Kim, J C; Sung, Y K
2009-06-01
l-Ascorbic acid 2-phosphate (Asc 2-P), a derivative of l-ascorbic acid, promotes elongation of hair shafts in cultured human hair follicles and induces hair growth in mice. To investigate whether the promotion of hair growth by Asc 2-P is mediated by insulin-like growth factor-1 (IGF-1) and, if so, to investigate the mechanism of the Asc 2-P-induced IGF-1 expression. Dermal papilla (DP) cells were cultured and IGF-1 level was measured by reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay after Asc 2-P treatment in the absence or presence of LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor. Also, hair shaft elongation in cultured human scalp hair follicles and proliferation of cocultured keratinocytes were examined after Asc 2-P treatment in the absence or presence of neutralizing antibody against IGF-1. In addition, keratinocyte proliferation in cultured hair follicles after Asc 2-P treatment in the absence or presence of LY294002 was examined by Ki-67 immunostaining. IGF-1 mRNA in DP cells was upregulated and IGF-1 protein in the conditioned medium of DP cells was significantly increased after treatment with Asc 2-P. Immunohistochemical staining showed that IGF-1 staining is increased in the DP of cultured human hair follicles by Asc 2-P. The neutralizing antibody against IGF-1 significantly suppressed the Asc 2-P-mediated elongation of hair shafts in hair follicle organ culture and significantly attenuated Asc 2-P-induced growth of cocultured keratinocytes. LY294002 significantly attenuated Asc 2-P-inducible IGF-1 expression and proliferation of follicular keratinocytes in cultured hair follicles. These data show that Asc 2-P-inducible IGF-1 from DP cells promotes proliferation of follicular keratinocytes and stimulates hair follicle growth in vitro via PI3K.
Gaytan, F; Morales, C; Roa, J; Tena-Sempere, M
2018-04-01
Is keratin 8/18 (K8/K18) expression linked to cell death/survival events in the human granulosa cell lineage? A close association exists between changes in K8/K18 expression and cell death/survival events along the human granulosa cell lineage lifespan. In addition to their structural and mechanical functions, K8/K18 play essential roles regulating cell death, survival and differentiation in several non-gonadal epithelial tissues. Transfection of the granulosa-like tumor KGN cells with siRNA to interfere KRT8 and KRT18 expression increases FAS-mediated apoptosis, while an inverse association between K8/K18 expression and cell death has been found in the bovine antral follicles and corpus luteum. Yet, only fragmentary and inconclusive information exists regarding K8/K18 expression in the human ovary. Expression of K8/K18 was assessed by immunohistochemistry at different stages of the granulosa cell lineage, from flattened granulosa cells in primordial follicles to fully luteinized granulosa-lutein cells in the corpus luteum (including corpus luteum of pregnancy). Immunohistochemical detection of K8/K18 was conducted in 40 archival ovarian samples from women aged 17-39 years. K8/K18 expression was analyzed at the different stages of follicle development and corpus luteum lifespan. The proportions of primordial follicles showing all K8/K18-positive, all K8/K18 negative, or a mixture of K8/K18 negative and positive granulosa cells were quantified in 18 ovaries, divided into three age groups: ≤ 25 years (N = 6), 26-30 (N = 6) and 31-36 (N = 6) years. A total number of 1793 primordial, 750 transitional and 140 primary follicles were scored. A close association was found between changes in K8/K18 expression and cell death/cell survival events in the human granulosa cell lineage. Large secondary and early antral follicles (most of them undergoing atresia) and regressing corpora lutea displayed low/absent K8/K18 expression. Conversely, early growing and some large antral follicles, functional menstrual corpora lutea, as well as life-extended corpus luteum of pregnancy, in which cell death was scarce, showed high K8/K18 expression. Three sub-populations of primordial follicles were observed with respect to the presence of K8/K18 in their flattened granulosa cells, ranging from primordial follicles showing only positive granulosa cells [P0(+)], to others with a mixture of positive and negative cells [P0(+/-)] or follicles with only negative cells [P0(-)]. Significant age-related changes were found in the proportions of the different primordial follicle types. In relation to age, a positive correlation was found for P0(+) primordial follicles (R2= 0.7883, N = 18; P < 0.001), while negative correlations were found for P0(+/-) (R2 = 0.6853, N = 18; P < 0.001) and P0(-) (R2 = 0.6725, N = 18; P < 0.001) follicles. Furthermore, an age-related shift towards greater keratin expression was found in P0(+/-) follicles (χ2 = 19.07, P < 0.05). N/A. This is a descriptive study. Hence, a cause-and-effect relationship between K8/K18 expression and cell death/survival cannot be directly established. This study describes, for the first time, the existence of sub-populations of primordial follicles on the basis of K8/K18 expression in granulosa cells, and that their proportions change with age. While a progressive increase in K8/K18 expression cannot be ruled out, our data are consistent with the hypothesis that primordial follicles expressing low levels of K8/K18 are preferentially ablated by follicle attrition, while primordial follicles showing high K8/K18 levels are those predominantly recruited into the growing pool. This suggests that K8/K18 expression could constitute a novel factor regulating primordial follicle death/survival, and raises the possibility that alterations of K8/K18 expression could be involved in the accelerated depletion of the ovarian reserve leading to premature ovarian insufficiency. This work was supported by Grants BFU2011-025021 and BFU2014-57581-P (Ministerio de Economía y Competitividad, Spain; co-funded with EU funds from FEDER Program); project PIE14-00005 (Flexi-Met, Instituto de Salud Carlos III, Ministerio de Sanidad, Spain); Projects P08-CVI-03788 and P12-FQM-01943 (Junta de Andalucía, Spain); and EU research contract DEER FP7-ENV-2007-1. CIBER Fisiopatología de la Obesidad y Nutrición is an initiative of Instituto de Salud Carlos III. The authors have nothing to disclose in relation to the contents of this study.
Wang, You-bao; Han, Tao; Zhao, Chun-xiong
2010-09-01
Human papillomavirus (HPV) commonly exists in healthy individuals, but its prevalence in the pubic hair follicles is not yet clear, nor is the relationship between HPV infection in the pubic hair follicles and the recurrence of genital warts in men. This study aimed to investigate HPV infection in the pubic hair follicles of healthy men and patients with genital warts, and to look into the correlation of HPV infection with recurrent genital warts. We included in this study 122 healthy men aged 21-80 years and 86 male patients with genital warts aged 24-61 years, detected HPV in their pubic hair follicles by PCR, and made comparative analysis of the data obtained from the two groups. The positive rate of HPV in the pubic hair follicles of the healthy males was 17.21% (21/122), including 15 cases of HPV6, 4 HPV11, 1 non-HPV6/11 and 1 the mixed type (both HPV6 and HPV11), while that of the genital wart patients was 32.55% (28/86), including 17 cases of HPV6, 7 HPV11, 2 non-HPV6/11 and 2 the mixed type. The incidence of HPV infection is higher in patients with genital warts than in healthy men, while the types of HPV involved are basically the same in the two groups, mainly HPV6 and HPV11.
Thyroid hormones and menstrual cycle function in a longitudinal cohort of premenopausal women.
Jacobson, Melanie H; Howards, Penelope P; Darrow, Lyndsey A; Meadows, Juliana W; Kesner, James S; Spencer, Jessica B; Terrell, Metrecia L; Marcus, Michele
2018-05-01
Previous studies have reported that hyperthyroid and hypothyroid women experience menstrual irregularities more often compared with euthyroid women, but reasons for this are not well-understood and studies on thyroid hormones among euthyroid women are lacking. In a prospective cohort study of euthyroid women, this study characterised the relationship between thyroid hormone concentrations and prospectively collected menstrual function outcomes. Between 2004-2014, 86 euthyroid premenopausal women not lactating or taking hormonal medications participated in a study measuring menstrual function. Serum thyroid hormones were measured before the menstrual function study began. Women then collected first morning urine voids and completed daily bleeding diaries every day for three cycles. Urinary oestrogen and progesterone metabolites (estrone 3-glucuronide (E 1 3G) and pregnanediol 3-glucuronide (Pd3G)) and follicle-stimulating hormone were measured and adjusted for creatinine (Cr). Total thyroxine (T 4 ) concentrations were positively associated with Pd3G and E 1 3G. Women with higher (vs lower) T 4 had greater luteal phase maximum Pd3G (Pd3G = 11.7 μg/mg Cr for women with high T 4 vs Pd3G = 9.5 and 8.1 μg/mg Cr for women with medium and low T 4 , respectively) and greater follicular phase maximum E 1 3G (E 1 3G = 41.7 ng/mg Cr for women with high T 4 vs E 1 3G = 34.3 and 33.7 ng/mg Cr for women with medium and low T 4 , respectively). Circulating thyroid hormone concentrations were associated with subtle differences in menstrual cycle function outcomes, particularly sex steroid hormone levels in healthy women. Results contribute to the understanding of the relationship between thyroid function and the menstrual cycle, and may have implications for fertility and chronic disease. © 2018 John Wiley & Sons Ltd.
Ghrelin in the pilosebaceous unit: alteration of ghrelin in patients with acne vulgaris.
Cicek, Demet; Demir, Betul; Erder, Ilker; Kuloglu, Tuncay; Ucer, Ozlem; Aydin, Suleyman; Ucak, Haydar; Dertlioglu, Selma; Kalayci, Mehmet
2015-01-01
Ghrelin in the pilosebaceous tissues of human skin and ghrelin levels in patients with acne vulgaris have not yet been investigated. The purpose of this study was to screen ghrelin immunoreactivity by immunohistochemistry in human pilosebaceous tissues of human skin and also to determine the quantities of ghrelin in the serum of the patients with acne vulgaris. 30 patients presenting with acne vulgaris and 30 control subjects participated in this study. Ghrelin levels were determined by enzyme linked immunosorbent assay (ELISA). Human hair follicles and sebaceous glands were immunohistochemically examined. Immunohistochemistry results showed that there is a strong ghrelin immunoreactivity in the hair follicles and sebaceous glands in sections of human skin. The mean serum ghrelin levels (27.58 ・} 15.44 pg/mL) in patients with acne vulgaris was significantly lower than those of controls (35.62・}20.46 pg/mL). Ghrelin produced in hair follicles and sebaceous glands of the skin might participate in the pathogenesis of acne vulgaris and also acne vulgaris in humans might be associated with decreased serum ghrelin.
1990-01-01
The major histological components of the hair follicle are the hair cortex and cuticle. The hair cuticle cells encase and protect the cortex and undergo a different developmental program to that of the cortex. We report the molecular characterization of a set of evolutionarily conserved hair genes which are transcribed in the hair cuticle late in follicle development. Two genes were isolated and characterized, one expressed in the human follicle and one in the sheep follicle. Each gene encodes a small protein of 16 kD, containing greater than 50 cysteine residues, ranging from 31 to 36 mol% cysteine. Their high cysteine content and in vitro expression data identify them as ultra-high-sulfur (UHS) keratin proteins. The predicted proteins are composed almost entirely of cysteine-rich and glycine-rich repeats. Genomic blots reveal that the UHS keratin proteins are encoded by related multigene families in both the human and sheep genomes. Tissue in situ hybridization demonstrates that the expression of both genes is localized to the hair fiber cuticle and occurs at a late stage in fiber morphogenesis. PMID:1703541
Lee, Soung-Hoon; Seo, Seol Hwa; Lee, Dong-Hwan; Pi, Long-Quan; Lee, Won-Soo; Choi, Kang-Yell
2017-11-01
The Wnt/β-catenin pathway has been implicated in hair follicle development and hair regeneration in adults. We discovered that CXXC-type zinc finger protein 5 (CXXC5) is a negative regulator of the Wnt/β-catenin pathway involved in hair regrowth and wound-induced hair follicle neogenesis via an interaction with Dishevelled. CXXC5 was upregulated in miniaturized hair follicles and arrector pili muscles in human balding scalps. The inhibitory effects of CXXC5 on alkaline phosphatase activity and cell proliferation were demonstrated using human hair follicle dermal papilla cells. Moreover, CXXC5 -/- mice displayed accelerated hair regrowth, and treatment with valproic acid, a glycogen synthase kinase 3β inhibitor that activates the Wnt/β-catenin pathway, further induced hair regrowth in the CXXC5 -/- mice. Disrupting the CXXC5-Dishevelled interaction with a competitor peptide activated the Wnt/β-catenin pathway and accelerated hair regrowth and wound-induced hair follicle neogenesis. Overall, these findings suggest that the CXXC5-Dishevelled interaction is a potential target for the treatment of hair loss. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Activation of dormant ovarian follicles to generate mature eggs.
Li, Jing; Kawamura, Kazuhiro; Cheng, Yuan; Liu, Shuang; Klein, Cynthia; Liu, Shu; Duan, En-Kui; Hsueh, Aaron J W
2010-06-01
Although multiple follicles are present in mammalian ovaries, most of them remain dormant for years or decades. During reproductive life, some follicles are activated for development. Genetically modified mouse models with oocyte-specific deletion of genes in the PTEN-PI3K-Akt-Foxo3 pathway exhibited premature activation of all dormant follicles. Using an inhibitor of the Phosphatase with TENsin homology deleted in chromosome 10 (PTEN) phosphatase and a PI3K activating peptide, we found that short-term treatment of neonatal mouse ovaries increased nuclear exclusion of Foxo3 in primordial oocytes. After transplantation under kidney capsules of ovariectomized hosts, treated follicles developed to the preovulatory stage with mature eggs displaying normal epigenetic changes of imprinted genes. After in vitro fertilization and embryo transfer, healthy progeny with proven fertility were delivered. Human ovarian cortical fragments from cancer patients were also treated with the PTEN inhibitor. After xeno-transplantation to immune-deficient mice for 6 months, primordial follicles developed to the preovulatory stage with oocytes capable of undergoing nuclear maturation. Major differences between male and female mammals are unlimited number of sperm and paucity of mature oocytes. Thus, short-term in vitro activation of dormant ovarian follicles after stimulation of the PI3K-Akt pathway allows the generation of a large supply of mature female germ cells for future treatment of infertile women with a diminishing ovarian reserve and for cancer patients with cryo-preserved ovaries. Generation of a large number of human oocytes also facilitates future derivation of embryonic stem cells for regenerative medicine.
Hair loss and hyperprolactinemia in women
2012-01-01
In the literature of the past 30 years there are only some publications concerned with hair loss and hyperprolactinemia in women. Therefore, the relevance of hyperprolactinemia was evaluated in 40 women with diffuse alopecia. Hair loss was assessed by clinical appearance and the pluck trichogram. 82.5% of the female patients had diffuse hair loss and 17.5% had androgenetic alopecia. The highest prolactin values measured were 1390 ng/ml and 255 ng/ml. Six patients had values between 150–80.4 ng/ml and 10 between 79.1–51.7 ng/ml. All others had prolactin values below 50 ng/ml. Fifteen untreated patients with elevated prolactin levels could be followed up. Without any prolactin-inhibiting drugs, reductions and normalizations beside moderate fluctuations could be detected. Thyroid-specific diagnostics showed in 95% of the patients a normal thyroid function. 2.5% had a slight hyperthyreoidism and 2.5% had a slight hypothyreoidism. No female patient had clinical signs of androgenization and the determined androgens testosterone, androstendione and dihydroepiandrostendione were in the normal range. According to these results, moderate elevated prolactin levels in association with diffuse or androgenetic hair loss can be neglected as causative for the hair loss, because there is no evidence that they have an influence to the pattern, the extent or the duration of the hair loss. These results are supported by investigations of other authors who described only in high doses of prolactin an inhibiting effect on human hair follicles in vitro. Nevertheless, moderate constantly elevated prolactin levels should induce further diagnostics to exclude a prolactin-producing tumor of the pituitary gland. PMID:22870355
Ahmed, O M; Abd El-Tawab, S M; Ahmed, R G
2010-10-01
The adequate functioning of the maternal thyroid gland plays an important role to ensure that the offspring develop normally. Thus, maternal hypo- and hyperthyroidism are used from the gestation day 1 to lactation day 21, in general, to recognize the alleged association of offspring abnormalities associated with the different thyroid status. In maternal rats during pregnancy and lactation, hypothyroidism in one group was performed by antithyroid drug, methimazole (MMI) that was added in drinking water at concentration 0.02% and hyperthyroidism in the other group was induced by exogenous thyroxine (T4) (from 50 microg to 200 microg/kg body weight) intragastric administration beside adding 0.002% T4 to the drinking water. The hypothyroid and hyperthyroid states in mothers during pregnancy and lactation periods were confirmed by measuring total thyroxine (TT4) and triiodothyronine (TT3) at gestational day 10 and 10 days post-partum, respectively; the effect was more pronounced at the later period than the first. In offspring of control maternal rats, the free thyroxine (FT4), free triiodothyronine (FT3), thyrotropin (TSH) and growth hormone (GH) concentrations were pronouncedly increased as the age progressed from 1 to 3 weeks. In hypothyroid group, a marked decrease in serum FT3, FT4 and GH levels was observed while there was a significant increase in TSH level with age progress as compared with the corresponding control. The reverse pattern to latter state was recorded in hyperthyroid group. The thyroid gland of offspring of hypothyroid group, exhibited some histopathological changes as luminal obliteration of follicles, hyperplasia, fibroblastic proliferation and some degenerative changes throughout the experimental period. The offspring of hyperthyroid rats showed larger and less thyroid follicles with flattened cell lining epithelium, decreased thyroid gland size and some degenerative changes along the experimental period. On the other hand, the biochemical data revealed that in control offspring, the levels of iodothyronine 5'-monodeiodinase (5'-DI), monoamines, gamma-aminobutyric acid (GABA), acetylcholinesterase (AchE), ATPase-enzymes (Na(+),K(+)-ATPase, Ca(2+)-ATPase and Mg(2+)-ATPase) follow a synchronized course of development in all investigated brain regions (cerebrum, cerebellum and medulla oblongata). In addition, the depression in 5'-DI activity, monoamines levels with age progress in all investigated regions, was more pronounced in hypothyroid offspring, while they were increased significantly in hyperthyroid ones in comparison with their respective controls. Conversely, the reverse pattern was recorded in level of the inhibitory transmitter, GABA while there was a disturbance in AchE and ATPases activities in both treated groups along the experimental period in all studied regions. In conclusion, the hypothyroid status during pregnancy and lactation produced inhibitory effects on monoamines, AchE and ATPases and excitatory actions on GABA in different brain regions of the offspring while the hyperthyroid state induced a reverse effect. Thus, the maternal hypothyroidism and hyperthyroidism may cause a number of biochemical disturbances in different brain regions of their offspring and may lead to a pathophysiological state. These alterations were age dependent. Copyright 2010 ISDN. Published by Elsevier Ltd. All rights reserved.
Valproic acid promotes human hair growth in in vitro culture model.
Jo, Seong Jin; Choi, Soon-Jin; Yoon, Sun-Young; Lee, Ji Yeon; Park, Won-Seok; Park, Phil-June; Kim, Kyu Han; Eun, Hee Chul; Kwon, Ohsang
2013-10-01
β-Catenin, the transducer of Wnt signaling, is critical for the development and growth of hair follicles. In the absence of Wnt signals, cytoplasmic β-catenin is phosphorylated by glycogen synthase kinase (GSK)-3 and then degraded. Therefore, inhibition of GSK-3 may enhance hair growth via β-catenin stabilization. Valproic acid is an anticonvulsant and a mood-stabilizing drug that has been used for decades. Recently, valproic acid was reported to inhibit GSK-3β in neuronal cells, but its effect on human hair follicles remains unknown. To determine the effect of VPA on human hair growth. We investigated the effect of VPA on cultured human dermal papilla cells and outer root sheath cells and on an in vitro culture of human hair follicles, which were obtained from scalp skin samples of healthy volunteers. Anagen induction by valproic acid was evaluated using C57BL/6 mice model. Valproic acid not only enhanced the viability of human dermal papilla cells and outer root sheath cells but also promoted elongation of the hair shaft and reduced catagen transition of human hair follicles in organ culture model. Valproic acid treatment of human dermal papilla cells led to increased β-catenin levels and nuclear accumulation and inhibition of GSK-3β by phosphorylation. In addition, valproic acid treatment accelerated the induction of anagen hair in 7-week-old female C57BL/6 mice. Valproic acid enhanced human hair growth by increasing β-catenin and therefore may serve as an alternative therapeutic option for alopecia. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Han, Tao; Sun, Xuan; Wang, You-Bao; Zhu, Chang-Ming; Xu, Xiang-Qian
2013-09-01
To investigate the association of human papillomavirus (HPV) in the pubic hair follicles of males with HPV infection in their female sexual partners. We included in this study 21 female patients with HPV infection, including 8 cases of cervical cancer, 5 cases of atypical cervical hyperplasia, 5 cases of cervical condyloma, and 3 cases with unidentified causes. We also enlisted 52 men without visible condyloma acuminatum in the external genitalia as healthy controls. We detected HPV in the pubic hair follicles of the female patients' male sexual partners and the healthy male controls by PCR and reverse hybridization in situ. HPV positive was found in 6 (28.6%) of the 21 women's male partners, in whom the HPV types were correspondent situ. to those of the female patients. HPV in the pubic hair follicles of men might be one of the causes of HPV-related cervical lesions in their female sexual partners.
Kizawa, Kenji; Fujimori, Takeshi; Kawai, Tomomitsu
2017-01-01
The human hair shaft is covered with multiple scale-like cuticular layers. During the terminal differentiation stage of immature cuticular cells within the hair follicle, cysteine-rich calcium binding S100A3 protein is predominantly translated, and its arginine residues are converted to citrullines by peptidylarginine deiminases (PADI). In this study, we found several naturally occurring compounds (e.g., hinokitiol, escletin, and quercetin) elevate S100A3 citrullination in a human colorectal adenocarcinoma cell line (SW480). Selected compounds similarly promoted cuticular differentiation within isolated human hair follicles. Their promotive activities correlated with the previously reported inhibitory activities of arachidonate 12-lipoxygenase (ALOX12) in vitro. Microarray analysis revealed that ALOX12 inhibitor remarkably up-regulated heparin-binding epidermal growth factor-like growth factor (HBEGF). ALOX12 inhibitor and recombinant HBEGF similarly regulated expression of PADI genes in SW480 cells. In isolated hair follicles, arachidonic acid strongly promoted S100A3 citrullination along with elevation of HBEGF. These results suggest that ALOX12 inhibition efficiently triggers hair cuticle maturation by modulating arachidonate metabolism in concert with HBEGF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamoto, M.; Nakano, R.; Iwasaki, M.
The binding of /sup 125/I-labeled human luteinizing hormone (hLH) to the 2000-g fraction of human ovarian follicles and corpora lutea during the entire menstrual cycle was examined. Specific high affinity, low capacity receptors for hLH were demonstrated in the 2000-g fraction of both follicles and corpora lutea. Specific binding of /sup 125/I-labeled hLH to follicular tissue increased from the early follicular phase to the ovulatory phase. Specific binding of /sup 125/I-labeled hLH to luteal tissue increased from the early luteal phase to the midluteal phase and decreased towards the late luteal phase. The results of the present study indicate thatmore » the increase and decrease in receptors for hLH during the menstrual cycle might play an important role in the regulation of the ovarian cycle.« less
Yang, Liu; Lu, Jian-wei; An, Jing; Jiang, Xuan
2006-12-01
To observe the effect of Tribulus terrestris extract on melanocyte stimulating hormone (MSH) expression in C57BL/6J mouse hair follicles, and investigate the role of Tribulus terrestris extract in activation, proliferation, epidermal migration of dormant hair follicle melanocytes. The aqueous extract of Tribulus terrestris was administered orally in specific pathogen-free C57BL/6J mouse at the daily dose equivalent to 1 g/1 kg in adult human, and the expression and distribution of MSH in the mouse hair follicles was observed with immunohistochemistry. The positivity rate of MSH expression in the hair follicle melanocytes was 75% in mice treated with the extract, significantly higher than the rate of only 18.75% in the control group (P<0.01). The aqueous extract of Tribulus terrestris can significantly increase MSH expression in the hair follicle melanocytes by activating tyrosinase activity and promoting melanocyte proliferation, melanine synthesis, and epidermal migration of dormant melanocytes.
Zhu, Jie; Xu, Yuanming; Rashedi, Alexandra S; Pavone, Mary Ellen; Kim, J Julie; Woodruff, Teresa K; Burdette, Joanna E
2016-11-01
Do interactions between human fallopian tube epithelium and murine follicles occur during an artificial reproductive cycle in a co-culture system in vitro? In a co-culture system, human fallopian tissues responded to the menstrual cycle mimetic by changes in morphology and levels of secreted factors, and increasing murine corpus luteum progesterone secretion. The entire fallopian tube epithelium, including ciliated and secretory cells, can be regulated in the reproductive cycle. Currently, there are no in vitro culture models that can monitor fallopian tissues in real time in response to factors produced by the ovary. In addition, there are no reports on the impact of fallopian tissue on ovarian function during the menstrual cycle. Human fallopian tissue (n = 24) was obtained by routine hysterectomies from women (aged 26-50 years, mean age = 43.6) who had not undergone exogenous hormonal treatment for at least 3 months prior to surgery. CD1 female mice were used for ovarian follicle isolation. The human fallopian epithelium layers were either co-cultured with five murine multilayer secondary follicles (150-180 μm follicles, encapsulated in one alginate gel bead) for 15 days or received stepwise steroid hormone additions for 13 days. The fallopian tissue morphology and cilia beating rate, as measured by an Andor Spinning Disk Confocal, were investigated. Oviduct-specific glycoprotein 1 (OVGP1), human insulin-like growth factor 1 (hIGF1), vascular endothelial growth factor A (VEGF-A) and interleukin 8 (IL8) as biological functional markers were measured either by ELISA or western blot to indicate dynamic changes in the fallopian epithelium during the reproductive cycle generated by mouse follicles or by stepwise steroid hormone induction. Three or four patients in each experiment were recruited for replicates. Data were presented as mean ± SD and further analyzed using one-way ANOVA followed by Tukey's multiple comparisons test. The cultured fallopian tube epithelium responded to exogenous steroid hormone stimulation, as demonstrated by enhanced cilia beating rate (~25% increase, P = 0.04) and an increase in OVGP1 secretion (P = 0.02) in response to 1 nM estradiol (E 2 ) treatment when compared with 0.1 nM E 2 . Conversely, 10 nM progesterone plus 1 nM E 2 suppressed cilia beating rate by ~30% (P = 0.008), while OVGP1 secretion was suppressed by 0.1 nM E 2 plus 50 nM progesterone (P = 0.002 versus 1 nM E 2 alone). Human fallopian tube epithelium was co-cultured with murine secondary follicles to mimic the human menstrual cycle. OVGP1 and VEGF-A secretion from fallopian tissue was similar with stepwise hormone treatment and when cultured with murine follicles. However, the secretion patterns of hIGF1 and IL8 differed in the luteal phase when comparing steroid treatment with follicle co-culture. In co-culture, hIGF1 secretion was suppressed in the luteal versus follicular phase (P = 0.005) but stepwise hormone treatment had no effect on hIGF1. In co-culture, IL8 secretion was also suppressed on luteal phase day 15 (P = 0.013) versus follicular phase day 7, but IL8 secretion increased continuously under high E 2 /progesterone treatment (P = 0.003 for D13 versus D3). In the co-culture system, the corpus luteum continuously produced progesterone in the presence of fallopian tube tissue until Day 18 while, without fallopian tissue, progesterone started to drop from Day 13. One limitation of this study is that murine follicles were used to mimic the human menstrual cycle. However, although secretion patterns of peptide hormones such as inhibins and activins differ in mice and humans, the co-culture system used here did reveal interactions between the tissues that govern reproductive function. In vitro co-culture models of fallopian reproductive tissues with ovarian follicles can provide an important tool for understanding fertility and for uncovering the mechanisms responsible for reduced fertility. In addition, the role of oviductal secretions and how they influence ovarian function, such as the production of progesterone during the menstrual cycle, can be uncovered using this model. None. This work was funded by grants from the NIH (UH3TR001207), the American Cancer Society (RSG-12-230-01-TBG) and NIH (R01EB014806). The authors declare no competing financial interest. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Anil, Siji; Rawson, David; Zhang, Tiantian
2018-05-29
Development of in vitro culture protocol for early stage ovarian follicles of zebrafish is important since cryopreserved early stage ovarian follicles would need to be matured in vitro following cryopreservation before they can be fertilised. Development of molecular markers for zebrafish (Danio rerio) ovarian follicle growth assessment following in vitro culture of early stage zebrafish ovarian follicles in ovarian tissue fragments is reported here for the first time although some work has been reported for in vitro culture of isolated early stage zebrafish ovarian follicles. The main aim of the present study was to develop molecular markers in an optimised in vitro culture protocol for stage I and stage II zebrafish ovarian follicles in ovarian tissue fragments. The effect of concentration of the hormones human chorionic gonadotropin and follicle stimulating hormones, and additives such as Foetal Bovine Serum and Bovine Serum Albumin were studied. The results showed that early stage zebrafish ovarian fragments containing stage I and stage II follicles which are cultured in vitro for 24 h in 20% FBS and 100mIU/ml FSH in 90% L-15 medium at 28 °C can grow to the size of stage II and stage III ovarian follicles respectively. More importantly the follicle growth from stage I to stage II and from stage II to stage III were confirmed using molecular markers such as cyp19a1a (also known as P450aromA) and vtg1 genes respectively. However, no follicle growth was observed following cryopreservation and in vitro culture. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahalingam, Sharada, E-mail: mahalin2@illinois.edu; Gao, Liying, E-mail: lgao@uiuc.edu; Gonnering, Marni, E-mail: mgonne2@illinois.edu
Equol is a non-steroidal estrogen metabolite produced by microbial conversion of daidzein, a major soy isoflavone, in the gut of some humans and many animal species. Isoflavones and their metabolites can affect endogenous estradiol production, action, and metabolism, potentially influencing ovarian follicle function. However, no studies have examined the effects of equol on intact ovarian antral follicles, which are responsible for sex steroid synthesis and further development into ovulatory follicles. Thus, the present study tested the hypothesis that equol inhibits antral follicle growth, increases follicle atresia, and inhibits steroidogenesis in the adult mouse ovary. To test this hypothesis, antral folliclesmore » isolated from adult CD-1 mice were cultured with vehicle control (dimethyl sulfoxide; DMSO) or equol (600 nM, 6 μM, 36 μM, and 100 μM) for 48 and 96 h. Every 24 h, follicle diameters were measured to monitor growth. At 48 and 96 h, the culture medium was subjected to measurement of hormone levels, and the cultured follicles were subjected to gene expression analysis. Additionally, follicles were histologically evaluated for signs of atresia after 96 h of culture. The results indicate that equol (100 μM) inhibited follicle growth, altered the mRNA levels of bcl2-associated X protein and B cell leukemia/lymphoma 2, and induced follicle atresia. Further, equol decreased the levels of estradiol, testosterone, androstenedione, and progesterone, and it decreased mRNA levels of cholesterol side-chain cleavage, steroid 17-α-hydroxalase, and aromatase. Collectively, these data indicate that equol inhibits growth, increases atresia, and inhibits steroidogenesis of cultured mouse antral follicles. - Highlights: • Equol exposure inhibits antral follicle growth. • Equol exposure increases follicle atresia. • Equol exposure inhibits sex steroid hormone levels. • Equol exposure inhibits mRNA levels of certain steroidogenic enzymes.« less
Saxena, Pratik; Charpin-El Hamri, Ghislaine; Folcher, Marc; Zulewski, Henryk; Fussenegger, Martin
2016-01-01
Graves’ disease is an autoimmune disorder that causes hyperthyroidism because of autoantibodies that bind to the thyroid-stimulating hormone receptor (TSHR) on the thyroid gland, triggering thyroid hormone release. The physiological control of thyroid hormone homeostasis by the feedback loops involving the hypothalamus–pituitary–thyroid axis is disrupted by these stimulating autoantibodies. To reset the endogenous thyrotrophic feedback control, we designed a synthetic mammalian gene circuit that maintains thyroid hormone homeostasis by monitoring thyroid hormone levels and coordinating the expression of a thyroid-stimulating hormone receptor antagonist (TSHAntag), which competitively inhibits the binding of thyroid-stimulating hormone or the human autoantibody to TSHR. This synthetic control device consists of a synthetic thyroid-sensing receptor (TSR), a yeast Gal4 protein/human thyroid receptor-α fusion, which reversibly triggers expression of the TSHAntag gene from TSR-dependent promoters. In hyperthyroid mice, this synthetic circuit sensed pathological thyroid hormone levels and restored the thyrotrophic feedback control of the hypothalamus–pituitary–thyroid axis to euthyroid hormone levels. Therapeutic plug and play gene circuits that restore physiological feedback control in metabolic disorders foster advanced gene- and cell-based therapies. PMID:26787873
Shin, Dae Hyun; Cha, Youn Jeong; Yang, Kyeong Eun; Jang, Ik-Soon; Son, Chang-Gue; Kim, Bo Hyeon; Kim, Jung Min
2014-07-01
Crude Panax ginseng has been documented to possess hair growth activity and is widely used to treat alopecia, but the effects of ginsenoside Rg3 on hair growth have not to our knowledge been determined. The aim of the current study was to identify the molecules through which Rg3 stimulates hair growth. The thymidine incorporation for measuring cell proliferation was determined. We used DNA microarray analysis to measure gene expression levels in dermal papilla (DP) cells upon treatment with Rg3. The mRNA and protein expression levels of vascular endothelial growth factor (VEGF) in human DP cells were measured by real-time polymerase chain reaction and immunohistochemistry, respectively. We also used immunohistochemistry assays to detect in vivo changes in VEGF and 3-stemness marker expressions in mouse hair follicles. Reverse transcription polymerase chain reaction showed dose-dependent increases in VEGF mRNA levels on treatment with Rg3. Immunohistochemical analysis showed that expression of VEGF was significantly up-regulated by Rg3 in a dose-dependent manner in human DP cells and in mouse hair follicles. In addition, the CD8 and CD34 were also up-regulated by Rg3 in the mouse hair follicles. It may be concluded that Rg3 might increase hair growth through stimulation of hair follicle stem cells and it has the potential to be used in hair growth products. Copyright © 2013 John Wiley & Sons, Ltd.
Aydin, Nazan; Ramazanoglu, Leyla; Onen, Mehmet Resid; Yilmaz, Ilhan; Aydin, Mehmet Dumlu; Altinkaynak, Konca; Calik, Muhammet; Kanat, Ayhan
2017-11-01
Hypothyroidism is defined as an underactive thyroid gland and one of the reasons for inadequate stimulation of thyroid is dysfunction of the hormone regulating brain centers. Olfaction disorders have been considered as a problem in hypothyroidism. It has been hypothesized that olfaction disorders reduce olfactory stimulation and diminished olfactory stimulus may trigger hypothyroidism. In this study, an examination was made of the thyroid hormone levels, histologic features of thyroid glands, and vagal nerve network degradation in an experimental animal model of olfactory bulbectomy (OBX). A total of 25 rats were divided into control (n = 5), SHAM (n = 5), and OBX (n = 15) groups and were followed up for 8 weeks. Thyroid hormone levels were measured before (1 time), during the experiment (1 time/month) and the animals were decapitated. The olfactory bulbs, dorsal motor nucleus of the vagal nerves, and thyroid gland sections were stained with hematoxylin-eosin and tunnel dye to determine OBX-related damage. Specimens were analyzed stereologically to evaluate neuron density of the vagal nucleus and hormone-filled total follicle volume (TFV) per cubic centimeter, and these were statistically compared with thyroid hormone levels. The mean degenerated neuron density of the vagal nucleus was 21 ± 8/mm 3 . TFV and triiodothyronine (T 3 )-thyroxine (T 4 ) levels were measured as TFV, (312 ± 91) × 10 6 μm 3 /cm 3 ; T 3 , 105 μg/dl; T 4 , 1.89 μg/dl in control (group I). Mean degenerated neuron density, 56 ± 12/mm 3 ; TFV, (284 ± 69) × 10 6 μm 3 /cm 3 ; T 3 , 103 μg/dl; T 4 , 1.85 μg/dl in SHAM (group II). Mean degenerated neuron density, 235 ± 64/mm 3 ; TFV, (193 ± 34) × 10 6 μm 3 /cm 3 ; T 3 , 86 μg/dl; T 4 , 1.37 μg/dl in the OBX group (group III). The TFV were significantly diminished because of apoptotic degradation in olfactory bulbs and thyroid gland with decreased T 3 - T 4 levels with increased thyroid-stimulating hormone levels in OBX-applied animals of subarachnoid hemorrhage (P < 0.005). The results suggested that diminished hormone secretion as a result of thyroid gland degradation results in both olfaction loss and vagal complex degeneration in OBX animals, contrary to the common belief that anosmia results from hypothyroidism. Copyright © 2017 Elsevier Inc. All rights reserved.
Niedziela, M; Warzywoda, M; Korman, E
2000-01-01
Hashimoto's thyroiditis (HT) and Graves' disease (GD) constitute a spectrum of autoimmune thyroid diseases (AITD). They share an autoimmune pathogenesis, with a cellular and a humoral response to the thyroid gland. As a consequence, dysfunction of the gland itself may develop, characterized by hyperfunction in the case of GD and hypofunction in the case of HT, however at the onset of HT the hyperthyroidism might be observed as a result of a rapid destruction of thyrocytes. An abnormal thyroid echographic pattern characterized by a diffuse low echogeneity has been described in both AITD. This hypoechogeneity is due to three components: increase of intrathyroidal flow, functional changes in thyroid follicles with increased cellularity and decrease of the colloid content, resulting in the reduction of the cell/colloid interface, variable degree of lymphocytic infiltration. The first two components may be reversible during medical treatment and seem to be characteristic for GD, whereas lymphocytic infiltration may rather represent mostly HT. Here we present a 17-year-old girl with typical clinical signs of hyperthyroidism [firm goiter (II degrees), tachycardia, palpitations, nervousness, excessive sweating and tremor]. Laboratory tests were the following: fT3 - 6.59 pg/ml(increasing), fT4 - 1.99 ng/dl(increasing), TSH - 0.02 micro IU/ml(decreasing); anti-Tg-Ab - 840 IU/ml(increasing), anti-TPO-Ab - 190 IU/ml(increasing) (4 months later antithyroid antibodies were 2200 and 70, respectively). Ultrasound examination showed hypoechogeneity of the whole gland and enhanced vascular flow based on power Doppler analysis. Thyroid scan visualized the generally increased uptake of technetium. The girl was put on beta-blocker (propranolol) and later an antithyroid drug (thiamazole) was added. A course of disease was unstable, therefore the fine-needle aspiration biopsy was performed and showed the presence of single groups of normal thyrocytes and scanty colloid with no features of HT. Power Doppler analysis showed still enhanced blood flow within a gland inspite of euthyroid state. After a very unsteady period of the disease, the euthyroid state is maintained although the medical treatment was given up. The full recovery of normal blood flow and normal echogeneity of the thyroid was documented. The latter supports the diagnosis of GD. Follow-up of the thyroid echogeneity is of great diagnostic and prognostic value if the assay of TSHR-Ab is not available. On the other side, it has to be remembered that TSHR-Ab do not have to be positive in patients with GD and can be positive in patients with HT.
Sharova, Tatyana Y; Poterlowicz, Krzysztof; Botchkareva, Natalia V; Kondratiev, Nikita A; Aziz, Ahmar; Spiegel, Jeffrey H; Botchkarev, Vladimir A; Sharov, Andrey A
2014-12-01
Chemotherapy has severe side effects in normal rapidly proliferating organs, such as hair follicles, and causes massive apoptosis in hair matrix keratinocytes followed by hair loss. To define the molecular signature of hair follicle response to chemotherapy, human scalp hair follicles cultured ex vivo were treated with doxorubicin (DXR), and global microarray analysis was performed 3 hours after treatment. Microarray data revealed changes in expression of 504 genes in DXR-treated hair follicles versus controls. Among these genes, upregulations of several tumor necrosis factor family of apoptotic receptors (FAS, TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) receptors 1/2), as well as of a large number of keratin-associated protein genes, were seen after DXR treatment. Hair follicle apoptosis induced by DXR was significantly inhibited by either TRAIL-neutralizing antibody or caspase-8 inhibitor, thus suggesting a previously unreported role for TRAIL receptor signaling in mediating DXR-induced hair loss. These data demonstrate that the early phase of the hair follicle response to DXR includes upregulation of apoptosis-associated markers, as well as substantial reorganization of the terminal differentiation programs in hair follicle keratinocytes. These data provide an important platform for further studies toward the design of effective approaches for the management of chemotherapy-induced hair loss.
Sharova, Tatyana Y.; Poterlowicz, Krzysztof; Botchkareva, Natalia V.; Kondratiev, Nikita A.; Aziz, Ahmar; Spiegel, Jeffrey H.; Botchkarev, Vladimir A.; Sharov, Andrey A.
2014-01-01
Chemotherapy has severe side-effects for normal rapidly proliferating organs, such as hair follicle, and causes massive apoptosis in hair matrix keratinocytes followed by hair loss. To define the molecular signature of hair follicle response to chemotherapy, human scalp hair follicles cultured ex vivo were treated with doxorubicin and global microarray analysis was performed 3 hours after treatment. Microarray data revealed changes in expression of 504 genes in doxorubicin-treated hair follicles versus the controls. Among these genes, upregulations of several tumor necrosis factor family of apoptotic receptors (FAS, TRAIL receptors 1/2), as well as of a large number of the keratin-associated protein genes were seen after doxorubicin treatment. Hair follicle apoptosis induced by doxorubicin was significantly inhibited by either TRAIL neutralizing antibody or caspase 8 inhibitor, thus suggesting a novel role for TRAIL receptor signaling in mediating doxorubicin-induced hair loss. These data demonstrate that the early phase of the hair follicle response to doxorubicin includes upregulation of apoptosis-associated markers, as well as substantial re-organization of the terminal differentiation programs in hair follicle keratinocytes. These data provide an important platform for further studies towards the design of novel approaches for management of chemotherapy-induced hair loss. PMID:24999588
The U.S. EPA-MED amphibian thyroid group is currently screening chemicals for inhibition of human iodothyronine deiodinase activity as components of the thyroid system important in human development. Amphibians are a bellwether taxonomic group to gauge toxicity of chemicals in th...
Can, Nuray; Celik, Mehmet; Sezer, Yavuz Atakan; Ozyilmaz, Filiz; Ayturk, Semra; Tastekin, Ebru; Sut, Necdet; Gurkan, Hakan; Ustun, Funda; Bulbul, Buket Yilmaz; Guldiken, Sibel; Puyan, Fulya Oz
2017-08-20
The newly proposed nomenclature and diagnostic criteria for encapsulated follicular variant of papillary thyroid carcinoma (EFVPTC), the noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP), could improve the consistency and accuracy of diagnosing this entity. Diagnosis of NIFTP requires evaluation of the complete tumor border or capsule. The presence of tumor invasion in follicular thyroid neoplasms with papillary-like nuclear features has been recently discussed by many authors. In this study, we examined the predictive value and association of follicular morphological characteristics with the tumor invasion. In addition, we analyzed the association between tumor encapsulation and molecular profile in EFVPTC/NIFTP cases. A total of 106 cases of FVPTC were included in the study. The tumors were grouped based on the presence of tumor capsule and characteristics of tumor border, as 1) completely encapsulated tumors without invasion, 2) encapsulated tumors with invasion, 3) infiltrative tumors without a capsule. Clinicopathological features, histomorphological features [nuclear criteria, minor diagnostic features, follicles oriented perpendicular to tumor border/capsule (FOPBC)] and molecular alterations in BRAF, NRAS, and KRAS genes were evaluated. FOPBC were significantly more frequently seen in encapsulated tumors with invasion (p = 0.008). The nuclear features were not associated with the presence of encapsulation and characteristics of tumor border. BRAF mutation was more frequent in infiltrative tumors, while NRAS mutation was more frequent in encapsulated tumors, but the results were not statistically significant (p = 0.917). In conclusion, FOPBC histomorphological feature may be associated with tumor invasion in EFVPTC/NIFTP. Additionally, BRAF/KRAS/NRAS mutation analysis may prevent inadequate treatment in these patients.
Strandgaard, Trine; Foder, Solveig; Heuck, Anders; Ernst, Erik; Nielsen, Morten S.; Lykke-Hartmann, Karin
2017-01-01
Folates have been shown to play a crucial role for proper development of the embryo as folate deficiency has been associated with reduced developmental capacity such as increased risk of fetal neural tube defects and spontanous abortion. Transcripts encoding the reduced folate carrier RFC1 (SLC19A1 protein) and the high-affinity folate receptor FOLR1 are expressed in oocytes and preimplantation embryos, respectively. In this study, we observed maternally contributed FOLR1 protein during mouse and human ovarian follicle development, and 2-cell mouse embryos. In mice, FOLR1 was highly enriched in oocytes from primary, secondary and tertiary follicles, and in the surrounding granulosa cells. Interestingly, during human follicle development, we noted a high and specific presence of FOLR1 in oocytes from primary and intermediate follicles, but not in the granulosa cells. The distribution of FOLR1 in follicles was noted as membrane-enriched but also seen in the cytoplasm in oocytes and granulosa cells. In 2-cell embryos, FOLR1-eGFP fusion protein was detected as cytoplasmic and membrane-associated dense structures, resembling the distribution pattern observed in ovarian follicle development. Knock-down of Folr1 mRNA function was accomplished by microinjection of short interference (si)RNA targeting Folr1, into mouse pronuclear zygotes. This revealed a reduced capacity of Folr1 siRNA-treated embryos to develop to blastocyst compared to the siRNA-scrambled control group, indicating that maternally contributed protein and zygotic transcripts sustain embryonic development combined. In summary, maternally contributed FOLR1 protein appears to maintain ovarian functions, and contribute to preimplantation development combined with embryonically synthesized FOLR1. PMID:29034232
Rajabi, Zahra; Yazdekhasti, Hossein; Noori Mugahi, Seyed Mohammad Hossein; Abbasi, Mehdi; Kazemnejad, Somaieh; Shirazi, Abolfazl; Majidi, Masoumeh; Zarnani, Amir-Hassan
2018-03-01
Follicle culture provides a condition which can help investigators to evaluate various aspects of ovarian follicle growth and development and impact of different components and supplementations as well as presumably application of follicle culture approach in fertility preservation procedures. Mesenchymal Stem Cells (MSCs), particularly those isolated from menstrual blood has the potential to be used as a tool for improvement of fertility. In the current study, a 3D co-culture system with mice preantral follicles and human Menstrual Blood Mesenchymal Stem Cells (MenSCs) using either collagen or alginate beads was designed to investigate whether this system allows better preantral follicles growth and development. Results showed that MenSCs increase the indices of follicular growth including survival rate, diameter, and antrum formation as well as the rate of in vitro maturation (IVM) in both collagen and alginates beads. Although statistically not significant, alginate was found to be superior in terms of supporting survival rate and antrum formation. Hormone assay demonstrated that the amount of secreted 17 β-estradiol and progesterone in both 3D systems increased dramatically after 12 days, with the highest levels in system employing MenSCs. Data also demonstrated that relative expression of studied genes increased for Bmp15 and Gdf9 and decreased for Mater when follicles were cultured in the presence of MenSCs. Collectively, results of the present study showed that MenSCs could improve indices of follicular growth and maturation in vitro. Further studies are needed before a clinical application of MenSCs-induced IVM is considered. Copyright © 2018 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. All rights reserved.
Morphometry of human terminal and vellus hair follicles.
Vogt, Annika; Hadam, Sabrina; Heiderhoff, Marc; Audring, Heike; Lademann, Juergen; Sterry, Wolfram; Blume-Peytavi, Ulrike
2007-11-01
Previous studies suggest that drug delivery systems based on particles can be used to deposit active compounds in hair follicles and to target hair follicle-associated cell populations. The development of application protocols is complicated by the fact that there is no information available on the size and the position of key target structures in the different hair follicle types and their intra- and interindividual variation. Therefore, we performed morphometric measurements on histological sections of human terminal (THF) and vellus hair follicles (VHF) from the scalp and the retroauricular region. With 3864 +/- 605 microm and 580 +/- 84 microm in THF compared to 646 +/- 140 microm and 225 +/- 34 microm in VHF, the total length and the length of the infundibulum differed significantly as determined by paired t-test (P < 0.0001). The same level of significance was observed for the position and the length of the bulge region. The thickness of the epithelial lining was lowest in VHF (45 +/- 14 microm at 100 microm from skin surface) compared to 65 +/- 20 microm at 150 microm in THF, while the thickness of the interfollicular epidermis ranged between 64 +/- 12 microm and 99 +/- 18 microm in VHF-bearing skin and 72 +/- 16 microm and 136 +/- 37 microm in THF-bearing skin. In addition, the diameter of the hair follicle opening was determined at 50 microm intervals from the skin surface. Our data suggest that hair follicle types in defined body regions represent rather homogenous groups and that particle-based drug delivery may be a feasible approach, also in larger numbers of individuals. We provide precise information on the size and the position of key target structures in VHF and THF.
21 CFR 862.1300 - Follicle-stimulating hormone test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Follicle-stimulating hormone test system. 862.1300 Section 862.1300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...
21 CFR 862.1300 - Follicle-stimulating hormone test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Follicle-stimulating hormone test system. 862.1300 Section 862.1300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...
21 CFR 862.1300 - Follicle-stimulating hormone test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Follicle-stimulating hormone test system. 862.1300 Section 862.1300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...
21 CFR 862.1300 - Follicle-stimulating hormone test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Follicle-stimulating hormone test system. 862.1300 Section 862.1300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...
Zhu, Jie; Xu, Yuanming; Rashedi, Alexandra S.; Pavone, Mary Ellen; Kim, J. Julie; Woodruff, Teresa K.; Burdette, Joanna E.
2016-01-01
Study question Do interactions between human fallopian tube epithelium and murine follicles occur during an artificial reproductive cycle in a co-culture system in vitro? Summary answer In a co-culture system, human fallopian tissues responded to the menstrual cycle mimetic by changes in morphology and levels of secreted factors, and increasing murine corpus luteum progesterone secretion. What is known already The entire fallopian tube epithelium, including ciliated and secretory cells, can be regulated in the reproductive cycle. Currently, there are no in vitro culture models that can monitor fallopian tissues in real time in response to factors produced by the ovary. In addition, there are no reports on the impact of fallopian tissue on ovarian function during the menstrual cycle. Study design, samples/materials, methods Human fallopian tissue (n = 24) was obtained by routine hysterectomies from women (aged 26–50 years, mean age = 43.6) who had not undergone exogenous hormonal treatment for at least 3 months prior to surgery. CD1 female mice were used for ovarian follicle isolation. The human fallopian epithelium layers were either co-cultured with five murine multilayer secondary follicles (150–180 μm follicles, encapsulated in one alginate gel bead) for 15 days or received stepwise steroid hormone additions for 13 days. The fallopian tissue morphology and cilia beating rate, as measured by an Andor Spinning Disk Confocal, were investigated. Oviduct-specific glycoprotein 1 (OVGP1), human insulin-like growth factor 1 (hIGF1), vascular endothelial growth factor A (VEGF-A) and interleukin 8 (IL8) as biological functional markers were measured either by ELISA or western blot to indicate dynamic changes in the fallopian epithelium during the reproductive cycle generated by mouse follicles or by stepwise steroid hormone induction. Three or four patients in each experiment were recruited for replicates. Data were presented as mean ± SD and further analyzed using one-way ANOVA followed by Tukey's multiple comparisons test. Main results and the role of chance The cultured fallopian tube epithelium responded to exogenous steroid hormone stimulation, as demonstrated by enhanced cilia beating rate (~25% increase, P = 0.04) and an increase in OVGP1 secretion (P = 0.02) in response to 1 nM estradiol (E2) treatment when compared with 0.1 nM E2. Conversely, 10 nM progesterone plus 1 nM E2 suppressed cilia beating rate by ~30% (P = 0.008), while OVGP1 secretion was suppressed by 0.1 nM E2 plus 50 nM progesterone (P = 0.002 versus 1 nM E2 alone). Human fallopian tube epithelium was co-cultured with murine secondary follicles to mimic the human menstrual cycle. OVGP1 and VEGF-A secretion from fallopian tissue was similar with stepwise hormone treatment and when cultured with murine follicles. However, the secretion patterns of hIGF1 and IL8 differed in the luteal phase when comparing steroid treatment with follicle co-culture. In co-culture, hIGF1 secretion was suppressed in the luteal versus follicular phase (P = 0.005) but stepwise hormone treatment had no effect on hIGF1. In co-culture, IL8 secretion was also suppressed on luteal phase day 15 (P = 0.013) versus follicular phase day 7, but IL8 secretion increased continuously under high E2/progesterone treatment (P = 0.003 for D13 versus D3). In the co-culture system, the corpus luteum continuously produced progesterone in the presence of fallopian tube tissue until Day 18 while, without fallopian tissue, progesterone started to drop from Day 13. Limitations, reasons for caution One limitation of this study is that murine follicles were used to mimic the human menstrual cycle. However, although secretion patterns of peptide hormones such as inhibins and activins differ in mice and humans, the co-culture system used here did reveal interactions between the tissues that govern reproductive function. Wider implications of the findings In vitro co-culture models of fallopian reproductive tissues with ovarian follicles can provide an important tool for understanding fertility and for uncovering the mechanisms responsible for reduced fertility. In addition, the role of oviductal secretions and how they influence ovarian function, such as the production of progesterone during the menstrual cycle, can be uncovered using this model. Large-scale data None. Study funding and competing interest(s) This work was funded by grants from the NIH (UH3TR001207), the American Cancer Society (RSG-12-230-01-TBG) and NIH (R01EB014806). The authors declare no competing financial interest. PMID:27542947
Joo, Hyun Woo; Kang, Yoo Ri; Kwack, Mi Hee; Sung, Young Kwan
2016-07-01
Recent studies have shown that prostaglandin D2 (PGD2) and its nonenzymatic metabolite, 15-deoxy-Δ(12,14)-prostaglandin J2 (15-dPGJ2), inhibit in vitro growth of explanted human hair follicles and inhibit hair growth in mice through the GPR44 (DP2). However, the underlying mechanism is still unclear. In this study, we first investigated the expression of DP2 in human hair follicles and in cultured follicular cells. We found that DP2 is strongly expressed in the outer root sheath (ORS) cells and weakly expressed in the dermal papilla (DP) cells. We observed slight growth stimulation when ORS and DP cells were treated with PGD2. We also observed slight growth stimulation when DP and ORS cells were treated with low concentrations (0.5 and 1 μM) of 15-dPGJ2. However, 5 μM 15-dPGJ2 inhibited the viability and caused apoptosis of both cell types. Exposure of cultured human hair follicles to 15-dPGJ2 resulted in significant apoptosis in follicular keratinocytes. Altogether, our data provide an evidence that 15-dPGJ2 promotes apoptosis in follicular keratinocytes and provide rationale for developing remedies for the prevention and treatment of hair loss based on DP2 antagonism.
Lee, Jung Eun
2017-01-01
Thyroid hormones play crucial roles in normal neurodevelopment of fetus and child. Many chemicals can affect control and homeostasis of thyroid hormones, and eventually lead to various adverse health effects including neurodevelopmental disorders. Perfluoroalkyl substances (PFASs) are among the thyroid disrupting chemicals that can be encountered among general human population. Due to their unique physicochemical characteristics, PFASs have been used as surfactants and surface coating materials in many applications. Therefore, PFASs have been frequently detected in humans and environment worldwide. In cross-sectional studies using nationally representative general human populations of United States, several PFASs have shown significant associations with thyroid hormones. Moreover, among pregnant women and their infants, not only major PFASs such as perfluorooctane sulfonic acid and perfluorooctanoic acid, but also those with shorter or longer carbon chains showed significant associations with thyroid hormones. Often demographic characteristics such as sex, age, and disease status appear to influence the associations between PFASs exposure and thyroid hormones. In general, major PFASs showed hypothyroidism effects among pregnant women and infants. As 8 carbon based PFASs have been phased out, those with shorter or longer carbon chains have been used in growing amount as replacement. However, only limited information is available for their occurrences and toxicity among humans. Further investigations on these substituting PFASs are required. In addition, efforts are warranted to identify sources of and mitigate exposure to these thyroid disrupting chemicals especially during pregnancy and early stages of life. PMID:28443254
Dewailly, Didier; Robin, Geoffroy; Peigne, Maëliss; Decanter, Christine; Pigny, Pascal; Catteau-Jonard, Sophie
2016-11-01
Androgens, FSH, anti-Müllerian hormone (AMH) and estradiol (E2) are essential in human ovarian folliculogenesis. However, the interactions between these four players is not fully understood. The purpose of this review is to highlight the chronological sequence of the appearance and function of androgens, FSH, AMH and E2 and to discuss controversies in the relationship between FSH and AMH. A better understanding of this interaction could supplement our current knowledge about the pathophysiology of the polycystic ovary syndrome (PCOS). A literature review was performed using the following search terms: androgens, FSH, FSH receptor, anti-Mullerian hormone, AMHRII, estradiol, follicle, ovary, PCOS, aromatase, granulosa cell, oocyte. The time period searched was 1980-2015 and the databases interrogated were PubMed and Web of Science. During the pre-antral ('gonadotropin-independent') follicle growth, FSH is already active and promotes follicle growth in synergy with theca cell-derived androgens. Conversely, AMH is inhibitory by counteracting FSH. We challenge the hypothesis that AMH is regulated by androgens and propose rather an indirect effect through an androgen-dependent amplification of FSH action on granulosa cells (GCs) from small growing follicles. This hypothesis implies that FSH stimulates AMH expression. During the antral ('gonadotropin-dependent') follicle growth, E2 production results from FSH-dependent activation of aromatase. Conversely, AMH is inhibitory but the decline of its expression, amplified by E2, allows full expression of aromatase, characteristic of the large antral follicles. We propose a theoretical scheme made up of two triangles that follow each other chronologically. In PCOS, pre-antral follicle growth is excessive (triangle 1) because of intrinsic androgen excess that renders GCs hypersensitive to FSH, with consequently excessive AMH expression. Antral follicle growth and differentiation are disturbed (triangle 2) because of the abnormally persisting inhibition of FSH effects by AMH that blocks aromatase. Beside anovulation, this scenario may also serve to explain the higher receptiveness to gonadotropin therapy and the increased risk of ovarian hyperstimulation syndrome (OHSS) in patients with PCOS. Within GCs, the balance between FSH and AMH effects is pivotal in the shift from androgen- to oestrogen-driven follicles. Our two triangles hypothesis, based on updated data from the literature, offers a pedagogic template for the understanding of folliculogenesis in the normal and polycystic ovary. It opens new avenues for the treatment of anovulation due to PCOS. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Fluorine-induced apoptosis and lipid peroxidation in human hair follicles in vitro.
Wang, Zheng-hui; Li, Xiao-li; Yang, Zhuang-qun; Xu, Min
2010-12-01
Fluoride is an essential trace element for human body; however, exposure to high amounts of fluoride has been documented to be correlated with an increasing risk of hair loss. To date, little is known about the mechanism(s) of how fluoride affects hair follicles. Here, we demonstrated that middle (1.0 mmol/L) and high (10.0 mmol/L) concentrations of sodium fluoride (NaF) significantly inhibited hair follicle elongation in vitro, but low NaF (0.1 mmol/L) showed little influence. Moreover, treatment with high levels of NaF resulted in a marked increase in terminal dUTP nick end labeling-positive cells in the outer layer of the outer root sheath, the dermal sheath, and the lower bulb matrix surrounding dermal papilla. Furthermore, the enhanced apoptosis was coupled with an increased oxidative stress manifested as higher malondialdehyde content. Additionally, the presence of selenium considerably antagonized the effects of middle NaF on hair follicles, with regard to either the suppression of hair growth or the induction of oxidative stress and apoptosis. In conclusion, exposure to high levels of fluoride compromises hair follicle growth and accelerate cell apoptosis in vitro. The toxicity of fluoride can be reduced by selenium, at least partially via the suppression of intracellular oxidative stress.
Cho, Byuri Angela; Yoo, Seong-Keun; Song, Young Shin; Kim, Su-jin; Lee, Kyu Eun; Shong, Minho
2018-01-01
Background: Elucidating aging-related transcriptomic changes in human organs is necessary to understand the aging physiology and mechanisms, but little is known regarding the thyroid gland. We investigated aging-related transcriptomic alterations in the human thyroid gland and characterized the related molecular functions. Methods: Publicly available RNA sequencing data of 322 thyroid tissue samples from the Genotype-Tissue Expression project were analyzed. In addition, our own 64 RNA sequencing data of normal thyroid tissue samples were used as a validation set. To comprehensively evaluate the associations between aging and transcriptomic changes, we performed a weighted gene coexpression network analysis and pathway enrichment analysis. The thyroid differentiation score was then used for further analysis, defining the correlations between thyroid differentiation and aging. Results: The most significant aging-related transcriptomic change in thyroid was the downregulation of genes related to the mitochondrial and proteasomal functions (p = 3 × 10−6). Moreover, genes that are associated with immune processes were significantly upregulated with age (p = 3 × 10−4), and all of them overlapped with the upregulated genes in the thyroid glands affected by lymphocytic thyroiditis. Furthermore, these aging-related changes were not significantly different according to sex, but in terms of the thyroid differentiation, females were more susceptible to aging-related changes (p for trend = 0.03). Conclusions: Aging-related transcriptomic changes in the thyroid gland were associated with mitochondrial and proteasomal dysfunction, loss of differentiation, and activation of autoimmune processes. Our results provide clues to better understanding the age-related decline in thyroid function and higher susceptibility to autoimmune thyroid disease. PMID:29652618
Lipid peroxidation and antioxidants status in human malignant and non-malignant thyroid tumours.
Stanley, J A; Neelamohan, R; Suthagar, E; Vengatesh, G; Jayakumar, J; Chandrasekaran, M; Banu, S K; Aruldhas, M M
2016-06-01
Thyroid epithelial cells produce moderate amounts of reactive oxygen species that are physiologically required for thyroid hormone synthesis. Nevertheless, when they are produced in excessive amounts, they may become toxic. The present study is aimed to compare the lipid peroxidation (LPO), antioxidant enzymes - superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and non-protein thiols (reduced glutathione (GSH)) in human thyroid tissues with malignant and non-malignant disorders. The study used human thyroid tissues and blood samples from 157 women (147 diseased and 10 normal). Thyroid hormones, oxidative stress markers and antioxidants were estimated by standard methods. LPO significantly increased in most of the papillary thyroid carcinoma (PTC: 82.9%) and follicular thyroid adenoma (FTA: 72.9%) tissues, whilst in a majority of nodular goitre (69.2%) and Hashimoto's thyroiditis (HT: 73.7%) thyroid tissues, it remained unaltered. GSH increased in PTC (55.3%), remained unaltered in FTA (97.3%) and all other goiter samples studied. SOD increased in PTC (51.1%) and all other malignant thyroid tissues studied. CAT remained unaltered in PTC (95.7%), FTA (97.3%) and all other non-malignant samples (HT, MNG, TMNG) studied. GPx increased in PTC (63.8%), all other malignant thyroid tissues and remained unaltered in many of the FTA (91.9%) tissues and all other non-malignant samples (HT, MNG, TMNG) studied. In the case of non-malignant thyroid tumours, the oxidant-antioxidant balance was undisturbed, whilst in malignant tumours the balance was altered, and the change in r value observed in the LPO and SOD pairs between normal and PTC tissues and also in many pairs with multi-nodular goitre (MNG)/toxic MNG tissues may be used as a marker to differentiate/detect different malignant/non-malignant thyroid tumours. © The Author(s) 2015.
To grow or not to grow: Hair morphogenesis and human genetic hair disorders
Duverger, Olivier; Morasso, Maria I.
2014-01-01
Mouse models have greatly helped in elucidating the molecular mechanisms involved in hair formation and regeneration. Recent publications have reviewed the genes involved in mouse hair development based on the phenotype of transgenic, knockout and mutant animal models. While much of this information has been instrumental in determining molecular aspects of human hair development and cycling, mice exhibit a specific pattern of hair morphogenesis and hair distribution throughout the body that cannot be directly correlated to human hair. In this mini-review, we discuss specific aspects of human hair follicle development and present an up-to-date summary of human genetic disorders associated with abnormalities in hair follicle morphogenesis, structure or regeneration. PMID:24361867
Comparative study of the innervation of the facila disc of selected mammals.
Montagna, W; Roman, N A; Macpherson, E
1975-11-01
The greatest concentration of sensory nerves in the muzzle and facial disc of mammals is in the nose. In most nocturnal mammals, these nerves penetrate the epidermis of the naked nose either or in bundles which resemble the corpuscles of Eimer. The hair follicles around the nose, lips, and eyes, as well as the heaviply innervated vibrissae follicles found in all hairy mammals except man, are well innervated; those elsewhaere are not. Everywhere on the human body both large and small follicles abound in sensory nerves. These morphologic observations suggest that in most mammals the most sensitivie areas of the skin are at the anterior and posterior ends (not reported here), and that human skin is better equipped for cutaneous sensibility than that of any other mammal.
Choi, Yohan; Wilson, Kalin; Hannon, Patrick R; Rosewell, Katherine L; Brännström, Mats; Akin, James W; Curry, Thomas E; Jo, Misung
2017-06-01
In animal models, the luteinizing hormone surge increases progesterone (P4) and progesterone receptor (PGR), prostaglandins (PTGs), and epidermal growth factor (EGF)-like factors that play essential roles in ovulation. However, little is known about the expression, regulation, and function of these key ovulatory mediators in humans. To determine when and how these key ovulatory mediators are induced after the luteinizing hormone surge in human ovaries. Timed periovulatory follicles were obtained from cycling women. Granulosa/lutein cells were collected from in vitro fertilization patients. The in vivo and in vitro expression of PGR, PTG synthases and transporters, and EGF-like factors were examined at the level of messenger RNA and protein. PGR binding to specific genes was assessed. P4 and PTGs in conditioned media were measured. PGR, PTGS2, and AREG expressions dramatically increased in ovulatory follicles at 12 to 18 hours after human chorionic gonadotropin (hCG). In human granulosa/lutein cell cultures, hCG increased P4 and PTG production and the expression of PGR, specific PTG synthases and transporters, and EGF-like factors, mimicking in vivo expression patterns. Inhibitors for P4/PGR and EGF-signaling pathways reduced hCG-induced increases in PTG production and the expression of EGF-like factors. PGR bound to the PTGS2, PTGES, and SLCO2A1 genes. This report demonstrated the time-dependent induction of PGR, AREG, and PTGS2 in human periovulatory follicles. In vitro studies indicated that collaborative actions of P4/PGR and EGF signaling are required for hCG-induced increases in PTG production and potentiation of EGF signaling in human periovulatory granulosa cells. Copyright © 2017 Endocrine Society
Choi, Yohan; Wilson, Kalin; Hannon, Patrick R.; Rosewell, Katherine L.; Brännström, Mats; Akin, James W.; Curry, Thomas E.
2017-01-01
Context: In animal models, the luteinizing hormone surge increases progesterone (P4) and progesterone receptor (PGR), prostaglandins (PTGs), and epidermal growth factor (EGF)–like factors that play essential roles in ovulation. However, little is known about the expression, regulation, and function of these key ovulatory mediators in humans. Objective: To determine when and how these key ovulatory mediators are induced after the luteinizing hormone surge in human ovaries. Design and Participants: Timed periovulatory follicles were obtained from cycling women. Granulosa/lutein cells were collected from in vitro fertilization patients. Main Outcome Measures: The in vivo and in vitro expression of PGR, PTG synthases and transporters, and EGF-like factors were examined at the level of messenger RNA and protein. PGR binding to specific genes was assessed. P4 and PTGs in conditioned media were measured. Results: PGR, PTGS2, and AREG expressions dramatically increased in ovulatory follicles at 12 to 18 hours after human chorionic gonadotropin (hCG). In human granulosa/lutein cell cultures, hCG increased P4 and PTG production and the expression of PGR, specific PTG synthases and transporters, and EGF-like factors, mimicking in vivo expression patterns. Inhibitors for P4/PGR and EGF-signaling pathways reduced hCG-induced increases in PTG production and the expression of EGF-like factors. PGR bound to the PTGS2, PTGES, and SLCO2A1 genes. Conclusions: This report demonstrated the time-dependent induction of PGR, AREG, and PTGS2 in human periovulatory follicles. In vitro studies indicated that collaborative actions of P4/PGR and EGF signaling are required for hCG-induced increases in PTG production and potentiation of EGF signaling in human periovulatory granulosa cells. PMID:28323945
David, Anu; Van Langendonckt, Anne; Gilliaux, Sébastien; Dolmans, Marie-Madeleine; Donnez, Jacques; Amorim, Christiani A
2012-04-01
Although cryopreservation and transplantation of ovarian tissue represent a promising alternative to safeguard fertility in cancer patients, low recovery rates of oocytes aspirated from antral follicles and a significant number of empty follicles have been observed in women with transplanted frozen-thawed ovarian tissue. In order to understand how freezing and/or grafting may affect follicular development, the follicular expression of kit ligand (KL) and anti-Müllerian hormone (AMH), two key factors activating and inhibiting follicle growth, were assessed after long-term grafting in severe combined immunodeficient (SCID) mice. Ovarian biopsies from eight patients were used for fresh and frozen-thawed tissue xenografting in 13 SCID mice for a period of 28 weeks, including 2 weeks of gonadotrophin stimulation. KL, AMH and proliferating cell nuclear antigen (PCNA) immunostaining were quantified before and after grafting in the two treatment groups (fresh and frozen-thawed grafted ovarian tissue). Lower expression of KL was found in primordial and primary follicles after grafting of both fresh and frozen-thawed tissue. Consistent expression of AMH was found in most growing follicles at a similar rate in both graft types. In fresh and frozen-thawed grafts, 13-14% of primordial follicles were PCNA-positive, indicating a similar maintenance of quiescent follicles despite follicle activation. Grafting and/or gonadotrophin stimulation appear to affect the follicular expression of KL, which may alter oocyte quality. AMH expression in growing follicles after ovarian tissue transplantation may be one of the factors contributing to the preservation of resting follicles in 28-week-old grafts.
Hammerstad, Sara Salehi; Stefan, Mihaela; Blackard, Jason; Owen, Randall P; Lee, Hanna J; Concepcion, Erlinda; Yi, Zhengzi; Zhang, Weijia; Tomer, Yaron
2017-02-01
Thyroiditis is one of the most common extrahepatic manifestations of hepatitis C virus (HCV) infection. By binding to surface cell receptor CD81, HCV envelope glycoprotein E2 mediates entry of HCV into cells. Studies have shown that different viral proteins may individually induce host responses to infection. We hypothesized that HCV E2 protein binding to CD81 expressed on thyroid cells activates a cascade of inflammatory responses that can trigger autoimmune thyroiditis in susceptible individuals. Human thyroid cell lines ML-1 and human thyrocytes in primary cell culture were treated with HCV recombinant E2 protein. The expression of major proinflammatory cytokines was measured at the messenger RNA and protein levels. Next-generation transcriptome analysis was used to identify early changes in gene expression in thyroid cells induced by E2. HCV envelope protein E2 induced strong inflammatory responses in human thyrocytes, resulting in production of interleukin (IL)-8, IL-6, and tumor necrosis factor-α. Furthermore, the E2 protein induced production of several heat shock proteins including HSP60, HSP70p12A, and HSP10, in human primary thyrocytes. In thyroid cell line ML-1, RNA sequencing identified upregulation of molecules involved in innate immune pathways with high levels of proinflammatory cytokines and chemokines and increased expression of costimulatory molecules, specifically CD40, known to be a major thyroid autoimmunity gene. Our data support a key role for HCV envelope protein E2 in triggering thyroid autoimmunity through activation of cytokine pathways by bystander mechanisms. Copyright © 2017 by the Endocrine Society
van Hoek, Ingrid M; Peremans, Kathelijne; Vandermeulen, Eva; Duchateau, Luc; Gommeren, Kris; Daminet, Sylvie
2009-04-01
This study investigated the thyroidal response to administration of recombinant human thyroid stimulating hormone (rhTSH) by means of serum total thyroxine (TT(4)) concentration and pertechnetate uptake by the thyroid gland in six healthy euthyroid spayed female cats. A pertechnetate scan was performed on day 1 to calculate thyroid/salivary gland (T/S) uptake ratio. On day 3, 25 microg rhTSH was injected intravenously. Six hours later the thyroid scan was repeated as on day 1. Blood was drawn for serum TT(4) measurement prior to injection of rhTSH and performance of the pertechnetate scan. Statistically significant differences in mean serum TT(4) concentration, T/S uptake ratio before and 6h after rhTSH administration and T/S uptake ratio between left and right lobes were noted. We can conclude that 25 microg rhTSH increases pertechnetate uptake in the thyroid glands of cats, this should be taken into account when thyroid scintigraphy after rhTSH administration is interpreted.
Effects of Thyroid Dysfunction on Reproductive Hormones in Female Rats.
Liu, Juan; Guo, Meng; Hu, Xusong; Weng, Xuechun; Tian, Ye; Xu, Kaili; Heng, Dai; Liu, Wenbo; Ding, Yu; Yang, Yanzhou; Zhang, Cheng
2018-05-10
Thyroid hormones (THs) play a critical role in the development of ovarian cells. Although the effects of THs on female reproduction are of great interest, the mechanism remains unclear. We investigated the effects of TH dysregulation on reproductive hormones in rats. Propylthiouracil (PTU) and L-thyroxine were administered to rats to induce hypo- and hyper-thyroidism, respectively, and the reproductive hormone profiles were analyzed by radioimmunoassay. Ovarian histology was evaluated with H&E staining, and gene protein level or mRNA content was analyzed by western blotting or RT-PCR. The serum levels of gonadotropin releasing hormone (GnRH) and follicle stimulating hormone (FSH) in both rat models were significantly decreased on day 21, although there were no significant changes at earlier time points. There were no significant differences in luteinizing hormone (LH) or progesterone levels between the treatment and the control groups. Both PTU and L-thyroxine treatments downregulated estradiol concentrations; however, the serum testosterone level was increased only in hypothyroid rats at day 21. In addition, the expression levels of FSH receptor, cholesterol side-chain cleavage enzyme (P450scc), and steroidogenic acute regulatory protein were decreased in both rat models. Moreover, the onset of puberty was significantly delayed in the hypothyroid group. These results provide evidence that TH dysregulation alters reproductive hormone profiles, and that the initiation of the estrous cycle is postponed in hypothyroidism.
Mitochondrial Metabolism as a Treatment Target in Anaplastic Thyroid Cancer
Johnson, Jennifer M; Lai, Stephen Y.; Cotzia, Paolo; Cognetti, David; Luginbuhl, Adam; Pribitkin, Edmund A.; Zhan, Tingting; Mollaee, Mehri; Domingo-Vidal, Marina; Chen, Yunyun; Campling, Barbara; Bar-Ad, Voichita; Birbe, Ruth; Tuluc, Madalina; Outschoorn, Ubaldo Martinez; Curry, Joseph
2015-01-01
Aims Anaplastic thyroid cancer (ATC) is one of the most aggressive human cancers. Key signal transduction pathways that regulate mitochondrial metabolism are frequently altered in ATC. Our goal was to determine the mitochondrial metabolic phenotype of ATC by studying markers of mitochondrial metabolism, specifically Monocarboxylate Transporter 1 (MCT1) and Translocase of the Outer Mitochondrial Membrane Member 20 (TOMM20). Methods Staining patterns of MCT1 and TOMM20 in 35 human thyroid samples (15 ATC, 12 papillary thyroid cancer (PTC), and 8 non-cancerous thyroid) and 9 ATC mouse orthotopic xenografts were assessed by visual and Aperio digital scoring. Staining patterns of areas involved with cancer versus areas with no evidence of cancer were evaluated independently where available. Results MCT1 is highly expressed in human anaplastic thyroid cancer when compared to both non-cancerous thyroid tissues and papillary thyroid cancers (p<0.001 for both). TOMM20 is also highly expressed in both ATC and PTC compared to non-cancerous thyroid tissue (p<0.01 for both). High MCT1 and TOMM20 expression is also found in ATC mouse xenograft tumors compared to non-cancerous thyroid tissue (p<0.001). These xenograft tumors have high 13C- pyruvate uptake. Conclusions Anaplastic thyroid cancer has metabolic features that distinguish it from PTC and non-cancerous thyroid tissue, including high expression of MCT1 and TOMM20. PTC has low expression of MCT1 and non-cancerous thyroid tissue has low expression of both MCT1 and TOMM20. This work suggests that MCT1 blockade may specifically target ATC cells presenting an opportunity for a new drug target. PMID:26615136
Aliesky, Holly; Courtney, Cynthia L.; Rapoport, Basil
2013-01-01
The great apes include, in addition to Homo, the genera Pongo (orangutans), Gorilla (gorillas), and Pan, the latter comprising two species, P. troglodytes (chimpanzees) and P. paniscus (bonobos). Adult-onset hypothyroidism was previously reported in 4 individual nonhuman great apes. However, there is scarce information on normal serum thyroid hormone levels and virtually no data for thyroid autoantibodies in these animals. Therefore, we examined thyroid hormone levels and TSH in all nonhuman great ape genera including adults, adolescents, and infants. Because hypothyroidism in humans is commonly the end result of thyroid autoimmunity, we also tested healthy and hypothyroid nonhuman great apes for antibodies to thyroglobulin (Tg), thyroid peroxidase (TPO), and the TSH receptor (TSHR). We established a thyroid hormone and TSH database in orangutans, gorillas, chimpanzees, and bonobos (447 individuals). The most striking differences are the greatly reduced free-T4 and free-T3 levels in orangutans and gorillas vs chimpanzees and bonobos, and conversely, elevated TSH levels in gorillas vs Pan species. Antibodies to Tg and TPO were detected in only 2.6% of adult animals vs approximately 10% in humans. No animals with Tg, TPO, or TSHR antibodies exhibited thyroid dysfunction. Conversely, hypothyroid nonhuman great apes lacked thyroid autoantibodies. Moreover, thyroid histology in necropsy tissues was similar in euthyroid and hypothyroid individuals, and lymphocytic infiltration was absent in 2 hypothyroid animals. In conclusion, free T4 and free T3 are lower in orangutans and gorillas vs chimpanzees and bonobos, the closest living human relatives. Moreover, thyroid autoantibodies are rare and hypothyroidism is unrelated to thyroid autoimmunity in nonhuman great apes. PMID:24092641
Iguchi, Makiko; Hara, Masahiro; Manome, Hideaki; Kobayasi, Hiromi; Tagami, Hachiro; Aiba, Setsuya
2003-06-01
Epithelial-mesenchymal interactions play a crucial role in the induction of life-long cyclic transformations of hair follicles. Many studies have already demonstrated several candidates for the soluble factors secreted from the mesenchymal components of the hair follicle, i.e. the follicular papilla (FP) and connective tissue sheath (CTS), which may be responsible for hair cycling. In this paper, we focused on cell-cell contact between FP cells (FPCs), between CTS cells (CTSCs), and between FPCs and CTSCs that may allow these mesenchymal components to function as a syncytium during hair cycling. Electron microscopic examination of the FP and the CTS obtained from human scalp revealed a tri-lamellar structure of the plasma membranes, which is a characteristic of gap junctions at the cell-cell contacting area. The immunohistochemical study with anticonnexin 43 Ab using a confocal laser scanning microscope demonstrated numerous spotted positive signals scattered throughout the FP. In the CTS, spotted positive signals were arranged linearly along the basement membrane of the hair follicle. In particular, these positive spots were aggregated in the transitional region between the FP and the CTS. By Western blot analysis of total protein extracts from the cultured FPCs and neonatal human dermal fibroblasts using anticonnexin 43 antibody, a positive band corresponding to connexin 43 was detected at 43 kDa on both the FPC lane and fibroblast lane. These findings suggest that the FP and the CTS form a communicating network through gap junctions, which may play a role in controlling the dynamic structural changes of hair follicles during hair cycling.
Mutations in PROP1 cause familial combined pituitary hormone deficiency.
Wu, W; Cogan, J D; Pfäffle, R W; Dasen, J S; Frisch, H; O'Connell, S M; Flynn, S E; Brown, M R; Mullis, P E; Parks, J S; Phillips, J A; Rosenfeld, M G
1998-02-01
Combined pituitary hormone deficiency (CPHD) in man denotes impaired production of growth hormone (GH) and one or more of the other five anterior pituitary hormones. Mutations of the pituitary transcription factor gene POU1F1 (the human homologue of mouse Pit1) are responsible for deficiencies of GH, prolactin and thyroid stimulating hormone (TSH) in Snell and Jackson dwarf mice and in man, while the production of adrenocorticotrophic hormone (ACTH), luteinizing hormone (LH) and follicle stimulating hormone (FSH) is preserved. The Ames dwarf (df) mouse displays a similar phenotype, and appears to be epistatic to Snell and Jackson dwarfism. We have recently positionally cloned the putative Ames dwarf gene Prop1, which encodes a paired-like homeodomain protein that is expressed specifically in embryonic pituitary and is necessary for Pit1 expression. In this report, we have identified four CPHD families with homozygosity or compound heterozygosity for inactivating mutations of PROP1. These mutations in the human PROP1 gene result in a gene product with reduced DNA-binding and transcriptional activation ability in comparison to the product of the murine df mutation. In contrast to individuals with POU1F1 mutations, those with PROP1 mutations cannot produce LH and FSH at a sufficient level and do not enter puberty spontaneously. Our results identify a major cause of CPHD in humans and suggest a direct or indirect role for PROP1 in the ontogenesis of pituitary gonadotropes, as well as somatotropes, lactotropes and caudomedial thyrotropes.
Endoplasmic reticulum stress as a novel mechanism in amiodarone-induced destructive thyroiditis.
Lombardi, Angela; Inabnet, William Barlow; Owen, Randall; Farenholtz, Kaitlyn Ellen; Tomer, Yaron
2015-01-01
Amiodarone (AMIO) is one of the most effective antiarrhythmic drugs available; however, its use is limited by a serious side effect profile, including thyroiditis. The mechanisms underlying AMIO thyroid toxicity have been elusive; thus, identification of novel approaches in order to prevent thyroiditis is essential in patients treated with AMIO. Our aim was to evaluate whether AMIO treatment could induce endoplasmic reticulum (ER) stress in human thyroid cells and the possible implications of this effect in AMIO-induced destructive thyroiditis. Here we report that AMIO, but not iodine, significantly induced the expression of ER stress markers including Ig heavy chain-binding protein (BiP), phosphoeukaryotic translation initiation factor 2α (eIF2α), CCAAT/enhancer-binding protein homologous protein (CHOP) and spliced X-box binding protein-1 (XBP-1) in human thyroid ML-1 cells and human primary thyrocytes. In both experimental systems AMIO down-regulated thyroglobulin (Tg) protein but had little effect on Tg mRNA levels, suggesting a mechanism involving Tg protein degradation. Indeed, pretreatment with the specific proteasome inhibitor MG132 reversed AMIO-induced down-regulation of Tg protein levels, confirming a proteasome-dependent degradation of Tg protein. Corroborating our findings, pretreatment of ML-1 cells and human primary thyrocytes with the chemical chaperone 4-phenylbutyric acid completely prevented the effect of AMIO on both ER stress induction and Tg down-regulation. We identified ER stress as a novel mechanism contributing to AMIO-induced destructive thyroiditis. Our data establish that AMIO-induced ER stress impairs Tg expression via proteasome activation, providing a valuable therapeutic avenue for the treatment of AMIO-induced destructive thyroiditis.
Fowler, Paul A; Anderson, Richard A; Saunders, Philippa T; Kinnell, Hazel; Mason, J Ian; Evans, Dean B; Bhattacharya, Siladitya; Flannigan, Samantha; Franks, Stephen; Monteiro, Ana; O'Shaughnessy, Peter J
2011-06-01
Ovarian primordial follicle formation is critical for subsequent human female fertility. It is likely that steroid, and especially estrogen, signaling is required for this process, but details of the pathways involved are currently lacking. The aim was to identify and characterize key members of the steroid-signaling pathway expressed in the second trimester human fetal ovary. We conducted an observational study of the female fetus, quantifying and localizing steroid-signaling pathway members. The study was conducted at the Universities of Aberdeen, Edinburgh, and Glasgow. Ovaries were collected from 43 morphologically normal human female fetuses from women undergoing elective termination of second trimester pregnancies. We measured mRNA transcript levels and immunolocalized key steroidogenic enzymes and steroid receptors, including those encoded by ESR2, AR, and CYP19A1. Levels of mRNA encoding the steroidogenic apparatus and steroid receptors increased across the second trimester. CYP19A1 transcript increased 4.7-fold during this period with intense immunostaining for CYP19A detected in pregranulosa cells around primordial follicles and somatic cells around oocyte nests. ESR2 was localized primarily to germ cells, but androgen receptor was exclusively expressed in somatic cells. CYP17A1 and HSD3B2 were also localized to oocytes, whereas CYP11A1 was detected in oocytes and some pregranulosa cells. The human fetal ovary expresses the machinery to produce and detect multiple steroid signaling pathways, including estrogenic signaling, with the oocyte acting as a key component. This study provides a step-change in our understanding of local dynamics of steroid hormone signaling during the key period of human primordial follicle formation.
Chiti, Maria Costanza; Dolmans, Marie-Madeleine; Mortiaux, Lucie; Zhuge, Flanco; Ouni, Emna; Shahri, Parinaz Asiabi Kohneh; Van Ruymbeke, Evelyne; Champagne, Sophie-Demoustier; Donnez, Jacques; Amorim, Christiani Andrade
2018-01-01
The aim of this study is to optimize fibrin matrix composition in order to mimic human ovarian tissue architecture for human ovarian follicle encapsulation and grafting. Ultrastructure of fresh human ovarian cortex in age-related women (n = 3) and different fibrin formulations (F12.5/T1, F30/T50, F50/T50, F75/T75), rheology of fibrin matrices and histology of isolated and encapsulated human ovarian follicles in these matrices. Fresh human ovarian cortex showed a highly fibrous and structurally inhomogeneous architecture in three age-related patients, but the mean ± SD of fiber thickness (61.3 to 72.4 nm) was comparable between patients. When the fiber thickness of four different fibrin formulations was compared with human ovarian cortex, F50/T50 and F75/T75 showed similar fiber diameters to native tissue, while F12.5/T1 was significantly different (p value < 0.01). In addition, increased concentrations of fibrin exhibited enhanced storage modulus with F50/T50, resembling physiological ovarian rigidity. Excluding F12.5/T1 from further analysis, only three remaining fibrin matrices (F30/T50, F50/T50, F75/T75) were histologically investigated. For this, frozen-thawed fragments of human ovarian tissue collected from 22 patients were used to isolate ovarian follicles and encapsulate them in the three fibrin formulations. All three yielded similar follicle recovery and loss rates soon after encapsulation. Therefore, based on fiber thickness, porosity, and rigidity, we selected F50/T50 as the fibrin formulation that best mimics native tissue. Of all the different fibrin matrix concentrations tested, F50/T50 emerged as the combination of choice in terms of ultrastructure and rigidity, most closely resembling human ovarian cortex.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Rupesh K., E-mail: drrupesh@illinois.ed; Singh, Jeffery M., E-mail: jsingh20@illinois.ed; Leslie, Tracie C., E-mail: tleslie2@illinois.ed
2010-01-15
Any insult that affects survival of ovarian antral follicles can cause abnormal estradiol production and fertility problems. Phthalate esters (PEs) are plasticizers used in a wide range of consumer and industrial products. Exposure to these chemicals has been linked to reduced fertility in humans and animal models. Di-(2-ethylhexyl) phthalate (DEHP) and mono-(2-ethylhexyl) phthalate (MEHP) decrease serum estradiol levels and aromatase (Arom) expression, prolong estrous cycles, and cause anovulation in animal and culture models. These observations suggest PEs directly target antral follicles. We therefore tested the hypothesis that DEHP (1-100 mug/ml) and MEHP (0.1-10 mug/ml) directly inhibit antral follicular growth andmore » estradiol production. Antral follicles from adult mice were cultured with DEHP or MEHP, and/or estradiol for 96 h. During culture, follicle size was measured every 24 h as a measurement of follicle growth. After culture, media were collected for measurement of estradiol levels and follicles were subjected to measurement of cylin-D-2 (Ccnd2), cyclin-dependant-kinase-4 (Cdk4), and Arom. We found that DEHP and MEHP inhibited growth of follicles and decreased estradiol production compared to controls at the highest doses. DEHP and MEHP also decreased mRNA expression of Ccnd2, Cdk4, and Arom at the highest dose. Addition of estradiol to the culture medium prevented the follicles from DEHP- and MEHP-induced inhibition of growth, reduction in estradiol levels, and decreased Ccnd2 and Cdk4 expression. Collectively, our results indicate that DEHP and MEHP may directly inhibit antral follicle growth via a mechanism that partially includes reduction in levels of estradiol production and decreased expression of cell cycle regulators.« less
To grow or not to grow: hair morphogenesis and human genetic hair disorders.
Duverger, Olivier; Morasso, Maria I
2014-01-01
Mouse models have greatly helped in elucidating the molecular mechanisms involved in hair formation and regeneration. Recent publications have reviewed the genes involved in mouse hair development based on the phenotype of transgenic, knockout and mutant animal models. While much of this information has been instrumental in determining molecular aspects of human hair development and cycling, mice exhibit a specific pattern of hair morphogenesis and hair distribution throughout the body that cannot be directly correlated to human hair. In this mini-review, we discuss specific aspects of human hair follicle development and present an up-to-date summary of human genetic disorders associated with abnormalities in hair follicle morphogenesis, structure or regeneration. Published by Elsevier Ltd.
Kaneda, Toshio; Honda, Asako; Hakozaki, Atsushi; Fuse, Tetsuya; Muto, Akihiro; Yoshida, Tadashi
2007-05-01
In Graves' disease, the overstimulation of the thyroid gland and hyperthyroidism are caused by autoantibodies directed against the TSH receptor (TSHR) that mimics the action of TSH. The establishment of an animal model is an important step to study the pathophysiology of autoimmune hyperthyroidism and for immunological analysis. In this study, we adopted the technique of electroporation (EP) for genetic immunization to achieve considerable enhancement of in vivo human TSHR (hTSHR) expression and efficient induction of hyperthyroidism in mice. In a preliminary study using beta-galactosidase (beta-gal) expression vectors, beta-gal introduced into the muscle by EP showed over 40-fold higher enzymatic activity than that introduced via previous direct gene transfer methods. The sustained hTSHR mRNA expression derived from cDNA transferred by EP was detectable in muscle tissue for at least 2 wk by RT-PCR. Based on these results, we induced hyperthyroidism via two expression vectors inserted with hTSHR or hTSHR289His cDNA. Consequently, 12.0-31.8% BALB/c mice immunized with hTSHR and 79.2-95.7% immunized with hTSHR289His showed high total T(4) levels due to the TSHR-stimulating antibody after three to four times repeated immunization by EP, and thyroid follicles of which were hyperplastic and had highly irregular epithelium. Moreover, TSHR-stimulating antibody surprisingly persisted more than 8 months after the last immunization. These results demonstrate that genetic immunization by in vivo EP is more efficient than previous procedures, and that it is useful for delineating the pathophysiology of Graves' disease.
Mitochondrial Metabolism as a Treatment Target in Anaplastic Thyroid Cancer.
Johnson, Jennifer M; Lai, Stephen Y; Cotzia, Paolo; Cognetti, David; Luginbuhl, Adam; Pribitkin, Edmund A; Zhan, Tingting; Mollaee, Mehri; Domingo-Vidal, Marina; Chen, Yunyun; Campling, Barbara; Bar-Ad, Voichita; Birbe, Ruth; Tuluc, Madalina; Martinez Outschoorn, Ubaldo; Curry, Joseph
2015-12-01
Anaplastic thyroid cancer (ATC) is one of the most aggressive human cancers. Key signal transduction pathways that regulate mitochondrial metabolism are frequently altered in ATC. Our goal was to determine the mitochondrial metabolic phenotype of ATC by studying markers of mitochondrial metabolism, specifically monocarboxylate transporter 1 (MCT1) and translocase of the outer mitochondrial membrane member 20 (TOMM20). Staining patterns of MCT1 and TOMM20 in 35 human thyroid samples (15 ATC, 12 papillary thyroid cancer [PTC], and eight non-cancerous thyroid) and nine ATC mouse orthotopic xenografts were assessed by visual and Aperio digital scoring. Staining patterns of areas involved with cancer versus areas with no evidence of cancer were evaluated independently where available. MCT1 is highly expressed in human anaplastic thyroid cancer when compared to both non-cancerous thyroid tissues and papillary thyroid cancers (P<.001 for both). TOMM20 is also highly expressed in both ATC and PTC compared to non-cancerous thyroid tissue (P<.01 for both). High MCT1 and TOMM20 expression is also found in ATC mouse xenograft tumors compared to non-cancerous thyroid tissue (P<.001). These xenograft tumors have high (13)C- pyruvate uptake. ATC has metabolic features that distinguish it from PTC and non-cancerous thyroid tissue, including high expression of MCT1 and TOMM20. PTC has low expression of MCT1 and non-cancerous thyroid tissue has low expression of both MCT1 and TOMM20. This work suggests that MCT1 blockade may specifically target ATC cells presenting an opportunity for a new drug target. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Politis, S N; Servili, A; Mazurais, D; Zambonino-Infante, J-L; Miest, J J; Tomkiewicz, J; Butts, I A E
2018-04-01
Thyroid hormones (THs) are key regulators of growth, development, and metabolism in vertebrates and influence early life development of fish. TH is produced in the thyroid gland (or thyroid follicles) mainly as T4 (thyroxine), which is metabolized to T3 (3,5,3'-triiodothyronine) and T2 (3,5-diiodothyronine) by deiodinase (DIO) enzymes in peripheral tissues. The action of these hormones is mostly exerted by binding to a specific nuclear thyroid hormone receptor (THR). In this study, we i) cloned and characterized thr sequences, ii) investigated the expression pattern of the different subtypes of thrs and dios, and iii) studied how temperature affects the expression of those genes in artificially produced early life history stages of European eel (Anguilla anguilla), reared in different thermal regimes (16, 18, 20 and 22 °C) from hatch until first-feeding. We identified 2 subtypes of thr (thrα and thrβ) with 2 isoforms each (thrαA, thrαB, thrβA, thrβB) and 3 subtypes of deiodinases (dio1, dio2, dio3). All thr genes identified showed high similarity to the closely related Japanese eel (Anguilla japonica). We found that all genes investigated in this study were affected by larval age (in real time or at specific developmental stages), temperature, and/or their interaction. More specifically, the warmer the temperature the earlier the expression response of a specific target gene. In real time, the expression profiles appeared very similar and only shifted with temperature. In developmental time, gene expression of all genes differed across selected developmental stages, such as at hatch, during teeth formation or at first-feeding. Thus, we demonstrate that thrs and dios show sensitivity to temperature and are involved in and during early life development of European eel. Copyright © 2017 Elsevier Inc. All rights reserved.
Maouche, Naima; Meskine, Djamila; Alamir, Barkahoum; Koceir, Elhadj-Ahmed
2015-10-01
The relationship between dysthyroidism and antioxidant trace elements (ATE) status is very subtle during oxidative stress (OS). This relationship is mediated by thyroid hormone (TH) disorder, insulin resistance syndrome (IRS) and inflammation. The aim of this study was to investigate ATE such as selenium (Se), manganese (Mn), zinc (Zn) and copper (Cu) status on thyroid dysfunction, and their interaction with antioxidant enzyme activities, mainly, superoxide dismutase (SOD) and glutathione peroxidase (GPx), TH profile (TSH, T(3), T(4)) and IRS clusters. The study was undertaken on 220 Algerian adults (30-50 years), including 157 women and 63 men who were divided to 4 groups: subclinical hypothyroidism (n = 50), overt hypothyroidism (n = 60), Graves's disease hyperthyroidism (n = 60) and euthyroid controls (n = 50). The IRS was confirmed according to NCEP (National Cholesterol Education Program). Insulin resistance was evaluated by HOMA-IR model. Trace elements were determined by the Flame Atomic Absorption Spectrometry (Flame-AAS) technique. The antioxidant enzymes activity and metabolic parameters were determined by biochemical methods. The TH profile and anti-Thyroperoxidase Antibodies (anti-TPO-Ab) were evaluated by radioimmunoassay. Results showed that the plasma manganese levels were significantly increased in all dysthyroidism groups (p ≤ 0.01). However, the plasma copper and zinc concentrations were maintained normal or not very disturbed vs control group. In contrast, the plasma selenium levels were highly decreased (p ≤ 0.001) and positively correlated with depletion of glutathione peroxidase activity; and associated both with anti-TPO-Ab overexpression and fulminant HS-CRP levels. This study confirms the oxidative stress-inflammation relationship in the dysthyroidism. The thyroid follicles antioxidant protection appears preserved in the cytosol (Cu/Zn-SOD), while it is altered in the mitochondria (Mn-SOD), which gives this cell organelle, a status of real target therapy in thyroid dysfunction. The publisher would like to apologise for any inconvenience caused. [corrected].
Comparative study of the primary cilia in thyrocytes of adult mammals
Utrilla, J C; Gordillo-Martínez, F; Gómez-Pascual, A; Fernández-Santos, J M; Garnacho, C; Vázquez-Román, V; Morillo-Bernal, J; García-Marín, R; Jiménez-García, A; Martín-Lacave, I
2015-01-01
Since their discovery in different human tissues by Zimmermann in 1898, primary cilia have been found in the vast majority of cell types in vertebrates. Primary cilia are considered to be cellular antennae that occupy an ideal cellular location for the interpretation of information both from the environment and from other cells. To date, in mammalian thyroid gland, primary cilia have been found in the thyrocytes of humans and dogs (fetuses and adults) and in rat embryos. The present study investigated whether the existence of this organelle in follicular cells is a general event in the postnatal thyroid gland of different mammals, using both immunolabeling by immunofluorescence and electron microscopy. Furthermore, we aimed to analyse the presence of primary cilia in various thyroid cell lines. According to our results, primary cilia are present in the adult thyroid gland of most mammal species we studied (human, pig, guinea pig and rabbit), usually as a single copy per follicular cell. Strikingly, they were not found in rat or mouse thyroid tissues. Similarly, cilia were also observed in all human thyroid cell lines tested, both normal and neoplastic follicular cells, but not in cultured thyrocytes of rat origin. We hypothesize that primary cilia could be involved in the regulation of normal thyroid function through specific signaling pathways. Nevertheless, further studies are needed to shed light on the permanence of these organelles in the thyroid gland of most species during postnatal life. PMID:26228270
Activating β-catenin signaling in CD133-positive dermal papilla cells increases hair inductivity
Zhou, Linli; Yang, Kun; Xu, Mingang; Andl, Thomas; Millar, Sarah; Boyce, Steven; Zhang, Yuhang
2016-01-01
Bioengineering hair follicles using cells isolated from human tissue remains as a difficult task. Dermal papilla (DP) cells are known to guide the growth and cycling activities of hair follicles by interacting with keratinocytes. However, DP cells quickly lose their inductivity during in vitro passaging. Rodent DP cell cultures need external addition of chemical factors, including WNT and BMP molecules, to maintain the hair inductive property. CD133 is expressed by a small subpopulation of DP cells that are capable of inducing hair follicle formation in vivo. We report here that expression of a stabilized form of β-catenin promoted clonal growth of CD133-positive (CD133+) DP cells in in vitro three-dimensional hydrogel culture while maintaining expression of DP markers, including alkaline phosphatase (AP), CD133, and Integrin α8. After a two-week in vitro culture, cultured CD133+ DP cells with up-regulated β-catenin activity led to an accelerated in vivo hair growth in reconstituted skin than control cells. Further analysis showed that matrix cell proliferation and differentiation were significantly promoted in hair follicles when β-catenin signaling was upregulated in CD133+ DP cells. Our data highlight an important role for β-catenin signaling in promoting the inductive capability of CD133+ DP cells for in vitro expansion and in vivo hair follicle regeneration, which could potentially be applied to cultured human DP cells. PMID:27312243
Thyroid cell lines in research on goitrogenesis.
Gerber, H; Peter, H J; Asmis, L; Studer, H
1991-12-01
Thyroid cell lines have contributed a lot to the understanding of goitrogenesis. The cell lines mostly used in thyroid research are briefly discussed, namely the rat thyroid cell lines FRTL and FRTL-5, the porcine thyroid cell lines PORTHOS and ARTHOS, The sheep thyroid cell lines OVNIS 5H and 6H, the cat thyroid cell lines PETCAT 1 to 4 and ROMCAT, and the human thyroid cell lines FTC-133 and HTh 74. Chinese hamster ovary (CHO) cells and COS-7 cells, stably transfected with TSH receptor cDNA and expressing a functional TSH receptor, are discussed as examples for non-thyroidal cells, transfected with thyroid genes.
Salvetti, Natalia R; Panzani, Carolina G; Gimeno, Eduardo J; Neme, Leandro G; Alfaro, Natalia S; Ortega, Hugo H
2009-01-01
Background Cystic ovarian disease is an important cause of infertility that affects bovine, ovine, caprine and porcine species and even human beings. Alterations in the ovarian micro-environment of females with follicular cysts could alter the normal processes of proliferation and programmed cell death in ovarian cells. Thus, our objective was to evaluate apoptosis and proliferation in ovarian cystic follicles in rats in order to investigate the cause of cystic follicle formation and persistence. Methods We compared the number of in situ apoptotic cells by TUNEL assay, expression of active caspase-3 and members of Bcl-2 family by immunohistochemistry; and cell proliferation by the expression of the proliferation markers: PCNA and Ki-67. Results The proliferation index was low in granulosa of tertiary and cystic follicles of light exposed rats when compared with tertiary follicles of control animals, while in theca interna only cystic follicles presented low proliferation index when compared with tertiary follicles (p < 0.05). The granulosa of cysts exhibited a similar cell DNA fragmentation to early atretic follicles. In the granulosa and theca interna, active caspase-3 shown similar immunostaining levels in tertiary and cystic follicles (p < 0.05). The granulosa cells presented high expression of Bcl-2, Bcl-xL and Bcl-w in the tertiary and cystic follicles with diminishing intensity in the atretic follicles, except with Bcl-w where the intensity was maintained in the atretic follicles (p < 0.05). The expression of Bax was weak in the healthy and cystic follicles. In the theca interna, Bcl-2 expression was the same as the pattern found in the granulosa; no differences were found between tertiary and cystic follicles from both groups for Bcl-xL and Bcl-w. The expression of Bax in this layer was higher in the tertiary follicles of the treated animals (p < 0.05) while the values for cystic follicles were similar to those in the tertiary follicles of controls. The theca externa showed low expression of the pro and anti-apoptotic proteins. Conclusion These results show that the combination of weak proliferation indices and low apoptosis observed in follicular cysts, could explain the cause of the slow growth of cystic follicles and the maintenance of a static condition without degeneration, which leads to their persistence. These alterations may be due to structural and functional modifications that take place in these cells and could be related to hormonal changes in animals with this condition. PMID:19570211
Selenium glutathione peroxidase activities and thyroid functions in human individuals
NASA Astrophysics Data System (ADS)
Bellisola, G.; Calza Contin, M.; Ceccato, D.; Cinque, G.; Francia, G.; Galassini, S.; Liu, N. Q.; Lo Cascio, C.; Moschini, G.; Sussi, P. L.
1996-04-01
At least two enzymes are involved in metabolism of thyroid hormones. GSHPx protects thyrocyte from high H 2O 2 levels that are required for iodination of prohormones to form T4 in thyroid cell. Type I iodothyronine 5'-deiodinase (5'-D) catalyzes the deiodination of L-thyroxin (T4) to the biologically active thyroid hormone 3,3'-5-triiodothyronine (T 3) in liver, in kidney and in thyroid tissues. Circulating thyroid hormones, plasma Se levels, GSHPx activities in platelets and in plasma were investigated in 29 human individuals with increased thyroid mass. PIXE was applied to measure Se in 1 ml of plasma because we supposed patients were in a marginal carential status for Se. Plasma Se concentrations were compared with those of normal individuals. Correlation studies between plasma Se level and both GSHPx activities were carried out as well as between platelets and plasma GSHPx activities to verify the hypothesis of a marginal Se deficiency in patients. Significance of circulating thyroid hormones levels will be discussed.
Expression and localization of VEGFR-2 in hair follicles during induced hair growth in mice.
Wu, Xian-Jie; Jing, Jing; Lu, Zhong-Fa; Zheng, Min
2018-06-16
Recently, VEGFR-2 has been detected not only in vascular and lymphatic endothelial cells but also in some non-vascular endothelial cells, particularly human hair follicles, sebaceous glands, and sweat glands. In addition, VEGFR-2 has been confirmed to play direct roles in hair follicle keratinocyte regulation beyond simply angiogenesis. To elucidate whether VEGFR-2 activation plays a role in hair follicle cycling regulation, immunofluorescence of VEGFR-2 expression was performed during hair cycling of the dorsum of the mouse induced by hair plucking. We observed that staining for VEGFR-2 in hair follicles during anagen II and IV was much stronger than during anagen VI, catagen and telogen. During anagen II, intense staining for VEGFR-2 was observed on the keratinocyte strands of the hair follicle. Subsequently, we detected intense staining for VEGFR-2 in the ORS, IRS and hair bulb during anagen IV. Moderate staining for VEGFR-2 was detected in the ORS and hair bulb, but staining was most intense in IRS during anagen VI. During catagen, staining for VEGFR-2 in the IRS remained intense, while staining in the ORS and hair bulb was significantly weakened and was negative in the dermal papilla. During telogen, we detected VEGFR-2 in germ cells, cap, and club hair adjoining the epidermis. In conclusion, VEGFR-2 was expressed on the hair follicles of the dorsum of the mouse and varied in expression on the mouse hair follicles during hair cycling, suggesting that VEGFR-2 may exert roles in hair cycle regulation in hair follicles on the dorsum of mice.
Rhabdomyolysis in a Young Girl with Van Wyk-Grumbach Syndrome due to Severe Hashimoto Thyroiditis.
Leonardi, Alberto; Penta, Laura; Cofini, Marta; Lanciotti, Lucia; Principi, Nicola; Esposito, Susanna
2018-04-09
Background: Autoimmune hypothyroidism (Hashimoto thyroiditis; HT) is the most common postnatal thyroid disease. Clinical manifestations of HT vary according to disease severity. Due to the pleiotropic effects of thyroid hormone, less common signs and symptoms of HT can occur, leading to a delay in diagnosis. Case presentation: A 9-year-old girl of Indian origin was admitted for a one-week history of widespread myalgia, fatigue, muscle weakness, difficulty walking, and a significant increase in weight (approximately 2 kg) without any changes in daily habits. The only relevant medical history was several intermittent vaginal bleeding episodes since four years of age. Breast development was consistent with Tanner stage 2 without pubic or axillary hair; while height and weight were at the 10th percentile and the 38th percentile; respectively. Bone age from a left wrist X-ray was delayed 1 year. Pelvic ultrasonography revealed a uterine body/neck ratio of >1 (pubertal stage) and multifollicular ovaries. Her external genitalia had a childlike appearance. Laboratory examinations showed an increased thyroid-stimulating hormone, decreased free thyroxine, and positive anti-thyroglobulin antibody titres, as well as elevation of creatine phosphokinase, myoglobin, lactate dehydrogenase, serum aspartate aminotransferase, hypercholesterolemia, and a basal serum prolactin near the upper limit of normal. Follicle stimulating hormone and estradiol were slightly and significantly elevated, respectively. Thyroid ultrasound showed an increased gland size with irregular echostructures and high vascularization. Levothyroxine replacement therapy led to complete normalization of clinical and laboratory findings, including rhabdomyolysis indices. No further vaginal bleeding episodes were reported. Conclusion: This case report highlights how various can be the clinical picture of HT in children, and how rare clinical manifestations can be the only signs of disease at presentation leading to delayed diagnosis and treatment. In this girl, a never-described association of Van Wyk-Grumbach syndrome and acute rhabdomyolysis in a young girl with previously unrecognized HT is described. The importance of recognizing the signs and symptoms of rare complications of HT in order to begin appropriate therapy is stressed.
Adrenal hormones in human follicular fluid.
Jimena, P; Castilla, J A; Peran, F; Ramirez, J P; Vergara, F; Molina, R; Vergara, F; Herruzo, A
1992-11-01
Considerable evidence indicates that adrenal hormones may affect gonadal function. To assess the role of some adrenal hormones in human follicular fluid and their relationship with the ability of the oocyte to be fertilized and then to cleave in vitro, cortisol and dehydroepiandrosterone sulfate were measured in follicular fluid obtained at the time of oocyte recovery for in vitro fertilization from cycles stimulated by clomiphene citrate, human menopausal gonadotropin and human chorionic gonadotropin. Thirty-six follicular fluid containing mature oocyte-corona-cumulus complexes and free of visible blood contamination were included in this study. There was no significant difference in follicular fluid dehydroepiandrosterone sulfate concentration between follicles with oocytes which did or did not fertilize (5.1 +/- 1.1 vs 5.8 +/- 2.0 mumol/l). However, follicular fluid from follicles whose oocytes were not fertilized had levels of cortisol significantly higher than those in follicular fluid from follicles containing successfully fertilized oocytes (406.0 +/- 75.9 vs 339.2 +/- 37.0 nmol/l; p < 0.005). No significant correlations were found between rates of embryo cleavage and cortisol and dehydroepiandrosterone levels in follicular fluid. We conclude that cortisol levels in follicular fluid may provide an index of fertilization outcome, at least in stimulated cycles by clomiphene citrate, human menopausal gonadotropin and human chorionic gonadotropin.
The effects of thyroid hormones on brown adipose tissue in humans: a PET-CT study.
Zhang, Qiongyue; Miao, Qing; Ye, Hongying; Zhang, Zhaoyun; Zuo, Chuantao; Hua, Fengchun; Guan, Yihui; Li, Yiming
2014-09-01
Brown adipose tissue (BAT) is important for energy expenditure through thermogenesis, although its regulatory factors are not well known in humans. There is evidence suggesting that thyroid hormones affect BAT functions in some mammals, but the effects of thyroid hormones on BAT activity in humans are still unclear. The aim of this study was to investigate the effects of thyroid hormones on glucose metabolism of BAT and other organs in humans. Nine Graves' disease-caused hyperthyroid patients who were newly diagnosed and untreated were studied. Putative brown adipose tissue activity was determined by the integrated ¹⁸F-fluorodeoxyglucose (¹⁸F-FDG) positron-emission tomography and computed tomography (PET-CT). All hyperthyroid patients were treated with methimazole and had been monitored until their symptoms disappeared and thyroid hormone levels returned to normal. At the end, a second PET-CT scan was performed. The average follow-up period was 77 days. Meanwhile, compared with a group of seventy-five brown adipose tissue-negative controls, thyroid hormones of seventy-five BAT-positive healthy subjects were measured. Active brown adipose tissue was not present in any of the hyperthyroid patients. However, one patient with normalized thyroid function showed active BAT after therapy. The free T3 levels and free T4 levels were significantly lower in the 75 BAT-positive subjects than in the BAT-negative subjects. All hyperthyroid patients showed symmetrically increased uptake of fluorodeoxyglucose in skeletal muscles before treatment, whereas, the standardized uptake value was substantially decreased after treatment. Abnormally high circulating thyroid hormone levels may not increase brown adipose tissue activity, which may be limited by the increased obligatory thermogenesis of muscle in adult humans. Copyright © 2014 John Wiley & Sons, Ltd.
hCG: Biological Functions and Clinical Applications
Nwabuobi, Chinedu; Arlier, Sefa; Schatz, Frederick; Guzeloglu-Kayisli, Ozlem; Lockwood, Charles Joseph; Kayisli, Umit Ali
2017-01-01
Human chorionic gonadotropin (hCG) is produced primarily by differentiated syncytiotrophoblasts, and represents a key embryonic signal that is essential for the maintenance of pregnancy. hCG can activate various signaling cascades including mothers against decapentaplegic homolog 2 (Smad2), protein kinase C (PKC), and/or protein kinase A (PKA) in several cells types by binding to luteinizing hormone/chorionic gonadotropin receptor (LHCGR) or potentially by direct/indirect interaction with transforming growth factor beta receptor (TGFβR). The molecule displays specialized roles in promoting angiogenesis in the uterine endothelium, maintaining myometrial quiescence, as well as fostering immunomodulation at the maternal-fetal interface. It is a member of the glycoprotein hormone family that includes luteinizing hormone (LH), thyroid-stimulating hormone (TSH), and follicle-stimulating hormone (FSH). The α-subunit of hCG displays homologies with TSH, LH, and FSH, whereas the β subunit is 80–85% homologous to LH. The hCG molecule is produced by a variety of organs, exists in various forms, exerts vital biological functions, and has various clinical roles ranging from diagnosis and monitoring of pregnancy and pregnancy-related disorders to cancer surveillance. This review presents a detailed examination of hCG and its various clinical applications. PMID:28937611
hCG: Biological Functions and Clinical Applications.
Nwabuobi, Chinedu; Arlier, Sefa; Schatz, Frederick; Guzeloglu-Kayisli, Ozlem; Lockwood, Charles Joseph; Kayisli, Umit Ali
2017-09-22
Human chorionic gonadotropin (hCG) is produced primarily by differentiated syncytiotrophoblasts, and represents a key embryonic signal that is essential for the maintenance of pregnancy. hCG can activate various signaling cascades including mothers against decapentaplegic homolog 2 (Smad2), protein kinase C (PKC), and/or protein kinase A (PKA) in several cells types by binding to luteinizing hormone/chorionic gonadotropin receptor (LHCGR) or potentially by direct/indirect interaction with transforming growth factor beta receptor (TGFβR). The molecule displays specialized roles in promoting angiogenesis in the uterine endothelium, maintaining myometrial quiescence, as well as fostering immunomodulation at the maternal-fetal interface. It is a member of the glycoprotein hormone family that includes luteinizing hormone (LH), thyroid-stimulating hormone (TSH), and follicle-stimulating hormone (FSH). The α-subunit of hCG displays homologies with TSH, LH, and FSH, whereas the β subunit is 80-85% homologous to LH. The hCG molecule is produced by a variety of organs, exists in various forms, exerts vital biological functions, and has various clinical roles ranging from diagnosis and monitoring of pregnancy and pregnancy-related disorders to cancer surveillance. This review presents a detailed examination of hCG and its various clinical applications.
Huntriss, John; Lu, Jianping; Hemmings, Karen; Bayne, Rosemary; Anderson, Richard; Rutherford, Anthony; Balen, Adam; Elder, Kay; Picton, Helen M
2017-01-01
Gametocyte-specific factor 1 has been shown in other species to be required for the silencing of retrotransposons via the Piwi-interacting RNA (piRNA) pathway. In this study, we aimed to isolate and assess expression of transcripts of the gametocyte-specific factor 1 (GTSF1) gene in the human female germline and in preimplantation embryos. Complementary DNA (cDNA) libraries from human fetal ovaries and testes, human oocytes and preimplantation embryos and ovarian follicles isolated from an adult ovarian cortex biopsy were used to as templates for PCR, cloning and sequencing, and real time PCR experiments of GTSF1 expression. GTSF1 cDNA clones that covered the entire coding region were isolated from human oocytes and preimplantation embryos. GTSF1 mRNA expression was detected in archived cDNAs from staged human ovarian follicles, germinal vesicle (GV) stage oocytes, metaphase II oocytes, and morula and blastocyst stage preimplantation embryos. Within the adult female germline, expression was highest in GV oocytes. GTSF1 mRNA expression was also assessed in human fetal ovary and was observed to increase during gestation, from 8 to 21 weeks, during which time oogonia enter meiosis and primordial follicle formation first occurs. In human fetal testis, GTSF1 expression also increased from 8 to 19 weeks. To our knowledge, this report is the first to describe the expression of the human GTSF1 gene in human gametes and preimplantation embryos.
Funk, Juergen; Ebeling, Martin; Singer, Thomas; Landes, Christian
2017-10-01
The goal of this in situ hybridization and image analysis technique is to study the effects of new pharmacological/chemical entities on the thyroid and pituitary gland in rats, reveal the pathogenesis of thyroid follicular cell hypertrophy and to retrospectively exclude the risk of thyroid tumor development in humans. In the present study, we describe the increase of thyroid-stimulating hormone- (TSH-) beta subunit mRNA in the pars distalis of the pituitary gland and the quantitative measurement of TSH mRNA positive cells from rats of three 4-week toxicity studies treated with three different test compounds inducing thyroid follicular cell and hepatocellular hypertrophy in rats. Compared to immunohistochemistry (IHC), in situ hybridization (ISH) for TSH was found to be more sensitive. With this technique we are able to exclude a direct effect of the test compound on the thyroid gland by showing the activation of thyrotrope cells from the pituitary gland and therefore this technique retrospectively enables us to exclude a possible risk for humans at an early stage of drug development. Also in case blood serum samples for evaluation of TSH are not available anymore or hepatocellular hypertrophy is not present (close metabolic relationship between thyroid gland and liver in rodents), the described method allows retrospective investigations on thyroid follicular cell hypertrophy or hyperplasia. This can be of high relevance in human safety assessment for certain drugs in order to exclude a primary effect on the thyroid gland especially when it comes to thyroid neoplasia in rodents as previously described. Copyright © 2017 Elsevier Ltd. All rights reserved.
Expression and regulation of the tumor suppressor, SEF, during folliculogenesis in humans and mice.
Lutwak, Ela; Price, Christopher A; Abramovich, Sagit-Sela; Rabinovitz, Shiri; Granot, Irit; Dekel, Nava; Ron, Dina
2014-11-01
Similar expression to FGF (Sef or IL17-RD), is a tumor suppressor and an inhibitor of growth factors as well as of pro-inflammatory cytokine signaling. In this study, we examined the regulation of Sef expression by gonadotropins during ovarian folliculogenesis. In sexually immature mice, in situ hybridization (ISH) localized Sef gene expression to early developing oocytes and granulosa cells (GC) but not to theca cells. Sef was also expressed in mouse ovarian endothelial cells, in the fallopian tube epithelium as well as in adipose tissue venules. SEF protein expression, determined by immunohistochemistry (IHC), correlated well with Sef mRNA expression in GC, while differential expression was noticed in oocytes. High Sef mRNA but undetectable SEF protein levels were observed in the oocytes of primary/secondary follicles, while an inverse correlation was found in the oocytes of preantral and small antral follicles. Sef mRNA expression dropped after pregnant mare's serum gonadotropin (PMSG) administration, peaked at 6-8 h after human chorionic gonadotropin (hCG) treatment, and declined by 12 h after this treatment. ISH and IHC localized the changes to oocytes and mural GC following PMSG treatment, whereas Sef expression increased in mural GC and declined in granulosa-lutein cells upon hCG treatment. The ovarian expression of SEF was confirmed using human samples. ISH localized SEF transcripts to human GC of antral follicles but not to corpora lutea. Furthermore, SEF mRNA was detected in human GC recovered from preovulatory follicles. These results are the first to demonstrate SEF expression in a healthy ovary during folliculogenesis. Hormonal regulation of its expression suggests that SEF may be an important factor involved in intra-ovarian control mechanisms. © 2014 Society for Reproduction and Fertility.
Choi, Yohan; Park, Ji Yeon; Wilson, Kalin; Rosewell, Katherine L; Brännström, Mats; Akin, James W; Curry, Thomas E; Jo, Misung
2017-06-01
The chemokine CXC motif ligand 12 (CXCL12) and its cognate receptor, CXCR4, have been implicated in the ovulatory process in various animal models. However, little is known about the expression and regulation of CXCL12 and CXCR4 and their functions during the ovulatory period in the human ovary. In this study, we characterized the expression patterns of CXCL12 and CXCR4 in preovulatory follicles collected before the luteinizing hormone (LH) surge and at defined hours after hCG administration in women with the regular menstrual cycle. The levels of mRNA and protein for CXCR4 were increased in granulosa cells of late ovulatory follicles, whereas CXCL12 expression was constant in follicles throughout the ovulatory period. Both CXCR4 and CXCL12 were localized to a subset of leukocytes around and inside the vasculature of human preovulatory follicles. Using a human granulosa cell culture model, the regulatory mechanisms and functions of CXCL12 and CXCR4 expression were investigated. Human chorionic gonadotropin (hCG) stimulated CXCR4 expression, whereas CXCL12 expression was not affected, mimicking in vivo expression patterns. Both RU486 (progesterone receptor antagonist) and CoCl2 (HIFs activator) blocked the hCG-induced increase in CXCR4 expression, whereas AG1478 (EGFR inhibitor) had no effect. The treatment with CXCL12 had no effect on granulosa cell viability but decreased hCG-stimulated CXCR4 expression. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Montero-Conde, Cristina; Leandro-Garcia, Luis J; Chen, Xu; Oler, Gisele; Ruiz-Llorente, Sergio; Ryder, Mabel; Landa, Iñigo; Sanchez-Vega, Francisco; La, Konnor; Ghossein, Ronald A; Bajorin, Dean F; Knauf, Jeffrey A; Riordan, Jesse D; Dupuy, Adam J; Fagin, James A
2017-06-20
Oncogenic RAS mutations are present in 15-30% of thyroid carcinomas. Endogenous expression of mutant Ras is insufficient to initiate thyroid tumorigenesis in murine models, indicating that additional genetic alterations are required. We used Sleeping Beauty (SB) transposon mutagenesis to identify events that cooperate with Hras G12V in thyroid tumor development. Random genomic integration of SB transposons primarily generated loss-of-function events that significantly increased thyroid tumor penetrance in Tpo-Cre/homozygous FR-Hras G12V mice. The thyroid tumors closely phenocopied the histological features of human RAS-driven, poorly differentiated thyroid cancers. Characterization of transposon insertion sites in the SB-induced tumors identified 45 recurrently mutated candidate cancer genes. These mutation profiles were remarkably concordant with mutated cancer genes identified in a large series of human poorly differentiated and anaplastic thyroid cancers screened by next-generation sequencing using the MSK-IMPACT panel of cancer genes, which we modified to include all SB candidates. The disrupted genes primarily clustered in chromatin remodeling functional nodes and in the PI3K pathway. ATXN7 , a component of a multiprotein complex with histone acetylase activity, scored as a significant SB hit. It was recurrently mutated in advanced human cancers and significantly co-occurred with RAS or NF1 mutations. Expression of ATXN7 mutants cooperated with oncogenic RAS to induce thyroid cell proliferation, pointing to ATXN7 as a previously unrecognized cancer gene.
Montero-Conde, Cristina; Leandro-Garcia, Luis J.; Chen, Xu; Oler, Gisele; Ruiz-Llorente, Sergio; Ryder, Mabel; Landa, Iñigo; Sanchez-Vega, Francisco; La, Konnor; Ghossein, Ronald A.; Bajorin, Dean F.; Knauf, Jeffrey A.; Riordan, Jesse D.; Dupuy, Adam J.; Fagin, James A.
2017-01-01
Oncogenic RAS mutations are present in 15–30% of thyroid carcinomas. Endogenous expression of mutant Ras is insufficient to initiate thyroid tumorigenesis in murine models, indicating that additional genetic alterations are required. We used Sleeping Beauty (SB) transposon mutagenesis to identify events that cooperate with HrasG12V in thyroid tumor development. Random genomic integration of SB transposons primarily generated loss-of-function events that significantly increased thyroid tumor penetrance in Tpo-Cre/homozygous FR-HrasG12V mice. The thyroid tumors closely phenocopied the histological features of human RAS-driven, poorly differentiated thyroid cancers. Characterization of transposon insertion sites in the SB-induced tumors identified 45 recurrently mutated candidate cancer genes. These mutation profiles were remarkably concordant with mutated cancer genes identified in a large series of human poorly differentiated and anaplastic thyroid cancers screened by next-generation sequencing using the MSK-IMPACT panel of cancer genes, which we modified to include all SB candidates. The disrupted genes primarily clustered in chromatin remodeling functional nodes and in the PI3K pathway. ATXN7, a component of a multiprotein complex with histone acetylase activity, scored as a significant SB hit. It was recurrently mutated in advanced human cancers and significantly co-occurred with RAS or NF1 mutations. Expression of ATXN7 mutants cooperated with oncogenic RAS to induce thyroid cell proliferation, pointing to ATXN7 as a previously unrecognized cancer gene. PMID:28584132
Radioiodide induces apoptosis in human thyroid tissue in culture.
Russo, Eleonora; Guerra, Anna; Marotta, Vincenzo; Faggiano, Antongiulio; Colao, Annamaria; Del Vecchio, Silvana; Tonacchera, Massimo; Vitale, Mario
2013-12-01
Radioiodide ((131)I) is routinely used for the treatment of toxic adenoma, Graves' disease, and for ablation of thyroid remnant after thyroidectomy in patients with thyroid cancer. The toxic effects of ionizing radiations on living cells can be mediated by a necrotic and/or apoptotic process. The involvement of apoptosis in radiation-induced cell death in the thyrocytes has been questioned. The knowledge of the mechanisms that underlie the thyrocyte death in response to radiations can help to achieve a successful treatment with the lowest (131)I dose. We developed a method to study the effects of (131)I in human thyroid tissue in culture, by which we demonstrated that (131)I induces thyroid cell apoptosis. Human thyroid tissues of about 1 mm(3) were cultured in vitro and cell viability was determined up to 3 weeks by the MTT assay. Radioiodide added to the culture medium was actively taken up by the tissues. The occurrence of apoptosis in the thyrocytes was assessed by measuring the production of a caspase-cleavage fragment of cytokeratin 18 (M30) by an enzyme-linked immunoassay. Neither variation of cell number nor spontaneous apoptosis was revealed after 1 week of culture. (131)I added to the culture medium induced a dose-dependent and a time-dependent generation of M30 fragment. The apoptotic process was confirmed by the generation of caspase-3 and PARP cleavage products. These results demonstrate that (131)I induces apoptosis in human thyrocytes. Human thyroid tissue cultures may be useful to investigate the cell death pathways induced by (131)I.
Etoposide damages female germ cells in the developing ovary.
Stefansdottir, Agnes; Johnston, Zoe C; Powles-Glover, Nicola; Anderson, Richard A; Adams, Ian R; Spears, Norah
2016-08-11
As with many anti-cancer drugs, the topoisomerase II inhibitor etoposide is considered safe for administration to women in the second and third trimesters of pregnancy, but assessment of effects on the developing fetus have been limited. The purpose of this research was to examine the effect of etoposide on germ cells in the developing ovary. Mouse ovary tissue culture was used as the experimental model, thus allowing us to examine effects of etoposide on all stages of germ cell development in the same way, in vitro. Fetal ovaries from embryonic day 13.5 CD1 mice or neonatal ovaries from postnatal day 0 CD1 mice were cultured with 50-150 ng ml(-1) or 50-200 ng ml(-1) etoposide respectively, concentrations that are low relative to that in patient serum. When fetal ovaries were treated prior to follicle formation, etoposide resulted in dose-dependent damage, with 150 ng ml(-1) inducing a near-complete absence of healthy follicles. In contrast, treatment of neonatal ovaries, after follicle formation, had no effect on follicle numbers and only a minor effect on follicle health, even at 200 ng ml(-1). The sensitivity of female germ cells to etoposide coincided with topoisomerase IIα expression: in the developing ovary of both mouse and human, topoisomerase IIα was expressed in germ cells only prior to follicle formation. Exposure of pre-follicular ovaries, in which topoisomerase IIα expression was germ cell-specific, resulted in a near-complete elimination of germ cells prior to follicle formation, with the remaining germ cells going on to form unhealthy follicles by the end of culture. In contrast, exposure to follicle-enclosed oocytes, which no longer expressed topoisomerase IIα in the germ cells, had no effect on total follicle numbers or health, the only effect seen specific to transitional follicles. Results indicate the potential for adverse effects on fetal ovarian development if etoposide is administered to pregnant women when germ cells are not yet enclosed within ovarian follicles, a process that starts at approximately 17 weeks gestation and is only complete towards the end of pregnancy.
Follicular and percutaneous penetration pathways of topically applied minoxidil foam.
Blume-Peytavi, Ulrike; Massoudy, Lida; Patzelt, Alexa; Lademann, Jürgen; Dietz, Ekkehart; Rasulev, Utkur; Garcia Bartels, Natalie
2010-11-01
In the past, it was assumed that the intercellular route was the only relevant penetration pathway for topically applied substances. Recent results on follicular penetration emphasize that the hair follicles represent a highly relevant and efficient penetration pathway and reservoir for topically applied substances. This study investigates a selective closure technique of hair follicle orifices in vivo assessing interfollicular and follicular absorption rates of topical minoxidil foam in humans. In delimited skin area, single hair orifices or interfollicular skin were blocked with a microdrop of special varnish-wax-mixture in vivo. Minoxidil foam (5%) was topically applied, and transcutaneous absorption was measured by a new surface ionization mass spectrometry technique in serum. Different settings (open, closed or none of both) enabled to clearly distinguish between interfollicular and follicular penetration of the topically applied minoxidil foam. Five minutes after topical application, minoxidil was detected in blood samples when follicles remained open, whereas with closed follicles 30 min were needed. Highest levels were found first when both pathways were open, followed by open follicles and subsequently by closed follicles. These results demonstrate the high importance of the follicular penetration pathway. Hair follicles are surrounded by a dense network of blood capillaries and dendritic cells and have stem cells in their immediate vicinity, making them ideal targets for drug delivery. Copyright © 2010 Elsevier B.V. All rights reserved.
Thyroid-stimulating hormone (TSH) regulates thyroid hormone (TH) production via binding to its receptor (TSHR). The roles of TSHR in human pathologies including hyper/hypothyroidism, Grave’s disease, and thyroid cancer are known, but it is currently unknown whether TSHR is an imp...
2014-01-01
Background BID functions as a bridge molecule between death-receptor and mitochondrial related apoptotic pathways to amplify apoptotic signaling. Our previous studies have demonstrated a substantial increase in BID expression in primary normal thyroid epithelia cells treated with inflammatory cytokines, including the combination of IFNγ and IL-1β or IFNγ and TNFα. The aim of this study was to determine whether an increase in BID expression in thyroid can induce autoimmune thyroiditis. Methods A transgenic mouse line that expresses human BID in thyroid cells was established by fusing a mouse thyroglobulin (Tg) promoter upstream of human BID (Tg-BID). We tested whether the increased expression of pro-apoptotic BID in thyroid would induce autoimmune thyroiditis, both in the presence and absence of 0.3% iodine water. Results Our data show that Tg-BID mice in a CBA/J (H-2 k) background do not spontaneously develop autoimmune thyroiditis for over a year. However, upon ingestion of iodine in the drinking water, autoimmune thyroiditis does develop in Tg-BID transgenic mice, as shown by a significant increase in anti-Tg antibody and mononuclear cell infiltration in the thyroid glands in 30% of mice tested. Serum T4 levels, however, were similar between iodine-treated Tg-BID transgenic mice and the wild type mice. Conclusions Our data demonstrate that increased thyroid expression of BID facilitates the development of autoimmune thyroiditis induced by iodine uptake. However, the overexpression of BID itself is not sufficient to initiate thyroiditis in CBA/J (H-2 k) mice. PMID:24957380
Expression of stanniocalcin 1 in thyroid side population cells and thyroid cancer cells.
Hayase, Suguru; Sasaki, Yoshihito; Matsubara, Tsutomu; Seo, Daekwan; Miyakoshi, Masaaki; Murata, Tsubasa; Ozaki, Takashi; Kakudo, Kennichi; Kumamoto, Kensuke; Ylaya, Kris; Cheng, Sheue-yann; Thorgeirsson, Snorri S; Hewitt, Stephen M; Ward, Jerrold M; Kimura, Shioko
2015-04-01
Mouse thyroid side population (SP) cells consist of a minor population of mouse thyroid cells that may have multipotent thyroid stem cell characteristics. However the nature of thyroid SP cells remains elusive, particularly in relation to thyroid cancer. Stanniocalcin (STC) 1 and 2 are secreted glycoproteins known to regulate serum calcium and phosphate homeostasis. In recent years, the relationship of STC1/2 expression to cancer has been described in various tissues. Microarray analysis was carried out to determine genes up- and down-regulated in thyroid SP cells as compared with non-SP cells. Among genes up-regulated, stanniocalcin 1 (STC1) was chosen for study because of its expression in various thyroid cells by Western blotting and immunohistochemistry. Gene expression analysis revealed that genes known to be highly expressed in cancer cells and/or involved in cancer invasion/metastasis were markedly up-regulated in SP cells from both intact as well as partial thyroidectomized thyroids. Among these genes, expression of STC1 was found in five human thyroid carcinoma-derived cell lines as revealed by analysis of mRNA and protein, and its expression was inversely correlated with the differentiation status of the cells. Immunohistochemical analysis demonstrated higher expression of STC1 in the thyroid tumor cell line and thyroid tumor tissues from humans and mice. These results suggest that SP cells contain a population of cells that express genes also highly expressed in cancer cells including Stc1, which warrants further study on the role of SP cells and/or STC1 expression in thyroid cancer.
Expression of Stanniocalcin 1 in Thyroid Side Population Cells and Thyroid Cancer Cells
Hayase, Suguru; Sasaki, Yoshihito; Matsubara, Tsutomu; Seo, Daekwan; Miyakoshi, Masaaki; Murata, Tsubasa; Ozaki, Takashi; Kakudo, Kennichi; Kumamoto, Kensuke; Ylaya, Kris; Cheng, Sheue-yann; Thorgeirsson, Snorri S.; Hewitt, Stephen M.; Ward, Jerrold M.
2015-01-01
Background: Mouse thyroid side population (SP) cells consist of a minor population of mouse thyroid cells that may have multipotent thyroid stem cell characteristics. However the nature of thyroid SP cells remains elusive, particularly in relation to thyroid cancer. Stanniocalcin (STC) 1 and 2 are secreted glycoproteins known to regulate serum calcium and phosphate homeostasis. In recent years, the relationship of STC1/2 expression to cancer has been described in various tissues. Method: Microarray analysis was carried out to determine genes up- and down-regulated in thyroid SP cells as compared with non-SP cells. Among genes up-regulated, stanniocalcin 1 (STC1) was chosen for study because of its expression in various thyroid cells by Western blotting and immunohistochemistry. Results: Gene expression analysis revealed that genes known to be highly expressed in cancer cells and/or involved in cancer invasion/metastasis were markedly up-regulated in SP cells from both intact as well as partial thyroidectomized thyroids. Among these genes, expression of STC1 was found in five human thyroid carcinoma–derived cell lines as revealed by analysis of mRNA and protein, and its expression was inversely correlated with the differentiation status of the cells. Immunohistochemical analysis demonstrated higher expression of STC1 in the thyroid tumor cell line and thyroid tumor tissues from humans and mice. Conclusion: These results suggest that SP cells contain a population of cells that express genes also highly expressed in cancer cells including Stc1, which warrants further study on the role of SP cells and/or STC1 expression in thyroid cancer. PMID:25647164
Neumann, Susanne; Huang, Wenwei; Titus, Steve; Krause, Gerd; Kleinau, Gunnar; Alberobello, Anna Teresa; Zheng, Wei; Southall, Noel T.; Inglese, James; Austin, Christopher P.; Celi, Francesco S.; Gavrilova, Oksana; Thomas, Craig J.; Raaka, Bruce M.; Gershengorn, Marvin C.
2009-01-01
Seven-transmembrane-spanning receptors (7TMRs) are prominent drug targets. However, small-molecule ligands for 7-transmembrane-spanning receptors for which the natural ligands are large, heterodimeric glycoprotein hormones, like thyroid-stimulating hormone (TSH; thyrotropin), have only recently been reported, and none are approved for human use. We have used quantitative high-throughput screening to identify a small-molecule TSH receptor (TSHR) agonist that was modified to produce a second agonist with increased potency. We show that these agonists are highly selective for human TSHR versus other glycoprotein hormone receptors and interact with the receptor's serpentine domain. A binding pocket within the transmembrane domain was defined by docking into a TSHR homology model and was supported by site-directed mutagenesis. In primary cultures of human thyrocytes, both TSH and the agonists increase mRNA levels for thyroglobulin, thyroperoxidase, sodium iodide symporter, and deiodinase type 2, and deiodinase type 2 enzyme activity. Moreover, oral administration of the agonist stimulated thyroid function in mice, resulting in increased serum thyroxine and thyroidal radioiodide uptake. Thus, we discovered a small molecule that activates human TSHR in vitro, is orally active in mice, and could be a lead for development of drugs to use in place of recombinant human TSH in patients with thyroid cancer. PMID:19592511
Carr, Deborah L; Smith, Ernest E; Thiyagarajah, Arunthavarani; Cromie, Meghan; Crumly, Christopher; Davis, Angela; Dong, Meijun; Garcia, Carlos; Heintzman, Lucas; Hopper, Tiffany; Kouth, Kourtney; Morris, Kimberly; Ruehlen, Amelia; Snodgrass, Phillip; Vaughn, Katelynn; Carr, James A
2018-06-15
We examined gonads and thyroid glands of Gulf killifish (Fundulus grandis) 1yr after the Deepwater Horizon oil spill. F. grandis were trapped from two impacted sites in Barataria Bay (Bayou St. Denis, Bay Jimmy) and an un-impacted site in East Texas (Sabine Pass). The greatest number of F. grandis were collected at Sabine Pass. F. grandis collected at Bayou St. Denis were smaller and had smaller Fulton condition factor scores than fish collected at Sabine Pass. Sex ratios were biased roughly 2:1 in favor of females at Sabine Pass and Bayou St. Denis. Gonad-somatic index (GSI) in males from Sabine Pass was double that of fish from Bay Jimmy while germinal epithelium thickness of the testes was 2.7 fold smaller in males from the impacted site. GSI and oocyte diameters in females from Bayou St. Denis were significantly smaller than females from Bay Jimmy or the reference site. There were no differences in thyroid follicle cell height. While total polyaromatic hydrocarbons at the impacted sites were no different from the reference site, the impacted sites did have greater concentrations of benzo[a]pyrene in sediment pore water. The finding of smaller GSI and testicular germinal epithelium in males from an impacted site suggest that exposure to a combination of oil and dispersants may adversely impact testicular function. Copyright © 2018 Elsevier Inc. All rights reserved.
2011-01-01
Background Effects of androgens on follicle maturation have been controversial for some time. Here, we review the potential of their applications in improving human ovulation induction, based on human and animal data, reported in the literature. Methods We reviewed the published literature for the years 2005-2011, using relevant key words, in PubMed, Medline and Cochrane reviews, and then performed secondary reviews of referenced articles, which previously had not been known or preceded the searched time period. A total of 217 publications were reviewed. Results Contrary to widely held opinion, recent data, mostly developed in the mouse, convincingly demonstrate essential contribution of androgens to normal follicle maturation and, therefore, female fertility. Androgens appear most engaged at preantral and antral stages, primarily affect granulosa cells, and exert effects via androgen receptors (AR) through transcriptional regulation but also in non-genomic ways, with ligand-activated AR modulating follicle stimulating hormone (FSH) activity in granulosa cells. While some androgens, like testosterone (T) and dehydroepiandrosterone (DHEA), appear effective in improving functional ovarian reserve (FOR) in women with diminished ovarian reserve (DOR), others may even exert opposite effects. Such differences in androgens may, at least partially, reflect different levels of agonism to AR. Discussion Selective androgens appear capable of improving early stages of folliculogenesis. They, therefore, may represent forerunners of a completely new class of ovulation-inducing medications, which, in contrast to gonadotropins, affect follicle maturation at much earlier stages. PMID:21849061
(−) Arctigenin and (+) Pinoresinol Are Antagonists of the Human Thyroid Hormone Receptor β
2015-01-01
Lignans are important biologically active dietary polyphenolic compounds. Consumption of foods that are rich in lignans is associated with positive health effects. Using modeling tools to probe the ligand-binding pockets of molecular receptors, we found that lignans have high docking affinity for the human thyroid hormone receptor β. Follow-up experimental results show that lignans (−) arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor β. The modeled complexes show key plausible interactions between the two ligands and important amino acid residues of the receptor. PMID:25383984
IL-1β a potential factor for discriminating between thyroid carcinoma and atrophic thyroiditis.
Kammoun-Krichen, Maha; Bougacha-Elleuch, Noura; Mnif, Mouna; Bougacha, Fadia; Charffedine, Ilhem; Rebuffat, Sandra; Rebai, Ahmed; Glasson, Emilie; Abid, Mohamed; Ayadi, Fatma; Péraldi-Roux, Sylvie; Ayadi, Hammadi
2012-01-01
Interactions between cytokines and others soluble factors (hormones, antibodies...) can play an important role in the development of thyroid pathogenesis. The purpose of the present study was to examine the possible correlation between serum cytokine concentrations, thyroid hormones (FT4 and TSH) and auto-antibodies (Tg and TPO), and their usefulness in discriminating between different thyroid conditions. In this study, we investigated serum from 115 patients affected with a variety of thyroid conditions (44 Graves' disease, 17 Hashimoto's thyroiditis, 11 atrophic thyroiditis, 28 thyroid nodular goitre and 15 papillary thyroid cancer), and 30 controls. Levels of 17 cytokines in serum samples were measured simultaneously using a multiplexed human cytokine assay. Thyroid hormones and auto-antibodies were measured using ELISA. Our study showed that IL-1β serum concentrations allow the discrimination between atrophic thyroiditis and papillary thyroid cancer groups (p = 0.027).
Effect of cell phone-like electromagnetic radiation on primary human thyroid cells.
Silva, Veronica; Hilly, Ohad; Strenov, Yulia; Tzabari, Cochava; Hauptman, Yirmi; Feinmesser, Raphael
2016-01-01
To evaluate the potential carcinogenic effects of radiofrequency energy (RFE) emitted by cell phones on human thyroid primary cells. Primary thyroid cell culture was prepared from normal thyroid tissue obtained from patients who underwent surgery at our department. Subconfluent thyroid cells were irradiated under different conditions inside a cell incubator using a device that simulates cell phone-RFE. Proliferation of control and irradiated cells was assessed by the immunohistochemical staining of antigen Kiel clone-67 (Ki-67) and tumor suppressor p53 (p53) expression. DNA ploidy and the stress biomarkers heat shock protein 70 (HSP70) and reactive oxygen species (ROS) was evaluated by fluorescence-activated cell sorting (FACS). Our cells highly expressed thyroglobulin (Tg) and sodium-iodide symporter (NIS) confirming the origin of the tissue. None of the irradiation conditions evaluated here had an effect neither on the proliferation marker Ki-67 nor on p53 expression. DNA ploidy was also not affected by RFE, as well as the expression of the biomarkers HSP70 and ROS. Our conditions of RFE exposure seem to have no potential carcinogenic effect on human thyroid cells. Moreover, common biomarkers usually associated to environmental stress also remained unchanged. We failed to find an association between cell phone-RFE and thyroid cancer. Additional studies are recommended.
Preclinical Imaging for the Study of Mouse Models of Thyroid Cancer
Greco, Adelaide; Orlandella, Francesca Maria; Iervolino, Paola Lucia Chiara; Klain, Michele; Salvatore, Giuliana
2017-01-01
Thyroid cancer, which represents the most common tumors among endocrine malignancies, comprises a wide range of neoplasms with different clinical aggressiveness. One of the most important challenges in research is to identify mouse models that most closely resemble human pathology; other goals include finding a way to detect markers of disease that common to humans and mice and to identify the most appropriate and least invasive therapeutic strategies for specific tumor types. Preclinical thyroid imaging includes a wide range of techniques that allow for morphological and functional characterization of thyroid disease as well as targeting and in most cases, this imaging allows quantitative analysis of the molecular pattern of the thyroid cancer. The aim of this review paper is to provide an overview of all of the imaging techniques used to date both for diagnosis and theranostic purposes in mouse models of thyroid cancer. PMID:29258188
Lindner, Claus; Johansson, Johannes; Weigel, Udo M.; Halperin, Irene; Hanzu, Felicia A.; Durduran, Turgut
2016-01-01
The in vivo optical and hemodynamic properties of the healthy (n = 22) and pathological (n = 2) human thyroid tissue were measured non-invasively using a custom time-resolved spectroscopy (TRS) and diffuse correlation spectroscopy (DCS) system. Medical ultrasound was used to guide the placement of the hand-held hybrid optical probe. TRS measured the absorption and reduced scattering coefficients (μa, μs′) at three wavelengths (690, 785 and 830 nm) to derive total hemoglobin concentration (THC) and oxygen saturation (StO2). DCS measured the microvascular blood flow index (BFI). Their dependencies on physiological and clinical parameters and positions along the thyroid were investigated and compared to the surrounding sternocleidomastoid muscle. The THC in the thyroid ranged from 131.9 μM to 144.8 μM, showing a 25–44% increase compared to the surrounding sternocleidomastoid muscle tissue. The blood flow was significantly higher in the thyroid (BFIthyroid = 16.0 × 10-9 cm2/s) compared to the muscle (BFImuscle = 7.8 × 10-9 cm2/s), while StO2 showed a small (StO2, muscle = 63.8% to StO2, thyroid = 68.4%), yet significant difference. Two case studies with thyroid nodules underwent the same measurement protocol prior to thyroidectomy. Their THC and BFI reached values around 226.5 μM and 62.8 × 10-9 cm2/s respectively showing a clear contrast to the nodule-free thyroid tissue as well as the general population. The initial characterization of the healthy and pathologic human thyroid tissue lays the ground work for the future investigation on the use of diffuse optics in thyroid cancer screening. PMID:26815533
Oktay, Kutluk; Bedoschi, Giuliano; Pacheco, Fernanda; Turan, Volkan; Emirdar, Volkan
2016-01-01
Ovarian tissue cryopreservation is an experimental fertility preservation method and the transplantation techniques are still evolving. We attempted to improve the technique with the utility of a human decellularized extracellular tissue matrix (ECTM) scaffold, robot-assisted minimally invasive surgery, and perioperative pharmacological support. We prospectively studied 2 subjects with hemophagocytic lymphohistiocytosis (patient A) and non-Hodgkin lymphoma (patient B) who underwent ovarian tissue cryopreservation at the age of 23 years, before receiving preconditioning chemotherapy for hematopoietic stem cell transplantation. Both experienced ovarian failure postchemotherapy and we transplanted ovarian cortical tissues to the contralateral menopausal ovary 7 and 12 years later, using a human ECTM scaffold and robotic assistance. The ECTM scaffold tissue compatibility was shown in preclinical studies. Patients also received estrogen supplementation and baby aspirin preoperatively to aid in the revascularization process. Ovarian follicle development was observed approximately 10 (patient A) and 8 (patient B) weeks after ovarian tissue transplantation. Following 8 and 7 cycles of in vitro fertilization, 9 and 10 day-3 embryos were cryopreserved (patients A and B, respectively). While the baseline follicle-stimulating hormone (range 3.6-15.4 mIU/mL) levels near normalized by 7 months and remained steady postovarian transplantation in patient A, patient B showed improved but elevated follicle-stimulating hormone levels throughout (range 21-31 mIU/mL). Highest follicle yield was achieved 14 (8 follicles; patient A) and 11 (6 follicles; patient B) months postintervention. Patient A experienced a chemical pregnancy after the third frozen embryo transfer attempt. She then conceived following her first fresh in vitro fertilization embryo transfer and the pregnancy is currently ongoing. Patient B conceived after the first frozen embryo transfer attempt and delivered a healthy girl at term. We report the first pregnancies after the minimally invasive transplantation of previously cryopreserved ovarian tissue with an ECTM scaffold. This approach seems to be associated with steady ovarian function after a follow-up of up to 2 years. Copyright © 2016 Elsevier Inc. All rights reserved.
Human a-L-fucosidase-1 attenuates the invasive properties of thyroid cancer.
Vecchio, Giancarlo; Parascandolo, Alessia; Allocca, Chiara; Ugolini, Clara; Basolo, Fulvio; Moracci, Marco; Strazzulli, Andrea; Cobucci-Ponzano, Beatrice; Laukkanen, Mikko O; Castellone, Maria Domenica; Tsuchida, Nobuo
2017-04-18
Glycans containing α-L-fucose participate in diverse interactions between cells and extracellular matrix. High glycan expression on cell surface is often associated with neoplastic progression. The lysosomal exoenzyme, α-L-fucosidase-1 (FUCA-1) removes fucose residues from glycans. The FUCA-1 gene is down-regulated in highly aggressive and metastatic human tumors. However, the role of FUCA-1 in tumor progression remains unclear. It is speculated that its inactivation perturbs glycosylation of proteins involved in cell adhesion and promotes cancer. FUCA-1 expression of various thyroid normal and cancer tissues assayed by immunohistochemical (IHC) staining was high in normal thyroids and papillary thyroid carcinomas (PTC), whereas it progressively decreased in poorly differentiated, metastatic and anaplastic thyroid carcinomas (ATC). FUCA-1 mRNA expression from tissue samples and cell lines and protein expression levels and enzyme activity in thyroid cancer cell lines paralleled those of IHC staining. Furthermore, ATC-derived 8505C cells adhesion to human E-selectin and HUVEC cells was inhibited by bovine α-L-fucosidase or Lewis antigens, thus pointing to an essential role of fucose residues in the adhesive phenotype of this cancer cell line. Finally, 8505C cells transfected with a FUCA-1 containing plasmid displayed a less invasive phenotype versus the parental 8505C. These results demonstrate that FUCA-1 is down-regulated in ATC compared to PTC and normal thyroid tissues and cell lines. As shown for other human cancers, the down-regulation of FUCA-1 correlates with increased aggressiveness of the cancer type. This is the first report indicating that the down-regulation of FUCA-1 is related to the increased aggressiveness of thyroid cancer.
Survival and growth in a woman with untreated hypothalamic panhypopituitarism of 21 years' duration.
Tolis, G; Cruess, S; Goldstein, M; Friesen, H G; Rochefort, J G
1974-09-21
A 29-year-old woman with evidence of a craniopharyngioma and documented panhypopituitarism is described. Clinical and laboratory evaluation revealed deficiencies of follicle-stimulating hormone, luteinizing hormone, thyroid-stimulating hormone, growth hormone, prolactin, adrenocorticotropic hormone and antidiuretic hormone. Prompt release of several pituitary hormones was noticed after administration of the hypothalamic releasing hormones FSH/LH-RF and thyrotropin-releasing hormone, whereas insulin-induced hypoglycemia, levodopa, chlorpromazine and clomiphene citrate, all of which act at the level of the hypothalamus, did not alter basal pituitary secretion. The patient's height of 60 inches, despite panhypopituitarism, and the interpretation of the above data are discussed in the light of current concepts regarding the dynamics of the hypothalamic-hypophyseal system.
Survival and growth in a woman with untreated hypothalamic panhypopituitarism of 21 years' duration
Tolis, G.; Cruess, S.; Goldstein, M.; Friesen, H. G.; Rochefort, J. G.
1974-01-01
A 29-year-old woman with evidence of a craniopharyngioma and documented panhypopituitarism is described. Clinical and laboratory evaluation revealed deficiencies of follicle-stimulating hormone, luteinizing hormone, thyroid-stimulating hormone, growth hormone, prolactin, adrenocorticotropic hormone and antidiuretic hormone. Prompt release of several pituitary hormones was noticed after administration of the hypothalamic releasing hormones FSH/LH-RF and thyrotropin-releasing hormone, whereas insulin-induced hypoglycemia, levodopa, chlorpromazine and clomiphene citrate, all of which act at the level of the hypothalamus, did not alter basal pituitary secretion. The patient's height of 60 inches, despite panhypopituitarism, and the interpretation of the above data are discussed in the light of current concepts regarding the dynamics of the hypothalamic-hypophyseal system. ImagesFIG. 1 PMID:4370418
Risks and safety of combination therapy for hypothyroidism.
Jonklaas, Jacqueline
2016-08-01
Hypothyroidism is currently a condition that can be treated, but not cured. Although levothyroxine reverses stigmata of hypothyroidism in most individuals, some patients feel dissatisfied with 'monotherapy', and this has stimulated interest in 'combination therapy' with both levothyroxine and liothyronine. A search of PubMed was conducted using terms including hypothyroidism, treatment, benefits, risks, and safety. Based on the articles identified, the body of evidence regarding the efficacy of traditional levothyroxine is reviewed. Concerns with levothyroxine therapy including impaired quality of life in treated patients, thyroxine-predominant hormone ratios, and inadvertent iatrogenic thyroid disease are discussed. The trials of combination therapy performed since 1999 were reviewed. The heterogeneity of these trials, both in terms of design and results, is discussed. The potential for new trials to determine whether combination therapy can reverse the dissatisfaction associated with monotherapy, while avoiding non-physiologic hormone ratios, inadvertent thyrotoxicosis, and unacceptable side effects is discussed. Expert commentary: Research regarding which therapy fully reverses hypothyroidism at a tissue and cellular level is ongoing. The field would be advanced by the development of an extended release preparation of liothyronine. In the future regeneration of functional thyroid follicles from stem cells may offer hope for curing hypothyroidism.
Development of the thyroid gland.
Nilsson, Mikael; Fagman, Henrik
2017-06-15
Thyroid hormones are crucial for organismal development and homeostasis. In humans, untreated congenital hypothyroidism due to thyroid agenesis inevitably leads to cretinism, which comprises irreversible brain dysfunction and dwarfism. Elucidating how the thyroid gland - the only source of thyroid hormones in the body - develops is thus key for understanding and treating thyroid dysgenesis, and for generating thyroid cells in vitro that might be used for cell-based therapies. Here, we review the principal mechanisms involved in thyroid organogenesis and functional differentiation, highlighting how the thyroid forerunner evolved from the endostyle in protochordates to the endocrine gland found in vertebrates. New findings on the specification and fate decisions of thyroid progenitors, and the morphogenesis of precursor cells into hormone-producing follicular units, are also discussed. © 2017. Published by The Company of Biologists Ltd.
Rodríguez-Castelán, J; Méndez-Tepepa, M; Carrillo-Portillo, Y; Anaya-Hernández, A; Rodríguez-Antolín, J; Zambrano, E; Castelán, F; Cuevas-Romero, E
2017-01-01
Ovarian failure is related to dyslipidemias and inflammation, as well as to hypertrophy and dysfunction of the visceral adipose tissue (VAT). Although hypothyroidism has been associated with obesity, dyslipidemias, and inflammation in humans and animals, its influence on the characteristics of ovarian follicles in adulthood is scarcely known. Control and hypothyroid rabbits were used to analyze the ovarian follicles, expression of aromatase in the ovary, serum concentration of lipids, leptin, and uric acid, size of adipocytes, and infiltration of macrophages in the periovarian VAT. Hypothyroidism did not affect the percentage of functional or atretic follicles. However, it reduced the size of primary, secondary, and tertiary follicles considered as large and the expression of aromatase in the ovary. This effect was associated with high serum concentrations of total cholesterol and low-density lipoprotein cholesterol (LDL-C). In addition, hypothyroidism induced hypertrophy of adipocytes and a major infiltration of CD68+ macrophages into the periovarian VAT. Our results suggest that the reduced size of ovarian follicles promoted by hypothyroidism could be associated with dyslipidemias, hypertrophy, and inflammation of the periovarian VAT. Present findings may be useful to understand the influence of hypothyroidism in the ovary function in adulthood.
Rodríguez-Castelán, J.; Méndez-Tepepa, M.; Carrillo-Portillo, Y.; Anaya-Hernández, A.; Zambrano, E.
2017-01-01
Ovarian failure is related to dyslipidemias and inflammation, as well as to hypertrophy and dysfunction of the visceral adipose tissue (VAT). Although hypothyroidism has been associated with obesity, dyslipidemias, and inflammation in humans and animals, its influence on the characteristics of ovarian follicles in adulthood is scarcely known. Control and hypothyroid rabbits were used to analyze the ovarian follicles, expression of aromatase in the ovary, serum concentration of lipids, leptin, and uric acid, size of adipocytes, and infiltration of macrophages in the periovarian VAT. Hypothyroidism did not affect the percentage of functional or atretic follicles. However, it reduced the size of primary, secondary, and tertiary follicles considered as large and the expression of aromatase in the ovary. This effect was associated with high serum concentrations of total cholesterol and low-density lipoprotein cholesterol (LDL-C). In addition, hypothyroidism induced hypertrophy of adipocytes and a major infiltration of CD68+ macrophages into the periovarian VAT. Our results suggest that the reduced size of ovarian follicles promoted by hypothyroidism could be associated with dyslipidemias, hypertrophy, and inflammation of the periovarian VAT. Present findings may be useful to understand the influence of hypothyroidism in the ovary function in adulthood. PMID:28133606
Kobayashi, Yasuhiro; Jimenez-Krassel, Fermin; Ireland, James J; Smith, George W
2006-01-01
The ability of ovarian follicles to produce large amounts of estradiol is a hallmark of follicle health status. Estradiol producing capacity is lost in ovarian follicles before morphological signs of atresia. A prominent wave like pattern of growth of antral follicles is characteristic of monotocous species such as cattle, horses and humans. While our knowledge of the role of pituitary gonadotropins in support of antral follicle growth and development is well established, the intrinsic factors that suppress estradiol production and may help promote atresia during follicular waves are not well understood. Numerous growth factors and cytokines have been reported to suppress granulosa cell estradiol production in vitro, but the association of expression of many such factors in vivo with follicle health status and their physiological significance are not clear. The purpose of this review is to discuss the in vivo and in vitro evidence supporting a local physiological role for cocaine and amphetamine regulated transcript, inhibins and low molecular weight insulin like growth factor binding proteins in negative regulation of granulosa cell estradiol production, with emphasis on evidence from the bovine model system. PMID:16611367
Saenko, Vladimir; Suzuki, Masatoshi; Matsuse, Michiko; Ohtsuru, Akira; Kumagai, Atsushi; Uga, Tatsuya; Yano, Hiroshi; Nagayama, Yuji; Yamashita, Shunichi
2011-01-01
While identification and isolation of adult stem cells have potentially important implications, recent reports regarding dedifferentiation/reprogramming from differentiated cells have provided another clue to gain insight into source of tissue stem/progenitor cells. In this study, we developed a novel culture system to obtain dedifferentiated progenitor cells from normal human thyroid tissues. After enzymatic digestion, primary thyrocytes, expressing thyroglobulin, vimentin and cytokeratin-18, were cultured in a serum-free medium called SAGM. Although the vast majority of cells died, a small proportion (∼0.5%) survived and proliferated. During initial cell expansion, thyroglobulin/cytokeratin-18 expression was gradually declined in the proliferating cells. Moreover, sorted cells expressing thyroid peroxidase gave rise to proliferating clones in SAGM. These data suggest that those cells are derived from thyroid follicular cells or at least thyroid-committed cells. The SAGM-grown cells did not express any thyroid-specific genes. However, after four-week incubation with FBS and TSH, cytokeratin-18, thyroglobulin, TSH receptor, PAX8 and TTF1 expressions re-emerged. Moreover, surprisingly, the cells were capable of differentiating into neuronal or adipogenic lineage depending on differentiating conditions. In summary, we have developed a novel system to generate multilineage progenitor cells from normal human thyroid tissues. This seems to be achieved by dedifferentiation of thyroid follicular cells. The presently described culture system may be useful for regenerative medicine, but the primary importance will be as a tool to elucidate the mechanisms of thyroid diseases. PMID:21556376
Etiopathologic findings of canine hypothyroidism.
Graham, Peter A; Refsal, Kent R; Nachreiner, Raymond F
2007-07-01
The causes of canine hypothyroidism are varied, but most cases result from irreversible acquired thyroid pathologic changes and only a small proportion arise from congenital anomalies of the thyroid gland or pituitary. Of primary thyroid failure, at least half is the result of immune-mediated thyroiditis. Recent research has focused on the genetics and immunology of canine thyroid disease, adding to what is known from experimental and human studies. Epidemiologic and diagnostic laboratory studies continue to provide information on contributing factors and raise questions for future research directions. Serum antibodies against thyroid components are common in thyroid pathologic conditions and dysfunction, and understanding their properties and frequency is important in the interpretation of thyroid diagnostic test results.
The role of hair follicles in the percutaneous absorption of caffeine.
Otberg, Nina; Patzelt, Alexa; Rasulev, Utkur; Hagemeister, Timo; Linscheid, Michael; Sinkgraven, Ronald; Sterry, Wolfram; Lademann, Jürgen
2008-04-01
* In recent years, it has been suggested that hair follicles represent important shunt routes into the skin for drugs and chemicals [1-3]. * In vitro studies have shown the importance of skin appendages for skin penetration by hydrophilic compounds [4]. Investigation of follicular penetration in vivo has been difficult due to the absence of appropriate analytical methods or suitable animal model systems. * Recently, a new method was described that quantifies follicular penetration in vivo by using selective closure of hair follicles [5]. * Caffeine is frequently used in skin penetration experiments as a model for highly water-soluble compounds. Occlusion [6] and skin thickness [7] seem to have little influence on the penetration of caffeine. However, percutaneous absorption rates for caffeine exhibit regional skin differences in humans in vivo[1]. * The results of the present study demonstrate that a fast drug delivery of caffeine occurs through shunt routes. Therefore, hair follicles are considerable weak spots in our protective sheath against penetration into the body by hydrophilic substances. * We showed that there is a quantitative distinction between follicular penetration and interfollicular diffusion of caffeine in vivo. * These findings are of importance for the development and optimization of topically applied drugs and cosmetics. In addition, such properties must be considered in the development of skin protection measures. The skin and its appendages are our protective shield against the environment and are necessary for the maintenance of homeostasis. Hypotheses concerning the penetration of substances into the skin have assumed diffusion through the lipid domains of the stratum corneum. It is believed that while hair follicles represent a weakness in the shield, they play a subordinate role in the percutaneous penetration processes. Previous investigation of follicular penetration has mostly addressed methodical and technical problems. Our study utilized a selective closure technique of hair follicle orifices in vivo, for the comparison of interfollicular and follicular absorption rates of caffeine in humans. Every single hair follicle within a delimited area of skin was blocked with a microdrop of a special varnish-wax-mixture in vivo. Caffeine in solution was topically applied and transcutaneous absorption into the blood was measured by a new surface ionization mass spectrometry (SI/MS) technique, which enabled a clear distinction to be made between interfollicular and follicular penetration of a topically applied substance. Caffeine (3.75 ng ml(-1)) was detected in blood samples, 5 min after topical application, when the follicles remained open. When the follicles were blocked, caffeine was detectable after 20 min (2.45 ng ml(-1)). Highest values (11.75 ng caffeine ml(-1)) were found 1 h after application when the follicles were open. Our findings demonstrate that hair follicles are considerable weak spots in our protective sheath against certain hydrophilic drugs and may allow a fast delivery of topically applied substances.
Topical application of nanoparticles: prospects and safety aspects (Conference Presentation)
NASA Astrophysics Data System (ADS)
Lademann, Jürgen M.; Richter, Heike; Jung, Sora; Meinke, Martina C.; Rühl, Eckart; Alexiev, Ulrike; Calderon, Marcelo; Patzelt, Alexa
2016-03-01
The requirements on nanoparticles for cosmetic and medical applications are very different. While nanoparticles applied in sunscreens shall remain on the skin surface or in the upper cell layers of the stratum corneum, nanoparticles for medical drug delivery shall penetrate through the skin barrier to the target structures in the living cells. Under the Collaborative Research Project 1112 various methods are used at the CCP to investigate the cutaneous penetration and storage of nanoparticles, hair follicles being in the focus of attention. Human hair follicles are ideal target structures for drug delivery. Hosting both the stem and dendritic cells, they are surrounded by a dense network of blood vessels. Investigating nanoparticles of different size and materials, particles of approximately 600 nm in diameter were found to penetrate best into the hair follicles, where they can be stored for maximally 10 days. Their retention time in the hair follicles exceeds that in the stratum corneum by almost one order of magnitude. Particles penetrate more efficiently into the hair follicles than non-particulate substances. For particles from 40 nm-1 µm in diameter, however, no follicular penetration has been detectable if the skin barrier was intact. This is plausible as the hair follicle has its own barrier. It will be demonstrated that the best way for drug delivery is the application of drug-loaded particulate carrier systems. In the hair follicles the particles may either dissolve and release the drug, or an external signal must trigger the drug release from the particle.
Thyroid Dysfunction Associated With Follicular Cell Steatosis in Obese Male Mice and Humans
Lee, Min Hee; Lee, Jung Uee; Joung, Kyong Hye; Kim, Yong Kyung; Ryu, Min Jeong; Lee, Seong Eun; Kim, Soung Jung; Chung, Hyo Kyun; Choi, Min Jeong; Chang, Joon Young; Lee, Sang-Hee; Kweon, Gi Ryang; Kim, Hyun Jin; Kim, Koon Soon; Kim, Seong-Min; Jo, Young Suk; Park, Jeongwon; Cheng, Sheue-Yann
2015-01-01
Adult thyroid dysfunction is a common endocrine disorder associated with an increased risk of cardiovascular disease and mortality. A recent epidemiologic study revealed a link between obesity and increased prevalence of hypothyroidism. It is conceivable that excessive adiposity in obesity might lead to expansion of the interfollicular adipose (IFA) depot or steatosis in thyroid follicular cells (thyroid steatosis, TS). In this study, we investigated the morphological and functional changes in thyroid glands of obese humans and animal models, diet-induced obese (DIO), ob/ob, and db/db mice. Expanded IFA depot and TS were observed in obese patients. Furthermore, DIO mice showed increased expression of lipogenesis-regulation genes, such as sterol regulatory element binding protein 1 (SREBP-1), peroxisome proliferator-activated receptor γ (PPARγ), acetyl coenzyme A carboxylase (ACC), and fatty acid synthetase (FASN) in the thyroid gland. Steatosis and ultrastructural changes, including distension of the endoplasmic reticulum (ER) and mitochondrial distortion in thyroid follicular cells, were uniformly observed in DIO mice and genetically obese mouse models, ob/ob and db/db mice. Obese mice displayed a variable degree of primary thyroid hypofunction, which was not corrected by PPARγ agonist administration. We propose that systemically increased adiposity is associated with characteristic IFA depots and TS and may cause or influence the development of primary thyroid failure. PMID:25555091
Identification of thyroid tumor cell vulnerabilities through a siRNA-based functional screening.
Anania, Maria; Gasparri, Fabio; Cetti, Elena; Fraietta, Ivan; Todoerti, Katia; Miranda, Claudia; Mazzoni, Mara; Re, Claudia; Colombo, Riccardo; Ukmar, Giorgio; Camisasca, Stefano; Pagliardini, Sonia; Pierotti, Marco; Neri, Antonino; Galvani, Arturo; Greco, Angela
2015-10-27
The incidence of thyroid carcinoma is rapidly increasing. Although generally associated with good prognosis, a fraction of thyroid tumors are not cured by standard therapy and progress to aggressive forms for which no effective treatments are currently available. In order to identify novel therapeutic targets for thyroid carcinoma, we focused on the discovery of genes essential for sustaining the oncogenic phenotype of thyroid tumor cells, but not required to the same degree for the viability of normal cells (non-oncogene addiction paradigm). We screened a siRNA oligonucleotide library targeting the human druggable genome in thyroid cancer BCPAP cell line in comparison with immortalized normal human thyrocytes (Nthy-ori 3-1). We identified a panel of hit genes whose silencing interferes with the growth of tumor cells, while sparing that of normal ones. Further analysis of three selected hit genes, namely Cyclin D1, MASTL and COPZ1, showed that they represent common vulnerabilities for thyroid tumor cells, as their inhibition reduced the viability of several thyroid tumor cell lines, regardless the histotype or oncogenic lesion. This work identified non-oncogenes essential for sustaining the phenotype of thyroid tumor cells, but not of normal cells, thus suggesting that they might represent promising targets for new therapeutic strategies.
Paradigm Shift in Thyroid Hormone Mechanism of Action | Center for Cancer Research
Thyroid hormone (TH) is one of the primary endocrine regulators of human metabolism and homeostasis. Acting through three forms of the thyroid hormone receptor (THR; alpha-1, beta-1, and beta-2), TH regulates target gene expression in nearly every cell in the body, modulating fundamental processes, such as basal metabolic rate, long bone growth, and neural maturation. TH is also essential for proper development and differentiation of all cells of the human body.
Nichols-Burns, Stephanie M; Lotz, Laura; Schneider, Heike; Adamek, Edyta; Daniel, Christoph; Stief, Andrea; Grigo, Christina; Klump, Dorothee; Hoffmann, Inge; Beckmann, Matthias W; Dittrich, Ralf
2014-11-01
Ovarian tissue preservation and retransplantation is a promising strategy to restore fertility in cancer survivors. Ischaemia accompanying ovarian tissue grafting, however, can lead to significant follicle loss. Transplantation of the whole ovary by vascular anastomosis has been considered as an alternative to prevent widespread ischaemic damage. In this study, the feasibility and function of transplanting whole ovary with intact vasculature were evaluated, with the goal of developing a xenograft model for studies using donated human ovaries. Whole-swine ovaries with vascular pedicles were perfused and transplanted as intact ovaries by anastomosis into irradiated ovariectomized nude rats (n = 10). The observation period was between 1 and 4 weeks. Fresh swine ovaries served as controls (n = 10). Ovarian stroma and follicle populations were assessed through histological examination in both transplanted and control ovaries. Most of the transplanted whole ovaries (n = 6) maintained stromal quality and all preantral follicle classes were represented, although follicle numbers decreased compared with fresh control. Four transplanted ovaries were fibrotic after 1-4 weeks within the nude rat. Our results demonstrate transplantation of whole-pig ovary into nude rats is possible and support development of this xenograft model system for human studies. Copyright © 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Li, Jinze; Morinello, Eric; Larsen, Thomas; Frost, Denzil; Caro, Ivor; Gould, Stephen; Wong, Lisa; Hendricks, Angela; Dybdal, Noel; Dambach, Donna; Schutten, Melissa
2018-02-01
Vismodegib (also known as GDC-0449) is a novel small molecule inhibitor of the Hedgehog (Hh) signaling pathway currently approved for the treatment of metastatic or locally advanced basal cell carcinoma (BCC) in humans. Its tumorigenic potential was assessed in dedicated carcinogenicity studies in rasH2 transgenic (Tg.rasH2) mice and Sprague Dawley (SD) rats. Tumorigenicity potential of vismodegib was identified in rats only and was limited to benign hair follicle tumors, including pilomatricomas and keratoacanthomas at exposures of ≥0.1-fold and ≥0.6-fold, respectively, of the steady-state exposure (AUC 0-24h ) of the recommended human dose. No malignant tumors were identified in either species. Overall, the totality of pharmacology and nonclinical safety data (lack of genotoxicity, in vitro secondary pharmacological binding, and immunoregulatory effects, and limited effects on the endocrine system) suggests that the development of the benign hair follicle tumors may be related to pharmacologically-mediated disruption of hair follicle morphogenesis, although the exact mechanism of tumorigenesis is unclear. Hair follicle tumors have not been reported in vismodegib-treated patients. The relevance of this finding in rats to patients is uncertain. Copyright © 2018 Elsevier Inc. All rights reserved.
Hair-cycle dependent differential expression of ADAM 10 and ADAM 12
Cho, Baik-Kee; Schramme, Anja; Gutwein, Paul; Tilgen, Wolfgang; Reichrath, Jörg
2009-01-01
Background ADAM proteases play important roles in processes of development and differentiation. However, no report has been found in the literature addressing the expression and function of ADAM proteases during hair cycling. Results Cytoplasmic expression pattern of ADAM 10, 12 was similar between normal epidermis and hair infundibulum. In addition, cytoplasmic expression of ADAM 10 was observed in the hair bulb keratinocytes and fibroblasts of dermal papilla in anagen I–III hair follicles. In contrast, decreased ADAM 10 expression was observed in the hair matrix keratinocytes as compared to the hair bulb keratinocytes in anagen I–III hair follicles. Interestingly, ADAM 10 immunoreactivity was expressed weakly in the lower portion of outer root sheath (ORS) of anagen VI hair follicles, and strong ADAM 10 expression was detected in the ORS of catagen and telogen hair follicles. By contrast, ADAM 12 expression was not detected in the hair bulb keratinocytes of anagen I–III hair follicles. ADAM 12 immunoreactivity firstly appeared in the inner root sheath ( IRS ) of anagen IV—V hair follicles and was down-regulated in the IRS and hair cortex and medulla of catagen hair follicles, Strong ADAM 12 immunoreactivity was observed in the ORS of catagen and telogen hair follicles. Material and methods Samples of normal human skin (n = 30) were used. Immunohistochemical analysis was performed using ADAM 10, 12 specific polyclonal antibodies and a sensitive streptavidin-peroxidase technique. Conclusion Our study demonstrates a comparable staining pattern of decreased ADAM 10 immunoreactivity in hair matrix keratinocytes and the basal cell layer of normal epidermis and hair infundibulum. Expression of ADAM 10 in dermal papilla cells may imply a role in the induction and development of anagen hair follicles. In addition, expression of ADAM 10 in the ORS and hair bulb assume the involvment of ADAM 10 in the downward migration of anagen hair follicles. Furthermore ADAM 12 expression in the IRS may indicate a role in the differentiation of anagen hair follicles. Downregulation of ADAM 12 upon the onset of catagen hair stage suggests that ADAM 12 may play an important role of ADAM 12 in the apoptosis of hair follicle keratinocytes. In summary our findings suggest that ADAM 10 and 12 may be of importance for the regulation of hair cycling. PMID:20046589
Seto, P; Hirayu, H; Magnusson, R P; Gestautas, J; Portmann, L; DeGroot, L J; Rapoport, B
1987-01-01
The thyroid microsomal antigen (MSA) in autoimmune thyroid disease is a protein of approximately 107 kD. We screened a human thyroid cDNA library constructed in the expression vector lambda gt11 with anti-107-kD monoclonal antibodies. Of five clones obtained, the recombinant beta-galactosidase fusion protein from one clone (PM-5) was confirmed to react with the monoclonal antiserum. The complementary DNA (cDNA) insert from PM-5 (0.8 kb) was used as a probe on Northern blot analysis to estimate the size of the mRNA coding for the MSA. The 2.9-kb messenger RNA (mRNA) species observed was the same size as that coding for human thyroid peroxidase (TPO). The probe did not bind to human liver mRNA, indicating the thyroid-specific nature of the PM-5-related mRNA. The nucleotide sequence of PM-5 (842 bp) was determined and consisted of a single open reading frame. Comparison of the nucleotide sequence of PM-5 with that presently available for pig TPO indicates 84% homology. In conclusion, a cDNA clone representing part of the microsomal antigen has been isolated. Sequence homology with porcine TPO, as well as identity in the size of the mRNA species for both the microsomal antigen and TPO, indicate that the microsomal antigen is, at least in part, TPO. Images PMID:3654979
Ha, Tae Kwun; Jung, Inae; Kim, Mi Eun; Bae, Sung Kwon; Lee, Jun Sik
2017-07-01
Thyroid cancer is the most common endocrine malignancy and can range in severity from relatively slow-growing occult differentiated thyroid cancer to uniformly aggressive and fatal anaplastic thyroid cancer. A subset of patients with papillary thyroid cancer present with aggressive disease that is refractory to conventional treatment. Myricetin is a flavonol compound found in a variety of berries as well as walnuts and herbs. Previous studies have demonstrated that myricetin exhibits anti-cancer activity against several tumor types. However, an anti-cancer effect of myricetin against human papillary thyroid cancer (HPTC) cells has not been established. The present investigation was undertaken to gain insights into the molecular mechanism of the anti-cancer activity of myricetin against HPTC cells. We examined the cytotoxicity, DNA damaging, and cell cycle arresting activities of myricetin using SNU-790 HPTC cells. We found that myricetin exhibited cytotoxicity and induced DNA condensation in SNU-790 HPTC cells in a dose-dependent manner. Moreover, myricetin up-regulated the activation of caspase cascades and the Bax:Bcl-2 expression ratio. In addition, myricetin induced the release of apoptosis-inducing factor (AIF) and altered the mitochondrial membrane potential. Our results suggest that myricetin induces the death of SNU-790 HPTC cells and thus may prove useful in the development of therapeutic agents for human thyroid cancers. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Nakamura, Motonobu; Schneider, Marlon R; Schmidt-Ullrich, Ruth; Paus, Ralf
2013-01-01
Human hair disorders comprise a number of different types of alopecia, atrichia, hypotrichosis, distinct hair shaft disorders as well as hirsutism and hypertrichosis. Their causes vary from genodermatoses (e.g. hypotrichoses) via immunological disorders (e.g. alopecia areata, autoimmune cicatrical alopecias) to hormone-dependent abnormalities (e.g. androgenetic alopecia). A large number of spontaneous mouse mutants and genetically engineered mice develop abnormalities in hair follicle morphogenesis, cycling, and/or hair shaft formation, whose analysis has proven invaluable to define the molecular regulation of hair growth, ranging from hair follicle development, and cycling to hair shaft formation and stem cell biology. Also, the accumulating reports on hair phenotypes of mouse strains provide important pointers to better understand the molecular mechanisms underlying human hair growth disorders. Since numerous new mouse mutants with a hair phenotype have been reported since the publication of our earlier review on this matter a decade ago, we present here an updated, tabulated mini-review. The updated annotated tables list a wide selection of mouse mutants with hair growth abnormalities, classified into four categories: Mutations that affect hair follicle (1) morphogenesis, (2) cycling, (3) structure, and (4) mutations that induce extrafollicular events (for example immune system defects) resulting in secondary hair growth abnormalities. This synthesis is intended to provide a useful source of reference when studying the molecular controls of hair follicle growth and differentiation, and whenever the hair phenotypes of a newly generated mouse mutant need to be compared with existing ones. Copyright © 2012 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Oktay, Kutluk
2011-01-01
Ovarian transplantation is one of the key approaches to restoring fertility in women who became menopausal as a result of cancer treatments. A major limitation of human ovarian transplants is massive follicular loss during revascularization. Here we investigated whether sphingosine-1-phosphate or its receptor agonists could enhance neoangiogenesis and follicle survival in ovarian transplants in a xenograft model. Human ovarian tissue xenografts in severe-combined-immunodeficient mice were treated with sphingosine-1-phosphate, its analogs, or vehicle for 1–10 days. We found that sphingosine-1-phosphate treatment increased vascular density in ovarian transplants significantly whereas FTY720 and SEW2871 had the opposite effect. In addition, sphingosine-1-phosphate accelerated the angiogenic process compared to vehicle-treated controls. Furthermore, sphingosine-1-phosphate treatment was associated with a significant proliferation of ovarian stromal cell as well as reduced necrosis and tissue hypoxia compared to the vehicle-treated controls. This resulted in a significantly lower percentage of apoptotic follicles in sphingosine-1-phosphate-treated transplants. We conclude that while sphingosine-1-phosphate promotes neoangiogenesis in ovarian transplants and reduces ischemic reperfusion injury, sphingosine-1-phosphate receptor agonists appear to functionally antagonize this process. Sphingosine-1-phosphate holds great promise to clinically enhance the survival and longevity of human autologous ovarian transplants. PMID:21559342
Inoue, Keita; Aoi, Noriyuki; Yamauchi, Yuji; Sato, Takahiro; Suga, Hirotaka; Eto, Hitomi; Kato, Harunosuke; Tabata, Yasuhiko; Yoshimura, Kotaro
2009-01-01
Dermal papilla cells (DPCs) in the mammalian hair follicle have been shown to develop hair follicles through epithelial-mesenchymal interactions. A cell therapy to regenerate human hair is theoretically possible by expanding autologous human DPCs (hDPCs) and transplanting them into bald skin, though much remains to be overcome before clinical success. In this study, we compared gene signatures of hDPCs at different passages and human dermal fibroblasts, and found transforming growth factor (TGF)-beta(2) to be highly expressed in cultured hDPCs. Keratinocyte conditioned medium, which is known to help preserve the hair-inducing capacity of hDPCs, up-regulated TGF-beta(2) expression of hDPCs and also enhanced their alkaline phosphatase (ALP) activity, a known index for hair-inductive capacity. Through screening of components secreted from keratinocytes, the vitamin D(3) analogue was found to promote TGF-beta(2) expression and ALP activity of hDPCs. In animal hair folliculogenesis models using rat epidermis and expanded hDPCs, inhibition of TGF-beta(2) signalling at the ligand or receptor level significantly impaired hair folliculogenesis and maturation. These results suggest an important role for TGF-beta(2) in hair follicle morphogenesis and provide insights into the establishment of future cell therapies for hair regrowth by transplanting expanded DPCs.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-08
... Institute of Child Health and Human Development Special Emphasis Panel; A Low Molecular Weight Thyroid- Stimulating Hormone Receptor Agonist for Thyroid Cancer (SBIR Contract) Date: March 28, 2012. Time: 3 p.m. to...
Human herpes simplex viruses in benign and malignant thyroid tumours.
Jensen, Kirk; Patel, Aneeta; Larin, Alexander; Hoperia, Victoria; Saji, Motoyasu; Bauer, Andrew; Yim, Kevin; Hemming, Val; Vasko, Vasyl
2010-06-01
To test the hypothesis that herpes viruses may have a role in thyroid neoplasia, we analysed thyroid tissues from patients with benign (44) and malignant (65) lesions for HSV1 and HSV2 DNA. Confirmatory studies included direct sequencing, analysis of viral gene expression, and activation of viral-inducible signalling pathways. Expression of viral entry receptor nectin-1 was examined in human samples and in cancer cell lines. In vitro experiments were performed to explore the molecular mechanisms underlying thyroid cancer cell susceptibility to HSV. HSV DNA was detected in 43/109 (39.4%) examined samples. HSV capsid protein expression correlated with HSV DNA status. HSV-positive tumours were characterized by activation of virus-inducible signalling such as interferon-beta expression and nuclear NFkappaB expression. Lymphocyte infiltration and oncocytic cellular features were common in HSV-positive tumours. HSV1 was detected with the same frequency in benign and malignant thyroid tumours. HSV2 was significantly associated with papillary thyroid cancer and the presence of lymph node metastases. The expression of HSV entry receptor nectin-1 was increased in thyroid tumours compared to normal thyroid tissue and further increased in papillary thyroid cancer. Nectin-1 expression was detected in all examined thyroid cancer cell lines. Nectin-1 expression in cancer cells correlated with their susceptibility to HSV. Inhibition of PI3K/AKT or MAPK/ERK signalling did not affect the level of nectin-1 expression but decreased thyroid cancer cell susceptibility to HSV. These findings showed that HSV is frequently detected in thyroid cancer. During tumour progression, thyroid cells acquire increased susceptibility to HSV due to increased expression of viral entry mediator nectin-1 and activation of mitogenic signalling in cancer cells.
Molecular genetics of the hair follicle: the state of the art.
Van Steensel, M A; Happle, R; Steijlen, P M
2000-01-01
For those who are interested in the biology of skin and its derivatives, these are interesting times indeed. In a mere 5 years, the field has been revolutionized by the application of molecular genetics to human congenital skin disorders. Where dermatology first was limited to observation and empirics, there are now DNA-diagnostics, rational drug design, and perhaps even gene therapy available soon. In particular, the study of rare human syndromes involving abnormalities of hair growth and structure has yielded new insights into the regulation of cell growth and differentiation in the hair follicle. As this structure shows a cyclic pattern of differentiation, it may give new information concerning the regulation of cell differentiation in general. This review covers the recent developments in this fast-moving field. First, we will give a short introduction to (structural) hair biology. Next, we will try to fit these data into the framework of what is already known and attempt to present a unified model for hair follicle growth and differentiation.
Trnovec, Tomáš; Jusko, Todd A; Šovčíková, Eva; Lancz, Kinga; Chovancová, Jana; Patayová, Henrieta; Palkovičová, L'ubica; Drobná, Beata; Langer, Pavel; Van den Berg, Martin; Dedik, Ladislav; Wimmerová, Soňa
2013-08-01
Toxic equivalency factors (TEFs) are an important component in the risk assessment of dioxin-like human exposures. At present, this concept is based mainly on in vivo animal experiments using oral dosage. Consequently, the current human TEFs derived from mammalian experiments are applicable only for exposure situations in which oral ingestion occurs. Nevertheless, these "intake" TEFs are commonly-but incorrectly-used by regulatory authorities to calculate "systemic" toxic equivalents (TEQs) based on human blood and tissue concentrations, which are used as biomarkers for either exposure or effect. We sought to determine relative effect potencies (REPs) for systemic human concentrations of dioxin-like mixture components using thyroid volume or serum free thyroxine (FT4) concentration as the outcomes of interest. We used a benchmark concentration and a regression-based approach to compare the strength of association between each dioxin-like compound and the thyroid end points in 320 adults residing in an organochlorine-polluted area of eastern Slovakia. REPs calculated from thyroid volume and FT4 were similar. The regression coefficient (β)-derived REP data from thyroid volume and FT4 level were correlated with the World Health Organization (WHO) TEF values (Spearman r = 0.69, p = 0.01 and r = 0.62, p = 0.03, respectively). The calculated REPs were mostly within the minimum and maximum values for in vivo REPs derived by other investigators. Our REPs calculated from thyroid end points realistically reflect human exposure scenarios because they are based on chronic, low-dose human exposures and on biomarkers reflecting body burden. Compared with previous results, our REPs suggest higher sensitivity to the effects of dioxin-like compounds.
Perfluorooctanesulfonate (PFOS) is widely distributed and persistent in humans and wildlife. Prior toxicological studies have reported decreased total and free thyroid hormones in serum without a major compensatory rise in thyrotropin (TSH) or altered thyroid gland histology. Alt...
Human T-Cell Clones from Autoimmune Thyroid Glands: Specific Recognition of Autologous Thyroid Cells
NASA Astrophysics Data System (ADS)
Londei, Marco; Bottazzo, G. Franco; Feldmann, Marc
1985-04-01
The thyroid glands of patients with autoimmune diseases such as Graves' disease and certain forms of goiter contain infiltrating activated T lymphocytes and, unlike cells of normal glands, the epithelial follicular cells strongly express histocompatability antigens of the HLA-DR type. In a study of such autoimmune disorders, the infiltrating T cells from the thyroid glands of two patients with Graves' disease were cloned in mitogen-free interleukin-2 (T-cell growth factor). The clones were expanded and their specificity was tested. Three types of clones were found. One group, of T4 phenotype, specifically recognized autologous thyroid cells. Another, also of T4 phenotype, recognized autologous thyroid or blood cells and thus responded positively in the autologous mixed lymphocyte reaction. Other clones derived from cells that were activated in vivo were of no known specificity. These clones provide a model of a human autoimmune disease and their analysis should clarify mechanisms of pathogenesis and provide clues to abrogating these undesirable immune responses.
Does the Ovarian Stimulation Phase Length Predict In vitro Fertilization Outcomes?
Alport, Brie; Case, Allison; Lim, Hyun; Baerwald, Angela
2011-01-01
Background Bi-directional communication between the follicle and oocyte is necessary to regulate follicle and oocyte development. Currently, it is not practical to monitor the serial growth of individual follicles during assisted reproduction. The ovarian stimulation phase length (SPL) is an indirect measure of mean follicular growth rate. The objective of this study was to test the hypothesis that a short or long SPL would be associated with suboptimal outcomes in women undergoing in vitro fertilization (IVF). Materials and Methods A retrospective cohort study was conducted in 140 women who underwent IVF. Follicle development was monitored every 2-3 days during ovarian stimulation using transvaginal ultrasonography. Once > 3 follicles reached ≥ 17 mm, human chorionic gonadotropin (hCG) was administered. Oocyte retrieval was performed approximately 35 hours after hCG. Oocytes underwent IVF on the day of collection and were evaluated daily thereafter. Embryos were transferred on days 3 or 5, depending on the number and quality of embryos available. Associations between SPL, age, follicle, oocyte, embryo and pregnancy outcomes were evaluated (SPSS version 17.0; SPSS Inc., Chicago, IL, USA). Results A SPL of 11 days was associated with an optimal number of follicles that developed to ≥ 6 mm, ≥ 10 mm and ≥ 15 mm; serum estradiol concentrations; and number of oocytes collected (p<0.05). Gradual reductions in the number of developing follicles, serum estradiol concentrations and number of oocytes collected occurred with SPL less than or greater than 11 days (p<0.05). The SPL did not influence endometrial, embryo or pregnancy outcomes (p>0.05). Associations between SPL and outcomes were not influenced by age (p>0.05). Conclusion The ovarian SPL can be used to predict the number of follicles that develop, oocytes collected and serum estradiol concentrations, but not embryo or pregnancy outcomes. PMID:25101156
Georgopoulos, Neoklis A; Katsikis, Ilias; Giamalis, Petros; Koika, Vasiliki; Adonakis, George; Kourtis, Anargyros; Kourounis, George; Panidis, Dimitrios
2006-12-01
Combined pituitary hormone deficiency (CPHD) is a rare disorder resulting from an impaired pituitary function due to different causes, characterized by impaired secretion of growth hormone (GH) and one or more of the other anterior pituitary hormones. To date, 16 distinct human Prophet of Pit-1 (Prop1) gene mutations have been identified in patients with CPHD, inducing a phenotype involving GH, follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin and thyroid-stimulating hormone (TSH), and rarely adrenocorticotropic hormone, deficiency. Herein we present two siblings of different sexes from a family with parental consanguinity presenting the 301-302delAG mutation in the Prop1 gene. The female presented failure of growth from the age of 6 years and was treated for 10 years with GH, ending in a final height (standard deviation score) of -0.28. TSH deficiency was manifested after the initiation of GH and was treated with thyroxine while puberty was initiated with conjugated estrogens. The male presented TSH deficiency since childhood, treated with thyroxine, and growth failure at the age of 14 years, treated for a period of 2 years with GH. Puberty was initiated with increasing doses of testosterone, while human chorionic gonadotropin was added in order to achieve increased testicular volume. In conclusion, these two siblings of different sexes with CPHD carrying the 301-302delAG mutation in the Prop1 gene presented a variable phenotype characterized by GH, TSH, LH and FSH deficiency.
Thyroid-like follicular carcinoma of the kidney: A report of two cases and literature review
LIN, YUN-ZHI; WEI, YONG; XU, NING; LI, XIAO-DONG; XUE, XUE-YI; ZHENG, QING-SHUI; JIANG, TAO; HUANG, JIN-BEI
2014-01-01
There have only been a few reports of thyroid-like follicular carcinoma of the kidney (TLFCK) to date. In the present study, two patients with TLFCK are reported. Patient 1 was a 65-year-old male exhibiting repeated hematuria and right back pain. No tumors were located in the patient’s thyroid or lungs. The physical examination revealed percussion tenderness over the right kidney region was noticed. Enhanced computed tomography (CT) indicated a right renal pelvic carcinoma, for which the patient underwent a radical right nephrectomy. Patient 2 was a 59-year-old male with a mass in the right kidney, located during a health examination and who exhibited no obvious clinical symptoms. The patient was clinically diagnosed with right renal carcinoma, confirmed by an enhanced CT. The patient underwent a radical right nephrectomy. The clinical features, imaging results, pathology, immune phenotypes, treatment and prognosis were analyzed. The associated literature was also reviewed. The cut surface of each tumor showed gray-white material with a central solid area, including scattered gray-brown necrotic and gray hemorrhagic areas and small cystic cavities. Microscopically, the arrangement of the tumor cells mimicked thyroid follicles with red-stained colloid-like material in the lumen. No renal hilar lymph node involvement was noted. The tumor tissue of patient 1 was immunohistochemically positive for vimentin, epithelial membrane antigen (EMA), cytokeratin (CK), CK7, and neuron specific enolase; and negative for CK34BE12, synapsin (Syn), CK20, cluster of differentiation 56 (CD56), CD10, Wilm’s tumor-1 (WT-1), CD34, CD57, P53, CD99, thyroid transcription factor-1 (TTF-1), CD15 and thyroglobulin (TG); with a Ki-67 labeling index (LI) of 30%. The tumor tissue of patient 2 was immunohistochemically positive for vimentin, EMA, CK7 and CK20; and negative for CD56, CD10, WT-1, CD34, CD57, P53, CD117, TTF-1, CD15, CD99, TG, chromogranin A and Syn; with a Ki-67 LI of 20%. TLFCK is a rare renal tumor with low malignancy but medium invasiveness. It morphologically resembles thyroid follicular carcinoma but does not express TTF-1 or TG. Radical nephrectomy can achieve good patient outcomes. PMID:24932236
Thyroid-like follicular carcinoma of the kidney: A report of two cases and literature review.
Lin, Yun-Zhi; Wei, Yong; Xu, Ning; Li, Xiao-Dong; Xue, Xue-Yi; Zheng, Qing-Shui; Jiang, Tao; Huang, Jin-Bei
2014-06-01
There have only been a few reports of thyroid-like follicular carcinoma of the kidney (TLFCK) to date. In the present study, two patients with TLFCK are reported. Patient 1 was a 65-year-old male exhibiting repeated hematuria and right back pain. No tumors were located in the patient's thyroid or lungs. The physical examination revealed percussion tenderness over the right kidney region was noticed. Enhanced computed tomography (CT) indicated a right renal pelvic carcinoma, for which the patient underwent a radical right nephrectomy. Patient 2 was a 59-year-old male with a mass in the right kidney, located during a health examination and who exhibited no obvious clinical symptoms. The patient was clinically diagnosed with right renal carcinoma, confirmed by an enhanced CT. The patient underwent a radical right nephrectomy. The clinical features, imaging results, pathology, immune phenotypes, treatment and prognosis were analyzed. The associated literature was also reviewed. The cut surface of each tumor showed gray-white material with a central solid area, including scattered gray-brown necrotic and gray hemorrhagic areas and small cystic cavities. Microscopically, the arrangement of the tumor cells mimicked thyroid follicles with red-stained colloid-like material in the lumen. No renal hilar lymph node involvement was noted. The tumor tissue of patient 1 was immunohistochemically positive for vimentin, epithelial membrane antigen (EMA), cytokeratin (CK), CK7, and neuron specific enolase; and negative for CK34BE12, synapsin (Syn), CK20, cluster of differentiation 56 (CD56), CD10, Wilm's tumor-1 (WT-1), CD34, CD57, P53, CD99, thyroid transcription factor-1 (TTF-1), CD15 and thyroglobulin (TG); with a Ki-67 labeling index (LI) of 30%. The tumor tissue of patient 2 was immunohistochemically positive for vimentin, EMA, CK7 and CK20; and negative for CD56, CD10, WT-1, CD34, CD57, P53, CD117, TTF-1, CD15, CD99, TG, chromogranin A and Syn; with a Ki-67 LI of 20%. TLFCK is a rare renal tumor with low malignancy but medium invasiveness. It morphologically resembles thyroid follicular carcinoma but does not express TTF-1 or TG. Radical nephrectomy can achieve good patient outcomes.
Barzilay, Eran; Yung, Yuval; Shapira, Lev; Haas, Jigal; Ophir, Libby; Yerushalmi, Gil M; Maman, Ettie; Hourvitz, Ariel
2014-09-01
Poliovirus receptor (PVR), regulator of G-protein signaling-11 (RGS11), and erythrocyte protein band-4.1-like 3 (EPB41L3) have been proposed to function in follicular maturation in mouse models. We have examined their expression in human mural (mGCs) and cumulus granulosa cells (CCs). Expression of PVR and RGS11 in mGCs decreased in medium-sized follicles compared to small follicles of IVM cycles and increased again in large follicles. Luteinization caused decreased expression of both PVR and RGS11. In vitro incubation of mGCs with progesterone-rich conditioned media decreased expression of RGS11 without affecting PVR levels. Inhibition of progesterone signaling enhanced expression of both RGS11 and PVR. Expression in CCs was examined by means of global transcriptome sequencing analysis RGS11 and EPB41L3 increased in CCs during follicular maturation while PVR levels did not change. In conclusion, during human follicular maturation there are significant changes in expression of PVR, RGS11 and EPB41L3, possibly regulated by progesterone.
[Thyroid dysfunction in adults infected by human immunodeficiency virus].
Abelleira, Erika; De Cross, Graciela A; Pitoia, Fabián
2014-01-01
Patients infected with human immunodeficiency virus (HIV) have a higher prevalence of thyroid dysfunction when compared with the general population. The most frequently observed manifestations are euthyroid sick syndrome, Graves' disease and subclinical hypothyroidism. The relationship between the use of highly active antiretroviral therapy and the increased prevalence of thyroid dysfunction has been demonstrated in several series of patients. Grave's disease is recognized as a consequence of immune restitution syndrome. Besides, several studies have suggested an association between hypothyroidism and the use of nucleoside reverse transcriptase inhibitors, particularly stavudine and non-nucleoside reverse transcriptase inhibitors such as efavirenz. Further studies could provide additional evidence of the need for routine assessment of thyroid function in HIV-infected patients.
Adequate levels of thyroid hormones (TH) are needed for proper brain development and deficiencies lead to adverse neurological outcomes in humans and in animal models. Environmental chemicals have been shown to disrupt TH levels, yet the relationship between developmental exposur...
Charles, Roch-Philippe
2015-06-01
The prognosis from thyroid cancer subtypes in humans covers a spectrum from "cured at almost 90%" to "100% lethal." Invasive and poorly differentiated forms of thyroid cancer are among the most aggressive human cancers, and there are few effective therapeutic options. Genetically engineered mice, based on mutations observed in patients, can accurately recapitulate the human disease and its progression, providing invaluable tools for the preclinical evaluation of novel therapeutic approaches. This overview details models developed to date as well as their uses for identifying novel anticancer agents. Copyright © 2013 John Wiley & Sons, Inc. All rights reserved.
Chakravarty, Debyani; Santos, Elmer; Ryder, Mabel; Knauf, Jeffrey A.; Liao, Xiao-Hui; West, Brian L.; Bollag, Gideon; Kolesnick, Richard; Thin, Tin Htwe; Rosen, Neal; Zanzonico, Pat; Larson, Steven M.; Refetoff, Samuel; Ghossein, Ronald; Fagin, James A.
2011-01-01
Advanced human thyroid cancers, particularly those that are refractory to treatment with radioiodine (RAI), have a high prevalence of BRAF (v-raf murine sarcoma viral oncogene homolog B1) mutations. However, the degree to which these cancers are dependent on BRAF expression is still unclear. To address this question, we generated mice expressing one of the most commonly detected BRAF mutations in human papillary thyroid carcinomas (BRAFV600E) in thyroid follicular cells in a doxycycline-inducible (dox-inducible) manner. Upon dox induction of BRAFV600E, the mice developed highly penetrant and poorly differentiated thyroid tumors. Discontinuation of dox extinguished BRAFV600E expression and reestablished thyroid follicular architecture and normal thyroid histology. Switching on BRAFV600E rapidly induced hypothyroidism and virtually abolished thyroid-specific gene expression and RAI incorporation, all of which were restored to near basal levels upon discontinuation of dox. Treatment of mice with these cancers with small molecule inhibitors of either MEK or mutant BRAF reduced their proliferative index and partially restored thyroid-specific gene expression. Strikingly, treatment with the MAPK pathway inhibitors rendered the tumor cells susceptible to a therapeutic dose of RAI. Our data show that thyroid tumors carrying BRAFV600E mutations are exquisitely dependent on the oncoprotein for viability and that genetic or pharmacological inhibition of its expression or activity is associated with tumor regression and restoration of RAI uptake in vivo in mice. These findings have potentially significant clinical ramifications. PMID:22105174
Jimenez, Francisco; Poblet, Enrique; Izeta, Ander
2015-02-01
Clinicians have long reported that hair-bearing areas tend to heal more rapidly than those lacking hair follicles. In the past decade, numerous scientific studies have corroborated clinical evidence, showing a direct nexus between the human hair follicle and the wound healing process. The migration of epithelial follicular stem cells to the skin surface to help in the wound re-epithelialization and the effect of the hair cycle on the wound healing rate underline the influence of the hair follicle in the healing process. In clinical practice, non-healing wounds are pathologies of high prevalence with significant associated burden costs for the healthcare system. As the population ages, the prevalence of this pathology is expected to increase in future years. The recent advances in understanding the biology of hair follicle stem cells have created the challenges of using this newly acquired knowledge in practical therapeutic applications. Chronic leg ulcers are an example of the targeted pathologies that urgently need better therapies. In this essay, our aim is to raise interest in this question, reviewing what is known in relation to the connections between hair follicles and wound healing, and elaborating on future directions that the field might take, including implications for clinical practice. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Novella-Maestre, Edurne; Herraiz, Sonia; Rodríguez-Iglesias, Beatriz; Díaz-García, César; Pellicer, Antonio
2015-01-01
In vitro activation and growth of primordial dormant follicles to produce fertilizable oocytes would provide a useful instrument for fertility preservation. The employment of Phosphatase and TENsin homolog (PTEN) inhibitors, in combination with Protein kinase B (Akt) stimulating molecules, has been previously employed to increase follicular activation through the stimulation of the PTEN-Akt pathway. We aim to establish improved in vitro activation also for cancer patients whose ovarian tissue has already been cryopreserved. Fresh and previously cryopreserved human ovarian cortex were exposed to short-term, low-concentration and ovary-specific treatment with only a PTEN inhibitor. Our in vitro activation protocol enhances the activation mechanisms of primordial follicles in both fresh and cryopreserved samples, and enlarges growing populations without inducing apoptosis in either follicles or the surrounding stroma. Treatment augments estradiol secretion and restores the expression levels of the previously diminished Anti-Müllerian hormone by means of cryopreservation procedures. Genomic modulation of the relative expression of PTEN pathway genes was found in treated samples. The in vitro activation protocol offers new alternatives for patients with cryopreserved tissue as it increases the pool of viable activated follicles available for in vitro growth procedures. The combination of ovarian tissue cryopreservation and in vitro activation of primordial follicles, the main ovarian reserve component, will be a major advancement in fertility preservation.
Trubiroha, A; Gillotay, P; Giusti, N; Gacquer, D; Libert, F; Lefort, A; Haerlingen, B; De Deken, X; Opitz, R; Costagliola, S
2018-04-04
The foregut endoderm gives rise to several organs including liver, pancreas, lung and thyroid with important roles in human physiology. Understanding which genes and signalling pathways regulate their development is crucial for understanding developmental disorders as well as diseases in adulthood. We exploited unique advantages of the zebrafish model to develop a rapid and scalable CRISPR/Cas-based mutagenesis strategy aiming at the identification of genes involved in morphogenesis and function of the thyroid. Core elements of the mutagenesis assay comprise bi-allelic gene invalidation in somatic mutants, a non-invasive monitoring of thyroid development in live transgenic fish, complementary analyses of thyroid function in fixed specimens and quantitative analyses of mutagenesis efficiency by Illumina sequencing of individual fish. We successfully validated our mutagenesis-phenotyping strategy in experiments targeting genes with known functions in early thyroid morphogenesis (pax2a, nkx2.4b) and thyroid functional differentiation (duox, duoxa, tshr). We also demonstrate that duox and duoxa crispants phenocopy thyroid phenotypes previously observed in human patients with bi-allelic DUOX2 and DUOXA2 mutations. The proposed combination of efficient mutagenesis protocols, rapid non-invasive phenotyping and sensitive genotyping holds great potential to systematically characterize the function of larger candidate gene panels during thyroid development and is applicable to other organs and tissues.
Fortune, J. E.; Yang, M. Y.; Allen, J. J.; Herrick, S. L.
2017-01-01
The ovarian follicular reserve has been linked to fertility in cattle. Young adult cattle with low vs. high numbers of antral follicles ≥ 3 mm in diameter in follicular waves also have fewer preantral follicles and decreased fertility. This underscores the importance of understanding the factors that regulate early follicular development and establish the ovarian follicular reserve, but little is known about how the follicular reserve is first established. In ruminants and humans, follicles form during fetal life, but there is a gap (about 50 d in cattle) between the appearance of the first primordial follicles and the first growing, primary follicles. In this review we present evidence that in cattle, fetal ovarian steroids (i.e., estradiol and progesterone) are negative regulators of both follicle formation and of the acquisition by newly formed follicles of the capacity to activate (i.e., initiate growth). The results indicate that capacity to activate is linked to the completion of meiotic prophase I by the oocyte. The inhibitory effects of estradiol on follicle activation were found to be reversible and correlated with inhibition of the progression of meiotic prophase I. Fetal bovine ovaries produce steroid hormones and production varies considerably during gestation and in a pattern consistent with the hypothesis that they inhibit follicle formation and capacity of newly formed follicles to activate in vivo. However, little was known about how steroid production is regulated. In our studies, both LH and FSH stimulated progesterone and estradiol production by ovarian pieces in vitro. The addition of testosterone to the culture medium enhanced estradiol production, especially when FSH was also present, but inhibited progesterone production, even in the presence of gonadotropins. Evidence is also presented for effects of maternal nutrition and health and for potential effects of estrogenic endocrine-disrupting chemicals on the size of the ovarian follicular reserve established during fetal life. In summary, fetal ovarian steroids may be important regulators of the early stages of follicular development in cattle. Therefore, external factors that alter steroid production or action may affect the size of the ovarian follicular reserve. PMID:23736047
Breaking Tolerance to Thyroid Antigens: Changing Concepts in Thyroid Autoimmunity
Rapoport, Basil
2014-01-01
Thyroid autoimmunity involves loss of tolerance to thyroid proteins in genetically susceptible individuals in association with environmental factors. In central tolerance, intrathymic autoantigen presentation deletes immature T cells with high affinity for autoantigen-derived peptides. Regulatory T cells provide an alternative mechanism to silence autoimmune T cells in the periphery. The TSH receptor (TSHR), thyroid peroxidase (TPO), and thyroglobulin (Tg) have unusual properties (“immunogenicity”) that contribute to breaking tolerance, including size, abundance, membrane association, glycosylation, and polymorphisms. Insight into loss of tolerance to thyroid proteins comes from spontaneous and induced animal models: 1) intrathymic expression controls self-tolerance to the TSHR, not TPO or Tg; 2) regulatory T cells are not involved in TSHR self-tolerance and instead control the balance between Graves' disease and thyroiditis; 3) breaking TSHR tolerance involves contributions from major histocompatibility complex molecules (humans and induced mouse models), TSHR polymorphism(s) (humans), and alternative splicing (mice); 4) loss of tolerance to Tg before TPO indicates that greater Tg immunogenicity vs TPO dominates central tolerance expectations; 5) tolerance is induced by thyroid autoantigen administration before autoimmunity is established; 6) interferon-α therapy for hepatitis C infection enhances thyroid autoimmunity in patients with intact immunity; Graves' disease developing after T-cell depletion reflects reconstitution autoimmunity; and 7) most environmental factors (including excess iodine) “reveal,” but do not induce, thyroid autoimmunity. Micro-organisms likely exert their effects via bystander stimulation. Finally, no single mechanism explains the loss of tolerance to thyroid proteins. The goal of inducing self-tolerance to prevent autoimmune thyroid disease will require accurate prediction of at-risk individuals together with an antigen-specific, not blanket, therapeutic approach. PMID:24091783
Attenuation Coefficient Estimation of the Healthy Human Thyroid In Vivo
NASA Astrophysics Data System (ADS)
Rouyer, J.; Cueva, T.; Portal, A.; Yamamoto, T.; Lavarello, R.
Previous studies have demonstrated that attenuation coefficients can be useful towards characterizing thyroid tissues. In this work, ultrasonic attenuation coefficients were estimated from healthy human thyroids in vivo using a clinical scanner. The selected subjects were five young, healthy volunteers (age: 26 ± 6 years old, gender: three females, two males) with no reported history of thyroid diseases, no palpable thyroid nodules, no smoking habits, and body mass index less than 30 kg/m2. Echographic examinations were conducted by a trained sonographer using a SonixTouch system (Ultrasonix Medical Corporation, Richmond, BC) equipped with an L14-5 linear transducer array (nominal center frequency of 10 MHz, transducer footprint of 3.8 cm). Radiofrequency data corresponding to the collected echographic images in both transverse and longitudinal views were digitized at a sampling rate of 40 MHz and processed with Matlab codes (MathWorks, Natick, MA) to estimate attenuation coefficients using the spectral log difference method. The estimation was performed using an analysis bandwidth spanning from 4.0 to 9.0 MHz. The average value of the estimated ultrasonic attenuation coefficients was equal to 1.34 ± 0.15 dB/(cm.MHz). The standard deviation of the estimated average attenuation coefficient across different volunteers suggests a non-negligible inter-subject variability in the ultrasonic attenuation coefficient of the human thyroid.
Surface-modified gold nanorods for specific cell targeting
NASA Astrophysics Data System (ADS)
Wang, Chan-Ung; Arai, Yoshie; Kim, Insun; Jang, Wonhee; Lee, Seonghyun; Hafner, Jason H.; Jeoung, Eunhee; Jung, Deokho; Kwon, Youngeun
2012-05-01
Gold nanoparticles (GNPs) have unique properties that make them highly attractive materials for developing functional reagents for various biomedical applications including photothermal therapy, targeted drug delivery, and molecular imaging. For in vivo applications, GNPs need to be prepared with very little or negligible cytotoxicitiy. Most GNPs are, however, prepared using growth-directing surfactants such as cetyl trimethylammonium bromide (CTAB), which are known to have considerable cytotoxicity. In this paper, we describe an approach to remove CTAB to a non-toxic concentration. We optimized the conditions for surface modification with methoxypolyethylene glycol thiol (mPEG), which replaced CTAB and formed a protective layer on the surface of gold nanorods (GNRs). The cytotoxicities of pristine and surface-modified GNRs were measured in primary human umbilical vein endothelial cells and human cell lines derived from hepatic carcinoma cells, embryonic kidney cells, and thyroid papillary carcinoma cells. Cytotoxicity assays revealed that treating cells with GNRs did not significantly affect cell viability except for thyroid papillary carcinoma cells. Thyroid cancer cells were more susceptible to residual CTAB, so CTAB had to be further removed by dialysis in order to use GNRs for thyroid cell targeting. PEGylated GNRs are further modified to present monoclonal antibodies that recognize a specific surface marker, Na-I symporter, for thyroid cells. Antibody-conjugated GNRs specifically targeted human thyroid cells in vitro.
El-Kashlan, Akram M; Nooh, Mohammed M; Hassan, Wafaa A; Rizk, Sherine M
2015-01-01
Hyper- or hypothyroidism can impair testicular function leading to infertility. The present study was designed to examine the protective effect of date palm pollen (DPP) extract on thyroid disorder-induced testicular dysfunction. Rats were divided into six groups. Group I was normal control. Group II received oral DPP extract (150 mg kg(-1)), group III (hyperthyroid group) received intraperitoneal injection of L-thyroxine (L-T4, 300 μg kg(-1); i.p.), group IV received L-T4 plus DPP extract, group V (hypothyroid group) received propylthiouracil (PTU, 10 mg kg(-1); i.p.) and group VI received PTU plus DPP extract. All treatments were given every day for 56 days. L-T4 or PTU lowered genital sex organs weight, sperm count and motility, serum levels of luteinizing hormone (LH), follicle stimulating hormone (FSH) and testosterone (T), testicular function markers and activities of testicular 3β-hydroxysteroid dehydrogenase (3β-HSD) and 17β-hydroxysteroid dehydrogenase (17β-HSD). Moreover, L-T4 or PTU increased estradiol (E2) serum level, testicular oxidative stress, DNA damage and apoptotic markers. Morphometric and histopathologic studies backed these observations. Treatment with DPP extract prevented LT4- or PTU induced changes. In addition, supplementation of DPP extract to normal rats augmented sperm count and motility, serum levels of LH, T and E2 paralleled with increased activities of 3β-HSD and 17β-HSD as well as testicular antioxidant status. These results provide evidence that DPP extract may have potential protective effects on testicular dysfunction induced by altered thyroid hormones.
El-Kashlan, Akram M.; Nooh, Mohammed M.; Hassan, Wafaa A.; Rizk, Sherine M.
2015-01-01
Hyper- or hypothyroidism can impair testicular function leading to infertility. The present study was designed to examine the protective effect of date palm pollen (DPP) extract on thyroid disorder-induced testicular dysfunction. Rats were divided into six groups. Group I was normal control. Group II received oral DPP extract (150 mg kg-1), group III (hyperthyroid group) received intraperitoneal injection of L-thyroxine (L-T4, 300μg kg-1; i.p.), group IV received L-T4 plus DPP extract, group V (hypothyroid group) received propylthiouracil (PTU, 10 mg kg-1; i.p.) and group VI received PTU plus DPP extract. All treatments were given every day for 56 days. L-T4 or PTU lowered genital sex organs weight, sperm count and motility, serum levels of luteinizing hormone (LH), follicle stimulating hormone (FSH) and testosterone (T), testicular function markers and activities of testicular 3β-hydroxysteroid dehydrogenase (3β-HSD) and 17β-hydroxysteroid dehydrogenase (17β-HSD). Moreover, L-T4 or PTU increased estradiol (E2) serum level, testicular oxidative stress, DNA damage and apoptotic markers. Morphometric and histopathologic studies backed these observations. Treatment with DPP extract prevented LT4- or PTU induced changes. In addition, supplementation of DPP extract to normal rats augmented sperm count and motility, serum levels of LH, T and E2 paralleled with increased activities of 3β-HSD and 17β-HSD as well as testicular antioxidant status. These results provide evidence that DPP extract may have potential protective effects on testicular dysfunction induced by altered thyroid hormones. PMID:26425844
[Lipid peroxidation in thyroid tissue of people with diffuse toxic goiter].
Rom-Boguslavskaia, E S; Somova, E V; Ovsiannikova, T N; Diageleva, E A; Karachentsev, Iu I; Asaula, V A
1997-01-01
The processes of lipids free-radical oxidation in euthyroid and thyrotoxic tissue samples of human thyroid gland were studied. It was shown, that the content of TBA-active lipid peroxidation products was considerably increased in thyrotoxic tissue of the thyroid, and the activity of antioxidant enzymes (catalase, glutation peroxidase) was decreased in it. Possible mechanism of the tissue lipoperoxide alternation under conditions of the thyroid hyperfunction is discussed.
MRI-based three-dimensional thermal physiological characterization of thyroid gland of human body.
Jin, Chao; He, Zhi Zhu; Yang, Yang; Liu, Jing
2014-01-01
This article is dedicated to present a MRI (magnetic resonance imaging) based three-dimensional finite element modeling on the thermal manifestations relating to the pathophysiology of thyroid gland. An efficient approach for identifying the metabolic dysfunctions of thyroid has also been demonstrated through tracking the localized non-uniform thermal distribution or enhanced dynamic imaging. The temperature features over the skin surface and thyroid domain have been characterized using the numerical simulation and experimental measurement which will help better interpret the thermal physiological mechanisms of the thyroid under steady-state or water-cooling condition. Further, parametric simulations on the hypermetabolism symptoms of hyperthyroidism and thermal effects within thyroid domain caused by varying breathing airflow in the trachea and blood-flow in artery and vein were performed. It was disclosed that among all the parameters, the airflow volume has the largest effect on the total heat flux of thyroid surface. However, thermal contributions caused by varying the breathing frequency and blood-flow velocity are negligibly small. The present study suggests a generalized way for simulating the close to reality physiological behavior or process of human thyroid, which is of significance for disease diagnosis and treatment planning. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Disruption of thyroid hormone signaling is a form of endocrine disruption that is of concern to both human health and ecosystems. Research is being conducted to define the biological targets chemicals may interact with to disrupt thyroid hormone signaling and the stages in develo...
Polybrominated diphenyl ethers (PBDEs) are routinely found in human tissues including cord blood and breast milk. PBDEs may interfere with thyroid hormone (TH) during development, which could produce neurobehavioral deficits. An assumption in experimental and epidemiological stud...
Expression and clinical significance of connective tissue growth factor in thyroid carcinomas.
Wang, Guimin; Zhang, Wei; Meng, Wei; Liu, Jia; Wang, Peisong; Lin, Shan; Xu, Liyan; Li, Enmin; Chen, Guang
2013-08-01
To examine expression of the connective tissue growth factor (CTGF) gene in human thyroid cancer and establish whether a correlation exists between the presence of CTGF protein and clinicopathological parameters of the disease. CTGF protein expression was investigated retrospectively by immunohistochemical analysis of CTGF protein levels in thyroid tumour tissue. Associations between immunohistochemical score and several clinicopathological parameters were examined. In total, 131 thyroid tissue specimens were included. High levels of CTGF protein were observed in papillary thyroid carcinoma tissue; benign thyroid tumour tissue scored negatively for CTGF protein. In papillary thyroid carcinoma, there was a significant relationship between high CTGF protein levels and Union for International Cancer Control disease stage III-IV, and presence of lymph node metastasis. In papillary thyroid carcinomas, CTGF protein levels were not significantly associated with sex or age. These findings suggest that the CTGF protein level is increased in papillary thyroid carcinoma cells compared with benign thyroid tumours. CTGF expression might play a role in the development of malignant tumours in the thyroid.
Pharmacology of bovine and human thyrotropin: an historical perspective.
Robbins, J
1999-05-01
Before the induction of a brief period of hypothyroidism became the standard method for inducing 131I uptake in thyroid cancer diagnosis and therapy, several other methods were explored and used. At the dawn of this new era of recombinant human thyrotropin (TSH) it is of interest to reflect briefly on some of this work. Partially purified bovine TSH (bTSH) was supplied for many years by the Armour Company as Thytropar for intramuscular injection and was first used in thyroid cancer 50 years ago at the Montefiore Hospital and at the Memorial Sloan Kettering Cancer Center in New York City. Most of the patients were already hypothyroid and bTSH induced further 131I uptake in only a few. Experience over the next 30 years revealed frequent allergic reactions, occasionally serious ones, and in 1961 it was shown that prolonged use could result in resistance to both bTSH and human TSH. bTSH was, therefore, reserved for thyroid cancer patients unable to increase endogenous TSH when hypothyroid. bTSH also was used widely as a test to distinguish between hypothyroidism caused by thyroid or pituitary failure until it was replaced by thyrotropin-releasing hormone (TRH). In a few studies, TRH was also tested as an adjuvant to increase endogenous TSH and thus help to stimulate function in thyroid cancer, but this attracted little interest. Prolonged hypothyroidism, enhanced by antithyroid drugs, was used early on, but this very effective stimulant of thyroid cancer function was, for multiple reasons, discarded. Beginning interest 15 to 25 years ago in obtaining TSH from human pituitary glands, a byproduct of growth hormone production, was interrupted when this product was found to risk development of Creutzfeld-Jakob disease. Recombinant human TSH, a safe and effective substitute, is now ready for widespread use and development in thyroid cancer management.
Carosa, Eleonora; Di Sante, Stefania; Rossi, Simona; Castri, Alessandra; D'Adamo, Fabio; Gravina, Giovanni Luca; Ronchi, Piero; Kostrouch, Zdenek; Dolci, Susanna; Lenzi, Andrea; Jannini, Emmanuele A
2010-01-01
Introduction In the last few years, various studies have underlined a correlation between thyroid function and male sexual function, hypothesizing a direct action of thyroid hormones on the penis. Aim To study the spatiotemporal distribution of mRNA for the thyroid hormone nuclear receptors (TR) α1, α2 and β in the penis and smooth muscle cells (SMCs) of the corpora cavernosa of rats and humans during development. Methods We used several molecular biology techniques to study the TR expression in whole tissues or primary cultures from human and rodent penile tissues of different ages. Main Outcome Measure We measured our data by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) amplification, Northern blot and immunohistochemistry. Results We found that TRα1 and TRα2 are both expressed in the penis and in SMCs during ontogenesis without development-dependent changes. However, in the rodent model, TRβ shows an increase from 3 to 6 days post natum (dpn) to 20 dpn, remaining high in adulthood. The same expression profile was observed in humans. While the expression of TRβ is strictly regulated by development, TRα1 is the principal isoform present in corpora cavernosa, suggesting its importance in SMC function. These results have been confirmed by immunohistochemistry localization in SMCs and endothelial cells of the corpora cavernosa. Conclusions The presence of TRs in the penis provides the biological basis for the direct action of thyroid hormones on this organ. Given this evidence, physicians would be advised to investigate sexual function in men with thyroid disorders. Carosa E, Di Sante S, Rossi S, Castri A, D'Adamo F, Gravina GL, Ronchi P, Kostrouch Z, Dolci S, Lenzi A, and Jannini EA. Ontogenetic profile of the expression of thyroid hormone receptors in rat and human corpora cavernosa of the penis. J Sex Med 2010;7:1381–1390. PMID:20141582
Toni, Roberto; Casa, Claudia Della; Spaletta, Giulia; Marchetti, Giacomo; Mazzoni, Perseo; Bodria, Monica; Ravera, Simone; Dallatana, Davide; Castorina, Sergio; Riccioli, Vincenzo; Castorina, Emilio Giovanni; Antoci, Salvatore; Campanile, Enrico; Raise, Gabriella; Scalise, Gabriella; Rossi, Raffaella; Rossio, Raffaella; Ugolotti, Giorgio; Ugolottio, Giorgio; Martorella, Andrew; Roti, Elio; Rot, Elio; Sgallari, Fiorella; Pinchera, Aldo
2007-01-01
A new concept for ex situ endocrine organ bioengineering is presented, focused on the realization of a human bioartificial thyroid gland. It is based on the theoretical assumption and experimental evidence that symmetries in geometrical coordinates of the thyroid tissue remain invariant with respect to developmental, physiological or pathophysiological transformations occuring in the gland architecture. This topological arrangement is dependent upon physical connections established between cells, cell adhesion molecules and extracellular matrix, leading to the view that the thyroid parenchyma behaves like a deformable "putty", moulded onto an elastic stromal/vascular scaffold (SVS) dictating the final morphology of the gland. In particular, we have raised the idea that the geometry of the SVS per se provides pivotal epigenetic information to address the genetically-programmed, thyrocyte and endothelial/vascular proliferation and differentiation towards a functionally mature gland, making organ form a pre-requirementfor organ function. A number of experimental approaches are explored to obtain a reliable replica of a human thyroid SVS, and an informatic simulation is designed based on fractal growth of the thyroid intraparenchymal arterial tree. Various tissue-compatible and degradable synthetic or biomimetic polymers are discussed to act as a template of the thyroid SVS, onto which to co-seed autologous human thyrocyte (TPC) and endothelial/vascular (EVPC) progenitor cells. Harvest and expansion of both TPC and EVPC in primary culture are considered, with specific attention to the selection of normal thyrocytes growing at a satisfactory rate to colonize the synthetic matrix. In addition, both in vitro and in vivo techniques to authenticate TPC and EVPC lineage differentiation are reviewed, including immunocytochemistry, reverse trascriptase-polymerase chain reaction, flow cytomery and proteomics. Finally, analysis of viability of the thyroid construct following implantation in animal hosts is proposed, with the intent to obtain a bioartificial thyroid gland morphologically and functionally adequate for transplantation. We believe that the biotechnological scenario proposed herein may provide a template to construct other, more complex and clinically-relevant bioartificial endocrine organs ex situ, such as human pancreatic islets and the liver, and perhaps a new approach to brain bioengineering.
Complications of acromegaly: thyroid and colon.
Tirosh, Amit; Shimon, Ilan
2017-02-01
In acromegaly the long-term exposure to high growth hormone (GH) and insulin-like growth factor-1 (IGF-1) levels may result in specific complications in different human organs, including the thyroid gland and the colon. We will review here the evidence available regarding the characteristic thyroid and colon complications in acromegaly. This review summarizes the published data observing noncancerous structural abnormalities (thyroid nodules, colonic polyps) and thyroid and colon cancer in patients diagnosed with acromegaly. Thyroid micro-carcinomas are probably over-diagnosed among acromegalic patients. In regard to colon cancer, there is no sufficient data to suggest that colon cancer risk is higher in acromegaly compared to the general population.
Depositing α-mangostin nanoparticles to sebaceous gland area for acne treatment.
Pan-In, Porntip; Wongsomboon, Atthakorn; Kokpol, Chayada; Chaichanawongsaroj, Nuntaree; Wanichwecharungruang, Supason
2015-12-01
Although entrapment of nanoparticles of appropriate sizes at hair follicles has been clarified, there is no report on specific clinical application of this finding. Since sebaceous gland is associated with hair follicle, we hypothesize that effective acne vulgaris treatment/prevention can be achieved by depositing anti-acne agent in nanoparticle form at the hair follicles. Challenge of this strategy, however, lies at the finding of effective anti-acne particles with minimal skin irritation. Here using cellulose-based nanoparticles as nano-reservoir and α-mangostin (an active component isolated from the edible Garcinia mangostana Linn. fruit) as anti-acne agent, we prepare nanoparticles highly loaded with α-mangostin. Ability of the obtained particles to sustained release α-mangostin into synthetic sebum is demonstrated. The obtained mangostin particles are verified for their insignificant skin irritation through the two-week, twice-daily open application test in 20 healthy human volunteers. Excellent entrapment and sustainment of the mangostin nanoparticles at the hair follicles are elucidated in six human volunteers by detecting the presence of α-mangostin at the roots of hairs pulled from the treated skin area. The 4-week-randomized, double-blind, placebo-controlled, split-face study in 10 acne patients indicates significant improvement in acne vulgaris condition on the side twice daily applied with mangostin nanoparticles. Copyright © 2015 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.
Pathogenesis of Hyperthyroidism.
Singh, Ishita; Hershman, Jerome M
2016-12-06
Hyperthyroidism is a form of thyrotoxicosis in which there is excess thyroid hormone synthesis and secretion. Multiple etiologies can lead to a common clinical state of "thyrotoxicosis," which is a consequence of the high thyroid hormone levels and their action on different tissues of the body. The most common cause of thyrotoxicosis is Graves' disease, an autoimmune disorder in which stimulating thyrotropin receptor antibodies bind to thyroid stimulating hormone (TSH) receptors on thyroid cells and cause overproduction of thyroid hormones. Other etiologies include: forms of thyroiditis in which inflammation causes release of preformed hormone, following thyroid gland insult that is autoimmune, infectious, mechanical or medication induced; secretion of human chorionic gonadotropin in the setting of transient gestational thyrotoxicosis and trophoblastic tumors; pituitary thyrotropin release, and exposure to extra-thyroidal sources of thyroid hormone that may be endogenous or exogenous. © 2017 American Physiological Society. Compr Physiol 7:67-79, 2017. Copyright © 2017 John Wiley & Sons, Inc.
Ozyurek, Eser Sefik; Yoldemir, Tevfik; Artar, Gokhan
2017-05-12
We aimed to test the hypothesis that the correlation of the changes in the blood Androstenedione (A 4 ) levels to the number of selected follicles during ovulation induction with low-dose recombinant human follicle stimulating hormone (rhFSH) is as strong as the correlation to changes in the blood Estradiol (E 2 ) levels in polycystic ovary syndrome (PCOS). Prospective Case-control study conducted from October 2014 to January 2016. 61 non-PCOS control (Group I) and 46 PCOS (Group II) patients treated with the chronic low-dose step up protocosl with rhFSH. A 4 , E 2 , progesterone blood levels and follicular growth were monitored.. Univariate and hierarchical multivariable analysis were performed for age, BMI, HOMA-IR, A 4 and E 2 (with the number of selected follicles as the dependent variable in both groups). ROC analysis was performed to define threshold values for the significant determinants of the number of selected follicles to predict cyle cancellations due to excessive ovarian response. The control group (Group I) was comprised of 61 cycles from a group of primary infertile non-PCOS patients, and the study group (Group II) of 46 cycles of PCOS patients. The analysis revealed that the strongest independent predictor of the total number of selected follicles in Group I was the E 2 (AUC) (B = 0.0006[0.0003-0.001]; P < 0.001); whereas for Group II, it was the A 4 (AUC) (B = 0.114[0.04-0.25]; P = 0.01). Optimum thresholds for the A 4 related parameters were defined to predict excessive response within Group II were 88.7%, 3.1 ng/mL and 5.4 ng*days for the percentage increase in A 4 , the maximum A 4 value and area under the curve values for A 4 , respectively. A 4 response to low-dose rhFSH in PCOS has a stronger association with the number of follicles selected than the E 2 reponse. A 4 response preceding the E 2 response is essential for progressive follicle development. Monitoring A 4 rather than E 2 may be more preemptive to define the initial ovarian response and accurate titration of the rhFSH doses. The study was registered as a prospective case-control study in the ClinicalTrials.gov registry with the identifier NCT02329483 .
Choline acetyltransferase-like immunofluorescence in epidermis of human skin.
Johansson, O; Wang, L
1993-01-01
Using the indirect immunofluorescence approach the occurrence of choline acetyltransferase-like immunoreactivity in epidermis, except stratum basale, of human skin is described. Immunoreactive cells were also found in hair follicles, sweat gland ducts and sebaceous glands.
Melatonin in human preovulatory follicular fluid
NASA Technical Reports Server (NTRS)
Brzezinski, Amnon; Seibel, Machelle M.; Lynch, Harry J.; Deng, Mei-Hua; Wurtman, Richard J.
1987-01-01
Melatonin, the major hormone of the pineal gland, has antigonadotrophic activity in many mammals and may also be involved in human reproduction. Melatonin suppresses steroidogenesis by ovarian granulosa and luteal cells in vitro. To determine if melatonin is present in the human ovary, preovulatory follicular fluids (n = 32) from 15 women were assayed for melatonin by RIA after solvent extraction. The fluids were obtained by laparoscopy or sonographically controlled follicular puncture from infertile women undergoing in vitro fertilization and embryo transfer. All patients had received clomiphene citrate, human menopausal gonadotropin, and hCG to stimulate follicle formation. Blood samples were obtained by venipuncture 30 rain or less after follicular aspiration. All of the follicular fluids contained melatonim, in concentrations substantially higher than those in the corresponding serum. A positive correlation was found between follicular fluid and serum melatonin levels in each woman; these observations indicate that preovulatory follicles contain substantial amounts of melatonin that may affect ovarian steroidogenesis.
Conazoles are fungicides that are used in agriculture and medicine. Conazoles can induce follicular cell adenomas of the thyroid in rats after chronic bioassay and are considered to pose a hazard to humans. Pathways and networks of genes that were associated with thyroid cancer w...
Disruption of thyroid hormone signaling is a form of endocrine disruption that is of concern to both human health and ecosystems. Research is being conducted to define the biological targets chemicals may interact with to disrupt thyroid hormone signaling and the stages in develo...
Smith, T J; Sciaky, D; Phipps, R P; Jennings, T A
1999-08-01
CD40, a member of the tumor necrosis factor-alpha (TNF-alpha) receptor family of surface molecules, is expressed by a variety of cell types. It is a crucial activational molecule displayed by lymphocytes and other bone marrow-derived cells and recently has also been found on nonlymphoid cells such as fibroblasts, endothelia, and epithelial cells in culture. While its role in lymphocyte signaling and activation has been examined in great detail, the function of CD40 expression on nonlymphoid cells, especially in vivo, is not yet understood. Most of the studies thus far have been conducted in cell culture. In this article, we report that several cell types resident in thyroid tissue in vivo can display CD40 under pathological conditions. Sections from a total of 46 different cases were examined immunohistochemically and included nodular hyperplasia, chronic lymphocytic thyroiditis, diffuse hyperplasia, follicular neoplasia, papillary carcinoma, and medullary carcinoma. Thyroid epithelial cells, lymphocytes, macrophages, endothelial cells, and spindle-shape fibroblast-like cells were found to stain positively in the context of inflammation. The staining pattern observed in all cell types was entirely membranous. In general, epithelial staining was limited to that adjacent to lymphocytic infiltration except in 5 of 17 cases of neoplasia and in diffuse hyperplasia. Moreover, we were able to detect CD40 mRNA by reverse transcriptase-polymerase chain reaction (RT-PCR) in human thyroid tissue. These results constitute convincing evidence for expression of CD40 in nonlymphocytic elements of the human thyroid gland. Our findings suggest a potentially important pathway that might be of relevance to the pathogenesis of thyroid diseases. They imply the potential participation of the CD40/CD40 ligand bridge in the cross-talk between resident thyroid cells and bone marrow-derived cells recruited to the thyroid.
Crawford, Graham; Puschner, Birgit; Affolter, Verena; Stalis, Ilse; Davidson, Autumn; Baker, Tomas; Tahara, John; Jolly, Alison; Ostapak, Susan
2015-06-01
Leucaena (Leucaena leucocephala) is a leguminous tree that is nutritious forage for domestic livestock when ingested in limited amounts. Unfortunately, leucaena contains mimosine, a plant amino acid, that can be toxic when ingested at higher concentrations. Reported toxic effects include alopecia (fur loss), poor body condition, infertility, low birth weight, thyroid gland dysfunction, and organ toxicity. Originally native to Mexico and Central America, leucaena has been introduced throughout the tropics, including Berenty Reserve, Madagascar where it was planted as supplemental browse for livestock. In Berenty, a seasonal syndrome of alopecia in ringtailed lemurs (Lemur catta) is associated with eating leucaena. Although much is known about the toxic effects of leucaena and mimosine on domestic animals and humans, the systemic effects on wildlife had not been studied. In a comparison of lemurs that include leucaena in their diet and those that do not, we found that animals that ingest leucaena absorb mimosine but that ingestion does not affect body condition, cause kidney or liver toxicity, or affect the intestinal tract. Alopecia is due to mimosine's interference of the hair follicle cycle. Leucaena ingestion is associated with higher serum albumin, α-tocopherol, and thyroxine concentrations, suggesting that leucaena may provide some nutritional benefit and that lemurs can detoxify and convert mimosine to a thyroid stimulating metabolite. The primary conservation consequence of leucaena ingestion at Berenty may be increased infant mortality due to the infants' inability cling to their alopecic mothers. The widespread introduction of leucaena throughout the tropics and its rapid spread in secondary forest conditions mean that many other leaf-eating mammals may be including this tree in their diet. Thus, exposure to leucaena should be considered when wildlife health is being evaluated, and the potential effects on wildlife health should be considered when contemplating leucaena introduction into or near wildlife habitat. © 2015 Wiley Periodicals, Inc.
Bolamba, D.; Patino, R.; Yoshizaki, G.; Thomas, P.
2003-01-01
Homologous (granulosa cell-granulosa cell) gap junction (GJ) contacts increase in ovarian follicles of Atlantic croaker (Micropogonias undulatus) during the early (first) stage of maturation, but their profile during the second stage [i.e., during maturation-inducing hormone (MIH)-mediated meiotic resumption] is unknown. The profile of homologous GJ contacts during the second stage of maturation in croaker follicles was examined in this study and compared to that of heterologous (granulosa cell-oocyte) GJ, for which changes have been previously documented. Follicles were incubated with human chorionic gonadotropin to induce maturational competence (first stage), and then with MIH to induce meiotic resumption. The follicles were collected for examination immediately before and after different durations of MIH exposure until the oocyte had reached the stage of germinal vesicle breakdown (GVBD; index of meiotic resumption). Ultrathin sections were observed by transmission electron microscopy, and homologous and heterologous GJ contacts were quantified along a 100-??m segment of granulosa cell-zona radiata complex per follicle (three follicles/time/fish, n=3 fish). Relatively high numbers of both types of GJ were observed before and after the first few hours of MIH exposure (up to the stage of oil droplet coalescence). GJ numbers declined during partial yolk globule coalescence (at or near GVBD) and were just under 50% of starting values after the completion of GVBD (P<0.05). These results confirm earlier observations that GVBD temporally correlates with declining heterologous GJ contacts, and for the first time in teleosts show that there is a parallel decline in homologous GJ. The significance of the changes in homologous and heterologous GJ is uncertain and deserves further study. ?? 2003 Elsevier Science (USA). All rights reserved.
Morsczeck, C
2006-02-01
Recently, osteogenic precursor cells were isolated from human dental follicles, which differentiate into cementoblast- or osteoblast- like cells under in vitro conditions. However, mechanisms for osteogenic differentiation are not known in detail. Dental follicle cell long-term cultures supplemented with dexamethasone or with insulin resulted in mineralized nodules, whereas no mineralization or alkaline phosphatase activity was detected in the control culture without an osteogenic stimulus. A real-time reverse-transcriptase polymerase chain reaction (PCR) analysis was developed to investigate gene expression during osteogenic differentiation in vitro. Expression of the alkaline phosphatase (ALP) gene was detected during differentiation in the control culture and was similar to that in cultures with dexamethasone and insulin. DLX-3, DLX-5, runx2, and MSX-2 are differentially expressed during osteogenic differentiation in bone marrow mesenchymal stem cells. In dental follicle cells, gene expression of runx2, DLX-5, and MSX-2 was unaffected during osteogenic differentiation in vitro. Osteogenic differentiation appeared to be independent of MSX-2 expression; the same was true of runx2 and DLX-5, which were protagonists of osteogenic differentiation and osteocalcin promoter activity in bone marrow mesenchymal stem cells. Like in bone marrow-derived stem cells, DLX-3 gene expression was increased in dental follicle cells during osteogenic differentiation but similar to control cultures. However, gene expression of osterix was not detected in dental follicle cells during osteogenic differentiation; this gene is expressed during osteogenic differentiation in bone marrow stem cells. These real-time PCR results display molecular mechanisms in dental follicle precursor cells during osteogenic differentiation that are different from those in bone marrow-derived mesenchymal stem cells.
Hamada, K; Thornton, M J; Laing, I; Messenger, A G; Randall, V A
1996-05-01
Androgens regulate the growth of many human hair follicles, but only pubic, axillary, and scalp hair growth occur in men with 5 alpha-reductase deficiency. This suggests that 5 alpha-dihydrotestosterone is the active intracellular androgen in androgen-dependent follicles, except in the axilla and pubis. Since the dermal papilla plays a major regulatory role in hair follicles and may be the site of androgen action, we have investigated androgen metabolism in six primary lines of cultured dermal papilla cells from pubic and axillary hair follicles; previous studies have shown that beard cells take up and metabolize testosterone, retaining and secreting 5 alpha-dihydrotestosterone. After 24 h preincubation in serum-free Eagle's medium 199, 100-mm dishes of confluent cells were incubated for 2 h with 5 nM [1,2,6,7-3H]testosterone. Media were collected and the cells washed with phosphate-buffered saline and extracted with chloroform: methanol (2:1). After the addition of unlabeled and 14C-labeled marker steroids, the extracts were analyzed by a two-step thin-layer chromatography system; steroid identity was confirmed by recrystallization to a constant 3H/14C ratio. Beard and pubic dermal papilla cells were also incubated for 24 h, and the medium was analyzed at various times. The results from pubic and axillary primary cell lines were similar. In both cells and media the major steroid identified was testosterone, but significant amounts of androstenedione were present, indicating 17 beta-hydroxysteroid dehydrogenase activity; androstenedione was also identified within the cells, but a small amount of 5 alpha-dihydrotestosterone was only identified in one pubic cell line. Beard dermal papilla cells secreted large amounts of 5 alpha-dihydrotestosterone into the medium over 24 h in contrast to pubic cells, which produced only very small amounts. The pubic and axillary cell results contrasts with the observations of pronounced 5 alpha-dihydrotestosterone in beard cells and confirm that androgen metabolism in cultured dermal papilla cells reflects the parent follicle's ability to respond to androgen in the absence of 5 alpha-reductase type II in vivo. This supports our hypothesis that androgen acts on hair follicles via the dermal papilla and suggests that cultured dermal papilla cells may offer an important model system for studies of androgen action.
MELO, MARCO A.B.; SIMÓN, CARLOS; REMOHÍ, JOSÉ; PELLICER, ANTONIO; MESEGUER, MARCOS
2007-01-01
Aim: The aim of the present study was to identify the risk factors, their prognostic value on multiple pregnancies (MP) prediction and their thresholds in women undergoing controlled ovarian hyperstimulation (COH) with follicle stimulating hormone (FSH) and intrauterine insemination (IUI). Methods: A case‐control study was carried out by identifying in our database all the pregnancies reached by donor and conjugal IUI (DIUI and CIUI, respectively), and compared cycle features, patients’ characteristics and sperm analysis results between women achieving single pregnancy (SP) versus MP. The number of gestational sacs, follicular sizes and estradiol levels on the human chorionic gonadotropin (hCG) administration day, COH length and semen parameters were obtained from each cycle and compared. Student's t‐tests for mean comparisons, receiver–operator curve (ROC) analysis to determine the predictive value of each parameter on MP achievement and multiple regression analysis to determine single parameter influence were carried out. Results: Women with MP in IUI stimulated cycles reached the adequate size of the dominant follicle (17 mm) significantly earlier than those achieving SP. Also, the mean follicles number, and estradiol levels on the hCG day were higher in the CIUI and DIUI MP group. Nevertheless, only ROC curve analysis revealed good prognostic value for estradiol and follicles higher than 17 mm. Multiple regression analysis confirmed these results. No feature of the basic sperm analysis, either in the ejaculate or in the prepared sample, was different or predictive of MP. When using donor sperm, different thresholds of follicle number, stimulation length and estradiol in the prediction of MP were noted, in comparison with CIUI. Conclusions: MP in stimulated IUI cycles are closely associated to stimulation length, number of developed follicles higher than 17 mm on the day of hCG administration and estradiol levels. Also, estradiol has a good predictive value over MP in IUI stimulated cycles. The establishment of clinical thresholds will certainly help in the management of these couples to avoid undesired multiple pregnancies by canceling cycles or converting them into in vitro fertilization procedures. (Reprod Med Biol 2007; 6: 19–26) PMID:29699262
Yang, Lin; Tian, Zi-Bin; Yu, Ya-Nan; Zhang, Cui-Ping; Li, Xiao-Yu; Mao, Tao; Jing, Xue; Zhao, Wen-Jun; Ding, Xue-Li; Yang, Ruo-Ming; Zhang, Shuai-Qing
2017-01-01
Helicobacter suis has a greater tendency to induce gastric mucosa-associated lymphoid tissue lymphoma compared with other Helicobacter species in humans and animals. Saccharomyces boulardii has been established as an adjunct to H. pylori eradication treatment, but the effect of S. boulardii administration alone on Helicobacter infection remains unclear. Here, we found that S. boulardii administration effectively decreased the bacterial load of H. suis and inhibited the formation of lymphoid follicles in the stomach post-infection. The levels of H. suis-specific immunoglobulin A (IgA) and secretory IgA in the gastric juice and small intestinal secretions and the production of mouse β-defensin-3 in the small intestinal secretions were significantly increased by S. boulardii administration at 12 weeks after H. suis infection. In addition, feeding with S. boulardii inhibited the expression of inflammatory cytokines and lymphoid follicle formation-related factors after H. suis infection. These results suggested that S. boulardii may be useful for the prevention and treatment of Helicobacter infection-related diseases in humans. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Differential action of glycoprotein hormones: significance in cancer progression.
Govindaraj, Vijayakumar; Arya, Swathy V; Rao, A J
2014-02-01
Growth of multicellular organisms depends on maintenance of proper balance between proliferation and differentiation. Any disturbance in this balance in animal cells can lead to cancer. Experimental evidence is provided to conclude with special reference to the action of follicle-stimulating hormone (FSH) on Sertoli cells, and luteinizing hormone (LH) on Leydig cells that these hormones exert a differential action on their target cells, i.e., stimulate proliferation when the cells are in an undifferentiated state which is the situation with cancer cells and promote only functional parameters when the cell are fully differentiated. Hormones and growth factors play a key role in cell proliferation, differentiation, and apoptosis. There is a growing body of evidence that various tumors express some hormones at high levels as well as their cognate receptors indicating the possibility of a role in progression of cancer. Hormones such as LH, FSH, and thyroid-stimulating hormone have been reported to stimulate cell proliferation and act as tumor promoter in a variety of hormone-dependent cancers including gonads, lung, thyroid, uterus, breast, prostate, etc. This review summarizes evidence to conclude that these hormones are produced by some cancer tissues to promote their own growth. Also an attempt is made to explain the significance of the differential action of hormones in progression of cancer with special reference to prostate cancer.
Novella-Maestre, Edurne; Herraiz, Sonia; Rodríguez-Iglesias, Beatriz; Díaz-García, César; Pellicer, Antonio
2015-01-01
Introduction In vitro activation and growth of primordial dormant follicles to produce fertilizable oocytes would provide a useful instrument for fertility preservation. The employment of Phosphatase and TENsin homolog (PTEN) inhibitors, in combination with Protein kinase B (Akt) stimulating molecules, has been previously employed to increase follicular activation through the stimulation of the PTEN-Akt pathway. Methods We aim to establish improved in vitro activation also for cancer patients whose ovarian tissue has already been cryopreserved. Fresh and previously cryopreserved human ovarian cortex were exposed to short-term, low-concentration and ovary-specific treatment with only a PTEN inhibitor. Results Our in vitro activation protocol enhances the activation mechanisms of primordial follicles in both fresh and cryopreserved samples, and enlarges growing populations without inducing apoptosis in either follicles or the surrounding stroma. Treatment augments estradiol secretion and restores the expression levels of the previously diminished Anti-Müllerian hormone by means of cryopreservation procedures. Genomic modulation of the relative expression of PTEN pathway genes was found in treated samples. Conclusion The in vitro activation protocol offers new alternatives for patients with cryopreserved tissue as it increases the pool of viable activated follicles available for in vitro growth procedures. The combination of ovarian tissue cryopreservation and in vitro activation of primordial follicles, the main ovarian reserve component, will be a major advancement in fertility preservation. PMID:26024525
Ford, Steven J; Bigliardi, Paul L; Sardella, Thomas C P; Urich, Alexander; Burton, Neal C; Kacprowicz, Marcin; Bigliardi, Mei; Olivo, Malini; Razansky, Daniel
2016-04-01
Visualizing anatomical and functional features of hair follicle development in their unperturbed environment is key in understanding complex mechanisms of hair pathophysiology and in discovery of novel therapies. Of particular interest is in vivo visualization of the intact pilosebaceous unit, vascularization of the hair bulb, and evaluation of the hair cycle, particularly in humans. Furthermore, noninvasive visualization of the sebaceous glands could offer crucial insight into the pathophysiology of follicle-related diseases and dry or seborrheic skin, in particular by combining in vivo imaging with other phenotyping, genotyping, and microbial analyses. The available imaging techniques are limited in their ability for deep tissue in vivo imaging of hair follicles and lipid-rich sebaceous glands in their entirety without biopsy. We developed a noninvasive, painless, and risk-free volumetric multispectral optoacoustic tomography method for deep tissue three-dimensional visualization of whole hair follicles and surrounding structures with high spatial resolution below 80 μm. Herein we demonstrate on-the-fly assessment of key morphometric parameters of follicles and lipid content as well as functional oxygenation parameters of the associated capillary bed. The ease of handheld operation and versatility of the newly developed approach poise it as an indispensable tool for early diagnosis of disorders of the pilosebaceous unit and surrounding structures, and for monitoring the efficacy of cosmetic and therapeutic interventions. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Berardinelli, Paolo; Russo, Valentina; Bernabò, Nicola; Di Giacinto, Oriana; Mattioli, Mauro; Barboni, Barbara
2014-01-01
Background The success of ovarian follicle growth and ovulation is strictly related to the development of an adequate blood vessel network required to sustain the proliferative and endocrine functions of the follicular cells. Even if the Vascular Endothelial Growth Factor (VEGF) drives angiogenesis before ovulation, the local role exerted by Progesterone (P4) remains to be clarified, in particular when its concentration rapidly increases before ovulation. Aim This in vivo study was designed to clarify the effect promoted by a P4 receptor antagonist, RU486, on VEGF expression and follicular angiogenesis before ovulation, in particular, during the transition from pre to periovulatory follicles induced by human Chorionic Gonadotropins (hCG) administration. Material and Methods Preovulatory follicle growth and ovulation were pharmacologically induced in prepubertal gilts by combining equine Chorionic Gonadotropins (eCG) and hCG used in the presence or absence of RU486. The effects on VEGF expression were analyzed using biochemical and immunohistochemical studies, either on granulosa or on theca layers of follicles isolated few hours before ovulation. This angiogenic factor was also correlated to follicular morphology and to blood vessels architecture. Results and Conclusions VEGF production, blood vessel network and follicle remodeling were impaired by RU486 treatment, even if the cause-effect correlation remains to be clarified. The P4 antagonist strongly down-regulated theca VEGF expression, thus, preventing most of the angiogenic follicle response induced by hCG. RU486-treated follicles displayed a reduced vascular area, a lower rate of endothelial cell proliferation and a reduced recruitment of perivascular mural cells. These data provide important insights on the biological role of RU486 and, indirectly, on steroid hormones during periovulatory follicular phase. In addition, an in vivo model is proposed to evaluate how periovulatory follicular angiogenesis may affect the functionality of the corpus luteum (CL) and the success of pregnancy. PMID:24756033
Türedi, Sibel; Hancı, Hatice; Çolakoğlu, Serdar; Kaya, Haydar; Odacı, Ersan
2016-06-01
The effects on human health of electromagnetic field (EMF) have begun to be seriously questioned with the entry into daily life of devices establishing EMF, such as cell phones, wireless fidelity, and masts. Recent studies have reported that exposure to EMF, particularly during pregnancy, affects the developing embryo/fetus. The aim of this study was therefore to examine the effects of exposure to continuous 900-Megahertz (MHz) EMF applied in the prenatal period on ovarian follicle development and oocyte differentiation. Six pregnant Sprague Dawley rats were divided equally into a non-exposed control group (CNGr) and a group (EMFGr) exposed to continuous 900-MHz EMF for 1 h daily, at the same time every day, on days 13-21 of pregnancy. New groups were established from pups obtained from both groups after birth. One group consisting of female pups from CNGr rats was adopted as newborn CNGr (New-CNGr, n = 6), and another group consisting of female pups from EMFGr rats was adopted as newborn EMFGr (New-EMFGr, n = 6). No procedure was performed on New-CNGr or New-EMFGr rats. All rat pups were sacrificed on the postnatal 34th day, and their ovarian tissues were removed. Follicle count, histological injury scoring and morphological assessment with apoptotic index criteria were performed with sections obtained following routine histological tissue preparation. Follicle count results revealed a statistically significant decrease in primordial and tertiary follicle numbers in New-EMFGr compared to New-CNGr (p < 0.05), while atretic follicle numbers and apoptotic index levels increased significantly (p < 0.05). Histopathological examination revealed severe follicle degeneration, vasocongestion, a low level of increased stromal fibrotic tissue and cytoplasmic vacuolization in granulosa cell in New-EMFGr. Prenatal exposure to continuous 900-MHz EMF for 1 h each day from days 13-21 led to a decrease in ovarian follicle reservoirs in female rat pups at the beginning of the prepubertal period.
Mutationally activated BRAF(V600E) elicits papillary thyroid cancer in the adult mouse.
Charles, Roch-Philippe; Iezza, Gioia; Amendola, Elena; Dankort, David; McMahon, Martin
2011-06-01
Mutated BRAF is detected in approximately 45% of papillary thyroid carcinomas (PTC). To model PTC, we bred mice with adult-onset, thyrocyte-specific expression of BRAF(V600E). One month following BRAF(V600E) expression, mice displayed increased thyroid size, widespread alterations in thyroid architecture, and dramatic hypothyroidism. Over 1 year, without any deliberate manipulation of tumor suppressor genes, all mice developed PTC displaying nuclear atypia and marker expression characteristic of the human disease. Pharmacologic inhibition of MEK1/2 led to decreased thyroid size, restoration of thyroid form and function, and inhibition of tumorigenesis. Mice with BRAF(V600E)-induced PTC will provide an excellent system to study thyroid tumor initiation and progression and the evaluation of inhibitors of oncogenic BRAF signaling.
Detection of ovarian matrix metalloproteinase mRNAs by in situ hybridization.
Rosewell, Katherine L; Curry, Thomas E
2009-01-01
In situ hybridization represents a powerful technique to localize DNA or RNA of interest at the chromosomal or cellular level. In endocrine tissues composed of diverse and varied cell types, in situ hybridization has allowed the identification of specific cells responsible for the expression of genes controlling the function of the tissue. Our laboratory has routinely used this approach to understand the cellular expression of genes associated with the growth of the ovarian follicle, rupture of the follicle, and transformation of the ruptured follicle into the corpus luteum. The current study outlines the procedural details of in situ detection of mRNA in tissues and illustrates the utility of this approach in identifying the ovarian cells expressing the matrix metalloproteinases and their endogenous inhibitors, the TIMPs, in the human ovary.
Kim, Bora; Kang, Eun-Suk; Fava, Maurizio; Mischoulon, David; Soskin, David; Yu, Bum-Hee; Lee, Dongsoo; Lee, Dong-Yun; Park, Hyung-Doo; Jeon, Hong Jin
2013-12-30
Current suicidal ideation and attempts are more commonly found in female patients with major depressive disorder (MDD) than in males. However, little is known about the relationship between activity of female reproductive hormones and suicide. The study population consisted of 490 female MDD patients of age ≥18. They were assessed by the Mini-International Neuropsychiatric Interview. At the same visit, we measured blood Follicle-Stimulating Hormone (FSH), Luteinizing Hormone (LH), estradiol, progesterone, Adrenocorticotropic Hormone (ACTH), cortisol, thyroid hormones, and prolactin. Blood FSH showed a significant difference among female MDD patients with suicide attempt, those with ideation, and those without within the previous month. Post-hoc analysis also showed that FSH was significantly lower in MDD patients with suicide attempt and ideation than those without, whereas other hormones showed no differences between those with and without attempt. FSH was negatively associated with current suicidality scores after adjustment for age and education years in all age groups. FSH was significantly lower in those with current suicide ideation or attempt than those without in age 45 years or under, but not in other age groups. In conclusion, blood FSH is significantly lower in female MDD patients with current suicide attempt or ideation than those without, especially in age 45 years or under. © 2013 Elsevier Ireland Ltd. All rights reserved.
Lemasters, John J; Ramshesh, Venkat K; Lovelace, Gregory L; Lim, John; Wright, Graham D; Harland, Duane; Dawson, Thomas L
2017-07-01
Little is known about the energetics of growing hair follicles, particularly in the mitochondrially abundant bulb. Here, mitochondrial and oxidative metabolism was visualized by multiphoton and light sheet microscopy in cultured bovine hair follicles and plucked human hairs. Mitochondrial membrane potential (ΔΨ), cell viability, reactive oxygen species (ROS), and secretory granules were assessed with parameter-indicating fluorophores. In growing follicles, lower bulb epithelial cells had high viability, and mitochondria were polarized. Most epithelially generated ROS co-localized with polarized mitochondria. As the imaging plane captured more central and distal cells, ΔΨ disappeared abruptly at a transition to a nonfluorescent core continuous with the hair shaft. Approaching the transition, ΔΨ and ROS increased, and secretory granules disappeared. ROS and ΔΨ were strongest in a circumferential paraxial ring at putative sites for formation of the outer cortex/cuticle of the hair shaft. By contrast, polarized mitochondria in dermal papillar fibroblasts produced minimal ROS. Plucked hairs showed a similar abrupt transition of degranulation/depolarization near sites of keratin deposition, as well as an ROS-generating paraxial ring of fire. Hair movement out of the follicle appeared to occur independently of follicular bulb bioenergetics by a tractor mechanism involving the inner and outer root sheaths. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Sheikhi, Mona; Hultenby, Kjell; Niklasson, Boel; Lundqvist, Monalill; Hovatta, Outi
2013-07-01
To study the preservation of follicles within ovarian tissue vitrified using only one or a combination of three permeating cryoprotectants. Experimental study. University hospital. Ovarian tissue was donated by consenting women undergoing elective cesarean section. Ovarian tissue was vitrified in closed sealed vials using either a combination of dimethyl sulfoxide, 1,2-propanediol, and ethylene glycol (EG), or only EG as permeating cryoprotectants. Ovarian tissue was vitrified with the use of two vitrification methods. Tissue from the same donor was used for comparison of two different solutions. The morphology of the follicles was evaluated after vitrification, warming, and culture by light microscopy and transmission electron microscopy. Apoptosis was assessed by immunohistochemistry for active caspase-3 in fresh and vitrified tissue. Light and electron microscopic analysis showed equally well preserved morphology of oocytes, granulosa cells, and ovarian stroma when either of the vitrification solutions was used. No apoptosis was observed in primordial and primary follicles. Using only EG as a permeating cryoprotectant in a closed tube gives as good ultrastructural preservation of ovarian follicles as a more complicated system using several cryoprotectants. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Development of the ovarian follicular epithelium.
Rodgers, R J; Lavranos, T C; van Wezel, I L; Irving-Rodgers, H F
1999-05-25
A lot is known about the endocrine control of the development of ovarian follicles, but a key question now facing researchers is which molecular and cellular processes take part in control of follicular growth and development. The growth and development of ovarian follicles occurs postnatally and throughout adult life. In this review, we focus on the follicular epithelium (membrana granulosa) and its basal lamina. We discuss a model of how granulosa cells arise from a population of stem cells and then enter different lineages before differentiation. The structure of the epithelium at the antral stage of development is presented, and the effects that follicle growth has on the behavior of the granulosa cells are discussed. Finally, we discuss the evidence that during follicle development the follicular basal lamina changes in composition. This would be expected if the behavior of the granulosa cells changes, or if the permeability of the basal lamina changes. It will be evident that the follicular epithelium has similarities to other epithelia in the body, but that it is more dynamic, as gross changes occur during the course of follicle development. This basic information will be important for the development of future reproductive technologies in both humans and animals, and possibly for understanding polycystic ovarian syndrome in women.
In vitro culture thawed human ovarian tissue: NIV versus slow freezing method.
Xiao, Zhun; Wang, Yan; Li, Ling-Ling; Li, Shang-wei
2013-01-01
The aim of this study was to determine if the needle immersed vitrification method (NIV) can improve the growth potential of thawed ovarian tissue in vitro culture. Human ovarian cortical tissues were cryopreserved using NIV and slow freezing method. After 14 days of culture, the preservation outcomes of NIV and slow freezing groups were analyzed histologically using light microscope and apoptosis was assessed by TUNEL assay. The result showed that the percentage of morphologically abnormal primordial follicles was lower in NIV group than in slow freezing group (P < 0.05). The incidence of TUNEL-positive primordial follicles was lower in NIV group than in slow freezing group (P < 0.05). The study showed that cryopreservation of human ovarian tissue with NIV was effective in improving the growth potential of frozen-thawed ovarian tissue in vitro culture.
Environmental Issues in Thyroid Diseases.
Ferrari, Silvia Martina; Fallahi, Poupak; Antonelli, Alessandro; Benvenga, Salvatore
2017-01-01
Environmental factors are determinant for the appearance of autoimmune thyroid diseases (AITD) in susceptible subjects. Increased iodine intake, selenium, and vitamin D deficiency, exposure to radiation, from nuclear fallout or due to medical radiation, are environmental factors increasing AITD. Cigarette smoking is associated with Graves' disease and Graves' ophthalmopathy, while it decreases the risk of hypothyroidism and thyroid autoimmunity. Viral infections are important environmental factors in the pathogenesis of AITD, too, particularly human parvovirus B19 (EVB19) and hepatitis C virus. Among the many chemical contaminants, halogenated organochlorines and pesticides variably disrupt thyroid function. Polychlorinated biphenyls and their metabolites and polybrominated diethyl ethers bind to thyroid transport proteins, such as transthyretin, displace thyroxine, and disrupt thyroid function. Among drugs, interferon- and iodine-containing drugs have been associated with AITD. Moreover intestinal dysbiosis causes autoimmune thyroiditis. To reduce the risk to populations and also in each patient, it is necessary to comprehend the association between environmental agents and thyroid dysfunction.
Accidental finding of Hashimoto-like thyroiditis in male B.U.T. 6 turkeys at slaughter.
Plesch, P; Schade, B; Breithaupt, A; Bellof, G; Kienzle, E
2014-10-01
In the context of a study on the tolerance of rapeseed meal in B.U.T. 6 turkeys, thyroid glands were histologically and immunohistochemically examined because of potential thyreostatic effects. In all groups including the controls with no rapeseed meal in their food, there was a high incidence of lymphocytic infiltration and thyroiditis (14% of thyroids with moderate to severe lymphocytic thyroiditis). Thirty per cent of mononuclear inflammatory cells were immunohistochemically identified as T cells. There were occasional accumulations of PAX-5 labelled cells, indicating germinal centre development. These lesions resemble Hashimoto's disease in humans. The effect on thyroid function is unknown. Mild hypothyreosis might enhance productivity but also explain dispositions towards diseases seen in context with thyroid dysfunction such as skin diseases (foot pad disease?) and cardiovascular problems. Further studies on thyroid function in these turkeys are needed. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.
Photoacoustic spectroscopic differences between normal and malignant thyroid tissues
NASA Astrophysics Data System (ADS)
Li, Li; Xie, Wengming; Li, Hui
2012-12-01
The thyroid is one of the main endocrine glands of human body, which plays a crucial role in the body's metabolism. Thyroid cancer mortality ranks only second to ovarian cancer in endocrine cancer. Routine diagnostic methods of thyroid diseases in present clinic exist misdiagnosis and missed diagnosis to varying degrees. Those lead to miss the best period of cancer treatment--early. Photoacoustic spectroscopy technology is a new tool, which provides an effective and noninvasive way for biomedical materials research, being highly sensitive and without sample pretreatment. In this paper, we use photoacoustic spectroscopy technology (PAST) to detect the absorption spectrum between normal and malignant thyroid tissues. The result shows that the photoacoustic spectroscopy technology (PAST) could differentiate malignant thyroid tissue from normal thyroid tissue very well. This technique combined with routine diagnostic methods has the potential to increase the diagnostic accuracy in clinical thyroid cancer diagnosis.
Thyroid peroxidase (TPO) expressed in thyroid and breast tissues shows similar antigenic properties.
Godlewska, Marlena; Arczewska, Katarzyna D; Rudzińska, Magdalena; Łyczkowska, Anna; Krasuska, Wanda; Hanusek, Karolina; Ruf, Jean; Kiedrowski, Mirosław; Czarnocka, Barbara
2017-01-01
Thyroid peroxidase (TPO) is essential for physiological function of the thyroid gland. The high prevalence of thyroid peroxidase antibodies (TPOAbs) in patients with breast cancer and their protective role had previously been demonstrated, indicating a link between breast cancer and thyroid autoimmunity. Recently, TPO was shown to be present in breast cancer tissue samples but its antigenicity has not been analyzed. In this study, we investigated TPO expression levels in a series of fifty-six breast cancer samples paired with normal (peri-tumoral) tissue and its antigenic activity using a panel of well-characterized murine anti-human TPOAbs. We have shown that TPO transcripts were present in both normal and cancer tissue samples, although the amounts in the latter were reduced. Additionally, we observed that TPO levels are lower in more advanced cancers. TPO protein expression was confirmed in all tissue samples, both normal and cancerous. We also found that the antigenicity of the immunodominant regions (IDRs) in breast TPO resembles that of thyroid TPO, which is crucial for effective interactions with human TPOAbs. Expression of TPO in breast cancer together with its antigenic activity may have beneficial effects in TPOAb-positive breast cancer patients. However, further studies are needed to confirm the beneficial role of TPOAbs and to better understand the underlying mechanism.
Arnaldi, L A T; Borra, R C; Maciel, R M B; Cerutti, J M
2005-03-01
To investigate the molecular events involved in the pathogenesis and/or progression of thyroid tumors, we compared the gene expression profiles of three thyroid carcinoma cell lines, which represent major tumor subtypes of thyroid cancer and normal thyroid tissue. Using cDNA array methodology, we investigated the expression of 1807 open reading frame expressed sequence tags (ORESTES), selected from head and neck tumor libraries generated through the Brazilian Human Cancer Project-LICR/FAPESP. We found that 505 transcripts were differentially expressed in the thyroid carcinoma cell lines. Using a more stringent criterion, transcripts underexpressed or overexpressed more than fivefold in 1 of 3 or 3 of 3 carcinoma cell lines, a list of 55 ESTs were detected. Five candidate genes were further validated by quantitative polymerase chain reaction (qPCR) in an independent set of 52 thyroid tumors and 22 matched normal thyroid tissues. DCN was found underexpressed in a high percentage of the follicular thyroid adenomas, follicular thyroid carcinomas, and follicular variant of papillary thyroid carcinomas. DIO1 and DIO2 were underexpressed in nearly all papillary thyroid carcinomas. These genes not only could help to better define a tumor signature for thyroid tumors, but may, in part, also become useful as potential targets for thyroid tumor treatment.
Jadkauskaite, Laura; Bahri, Rajia; Farjo, Nilofer; Farjo, Bessam; Jenkins, Gail; Bhogal, Ranjit; Haslam, Iain; Bulfone-Paus, Silvia; Paus, Ralf
2018-05-30
Activation of Nrf2 in primary human mast cells exposed to oxidative stress induced by substance P suppresses pro-inflammatory gene transcription, activation and degranulation. Copyright © 2018. Published by Elsevier Inc.
Manavella, D D; Cacciottola, L; Pommé, S; Desmet, C M; Jordan, B F; Donnez, J; Amorim, C A; Dolmans, M M
2018-06-01
Do adipose tissue-derived stem cells (ASCs) enhance vascularization and follicle survival in xenografted ovarian tissue using a two-step transplantation approach? Higher rates of oxygenation and vascularization of ovarian tissue, as well as increased follicle survival rates, were detected in the early post-grafting period. ASCs have multilineage differentiation potential, proangiogenic properties and enhance vascularization in a peritoneal grafting site. Some studies suggest that using ASCs may improve ovarian tissue quality by enhancing graft angiogenesis. A total of 15 severe combined immunodeficient (SCID) mice were intraperitoneally grafted with frozen-thawed human ovarian tissue (OT) from five different patients. A peritoneal transplantation site had been previously prepared in a first step using either empty fibrin (Fi+OT group [n = 5]) or ASC-loaded fibrin (Fi/ASCs+OT group [n = 5]) for 14 days prior to grafting. Five mice underwent the standard one-step transplantation procedure and served as controls (OT group). Lithium phthalocyanine (LiPc) crystals were inserted into all grafted human ovarian tissue before transplantation. Levels of partial pressure of oxygen (pO2) in grafts were monitored in vivo by electron paramagnetic resonance (EPR) oximetry on Days 3 and 7. Samples for histology and immunohistochemistry (IHC) were collected after euthanizing the mice on Day 7 following EPR. One piece of ovarian tissue per patient was fixed for analysis to serve as non-grafted controls. Prospective experimental study conducted at the Gynecology Research Unit, Université Catholique de Louvain. All materials were used to perform pO2 measurements (EPR oximetry), histological (haematoxylin and eosin staining), immunohistochemistry (anti-mouse and human double CD34 and anti-human Ki-67) and TUNEL analyses. A significant increase in pO2 was observed in all groups between Days 3 and 7 (P < 0.001). A significantly higher pO2 level was observed in the Fi/ASCs+OT group compared to the OT group on Day 7 (P = 0.028). Total CD34-positive vessel area on Day 7 was greater in the Fi/ASCs+OT group than in any other group (vs non-grafted group: P = 0.0014; vs OT group: P = 0.013; vs Fi+OT group: P = 0.018). Primordial follicle survival rates after grafting were higher in the Fi/ASCs+OT group than in the OT (P = 0.0059) or Fi+OT groups (P = 0.0307). TUNEL-positive follicle percentages after grafting were significantly lower in the Fi/ASCs+OT group than in any other grafted tissue (vs OT group: P = 0.045; vs Fi+OT group: P = 0.0268). Percentages of Ki-67-positive primordial follicles were significantly higher in all grafted groups compared to non-grafted tissue controls (P < 0.01). As demonstrated by our results, the proposed two-step ovarian tissue transplantation procedure using ASCs enhances vascularization in the early post-grafting period, leading to increased follicle survival rates and decreased apoptosis. However, mechanisms involved in the proangiogenic behavior of ASCs remain to be elucidated. Our results suggest that the proposed transplantation procedure with ASCs is a promising step towards potentially solving the problem of massive follicle loss after ovarian tissue grafting. This study was supported by grants from the Fonds National de la Recherche Scientifique de Belgique (FNRS-PDR Convention T.0077.14, grant Télévie No. 7.6515.16 F to DDM and grant 5/4/150/5 awarded to MMD and CAA is research associate, FRS-FNRS), Fonds Spéciaux de Recherche, Fondation St Luc, and Foundation Against Cancer, and donations from the Ferrero family.
Review and hypothesis: does Graves' disease develop in non-human great apes?
McLachlan, Sandra M; Alpi, Kristine; Rapoport, Basil
2011-12-01
Graves' disease, caused by stimulatory thyrotropin receptor (TSHR) autoantibodies, has not been observed in animals. In contrast, Hashimoto's thyroiditis develops in chickens, rats, mice, dogs, and marmosets. Attempts to induce an immune response in mice to the luteinizing-hormone receptor suggested that autoantigen glycosylation was one parameter involved in breaking self-tolerance. Over evolution, TSHR glycosylation increased from three asparagine-linked-glycans (N-glycans) in fish to six N-glycans in humans and great apes. All other placental mammals lack one N-glycan in the shed TSHR A-subunit, the primary Graves' disease autoantigen. We hypothesized that (a) lesser TSHR A-subunit glycosylation reduces immunogenicity, accounting for the absence of Graves' disease in most placental mammals; (b) due to human-like A-subunit glycosylation, Graves' disease might arise in great apes. Here, we review and analyze the literature on this subject and report the results of a survey of veterinarians at primate centers and zoos in North America. Previous experimental data from induced TSHR antibodies in mice support a role for A-subunit glycosylation in breaking self-tolerance. An extensive search of the great-ape literature revealed five reports of noncongenital thyroid dysfunction, four with hypothyroidism and one with hyperthyroidism. The latter was a gorilla who was treated with anti-thyroid drugs but is now deceased. Neither serum nor thyroid tissue from this gorilla were available for analysis. The survey of veterinarians revealed that none of the 979 chimpanzees in primate research centers had a diagnosis of noncongenital thyroid dysfunction and among ∼1100 great apes (gorillas, orangutans, and chimpanzees) in U.S. zoos, only three were hypothyroid, and none were hyperthyroid. Graves' disease appears to be either very rare or does not occur in great apes based on the literature and a survey of veterinarians. Although the available data do not advance our hypothesis, there is a paucity of information regarding thyroid function tests and thyroid autoantibodies in the great apes In addition, these primates may be protected against TSHR autoimmunity by the absence of genetic polymorphisms and putative environmental triggers. Finally, larger numbers of great apes need to be followed, and tests of thyroid function and thyroid autoantibodies be performed, to confirm that spontaneous Graves' disease is restricted to humans.
A guide to studying human hair follicle cycling in vivo
Oh, Ji Won; Kloepper, Jennifer; Langan, Ewan A.; Kim, Yongsoo; Yeo, Joongyeub; Kim, Min Ji; Hsi, Tsai-Ching; Rose, Christian; Yoon, Ghil Suk; Lee, Seok-Jong; Seykora, John; Kim, Jung Chul; Sung, Young Kwan
2015-01-01
Hair follicles (HFs) undergo life-long cyclical transformations, progressing through stages of rapid growth (anagen), regression (catagen), and relative “quiescence” (telogen). Since HF cycling abnormalities underlie many human hair growth disorders, the accurate classification of individual cycle stages within skin biopsies is clinically important and essential for hair research. For preclinical human hair research purposes, human scalp skin can be xenografted onto immunocompromised mice to study human HF cycling and manipulate long-lasting anagen in vivo. While available for mice, a comprehensive guide on how to recognize different human hair cycle stages in vivo is lacking. Here, we present such a guide, which uses objective, well-defined, and reproducible criteria and integrates simple morphological indicators with advanced, (immuno)-histochemical markers. This guide also characterizes human HF cycling in xenografts and highlights the utility of this model for in vivo hair research. Detailed schematic drawings and representative micrographs provide examples of how best to identify human HF stages, even in sub-optimally sectioned tissue, and practical recommendations are given for designing human-on-mouse hair cycle experiments. Thus, this guide seeks to offer a benchmark for human hair cycle stage classification, for both hair research experts and newcomers to the field. PMID:26763421
Further Clinical Evidence for the Effect of IGF-1 on Hair Growth and Alopecia.
Trüeb, Ralph M
2018-04-01
Observations on the Laron syndrome originally offered the opportunity to explore the effect of insulin-like growth factor 1 (IGF-1) deficiency on human hair growth and differentiation. According to its expression in the dermal hair papilla, IGF-1 is likely involved in reciprocal signaling. It has been shown to affect follicular proliferation, tissue remodeling, and the hair growth cycle, as well as follicular differentiation, identifying IGF-1 signaling as an important mitogenic and morphogenetic regulator in hair follicle biology. Of all the cytokines or growth factors that have been postulated to play a role in hair follicles, ultimately IGF-1 is known to be regulated by androgens. Accordingly, dermal papillary cells from balding scalp follicles were found to secrete significantly less IGF-1 than their counterparts from nonbalding scalp follicles. Herein, hypotrichosis in primary growth hormone deficiency, and a lack of response of female and male androgenetic-type alopecia to treatment with topical minoxidil and oral finasteride in patients who had undergone surgical resection of the pituitary gland, provide further evidence for an effect of IGF-1 on hair growth and alopecia.
Are GnRH and FSH potentially damaging factors in the cardiovascular system?
Poljak, Z; Hulin, I; Maruscakova, L; Mladosievicova, B
2018-04-02
In the physiological view the human cardiomyocytes express receptors of gonadotropin-releasing hormone and follicle-stimulating hormone. The local effects of these hormones in the heart are related also to some interstitial cells, such as endothelial cells with follicle-stimulating hormone receptors and immune cells with gonadotropin-releasing hormone receptors. The administration of androgen deprivation therapy in patients with prostate cancer is associated with increased incidence of cardiovascular complications. It is suggested that negative action of this therapy on cardiovascular system is due to the loss of testosterone but also levels of gonadotropin-releasing hormone and follicle-stimulating hormone are changed by therapy. In this article we review the literature to date with an emphasis on recent investigation focused on potential role of abnormal gonadotropin-releasing hormone and follicle-stimulating hormone levels induced by gonadotropin-releasing hormone agonists on the cardiovascular risk. These facts exacerbate the complexity of specific hormone and cell relationships within heart and vessels. Androgen deprivation therapy reveals the physiological relationships between hormones and specific tissues that are not part of the endocrine system.
Paus, R.; Handjiski, B.; Eichmüller, S.; Czarnetzki, B. M.
1994-01-01
We introduce cyclophosphamide-induced alopecia (CYP-IA) in C57BL-6 mice as a clinically relevant model for studying the biology of chemotherapy-induced alopecia and for developing anti-alopecia drugs. One injection of CYP to mice with all back skin follicles in anagen VI induces severe alopecia that strikingly reproduces the follicle response, recovery, and histopathology seen in human CYP-IA. CYP dose-dependently induces abnormal follicular melanogenesis and dystrophic anagen or, in more severely damaged follicles, dystrophic catagen. Both dystrophy forms are followed by an extremely shortened telogen phase, but differ in the associated hair loss and in recovery patterns, which determines hair regrowth. This follicular response to CYP can be manipulated pharmacologically: systemic cyclosporine A shifts it toward a mild form of dystrophic anagen, thus retarding CYP-IA and prolonging "primary recovery". Topical dexamethasone, in contrast, forces follicles into dystrophic catagen, which augments CYP-IA, but accelerates the regrowth of normally pigmented hair ("secondary recovery"). Images Figure 2 Figure 3 Figure 4 Figure 6 Figure 7 Figure 8 Figure 10 PMID:8160773
The immune system which adversely alter thyroid functions: a review on the concept of autoimmunity.
Mansourian, Azad Reza
2010-08-15
The immune system protect individual from many pathogens exists within our environment and in human body, by destroying them through molecular and cellular mechanism of B and T cells of immune system. Autoimmunity is an adverse relation of immune system against non- foreign substances leaving behind either alters the normal function or destroying the tissue involved. Autoimmunity occur in genetically predispose persons with familial connections. The autoimmunity to the thyroid gland mainly consists of Hashimato thyroiditis and Grave's disease, the two end of spectrum in thyroid function of hypo and hyperactivity, respectively. The thyroid stimulating hormone receptor, thyroglobuline, enzymes of thyroid hormones synthesis are targeted by autoantibodies and cell- mediated reactions. The aim of this review is to explore the studies reported on the autoimmunity to the thyroid gland.
Woo, Hyunju; Lee, Seungjun; Kim, Seungbeom; Park, Deokhoon; Jung, Eunsun
2017-07-01
Hair loss known as alopecia is caused by abnormal hair follicle cycling including shortening of the anagen (growth) phase and changing of hair follicle morphology with miniaturization. In accordance with the life extension, the quality of life is considered to be a most important thing. The yearning for healthy and beautiful hair and low self esteem due to hair loss had negative influence on the quality of life with psychosocial maladjustment. The objective of this research was to identify new compound that can be used as a drug to promote hair growth. We investigated whether the function of sinapic acid (SA) is able to promote hair growth in human hair follicle dermal papilla cells (hHFDPC). We showed that treatment of SA in hHFDPC could induce proliferation and the activation of Akt signaling in HFDPC. In addition, SA could stimulate the expressions of the several growth factors, insulin-like growth factor 1, and vascular endothelial growth factor for hair growth. We showed that SA led to an increased level of phospho-GSK-3β and β-catenin accumulation in HFDPC. Finally, the promoting effect of SA in hHFDPC cell growth occurred by the induction of cell cycle progression. These results suggest that SA could be one of the potential candidate compounds for the treatment of alopecia by inducing hair growth through triggering the expressions of growth factors via activation of Akt and subsequent inactivation of GSK-3β /β-catenin pathway.
Human steroidogenesis: implications for controlled ovarian stimulation with exogenous gonadotropins.
Andersen, Claus Y; Ezcurra, Diego
2014-12-28
In the menstrual cycle, the mid-cycle surge of gonadotropins (both luteinising hormone [LH] and follicle-stimulating hormone [FSH]) signals the initiation of the periovulatory interval, during which the follicle augments progesterone production and begins to luteinise, ultimately leading to the rupture of the follicle wall and the release of an oocyte. The administration of gonadotropins in controlled ovarian stimulation (COS) leads to supraphysiological steroid concentrations of a very different profile compared with those seen during natural cycles. It has been suggested that these high steroid concentrations cause alterations in endometrial development, affecting oocyte viability in assisted reproductive technology. Furthermore, it has been proposed that elevated progesterone levels have a negative effect on the reproductive outcome of COS. This may arise from an asynchrony between embryo stage and endometrium status at the window of implantation. The regulation of progesterone production by the developing follicles during COS is a complicated interplay of hormonal systems involving the theca and granulosa cells, and the effect of the actions of both LH and FSH. The present paper reviews current knowledge of the regulation of progesterone in the human ovary during the follicular phase and highlights areas where knowledge remains limited. In this review, we provide in-depth information outlining the regulation and function of gonadotropins in the complicated area of steroidogenesis. Based on current evidence, it is not clear whether the high levels of progesterone produced during COS have detrimental effects on fertility.
Viruses and thyroiditis: an update
Desailloud, Rachel; Hober, Didier
2009-01-01
Viral infections are frequently cited as a major environmental factor involved in subacute thyroiditis and autoimmune thyroid diseases This review examines the data related to the role of viruses in the development of thyroiditis. Our research has been focused on human data. We have reviewed virological data for each type of thyroiditis at different levels of evidence; epidemiological data, serological data or research on circulating viruses, direct evidence of thyroid tissue infection. Interpretation of epidemiological and serological data must be cautious as they don't prove that this pathogen is responsible for the disease. However, direct evidence of the presence of viruses or their components in the organ are available for retroviruses (HFV) and mumps in subacute thyroiditis, for retroviruses (HTLV-1, HFV, HIV and SV40) in Graves's disease and for HTLV-1, enterovirus, rubella, mumps virus, HSV, EBV and parvovirus in Hashimoto's thyroiditis. However, it remains to determine whether they are responsible for thyroid diseases or whether they are just innocent bystanders. Further studies are needed to clarify the relationship between viruses and thyroid diseases, in order to develop new strategies for prevention and/or treatment. PMID:19138419
Oxalosis in wild desert tortoises, Gopherus agassizii
Jacobson, Elliott R.; Berry, Kristin H.; Stacy, Brian; Huzella, Louis M.; Kalasinsky, Victor F.; Fleetwood, Michelle L.; Mense, Mark G.
2009-01-01
We necropsied a moribund, wild adult male desert tortoise (Gopherus agassizii) with clinical signs of respiratory disease and elevated plasma biochemical analytes indicative of renal disease (blood urea nitrogen [415 mg/dl], uric acid [11.8 mg/dl], sodium >180 mmol/l] and chloride [139 mmol/l]). Moderate numbers of birefringent oxalate crystals, based on infrared and electron microscopy, were present within renal tubules; small numbers were seen in colloid within thyroid follicles. A retrospective analysis of 66 additional cases of wild desert tortoises was conducted to determine whether similar crystals were present in thyroid and kidney. The tortoises, from the Mojave and Sonoran deserts, were necropsied between 1992 and 2003 and included juveniles and adults. Tortoises were classified as healthy (those that died due to trauma and where no disease was identified after necropsy and evaluation by standard laboratory tests used for other tortoises) or not healthy (having one or more diseases or lesions). For all 67 necropsied tortoises, small numbers of crystals of similar appearance were present in thyroid glands from 44 of 54 cases (81%) and in kidneys from three of 65 cases (5%). Presence of oxalates did not differ significantly between healthy and unhealthy tortoises, between age classes, or between desert region, and their presence was considered an incidental finding. Small numbers of oxalate crystals seen within the kidney of two additional tortoises also were considered an incidental finding. Although the source of the calcium oxalate could not be determined, desert tortoises are herbivores, and a plant origin seems most likely. Studies are needed to evaluate the oxalate content of plants consumed by desert tortoises, and particularly those in the area where the tortoise in renal failure was found.
Hu, Xiaohao; Song, Shiyu; Xu, Hui; Niu, Mengyuan; Wang, Hongwei; Wang, Jian
2017-01-01
Background Graves’ disease is the most common form of autoimmune thyroid disorder, characterized by hyperthyroidism due to circulating autoantibodies. To address the pathological features and establish a therapeutic approach of this disease, an animal model carrying the phenotype of Graves’ disease (GD) in concert with Graves’ Ophthalmopathy (GO) will be very important. However, there are no ideal animal models that are currently available. The aim of the present study is to establish an animal model of GD and GO disease, and its pathological features were further characterized. Methods A recombinant plasmid pcDNA3.1- T289 was constructed by inserting the TSHR A-subunit gene into the expression vector pcDNA3.1, and genetic immunization was successfully performed by intramuscular injection of the plasmid pcDNA3.1-T289 on female 8-week-old BALB/c mice. Each injection was immediately followed by in vivo electroporation using ECM830 square wave electroporator. Morphological changes of the eyes were examined using 7.0T MRI scanner. Levels of serum T4 and TSHR antibodies (TRAb) were assessed by ELISA. The pathological changes of the thyroid and orbital tissues were examined by histological staining such as H&E staining and Alcian blue staining. Results More than 90% of the immunized mice spontaneously developed goiter, and about 80% of the immunized mice manifested increased serum T4 and TRAb levels, combined with hypertrophy and hyperplasia of thyroid follicles. A significantly increased synthesis of hyaluronic acid was detected in in the immunized mice compared with the control groups. Conclusion We have successfully established an animal model manifesting Graves’ hyperthyroidism and ophthalmopathy, which provides a useful tool for future study of the pathological features and the development of novel therapies of the diseases. PMID:28319174
Eggesbø, Merete; Thomsen, Cathrine; Jørgensen, Jens V.; Becher, Georg; Odland, Jon Øyvind; Longnecker, Matthew P.
2011-01-01
Background Brominated flame retardants (BFRs) have been in widespread use in a vast array of consumer products since the 1970s. The metabolites of some BFRs show a structural similarity to thyroid hormones and experimental animal studies have confirmed that they may interfere with thyroid hormone homeostasis. A major concern has been whether intrauterine exposure to BFRs may disturb thyroid homeostasis since the fetal brain is particularly susceptible to alterations in thyroid hormones. However, few reports on newborns have been published to date. Objectives To evaluate the association between BFRs and neonatal thyroid-stimulating hormone (TSH). Methods We studied six polybrominated diphenyl ethers (PBDEs) measured in milk samples from 239 women who were part of the “Norwegian Human Milk Study” (HUMIS), 2003–2006. Hexabromocyclododecane (HBCD) and BDE-209 were measured in a subset of the women (193 and 46 milk samples, respectively). The milk was sampled at a median of 33 days after delivery. TSH was measured in babies three days after delivery as part of the routine national screening program for early detection of congenital hypothyroidism. Additional information was obtained through the Medical Birth Registry and questionnaires to the mothers. Results The PBDE concentrations in human milk in Norway were comparable to concentrations reported from other European countries and Asia, but not the US and Canada where levels are approximately one order of magnitude higher. We observed no statistically significant associations between BDE-47, 99, 153, 154, 209 and HBCD in human milk and TSH in models adjusted for possible confounders and other environmental toxicants including polychlorinated biphenyls (PCBs). Conclusions We did not observe an association between TSH and exposure to HBCD and PBDEs within the exposure levels observed. PMID:21601188
Chen, Minghui; Xu, Yanwen; Miao, Benyu; Zhao, Hui; Luo, Lu; Shi, Huijuan; Zhou, Canquan
2016-09-10
Previous studies have shown that circadian genes might be involved in the development of polycystic ovarian syndrome (PCOS). Hyperandrogenism is a hallmark feature of PCOS. However, the effect of hyperandrogenism on circadian gene expression in human granulosa cells is unknown, and the general expression pattern of circadian genes in the human ovary is unclear. Expression of the circadian proteins CLOCK and PER2 in human ovaries was observed by immunohistochemistry. The mRNA expression patterns of the circadian genes CLOCK, PER2, and BMAL1, and the steroidogenesis-related genes STAR, CYP11A1, HSD3B2, and CYP19A1 in cultured human luteinized granulosa cells were analyzed over the course of 48 h after testosterone treatment by quantitative polymerase chain reaction. Immunostaining of CLOCK and PER2 protein was detected in the granulosa cells of dominant antral follicles but was absent in the primordial, primary, or preantral follicles of human ovaries. After testosterone stimulation, expression of PER2 showed an oscillating pattern, with two peaks occurring at the 24th and 44th hours; expression of CLOCK increased significantly to the peak at the 24th hour, whereas expression of BMAL1 did not change significantly over time in human luteinized granulosa cells. Among the four steroidogenesis-related genes evaluated, only STAR displayed an oscillating expression pattern with two peaks occurring at the 24th and 40th hours after testosterone stimulation. Circadian genes are expressed in the dominant antral follicles of the human ovary. Oscillating expression of the circadian gene PER2 can be induced by testosterone in human granulosa cells in vitro. Expression of STAR also displayed an oscillating pattern after testosterone stimulation. Our results indicate a potential relationship between the circadian clock and steroidogenesis in the human ovary, and demonstrate the effect of testosterone on circadian gene expression in granulosa cells.
Ayala, Victor I; Deleage, Claire; Trivett, Matthew T; Jain, Sumiti; Coren, Lori V; Breed, Matthew W; Kramer, Joshua A; Thomas, James A; Estes, Jacob D; Lifson, Jeffrey D; Ott, David E
2017-06-01
Follicular helper CD4 T cells, T FH , residing in B-cell follicles within secondary lymphoid tissues, are readily infected by AIDS viruses and are a major source of persistent virus despite relative control of viral replication. This persistence is due at least in part to a relative exclusion of effective antiviral CD8 T cells from B-cell follicles. To determine whether CD8 T cells could be engineered to enter B-cell follicles, we genetically modified unselected CD8 T cells to express CXC chemokine receptor 5 (CXCR5), the chemokine receptor implicated in cellular entry into B-cell follicles. Engineered CD8 T cells expressing human CXCR5 (CD8 hCXCR5 ) exhibited ligand-specific signaling and chemotaxis in vitro Six infected rhesus macaques were infused with differentially fluorescent dye-labeled autologous CD8 hCXCR5 and untransduced CD8 T cells and necropsied 48 h later. Flow cytometry of both spleen and lymph node samples revealed higher frequencies of CD8 hCXCR5 than untransduced cells, consistent with preferential trafficking to B-cell follicle-containing tissues. Confocal fluorescence microscopy of thin-sectioned lymphoid tissues demonstrated strong preferential localization of CD8 hCXCR5 T cells within B-cell follicles with only rare cells in extrafollicular locations. CD8 hCXCR5 T cells were present throughout the follicles with some observed near infected T FH In contrast, untransduced CD8 T cells were found in the extrafollicular T-cell zone. Our ability to direct localization of unselected CD8 T cells into B-cell follicles using CXCR5 expression provides a strategy to place highly effective virus-specific CD8 T cells into these AIDS virus sanctuaries and potentially suppress residual viral replication. IMPORTANCE AIDS virus persistence in individuals under effective drug therapy or those who spontaneously control viremia remains an obstacle to definitive treatment. Infected follicular helper CD4 T cells, T FH , present inside B-cell follicles represent a major source of this residual virus. While effective CD8 T-cell responses can control viral replication in conjunction with drug therapy or in rare cases spontaneously, most antiviral CD8 T cells do not enter B-cell follicles, and those that do fail to robustly control viral replication in the T FH population. Thus, these sites are a sanctuary and a reservoir for replicating AIDS viruses. Here, we demonstrate that engineering unselected CD8 T cells to express CXCR5, a chemokine receptor on T FH associated with B-cell follicle localization, redirects them into B-cell follicles. These proof of principle results open a pathway for directing engineered antiviral T cells into these viral sanctuaries to help eliminate this source of persistent virus. Copyright © 2017 American Society for Microbiology.
Human thyroid specimen imaging by fluorescent x-ray computed tomography with synchrotron radiation
NASA Astrophysics Data System (ADS)
Takeda, Tohoru; Yu, Quanwen; Yashiro, Toru; Yuasa, Tetsuya; Hasegawa, Yasuo; Itai, Yuji; Akatsuka, Takao
1999-09-01
Fluorescent x-ray computed tomography (FXCT) is being developed to detect non-radioactive contrast materials in living specimens. The FXCT system consists of a silicon (111) channel cut monochromator, an x-ray slit and a collimator for fluorescent x ray detection, a scanning table for the target organ and an x-ray detector for fluorescent x-ray and transmission x-ray. To reduce Compton scattering overlapped on the fluorescent K(alpha) line, incident monochromatic x-ray was set at 37 keV. The FXCT clearly imaged a human thyroid gland and iodine content was estimated quantitatively. In a case of hyperthyroidism, the two-dimensional distribution of iodine content was not uniform, and thyroid cancer had a small amount of iodine. FXCT can be used to detect iodine within thyroid gland quantitatively and to delineate its distribution.
Hengevoss, Jonas; Piechotta, Marion; Müller, Dennis; Hanft, Fabian; Parr, Maria Kristina; Schänzer, Wilhelm; Diel, Patrick
2015-06-01
Analysing effects of pharmaceutical substances and training on feedback mechanisms of the hypothalamic-pituitary-gonadal axis may be helpful to quantify the benefit of strategies preventing loss of muscle mass, and in the fight against doping. In this study we analysed combined effects of anabolic steroids and training on the hypothalamic-pituitary-gonadal axis. Therefore intact male Wistar rats were dose-dependently treated with metandienone, estradienedione and the selective androgen receptor modulator (SARM) S-1. In serum cortisol, testosterone, 17β-estradiol (E2), prolactin, inhibin B, follicle-stimulating hormone (FSH), luteinizing hormone (LH), Insulin-like growth factor 1 (IGF-1), and thyroxine (T4) concentrations were determined. Six human volunteers were single treated with 1-androstenedione. In addition abusing and clean body builders were analysed. Serum concentrations of inhibin B, IGF-1, cortisol, prolactin, T4, thyroid-stimulating hormone (TSH), testosterone and LH were determined. In rats, administration of metandienone, estradienedione and S-1 resulted in an increase of muscle fiber diameter. Metandienone and estradienedione but not S-1 administration significantly decreases LH and inhibin B serum concentration. Administration of estradienedione resulted in an increase of E2 and S-1 in an increase of cortisol. Single administration of 1-androstenedione in humans decreased cortisol and inhibin B serum concentrations. LH was not affected. In abusing body builders a significantly decrease of LH, TSH and inhibin B and an increase of prolactin, IGF-1 and T4 was detected. In clean body builders only T4 and TSH were affected. Copyright © 2015 Elsevier Ltd. All rights reserved.
Associations between brominated flame retardants in house dust and hormone levels in men
Johnson, Paula I.; Stapleton, Heather M.; Mukherjee, Bhramar; Hauser, Russ; Meeker, John D.
2013-01-01
Brominated flame retardants (BFRs) are used in the manufacture of a variety of materials and consumer products in order to meet fire safety standards. BFRs may persist in the environment and have been detected in wildlife, humans and indoor dust and air. Some BFRs have demonstrated endocrine and reproductive effects in animals, but human studies are limited. In this exploratory study, we measured serum hormone levels and flame retardant concentrations [31 polybrominated diphenyl ether (PBDE) congeners and 6 alternate flame retardants] in house dust from men recruited through a US infertility clinic. PBDE congeners in dust were grouped by commercial mixtures (i.e. penta-, octaand deca-BDE). In multivariable linear regression models adjusted by age and body mass index (BMI), significant positive associations were found between house dust concentrations of pentaBDEs and serum levels of free T4, total T3, estradiol, and sex hormone binding globulin (SHBG), along with an inverse association with follicle stimulating hormone (FSH). There were also positive associations of octaBDE concentrations with serum free T4, thyroid stimulating hormone (TSH), luteinizing hormone (LH) and testosterone and an inverse association of decaBDE concentrations with testosterone. Hexabromocyclododecane (HBCD) was associated with decreased SHBG and increased free androgen index. Dust concentrations of bis-tribromophenoxyethane (BTBPE) and tetrabromo-diethylhexylphthalate (TBPH) were positively associated with total T3. These findings are consistent with our previous report of associations between PBDEs (BDE 47, 99 and 100) in house dust and hormone levels in men, and further suggest that exposure to contaminants in indoor dust may be leading to endocrine disruption in men. PMID:23333513
Thyroid-stimulating hormone pituitary adenomas.
Clarke, Michelle J; Erickson, Dana; Castro, M Regina; Atkinson, John L D
2008-07-01
Thyroid-stimulating hormone (TSH)-secreting pituitary adenomas are rare, representing < 2% of all pituitary adenomas. The authors conducted a retrospective analysis of patients with TSH-secreting or clinically silent TSH-immunostaining pituitary tumors among all pituitary adenomas followed at their institution between 1987 and 2003. Patient records, including clinical, imaging, and pathological and surgical characteristics were reviewed. Twenty-one patients (6 women and 15 men; mean age 46 years, range 26-73 years) were identified. Of these, 10 patients had a history of clinical hyperthyroidism, of whom 7 had undergone ablative thyroid procedures (thyroid surgery/(131)I ablation) prior to the diagnosis of pituitary adenoma. Ten patients had elevated TSH preoperatively. Seven patients presented with headache, and 8 presented with visual field defects. All patients underwent imaging, of which 19 were available for imaging review. Sixteen patients had macroadenomas. Of the 21 patients, 18 underwent transsphenoidal surgery at the authors' institution, 2 patients underwent transsphenoidal surgery at another facility, and 1 was treated medically. Patients with TSH-secreting tumors were defined as in remission after surgery if they had no residual adenoma on imaging and had biochemical evidence of hypo-or euthyroidism. Patients with TSH-immunostaining tumors were considered in remission if they had no residual tumor. Of these 18 patients, 9 (50%) were in remission following surgery. Seven patients had residual tumor; 2 of these patients underwent further transsphenoidal resection, 1 underwent a craniotomy, and 4 underwent postoperative radiation therapy (2 conventional radiation therapy, 1 Gamma Knife surgery, and 1 had both types of radiation treatment). Two patients had persistently elevated TSH levels despite the lack of evidence of residual tumor. On pathological analysis and immunostaining of the surgical specimen, 17 patients had samples that stained positively for TSH, 8 for alpha-subunit, 10 for growth hormone, 7 for prolactin, 2 for adrenocorticotrophic hormone, and 1 for follicle-stimulating hormone/luteinizing hormone. Eleven patients (61%) ultimately required thyroid hormone replacement therapy, and 5 (24%) required additional pituitary hormone replacement. Of these, 2 patients required treatment for new anterior pituitary dysfunction as a complication of surgery, and 2 patients with preoperative partial anterior pituitary dysfunction developed complete panhypopituitarism. One patient had transient diabetes insipidus. The remainder had no change in pituitary function from their preoperative state. Thyroid-stimulating hormone-secreting pituitary lesions are often delayed in diagnosis, are frequently macroadenomas and plurihormonal in terms of their pathological characteristics, have a heterogeneous clinical picture, and are difficult to treat. An experienced team approach will optimize results in the management of these uncommon lesions.
Selenoproteins in human body: focus on thyroid pathophysiology.
Valea, Ana; Georgescu, Carmen Emanuela
2018-06-05
Selenium (Se) has a multilevel, complex and dynamic effect on the human body as a major component of selenocysteine, incorporated into selenoproteins, which include the selenocysteine-containing enzymes iodothyronine deiodinases. At the thyroid level, these proteins play an essential role in antioxidant protection and hormone metabolism. This is a narrative review based on PubMed/Medline database research regarding thyroid physiology and conditions with Se and Se-protein interferences. In humans, Se-dependent enzyme functions are best expressed through optimal Se intake, although there is gap in our knowledge concerning the precise mechanisms underlying the interrelation. There is a good level of evidence linking low serum Se to autoimmune thyroid diseases and, to a lesser extent, differentiated thyroid cancer. However, when it comes to routine supplementation, the results are heterogeneous, except in the case of mild Graves' orbitopathy. Autoimmune hypothyroidism is associated with a state of higher oxidative stress, but not all studies found an improvement of thyroid function after Se was introduced as antioxidant support. Meanwhile, no routine supplementation is recommended. Low Se intake is correlated with an increased risk of developing antithyroid antibodies, its supplementation decreasing their titres; there is also a potential reduction in levothyroxine replacement dose required for hypothyroidism and/or the possibility that it prevents progression of subclinical hypothyroidism, although not all studies agree. In thyroid-associated orbitopathy, euthyroidism is more rapidly achieved if the micronutrient is added to traditional drugs, while controls appear to benefit from the microelement only if they are deficient; thus, a basal assay of Se appears advisable to better select patients who need substitution. Clearly, further Se status biomarkers are required. Future introduction of individual supplementation algorithms based on baseline micronutrient levels, underlying or at-risk clinical conditions, and perhaps selenoprotein gene polymorphisms is envisaged.
Zeng, Lingchun; Geng, Yan; Tretiakova, Maria; Yu, Xuemei; Sicinski, Peter; Kroll, Todd G.
2008-01-01
Peroxisome proliferator-activated receptors (PPARs) are lipid sensing nuclear receptors that have been implicated in multiple physiologic processes including cancer. Here, we determine that PPARδ induces cell proliferation through a novel cyclin E1-dependent mechanism and is upregulated in many human thyroid tumors. The expression of PPARδ was induced coordinately with proliferation in primary human thyroid cells by activation of serum, TSH/cAMP/pKa or EGF/MEK/ERK mitogenic signaling pathways. Engineered overexpression of PPARδ increased thyroid cell number, the incorporation of BrdU and the phosphorylation of Rb 40–45% in just 2 days, one usual cell population doubling. The synthetic PPARδ agonist GW501516 augmented these PPARδ proliferation effects in a dose-dependent manner. Overexpression of PPARδ increased cyclin E1 protein 9-fold, whereas knock down of PPARδ by siRNA reduced both cyclin E1 protein and cell proliferation 2-fold. Induction of proliferation by PPARδ wasabrogated by knockdown of cyclin E1 by siRNA in primary thyroid cells and by knockout of cyclin E1 in mouse embryo fibroblasts, confirming a cyclin E1 dependence for this PPARδ pathway. In addition, the mean expression of native PPARδ was increased 2- to 5-fold (p<0.0001) and correlated with that of the in situ proliferation marker Ki67 (R=0.8571; p=0.02381) in six different classes of benign and malignant human thyroid tumors. Our experiments identify a PPARδ mechanism that induces cell proliferation through cyclin E1 and is regulated by growth factor and lipid signals. The data argue for systematic investigation of PPARδ antagonists as anti-neoplastic agents and implicate altered PPARδ-cyclin E1 signaling in thyroid and other carcinomas. PMID:18701481
Godlewska, Marlena; Krasuska, Wanda
2018-01-01
Thyroid peroxidase (TPO) is an enzyme and autoantigen expressed in thyroid and breast tissues. Thyroid TPO undergoes a complex maturation process however, nothing is known about post-translational modifications of breast-expressed TPO. In this study, we have investigated the biochemical properties of TPO expressed in normal and cancerous human breast tissues, and the maturation process and antigenicity of TPO present in a panel of human breast tissue-derived cell lines. We found that the molecular weight of breast TPO was slightly lower than that of thyroid TPO due to decreased glycosylation and as suggest results of Western blot also shorter amino acid chain. Breast TPO exhibit enzymatic activity and isoelectric point comparable to that of thyroid TPO. The biochemical properties of TPO expressed in mammary cell lines and normal thyrocytes are similar regarding glycan content, molecular weight and isoelectric point. However, no peroxidase activity and dimer formation was detected in any of these cell lines since the majority of TPO protein was localized in the cytoplasmic compartment, and the TPO expression at the cell surface was too low to detect its enzymatic activity. Lactoperoxidase, a protein highly homologous to TPO expressed also in breast tissues, does not influence the obtained data. TPO expressed in the cell lines was recognized by a broad panel of TPO-specific antibodies. Although some differences in biochemical properties between thyroid and breast TPO were observed, they do not seem to be critical for the overall three-dimensional structure. This conclusion is supported by the fact that TPO expressed in breast tissues and cell lines reacts well with conformation-sensitive antibodies. Taking into account a close resemblance between both proteins, especially high antigenicity, future studies should investigate the potential immunotherapies directed against breast-expressed TPO and its specific epitopes. PMID:29513734
Godlewska, Marlena; Krasuska, Wanda; Czarnocka, Barbara
2018-01-01
Thyroid peroxidase (TPO) is an enzyme and autoantigen expressed in thyroid and breast tissues. Thyroid TPO undergoes a complex maturation process however, nothing is known about post-translational modifications of breast-expressed TPO. In this study, we have investigated the biochemical properties of TPO expressed in normal and cancerous human breast tissues, and the maturation process and antigenicity of TPO present in a panel of human breast tissue-derived cell lines. We found that the molecular weight of breast TPO was slightly lower than that of thyroid TPO due to decreased glycosylation and as suggest results of Western blot also shorter amino acid chain. Breast TPO exhibit enzymatic activity and isoelectric point comparable to that of thyroid TPO. The biochemical properties of TPO expressed in mammary cell lines and normal thyrocytes are similar regarding glycan content, molecular weight and isoelectric point. However, no peroxidase activity and dimer formation was detected in any of these cell lines since the majority of TPO protein was localized in the cytoplasmic compartment, and the TPO expression at the cell surface was too low to detect its enzymatic activity. Lactoperoxidase, a protein highly homologous to TPO expressed also in breast tissues, does not influence the obtained data. TPO expressed in the cell lines was recognized by a broad panel of TPO-specific antibodies. Although some differences in biochemical properties between thyroid and breast TPO were observed, they do not seem to be critical for the overall three-dimensional structure. This conclusion is supported by the fact that TPO expressed in breast tissues and cell lines reacts well with conformation-sensitive antibodies. Taking into account a close resemblance between both proteins, especially high antigenicity, future studies should investigate the potential immunotherapies directed against breast-expressed TPO and its specific epitopes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christman, G.M.; Randolph, J.F. Jr.; Peegel, H.
1991-06-01
The objective of this study was to examine the in vitro responsiveness of cultured luteinized human granulosa cells over time to insulin-like growth factor 1 (IGF-1), human follicle-stimulating hormone (FSH), and human chorionic gonadotropin (hCG) for the induction of aromatase activity. Granulosa cells were retrieved from preovulatory follicles in patients undergoing in vitro fertilization. Cells were cultured for a period of 72 hours or 10 days. The ability of hCG, human FSH, and/or IGF-I to induce aromatase activity was assayed by the stereospecific release of tritium from (1B-3H)androstenedione. Short-term cultures (72 hours) demonstrated a marked rise in aromatase activity inmore » response to human FSH and IGF-I, whereas a smaller response to hCG was observed. In contrast, 10-day cultures demonstrated responsiveness predominantly to hCG rather than human FSH for the induction of aromatase activity with no remarkable effect of IGF-I. Luteinized human granulosa cells undergo a transformation from an initial human FSH and IGF-I responsive state to an hCG responsive state in long-term cultures.« less
Full-thickness skin with mature hair follicles generated from tissue culture expanded human cells.
Wu, Xunwei; Scott, Larry; Washenik, Ken; Stenn, Kurt
2014-12-01
The goal of regenerative medicine is to reconstruct fully functional organs from tissue culture expanded human cells. In this study, we report a method for human reconstructed skin (hRSK) when starting with human cells. We implanted tissue culture expanded human epidermal and dermal cells into an excision wound on the back of immunodeficient mice. Pigmented skin covered the wound 4 weeks after implantation. Hair shafts were visible at 12 weeks and prominent at 14 weeks. Histologically, the hRSK comprises an intact epidermis and dermis with mature hair follicles, sebaceous glands and most notably, and unique to this system, subcutis. Morphogenesis, differentiation, and maturation of the hRSK mirror the human fetal process. Human antigen markers demonstrate that the constituent cells are of human origin for at least 6 months. The degree of new skin formation is most complete when using tissue culture expanded cells from fetal skin, but it also occurs with expanded newborn and adult cells; however, no appendages formed when we grafted both adult dermal and epidermal cells. The hRSK system promises to be valuable as a laboratory model for studying biological, pathological, and pharmaceutical problems of human skin.
Zhu, Xuming; Wu, Yumei; Huang, Sixia; Chen, Yingwei; Tao, Yixin; Wang, Yushu; He, Shigang; Shen, Sanbing; Wu, Ji; Guo, Xizhi; Li, Baojie; He, Lin; Ma, Gang
2014-12-01
Increased Wnt5a expression has been observed in psoriatic plaques. However, whether Wnt5a overexpression directly causes psoriasis is unknown. In this study, we generated transgenic (TG) mice with epidermal Wnt5a overexpression under the control of the human K14 promoter. The skin of Wnt5a TG mice was not psoriatic, but characterized with normal proliferation and homeostasis of epidermis. Instead, these TG mice displayed impaired hair follicle transition from telogen to anagen, most likely due to impaired canonical Wnt signalling. These results suggest that increased Wnt5a expression alone is inadequate to induce psoriasis in the skin and possible involvement of Wnt5a in hair follicle cycling. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Hong, So-Hyeon; Sung, Yeon-Ah; Hong, Young Sun; Jeong, Kyungah; Chung, Hyewon; Lee, Hyejin
2017-10-01
Polycystic ovary syndrome (PCOS) is a heterogeneous disorder characterized by chronic anovulation, hyperandrogenism, polycystic ovary morphology (PCOM) and metabolic disturbances including insulin resistance and type 2 diabetes mellitus. Although insulin resistance could be associated with PCOM, recent studies have shown controversial results. The aim of this study was to determine the relationship between PCOM and insulin resistance. This was a cross-sectional clinical study. A total of 679 women with PCOS who were diagnosed using the National Institute of Child Health and Human Disease (NICHD) criteria and 272 control women were analysed. We measured fasting glucose and insulin levels, 75 g oral glucose tolerance test-derived glucose and insulin levels, testosterone levels, ovarian volume and follicle number. Polycystic ovary morphology was described in 543 women (80.0%) with PCOS. Women with PCOS had significantly higher 2 hours postload glucose, fasting and 2 hours postload insulin levels, ovarian volume, ovarian follicle numbers and lower insulin sensitivity compared with those of the controls (all P<.01). In women with PCOS, ovarian volume and ovarian follicle number were negatively associated with the quantitative insulin sensitivity check index after adjusting for age, body mass index and total testosterone; however, this association was not observed in the controls. In the logistic regression analysis, increased ovarian follicle number was associated with decreased insulin sensitivity in women with PCOS. In PCOS, enlarged ovarian volume and follicle excess were associated with insulin resistance, and the number of ovarian follicles could be a predictor of insulin resistance. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Larraona-Puy, M.; Ghita, A.; Zoladek, A.; Perkins, W.; Varma, S.; Leach, I. H.; Koloydenko, A. A.; Williams, H.; Notingher, I.
2011-05-01
Skin cancer is the most common human malignancy and basal cell carcinoma (BCC) represents approximately 80% of the non-melanoma cases. Current methods of treatment require histopathological evaluation of the tissues by qualified personnel. However, this method is subjective and in some cases BCC can be confused with other structures in healthy skin, including hair follicles. In this preliminary study, we investigated the potential of Raman micro-spectroscopy (RMS) to discriminate between hair follicles and BCC in skin tissue sections excised during Mohs micrographic surgery (MMS). Imaging and diagnosis of skin sections was automatically generated using ' a priori'-built spectral model based on LDA. This model had 90 ± 9% sensitivity and 85 ± 9% specificity for discrimination of BCC from dermis and epidermis. The model used selected Raman bands corresponding to the largest spectral differences between the Raman spectra of BCC and the normal skin regions, associated mainly with nucleic acids and collagen type I. Raman spectra corresponding to the epidermis regions of the hair follicles were found to be closer to those of healthy epidermis rather than BCC. Comparison between Raman spectral images and the gold standard haematoxylin and eosin (H&E) histopathology diagnosis showed good agreement. Some hair follicle regions were misclassified as BCC; regions corresponded mainly to the outermost layer of hair follicle (basal cells) which are expected to have higher nucleic acid concentration. This preliminary study shows the ability of RMS to distinguish between BCC and other tissue structures associated to healthy skin which can be confused with BCC due to their similar morphology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willemin, Marie-Emilie; Lumen, Annie, E-mail: Anni
Thyroid homeostasis can be disturbed due to thiocyanate exposure from the diet or tobacco smoke. Thiocyanate inhibits both thyroidal uptake of iodide, via the sodium-iodide symporter (NIS), and thyroid hormone (TH) synthesis in the thyroid, via thyroid peroxidase (TPO), but the mode of action of thiocyanate is poorly quantified in the literature. The characterization of the link between intra-thyroidal thiocyanate concentrations and dose of exposure is crucial for assessing the risk of thyroid perturbations due to thiocyanate exposure. We developed a PBPK model for thiocyanate that describes its kinetics in the whole-body up to daily doses of 0.15 mmol/kg, withmore » a mechanistic description of the thyroidal kinetics including NIS, passive diffusion, and TPO. The model was calibrated in a Bayesian framework using published studies in rats. Goodness-of-fit was satisfactory, especially for intra-thyroidal thiocyanate concentrations. Thiocyanate kinetic processes were quantified in vivo, including the metabolic clearance by TPO. The passive diffusion rate was found to be greater than NIS-mediated uptake rate. The model captured the dose-dependent kinetics of thiocyanate after acute and chronic exposures. Model behavior was evaluated using a Morris screening test. The distribution of thiocyanate into the thyroid was found to be determined primarily by the partition coefficient, followed by NIS and passive diffusion; the impact of the latter two mechanisms appears to increase at very low doses. Extrapolation to humans resulted in good predictions of thiocyanate kinetics during chronic exposure. The developed PBPK model can be used in risk assessment to quantify dose-response effects of thiocyanate on TH. - Highlights: • A PBPK model of thiocyanate (SCN{sup −}) was calibrated in rats in a Bayesian framework. • The intra-thyroidal kinetics of thiocyanate including NIS and TPO was modeled. • Passive diffusion rate for SCN{sup −} seemed to be greater than the NIS-mediated uptake. • The dose-dependent kinetics of SCN{sup −} was captured after an acute and chronic exposure. • The PBPK model of thiocyanate was successfully extrapolated to humans.« less
Vanden Borre, Pierre; McFadden, David G.; Gunda, Viswanath; Sadow, Peter M.; Varmeh, Shohreh; Bernasconi, Maria; Jacks, Tyler
2014-01-01
Background: While the development of new treatments for aggressive thyroid cancer has advanced in the last 10 years, progress has trailed headways made with other malignancies. A lack of reliable authenticated human cell lines and reproducible animal models is one major roadblock to preclinical testing of novel therapeutics. Existing xenograft and orthotopic mouse models of aggressive thyroid cancer rely on the implantation of highly passaged human thyroid carcinoma lines in immunodeficient mice. Genetically engineered models of papillary and undifferentiated (anaplastic) thyroid carcinoma (PTC and ATC) are immunocompetent; however, slow and stochastic tumor development hinders high-throughput testing. Novel models of PTC and ATC in which tumors arise rapidly and synchronously in immunocompetent mice would facilitate the investigation of novel therapeutics and approaches. Methods: We characterized and utilized mouse cell lines derived from PTC and ATC tumors arising in genetically engineered mice with thyroid-specific expression of endogenous BrafV600E/WT and deletion of either Trp53 (p53) or Pten. These murine thyroid cancer cells were transduced with luciferase- and GFP-expressing lentivirus and implanted into the thyroid glands of immunocompetent syngeneic B6129SF1/J mice in which the growth characteristics were assessed. Results: Large locally aggressive thyroid tumors form within one week of implantation. Tumors recapitulate their histologic subtype, including well-differentiated PTC and ATC, and exhibit CD3+, CD8+, B220+, and CD163+ immune cell infiltration. Tumor progression can be followed in vivo using luciferase and ex vivo using GFP. Metastatic spread is not detected at early time points. Conclusions: We describe the development of the next generation of murine orthotopic thyroid cancer models. The implantation of genetically defined murine BRAF-mutated PTC and ATC cell lines into syngeneic mice results in rapid and synchronous tumor formation. This model allows for preclinical investigation of novel therapeutics and/or therapeutic combinations in the context of a functional immune system. PMID:24295207
Amphibian (Xenopus sp.) iodothyronine deiodinase ...
The U.S. EPA-MED amphibian thyroid group is currently screening chemicals for inhibition of human iodothyronine deiodinase activity as components of the thyroid system important in human development. Amphibians are a bellwether taxonomic group to gauge toxicity of chemicals in the environment. Amphibian thyroid function is not only important in development but also metamorphosis. Xenopus sp. have been used extensively as model organisms and are well characterized genetically. We propose to screen a list of chemicals (selected from the human DIO screening results) to test for inhibition of Xenopus deiodinases. Large quantities of the enzymes will be produced using an adenovirus system. Our preliminary results show that there may be catalytic differences between human and Xenopus deiodinases. The Twin Ports Early Career Scientists is a new group formed within the Duluth-Superior scientific community. This presentation will provide a basic introduction to my research and our mission at EPA, and help to establish networking and collaboration relationships across disciplines and institutions.
Thyroid peroxidase (TPO) expressed in thyroid and breast tissues shows similar antigenic properties
Godlewska, Marlena; Arczewska, Katarzyna D.; Rudzińska, Magdalena; Łyczkowska, Anna; Krasuska, Wanda; Hanusek, Karolina; Ruf, Jean; Kiedrowski, Mirosław
2017-01-01
Background Thyroid peroxidase (TPO) is essential for physiological function of the thyroid gland. The high prevalence of thyroid peroxidase antibodies (TPOAbs) in patients with breast cancer and their protective role had previously been demonstrated, indicating a link between breast cancer and thyroid autoimmunity. Recently, TPO was shown to be present in breast cancer tissue samples but its antigenicity has not been analyzed. Methods In this study, we investigated TPO expression levels in a series of fifty-six breast cancer samples paired with normal (peri-tumoral) tissue and its antigenic activity using a panel of well-characterized murine anti-human TPOAbs. Results We have shown that TPO transcripts were present in both normal and cancer tissue samples, although the amounts in the latter were reduced. Additionally, we observed that TPO levels are lower in more advanced cancers. TPO protein expression was confirmed in all tissue samples, both normal and cancerous. We also found that the antigenicity of the immunodominant regions (IDRs) in breast TPO resembles that of thyroid TPO, which is crucial for effective interactions with human TPOAbs. Conclusions Expression of TPO in breast cancer together with its antigenic activity may have beneficial effects in TPOAb-positive breast cancer patients. However, further studies are needed to confirm the beneficial role of TPOAbs and to better understand the underlying mechanism. PMID:28575127
Yao, Xuan; Sa, Rina; Ye, Cheng; Zhang, Duo; Zhang, Shengjie; Xia, Hongfeng; Wang, Yu-cheng; Jiang, Jingjing; Yin, Huiyong; Ying, Hao
2015-01-01
Symptoms of cardiovascular diseases are frequently found in patients with hypothyroidism and hyperthyroidism. However, it is unknown whether arachidonic acid metabolites, the potent mediators in cardiovascular system, are involved in cardiovascular disorders caused by hyperthyroidism and hypothyroidism. To answer this question, serum levels of arachidonic acid metabolites in human subjects with hypothyroidism, hyperthyroidism and mice with hypothyroidism or thyroid hormone treatment were determined by a mass spectrometry-based method. Over ten arachidonic acid metabolites belonging to three catalytic pathways: cyclooxygenases, lipoxygenases, and cytochrome P450, were quantified simultaneously and displayed characteristic profiles under different thyroid hormone status. The level of 20-hydroxyeicosatetraenoic acid, a cytochrome P450 metabolite, was positively correlated with thyroid hormone level and possibly contributed to the elevated blood pressured in hyperthyroidism. The increased prostanoid (PG) I2 and decreased PGE2 levels in hypothyroid patients might serve to alleviate atherosclerosis associated with dyslipidemia. The elevated level of thromboxane (TX) A2, as indicated by TXB2, in hyperthyroid patients and mice treated with thyroid hormone might bring about pulmonary hypertension frequently found in hyperthyroid patients. In conclusion, our prospective study revealed that arachidonic acid metabolites were differentially affected by thyroid hormone status. Certain metabolites may be involved in cardiovascular disorders associated with thyroid diseases. Copyright © 2015 Elsevier Inc. All rights reserved.
Lemoine, N. R.; Mayall, E. S.; Jones, T.; Sheer, D.; McDermid, S.; Kendall-Taylor, P.; Wynford-Thomas, D.
1989-01-01
Human primary thyroid follicular epithelial cells were transfected with a plasmid containing an origin-defective SV40 genome (SVori-) to produce several immortal cell lines. Two of the 10 cell lines analysed expressed specific features of thyroid epithelial function (iodide-trapping and thyroglobulin production). These two lines were characterised in detail and found to be growth factor-independent, capable of anchorage-independent growth at low frequency but non-tumorigenic in nude mice. These differentiated, These differentiated, partially transformed cell lines were shown to be suitable for gene transfer at high frequency using simple coprecipitation techniques. Images Figure 2 Figure 3 Figure 4 PMID:2557880
Paradigm Shift in Thyroid Hormone Mechanism of Action | Center for Cancer Research
Thyroid hormone (TH) is one of the primary endocrine regulators of human metabolism and homeostasis. Acting through three forms of the thyroid hormone receptor (THR; alpha-1, beta-1, and beta-2), TH regulates target gene expression in nearly every cell in the body, modulating fundamental processes, such as basal metabolic rate, long bone growth, and neural maturation. TH is
Salgueiro, Lister L; Rolim, Juliana R; Moura, Bernardo R L; Machado, Suelen P P; Haddad, Carolina
2016-08-01
This study evaluated the use of Corifollitropin alfa in patients with previous poor response to recombinant follicle stimulating hormone in long-term protocols using gonadotropin-releasing hormone. Twenty-seven poor responders to previous treatment with the long term protocol using the recombinant follicle stimulating hormone (Group 1) were selected and then submitted to a second attempt using the same long term protocol with Corifollitropin alfa instead of the recombinant follicle stimulating hormone (Group 2).Ovarian down-regulation was achieved using subcutaneous administration of Leuprolide Acetate. Ovarian stimulation was performed with recombinant follicle stimulating hormone until the administration of human chorionic gonadotropin, followed by follicular aspiration (Group 1). Group 2 was submitted to this same protocol using Corifollitropin alfa instead of recombinant follicle stimulating hormone. There were significant differences in the number of aspirated oocytes, percentage of mature oocytes, amount of injected oocytes and transferred embryos - with all of these parameters being increased in the Corifollitropin alfa group. In addition, the rates of pregnancy and ongoing pregnancy were also significantly higher in the Corifollitropin alfa group. The present study demonstrated that the use of Corifollitropin alfa in the long-term protocol could be a highly effective alternative for patients with poor ovarian response, who were unsuccessful in a previous treatment with In Vitro Fertilization - Intracytoplasmic Sperm Injection.
Morphological, diagnostic and surgical features of ectopic thyroid gland: a review of literature.
Guerra, Germano; Cinelli, Mariapia; Mesolella, Massimo; Tafuri, Domenico; Rocca, Aldo; Amato, Bruno; Rengo, Sandro; Testa, Domenico
2014-01-01
Ectopic thyroid tissue remains a rare developmental abnormality involving defective or aberrant embryogenesis of the thyroid gland during its passage from the floor of the primitive foregut to its usual final position in pre-tracheal region of the neck. Its specific prevalence accounts about 1 case per 100.000-300.000 persons and one in 4.000-8.000 patients with thyroid disease show this condition. The cause of this defect is not fully known. Despite genetic factors have been associated with thyroid gland morphogenesis and differentiation, just recently some mutation has been associated with human thyroid ectopy. Lingual region in the most common site of thyroid ectopy but ectopic thyroid tissue were found in other head and neck locations. Nevertheless, aberrant ectopic thyroid tissue has been found in other places distant from the neck region. Ectopic tissue is affected by different pathological changes that occur in the normal eutopic thyroid. Patients may present insidiously or as an emergency. Diagnostic management of thyroid ectopy is performed by radionuclide thyroid imaging, ultrasonography, CT scan, MRI, biopsy and thyroid function tests. Asymptomatic euthyroid patients with ectopic thyroid do not usually require therapy but are kept under observation. For those with symptoms, treatment depends on size of the gland, nature of symptoms, thyroid function status and histological findings. Surgical excision is often required as treatment for this condition. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
Yoshihara, Ai; Noh, Jaeduk Yoshimura; Mukasa, Koji; Suzuki, Miho; Ohye, Hidemi; Matsumoto, Masako; Kunii, Yo; Watanabe, Natsuko; Suzuki, Nami; Kameda, Toshiaki; Sugino, Kiminori; Ito, Koichi
2015-01-01
Gestational transient thyrotoxicosis (GTT) is defined as transient thyrotoxicosis caused by the stimulating effect of human chorionic gonadotropin (hCG) during pregnancy. We attempted to identify the serum hCG level that causes GTT, and we compared the serum hCG levels and thyroid hormone levels of GTT patients according to whether they had a background of thyroid disease. We also evaluated serum hCG as a parameter for differentiating between active Graves' disease (GD) and GTT. We reviewed the 135 cases of pregnant women who came to our hospital to be evaluated for thyrotoxicosis during their 7th to 14th week of pregnancy, and their serum hCG level was measured at that time. Among the 135 pregnant women with thyrotoxicosis; 103 of the women had GTT, and the other 32 women had active GD. There were no correlations between their serum hCG levels and free thyroid hormone levels. There were no significant differences in thyroid hormone levels or hCG levels among the GTT groups with different thyroid disease backgrounds; i.e., the GTT group without thyroid disease, GTT group with chronic thyroiditis, GTT group with non-functioning thyroid nodules, and GTT group with GD in remission. The serum hCG level of the GTT group was significantly higher than in the active GD group, but it was not a good parameter for differentiating between the two groups. The FT3/FT4 ratio of the active GD was significantly higher than in GTT group, and was a better parameter for differentiation.
NASA Astrophysics Data System (ADS)
Veres, C.; Garsi, J. P.; Rubino, C.; Pouzoulet, F.; Bidault, F.; Chavaudra, J.; Bridier, A.; Ricard, M.; Ferreira, I.; Lefkopoulos, D.; de Vathaire, F.; Diallo, I.
2010-11-01
The aim of this study is to define criteria for accurate representation of the thyroid in human models used to represent external beam radiotherapy (EBRT) patients and evaluate the relationship between the volume of this organ and clinical and anthropometric characteristics. From CT images, we segmented the thyroid gland and calculated its volume for a population of 188 EBRT patients of both sexes, with ages ranging from 1 to 89 years. To evaluate uncertainties linked to measured volumes, experimental studies on the Livermore anthropomorphic phantom were performed. For our population of EBRT patients, we observed that in children, thyroid volume increased rapidly with age, from about 3 cm3 at 2 years to about 16 cm3 at 20. In adults, the mean thyroid gland volume was 23.5 ± 9 cm3 for males and 17.5 ± 8 cm3 for females. According to anthropometric parameters, the best fit for children was obtained by modeling the log of thyroid volume as a linear function of body surface area (BSA) (p < 0.0001) and age (p = 0.04) and for adults, as a linear function of BSA (p < 0.0001) and gender (p = 0.01). This work enabled us to demonstrate that BSA was the best indicator of thyroid volume for both males and females. These results should be taken into account when modeling the volume of the thyroid in human models used to represent EBRT patients for dosimetry in retrospective studies of the relationship between the estimated dose to the thyroid and long-term follow-up data on EBRT patients.
Sharma, Rakesh
2010-07-21
Ex vivo magnetic resonance microimaging (MRM) image characteristics are reported in human skin samples in different age groups. Human excised skin samples were imaged using a custom coil placed inside a 500 MHz NMR imager for high-resolution microimaging. Skin MRI images were processed for characterization of different skin structures. Contiguous cross-sectional T1-weighted 3D spin echo MRI, T2-weighted 3D spin echo MRI and proton density images were compared with skin histopathology and NMR peaks. In all skin specimens, epidermis and dermis thickening and hair follicle size were measured using MRM. Optimized parameters TE and TR and multicontrast enhancement generated better MRI visibility of different skin components. Within high MR signal regions near to the custom coil, MRI images with short echo time were comparable with digitized histological sections for skin structures of the epidermis, dermis and hair follicles in 6 (67%) of the nine specimens. Skin % tissue composition, measurement of the epidermis, dermis, sebaceous gland and hair follicle size, and skin NMR peaks were signatures of skin type. The image processing determined the dimensionality of skin tissue components and skin typing. The ex vivo MRI images and histopathology of the skin may be used to measure the skin structure and skin NMR peaks with image processing may be a tool for determining skin typing and skin composition.
NASA Astrophysics Data System (ADS)
Sharma, Rakesh
2010-07-01
Ex vivo magnetic resonance microimaging (MRM) image characteristics are reported in human skin samples in different age groups. Human excised skin samples were imaged using a custom coil placed inside a 500 MHz NMR imager for high-resolution microimaging. Skin MRI images were processed for characterization of different skin structures. Contiguous cross-sectional T1-weighted 3D spin echo MRI, T2-weighted 3D spin echo MRI and proton density images were compared with skin histopathology and NMR peaks. In all skin specimens, epidermis and dermis thickening and hair follicle size were measured using MRM. Optimized parameters TE and TR and multicontrast enhancement generated better MRI visibility of different skin components. Within high MR signal regions near to the custom coil, MRI images with short echo time were comparable with digitized histological sections for skin structures of the epidermis, dermis and hair follicles in 6 (67%) of the nine specimens. Skin % tissue composition, measurement of the epidermis, dermis, sebaceous gland and hair follicle size, and skin NMR peaks were signatures of skin type. The image processing determined the dimensionality of skin tissue components and skin typing. The ex vivo MRI images and histopathology of the skin may be used to measure the skin structure and skin NMR peaks with image processing may be a tool for determining skin typing and skin composition.
2012-01-01
Background In animals, anogenital distance (AGD) at birth reflects androgen levels during pregnancy and predicts adult AGD. Little is known about AGD in relation to female reproductive characteristics in humans, a question this study was designed to explore. Methods We used multiple linear and logistic regression analyses to model the relationships between adult female reproductive system characteristics (e.g. ovarian morphology, menstrual cycle) and two measures of AGD [anus-fourchette (AGDAF) and anus-clitoris (AGDAC)] in 100 college-age volunteers in Spain. Ovarian morphology was classified as having < 6 or ≥ 6 follicles per ovary. Results Both AGD measures were positively associated with ovarian follicle number, with AGDAF being more strongly associated. Women in the upper tertile of the AGDAF and AGDAC distributions were more likely to have ≥ 6 ovarian follicles [OR: 6.0 (95% CI 2.0, 17.6) and 3.0 (95% CI 1.1, 8.6), respectively] compared to women in the lowest tertile. Conclusions Increased follicular recruitment has been related to excess androgen exposure in utero in toxicological studies. Our results suggest that the androgenic environment during early fetal life may influence reproductive system development, including AGD, in human females. PMID:23217457
Sodium/iodide symporter: a key transport system in thyroid cancer cell metabolism.
Filetti, S; Bidart, J M; Arturi, F; Caillou, B; Russo, D; Schlumberger, M
1999-11-01
The recent cloning of the gene encoding the sodium/iodide symporter (NIS) has enabled better characterization of the molecular mechanisms underlying iodide transport, thus opening the way to clarifying its role in thyroid diseases. Several studies, at both the mRNA and the protein expression levels, have demonstrated that TSH, the primary regulator of iodide uptake, upregulates NIS gene expression and NIS protein abundance, both in vitro and in vivo. However, other factors, including iodide, retinoic acid, transforming growth factor-beta, interleukin-1alpha and tumour necrosis factor alpha, may participate in the regulation of NIS expression. Investigation of NIS mRNA expression in different thyroid tissues has revealed increased levels of expression in Graves' disease and toxic adenomas, whereas a reduction or loss of NIS transcript was detected in differentiated thyroid carcinomas, despite the expression of other specific thyroid markers. NIS mRNA was also detected in non-thyroid tissues able to concentrate radioiodine, including salivary glands, stomach, thymus and breast. The production of specific antibodies against the NIS has facilitated study of the expression of the symporter protein. Despite of the presence of high levels of human (h)NIS mRNA, normal thyroid glands exhibit a heterogeneous expression of NIS protein, limited to the basolateral membrane of the thyrocytes. By immunohistochemistry, staining of hNIS protein was stronger in Graves' and toxic adenomas and reduced in thyroid carcinomas. Measurement of iodide uptake by thyroid cancer cells is the cornerstone of the follow-up and treatment of patients with thyroid cancer. However, radioiodide uptake is found only in about 67% of patients with persistent or recurrent disease. Several studies have demonstrated a decrease in or a loss of NIS expression in primary human thyroid carcinomas, and immunohistochemical studies have confirmed this considerably decreased expression of the NIS protein in thyroid cancer tissues, suggesting that the low expression of NIS may represent an early abnormality in the pathway of thyroid cell transformation, rather than being a consequence of cancer progression. The relationship between radioiodine uptake and NIS expression by thyroid cancer cells require further study. New strategies, based on manipulation of NIS expression, to obtain NIS gene reactivation or for use as NIS gene therapy in the treatment of radiosensitive cancer, are also being investigated.
Kimura, Hiroaki J.; Chen, Cindy Y.; Tzou, Shey-Cherng; Rocchi, Roberto; Landek-Salgado, Melissa A.; Suzuki, Koichi; Kimura, Miho; Rose, Noel R.; Caturegli, Patrizio
2009-01-01
Background Oncocytes of the thyroid gland (Hürthle cells) are found in tumors and autoimmune diseases. They have a unique appearance characterized by abundant granular eosinophilic cytoplasm and hyperchromatic nucleus. Their pathogenesis has remained, thus far, unknown. Methodology/Principal Findings Using transgenic mice chronically expressing IFNγ in thyroid gland, we showed changes in the thyroid follicular epithelium reminiscent of the human oncocyte. Transcriptome analysis comparing transgenic to wild type thyrocytes revealed increased levels of immunoproteasome subunits like LMP2 in transgenics, suggesting an important role of the immunoproteasome in oncocyte pathogenesis. Pharmacologic blockade of the proteasome, in fact, ameliorated the oncocytic phenotype. Genetic deletion of LMP2 subunit prevented the development of the oncocytic phenotype and primary hypothyroidism. LMP2 was also found expressed in oncocytes from patients with Hashimoto thyroiditis and Hürthle cell tumors. Conclusions/Significance In summary, we report that oncocytes are the result of an increased immunoproteasome expression secondary to a chronic inflammatory milieu, and suggest LMP2 as a novel therapeutic target for the treatment of oncocytic lesions and autoimmune hypothyroidism. PMID:19924240
van Hoek, Ingrid M; Vandermeulen, Eva; Peremans, Kathelijne; Daminet, Sylvie
2010-02-01
This study investigated the recombinant human thyrotropin (rhTSH) stimulation test in healthy cats (group 1), cats with non-thyroidal illness (group 2) and cats with low serum total T(4) (TT(4)) and azotaemia after (131)I treatment (group 3). Serum TT(4) responses and thyroidal pertechnetate uptake after administration of 25 microg rhTSH IV were assessed. Baseline serum TT(4) was significantly lower in group 3 compared with group 1, but not between other group pairs. Serum TT(4) increased significantly in groups 1 and 2 but not in group 3 after rhTSH administration. Post-rhTSH serum TT(4) concentrations differed significantly between groups 1 and 3 and groups 2 and 3, but not between groups 1 and 2. Thyroid/salivary gland uptake ratio (T/S uptake ratio) differed only significantly between groups 1 and 3. Stimulation with rhTSH is valuable to differentiate euthyroidism from iatrogenic hypothyroidism in cats. Copyright 2009 ESFM and AAFP. Published by Elsevier Ltd. All rights reserved.
Pathology of thyroid in acquired immunodeficiency syndrome.
Lanjewar, Dhaneshwar Namdeorao; Ramraje, Sushma Nagsen; Lanjewar, Sonali Dhaneshwar
2016-01-01
The course of human immunodeficiency virus infection and the acquired immunodeficiency syndrome can be complicated by a variety of endocrine abnormalities, including abnormalities of thyroid gland. This study was designed to understand the spectrum of pathology of thyroid in Indian patients with AIDS. The present study describes the findings of retrospective autopsy findings of 158 patients with AIDS which revealed infectious diseases from a time period before the use of highly active antiretroviral regimen. A wide range of bacterial, fungal, and viral infections were observed. Tuberculosis was recorded in 14 (09%) patients, Cryptococcus neoformans in 11 (7%) patients and cytomegalovirus in 3 (2%) patients. Hashimoto's thyroiditis and lymphocytic thyroiditis were seen in 02 (01%) patients each. One patient had dual infection comprising of tuberculosis and cytomegalovirus infection. The other microscopic findings observed were goiter (2 patients), interstitial fibrosis in thyroid (7 patients), and calcification in thyroid (8 patients). Abnormalities of thyroid are uncommon findings in patients with HIV infection however several case reports of thyroid involvement by infectious agents and neoplasm are described in these patients; hence patients with HIV infection should be closely followed up for development of goiter or abnormalities of thyroid functions.
Chen, Ying; Zhang, Dan
2016-11-01
To investigate the optimal ovulation induction with the combination of combining letrozole(LE),clomiphene citrate (CC),and human menopausal gonadotropin (HMG) in polycystic ovary syndrome(PCOS) patients resistant to CC or LE. Two hundreds nine PCOS patients (209 cycles) resistant to CC or LE were randomly divided into three groups: CC+HMG group (59 cycles),LE+HMG group (72 cycles) and LE+CC group (78 cycles).The patients in LE+CC group unable to form the dominant follicle after 54 cycles were enrolled into LE+CC+HMG group.Maximum follicle diameter (MFD),endometrial thickness,number of follicles (diameter>1.4 cm),the level of serum estradiol (E2) were measured on the day of HMG administration.Also these results were observed and compared including the duration of treatment,dosage of HMG,number of ovulated follicles,clinical pregnancy rate,biochemical pregnancy rate,early abortion rate,twinning rate,and ectopic pregnancy rate. The ovulation rate was significantly lower in LE+CC group (30.77%) ( P <0.05),but similar in the other three groups.The number of >1.4 cm follicles and ovulated follicles,ovulation duration and E2 concentration in LE+CC group were also at a lower level ( P <0.05).The patients in LE+CC+HMG group showed higher E2 level and more HMG consumption ( P <0.05).There was no statistical difference in endometrial thickness,MFD,clinical pregnancy rate,biochemical pregnancy rate,early abortion rate and twinning rate among these groups ( P >0.05).No severe ovarian hyperstimulation syndrome (OHSS) or luteinized unruptured follicle (LUF) occurred. Combintion of LE with CC could achieve 1/3 ovulation induction in PCOS resistant to CC or LE alone.When both combined with HMG,the induction of ovulation could be significantly higher than LE+HMG and CC+HMG,while the risk of multiple pregnancy and OHSS was reduced.
Segers, Ingrid; Adriaenssens, Tom; Smitz, Johan
2012-01-01
Poliovirus receptor (Pvr), erythrocyte protein band 4.1-like 3 (Epb4.1l3), regulator of G-protein signaling 11 (Rgs11), and oxytocin receptor (Oxtr) expression were quantified in in vitro- and in vivo-grown mouse follicles. The expression of all genes was increased during antral growth in in vitro-grown cumulus cells, whereas only Rgs11 and Oxtr were increased and Pvr and Epb4.1l3 were decreased in in vivo grown cumulus cells. In vivo mural granulosa cells showed the highest expression of Pvr, Rgs11, and Oxtr. The in vitro granulosa + theca compartment responded to human chorionic gonadotropinduring early luteinization by either an upregulation (Pvr, Oxtr) or downregulation (Epb41l3, Rgs11). Oocytes expressed Epb4.1l3, not Rgs11, and Pvr only in in vitro-grown oocytes. Translation into protein was confirmed for Epb4.1l3 in in vitro-grown follicles and in vivo-grown cumulus-oocyte complexes. Protein 4.1B was present during antral growth in cumulus, granulosa cells, and oocytes. Hypothetical functions of Epb4.1l3 and Pvr involve cell adhesion regulation and Rgs11 could be involved in cAMP production in the follicle. Oxtr is known to be important during and after the ovulatory stimulus, but, as in bovine, was also regulated during folliculogenesis. High expression of Pvr and Epb4.1l3 with culture duration in cumulus cells might mark inappropriate differentiation into a mural granulosa-like cell type and function as negative follicle development marker. Rgs11 and Oxtr are both in vivo and in vitro upregulated in cumulus cells during antral follicle growth and might be considered positive markers for follicle development.
Luyckx, Valérie; Dolmans, Marie-Madeleine; Vanacker, Julie; Legat, Camille; Fortuño Moya, Cristina; Donnez, Jacques; Amorim, Christiani Andrade
2014-04-01
To create an artificial ovary to provide an alternative way of restoring fertility in patients who cannot benefit from transplantation of cryopreserved ovarian tissue due to the threat of reintroducing malignant cells. In vivo experimental study. Gynecology research unit in a university hospital. Six-week-old female NMRI mice. Autografting of isolated preantral follicles and ovarian cells (OCs) encapsulated in two fibrin matrices containing low concentrations of fibrinogen (F; mg/mL) and thrombin (T; IU/mL): F12.5/T1 and F25/T4. Follicular density and development, OC survival and proliferation, inflammatory response, and vascularization. After 1 week, the follicle recovery rate ranged from 30.8% (F25/T4) to 31.8% (F12.5/T1). With both fibrin formulations, all follicles were found to be alive or minimally damaged, as demonstrated by terminal deoxynucleotide transferase-mediated dUTP nick-end labeling assay, and at the growing stage (primary, secondary, and antral follicles), confirmed by Ki67 immunostaining. Isolated OCs also survived and proliferated after grafting, as evidenced by <1% apoptotic cells and a high proportion of Ki67-positive cells. Vessels were found in both fibrin formulations, and the global vascular surface area varied from 1.35% (F25/T4) to 1.88% (F12.5/T1). Numerous CD45-positive cells were also observed in both F25/T4 and F12.5/T1 combinations. The present study is the first to show survival and growth of isolated murine ovarian follicles 1 week after autotransplantation of isolated OCs in a fibrin scaffold. The results indicate that fibrin is a promising candidate as a matrix for the construction of an artificial ovary. Xenotransplantation of isolated human follicles and OCs is the necessary next step to validate these findings. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Yoshizaki, G.; Shusa, M.; Takeuchi, T.; Patino, R.
2002-01-01
Luteinizing hormone- (LH)-dependent ovarian follicle maturation has been recently described in two stages for teleost fishes. The oocyte's ability to respond to the steroidal maturation-inducing hormone (MIH), also known as oocyte maturational competence (OMC), is acquired during the first stage; whereas the MIH-dependent resumption of meiosis occurs during the second stage. However, studies directly addressing OMC have been performed with a limited number of species and therefore the general relevance of the two-stage model and its mechanisms remain uncertain. In this study, we examined the hormonal regulation of OMC and its basic transduction mechanisms in ovarian follicles of the sciaenid teleost, Nibe (Nibea mitsukurii). Exposure to MIH [17,20??-dihydroxy-4-pregnen-3-one or 17,20??,21-trihydroxy-4-pregnen-3-one] stimulated germinal vesicle breakdown (index of meiotic resumption) in full-grown follicles primed with human chorionic gonadotropin (HCG, an LH-like gonadotropin) but not in those pre-cultured in plain incubation medium. The induction of OMC by HCG was mimicked by protein kinase A (PKA) activators (forskolin and dibutyryl cyclic AMP), and blocked by specific inhibitors of PKA (H89 and H8) as well as inhibitors of RNA (actinomycin D) and protein (cycloheximide) synthesis. Forskolin-induced OMC was also inhibited by actinomycin D and cycloheximide. A strong activator of protein kinase C, PMA, inhibited HCG-dependent OMC. In conclusion, OMC in Nibe ovarian follicles is gonadotropin-dependent and requires activation of the PKA pathway followed by gene transcription and translation events. These observations are consistent with the two-stage model of ovarian follicle maturation proposed for other teleosts, and suggest that Nibe can be used as new model species for mechanistic studies of ovarian follicle differentiation and maturation in fishes.
Ovarian Stem Cells—the Pros and Cons
Evron, Ayelet; Blumenfeld, Zeev
2013-01-01
The potential for postnatal de novo oogenesis in mammals and in humans has become very controversial in the fields of reproductive science and biology. Historically, it has been thought that females of most mammalian species lose the ability to produce oocytes at birth. A contemporary understanding of stem cell biology together with novel experimental methods has challenged the model of a prenatal fixed ovarian primordial follicle pool that declines with age. Researchers have suggested replenishment of post-natal oocytes by germ-line stem cells (GSCs). According to this theory, GSCs produce oocytes and primordial follicles throughout the lifetime of the adult female. This review describes recent approaches supporting the revolutionary idea of de novo oogenesis in mammals and humans of reproductive-age and provides counter arguments from opponents of this novel and innovative concept. PMID:24453518
Ovarian Stem Cells-the Pros and Cons.
Evron, Ayelet; Blumenfeld, Zeev
2013-03-20
The potential for postnatal de novo oogenesis in mammals and in humans has become very controversial in the fields of reproductive science and biology. Historically, it has been thought that females of most mammalian species lose the ability to produce oocytes at birth. A contemporary understanding of stem cell biology together with novel experimental methods has challenged the model of a prenatal fixed ovarian primordial follicle pool that declines with age. Researchers have suggested replenishment of post-natal oocytes by germ-line stem cells (GSCs). According to this theory, GSCs produce oocytes and primordial follicles throughout the lifetime of the adult female. This review describes recent approaches supporting the revolutionary idea of de novo oogenesis in mammals and humans of reproductive-age and provides counter arguments from opponents of this novel and innovative concept.
The role of prospero homeobox 1 (PROX1) expression in follicular thyroid carcinoma cells
Rudzinska, Magdalena; Ledwon, Joanna K.; Gawel, Damian; Sikorska, Justyna; Czarnocka, Barbara
2017-01-01
The prospero homeobox 1 (Prox1) transcription factor is a key player during embryogenesis and lymphangiogenesis. Altered Prox1 expression has been found in a variety of human cancers, including papillary thyroid carcinoma (PTC). Interestingly, Prox1 may exert tumor suppressive or tumor promoting effect, depending on the tissue context. In this study, we have analyzed Prox1 expression in normal and malignant human thyroid carcinoma cell lines. Moreover, we determined the effect of Prox1 silencing and overexpression on the cellular processes associated with the metastatic potential of tumor cells: proliferation, migration, invasion, apoptosis and anchorage-independent growth, in the follicular thyroid carcinoma (FTC) FTC-133 cell line. We found that Prox1 expression was significantly higher in FTC-derived cells than in PTC-derived cells and normal thyroid, and it was associated with the PI3K/Akt signaling pathway. In the FTC-133 cells, it was associated with cell invasive potential, motility and wound closure capacities, but not with proliferation or apoptosis. Modifying Prox1 expression also induced substantial changes in the cytoskeleton structure and cell morphology. In conclusion, we have shown that Prox1 plays an important role in the development of FTC and that its suppression prevents, whereas its overexpression promotes, the malignant behavior of thyroid follicular cancer cells. PMID:29371975
Thyroid hormone analogs for the treatment of dyslipidemia: past, present, and future.
Delitala, Alessandro P; Delitala, Giuseppe; Sioni, Paolo; Fanciulli, Giuseppe
2017-11-01
Treatment of dyslipidemia is a major burden for public health. Thyroid hormone regulates lipid metabolism by binding the thyroid hormone receptor (TR), but the use of thyroid hormone to treat dyslipidemia is not indicated due to its deleterious effects on heart, bone, and muscle. Thyroid hormone analogs have been conceived to selectively activate TR in the liver, thus reducing potential side-effects. The authors searched the PubMed database to review TR and the action of thyromimetics in vitro and in animal models. Then, all double-blind, placebo controlled trials that analyzed the use of thyroid hormone analog for the treatment of dyslipidemia in humans were included. Finally, the ongoing research on the use of TR agonists was searched, searching the US National Institutes of Health Registry and the WHO International Clinical Trial Registry Platform (ICTRP). Thyromimetics were tested in humans for the treatment of dyslipidemia, as a single therapeutic agent or as an add-on therapy to the traditional lipid-lowering drugs. In most trials, thyromimetics lowered total cholesterol, low-density lipoprotein cholesterol, and triglycerides, but their use has been associated with adverse side-effects, both in pre-clinical studies and in humans. The use of thyromimetics for the treatment of dyslipidemia is not presently recommended. Future possible clinical applications might include their use to promote weight reduction. Thyromimetics might also represent an interesting alternative, both for the treatment of non-alcoholic steatohepatitis, and type 2 diabetes due to their positive effects on insulin sensitivity. Finally, additional experimental and clinical studies are needed for a better comprehension of the effect(s) of a long-term therapy.
Kawai, K; Enomoto, T; Fornasier, V; Resetkova, E; Volpé, R
1997-03-01
We have studied the in vivo effects of human interferon alpha (IFN-alpha) and interferon gamma (IFN-gamma) administration on human thyroid tissue xenografted into two mouse strains: severe combined immunodeficient (SCID) mice and nude mice. Human lymphocytes survive in SCID mice but are lysed in nude mice. Thyroid tissues from Graves' disease or Hashimoto's thyroiditis, or paranodular [normal, (N)] tissue was xenografted into SCID mice (0.8 g/mouse) pretreated with anti-asialo GM-1 antiserum and radiation and also into nude mice. One week after xenografting, SCID and nude mice were divided into three groups. Group A was treated with IFN-alpha intraperitoneally (2,000 units/mouse) three times weekly; group B was treated with IFN-gamma similarly; group C was treated with phosphate buffered saline (PBS) only (control). Autologous human peripheral blood mononuclear cells (PBMCs) were added to mice receiving N xenografts. Blood was taken every 2 weeks for levels of IgG and thyroid antibodies (TAb). After 6 weeks of treatment, mice were sacrificed, and xenograft thyrocyte histocompatibility leukocyte antigen (HLA-DR) and intercellular adhesion molecule (ICAM-1) expression were measured. In addition, thyrocyte cultures were stimulated in vitro with 200 units/ml of either IFN-alpha or IFN-gamma or PBS (control). SCID mice xenografted with autoimmune thyroid disease (AITD) in group A showed a significantly higher TAb production than group C, whereas in group B, TAb production was not statistically increased compared to control (group C). SCID mice xenografted with N did not produce TAb in any group, nor did nude mice xenografted with AITD. Thyrocyte HLA-DR expression was markedly increased in group A and B in SCID mice xenografted with Graves' disease, Hashimoto's thyroiditis, and N tissue compared to group C. In contrast, only group B (IFN-gamma) showed an increase in thyrocyte HLA-DR in nude mice. In the in vitro studies, only IFN-gamma (not IFN-alpha) stimulated thyrocyte HLA-DR and ICAM-1 expression in Graves' disease, Hashimoto's thyroiditis, and N tissues. We concluded that in SCID mice, IFN-alpha causes TAB production in AITD xenografts but not in N xenografts, while increasing thyrocyte HLA-DR expression in both. Also, IFN-gamma does not cause a statistically increased TAb in AITD xenografts in SCID mice, despite a sharp rise in thyrocyte HLA-DR expression. In addition, because IFN-alpha has no effect in nude mice or in vitro on thyrocyte HLA-DR expression, its effects in SCID mice must be mediated via local infiltrating lymphocytes. Finally, IFN-gamma has a direct effect on thyrocytes to increase HLA-DR expression (and, in vitro, ICAM-1 expression) but may not stimulate TAb production.
[Current progress and future direction in the biology of ovarian germ stem cells in mammals].
Li, Chao-Hui; Guo, Kun; Zheng, Ping
2012-12-01
Whether or not oogenesis continues after birth in mammalian ovaries remains controversial. Since the 1950's, it has been generally accepted that oogenesis takes place during embryogenesis in mammals and ceases at birth. At birth, germ cells in mammalian ovaries have progressed to the diplotene stage of meiotic prophase and have formed primordial follicles with surrounding somatic cells. These primordial follicles represent follicle reserves of the reproductive life. However, this view has been recently challenged by a growing body of evidence showing the isolation and propagation of germ stem cells from mouse and human ovaries. These ovarian germ stem cells are capable of regenerating functional oocytes when transplanted back into recipient ovaries. Despite the discovery of the potential germ stem cells in mammalian ovaries, it remains uncertain whether these cells exist and function in ovaries under physiological conditions. Herein we review the current progress and future direction in this infant area.
McLachlan, Sandra M; Aliesky, Holly A; Chen, Chun-Rong; Chong, Gao; Rapoport, Basil
2012-01-01
Transgenic mice with the human thyrotropin-receptor (TSHR) A-subunit targeted to the thyroid are tolerant of the transgene. In transgenics that express low A-subunit levels (Lo-expressors), regulatory T cell (Treg) depletion using anti-CD25 before immunization with adenovirus encoding the A-subunit (A-sub-Ad) breaks tolerance, inducing extensive thyroid lymphocytic infiltration, thyroid damage and antibody spreading to other thyroid proteins. In contrast, no thyroiditis develops in Hi-expressor transgenics or wild-type mice. Our present goal was to determine if thyroiditis could be induced in Hi-expressor transgenics using a more potent immunization protocol: Treg depletion, priming with Complete Freund's Adjuvant (CFA) + A-subunit protein and further Treg depletions before two boosts with A-sub-Ad. As controls, anti-CD25 treated Hi- and Lo-expressors and wild-type mice were primed with CFA+ mouse thyroglobulin (Tg) or CFA alone before A-sub-Ad boosting. Thyroiditis developed after CFA+A-subunit protein or Tg and A-sub-Ad boosting in Lo-expressor transgenics but Hi- expressors (and wild-type mice) were resistant to thyroiditis induction. Importantly, in Lo-expressors, thyroiditis was associated with the development of antibodies to the mouse TSHR downstream of the A-subunit. Unexpectedly, we observed that the effect of bacterial products on the immune system is a "double-edged sword". On the one hand, priming with CFA (mycobacteria emulsified in oil) plus A-subunit protein broke tolerance to the A-subunit in Hi-expressor transgenics leading to high TSHR antibody levels. On the other hand, prior treatment with CFA in the absence of A-subunit protein inhibited responses to subsequent immunization with A-sub-Ad. Consequently, adjuvant activity arising in vivo after bacterial infections combined with a protein autoantigen can break self-tolerance but in the absence of the autoantigen, adjuvant activity can inhibit the induction of immunity to autoantigens (like the TSHR) displaying strong self-tolerance.
McLachlan, Sandra M.; Aliesky, Holly A.; Chen, Chun-Rong; Chong, Gao; Rapoport, Basil
2012-01-01
Transgenic mice with the human thyrotropin-receptor (TSHR) A-subunit targeted to the thyroid are tolerant of the transgene. In transgenics that express low A-subunit levels (Lo-expressors), regulatory T cell (Treg) depletion using anti-CD25 before immunization with adenovirus encoding the A-subunit (A-sub-Ad) breaks tolerance, inducing extensive thyroid lymphocytic infiltration, thyroid damage and antibody spreading to other thyroid proteins. In contrast, no thyroiditis develops in Hi-expressor transgenics or wild-type mice. Our present goal was to determine if thyroiditis could be induced in Hi-expressor transgenics using a more potent immunization protocol: Treg depletion, priming with Complete Freund's Adjuvant (CFA) + A-subunit protein and further Treg depletions before two boosts with A-sub-Ad. As controls, anti-CD25 treated Hi- and Lo-expressors and wild-type mice were primed with CFA+ mouse thyroglobulin (Tg) or CFA alone before A-sub-Ad boosting. Thyroiditis developed after CFA+A-subunit protein or Tg and A-sub-Ad boosting in Lo-expressor transgenics but Hi- expressors (and wild-type mice) were resistant to thyroiditis induction. Importantly, in Lo-expressors, thyroiditis was associated with the development of antibodies to the mouse TSHR downstream of the A-subunit. Unexpectedly, we observed that the effect of bacterial products on the immune system is a “double-edged sword”. On the one hand, priming with CFA (mycobacteria emulsified in oil) plus A-subunit protein broke tolerance to the A-subunit in Hi-expressor transgenics leading to high TSHR antibody levels. On the other hand, prior treatment with CFA in the absence of A-subunit protein inhibited responses to subsequent immunization with A-sub-Ad. Consequently, adjuvant activity arising in vivo after bacterial infections combined with a protein autoantigen can break self-tolerance but in the absence of the autoantigen, adjuvant activity can inhibit the induction of immunity to autoantigens (like the TSHR) displaying strong self-tolerance. PMID:22970131
Thyroid Disrupting Chemicals: Interpreting Upstream Biomarkers of Adverse Outcomes
There is increasing evidence in humans and in experimental animals for a relationship between exposure to specific environmental chemicals and perturbations in levels of critically important thyroid hormones (THs). Identification and proper interpretation of these relationships a...
A Guide to Studying Human Hair Follicle Cycling In Vivo.
Oh, Ji Won; Kloepper, Jennifer; Langan, Ewan A; Kim, Yongsoo; Yeo, Joongyeub; Kim, Min Ji; Hsi, Tsai-Ching; Rose, Christian; Yoon, Ghil Suk; Lee, Seok-Jong; Seykora, John; Kim, Jung Chul; Sung, Young Kwan; Kim, Moonkyu; Paus, Ralf; Plikus, Maksim V
2016-01-01
Hair follicles (HFs) undergo lifelong cyclical transformations, progressing through stages of rapid growth (anagen), regression (catagen), and relative "quiescence" (telogen). Given that HF cycling abnormalities underlie many human hair growth disorders, the accurate classification of individual cycle stages within skin biopsies is clinically important and essential for hair research. For preclinical human hair research purposes, human scalp skin can be xenografted onto immunocompromised mice to study human HF cycling and manipulate long-lasting anagen in vivo. Although available for mice, a comprehensive guide on how to recognize different human hair cycle stages in vivo is lacking. In this article, we present such a guide, which uses objective, well-defined, and reproducible criteria, and integrates simple morphological indicators with advanced, (immuno)-histochemical markers. This guide also characterizes human HF cycling in xenografts and highlights the utility of this model for in vivo hair research. Detailed schematic drawings and representative micrographs provide examples of how best to identify human HF stages, even in suboptimally sectioned tissue, and practical recommendations are given for designing human-on-mouse hair cycle experiments. Thus, this guide seeks to offer a benchmark for human hair cycle stage classification, for both hair research experts and newcomers to the field. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Preconception folic acid use modulates estradiol and follicular responses to ovarian stimulation.
Twigt, John M; Hammiche, Fatima; Sinclair, Kevin D; Beckers, Nicole G; Visser, Jenny A; Lindemans, Jan; de Jong, Frank H; Laven, Joop S E; Steegers-Theunissen, Régine P
2011-02-01
Folate is a methyl donor. Availability of folate affects DNA methylation profiles and thereby gene expression profiles. We investigated the effects of low-dose folic acid use (0.4 mg/d) on the ovarian response to mild and conventional ovarian stimulation in women. In a randomized trial among subfertile women, 24 and 26 subjects received conventional and mild ovarian stimulation, respectively. Blood samples were taken during the early follicular phase of the cycle prior to treatment and on the day of human chorionic gonadotropin administration for determination of serum total homocysteine, anti-Müllerian hormone (AMH), estradiol, and folate. Folic acid use was validated by questionnaire and serum folate levels. Preovulatory follicles were visualized, counted, and diameters recorded using transvaginal ultrasound. The relation between folic acid use and ovarian response was assessed using linear regression analysis. Folic acid use modified the ovarian response to ovarian stimulation treatment. The estradiol response was higher in nonfolic acid users receiving conventional treatment [β(interaction) = 0.52 (0.07-0.97); P = 0.03], and this effect was independent of serum AMH levels and the preovulatory follicle count. In the conventional treatment, the mean follicle number was also greater in nonusers compared with the users group (14.1 vs. 8.9, P = 0.03). Low-dose folic acid use attenuates follicular and endocrine responses to conventional stimulation, independent of AMH and follicle count. The nature of this observation suggests that the effect of folic acid is most prominent during early follicle development, affecting immature follicles. Deleterious effects of folate deficiency, like DNA hypomethylation and oxidative stress, can help to explain our observations.
Aging of the Hair Follicle Pigmentation System
Tobin, Desmond J
2009-01-01
Skin and hair phenotypes are powerful cues in human communication. They impart much information, not least about our racial, ethnic, health, gender and age status. In the case of the latter parameter, we experience significant change in pigmentation in our journey from birth to puberty and through to young adulthood, middle age and beyond. The hair follicle pigmentary unit is perhaps one of our most visible, accessible and potent aging sensors, with marked dilution of pigment intensity occurring long before even subtle changes are seen in the epidermis. This dichotomy is of interest as both skin compartments contain melanocyte subpopulations of similar embryologic (i.e., neural crest) origin. Research groups are actively pursuing the study of the differential aging of melanocytes in the hair bulb versus the epidermis and in particular are examining whether this is in part linked to the stringent coupling of follicular melanocytes to the hair growth cycle. Whether some follicular melanocyte subpopulations are affected, like epidermal melanocytes, by UV irradiation is not yet clear. A particular target of research into hair graying or canities is the nature of the melanocyte stem compartment and whether this is depleted due to reactive oxygen species-associated damage, coupled with an impaired antioxidant status, and a failure of melanocyte stem cell renewal. Over the last few years, we and others have developed advanced in vitro models and assay systems for isolated hair follicle melanocytes and for intact anagen hair follicle organ culture which may provide research tools to elucidate the regulatory mechanisms of hair follicle pigmentation. Long term, it may be feasible to develop strategies to modulate some of these aging-associated changes in the hair follicle that impinge particularly on the melanocyte populations. PMID:20927229
Assessment of petroleum streams for thyroid toxicity.
Fowles, Jeff R; Banton, Marcy I; Boogaard, Peter J; Ketelslegers, Hans B; Rohde, Arlean M
2016-07-08
The thyroid gland, and its associated endocrine hormones, is a growing area of interest in regulatory toxicology due to its important role in metabolism, growth and development. This report presents a review of the toxicology data on chemically complex petroleum streams for thyroid hormone effects. Toxicological summaries and studies from all available published and un-published sources were considered, drawing upon the European REACH regulatory submissions for 19 petroleum streams, with in depth review of 11 individual study reports and 31 published papers on related products or environmental settings. Findings relevant to thyroid pathology or thyroid hormone homeostasis were specifically sought, summarized, and discussed. A total of 349 studies of 28-days or longer duration were considered in the review, including data on mice, rats, rabbits, dogs, humans, and fish. The thyroid was almost invariably not a target organ in these studies. Three rodent studies did find thyroid effects; one on a jet fuel product (JP-8), and two studies on a heavy fuel oil product (F-179). The JP-8 product differs from other fuels due to the presence of additives, and the finding of reduced T4 levels in mice in the study occurred at a dose that is above that expected to occur in environmental settings (e.g. 2000mg/kg). The finding for F-179 involved thyroid inflammation at 10-55mg/kg that co-occurred with liver pathology in rats, indicating a possible secondary effect with questionable relevance to humans. In the few cases where findings did occur, the polycyclic aromatic hydrocarbon (PAH) content was higher than in related substances, and, in support of one possible adverse outcome pathway, one in-vitro study reported reduced thyroid peroxidase (TPO) activity with exposure to some PAH compounds (pyrene, benzo(k)fluoranthene, and benzo(e)pyrene). However, it could not be determined from the data available for this review, whether these specific PAH compounds were substantially higher in the JP-8 or F-179 products than in studies in which thyroid effects were not observed. Thus, a few products may carry a weak potential to affect the thyroid at high doses in rodents, possibly through secondary effects on the rodent liver or possibly through a pathway involving the inhibition of TPO by specific members of the PAH family. Human epidemiology evidence found weak and inconsistent effects on the thyroid but without identification of specific chemicals involved. Two studies in petroleum workers, which found a lower rate of morbidity and mortality overall, reported a statistically significant increase in thyroid cancer, but the small number of cases could not exclude confounding variables as possible explanations for the statistical findings. Overall, the available data indicates a low potential for thyroid hormone effects from exposure to petroleum streams, especially when the aromatic content is low. Because regulatory studies for most chemicals do not include detailed thyroid function or receptor studies, it remains possible that subclinical effects on this system may exist that were not detectable using conventional pathology or hormone measurements. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Choi, Hye-In; Kim, Dong Young; Choi, Soon-Jin; Shin, Chang-Yup; Hwang, Sungjoo Tommy; Kim, Kyu Han; Kwon, Ohsang
2018-07-01
Cilostazol, a phosphodiesterase 3 (PDE3) inhibitor, increases the intracellular level of cyclic adenosine monophosphate to cause vasodilation. Topical application of cilostazol is reported to improve local blood flow and enhance wound healing; however, its effect on human hair follicles is unknown. The purpose of this study was to determine the effect of cilostazol on hair growth. We investigated the expression of PDE3 in human dermal papilla cells (DPCs), outer root sheath cells (ORSCs), and hair follicles. The effects of cilostazol on DPC and ORSC proliferation were evaluated using BrdU and WST-1 assays. The expression of various growth factors in DPCs was investigated by growth factor antibody array. Additionally, hair shaft elongation was measured using ex vivo hair follicle organ cultures, and anagen induction was evaluated in C57BL/6 mice. Finally, the effects of cilostazol on vessel formation and activation of the mitogen-activated protein kinase pathway were evaluated. We confirmed high mRNA and protein expression of PDE3 in human DPCs. Cilostazol not only enhanced the proliferation of human DPCs but also regulated the secretion of several growth factors responsible for hair growth. Furthermore, it promoted hair shaft elongation ex vivo, with increased proliferation of matrix keratinocytes. Cilostazol also accelerated anagen induction by stimulating vessel formation and upregulating the levels of phosphorylated extracellular signal-regulated kinase, c-Jun N-terminal kinase, and P38 after its topical application in C57BL/6 mice. Our results show that cilostazol promotes hair growth and may serve as a therapeutic agent for the treatment of alopecia. Copyright © 2018 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.
Red ginseng extract promotes the hair growth in cultured human hair follicles.
Park, Gyeong-Hun; Park, Ki-young; Cho, Hong-il; Lee, Sang-Min; Han, Ji Su; Won, Chong Hyun; Chang, Sung Eun; Lee, Mi Woo; Choi, Jee Ho; Moon, Kee Chan; Shin, Hyoseung; Kang, Yong Jung; Lee, Dong Hun
2015-03-01
Ginseng has been shown to promote hair growth in several recent studies. However, its effects on human hair follicles and its mechanisms of action have not been sufficiently elucidated. This study aimed to investigate the hair growth-promoting effects of red ginseng extract (RGE) and its ginsenosides. The proliferative activities of cultured human hair follicles treated with RGE and ginsenoside-Rb1 were assessed using Ki-67 immunostaining. Their effects on isolated human dermal papilla cells (hDPCs) were evaluated using cytotoxicity assays, immunoblot analysis of signaling proteins, and the determination of associated growth factors. We examined the ability of RGE and ginsenosides to protect hair matrix keratinocyte proliferation against dihydrotestosterone (DHT)-induced suppression and their effects on the expression of androgen receptor. The in vivo hair growth-promoting effect of RGE was also investigated in C57BL/6 mice. Both RGE and ginsenoside-Rb1 enhanced the proliferation of hair matrix keratinocytes. hDPCs treated with RGE or ginsenoside-Rb1 exhibited substantial cell proliferation and the associated phosphorylation of ERK and AKT. Moreover, RGE, ginsenoside-Rb1, and ginsenoside-Rg3 abrogated the DHT-induced suppression of hair matrix keratinocyte proliferation and the DHT-induced upregulation of the mRNA expression of androgen receptor in hDPCs. Murine experiments revealed that the subcutaneous injection of 3% RGE resulted in more rapid hair growth than the negative control. In conclusion, RGE and its ginsenosides may enhance hDPC proliferation, activate ERK and AKT signaling pathways in hDPCs, upregulate hair matrix keratinocyte proliferation, and inhibit the DHT-induced androgen receptor transcription. These results suggest that red ginseng may promote hair growth in humans.
Red Ginseng Extract Promotes the Hair Growth in Cultured Human Hair Follicles
Park, Gyeong-Hun; Park, Ki-young; Cho, Hong-il; Lee, Sang-Min; Han, Ji Su; Chang, Sung Eun; Lee, Mi Woo; Choi, Jee Ho; Moon, Kee Chan; Shin, Hyoseung; Kang, Yong Jung; Lee, Dong Hun
2015-01-01
Abstract Ginseng has been shown to promote hair growth in several recent studies. However, its effects on human hair follicles and its mechanisms of action have not been sufficiently elucidated. This study aimed to investigate the hair growth-promoting effects of red ginseng extract (RGE) and its ginsenosides. The proliferative activities of cultured human hair follicles treated with RGE and ginsenoside-Rb1 were assessed using Ki-67 immunostaining. Their effects on isolated human dermal papilla cells (hDPCs) were evaluated using cytotoxicity assays, immunoblot analysis of signaling proteins, and the determination of associated growth factors. We examined the ability of RGE and ginsenosides to protect hair matrix keratinocyte proliferation against dihydrotestosterone (DHT)-induced suppression and their effects on the expression of androgen receptor. The in vivo hair growth-promoting effect of RGE was also investigated in C57BL/6 mice. Both RGE and ginsenoside-Rb1 enhanced the proliferation of hair matrix keratinocytes. hDPCs treated with RGE or ginsenoside-Rb1 exhibited substantial cell proliferation and the associated phosphorylation of ERK and AKT. Moreover, RGE, ginsenoside-Rb1, and ginsenoside-Rg3 abrogated the DHT-induced suppression of hair matrix keratinocyte proliferation and the DHT-induced upregulation of the mRNA expression of androgen receptor in hDPCs. Murine experiments revealed that the subcutaneous injection of 3% RGE resulted in more rapid hair growth than the negative control. In conclusion, RGE and its ginsenosides may enhance hDPC proliferation, activate ERK and AKT signaling pathways in hDPCs, upregulate hair matrix keratinocyte proliferation, and inhibit the DHT-induced androgen receptor transcription. These results suggest that red ginseng may promote hair growth in humans. PMID:25396716
Fischer, T W; Herczeg-Lisztes, E; Funk, W; Zillikens, D; Bíró, T; Paus, R
2014-11-01
Caffeine reportedly counteracts the suppression of hair shaft production by testosterone in organ-cultured male human hair follicles (HFs). We aimed to investigate the impact of caffeine (i) on additional key hair growth parameters, (ii) on major hair growth regulatory factors and (iii) on male vs. female HFs in the presence of testosterone. Microdissected male and female human scalp HFs were treated in serum-free organ culture for 120 h with testosterone alone (0·5 μg mL(-1)) or in combination with caffeine (0·005-0·0005%). The following effects on hair shaft elongation were evaluated by quantitative (immuno)histomorphometry: HF cycling (anagen-catagen transition); hair matrix keratinocyte proliferation; expression of a key catagen inducer, transforming growth factor (TGF)-β2; and expression of the anagen-prolonging insulin-like growth factor (IGF)-1. Caffeine effects were further investigated in human outer root sheath keratinocytes (ORSKs). Caffeine enhanced hair shaft elongation, prolonged anagen duration and stimulated hair matrix keratinocyte proliferation. Female HFs showed higher sensitivity to caffeine than male HFs. Caffeine counteracted testosterone-enhanced TGF-β2 protein expression in male HFs. In female HFs, testosterone failed to induce TGF-β2 expression, while caffeine reduced it. In male and female HFs, caffeine enhanced IGF-1 protein expression. In ORSKs, caffeine stimulated cell proliferation, inhibited apoptosis/necrosis, and upregulated IGF-1 gene expression and protein secretion, while TGF-β2 protein secretion was downregulated. This study reveals new growth-promoting effects of caffeine on human hair follicles in subjects of both sexes at different levels (molecular, cellular and organ). © 2014 British Association of Dermatologists.
Ghoneim, I M; Waheed, M M; El-Bahr, S M; Alhaider, A K; Al-Eknah, M M
2013-03-01
The current study was carried out to compare some biochemical and hormonal constituents in follicular fluids from oversized follicles, preovulatory follicles, and serum in camels (Camelus dromedarius). Follicular fluids from oversized follicles (N = 10), preovulatory follicles (N = 10), and sera were harvested from 20 dromedaries. The follicular fluids and sera were subjected to biochemical and hormonal analysis. The results indicated no significant differences in the concentrations of ascorbic acid, glucose, cholesterol, acid phosphatase, and alkaline phosphatase between follicular fluid from oversized follicles and preovulatory follicles. In addition, there were no significant variations in the level of ascorbic acid, glucose, cholesterol, and acid phosphatase in the serum of animals with oversized follicles and those with preovulatory follicles. Serum alkaline phosphatase was significantly greater (P < 0.05) in camels with oversized follicles. The concentrations of estradiol-17β (E2) and insulin-like growth factor-1 (IGF-1) in the follicular fluid of oversized follicles were significantly lower (P < 0.01) than that from preovulatory follicles. There were no differences in the concentrations of progesterone, tri-iodothyronine, and thyroxin between follicular fluid from oversized follicles and that of preovulatory follicles. The concentrations of E2, progesterone, tri-iodothyronine, thyroxin, cortisol, and IGF-1 were not different in the serum of camels with oversized follicles and camels with preovulatory follicles. The current study revealed that the significant differences of biochemical and hormonal constituents between follicular fluids from oversized follicles and preovulatory follicles were restricted on E2 and IGF-1. Relaying on the aforementioned outcome we can suggest that oversized follicle phenomenon is a form of follicular atresia of anovulatory follicles. Copyright © 2013 Elsevier Inc. All rights reserved.
Role of Dicer1 in thyroid cell proliferation and differentiation.
Penha, Ricardo Cortez Cardoso; Sepe, Romina; De Martino, Marco; Esposito, Francesco; Pellecchia, Simona; Raia, Maddalena; Del Vecchio, Luigi; Decaussin-Petrucci, Myriam; De Vita, Gabriella; Pinto, Luis Felipe Ribeiro; Fusco, Alfredo
2017-01-01
DICER1 plays a central role in the biogenesis of microRNAs and it is important for normal development. Altered microRNA expression and DICER1 dysregulation have been described in several types of tumors, including thyroid carcinomas. Recently, our group identified a new somatic mutation (c.5438A>G; E1813G) within DICER1 gene of an unknown function. Herein, we show that DICER1 is overexpressed, at mRNA level, in a significant-relative number of papillary (70%) and anaplastic (42%) thyroid carcinoma samples, whereas is drastically downregulated in all the analyzed human thyroid carcinoma cell lines (TPC-1, BCPAP, FRO and 8505c) in comparison with normal thyroid tissue samples. Conversely, DICER1 is downregulated, at protein level, in PTC in comparison with normal thyroid tissues. Our data also reveals that DICER1 overexpression positively regulates thyroid cell proliferation, whereas its silencing impairs thyroid cell differentiation. The expression of DICER1 gene mutation (c.5438A>G; E1813G) negatively affects the microRNA machinery and cell proliferation as well as upregulates DICER1 protein levels of thyroid cells but has no impact on thyroid differentiation. In conclusion, DICER1 protein is downregulated in papillary thyroid carcinomas and affects thyroid proliferation and differentiation, while DICER1 gene mutation (c.5438A>G; E1813G) compromises the DICER1 wild-type-mediated microRNA processing and cell proliferation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frankel, Howard H.; Patek, Paul R.; Bernick, Sol
1962-03-01
Changes in morphology and responses of macrophages to a single intravenous injection of carbon or thorium dioxide (Thorotrast) were studied in rats. Localization of C particles is described in detail, although an identical response of macrophages to ThO 2 was observed. In lever, C particles were observed in Kupffer cells lining the sinusoids of the hepatic lobule 24 hr after injection. At 48 hr the concentration of C increased within the hepatic lobule. The increased uptake of C by individual Kupffer cells eventually led to conglomeration of these macrophages and apparent sinusoidal occlusion. Only a minimal amount of C particlesmore » was observed in the lungs at one month, but migration of Claden macrophages to lung from liver began one month after the injection and quickly ceased shortly afterward. There was a relative increase in the particles demonstrated in the spleen as the experiment progressed. Administration of the reticuloendothelial blocking agents resulted in morphological changes in the thyroid gland, anterior pituitary, and adrenals. Both C and ThO 2 produced a hyperplasia of the thyroid follicles. Concomitantly, there was a marked increase in the number of thyrotrophic cells of the anterior pituitary, suggesting thyrotropin production or release. There was also an increased infiltration of a sudanophilic positive substance into all the zones of the adrenal cortex. (H.H.D.)« less
Karuppaswamy, J; Smedley, Mamin; Carter, Lindsay
2009-03-01
The objective of the study was to analyse the pregnancy rate in intra-uterine insemination (IUI) in relation to pre-ovulatory follicular number, size and day of insemination. A retrospective analysis of 216 completed IUI cycles was used in an attempt to identify significant variables predictive of treatment success. Couples with unexplained infertility and male factor infertility underwent IUI with or without ovarian stimulation. The mean number of IUI cycles per patient was 4.1, the overall pregnancy rate was 27.3% per patient, and the pregnancy rate per cycle was 6.9%. The pregnancy rate was 4.4% when one follicle was produced, whereas with more than two follicles, the rate increased to 21.2%. Hormonal stimulation using clomiphene citrate and/or human menopausal gonadotrophin/follicle stimulating hormone yielded a significant higher pregnancy rate compared to IUI in natural cycles (10.3% versus 3.3%). Although not statistically significant, the pregnancy rate decreased with advancing age of woman. The results suggest that IUI is a useful method of assisted conception in unexplained infertility and higher pregnancy rates can be achieved with good patient selection and ovarian stimulation.
Lymphocyte-dependent antibody-mediated cytotoxicity in Hashimoto thyroiditis
Calder, Elizabeth A.; Penhale, W. J.; McLeman, Dena; Barnes, E. W.; Irvine, W. J.
1973-01-01
In the presence of normal human lymphocytes, decomplemented sera from twentynine out of thirty-nine patients with Hashimoto thyroiditis caused significant lysis of thyroglobulin-coated chicken red blood cells, as estimated by the release of 51Cr; the mean% specific 51Cr release being 14·1 ± 1·9 (SEM). Serum from twenty-one control subjects studied concurrently caused no significant lysis of thyroglobulin-coated chicken red blood cells; the mean% specific 51Cr release being −1·6±0·7 (SEM). The degree of cytotoxicity correlated with the titre of thyroglobulin antibodies in the serum, determined by tanned red cell haemagglutination. The active component in the Hashimoto serum was localized in the 19S fraction, was unaffected by pre-absorption with anti-human IgM serum, but was neutralized by pre-absorption with anti-human IgG serum. These findings suggest that the cytotoxic activity of serum from patients with Hashimoto thyroiditis is due to the presence of thyroglobulin antibody of the IgG class in the form of complexes, either alone or with antigen. It is postulated that non-specific lymphocytes may play an important role in the pathogenesis of Hashimoto thyroiditis, being activated by the presence in the gland of thyroglobulin antibody, either alone or in the form of complexes attached to thyroid cells. PMID:4740445
Grassi, Elisa Stellaria; Vezzoli, Valeria; Negri, Irene; Lábadi, Árpád; Fugazzola, Laura; Vitale, Giovanni; Persani, Luca
2015-11-03
Thyroid cancer is the most common endocrine malignancy with increasing incidence worldwide.The majority of thyroid cancer cases are well differentiated with favorable outcome. However, undifferentiated thyroid cancers are one of the most lethal human malignancies because of their invasiveness, metastatization and refractoriness even to the most recently developed therapies.In this study we show for the first time a significant hyperactivation of ROCK/HDAC6 pathway in thyroid cancer tissues, and its negative correlation with p53 DNA binding ability.We demonstrate that a small compound, SP600125 (SP), is able to induce cell death selectively in undifferentiated thyroid cancer cell lines by specifically acting on the pathogenic pathways of cancer development. In detail, SP acts on the ROCK/HDAC6 pathway involved in dedifferentiation and invasiveness of undifferentiated human cancers, by restoring its physiological activity level. As main consequence, cancer cell migration is inhibited and, at the same time, cell death is induced through the mitotic catastrophe. Moreover, SP exerts a preferential action on the mutant p53 by increasing its DNA binding ability. In TP53-mutant cells that survive mitotic catastrophe this process results in p21 induction and eventually lead to premature senescence. In conclusion, SP has been proved to be able to simultaneously block cell replication and migration, the two main processes involved in cancer development and dissemination, making it an ideal candidate for developing new drugs against anaplastic thyroid cancer.
Pitoia, Fabián; Marlowe, Robert J; Abelleira, Erika; Faure, Eduardo N; Bueno, Fernanda; Schwarzstein, Diego; Lutfi, Rubén Julio; Niepomniszcze, Hugo
2012-01-01
To supplement limited relevant literature, we retrospectively compared ablation and disease outcomes in high-risk differentiated thyroid carcinoma (DTC) patients undergoing radioiodine thyroid remnant ablation aided by recombinant human thyrotropin (rhTSH) versus thyroid hormone withdrawal/withholding (THW). Our cohort was 45 consecutive antithyroglobulin antibody- (TgAb-) negative, T3-T4/N0-N1-Nx/M0 adults ablated with high activities at three referral centers. Ablation success comprised negative (<1 μg/L) stimulated serum thyroglobulin (Tg) and TgAb, with absent or <0.1% scintigraphic thyroid bed uptake. "No evidence of disease" (NED) comprised negative unstimulated/stimulated Tg and no suspicious neck ultrasonography or pathological imaging or biopsy. "Persistent disease" was failure to achieve NED, "recurrence," loss of NED status. rhTSH patients (n = 18) were oftener ≥45 years old and higher stage (P = 0.01), but otherwise not different than THW patients (n = 27) at baseline. rhTSH patients were significantly oftener successfully ablated compared to THW patients (83% versus 67%, P < 0.02). After respective 3.3 yr and 4.5 yr mean follow-ups (P = 0.02), NED was achieved oftener (72% versus 59%) and persistent disease was less frequent in rhTSH patients (22% versus 33%) (both comparisons P = 0.03). rhTSH stimulation is associated with at least as good outcomes as is THW in ablation of high-risk DTC patients.
Field, James B.; Larsen, P. Reed; Yamashita, Kamejiro; Mashiter, Keith; Dekker, Andrew
1973-01-01
Benign and malignant nodules in human thyroid glands, which did not concentrate iodide in vivo, were also unable to accumulate iodide in vitro. The mean thyroid-to-medium ratio (T/M) in seven benign nodules was 0.8±0.2 compared with 7±2 in adjacent normal thyroid tissue. In four malignant thyroid nodules, the mean T/M was 0.5±0.1 compared with 11±4 in adjacent normal thyroid. Despite the inability of such nodules to concentrate iodide, iodide organification was present but was only one-half to one-third as active as in surrounding normal thyroid. Thyroid-stimulating hormone (TSH) increased iodide organification equally in both benign nodules and normal thyroid although it had no effect in three of the four malignant lesions. The reduction in organification is probably related to the absence of iodide transport, since incubation of normal thyroid slices with perchlorate caused similar diminution in iodide incorporation but no change in the response to TSH. Monoiodotyrosine (MIT) and di-iodotyrosine (DIT) accounted for most of the organic iodide in both the nodules and normal tissue. The MIT/DIT ratio was similar in normal and nodule tissue. The normal tissue contained much more inorganic iodide than the nodules, consistent with the absence of the iodide trap in the latter tissue. The thyroxine content of normal thyroid was 149±17 μg/g wet wt and 18±4 μg/g wet wt in the nodules. The transport defect in the nodules was not associated with any reduction in total, Na+-K+- or Mg++-activated ATPase activities or the concentration of ATP. Basal adenylate cyclase was higher in nodules than normal tissue. Although there was no difference between benign and malignant nodules, the response of adenylate cyclase to TSH was greater in the benign lesions. These studies demonstrate that nonfunctioning thyroid nodules, both benign and malignant, have a specific defect in iodide transport that accounts for their failure to accumulate radioactive iodide in vivo. In benign nodules, iodide organification was increased by TSH while no such effect was found in three of four malignant lesions, suggesting additional biochemical defects in thyroid carcinomas. PMID:4353998
Voigt, Carsten; Holzapfel, Hans-Peter; Meyer, Silke; Paschke, Ralf
2004-07-01
G-protein-coupled receptor kinases (GRKs) are implicated in the pathophysiology of human diseases such as arterial hypertension, heart failure and rheumatoid arthritis. While G-protein-coupled receptor kinases 2 and 5 have been shown to be involved in the desensitization of the rat thyrotropin receptor (TSHR), their role in the pathophysiology of hyperfunctioning thyroid nodules (HTNs) is unknown. Therefore, we analyzed the expression pattern of the known GRKs in human thyroid tissue and investigated their function in the pathology of HTNs. The expression of different GRKs in human thyroid and HTNs was measured by Western blotting. The influence of GRK expression on TSHR function was analyzed by coexpression experiments in HEK 293 cells. We demonstrate that in addition to GRKs 2, 5 and 6, GRKs 3 and 4 are also expressed in the human thyroid. GRKs 2, 3, 5 and 6 are able to desensitize the TSHR in vitro. This GRK-induced desensitization is amplified by the additional over-expression of beta-arrestin 1 or 2. We did not find any mutations in the GRKs 2, 3 and 5 from 14 HTNs without TSHR mutations and Gsalpha mutations. The expression of GRKs 3 and 4 was increased in HTNs independently from the existence of TSHR mutations or Gsalpha mutations. In conclusion, the increased expression of GRK 3 in HTNs and the ability of GRK 3 to desensitize the TSHR in vitro, suggest a potential role for GRK 3 as a negative feedback regulator for the constitutively activated cAMP pathway in HTNs.
Kawa, Milosz Piotr; Grymula, Katarzyna; Paczkowska, Edyta; Baskiewicz-Masiuk, Magdalena; Dabkowska, Elzbieta; Koziolek, Monika; Tarnowski, Maciej; Kłos, Patrycja; Dziedziejko, Violetta; Kucia, Magdalena; Syrenicz, Anhelli; Machalinski, Boguslaw
2010-02-01
Abnormalities in haematological parameters have been noted in patients with thyroid diseases. Nevertheless, the exact mechanism of thyroid hormones' (THs) action on human haematopoiesis is still not entirely clear. The influence of THs through TH receptors (TRalpha-1 and TRbeta-1) on haematopoiesis in patients with hypo- and hyperthyroidism was analysed. TR gene expression at the mRNA and protein levels in human CD34(+)-enriched haematopoietic progenitor cells (HPCs) obtained from the peripheral blood of patients with thyroid disorders and healthy volunteers was analysed. The cell populations were also investigated for clonogenic growth of granulocyte macrophage-colony forming units and erythrocyte-burst forming units (BFU-E). The level of apoptosis was determined by annexin V/propidium iodide staining and quantitative RT-PCR. The studies revealed that hypo- and hyperthyroidism modify TR gene expression in HPCs in vivo. TH deficiency resulted in a decrease in total blood counts and clonogenic potential of BFU-E. In contrast, hyperthyroid patients presented increased clonogenic growth and BFU-E number and significantly higher expressions of cell cycle-regulating genes such as those for PCNA and cyclin D1. Finally, an increase in the frequency of apoptotic CD34(+)-enriched HPCs in hypo- and hyperthyroidism with a modulation of apoptosis-related genes was detected. The following conclusions were derived: i) TR expression in human haematopoietic cells depends on TH status, ii) both hypo- and hyperthyroidism significantly influence clonogenicity and induce apoptosis in CD34(+)-enriched HPCs and iii) the molecular mechanism by which THs influence haematopoiesis might provide a basis for designing novel therapeutic interventions in thyroid diseases.
Protein profile of mouse ovarian follicles grown in vitro.
Anastácio, Amandine; Rodriguez-Wallberg, Kenny A; Chardonnet, Solenne; Pionneau, Cédric; Fédérici, Christian; Almeida Santos, Teresa; Poirot, Catherine
2017-12-01
Could the follicle proteome be mapped by identifying specific proteins that are common or differ between three developmental stages from the secondary follicle (SF) to the antrum-like stage? From a total of 1401 proteins identified in the follicles, 609 were common to the three developmental stages investigated and 444 were found uniquely at one of the stages. The importance of the follicle as a functional structure has been recognized; however, up-to-date the proteome of the whole follicle has not been described. A few studies using proteomics have previously reported on either isolated fully-grown oocytes before or after meiosis resumption or cumulus cells. The experimental design included a validated mice model for isolation and individual culture of SFs. The system was chosen as it allows continuous evaluation of follicle growth and selection of follicles for analysis at pre-determined developmental stages: SF, complete Slavjanski membrane rupture (SMR) and antrum-like cavity (AF). The experiments were repeated 13 times independently to acquire the material that was analyzed by proteomics. SFs (n = 2166) were isolated from B6CBA/F1 female mice (n = 42), 12 days old, from 15 l. About half of the follicles isolated as SF were analyzed as such (n = 1143) and pooled to obtain 139 μg of extracted protein. Both SMR (n = 359) and AF (n = 124) were obtained after individual culture of 1023 follicles in a microdrop system under oil, selected for analysis and pooled, to obtain 339 μg and 170 μg of protein, respectively. The follicle proteome was analyzed combining isoelectric focusing (IEF) fractionation with 1D and 2D LC-MS/MS analysis to enhance protein identification. The three protein lists were submitted to the 'Compare gene list' tool in the PANTHER website to gain insights on the Gene Ontology Biological processes present and to Ingenuity Pathway Analysis to highlight protein networks. A label-free quantification was performed with 1D LC-MS/MS analyses to emphasize proteins with different expression profiles between the three follicular stages. Supplementary western blot analysis (using new biological replicates) was performed to confirm the expression variations of three proteins during follicle development in vitro. It was found that 609 out of 1401 identified proteins were common to the three follicle developmental stages investigated. Some proteins were identified uniquely at one stage: 71 of the 775 identified proteins in SF, 181 of 1092 in SMR and 192 of 1100 in AF. Additional qualitative and quantitative analysis highlighted 44 biological processes over-represented in our samples compared to the Mus musculus gene database. In particular, it was possible to identify proteins implicated in the cell cycle, calcium ion binding and glycolysis, with specific expressions and abundance, throughout in vitro follicle development. Data are available via ProteomeXchange with identifier PXD006227. The proteome analyses described in this study were performed after in vitro development. Despite fractionation of the samples before LC-MS/MS, proteomic approaches are not exhaustive, thus proteins that are not identified in a group are not necessarily absent from that group, although they are likely to be less abundant. This study allowed a general view of proteins implicated in follicle development in vitro and it represents the most complete catalog of the whole follicle proteome available so far. Not only were well known proteins of the oocyte identified but also proteins that are probably expressed only in granulosa cells. This study was supported by the Portuguese Foundation for Science and Technology, FCT (PhD fellowship SFRH/BD/65299/2009 to A.A.), the Swedish Childhood Cancer Foundation (PR 2014-0144 to K.A.R-.W.) and Stockholm County Council to K.A.R-.W. The authors of the study have no conflict of interest to report. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.
Endocrine disruptors can decrease thyroid hormone levels via the induction of hepatic uridinediphosphate-glucoronosyltransferases (UGTs) and sulfotransferases (SULTs). Due to their ability to catalyze glucuronidation and sulfation of hormones and xenobiotics, UGTs and SULTs play ...
Empty sella syndrome secondary to intrasellar cyst in adolescence.
Raiti, S; Albrink, M J; Maclaren, N K; Chadduck, W M; Gabriele, O F; Chou, S M
1976-09-01
A 15-year-old boy had growth failure and failure of sexual development. The probable onset was at age 10. Endocrine studies showed hypopituitarism with deficiency of growth hormone and follicle-stimulating hormone, an abnormal response to metyrapone, and deficiency of thyroid function. Luteinizing hormone level was in the low-normal range. Posterior pituitary function was normal. Roentgenogram showed a large sella with some destruction of the posterior clinoids. Transsphenoidal exploration was carried out. The sella was empty except for a whitish membrane; no pituitary tissue was seen. The sella was packed with muscle. Recovery was uneventful, and the patient was given replacement therapy. On histologic examination,the cyst wall showed low pseudostratified cuboidal epithelium and occasional squamous metaplasia. Hemosiderin-filled phagocytes and acinar structures were also seen. The diagnosis was probable rupture of an intrasellar epithelial cyst, leading to empty sella syndrome.
Mora-Bautista, Víctor M; Mendoza-Rojas, Víctor; Contreras-García, Gustavo A
2017-06-01
Cornelia de Lange syndrome is a genetic disease characterized by distinctive facial features, failure to thrive, microcephaly and several malformations associated. Its main endocrinological features are anomalies of the genitalia. We present a 13-year-old boy, who suffered from complicated aspiration pneumonia and showed Cornelia de Lange syndrome phenotype, with global developmental delay, suction-swallowing abnormalities, short stature and abnormal genitalia associated. His bone age was delayed, so he underwent full endocrinological panel. Central hypothyroidism, growth hormone deficiency and low luteinizing hormone-follicle-stimulating hormone levels were observed and multiple pituitary hormone deficiencies diagnosis was made. Basal cortisol, adrenocorticotropic hormone and prolactin levels were normal. He received thyroid hormonal substitution. Multiple pituitary hormone deficiencies are an unusual feature of De Lange syndrome. We suggest evaluating all different endocrine axes in these patients. Sociedad Argentina de Pediatría.
Proteomic analysis of mare follicular fluid during late follicle development
2011-01-01
Background Follicular fluid accumulates into the antrum of follicle from the early stage of follicle development. Studies on its components may contribute to a better understanding of the mechanisms underlying follicular development and oocyte quality. With this objective, we performed a proteomic analysis of mare follicular fluid. First, we hypothesized that proteins in follicular fluid may differ from those in the serum, and also may change during follicle development. Second, we used four different approaches of Immunodepletion and one enrichment method, in order to overcome the masking effect of high-abundance proteins present in the follicular fluid, and to identify those present in lower abundance. Finally, we compared our results with previous studies performed in mono-ovulant (human) and poly-ovulant (porcine and canine) species in an attempt to identify common and/or species-specific proteins. Methods Follicular fluid samples were collected from ovaries at three different stages of follicle development (early dominant, late dominant and preovulatory). Blood samples were also collected at each time. The proteomic analysis was carried out on crude, depleted and enriched follicular fluid by 2D-PAGE, 1D-PAGE and mass spectrometry. Results Total of 459 protein spots were visualized by 2D-PAGE of crude mare follicular fluid, with no difference among the three physiological stages. Thirty proteins were observed as differentially expressed between serum and follicular fluid. Enrichment method was found to be the most powerful method for detection and identification of low-abundance proteins from follicular fluid. Actually, we were able to identify 18 proteins in the crude follicular fluid, and as many as 113 in the enriched follicular fluid. Inhibins and a few other proteins involved in reproduction could only be identified after enrichment of follicular fluid, demonstrating the power of the method used. The comparison of proteins found in mare follicular fluid with proteins previously identified in human, porcine and canine follicular fluids, led to the identification of 12 common proteins and of several species-specific proteins. Conclusions This study provides the first description of mare follicular fluid proteome during the late follicle development stages. We identified several proteins from crude, depleted and enriched follicular fluid. Our results demonstrate that the enrichment method, combined with 2D-PAGE and mass spectrometry, can be successfully used to visualize and further identify the low-abundance proteins in the follicular fluid. PMID:21923925
Proteomic analysis of mare follicular fluid during late follicle development.
Fahiminiya, Somayyeh; Labas, Valérie; Roche, Stéphane; Dacheux, Jean-Louis; Gérard, Nadine
2011-09-17
Follicular fluid accumulates into the antrum of follicle from the early stage of follicle development. Studies on its components may contribute to a better understanding of the mechanisms underlying follicular development and oocyte quality. With this objective, we performed a proteomic analysis of mare follicular fluid. First, we hypothesized that proteins in follicular fluid may differ from those in the serum, and also may change during follicle development. Second, we used four different approaches of Immunodepletion and one enrichment method, in order to overcome the masking effect of high-abundance proteins present in the follicular fluid, and to identify those present in lower abundance. Finally, we compared our results with previous studies performed in mono-ovulant (human) and poly-ovulant (porcine and canine) species in an attempt to identify common and/or species-specific proteins. Follicular fluid samples were collected from ovaries at three different stages of follicle development (early dominant, late dominant and preovulatory). Blood samples were also collected at each time. The proteomic analysis was carried out on crude, depleted and enriched follicular fluid by 2D-PAGE, 1D-PAGE and mass spectrometry. Total of 459 protein spots were visualized by 2D-PAGE of crude mare follicular fluid, with no difference among the three physiological stages. Thirty proteins were observed as differentially expressed between serum and follicular fluid. Enrichment method was found to be the most powerful method for detection and identification of low-abundance proteins from follicular fluid. Actually, we were able to identify 18 proteins in the crude follicular fluid, and as many as 113 in the enriched follicular fluid. Inhibins and a few other proteins involved in reproduction could only be identified after enrichment of follicular fluid, demonstrating the power of the method used. The comparison of proteins found in mare follicular fluid with proteins previously identified in human, porcine and canine follicular fluids, led to the identification of 12 common proteins and of several species-specific proteins. This study provides the first description of mare follicular fluid proteome during the late follicle development stages. We identified several proteins from crude, depleted and enriched follicular fluid. Our results demonstrate that the enrichment method, combined with 2D-PAGE and mass spectrometry, can be successfully used to visualize and further identify the low-abundance proteins in the follicular fluid.
Loss of c-KIT expression in thyroid cancer cells.
Franceschi, Sara; Lessi, Francesca; Panebianco, Federica; Tantillo, Elena; La Ferla, Marco; Menicagli, Michele; Aretini, Paolo; Apollo, Alessandro; Naccarato, Antonio Giuseppe; Marchetti, Ivo; Mazzanti, Chiara Maria
2017-01-01
Papillary thyroid carcinoma is the most frequent histologic type of thyroid tumor. Few studies investigated the role of c-KIT expression in thyroid tumors, suggesting a role for this receptor and its ligand in differentiation and growth control of thyroid epithelium and a receptor loss following malignant transformation. We investigated and correlated c-KIT expression levels and two known markers of thyrocytes differentiation, PAX8 and TTF-1, in malignant and benign cytological thyroid samples. Moreover, we performed functional studies on human papillary thyroid carcinoma cell line to associated c-KIT expression to thyrocytes differentiation and tumor proliferation. c-KIT and PAX8 expression resulted higher in benign samples compared to the malignant ones, and the expression levels of these two genes were significantly correlated to each other. We also observed that c-KIT overexpression led to an increase of PAX8 expression level together with a decrease of proliferation. Furthermore, c-KIT overexpressing cells showed a regression of typical morphological features of malignancy. Taken together these results suggest that c-KIT could be involved in the differentiation of thyroid cells and in tumor progression.
Loss of c-KIT expression in thyroid cancer cells
Panebianco, Federica; Tantillo, Elena; La Ferla, Marco; Menicagli, Michele; Aretini, Paolo; Apollo, Alessandro; Naccarato, Antonio Giuseppe; Marchetti, Ivo; Mazzanti, Chiara Maria
2017-01-01
Papillary thyroid carcinoma is the most frequent histologic type of thyroid tumor. Few studies investigated the role of c-KIT expression in thyroid tumors, suggesting a role for this receptor and its ligand in differentiation and growth control of thyroid epithelium and a receptor loss following malignant transformation. We investigated and correlated c-KIT expression levels and two known markers of thyrocytes differentiation, PAX8 and TTF-1, in malignant and benign cytological thyroid samples. Moreover, we performed functional studies on human papillary thyroid carcinoma cell line to associated c-KIT expression to thyrocytes differentiation and tumor proliferation. c-KIT and PAX8 expression resulted higher in benign samples compared to the malignant ones, and the expression levels of these two genes were significantly correlated to each other. We also observed that c-KIT overexpression led to an increase of PAX8 expression level together with a decrease of proliferation. Furthermore, c-KIT overexpressing cells showed a regression of typical morphological features of malignancy. Taken together these results suggest that c-KIT could be involved in the differentiation of thyroid cells and in tumor progression. PMID:28301608
Thyroid hormone upregulates zinc-α2-glycoprotein production in the liver but not in adipose tissue.
Simó, Rafael; Hernández, Cristina; Sáez-López, Cristina; Soldevila, Berta; Puig-Domingo, Manel; Selva, David M
2014-01-01
Overproduction of zinc-α2-glycoprotein by adipose tissue is crucial in accounting for the lipolysis occurring in cancer cachexia of certain malignant tumors. The main aim of this study was to explore whether thyroid hormone could enhance zinc-α2-glycoprotein production in adipose tissue. In addition, the regulation of zinc-α2-glycoprotein by thyroid hormone in the liver was investigated. We performed in vitro (HepG2 cells and primary human adipocytes) and in vivo (C57BL6/mice) experiments addressed to examine the effect of thyroid hormone on zinc-α2-glycoprotein production (mRNA and protein levels) in liver and visceral adipose tissue. We also measured the zinc-α2-glycoprotein serum levels in a cohort of patients before and after controlling their hyperthyroidism. Our results showed that thyroid hormone up-regulates zinc-α2-glycoprotein production in HepG2 cells in a dose-dependent manner. In addition, the zinc-α2-glycoprotein proximal promoter contains functional thyroid hormone receptor binding sites that respond to thyroid hormone treatment in luciferase reporter gene assays in HepG2 cells. Furthermore, zinc-α2-glycoprotein induced lipolysis in HepG2 in a dose-dependent manner. Our in vivo experiments in mice confirmed the up-regulation of zinc-α2-glycoprotein induced by thyroid hormone in the liver, thus leading to a significant increase in zinc-α2-glycoprotein circulating levels. However, thyroid hormone did not regulate zinc-α2-glycoprotein production in either human or mouse adipocytes. Finally, in patients with hyperthyroidism a significant reduction of zinc-α2-glycoprotein serum levels was detected after treatment but was unrelated to body weight changes. We conclude that thyroid hormone up-regulates the production of zinc-α2-glycoprotein in the liver but not in the adipose tissue. The neutral effect of thyroid hormones on zinc-α2-glycoprotein expression in adipose tissue could be the reason why zinc-α2-glycoprotein is not related to weight loss in hyperthyroidism.
Thyroid Hormone Upregulates Zinc-α2-glycoprotein Production in the Liver but Not in Adipose Tissue
Simó, Rafael; Hernández, Cristina; Sáez-López, Cristina; Soldevila, Berta; Puig-Domingo, Manel; Selva, David M.
2014-01-01
Overproduction of zinc-α2-glycoprotein by adipose tissue is crucial in accounting for the lipolysis occurring in cancer cachexia of certain malignant tumors. The main aim of this study was to explore whether thyroid hormone could enhance zinc-α2-glycoprotein production in adipose tissue. In addition, the regulation of zinc-α2-glycoprotein by thyroid hormone in the liver was investigated. We performed in vitro (HepG2 cells and primary human adipocytes) and in vivo (C57BL6/mice) experiments addressed to examine the effect of thyroid hormone on zinc-α2-glycoprotein production (mRNA and protein levels) in liver and visceral adipose tissue. We also measured the zinc-α2-glycoprotein serum levels in a cohort of patients before and after controlling their hyperthyroidism. Our results showed that thyroid hormone up-regulates zinc-α2-glycoprotein production in HepG2 cells in a dose-dependent manner. In addition, the zinc-α2-glycoprotein proximal promoter contains functional thyroid hormone receptor binding sites that respond to thyroid hormone treatment in luciferase reporter gene assays in HepG2 cells. Furthermore, zinc-α2-glycoprotein induced lipolysis in HepG2 in a dose-dependent manner. Our in vivo experiments in mice confirmed the up-regulation of zinc-α2-glycoprotein induced by thyroid hormone in the liver, thus leading to a significant increase in zinc-α2-glycoprotein circulating levels. However, thyroid hormone did not regulate zinc-α2-glycoprotein production in either human or mouse adipocytes. Finally, in patients with hyperthyroidism a significant reduction of zinc-α2-glycoprotein serum levels was detected after treatment but was unrelated to body weight changes. We conclude that thyroid hormone up-regulates the production of zinc-α2-glycoprotein in the liver but not in the adipose tissue. The neutral effect of thyroid hormones on zinc-α2-glycoprotein expression in adipose tissue could be the reason why zinc-α2-glycoprotein is not related to weight loss in hyperthyroidism. PMID:24465683
Increased expression of the sodium/iodide symporter in papillary thyroid carcinomas.
Saito, T; Endo, T; Kawaguchi, A; Ikeda, M; Katoh, R; Kawaoi, A; Muramatsu, A; Onaya, T
1998-01-01
Iodide is concentrated to a much lesser extent by papillary thyroid carcinoma as compared with the normal gland. The Na+/I- symporter (NIS) is primarily responsible for the uptake of iodide into thyroid cells. Our objective was to compare NIS mRNA and protein expression in papillary carcinomas with those in specimens with normal thyroid. Northern blot analysis revealed a 2.8-fold increase in the level of NIS mRNA in specimens with papillary carcinoma versus specimens with normal thyroid. Immunoblot analysis using anti-human NIS antibody that was produced with a glutathione S-transferase fusion protein containing NIS protein (amino acids 466-522) showed the NIS protein at 77 kD. The NIS protein level was elevated in 7 of 17 cases of papillary carcinoma but was not elevated in the normal thyroid. Immunohistochemical staining revealed abundant NIS in 8 of 12 carcinomas, whereas NIS protein was barely detected in specimens with normal thyroid. Although considerable patient-to-patient variation was observed, our results indicate that NIS mRNA is elevated, and its protein tends to be more abundant, in a subset of papillary thyroid carcinomas than in normal thyroid tissue. PMID:9525971
Scala, Stefania; Portella, Giuseppe; Fedele, Monica; Chiappetta, Gennaro; Fusco, Alfredo
2000-01-01
High mobility group I (HMGI) proteins are overexpressed in several human malignant tumors. We previously demonstrated that inhibition of HMGI synthesis prevents thyroid cell transformation. Here, we report that an adenovirus carrying the HMGI(Y) gene in an antisense orientation (Ad-Yas) induced programmed cell death of two human thyroid anaplastic carcinoma cell lines (ARO and FB-1), but not normal thyroid cells. The Ad-Yas virus led to death of lung, colon, and breast carcinoma cells. A control adenovirus carrying the lacZ gene did not inhibit the growth of either normal or neoplastic cells. Ad-Yas treatment of tumors induced in athymic mice by ARO cells caused a drastic reduction in tumor size. Therefore, suppression of HMGI(Y) protein synthesis by an HMGI(Y) antisense adenoviral vector may be a useful treatment strategy in a variety of human malignant neoplasias, in which HMGI(Y) gene overexpression is a general event. PMID:10759549
Polycystic ovarian disease: animal models.
Mahajan, D K
1988-12-01
The reproductive systems of human beings and other vertebrates are grossly similar. In the ovary particularly, the biochemical and physiologic processes are identical not only in the formation of germ cells, the development of primordial follicles and their subsequent growth to Graafian follicles, and eventual ovulation but also in anatomic structure. In a noncarcinogenic human ovary, hypersecretion of androgen causes PCOD. Such hypersecretion may result from a nonpulsatile, constant elevated level of circulating LH or a disturbance in the action of neurotransmitters in the hypothalamus. In studying the pathophysiology of PCOD in humans, one must be aware of the limitations for manipulating the hypothalamic-pituitary axis. Although the rat is a polytocous rodent, the female has a regular ovarian cyclicity of 4 or 5 days, with distinct proestrus, estrus, and diestrus phases. Inasmuch as PCOD can be experimentally produced in the rat, that species is a good model for studying the pathophysiology of human PCOD. These PCOD models and their validity have been described: (1) estradiol-valerate, (2) DHA, (3) constant-light (LL), and (4) neonatally androgenized. Among these, the LL model is noninvasive and seems superior to the others for study of the pathophysiology of PCOD. The production of the polycystic ovarian condition in the rat by the injection of estrogens or androgens in neonate animals, or estradiol or DHA in adult rats, or the administration of antigonadotropins to these animals all cause a sudden appearance of the persistent estrus state by disturbing the metabolic and physiologic processes, whereas exposure of the adult rat to LL causes polycystic ovaries gradually, similar to what is seen in human idiopathic PCOD. After about 50 days of LL, the rat becomes anovulatory and the ovaries contain thickened tunica albuginea and many atretic follicles, and the tertiary follicles are considerably distended and cystic. The granulosa and theca cells appear normal histologically, although some of the stromal cells appear hypertrophic. The anatomic features consequent to polycystic ovaries resulting from LL are similar to those in human PCOD, and both rat and human PCOD ovarian cells still retain the ability to respond to FSH/LH, LHRH, and unilateral ovariectomy. In the estradiol valerate rat model, although the anatomy and physiology of the ovary resemble those of PCOD patients, the progressive degeneration of the hypothalamus and the altered response of the pituitary to LHRH make this model inappropriate for studying the hypothalamic-pituitary-ovarian axis in the polycystic ovary condition.(ABSTRACT TRUNCATED AT 400 WORDS)
Provansal, M; Agostini, A; Lacroix, O; Gerbeau, S; Grillo, J-M; Gamerre, M
2009-12-01
To compare sonographic characteristics of the endometrium and follicles during in-vitro fertilization (IVF) before and after methotrexate (MTX) treatment for ectopic pregnancy. This retrospective study, conducted at Conception Hospital from January 2000 to July 2007, included all patients diagnosed with an ectopic pregnancy resulting from IVF treatment that was treated with MTX and who then underwent another IVF cycle. We compared the number and size of follicles and the endometrial thickness and quality on the day of human chorionic gonadotropin injection in the cycles before and after the MTX treatment to determine whether MTX had any effect. Eleven patients were included in the study. The median interval between the IVF cycle resulting in ectopic pregnancy and the first IVF cycle after MTX therapy was 180 (range, 150-900) days. There was no statistically significant difference between the before and after MTX treatment groups with respect to number of follicles (14 (3-20) vs. 9 (4-16), P = 0.12), follicle size (16.5 (14.7-21.7) mm vs. 17.8 (14.9-19.8) mm, P = 0.37), endometrial thickness (10.0 (9.5-12.0) mm vs. 10.0 (7.5-14.0) mm, P = 0.31) or endometrial quality (P = 0.32). Four women became pregnant during the IVF cycle following MTX treatment. Ultrasound monitoring showed no modification of the characteristics of the endometrium or follicles during IVF after MTX treatment for ectopic pregnancy. Copyright 2009 ISUOG. Published by John Wiley & Sons, Ltd.
Cahn, Avivit; Chairsky-Segal, Irena; Olshtain-Pops, Keren; Maayan, Sholomo; Wolf, Dana; Dresner-Pollak, Rivka
2012-01-01
To investigate whether human immunodeficiency virus (HIV) infection or its treatment is a risk factor for thyroid dysfunction and whether thyroid function changes over time in 2 distinct subpopulations with HIV or acquired immunodeficiency syndrome (AIDS) in Israel: Ethiopian immigrants and Israeli patients. Serum thyroid-stimulating hormone (TSH) and free thyroxine levels were determined in HIV carriers undergoing follow-up at the Hadassah-Hebrew University Medical Center HIV clinic in Jerusalem, Israel, and these thyroid measurements were correlated with clinical and laboratory variables pertaining to their disease, including disease duration, drug therapy, viral load, CD4 count, low-density lipoprotein cholesterol, and creatine kinase. Serum samples stored at -20°C from the time of referral were tested as well. We recruited 121 consecutive patients with HIV or AIDS for this study: 60 Ethiopians and 61 Israeli patients. Of the 121 patients, 4 (3%) had abnormal thyroid function-subclinical hypothyroidism in 2, overt hypothyroidism in 1, and overt hyperthyroidism in 1. Previously stored serum samples were available for 60 of the 121 patients and revealed 2 additional patients with subclinical hypothyroidism, whose TSH has normalized in the subsequent test. Throughout the follow-up period of 3.2 ± 1.9 years, the mean TSH level remained unchanged in the Israeli cohort but significantly declined in the Ethiopian cohort. Thyroid function abnormalities were uncommon in these Israeli patients with HIV or AIDS. This finding does not support the need for routine thyroid function tests in this patient population. The decline in TSH level in the Ethiopian population over time probably represents a shift from an iodine-deficient to an iodine-sufficient country.
Vallejo Casas, Juan A; Mena Bares, Luisa M; Gálvez Moreno, Maria A; Moreno Ortega, Estefanía; Marlowe, Robert J; Maza Muret, Francisco R; Albalá González, María D
2016-06-01
Most publications to date compare outcomes after post-surgical thyroid remnant ablation stimulated by recombinant human thyrotropin (rhTSH) versus thyroid hormone withholding/withdrawal (THW) in low-recurrence risk differentiated thyroid carcinoma (DTC) patients. We sought to perform this comparison in high-risk patients. We retrospectively analyzed ~9-year single-center experience in 70 consecutive adults with initial UICC (Union for International Cancer Control) stage III/IV, M0 DTC undergoing rhTSH-aided (N.=54) or THW-aided (N.=16) high-activity ablation. Endpoints included ablation success and DTC outcome. Assessed ≥1 year post-ablation, ablation success comprised a) no visible scintigraphic thyroid bed uptake or pathological extra-thyroidal uptake; b) undetectable stimulated serum thyroglobulin (Tg) without interfering autoantibodies; c) both criteria. DTC outcome, determined at the latest visit, comprised either 1) "no evidence of disease" (NED): undetectable Tg, negative Tg autoantibodies, negative most recent whole-body scan, no suspicious findings clinically, on neck ultrasonography, or on other imaging; 2) persistent disease: failure to attain NED; or 3) recurrence: loss of NED. After the first ablative activity, ablation success by scintigraphic plus biochemical criteria was 64.8% in rhTSH patients, 56.3% in THW patients (P=NS). After 3.5-year versus 6.2-year median follow-up (P<0.05), DTC outcomes were NED, 85.2%, persistent disease, 13.0%, recurrence, 1.9%, in the rhTSH group and NED, 87.5%, persistent or recurrent disease, 6.3% each, in the THW group (P=NS). In patients with initial stage III/IV, M0 DTC, rhTSH-aided and THW-assisted ablation were associated with comparable remnant eradication or DTC cure rates.
Luo, Juhua; Hendryx, Michael
2014-04-01
Experimental studies have shown that both cadmium (Cd) and lead have potent endocrine disrupting activity. However, studies on whether these heavy metals disrupt thyroid system in humans, especially in general populations with low levels of exposure, are sparse. The study analyzed 6,231 participants aged 20 and older with measurements from 2007-2010 of the National Health and Nutrition Examination Survey (NHANES) to investigate whether whole blood Cd and lead level are associated with serum thyroid hormones measures. Our study suggests that thyroid function may be disrupted by both Cd and lead exposures in the general population and the specific roles of Cd and lead exposure on thyroid axis may differ by sex. However, the mechanisms by which these heavy metals may disrupt thyroid system function in general population needs to be further investigated.
Basolo, Fulvio; Giannini, Riccardo; Toniolo, Antonio; Casalone, Rosario; Nikiforova, Marina; Pacini, Furio; Elisei, Rossella; Miccoli, Paolo; Berti, Piero; Faviana, Pinuccia; Fiore, Lisa; Monaco, Carmen; Pierantoni, Giovanna Maria; Fedele, Monica; Nikiforov, Yuri E; Santoro, Massimo; Fusco, Alfredo
2002-02-10
A novel human thyroid papillary carcinoma cell line (FB-2) has been established and characterized. FB-2 cells harbor the RET/PTC1 chimeric oncogene in which the RET kinase domain is fused to the H4 gene. FB-2 cells neither formed colonies in semisolid media nor induced tumors after heterotransplant into severe combined immunodeficient mice. However, HMGI(Y), HMGI-C and c-myc genes, which are associated to thyroid cell transformation, were abundantly expressed in FB-2 cells but not in normal thyroid cells. FB-2 cells only partially retained the differentiated thyroid phenotype. In fact, the PAX-8 gene, which codes for a transcriptional factor required for thyroid cell differentiation, was expressed, while thyroglobulin, TSH-receptor and thyroperoxidase genes were not. Moreover, FB-2 cells produced high levels of interleukin (IL)-6 and IL-8. Copyright 2001 Wiley-Liss, Inc.
Surface-enhanced Raman spectroscopy for differentiation between benign and malignant thyroid tissues
NASA Astrophysics Data System (ADS)
Li, Zuanfang; Li, Chao; Lin, Duo; Huang, Zufang; Pan, Jianji; Chen, Guannan; Lin, Juqiang; Liu, Nenrong; Yu, Yun; Feng, Shangyuan; Chen, Rong
2014-04-01
The aim of this study was to evaluate the potential of applying silver nano-particle based surface-enhanced Raman scattering (SERS) to discriminate different types of human thyroid tissues. SERS measurements were performed on three groups of tissue samples including thyroid cancers (n = 32), nodular goiters (n = 20) and normal thyroid tissues (n = 25). Tentative assignments of the measured tissue SERS spectra suggest interesting cancer specific biomolecular differences. The principal component analysis (PCA) and linear discriminate analysis (LDA) together with the leave-one-out, cross-validated technique yielded diagnostic sensitivities of 92%, 75% and 87.5%; and specificities of 82.6%, 89.4% and 84.4%, respectively, for differentiation among normal, nodular and malignant thyroid tissue samples. This work demonstrates that tissue SERS spectroscopy associated with multivariate analysis diagnostic algorithms has great potential for detection of thyroid cancer at the molecular level.
The microRNA-processing enzyme Dicer is essential for thyroid function.
Frezzetti, Daniela; Reale, Carla; Calì, Gaetano; Nitsch, Lucio; Fagman, Henrik; Nilsson, Ola; Scarfò, Marzia; De Vita, Gabriella; Di Lauro, Roberto
2011-01-01
Dicer is a type III ribonuclease required for the biogenesis of microRNAs (miRNAs), a class of small non-coding RNAs regulating gene expression at the post-transcriptional level. To explore the functional role of miRNAs in thyroid gland function, we generated a thyrocyte-specific Dicer conditional knockout mouse. Here we show that development and early differentiation of the thyroid gland are not affected by the absence of Dicer, while severe hypothyroidism gradually develops after birth, leading to reduced body weight and shortened life span. Histological and molecular characterization of knockout mice reveals a dramatic loss of the thyroid gland follicular architecture associated with functional aberrations and down-regulation of several differentiation markers. The data presented in this study show for the first time that an intact miRNAs processing machinery is essential for thyroid physiology, suggesting that deregulation of specific miRNAs could be also involved in human thyroid dysfunctions.
NASA Astrophysics Data System (ADS)
Alssabbagh, Moayyad; Tajuddin, Abd Aziz; Abdulmanap, Mahayuddin; Zainon, Rafidah
2017-06-01
Recently, the three-dimensional printer has started to be utilized strongly in medical industries. In the human body, many parts or organs can be printed from 3D images to meet accurate organ geometries. In this study, five common 3D printing materials were evaluated in terms of their elementary composition and the mass attenuation coefficients. The online version of XCOM photon cross-section database was used to obtain the attenuation values of each material. The results were compared with the attenuation values of the thyroid listed in the International Commission on Radiation Units and Measurements - ICRU 44. Two original thyroid models (hollow-inside and solid-inside) were designed from scratch to be used in nuclear medicine, diagnostic radiology and radiotherapy for dosimetry and image quality purposes. Both designs have three holes for installation of radiation dosimeters. The hollow-inside model has more two holes in the top for injection the radioactive materials. The attenuation properties of the Polylactic Acid (PLA) material showed a very good match with the thyroid tissue, which it was selected to 3D print the phantom using open source RepRap, Prusa i3 3D printer. The scintigraphy images show that the phantom simulates a real healthy thyroid gland and thus it can be used for image quality purposes. The measured CT numbers of the PA material after the 3D printing show a close match with the human thyroid CT numbers. Furthermore, the phantom shows a good accommodation of the TLD dosimeters inside the holes. The 3D fabricated thyroid phantom simulates the real shape of the human thyroid gland with a changeable geometrical shape-size feature to fit different age groups. By using 3D printing technology, the time required to fabricate the 3D phantom was considerably shortened compared to the longer conventional methods, where it took only 30 min to print out the model. The 3D printing material used in this study is commercially available and cost-effective compared to current commercial tissue-equivalent materials.
TRICLOSAN ALTERS THYROID HORMONES HOMEOSTASIS VIA UP-REGULATION OF HEPATIC CATABOLISM.
Triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol) is a chlorinated phenolic antibacterial compound used in household and hygiene products. The structural similarity of triclosan to thyroid hormones, in vitro studies demonstrating activation of the human pregnane X receptor (PXR)...
MEASUREMENT OF THYROID HORMONES IN THE RAT SERA CONTAINING PERFLUOROOCTANESULFONATE (PFOS)
Perfluorooctanesulfonate (PFOS), a persistent and bioaccumulative acid, is widely distributed in humans and wildlife. Prior studies with PFOS (rats and monkeys) have observed decreased total and free thyroid hormones (TH) in serum without a rise in thyrotropin (TSH). Measuremen...
A Risk-based Prioritization Strategy for Thyroid Disruption Under EDSP21
The US Environmental Protection Agency (EPA) established the Endocrine Disruptor Screening Program (EDSP) to determine whether certain substances may have an effect in humans or wildlife that disrupt the estrogen, androgen or thyroid axes. The EDSP is now utilizing comp...
Hyperthyroid-associated osteoporosis is exacerbated by the loss of TSH signaling
USDA-ARS?s Scientific Manuscript database
The osteoporosis associated with human hyperthyroidism has traditionally been attributed to elevated thyroid hormone levels. There is evidence, however, that thyroid-stimulating hormone (TSH), which is low in most hyperthyroid states, directly affects the skeleton. Importantly, Tshr-knockout mice ar...
Cell Transformation by PTP1B Truncated Mutants Found in Human Colon and Thyroid Tumors.
Mei, Wenhan; Wang, Kemin; Huang, Jian; Zheng, Xinmin
2016-01-01
Expression of wild-type protein tyrosine phosphatase (PTP) 1B may act either as a tumor suppressor by dysregulation of protein tyrosine kinases or a tumor promoter through Src dephosphorylation at Y527 in human breast cancer cells. To explore whether mutated PTP1B is involved in human carcinogenesis, we have sequenced PTP1B cDNAs from human tumors and found splice mutations in ~20% of colon and thyroid tumors. The PTP1BΔE6 mutant expressed in these two tumor types and another PTP1BΔE5 mutant expressed in colon tumor were studied in more detail. Although PTP1BΔE6 revealed no phosphatase activity compared with wild-type PTP1B and the PTP1BΔE5 mutant, its expression induced oncogenic transformation of rat fibroblasts without Src activation, indicating that it involved signaling pathways independent of Src. The transformed cells were tumourigenic in nude mice, suggesting that the PTP1BΔE6 affected other molecule(s) in the human tumors. These observations may provide a novel therapeutic target for colon and thyroid cancer.
Li, Hui; Li, Xiang; Liu, Jie; Jin, Langping; Yang, Fan; Wang, Junbo; Wang, Ouchen; Gao, Ying
2017-10-01
Studies have showed that lead was associated with human health. However, the effects of lead on thyroid functions are inconsistent, and studies based on Chinese population are fragmentary. To evaluate the correlation between lead and thyroid functions of Chinese with different thyroid diseases, we conducted a hospital-based study. Ninety-six papillary thyroid carcinoma (PTC), 10 nodular goiter (NG), and 7 thyroid adenoma (TA) patients were recruited from the First Affiliated Hospital of Wenzhou Medical University, China. Serum triiodothyronine (T3), free triiodothyronine (FT3), free thyroxin (FT4), and thyroid stimulating hormone (TSH) were evaluated with chemiluminescent microparticle immunoassay. Serum lead was assessed with ICP-MASS. Partial correlation was used to explore the correlations of serum lead and thyroid diseases. Compared to PTC, the level of lead was significantly higher in TA, and lower in NG (p < 0.05). This difference remained significant in females when stratified by sex. Serum lead was negatively correlated with TSH (r s = - 0.27, p < 0.05) in PTC group. T3 was positively related to lead at quartile4 (r s = 0.61, p < 0.05) in PTC group. No significant correlations were observed between lead and FT3 or FT4 in any group. The results suggested that lead might have different etiological roles in these three thyroid diseases.
Akamizu, T; Kohn, L D; Hiratani, H; Saijo, M; Tahara, K; Nakao, K
2000-06-01
Blocking-type TSH-binding inhibitor Igs (TBIIs) are known to cause hypothyroidism and an atrophic thyroid gland in patients with primary myxedema. They can block the activity of thyroid-stimulating antibodies (TSAbs) in Graves' patients as well as the activity of TSH. The majority of the epitopes for these blocking-type TBIIs have been, and are shown herein, to be present on the C-terminal region of the extracellular domain of the human TSH receptor (TSHR), whereas those for Graves' TSAbs are on the N-terminus. We report on a patient with Hashimoto's thyroiditis who suffered from mild hypothyroidism and a moderately sized goiter. Her serum had a potent blocking-type TBII and a weak TSAb in human and porcine TSHR systems. Using human TSHR/lutropin-CG receptor chimeras, we determined that the functional epitope of her blocking-type TBII was uniquely present on the N-terminal, rather than the C-terminal, region of the extracellular domain of the TSHR, unlike the case for blocking-type TBIIs in primary myxedema patients. The epitope of her TSAb was also unusual. Although the functional epitopes of most TSAbs are known to involve the N-terminal region of the receptor, her TSAb epitope did not seem to be present solely on the N- or C-terminus of the extracellular domain of the receptor. Blocking-type TBIIs from patients with primary myxedema blocked her TSAb activity as well as stimulation by TSH; her blocking-type TBII was able to only partially block her TSAb. In contrast, her blocking-type TBII almost completely blocked TSAbs from Graves' patients. Thus, we suggest that the unique epitopes of this patient's heterogeneous population of TSH receptor antibodies, at least in part, contribute to regulation of her thyroid function.
Verloop, Herman; Dekkers, Olaf M; Peeters, Robin P; Schoones, Jan W; Smit, Johannes W A
2014-09-01
Iodothyronine deiodinases represent a family of selenoproteins involved in peripheral and local homeostasis of thyroid hormone action. Deiodinases are expressed in multiple organs and thyroid hormone affects numerous biological systems, thus genetic variation in deiodinases may affect multiple clinical endpoints. Interest in clinical effects of genetic variation in deiodinases has clearly increased. We aimed to provide an overview for the role of deiodinase polymorphisms in human physiology and morbidity. In this systematic review, studies evaluating the relationship between deiodinase polymorphisms and clinical parameters in humans were eligible. No restrictions on publication date were imposed. The following databases were searched up to August 2013: Pubmed, EMBASE (OVID-version), Web of Science, COCHRANE Library, CINAHL (EbscoHOST-version), Academic Search Premier (EbscoHOST-version), and ScienceDirect. Deiodinase physiology at molecular and tissue level is described, and finally the role of these polymorphisms in pathophysiological conditions is reviewed. Deiodinase type 1 (D1) polymorphisms particularly show moderate-to-strong relationships with thyroid hormone parameters, IGF1 production, and risk for depression. D2 variants correlate with thyroid hormone levels, insulin resistance, bipolar mood disorder, psychological well-being, mental retardation, hypertension, and risk for osteoarthritis. D3 polymorphisms showed no relationship with inter-individual variation in serum thyroid hormone parameters. One D3 polymorphism was associated with risk for osteoarthritis. Genetic deiodinase profiles only explain a small proportion of inter-individual variations in serum thyroid hormone levels. Evidence suggests a role of genetic deiodinase variants in certain pathophysiological conditions. The value for determination of deiodinase polymorphism in clinical practice needs further investigation. © 2014 European Society of Endocrinology.
Bayne, Rosemary A; Donnachie, Douglas J; Kinnell, Hazel L; Childs, Andrew J; Anderson, Richard A
2016-09-01
Do changes in the expression of bone morphogenetic proteins (BMPs) 2 and 4, and their antagonists Gremlin1 (GREM1) and Gremlin2 (GREM2) during human fetal ovarian development impact on BMP pathway activity and lead to changes in gene expression that may influence the fate and/or function of ovarian somatic cells? BMPs 2 and 4 differentially regulate gene expression in cultured human fetal ovarian somatic cells. Expression of some, but not all BMP target genes is antagonised by GREM1 and GREM2, indicating the existence of a mechanism to fine-tune BMP signal intensity in the ovary. Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5), a marker of immature ovarian somatic cells, is identified as a novel transcriptional target of BMP4. Extensive re-organisation of the germ and somatic cell populations in the feto-neonatal ovary culminates in the formation of primordial follicles, which provide the basis for a female's future fertility. BMP growth factors play important roles at many stages of ovarian development and function. GREM1, an extracellular antagonist of BMP signalling, regulates the timing of primordial follicle formation in the mouse ovary, and mRNA levels of BMP4 decrease while those of BMP2 increase prior to follicle formation in the human fetal ovary. Expression of genes encoding BMP pathway components, BMP antagonists and markers of ovarian somatic cells were determined by quantitative (q)RT-PCR in human fetal ovaries (from 8 to 21 weeks gestation) and fetal ovary-derived somatic cell cultures. Ovarian expression of GREM1 protein was confirmed by immunoblotting. Primary human fetal ovarian somatic cell cultures were derived from disaggregated ovaries by differential adhesion and cultured in the presence of recombinant human BMP2 or BMP4, with or without the addition of GREM1 or GREM2. We demonstrate that the expression of BMP antagonists GREM1, GREM2 and CHRD increases in the lead-up to primordial follicle formation in the human fetal ovary, and that the BMP pathway is active in cultured ovarian somatic cells. This leads to differential changes in the expression of a number of genes, some of which are further modulated by GREM1 and/or GREM2. The positive transcriptional regulation of LGR5 (a marker of less differentiated somatic cells) by BMP4 in vitro suggests that increasing levels of GREM1 and reduced levels of BMP4 as the ovary develops in vivo may act to reduce LGR5 levels and allow pre-granulosa cell differentiation. While we have demonstrated that markers of different somatic cell types are expressed in the cultured ovarian somatic cells, their proportions may not represent the same cells in the intact ovary which also contains germ cells. This study extends previous work identifying germ cells as targets of ovarian BMP signalling, and suggests BMPs may regulate the development of both germ and somatic cells in the developing ovary around the time of follicle formation. Not applicable. This work was supported by The UK Medical Research Council (Grant No.: G1100357 to RAA), and Medical Research Scotland (Grant No. 345FRG to AJC). The authors have no competing interests to declare. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.
NASA Astrophysics Data System (ADS)
Yang, Lin; Li, Jingguang; Lai, Jianqiang; Luan, Hemi; Cai, Zongwei; Wang, Yibaina; Zhao, Yunfeng; Wu, Yongning
2016-02-01
Perfluoroalkyl substances (PFASs) have been detected in wildlife and human samples worldwide. Toxicology research showed that PFASs could interfere with thyroid hormone homeostasis. In this study, eight PFASs, fifteen PFAS precursors and five thyroid hormones were analyzed in 157 paired maternal and cord serum samples collected in Beijing around delivery. Seven PFASs and two precursors were detected in both maternal and cord sera with significant maternal-fetal correlations (r = 0.336 to 0.806, all P < 0.001). The median ratios of major PFASs concentrations in fetal versus maternal serum were from 0.25:1 (perfluorodecanoic acid, PFDA) to 0.65:1 (perfluorooctanoic acid, PFOA). Spearman partial correlation test showed that maternal thyroid stimulating hormone (TSH) was negatively correlated with most maternal PFASs (r = -0.261 to -0.170, all P < 0.05). Maternal triiodothyronin (T3) and free T3 (FT3) showed negative correlations with most fetal PFASs (r = -0.229 to -0.165 for T3; r = -0.293 to -0.169 for FT3, all P < 0.05). Our results suggest prenatal exposure of fetus to PFASs and potential associations between PFASs and thyroid hormone homeostasis in humans.
Animal models for transdermal drug delivery.
Panchagnula, R; Stemmer, K; Ritschel, W A
1997-06-01
The purpose of this investigation was to compare the permeation characteristics of two different compounds (extremely polar and nonpolar), i.e., tritium-labeled water (W) and 14C-labeled 7-hydroxycoumarin (7-OHC), among 16 different species, including human skin. Snake skin exhibited highest permeability for both W and 7-OHC. Permeability and lag time values of W and 7-OHC across Brattleboro rat and hairless guinea pig are very close to human skin. Skin thickness in micrometers (full thickness, epidermis and stratum corneum, and stratum corneum), and number of hair follicles present in each cm2 were determined for each species. There was no relationship between number of hair follicles and permeability values for both W and 7-OHC. The skin thickness (full) was related to the relative permeability values of W, whereas for 7-OHC it was not.
Butler, Miriam S; Yang, Xing; Ricciardelli, Carmela; Liang, Xiaoyan; Norman, Robert J; Tilley, Wayne D; Hickey, Theresa E
2013-06-01
To evaluate the expression and function of small glutamine-rich tetratricopeptide repeat-containing protein alpha (SGTA), an androgen receptor (AR) molecular chaperone, in human ovarian tissues. Examine the effect of SGTA on AR subcellular localization in granulosa tumor cells (KGN) and SGTA expression in ovarian tissues. University-based research laboratory. Archived tissues from premenopausal women and granulosa cells from infertile women receiving assisted reproduction. None. AR subcellular localization and SGTA protein or mRNA levels. SGTA and AR proteins were expressed in the cytoplasm of KGN cells and exposure to androgen stimulated AR nuclear localization. SGTA protein knockdown increased AR nuclear localization at low (0-0.1 nmol/L) but not high (1-10 nmol/L) concentrations of androgen hormone. In ovarian tissues, SGTA was localized to the cytoplasm of granulosa cells at all stages of folliculogenesis and in thecal cells of antral follicles. SGTA protein levels were similar when comparing primordial and primary follicles within core biopsies (n = 40) from women with and without polycystic ovary syndrome (PCOS). Likewise, SGTA mRNA levels were not significantly different in granulosa cells from preovulatory follicles after hyperstimulation of women with and without PCOS. SGTA is present in human ovaries and has the potential to modulate AR signalling, but it may not be differentially expressed in PCOS. Copyright © 2013 American Society for Reproductive Medicine. All rights reserved.
Navabazam, Ali Reza; Sadeghian Nodoshan, Fatemeh; Sheikhha, Mohammad Hasan; Miresmaeili, Sayyed Mohsen; Soleimani, Mehrdad; Fesahat, Farzaneh
2013-03-01
Human dental stem cells have high proliferative potential for self-renewal that is important to the regenerative capacity of the tissue. Objective : The aim was to isolate human dental pulp stem cells (DPSC), periodontal ligament stem cells (PDLSC) and periapical follicle stem cells (PAFSC) for their potential role in tissue regeneration. In this experimental study, the postnatal stem cells were isolated from dental pulp, preapical follicle and periodontal ligament .The cells were stained for different stem cell markers by immunocytochemistry. To investigate the mesenchymal nature of cells, differentiation potential along osteoblastic and adipogenic lineages and gene expression profile were performed. For proliferation potential assay, Brdu staining and growth curve tests were performed. Finally, all three cell types were compared together regarding their proliferation, differentiation and displaying phenotype. The isolated cell populations have similar fibroblastic like morphology and expressed all examined cell surface molecule markers. These cells were capable of differentiating into osteocyte with different capability and adipocyte with the same rate. PAFSCs showed more significant proliferation rate than others. Reverse transcriptase PCR (RT-PCR) for nanog, oct4, Alkaline phosphatase (ALP) and glyceraldehydes-3-phosphate dehydrogenease (GADPH) as control gene showed strong positive expression of these genes in all three isolated cell types. PDLSCs, DPSCs and PAFSCs exist in various tissues of the teeth and can use as a source of mesenchymal stem cells for developing bioengineered organs and also in craniomaxillofacial reconstruction with varying efficiency in differentiation and proliferation.
Han, Le; Liu, Ben; Chen, Xianyan; Chen, Haiyan; Deng, Wenjia; Yang, Changsheng; Ji, Bin; Wan, Miaojian
2018-04-01
Activation of the Wnt/β-catenin signaling pathway plays an important role in hair follicle morphogenesis and hair growth. Recently, low-level laser therapy (LLLT) was evaluated for stimulating hair growth in numerous clinical studies, in which 655-nm red light was found to be most effective and practical for stimulating hair growth. We evaluated whether 655-nm red light + light-emitting diode (LED) could promote human hair growth by activating Wnt/β-catenin signaling. An in vitro culture of human hair follicles (HFs) was irradiated with different intensities of 655-nm red light + LED, 21 h7 (an inhibitor of β-catenin), or both. Immunofluorescence staining was performed to assess the expression of β-catenin, GSK3β, p-GSK3β, and Lef1 in the Wnt/β-catenin signaling. The 655-nm red light + LED not only enhanced hair shaft elongation, but also reduced catagen transition in human hair follicle organ culture, with the greatest effectiveness observed at 5 min (0.839 J/cm 2 ). Additionally, 655-nm red light + LED enhanced the expression of β-catenin, p-GSK3β, and Lef1, signaling molecules of the Wnt/β-catenin pathway, in the hair matrix. Activation of Wnt/β-catenin signaling is involved in hair growth-promoting effect of 655-nm red light and LED in vitro and therefore may serve as an alternative therapeutic option for alopecia.
Recurrent pregnancy loss in patients with thyroid dysfunction.
Sarkar, Debanjali
2012-12-01
Thyroid disturbances are common in women during their reproductive years. Thyroid dysfunction interferes with human reproductive physiology, reduces the likelihood of pregnancy and adversely affects pregnancy outcome, thus becoming relevant in the algorithm of reproductive dysfunction. This review highlights the gap in knowledge regarding the contribution of thyroid dysfunction in reproduction. Following implantation, the maintenance of the pregnancy is dependent on a multitude of endocrinological events that will eventually aid in the successful growth and development of the fetus. It is estimated that approximately 8-12% of all pregnancy losses are the result of endocrine factors. Autoimmune thyroid disease is present in around 4% of young females and up to 15% are at risk because they are thyroid antibody-positive. There is a strong relationship between thyroid immunity on one hand and infertility, miscarriage, and thyroid disturbances in pregnancy and postpartum, on the other hand. Even minimal hypothyroidism can increase rates of miscarriage and fetal death and may also have adverse effects on later cognitive development of the offspring. Hyperthyroidism during pregnancy may also have adverse consequences. Pregnant women with subclinical hypothyroidism or thyroid antibodies have an increased risk of complications, especially pre-eclampsia, perinatal mortality, and miscarriage. Universal screening for thyroid hormone abnormalities is not routinely recommended at present, but thyroid function must be examined in female with fetal loss or menstrual disturbances. Practitioners providing health care for women should be alert to thyroid disorders as an underlying etiology for recurrent pregnancy loss.
Medullary thyroid cancer: the functions of raf-1 and human achaete-scute homologue-1.
Chen, Herbert; Kunnimalaiyaan, Muthusamy; Van Gompel, Jamie J
2005-06-01
Medullary thyroid cancer (MTC) is a prototypic neuroendocrine tumor of the thyroid C cells. Other than surgery, there are no curative therapies for MTC. In this review, we detail recent studies that suggest that targeting specific signaling pathways may be a viable strategy to control MTC tumor progression. Specifically, we discuss the role of the raf-1 and achaete-scute homologue-1 pathways in the MTC tumor growth and differentiation.
Identifying a Small Molecule Blocking Antigen Presentation in Autoimmune Thyroiditis.
Li, Cheuk Wun; Menconi, Francesca; Osman, Roman; Mezei, Mihaly; Jacobson, Eric M; Concepcion, Erlinda; David, Chella S; Kastrinsky, David B; Ohlmeyer, Michael; Tomer, Yaron
2016-02-19
We previously showed that an HLA-DR variant containing arginine at position 74 of the DRβ1 chain (DRβ1-Arg74) is the specific HLA class II variant conferring risk for autoimmune thyroid diseases (AITD). We also identified 5 thyroglobulin (Tg) peptides that bound to DRβ1-Arg74. We hypothesized that blocking the binding of these peptides to DRβ1-Arg74 could block the continuous T-cell activation in thyroiditis needed to maintain the autoimmune response to the thyroid. The aim of the current study was to identify small molecules that can block T-cell activation by Tg peptides presented within DRβ1-Arg74 pockets. We screened a large and diverse library of compounds and identified one compound, cepharanthine that was able to block peptide binding to DRβ1-Arg74. We then showed that Tg.2098 is the dominant peptide when inducing experimental autoimmune thyroiditis (EAT) in NOD mice expressing human DRβ1-Arg74. Furthermore, cepharanthine blocked T-cell activation by thyroglobulin peptides, in particular Tg.2098 in mice that were induced with EAT. For the first time we identified a small molecule that can block Tg peptide binding and presentation to T-cells in autoimmune thyroiditis. If confirmed cepharanthine could potentially have a role in treating human AITD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Reddy, Varikasuvu Seshadri; Bukke, Suman; Mahato, Khageshwar; Kumar, Vinod; Reddy, Netala Vasudeva; Munikumar, Manne; Vodelu, Bramahanapally
2017-02-28
Serum levels of ischaemia-modified albumin (IMA) have been studied as a novel and simple measure of oxidative stress (OXS) in different thyroid pathologies. However, results of available studies in the literature were not consistent. This meta-analysis was attempted to quantify the overall effect size for serum IMA levels in human hypothyroidism (HT) and hyperthyroidism (HYT) and to study its associations with the thyroid profile. Databases of PubMed/Medline, EMBASE, Google Scholar, Web of Science and Science Direct were searched for articles. Data on serum IMA levels in HT, HYT patients and euthyroid controls were extracted to compute standardized mean differences (SMD) by the random-effects model. The associations between IMA and thyroid profile were computed by the meta-analysis of correlation coefficients. IMA levels in HT patients (SMD=1.12; Z=2.76; P=0.006) and HYT patients (SMD=1.64; Z=2.57; P=0.01) were significantly higher than in euthyroid controls and the thyroid treatment showed a favourble effect on serum IMA levels. There were strong and significant correlations between IMA and hormonal status in HT and HYT groups. This meta-analysis showing increased IMA level in both HT and HYT patients and its association with thyroid profile suggests that serum IMA could be used as a simple measure of increased OXS in thyroid dysfunction. © 2017 The Author(s).
Berbel, Pere; Navarro, Daniela; Román, Gustavo C.
2014-01-01
The morphological alterations of cortical lamination observed in mouse models of developmental hypothyroidism prompted the recognition that these experimental changes resembled the brain lesions of children with autism; this led to recent studies showing that maternal thyroid hormone deficiency increases fourfold the risk of autism spectrum disorders (ASD), offering for the first time the possibility of prevention of some forms of ASD. For ethical reasons, the role of thyroid hormones on brain development is currently studied using animal models, usually mice and rats. Although mammals have in common many basic developmental principles regulating brain development, as well as fundamental basic mechanisms that are controlled by similar metabolic pathway activated genes, there are also important differences. For instance, the rodent cerebral cortex is basically a primary cortex, whereas the primary sensory areas in humans account for a very small surface in the cerebral cortex when compared to the associative and frontal areas that are more extensive. Associative and frontal areas in humans are involved in many neurological disorders, including ASD, attention deficit-hyperactive disorder, and dyslexia, among others. Therefore, an evo-devo approach to neocortical evolution among species is fundamental to understand not only the role of thyroid hormones and environmental thyroid disruptors on evolution, development, and organization of the cerebral cortex in mammals but also their role in neurological diseases associated to thyroid dysfunction. PMID:25250016