Sample records for human time estimation

  1. Dual Extended Kalman Filter for the Identification of Time-Varying Human Manual Control Behavior

    NASA Technical Reports Server (NTRS)

    Popovici, Alexandru; Zaal, Peter M. T.; Pool, Daan M.

    2017-01-01

    A Dual Extended Kalman Filter was implemented for the identification of time-varying human manual control behavior. Two filters that run concurrently were used, a state filter that estimates the equalization dynamics, and a parameter filter that estimates the neuromuscular parameters and time delay. Time-varying parameters were modeled as a random walk. The filter successfully estimated time-varying human control behavior in both simulated and experimental data. Simple guidelines are proposed for the tuning of the process and measurement covariance matrices and the initial parameter estimates. The tuning was performed on simulation data, and when applied on experimental data, only an increase in measurement process noise power was required in order for the filter to converge and estimate all parameters. A sensitivity analysis to initial parameter estimates showed that the filter is more sensitive to poor initial choices of neuromuscular parameters than equalization parameters, and bad choices for initial parameters can result in divergence, slow convergence, or parameter estimates that do not have a real physical interpretation. The promising results when applied to experimental data, together with its simple tuning and low dimension of the state-space, make the use of the Dual Extended Kalman Filter a viable option for identifying time-varying human control parameters in manual tracking tasks, which could be used in real-time human state monitoring and adaptive human-vehicle haptic interfaces.

  2. Estimation of Time-Varying Pilot Model Parameters

    NASA Technical Reports Server (NTRS)

    Zaal, Peter M. T.; Sweet, Barbara T.

    2011-01-01

    Human control behavior is rarely completely stationary over time due to fatigue or loss of attention. In addition, there are many control tasks for which human operators need to adapt their control strategy to vehicle dynamics that vary in time. In previous studies on the identification of time-varying pilot control behavior wavelets were used to estimate the time-varying frequency response functions. However, the estimation of time-varying pilot model parameters was not considered. Estimating these parameters can be a valuable tool for the quantification of different aspects of human time-varying manual control. This paper presents two methods for the estimation of time-varying pilot model parameters, a two-step method using wavelets and a windowed maximum likelihood estimation method. The methods are evaluated using simulations of a closed-loop control task with time-varying pilot equalization and vehicle dynamics. Simulations are performed with and without remnant. Both methods give accurate results when no pilot remnant is present. The wavelet transform is very sensitive to measurement noise, resulting in inaccurate parameter estimates when considerable pilot remnant is present. Maximum likelihood estimation is less sensitive to pilot remnant, but cannot detect fast changes in pilot control behavior.

  3. A new methodology for estimating nuclear casualties as a function of time.

    PubMed

    Zirkle, Robert A; Walsh, Terri J; Disraelly, Deena S; Curling, Carl A

    2011-09-01

    The Human Response Injury Profile (HRIP) nuclear methodology provides an estimate of casualties occurring as a consequence of nuclear attacks against military targets for planning purposes. The approach develops user-defined, time-based casualty and fatality estimates based on progressions of underlying symptoms and their severity changes over time. This paper provides a description of the HRIP nuclear methodology and its development, including inputs, human response and the casualty estimation process.

  4. Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution

    PubMed Central

    Langergraber, Kevin E.; Prüfer, Kay; Rowney, Carolyn; Boesch, Christophe; Crockford, Catherine; Fawcett, Katie; Inoue, Eiji; Inoue-Muruyama, Miho; Mitani, John C.; Muller, Martin N.; Robbins, Martha M.; Schubert, Grit; Stoinski, Tara S.; Viola, Bence; Watts, David; Wittig, Roman M.; Wrangham, Richard W.; Zuberbühler, Klaus; Pääbo, Svante; Vigilant, Linda

    2012-01-01

    Fossils and molecular data are two independent sources of information that should in principle provide consistent inferences of when evolutionary lineages diverged. Here we use an alternative approach to genetic inference of species split times in recent human and ape evolution that is independent of the fossil record. We first use genetic parentage information on a large number of wild chimpanzees and mountain gorillas to directly infer their average generation times. We then compare these generation time estimates with those of humans and apply recent estimates of the human mutation rate per generation to derive estimates of split times of great apes and humans that are independent of fossil calibration. We date the human–chimpanzee split to at least 7–8 million years and the population split between Neanderthals and modern humans to 400,000–800,000 y ago. This suggests that molecular divergence dates may not be in conflict with the attribution of 6- to 7-million-y-old fossils to the human lineage and 400,000-y-old fossils to the Neanderthal lineage. PMID:22891323

  5. Evidence in Support of the Independent Channel Model Describing the Sensorimotor Control of Human Stance Using a Humanoid Robot

    PubMed Central

    Pasma, Jantsje H.; Assländer, Lorenz; van Kordelaar, Joost; de Kam, Digna; Mergner, Thomas; Schouten, Alfred C.

    2018-01-01

    The Independent Channel (IC) model is a commonly used linear balance control model in the frequency domain to analyze human balance control using system identification and parameter estimation. The IC model is a rudimentary and noise-free description of balance behavior in the frequency domain, where a stable model representation is not guaranteed. In this study, we conducted firstly time-domain simulations with added noise, and secondly robot experiments by implementing the IC model in a real-world robot (PostuRob II) to test the validity and stability of the model in the time domain and for real world situations. Balance behavior of seven healthy participants was measured during upright stance by applying pseudorandom continuous support surface rotations. System identification and parameter estimation were used to describe the balance behavior with the IC model in the frequency domain. The IC model with the estimated parameters from human experiments was implemented in Simulink for computer simulations including noise in the time domain and robot experiments using the humanoid robot PostuRob II. Again, system identification and parameter estimation were used to describe the simulated balance behavior. Time series, Frequency Response Functions, and estimated parameters from human experiments, computer simulations, and robot experiments were compared with each other. The computer simulations showed similar balance behavior and estimated control parameters compared to the human experiments, in the time and frequency domain. Also, the IC model was able to control the humanoid robot by keeping it upright, but showed small differences compared to the human experiments in the time and frequency domain, especially at high frequencies. We conclude that the IC model, a descriptive model in the frequency domain, can imitate human balance behavior also in the time domain, both in computer simulations with added noise and real world situations with a humanoid robot. This provides further evidence that the IC model is a valid description of human balance control. PMID:29615886

  6. Evidence in Support of the Independent Channel Model Describing the Sensorimotor Control of Human Stance Using a Humanoid Robot.

    PubMed

    Pasma, Jantsje H; Assländer, Lorenz; van Kordelaar, Joost; de Kam, Digna; Mergner, Thomas; Schouten, Alfred C

    2018-01-01

    The Independent Channel (IC) model is a commonly used linear balance control model in the frequency domain to analyze human balance control using system identification and parameter estimation. The IC model is a rudimentary and noise-free description of balance behavior in the frequency domain, where a stable model representation is not guaranteed. In this study, we conducted firstly time-domain simulations with added noise, and secondly robot experiments by implementing the IC model in a real-world robot (PostuRob II) to test the validity and stability of the model in the time domain and for real world situations. Balance behavior of seven healthy participants was measured during upright stance by applying pseudorandom continuous support surface rotations. System identification and parameter estimation were used to describe the balance behavior with the IC model in the frequency domain. The IC model with the estimated parameters from human experiments was implemented in Simulink for computer simulations including noise in the time domain and robot experiments using the humanoid robot PostuRob II. Again, system identification and parameter estimation were used to describe the simulated balance behavior. Time series, Frequency Response Functions, and estimated parameters from human experiments, computer simulations, and robot experiments were compared with each other. The computer simulations showed similar balance behavior and estimated control parameters compared to the human experiments, in the time and frequency domain. Also, the IC model was able to control the humanoid robot by keeping it upright, but showed small differences compared to the human experiments in the time and frequency domain, especially at high frequencies. We conclude that the IC model, a descriptive model in the frequency domain, can imitate human balance behavior also in the time domain, both in computer simulations with added noise and real world situations with a humanoid robot. This provides further evidence that the IC model is a valid description of human balance control.

  7. The Martian: Examining Human Physical Judgments across Virtual Gravity Fields.

    PubMed

    Ye, Tian; Qi, Siyuan; Kubricht, James; Zhu, Yixin; Lu, Hongjing; Zhu, Song-Chun

    2017-04-01

    This paper examines how humans adapt to novel physical situations with unknown gravitational acceleration in immersive virtual environments. We designed four virtual reality experiments with different tasks for participants to complete: strike a ball to hit a target, trigger a ball to hit a target, predict the landing location of a projectile, and estimate the flight duration of a projectile. The first two experiments compared human behavior in the virtual environment with real-world performance reported in the literature. The last two experiments aimed to test the human ability to adapt to novel gravity fields by measuring their performance in trajectory prediction and time estimation tasks. The experiment results show that: 1) based on brief observation of a projectile's initial trajectory, humans are accurate at predicting the landing location even under novel gravity fields, and 2) humans' time estimation in a familiar earth environment fluctuates around the ground truth flight duration, although the time estimation in unknown gravity fields indicates a bias toward earth's gravity.

  8. Human blood metabolite timetable indicates internal body time

    PubMed Central

    Kasukawa, Takeya; Sugimoto, Masahiro; Hida, Akiko; Minami, Yoichi; Mori, Masayo; Honma, Sato; Honma, Ken-ichi; Mishima, Kazuo; Soga, Tomoyoshi; Ueda, Hiroki R.

    2012-01-01

    A convenient way to estimate internal body time (BT) is essential for chronotherapy and time-restricted feeding, both of which use body-time information to maximize potency and minimize toxicity during drug administration and feeding, respectively. Previously, we proposed a molecular timetable based on circadian-oscillating substances in multiple mouse organs or blood to estimate internal body time from samples taken at only a few time points. Here we applied this molecular-timetable concept to estimate and evaluate internal body time in humans. We constructed a 1.5-d reference timetable of oscillating metabolites in human blood samples with 2-h sampling frequency while simultaneously controlling for the confounding effects of activity level, light, temperature, sleep, and food intake. By using this metabolite timetable as a reference, we accurately determined internal body time within 3 h from just two anti-phase blood samples. Our minimally invasive, molecular-timetable method with human blood enables highly optimized and personalized medicine. PMID:22927403

  9. Kalman filter estimation of human pilot-model parameters

    NASA Technical Reports Server (NTRS)

    Schiess, J. R.; Roland, V. R.

    1975-01-01

    The parameters of a human pilot-model transfer function are estimated by applying the extended Kalman filter to the corresponding retarded differential-difference equations in the time domain. Use of computer-generated data indicates that most of the parameters, including the implicit time delay, may be reasonably estimated in this way. When applied to two sets of experimental data obtained from a closed-loop tracking task performed by a human, the Kalman filter generated diverging residuals for one of the measurement types, apparently because of model assumption errors. Application of a modified adaptive technique was found to overcome the divergence and to produce reasonable estimates of most of the parameters.

  10. Real-Time Monitoring and Prediction of the Pilot Vehicle System (PVS) Closed-Loop Stability

    NASA Astrophysics Data System (ADS)

    Mandal, Tanmay Kumar

    Understanding human control behavior is an important step for improving the safety of future aircraft. Considerable resources are invested during the design phase of an aircraft to ensure that the aircraft has desirable handling qualities. However, human pilots exhibit a wide range of control behaviors that are a function of external stimulus, aircraft dynamics, and human psychological properties (such as workload, stress factor, confidence, and sense of urgency factor). This variability is difficult to address comprehensively during the design phase and may lead to undesirable pilot-aircraft interaction, such as pilot-induced oscillations (PIO). This creates the need to keep track of human pilot performance in real-time to monitor the pilot vehicle system (PVS) stability. This work focused on studying human pilot behavior for the longitudinal axis of a remotely controlled research aircraft and using human-in-the-loop (HuIL) simulations to obtain information about the human controlled system (HCS) stability. The work in this dissertation is divided into two main parts: PIO analysis and human control model parameters estimation. To replicate different flight conditions, this study included time delay and elevator rate limiting phenomena, typical of actuator dynamics during the experiments. To study human control behavior, this study employed the McRuer model for single-input single-output manual compensatory tasks. McRuer model is a lead-lag controller with time delay which has been shown to adequately model manual compensatory tasks. This dissertation presents a novel technique to estimate McRuer model parameters in real-time and associated validation using HuIL simulations to correctly predict HCS stability. The McRuer model parameters were estimated in real-time using a Kalman filter approach. The estimated parameters were then used to analyze the stability of the closed-loop HCS and verify them against the experimental data. Therefore, the main contribution of this dissertation is the design of an unscented Kalman filter-based algorithm to estimate McRuer model parameters in real time, and a framework to validate this algorithm for single-input single-output manual compensatory tasks to predict instabilities.

  11. Probabilistic risk assessment for a loss of coolant accident in McMaster Nuclear Reactor and application of reliability physics model for modeling human reliability

    NASA Astrophysics Data System (ADS)

    Ha, Taesung

    A probabilistic risk assessment (PRA) was conducted for a loss of coolant accident, (LOCA) in the McMaster Nuclear Reactor (MNR). A level 1 PRA was completed including event sequence modeling, system modeling, and quantification. To support the quantification of the accident sequence identified, data analysis using the Bayesian method and human reliability analysis (HRA) using the accident sequence evaluation procedure (ASEP) approach were performed. Since human performance in research reactors is significantly different from that in power reactors, a time-oriented HRA model (reliability physics model) was applied for the human error probability (HEP) estimation of the core relocation. This model is based on two competing random variables: phenomenological time and performance time. The response surface and direct Monte Carlo simulation with Latin Hypercube sampling were applied for estimating the phenomenological time, whereas the performance time was obtained from interviews with operators. An appropriate probability distribution for the phenomenological time was assigned by statistical goodness-of-fit tests. The human error probability (HEP) for the core relocation was estimated from these two competing quantities: phenomenological time and operators' performance time. The sensitivity of each probability distribution in human reliability estimation was investigated. In order to quantify the uncertainty in the predicted HEPs, a Bayesian approach was selected due to its capability of incorporating uncertainties in model itself and the parameters in that model. The HEP from the current time-oriented model was compared with that from the ASEP approach. Both results were used to evaluate the sensitivity of alternative huinan reliability modeling for the manual core relocation in the LOCA risk model. This exercise demonstrated the applicability of a reliability physics model supplemented with a. Bayesian approach for modeling human reliability and its potential usefulness of quantifying model uncertainty as sensitivity analysis in the PRA model.

  12. Position Estimation Method of Medical Implanted Devices Using Estimation of Propagation Velocity inside Human Body

    NASA Astrophysics Data System (ADS)

    Kawasaki, Makoto; Kohno, Ryuji

    Wireless communication devices in the field of medical implant, such as cardiac pacemakers and capsule endoscopes, have been studied and developed to improve healthcare systems. Especially it is very important to know the range and position of each device because it will contribute to an optimization of the transmission power. We adopt the time-based approach of position estimation using ultra wideband signals. However, the propagation velocity inside the human body differs in each tissue and each frequency. Furthermore, the human body is formed of various tissues with complex structures. For this reason, propagation velocity is different at a different point inside human body and the received signal so distorted through the channel inside human body. In this paper, we apply an adaptive template synthesis method in multipath channel for calculate the propagation time accurately based on the output of the correlator between the transmitter and the receiver. Furthermore, we propose a position estimation method using an estimation of the propagation velocity inside the human body. In addition, we show by computer simulation that the proposal method can perform accurate positioning with a size of medical implanted devices such as a medicine capsule.

  13. A revised timescale for human evolution based on ancient mitochondrial genomes

    PubMed Central

    Johnson, Philip L.F.; Bos, Kirsten; Lari, Martina; Bollongino, Ruth; Sun, Chengkai; Giemsch, Liane; Schmitz, Ralf; Burger, Joachim; Ronchitelli, Anna Maria; Martini, Fabio; Cremonesi, Renata G.; Svoboda, Jiří; Bauer, Peter; Caramelli, David; Castellano, Sergi; Reich, David; Pääbo, Svante; Krause, Johannes

    2016-01-01

    Summary Background Recent analyses of de novo DNA mutations in modern humans have suggested a nuclear substitution rate that is approximately half that of previous estimates based on fossil calibration. This result has led to suggestions that major events in human evolution occurred far earlier than previously thought. Result Here we use mitochondrial genome sequences from 10 securely dated ancient modern humans spanning 40,000 years as calibration points for the mitochondrial clock, thus yielding a direct estimate of the mitochondrial substitution rate. Our clock yields mitochondrial divergence times that are in agreement with earlier estimates based on calibration points derived from either fossils or archaeological material. In particular, our results imply a separation of non-Africans from the most closely related sub-Saharan African mitochondrial DNAs (haplogroup L3) of less than 62,000-95,000 years ago. Conclusion Though single loci like mitochondrial DNA (mtDNA) can only provide biased estimates of population split times, they can provide valid upper bounds; our results exclude most of the older dates for African and non-African split times recently suggested by de novo mutation rate estimates in the nuclear genome. PMID:23523248

  14. Biological and statistical approaches to predicting human lung cancer risk from silica.

    PubMed

    Kuempel, E D; Tran, C L; Bailer, A J; Porter, D W; Hubbs, A F; Castranova, V

    2001-01-01

    Chronic inflammation is a key step in the pathogenesis of particle-elicited fibrosis and lung cancer in rats, and possibly in humans. In this study, we compute the excess risk estimates for lung cancer in humans with occupational exposure to crystalline silica, using both rat and human data, and using both a threshold approach and linear models. From a toxicokinetic/dynamic model fit to lung burden and pulmonary response data from a subchronic inhalation study in rats, we estimated the minimum critical quartz lung burden (Mcrit) associated with reduced pulmonary clearance and increased neutrophilic inflammation. A chronic study in rats was also used to predict the human excess risk of lung cancer at various quartz burdens, including mean Mcrit (0.39 mg/g lung). We used a human kinetic lung model to link the equivalent lung burdens to external exposures in humans. We then computed the excess risk of lung cancer at these external exposures, using data of workers exposed to respirable crystalline silica and using Poisson regression and lifetable analyses. Finally, we compared the lung cancer excess risks estimated from male rat and human data. We found that the rat-based linear model estimates were approximately three times higher than those based on human data (e.g., 2.8% in rats vs. 0.9-1% in humans, at mean Mcrit lung burden or associated mean working lifetime exposure of 0.036 mg/m3). Accounting for variability and uncertainty resulted in 100-1000 times lower estimates of human critical lung burden and airborne exposure. This study illustrates that assumptions about the relevant biological mechanism, animal model, and statistical approach can all influence the magnitude of lung cancer risk estimates in humans exposed to crystalline silica.

  15. Comparison of human exposure model estimates of PM2.5 exposure variability using fine-scale CMAQ simulations from the Baltimore DISCOVER-AQ evaluation

    EPA Science Inventory

    Human exposure models estimate population distributions of exposure to air pollutants by combining ambient (outdoor) concentration data with human activity patterns to account for the time people spend in different locations (e.g., outdoors, indoors, in vehicles) and the various ...

  16. Antioxidant capacity of human blood plasma and human urine: simultaneous evaluation of the ORAC index and ascorbic acid concentration employing pyrogallol red as probe.

    PubMed

    Torres, P; Galleguillos, P; Lissi, E; López-Alarcón, C

    2008-10-15

    The oxygen radical absorbance capacity (ORAC) methodology has been employed to estimate the antioxidant capacity of human blood plasma and human urine using pyrogallol red (ORAC-PGR) as target molecule. Uric acid, reduced glutathione, human serum albumin, and ascorbic acid (ASC) inhibited the consumption of pyrogallol red, but only ASC generated an induction time. Human blood plasma and human urine protected efficiently pyrogallol red. In these assays, both biological fluids generated neat induction times that were removed by ascorbate oxidase. From these results, ORAC-PGR method could be proposed as a simple alternative to evaluate an ORAC index and, simultaneously, to estimate the concentration of ascorbic acid in human blood plasma or human urine.

  17. Time estimates in a long-term time-free environment. [human performance

    NASA Technical Reports Server (NTRS)

    Lavie, P.; Webb, W. B.

    1975-01-01

    Subjects in a time-free environment for 14 days estimated the hour and day several times a day. Half of the subjects were under a heavy exercise regime. During the waking hours, the no-exercise group showed no difference between estimated and real time, whereas the exercise group showed significantly shorter estimated than real time. Neither group showed a difference after the sleeping periods. However, the mean accumulated error for the two groups was 48.73 hours and was strongly related to the displacements of sleep/waking behavior. It is concluded that behavioral cues are the primary determinants of time estimates in time-free environments.

  18. Unconstrained cranial evolution in Neandertals and modern humans compared to common chimpanzees

    PubMed Central

    Weaver, Timothy D.; Stringer, Chris B.

    2015-01-01

    A variety of lines of evidence support the idea that neutral evolutionary processes (genetic drift, mutation) have been important in generating cranial differences between Neandertals and modern humans. But how do Neandertals and modern humans compare with other species? And how do these comparisons illuminate the evolutionary processes underlying cranial diversification? To address these questions, we used 27 standard cranial measurements collected on 2524 recent modern humans, 20 Neandertals and 237 common chimpanzees to estimate split times between Neandertals and modern humans, and between Pan troglodytes verus and two other subspecies of common chimpanzee. Consistent with a neutral divergence, the Neandertal versus modern human split-time estimates based on cranial measurements are similar to those based on DNA sequences. By contrast, the common chimpanzee cranial estimates are much lower than DNA-sequence estimates. Apparently, cranial evolution has been unconstrained in Neandertals and modern humans compared with common chimpanzees. Based on these and additional analyses, it appears that cranial differentiation in common chimpanzees has been restricted by stabilizing natural selection. Alternatively, this restriction could be due to genetic and/or developmental constraints on the amount of within-group variance (relative to effective population size) available for genetic drift to act on. PMID:26468243

  19. Estimation of the absorption coefficients of two-layered media by a simple method using spatially and time-resolved reflectances

    NASA Astrophysics Data System (ADS)

    Shimada, M.; Sato, C.; Hoshi, Y.; Yamada, Y.

    2009-08-01

    Our newly developed method using spatially and time-resolved reflectances can easily estimate the absorption coefficients of each layer in a two-layered medium if the thickness of the upper layer and the reduced scattering coefficients of the two layers are known a priori. We experimentally validated this method using phantoms and examined its possibility of estimating the absorption coefficients of the tissues in human heads. In the case of a homogeneous plastic phantom (polyacetal block), the absorption coefficient estimated by our method agreed well with that obtained by a conventional method. Also, in the case of two-layered phantoms, our method successfully estimated the absorption coefficients of the two layers. Furthermore, the absorption coefficients of the extracerebral and cerebral tissue inside human foreheads were estimated under the assumption that the human heads were two-layered media. It was found that the absorption coefficients of the cerebral tissues were larger than those of the extracerebral tissues.

  20. A computational approach to estimate postmortem interval using opacity development of eye for human subjects.

    PubMed

    Cantürk, İsmail; Özyılmaz, Lale

    2018-07-01

    This paper presents an approach to postmortem interval (PMI) estimation, which is a very debated and complicated area of forensic science. Most of the reported methods to determine PMI in the literature are not practical because of the need for skilled persons and significant amounts of time, and give unsatisfactory results. Additionally, the error margin of PMI estimation increases proportionally with elapsed time after death. It is crucial to develop practical PMI estimation methods for forensic science. In this study, a computational system is developed to determine the PMI of human subjects by investigating postmortem opacity development of the eye. Relevant features from the eye images were extracted using image processing techniques to reflect gradual opacity development. The features were then investigated to predict the time after death using machine learning methods. The experimental results prove that the development of opacity can be utilized as a practical computational tool to determine PMI for human subjects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Estimation of the Horizon in Photographed Outdoor Scenes by Human and Machine

    PubMed Central

    Herdtweck, Christian; Wallraven, Christian

    2013-01-01

    We present three experiments on horizon estimation. In Experiment 1 we verify the human ability to estimate the horizon in static images from only visual input. Estimates are given without time constraints with emphasis on precision. The resulting estimates are used as baseline to evaluate horizon estimates from early visual processes. Stimuli are presented for only ms and then masked to purge visual short-term memory and enforcing estimates to rely on early processes, only. The high agreement between estimates and the lack of a training effect shows that enough information about viewpoint is extracted in the first few hundred milliseconds to make accurate horizon estimation possible. In Experiment 3 we investigate several strategies to estimate the horizon in the computer and compare human with machine “behavior” for different image manipulations and image scene types. PMID:24349073

  2. Time-varying impedance of the human ankle in the sagittal and frontal planes during straight walk and turning steps.

    PubMed

    Ficanha, Evandro M; Ribeiro, Guilherme A; Knop, Lauren; Rastgaar, Mo

    2017-07-01

    This paper describes the methods and experiment protocols for estimation of the human ankle impedance during turning and straight line walking. The ankle impedance of two human subjects during the stance phase of walking in both dorsiflexion plantarflexion (DP) and inversion eversion (IE) were estimated. The impedance was estimated about 8 axes of rotations of the human ankle combining different amounts of DP and IE rotations, and differentiating among positive and negative rotations at 5 instants of the stance length (SL). Specifically, the impedance was estimated at 10%, 30%, 50%, 70% and 90% of the SL. The ankle impedance showed great variability across time, and across the axes of rotation, with consistent larger stiffness and damping in DP than IE. When comparing straight walking and turning, the main differences were in damping at 50%, 70%, and 90% of the SL with an increase in damping at all axes of rotation during turning.

  3. Real-time stylistic prediction for whole-body human motions.

    PubMed

    Matsubara, Takamitsu; Hyon, Sang-Ho; Morimoto, Jun

    2012-01-01

    The ability to predict human motion is crucial in several contexts such as human tracking by computer vision and the synthesis of human-like computer graphics. Previous work has focused on off-line processes with well-segmented data; however, many applications such as robotics require real-time control with efficient computation. In this paper, we propose a novel approach called real-time stylistic prediction for whole-body human motions to satisfy these requirements. This approach uses a novel generative model to represent a whole-body human motion including rhythmic motion (e.g., walking) and discrete motion (e.g., jumping). The generative model is composed of a low-dimensional state (phase) dynamics and a two-factor observation model, allowing it to capture the diversity of motion styles in humans. A real-time adaptation algorithm was derived to estimate both state variables and style parameter of the model from non-stationary unlabeled sequential observations. Moreover, with a simple modification, the algorithm allows real-time adaptation even from incomplete (partial) observations. Based on the estimated state and style, a future motion sequence can be accurately predicted. In our implementation, it takes less than 15 ms for both adaptation and prediction at each observation. Our real-time stylistic prediction was evaluated for human walking, running, and jumping behaviors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. The gap in human resources to deliver the guaranteed package of prevention and health promotion services at urban and rural primary care facilities in Mexico.

    PubMed

    Alcalde-Rabanal, Jacqueline Elizabeth; Nigenda, Gustavo; Bärnighausen, Till; Velasco-Mondragón, Héctor Eduardo; Darney, Blair Grant

    2017-08-03

    The purpose of this study was to estimate the gap between the available and the ideal supply of human resources (physicians, nurses, and health promoters) to deliver the guaranteed package of prevention and health promotion services at urban and rural primary care facilities in Mexico. We conducted a cross-sectional observational study using a convenience sample. We selected 20 primary health facilities in urban and rural areas in 10 states of Mexico. We calculated the available and the ideal supply of human resources in these facilities using estimates of time available, used, and required to deliver health prevention and promotion services. We performed descriptive statistics and bivariate hypothesis testing using Wilcoxon and Friedman tests. Finally, we conducted a sensitivity analysis to test whether the non-normal distribution of our time variables biased estimation of available and ideal supply of human resources. The comparison between available and ideal supply for urban and rural primary health care facilities reveals a low supply of physicians. On average, primary health care facilities are lacking five physicians when they were estimated with time used and nine if they were estimated with time required (P < 0.05). No difference was observed between available and ideal supply of nurses in either urban or rural primary health care facilities. There is a shortage of health promoters in urban primary health facilities (P < 0.05). The available supply of physicians and health promoters is lower than the ideal supply to deliver the guaranteed package of prevention and health promotion services. Policies must address the level and distribution of human resources in primary health facilities.

  5. mtDNA variation predicts population size in humans and reveals a major Southern Asian chapter in human prehistory.

    PubMed

    Atkinson, Quentin D; Gray, Russell D; Drummond, Alexei J

    2008-02-01

    The relative timing and size of regional human population growth following our expansion from Africa remain unknown. Human mitochondrial DNA (mtDNA) diversity carries a legacy of our population history. Given a set of sequences, we can use coalescent theory to estimate past population size through time and draw inferences about human population history. However, recent work has challenged the validity of using mtDNA diversity to infer species population sizes. Here we use Bayesian coalescent inference methods, together with a global data set of 357 human mtDNA coding-region sequences, to infer human population sizes through time across 8 major geographic regions. Our estimates of relative population sizes show remarkable concordance with the contemporary regional distribution of humans across Africa, Eurasia, and the Americas, indicating that mtDNA diversity is a good predictor of population size in humans. Plots of population size through time show slow growth in sub-Saharan Africa beginning 143-193 kya, followed by a rapid expansion into Eurasia after the emergence of the first non-African mtDNA lineages 50-70 kya. Outside Africa, the earliest and fastest growth is inferred in Southern Asia approximately 52 kya, followed by a succession of growth phases in Northern and Central Asia (approximately 49 kya), Australia (approximately 48 kya), Europe (approximately 42 kya), the Middle East and North Africa (approximately 40 kya), New Guinea (approximately 39 kya), the Americas (approximately 18 kya), and a second expansion in Europe (approximately 10-15 kya). Comparisons of relative regional population sizes through time suggest that between approximately 45 and 20 kya most of humanity lived in Southern Asia. These findings not only support the use of mtDNA data for estimating human population size but also provide a unique picture of human prehistory and demonstrate the importance of Southern Asia to our recent evolutionary past.

  6. Interval Timing Accuracy and Scalar Timing in C57BL/6 Mice

    PubMed Central

    Buhusi, Catalin V.; Aziz, Dyana; Winslow, David; Carter, Rickey E.; Swearingen, Joshua E.; Buhusi, Mona C.

    2010-01-01

    In many species, interval timing behavior is accurate—appropriate estimated durations—and scalar—errors vary linearly with estimated durations. While accuracy has been previously examined, scalar timing has not been yet clearly demonstrated in house mice (Mus musculus), raising concerns about mouse models of human disease. We estimated timing accuracy and precision in C57BL/6 mice, the most used background strain for genetic models of human disease, in a peak-interval procedure with multiple intervals. Both when timing two intervals (Experiment 1) or three intervals (Experiment 2), C57BL/6 mice demonstrated varying degrees of timing accuracy. Importantly, both at individual and group level, their precision varied linearly with the subjective estimated duration. Further evidence for scalar timing was obtained using an intraclass correlation statistic. This is the first report of consistent, reliable scalar timing in a sizable sample of house mice, thus validating the PI procedure as a valuable technique, the intraclass correlation statistic as a powerful test of the scalar property, and the C57BL/6 strain as a suitable background for behavioral investigations of genetically engineered mice modeling disorders of interval timing. PMID:19824777

  7. Divergence between human populations estimated from linkage disequilibrium.

    PubMed

    Sved, John A; McRae, Allan F; Visscher, Peter M

    2008-12-01

    Observed linkage disequilibrium (LD) between genetic markers in different populations descended independently from a common ancestral population can be used to estimate their absolute time of divergence, because the correlation of LD between populations will be reduced each generation by an amount that, approximately, depends only on the recombination rate between markers. Although drift leads to divergence in allele frequencies, it has less effect on divergence in LD values. We derived the relationship between LD and time of divergence and verified it with coalescent simulations. We then used HapMap Phase II data to estimate time of divergence between human populations. Summed over large numbers of pairs of loci, we find a positive correlation of LD between African and non-African populations at levels of up to approximately 0.3 cM. We estimate that the observed correlation of LD is consistent with an effective separation time of approximately 1,000 generations or approximately 25,000 years before present. The most likely explanation for such relatively low separation times is the existence of substantial levels of migration between populations after the initial separation. Theory and results from coalescent simulations confirm that low levels of migration can lead to a downward bias in the estimate of separation time.

  8. A revised timescale for human evolution based on ancient mitochondrial genomes.

    PubMed

    Fu, Qiaomei; Mittnik, Alissa; Johnson, Philip L F; Bos, Kirsten; Lari, Martina; Bollongino, Ruth; Sun, Chengkai; Giemsch, Liane; Schmitz, Ralf; Burger, Joachim; Ronchitelli, Anna Maria; Martini, Fabio; Cremonesi, Renata G; Svoboda, Jiří; Bauer, Peter; Caramelli, David; Castellano, Sergi; Reich, David; Pääbo, Svante; Krause, Johannes

    2013-04-08

    Recent analyses of de novo DNA mutations in modern humans have suggested a nuclear substitution rate that is approximately half that of previous estimates based on fossil calibration. This result has led to suggestions that major events in human evolution occurred far earlier than previously thought. Here, we use mitochondrial genome sequences from ten securely dated ancient modern humans spanning 40,000 years as calibration points for the mitochondrial clock, thus yielding a direct estimate of the mitochondrial substitution rate. Our clock yields mitochondrial divergence times that are in agreement with earlier estimates based on calibration points derived from either fossils or archaeological material. In particular, our results imply a separation of non-Africans from the most closely related sub-Saharan African mitochondrial DNAs (haplogroup L3) that occurred less than 62-95 kya. Though single loci like mitochondrial DNA (mtDNA) can only provide biased estimates of population divergence times, they can provide valid upper bounds. Our results exclude most of the older dates for African and non-African population divergences recently suggested by de novo mutation rate estimates in the nuclear genome. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Real-time video analysis for retail stores

    NASA Astrophysics Data System (ADS)

    Hassan, Ehtesham; Maurya, Avinash K.

    2015-03-01

    With the advancement in video processing technologies, we can capture subtle human responses in a retail store environment which play decisive role in the store management. In this paper, we present a novel surveillance video based analytic system for retail stores targeting localized and global traffic estimate. Development of an intelligent system for human traffic estimation in real-life poses a challenging problem because of the variation and noise involved. In this direction, we begin with a novel human tracking system by an intelligent combination of motion based and image level object detection. We demonstrate the initial evaluation of this approach on available standard dataset yielding promising result. Exact traffic estimate in a retail store require correct separation of customers from service providers. We present a role based human classification framework using Gaussian mixture model for this task. A novel feature descriptor named graded colour histogram is defined for object representation. Using, our role based human classification and tracking system, we have defined a novel computationally efficient framework for two types of analytics generation i.e., region specific people count and dwell-time estimation. This system has been extensively evaluated and tested on four hours of real-life video captured from a retail store.

  10. Understanding Differences in the Body Burden–Age Relationships of Bioaccumulating Contaminants Based on Population Cross Sections versus Individuals

    PubMed Central

    Quinn, Cristina L.

    2012-01-01

    Background: Body burdens of persistent bioaccumulative contaminants estimated from the cross-sectional biomonitoring of human populations are often plotted against age. Such relationships have previously been assumed to reflect the role of age in bioaccumulation. Objectives: We used a mechanistic modeling approach to reproduce concentration-versus-age relationships and investigate factors that influence them. Method: CoZMoMAN is an environmental fate and human food chain bioaccumulation model that estimates time trends in human body burdens in response to time-variant environmental emissions. Trends of polychlorinated biphenyl (PCB) congener 153 concentrations versus age for population cross sections were estimated using simulated longitudinal data for individual women born at different times. The model was also used to probe the influence of partitioning and degradation properties, length of emissions, and model assumptions regarding lipid content and liver metabolism on concentration–age trends of bioaccumulative and persistent contaminants. Results: Body burden–age relationships for population cross sections and individuals over time are not equivalent. The time lapse between the peak in emissions and sample collection for biomonitoring is the most influential factor controlling the shape of concentration–age trends for chemicals with human metabolic half-lives longer than 1 year. Differences in observed concentration–age trends for PCBs and polybrominated diphenyl ethers are consistent with differences in emission time trends and human metabolic half-lives. Conclusions: Bioaccumulation does not monotonically increase with age. Our model suggests that the main predictors of cross-sectional body burden trends with age are the amount of time elapsed after peak emissions and the human metabolic and environmental degradation rates. PMID:22472302

  11. Advanced simulation technology used to reduce accident rates through a better understanding of human behaviors and human perception

    NASA Astrophysics Data System (ADS)

    Manser, Michael P.; Hancock, Peter A.

    1996-06-01

    Human beings and technology have attained a mutually dependent and symbiotic relationship. It is easy to recognize how each depends on the other for survival. It is also easy to see how technology advances due to human activities. However, the role technology plays in advancing humankind is seldom examined. This presentation examines two research areas where the role of advanced visual simulation systems play an integral and essential role in understanding human perception and behavior. The ultimate goal of this research is the betterment of humankind through reduced accident and death rates in transportation environments. The first research area examined involved the estimation of time-to-contact. A high-fidelity wrap-around simulator (RAS) was used to examine people's ability to estimate time-to- contact. The ability of people to estimate the amount of time before an oncoming vehicle will collide with them is a necessary skill for avoiding collisions. A vehicle approached participants at one of three velocities, and while en route to the participant, the vehicle disappeared. The participants' task was to respond when they felt the accuracy of time-to-contact estimates and the practical applications of the result. The second area of research investigates the effects of various visual stimuli on underground transportation tunnel walls for the perception of vehicle speed. A RAS is paramount in creating visual patterns in peripheral vision. Flat-screen or front-screen simulators do not have this ability. Results are discussed in terms of speed perception and the application of these results to real world environments.

  12. Analysis of Timing Control Mechanism of Utterance and Body Motion Using Dialogue between Human and Communication Robot

    NASA Astrophysics Data System (ADS)

    Takasugi, Shoji; Yamamoto, Tomohito; Muto, Yumiko; Abe, Hiroyuki; Miyake, Yoshihiro

    The purpose of this study is to clarify the effects of timing control of utterance and body motion in human-robot interaction. Our previous study has already revealed the correlation of timing of utterance and body motion in human-human communication. Here we proposed a timing control model based on our previous research and estimated its influence to realize human-like communication using a questionnaire method. The results showed that the difference of effectiveness between the communication with the timing control model and that without it was observed. In addition, elderly people evaluated the communication with timing control much higher than younger people. These results show not only the importance of timing control of utterance and body motion in human communication but also its effectiveness for realizing human-like human-robot interaction.

  13. Evaluating the Human Damage of Tsunami at Each Time Frame in Aggregate Units Based on GPS data

    NASA Astrophysics Data System (ADS)

    Ogawa, Y.; Akiyama, Y.; Kanasugi, H.; Shibasaki, R.; Kaneda, H.

    2016-06-01

    Assessments of the human damage caused by the tsunami are required in order to consider disaster prevention at such a regional level. Hence, there is an increasing need for the assessments of human damage caused by earthquakes. However, damage assessments in japan currently usually rely on static population distribution data, such as statistical night time population data obtained from national census surveys. Therefore, human damage estimation that take into consideration time frames have not been assessed yet. With these backgrounds, the objectives of this study are: to develop a method for estimating the population distribution of the for each time frame, based on location positioning data observed with mass GPS loggers of mobile phones, to use a evacuation and casualties models for evaluating human damage due to the tsunami, and evaluate each time frame by using the data developed in the first objective, and 3) to discuss the factors which cause the differences in human damage for each time frame. By visualizing the results, we clarified the differences in damage depending on time frame, day and area. As this study enables us to assess damage for any time frame in and high resolution, it will be useful to consider provision for various situations when an earthquake may hit, such as during commuting hours or working hours and week day or holiday.

  14. Dealing with Big Numbers: Representation and Understanding of Magnitudes outside of Human Experience

    ERIC Educational Resources Information Center

    Resnick, Ilyse; Newcombe, Nora S.; Shipley, Thomas F.

    2017-01-01

    Being able to estimate quantity is important in everyday life and for success in the STEM disciplines. However, people have difficulty reasoning about magnitudes outside of human perception (e.g., nanoseconds, geologic time). This study examines patterns of estimation errors across temporal and spatial magnitudes at large scales. We evaluated the…

  15. REAL-TIME MODELING OF MOTOR VEHICLE EMISSIONS FOR ESTIMATING HUMAN EXPOSURES NEAR ROADWAYS

    EPA Science Inventory

    The United States Environmental Protection Agency's (EPA) National Exposure Research Laboratory is developing a real-time model of motor vehicle emissions to improve the methodology for modeling human exposure to motor vehicle emissions. The overall project goal is to develop ...

  16. Automated detection and enumeration of marine wildlife using unmanned aircraft systems (UAS) and thermal imagery

    PubMed Central

    Seymour, A. C.; Dale, J.; Hammill, M.; Halpin, P. N.; Johnston, D. W.

    2017-01-01

    Estimating animal populations is critical for wildlife management. Aerial surveys are used for generating population estimates, but can be hampered by cost, logistical complexity, and human risk. Additionally, human counts of organisms in aerial imagery can be tedious and subjective. Automated approaches show promise, but can be constrained by long setup times and difficulty discriminating animals in aggregations. We combine unmanned aircraft systems (UAS), thermal imagery and computer vision to improve traditional wildlife survey methods. During spring 2015, we flew fixed-wing UAS equipped with thermal sensors, imaging two grey seal (Halichoerus grypus) breeding colonies in eastern Canada. Human analysts counted and classified individual seals in imagery manually. Concurrently, an automated classification and detection algorithm discriminated seals based upon temperature, size, and shape of thermal signatures. Automated counts were within 95–98% of human estimates; at Saddle Island, the model estimated 894 seals compared to analyst counts of 913, and at Hay Island estimated 2188 seals compared to analysts’ 2311. The algorithm improves upon shortcomings of computer vision by effectively recognizing seals in aggregations while keeping model setup time minimal. Our study illustrates how UAS, thermal imagery, and automated detection can be combined to efficiently collect population data critical to wildlife management. PMID:28338047

  17. Automated detection and enumeration of marine wildlife using unmanned aircraft systems (UAS) and thermal imagery

    NASA Astrophysics Data System (ADS)

    Seymour, A. C.; Dale, J.; Hammill, M.; Halpin, P. N.; Johnston, D. W.

    2017-03-01

    Estimating animal populations is critical for wildlife management. Aerial surveys are used for generating population estimates, but can be hampered by cost, logistical complexity, and human risk. Additionally, human counts of organisms in aerial imagery can be tedious and subjective. Automated approaches show promise, but can be constrained by long setup times and difficulty discriminating animals in aggregations. We combine unmanned aircraft systems (UAS), thermal imagery and computer vision to improve traditional wildlife survey methods. During spring 2015, we flew fixed-wing UAS equipped with thermal sensors, imaging two grey seal (Halichoerus grypus) breeding colonies in eastern Canada. Human analysts counted and classified individual seals in imagery manually. Concurrently, an automated classification and detection algorithm discriminated seals based upon temperature, size, and shape of thermal signatures. Automated counts were within 95-98% of human estimates; at Saddle Island, the model estimated 894 seals compared to analyst counts of 913, and at Hay Island estimated 2188 seals compared to analysts’ 2311. The algorithm improves upon shortcomings of computer vision by effectively recognizing seals in aggregations while keeping model setup time minimal. Our study illustrates how UAS, thermal imagery, and automated detection can be combined to efficiently collect population data critical to wildlife management.

  18. [Human resources requirements for diabetic patients healthcare in primary care clinics of the Mexican Institute of Social Security].

    PubMed

    Doubova, Svetlana V; Ramírez-Sánchez, Claudine; Figueroa-Lara, Alejandro; Pérez-Cuevas, Ricardo

    2013-12-01

    To estimate the requirements of human resources (HR) of two models of care for diabetes patients: conventional and specific, also called DiabetIMSS, which are provided in primary care clinics of the Mexican Institute of Social Security (IMSS). An evaluative research was conducted. An expert group identified the HR activities and time required to provide healthcare consistent with the best clinical practices for diabetic patients. HR were estimated by using the evidence-based adjusted service target approach for health workforce planning; then, comparisons between existing and estimated HRs were made. To provide healthcare in accordance with the patients' metabolic control, the conventional model required increasing the number of family doctors (1.2 times) nutritionists (4.2 times) and social workers (4.1 times). The DiabetIMSS model requires greater increase than the conventional model. Increasing HR is required to provide evidence-based healthcare to diabetes patients.

  19. Estimation of postmortem interval based on colony development time for Anoplolepsis longipes (Hymenoptera: Formicidae).

    PubMed

    Goff, M L; Win, B H

    1997-11-01

    The postmortem interval for a set of human remains discovered inside a metal tool box was estimated using the development time required for a stratiomyid fly (Diptera: Stratiomyidae), Hermetia illucens, in combination with the time required to establish a colony of the ant Anoplolepsis longipes (Hymenoptera: Formicidae) capable of producing alate (winged) reproductives. This analysis resulted in a postmortem interval estimate of 14 + months, with a period of 14-18 months being the most probable time interval. The victim had been missing for approximately 18 months.

  20. Mapping the Origins of Time: Scalar Errors in Infant Time Estimation

    ERIC Educational Resources Information Center

    Addyman, Caspar; Rocha, Sinead; Mareschal, Denis

    2014-01-01

    Time is central to any understanding of the world. In adults, estimation errors grow linearly with the length of the interval, much faster than would be expected of a clock-like mechanism. Here we present the first direct demonstration that this is also true in human infants. Using an eye-tracking paradigm, we examined 4-, 6-, 10-, and…

  1. REAL-TIME MODELING AND MEASUREMENT OF MOBILE SOURCE POLLUTANT CONCENTRATIONS FOR ESTIMATING HUMAN EXPOSURES IN COMMUNITIES NEAR ROADWAYS

    EPA Science Inventory

    The United States Environmental Protection Agency's (EPA) National Exposure Research Laboratory (NERL) is pursuing a project to improve the methodology for real-time site specific modeling of human exposure to pollutants from motor vehicles. The overall project goal is to deve...

  2. An Estimation Method of Waiting Time for Health Service at Hospital by Using a Portable RFID and Robust Estimation

    NASA Astrophysics Data System (ADS)

    Ishigaki, Tsukasa; Yamamoto, Yoshinobu; Nakamura, Yoshiyuki; Akamatsu, Motoyuki

    Patients that have an health service by doctor have to wait long time at many hospitals. The long waiting time is the worst factor of patient's dissatisfaction for hospital service according to questionnaire for patients. The present paper describes an estimation method of the waiting time for each patient without an electronic medical chart system. The method applies a portable RFID system to data acquisition and robust estimation of probability distribution of the health service and test time by doctor for high-accurate waiting time estimation. We carried out an health service of data acquisition at a real hospital and verified the efficiency of the proposed method. The proposed system widely can be used as data acquisition system in various fields such as marketing service, entertainment or human behavior measurement.

  3. Time Orientation and Human Performance

    DTIC Science & Technology

    2004-06-01

    Work with Computing Systems 2004. H.M. Khalid, M.G. Helander, A.W. Yeo (Editors) . Kuala Lumpur: Damai Sciences. 1 Time Orientation and Human...Multi-tasking. 1 . Introduction With increased globalization, understanding the various cultures and people’s attitudes and behaviours is crucial...reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching

  4. Iteration of ultrasound aberration correction methods

    NASA Astrophysics Data System (ADS)

    Maasoey, Svein-Erik; Angelsen, Bjoern; Varslot, Trond

    2004-05-01

    Aberration in ultrasound medical imaging is usually modeled by time-delay and amplitude variations concentrated on the transmitting/receiving array. This filter process is here denoted a TDA filter. The TDA filter is an approximation to the physical aberration process, which occurs over an extended part of the human body wall. Estimation of the TDA filter, and performing correction on transmit and receive, has proven difficult. It has yet to be shown that this method works adequately for severe aberration. Estimation of the TDA filter can be iterated by retransmitting a corrected signal and re-estimate until a convergence criterion is fulfilled (adaptive imaging). Two methods for estimating time-delay and amplitude variations in receive signals from random scatterers have been developed. One method correlates each element signal with a reference signal. The other method use eigenvalue decomposition of the receive cross-spectrum matrix, based upon a receive energy-maximizing criterion. Simulations of iterating aberration correction with a TDA filter have been investigated to study its convergence properties. A weak and strong human-body wall model generated aberration. Both emulated the human abdominal wall. Results after iteration improve aberration correction substantially, and both estimation methods converge, even for the case of strong aberration.

  5. Towards a publicly available, map-based regional software tool to estimate unregulated daily streamflow at ungauged rivers

    USGS Publications Warehouse

    Archfield, Stacey A.; Steeves, Peter A.; Guthrie, John D.; Ries, Kernell G.

    2013-01-01

    Streamflow information is critical for addressing any number of hydrologic problems. Often, streamflow information is needed at locations that are ungauged and, therefore, have no observations on which to base water management decisions. Furthermore, there has been increasing need for daily streamflow time series to manage rivers for both human and ecological functions. To facilitate negotiation between human and ecological demands for water, this paper presents the first publicly available, map-based, regional software tool to estimate historical, unregulated, daily streamflow time series (streamflow not affected by human alteration such as dams or water withdrawals) at any user-selected ungauged river location. The map interface allows users to locate and click on a river location, which then links to a spreadsheet-based program that computes estimates of daily streamflow for the river location selected. For a demonstration region in the northeast United States, daily streamflow was, in general, shown to be reliably estimated by the software tool. Estimating the highest and lowest streamflows that occurred in the demonstration region over the period from 1960 through 2004 also was accomplished but with more difficulty and limitations. The software tool provides a general framework that can be applied to other regions for which daily streamflow estimates are needed.

  6. Case report: Time of death estimation of a buried body by modeling a decomposition matrix for a pig carcass.

    PubMed

    Niederegger, Senta; Schermer, Julia; Höfig, Juliane; Mall, Gita

    2015-01-01

    Estimating time of death of buried human bodies is a very difficult task. Casper's rule from 1860 is still widely used which illustrates the lack of suitable methods. In this case study excavations in an arbor revealed the crouching body of a human being, dressed only in boxer shorts and socks. Witnesses were not able to generate a concise answer as to when the person in question was last seen alive; the pieces of information opened a window of 2-6 weeks for the possible time of death. To determine the post mortem interval (PMI) an experiment using a pig carcass was conducted to set up a decomposition matrix. Fitting the autopsy findings of the victim into the decomposition matrix yielded a time of death estimation of 2-3 weeks. This time frame was later confirmed by a new witness. The authors feel confident that a widespread conduction of decomposition matrices using pig carcasses can lead to a great increase of experience and knowledge in PMI estimation of buried bodies and will eventually lead to applicable new methods. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Human immunodeficiency virus prevalence, incidence, and residual transmission risk in first-time and repeat blood donations in Zimbabwe: implications on blood safety.

    PubMed

    Mapako, Tonderai; Mvere, David A; Chitiyo, McLeod E; Rusakaniko, Simbarashe; Postma, Maarten J; van Hulst, Marinus

    2013-10-01

    National Blood Service Zimbabwe human immunodeficiency virus (HIV) risk management strategy includes screening and discarding of first-time donations, which are collected in blood packs without an anticoagulant (dry pack). To evaluate the impact of discarding first-time donations on blood safety the HIV prevalence, incidence, and residual risk in first-time and repeat donations (wet packs) were compared. Donor data from 2002 to 2010 were retrieved from a centralized national electronic donor database and retrospectively analyzed. Chi-square test was used to compare HIV prevalence with relative risk (RR), and the RR point estimates and 95% confidence interval (CI) are reported. Trend analysis was done using Cochran-Armitage trend test. HIV residual risk estimates were determined using published residual risk estimation models. Over the 9 years the overall HIV prevalence estimates are 1.29% (n = 116,058) and 0.42% (n = 434,695) for first-time and repeat donations, respectively. The overall RR was 3.1 (95% CI, 2.9-3.3; p < 0.0001). The overall mean residual transmission risk of HIV window phase donations in first-time was 1:7384 (range, 1:11,308-1:5356) and in repeat donors it was 1:5496 (range, 1:9943-1:3347). The significantly high HIV prevalence estimates recorded in first-time over repeat donations is indicative of the effectiveness of the HIV risk management strategy. However, comparable residual transmission risk estimates in first-time and repeat donors point to the need to further review the risk management strategies. Given the potential wastage of valuable resources, future studies should focus on the cost-effectiveness and utility of screening and discarding first-time donations. © 2013 American Association of Blood Banks.

  8. Empirical evidence for resource-rational anchoring and adjustment.

    PubMed

    Lieder, Falk; Griffiths, Thomas L; M Huys, Quentin J; Goodman, Noah D

    2018-04-01

    People's estimates of numerical quantities are systematically biased towards their initial guess. This anchoring bias is usually interpreted as sign of human irrationality, but it has recently been suggested that the anchoring bias instead results from people's rational use of their finite time and limited cognitive resources. If this were true, then adjustment should decrease with the relative cost of time. To test this hypothesis, we designed a new numerical estimation paradigm that controls people's knowledge and varies the cost of time and error independently while allowing people to invest as much or as little time and effort into refining their estimate as they wish. Two experiments confirmed the prediction that adjustment decreases with time cost but increases with error cost regardless of whether the anchor was self-generated or provided. These results support the hypothesis that people rationally adapt their number of adjustments to achieve a near-optimal speed-accuracy tradeoff. This suggests that the anchoring bias might be a signature of the rational use of finite time and limited cognitive resources rather than a sign of human irrationality.

  9. The retention time of inorganic mercury in the brain — A systematic review of the evidence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rooney, James P.K., E-mail: jrooney@rcsi.ie

    2014-02-01

    Reports from human case studies indicate a half-life for inorganic mercury in the brain in the order of years—contradicting older radioisotope studies that estimated half-lives in the order of weeks to months in duration. This study systematically reviews available evidence on the retention time of inorganic mercury in humans and primates to better understand this conflicting evidence. A broad search strategy was used to capture 16,539 abstracts on the Pubmed database. Abstracts were screened to include only study types containing relevant information. 131 studies of interest were identified. Only 1 primate study made a numeric estimate for the half-life ofmore » inorganic mercury (227–540 days). Eighteen human mercury poisoning cases were followed up long term including autopsy. Brain inorganic mercury concentrations at death were consistent with a half-life of several years or longer. 5 radionucleotide studies were found, one of which estimated head half-life (21 days). This estimate has sometimes been misinterpreted to be equivalent to brain half-life—which ignores several confounding factors including limited radioactive half-life and radioactive decay from surrounding tissues including circulating blood. No autopsy cohort study estimated a half-life for inorganic mercury, although some noted bioaccumulation of brain mercury with age. Modelling studies provided some extreme estimates (69 days vs 22 years). Estimates from modelling studies appear sensitive to model assumptions, however predications based on a long half-life (27.4 years) are consistent with autopsy findings. In summary, shorter estimates of half-life are not supported by evidence from animal studies, human case studies, or modelling studies based on appropriate assumptions. Evidence from such studies point to a half-life of inorganic mercury in human brains of several years to several decades. This finding carries important implications for pharmcokinetic modelling of mercury and potentially for the regulatory toxicology of mercury.« less

  10. Estimating the Full Cost of Family-Financed Time Inputs to Education.

    ERIC Educational Resources Information Center

    Levine, Victor

    This paper presents a methodology for estimating the full cost of parental time allocated to child-care activities at home. Building upon the human capital hypothesis, a model is developed in which the cost of an hour diverted from labor market activity is seen as consisting of three components: 1) direct wages foregone; 2) investments in…

  11. Tempo Rubato : Animacy Speeds Up Time in the Brain

    PubMed Central

    Carrozzo, Mauro; Moscatelli, Alessandro; Lacquaniti, Francesco

    2010-01-01

    Background How do we estimate time when watching an action? The idea that events are timed by a centralized clock has recently been called into question in favour of distributed, specialized mechanisms. Here we provide evidence for a critical specialization: animate and inanimate events are separately timed by humans. Methodology/Principal Findings In different experiments, observers were asked to intercept a moving target or to discriminate the duration of a stationary flash while viewing different scenes. Time estimates were systematically shorter in the sessions involving human characters moving in the scene than in those involving inanimate moving characters. Remarkably, the animate/inanimate context also affected randomly intermingled trials which always depicted the same still character. Conclusions/Significance The existence of distinct time bases for animate and inanimate events might be related to the partial segregation of the neural networks processing these two categories of objects, and could enhance our ability to predict critically timed actions. PMID:21206749

  12. Forbearance for fluoxetine: do monoaminergic antidepressants require a number of years to reach maximum therapeutic effect in humans?

    PubMed

    Fitzgerald, Paul J

    2014-07-01

    It is of high clinical interest to better understand the timecourse through which psychiatric drugs produce their beneficial effects. While a rough estimate of the time lag between initiating monoaminergic antidepressant therapy and the onset of therapeutic effect in depressed subjects is two weeks, much less is known about when these drugs reach maximum effect. This paper briefly examines studies that directly address this question through long-term antidepressant administration to humans, while also putting forth a simple theoretical approach for estimating the time required for monoaminergic antidepressants to reach maximum therapeutic effect in humans. The theory invokes a comparison between speed of antidepressant drug response in humans and in rodents, focusing on the apparently greater speed in rodents. The principal argument is one of proportions, comparing earliest effects of these drugs in rodents and humans, versus their time to reach maximum effect in these organisms. If the proportionality hypothesis is even coarsely accurate, then applying these values or to some degree their ranges to the hypothesis, may suggest that monoaminergic antidepressants require a number of years to reach maximum effect in humans, at least in some individuals.

  13. HUMAN EXPOSURE MODELING: CONCEPTS, METHODS, AND TOOLS

    EPA Science Inventory

    Understanding human exposure is critical when estimating the occurrence of deleterious effects that could follow contact with environmental contaminants. For many pollutants, the intensity, duration, frequency, route, and timing of exposure is highly variable, particularly whe...

  14. Secondary task for full flight simulation incorporating tasks that commonly cause pilot error: Time estimation

    NASA Technical Reports Server (NTRS)

    Rosch, E.

    1975-01-01

    The task of time estimation, an activity occasionally performed by pilots during actual flight, was investigated with the objective of providing human factors investigators with an unobtrusive and minimally loading additional task that is sensitive to differences in flying conditions and flight instrumentation associated with the main task of piloting an aircraft simulator. Previous research indicated that the duration and consistency of time estimates is associated with the cognitive, perceptual, and motor loads imposed by concurrent simple tasks. The relationships between the length and variability of time estimates and concurrent task variables under a more complex situation involving simulated flight were clarified. The wrap-around effect with respect to baseline duration, a consequence of mode switching at intermediate levels of concurrent task distraction, should contribute substantially to estimate variability and have a complex effect on the shape of the resulting distribution of estimates.

  15. High-resolution photo-mosaic time-series imagery for monitoring human use of an artificial reef.

    PubMed

    Wood, Georgina; Lynch, Tim P; Devine, Carlie; Keller, Krystle; Figueira, Will

    2016-10-01

    Successful marine management relies on understanding patterns of human use. However, obtaining data can be difficult and expensive given the widespread and variable nature of activities conducted. Remote camera systems are increasingly used to overcome cost limitations of conventional labour-intensive methods. Still, most systems face trade-offs between the spatial extent and resolution over which data are obtained, limiting their application. We trialed a novel methodology, CSIRO Ruggedized Autonomous Gigapixel System (CRAGS), for time series of high-resolution photo-mosaic (HRPM) imagery to estimate fine-scale metrics of human activity at an artificial reef located 1.3 km from shore. We compared estimates obtained using the novel system to those produced with a web camera that concurrently monitored the site. We evaluated the effect of day type (weekday/weekend) and time of day on each of the systems and compared to estimates obtained from binocular observations. In general, both systems delivered similar estimates for the number of boats observed and to those obtained by binocular counts; these results were also unaffected by the type of day (weekend vs. weekday). CRAGS was able to determine additional information about the user type and party size that was not possible with the lower resolution webcam system. However, there was an effect of time of day as CRAGS suffered from poor image quality in early morning conditions as a result of fixed camera settings. Our field study provides proof of concept of use of this new cost-effective monitoring tool for the remote collection of high-resolution large-extent data on patterns of human use at high temporal frequency.

  16. Spatial Placement of Human Figure Drawings as an Indicator of Cognitive and Personality Characteristics Among Normal Young Adolescents

    ERIC Educational Resources Information Center

    Swartz, Jon D.; And Others

    1976-01-01

    The present study investigated the relationship between spatial placement of human figure drawings and measures of test anxiety, time estimation, and conceptual maturity. Results are discussed. (Author)

  17. Estimating the spread rate of urea formaldehyde adhesive on birch (Betula pendula Roth) veneer using fluorescence

    Treesearch

    Toni Antikainen; Anti Rohumaa; Christopher G. Hunt; Mari Levirinne; Mark Hughes

    2015-01-01

    In plywood production, human operators find it difficult to precisely monitor the spread rate of adhesive in real-time. In this study, macroscopic fluorescence was used to estimate spread rate (SR) of urea formaldehyde adhesive on birch (Betula pendula Roth) veneer. This method could be an option when developing automated real-time SR measurement for...

  18. Deciphering the contribution of intrinsic and synaptic currents to the effects of transient synaptic inputs on human motor unit discharge

    PubMed Central

    Powers, Randall K.; Türker, Kemal S.

    2010-01-01

    The amplitude and time course of synaptic potentials in human motoneurons can be estimated in tonically discharging motor units by measuring stimulus-evoked changes in the rate and probability of motor unit action potentials. However, in spite of the fact that some of these techniques have been used for over thirty years, there is still no consensus on the best way to estimate the characteristics of synaptic potentials or on the accuracy of these estimates. In this review, we compare different techniques for estimating synaptic potentials from human motor unit discharge and also discuss relevant animal models in which estimated synaptic potentials can be compared to those directly measured from intracellular recordings. We also review the experimental evidence on how synaptic noise and intrinsic motoneuron properties influence their responses to synaptic inputs. Finally, we consider to what extent recordings of single motor unit discharge in humans can be used to distinguish the contribution of changes in synaptic inputs versus changes in intrinsic motoneuron properties to altered motoneuron responses following CNS injury. PMID:20427230

  19. Sensing power transfer between the human body and the environment.

    PubMed

    Veltink, Peter H; Kortier, Henk; Schepers, H Martin

    2009-06-01

    The power transferred between the human body and the environment at any time and the work performed are important quantities to be estimated when evaluating and optimizing the physical interaction between the human body and the environment in sports, physical labor, and rehabilitation. It is the objective of the current paper to present a concept for estimating power transfer between the human body and the environment during free motions and using sensors at the interface, not requiring measurement systems in the environment, and to experimentally demonstrate this principle. Mass and spring loads were moved by hand over a fixed height difference via varying free movement trajectories. Kinematic and kinetic quantities were measured in the handle between the hand and the load. 3-D force and moments were measured using a 6 DOF force/moment sensor module, 3-D movement was measured using 3-D accelerometers and angular velocity sensors. The orientation was estimated from the angular velocity, using the initial orientation as a begin condition. The accelerometer signals were expressed in global coordinates using this orientation information. Velocity was estimated by integrating acceleration in global coordinates, obtained by adding gravitational acceleration to the accelerometer signals. Zero start and end velocities were used as begin and end conditions. Power was calculated as the sum of the inner products of velocity and force and of angular velocity and moment, and work was estimated by integrating power over time. The estimated performed work was compared to the potential energy difference corresponding to the change in height of the loads and appeared to be accurate within 4% for varying movements with net displacements and varying loads (mass and spring). The principle of estimating power transfer demonstrated in this paper can be used in future interfaces between the human body and the environment instrumented with body-mounted miniature 3-D force and acceleration sensors.

  20. Fast human pose estimation using 3D Zernike descriptors

    NASA Astrophysics Data System (ADS)

    Berjón, Daniel; Morán, Francisco

    2012-03-01

    Markerless video-based human pose estimation algorithms face a high-dimensional problem that is frequently broken down into several lower-dimensional ones by estimating the pose of each limb separately. However, in order to do so they need to reliably locate the torso, for which they typically rely on time coherence and tracking algorithms. Their losing track usually results in catastrophic failure of the process, requiring human intervention and thus precluding their usage in real-time applications. We propose a very fast rough pose estimation scheme based on global shape descriptors built on 3D Zernike moments. Using an articulated model that we configure in many poses, a large database of descriptor/pose pairs can be computed off-line. Thus, the only steps that must be done on-line are the extraction of the descriptors for each input volume and a search against the database to get the most likely poses. While the result of such process is not a fine pose estimation, it can be useful to help more sophisticated algorithms to regain track or make more educated guesses when creating new particles in particle-filter-based tracking schemes. We have achieved a performance of about ten fps on a single computer using a database of about one million entries.

  1. Southern African ancient genomes estimate modern human divergence to 350,000 to 260,000 years ago.

    PubMed

    Schlebusch, Carina M; Malmström, Helena; Günther, Torsten; Sjödin, Per; Coutinho, Alexandra; Edlund, Hanna; Munters, Arielle R; Vicente, Mário; Steyn, Maryna; Soodyall, Himla; Lombard, Marlize; Jakobsson, Mattias

    2017-11-03

    Southern Africa is consistently placed as a potential region for the evolution of Homo sapiens We present genome sequences, up to 13x coverage, from seven ancient individuals from KwaZulu-Natal, South Africa. The remains of three Stone Age hunter-gatherers (about 2000 years old) were genetically similar to current-day southern San groups, and those of four Iron Age farmers (300 to 500 years old) were genetically similar to present-day Bantu-language speakers. We estimate that all modern-day Khoe-San groups have been influenced by 9 to 30% genetic admixture from East Africans/Eurasians. Using traditional and new approaches, we estimate the first modern human population divergence time to between 350,000 and 260,000 years ago. This estimate increases the deepest divergence among modern humans, coinciding with anatomical developments of archaic humans into modern humans, as represented in the local fossil record. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. Whole-Body Human Inverse Dynamics with Distributed Micro-Accelerometers, Gyros and Force Sensing †

    PubMed Central

    Latella, Claudia; Kuppuswamy, Naveen; Romano, Francesco; Traversaro, Silvio; Nori, Francesco

    2016-01-01

    Human motion tracking is a powerful tool used in a large range of applications that require human movement analysis. Although it is a well-established technique, its main limitation is the lack of estimation of real-time kinetics information such as forces and torques during the motion capture. In this paper, we present a novel approach for a human soft wearable force tracking for the simultaneous estimation of whole-body forces along with the motion. The early stage of our framework encompasses traditional passive marker based methods, inertial and contact force sensor modalities and harnesses a probabilistic computational technique for estimating dynamic quantities, originally proposed in the domain of humanoid robot control. We present experimental analysis on subjects performing a two degrees-of-freedom bowing task, and we estimate the motion and kinetics quantities. The results demonstrate the validity of the proposed method. We discuss the possible use of this technique in the design of a novel soft wearable force tracking device and its potential applications. PMID:27213394

  3. Daily Light Exposure Patterns Reveal Phase and Period of the Human Circadian Clock.

    PubMed

    Woelders, Tom; Beersma, Domien G M; Gordijn, Marijke C M; Hut, Roelof A; Wams, Emma J

    2017-06-01

    Light is the most potent time cue that synchronizes (entrains) the circadian pacemaker to the 24-h solar cycle. This entrainment process is an interplay between an individual's daily light perception and intrinsic pacemaker period under free-running conditions. Establishing individual estimates of circadian phase and period can be time-consuming. We show that circadian phase can be accurately predicted (SD = 1.1 h for dim light melatonin onset, DLMO) using 9 days of ambulatory light and activity data as an input to Kronauer's limit-cycle model for the human circadian system. This approach also yields an estimated circadian period of 24.2 h (SD = 0.2 h), with longer periods resulting in later DLMOs. A larger amount of daylight exposure resulted in an earlier DLMO. Individuals with a long circadian period also showed shorter intervals between DLMO and sleep timing. When a field-based estimation of tau can be validated under laboratory studies in a wide variety of individuals, the proposed methods may prove to be essential tools for individualized chronotherapy and light treatment for shift work and jetlag applications. These methods may improve our understanding of fundamental properties of human circadian rhythms under daily living conditions.

  4. Daily Light Exposure Patterns Reveal Phase and Period of the Human Circadian Clock

    PubMed Central

    Woelders, Tom; Beersma, Domien G. M.; Gordijn, Marijke C. M.; Hut, Roelof A.; Wams, Emma J.

    2017-01-01

    Light is the most potent time cue that synchronizes (entrains) the circadian pacemaker to the 24-h solar cycle. This entrainment process is an interplay between an individual’s daily light perception and intrinsic pacemaker period under free-running conditions. Establishing individual estimates of circadian phase and period can be time-consuming. We show that circadian phase can be accurately predicted (SD = 1.1 h for dim light melatonin onset, DLMO) using 9 days of ambulatory light and activity data as an input to Kronauer’s limit-cycle model for the human circadian system. This approach also yields an estimated circadian period of 24.2 h (SD = 0.2 h), with longer periods resulting in later DLMOs. A larger amount of daylight exposure resulted in an earlier DLMO. Individuals with a long circadian period also showed shorter intervals between DLMO and sleep timing. When a field-based estimation of tau can be validated under laboratory studies in a wide variety of individuals, the proposed methods may prove to be essential tools for individualized chronotherapy and light treatment for shift work and jetlag applications. These methods may improve our understanding of fundamental properties of human circadian rhythms under daily living conditions. PMID:28452285

  5. Joint Center Estimation Using Single-Frame Optimization: Part 1: Numerical Simulation.

    PubMed

    Frick, Eric; Rahmatalla, Salam

    2018-04-04

    The biomechanical models used to refine and stabilize motion capture processes are almost invariably driven by joint center estimates, and any errors in joint center calculation carry over and can be compounded when calculating joint kinematics. Unfortunately, accurate determination of joint centers is a complex task, primarily due to measurements being contaminated by soft-tissue artifact (STA). This paper proposes a novel approach to joint center estimation implemented via sequential application of single-frame optimization (SFO). First, the method minimizes the variance of individual time frames’ joint center estimations via the developed variance minimization method to obtain accurate overall initial conditions. These initial conditions are used to stabilize an optimization-based linearization of human motion that determines a time-varying joint center estimation. In this manner, the complex and nonlinear behavior of human motion contaminated by STA can be captured as a continuous series of unique rigid-body realizations without requiring a complex analytical model to describe the behavior of STA. This article intends to offer proof of concept, and the presented method must be further developed before it can be reasonably applied to human motion. Numerical simulations were introduced to verify and substantiate the efficacy of the proposed methodology. When directly compared with a state-of-the-art inertial method, SFO reduced the error due to soft-tissue artifact in all cases by more than 45%. Instead of producing a single vector value to describe the joint center location during a motion capture trial as existing methods often do, the proposed method produced time-varying solutions that were highly correlated ( r > 0.82) with the true, time-varying joint center solution.

  6. Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs.

    PubMed Central

    Horai, S; Hayasaka, K; Kondo, R; Tsugane, K; Takahata, N

    1995-01-01

    We analyzed the complete mitochondrial DNA (mtDNA) sequences of three humans (African, European, and Japanese), three African apes (common and pygmy chimpanzees, and gorilla), and one orangutan in an attempt to estimate most accurately the substitution rates and divergence times of hominoid mtDNAs. Nonsynonymous substitutions and substitutions in RNA genes have accumulated with an approximately clock-like regularity. From these substitutions and under the assumption that the orangutan and African apes diverged 13 million years ago, we obtained a divergence time for humans and chimpanzees of 4.9 million years. This divergence time permitted calibration of the synonymous substitution rate (3.89 x 10(-8)/site per year). To obtain the substitution rate in the displacement (D)-loop region, we compared the three human mtDNAs and measured the relative abundance of substitutions in the D-loop region and at synonymous sites. The estimated substitution rate in the D-loop region was 7.00 x 10(-8)/site per year. Using both synonymous and D-loop substitutions, we inferred the age of the last common ancestor of the human mtDNAs as 143,000 +/- 18,000 years. The shallow ancestry of human mtDNAs, together with the observation that the African sequence is the most diverged among humans, strongly supports the recent African origin of modern humans, Homo sapiens sapiens. PMID:7530363

  7. Non-invasive body temperature measurement of wild chimpanzees using fecal temperature decline.

    PubMed

    Jensen, Siv Aina; Mundry, Roger; Nunn, Charles L; Boesch, Christophe; Leendertz, Fabian H

    2009-04-01

    New methods are required to increase our understanding of pathologic processes in wild mammals. We developed a noninvasive field method to estimate the body temperature of wild living chimpanzees habituated to humans, based on statistically fitting temperature decline of feces after defecation. The method was established with the use of control measures of human rectal temperature and subsequent changes in fecal temperature over time. The method was then applied to temperature data collected from wild chimpanzee feces. In humans, we found good correspondence between the temperature estimated by the method and the actual rectal temperature that was measured (maximum deviation 0.22 C). The method was successfully applied and the average estimated temperature of the chimpanzees was 37.2 C. This simple-to-use field method reliably estimates the body temperature of wild chimpanzees and probably also other large mammals.

  8. Human Migration Patterns in Yemen and Implications for Reconstructing Prehistoric Population Movements

    PubMed Central

    Miró-Herrans, Aida T.; Al-Meeri, Ali; Mulligan, Connie J.

    2014-01-01

    Population migration has played an important role in human evolutionary history and in the patterning of human genetic variation. A deeper and empirically-based understanding of human migration dynamics is needed in order to interpret genetic and archaeological evidence and to accurately reconstruct the prehistoric processes that comprise human evolutionary history. Current empirical estimates of migration include either short time frames (i.e. within one generation) or partial knowledge about migration, such as proportion of migrants or distance of migration. An analysis of migration that includes both proportion of migrants and distance, and direction over multiple generations would better inform prehistoric reconstructions. To evaluate human migration, we use GPS coordinates from the place of residence of the Yemeni individuals sampled in our study, their birthplaces and their parents' and grandparents' birthplaces to calculate the proportion of migrants, as well as the distance and direction of migration events between each generation. We test for differences in these values between the generations and identify factors that influence the probability of migration. Our results show that the proportion and distance of migration between females and males is similar within generations. In contrast, the proportion and distance of migration is significantly lower in the grandparents' generation, most likely reflecting the decreasing effect of technology. Based on our results, we calculate the proportion of migration events (0.102) and mean and median distances of migration (96 km and 26 km) for the grandparent's generation to represent early times in human evolution. These estimates can serve to set parameter values of demographic models in model-based methods of prehistoric reconstruction, such as approximate Bayesian computation. Our study provides the first empirically-based estimates of human migration over multiple generations in a developing country and these estimates are intended to enable more precise reconstruction of the demographic processes that characterized human evolution. PMID:24759992

  9. The hockey-stick method to estimate evening dim light melatonin onset (DLMO) in humans.

    PubMed

    Danilenko, Konstantin V; Verevkin, Evgeniy G; Antyufeev, Viktor S; Wirz-Justice, Anna; Cajochen, Christian

    2014-04-01

    The onset of melatonin secretion in the evening is the most reliable and most widely used index of circadian timing in humans. Saliva (or plasma) is usually sampled every 0.5-1 hours under dim-light conditions in the evening 5-6 hours before usual bedtime to assess the dim-light melatonin onset (DLMO). For many years, attempts have been made to find a reliable objective determination of melatonin onset time either by fixed or dynamic threshold approaches. The here-developed hockey-stick algorithm, used as an interactive computer-based approach, fits the evening melatonin profile by a piecewise linear-parabolic function represented as a straight line switching to the branch of a parabola. The switch point is considered to reliably estimate melatonin rise time. We applied the hockey-stick method to 109 half-hourly melatonin profiles to assess the DLMOs and compared these estimates to visual ratings from three experts in the field. The DLMOs of 103 profiles were considered to be clearly quantifiable. The hockey-stick DLMO estimates were on average 4 minutes earlier than the experts' estimates, with a range of -27 to +13 minutes; in 47% of the cases the difference fell within ±5 minutes, in 98% within -20 to +13 minutes. The raters' and hockey-stick estimates showed poor accordance with DLMOs defined by threshold methods. Thus, the hockey-stick algorithm is a reliable objective method to estimate melatonin rise time, which does not depend on a threshold value and is free from errors arising from differences in subjective circadian phase estimates. The method is available as a computerized program that can be easily used in research settings and clinical practice either for salivary or plasma melatonin values.

  10. Prospective and retrospective time perception are related to mental time travel: evidence from Alzheimer's disease.

    PubMed

    El Haj, Mohamad; Moroni, Christine; Samson, Séverine; Fasotti, Luciano; Allain, Philippe

    2013-10-01

    Unlike prospective time perception paradigms, in which participants are aware that they have to estimate forthcoming time, little is known about retrospective time perception in normal aging and Alzheimer's disease (AD). Our paper addresses this shortcoming by comparing prospective and retrospective time estimation in younger adults, older adults, and AD patients. In four prospective tasks (lasting 30s, 60s, 90s, or 120s) participants were asked to read a series of numbers and to provide a verbal estimation of the reading time. In four other retrospective tasks, they were not informed about time judgment until they were asked to provide a verbal estimation of four elapsed time intervals (lasting 30s, 60s, 90s, or 120s). AD participants gave shorter verbal time estimations than older adults and younger participants did, suggesting that time is perceived to pass quickly in these patients. For all participants, the duration of the retrospective tasks was underestimated as compared to the prospective tasks and both estimations were shorter than the real time interval. Prospective time estimation was further correlated with mental time travel, as measured with the Remember/Know paradigm. Mental time travel was even higher correlated with retrospective time estimation. Our findings shed light on the relationship between time perception and the ability to mentally project oneself into time, two skills contributing to human memory functioning. Finally, time perception deficits, as observed in AD patients, can be interpreted in terms of dramatic changes occurring in frontal lobes and hippocampus. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Exposure assessment for trihalomethanes in municipal drinking water and risk reduction strategy.

    PubMed

    Chowdhury, Shakhawat

    2013-10-01

    Lifetime exposure to disinfection byproducts (DBPs) in municipal water may pose risks to human health. Current approaches of exposure assessments use DBPs in cold water during showering, while warming of chlorinated water during showering may increase trihalomethane (THM) formation in the presence of free residual chlorine. Further, DBP exposure through dermal contact during showering is estimated using steady-state condition between the DBPs in shower water impacting on human skin and skin exposed to shower water. The lag times to achieve steady-state condition between DBPs in shower water and human skin can vary in the range of 9.8-391.2 min, while shower duration is often less than the lag times. Assessment of exposure without incorporating these factors might have misinterpreted DBP exposure in some previous studies. In this study, exposure to THMs through ingestion was estimated using cold water THMs, while THM exposure through inhalation and dermal contact during showering was estimated using THMs in warm water. Inhalation of THMs was estimated using THM partition into the shower air, while dermal uptake was estimated by incorporating lag times (e.g., unsteady and steady-state phases of exposure) during showering. Probabilistic approach was followed to incorporate uncertainty in the assessment. Inhalation and dermal contact during showering contributed 25-60% of total exposure. Exposure to THMs during showering can be controlled by varying shower stall volume, shower duration and air exchange rate following power law equations. The findings might be useful in understanding exposure to THMs, which can be extended to other volatile compounds in municipal water. © 2013 Elsevier B.V. All rights reserved.

  12. Disruption of State Estimation in the Human Lateral Cerebellum

    PubMed Central

    Miall, R. Chris; Christensen, Lars O. D; Cain, Owen; Stanley, James

    2007-01-01

    The cerebellum has been proposed to be a crucial component in the state estimation process that combines information from motor efferent and sensory afferent signals to produce a representation of the current state of the motor system. Such a state estimate of the moving human arm would be expected to be used when the arm is rapidly and skillfully reaching to a target. We now report the effects of transcranial magnetic stimulation (TMS) over the ipsilateral cerebellum as healthy humans were made to interrupt a slow voluntary movement to rapidly reach towards a visually defined target. Errors in the initial direction and in the final finger position of this reach-to-target movement were significantly higher for cerebellar stimulation than they were in control conditions. The average directional errors in the cerebellar TMS condition were consistent with the reaching movements being planned and initiated from an estimated hand position that was 138 ms out of date. We suggest that these results demonstrate that the cerebellum is responsible for estimating the hand position over this time interval and that TMS disrupts this state estimate. PMID:18044990

  13. Measurement of landing mosquito density on humans

    USDA-ARS?s Scientific Manuscript database

    In conventional vector surveillance systems, adult mosquito density and the rate of human-mosquito contact is estimated from the mosquito numbers captured in mechanical traps. However, the design of the traps, their placement in the habitat and operating time, microclimate, and other environmental ...

  14. The impact of cognitive load on reward evaluation.

    PubMed

    Krigolson, Olave E; Hassall, Cameron D; Satel, Jason; Klein, Raymond M

    2015-11-19

    The neural systems that afford our ability to evaluate rewards and punishments are impacted by a variety of external factors. Here, we demonstrate that increased cognitive load reduces the functional efficacy of a reward processing system within the human medial-frontal cortex. In our paradigm, two groups of participants used performance feedback to estimate the exact duration of one second while electroencephalographic (EEG) data was recorded. Prior to performing the time estimation task, both groups were instructed to keep their eyes still and avoid blinking in line with well established EEG protocol. However, during performance of the time-estimation task, one of the two groups was provided with trial-to-trial-feedback about their performance on the time-estimation task and their eye movements to induce a higher level of cognitive load relative to participants in the other group who were solely provided with feedback about the accuracy of their temporal estimates. In line with previous work, we found that the higher level of cognitive load reduced the amplitude of the feedback-related negativity, a component of the human event-related brain potential associated with reward evaluation within the medial-frontal cortex. Importantly, our results provide further support that increased cognitive load reduces the functional efficacy of a neural system associated with reward processing. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Experimental Quasi-Microwave Whole-Body Averaged SAR Estimation Method Using Cylindrical-External Field Scanning

    NASA Astrophysics Data System (ADS)

    Kawamura, Yoshifumi; Hikage, Takashi; Nojima, Toshio

    The aim of this study is to develop a new whole-body averaged specific absorption rate (SAR) estimation method based on the external-cylindrical field scanning technique. This technique is adopted with the goal of simplifying the dosimetry estimation of human phantoms that have different postures or sizes. An experimental scaled model system is constructed. In order to examine the validity of the proposed method for realistic human models, we discuss the pros and cons of measurements and numerical analyses based on the finite-difference time-domain (FDTD) method. We consider the anatomical European human phantoms and plane-wave in the 2GHz mobile phone frequency band. The measured whole-body averaged SAR results obtained by the proposed method are compared with the results of the FDTD analyses.

  16. Estimation of time-dependent Hurst exponents with variational smoothing and application to forecasting foreign exchange rates

    NASA Astrophysics Data System (ADS)

    Garcin, Matthieu

    2017-10-01

    Hurst exponents depict the long memory of a time series. For human-dependent phenomena, as in finance, this feature may vary in the time. It justifies modelling dynamics by multifractional Brownian motions, which are consistent with time-dependent Hurst exponents. We improve the existing literature on estimating time-dependent Hurst exponents by proposing a smooth estimate obtained by variational calculus. This method is very general and not restricted to the sole Hurst framework. It is globally more accurate and easier than other existing non-parametric estimation techniques. Besides, in the field of Hurst exponents, it makes it possible to make forecasts based on the estimated multifractional Brownian motion. The application to high-frequency foreign exchange markets (GBP, CHF, SEK, USD, CAD, AUD, JPY, CNY and SGD, all against EUR) shows significantly good forecasts. When the Hurst exponent is higher than 0.5, what depicts a long-memory feature, the accuracy is higher.

  17. Problems in the estimation of human exposure to components of acid precipitation precursors.

    PubMed Central

    Ferris, B G; Spengler, J D

    1985-01-01

    Problems associated with estimation of human exposure to ambient air pollutants are discussed. Ideally, we would prefer to have some indication of actual dose. For most pollutants this is not presently feasible. Specific problems discussed are adequacy of outdoor monitors; the need to correct for exposures and time spent indoors; the need to have particle size distributions described and the chemistry of the particles presented. These indicate the need to develop lightweight accurate and reliable personal monitors. Images FIGURE 1. PMID:4076094

  18. GPS-based Microenvironment Tracker (MicroTrac) Model to ...

    EPA Pesticide Factsheets

    A critical aspect of air pollution exposure assessment is the estimation of the time spent by individuals in various microenvironments (ME). Accounting for the time spent in different ME with different pollutant concentrations can reduce exposure misclassifications, while failure to do so can add uncertainty and bias to risk estimates. In this study, a classification model, called MicroTrac, was developed to estimate time of day and duration spent in eight ME (indoors and outdoors at home, work, school; inside vehicles; other locations) from global positioning system (GPS) data and geocoded building boundaries. Based on a panel study, MicroTrac estimates were compared to 24 h diary data from 7 participants on workdays and 2 participants on nonworkdays, with corresponding GPS data and building boundaries of home, school, and work. MicroTrac correctly classified the ME for 99.5% of the daily time spent by the participants. The capability of MicroTrac could help to reduce the time-location uncertainty in air pollution exposure models and exposure metrics for individuals in health studies. The National Exposure Research Laboratory’s (NERL’s) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA’s mission to protect human health and the environment. HEASD’s research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA’s strategic plan. More specifically, our division conducts research to characterize

  19. Real-time upper-body human pose estimation from depth data using Kalman filter for simulator

    NASA Astrophysics Data System (ADS)

    Lee, D.; Chi, S.; Park, C.; Yoon, H.; Kim, J.; Park, C. H.

    2014-08-01

    Recently, many studies show that an indoor horse riding exercise has a positive effect on promoting health and diet. However, if a rider has an incorrect posture, it will be the cause of back pain. In spite of this problem, there is only few research on analyzing rider's posture. Therefore, the purpose of this study is to estimate a rider pose from a depth image using the Asus's Xtion sensor in real time. In the experiments, we show the performance of our pose estimation algorithm in order to comparing the results between our joint estimation algorithm and ground truth data.

  20. Human action recognition based on kinematic similarity in real time

    PubMed Central

    Chen, Longting; Luo, Ailing; Zhang, Sicong

    2017-01-01

    Human action recognition using 3D pose data has gained a growing interest in the field of computer robotic interfaces and pattern recognition since the availability of hardware to capture human pose. In this paper, we propose a fast, simple, and powerful method of human action recognition based on human kinematic similarity. The key to this method is that the action descriptor consists of joints position, angular velocity and angular acceleration, which can meet the different individual sizes and eliminate the complex normalization. The angular parameters of joints within a short sliding time window (approximately 5 frames) around the current frame are used to express each pose frame of human action sequence. Moreover, three modified KNN (k-nearest-neighbors algorithm) classifiers are employed in our method: one for achieving the confidence of every frame in the training step, one for estimating the frame label of each descriptor, and one for classifying actions. Additional estimating of the frame’s time label makes it possible to address single input frames. This approach can be used on difficult, unsegmented sequences. The proposed method is efficient and can be run in real time. The research shows that many public datasets are irregularly segmented, and a simple method is provided to regularize the datasets. The approach is tested on some challenging datasets such as MSR-Action3D, MSRDailyActivity3D, and UTD-MHAD. The results indicate our method achieves a higher accuracy. PMID:29073131

  1. AIRBORNE PARTICULATE MATTER AND HUMAN HEALTH: A REVIEW

    EPA Science Inventory

    Results of recent research show that PM composition and size vary widely with both space and time. Despite the variability in PM characteristics, which are believed to influence human health risks, the observed relative health risk estimates per unit PM mass falls within a narrow...

  2. Real-Time Estimation of Small-Area Populations with Human Biomarkers in Sewage

    EPA Science Inventory

    A totally new approach is conceptualized for measuring small-area human populations by using biomarkers in sewage. The basis for the concept (SCIM: Sewage Chemical-Information Mining) is supported by a comprehensive examination and synthesis of data published across several disc...

  3. Evaluation of 16 measures of mental workload using a simulated flight task emphasizing mediational activity

    NASA Technical Reports Server (NTRS)

    Wierwille, W. W.; Rahimi, M.; Casali, J. G.

    1985-01-01

    As aircraft and other systems become more automated, a shift is occurring in human operator participation in these systems. This shift is away from manual control and toward activities that tap the higher mental functioning of human operators. Therefore, an experiment was performed in a moving-base flight simulator to assess mediational (cognitive) workload measurement. Specifically, 16 workload estimation techniques were evaluated as to their sensitivity and intrusion in a flight task emphasizing mediational behavior. Task loading, using navigation problems presented on a display, was treated as an independent variable, and workload-measure values were treated as dependent variables. Results indicate that two mediational task measures, two rating scale measures, time estimation, and two eye behavior measures were reliably sensitive to mediational loading. The time estimation measure did, however, intrude on mediational task performance. Several of the remaining measures were completely insensitive to mediational load.

  4. Accurate estimation of human body orientation from RGB-D sensors.

    PubMed

    Liu, Wu; Zhang, Yongdong; Tang, Sheng; Tang, Jinhui; Hong, Richang; Li, Jintao

    2013-10-01

    Accurate estimation of human body orientation can significantly enhance the analysis of human behavior, which is a fundamental task in the field of computer vision. However, existing orientation estimation methods cannot handle the various body poses and appearances. In this paper, we propose an innovative RGB-D-based orientation estimation method to address these challenges. By utilizing the RGB-D information, which can be real time acquired by RGB-D sensors, our method is robust to cluttered environment, illumination change and partial occlusions. Specifically, efficient static and motion cue extraction methods are proposed based on the RGB-D superpixels to reduce the noise of depth data. Since it is hard to discriminate all the 360 (°) orientation using static cues or motion cues independently, we propose to utilize a dynamic Bayesian network system (DBNS) to effectively employ the complementary nature of both static and motion cues. In order to verify our proposed method, we build a RGB-D-based human body orientation dataset that covers a wide diversity of poses and appearances. Our intensive experimental evaluations on this dataset demonstrate the effectiveness and efficiency of the proposed method.

  5. Modeling human decision making behavior in supervisory control

    NASA Technical Reports Server (NTRS)

    Tulga, M. K.; Sheridan, T. B.

    1977-01-01

    An optimal decision control model was developed, which is based primarily on a dynamic programming algorithm which looks at all the available task possibilities, charts an optimal trajectory, and commits itself to do the first step (i.e., follow the optimal trajectory during the next time period), and then iterates the calculation. A Bayesian estimator was included which estimates the tasks which might occur in the immediate future and provides this information to the dynamic programming routine. Preliminary trials comparing the human subject's performance to that of the optimal model show a great similarity, but indicate that the human skips certain movements which require quick change in strategy.

  6. Use of antimicrobials for animals in New Zealand, and in comparison with other countries.

    PubMed

    Hillerton, J E; Irvine, C R; Bryan, M A; Scott, D; Merchant, S C

    2017-03-01

    To describe the use of antimicrobial drugs for food animals in New Zealand, based on sales data reported to government, changes over time, and in comparison with other countries and human use. Data were sourced from official government and industry reports covering 26 European countries, Australia, Canada, New Zealand and the United States of America in 2012, the last year data were available for all countries. The data included antimicrobial sales, and animal and human populations. Antimicrobial use was estimated based on the amount of active ingredient sold, per standardised biomass (population correction unit). The estimated usage of antimicrobials for food animals in New Zealand for 2012 was 9.4 mg active ingredient/kg biomass. Total sales of antimicrobials between 2005-14 increased on average by 2.5% or 1.5 tonnes per year. Over the same time total animal biomass decreased by an estimated 4.3%, with the main decrease being in sheep (25%) and beef cattle (17%), while dairy cattle increased (28%). In the countries examined, the estimated usage of antimicrobials in food producing animals in 2012 varied from 3.8 to 341 mg active ingredient/kg biomass, in Norway and Italy, respectively, with use in New Zealand being the third lowest. Usage of antimicrobials for human health in New Zealand in 2012 was estimated at 121 mg active ingredient/kg biomass, being ranked sixteenth of the countries compared. Use in humans was 12.9 times the use in animals. New Zealand was the third lowest user of antimicrobials in animal production and used much less than in human medicine. This is the first report of baseline data which may be used by the New Zealand animal health industry to develop, and measure success in, approaches to maximise the life of antimicrobials for animal health and welfare. New Zealand veterinarians will soon have to make changes to adopt the World Health Organisation's global action plan to manage antimicrobial resistance. Having a benchmark of current antimicrobial use will inform priorities and allow measurement of the impact of future programmes.

  7. Familiarity expands space and contracts time.

    PubMed

    Jafarpour, Anna; Spiers, Hugo

    2017-01-01

    When humans draw maps, or make judgments about travel-time, their responses are rarely accurate and are often systematically distorted. Distortion effects on estimating time to arrival and the scale of sketch-maps reveal the nature of mental representation of time and space. Inspired by data from rodent entorhinal grid cells, we predicted that familiarity to an environment would distort representations of the space by expanding the size of it. We also hypothesized that travel-time estimation would be distorted in the same direction as space-size, if time and space rely on the same cognitive map. We asked international students, who had lived at a college in London for 9 months, to sketch a south-up map of their college district, estimate travel-time to destinations within the area, and mark their everyday walking routes. We found that while estimates for sketched space were expanded with familiarity, estimates of the time to travel through the space were contracted with familiarity. Thus, we found dissociable responses to familiarity in representations of time and space. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.

  8. Dosimetry of 64Cu-DOTA-AE105, a PET tracer for uPAR imaging.

    PubMed

    Persson, Morten; El Ali, Henrik H; Binderup, Tina; Pfeifer, Andreas; Madsen, Jacob; Rasmussen, Palle; Kjaer, Andreas

    2014-03-01

    (64)Cu-DOTA-AE105 is a novel positron emission tomography (PET) tracer specific to the human urokinase-type plasminogen activator receptor (uPAR). In preparation of using this tracer in humans, as a new promising method to distinguish between indolent and aggressive cancers, we have performed PET studies in mice to evaluate the in vivo biodistribution and estimate human dosimetry of (64)Cu-DOTA-AE105. Five mice received iv tail injection of (64)Cu-DOTA-AE105 and were PET/CT scanned 1, 4.5 and 22 h post injection. Volume-of-interest (VOI) were manually drawn on the following organs: heart, lung, liver, kidney, spleen, intestine, muscle, bone and bladder. The activity concentrations in the mentioned organs [%ID/g] were used for the dosimetry calculation. The %ID/g of each organ at 1, 4.5 and 22 h was scaled to human value based on a difference between organ and body weights. The scaled values were then exported to OLINDA software for computation of the human absorbed doses. The residence times as well as effective dose equivalent for male and female could be obtained for each organ. To validate this approach, of human projection using mouse data, five mice received iv tail injection of another (64)Cu-DOTA peptide-based tracer, (64)Cu-DOTA-TATE, and underwent same procedure as just described. The human dosimetry estimates were then compared with observed human dosimetry estimate recently found in a first-in-man study using (64)Cu-DOTA-TATE. Human estimates of (64)Cu-DOTA-AE105 revealed the heart wall to receive the highest dose (0.0918 mSv/MBq) followed by the liver (0.0815 mSv/MBq), All other organs/tissue were estimated to receive doses in the range of 0.02-0.04 mSv/MBq. The mean effective whole-body dose of (64)Cu-DOTA-AE105 was estimated to be 0.0317 mSv/MBq. Relatively good correlation between human predicted and observed dosimetry estimates for (64)Cu-DOTA-TATE was found. Importantly, the effective whole body dose was predicted with very high precision (predicted value: 0.0252 mSv/Mbq, Observed value: 0.0315 mSv/MBq) thus validating our approach for human dosimetry estimation. Favorable dosimetry estimates together with previously reported uPAR PET data fully support human testing of (64)Cu-DOTA-AE105. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. THE RESPONSE OF SOME HEALTH PHYSICS INSTRUMENTS TO SODIUM-24 AND CHLORINE- 38 ACTIVITIES IN POLYTHENE MANPHANTOMS AND THE HUMAN BODY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peabody, C.O.

    1963-12-01

    Measurements were made of the response of five commonly used health physics instruments when held near polythene man-phantoms filled with aqueous solutions containing sodium-24 and chlorine-38. The ratios of the wholebody chlorine-38 and sodium-24 activities are calculated for various periods of accidental human irradiation by neutrons. These ratios and the phantom results are used to estimate the response of the five instruments when held near the human body at various times after irradiation. Relative contributions of the chlorine-38 and sodium-24 to the instrument indications are listed. The tabulated data enable the instrument readings to be converted to wholebody sodium- 24more » activity at the time of irradiation. This may be used as a quick estimate of the degree of neutron irradiation. (auth)« less

  10. Strontium-90 content of deciduous human incisors.

    PubMed

    ROSENTHAL, H L; GILSTER, J E; BIRD, J T

    1963-04-12

    The concentrations of strontium-90 in deciduous incisor teeth of children born in St. Louis between 1949 to 1957 are in accord with estimated bone levels, suggesting that human deciduous teeth are useful as an index of strontium-90 accumulation during the time the teeth are formed.

  11. Inference and forecast of H7N9 influenza in China, 2013 to 2015.

    PubMed

    Li, Ruiyun; Bai, Yuqi; Heaney, Alex; Kandula, Sasikiran; Cai, Jun; Zhao, Xuyi; Xu, Bing; Shaman, Jeffrey

    2017-02-16

    The recent emergence of A(H7N9) avian influenza poses a significant challenge to public health in China and around the world; however, understanding of the transmission dynamics and progression of influenza A(H7N9) infection in domestic poultry, as well as spillover transmission to humans, remains limited. Here, we develop a mathematical model-Bayesian inference system which combines a simple epidemic model and data assimilation method, and use it in conjunction with data on observed human influenza A(H7N9) cases from 19 February 2013 to 19 September 2015 to estimate key epidemiological parameters and to forecast infection in both poultry and humans. Our findings indicate a high outbreak attack rate of 33% among poultry but a low rate of chicken-to-human spillover transmission. In addition, we generated accurate forecasts of the peak timing and magnitude of human influenza A(H7N9) cases. This work demonstrates that transmission dynamics within an avian reservoir can be estimated and that real-time forecast of spillover avian influenza in humans is possible. This article is copyright of The Authors, 2017.

  12. AC field exposure study: human exposure to 60-Hz electric fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, J.M.

    1985-04-01

    The objective of this study was to develop a method of estimating human exposure to the 60 Hz electric fields created by transmission lines. The Activity Systems Model simulates human activities in a variety of situations where exposure to electric fields is possible. The model combines maps of electric fields, activity maps, and experimentally determined activity factors to provide histograms of time spent in electric fields of various strengths in the course of agricultural, recreational, and domestic activities. For corroboration, the study team measured actual human exposure at locations across the United States near transmission lines ranging in voltage frommore » 115 to 1200 kV. The data were collected with a specially designed vest that measures exposure. These data demonstrate the accuracy of the exposure model presented in this report and revealed that most exposure time is spent in fields of magnitudes similar to many household situations. The report provides annual exposure estimates for human activities near transmission lines and in the home and compares them with exposure data from typical laboratory animal experiments. For one exposure index, the cumulative product of time and electric field, exposure during some of the laboratory animal experiments is two to four orders of magnitude greater than cumulative exposure for a human during one year of outdoor work on a farm crossed by a transmission line.« less

  13. A machine learning approach as a surrogate of finite element analysis-based inverse method to estimate the zero-pressure geometry of human thoracic aorta.

    PubMed

    Liang, Liang; Liu, Minliang; Martin, Caitlin; Sun, Wei

    2018-05-09

    Advances in structural finite element analysis (FEA) and medical imaging have made it possible to investigate the in vivo biomechanics of human organs such as blood vessels, for which organ geometries at the zero-pressure level need to be recovered. Although FEA-based inverse methods are available for zero-pressure geometry estimation, these methods typically require iterative computation, which are time-consuming and may be not suitable for time-sensitive clinical applications. In this study, by using machine learning (ML) techniques, we developed an ML model to estimate the zero-pressure geometry of human thoracic aorta given 2 pressurized geometries of the same patient at 2 different blood pressure levels. For the ML model development, a FEA-based method was used to generate a dataset of aorta geometries of 3125 virtual patients. The ML model, which was trained and tested on the dataset, is capable of recovering zero-pressure geometries consistent with those generated by the FEA-based method. Thus, this study demonstrates the feasibility and great potential of using ML techniques as a fast surrogate of FEA-based inverse methods to recover zero-pressure geometries of human organs. Copyright © 2018 John Wiley & Sons, Ltd.

  14. A real-time Global Warming Index.

    PubMed

    Haustein, K; Allen, M R; Forster, P M; Otto, F E L; Mitchell, D M; Matthews, H D; Frame, D J

    2017-11-13

    We propose a simple real-time index of global human-induced warming and assess its robustness to uncertainties in climate forcing and short-term climate fluctuations. This index provides improved scientific context for temperature stabilisation targets and has the potential to decrease the volatility of climate policy. We quantify uncertainties arising from temperature observations, climate radiative forcings, internal variability and the model response. Our index and the associated rate of human-induced warming is compatible with a range of other more sophisticated methods to estimate the human contribution to observed global temperature change.

  15. Absorbed radiation dosimetry of the D3-specific PET radioligand [18F]FluorTriopride estimated using rodent and nonhuman primate.

    PubMed

    Laforest, Richard; Karimi, Morvarid; Moerlein, Stephen M; Xu, Jinbin; Flores, Hubert P; Bognar, Christopher; Li, Aixiao; Mach, Robert H; Perlmutter, Joel S; Tu, Zhude

    2016-01-01

    [ 18 F]FluorTriopride ([ 18 F]FTP) is a dopamine D 3 -receptor preferring radioligand with potential for investigation of neuropsychiatric disorders including Parkinson disease, dystonia and schizophrenia. Here we estimate human radiation dosimetry for [ 18 F]FTP based on the ex-vivo biodistribution in rodents and in vivo distribution in nonhuman primates. Biodistribution data were generated using male and female Sprague-Dawley rats injected with ~370 KBq of [ 18 F]FTP and euthanized at 5, 30, 60, 120, and 240 min. Organs of interest were dissected, weighed and assayed for radioactivity content. PET imaging studies were performed in two male and one female macaque fascicularis administered 143-190 MBq of [ 18 F]FTP and scanned whole-body in sequential sections. Organ residence times were calculated based on organ time activity curves (TAC) created from regions of Interest. OLINDA/EXM 1.1 was used to estimate human radiation dosimetry based on scaled organ residence times. In the rodent, the highest absorbed radiation dose was the upper large intestines (0.32-0.49 mGy/MBq), with an effective dose of 0.07 mSv/MBq in males and 0.1 mSv/MBq in females. For the nonhuman primate, however, the gallbladder wall was the critical organ (1.81 mGy/MBq), and the effective dose was 0.02 mSv/MBq. The species discrepancy in dosimetry estimates for [ 18 F]FTP based on rat and primate data can be attributed to the slower transit of tracer through the hepatobiliary track of the primate compared to the rat, which lacks a gallbladder. Out findings demonstrate that the nonhuman primate model is more appropriate model for estimating human absorbed radiation dosimetry when hepatobiliary excretion plays a major role in radiotracer elimination.

  16. Theory of Visual Attention (TVA) applied to mice in the 5-choice serial reaction time task.

    PubMed

    Fitzpatrick, C M; Caballero-Puntiverio, M; Gether, U; Habekost, T; Bundesen, C; Vangkilde, S; Woldbye, D P D; Andreasen, J T; Petersen, A

    2017-03-01

    The 5-choice serial reaction time task (5-CSRTT) is widely used to measure rodent attentional functions. In humans, many attention studies in healthy and clinical populations have used testing based on Bundesen's Theory of Visual Attention (TVA) to estimate visual processing speeds and other parameters of attentional capacity. We aimed to bridge these research fields by modifying the 5-CSRTT's design and by mathematically modelling data to derive attentional parameters analogous to human TVA-based measures. C57BL/6 mice were tested in two 1-h sessions on consecutive days with a version of the 5-CSRTT where stimulus duration (SD) probe length was varied based on information from previous TVA studies. Thereafter, a scopolamine hydrobromide (HBr; 0.125 or 0.25 mg/kg) pharmacological challenge was undertaken, using a Latin square design. Mean score values were modelled using a new three-parameter version of TVA to obtain estimates of visual processing speeds, visual thresholds and motor response baselines in each mouse. The parameter estimates for each animal were reliable across sessions, showing that the data were stable enough to support analysis on an individual level. Scopolamine HBr dose-dependently reduced 5-CSRTT attentional performance while also increasing reward collection latency at the highest dose. Upon TVA modelling, scopolamine HBr significantly reduced visual processing speed at both doses, while having less pronounced effects on visual thresholds and motor response baselines. This study shows for the first time how 5-CSRTT performance in mice can be mathematically modelled to yield estimates of attentional capacity that are directly comparable to estimates from human studies.

  17. CORRELATION OF CHEMICAL INDICATORS OF HUMAN FECAL CONTAMINATION TO HEALTH EFFECTS VIA EPIDEMIOLOGY STUDIES

    EPA Science Inventory

    Currently, the quality of drinking and recreational waters is estimated through the measurement of fecal bacteria such as Escherichia coli and Enterococci. However, since it takes time for the microorganisms to grow and be detected, their utility as indicators of human fecal co...

  18. Regression analysis of sparse asynchronous longitudinal data.

    PubMed

    Cao, Hongyuan; Zeng, Donglin; Fine, Jason P

    2015-09-01

    We consider estimation of regression models for sparse asynchronous longitudinal observations, where time-dependent responses and covariates are observed intermittently within subjects. Unlike with synchronous data, where the response and covariates are observed at the same time point, with asynchronous data, the observation times are mismatched. Simple kernel-weighted estimating equations are proposed for generalized linear models with either time invariant or time-dependent coefficients under smoothness assumptions for the covariate processes which are similar to those for synchronous data. For models with either time invariant or time-dependent coefficients, the estimators are consistent and asymptotically normal but converge at slower rates than those achieved with synchronous data. Simulation studies evidence that the methods perform well with realistic sample sizes and may be superior to a naive application of methods for synchronous data based on an ad hoc last value carried forward approach. The practical utility of the methods is illustrated on data from a study on human immunodeficiency virus.

  19. Novel point estimation from a semiparametric ratio estimator (SPRE): long-term health outcomes from short-term linear data, with application to weight loss in obesity.

    PubMed

    Weissman-Miller, Deborah

    2013-11-02

    Point estimation is particularly important in predicting weight loss in individuals or small groups. In this analysis, a new health response function is based on a model of human response over time to estimate long-term health outcomes from a change point in short-term linear regression. This important estimation capability is addressed for small groups and single-subject designs in pilot studies for clinical trials, medical and therapeutic clinical practice. These estimations are based on a change point given by parameters derived from short-term participant data in ordinary least squares (OLS) regression. The development of the change point in initial OLS data and the point estimations are given in a new semiparametric ratio estimator (SPRE) model. The new response function is taken as a ratio of two-parameter Weibull distributions times a prior outcome value that steps estimated outcomes forward in time, where the shape and scale parameters are estimated at the change point. The Weibull distributions used in this ratio are derived from a Kelvin model in mechanics taken here to represent human beings. A distinct feature of the SPRE model in this article is that initial treatment response for a small group or a single subject is reflected in long-term response to treatment. This model is applied to weight loss in obesity in a secondary analysis of data from a classic weight loss study, which has been selected due to the dramatic increase in obesity in the United States over the past 20 years. A very small relative error of estimated to test data is shown for obesity treatment with the weight loss medication phentermine or placebo for the test dataset. An application of SPRE in clinical medicine or occupational therapy is to estimate long-term weight loss for a single subject or a small group near the beginning of treatment.

  20. Development and application of a modified dynamic time warping algorithm (DTW-S) to analyses of primate brain expression time series

    PubMed Central

    2011-01-01

    Background Comparing biological time series data across different conditions, or different specimens, is a common but still challenging task. Algorithms aligning two time series represent a valuable tool for such comparisons. While many powerful computation tools for time series alignment have been developed, they do not provide significance estimates for time shift measurements. Results Here, we present an extended version of the original DTW algorithm that allows us to determine the significance of time shift estimates in time series alignments, the DTW-Significance (DTW-S) algorithm. The DTW-S combines important properties of the original algorithm and other published time series alignment tools: DTW-S calculates the optimal alignment for each time point of each gene, it uses interpolated time points for time shift estimation, and it does not require alignment of the time-series end points. As a new feature, we implement a simulation procedure based on parameters estimated from real time series data, on a series-by-series basis, allowing us to determine the false positive rate (FPR) and the significance of the estimated time shift values. We assess the performance of our method using simulation data and real expression time series from two published primate brain expression datasets. Our results show that this method can provide accurate and robust time shift estimates for each time point on a gene-by-gene basis. Using these estimates, we are able to uncover novel features of the biological processes underlying human brain development and maturation. Conclusions The DTW-S provides a convenient tool for calculating accurate and robust time shift estimates at each time point for each gene, based on time series data. The estimates can be used to uncover novel biological features of the system being studied. The DTW-S is freely available as an R package TimeShift at http://www.picb.ac.cn/Comparative/data.html. PMID:21851598

  1. Development and application of a modified dynamic time warping algorithm (DTW-S) to analyses of primate brain expression time series.

    PubMed

    Yuan, Yuan; Chen, Yi-Ping Phoebe; Ni, Shengyu; Xu, Augix Guohua; Tang, Lin; Vingron, Martin; Somel, Mehmet; Khaitovich, Philipp

    2011-08-18

    Comparing biological time series data across different conditions, or different specimens, is a common but still challenging task. Algorithms aligning two time series represent a valuable tool for such comparisons. While many powerful computation tools for time series alignment have been developed, they do not provide significance estimates for time shift measurements. Here, we present an extended version of the original DTW algorithm that allows us to determine the significance of time shift estimates in time series alignments, the DTW-Significance (DTW-S) algorithm. The DTW-S combines important properties of the original algorithm and other published time series alignment tools: DTW-S calculates the optimal alignment for each time point of each gene, it uses interpolated time points for time shift estimation, and it does not require alignment of the time-series end points. As a new feature, we implement a simulation procedure based on parameters estimated from real time series data, on a series-by-series basis, allowing us to determine the false positive rate (FPR) and the significance of the estimated time shift values. We assess the performance of our method using simulation data and real expression time series from two published primate brain expression datasets. Our results show that this method can provide accurate and robust time shift estimates for each time point on a gene-by-gene basis. Using these estimates, we are able to uncover novel features of the biological processes underlying human brain development and maturation. The DTW-S provides a convenient tool for calculating accurate and robust time shift estimates at each time point for each gene, based on time series data. The estimates can be used to uncover novel biological features of the system being studied. The DTW-S is freely available as an R package TimeShift at http://www.picb.ac.cn/Comparative/data.html.

  2. Automatic location of disruption times in JET

    NASA Astrophysics Data System (ADS)

    Moreno, R.; Vega, J.; Murari, A.

    2014-11-01

    The loss of stability and confinement in tokamak plasmas can induce critical events known as disruptions. Disruptions produce strong electromagnetic forces and thermal loads which can damage fundamental components of the devices. Determining the disruption time is extremely important for various disruption studies: theoretical models, physics-driven models, or disruption predictors. In JET, during the experimental campaigns with the JET-C (Carbon Fiber Composite) wall, a common criterion to determine the disruption time consisted of locating the time of the thermal quench. However, with the metallic ITER-like wall (JET-ILW), this criterion is usually not valid. Several thermal quenches may occur previous to the current quench but the temperature recovers. Therefore, a new criterion has to be defined. A possibility is to use the start of the current quench as disruption time. This work describes the implementation of an automatic data processing method to estimate the disruption time according to this new definition. This automatic determination allows both reducing human efforts to locate the disruption times and standardizing the estimates (with the benefit of being less vulnerable to human errors).

  3. Time-dependent radiation dose estimations during interplanetary space flights

    NASA Astrophysics Data System (ADS)

    Dobynde, M. I.; Shprits, Y.; Drozdov, A.

    2015-12-01

    Time-dependent radiation dose estimations during interplanetary space flights 1,2Dobynde M.I., 2,3Drozdov A.Y., 2,4Shprits Y.Y.1Skolkovo institute of science and technology, Moscow, Russia 2University of California Los Angeles, Los Angeles, USA 3Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics, Moscow, Russia4Massachusetts Institute of Technology, Cambridge, USASpace radiation is the main restriction for long-term interplanetary space missions. It induces degradation of external components and propagates inside providing damage to internal environment. Space radiation particles and induced secondary particle showers can lead to variety of damage to astronauts in short- and long- term perspective. Contribution of two main sources of space radiation- Sun and out-of-heliosphere space varies in time in opposite phase due to the solar activity state. Currently the only habituated mission is the international interplanetary station that flights on the low Earth orbit. Besides station shell astronauts are protected with the Earth magnetosphere- a natural shield that prevents significant damage for all humanity. Current progress in space exploration tends to lead humanity out of magnetosphere bounds. With the current study we make estimations of spacecraft parameters and astronauts damage for long-term interplanetary flights. Applying time dependent model of GCR spectra and data on SEP spectra we show the time dependence of the radiation in a human phantom inside the shielding capsule. We pay attention to the shielding capsule design, looking for an optimal geometry parameters and materials. Different types of particles affect differently on the human providing more or less harm to the tissues. Incident particles provide a large amount of secondary particles while propagating through the shielding capsule. We make an attempt to find an optimal combination of shielding capsule parameters, namely material and thickness, that will effectively decrease the incident particle energy, at the same time minimizing flow of secondary induced particles and minimizing most harmful particle types flows.

  4. Probability of viremia with HBV, HCV, HIV, and HTLV among tissue donors in the United States.

    PubMed

    Zou, Shimian; Dodd, Roger Y; Stramer, Susan L; Strong, D Michael

    2004-08-19

    Tissue-banking organizations in the United States have introduced various review and testing procedures to reduce the risk of the transmission of viral infections from tissue grafts. We estimated the current probability of undetected viremia with hepatitis B virus (HBV), hepatitis C virus (HCV), human immunodeficiency virus (HIV), and human T-lymphotropic virus (HTLV) among tissue donors. Rates of prevalence of hepatitis B surface antigen (HBsAg) and antibodies against HIV (anti-HIV), HCV (anti-HCV), and HTLV (anti-HTLV) were determined among 11,391 donors to five tissue banks in the United States. The data were compared with those of first-time blood donors in order to generate estimated incidence rates among tissue donors. The probability of viremia undetected by screening at the time of tissue donation was estimated on the basis of the incidence estimates and the window periods for these infections. The prevalence of confirmed positive tests among tissue donors was 0.093 percent for anti-HIV, 0.229 percent for HBsAg, 1.091 percent for anti-HCV, and 0.068 percent for anti-HTLV. The incidence rates were estimated to be 30.118, 18.325, 12.380, and 5.586 per 100,000 person-years, respectively. The estimated probability of viremia at the time of donation was 1 in 55,000, 1 in 34,000, 1 in 42,000, and 1 in 128,000, respectively. The prevalence rates of HBV, HCV, HIV, and HTLV infections are lower among tissue donors than in the general population. However, the estimated probability of undetected viremia at the time of tissue donation is higher among tissue donors than among first-time blood donors. The addition of nucleic acid-amplification testing to the screening of tissue donors should reduce the risk of these infections among recipients of donated tissues. Copyright 2004 Massachusetts Medical Society

  5. Comparison of estimated human dose of (68)Ga-MAA with (99m)Tc-MAA based on rat data.

    PubMed

    Shanehsazzadeh, Saeed; Lahooti, Afsaneh; Yousefnia, Hassan; Geramifar, Parham; Jalilian, Amir Reza

    2015-10-01

    (99m)Tc macroaggregated albumin ((99m)Tc-MAA) that had been used as a perfusion agent has been evaluated. In this study, we tried to estimate human absorbed dose of ⁶⁸Ga-MAA via commercially available kit from Pars-Isotopes, based on biodistribution data in wild-type rats, and compare our estimation with the available absorbed dose data from (99m)Tc-MAA. For biodistribution of ⁶⁸Ga-MAA, three rats were sacrificed at each selected times after injection (15, 30, 45, 60, and 120 min) and the percentage of injected dose per gram of each organ was measured by direct counting from rats data from 11 harvested organs. The medical internal radiation dose formulation was applied to extrapolate from rats to human and to project the absorbed radiation dose for various organs in humans. The biodistribution data for ⁶⁸Ga-MAA showed that the most of the activity was taken up by the lung (more than 97 %) in no time. Our dose prediction shows that a 185-MBq injection of ⁶⁸Ga-MAA into humans might result in an estimated absorbed dose of 4.31 mGy in the whole body. The highest absorbed doses are observed in the adrenals, spleen, pancreas, and red marrow with 0.36, 0.34, 0.26, and 0.19 mGy, respectively. Since the (99m)Tc-MAA remains longer than ⁶⁸Ga-MAA in the lung and ⁶⁸Ga-MAA has good image qualities and results in lower amounts of dose delivery to the critical organs such as gonads, red marrow, and adrenals, the use of ⁶⁸Ga-MAA is recommended.

  6. ESTIMATION OF EARLY INTERNAL DOSES TO FUKUSHIMA RESIDENTS AFTER THE NUCLEAR DISASTER BASED ON THE ATMOSPHERIC DISPERSION SIMULATION.

    PubMed

    Kim, Eunjoo; Tani, Kotaro; Kunishima, Naoaki; Kurihara, Osamu; Sakai, Kazuo; Akashi, Makoto

    2016-11-01

    Estimating the early internal doses to residents in the Fukushima Daiichi Nuclear Power Station accident is a difficult task because limited human/environmental measurement data are available. Hence, the feasibility of using atmospheric dispersion simulations created by the Worldwide version of System for Prediction of Environmental Emergency Dose Information 2nd Version (WSPEEDI-II) in the estimation was examined in the present study. This examination was done by comparing the internal doses evaluated based on the human measurements with those calculated using time series air concentration maps ( 131 I and 137 Cs) generated by WSPEEDI-II. The results showed that the latter doses were several times higher than the former doses. However, this discrepancy could be minimised by taking into account personal behaviour data that will be available soon. This article also presents the development of a prototype system for estimating the internal dose based on the simulations. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Comparison of the effectiveness of some common animal data scaling techniques in estimating human radiation dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sparks, R.B.; Aydogan, B.

    In the development of new radiopharmaceuticals, animal studies are typically performed to get a first approximation of the expected radiation dose in humans. This study evaluates the performance of some commonly used data extrapolation techniques to predict residence times in humans using data collected from animals. Residence times were calculated using animal and human data, and distributions of ratios of the animal results to human results were constructed for each extrapolation method. Four methods using animal data to predict human residence times were examined: (1) using no extrapolation, (2) using relative organ mass extrapolation, (3) using physiological time extrapolation, andmore » (4) using a combination of the mass and time methods. The residence time ratios were found to be log normally distributed for the nonextrapolated and extrapolated data sets. The use of relative organ mass extrapolation yielded no statistically significant change in the geometric mean or variance of the residence time ratios as compared to using no extrapolation. Physiologic time extrapolation yielded a statistically significant improvement (p < 0.01, paired t test) in the geometric mean of the residence time ratio from 0.5 to 0.8. Combining mass and time methods did not significantly improve the results of using time extrapolation alone. 63 refs., 4 figs., 3 tabs.« less

  8. Forecasting human exposure to atmospheric pollutants in Portugal - A modelling approach

    NASA Astrophysics Data System (ADS)

    Borrego, C.; Sá, E.; Monteiro, A.; Ferreira, J.; Miranda, A. I.

    2009-12-01

    Air pollution has become one main environmental concern because of its known impact on human health. Aiming to inform the population about the air they are breathing, several air quality modelling systems have been developed and tested allowing the assessment and forecast of air pollution ambient levels in many countries. However, every day, an individual is exposed to different concentrations of atmospheric pollutants as he/she moves from and to different outdoor and indoor places (the so-called microenvironments). Therefore, a more efficient way to prevent the population from the health risks caused by air pollution should be based on exposure rather than air concentrations estimations. The objective of the present study is to develop a methodology to forecast the human exposure of the Portuguese population based on the air quality forecasting system available and validated for Portugal since 2005. Besides that, a long-term evaluation of human exposure estimates aims to be obtained using one-year of this forecasting system application. Additionally, a hypothetical 50% emission reduction scenario has been designed and studied as a contribution to study emission reduction strategies impact on human exposure. To estimate the population exposure the forecasting results of the air quality modelling system MM5-CHIMERE have been combined with the population spatial distribution over Portugal and their time-activity patterns, i.e. the fraction of the day time spent in specific indoor and outdoor places. The population characterization concerning age, work, type of occupation and related time spent was obtained from national census and available enquiries performed by the National Institute of Statistics. A daily exposure estimation module has been developed gathering all these data and considering empirical indoor/outdoor relations from literature to calculate the indoor concentrations in each one of the microenvironments considered, namely home, office/school, and other indoors (leisure activities like shopping areas, gym, theatre/cinema and restaurants). The results show how this developed modelling system can be useful to anticipate air pollution episodes and to estimate their effects on human health on a long-term basis. The two metropolitan areas of Porto and Lisbon are identified as the most critical ones in terms of air pollution effects on human health over Portugal in a long-term as well as in a short-term perspective. The coexistence of high concentration values and high population density is the key factor for these stressed areas. Regarding the 50% emission reduction scenario, the model results are significantly different for both pollutants: there is a small overall reduction in the individual exposure values of PM 10 (<10 μg m -3 h), but for O 3, in contrast, there is an extended area where exposure values increase with emission reduction. This detailed knowledge is a prerequisite for the development of effective policies to reduce the foreseen adverse impact of air pollution on human health and to act on time.

  9. Estimation of the whole-body averaged SAR of grounded human models for plane wave exposure at respective resonance frequencies.

    PubMed

    Hirata, Akimasa; Yanase, Kazuya; Laakso, Ilkka; Chan, Kwok Hung; Fujiwara, Osamu; Nagaoka, Tomoaki; Watanabe, Soichi; Conil, Emmanuelle; Wiart, Joe

    2012-12-21

    According to the international guidelines, the whole-body averaged specific absorption rate (WBA-SAR) is used as a metric of basic restriction for radio-frequency whole-body exposure. It is well known that the WBA-SAR largely depends on the frequency of the incident wave for a given incident power density. The frequency at which the WBA-SAR becomes maximal is called the 'resonance frequency'. Our previous study proposed a scheme for estimating the WBA-SAR at this resonance frequency based on an analogy between the power absorption characteristic of human models in free space and that of a dipole antenna. However, a scheme for estimating the WBA-SAR in a grounded human has not been discussed sufficiently, even though the WBA-SAR in a grounded human is larger than that in an ungrounded human. In this study, with the use of the finite-difference time-domain method, the grounded condition is confirmed to be the worst-case exposure for human body models in a standing posture. Then, WBA-SARs in grounded human models are calculated at their respective resonant frequencies. A formula for estimating the WBA-SAR of a human standing on the ground is proposed based on an analogy with a quarter-wavelength monopole antenna. First, homogenized human body models are shown to provide the conservative WBA-SAR as compared with anatomically based models. Based on the formula proposed here, the WBA-SARs in grounded human models are approximately 10% larger than those in free space. The variability of the WBA-SAR was shown to be ±30% even for humans of the same age, which is caused by the body shape.

  10. A Study of Bayesian Estimation and Comparison of Response Time Models in Item Response Theory

    ERIC Educational Resources Information Center

    Suh, Hongwook

    2010-01-01

    Response time has been regarded as an important source for investigating the relationship between human performance and response speed. It is important to examine the relationship between response time and item characteristics, especially in the perspective of the relationship between response time and various factors that affect examinee's…

  11. Coalescent genealogy samplers: windows into population history

    PubMed Central

    Kuhner, Mary K.

    2016-01-01

    Coalescent genealogy samplers attempt to estimate past qualities of a population, such as its size, growth rate, patterns of gene flow or time of divergence from another population, based on samples of molecular data. Genealogy samplers are increasingly popular because of their potential to disentangle complex population histories. In the last decade they have been widely applied to systems ranging from humans to viruses. Findings include detection of unexpected reproductive inequality in fish, new estimates of historical whale abundance, exoneration of humans for the prehistoric decline of bison and inference of a selective sweep on the human Y chromosome. This review summarizes available genealogy-sampler software, including data requirements and limitations on the use of each program. PMID:19101058

  12. Coalescent genealogy samplers: windows into population history.

    PubMed

    Kuhner, Mary K

    2009-02-01

    Coalescent genealogy samplers attempt to estimate past qualities of a population, such as its size, growth rate, patterns of gene flow or time of divergence from another population, based on samples of molecular data. Genealogy samplers are increasingly popular because of their potential to disentangle complex population histories. In the last decade they have been widely applied to systems ranging from humans to viruses. Findings include detection of unexpected reproductive inequality in fish, new estimates of historical whale abundance, exoneration of humans for the prehistoric decline of bison and inference of a selective sweep on the human Y chromosome. This review summarizes available genealogy-sampler software, including data requirements and limitations on the use of each program.

  13. Novel joint TOA/RSSI-based WCE location tracking method without prior knowledge of biological human body tissues.

    PubMed

    Ito, Takahiro; Anzai, Daisuke; Jianqing Wang

    2014-01-01

    This paper proposes a novel joint time of arrival (TOA)/received signal strength indicator (RSSI)-based wireless capsule endoscope (WCE) location tracking method without prior knowledge of biological human tissues. Generally, TOA-based localization can achieve much higher localization accuracy than other radio frequency-based localization techniques, whereas wireless signals transmitted from a WCE pass through various kinds of human body tissues, as a result, the propagation velocity inside a human body should be different from one in free space. Because the variation of propagation velocity is mainly affected by the relative permittivity of human body tissues, instead of pre-measurement for the relative permittivity in advance, we simultaneously estimate not only the WCE location but also the relative permittivity information. For this purpose, this paper first derives the relative permittivity estimation model with measured RSSI information. Then, we pay attention to a particle filter algorithm with the TOA-based localization and the RSSI-based relative permittivity estimation. Our computer simulation results demonstrates that the proposed tracking methods with the particle filter can accomplish an excellent localization accuracy of around 2 mm without prior information of the relative permittivity of the human body tissues.

  14. Time allocation shifts and pollutant exposure due to traffic congestion: an analysis using the national human activity pattern survey.

    PubMed

    Zhang, Kai; Batterman, Stuart A

    2009-10-15

    Traffic congestion increases air pollutant exposures of commuters and urban populations due to the increased time spent in traffic and the increased vehicular emissions that occur in congestion, especially "stop-and-go" traffic. Increased time in traffic also decreases time in other microenvironments, a trade-off that has not been considered in previous time activity pattern (TAP) analyses conducted for exposure assessment purposes. This research investigates changes in time allocations and exposures that result from traffic congestion. Time shifts were derived using data from the National Human Activity Pattern Survey (NHAPS), which was aggregated to nine microenvironments (six indoor locations, two outdoor locations and one transport location). After imputing missing values, handling outliers, and conducting other quality checks, these data were stratified by respondent age, employment status and period (weekday/weekend). Trade-offs or time-shift coefficients between time spent in vehicles and the eight other microenvironments were then estimated using robust regression. For children and retirees, congestion primarily reduced the time spent at home; for older children and working adults, congestion shifted the time spent at home as well as time in schools, public buildings, and other indoor environments. Changes in benzene and PM(2.5) exposure were estimated for the current average travel delay in the U.S. (9 min day(-1)) and other scenarios using the estimated time shifts coefficients, concentrations in key microenvironments derived from the literature, and a probabilistic analysis. Changes in exposures depended on the duration of the congestion and the pollutant. For example, a 30 min day(-1) travel delay was determined to account for 21+/-12% of current exposure to benzene and 14+/-8% of PM(2.5) exposure. The time allocation shifts and the dynamic approach to TAPs improve estimates of exposure impacts from congestion and other recurring events.

  15. Complexity of heart rate fluctuations in near-term sheep and human fetuses during sleep.

    PubMed

    Frank, Birgit; Frasch, Martin G; Schneider, Uwe; Roedel, Marcus; Schwab, Matthias; Hoyer, Dirk

    2006-10-01

    We investigated how the complexity of fetal heart rate fluctuations (fHRF) is related to the sleep states in sheep and human fetuses. The complexity as a function of time scale for fetal heart rate data for 7 sheep and 27 human fetuses was estimated in rapid eye movement (REM) and non-REM sleep by means of permutation entropy and the associated Kullback-Leibler entropy. We found that in humans, fHRF complexity is higher in non-REM than REM sleep, whereas in sheep this relationship is reversed. To show this relation, choice of the appropriate time scale is crucial. In sheep fetuses, we found differences in the complexity of fHRF between REM and non-REM sleep only for larger time scales (above 2.5 s), whereas in human fetuses the complexity was clearly different between REM and non-REM sleep over the whole range of time scales. This may be due to inherent time scales of complexity, which reflect species-specific functions of the autonomic nervous system. Such differences have to be considered when animal data are translated to the human situation.

  16. Using probabilistic modeling to evaluate human exposure to organotin in drinking water transported by polyvinyl chloride pipe.

    PubMed

    Fristachi, Anthony; Xu, Ying; Rice, Glenn; Impellitteri, Christopher A; Carlson-Lynch, Heather; Little, John C

    2009-11-01

    The leaching of organotin (OT) heat stabilizers from polyvinyl chloride (PVC) pipes used in residential drinking water systems may affect the quality of drinking water. These OTs, principally mono- and di-substituted species of butyltins and methyltins, are a potential health concern because they belong to a broad class of compounds that may be immune, nervous, and reproductive system toxicants. In this article, we develop probability distributions of U.S. population exposures to mixtures of OTs encountered in drinking water transported by PVC pipes. We employed a family of mathematical models to estimate OT leaching rates from PVC pipe as a function of both surface area and time. We then integrated the distribution of estimated leaching rates into an exposure model that estimated the probability distribution of OT concentrations in tap waters and the resulting potential human OT exposures via tap water consumption. Our study results suggest that human OT exposures through tap water consumption are likely to be considerably lower than the World Health Organization (WHO) "safe" long-term concentration in drinking water (150 microg/L) for dibutyltin (DBT)--the most toxic of the OT considered in this article. The 90th percentile average daily dose (ADD) estimate of 0.034 +/- 2.92 x 10(-4)microg/kg day is approximately 120 times lower than the WHO-based ADD for DBT (4.2 microg/kg day).

  17. Human-landing rate, gonotrophic cycle length, survivorship, and public health importance of Simulium erythrocephalum in Zaragoza, northeastern Spain.

    PubMed

    Ruiz-Arrondo, Ignacio; Garza-Hernández, Javier A; Reyes-Villanueva, Filiberto; Lucientes-Curdi, Javier; Rodríguez-Pérez, Mario A

    2017-04-08

    Simulium (Boophthora) erythrocephalum (De Geer, 1776) is one of the blackfly species responsible for major public health problems in Europe. Blackfly outbreaks of this species are becoming more frequent, threatening public health in Spain. In the present study, bionomic parameters of S. erythrocephalum in northeastern Spain were estimated. Simulium erythrocephalum was collected from May through June 2015 in Zaragoza, Spain, using the human-landing-collection (HLC) method. Daily pattern of total and parous landing activity was estimated, as was the gonotrophic cycle (GC) length and survivorship (S) rate, using time series analysis. Host-seeking females of S. erythrocephalum showed a bimodal human-landing activity pattern, with a minor and major peak at dawn and dusk, respectively; there was a significant negative association between human daily landing rate and temperature (P = 0.003) and solar radiation (P < 0.001). Overall, a daily landing rate (DLR) of 34 lands/person/day was estimated. Series of sequential data analysis on parity showed the highest significant (P < 0.001) correlation indices (r = 0.45 and r = 0.39 for raw and filtered data) for a 2-day time lag, indicating that the GC length corresponded to 2 days. Daily survivorship and parity rate were 0.85 and 0.72, respectively. Simulium erythrocephalum was confirmed as a nuisance species in Zaragoza, using the HLC method for the first time in Spain. The data offer insights into the ecology of S. erythrocephalum, which can improve management strategies of this pest in Spain.

  18. Dynamic population mapping using mobile phone data.

    PubMed

    Deville, Pierre; Linard, Catherine; Martin, Samuel; Gilbert, Marius; Stevens, Forrest R; Gaughan, Andrea E; Blondel, Vincent D; Tatem, Andrew J

    2014-11-11

    During the past few decades, technologies such as remote sensing, geographical information systems, and global positioning systems have transformed the way the distribution of human population is studied and modeled in space and time. However, the mapping of populations remains constrained by the logistics of censuses and surveys. Consequently, spatially detailed changes across scales of days, weeks, or months, or even year to year, are difficult to assess and limit the application of human population maps in situations in which timely information is required, such as disasters, conflicts, or epidemics. Mobile phones (MPs) now have an extremely high penetration rate across the globe, and analyzing the spatiotemporal distribution of MP calls geolocated to the tower level may overcome many limitations of census-based approaches, provided that the use of MP data is properly assessed and calibrated. Using datasets of more than 1 billion MP call records from Portugal and France, we show how spatially and temporarily explicit estimations of population densities can be produced at national scales, and how these estimates compare with outputs produced using alternative human population mapping methods. We also demonstrate how maps of human population changes can be produced over multiple timescales while preserving the anonymity of MP users. With similar data being collected every day by MP network providers across the world, the prospect of being able to map contemporary and changing human population distributions over relatively short intervals exists, paving the way for new applications and a near real-time understanding of patterns and processes in human geography.

  19. Dynamic population mapping using mobile phone data

    PubMed Central

    Deville, Pierre; Martin, Samuel; Gilbert, Marius; Stevens, Forrest R.; Gaughan, Andrea E.; Blondel, Vincent D.; Tatem, Andrew J.

    2014-01-01

    During the past few decades, technologies such as remote sensing, geographical information systems, and global positioning systems have transformed the way the distribution of human population is studied and modeled in space and time. However, the mapping of populations remains constrained by the logistics of censuses and surveys. Consequently, spatially detailed changes across scales of days, weeks, or months, or even year to year, are difficult to assess and limit the application of human population maps in situations in which timely information is required, such as disasters, conflicts, or epidemics. Mobile phones (MPs) now have an extremely high penetration rate across the globe, and analyzing the spatiotemporal distribution of MP calls geolocated to the tower level may overcome many limitations of census-based approaches, provided that the use of MP data is properly assessed and calibrated. Using datasets of more than 1 billion MP call records from Portugal and France, we show how spatially and temporarily explicit estimations of population densities can be produced at national scales, and how these estimates compare with outputs produced using alternative human population mapping methods. We also demonstrate how maps of human population changes can be produced over multiple timescales while preserving the anonymity of MP users. With similar data being collected every day by MP network providers across the world, the prospect of being able to map contemporary and changing human population distributions over relatively short intervals exists, paving the way for new applications and a near real-time understanding of patterns and processes in human geography. PMID:25349388

  20. Insulation fiber deposition in the airways of men and rats. A review of experimental and computational studies.

    PubMed

    Nielsen, G D; Koponen, I K

    2018-04-01

    The typical insulation rock, slag and glass wool fibers are high volume materials. Current exposure levels in industry (generally ≤ 1 fiber/cm 3 with a median diameter ∼1 μm and length ≥10 μm) are not considered carcinogenic or causing other types of severe lung effects. However, epidemiological studies are not informative on effects in humans at fiber levels >1 fiber/cm 3 . Effects may be inferred from valid rat studies, conducted with rat respirable fibers (diameter ≤ 1.5 μm). Therefore, we estimate delivery and deposition in human and rat airways of the industrial fibers. The deposition fractions in humans head regions by nasal (∼0.20) and by mouth breathing (≤0.08) are lower than in rats (0.50). The delivered dose into the lungs per unit lung surface area during a 1-day exposure at a similar air concentration is estimated to be about two times higher in humans than in rats. The deposition fractions in human lungs by nasal (∼0.20) and by mouth breathing (∼0.40) are higher than in rats (∼0.04). The human lung deposition may be up to three times by nasal breathing and up to six times higher by oral breathing than in rats, qualifying assessment factor setting for deposition. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Modeling of human operator dynamics in simple manual control utilizing time series analysis. [tracking (position)

    NASA Technical Reports Server (NTRS)

    Agarwal, G. C.; Osafo-Charles, F.; Oneill, W. D.; Gottlieb, G. L.

    1982-01-01

    Time series analysis is applied to model human operator dynamics in pursuit and compensatory tracking modes. The normalized residual criterion is used as a one-step analytical tool to encompass the processes of identification, estimation, and diagnostic checking. A parameter constraining technique is introduced to develop more reliable models of human operator dynamics. The human operator is adequately modeled by a second order dynamic system both in pursuit and compensatory tracking modes. In comparing the data sampling rates, 100 msec between samples is adequate and is shown to provide better results than 200 msec sampling. The residual power spectrum and eigenvalue analysis show that the human operator is not a generator of periodic characteristics.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elvidge, Christopher D.; Sutton, Paul S.; Ghosh, Tilottama

    A global poverty map has been produced at 30 arc sec resolution using a poverty index calculated by dividing population count (LandScan2004) by the brightness of satellite observed lighting (DMSP nighttimelights). Inputs to the LandScan product include satellite-derived landcover and topography, plus human settlement outlines derived from high-resolution imagery. The poverty estimates have been calibrated using national level poverty data from the World Development Indicators (WDI) 2006 edition. The total estimate of the numbers of individuals living in poverty is 2.2billion, slightly under the WDI estimate of 2.6 billion. We have demonstrated a new class of poverty map that shouldmore » improve over time through the inclusion of new reference data for calibration of poverty estimates and as improvements are made in the satellite observation of human activities related to economic activity and technology access.« less

  3. Returns to Education: New Evidence for India, 1983-1999

    ERIC Educational Resources Information Center

    Dutta, Puja Vasudeva

    2006-01-01

    This paper estimates the returns to education for adult male workers in regular and casual wage employment using Indian national survey data at three points in time spanning almost two decades. Both standard and augmented Mincerian wage equations are estimated using a set of human capital measures and other controls after addressing the issue of…

  4. Development and Characterization of a Mouse Model for Marburg Hemorrhagic Fever

    DTIC Science & Technology

    2009-07-01

    Microbiology. All Rights Reserved. Development and Characterization of a Mouse Model for Marburg Hemorrhagic Fever Kelly L. Warfield,* Steven B...mouse model has hampered an understanding of the pathogenesis and immunity of Marburg hemorrhagic fever (MHF), the disease caused by marburgvirus (MARV...cause severe hemorrhagic fevers in humans and non- human primates (27). The incubation time is estimated to be 3 to 21 days, with human case fatality

  5. A novel approach to estimation of the time to biomarker threshold: applications to HIV.

    PubMed

    Reddy, Tarylee; Molenberghs, Geert; Njagi, Edmund Njeru; Aerts, Marc

    2016-11-01

    In longitudinal studies of biomarkers, an outcome of interest is the time at which a biomarker reaches a particular threshold. The CD4 count is a widely used marker of human immunodeficiency virus progression. Because of the inherent variability of this marker, a single CD4 count below a relevant threshold should be interpreted with caution. Several studies have applied persistence criteria, designating the outcome as the time to the occurrence of two consecutive measurements less than the threshold. In this paper, we propose a method to estimate the time to attainment of two consecutive CD4 counts less than a meaningful threshold, which takes into account the patient-specific trajectory and measurement error. An expression for the expected time to threshold is presented, which is a function of the fixed effects, random effects and residual variance. We present an application to human immunodeficiency virus-positive individuals from a seroprevalent cohort in Durban, South Africa. Two thresholds are examined, and 95% bootstrap confidence intervals are presented for the estimated time to threshold. Sensitivity analysis revealed that results are robust to truncation of the series and variation in the number of visits considered for most patients. Caution should be exercised when interpreting the estimated times for patients who exhibit very slow rates of decline and patients who have less than three measurements. We also discuss the relevance of the methodology to the study of other diseases and present such applications. We demonstrate that the method proposed is computationally efficient and offers more flexibility than existing frameworks. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Quantitative risk assessment of human campylobacteriosis associated with thermophilic Campylobacter species in chickens.

    PubMed

    Rosenquist, Hanne; Nielsen, Niels L; Sommer, Helle M; Nørrung, Birgit; Christensen, Bjarke B

    2003-05-25

    A quantitative risk assessment comprising the elements hazard identification, hazard characterization, exposure assessment, and risk characterization has been prepared to assess the effect of different mitigation strategies on the number of human cases in Denmark associated with thermophilic Campylobacter spp. in chickens. To estimate the human exposure to Campylobacter from a chicken meal and the number of human cases associated with this exposure, a mathematical risk model was developed. The model details the spread and transfer of Campylobacter in chickens from slaughter to consumption and the relationship between ingested dose and the probability of developing campylobacteriosis. Human exposure was estimated in two successive mathematical modules. Module 1 addresses changes in prevalence and numbers of Campylobacter on chicken carcasses throughout the processing steps of a slaughterhouse. Module 2 covers the transfer of Campylobacter during food handling in private kitchens. The age and sex of consumers were included in this module to introduce variable hygiene levels during food preparation and variable sizes and compositions of meals. Finally, the outcome of the exposure assessment modules was integrated with a Beta-Poisson dose-response model to provide a risk estimate. Simulations designed to predict the effect of different mitigation strategies showed that the incidence of campylobacteriosis associated with consumption of chicken meals could be reduced 30 times by introducing a 2 log reduction of the number of Campylobacter on the chicken carcasses. To obtain a similar reduction of the incidence, the flock prevalence should be reduced approximately 30 times or the kitchen hygiene improved approximately 30 times. Cross-contamination from positive to negative flocks during slaughter had almost no effect on the human Campylobacter incidence, which indicates that implementation of logistic slaughter will only have a minor influence on the risk. Finally, the simulations showed that people in the age of 18-29 years had the highest risk of developing campylobacteriosis.

  7. Sparse Spectro-Temporal Receptive Fields Based on Multi-Unit and High-Gamma Responses in Human Auditory Cortex

    PubMed Central

    Jenison, Rick L.; Reale, Richard A.; Armstrong, Amanda L.; Oya, Hiroyuki; Kawasaki, Hiroto; Howard, Matthew A.

    2015-01-01

    Spectro-Temporal Receptive Fields (STRFs) were estimated from both multi-unit sorted clusters and high-gamma power responses in human auditory cortex. Intracranial electrophysiological recordings were used to measure responses to a random chord sequence of Gammatone stimuli. Traditional methods for estimating STRFs from single-unit recordings, such as spike-triggered-averages, tend to be noisy and are less robust to other response signals such as local field potentials. We present an extension to recently advanced methods for estimating STRFs from generalized linear models (GLM). A new variant of regression using regularization that penalizes non-zero coefficients is described, which results in a sparse solution. The frequency-time structure of the STRF tends toward grouping in different areas of frequency-time and we demonstrate that group sparsity-inducing penalties applied to GLM estimates of STRFs reduces the background noise while preserving the complex internal structure. The contribution of local spiking activity to the high-gamma power signal was factored out of the STRF using the GLM method, and this contribution was significant in 85 percent of the cases. Although the GLM methods have been used to estimate STRFs in animals, this study examines the detailed structure directly from auditory cortex in the awake human brain. We used this approach to identify an abrupt change in the best frequency of estimated STRFs along posteromedial-to-anterolateral recording locations along the long axis of Heschl’s gyrus. This change correlates well with a proposed transition from core to non-core auditory fields previously identified using the temporal response properties of Heschl’s gyrus recordings elicited by click-train stimuli. PMID:26367010

  8. Human Performance: Sex Differences and the Influence of the Menstrual Cycle (A Selected Bibliography)

    DTIC Science & Technology

    1978-05-01

    22 C. Vigilance/ Attention .. .... ......... .......... 23 D. Reaction Time .. ... ......... ......... .... 24 E. Time Estimation...24 F. Cognitive Skills/Intelligence. .. ....... ........ .... 25 G. Memory .. ........ ........ ......... .. 26 H. Problem...Sex Differences in Cognitive Abilities. ..... .... 30 IV. SEX DIFFERENCES IN PERSONALITY .. ..... ........ .... 33 A. Emotional ity/Adaptive Styles

  9. Quantitative comparisons of the acute neurotoxicity of toluene in rats and humans.

    PubMed

    Benignus, Vernon A; Boyes, William K; Kenyon, Elaina M; Bushnell, Philip J

    2007-11-01

    The behavioral and neurophysiological effects of acute exposure to toluene are the most thoroughly explored of all the hydrocarbon solvents. Behavioral effects have been experimentally studied in humans and other species, for example, rats. The existence of both rat and human dosimetric data offers the opportunity to quantitatively compare the relative sensitivity to acute toluene exposure. The purpose of this study was to fit dose-effect curves to existing data and to estimate the dose-equivalence equation (DEE) between rats and humans. The DEE gives the doses that produce the same magnitude of effect in the two species. Doses were brain concentrations of toluene estimated from physiologically based pharmacokinetic models. Human experiments measuring toluene effects on choice reaction time (CRT) were meta-analyzed. Rat studies employed various dependent variables: amplitude of visual-evoked potentials (VEPs), signal detection (SIGDET) accuracy (ACCU) and reaction time (RT), and escape-avoidance (ES-AV) behaviors. Comparison of dose-effect functions showed that human and rat sensitivity was practically the same for those two task regimens that exerted the least control over the behaviors being measured (VEP in rats and CRT in humans) and the sensitivity was progressively lower for SIGDET RT, SIGDET ACCU, and ES-AV behaviors in rats. These results suggested that the sensitivity to impairment by toluene depends on the strength of control over the measured behavior rather than on the species being tested. This interpretation suggests that (1) sensitivity to toluene would be equivalent in humans and rats if both species performed behaviors that were controlled to the same extent, (2) the most sensitive tests of neurobehavioral effects would be those in which least control is exerted on the behavior being measured, and (3) effects of toluene in humans may be estimated using the DEEs from rat studies despite differences in the amount of control exerted by the experimental regimen or differences in the behaviors under investigation.

  10. Cuff-Free Blood Pressure Estimation Using Pulse Transit Time and Heart Rate.

    PubMed

    Wang, Ruiping; Jia, Wenyan; Mao, Zhi-Hong; Sclabassi, Robert J; Sun, Mingui

    2014-10-01

    It has been reported that the pulse transit time (PTT), the interval between the peak of the R-wave in electrocardiogram (ECG) and the fingertip photoplethysmogram (PPG), is related to arterial stiffness, and can be used to estimate the systolic blood pressure (SBP) and diastolic blood pressure (DBP). This phenomenon has been used as the basis to design portable systems for continuously cuff-less blood pressure measurement, benefiting numerous people with heart conditions. However, the PTT-based blood pressure estimation may not be sufficiently accurate because the regulation of blood pressure within the human body is a complex, multivariate physiological process. Considering the negative feedback mechanism in the blood pressure control, we introduce the heart rate (HR) and the blood pressure estimate in the previous step to obtain the current estimate. We validate this method using a clinical database. Our results show that the PTT, HR and previous estimate reduce the estimated error significantly when compared to the conventional PTT estimation approach (p<0.05).

  11. Probabilistic models in human sensorimotor control

    PubMed Central

    Wolpert, Daniel M.

    2009-01-01

    Sensory and motor uncertainty form a fundamental constraint on human sensorimotor control. Bayesian decision theory (BDT) has emerged as a unifying framework to understand how the central nervous system performs optimal estimation and control in the face of such uncertainty. BDT has two components: Bayesian statistics and decision theory. Here we review Bayesian statistics and show how it applies to estimating the state of the world and our own body. Recent results suggest that when learning novel tasks we are able to learn the statistical properties of both the world and our own sensory apparatus so as to perform estimation using Bayesian statistics. We review studies which suggest that humans can combine multiple sources of information to form maximum likelihood estimates, can incorporate prior beliefs about possible states of the world so as to generate maximum a posteriori estimates and can use Kalman filter-based processes to estimate time-varying states. Finally, we review Bayesian decision theory in motor control and how the central nervous system processes errors to determine loss functions and optimal actions. We review results that suggest we plan movements based on statistics of our actions that result from signal-dependent noise on our motor outputs. Taken together these studies provide a statistical framework for how the motor system performs in the presence of uncertainty. PMID:17628731

  12. A Strategy for Assessing the Impact of Time-Varying Family Risk Factors on High School Dropout

    ERIC Educational Resources Information Center

    Randolph, Karen A.; Fraser, Mark W.; Orthner, Dennis K.

    2006-01-01

    Human behavior is dynamic, influenced by changing situations over time. Yet the impact of the dynamic nature of important explanatory variables on outcomes has only recently begun to be estimated in developmental models. Using a risk factor perspective, this article demonstrates the potential benefits of regressing time-varying outcome measures on…

  13. Time series analysis and mortality model of dog bite victims presented for treatment at a referral clinic for rabies exposure in Monrovia, Liberia, 2010-2013.

    PubMed

    Olarinmoye, Ayodeji O; Ojo, Johnson F; Fasunla, Ayotunde J; Ishola, Olayinka O; Dakinah, Fahnboah G; Mulbah, Charles K; Al-Hezaimi, Khalid; Olugasa, Babasola O

    2017-08-01

    We developed time trend model, determined treatment outcome and estimated annual human deaths among dog bite victims (DBVs) from 2010 to 2013 in Monrovia, Liberia. Data obtained from clinic records included victim's age, gender and site of bite marks, site name of residence of rabies-exposed patients, promptness of care sought, initial treatment and post-exposure-prophylaxis (PEP) compliance. We computed DBV time-trend plot, seasonal index and year 2014 case forecast. Associated annual human death (AHD) was estimated using a standardized decision tree model. Of the 775 DBVs enlisted, care seeking time was within 24h of injury in 328 (42.32%) DBVs. Victim's residential location, site of bite mark, and time dependent variables were significantly associated with treatment outcome (p< 0.05). The equation X^ t =28.278-0.365t models the trend of DBVs. The high (n=705, 90.97%) defaulted PEP and average 155 AHD from rabies implied urgent need for policy formulation on national programme for rabies prevention in Liberia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Changes in Attenuated Total Reflection Fourier Transform Infrared Spectra as Blood Dries Out.

    PubMed

    Zhang, Yinming; Wang, Qi; Li, Bing; Wang, Zhijun; Li, Chengzhi; Yao, Yao; Huang, Ping; Wang, Zhenyuan

    2017-05-01

    The time since deposition (TSD) of a bloodstain is a valuable piece of evidence for forensic scientists to determine the time at which a crime took place. The objective of this study was to determine whether attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy could be used to estimate the TSD of a bloodstain in a relatively early period (from 0 min to the time required for the bloodstain to dry out). For this purpose, we used ATR-FTIR to study the variation in absorbance at certain wavelengths as rat and human blood sample dried out. The absorbance at 3308/cm (A3308) was found to have a close correlation with the TSD during this time period, and the changes in A3308 during the drying of rat and human blood drops under the same controlled conditions showed similar results. The current study indicates that ATR-FTIR spectroscopy has potential as a tool for estimating TSD at early time periods of blood deposition. © 2016 American Academy of Forensic Sciences.

  15. Multifactorial analysis of human blood cell responses to clinical total body irradiation

    NASA Technical Reports Server (NTRS)

    Yuhas, J. M.; Stokes, T. R.; Lushbaugh, C. C.

    1972-01-01

    Multiple regression analysis techniques are used to study the effects of therapeutic radiation exposure, number of fractions, and time on such quantal responses as tumor control and skin injury. The potential of these methods for the analysis of human blood cell responses is demonstrated and estimates are given of the effects of total amount of exposure and time of protraction in determining the minimum white blood cell concentration observed after exposure of patients from four disease groups.

  16. Predictive dose-based estimation of systemic exposure multiples in mouse and monkey relative to human for antisense oligonucleotides with 2'-o-(2-methoxyethyl) modifications.

    PubMed

    Yu, Rosie Z; Grundy, John S; Henry, Scott P; Kim, Tae-Won; Norris, Daniel A; Burkey, Jennifer; Wang, Yanfeng; Vick, Andrew; Geary, Richard S

    2015-01-20

    Evaluation of species differences and systemic exposure multiples (or ratios) in toxicological animal species versus human is an ongoing exercise during the course of drug development. The systemic exposure ratios are best estimated by directly comparing area under the plasma concentration-time curves (AUCs), and sometimes by comparing the dose administered, with the dose being adjusted either by body surface area (BSA) or body weight (BW). In this study, the association between AUC ratio and the administered dose ratio from animals to human were studied using a retrospective data-driven approach. The dataset included nine antisense oligonucleotides (ASOs) with 2'-O-(2-methoxyethyl) modifications, evaluated in two animal species (mouse and monkey) following single and repeated parenteral administrations. We found that plasma AUCs were similar between ASOs within the same species, and are predictable to human exposure using a single animal species, either mouse or monkey. Between monkey and human, the plasma exposure ratio can be predicted directly based on BW-adjusted dose ratios, whereas between mouse and human, the exposure ratio would be nearly fivefold lower in mouse compared to human based on BW-adjusted dose values. Thus, multiplying a factor of 5 for the mouse BW-adjusted dose would likely provide a reasonable AUC exposure estimate in human at steady-state.

  17. Effective population sizes of a major vector of human diseases, Aedes aegypti.

    PubMed

    Saarman, Norah P; Gloria-Soria, Andrea; Anderson, Eric C; Evans, Benjamin R; Pless, Evlyn; Cosme, Luciano V; Gonzalez-Acosta, Cassandra; Kamgang, Basile; Wesson, Dawn M; Powell, Jeffrey R

    2017-12-01

    The effective population size ( N e ) is a fundamental parameter in population genetics that determines the relative strength of selection and random genetic drift, the effect of migration, levels of inbreeding, and linkage disequilibrium. In many cases where it has been estimated in animals, N e is on the order of 10%-20% of the census size. In this study, we use 12 microsatellite markers and 14,888 single nucleotide polymorphisms (SNPs) to empirically estimate N e in Aedes aegypti , the major vector of yellow fever, dengue, chikungunya, and Zika viruses. We used the method of temporal sampling to estimate N e on a global dataset made up of 46 samples of Ae. aegypti that included multiple time points from 17 widely distributed geographic localities. Our N e estimates for Ae. aegypti fell within a broad range (~25-3,000) and averaged between 400 and 600 across all localities and time points sampled. Adult census size (N c ) estimates for this species range between one and five thousand, so the N e / N c ratio is about the same as for most animals. These N e values are lower than estimates available for other insects and have important implications for the design of genetic control strategies to reduce the impact of this species of mosquito on human health.

  18. Hand Pose Estimation by Fusion of Inertial and Magnetic Sensing Aided by a Permanent Magnet.

    PubMed

    Kortier, Henk G; Antonsson, Jacob; Schepers, H Martin; Gustafsson, Fredrik; Veltink, Peter H

    2015-09-01

    Tracking human body motions using inertial sensors has become a well-accepted method in ambulatory applications since the subject is not confined to a lab-bounded volume. However, a major drawback is the inability to estimate relative body positions over time because inertial sensor information only allows position tracking through strapdown integration, but does not provide any information about relative positions. In addition, strapdown integration inherently results in drift of the estimated position over time. We propose a novel method in which a permanent magnet combined with 3-D magnetometers and 3-D inertial sensors are used to estimate the global trunk orientation and relative pose of the hand with respect to the trunk. An Extended Kalman Filter is presented to fuse estimates obtained from inertial sensors with magnetic updates such that the position and orientation between the human hand and trunk as well as the global trunk orientation can be estimated robustly. This has been demonstrated in multiple experiments in which various hand tasks were performed. The most complex task in which simultaneous movements of both trunk and hand were performed resulted in an average rms position difference with an optical reference system of 19.7±2.2 mm whereas the relative trunk-hand and global trunk orientation error was 2.3±0.9 and 8.6±8.7 deg respectively.

  19. Estimating Three-Dimensional Orientation of Human Body Parts by Inertial/Magnetic Sensing

    PubMed Central

    Sabatini, Angelo Maria

    2011-01-01

    User-worn sensing units composed of inertial and magnetic sensors are becoming increasingly popular in various domains, including biomedical engineering, robotics, virtual reality, where they can also be applied for real-time tracking of the orientation of human body parts in the three-dimensional (3D) space. Although they are a promising choice as wearable sensors under many respects, the inertial and magnetic sensors currently in use offer measuring performance that are critical in order to achieve and maintain accurate 3D-orientation estimates, anytime and anywhere. This paper reviews the main sensor fusion and filtering techniques proposed for accurate inertial/magnetic orientation tracking of human body parts; it also gives useful recipes for their actual implementation. PMID:22319365

  20. A control-theory model for human decision-making

    NASA Technical Reports Server (NTRS)

    Levison, W. H.; Tanner, R. B.

    1971-01-01

    A model for human decision making is an adaptation of an optimal control model for pilot/vehicle systems. The models for decision and control both contain concepts of time delay, observation noise, optimal prediction, and optimal estimation. The decision making model was intended for situations in which the human bases his decision on his estimate of the state of a linear plant. Experiments are described for the following task situations: (a) single decision tasks, (b) two-decision tasks, and (c) simultaneous manual control and decision making. Using fixed values for model parameters, single-task and two-task decision performance can be predicted to within an accuracy of 10 percent. Agreement is less good for the simultaneous decision and control situation.

  1. Estimating three-dimensional orientation of human body parts by inertial/magnetic sensing.

    PubMed

    Sabatini, Angelo Maria

    2011-01-01

    User-worn sensing units composed of inertial and magnetic sensors are becoming increasingly popular in various domains, including biomedical engineering, robotics, virtual reality, where they can also be applied for real-time tracking of the orientation of human body parts in the three-dimensional (3D) space. Although they are a promising choice as wearable sensors under many respects, the inertial and magnetic sensors currently in use offer measuring performance that are critical in order to achieve and maintain accurate 3D-orientation estimates, anytime and anywhere. This paper reviews the main sensor fusion and filtering techniques proposed for accurate inertial/magnetic orientation tracking of human body parts; it also gives useful recipes for their actual implementation.

  2. A mathematical model of diurnal variations in human plasma melatonin levels

    NASA Technical Reports Server (NTRS)

    Brown, E. N.; Choe, Y.; Shanahan, T. L.; Czeisler, C. A.

    1997-01-01

    Studies in animals and humans suggest that the diurnal pattern in plasma melatonin levels is due to the hormone's rates of synthesis, circulatory infusion and clearance, circadian control of synthesis onset and offset, environmental lighting conditions, and error in the melatonin immunoassay. A two-dimensional linear differential equation model of the hormone is formulated and is used to analyze plasma melatonin levels in 18 normal healthy male subjects during a constant routine. Recently developed Bayesian statistical procedures are used to incorporate correctly the magnitude of the immunoassay error into the analysis. The estimated parameters [median (range)] were clearance half-life of 23.67 (14.79-59.93) min, synthesis onset time of 2206 (1940-0029), synthesis offset time of 0621 (0246-0817), and maximum N-acetyltransferase activity of 7.17(2.34-17.93) pmol x l(-1) x min(-1). All were in good agreement with values from previous reports. The difference between synthesis offset time and the phase of the core temperature minimum was 1 h 15 min (-4 h 38 min-2 h 43 min). The correlation between synthesis onset and the dim light melatonin onset was 0.93. Our model provides a more physiologically plausible estimate of the melatonin synthesis onset time than that given by the dim light melatonin onset and the first reliable means of estimating the phase of synthesis offset. Our analysis shows that the circadian and pharmacokinetics parameters of melatonin can be reliably estimated from a single model.

  3. Returns to Education: An International Comparison. Studies on Education; Vol. 2.

    ERIC Educational Resources Information Center

    Psacharopoulos, George; Hinchliffe, Keith

    Since the education boom of the sixties enough time has passed for estimates to be made of the profitability of such a highly speculative investment of human capital. Only from these sources of information can we determine future education and manpower, and develop human resources. Returns to education are clearly visible, whether they differ…

  4. Genetic Divergence Disclosing a Rapid Prehistorical Dispersion of Native Americans in Central and South America

    PubMed Central

    He, Yungang; Wang, Wei R.; Li, Ran; Wang, Sijia; Jin, Li

    2012-01-01

    An accurate estimate of the divergence time between Native Americans is important for understanding the initial entry and early dispersion of human beings in the New World. Current methods for estimating the genetic divergence time of populations could seriously depart from a linear relationship with the true divergence for multiple populations of a different population size and significant population expansion. Here, to address this problem, we propose a novel measure to estimate the genetic divergence time of populations. Computer simulation revealed that the new measure maintained an excellent linear correlation with the population divergence time in complicated multi-population scenarios with population expansion. Utilizing the new measure and microsatellite data of 21 Native American populations, we investigated the genetic divergences of the Native American populations. The results indicated that genetic divergences between North American populations are greater than that between Central and South American populations. None of the divergences, however, were large enough to constitute convincing evidence supporting the two-wave or multi-wave migration model for the initial entry of human beings into America. The genetic affinity of the Native American populations was further explored using Neighbor-Net and the genetic divergences suggested that these populations could be categorized into four genetic groups living in four different ecologic zones. The divergence of the population groups suggests that the early dispersion of human beings in America was a multi-step procedure. Further, the divergences suggest the rapid dispersion of Native Americans in Central and South Americas after a long standstill period in North America. PMID:22970308

  5. Comparing different stimulus configurations for population receptive field mapping in human fMRI

    PubMed Central

    Alvarez, Ivan; de Haas, Benjamin; Clark, Chris A.; Rees, Geraint; Schwarzkopf, D. Samuel

    2015-01-01

    Population receptive field (pRF) mapping is a widely used approach to measuring aggregate human visual receptive field properties by recording non-invasive signals using functional MRI. Despite growing interest, no study to date has systematically investigated the effects of different stimulus configurations on pRF estimates from human visual cortex. Here we compared the effects of three different stimulus configurations on a model-based approach to pRF estimation: size-invariant bars and eccentricity-scaled bars defined in Cartesian coordinates and traveling along the cardinal axes, and a novel simultaneous “wedge and ring” stimulus defined in polar coordinates, systematically covering polar and eccentricity axes. We found that the presence or absence of eccentricity scaling had a significant effect on goodness of fit and pRF size estimates. Further, variability in pRF size estimates was directly influenced by stimulus configuration, particularly for higher visual areas including V5/MT+. Finally, we compared eccentricity estimation between phase-encoded and model-based pRF approaches. We observed a tendency for more peripheral eccentricity estimates using phase-encoded methods, independent of stimulus size. We conclude that both eccentricity scaling and polar rather than Cartesian stimulus configuration are important considerations for optimal experimental design in pRF mapping. While all stimulus configurations produce adequate estimates, simultaneous wedge and ring stimulation produced higher fit reliability, with a significant advantage in reduced acquisition time. PMID:25750620

  6. Regression analysis of sparse asynchronous longitudinal data

    PubMed Central

    Cao, Hongyuan; Zeng, Donglin; Fine, Jason P.

    2015-01-01

    Summary We consider estimation of regression models for sparse asynchronous longitudinal observations, where time-dependent responses and covariates are observed intermittently within subjects. Unlike with synchronous data, where the response and covariates are observed at the same time point, with asynchronous data, the observation times are mismatched. Simple kernel-weighted estimating equations are proposed for generalized linear models with either time invariant or time-dependent coefficients under smoothness assumptions for the covariate processes which are similar to those for synchronous data. For models with either time invariant or time-dependent coefficients, the estimators are consistent and asymptotically normal but converge at slower rates than those achieved with synchronous data. Simulation studies evidence that the methods perform well with realistic sample sizes and may be superior to a naive application of methods for synchronous data based on an ad hoc last value carried forward approach. The practical utility of the methods is illustrated on data from a study on human immunodeficiency virus. PMID:26568699

  7. Identification of Time-Varying Pilot Control Behavior in Multi-Axis Control Tasks

    NASA Technical Reports Server (NTRS)

    Zaal, Peter M. T.; Sweet, Barbara T.

    2012-01-01

    Recent developments in fly-by-wire control architectures for rotorcraft have introduced new interest in the identification of time-varying pilot control behavior in multi-axis control tasks. In this paper a maximum likelihood estimation method is used to estimate the parameters of a pilot model with time-dependent sigmoid functions to characterize time-varying human control behavior. An experiment was performed by 9 general aviation pilots who had to perform a simultaneous roll and pitch control task with time-varying aircraft dynamics. In 8 different conditions, the axis containing the time-varying dynamics and the growth factor of the dynamics were varied, allowing for an analysis of the performance of the estimation method when estimating time-dependent parameter functions. In addition, a detailed analysis of pilots adaptation to the time-varying aircraft dynamics in both the roll and pitch axes could be performed. Pilot control behavior in both axes was significantly affected by the time-varying aircraft dynamics in roll and pitch, and by the growth factor. The main effect was found in the axis that contained the time-varying dynamics. However, pilot control behavior also changed over time in the axis not containing the time-varying aircraft dynamics. This indicates that some cross coupling exists in the perception and control processes between the roll and pitch axes.

  8. Joint Estimation of Contamination, Error and Demography for Nuclear DNA from Ancient Humans

    PubMed Central

    Slatkin, Montgomery

    2016-01-01

    When sequencing an ancient DNA sample from a hominin fossil, DNA from present-day humans involved in excavation and extraction will be sequenced along with the endogenous material. This type of contamination is problematic for downstream analyses as it will introduce a bias towards the population of the contaminating individual(s). Quantifying the extent of contamination is a crucial step as it allows researchers to account for possible biases that may arise in downstream genetic analyses. Here, we present an MCMC algorithm to co-estimate the contamination rate, sequencing error rate and demographic parameters—including drift times and admixture rates—for an ancient nuclear genome obtained from human remains, when the putative contaminating DNA comes from present-day humans. We assume we have a large panel representing the putative contaminant population (e.g. European, East Asian or African). The method is implemented in a C++ program called ‘Demographic Inference with Contamination and Error’ (DICE). We applied it to simulations and genome data from ancient Neanderthals and modern humans. With reasonable levels of genome sequence coverage (>3X), we find we can recover accurate estimates of all these parameters, even when the contamination rate is as high as 50%. PMID:27049965

  9. Developing a Crew Time Model for Human Exploration Missions to Mars

    NASA Technical Reports Server (NTRS)

    Battfeld, Bryan; Stromgren, Chel; Shyface, Hilary; Cirillo, William; Goodliff, Kandyce

    2015-01-01

    Candidate human missions to Mars require mission lengths that could extend beyond those that have previously been demonstrated during crewed Lunar (Apollo) and International Space Station (ISS) missions. The nature of the architectures required for deep space human exploration will likely necessitate major changes in how crews operate and maintain the spacecraft. The uncertainties associated with these shifts in mission constructs - including changes to habitation systems, transit durations, and system operations - raise concerns as to the ability of the crew to complete required overhead activities while still having time to conduct a set of robust exploration activities. This paper will present an initial assessment of crew operational requirements for human missions to the Mars surface. The presented results integrate assessments of crew habitation, system maintenance, and utilization to present a comprehensive analysis of potential crew time usage. Destination operations were assessed for a short (approx. 50 day) and long duration (approx. 500 day) surface habitation case. Crew time allocations are broken out by mission segment, and the availability of utilization opportunities was evaluated throughout the entire mission progression. To support this assessment, the integrated crew operations model (ICOM) was developed. ICOM was used to parse overhead, maintenance and system repair, and destination operations requirements within each mission segment - outbound transit, Mars surface duration, and return transit - to develop a comprehensive estimation of exploration crew time allocations. Overhead operational requirements included daily crew operations, health maintenance activities, and down time. Maintenance and repair operational allocations are derived using the Exploration Maintainability and Analysis Tool (EMAT) to develop a probabilistic estimation of crew repair time necessary to maintain systems functionality throughout the mission.

  10. The net benefits of human-ignited wildfire forecasting: the case of tribal land units in the United States

    Treesearch

    Jeff Prestemon; David T. Butry; Douglas S. Thomas

    2016-01-01

    Research shows that some categories of human-ignited wildfires may be forecastable, owing to their temporal clustering, with the possibility that resources could be predeployed to help reduce the incidence of such wildfires. We estimated several kinds of incendiary and other human-ignited wildfire forecast models at the weekly time step for tribal land units in the...

  11. The role of cortical beta oscillations in time estimation.

    PubMed

    Kulashekhar, Shrikanth; Pekkola, Johanna; Palva, Jaakko Matias; Palva, Satu

    2016-09-01

    Estimation of time is central to perception, action, and cognition. Human functional magnetic resonance imaging (fMRI) and positron emission topography (PET) have revealed a positive correlation between the estimation of multi-second temporal durations and neuronal activity in a circuit of sensory and motor areas, prefrontal and temporal cortices, basal ganglia, and cerebellum. The systems-level mechanisms coordinating the collective neuronal activity in these areas have remained poorly understood. Synchronized oscillations regulate communication in neuronal networks and could hence serve such coordination, but their role in the estimation and maintenance of multi-second time intervals has remained largely unknown. We used source-reconstructed magnetoencephalography (MEG) to address the functional significance of local neuronal synchronization, as indexed by the amplitudes of cortical oscillations, in time-estimation. MEG was acquired during a working memory (WM) task where the subjects first estimated and then memorized the durations, or in the contrast condition, the colors of dynamic visual stimuli. Time estimation was associated with stronger beta (β, 14 - 30 Hz) band oscillations than color estimation in sensory regions and attentional cortical structures that earlier have been associated with time processing. In addition, the encoding of duration information was associated with strengthened gamma- (γ, 30 - 120 Hz), and the retrieval and maintenance with alpha- (α, 8 - 14 Hz) band oscillations. These data suggest that β oscillations may provide a mechanism for estimating short temporal durations, while γ and α oscillations support their encoding, retrieval, and maintenance in memory. Hum Brain Mapp 37:3262-3281, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Machinability of some dentin simulating materials.

    PubMed

    Möllersten, L

    1985-01-01

    Machinability in low speed drilling was investigated for pure aluminium, Frasaco teeth, ivory, plexiglass and human dentin. The investigation was performed in order to find a suitable test material for drilling experiments using paralleling instruments. A material simulating human dentin in terms of cuttability at low drilling speeds was sought. Tests were performed using a specially designed apparatus. Holes to a depth of 2 mm were drilled with a twist drill using a constant feeding force. The time required was registered. The machinability of the materials tested was determined by direct comparison of the drilling times. As regards cuttability, first aluminium and then ivory were found to resemble human dentin most closely. By comparing drilling time variances the homogeneity of the materials tested was estimated. Aluminium, Frasaco teeth and plexiglass demonstrated better homogeneity than ivory and human dentin.

  13. Optimizing Human Input in Social Network Analysis

    DTIC Science & Technology

    2018-01-23

    of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering...and maintaining the data needed, and completing and reviewing the collection of information . Send comments regarding this burden estimate or any...other aspect of this collection of information , including suggesstions for reducing this burden, to Washington Headquarters Services, Directorate for

  14. Two Invariants of Human-Swarm Interaction

    DTIC Science & Technology

    2018-01-16

    for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data...sources, gathering and maintaining the data needed, and completing and reviewing the collection of information . Send comments regarding this burden...estimate or any other aspect of this collection of information , including suggestions for reducing the burden, to Department of Defense, Washington

  15. Human neutrophil kinetics: modeling of stable isotope labeling data supports short blood neutrophil half-lives.

    PubMed

    Lahoz-Beneytez, Julio; Elemans, Marjet; Zhang, Yan; Ahmed, Raya; Salam, Arafa; Block, Michael; Niederalt, Christoph; Asquith, Becca; Macallan, Derek

    2016-06-30

    Human neutrophils have traditionally been thought to have a short half-life in blood; estimates vary from 4 to 18 hours. This dogma was recently challenged by stable isotope labeling studies with heavy water, which yielded estimates in excess of 3 days. To investigate this disparity, we generated new stable isotope labeling data in healthy adult subjects using both heavy water (n = 4) and deuterium-labeled glucose (n = 9), a compound with more rapid labeling kinetics. To interpret results, we developed a novel mechanistic model and applied it to previously published (n = 5) and newly generated data. We initially constrained the ratio of the blood neutrophil pool to the marrow precursor pool (ratio = 0.26; from published values). Analysis of heavy water data sets yielded turnover rates consistent with a short blood half-life, but parameters, particularly marrow transit time, were poorly defined. Analysis of glucose-labeling data yielded more precise estimates of half-life (0.79 ± 0.25 days; 19 hours) and marrow transit time (5.80 ± 0.42 days). Substitution of this marrow transit time in the heavy water analysis gave a better-defined blood half-life of 0.77 ± 0.14 days (18.5 hours), close to glucose-derived values. Allowing the ratio of blood neutrophils to mitotic neutrophil precursors (R) to vary yielded a best-fit value of 0.19. Reanalysis of the previously published model and data also revealed the origin of their long estimates for neutrophil half-life: an implicit assumption that R is very large, which is physiologically untenable. We conclude that stable isotope labeling in healthy humans is consistent with a blood neutrophil half-life of less than 1 day. © 2016 by The American Society of Hematology.

  16. Flies and humans share a motion estimation strategy that exploits natural scene statistics

    PubMed Central

    Clark, Damon A.; Fitzgerald, James E.; Ales, Justin M.; Gohl, Daryl M.; Silies, Marion A.; Norcia, Anthony M.; Clandinin, Thomas R.

    2014-01-01

    Sighted animals extract motion information from visual scenes by processing spatiotemporal patterns of light falling on the retina. The dominant models for motion estimation exploit intensity correlations only between pairs of points in space and time. Moving natural scenes, however, contain more complex correlations. Here we show that fly and human visual systems encode the combined direction and contrast polarity of moving edges using triple correlations that enhance motion estimation in natural environments. Both species extract triple correlations with neural substrates tuned for light or dark edges, and sensitivity to specific triple correlations is retained even as light and dark edge motion signals are combined. Thus, both species separately process light and dark image contrasts to capture motion signatures that can improve estimation accuracy. This striking convergence argues that statistical structures in natural scenes have profoundly affected visual processing, driving a common computational strategy over 500 million years of evolution. PMID:24390225

  17. Response of the human vestibulo-ocular reflex system to constant angular acceleration. I. Theoretical study.

    PubMed

    Boumans, L J; Rodenburg, M; Maas, A J

    1983-01-01

    The response of the human vestibulo-ocular reflex system to a constant angular acceleration is calculated using a second order model with an adaptation term. After first reaching a maximum the peracceleratory response declines. When the stimulus duration is long the decay is mainly governed by the adaptation time constant Ta, which enables to reliably estimate this time constant. In the postacceleratory period of constant velocity there is a reversal in response. The magnitude and the time course of the per- and postacceleratory response are calculated for various values of the cupular time constant T1, the adaptation time constant Ta, and the stimulus duration, thus enabling their influence to be assessed.

  18. Variability of daily UV index in Jokioinen, Finland, in 1995-2015

    NASA Astrophysics Data System (ADS)

    Heikkilä, A.; Uusitalo, K.; Kärhä, P.; Vaskuri, A.; Lakkala, K.; Koskela, T.

    2017-02-01

    UV Index is a measure for UV radiation harmful for the human skin, developed and used to promote the sun awareness and protection of people. Monitoring programs conducted around the world have produced a number of long-term time series of UV irradiance. One of the longest time series of solar spectral UV irradiance in Europe has been obtained from the continuous measurements of Brewer #107 spectrophotometer in Jokioinen (lat. 60°44'N, lon. 23°30'E), Finland, over the years 1995-2015. We have used descriptive statistics and estimates of cumulative distribution functions, quantiles and probability density functions in the analysis of the time series of daily UV Index maxima. Seasonal differences in the estimated distributions and in the trends of the estimated quantiles are found.

  19. A Review of Electrical Impedance Spectrometry Methods for Parametric Estimation of Physiologic Fluid Volumes

    NASA Technical Reports Server (NTRS)

    Dewberry, B.

    2000-01-01

    Electrical impedance spectrometry involves measurement of the complex resistance of a load at multiple frequencies. With this information in the form of impedance magnitude and phase, or resistance and reactance, basic structure or function of the load can be estimated. The "load" targeted for measurement and estimation in this study consisted of the water-bearing tissues of the human calf. It was proposed and verified that by measuring the electrical impedance of the human calf and fitting this data to a model of fluid compartments, the lumped-model volume of intracellular and extracellular spaces could be estimated, By performing this estimation over time, the volume dynamics during application of stimuli which affect the direction of gravity can be viewed. The resulting data can form a basis for further modeling and verification of cardiovascular and compartmental modeling of fluid reactions to microgravity as well as countermeasures to the headward shift of fluid during head-down tilt or spaceflight.

  20. Absorbed radiation dosimetry of the D3-specific PET radioligand [18F]FluorTriopride estimated using rodent and nonhuman primate

    PubMed Central

    Laforest, Richard; Karimi, Morvarid; Moerlein, Stephen M; Xu, Jinbin; Flores, Hubert P; Bognar, Christopher; Li, Aixiao; Mach, Robert H; Perlmutter, Joel S; Tu, Zhude

    2016-01-01

    [18F]FluorTriopride ([18F]FTP) is a dopamine D3-receptor preferring radioligand with potential for investigation of neuropsychiatric disorders including Parkinson disease, dystonia and schizophrenia. Here we estimate human radiation dosimetry for [18F]FTP based on the ex-vivo biodistribution in rodents and in vivo distribution in nonhuman primates. Biodistribution data were generated using male and female Sprague-Dawley rats injected with ~370 KBq of [18F]FTP and euthanized at 5, 30, 60, 120, and 240 min. Organs of interest were dissected, weighed and assayed for radioactivity content. PET imaging studies were performed in two male and one female macaque fascicularis administered 143-190 MBq of [18F]FTP and scanned whole-body in sequential sections. Organ residence times were calculated based on organ time activity curves (TAC) created from regions of Interest. OLINDA/EXM 1.1 was used to estimate human radiation dosimetry based on scaled organ residence times. In the rodent, the highest absorbed radiation dose was the upper large intestines (0.32-0.49 mGy/MBq), with an effective dose of 0.07 mSv/MBq in males and 0.1 mSv/MBq in females. For the nonhuman primate, however, the gallbladder wall was the critical organ (1.81 mGy/MBq), and the effective dose was 0.02 mSv/MBq. The species discrepancy in dosimetry estimates for [18F]FTP based on rat and primate data can be attributed to the slower transit of tracer through the hepatobiliary track of the primate compared to the rat, which lacks a gallbladder. Out findings demonstrate that the nonhuman primate model is more appropriate model for estimating human absorbed radiation dosimetry when hepatobiliary excretion plays a major role in radiotracer elimination. PMID:28078183

  1. Humans Optimize Decision-Making by Delaying Decision Onset

    PubMed Central

    Teichert, Tobias; Ferrera, Vincent P.; Grinband, Jack

    2014-01-01

    Why do humans make errors on seemingly trivial perceptual decisions? It has been shown that such errors occur in part because the decision process (evidence accumulation) is initiated before selective attention has isolated the relevant sensory information from salient distractors. Nevertheless, it is typically assumed that subjects increase accuracy by prolonging the decision process rather than delaying decision onset. To date it has not been tested whether humans can strategically delay decision onset to increase response accuracy. To address this question we measured the time course of selective attention in a motion interference task using a novel variant of the response signal paradigm. Based on these measurements we estimated time-dependent drift rate and showed that subjects should in principle be able trade speed for accuracy very effectively by delaying decision onset. Using the time-dependent estimate of drift rate we show that subjects indeed delay decision onset in addition to raising response threshold when asked to stress accuracy over speed in a free reaction version of the same motion-interference task. These findings show that decision onset is a critical aspect of the decision process that can be adjusted to effectively improve decision accuracy. PMID:24599295

  2. Dynamic imaging in electrical impedance tomography of the human chest with online transition matrix identification.

    PubMed

    Moura, Fernando Silva; Aya, Julio Cesar Ceballos; Fleury, Agenor Toledo; Amato, Marcelo Britto Passos; Lima, Raul Gonzalez

    2010-02-01

    One of the electrical impedance tomography objectives is to estimate the electrical resistivity distribution in a domain based only on electrical potential measurements at its boundary generated by an imposed electrical current distribution into the boundary. One of the methods used in dynamic estimation is the Kalman filter. In biomedical applications, the random walk model is frequently used as evolution model and, under this conditions, poor tracking ability of the extended Kalman filter (EKF) is achieved. An analytically developed evolution model is not feasible at this moment. The paper investigates the identification of the evolution model in parallel to the EKF and updating the evolution model with certain periodicity. The evolution model transition matrix is identified using the history of the estimated resistivity distribution obtained by a sensitivity matrix based algorithm and a Newton-Raphson algorithm. To numerically identify the linear evolution model, the Ibrahim time-domain method is used. The investigation is performed by numerical simulations of a domain with time-varying resistivity and by experimental data collected from the boundary of a human chest during normal breathing. The obtained dynamic resistivity values lie within the expected values for the tissues of a human chest. The EKF results suggest that the tracking ability is significantly improved with this approach.

  3. Towards Automated Annotation of Benthic Survey Images: Variability of Human Experts and Operational Modes of Automation

    PubMed Central

    Beijbom, Oscar; Edmunds, Peter J.; Roelfsema, Chris; Smith, Jennifer; Kline, David I.; Neal, Benjamin P.; Dunlap, Matthew J.; Moriarty, Vincent; Fan, Tung-Yung; Tan, Chih-Jui; Chan, Stephen; Treibitz, Tali; Gamst, Anthony; Mitchell, B. Greg; Kriegman, David

    2015-01-01

    Global climate change and other anthropogenic stressors have heightened the need to rapidly characterize ecological changes in marine benthic communities across large scales. Digital photography enables rapid collection of survey images to meet this need, but the subsequent image annotation is typically a time consuming, manual task. We investigated the feasibility of using automated point-annotation to expedite cover estimation of the 17 dominant benthic categories from survey-images captured at four Pacific coral reefs. Inter- and intra- annotator variability among six human experts was quantified and compared to semi- and fully- automated annotation methods, which are made available at coralnet.ucsd.edu. Our results indicate high expert agreement for identification of coral genera, but lower agreement for algal functional groups, in particular between turf algae and crustose coralline algae. This indicates the need for unequivocal definitions of algal groups, careful training of multiple annotators, and enhanced imaging technology. Semi-automated annotation, where 50% of the annotation decisions were performed automatically, yielded cover estimate errors comparable to those of the human experts. Furthermore, fully-automated annotation yielded rapid, unbiased cover estimates but with increased variance. These results show that automated annotation can increase spatial coverage and decrease time and financial outlay for image-based reef surveys. PMID:26154157

  4. When will we reach 1.5 of global warming?

    NASA Astrophysics Data System (ADS)

    Matthews, D.

    2017-12-01

    Recent global temperature trends indicate that we may be rapidly approaching 1.5 degrees of global warming. However, rigorous estimates of when this target will be breached are rare, and are highly sensitive to small errors in observed and model-simulated historical warming, as well as widely-varying estimates of the allowable emissions for 1.5°C. Here, I present a proposed method to estimate the time remaining to 1.5°C using a new estimate of human-attributable warming, updated CO2 emissions trends, and the latest estimates of the 1.5°C carbon budget. The resulting calculation suggests that a continuation of recent CO2 emission trends would take us past 1.5°C in 2033, a little less than 16 years from now. Uncertainties in this calculation remain large, reflecting both fundamental scientific uncertainties associated with the climate response to emissions, as well as uncertainties associated with human mitigation decisions and their effect on future CO2 and non-CO2 greenhouse gas emissions. However, it is nevertheless important to provide a robust and widely-accepted best estimate of the time remaining before we breach the climate targets that have been adopted in the Paris climate agreement, so as to clearly communicate our scientific understanding to policy makers and the general public. To this end, in an effort to visualize and track our progress towards these target, we have develop an online and projectable climate clock, which shows a real-time countdown of the time remaining to 1.5 and 2°C of global warming (see www.climateclock.net). This clock will be updated annually in light of the most recent emissions and global temperature data, and accounting for improved estimates of the remaining carbon budget associated with these climate targets. As countries around the world move forward with climate mitigation efforts, this climate clock will be able to clearly mark our progress towards the objective of adding time to the countdown so as to ultimately avoid breaching these dangerous climate thresholds.

  5. Estimating time available for sensor fusion exception handling

    NASA Astrophysics Data System (ADS)

    Murphy, Robin R.; Rogers, Erika

    1995-09-01

    In previous work, we have developed a generate, test, and debug methodology for detecting, classifying, and responding to sensing failures in autonomous and semi-autonomous mobile robots. An important issue has arisen from these efforts: how much time is there available to classify the cause of the failure and determine an alternative sensing strategy before the robot mission must be terminated? In this paper, we consider the impact of time for teleoperation applications where a remote robot attempts to autonomously maintain sensing in the presence of failures yet has the option to contact the local for further assistance. Time limits are determined by using evidential reasoning with a novel generalization of Dempster-Shafer theory. Generalized Dempster-Shafer theory is used to estimate the time remaining until the robot behavior must be suspended because of uncertainty; this becomes the time limit on autonomous exception handling at the remote. If the remote cannot complete exception handling in this time or needs assistance, responsibility is passed to the local, while the remote assumes a `safe' state. An intelligent assistant then facilitates human intervention, either directing the remote without human assistance or coordinating data collection and presentation to the operator within time limits imposed by the mission. The impact of time on exception handling activities is demonstrated using video camera sensor data.

  6. Bottom-up modeling approach for the quantitative estimation of parameters in pathogen-host interactions

    PubMed Central

    Lehnert, Teresa; Timme, Sandra; Pollmächer, Johannes; Hünniger, Kerstin; Kurzai, Oliver; Figge, Marc Thilo

    2015-01-01

    Opportunistic fungal pathogens can cause bloodstream infection and severe sepsis upon entering the blood stream of the host. The early immune response in human blood comprises the elimination of pathogens by antimicrobial peptides and innate immune cells, such as neutrophils or monocytes. Mathematical modeling is a predictive method to examine these complex processes and to quantify the dynamics of pathogen-host interactions. Since model parameters are often not directly accessible from experiment, their estimation is required by calibrating model predictions with experimental data. Depending on the complexity of the mathematical model, parameter estimation can be associated with excessively high computational costs in terms of run time and memory. We apply a strategy for reliable parameter estimation where different modeling approaches with increasing complexity are used that build on one another. This bottom-up modeling approach is applied to an experimental human whole-blood infection assay for Candida albicans. Aiming for the quantification of the relative impact of different routes of the immune response against this human-pathogenic fungus, we start from a non-spatial state-based model (SBM), because this level of model complexity allows estimating a priori unknown transition rates between various system states by the global optimization method simulated annealing. Building on the non-spatial SBM, an agent-based model (ABM) is implemented that incorporates the migration of interacting cells in three-dimensional space. The ABM takes advantage of estimated parameters from the non-spatial SBM, leading to a decreased dimensionality of the parameter space. This space can be scanned using a local optimization approach, i.e., least-squares error estimation based on an adaptive regular grid search, to predict cell migration parameters that are not accessible in experiment. In the future, spatio-temporal simulations of whole-blood samples may enable timely stratification of sepsis patients by distinguishing hyper-inflammatory from paralytic phases in immune dysregulation. PMID:26150807

  7. Bottom-up modeling approach for the quantitative estimation of parameters in pathogen-host interactions.

    PubMed

    Lehnert, Teresa; Timme, Sandra; Pollmächer, Johannes; Hünniger, Kerstin; Kurzai, Oliver; Figge, Marc Thilo

    2015-01-01

    Opportunistic fungal pathogens can cause bloodstream infection and severe sepsis upon entering the blood stream of the host. The early immune response in human blood comprises the elimination of pathogens by antimicrobial peptides and innate immune cells, such as neutrophils or monocytes. Mathematical modeling is a predictive method to examine these complex processes and to quantify the dynamics of pathogen-host interactions. Since model parameters are often not directly accessible from experiment, their estimation is required by calibrating model predictions with experimental data. Depending on the complexity of the mathematical model, parameter estimation can be associated with excessively high computational costs in terms of run time and memory. We apply a strategy for reliable parameter estimation where different modeling approaches with increasing complexity are used that build on one another. This bottom-up modeling approach is applied to an experimental human whole-blood infection assay for Candida albicans. Aiming for the quantification of the relative impact of different routes of the immune response against this human-pathogenic fungus, we start from a non-spatial state-based model (SBM), because this level of model complexity allows estimating a priori unknown transition rates between various system states by the global optimization method simulated annealing. Building on the non-spatial SBM, an agent-based model (ABM) is implemented that incorporates the migration of interacting cells in three-dimensional space. The ABM takes advantage of estimated parameters from the non-spatial SBM, leading to a decreased dimensionality of the parameter space. This space can be scanned using a local optimization approach, i.e., least-squares error estimation based on an adaptive regular grid search, to predict cell migration parameters that are not accessible in experiment. In the future, spatio-temporal simulations of whole-blood samples may enable timely stratification of sepsis patients by distinguishing hyper-inflammatory from paralytic phases in immune dysregulation.

  8. A kinematic model to estimate effective dose of radioactive substances in a human body

    NASA Astrophysics Data System (ADS)

    Sasaki, S.; Yamada, T.

    2013-05-01

    The great earthquake occurred in the north-east area in Japan in March 11, 2011. Facility system to control Fukushima Daiichi nuclear power station was completely destroyed by the following giant tsunami. From the damaged reactor containment vessels, an amount of radioactive substances had leaked and diffused in the vicinity of this station. Radiological internal exposure became a serious social issue both in Japan and all over the world. The present study provides an easily understandable, kinematic-based model to estimate the effective dose of radioactive substances in a human body by simplifying the complicated mechanism of metabolism. International Commission on Radiological Protection (ICRP) has developed a sophisticated model, which is well-known as a standard method to calculate the effective dose for radiological protection. However, owing to that ICRP method is fine, it is rather difficult for non-professional people of radiology to gasp the whole images of the movement and the influences of radioactive substances in a human body. Therefore, in the present paper we propose a newly-derived and easily-understandable model to estimate the effective dose. The present method is very similar with the traditional and conventional tank model in hydrology. Ingestion flux of radioactive substances corresponds to rain intensity and the storage of radioactive substances to the water storage in a basin in runoff analysis. The key of the present method is to estimate the energy radiated in the radioactive nuclear disintegration of an atom by using classical theory of β decay and special relativity for various kinds of radioactive atoms. The parameters used in this model are only physical half-time and biological half-time, and there are no operational parameters or coefficients to adjust our theoretical runoff to ICRP. Figure shows the time-varying effective dose with ingestion duration, and we can confirm the validity of our model. The time-varying effective dose with ingestion duration

  9. Sampling strategies for estimating acute and chronic exposures of pesticides in streams

    USGS Publications Warehouse

    Crawford, Charles G.

    2004-01-01

    The Food Quality Protection Act of 1996 requires that human exposure to pesticides through drinking water be considered when establishing pesticide tolerances in food. Several systematic and seasonally weighted systematic sampling strategies for estimating pesticide concentrations in surface water were evaluated through Monte Carlo simulation, using intensive datasets from four sites in northwestern Ohio. The number of samples for the strategies ranged from 4 to 120 per year. Sampling strategies with a minimal sampling frequency outside the growing season can be used for estimating time weighted mean and percentile concentrations of pesticides with little loss of accuracy and precision, compared to strategies with the same sampling frequency year round. Less frequent sampling strategies can be used at large sites. A sampling frequency of 10 times monthly during the pesticide runoff period at a 90 km 2 basin and four times monthly at a 16,400 km2 basin provided estimates of the time weighted mean, 90th, 95th, and 99th percentile concentrations that fell within 50 percent of the true value virtually all of the time. By taking into account basin size and the periodic nature of pesticide runoff, costs of obtaining estimates of time weighted mean and percentile pesticide concentrations can be minimized.

  10. Beyond Newton's law of cooling - estimation of time since death

    NASA Astrophysics Data System (ADS)

    Leinbach, Carl

    2011-09-01

    The estimate of the time since death and, thus, the time of death is strictly that, an estimate. However, the time of death can be an important piece of information in some coroner's cases, especially those that involve criminal or insurance investigations. It has been known almost from the beginning of time that bodies cool after the internal mechanisms such as circulation of the blood stop. A first attempt to link this phenomenon to the determination of the time of death used a crude linear relationship. Towards the end of the nineteenth century, Newton's law of cooling using body temperature data obtained by the coroner was used to make a more accurate estimate. While based on scientific principles and resulting in a better estimate, Newton's law does not really describe the cooling of a non-homogeneous human body. This article will discuss a more accurate model of the cooling process based on the theoretical work of Marshall and Hoare and the laboratory-based statistical work of Claus Henssge. Using DERIVE®6.10 and the statistical work of Henssge, the double exponential cooling formula developed by Marshall and Hoare will be explored. The end result is a tool that can be used in the field by coroner's scene investigators to determine a 95% confidence interval for the time since death and, thus, the time of death.

  11. Presence

    DTIC Science & Technology

    2007-07-01

    around them [8]. They acknowledge the role of a human being as interpreter, making a mental model that estimates reality. It is theorized that humans...participant becomes, presence plays a key role in the experience’s fulfilment. It may be argued that for most entertainment applications, creating a...the allocation of attentional resources plays an important role in presence, is known as secondary reaction time measure [3]. The fundamental

  12. Hydrocarbons and the evolution of human culture.

    PubMed

    Hall, Charles; Tharakan, Pradeep; Hallock, John; Cleveland, Cutler; Jefferson, Michael

    2003-11-20

    Most of the progress in human culture has required the exploitation of energy resources. About 100 years ago, the major source of energy shifted from recent solar to fossil hydrocarbons, including liquid and gaseous petroleum. Technology has generally led to a greater use of hydrocarbon fuels for most human activities, making civilization vulnerable to decreases in supply. At this time our knowledge is not sufficient for us to choose between the different estimates of, for example, resources of conventional oil.

  13. The Vaccination of 35,000 Dogs in 20 Working Days Using Combined Static Point and Door-to-Door Methods in Blantyre, Malawi

    PubMed Central

    Gibson, Andrew D; Handel, Ian G; Shervell, Kate; Roux, Tarryn; Mayer, Dagmar; Muyila, Stanford; Maruwo, Golden B; Nkhulungo, Edwin M. S; Foster, Rachel A; Chikungwa, Patrick; Chimera, Bernard; Bronsvoort, Barend M.deC; Mellanby, Richard J; Gamble, Luke

    2016-01-01

    An estimated 60,000 people die of rabies annually. The vast majority of cases of human rabies develop following a bite from an infected dog. Rabies can be controlled in both human and canine populations through widespread vaccination of dogs. Rabies is particularly problematic in Malawi, costing the country an estimated 13 million USD and 484 human deaths annually, with an increasing paediatric incidence in Blantyre City. Consequently, the aim of this study was to vaccinate a minimum of 75% of all the dogs within Blantyre city during a one month period. Blantyre’s 25 administrative wards were divided into 204 working zones. For initial planning, a mean human:dog ratio from the literature enabled estimation of dog population size and dog surveys were then performed in 29 working zones in order to assess dog distribution by land type. Vaccination was conducted at static point stations at weekends, at a total of 44 sites, with each operating for an average of 1.3 days. On Monday to Wednesday, door-to-door vaccination sessions were undertaken in the areas surrounding the preceding static point stations. 23,442 dogs were vaccinated at static point stations and 11,774 dogs were vaccinated during door-to-door vaccinations. At the end of the 20 day vaccination programme, an assessment of vaccination coverage through door-to-door surveys found that of 10,919 dogs observed, 8,661 were vaccinated resulting in a vaccination coverage of 79.3% (95%CI 78.6–80.1%). The estimated human:dog ratio for Blantyre city was 18.1:1. Mobile technology facilitated the collection of data as well as efficient direction and coordination of vaccination teams in near real time. This study demonstrates the feasibility of vaccinating large numbers of dogs at a high vaccination coverage, over a short time period in a large African city. PMID:27414810

  14. Development of a mechatronic platform and validation of methods for estimating ankle stiffness during the stance phase of walking.

    PubMed

    Rouse, Elliott J; Hargrove, Levi J; Perreault, Eric J; Peshkin, Michael A; Kuiken, Todd A

    2013-08-01

    The mechanical properties of human joints (i.e., impedance) are constantly modulated to precisely govern human interaction with the environment. The estimation of these properties requires the displacement of the joint from its intended motion and a subsequent analysis to determine the relationship between the imposed perturbation and the resultant joint torque. There has been much investigation into the estimation of upper-extremity joint impedance during dynamic activities, yet the estimation of ankle impedance during walking has remained a challenge. This estimation is important for understanding how the mechanical properties of the human ankle are modulated during locomotion, and how those properties can be replicated in artificial prostheses designed to restore natural movement control. Here, we introduce a mechatronic platform designed to address the challenge of estimating the stiffness component of ankle impedance during walking, where stiffness denotes the static component of impedance. The system consists of a single degree of freedom mechatronic platform that is capable of perturbing the ankle during the stance phase of walking and measuring the response torque. Additionally, we estimate the platform's intrinsic inertial impedance using parallel linear filters and present a set of methods for estimating the impedance of the ankle from walking data. The methods were validated by comparing the experimentally determined estimates for the stiffness of a prosthetic foot to those measured from an independent testing machine. The parallel filters accurately estimated the mechatronic platform's inertial impedance, accounting for 96% of the variance, when averaged across channels and trials. Furthermore, our measurement system was found to yield reliable estimates of stiffness, which had an average error of only 5.4% (standard deviation: 0.7%) when measured at three time points within the stance phase of locomotion, and compared to the independently determined stiffness values of the prosthetic foot. The mechatronic system and methods proposed in this study are capable of accurately estimating ankle stiffness during the foot-flat region of stance phase. Future work will focus on the implementation of this validated system in estimating human ankle impedance during the stance phase of walking.

  15. MR-guided adaptive focusing of therapeutic ultrasound beams in the human head

    PubMed Central

    Marsac, Laurent; Chauvet, Dorian; Larrat, Benoît; Pernot, Mathieu; Robert, B.; Fink, Mathias; Boch, Anne-Laure; Aubry, Jean-François; Tanter, Mickaël

    2012-01-01

    Purpose This study aims to demonstrate, using human cadavers the feasibility of energy-based adaptive focusing of ultrasonic waves using Magnetic Resonance Acoustic Radiation Force Imaging (MR-ARFI) in the framework of non-invasive transcranial High Intensity Focused Ultrasound (HIFU) therapy. Methods Energy-based adaptive focusing techniques were recently proposed in order to achieve aberration correction. We evaluate this method on a clinical brain HIFU system composed of 512 ultrasonic elements positioned inside a full body 1.5 T clinical Magnetic Resonance (MR) imaging system. Cadaver heads were mounted onto a clinical Leksell stereotactic frame. The ultrasonic wave intensity at the chosen location was indirectly estimated by the MR system measuring the local tissue displacement induced by the acoustic radiation force of the ultrasound (US) beams. For aberration correction, a set of spatially encoded ultrasonic waves was transmitted from the ultrasonic array and the resulting local displacements were estimated with the MR-ARFI sequence for each emitted beam. A non-iterative inversion process was then performed in order to estimate the spatial phase aberrations induced by the cadaver skull. The procedure was first evaluated and optimized in a calf brain using a numerical aberrator mimicking human skull aberrations. The full method was then demonstrated using a fresh human cadaver head. Results The corrected beam resulting from the direct inversion process was found to focus at the targeted location with an acoustic intensity 2.2 times higher than the conventional non corrected beam. In addition, this corrected beam was found to give an acoustic intensity 1.5 times higher than the focusing pattern obtained with an aberration correction using transcranial acoustic simulation based on X-ray computed tomography (CT) scans. Conclusion The proposed technique achieved near optimal focusing in an intact human head for the first time. These findings confirm the strong potential of energy-based adaptive focusing of transcranial ultrasonic beams for clinical applications. PMID:22320825

  16. Human Systems Integration (HSI) in Acquisition. HSI Domain Guide

    DTIC Science & Technology

    2009-08-01

    job simulation that includes posture data , force parameters, and anthropometry . Output includes the percentage of men and women who have the strength...information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and...maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of

  17. A Coalescent-Based Estimator of Admixture From DNA Sequences

    PubMed Central

    Wang, Jinliang

    2006-01-01

    A variety of estimators have been developed to use genetic marker information in inferring the admixture proportions (parental contributions) of a hybrid population. The majority of these estimators used allele frequency data, ignored molecular information that is available in markers such as microsatellites and DNA sequences, and assumed that mutations are absent since the admixture event. As a result, these estimators may fail to deliver an estimate or give rather poor estimates when admixture is ancient and thus mutations are not negligible. A previous molecular estimator based its inference of admixture proportions on the average coalescent times between pairs of genes taken from within and between populations. In this article I propose an estimator that considers the entire genealogy of all of the sampled genes and infers admixture proportions from the numbers of segregating sites in DNA sequence samples. By considering the genealogy of all sequences rather than pairs of sequences, this new estimator also allows the joint estimation of other interesting parameters in the admixture model, such as admixture time, divergence time, population size, and mutation rate. Comparative analyses of simulated data indicate that the new coalescent estimator generally yields better estimates of admixture proportions than the previous molecular estimator, especially when the parental populations are not highly differentiated. It also gives reasonably accurate estimates of other admixture parameters. A human mtDNA sequence data set was analyzed to demonstrate the method, and the analysis results are discussed and compared with those from previous studies. PMID:16624918

  18. Robust efficient estimation of heart rate pulse from video.

    PubMed

    Xu, Shuchang; Sun, Lingyun; Rohde, Gustavo Kunde

    2014-04-01

    We describe a simple but robust algorithm for estimating the heart rate pulse from video sequences containing human skin in real time. Based on a model of light interaction with human skin, we define the change of blood concentration due to arterial pulsation as a pixel quotient in log space, and successfully use the derived signal for computing the pulse heart rate. Various experiments with different cameras, different illumination condition, and different skin locations were conducted to demonstrate the effectiveness and robustness of the proposed algorithm. Examples computed with normal illumination show the algorithm is comparable with pulse oximeter devices both in accuracy and sensitivity.

  19. Robust efficient estimation of heart rate pulse from video

    PubMed Central

    Xu, Shuchang; Sun, Lingyun; Rohde, Gustavo Kunde

    2014-01-01

    We describe a simple but robust algorithm for estimating the heart rate pulse from video sequences containing human skin in real time. Based on a model of light interaction with human skin, we define the change of blood concentration due to arterial pulsation as a pixel quotient in log space, and successfully use the derived signal for computing the pulse heart rate. Various experiments with different cameras, different illumination condition, and different skin locations were conducted to demonstrate the effectiveness and robustness of the proposed algorithm. Examples computed with normal illumination show the algorithm is comparable with pulse oximeter devices both in accuracy and sensitivity. PMID:24761294

  20. Ad hoc committee on global climate issues: Annual report

    USGS Publications Warehouse

    Gerhard, L.C.; Hanson, B.M.B.

    2000-01-01

    The AAPG Ad Hoc Committee on Global Climate Issues has studied the supposition of human-induced climate change since the committee's inception in January 1998. This paper details the progress and findings of the committee through June 1999. At that time there had been essentially no geologic input into the global climate change debate. The following statements reflect the current state of climate knowledge from the geologic perspective as interpreted by the majority of the committee membership. The committee recognizes that new data could change its conclusions. The earth's climate is constantly changing owing to natural variability in earth processes. Natural climate variability over recent geological time is greater than reasonable estimates of potential human-induced greenhouse gas changes. Because no tool is available to test the supposition of human-induced climate change and the range of natural variability is so great, there is no discernible human influence on global climate at this time.

  1. Methodology for estimation of time-dependent surface heat flux due to cryogen spray cooling.

    PubMed

    Tunnell, James W; Torres, Jorge H; Anvari, Bahman

    2002-01-01

    Cryogen spray cooling (CSC) is an effective technique to protect the epidermis during cutaneous laser therapies. Spraying a cryogen onto the skin surface creates a time-varying heat flux, effectively cooling the skin during and following the cryogen spurt. In previous studies mathematical models were developed to predict the human skin temperature profiles during the cryogen spraying time. However, no studies have accounted for the additional cooling due to residual cryogen left on the skin surface following the spurt termination. We formulate and solve an inverse heat conduction (IHC) problem to predict the time-varying surface heat flux both during and following a cryogen spurt. The IHC formulation uses measured temperature profiles from within a medium to estimate the surface heat flux. We implement a one-dimensional sequential function specification method (SFSM) to estimate the surface heat flux from internal temperatures measured within an in vitro model in response to a cryogen spurt. Solution accuracy and experimental errors are examined using simulated temperature data. Heat flux following spurt termination appears substantial; however, it is less than that during the spraying time. The estimated time-varying heat flux can subsequently be used in forward heat conduction models to estimate temperature profiles in skin during and following a cryogen spurt and predict appropriate timing for onset of the laser pulse.

  2. Population genetic analysis of the DARC locus (Duffy) reveals adaptation from standing variation associated with malaria resistance in humans

    PubMed Central

    Taravella, Angela M.; Bustamante, Carlos D.; Sikora, Martin

    2017-01-01

    The human DARC (Duffy antigen receptor for chemokines) gene encodes a membrane-bound chemokine receptor crucial for the infection of red blood cells by Plasmodium vivax, a major causative agent of malaria. Of the three major allelic classes segregating in human populations, the FY*O allele has been shown to protect against P. vivax infection and is at near fixation in sub-Saharan Africa, while FY*B and FY*A are common in Europe and Asia, respectively. Due to the combination of strong geographic differentiation and association with malaria resistance, DARC is considered a canonical example of positive selection in humans. Despite this, details of the timing and mode of selection at DARC remain poorly understood. Here, we use sequencing data from over 1,000 individuals in twenty-one human populations, as well as ancient human genomes, to perform a fine-scale investigation of the evolutionary history of DARC. We estimate the time to most recent common ancestor (TMRCA) of the most common FY*O haplotype to be 42 kya (95% CI: 34–49 kya). We infer the FY*O null mutation swept to fixation in Africa from standing variation with very low initial frequency (0.1%) and a selection coefficient of 0.043 (95% CI:0.011–0.18), which is among the strongest estimated in the human genome. We estimate the TMRCA of the FY*A mutation in non-Africans to be 57 kya (95% CI: 48–65 kya) and infer that, prior to the sweep of FY*O, all three alleles were segregating in Africa, as highly diverged populations from Asia and ≠Khomani San hunter-gatherers share the same FY*A haplotypes. We test multiple models of admixture that may account for this observation and reject recent Asian or European admixture as the cause. PMID:28282382

  3. Optimization of attenuation estimation in reflection for in vivo human dermis characterization at 20 MHz.

    PubMed

    Fournier, Céline; Bridal, S Lori; Coron, Alain; Laugier, Pascal

    2003-04-01

    In vivo skin attenuation estimators must be applicable to backscattered radio frequency signals obtained in a pulse-echo configuration. This work compares three such estimators: short-time Fourier multinarrowband (MNB), short-time Fourier centroid shift (FC), and autoregressive centroid shift (ARC). All provide estimations of the attenuation slope (beta, dB x cm(-1) x MHz(-1)); MNB also provides an independent estimation of the mean attenuation level (IA, dB x cm(-1)). Practical approaches are proposed for data windowing, spectral variance characterization, and bandwidth selection. Then, based on simulated data, FC and ARC were selected as the best (compromise between bias and variance) attenuation slope estimators. The FC, ARC, and MNB were applied to in vivo human skin data acquired at 20 MHz to estimate betaFC, betaARC, and IA(MNB), respectively (without diffraction correction, between 11 and 27 MHz). Lateral heterogeneity had less effect and day-to-day reproducibility was smaller for IA than for beta. The IA and betaARC were dependent on pressure applied to skin during acquisition and IA on room and skin-surface temperatures. Negative values of IA imply that IA and beta may be influenced not only by skin's attenuation but also by structural heterogeneity across dermal depth. Even so, IA was correlated to subject age and IA, betaFC, and betaARC were dependent on subject gender. Thus, in vivo attenuation measurements reveal interesting variations with subject age and gender and thus appeared promising to detect skin structure modifications.

  4. A Comparison of Methods for Estimating Relationships in the Change between Two Time Points for Latent Variables

    ERIC Educational Resources Information Center

    Finch, W. Holmes; Shim, Sungok Serena

    2018-01-01

    Collection and analysis of longitudinal data is an important tool in understanding growth and development over time in a whole range of human endeavors. Ideally, researchers working in the longitudinal framework are able to collect data at more than two points in time, as this will provide them with the potential for a deeper understanding of the…

  5. Time-frequency analysis of human motion during rhythmic exercises.

    PubMed

    Omkar, S N; Vyas, Khushi; Vikranth, H N

    2011-01-01

    Biomechanical signals due to human movements during exercise are represented in time-frequency domain using Wigner Distribution Function (WDF). Analysis based on WDF reveals instantaneous spectral and power changes during a rhythmic exercise. Investigations were carried out on 11 healthy subjects who performed 5 cycles of sun salutation, with a body-mounted Inertial Measurement Unit (IMU) as a motion sensor. Variance of Instantaneous Frequency (I.F) and Instantaneous Power (I.P) for performance analysis of the subject is estimated using one-way ANOVA model. Results reveal that joint Time-Frequency analysis of biomechanical signals during motion facilitates a better understanding of grace and consistency during rhythmic exercise.

  6. Vapor Transport to Indoor Environments

    EPA Science Inventory

    The indoor environment is an important microenvironment for human exposure to chemicals, both because people spend most of their time indoors and because chemicals are often at higher concentrations indoors versus outdoors. This chapter reviews the major components in estimating ...

  7. Application of expert systems in project management decision aiding

    NASA Technical Reports Server (NTRS)

    Harris, Regina; Shaffer, Steven; Stokes, James; Goldstein, David

    1987-01-01

    The feasibility of developing an expert systems-based project management decision aid to enhance the performance of NASA project managers was assessed. The research effort included extensive literature reviews in the areas of project management, project management decision aiding, expert systems technology, and human-computer interface engineering. Literature reviews were augmented by focused interviews with NASA managers. Time estimation for project scheduling was identified as the target activity for decision augmentation, and a design was developed for an Integrated NASA System for Intelligent Time Estimation (INSITE). The proposed INSITE design was judged feasible with a low level of risk. A partial proof-of-concept experiment was performed and was successful. Specific conclusions drawn from the research and analyses are included. The INSITE concept is potentially applicable in any management sphere, commercial or government, where time estimation is required for project scheduling. As project scheduling is a nearly universal management activity, the range of possibilities is considerable. The INSITE concept also holds potential for enhancing other management tasks, especially in areas such as cost estimation, where estimation-by-analogy is already a proven method.

  8. Optimal estimation of diffusion coefficients from single-particle trajectories

    NASA Astrophysics Data System (ADS)

    Vestergaard, Christian L.; Blainey, Paul C.; Flyvbjerg, Henrik

    2014-02-01

    How does one optimally determine the diffusion coefficient of a diffusing particle from a single-time-lapse recorded trajectory of the particle? We answer this question with an explicit, unbiased, and practically optimal covariance-based estimator (CVE). This estimator is regression-free and is far superior to commonly used methods based on measured mean squared displacements. In experimentally relevant parameter ranges, it also outperforms the analytically intractable and computationally more demanding maximum likelihood estimator (MLE). For the case of diffusion on a flexible and fluctuating substrate, the CVE is biased by substrate motion. However, given some long time series and a substrate under some tension, an extended MLE can separate particle diffusion on the substrate from substrate motion in the laboratory frame. This provides benchmarks that allow removal of bias caused by substrate fluctuations in CVE. The resulting unbiased CVE is optimal also for short time series on a fluctuating substrate. We have applied our estimators to human 8-oxoguanine DNA glycolase proteins diffusing on flow-stretched DNA, a fluctuating substrate, and found that diffusion coefficients are severely overestimated if substrate fluctuations are not accounted for.

  9. Genetic evidence for contribution of human dispersal to the genetic diversity of EBA-175 in Plasmodium falciparum.

    PubMed

    Yasukochi, Yoshiki; Naka, Izumi; Patarapotikul, Jintana; Hananantachai, Hathairad; Ohashi, Jun

    2015-08-01

    The 175-kDa erythrocyte binding antigen (EBA-175) of Plasmodium falciparum plays a crucial role in merozoite invasion into human erythrocytes. EBA-175 is believed to have been under diversifying selection; however, there have been no studies investigating the effect of dispersal of humans out of Africa on the genetic variation of EBA-175 in P. falciparum. The PCR-direct sequencing was performed for a part of the eba-175 gene (regions II and III) using DNA samples obtained from Thai patients infected with P. falciparum. The divergence times for the P. falciparum eba-175 alleles were estimated assuming that P. falciparum/Plasmodium reichenowi divergence occurred 6 million years ago (MYA). To examine the possibility of diversifying selection, nonsynonymous and synonymous substitution rates for Plasmodium species were also estimated. A total of 32 eba-175 alleles were identified from 131 Thai P. falciparum isolates. Their estimated divergence time was 0.13-0.14 MYA, before the exodus of humans from Africa. A phylogenetic tree for a large sequence dataset of P. falciparum eba-175 alleles from across the world showed the presence of a basal Asian-specific cluster for all P. falciparum sequences. A markedly more nonsynonymous substitutions than synonymous substitutions in region II in P. falciparum was also detected, but not within Plasmodium species parasitizing African apes, suggesting that diversifying selection has acted specifically on P. falciparum eba-175. Plasmodium falciparum eba-175 genetic diversity appeared to increase following the exodus of Asian ancestors from Africa. Diversifying selection may have played an important role in the diversification of eba-175 allelic lineages. The present results suggest that the dispersals of humans out of Africa influenced significantly the molecular evolution of P. falciparum EBA-175.

  10. Real-time detection of moving objects from moving vehicles using dense stereo and optical flow

    NASA Technical Reports Server (NTRS)

    Talukder, Ashit; Matthies, Larry

    2004-01-01

    Dynamic scene perception is very important for autonomous vehicles operating around other moving vehicles and humans. Most work on real-time object tracking from moving platforms has used sparse features or assumed flat scene structures. We have recently extended a real-time, dense stereo system to include real-time, dense optical flow, enabling more comprehensive dynamic scene analysis. We describe algorithms to robustly estimate 6-DOF robot egomotion in the presence of moving objects using dense flow and dense stereo. We then use dense stereo and egomotion estimates to identity other moving objects while the robot itself is moving. We present results showing accurate egomotion estimation and detection of moving people and vehicles under general 6-DOF motion of the robot and independently moving objects. The system runs at 18.3 Hz on a 1.4 GHz Pentium M laptop, computing 160x120 disparity maps and optical flow fields, egomotion, and moving object segmentation. We believe this is a significant step toward general unconstrained dynamic scene analysis for mobile robots, as well as for improved position estimation where GPS is unavailable.

  11. Human-machine analytics for closed-loop sense-making in time-dominant cyber defense problems

    NASA Astrophysics Data System (ADS)

    Henry, Matthew H.

    2017-05-01

    Many defense problems are time-dominant: attacks progress at speeds that outpace human-centric systems designed for monitoring and response. Despite this shortcoming, these well-honed and ostensibly reliable systems pervade most domains, including cyberspace. The argument that often prevails when considering the automation of defense is that while technological systems are suitable for simple, well-defined tasks, only humans possess sufficiently nuanced understanding of problems to act appropriately under complicated circumstances. While this perspective is founded in verifiable truths, it does not account for a middle ground in which human-managed technological capabilities extend well into the territory of complex reasoning, thereby automating more nuanced sense-making and dramatically increasing the speed at which it can be applied. Snort1 and platforms like it enable humans to build, refine, and deploy sense-making tools for network defense. Shortcomings of these platforms include a reliance on rule-based logic, which confounds analyst knowledge of how bad actors behave with the means by which bad behaviors can be detected, and a lack of feedback-informed automation of sensor deployment. We propose an approach in which human-specified computational models hypothesize bad behaviors independent of indicators and then allocate sensors to estimate and forecast the state of an intrusion. State estimates and forecasts inform the proactive deployment of additional sensors and detection logic, thereby closing the sense-making loop. All the while, humans are on the loop, rather than in it, permitting nuanced management of fast-acting automated measurement, detection, and inference engines. This paper motivates and conceptualizes analytics to facilitate this human-machine partnership.

  12. Allometric scaling for predicting human clearance of bisphenol A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collet, Séverine H., E-mail: s.collet@envt.fr; Picard-Hagen, Nicole, E-mail: n.hagen-picard@envt.fr; Lacroix, Marlène Z., E-mail: m.lacroix@envt.fr

    The investigation of interspecies differences in bisphenol A (BPA) pharmacokinetics (PK) may be useful for translating findings from animal studies to humans, identifying major processes involved in BPA clearance mechanisms, and predicting BPA PK parameters in man. For the first time, a large range of species in terms of body weight, from 0.02 kg (mice) to 495 kg (horses) was used to predict BPA clearance in man by an allometric approach. BPA PK was evaluated after intravenous administration of BPA in horses, sheep, pigs, dogs, rats and mice. A non-compartmental analysis was used to estimate plasma clearance and steady statemore » volume of distribution and predict BPA PK parameters in humans from allometric scaling. In all the species investigated, BPA plasma clearance was high and of the same order of magnitude as their respective hepatic blood flow. By an allometric scaling, the human clearance was estimated to be 1.79 L/min (equivalent to 25.6 mL/kg.min) with a 95% prediction interval of 0.36 to 8.83 L/min. Our results support the hypothesis that there are highly efficient and hepatic mechanisms of BPA clearance in man. - Highlights: • Allometric scaling was used to predict BPA pharmacokinetic parameters in humans. • In all species, BPA plasma clearance approached hepatic blood flow. • Human BPA clearance was estimated to be 1.79 L/min.« less

  13. Transmission dynamics and economics of rabies control in dogs and humans in an African city.

    PubMed

    Zinsstag, J; Dürr, S; Penny, M A; Mindekem, R; Roth, F; Menendez Gonzalez, S; Naissengar, S; Hattendorf, J

    2009-09-01

    Human rabies in developing countries can be prevented through interventions directed at dogs. Potential cost-savings for the public health sector of interventions aimed at animal-host reservoirs should be assessed. Available deterministic models of rabies transmission between dogs were extended to include dog-to-human rabies transmission. Model parameters were fitted to routine weekly rabid-dog and exposed-human cases reported in N'Djaména, the capital of Chad. The estimated transmission rates between dogs (beta(d)) were 0.0807 km2/(dogs x week) and between dogs and humans (beta(dh)) 0.0002 km2/(dogs x week). The effective reproductive ratio (R(e)) at the onset of our observations was estimated at 1.01, indicating low-level endemic stability of rabies transmission. Human rabies incidence depended critically on dog-related transmission parameters. We simulated the effects of mass dog vaccination and the culling of a percentage of the dog population on human rabies incidence. A single parenteral dog rabies-mass vaccination campaign achieving a coverage of least 70% appears to be sufficient to interrupt transmission of rabies to humans for at least 6 years. The cost-effectiveness of mass dog vaccination was compared to postexposure prophylaxis (PEP), which is the current practice in Chad. PEP does not reduce future human exposure. Its cost-effectiveness is estimated at US $46 per disability adjusted life-years averted. Cost-effectiveness for PEP, together with a dog-vaccination campaign, breaks even with cost-effectiveness of PEP alone after almost 5 years. Beyond a time-frame of 7 years, it appears to be more cost-effective to combine parenteral dog-vaccination campaigns with human PEP compared to human PEP alone.

  14. Human Capital Management of Air Force SOF: Leadership Identification, Selection and Cultivation

    DTIC Science & Technology

    2017-12-01

    MANAGEMENT OF AIR FORCE SOF: LEADERSHIP IDENTIFICATION, SELECTION AND CULTIVATION by Paul R. Andrews Jr. Brett A. Stitt December 2017...No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for... information . Send comments regarding this burden estimate or any other aspect of this collection of information , including suggestions for reducing this

  15. The RADAR Test Methodology: Evaluating a Multi-Task Machine Learning System with Humans in the Loop

    DTIC Science & Technology

    2006-10-01

    burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing...data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information . Send comments regarding this...burden estimate or any other aspect of this collection of information , including suggestions for reducing this burden, to Washington Headquarters Services

  16. Human Systems Integration (HSI) in Acquisition. Acquisition Phase Guide

    DTIC Science & Technology

    2009-08-01

    information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and...maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of...available Concept of Operations (CONOPS) and other available data 1.1 Select and review Baseline Comparison System(s) (BCS) documentation 1.2 Assess

  17. Applicability of Human Simulation for Enhancing Operations of Dismounted Soldiers

    DTIC Science & Technology

    2010-10-01

    information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and...maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect...consisted of a data capturing phase, in which field-trials at a German MOUT training facility were observed, a subsequent data -processing including

  18. Estimation of the Basic Reproductive Ratio for Dengue Fever at the Take-Off Period of Dengue Infection.

    PubMed

    Jafaruddin; Indratno, Sapto W; Nuraini, Nuning; Supriatna, Asep K; Soewono, Edy

    2015-01-01

    Estimating the basic reproductive ratio ℛ 0 of dengue fever has continued to be an ever-increasing challenge among epidemiologists. In this paper we propose two different constructions to estimate ℛ 0 which is derived from a dynamical system of host-vector dengue transmission model. The construction is based on the original assumption that in the early states of an epidemic the infected human compartment increases exponentially at the same rate as the infected mosquito compartment (previous work). In the first proposed construction, we modify previous works by assuming that the rates of infection for mosquito and human compartments might be different. In the second construction, we add an improvement by including more realistic conditions in which the dynamics of an infected human compartments are intervened by the dynamics of an infected mosquito compartment, and vice versa. We apply our construction to the real dengue epidemic data from SB Hospital, Bandung, Indonesia, during the period of outbreak Nov. 25, 2008-Dec. 2012. We also propose two scenarios to determine the take-off rate of infection at the beginning of a dengue epidemic for construction of the estimates of ℛ 0: scenario I from equation of new cases of dengue with respect to time (daily) and scenario II from equation of new cases of dengue with respect to cumulative number of new cases of dengue. The results show that our first construction of ℛ 0 accommodates the take-off rate differences between mosquitoes and humans. Our second construction of the ℛ 0 estimation takes into account the presence of infective mosquitoes in the early growth rate of infective humans and vice versa. We conclude that the second approach is more realistic, compared with our first approach and the previous work.

  19. Human Reliability Assessments: Using the Past (Shuttle) to Predict the Future (ORION)

    NASA Technical Reports Server (NTRS)

    Mott, Diana L.; Bigler, Mark A.

    2017-01-01

    NASA uses two HRA assessment methodologies. The first is a simplified method which is based on how much time is available to complete the action, with consideration included for environmental and personal factors that could influence the human's reliability. This method is expected to provide a conservative value or placeholder as a preliminary estimate. This preliminary estimate is used to determine which placeholder needs a more detailed assessment. The second methodology is used to develop a more detailed human reliability assessment on the performance of critical human actions. This assessment needs to consider more than the time available, this would include factors such as: the importance of the action, the context, environmental factors, potential human stresses, previous experience, training, physical design interfaces, available procedures/checklists and internal human stresses. The more detailed assessment is still expected to be more realistic than that based primarily on time available. When performing an HRA on a system or process that has an operational history, we have information specific to the task based on this history and experience. In the case of a PRA model that is based on a new design and has no operational history, providing a "reasonable" assessment of potential crew actions becomes more problematic. In order to determine what is expected of future operational parameters, the experience from individuals who had relevant experience and were familiar with the system and process previously implemented by NASA was used to provide the "best" available data. Personnel from Flight Operations, Flight Directors, Launch Test Directors, Control Room Console Operators and Astronauts were all interviewed to provide a comprehensive picture of previous NASA operations. Verification of the assumptions and expectations expressed in the assessments will be needed when the procedures, flight rules and operational requirements are developed and then finalized.

  20. Heat loss and hypothermia in free diving: Estimation of survival time under water

    NASA Astrophysics Data System (ADS)

    Aguilella-Arzo, Marcel; Alcaraz, Antonio; Aguilella, Vicente M.

    2003-04-01

    The heat exchange between a diver and the colder surrounding water is analyzed on the basis of the fundamental equations of thermal transport. To estimate the decrease in the diver's body temperature as a function of time, we discuss the complex interplay of several factors including the body heat production rate, the role of the diver's wet suit, and the way different heat exchange mechanisms (conduction, convection, and radiation) contribute to thermal transport. This knowledge could be useful to prevent physiological disorders that occur when the human body temperature drops below 35 °C.

  1. Disequilibrium and human capital in pharmacy labor markets: evidence from four states.

    PubMed

    Cline, Richard R

    2003-01-01

    To estimate the association between pharmacists' stocks of human capital (work experience and education), practice setting, demographics, and wage rates in the overall labor market and to estimate the association between these same variables and wage rates within six distinct pharmacy employment sectors. Wage estimation is used as a proxy measure of demand for pharmacists' services. Descriptive survey analysis. Illinois, Minnesota, Ohio, and Wisconsin. Licensed pharmacists working 30 or more hours per week. Analysis of data collected with cross-sectional mail surveys conducted in four states. Hourly wage rates for all pharmacists working 30 or more hours per week and hourly wage rates for pharmacists employed in large chain, independent, mass-merchandiser, hospital, health maintenance organization (HMO), and other settings. A total of 2,235 responses were received, for an adjusted response rate of 53.1%. Application of exclusion criteria left 1,450 responses from full-time pharmacists to analyze. Results from estimations of wages in the pooled sample and for pharmacists in the hospital setting suggest that advanced training and years of experience are associated positively with higher hourly wages. Years of experience were also associated positively with higher wages in independent and other settings, while neither advanced education nor experience was related to wages in large chain, mass-merchandiser, or HMO settings. Overall, the market for full-time pharmacists' labor is competitive, and employers pay wage premiums to those with larger stocks of human capital, especially advanced education and more years of pharmacy practice experience. The evidence supports the hypothesis that demand is exceeding supply in select employment sectors.

  2. Hierarchical human action recognition around sleeping using obscured posture information

    NASA Astrophysics Data System (ADS)

    Kudo, Yuta; Sashida, Takehiko; Aoki, Yoshimitsu

    2015-04-01

    This paper presents a new approach for human action recognition around sleeping with the human body parts locations and the positional relationship between human and sleeping environment. Body parts are estimated from the depth image obtained by a time-of-flight (TOF) sensor using oriented 3D normal vector. Issues in action recognition of sleeping situation are the demand of availability in darkness, and hiding of the human body by duvets. Therefore, the extraction of image features is difficult since color and edge features are obscured by covers. Thus, first in our method, positions of four parts of the body (head, torso, thigh, and lower leg) are estimated by using the shape model of bodily surface constructed by oriented 3D normal vector. This shape model can represent the surface shape of rough body, and is effective in robust posture estimation of the body hidden with duvets. Then, action descriptor is extracted from the position of each body part. The descriptor includes temporal variation of each part of the body and spatial vector of position of the parts and the bed. Furthermore, this paper proposes hierarchical action classes and classifiers to improve the indistinct action classification. Classifiers are composed of two layers, and recognize human action by using the action descriptor. First layer focuses on spatial descriptor and classifies action roughly. Second layer focuses on temporal descriptor and classifies action finely. This approach achieves a robust recognition of obscured human by using the posture information and the hierarchical action recognition.

  3. Efficient and robust pupil size and blink estimation from near-field video sequences for human-machine interaction.

    PubMed

    Chen, Siyuan; Epps, Julien

    2014-12-01

    Monitoring pupil and blink dynamics has applications in cognitive load measurement during human-machine interaction. However, accurate, efficient, and robust pupil size and blink estimation pose significant challenges to the efficacy of real-time applications due to the variability of eye images, hence to date, require manual intervention for fine tuning of parameters. In this paper, a novel self-tuning threshold method, which is applicable to any infrared-illuminated eye images without a tuning parameter, is proposed for segmenting the pupil from the background images recorded by a low cost webcam placed near the eye. A convex hull and a dual-ellipse fitting method are also proposed to select pupil boundary points and to detect the eyelid occlusion state. Experimental results on a realistic video dataset show that the measurement accuracy using the proposed methods is higher than that of widely used manually tuned parameter methods or fixed parameter methods. Importantly, it demonstrates convenience and robustness for an accurate and fast estimate of eye activity in the presence of variations due to different users, task types, load, and environments. Cognitive load measurement in human-machine interaction can benefit from this computationally efficient implementation without requiring a threshold calibration beforehand. Thus, one can envisage a mini IR camera embedded in a lightweight glasses frame, like Google Glass, for convenient applications of real-time adaptive aiding and task management in the future.

  4. Economic productivity by age and sex: 2007 estimates for the United States.

    PubMed

    Grosse, Scott D; Krueger, Kurt V; Mvundura, Mercy

    2009-07-01

    Human capital estimates of labor productivity are often used to estimate the economic impact of diseases and injuries that cause incapacitation or death. Estimates of average hourly, annual, and lifetime economic productivity, both market and household, were calculated in 2007 US dollars for 5-year age groups for men, women, and both sexes in the United States. Data from the American Time Use Survey were used to estimate hours of paid work and household services and hourly and annual earnings and household productivity. Present values of discounted lifetime earnings were calculated for each age group using the 2004 US life tables and a discount rate of 3% per year and assuming future productivity growth of 1% per year. The estimates of hours and productivity were calculated using the time diaries of 72,922 persons included in the American Time Use Survey for the years 2003 to 2007. The present value of lifetime productivity is approximately $1.2 million in 2007 dollars for children under 5 years of age. For adults in their 20s and 30s, it is approximately $1.6 million and then it declines with increasing age. Productivity estimates are higher for males than for females, more for market productivity than for total productivity. Changes in hours of paid employment and household services can affect economic productivity by age and sex. This is the first publication to include estimates of household services based on contemporary time use data for the US population.

  5. The estimated lifetime probability of acquiring human papillomavirus in the United States.

    PubMed

    Chesson, Harrell W; Dunne, Eileen F; Hariri, Susan; Markowitz, Lauri E

    2014-11-01

    Estimates of the lifetime probability of acquiring human papillomavirus (HPV) can help to quantify HPV incidence, illustrate how common HPV infection is, and highlight the importance of HPV vaccination. We developed a simple model, based primarily on the distribution of lifetime numbers of sex partners across the population and the per-partnership probability of acquiring HPV, to estimate the lifetime probability of acquiring HPV in the United States in the time frame before HPV vaccine availability. We estimated the average lifetime probability of acquiring HPV among those with at least 1 opposite sex partner to be 84.6% (range, 53.6%-95.0%) for women and 91.3% (range, 69.5%-97.7%) for men. Under base case assumptions, more than 80% of women and men acquire HPV by age 45 years. Our results are consistent with estimates in the existing literature suggesting a high lifetime probability of HPV acquisition and are supported by cohort studies showing high cumulative HPV incidence over a relatively short period, such as 3 to 5 years.

  6. [Skin symptoms associated with human immunodeficiency virus infection].

    PubMed

    Tamási, Béla; Marschalkó, Márta; Kárpáti, Sarolta

    2015-01-04

    The recently observed accelerated increase of human immunodeficiency virus infection in Hungary poses a major public concern for the healthcare system. Given the effective only but not the curative therapy, prevention should be emphasized. Current statistics estimate that about 50% of the infected persons are not aware of their human immunodeficiency virus-positivity. Thus, early diagnosis of the infection by serological screening and timely recognition of the disease-associated symptoms are crucial. The authors' intention is to facilitate early infection detection with this review on human immunodeficiency virus-associated skin symptoms, and highlight the significance of human immunodeficiency virus care in the everyday medical practice.

  7. The Divergence of Neandertal and Modern Human Y Chromosomes

    PubMed Central

    Mendez, Fernando L.; Poznik, G. David; Castellano, Sergi; Bustamante, Carlos D.

    2016-01-01

    Sequencing the genomes of extinct hominids has reshaped our understanding of modern human origins. Here, we analyze ∼120 kb of exome-captured Y-chromosome DNA from a Neandertal individual from El Sidrón, Spain. We investigate its divergence from orthologous chimpanzee and modern human sequences and find strong support for a model that places the Neandertal lineage as an outgroup to modern human Y chromosomes—including A00, the highly divergent basal haplogroup. We estimate that the time to the most recent common ancestor (TMRCA) of Neandertal and modern human Y chromosomes is ∼588 thousand years ago (kya) (95% confidence interval [CI]: 447–806 kya). This is ∼2.1 (95% CI: 1.7–2.9) times longer than the TMRCA of A00 and other extant modern human Y-chromosome lineages. This estimate suggests that the Y-chromosome divergence mirrors the population divergence of Neandertals and modern human ancestors, and it refutes alternative scenarios of a relatively recent or super-archaic origin of Neandertal Y chromosomes. The fact that the Neandertal Y we describe has never been observed in modern humans suggests that the lineage is most likely extinct. We identify protein-coding differences between Neandertal and modern human Y chromosomes, including potentially damaging changes to PCDH11Y, TMSB4Y, USP9Y, and KDM5D. Three of these changes are missense mutations in genes that produce male-specific minor histocompatibility (H-Y) antigens. Antigens derived from KDM5D, for example, are thought to elicit a maternal immune response during gestation. It is possible that incompatibilities at one or more of these genes played a role in the reproductive isolation of the two groups. PMID:27058445

  8. The Divergence of Neandertal and Modern Human Y Chromosomes.

    PubMed

    Mendez, Fernando L; Poznik, G David; Castellano, Sergi; Bustamante, Carlos D

    2016-04-07

    Sequencing the genomes of extinct hominids has reshaped our understanding of modern human origins. Here, we analyze ∼120 kb of exome-captured Y-chromosome DNA from a Neandertal individual from El Sidrón, Spain. We investigate its divergence from orthologous chimpanzee and modern human sequences and find strong support for a model that places the Neandertal lineage as an outgroup to modern human Y chromosomes-including A00, the highly divergent basal haplogroup. We estimate that the time to the most recent common ancestor (TMRCA) of Neandertal and modern human Y chromosomes is ∼588 thousand years ago (kya) (95% confidence interval [CI]: 447-806 kya). This is ∼2.1 (95% CI: 1.7-2.9) times longer than the TMRCA of A00 and other extant modern human Y-chromosome lineages. This estimate suggests that the Y-chromosome divergence mirrors the population divergence of Neandertals and modern human ancestors, and it refutes alternative scenarios of a relatively recent or super-archaic origin of Neandertal Y chromosomes. The fact that the Neandertal Y we describe has never been observed in modern humans suggests that the lineage is most likely extinct. We identify protein-coding differences between Neandertal and modern human Y chromosomes, including potentially damaging changes to PCDH11Y, TMSB4Y, USP9Y, and KDM5D. Three of these changes are missense mutations in genes that produce male-specific minor histocompatibility (H-Y) antigens. Antigens derived from KDM5D, for example, are thought to elicit a maternal immune response during gestation. It is possible that incompatibilities at one or more of these genes played a role in the reproductive isolation of the two groups. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Learning rational temporal eye movement strategies.

    PubMed

    Hoppe, David; Rothkopf, Constantin A

    2016-07-19

    During active behavior humans redirect their gaze several times every second within the visual environment. Where we look within static images is highly efficient, as quantified by computational models of human gaze shifts in visual search and face recognition tasks. However, when we shift gaze is mostly unknown despite its fundamental importance for survival in a dynamic world. It has been suggested that during naturalistic visuomotor behavior gaze deployment is coordinated with task-relevant events, often predictive of future events, and studies in sportsmen suggest that timing of eye movements is learned. Here we establish that humans efficiently learn to adjust the timing of eye movements in response to environmental regularities when monitoring locations in the visual scene to detect probabilistically occurring events. To detect the events humans adopt strategies that can be understood through a computational model that includes perceptual and acting uncertainties, a minimal processing time, and, crucially, the intrinsic costs of gaze behavior. Thus, subjects traded off event detection rate with behavioral costs of carrying out eye movements. Remarkably, based on this rational bounded actor model the time course of learning the gaze strategies is fully explained by an optimal Bayesian learner with humans' characteristic uncertainty in time estimation, the well-known scalar law of biological timing. Taken together, these findings establish that the human visual system is highly efficient in learning temporal regularities in the environment and that it can use these regularities to control the timing of eye movements to detect behaviorally relevant events.

  10. Multi-tasking arbitration and behaviour design for human-interactive robots

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yuichi; Onishi, Masaki; Hosoe, Shigeyuki; Luo, Zhiwei

    2013-05-01

    Robots that interact with humans in household environments are required to handle multiple real-time tasks simultaneously, such as carrying objects, collision avoidance and conversation with human. This article presents a design framework for the control and recognition processes to meet these requirements taking into account stochastic human behaviour. The proposed design method first introduces a Petri net for synchronisation of multiple tasks. The Petri net formulation is converted to Markov decision processes and processed in an optimal control framework. Three tasks (safety confirmation, object conveyance and conversation) interact and are expressed by the Petri net. Using the proposed framework, tasks that normally tend to be designed by integrating many if-then rules can be designed in a systematic manner in a state estimation and optimisation framework from the viewpoint of the shortest time optimal control. The proposed arbitration method was verified by simulations and experiments using RI-MAN, which was developed for interactive tasks with humans.

  11. Motion illusions in optical art presented for long durations are temporally distorted.

    PubMed

    Nather, Francisco Carlos; Mecca, Fernando Figueiredo; Bueno, José Lino Oliveira

    2013-01-01

    Static figurative images implying human body movements observed for shorter and longer durations affect the perception of time. This study examined whether images of static geometric shapes would affect the perception of time. Undergraduate participants observed two Optical Art paintings by Bridget Riley for 9 or 36 s (group G9 and G36, respectively). Paintings implying different intensities of movement (2.0 and 6.0 point stimuli) were randomly presented. The prospective paradigm in the reproduction method was used to record time estimations. Data analysis did not show time distortions in the G9 group. In the G36 group the paintings were differently perceived: that for the 2.0 point one are estimated to be shorter than that for the 6.0 point one. Also for G36, the 2.0 point painting was underestimated in comparison with the actual time of exposure. Motion illusions in static images affected time estimation according to the attention given to the complexity of movement by the observer, probably leading to changes in the storage velocity of internal clock pulses.

  12. Caloric primary rewards systematically alter time perception.

    PubMed

    Fung, Bowen J; Murawski, Carsten; Bode, Stefan

    2017-11-01

    Human time perception can be influenced by contextual factors, such as the presence of reward. Yet, the exact nature of the relationship between time perception and reward has not been conclusively characterized. We implemented a novel experimental paradigm to measure estimations of time across a range of suprasecond intervals, during the anticipation and after the consumption of fruit juice, a physiologically relevant primary reward. We show that average time estimations were systematically affected by the consumption of reward, but not by the anticipation of reward. Compared with baseline estimations of time, reward consumption was associated with subsequent overproductions of time, and this effect increased for larger magnitudes of reward. Additional experiments demonstrated that the effect of consumption did not extend to a secondary reward (money), a tasteless, noncaloric primary reward (water), or a sweet, noncaloric reward (aspartame). However, a tasteless caloric reward (maltodexrin) did induce overproductions of time, although this effect did not scale with reward magnitude. These results suggest that the consumption of caloric primary rewards can alter time perception, which may be a psychophysiological mechanism by which organisms regulate homeostatic balance. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  13. Access to essential maternal health interventions and human rights violations among vulnerable communities in eastern Burma.

    PubMed

    Mullany, Luke C; Lee, Catherine I; Yone, Lin; Paw, Palae; Oo, Eh Kalu Shwe; Maung, Cynthia; Lee, Thomas J; Beyrer, Chris

    2008-12-23

    Health indicators are poor and human rights violations are widespread in eastern Burma. Reproductive and maternal health indicators have not been measured in this setting but are necessary as part of an evaluation of a multi-ethnic pilot project exploring strategies to increase access to essential maternal health interventions. The goal of this study is to estimate coverage of maternal health services prior to this project and associations between exposure to human rights violations and access to such services. Selected communities in the Shan, Mon, Karen, and Karenni regions of eastern Burma that were accessible to community-based organizations operating from Thailand were surveyed to estimate coverage of reproductive, maternal, and family planning services, and to assess exposure to household-level human rights violations within the pilot-project target population. Two-stage cluster sampling surveys among ever-married women of reproductive age (15-45 y) documented access to essential antenatal care interventions, skilled attendance at birth, postnatal care, and family planning services. Mid-upper arm circumference, hemoglobin by color scale, and Plasmodium falciparum parasitemia by rapid diagnostic dipstick were measured. Exposure to human rights violations in the prior 12 mo was recorded. Between September 2006 and January 2007, 2,914 surveys were conducted. Eighty-eight percent of women reported a home delivery for their last pregnancy (within previous 5 y). Skilled attendance at birth (5.1%), any (39.3%) or > or = 4 (16.7%) antenatal visits, use of an insecticide-treated bed net (21.6%), and receipt of iron supplements (11.8%) were low. At the time of the survey, more than 60% of women had hemoglobin level estimates < or = 11.0 g/dl and 7.2% were Pf positive. Unmet need for contraceptives exceeded 60%. Violations of rights were widely reported: 32.1% of Karenni households reported forced labor and 10% of Karen households had been forced to move. Among Karen households, odds of anemia were 1.51 (95% confidence interval [CI] 0.95-2.40) times higher among women reporting forced displacement, and 7.47 (95% CI 2.21-25.3) higher among those exposed to food security violations. The odds of receiving no antenatal care services were 5.94 (95% CI 2.23-15.8) times higher among those forcibly displaced. Coverage of basic maternal health interventions is woefully inadequate in these selected populations and substantially lower than even the national estimates for Burma, among the lowest in the region. Considerable political, financial, and human resources are necessary to improve access to maternal health care in these communities.

  14. Measurement and valuation of health providers' time for the management of childhood pneumonia in rural Malawi: an empirical study.

    PubMed

    Bozzani, Fiammetta Maria; Arnold, Matthias; Colbourn, Timothy; Lufesi, Norman; Nambiar, Bejoy; Masache, Gibson; Skordis-Worrall, Jolene

    2016-07-28

    Human resources are a major cost driver in childhood pneumonia case management. Introduction of 13-valent pneumococcal conjugate vaccine (PCV-13) in Malawi can lead to savings on staff time and salaries due to reductions in pneumonia cases requiring admission. Reliable estimates of human resource costs are vital for use in economic evaluations of PCV-13 introduction. Twenty-eight severe and twenty-four very severe pneumonia inpatients under the age of five were tracked from admission to discharge by paediatric ward staff using self-administered timesheets at Mchinji District Hospital between June and August 2012. All activities performed and the time spent on each activity were recorded. A monetary value was assigned to the time by allocating a corresponding percentage of the health workers' salary. All costs are reported in 2012 US$. A total of 1,017 entries, grouped according to 22 different activity labels, were recorded during the observation period. On average, 99 min (standard deviation, SD = 46) were spent on each admission: 93 (SD = 38) for severe and 106 (SD = 55) for very severe cases. Approximately 40 % of activities involved monitoring and stabilization, including administering non-drug therapies such as oxygen. A further 35 % of the time was spent on injecting antibiotics. Nurses provided 60 % of the total time spent on pneumonia admissions, clinicians 25 % and support staff 15 %. Human resource costs were approximately US$ 2 per bed-day and, on average, US$ 29.5 per severe pneumonia admission and US$ 37.7 per very severe admission. Self-reporting was successfully used in this context to generate reliable estimates of human resource time and costs of childhood pneumonia treatment. Assuming vaccine efficacy of 41 % and 90 % coverage, PCV-13 introduction in Malawi can save over US$ 2 million per year in staff costs alone.

  15. Spatiotemporal reconstruction of list-mode PET data.

    PubMed

    Nichols, Thomas E; Qi, Jinyi; Asma, Evren; Leahy, Richard M

    2002-04-01

    We describe a method for computing a continuous time estimate of tracer density using list-mode positron emission tomography data. The rate function in each voxel is modeled as an inhomogeneous Poisson process whose rate function can be represented using a cubic B-spline basis. The rate functions are estimated by maximizing the likelihood of the arrival times of detected photon pairs over the control vertices of the spline, modified by quadratic spatial and temporal smoothness penalties and a penalty term to enforce nonnegativity. Randoms rate functions are estimated by assuming independence between the spatial and temporal randoms distributions. Similarly, scatter rate functions are estimated by assuming spatiotemporal independence and that the temporal distribution of the scatter is proportional to the temporal distribution of the trues. A quantitative evaluation was performed using simulated data and the method is also demonstrated in a human study using 11C-raclopride.

  16. Inertial and time-of-arrival ranging sensor fusion.

    PubMed

    Vasilyev, Paul; Pearson, Sean; El-Gohary, Mahmoud; Aboy, Mateo; McNames, James

    2017-05-01

    Wearable devices with embedded kinematic sensors including triaxial accelerometers, gyroscopes, and magnetometers are becoming widely used in applications for tracking human movement in domains that include sports, motion gaming, medicine, and wellness. The kinematic sensors can be used to estimate orientation, but can only estimate changes in position over short periods of time. We developed a prototype sensor that includes ultra wideband ranging sensors and kinematic sensors to determine the feasibility of fusing the two sensor technologies to estimate both orientation and position. We used a state space model and applied the unscented Kalman filter to fuse the sensor information. Our results demonstrate that it is possible to estimate orientation and position with less error than is possible with either sensor technology alone. In our experiment we obtained a position root mean square error of 5.2cm and orientation error of 4.8° over a 15min recording. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Estimating Vehicle Fuel Consumption and Emissions Using GPS Big Data

    PubMed Central

    Kan, Zihan; Zhang, Xia

    2018-01-01

    The energy consumption and emissions from vehicles adversely affect human health and urban sustainability. Analysis of GPS big data collected from vehicles can provide useful insights about the quantity and distribution of such energy consumption and emissions. Previous studies, which estimated fuel consumption/emissions from traffic based on GPS sampled data, have not sufficiently considered vehicle activities and may have led to erroneous estimations. By adopting the analytical construct of the space-time path in time geography, this study proposes methods that more accurately estimate and visualize vehicle energy consumption/emissions based on analysis of vehicles’ mobile activities (MA) and stationary activities (SA). First, we build space-time paths of individual vehicles, extract moving parameters, and identify MA and SA from each space-time path segment (STPS). Then we present an N-Dimensional framework for estimating and visualizing fuel consumption/emissions. For each STPS, fuel consumption, hot emissions, and cold start emissions are estimated based on activity type, i.e., MA, SA with engine-on and SA with engine-off. In the case study, fuel consumption and emissions of a single vehicle and a road network are estimated and visualized with GPS data. The estimation accuracy of the proposed approach is 88.6%. We also analyze the types of activities that produced fuel consumption on each road segment to explore the patterns and mechanisms of fuel consumption in the study area. The results not only show the effectiveness of the proposed approaches in estimating fuel consumption/emissions but also indicate their advantages for uncovering the relationships between fuel consumption and vehicles’ activities in road networks. PMID:29561813

  18. Estimating Vehicle Fuel Consumption and Emissions Using GPS Big Data.

    PubMed

    Kan, Zihan; Tang, Luliang; Kwan, Mei-Po; Zhang, Xia

    2018-03-21

    The energy consumption and emissions from vehicles adversely affect human health and urban sustainability. Analysis of GPS big data collected from vehicles can provide useful insights about the quantity and distribution of such energy consumption and emissions. Previous studies, which estimated fuel consumption/emissions from traffic based on GPS sampled data, have not sufficiently considered vehicle activities and may have led to erroneous estimations. By adopting the analytical construct of the space-time path in time geography, this study proposes methods that more accurately estimate and visualize vehicle energy consumption/emissions based on analysis of vehicles' mobile activities ( MA ) and stationary activities ( SA ). First, we build space-time paths of individual vehicles, extract moving parameters, and identify MA and SA from each space-time path segment (STPS). Then we present an N-Dimensional framework for estimating and visualizing fuel consumption/emissions. For each STPS, fuel consumption, hot emissions, and cold start emissions are estimated based on activity type, i.e., MA , SA with engine-on and SA with engine-off. In the case study, fuel consumption and emissions of a single vehicle and a road network are estimated and visualized with GPS data. The estimation accuracy of the proposed approach is 88.6%. We also analyze the types of activities that produced fuel consumption on each road segment to explore the patterns and mechanisms of fuel consumption in the study area. The results not only show the effectiveness of the proposed approaches in estimating fuel consumption/emissions but also indicate their advantages for uncovering the relationships between fuel consumption and vehicles' activities in road networks.

  19. BME Estimation of Residential Exposure to Ambient PM10 and Ozone at Multiple Time Scales

    PubMed Central

    Yu, Hwa-Lung; Chen, Jiu-Chiuan; Christakos, George; Jerrett, Michael

    2009-01-01

    Background Long-term human exposure to ambient pollutants can be an important contributing or etiologic factor of many chronic diseases. Spatiotemporal estimation (mapping) of long-term exposure at residential areas based on field observations recorded in the U.S. Environmental Protection Agency’s Air Quality System often suffer from missing data issues due to the scarce monitoring network across space and the inconsistent recording periods at different monitors. Objective We developed and compared two upscaling methods: UM1 (data aggregation followed by exposure estimation) and UM2 (exposure estimation followed by data aggregation) for the long-term PM10 (particulate matter with aerodynamic diameter ≤ 10 μm) and ozone exposure estimations and applied them in multiple time scales to estimate PM and ozone exposures for the residential areas of the Health Effects of Air Pollution on Lupus (HEAPL) study. Method We used Bayesian maximum entropy (BME) analysis for the two upscaling methods. We performed spatiotemporal cross-validations at multiple time scales by UM1 and UM2 to assess the estimation accuracy across space and time. Results Compared with the kriging method, the integration of soft information by the BME method can effectively increase the estimation accuracy for both pollutants. The spatiotemporal distributions of estimation errors from UM1 and UM2 were similar. The cross-validation results indicated that UM2 is generally better than UM1 in exposure estimations at multiple time scales in terms of predictive accuracy and lack of bias. For yearly PM10 estimations, both approaches have comparable performance, but the implementation of UM1 is associated with much lower computation burden. Conclusion BME-based upscaling methods UM1 and UM2 can assimilate core and site-specific knowledge bases of different formats for long-term exposure estimation. This study shows that UM1 can perform reasonably well when the aggregation process does not alter the spatiotemporal structure of the original data set; otherwise, UM2 is preferable. PMID:19440491

  20. A comparison of human and machine translation of health promotion materials for public health practice: time, costs, and quality.

    PubMed

    Turner, Anne M; Bergman, Margo; Brownstein, Megumu; Cole, Kate; Kirchhoff, Katrin

    2014-01-01

    Most local public health departments serve limited English proficiency groups but lack sufficient resources to translate the health promotion materials that they produce into different languages. Machine translation (MT) with human postediting could fill this gap and work toward decreasing health disparities among non-English speakers. (1) To identify the time and costs associated with human translation (HT) of public health documents, (2) determine the time necessary for human postediting of MT, and (3) compare the quality of postedited MT and HT. A quality comparison of 25 MT and HT documents was performed with public health translators. The public health professionals involved were queried about the workflow, costs, and time for HT of 11 English public health documents over a 20-month period. Three recently translated documents of similar size and topic were then machine translated, the time for human postediting was recorded, and a blind quality analysis was performed. Seattle/King County, Washington. Public health professionals. (1) Estimated times for various HT tasks; (2) observed postediting times for MT documents; (3) actual costs for HT; and (4) comparison of quality ratings for HT and MT. Human translation via local health department methods took 17 hours to 6 days. While HT postediting words per minute ranged from 1.58 to 5.88, MT plus human postediting words per minute ranged from 10 to 30. The cost of HT ranged from $130 to $1220; MT required no additional costs. A quality comparison by bilingual public health professionals showed that MT and HT were equivalently preferred. MT with human postediting can reduce the time and costs of translating public health materials while maintaining quality similar to HT. In conjunction with postediting, MT could greatly improve the availability of multilingual public health materials.

  1. Statistical Analysis of Human Body Movement and Group Interactions in Response to Music

    NASA Astrophysics Data System (ADS)

    Desmet, Frank; Leman, Marc; Lesaffre, Micheline; de Bruyn, Leen

    Quantification of time series that relate to physiological data is challenging for empirical music research. Up to now, most studies have focused on time-dependent responses of individual subjects in controlled environments. However, little is known about time-dependent responses of between-subject interactions in an ecological context. This paper provides new findings on the statistical analysis of group synchronicity in response to musical stimuli. Different statistical techniques were applied to time-dependent data obtained from an experiment on embodied listening in individual and group settings. Analysis of inter group synchronicity are described. Dynamic Time Warping (DTW) and Cross Correlation Function (CCF) were found to be valid methods to estimate group coherence of the resulting movements. It was found that synchronicity of movements between individuals (human-human interactions) increases significantly in the social context. Moreover, Analysis of Variance (ANOVA) revealed that the type of music is the predominant factor in both the individual and the social context.

  2. The relative effect of noise at different times of day: An analysis of existing survey data

    NASA Technical Reports Server (NTRS)

    Fields, J. M.

    1986-01-01

    This report examines survey evidence on the relative impact of noise at different times of day and assesses the survey methodology which produces that evidence. Analyses of the regression of overall (24-hour) annoyance on noise levels in different time periods can provide direct estimates of the value of the parameters in human reaction models which are used in environmental noise indices such as LDN and CNEL. In this report these analyses are based on the original computer tapes containing the responses of 22,000 respondents from ten studies of response to noise in residential areas. The estimates derived from these analyses are found to be so inaccurate that they do not provide useful information for policy or scientific purposes. The possibility that the type of questionnaire item could be biasing the estimates of the time-of-day weightings is considered but not supported by the data. Two alternatives to the conventional noise reaction model (adjusted energy model) are considered but not supported by the data.

  3. The relative effect of noise at different times of day: An analysis of existing survey data

    NASA Astrophysics Data System (ADS)

    Fields, J. M.

    1986-04-01

    This report examines survey evidence on the relative impact of noise at different times of day and assesses the survey methodology which produces that evidence. Analyses of the regression of overall (24-hour) annoyance on noise levels in different time periods can provide direct estimates of the value of the parameters in human reaction models which are used in environmental noise indices such as LDN and CNEL. In this report these analyses are based on the original computer tapes containing the responses of 22,000 respondents from ten studies of response to noise in residential areas. The estimates derived from these analyses are found to be so inaccurate that they do not provide useful information for policy or scientific purposes. The possibility that the type of questionnaire item could be biasing the estimates of the time-of-day weightings is considered but not supported by the data. Two alternatives to the conventional noise reaction model (adjusted energy model) are considered but not supported by the data.

  4. Otoacoustic emission estimates of human basilar membrane impulse response duration and cochlear filter tuning.

    PubMed

    Raufer, Stefan; Verhulst, Sarah

    2016-12-01

    This study describes a method based on temporal suppression of click-evoked otoacoustic emissions (CEOAEs) to estimate the time course and duration of human basilar membrane impulse responses (BM IRs). This was achieved by tracing the suppression of dominant peaks in the CEOAE spectrum as a function of the temporal separation between two equal-level stimulus clicks. The relationship between the suppression pattern and underlying BM IR duration near the generation site of the CEOAE frequency was established using model simulations. To relate BM IR duration estimates to cochlear filter tuning (Q ERB ), a tuning ratio was derived from available BM IR measurements in animals. Results for 11 normal-hearing subjects yielded BM IR duration estimates of 37.4/F ms at 65 dB peSPL and 36.4/F ms at 71 dB peSPL, with F in kHz. Corresponding Q ERB estimates were 14.2F[in kHz] 0.22 at 65 dB peSPL and 13.8F[in kHz] 0.22 at 71 dB peSPL. Because the proposed temporal suppression method relies on cochlear nonlinearity, the method is applicable for stimulus levels above 30-40 dB SPL and complements existing OAE methods to assess human cochlear filter tuning. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Time Average Holography Study of Human Tympanic Membrane with Altered Middle Ear Ossicular Chain

    NASA Astrophysics Data System (ADS)

    Cheng, Jeffrey T.; Ravicz, Michael E.; Rosowski, John J.; Hulli, Nesim; Hernandez-Montes, Maria S.; Furlong, Cosme

    2009-02-01

    Computer-assisted time average holographic interferometry was used to study the vibration of the human tympanic membrane (TM) in cadaveric temporal bones before and after alterations of the ossicular chain. Simultaneous laser Doppler vibrometer measurements of stapes velocity were performed to estimate the conductive hearing loss caused by ossicular alterations. The quantified TM motion described from holographic images was correlated with stapes velocity to define relations between TM motion and stapes velocity in various ossicular disorders. The results suggest that motions of the TM are relatively uncoupled from stapes motion at frequencies above 1000 Hz.

  6. A constrained extended Kalman filter for the optimal estimate of kinematics and kinetics of a sagittal symmetric exercise.

    PubMed

    Bonnet, V; Dumas, R; Cappozzo, A; Joukov, V; Daune, G; Kulić, D; Fraisse, P; Andary, S; Venture, G

    2017-09-06

    This paper presents a method for real-time estimation of the kinematics and kinetics of a human body performing a sagittal symmetric motor task, which would minimize the impact of the stereophotogrammetric soft tissue artefacts (STA). The method is based on a bi-dimensional mechanical model of the locomotor apparatus the state variables of which (joint angles, velocities and accelerations, and the segments lengths and inertial parameters) are estimated by a constrained extended Kalman filter (CEKF) that fuses input information made of both stereophotogrammetric and dynamometric measurement data. Filter gains are made to saturate in order to obtain plausible state variables and the measurement covariance matrix of the filter accounts for the expected STA maximal amplitudes. We hypothesised that the ensemble of constraints and input redundant information would allow the method to attenuate the STA propagation to the end results. The method was evaluated in ten human subjects performing a squat exercise. The CEKF estimated and measured skin marker trajectories exhibited a RMS difference lower than 4mm, thus in the range of STAs. The RMS differences between the measured ground reaction force and moment and those estimated using the proposed method (9N and 10Nm) were much lower than obtained using a classical inverse dynamics approach (22N and 30Nm). From the latter results it may be inferred that the presented method allows for a significant improvement of the accuracy with which kinematic variables and relevant time derivatives, model parameters and, therefore, intersegmental moments are estimated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Human Migration and Agricultural Expansion: An Impending Threat to the Maya Biosphere Reserve

    NASA Technical Reports Server (NTRS)

    Sader, Steven; Reining, Conard; Sever, Thomas L.; Soza, Carlos

    1997-01-01

    Evidence is presented of the current threats to the Maya Biosphere Reserve in northern Guatemala as derived through time-series Landsat Thematic Mapper observations and analysis. Estimates of deforestation rates and trends are examined for different management units within the reserve and buffer zones. The satellite imagery was used to quantify and monitor rates, patterns, and trends of forest clearing during a time period corresponding to new road construction and significant human migration into the newly accessible forest region. Satellite imagery is appropriate technology in a vast and remote tropical region where aerial photography and extensive field-based methods are not cost-effective and current, timely data is essential for establishing conservation priorities.

  8. Temporally diffeomorphic cardiac motion estimation from three-dimensional echocardiography by minimization of intensity consistency error.

    PubMed

    Zhang, Zhijun; Ashraf, Muhammad; Sahn, David J; Song, Xubo

    2014-05-01

    Quantitative analysis of cardiac motion is important for evaluation of heart function. Three dimensional (3D) echocardiography is among the most frequently used imaging modalities for motion estimation because it is convenient, real-time, low-cost, and nonionizing. However, motion estimation from 3D echocardiographic sequences is still a challenging problem due to low image quality and image corruption by noise and artifacts. The authors have developed a temporally diffeomorphic motion estimation approach in which the velocity field instead of the displacement field was optimized. The optimal velocity field optimizes a novel similarity function, which we call the intensity consistency error, defined as multiple consecutive frames evolving to each time point. The optimization problem is solved by using the steepest descent method. Experiments with simulated datasets, images of anex vivo rabbit phantom, images of in vivo open-chest pig hearts, and healthy human images were used to validate the authors' method. Simulated and real cardiac sequences tests showed that results in the authors' method are more accurate than other competing temporal diffeomorphic methods. Tests with sonomicrometry showed that the tracked crystal positions have good agreement with ground truth and the authors' method has higher accuracy than the temporal diffeomorphic free-form deformation (TDFFD) method. Validation with an open-access human cardiac dataset showed that the authors' method has smaller feature tracking errors than both TDFFD and frame-to-frame methods. The authors proposed a diffeomorphic motion estimation method with temporal smoothness by constraining the velocity field to have maximum local intensity consistency within multiple consecutive frames. The estimated motion using the authors' method has good temporal consistency and is more accurate than other temporally diffeomorphic motion estimation methods.

  9. Experimental considerations for fast kurtosis imaging.

    PubMed

    Hansen, Brian; Lund, Torben E; Sangill, Ryan; Stubbe, Ebbe; Finsterbusch, Jürgen; Jespersen, Sune Nørhøj

    2016-11-01

    The clinical use of kurtosis imaging is impeded by long acquisitions and postprocessing. Recently, estimation of mean kurtosis tensor W¯ and mean diffusivity ( D¯) was made possible from 13 distinct diffusion weighted MRI acquisitions (the 1-3-9 protocol) with simple postprocessing. Here, we analyze the effects of noise and nonideal diffusion encoding, and propose a new correction strategy. We also present a 1-9-9 protocol with increased robustness to experimental imperfections and minimal additional scan time. This refinement does not affect computation time and also provides a fast estimate of fractional anisotropy (FA). 1-3-9/1-9-9 data are acquired in rat and human brains, and estimates of D¯, FA, W¯ from human brains are compared with traditional estimates from an extensive diffusion kurtosis imaging data set. Simulations are used to evaluate the influence of noise and diffusion encodings deviating from the scheme, and the performance of the correction strategy. Optimal b-values are determined from simulations and data. Accuracy and precision in D¯ and W¯ are comparable to nonlinear least squares estimation, and is improved with the 1-9-9 protocol. The compensation strategy vastly improves parameter estimation in nonideal data. The framework offers a robust and compact method for estimating several diffusion metrics. The protocol is easily implemented. Magn Reson Med 76:1455-1468, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  10. An adaptive displacement estimation algorithm for improved reconstruction of thermal strain.

    PubMed

    Ding, Xuan; Dutta, Debaditya; Mahmoud, Ahmed M; Tillman, Bryan; Leers, Steven A; Kim, Kang

    2015-01-01

    Thermal strain imaging (TSI) can be used to differentiate between lipid and water-based tissues in atherosclerotic arteries. However, detecting small lipid pools in vivo requires accurate and robust displacement estimation over a wide range of displacement magnitudes. Phase-shift estimators such as Loupas' estimator and time-shift estimators such as normalized cross-correlation (NXcorr) are commonly used to track tissue displacements. However, Loupas' estimator is limited by phase-wrapping and NXcorr performs poorly when the SNR is low. In this paper, we present an adaptive displacement estimation algorithm that combines both Loupas' estimator and NXcorr. We evaluated this algorithm using computer simulations and an ex vivo human tissue sample. Using 1-D simulation studies, we showed that when the displacement magnitude induced by thermal strain was >λ/8 and the electronic system SNR was >25.5 dB, the NXcorr displacement estimate was less biased than the estimate found using Loupas' estimator. On the other hand, when the displacement magnitude was ≤λ/4 and the electronic system SNR was ≤25.5 dB, Loupas' estimator had less variance than NXcorr. We used these findings to design an adaptive displacement estimation algorithm. Computer simulations of TSI showed that the adaptive displacement estimator was less biased than either Loupas' estimator or NXcorr. Strain reconstructed from the adaptive displacement estimates improved the strain SNR by 43.7 to 350% and the spatial accuracy by 1.2 to 23.0% (P < 0.001). An ex vivo human tissue study provided results that were comparable to computer simulations. The results of this study showed that a novel displacement estimation algorithm, which combines two different displacement estimators, yielded improved displacement estimation and resulted in improved strain reconstruction.

  11. An Adaptive Displacement Estimation Algorithm for Improved Reconstruction of Thermal Strain

    PubMed Central

    Ding, Xuan; Dutta, Debaditya; Mahmoud, Ahmed M.; Tillman, Bryan; Leers, Steven A.; Kim, Kang

    2014-01-01

    Thermal strain imaging (TSI) can be used to differentiate between lipid and water-based tissues in atherosclerotic arteries. However, detecting small lipid pools in vivo requires accurate and robust displacement estimation over a wide range of displacement magnitudes. Phase-shift estimators such as Loupas’ estimator and time-shift estimators like normalized cross-correlation (NXcorr) are commonly used to track tissue displacements. However, Loupas’ estimator is limited by phase-wrapping and NXcorr performs poorly when the signal-to-noise ratio (SNR) is low. In this paper, we present an adaptive displacement estimation algorithm that combines both Loupas’ estimator and NXcorr. We evaluated this algorithm using computer simulations and an ex-vivo human tissue sample. Using 1-D simulation studies, we showed that when the displacement magnitude induced by thermal strain was >λ/8 and the electronic system SNR was >25.5 dB, the NXcorr displacement estimate was less biased than the estimate found using Loupas’ estimator. On the other hand, when the displacement magnitude was ≤λ/4 and the electronic system SNR was ≤25.5 dB, Loupas’ estimator had less variance than NXcorr. We used these findings to design an adaptive displacement estimation algorithm. Computer simulations of TSI using Field II showed that the adaptive displacement estimator was less biased than either Loupas’ estimator or NXcorr. Strain reconstructed from the adaptive displacement estimates improved the strain SNR by 43.7–350% and the spatial accuracy by 1.2–23.0% (p < 0.001). An ex-vivo human tissue study provided results that were comparable to computer simulations. The results of this study showed that a novel displacement estimation algorithm, which combines two different displacement estimators, yielded improved displacement estimation and results in improved strain reconstruction. PMID:25585398

  12. Forensic use of a subtropical blowfly: the first case indicating minimum postmortem interval (mPMI) in southern Brazil and first record of Sarconesia chlorogaster from a human corpse.

    PubMed

    Vairo, Karine P; Corrêa, Rodrigo C; Lecheta, Melise C; Caneparo, Maria F; Mise, Kleber M; Preti, Daniel; de Carvalho, Claudio J B; Almeida, Lucia M; Moura, Mauricio O

    2015-01-01

    Southern Brazil is unique due to its subtropical climate. Here, we report on the first forensic entomology case and the first record of Sarconesia chlorogaster (Wiedemann) in a human corpse in this region. Flies' samples were collected from a body indoors at 20°C. Four species were found, but only Chrysomya albiceps (Wiedemann) and S. chlorogaster were used to estimate the minimum postmortem interval (mPMI). The mPMI was calculated using accumulated degree hour (ADH) and developmental time. The S. chlorogaster puparium collected was light in color, so we used an experiment to establish a more accurate estimate for time since initiation of pupation where we found full tanning after 3 h. Development of C. albiceps at 20°C to the end of the third instar is 7.4 days. The mPMI based on S. chlorogaster (developmental time until the third instar with no more than 3 h of pupae development) was 7.6 days. © 2014 American Academy of Forensic Sciences.

  13. Cost-benefit analysis of the 55-mph speed limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forester, T.H.; McNown, R.F.; Singell, L.D.

    1984-01-01

    This article presents the results of an empirical study which estimates the number of reduced fatalities as a result of the imposed 55-mph speed limit. Time series data for the US from 1952 to 1979 is employed in a regression model capturing the relation between fatalities, average speed, variability of speed, and the speed limit. Also discussed are the alternative approaches to valuing human life and the value of time. Provided is a series of benefit-cost ratios based on alternative measures of the benefits and costs from life saving. The paper concludes that the 55-mph speed limit is not costmore » efficient unless additional time on the highway is valued significantly below levels estimated in the best reasearch on the value of time. 12 references, 1 table.« less

  14. The Impact of Labor Demand on Time to the Doctorate

    ERIC Educational Resources Information Center

    Groen, Jeffrey A.

    2016-01-01

    The goal of this paper is to estimate the impact of labor demand on time to the doctorate. Empirical investigation of this relationship in previous research was hampered by the difficulty of measuring labor demand. I construct a measure of labor demand in seven fields in the humanities and social sciences based on the annual number of job listings…

  15. Weighted fusion of depth and inertial data to improve view invariance for real-time human action recognition

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Hao, Huiyan; Jafari, Roozbeh; Kehtarnavaz, Nasser

    2017-05-01

    This paper presents an extension to our previously developed fusion framework [10] involving a depth camera and an inertial sensor in order to improve its view invariance aspect for real-time human action recognition applications. A computationally efficient view estimation based on skeleton joints is considered in order to select the most relevant depth training data when recognizing test samples. Two collaborative representation classifiers, one for depth features and one for inertial features, are appropriately weighted to generate a decision making probability. The experimental results applied to a multi-view human action dataset show that this weighted extension improves the recognition performance by about 5% over equally weighted fusion deployed in our previous fusion framework.

  16. Prospects of a mathematical theory of human behavior in complex man-machine systems tasks. [time sharing computer analogy of automobile driving

    NASA Technical Reports Server (NTRS)

    Johannsen, G.; Rouse, W. B.

    1978-01-01

    A hierarchy of human activities is derived by analyzing automobile driving in general terms. A structural description leads to a block diagram and a time-sharing computer analogy. The range of applicability of existing mathematical models is considered with respect to the hierarchy of human activities in actual complex tasks. Other mathematical tools so far not often applied to man machine systems are also discussed. The mathematical descriptions at least briefly considered here include utility, estimation, control, queueing, and fuzzy set theory as well as artificial intelligence techniques. Some thoughts are given as to how these methods might be integrated and how further work might be pursued.

  17. The Cost of Accumulating Evidence in Perceptual Decision Making

    PubMed Central

    Drugowitsch, Jan; Moreno-Bote, Rubén; Churchland, Anne K.; Shadlen, Michael N.; Pouget, Alexandre

    2012-01-01

    Decision making often involves the accumulation of information over time, but acquiring information typically comes at a cost. Little is known about the cost incurred by animals and humans for acquiring additional information from sensory variables, due, for instance, to attentional efforts. Through a novel integration of diffusion models and dynamic programming, we were able to estimate the cost of making additional observations per unit of time from two monkeys and six humans in a reaction time random dot motion discrimination task. Surprisingly, we find that, the cost is neither zero nor constant over time, but for the animals and humans features a brief period in which it is constant but increases thereafter. In addition, we show that our theory accurately matches the observed reaction time distributions for each stimulus condition, the time-dependent choice accuracy both conditional on stimulus strength and independent of it, and choice accuracy and mean reaction times as a function of stimulus strength. The theory also correctly predicts that urgency signals in the brain should be independent of the difficulty, or stimulus strength, at each trial. PMID:22423085

  18. Estimation of Remote Microclimates from Weather Station Data with Applications to Landscape Architecture.

    NASA Astrophysics Data System (ADS)

    Brown, Robert Douglas

    Several components of a system for quantitative application of climatic statistics to landscape planning and design (CLIMACS) have been developed. One component model (MICROSIM) estimated the microclimate at the top of a remote crop using physically-based models and inputs of weather station data. Temperatures at the top of unstressed, uniform crops on flat terrain within 1600 m of a recording weather station were estimated within 1.0 C 96% of the time for a corn crop and 92% of the time for a soybean crop. Crop top winds were estimated within 0.4 m/s 92% of the time for corn and 100% of the time for soybean. This is of sufficient accuracy for application in landscape planning and design models. A physically-based model (COMFA) was developed for the determination of outdoor human thermal comfort from microclimate inputs. Estimated versus measured comfort levels in a wide range of environments agreed with a correlation coefficient of r = 0.91. Using these components, the CLIMACS concept has been applied to a typical planning example. Microclimate data were generated from weather station information using MICROSIM, then input to COMFA and to a house energy consumption model called HOTCAN to derive quantitative climatic justification for design decisions.

  19. Statistical evaluation of time-dependent metabolite concentrations: estimation of post-mortem intervals based on in situ 1H-MRS of the brain.

    PubMed

    Scheurer, Eva; Ith, Michael; Dietrich, Daniel; Kreis, Roland; Hüsler, Jürg; Dirnhofer, Richard; Boesch, Chris

    2005-05-01

    Knowledge of the time interval from death (post-mortem interval, PMI) has an enormous legal, criminological and psychological impact. Aiming to find an objective method for the determination of PMIs in forensic medicine, 1H-MR spectroscopy (1H-MRS) was used in a sheep head model to follow changes in brain metabolite concentrations after death. Following the characterization of newly observed metabolites (Ith et al., Magn. Reson. Med. 2002; 5: 915-920), the full set of acquired spectra was analyzed statistically to provide a quantitative estimation of PMIs with their respective confidence limits. In a first step, analytical mathematical functions are proposed to describe the time courses of 10 metabolites in the decomposing brain up to 3 weeks post-mortem. Subsequently, the inverted functions are used to predict PMIs based on the measured metabolite concentrations. Individual PMIs calculated from five different metabolites are then pooled, being weighted by their inverse variances. The predicted PMIs from all individual examinations in the sheep model are compared with known true times. In addition, four human cases with forensically estimated PMIs are compared with predictions based on single in situ MRS measurements. Interpretation of the individual sheep examinations gave a good correlation up to 250 h post-mortem, demonstrating that the predicted PMIs are consistent with the data used to generate the model. Comparison of the estimated PMIs with the forensically determined PMIs in the four human cases shows an adequate correlation. Current PMI estimations based on forensic methods typically suffer from uncertainties in the order of days to weeks without mathematically defined confidence information. In turn, a single 1H-MRS measurement of brain tissue in situ results in PMIs with defined and favorable confidence intervals in the range of hours, thus offering a quantitative and objective method for the determination of PMIs. Copyright 2004 John Wiley & Sons, Ltd.

  20. Economic Benefits of Achieving Realistic Smoking Cessation Targets in Australia

    PubMed Central

    Cadilhac, Dominique; Sheppard, Lauren; Cumming, Toby; Pearce, Dora; Carter, Rob

    2011-01-01

    Objectives. We estimated the economic impact of reductions in the prevalence of tobacco smoking on health, production, and leisure in the 2008 Australian population. Methods. We selected a prevalence target of 15%. Cohort lifetime health benefits were modeled as fewer incident cases of tobacco-related diseases, deaths, and disability-adjusted life-years. We estimated production gains by comparing surveyed participation and absenteeism rates of adult smokers and ex-smokers valued according to the human capital and friction cost approaches. We estimated household production and leisure gains from time use surveys and valued these gains with the appropriate proxy. Results. In the 2008 Australian population, an absolute reduction in smoking prevalence of 8% would result in 158 000 fewer incident cases of disease, 5000 fewer deaths, 2.2 million fewer lost working days, and 3000 fewer early retirements and would reduce health sector costs by AUD 491 million. The gain in workforce production was AUD 415 million (friction cost) or AUD 863 million (human capital), along with gains of 373 000 days of household production and 23 000 days of leisure time. Conclusions. Lowering smoking prevalence rates can lead to substantial economic savings and health benefits. PMID:21164092

  1. Studies on time of death estimation in the early post mortem period -- application of a method based on eyeball temperature measurement to human bodies.

    PubMed

    Kaliszan, Michał

    2013-09-01

    This paper presents a verification of the thermodynamic model allowing an estimation of the time of death (TOD) by calculating the post mortem interval (PMI) based on a single eyeball temperature measurement at the death scene. The study was performed on 30 cases with known PMI, ranging from 1h 35min to 5h 15min, using pin probes connected to a high precision electronic thermometer (Dostmann-electronic). The measured eye temperatures ranged from 20.2 to 33.1°C. Rectal temperature was measured at the same time and ranged from 32.8 to 37.4°C. Ambient temperatures which ranged from -1 to 24°C, environmental conditions (still air to light wind) and the amount of hair on the head were also recorded every time. PMI was calculated using a formula based on Newton's law of cooling, previously derived and successfully tested in comprehensive studies on pigs and a few human cases. Thanks to both the significantly faster post mortem decrease of eye temperature and a residual or nonexistent plateau effect in the eye, as well as practically no influence of body mass, TOD in the human death cases could be estimated with good accuracy. The highest TOD estimation error during the post mortem intervals up to around 5h was 1h 16min, 1h 14min and 1h 03min, respectively in three cases among 30, while for the remaining 27 cases it was not more than 47min. The mean error for all 30 cases was ±31min. All that indicates that the proposed method is of quite good precision in the early post mortem period, with an accuracy of ±1h for a 95% confidence interval. On the basis of the presented method, TOD can be also calculated at the death scene with the use of a proposed portable electronic device (TOD-meter). Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Numerical compliance testing of human exposure to electromagnetic radiation from smart-watches.

    PubMed

    Hong, Seon-Eui; Lee, Ae-Kyoung; Kwon, Jong-Hwa; Pack, Jeong-Ki

    2016-10-07

    In this study, we investigated the electromagnetic dosimetry for smart-watches. At present, the standard for compliance testing of body-mounted and handheld devices specifies the use of a flat phantom to provide conservative estimates of the peak spatial-averaged specific absorption rate (SAR). This means that the estimated SAR using a flat phantom should be higher than the SAR in the exposure part of an anatomical human-body model. To verify this, we numerically calculated the SAR for a flat phantom and compared it with the numerical calculation of the SAR for four anatomical human-body models of different ages. The numerical analysis was performed using the finite difference time domain method (FDTD). The smart-watch models were used in the three antennas: the shorted planar inverted-F antenna (PIFA), loop antenna, and monopole antenna. Numerical smart-watch models were implemented for cellular commutation and wireless local-area network operation at 835, 1850, and 2450 MHz. The peak spatial-averaged SARs of the smart-watch models are calculated for the flat phantom and anatomical human-body model for the wrist-worn and next to mouth positions. The results show that the flat phantom does not provide a consistent conservative SAR estimate. We concluded that the difference in the SAR results between an anatomical human-body model and a flat phantom can be attributed to the different phantom shapes and tissue structures.

  3. Numerical compliance testing of human exposure to electromagnetic radiation from smart-watches

    NASA Astrophysics Data System (ADS)

    Hong, Seon-Eui; Lee, Ae-Kyoung; Kwon, Jong-Hwa; Pack, Jeong-Ki

    2016-10-01

    In this study, we investigated the electromagnetic dosimetry for smart-watches. At present, the standard for compliance testing of body-mounted and handheld devices specifies the use of a flat phantom to provide conservative estimates of the peak spatial-averaged specific absorption rate (SAR). This means that the estimated SAR using a flat phantom should be higher than the SAR in the exposure part of an anatomical human-body model. To verify this, we numerically calculated the SAR for a flat phantom and compared it with the numerical calculation of the SAR for four anatomical human-body models of different ages. The numerical analysis was performed using the finite difference time domain method (FDTD). The smart-watch models were used in the three antennas: the shorted planar inverted-F antenna (PIFA), loop antenna, and monopole antenna. Numerical smart-watch models were implemented for cellular commutation and wireless local-area network operation at 835, 1850, and 2450 MHz. The peak spatial-averaged SARs of the smart-watch models are calculated for the flat phantom and anatomical human-body model for the wrist-worn and next to mouth positions. The results show that the flat phantom does not provide a consistent conservative SAR estimate. We concluded that the difference in the SAR results between an anatomical human-body model and a flat phantom can be attributed to the different phantom shapes and tissue structures.

  4. Development of a Sampler for Total Aerosol Deposition in the Human Respiratory Tract

    PubMed Central

    Koehler, Kirsten A.; Clark, Phillip; Volckens, John

    2009-01-01

    Studies that seek to associate reduced human health with exposure to occupational and environmental aerosols are often hampered by limitations in the exposure assessment process. One limitation involves the measured exposure metric itself. Current methods for personal exposure assessment are designed to estimate the aspiration of aerosol into the human body. Since a large proportion of inhaled aerosol is subsequently exhaled, a portion of the aspirated aerosol will not contribute to the dose. This leads to variable exposure misclassification (for heterogenous exposures) and increased uncertainty in health effect associations. Alternatively, a metric for respiratory deposition would provide a more physiologically relevant estimate of risk. To address this challenge, we have developed a method to estimate the deposition of aerosol in the human respiratory tract using a sampler engineered from polyurethane foam. Using a semi-empirical model based on inertial, gravitational, and diffusional particle deposition, a foam was engineered to mimic aerosol total deposition in the human respiratory tract. The sampler is comprised of commercially available foam with fiber diameter = 49.5 μm (equivalent to industry standard 100 PPI foam) of 8 cm thickness operating at a face velocity of 1.3 m s−1. Additionally, the foam sampler yields a relatively low-pressure drop, independent of aerosol loading, providing uniform particle collection efficiency over time. PMID:19638392

  5. Estimation of Enterococci Input from Bathers and Animals on A Recreational Beach Using Camera Images

    PubMed Central

    D, Wang John; M, Solo-Gabriele Helena; M, Abdelzaher Amir; E, Fleming Lora

    2010-01-01

    Enterococci, are used nationwide as a water quality indicator of marine recreational beaches. Prior research has demonstrated that enterococci inputs to the study beach site (located in Miami, FL) are dominated by non-point sources (including humans and animals). We have estimated their respective source functions by developing a counting methodology for individuals to better understand their non-point source load impacts. The method utilizes camera images of the beach taken at regular time intervals to determine the number of people and animal visitors. The developed method translates raw image counts for weekdays and weekend days into daily and monthly visitation rates. Enterococci source functions were computed from the observed number of unique individuals for average days of each month of the year, and from average load contributions for humans and for animals. Results indicate that dogs represent the larger source of enterococci relative to humans and birds. PMID:20381094

  6. Human resources requirements for highly active antiretroviral therapy scale-up in Malawi.

    PubMed

    Muula, Adamson S; Chipeta, John; Siziya, Seter; Rudatsikira, Emmanuel; Mataya, Ronald H; Kataika, Edward

    2007-12-19

    Twelve percent of the adult population in Malawi is estimated to be HIV infected. About 15% to 20% of these are in need of life saving antiretroviral therapy. The country has a public sector-led antiretroviral treatment program both in the private and public health sectors. Estimation of the clinical human resources needs is required to inform the planning and distribution of health professionals. We obtained data on the total number of patients on highly active antiretroviral treatment program from the Malawi National AIDS Commission and Ministry of Health, HIV Unit, and the number of registered health professionals from the relevant regulatory bodies. We also estimated number of health professionals required to deliver highly active antiretroviral therapy (HAART) using estimates of human resources from the literature. We also obtained data from the Ministry of Health on the actual number of nurses, clinical officers and medical doctors providing services in HAART clinics. We then made comparisons between the human resources situation on the ground and the theoretical estimates based on explicit assumptions. There were 610 clinicians (396 clinical officers and 214 physicians), 44 pharmacists and 98 pharmacy technicians and 7264 nurses registered in Malawi. At the end of March 2007 there were 85 clinical officer and physician full-time equivalents (FTEs) and 91 nurse FTEs providing HAART to 95,674 patients. The human resources used for the delivery of HAART comprised 13.9% of all clinical officers and physicians and 1.1% of all nurses. Using the estimated numbers of health professionals from the literature required 15.7-31.4% of all physicians and clinical officers, 66.5-199.3% of all pharmacists and pharmacy technicians and 2.6 to 9.2% of all the available nurses. To provide HAART to all the 170,000 HIV infected persons estimated as clinically eligible would require 4.7% to 16.4% of the total number of nurses, 118.1% to 354.2% of all the available pharmacists and pharmacy technicians and 27.9% to 55.7% of all clinical officers and physicians. The actual number of health professionals working in the delivery of HAART in the clinics represented 44% to 88.8% (for clinical officers and medical doctors) and 13.6% and 47.6% (for nurses), of what would have been needed based on the literature estimation. HAART provision is a labour intensive exercise. Although these data are insufficient to determine whether HAART scale-up has resulted in the weakening or strengthening of the health systems in Malawi, the human resources requirements for HAART scale-up are significant. Malawi is using far less human resources than would be estimated based on the literature from other settings. The impact of HAART scale-up on the overall delivery of health services should be assessed.

  7. Human Reliability Assessments: Using the Past (Shuttle) to Predict the Future (Orion)

    NASA Technical Reports Server (NTRS)

    DeMott, Diana L.; Bigler, Mark A.

    2017-01-01

    NASA (National Aeronautics and Space Administration) Johnson Space Center (JSC) Safety and Mission Assurance (S&MA) uses two human reliability analysis (HRA) methodologies. The first is a simplified method which is based on how much time is available to complete the action, with consideration included for environmental and personal factors that could influence the human's reliability. This method is expected to provide a conservative value or placeholder as a preliminary estimate. This preliminary estimate or screening value is used to determine which placeholder needs a more detailed assessment. The second methodology is used to develop a more detailed human reliability assessment on the performance of critical human actions. This assessment needs to consider more than the time available, this would include factors such as: the importance of the action, the context, environmental factors, potential human stresses, previous experience, training, physical design interfaces, available procedures/checklists and internal human stresses. The more detailed assessment is expected to be more realistic than that based primarily on time available. When performing an HRA on a system or process that has an operational history, we have information specific to the task based on this history and experience. In the case of a Probabilistic Risk Assessment (PRA) that is based on a new design and has no operational history, providing a "reasonable" assessment of potential crew actions becomes more challenging. To determine what is expected of future operational parameters, the experience from individuals who had relevant experience and were familiar with the system and process previously implemented by NASA was used to provide the "best" available data. Personnel from Flight Operations, Flight Directors, Launch Test Directors, Control Room Console Operators, and Astronauts were all interviewed to provide a comprehensive picture of previous NASA operations. Verification of the assumptions and expectations expressed in the assessments will be needed when the procedures, flight rules, and operational requirements are developed and then finalized.

  8. Human Reliability Assessments: Using the Past (Shuttle) to Predict the Future (Orion)

    NASA Technical Reports Server (NTRS)

    DeMott, Diana; Bigler, Mark

    2016-01-01

    NASA (National Aeronautics and Space Administration) Johnson Space Center (JSC) Safety and Mission Assurance (S&MA) uses two human reliability analysis (HRA) methodologies. The first is a simplified method which is based on how much time is available to complete the action, with consideration included for environmental and personal factors that could influence the human's reliability. This method is expected to provide a conservative value or placeholder as a preliminary estimate. This preliminary estimate or screening value is used to determine which placeholder needs a more detailed assessment. The second methodology is used to develop a more detailed human reliability assessment on the performance of critical human actions. This assessment needs to consider more than the time available, this would include factors such as: the importance of the action, the context, environmental factors, potential human stresses, previous experience, training, physical design interfaces, available procedures/checklists and internal human stresses. The more detailed assessment is expected to be more realistic than that based primarily on time available. When performing an HRA on a system or process that has an operational history, we have information specific to the task based on this history and experience. In the case of a Probabilistic Risk Assessment (PRA) that is based on a new design and has no operational history, providing a "reasonable" assessment of potential crew actions becomes more challenging. In order to determine what is expected of future operational parameters, the experience from individuals who had relevant experience and were familiar with the system and process previously implemented by NASA was used to provide the "best" available data. Personnel from Flight Operations, Flight Directors, Launch Test Directors, Control Room Console Operators and Astronauts were all interviewed to provide a comprehensive picture of previous NASA operations. Verification of the assumptions and expectations expressed in the assessments will be needed when the procedures, flight rules and operational requirements are developed and then finalized.

  9. Scaling-laws of human broadcast communication enable distinction between human, corporate and robot Twitter users.

    PubMed

    Tavares, Gabriela; Faisal, Aldo

    2013-01-01

    Human behaviour is highly individual by nature, yet statistical structures are emerging which seem to govern the actions of human beings collectively. Here we search for universal statistical laws dictating the timing of human actions in communication decisions. We focus on the distribution of the time interval between messages in human broadcast communication, as documented in Twitter, and study a collection of over 160,000 tweets for three user categories: personal (controlled by one person), managed (typically PR agency controlled) and bot-controlled (automated system). To test our hypothesis, we investigate whether it is possible to differentiate between user types based on tweet timing behaviour, independently of the content in messages. For this purpose, we developed a system to process a large amount of tweets for reality mining and implemented two simple probabilistic inference algorithms: 1. a naive Bayes classifier, which distinguishes between two and three account categories with classification performance of 84.6% and 75.8%, respectively and 2. a prediction algorithm to estimate the time of a user's next tweet with an R(2) ≈ 0.7. Our results show that we can reliably distinguish between the three user categories as well as predict the distribution of a user's inter-message time with reasonable accuracy. More importantly, we identify a characteristic power-law decrease in the tail of inter-message time distribution by human users which is different from that obtained for managed and automated accounts. This result is evidence of a universal law that permeates the timing of human decisions in broadcast communication and extends the findings of several previous studies of peer-to-peer communication.

  10. Scaling-Laws of Human Broadcast Communication Enable Distinction between Human, Corporate and Robot Twitter Users

    PubMed Central

    Tavares, Gabriela; Faisal, Aldo

    2013-01-01

    Human behaviour is highly individual by nature, yet statistical structures are emerging which seem to govern the actions of human beings collectively. Here we search for universal statistical laws dictating the timing of human actions in communication decisions. We focus on the distribution of the time interval between messages in human broadcast communication, as documented in Twitter, and study a collection of over 160,000 tweets for three user categories: personal (controlled by one person), managed (typically PR agency controlled) and bot-controlled (automated system). To test our hypothesis, we investigate whether it is possible to differentiate between user types based on tweet timing behaviour, independently of the content in messages. For this purpose, we developed a system to process a large amount of tweets for reality mining and implemented two simple probabilistic inference algorithms: 1. a naive Bayes classifier, which distinguishes between two and three account categories with classification performance of 84.6% and 75.8%, respectively and 2. a prediction algorithm to estimate the time of a user's next tweet with an . Our results show that we can reliably distinguish between the three user categories as well as predict the distribution of a user's inter-message time with reasonable accuracy. More importantly, we identify a characteristic power-law decrease in the tail of inter-message time distribution by human users which is different from that obtained for managed and automated accounts. This result is evidence of a universal law that permeates the timing of human decisions in broadcast communication and extends the findings of several previous studies of peer-to-peer communication. PMID:23843945

  11. Human-Robot Teams Informed by Human Performance Moderator Functions

    DTIC Science & Technology

    2012-08-29

    seem to converge probably because situation is bad enough that any algorithm would perform just as well. Figure 29 shows the set commonality graph...burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing...for writing the report, performing the research, or credited with the content of the report. The form of entry is the last name, first name, middle

  12. Effect of carbon monoxide exposure on human sleep and psychomotor performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Donnell, R.D.; Chikos, P.; Theodore, J.

    1971-01-01

    Four volunteers exposed for 9 hr (11 p.m. to 8 a.m.) to 75 or 150 ppM CO had COHb concentrations of 5.9 and 12.7%, respectively. Sleep habits and subsequent performance were measured. CO induced slight changes in sleeping habits including more deep sleep at expense of light sleep (especially at beginning of exposure) and a reduction in number of sleep stage changes. However, REM sleep was not affected. No effect of CO on complex cognitive or psychromotor activity measured by mental arithmetic, time estimation, tracking and monitoring under moderate or heavy stress, tone-time difference estimation, and critical flicker fusion tests.

  13. SiGN-SSM: open source parallel software for estimating gene networks with state space models.

    PubMed

    Tamada, Yoshinori; Yamaguchi, Rui; Imoto, Seiya; Hirose, Osamu; Yoshida, Ryo; Nagasaki, Masao; Miyano, Satoru

    2011-04-15

    SiGN-SSM is an open-source gene network estimation software able to run in parallel on PCs and massively parallel supercomputers. The software estimates a state space model (SSM), that is a statistical dynamic model suitable for analyzing short time and/or replicated time series gene expression profiles. SiGN-SSM implements a novel parameter constraint effective to stabilize the estimated models. Also, by using a supercomputer, it is able to determine the gene network structure by a statistical permutation test in a practical time. SiGN-SSM is applicable not only to analyzing temporal regulatory dependencies between genes, but also to extracting the differentially regulated genes from time series expression profiles. SiGN-SSM is distributed under GNU Affero General Public Licence (GNU AGPL) version 3 and can be downloaded at http://sign.hgc.jp/signssm/. The pre-compiled binaries for some architectures are available in addition to the source code. The pre-installed binaries are also available on the Human Genome Center supercomputer system. The online manual and the supplementary information of SiGN-SSM is available on our web site. tamada@ims.u-tokyo.ac.jp.

  14. Modelling survival: exposure pattern, species sensitivity and uncertainty.

    PubMed

    Ashauer, Roman; Albert, Carlo; Augustine, Starrlight; Cedergreen, Nina; Charles, Sandrine; Ducrot, Virginie; Focks, Andreas; Gabsi, Faten; Gergs, André; Goussen, Benoit; Jager, Tjalling; Kramer, Nynke I; Nyman, Anna-Maija; Poulsen, Veronique; Reichenberger, Stefan; Schäfer, Ralf B; Van den Brink, Paul J; Veltman, Karin; Vogel, Sören; Zimmer, Elke I; Preuss, Thomas G

    2016-07-06

    The General Unified Threshold model for Survival (GUTS) integrates previously published toxicokinetic-toxicodynamic models and estimates survival with explicitly defined assumptions. Importantly, GUTS accounts for time-variable exposure to the stressor. We performed three studies to test the ability of GUTS to predict survival of aquatic organisms across different pesticide exposure patterns, time scales and species. Firstly, using synthetic data, we identified experimental data requirements which allow for the estimation of all parameters of the GUTS proper model. Secondly, we assessed how well GUTS, calibrated with short-term survival data of Gammarus pulex exposed to four pesticides, can forecast effects of longer-term pulsed exposures. Thirdly, we tested the ability of GUTS to estimate 14-day median effect concentrations of malathion for a range of species and use these estimates to build species sensitivity distributions for different exposure patterns. We find that GUTS adequately predicts survival across exposure patterns that vary over time. When toxicity is assessed for time-variable concentrations species may differ in their responses depending on the exposure profile. This can result in different species sensitivity rankings and safe levels. The interplay of exposure pattern and species sensitivity deserves systematic investigation in order to better understand how organisms respond to stress, including humans.

  15. Modelling survival: exposure pattern, species sensitivity and uncertainty

    NASA Astrophysics Data System (ADS)

    Ashauer, Roman; Albert, Carlo; Augustine, Starrlight; Cedergreen, Nina; Charles, Sandrine; Ducrot, Virginie; Focks, Andreas; Gabsi, Faten; Gergs, André; Goussen, Benoit; Jager, Tjalling; Kramer, Nynke I.; Nyman, Anna-Maija; Poulsen, Veronique; Reichenberger, Stefan; Schäfer, Ralf B.; van den Brink, Paul J.; Veltman, Karin; Vogel, Sören; Zimmer, Elke I.; Preuss, Thomas G.

    2016-07-01

    The General Unified Threshold model for Survival (GUTS) integrates previously published toxicokinetic-toxicodynamic models and estimates survival with explicitly defined assumptions. Importantly, GUTS accounts for time-variable exposure to the stressor. We performed three studies to test the ability of GUTS to predict survival of aquatic organisms across different pesticide exposure patterns, time scales and species. Firstly, using synthetic data, we identified experimental data requirements which allow for the estimation of all parameters of the GUTS proper model. Secondly, we assessed how well GUTS, calibrated with short-term survival data of Gammarus pulex exposed to four pesticides, can forecast effects of longer-term pulsed exposures. Thirdly, we tested the ability of GUTS to estimate 14-day median effect concentrations of malathion for a range of species and use these estimates to build species sensitivity distributions for different exposure patterns. We find that GUTS adequately predicts survival across exposure patterns that vary over time. When toxicity is assessed for time-variable concentrations species may differ in their responses depending on the exposure profile. This can result in different species sensitivity rankings and safe levels. The interplay of exposure pattern and species sensitivity deserves systematic investigation in order to better understand how organisms respond to stress, including humans.

  16. Quantifying and Mitigating the Effect of Preferential Sampling on Phylodynamic Inference

    PubMed Central

    Karcher, Michael D.; Palacios, Julia A.; Bedford, Trevor; Suchard, Marc A.; Minin, Vladimir N.

    2016-01-01

    Phylodynamics seeks to estimate effective population size fluctuations from molecular sequences of individuals sampled from a population of interest. One way to accomplish this task formulates an observed sequence data likelihood exploiting a coalescent model for the sampled individuals’ genealogy and then integrating over all possible genealogies via Monte Carlo or, less efficiently, by conditioning on one genealogy estimated from the sequence data. However, when analyzing sequences sampled serially through time, current methods implicitly assume either that sampling times are fixed deterministically by the data collection protocol or that their distribution does not depend on the size of the population. Through simulation, we first show that, when sampling times do probabilistically depend on effective population size, estimation methods may be systematically biased. To correct for this deficiency, we propose a new model that explicitly accounts for preferential sampling by modeling the sampling times as an inhomogeneous Poisson process dependent on effective population size. We demonstrate that in the presence of preferential sampling our new model not only reduces bias, but also improves estimation precision. Finally, we compare the performance of the currently used phylodynamic methods with our proposed model through clinically-relevant, seasonal human influenza examples. PMID:26938243

  17. Design and Characterization of an Exoskeleton for Perturbing the Knee During Gait.

    PubMed

    Tucker, Michael R; Shirota, Camila; Lambercy, Olivier; Sulzer, James S; Gassert, Roger

    2017-10-01

    An improved understanding of mechanical impedance modulation in human joints would provide insights about the neuromechanics underlying functional movements. Experimental estimation of impedance requires specialized tools with highly reproducible perturbation dynamics and reliable measurement capabilities. This paper presents the design and mechanical characterization of the ETH Knee Perturbator: an actuated exoskeleton for perturbing the knee during gait. A novel wearable perturbation device was developed based on specific experimental objectives. Bench-top tests validated the device's torque limiting capability and characterized the time delays of the on-board clutch. Further tests demonstrated the device's ability to perform system identification on passive loads with static initial conditions. Finally, the ability of the device to consistently perturb human gait was evaluated through a pilot study on three unimpaired subjects. The ETH Knee Perturbator is capable of identifying mass-spring systems within 15% accuracy, accounting for over 95% of the variance in the observed torque in 10 out of 16 cases. Five-degree extension and flexion perturbations were executed on human subjects with an onset timing precision of 2.52% of swing phase duration and a rise time of 36.5 ms. The ETH Knee Perturbator can deliver safe, precisely timed, and controlled perturbations, which is a prerequisite for the estimation of knee joint impedance during gait. Tools such as this can enhance models of neuromuscular control, which may improve rehabilitative outcomes following impairments affecting gait and advance the design and control of assistive devices.

  18. Comparison of symptomatology and performance degradation for motion and radiation sickness. Technical report, 6 January 1984-31 March 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClellan, G.E.; Wiker, S.F.

    1985-05-31

    This report quantifies for the first time the relationship between the signs and symptoms of acute radiation sickness and those of motion sickness. With this relationship, a quantitative comparison is made between data on human performance degradation during motion sickness and estimates of performance degradation during radiation sickness. The comparison validates estimates made by the Intermediate Dose Program on the performance degradation from acute radiation sickness.

  19. Modeling pressure relationships of inspired air into the human lung bifurcations through simulations

    NASA Astrophysics Data System (ADS)

    Aghasafari, Parya; Ibrahim, Israr B. M.; Pidaparti, Ramana

    2018-03-01

    Applied pressure on human lung wall has great importance on setting up protective ventilatory strategies, therefore, estimating pressure relationships in terms of specific parameters would provide invaluable information specifically during mechanical ventilation (MV). A three-dimensional model from a healthy human lung MRI is analyzed by computational fluid dynamic (CFD), and results for pressure are curve fitted to estimate relationships that associate pressure to breathing time, cross section and generation numbers of intended locations. Among all possible functions, it is observed that exponential and polynomial pressure functions present most accurate results for normal breathing (NB) and MV, respectively. For validation, pressure-location curves from CFD and results from this study are compared and good correlations are found. Also, estimated pressure values are used to calculate pressure drop and airway resistance to the induced air into the lung bifurcations. It is concluded that maximum pressure drop appeared in generation number 2 and medium sized airways show higher resistance to air flow and that resistance decreased as cross sectional area increased through the model. Results from this study are in good agreement with previous studies and provide potentials for further studies on influence of air pressure on human lung tissue and reducing lung injuries during MV.

  20. Estimation of 210Po and its risk to human beings due to consumption of marine species at Mumbai, India.

    PubMed

    Mishra, S; Bhalke, S; Pandit, G G; Puranik, V D

    2009-07-01

    (210)Po was estimated in the edible muscle and soft tissue of 15 different marine species (fish, crab, prawn and bivalve) collected from Trans-Thane Creek area (Trombay) and Thane. Potential risks associated with consumption of marine organisms due to (210)Po collected from this particular area to human beings were assessed. Estimation of (210)Po was carried out using radiochemical separation and alpha spectrometric technique. The concentration of (210)Po was found to vary from 0.18 to 10.9 Bqkg(-1) wet wt in different biota species and maximum concentrations were observed in bivalves. The variations in (210)Po concentration in different species are mainly due to difference in metabolism and feeding habits. The daily intake and individual dose of (210)Po to human beings through biota consumption was calculated and found to be 31.89 mBqd(-1) and 19.44 microSvyr(-1), respectively. An assessment of the risk on human beings due to consumption of marine organism was undertaken using carcinogenic slope factor for (210)Po. 5th, 50th and 95th percentile of life time risk was calculated to be 9.74E-06, 4.39E-05 and 2.12E-04, respectively.

  1. From Complex B1 Mapping to Local SAR Estimation for Human Brain MR Imaging Using Multi-channel Transceiver Coil at 7T

    PubMed Central

    Zhang, Xiaotong; Schmitter, Sebastian; Van de Moortel, Pierre-François; Liu, Jiaen

    2014-01-01

    Elevated Specific Absorption Rate (SAR) associated with increased main magnetic field strength remains as a major safety concern in ultra-high-field (UHF) Magnetic Resonance Imaging (MRI) applications. The calculation of local SAR requires the knowledge of the electric field induced by radiofrequency (RF) excitation, and the local electrical properties of tissues. Since electric field distribution cannot be directly mapped in conventional MR measurements, SAR estimation is usually performed using numerical model-based electromagnetic simulations which, however, are highly time consuming and cannot account for the specific anatomy and tissue properties of the subject undergoing a scan. In the present study, starting from the measurable RF magnetic fields (B1) in MRI, we conducted a series of mathematical deduction to estimate the local, voxel-wise and subject-specific SAR for each single coil element using a multi-channel transceiver array coil. We first evaluated the feasibility of this approach in numerical simulations including two different human head models. We further conducted experimental study in a physical phantom and in two human subjects at 7T using a multi-channel transceiver head coil. Accuracy of the results is discussed in the context of predicting local SAR in the human brain at UHF MRI using multi-channel RF transmission. PMID:23508259

  2. Model approaches for estimating the influence of time-varying socio-environmental factors on macroparasite transmission in two endemic regions

    PubMed Central

    ZHONG, BO; CARLTON, ELIZABETH J.; SPEAR, ROBERT C.

    2009-01-01

    The environmental determinants of vector- and host-borne diseases include time-varying components that modify key transmission parameters, resulting in transient couplings between environmental phenomena and transmission processes. While some time-varying drivers are periodic in nature, some are aperiodic, such as those that involve episodic events or complex patterns of human behavior. Understanding these couplings can allow for prediction of periods of peak infection risk, and ultimately presents opportunities for optimizing intervention selection and timing. Schistosome macroparasites of humans exhibit multiple free-living stages as well as intermediate hosts, and are thus model organisms for illustrating the influence of environmental forcing on transmission. Time-varying environmental factors, termed gating functions, for schistosomes include larval response to temperature and rainfall, seasonal water contact patterns and snail population dynamics driven by weather variables. The biological bases for these modifiers are reviewed, and their values are estimated and incorporated into a transmission model that simulates a multi-year period in two schistosomiasis endemic regions. Modeling results combined with a scale dependent correlation analysis indicate the end effect of these site-specific gating functions is to strongly govern worm burden in these communities, in a manner particularly sensitive to the hydrological differences between sites. Two classes of gating functions were identified, those that act in concert to modify human infection (and determine worm acquisition late in the season), and those that act on snail infection (and determine early season worm acquisition). The importance of these factors for control programs and surveillance is discussed. PMID:20454601

  3. Estimating Development Cost of an Interactive Website Based Cancer Screening Promotion Program

    PubMed Central

    Lairson, David R.; Chung, Tong Han; Smith, Lisa G.; Springston, Jeffrey K.; Champion, Victoria L.

    2015-01-01

    Objectives The aim of this study was to estimate the initial development costs for an innovative talk show format tailored intervention delivered via the interactive web, for increasing cancer screening in women 50 to 75 who were non-adherent to screening guidelines for colorectal cancer and/or breast cancer. Methods The cost of the intervention development was estimated from a societal perspective. Micro costing methods plus vendor contract costs were used to estimate cost. Staff logs were used to track personnel time. Non-personnel costs include all additional resources used to produce the intervention. Results Development cost of the interactive web based intervention was $.39 million, of which 77% was direct cost. About 98% of the cost was incurred in personnel time cost, contract cost and overhead cost. Conclusions The new web-based disease prevention medium required substantial investment in health promotion and media specialist time. The development cost was primarily driven by the high level of human capital required. The cost of intervention development is important information for assessing and planning future public and private investments in web-based health promotion interventions. PMID:25749548

  4. Real-time detection of moving objects from moving vehicles using dense stereo and optical flow

    NASA Technical Reports Server (NTRS)

    Talukder, Ashit; Matthies, Larry

    2004-01-01

    Dynamic scene perception is very important for autonomous vehicles operating around other moving vehicles and humans. Most work on real-time object tracking from moving platforms has used sparse features or assumed flat scene structures. We have recently extended a real-time, dense stereo system to include realtime, dense optical flow, enabling more comprehensive dynamic scene analysis. We describe algorithms to robustly estimate 6-DOF robot egomotion in the presence of moving objects using dense flow and dense stereo. We then use dense stereo and egomotion estimates to identify & other moving objects while the robot itself is moving. We present results showing accurate egomotion estimation and detection of moving people and vehicles under general 6-DOF motion of the robot and independently moving objects. The system runs at 18.3 Hz on a 1.4 GHz Pentium M laptop, computing 160x120 disparity maps and optical flow fields, egomotion, and moving object segmentation. We believe this is a significant step toward general unconstrained dynamic scene analysis for mobile robots, as well as for improved position estimation where GPS is unavailable.

  5. Real-time Detection of Moving Objects from Moving Vehicles Using Dense Stereo and Optical Flow

    NASA Technical Reports Server (NTRS)

    Talukder, Ashit; Matthies, Larry

    2004-01-01

    Dynamic scene perception is very important for autonomous vehicles operating around other moving vehicles and humans. Most work on real-time object tracking from moving platforms has used sparse features or assumed flat scene structures. We have recently extended a real-time. dense stereo system to include realtime. dense optical flow, enabling more comprehensive dynamic scene analysis. We describe algorithms to robustly estimate 6-DOF robot egomotion in the presence of moving objects using dense flow and dense stereo. We then use dense stereo and egomotion estimates to identify other moving objects while the robot itself is moving. We present results showing accurate egomotion estimation and detection of moving people and vehicles under general 6DOF motion of the robot and independently moving objects. The system runs at 18.3 Hz on a 1.4 GHz Pentium M laptop. computing 160x120 disparity maps and optical flow fields, egomotion, and moving object segmentation. We believe this is a significant step toward general unconstrained dynamic scene analysis for mobile robots, as well as for improved position estimation where GPS is unavailable.

  6. The Roles of Feedback and Feedforward as Humans Learn to Control Unknown Dynamic Systems.

    PubMed

    Zhang, Xingye; Wang, Shaoqian; Hoagg, Jesse B; Seigler, T Michael

    2018-02-01

    We present results from an experiment in which human subjects interact with an unknown dynamic system 40 times during a two-week period. During each interaction, subjects are asked to perform a command-following (i.e., pursuit tracking) task. Each subject's performance at that task improves from the first trial to the last trial. For each trial, we use subsystem identification to estimate each subject's feedforward (or anticipatory) control, feedback (or reactive) control, and feedback time delay. Over the 40 trials, the magnitudes of the identified feedback controllers and the identified feedback time delays do not change significantly. In contrast, the identified feedforward controllers do change significantly. By the last trial, the average identified feedforward controller approximates the inverse of the dynamic system. This observation provides evidence that a fundamental component of human learning is updating the anticipatory control until it models the inverse dynamics.

  7. Physical attraction to reliable, low variability nervous systems: Reaction time variability predicts attractiveness.

    PubMed

    Butler, Emily E; Saville, Christopher W N; Ward, Robert; Ramsey, Richard

    2017-01-01

    The human face cues a range of important fitness information, which guides mate selection towards desirable others. Given humans' high investment in the central nervous system (CNS), cues to CNS function should be especially important in social selection. We tested if facial attractiveness preferences are sensitive to the reliability of human nervous system function. Several decades of research suggest an operational measure for CNS reliability is reaction time variability, which is measured by standard deviation of reaction times across trials. Across two experiments, we show that low reaction time variability is associated with facial attractiveness. Moreover, variability in performance made a unique contribution to attractiveness judgements above and beyond both physical health and sex-typicality judgements, which have previously been associated with perceptions of attractiveness. In a third experiment, we empirically estimated the distribution of attractiveness preferences expected by chance and show that the size and direction of our results in Experiments 1 and 2 are statistically unlikely without reference to reaction time variability. We conclude that an operating characteristic of the human nervous system, reliability of information processing, is signalled to others through facial appearance. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A monkey's tale: The origin of Plasmodium vivax as a human malaria parasite

    PubMed Central

    Escalante, Ananias A.; Cornejo, Omar E.; Freeland, Denise E.; Poe, Amanda C.; Durrego, Ester; Collins, William E.; Lal, Altaf A.

    2005-01-01

    The high prevalence of Duffy negativity (lack of the Duffy blood group antigen) among human populations in sub-Saharan Africa has been used to argue that Plasmodium vivax originated on that continent. Here, we investigate the phylogenetic relationships among 10 species of Plasmodium that infect primates by using three genes, two nuclear (β-tubulin and cell division cycle 2) and a gene from the plastid genome (the elongation factor Tu). We find compelling evidence that P. vivax is derived from a species that inhabited macaques in Southeast Asia. Specifically, those phylogenies that include P. vivax as an ancient lineage from which all of the macaque parasites could originate are significantly less likely to explain the data. We estimate the time to the most recent common ancestor at four neutral gene loci from Asian and South American isolates (a minimum sample of seven isolates per locus). Our analysis estimates that the extant populations of P. vivax originated between 45,680 and 81,607 years ago. The phylogeny and the estimated time frame for the origination of current P. vivax populations are consistent with an “out of Asia” origin for P. vivax as hominoid parasite. The current debate regarding how the Duffy negative trait became fixed in Africa needs to be revisited, taking into account not only human genetic data but also the genetic diversity observed in the extant P. vivax populations and the phylogeny of the genus Plasmodium. PMID:15684081

  9. Phase space reconstruction and estimation of the largest Lyapunov exponent for gait kinematic data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josiński, Henryk; Świtoński, Adam; Silesian University of Technology, Akademicka 16, 44-100 Gliwice

    The authors describe an example of application of nonlinear time series analysis directed at identifying the presence of deterministic chaos in human motion data by means of the largest Lyapunov exponent. The method was previously verified on the basis of a time series constructed from the numerical solutions of both the Lorenz and the Rössler nonlinear dynamical systems.

  10. KINETICS OF THM AND HAA PRODUCTION IN A SIMULATED DISTRIBUTION SYSTEM

    EPA Science Inventory

    Limited data exist on how the growth of halogenated disinfection by-products (DBPs) is affected by time spent in a distribution system. such information is needed to estimate human exposures to these chemicals for both regulatory analyses and epidemiological studies. Current me...

  11. MODELING APPROACHES FOR ESTIMATING THE DOSIMETRY OF INHALED TOXICANTS IN CHILDREN

    EPA Science Inventory

    Risk assessment of inhaled toxicants has typically focused upon adults, with modeling used to extrapolate dosimetry and risks from laboratory animals to humans. However, behavioral factors such as time spent playing outdoors can lead to more exposure to inhaled toxicants in chil...

  12. Using exploratory data analysis to identify and predict patterns of human Lyme disease case clustering within a multistate region, 2010-2014.

    PubMed

    Hendricks, Brian; Mark-Carew, Miguella

    2017-02-01

    Lyme disease is the most commonly reported vectorborne disease in the United States. The objective of our study was to identify patterns of Lyme disease reporting after multistate inclusion to mitigate potential border effects. County-level human Lyme disease surveillance data were obtained from Kentucky, Maryland, Ohio, Pennsylvania, Virginia, and West Virginia state health departments. Rate smoothing and Local Moran's I was performed to identify clusters of reporting activity and identify spatial outliers. A logistic generalized estimating equation was performed to identify significant associations in disease clustering over time. Resulting analyses identified statistically significant (P=0.05) clusters of high reporting activity and trends over time. High reporting activity aggregated near border counties in high incidence states, while low reporting aggregated near shared county borders in non-high incidence states. Findings highlight the need for exploratory surveillance approaches to describe the extent to which state level reporting affects accurate estimation of Lyme disease progression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Visual assessment of the radiation distribution in the ISS Lab module: visualization in the human body

    NASA Technical Reports Server (NTRS)

    Saganti, P. B.; Zapp, E. N.; Wilson, J. W.; Cucinotta, F. A.

    2001-01-01

    The US Lab module of the International Space Station (ISS) is a primary working area where the crewmembers are expected to spend majority of their time. Because of the directionality of radiation fields caused by the Earth shadow, trapped radiation pitch angle distribution, and inherent variations in the ISS shielding, a model is needed to account for these local variations in the radiation distribution. We present the calculated radiation dose (rem/yr) values for over 3,000 different points in the working area of the Lab module and estimated radiation dose values for over 25,000 different points in the human body for a given ambient radiation environment. These estimated radiation dose values are presented in a three dimensional animated interactive visualization format. Such interactive animated visualization of the radiation distribution can be generated in near real-time to track changes in the radiation environment during the orbit precession of the ISS.

  14. Neural networks for simultaneous classification and parameter estimation in musical instrument control

    NASA Astrophysics Data System (ADS)

    Lee, Michael; Freed, Adrian; Wessel, David

    1992-08-01

    In this report we present our tools for prototyping adaptive user interfaces in the context of real-time musical instrument control. Characteristic of most human communication is the simultaneous use of classified events and estimated parameters. We have integrated a neural network object into the MAX language to explore adaptive user interfaces that considers these facets of human communication. By placing the neural processing in the context of a flexible real-time musical programming environment, we can rapidly prototype experiments on applications of adaptive interfaces and learning systems to musical problems. We have trained networks to recognize gestures from a Mathews radio baton, Nintendo Power GloveTM, and MIDI keyboard gestural input devices. In one experiment, a network successfully extracted classification and attribute data from gestural contours transduced by a continuous space controller, suggesting their application in the interpretation of conducting gestures and musical instrument control. We discuss network architectures, low-level features extracted for the networks to operate on, training methods, and musical applications of adaptive techniques.

  15. First survey of forensically important insects from human corpses in Shiraz, Iran.

    PubMed

    Moemenbellah-Fard, Mohammad D; Keshavarzi, Davood; Fereidooni, Mehran; Soltani, Aboozar

    2018-02-01

    The presence of insects on human cadavers has potential judicial value in medicolegal cases. This research emphasized the important role of insects in postmortem decomposition. It was conducted to investigate the composition and abundance of insects from human corpses during autopsies in legal medicine. It was implemented in the city of Shiraz, south Iran. Insects associated with human corpses were carefully collected and put into labelled vials. They were then identified using valid taxonomic keys. Fifteen outdoor (67%) and indoor discovered cadavers were examined. All but one was covered at the time of discovery. From these several species of entomofauna played important roles in the minimum postmortem interval (minPMI) estimate. Insects included the orders of Diptera and Coleoptera. Overall, 14 different species of arthropods were identified. Within Diptera, 2 families of Sarcophagidae and Calliphoridae were present in 73% of the cases with Calliphora vicina Robineau-Desvoidy and Chrysomya albiceps Wiedemann accounting for about half of the cases. The latter family members, Calliphoridae, were more frequently (52%) collected in autumn and winter. Only 4/15 outdoor cadavers had beetles. Four species of Coleopterans; namely Dermestes frischii Kugelann, Nitidula flavomaculata Rossi, Creophilus maxillosus Linnaeus and Saprinus chalcites Illiger; were recorded for the first time from 3 corpses in Iran. The presence and diversity of different insects on human corpses could contribute to the advancement of forensic entomology knowledge and the refined estimates of minPMI in medicolegal cases. Copyright © 2017. Published by Elsevier Ltd.

  16. Direct estimation of the permeation of topical excipients through artificial membranes and human skin with non-invasive Terahertz time-domain techniques.

    PubMed

    Lopez-Dominguez, Victor; Boix-Montañes, Antoni; Redo-Sanchez, Albert; Tejada-Palacios, Javier

    2016-07-01

    Drug permeation through skin, or a synthetic membrane, from locally acting pharmaceutical products can be influenced by the permeation behaviour of pharmaceutical excipients. Terahertz time-domain technology is investigated as a non-invasive method for a direct and accurate measurement of excipients permeation through synthetic membranes or human skin. A series of in-vitro release and skin permeation experiments of liquid excipients (e.g. propylene glycol and polyethylene glycol 400) has been conducted with vertical diffusion cells. The permeation profiles of excipients through different synthetic membranes or skin were obtained using Terahertz pulses providing a direct measurement. Corresponding permeation flux and permeability coefficient values were calculated based on temporal changes of the terahertz pulses. The influence of different experimental conditions, such as the polarity of the membrane and the viscosity of the permeant, was assessed in release experiments. Specific transmembrane flux values of those excipients were directly calculated with statistical differences between cases. Finally, an attempt to estimate the skin permeation of propylene glycol with this technique was also achieved. All these permeation results were likely comparable to those obtained by other authors with usual analytical techniques. Terahertz time-domain technology is shown to be a suitable technique for an accurate and non-destructive measurement of the permeation of liquid substances through different synthetic membranes or even human skin. © 2016 Royal Pharmaceutical Society.

  17. 3D pose estimation and motion analysis of the articulated human hand-forearm limb in an industrial production environment

    NASA Astrophysics Data System (ADS)

    Hahn, Markus; Barrois, Björn; Krüger, Lars; Wöhler, Christian; Sagerer, Gerhard; Kummert, Franz

    2010-09-01

    This study introduces an approach to model-based 3D pose estimation and instantaneous motion analysis of the human hand-forearm limb in the application context of safe human-robot interaction. 3D pose estimation is performed using two approaches: The Multiocular Contracting Curve Density (MOCCD) algorithm is a top-down technique based on pixel statistics around a contour model projected into the images from several cameras. The Iterative Closest Point (ICP) algorithm is a bottom-up approach which uses a motion-attributed 3D point cloud to estimate the object pose. Due to their orthogonal properties, a fusion of these algorithms is shown to be favorable. The fusion is performed by a weighted combination of the extracted pose parameters in an iterative manner. The analysis of object motion is based on the pose estimation result and the motion-attributed 3D points belonging to the hand-forearm limb using an extended constraint-line approach which does not rely on any temporal filtering. A further refinement is obtained using the Shape Flow algorithm, a temporal extension of the MOCCD approach, which estimates the temporal pose derivative based on the current and the two preceding images, corresponding to temporal filtering with a short response time of two or at most three frames. Combining the results of the two motion estimation stages provides information about the instantaneous motion properties of the object. Experimental investigations are performed on real-world image sequences displaying several test persons performing different working actions typically occurring in an industrial production scenario. In all example scenes, the background is cluttered, and the test persons wear various kinds of clothes. For evaluation, independently obtained ground truth data are used. [Figure not available: see fulltext.

  18. A Surrogate Technique for Investigating Deterministic Dynamics in Discrete Human Movement.

    PubMed

    Taylor, Paul G; Small, Michael; Lee, Kwee-Yum; Landeo, Raul; O'Meara, Damien M; Millett, Emma L

    2016-10-01

    Entropy is an effective tool for investigation of human movement variability. However, before applying entropy, it can be beneficial to employ analyses to confirm that observed data are not solely the result of stochastic processes. This can be achieved by contrasting observed data with that produced using surrogate methods. Unlike continuous movement, no appropriate method has been applied to discrete human movement. This article proposes a novel surrogate method for discrete movement data, outlining the processes for determining its critical values. The proposed technique reliably generated surrogates for discrete joint angle time series, destroying fine-scale dynamics of the observed signal, while maintaining macro structural characteristics. Comparison of entropy estimates indicated observed signals had greater regularity than surrogates and were not only the result of stochastic but also deterministic processes. The proposed surrogate method is both a valid and reliable technique to investigate determinism in other discrete human movement time series.

  19. Accelerometry-based classification of human activities using Markov modeling.

    PubMed

    Mannini, Andrea; Sabatini, Angelo Maria

    2011-01-01

    Accelerometers are a popular choice as body-motion sensors: the reason is partly in their capability of extracting information that is useful for automatically inferring the physical activity in which the human subject is involved, beside their role in feeding biomechanical parameters estimators. Automatic classification of human physical activities is highly attractive for pervasive computing systems, whereas contextual awareness may ease the human-machine interaction, and in biomedicine, whereas wearable sensor systems are proposed for long-term monitoring. This paper is concerned with the machine learning algorithms needed to perform the classification task. Hidden Markov Model (HMM) classifiers are studied by contrasting them with Gaussian Mixture Model (GMM) classifiers. HMMs incorporate the statistical information available on movement dynamics into the classification process, without discarding the time history of previous outcomes as GMMs do. An example of the benefits of the obtained statistical leverage is illustrated and discussed by analyzing two datasets of accelerometer time series.

  20. [Time series studies of air pollution by fires and the effects on human health].

    PubMed

    do Carmo, Cleber Nascimento; Hacon, Sandra de Souza

    2013-11-01

    Burnoffs (intentional fires for agricultural purposes) and forest fires of large proportions have been observed in various regions of the planet. Exposure to high levels of air pollutants emitted by fires can be responsible for various harmful effects on human health. In this article, the literature on estimating acute effects of air pollution on human health by fires in the regions with the highest number of fires on the planet, using a time series approach is summarized. An attempt was made to identify gaps in knowledge. The study consisted of a narrative review, in which the characteristics of the selected studies were grouped by regions of the planet with a higher incidence of burnoffs: Amazon, America, Australia and Asia. The results revealed a large number of studies in Australia, few studies in the Amazon and great heterogeneity in the results on the significant effects on human health.

  1. Real-time recognition of feedback error-related potentials during a time-estimation task.

    PubMed

    Lopez-Larraz, Eduardo; Iturrate, Iñaki; Montesano, Luis; Minguez, Javier

    2010-01-01

    Feedback error-related potentials are a promising brain process in the field of rehabilitation since they are related to human learning. Due to the fact that many therapeutic strategies rely on the presentation of feedback stimuli, potentials generated by these stimuli could be used to ameliorate the patient's progress. In this paper we propose a method that can identify, in real-time, feedback evoked potentials in a time-estimation task. We have tested our system with five participants in two different days with a separation of three weeks between them, achieving a mean single-trial detection performance of 71.62% for real-time recognition, and 78.08% in offline classification. Additionally, an analysis of the stability of the signal between the two days is performed, suggesting that the feedback responses are stable enough to be used without the needing of training again the user.

  2. Predicting Operator Execution Times Using CogTool

    NASA Technical Reports Server (NTRS)

    Santiago-Espada, Yamira; Latorella, Kara A.

    2013-01-01

    Researchers and developers of NextGen systems can use predictive human performance modeling tools as an initial approach to obtain skilled user performance times analytically, before system testing with users. This paper describes the CogTool models for a two pilot crew executing two different types of a datalink clearance acceptance tasks, and on two different simulation platforms. The CogTool time estimates for accepting and executing Required Time of Arrival and Interval Management clearances were compared to empirical data observed in video tapes and registered in simulation files. Results indicate no statistically significant difference between empirical data and the CogTool predictions. A population comparison test found no significant differences between the CogTool estimates and the empirical execution times for any of the four test conditions. We discuss modeling caveats and considerations for applying CogTool to crew performance modeling in advanced cockpit environments.

  3. Systematic Evaluation of Wajima Superposition (Steady-State Concentration to Mean Residence Time) in the Estimation of Human Intravenous Pharmacokinetic Profile.

    PubMed

    Lombardo, Franco; Berellini, Giuliano; Labonte, Laura R; Liang, Guiqing; Kim, Sean

    2016-03-01

    We present a systematic evaluation of the Wajima superpositioning method to estimate the human intravenous (i.v.) pharmacokinetic (PK) profile based on a set of 54 marketed drugs with diverse structure and range of physicochemical properties. We illustrate the use of average of "best methods" for the prediction of clearance (CL) and volume of distribution at steady state (VDss) as described in our earlier work (Lombardo F, Waters NJ, Argikar UA, et al. J Clin Pharmacol. 2013;53(2):178-191; Lombardo F, Waters NJ, Argikar UA, et al. J Clin Pharmacol. 2013;53(2):167-177). These methods provided much more accurate prediction of human PK parameters, yielding 88% and 70% of the prediction within 2-fold error for VDss and CL, respectively. The prediction of human i.v. profile using Wajima superpositioning of rat, dog, and monkey time-concentration profiles was tested against the observed human i.v. PK using fold error statistics. The results showed that 63% of the compounds yielded a geometric mean of fold error below 2-fold, and an additional 19% yielded a geometric mean of fold error between 2- and 3-fold, leaving only 18% of the compounds with a relatively poor prediction. Our results showed that good superposition was observed in any case, demonstrating the predictive value of the Wajima approach, and that the cause of poor prediction of human i.v. profile was mainly due to the poorly predicted CL value, while VDss prediction had a minor impact on the accuracy of human i.v. profile prediction. Copyright © 2016. Published by Elsevier Inc.

  4. The Time Is Up: Compression of Visual Time Interval Estimations of Bimodal Aperiodic Patterns

    PubMed Central

    Duarte, Fabiola; Lemus, Luis

    2017-01-01

    The ability to estimate time intervals subserves many of our behaviors and perceptual experiences. However, it is not clear how aperiodic (AP) stimuli affect our perception of time intervals across sensory modalities. To address this question, we evaluated the human capacity to discriminate between two acoustic (A), visual (V) or audiovisual (AV) time intervals of trains of scattered pulses. We first measured the periodicity of those stimuli and then sought for correlations with the accuracy and reaction times (RTs) of the subjects. We found that, for all time intervals tested in our experiment, the visual system consistently perceived AP stimuli as being shorter than the periodic (P) ones. In contrast, such a compression phenomenon was not apparent during auditory trials. Our conclusions are: first, the subjects exposed to P stimuli are more likely to measure their durations accurately. Second, perceptual time compression occurs for AP visual stimuli. Lastly, AV discriminations are determined by A dominance rather than by AV enhancement. PMID:28848406

  5. Spatiotemporal dynamics of human settlement patterns in the Southeast U.S. from DMSP/OLS nightlight time series, 1992-2013

    NASA Astrophysics Data System (ADS)

    Wang, C.; Lu, L.

    2015-12-01

    The Southeast U.S. is listed one of the fastest growing regions by the Census Bureau, covering two of the eleven megaregions of the United States (Florida and Piedmont Atlantic). The Defense Meteorological Satellite Program (DMSP)'s Operational Line-scan System (OLS) nighttime light (NTL) imagery offers a good opportunity for characterizing the extent and dynamics of urban development at global and regional scales. However, the commonly used thresholding technique for NTL-based urban land mapping often underestimates the suburban and rural areas and overestimates urban extents. In this study we developed a novel approach to estimating impervious surface area (ISA) by integrating the NTL and optical reflectance data. A geographically weighted regression model was built to extract ISA from the Vegetation-Adjusted NTL Urban Index (VANUI). The ISA was estimated each year from 1992 to 2013 to generate the ISA time series for the U.S. Southeast region. Using the National Land Cover Database (NLCD) products of percent imperviousness (2001, 2006, and 2010) as our reference data, accuracy assessment indicated that our approach made considerable improvement of the ISA estimation, especially in suburban areas. With the ISA time series, a nonparametric Mann-Kendall trend analysis was performed to detect hotspots of human settlement expansion, followed by the exploration of decennial U.S. census data to link these patterns to migration flows in these hotspots. Our results provided significant insights to human settlement of the U.S. Southeast in the past decades. The proposed approach has great potential for mapping ISA at broad scales with nightlight data such as DMSP/OLS and the new-generation VIIRS products. The ISA time series generated in this study can be used to assess the anthropogenic impacts on regional climate, environment and ecosystem services in the U.S. Southeast.

  6. Anchoring and adjusting amidst humans: Ranging behavior of Persian leopards along the Iran-Turkmenistan borderland

    PubMed Central

    Johnson, Paul J.; Macdonald, David W.; Hunter, Luke T. B.

    2018-01-01

    Understanding the space use and movement ecology of apex predators, particularly in mosaic landscapes encompassing different land-uses, is fundamental for formulating effective conservation policy. The top extant big cat in the Middle East and the Caucasus, the Persian leopard Panthera pardus saxicolor, has disappeared from most of its historic range. Its spatial ecology in the areas where it remains is almost unknown. Between September 2014 and May 2017, we collared and monitored six adult leopards (5 males and 1 female) using GPS-satellite Iridium transmitters in Tandoureh National Park (355 km2) along the Iran-Turkmenistan borderland. Using auto-correlated Kernel density estimation based on a continuous-time stochastic process for relocation data, we estimated a mean home range of 103.4 ± SE 51.8 km2 for resident males which is larger than has been observed in other studies of Asian leopards. Most predation events occurred in core areas, averaging 32.4 ± SE 12.7 km2. Although neighboring leopards showed high spatiotemporal overlap, their hunting areas were largely exclusive. Five out of six of leopards spent some time outside the national park, among human communities. Our study suggests that a national park can play an ‘anchoring’ role for individuals of an apex predator that spend some time in the surrounding human-dominated landscapes. Therefore, we envisage that instead of emphasizing either land sharing or land sparing, a combined approach can secure the viability of resilient large carnivores that are able to coexist with humans in the rugged montane landscapes of west and central Asia. PMID:29719005

  7. Anchoring and adjusting amidst humans: Ranging behavior of Persian leopards along the Iran-Turkmenistan borderland.

    PubMed

    Farhadinia, Mohammad S; Johnson, Paul J; Macdonald, David W; Hunter, Luke T B

    2018-01-01

    Understanding the space use and movement ecology of apex predators, particularly in mosaic landscapes encompassing different land-uses, is fundamental for formulating effective conservation policy. The top extant big cat in the Middle East and the Caucasus, the Persian leopard Panthera pardus saxicolor, has disappeared from most of its historic range. Its spatial ecology in the areas where it remains is almost unknown. Between September 2014 and May 2017, we collared and monitored six adult leopards (5 males and 1 female) using GPS-satellite Iridium transmitters in Tandoureh National Park (355 km2) along the Iran-Turkmenistan borderland. Using auto-correlated Kernel density estimation based on a continuous-time stochastic process for relocation data, we estimated a mean home range of 103.4 ± SE 51.8 km2 for resident males which is larger than has been observed in other studies of Asian leopards. Most predation events occurred in core areas, averaging 32.4 ± SE 12.7 km2. Although neighboring leopards showed high spatiotemporal overlap, their hunting areas were largely exclusive. Five out of six of leopards spent some time outside the national park, among human communities. Our study suggests that a national park can play an 'anchoring' role for individuals of an apex predator that spend some time in the surrounding human-dominated landscapes. Therefore, we envisage that instead of emphasizing either land sharing or land sparing, a combined approach can secure the viability of resilient large carnivores that are able to coexist with humans in the rugged montane landscapes of west and central Asia.

  8. The internal dosimetry of Rubidium-82 based on dynamic PET/CT imaging in humans

    NASA Astrophysics Data System (ADS)

    Hunter, Chad R.

    Rubidium-82 (Rb-82) is a useful blood flow tracer, and has become important in recent years due to the shutdown of the Chalk River reactor. Published effective dose estimates for Rb-82 vary widely, and as yet no comprehensive study in man has been conducted with PET/CT, and no effective dose estimates for Rb-82 during pharmacological stress testing has been published. 30 subjects were recruited for rest, and 25 subjects were recruited for stress. The subjects consisted of both cardiac patients and normal subjects. For rest, a total of 283 organs were measured across 60 scans. For stress, a total of 171 organs were measured across 25 scans. Effective dose estimates were calculated using the ICRP 60, 80, and 103 tissue weighting factors. Relative differences between this study and the published in-vivo estimates showed agreement for the lungs. Relative differences between this study and the blood flow models showed differences> 5 times in the thyroid contribution to the effective dose demonstrating a limitation in these models. Comparisons between rest and stress effective dose estimates revealed no significant difference. The average 'adult' effective dose for Rb-82 was found to be 0.00084+/-0.00018 mSv/MBq. The highest dose organs were the lungs, kidneys and stomach wall. These dose estimates for Rb-82 are the first to be measured directly with PET/CT in humans, and are 4 times lower than previous ICRP 60 values based on a theoretical blood flow model. The total adult effective dose from a typical Rb-82 study including CT for attenuation correction and potential Sr-85 breakthrough is 1.5 +/- 0.4 mSv.

  9. The impact of biases in mobile phone ownership on estimates of human mobility

    PubMed Central

    Wesolowski, Amy; Eagle, Nathan; Noor, Abdisalan M.; Snow, Robert W.; Buckee, Caroline O.

    2013-01-01

    Mobile phone data are increasingly being used to quantify the movements of human populations for a wide range of social, scientific and public health research. However, making population-level inferences using these data is complicated by differential ownership of phones among different demographic groups that may exhibit variable mobility. Here, we quantify the effects of ownership bias on mobility estimates by coupling two data sources from the same country during the same time frame. We analyse mobility patterns from one of the largest mobile phone datasets studied, representing the daily movements of nearly 15 million individuals in Kenya over the course of a year. We couple this analysis with the results from a survey of socioeconomic status, mobile phone ownership and usage patterns across the country, providing regional estimates of population distributions of income, reported airtime expenditure and actual airtime expenditure across the country. We match the two data sources and show that mobility estimates are surprisingly robust to the substantial biases in phone ownership across different geographical and socioeconomic groups. PMID:23389897

  10. The impact of biases in mobile phone ownership on estimates of human mobility.

    PubMed

    Wesolowski, Amy; Eagle, Nathan; Noor, Abdisalan M; Snow, Robert W; Buckee, Caroline O

    2013-04-06

    Mobile phone data are increasingly being used to quantify the movements of human populations for a wide range of social, scientific and public health research. However, making population-level inferences using these data is complicated by differential ownership of phones among different demographic groups that may exhibit variable mobility. Here, we quantify the effects of ownership bias on mobility estimates by coupling two data sources from the same country during the same time frame. We analyse mobility patterns from one of the largest mobile phone datasets studied, representing the daily movements of nearly 15 million individuals in Kenya over the course of a year. We couple this analysis with the results from a survey of socioeconomic status, mobile phone ownership and usage patterns across the country, providing regional estimates of population distributions of income, reported airtime expenditure and actual airtime expenditure across the country. We match the two data sources and show that mobility estimates are surprisingly robust to the substantial biases in phone ownership across different geographical and socioeconomic groups.

  11. Estimating parameter values of a socio-hydrological flood model

    NASA Astrophysics Data System (ADS)

    Holkje Barendrecht, Marlies; Viglione, Alberto; Kreibich, Heidi; Vorogushyn, Sergiy; Merz, Bruno; Blöschl, Günter

    2018-06-01

    Socio-hydrological modelling studies that have been published so far show that dynamic coupled human-flood models are a promising tool to represent the phenomena and the feedbacks in human-flood systems. So far these models are mostly generic and have not been developed and calibrated to represent specific case studies. We believe that applying and calibrating these type of models to real world case studies can help us to further develop our understanding about the phenomena that occur in these systems. In this paper we propose a method to estimate the parameter values of a socio-hydrological model and we test it by applying it to an artificial case study. We postulate a model that describes the feedbacks between floods, awareness and preparedness. After simulating hypothetical time series with a given combination of parameters, we sample few data points for our variables and try to estimate the parameters given these data points using Bayesian Inference. The results show that, if we are able to collect data for our case study, we would, in theory, be able to estimate the parameter values for our socio-hydrological flood model.

  12. The Language–Number Interface in the Brain: A Complex Parametric Study of Quantifiers and Quantities

    PubMed Central

    Heim, Stefan; Amunts, Katrin; Drai, Dan; Eickhoff, Simon B.; Hautvast, Sarah; Grodzinsky, Yosef

    2011-01-01

    The neural bases for numerosity and language are of perennial interest. In monkeys, neural separation of numerical Estimation and numerical Comparison has been demonstrated. As linguistic and numerical knowledge can only be compared in humans, we used a new fMRI paradigm in an attempt to dissociate Estimation from Comparison, and at the same time uncover the neural relation between numerosity and language. We used complex stimuli: images depicting a proportion between quantities of blue and yellow circles were coupled with sentences containing quantifiers that described them (e.g., “most/few of the circles are yellow”). Participants verified sentences against images. Both Estimation and Comparison recruited adjacent, partially overlapping bi-hemispheric fronto-parietal regions. Additional semantic analysis of positive vs. negative quantifiers involving the interpretation of quantity and numerosity specifically recruited left area 45. The anatomical proximity between numerosity regions and those involved in semantic analysis points to subtle links between the number system and language. Results fortify the homology of Estimation and Comparison between humans and monkeys. PMID:22470338

  13. A study on a robot chasing a human using Kinect while identifying walking parameters using the back view

    NASA Astrophysics Data System (ADS)

    Konno, S.; Mita, A.

    2014-03-01

    Recently, the demand of the building spaces to respond to increase of single aged households and the diversification of life style is increasing. Smart house is one of them, but it is difficult for them to be changed and renovated. Therefore, we suggest Biofied builing. In biofied building, we use a mobile robot to get concious and unconcious information about residents and try to make it more secure and comfort builing spaces by realizing the intraction between residents and builing spaces. Walking parameters are one of the most important unconscious information about residents. They are an indicator of autonomy of elderly, and changes of stride length and walking speed may be pridictive of a future fall and a cognitive impairment. By observing their walking and informing residents their walking state, they can forestall such dangers and it helps them to live more securely and autonomously. Many methods to estimate walking parameters have been studied. The famous ones are to use accelerometers and a motion capture camera. Walking parameters estimated by them are high precise but the sensors are attached to a human body in these method and it can make human's walk different from the original walk. Furthermore, some elderly feel it to invade them. In this work, Kinect which can get information about human untouchably was used on the mobile robot. A stride time, stride length, and walking speed were estimated from the back view of human by following him or her. Evaluation was done for 10m, 5m, 4m, and 3m in whole walking. As a result, the proposal system can estimate walking parameters of the walk more than 3m.

  14. Tracking the time-varying cortical connectivity patterns by adaptive multivariate estimators.

    PubMed

    Astolfi, L; Cincotti, F; Mattia, D; De Vico Fallani, F; Tocci, A; Colosimo, A; Salinari, S; Marciani, M G; Hesse, W; Witte, H; Ursino, M; Zavaglia, M; Babiloni, F

    2008-03-01

    The directed transfer function (DTF) and the partial directed coherence (PDC) are frequency-domain estimators that are able to describe interactions between cortical areas in terms of the concept of Granger causality. However, the classical estimation of these methods is based on the multivariate autoregressive modelling (MVAR) of time series, which requires the stationarity of the signals. In this way, transient pathways of information transfer remains hidden. The objective of this study is to test a time-varying multivariate method for the estimation of rapidly changing connectivity relationships between cortical areas of the human brain, based on DTF/PDC and on the use of adaptive MVAR modelling (AMVAR) and to apply it to a set of real high resolution EEG data. This approach will allow the observation of rapidly changing influences between the cortical areas during the execution of a task. The simulation results indicated that time-varying DTF and PDC are able to estimate correctly the imposed connectivity patterns under reasonable operative conditions of signal-to-noise ratio (SNR) ad number of trials. An SNR of five and a number of trials of at least 20 provide a good accuracy in the estimation. After testing the method by the simulation study, we provide an application to the cortical estimations obtained from high resolution EEG data recorded from a group of healthy subject during a combined foot-lips movement and present the time-varying connectivity patterns resulting from the application of both DTF and PDC. Two different cortical networks were detected with the proposed methods, one constant across the task and the other evolving during the preparation of the joint movement.

  15. Towards real-time diffuse optical tomography for imaging brain functions cooperated with Kalman estimator

    NASA Astrophysics Data System (ADS)

    Wang, Bingyuan; Zhang, Yao; Liu, Dongyuan; Ding, Xuemei; Dan, Mai; Pan, Tiantian; Wang, Yihan; Li, Jiao; Zhou, Zhongxing; Zhang, Limin; Zhao, Huijuan; Gao, Feng

    2018-02-01

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging method to monitor the cerebral hemodynamic through the optical changes measured at the scalp surface. It has played a more and more important role in psychology and medical imaging communities. Real-time imaging of brain function using NIRS makes it possible to explore some sophisticated human brain functions unexplored before. Kalman estimator has been frequently used in combination with modified Beer-Lamber Law (MBLL) based optical topology (OT), for real-time brain function imaging. However, the spatial resolution of the OT is low, hampering the application of OT in exploring some complicated brain functions. In this paper, we develop a real-time imaging method combining diffuse optical tomography (DOT) and Kalman estimator, much improving the spatial resolution. Instead of only presenting one spatially distributed image indicating the changes of the absorption coefficients at each time point during the recording process, one real-time updated image using the Kalman estimator is provided. Its each voxel represents the amplitude of the hemodynamic response function (HRF) associated with this voxel. We evaluate this method using some simulation experiments, demonstrating that this method can obtain more reliable spatial resolution images. Furthermore, a statistical analysis is also conducted to help to decide whether a voxel in the field of view is activated or not.

  16. Real-time 3D human pose recognition from reconstructed volume via voxel classifiers

    NASA Astrophysics Data System (ADS)

    Yoo, ByungIn; Choi, Changkyu; Han, Jae-Joon; Lee, Changkyo; Kim, Wonjun; Suh, Sungjoo; Park, Dusik; Kim, Junmo

    2014-03-01

    This paper presents a human pose recognition method which simultaneously reconstructs a human volume based on ensemble of voxel classifiers from a single depth image in real-time. The human pose recognition is a difficult task since a single depth camera can capture only visible surfaces of a human body. In order to recognize invisible (self-occluded) surfaces of a human body, the proposed algorithm employs voxel classifiers trained with multi-layered synthetic voxels. Specifically, ray-casting onto a volumetric human model generates a synthetic voxel, where voxel consists of a 3D position and ID corresponding to the body part. The synthesized volumetric data which contain both visible and invisible body voxels are utilized to train the voxel classifiers. As a result, the voxel classifiers not only identify the visible voxels but also reconstruct the 3D positions and the IDs of the invisible voxels. The experimental results show improved performance on estimating the human poses due to the capability of inferring the invisible human body voxels. It is expected that the proposed algorithm can be applied to many fields such as telepresence, gaming, virtual fitting, wellness business, and real 3D contents control on real 3D displays.

  17. Evaluation of mRNA markers for estimating blood deposition time: Towards alibi testing from human forensic stains with rhythmic biomarkers.

    PubMed

    Lech, Karolina; Liu, Fan; Ackermann, Katrin; Revell, Victoria L; Lao, Oscar; Skene, Debra J; Kayser, Manfred

    2016-03-01

    Determining the time a biological trace was left at a scene of crime reflects a crucial aspect of forensic investigations as - if possible - it would permit testing the sample donor's alibi directly from the trace evidence, helping to link (or not) the DNA-identified sample donor with the crime event. However, reliable and robust methodology is lacking thus far. In this study, we assessed the suitability of mRNA for the purpose of estimating blood deposition time, and its added value relative to melatonin and cortisol, two circadian hormones we previously introduced for this purpose. By analysing 21 candidate mRNA markers in blood samples from 12 individuals collected around the clock at 2h intervals for 36h under real-life, controlled conditions, we identified 11 mRNAs with statistically significant expression rhythms. We then used these 11 significantly rhythmic mRNA markers, with and without melatonin and cortisol also analysed in these samples, to establish statistical models for predicting day/night time categories. We found that although in general mRNA-based estimation of time categories was less accurate than hormone-based estimation, the use of three mRNA markers HSPA1B, MKNK2 and PER3 together with melatonin and cortisol generally enhanced the time prediction accuracy relative to the use of the two hormones alone. Our data best support a model that by using these five molecular biomarkers estimates three time categories, i.e. night/early morning, morning/noon, and afternoon/evening with prediction accuracies expressed as AUC values of 0.88, 0.88, and 0.95, respectively. For the first time, we demonstrate the value of mRNA for blood deposition timing and introduce a statistical model for estimating day/night time categories based on molecular biomarkers, which shall be further validated with additional samples in the future. Moreover, our work provides new leads for molecular approaches on time of death estimation using the significantly rhythmic mRNA markers established here. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Modeling of Army Research Laboratory EMP simulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miletta, J.R.; Chase, R.J.; Luu, B.B.

    1993-12-01

    Models are required that permit the estimation of emitted field signatures from EMP simulators to design the simulator antenna structure, to establish the usable test volumes, and to estimate human exposure risk. This paper presents the capabilities and limitations of a variety of EMP simulator models useful to the Army's EMP survivability programs. Comparisons among frequency and time-domain models are provided for two powerful US Army Research Laboratory EMP simulators: AESOP (Army EMP Simulator Operations) and VEMPS II (Vertical EMP Simulator II).

  19. Stochastic estimation of human arm impedance under nonlinear friction in robot joints: a model study.

    PubMed

    Chang, Pyung Hun; Kang, Sang Hoon

    2010-05-30

    The basic assumption of stochastic human arm impedance estimation methods is that the human arm and robot behave linearly for small perturbations. In the present work, we have identified the degree of influence of nonlinear friction in robot joints to the stochastic human arm impedance estimation. Internal model based impedance control (IMBIC) is then proposed as a means to make the estimation accurate by compensating for the nonlinear friction. From simulations with a nonlinear Lugre friction model, it is observed that the reliability and accuracy of the estimation are severely degraded with nonlinear friction: below 2 Hz, multiple and partial coherence functions are far less than unity; estimated magnitudes and phases are severely deviated from that of a real human arm throughout the frequency range of interest; and the accuracy is not enhanced with an increase of magnitude of the force perturbations. In contrast, the combined use of stochastic estimation and IMBIC provides with accurate estimation results even with large friction: the multiple coherence functions are larger than 0.9 throughout the frequency range of interest and the estimated magnitudes and phases are well matched with that of a real human arm. Furthermore, the performance of suggested method is independent of human arm and robot posture, and human arm impedance. Therefore, the IMBIC will be useful in measuring human arm impedance with conventional robot, as well as in designing a spatial impedance measuring robot, which requires gearing. (c) 2010 Elsevier B.V. All rights reserved.

  20. The Importance of Context in Development and Application of Ecosystem Services Production Functions

    EPA Science Inventory

    The task of estimating ecosystem service production and delivery deserves special attention. When approached as a function of land cover at any given time, context driven facets of ecosystem service production, delivery, and resulting effects on human well-being can be overlooke...

  1. A kinematic model to estimate the effective dose of radioactive isotopes in the human body for radiological protection

    NASA Astrophysics Data System (ADS)

    Sasaki, S.; Yamada, T.

    2013-12-01

    The great earthquake attacked the north-east area in Japan in March 11, 2011. The system of electrical facilities to control Fukushima Daiichi nuclear power station was completely destroyed by the following tsunamis. From the damaged reactor containment vessels, an amount of radioactive substances had leaked and been diffused in the vicinity of this station. Radiological internal exposure becomes a serious social issue both in Japan and all over the world. The present study provides an easily understandable, kinematic-based model to estimate the effective dose of radioactive substances in a human body by simplified the complicated mechanism of metabolism. International Commission on Radiological Protection (ICRP) has developed an exact model, which is well-known as a standard method to calculate the effective dose for radiological protection. However, owing to that the above method accord too much with the actual mechanism of metabolism in human bodies, it becomes rather difficult for non-professional people of radiology to gasp the whole images of the movement and the influences of radioactive substances in a human body. Therefore, in the present paper we propose a newly-derived and easily-understandable model to estimate the effective dose. The present method is very similar with the traditional and conventional hydrological tank model. Ingestion flux of radioactive substances corresponds to rain intensity and the storage of radioactive substances to the water storage in a basin in runoff analysis. The key of this method is to estimate the energy radiated from the radioactive nuclear disintegration of an atom by using classical theory of E. Fermi of beta decay and special relativity for various kinds of radioactive atoms. The parameters used in this study are only physical half-time and biological half-time, and there are no intentional and operational parameters of coefficients to adjust our theoretical runoff to observation of ICRP. Figure.1 compares time series of effective cesium-137 dose according to age calculated by ICRP software with calculated by the present method. Plots are calculated values by ICRP, the solid line is analytic solution given from the present method. It should be noted that the present study does not consider complicated mechanism, but it could give equally accurate results comparing to existing research. Time series of effective Cs-137 dose according to age when food contains 1 Bq/year is ingested for 1 year. (Plots are calculated values by ICRP. The solid line is analytic solution given from the present method)

  2. Fast Human Detection for Intelligent Monitoring Using Surveillance Visible Sensors

    PubMed Central

    Ko, Byoung Chul; Jeong, Mira; Nam, JaeYeal

    2014-01-01

    Human detection using visible surveillance sensors is an important and challenging work for intruder detection and safety management. The biggest barrier of real-time human detection is the computational time required for dense image scaling and scanning windows extracted from an entire image. This paper proposes fast human detection by selecting optimal levels of image scale using each level's adaptive region-of-interest (ROI). To estimate the image-scaling level, we generate a Hough windows map (HWM) and select a few optimal image scales based on the strength of the HWM and the divide-and-conquer algorithm. Furthermore, adaptive ROIs are arranged per image scale to provide a different search area. We employ a cascade random forests classifier to separate candidate windows into human and nonhuman classes. The proposed algorithm has been successfully applied to real-world surveillance video sequences, and its detection accuracy and computational speed show a better performance than those of other related methods. PMID:25393782

  3. The impact of composite AUC estimates on the prediction of systemic exposure in toxicology experiments.

    PubMed

    Sahota, Tarjinder; Danhof, Meindert; Della Pasqua, Oscar

    2015-06-01

    Current toxicity protocols relate measures of systemic exposure (i.e. AUC, Cmax) as obtained by non-compartmental analysis to observed toxicity. A complicating factor in this practice is the potential bias in the estimates defining safe drug exposure. Moreover, it prevents the assessment of variability. The objective of the current investigation was therefore (a) to demonstrate the feasibility of applying nonlinear mixed effects modelling for the evaluation of toxicokinetics and (b) to assess the bias and accuracy in summary measures of systemic exposure for each method. Here, simulation scenarios were evaluated, which mimic toxicology protocols in rodents. To ensure differences in pharmacokinetic properties are accounted for, hypothetical drugs with varying disposition properties were considered. Data analysis was performed using non-compartmental methods and nonlinear mixed effects modelling. Exposure levels were expressed as area under the concentration versus time curve (AUC), peak concentrations (Cmax) and time above a predefined threshold (TAT). Results were then compared with the reference values to assess the bias and precision of parameter estimates. Higher accuracy and precision were observed for model-based estimates (i.e. AUC, Cmax and TAT), irrespective of group or treatment duration, as compared with non-compartmental analysis. Despite the focus of guidelines on establishing safety thresholds for the evaluation of new molecules in humans, current methods neglect uncertainty, lack of precision and bias in parameter estimates. The use of nonlinear mixed effects modelling for the analysis of toxicokinetics provides insight into variability and should be considered for predicting safe exposure in humans.

  4. Access To Essential Maternal Health Interventions and Human Rights Violations among Vulnerable Communities in Eastern Burma

    PubMed Central

    Mullany, Luke C; Lee, Catherine I; Yone, Lin; Paw, Palae; Oo, Eh Kalu Shwe; Maung, Cynthia; Lee, Thomas J; Beyrer, Chris

    2008-01-01

    Background Health indicators are poor and human rights violations are widespread in eastern Burma. Reproductive and maternal health indicators have not been measured in this setting but are necessary as part of an evaluation of a multi-ethnic pilot project exploring strategies to increase access to essential maternal health interventions. The goal of this study is to estimate coverage of maternal health services prior to this project and associations between exposure to human rights violations and access to such services. Methods and Findings Selected communities in the Shan, Mon, Karen, and Karenni regions of eastern Burma that were accessible to community-based organizations operating from Thailand were surveyed to estimate coverage of reproductive, maternal, and family planning services, and to assess exposure to household-level human rights violations within the pilot-project target population. Two-stage cluster sampling surveys among ever-married women of reproductive age (15–45 y) documented access to essential antenatal care interventions, skilled attendance at birth, postnatal care, and family planning services. Mid-upper arm circumference, hemoglobin by color scale, and Plasmodium falciparum parasitemia by rapid diagnostic dipstick were measured. Exposure to human rights violations in the prior 12 mo was recorded. Between September 2006 and January 2007, 2,914 surveys were conducted. Eighty-eight percent of women reported a home delivery for their last pregnancy (within previous 5 y). Skilled attendance at birth (5.1%), any (39.3%) or ≥ 4 (16.7%) antenatal visits, use of an insecticide-treated bed net (21.6%), and receipt of iron supplements (11.8%) were low. At the time of the survey, more than 60% of women had hemoglobin level estimates ≤ 11.0 g/dl and 7.2% were Pf positive. Unmet need for contraceptives exceeded 60%. Violations of rights were widely reported: 32.1% of Karenni households reported forced labor and 10% of Karen households had been forced to move. Among Karen households, odds of anemia were 1.51 (95% confidence interval [CI] 0.95–2.40) times higher among women reporting forced displacement, and 7.47 (95% CI 2.21–25.3) higher among those exposed to food security violations. The odds of receiving no antenatal care services were 5.94 (95% CI 2.23–15.8) times higher among those forcibly displaced. Conclusions Coverage of basic maternal health interventions is woefully inadequate in these selected populations and substantially lower than even the national estimates for Burma, among the lowest in the region. Considerable political, financial, and human resources are necessary to improve access to maternal health care in these communities. PMID:19108601

  5. The effects of sample size on population genomic analyses--implications for the tests of neutrality.

    PubMed

    Subramanian, Sankar

    2016-02-20

    One of the fundamental measures of molecular genetic variation is the Watterson's estimator (θ), which is based on the number of segregating sites. The estimation of θ is unbiased only under neutrality and constant population growth. It is well known that the estimation of θ is biased when these assumptions are violated. However, the effects of sample size in modulating the bias was not well appreciated. We examined this issue in detail based on large-scale exome data and robust simulations. Our investigation revealed that sample size appreciably influences θ estimation and this effect was much higher for constrained genomic regions than that of neutral regions. For instance, θ estimated for synonymous sites using 512 human exomes was 1.9 times higher than that obtained using 16 exomes. However, this difference was 2.5 times for the nonsynonymous sites of the same data. We observed a positive correlation between the rate of increase in θ estimates (with respect to the sample size) and the magnitude of selection pressure. For example, θ estimated for the nonsynonymous sites of highly constrained genes (dN/dS < 0.1) using 512 exomes was 3.6 times higher than that estimated using 16 exomes. In contrast this difference was only 2 times for the less constrained genes (dN/dS > 0.9). The results of this study reveal the extent of underestimation owing to small sample sizes and thus emphasize the importance of sample size in estimating a number of population genomic parameters. Our results have serious implications for neutrality tests such as Tajima D, Fu-Li D and those based on the McDonald and Kreitman test: Neutrality Index and the fraction of adaptive substitutions. For instance, use of 16 exomes produced 2.4 times higher proportion of adaptive substitutions compared to that obtained using 512 exomes (24% vs 10 %).

  6. Dielectric coagulometry: a new approach to estimate venous thrombosis risk.

    PubMed

    Hayashi, Yoshihito; Katsumoto, Yoichi; Omori, Shinji; Yasuda, Akio; Asami, Koji; Kaibara, Makoto; Uchimura, Isao

    2010-12-01

    We present dielectric coagulometry as a new technique to estimate the risk of venous thrombosis by measuring the permittivity change associated with the blood coagulation process. The method was first tested for a simple system of animal erythrocytes suspended in fibrinogen solution, where the coagulation rate was controlled by changing the amount of thrombin added to the suspension. Second, the method was applied to a more realistic system of human whole blood, and the inherent coagulation process was monitored without artificial acceleration by a coagulation initiator. The time dependence of the permittivity at a frequency around 1 MHz showed a distinct peak at a time that corresponds to the clotting time. Our theoretical modeling revealed that the evolution of heterogeneity and the sedimentation in the system cause the peak of the permittivity.

  7. Kinetic evaluation and test-retest reproducibility of [11C]UCB-J, a novel radioligand for positron emission tomography imaging of synaptic vesicle glycoprotein 2A in humans.

    PubMed

    Finnema, Sjoerd J; Nabulsi, Nabeel B; Mercier, Joël; Lin, Shu-Fei; Chen, Ming-Kai; Matuskey, David; Gallezot, Jean-Dominique; Henry, Shannan; Hannestad, Jonas; Huang, Yiyun; Carson, Richard E

    2017-01-01

    Synaptic vesicle glycoprotein 2A (SV2A) is ubiquitously present in presynaptic terminals. Here we report kinetic modeling and test-retest reproducibility assessment of the SV2A positron emission tomography (PET) radioligand [ 11 C]UCB-J in humans. Five volunteers were examined twice on the HRRT after bolus injection of [ 11 C]UCB-J. Arterial blood samples were collected for measurements of radiometabolites and free fraction. Regional time-activity curves were analyzed with 1-tissue (1T) and 2-tissue (2T) compartment models to estimate volumes of distribution ( V T ). Parametric maps were generated using the 1T model. [ 11 C]UCB-J metabolized fairly quickly, with parent fraction of 36 ± 13% at 15 min after injection. Plasma free fraction was 32 ± 1%. Regional time-activity curves displayed rapid kinetics and were well described by the 1T model, except for the cerebellum and hippocampus. V T values estimated with the 2T model were similar to 1T values. Parametric maps were of high quality and V T values correlated well with time activity curve (TAC)-based estimates. Shortening of acquisition time from 120 min to 60 min had a negligible effect on V T values. The mean absolute test-retest reproducibility for V T was 3-9% across regions. In conclusion, [ 11 C]UCB-J exhibited excellent PET tracer characteristics and has potential as a general purpose tool for measuring synaptic density in neurodegenerative disorders.

  8. Human Activity and Habitat Characteristics Influence Shorebird Habitat Use and Behavior at a Vancouver Island Migratory Stopover Site

    NASA Astrophysics Data System (ADS)

    Murchison, Colleen R.; Zharikov, Yuri; Nol, Erica

    2016-09-01

    Pacific Rim National Park Reserve on Vancouver Island, British Columbia, Canada, has 16 km of coastal beaches that attract many thousands of people and shorebirds (S.O. Charadrii) every year. To identify locations where shorebirds concentrate and to determine the impact of human activity and habitat characteristics on shorebirds, we conducted shorebird and visitor surveys at 20 beach sectors (across 20 total km of beach) during fall migration in 2011-2014 and spring migration in 2012 and 2013. Using zero-inflated negative binomial regression and a model selection approach, we found that beach width and number of people influenced shorebird use of beach sectors (Bayesian information criterion weight of top model = 0.69). Shorebird absence from beaches was associated with increasing number of people (parameter estimate from top model: 0.38; 95 % CI 0.19, 0.57) and decreasing beach width (parameter estimate: -0.32; 95 % CI -0.47, -0.17). Shorebirds spent more time at wider beaches (parameter estimate: 0.68; 95 % CI 0.49, 0.87). Close proximity to people increased the proportion of time shorebirds spent moving, while shorebirds spent more time moving and less time foraging on wider beaches than on narrower ones. Shorebird disturbance increased with proximity of people, activity speed, and presence of dogs. Based on our findings, management options, for reducing shorebird disturbance at Pacific Rim National Park Reserve and similar shorebird stopover areas, include mandatory buffer distances between people and shorebirds, restrictions on fast-moving activities (e.g., running, biking), prohibiting dogs, and seasonal closures of wide beach sections.

  9. A Framework for Assessing Uncertainty Associated with Human Health Risks from MSW Landfill Leachate Contamination.

    PubMed

    Mishra, Harshit; Karmakar, Subhankar; Kumar, Rakesh; Singh, Jitendra

    2017-07-01

    Landfilling is a cost-effective method, which makes it a widely used practice around the world, especially in developing countries. However, because of the improper management of landfills, high leachate leakage can have adverse impacts on soils, plants, groundwater, aquatic organisms, and, subsequently, human health. A comprehensive survey of the literature finds that the probabilistic quantification of uncertainty based on estimations of the human health risks due to landfill leachate contamination has rarely been reported. Hence, in the present study, the uncertainty about the human health risks from municipal solid waste landfill leachate contamination to children and adults was quantified to investigate its long-term risks by using a Monte Carlo simulation framework for selected heavy metals. The Turbhe sanitary landfill of Navi Mumbai, India, which was commissioned in the recent past, was selected to understand the fate and transport of heavy metals in leachate. A large residential area is located near the site, which makes the risk assessment problem both crucial and challenging. In this article, an integral approach in the form of a framework has been proposed to quantify the uncertainty that is intrinsic to human health risk estimation. A set of nonparametric cubic splines was fitted to identify the nonlinear seasonal trend in leachate quality parameters. LandSim 2.5, a landfill simulator, was used to simulate the landfill activities for various time slices, and further uncertainty in noncarcinogenic human health risk was estimated using a Monte Carlo simulation followed by univariate and multivariate sensitivity analyses. © 2016 Society for Risk Analysis.

  10. Neural pattern change during encoding of a narrative predicts retrospective duration estimates

    PubMed Central

    Lositsky, Olga; Chen, Janice; Toker, Daniel; Honey, Christopher J; Shvartsman, Michael; Poppenk, Jordan L; Hasson, Uri; Norman, Kenneth A

    2016-01-01

    What mechanisms support our ability to estimate durations on the order of minutes? Behavioral studies in humans have shown that changes in contextual features lead to overestimation of past durations. Based on evidence that the medial temporal lobes and prefrontal cortex represent contextual features, we related the degree of fMRI pattern change in these regions with people’s subsequent duration estimates. After listening to a radio story in the scanner, participants were asked how much time had elapsed between pairs of clips from the story. Our ROI analyses found that duration estimates were correlated with the neural pattern distance between two clips at encoding in the right entorhinal cortex. Moreover, whole-brain searchlight analyses revealed a cluster spanning the right anterior temporal lobe. Our findings provide convergent support for the hypothesis that retrospective time judgments are driven by 'drift' in contextual representations supported by these regions. DOI: http://dx.doi.org/10.7554/eLife.16070.001 PMID:27801645

  11. Integrating Phylodynamics and Epidemiology to Estimate Transmission Diversity in Viral Epidemics

    PubMed Central

    Magiorkinis, Gkikas; Sypsa, Vana; Magiorkinis, Emmanouil; Paraskevis, Dimitrios; Katsoulidou, Antigoni; Belshaw, Robert; Fraser, Christophe; Pybus, Oliver George; Hatzakis, Angelos

    2013-01-01

    The epidemiology of chronic viral infections, such as those caused by Hepatitis C Virus (HCV) and Human Immunodeficiency Virus (HIV), is affected by the risk group structure of the infected population. Risk groups are defined by each of their members having acquired infection through a specific behavior. However, risk group definitions say little about the transmission potential of each infected individual. Variation in the number of secondary infections is extremely difficult to estimate for HCV and HIV but crucial in the design of efficient control interventions. Here we describe a novel method that combines epidemiological and population genetic approaches to estimate the variation in transmissibility of rapidly-evolving viral epidemics. We evaluate this method using a nationwide HCV epidemic and for the first time co-estimate viral generation times and superspreading events from a combination of molecular and epidemiological data. We anticipate that this integrated approach will form the basis of powerful tools for describing the transmission dynamics of chronic viral diseases, and for evaluating control strategies directed against them. PMID:23382662

  12. Application of State-Space Smoothing to fMRI Data for Calculation of Lagged Transinformation between Human Brain Activations

    NASA Astrophysics Data System (ADS)

    Watanabe, Jobu

    2009-09-01

    Mutual information can be given a directional sense by introducing a time lag in one of the variables. In an author's previous study, to investigate the network dynamics of human brain regions, lagged transinformation (LTI) was introduced using time delayed mutual information. The LTI makes it possible to quantify the time course of dynamic information transfer between regions in the temporal domain. The LTI was applied to functional magnetic resonance imaging (fMRI) data involved in neural processing of the transformation and comparison from three-dimensional (3D) visual information to a two-dimensional (2D) location to calculate directed information flows between the activated brain regions. In the present study, for more precise estimation of LTI, Kalman filter smoothing was applied to the same fMRI data. Because the smoothing method exploits the full length of the time series data for the estimation, its application increases the precision. Large information flows were found from the bilateral prefrontal cortices to the parietal cortices. The results suggest that information of the 3D images stored as working memory was retrieved and transferred from the prefrontal cortices to the parietal cortices for comparison with information of the 2D images.

  13. The Effective Mutation Rate at Y Chromosome Short Tandem Repeats, with Application to Human Population-Divergence Time

    PubMed Central

    Zhivotovsky, Lev A.; Underhill, Peter A.; Cinnioğlu, Cengiz; Kayser, Manfred; Morar, Bharti; Kivisild, Toomas; Scozzari, Rosaria; Cruciani, Fulvio; Destro-Bisol, Giovanni; Spedini, Gabriella; Chambers, Geoffrey K.; Herrera, Rene J.; Yong, Kiau Kiun; Gresham, David; Tournev, Ivailo; Feldman, Marcus W.; Kalaydjieva, Luba

    2004-01-01

    We estimate an effective mutation rate at an average Y chromosome short-tandem repeat locus as 6.9×10-4 per 25 years, with a standard deviation across loci of 5.7×10-4, using data on microsatellite variation within Y chromosome haplogroups defined by unique-event polymorphisms in populations with documented short-term histories, as well as comparative data on worldwide populations at both the Y chromosome and various autosomal loci. This value is used to estimate the times of the African Bantu expansion, the divergence of Polynesian populations (the Maoris, Cook Islanders, and Samoans), and the origin of Gypsy populations from Bulgaria. PMID:14691732

  14. Portable measurement system for real-time acquisition and analysis of in-vivo spatially resolved reflectance in the subdiffusive regime

    NASA Astrophysics Data System (ADS)

    Naglič, Peter; Ivančič, Matic; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran

    2018-02-01

    A measurement system was developed to acquire and analyze subdiffusive spatially resolved reflectance using an optical fiber probe with short source-detector separations. Since subdiffusive reflectance significantly depends on the scattering phase function, the analysis of the acquired reflectance is based on a novel inverse Monte Carlo model that allows estimation of phase function related parameters in addition to the absorption and reduced scattering coefficients. In conjunction with our measurement system, the model allowed real-time estimation of optical properties, which we demonstrate for a case of dynamically induced changes in human skin by applying pressure with an optical fiber probe.

  15. Estimating the probability that the Taser directly causes human ventricular fibrillation.

    PubMed

    Sun, H; Haemmerich, D; Rahko, P S; Webster, J G

    2010-04-01

    This paper describes the first methodology and results for estimating the order of probability for Tasers directly causing human ventricular fibrillation (VF). The probability of an X26 Taser causing human VF was estimated using: (1) current density near the human heart estimated by using 3D finite-element (FE) models; (2) prior data of the maximum dart-to-heart distances that caused VF in pigs; (3) minimum skin-to-heart distances measured in erect humans by echocardiography; and (4) dart landing distribution estimated from police reports. The estimated mean probability of human VF was 0.001 for data from a pig having a chest wall resected to the ribs and 0.000006 for data from a pig with no resection when inserting a blunt probe. The VF probability for a given dart location decreased with the dart-to-heart horizontal distance (radius) on the skin surface.

  16. A Comparison of Human and Machine Translation of Health Promotion Materials for Public Health Practice: Time, Costs, and Quality

    PubMed Central

    Turner, Anne M.; Bergman, Margo; Brownstein, Megumu; Cole, Kate; Kirchhoff, Katrin

    2017-01-01

    Context Most local public health departments serve limited English proficiency groups but lack sufficient resources to translate the health promotion materials that they produce into different languages. Machine translation (MT) with human postediting could fill this gap and work toward decreasing health disparities among non–English speakers. Objectives (1) To identify the time and costs associated with human translation (HT) of public health documents, (2) determine the time necessary for human postediting of MT, and (3) compare the quality of postedited MT and HT. Design A quality comparison of 25 MT and HT documents was performed with public health translators. The public health professionals involved were queried about the workflow, costs, and time for HT of 11 English public health documents over a 20-month period. Three recently translated documents of similar size and topic were then machine translated, the time for human postediting was recorded, and a blind quality analysis was performed. Setting Seattle/King County, Washington. Participants Public health professionals. Main Outcome Measures (1) Estimated times for various HT tasks; (2) observed postediting times for MT documents; (3) actual costs for HT; and (4) comparison of quality ratings for HT and MT. Results Human translation via local health department methods took 17 hours to 6 days. While HT postediting words per minute ranged from 1.58 to 5.88, MT plus human postediting words per minute ranged from 10 to 30. The cost of HT ranged from $130 to $1220; MT required no additional costs. A quality comparison by bilingual public health professionals showed that MT and HT were equivalently preferred. Conclusions MT with human postediting can reduce the time and costs of translating public health materials while maintaining quality similar to HT. In conjunction with postediting, MT could greatly improve the availability of multilingual public health materials. PMID:24084391

  17. Theoretical impact of insecticide-impregnated school uniforms on dengue incidence in Thai children.

    PubMed

    Massad, Eduardo; Amaku, Marcos; Coutinho, Francisco Antonio Bezerra; Kittayapong, Pattamaporn; Wilder-Smith, Annelies

    2013-03-28

    Children carry the main burden of morbidity and mortality caused by dengue. Children spend a considerable amount of their day at school; hence strategies that reduce human-mosquito contact to protect against the day-biting habits of Aedes mosquitoes at schools, such as insecticide-impregnated uniforms, could be an effective prevention strategy. We used mathematical models to calculate the risk of dengue infection based on force of infection taking into account the estimated proportion of mosquito bites that occur in school and the proportion of school time that children wear the impregnated uniforms. The use of insecticide-impregnated uniforms has efficacy varying from around 6% in the most pessimistic estimations, to 55% in the most optimistic scenarios simulated. Reducing contact between mosquito bites and human hosts via insecticide-treated uniforms during school time is theoretically effective in reducing dengue incidence and may be a valuable additional tool for dengue control in school-aged children. The efficacy of this strategy, however, is dependent on the compliance of the target population in terms of proper and consistent wearing of uniforms and, perhaps more importantly, the proportion of bites inflicted by the Aedes population during school time.

  18. Time-varying Concurrent Risk of Extreme Droughts and Heatwaves in California

    NASA Astrophysics Data System (ADS)

    Sarhadi, A.; Diffenbaugh, N. S.; Ausin, M. C.

    2016-12-01

    Anthropogenic global warming has changed the nature and the risk of extreme climate phenomena such as droughts and heatwaves. The concurrent of these nature-changing climatic extremes may result in intensifying undesirable consequences in terms of human health and destructive effects in water resources. The present study assesses the risk of concurrent extreme droughts and heatwaves under dynamic nonstationary conditions arising from climate change in California. For doing so, a generalized fully Bayesian time-varying multivariate risk framework is proposed evolving through time under dynamic human-induced environment. In this methodology, an extreme, Bayesian, dynamic copula (Gumbel) is developed to model the time-varying dependence structure between the two different climate extremes. The time-varying extreme marginals are previously modeled using a Generalized Extreme Value (GEV) distribution. Bayesian Markov Chain Monte Carlo (MCMC) inference is integrated to estimate parameters of the nonstationary marginals and copula using a Gibbs sampling method. Modelled marginals and copula are then used to develop a fully Bayesian, time-varying joint return period concept for the estimation of concurrent risk. Here we argue that climate change has increased the chance of concurrent droughts and heatwaves over decades in California. It is also demonstrated that a time-varying multivariate perspective should be incorporated to assess realistic concurrent risk of the extremes for water resources planning and management in a changing climate in this area. The proposed generalized methodology can be applied for other stochastic nature-changing compound climate extremes that are under the influence of climate change.

  19. 23 CFR 772.5 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... OF HIGHWAY TRAFFIC NOISE AND CONSTRUCTION NOISE § 772.5 Definitions. (a) Design year. The future year used to estimate the probable traffic volume for which a highway is designed. A time, 10 to 20 years... the natural and mechanical sources and human activity, considered to be usually present in a...

  20. Emerging Tools to Estimate and to Predict Exposures to Chemicals

    EPA Science Inventory

    The timely assessment of the human and ecological risk posed by thousands of existing and emerging commercial chemicals is a critical challenge facing EPA in its mission to protect public health and the environment The US EPA has been conducting research to enhance methods used t...

  1. Integrating PM2.5 Observations, Model Estimates and Satellite Signals for the Eastern United States by Projection onto Latent Structures

    EPA Science Inventory

    Detailed, time-varying spatial fields of air contaminant concentrations are valuable to public health professionals seeking to identify relationships between human health and ambient air quality, and policy makers interested in assessing compliance with air quality regulations. ...

  2. Daily thanatomicrobiome changes in soil as an approach of postmortem interval estimation: An ecological perspective.

    PubMed

    Adserias-Garriga, Joe; Hernández, Marta; Quijada, Narciso M; Rodríguez Lázaro, David; Steadman, Dawnie; Garcia-Gil, Jesús

    2017-09-01

    Understanding human decomposition is critical for its use in postmortem interval (PMI) estimation, having a significant impact on forensic investigations. In recognition of the need to establish the scientific basis for PMI estimation, several studies on decomposition have been carried out in the last years. The aims of the present study were: (i) to identify soil microbiota communities involved in human decomposition through high-throughput sequencing (HTS) of DNA sequences from the different bacteria, (ii) to monitor quantitatively and qualitatively the decay of such signature species, and (iii) to describe succesional changes in bacterial populations from the early putrefaction state until skeletonization. Three donated individuals to the University of Tennessee FAC were studied. Soil samples around the body were taken from the placement of the donor until advanced decay/dry remains stage. Bacterial DNA extracts were obtained from the samples, HTS techniques were applied and bioinformatic data analysis was performed. The three cadavers showed similar overall successional changes. At the beginning of the decomposition process the soil microbiome consisted of diverse indigenous soil bacterial communities. As decomposition advanced, Firmicutes community abundance increased in the soil during the bloat stage. The growth curve of Firmicutes from human remains can be used to estimate time since death during Tennessee summer conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. DNA methylation-based measures of biological age: meta-analysis predicting time to death.

    PubMed

    Chen, Brian H; Marioni, Riccardo E; Colicino, Elena; Peters, Marjolein J; Ward-Caviness, Cavin K; Tsai, Pei-Chien; Roetker, Nicholas S; Just, Allan C; Demerath, Ellen W; Guan, Weihua; Bressler, Jan; Fornage, Myriam; Studenski, Stephanie; Vandiver, Amy R; Moore, Ann Zenobia; Tanaka, Toshiko; Kiel, Douglas P; Liang, Liming; Vokonas, Pantel; Schwartz, Joel; Lunetta, Kathryn L; Murabito, Joanne M; Bandinelli, Stefania; Hernandez, Dena G; Melzer, David; Nalls, Michael; Pilling, Luke C; Price, Timothy R; Singleton, Andrew B; Gieger, Christian; Holle, Rolf; Kretschmer, Anja; Kronenberg, Florian; Kunze, Sonja; Linseisen, Jakob; Meisinger, Christine; Rathmann, Wolfgang; Waldenberger, Melanie; Visscher, Peter M; Shah, Sonia; Wray, Naomi R; McRae, Allan F; Franco, Oscar H; Hofman, Albert; Uitterlinden, André G; Absher, Devin; Assimes, Themistocles; Levine, Morgan E; Lu, Ake T; Tsao, Philip S; Hou, Lifang; Manson, JoAnn E; Carty, Cara L; LaCroix, Andrea Z; Reiner, Alexander P; Spector, Tim D; Feinberg, Andrew P; Levy, Daniel; Baccarelli, Andrea; van Meurs, Joyce; Bell, Jordana T; Peters, Annette; Deary, Ian J; Pankow, James S; Ferrucci, Luigi; Horvath, Steve

    2016-09-28

    Estimates of biological age based on DNA methylation patterns, often referred to as "epigenetic age", "DNAm age", have been shown to be robust biomarkers of age in humans. We previously demonstrated that independent of chronological age, epigenetic age assessed in blood predicted all-cause mortality in four human cohorts. Here, we expanded our original observation to 13 different cohorts for a total sample size of 13,089 individuals, including three racial/ethnic groups. In addition, we examined whether incorporating information on blood cell composition into the epigenetic age metrics improves their predictive power for mortality. All considered measures of epigenetic age acceleration were predictive of mortality (p≤8.2x10 -9 ) , independent of chronological age, even after adjusting for additional risk factors (p<5.4x10 -4 ) , and within the racial/ethnic groups that we examined (non-Hispanic whites, Hispanics, African Americans). Epigenetic age estimates that incorporated information on blood cell composition led to the smallest p-values for time to death (p=7.5x10 -43 ). Overall, this study a) strengthens the evidence that epigenetic age predicts all-cause mortality above and beyond chronological age and traditional risk factors, and b) demonstrates that epigenetic age estimates that incorporate information on blood cell counts lead to highly significant associations with all-cause mortality.

  4. [Research on hyperspectral remote sensing in monitoring snow contamination concentration].

    PubMed

    Tang, Xu-guang; Liu, Dian-wei; Zhang, Bai; Du, Jia; Lei, Xiao-chun; Zeng, Li-hong; Wang, Yuan-dong; Song, Kai-shan

    2011-05-01

    Contaminants in the snow can be used to reflect regional and global environmental pollution caused by human activities. However, so far, the research on space-time monitoring of snow contamination concentration for a wide range or areas difficult for human to reach is very scarce. In the present paper, based on the simulated atmospheric deposition experiments, the spectroscopy technique method was applied to analyze the effect of different contamination concentration on the snow reflectance spectra. Then an evaluation of snow contamination concentration (SCC) retrieval methods was conducted using characteristic index method (SDI), principal component analysis (PCA), BP neural network and RBF neural network method, and the estimate effects of four methods were compared. The results showed that the neural network model combined with hyperspectral remote sensing data could estimate the SCC well.

  5. Using river distance and existing hydrography data can improve the geostatistical estimation of fish tissue mercury at unsampled locations.

    PubMed

    Money, Eric S; Sackett, Dana K; Aday, D Derek; Serre, Marc L

    2011-09-15

    Mercury in fish tissue is a major human health concern. Consumption of mercury-contaminated fish poses risks to the general population, including potentially serious developmental defects and neurological damage in young children. Therefore, it is important to accurately identify areas that have the potential for high levels of bioaccumulated mercury. However, due to time and resource constraints, it is difficult to adequately assess fish tissue mercury on a basin wide scale. We hypothesized that, given the nature of fish movement along streams, an analytical approach that takes into account distance traveled along these streams would improve the estimation accuracy for fish tissue mercury in unsampled streams. Therefore, we used a river-based Bayesian Maximum Entropy framework (river-BME) for modern space/time geostatistics to estimate fish tissue mercury at unsampled locations in the Cape Fear and Lumber Basins in eastern North Carolina. We also compared the space/time geostatistical estimation using river-BME to the more traditional Euclidean-based BME approach, with and without the inclusion of a secondary variable. Results showed that this river-based approach reduced the estimation error of fish tissue mercury by more than 13% and that the median estimate of fish tissue mercury exceeded the EPA action level of 0.3 ppm in more than 90% of river miles for the study domain.

  6. Interpretation of the instantaneous frequency of phonocardiogram signals

    NASA Astrophysics Data System (ADS)

    Rey, Alexis B.

    2005-06-01

    Short-Time Fourier transforms, Wigner-Ville distribution, and Wavelet Transforms have been commonly used when dealing with non-stationary signals, and they have been known as time-frequency distributions. Also, it is commonly intended to investigate the behaviour of phonocardiogram signals as a means of prediction some oh the pathologies of the human hart. For this, this paper aims to analyze the relationship between the instantaneous frequency of a PCG signal and the so-mentioned time-frequency distributions; three algorithms using Matlab functions have been developed: the first one, the estimation of the IF using the normalized linear moment, the second one, the estimation of the IF using the periodic first moment, and the third one, the computing of the WVD. Meanwhile, the computing of the STFT spectrogram is carried out with a Matlab function. Several simulations of the spectrogram for a set of PCG signals and the estimation of the IF are shown, and its relationship is validated through correlation. Finally, the second algorithm is a better choice because the estimation is not biased, whereas the WVD is very computing-demanding and offers no benefit since the estimation of the IF by using this TFD has an equivalent result when using the derivative of the phase of the analytic signal, which is also less computing-demanding.

  7. Postmortem succession of gut microbial communities in deceased human subjects

    PubMed Central

    Hauther, Kathleen A.

    2017-01-01

    The human microbiome has demonstrated an importance for the health and functioning in living individuals. However, the fate of the microbiome after death is less understood. In addition to a better understanding of microbe-mediated decomposition processes, postmortem succession of human-associated microbial communities has been suggested as a possible forensic tool for estimating time since death, or postmortem interval (PMI). The objective of our study was to document postmortem changes in human gut bacterial communities. Gut microflora were repeatedly sampled from the caeca of cadavers as they decayed under natural environmental conditions. 16S rRNA gene amplicon sequencing revealed that over time, bacterial richness significantly increased (rs = 0.449) while diversity decreased (rs =  − 0.701). The composition of gut bacterial communities changed in a similar manner over time towards a common decay community. OTUs belonging to Bacteroidales (Bacteroides, Parabacteroides) significantly declined while Clostridiales (Clostridium, Anaerosphaera) and the fly-associated Gammaproteobacteria Ignatzschineria and Wohlfahrtiimonas increased. Our examination of human caeca microflora in decomposing cadavers adds to the growing literature on postmortem microbial communities, which will ultimately contribute to a better understanding of decomposition processes. PMID:28626612

  8. Time-lapse imaging of human heart motion with switched array UWB radar.

    PubMed

    Brovoll, Sverre; Berger, Tor; Paichard, Yoann; Aardal, Øyvind; Lande, Tor Sverre; Hamran, Svein-Erik

    2014-10-01

    Radar systems for detection of human heartbeats have mostly been single-channel systems with limited spatial resolution. In this paper, a radar system for ultra-wideband (UWB) imaging of the human heart is presented. To make the radar waves penetrate the human tissue the antenna is placed very close to the body. The antenna is an array with eight elements, and an antenna switch system connects the radar to the individual elements in sequence to form an image. Successive images are used to build up time-lapse movies of the beating heart. Measurements on a human test subject are presented and the heart motion is estimated at different locations inside the body. The movies show rhythmic motion consistent with the beating heart, and the location and shape of the reflections correspond well with the expected response form the heart wall. The spatial dependent heart motion is compared to ECG recordings, and it is confirmed that heartbeat modulations are seen in the radar data. This work shows that radar imaging of the human heart may provide valuable information on the mechanical movement of the heart.

  9. Suspect Screening Analysis of Chemicals in Consumer Products.

    PubMed

    Phillips, Katherine A; Yau, Alice; Favela, Kristin A; Isaacs, Kristin K; McEachran, Andrew; Grulke, Christopher; Richard, Ann M; Williams, Antony J; Sobus, Jon R; Thomas, Russell S; Wambaugh, John F

    2018-03-06

    A two-dimensional gas chromatography-time-of-flight/mass spectrometry (GC×GC-TOF/MS) suspect screening analysis method was used to rapidly characterize chemicals in 100 consumer products-which included formulations (e.g., shampoos, paints), articles (e.g., upholsteries, shower curtains), and foods (cereals)-and therefore supports broader efforts to prioritize chemicals based on potential human health risks. Analyses yielded 4270 unique chemical signatures across the products, with 1602 signatures tentatively identified using the National Institute of Standards and Technology 2008 spectral database. Chemical standards confirmed the presence of 119 compounds. Of the 1602 tentatively identified chemicals, 1404 were not present in a public database of known consumer product chemicals. Reported data and model predictions of chemical functional use were applied to evaluate the tentative chemical identifications. Estimated chemical concentrations were compared to manufacturer-reported values and other measured data. Chemical presence and concentration data can now be used to improve estimates of chemical exposure, and refine estimates of risk posed to human health and the environment.

  10. Individual exposure estimates may be erroneous when spatiotemporal variability of air pollution and human mobility are ignored.

    PubMed

    Park, Yoo Min; Kwan, Mei-Po

    2017-01-01

    This study aims to empirically demonstrate the necessity to consider both the spatiotemporal variability of air pollution and individual daily movement patterns in exposure and health risk assessment. It compares four different types of exposure estimates generated by using (1) individual movement data and hourly air pollution concentrations; (2) individual movement data and daily average air pollution data; (3) residential location and hourly pollution levels; and (4) residential location and daily average pollution data. These four estimates are significantly different, which supports the argument that ignoring the spatiotemporal variability of environmental risk factors and human mobility may lead to misleading results in exposure assessment. Additionally, three-dimensional (3D) geovisualization presented in the paper shows how person-specific space-time context is generated by the interactions between air pollution and an individual, and how the different individualized contexts place individuals at different levels of health risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Control of a Robot Dancer for Enhancing Haptic Human-Robot Interaction in Waltz.

    PubMed

    Hongbo Wang; Kosuge, K

    2012-01-01

    Haptic interaction between a human leader and a robot follower in waltz is studied in this paper. An inverted pendulum model is used to approximate the human's body dynamics. With the feedbacks from the force sensor and laser range finders, the robot is able to estimate the human leader's state by using an extended Kalman filter (EKF). To reduce interaction force, two robot controllers, namely, admittance with virtual force controller, and inverted pendulum controller, are proposed and evaluated in experiments. The former controller failed the experiment; reasons for the failure are explained. At the same time, the use of the latter controller is validated by experiment results.

  12. Determining a human cardiac pacemaker using fuzzy logic

    NASA Astrophysics Data System (ADS)

    Varnavsky, A. N.; Antonenco, A. V.

    2017-01-01

    The paper presents a possibility of estimating a human cardiac pacemaker using combined application of nonlinear integral transformation and fuzzy logic, which allows carrying out the analysis in the real-time mode. The system of fuzzy logical conclusion is proposed, membership functions and rules of fuzzy products are defined. It was shown that the ratio of the value of a truth degree of the winning rule condition to the value of a truth degree of any other rule condition is at least 3.

  13. Isotope hydrology and baseflow geochemistry in natural and human-altered watersheds in the Inland Pacific Northwest, USA

    Treesearch

    Ricardo Sanchez-Murillo; Erin S. Brooks; William J. Elliot; Jan Boll

    2015-01-01

    This study presents a stable isotope hydrology and geochemical analysis in the inland Pacific Northwest (PNW) of the USA. Isotope ratios were used to estimate mean transit times (MTTs) in natural and human-altered watersheds using the FLOWPC program. Isotope ratios in precipitation resulted in a regional meteoric water line of ä2H = 7.42·ä18O + 0.88 (n = 316; r2 = 0.97...

  14. Developing Novel Therapeutic Approaches in Small Cell Lung Carcinoma Using Genetically Engineered Mouse Models and Human Circulating Tumor Cells

    DTIC Science & Technology

    2015-10-01

    xenograft models . 12-36 Dr. Engelman Subtask 3: Analyze CTCs for P-4EBP1, P-S6, BIM , Bcl-2, Bcl-xL, and Mcl-1 using ISH and IHC We propose...Using Genetically Engineered Mouse Models and Human Circulating Tumor Cells PRINCIPAL INVESTIGATOR: Jeffrey Engelman MD PhD CONTRACTING...reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions

  15. Human Dose-Response Data for Francisella tularensis and a Dose- and Time-Dependent Mathematical Model of Early-Phase Fever Associated with Tularemia After Inhalation Exposure.

    PubMed

    McClellan, Gene; Coleman, Margaret; Crary, David; Thurman, Alec; Thran, Brandolyn

    2018-04-25

    Military health risk assessors, medical planners, operational planners, and defense system developers require knowledge of human responses to doses of biothreat agents to support force health protection and chemical, biological, radiological, nuclear (CBRN) defense missions. This article reviews extensive data from 118 human volunteers administered aerosols of the bacterial agent Francisella tularensis, strain Schu S4, which causes tularemia. The data set includes incidence of early-phase febrile illness following administration of well-characterized inhaled doses of F. tularensis. Supplemental data on human body temperature profiles over time available from de-identified case reports is also presented. A unified, logically consistent model of early-phase febrile illness is described as a lognormal dose-response function for febrile illness linked with a stochastic time profile of fever. Three parameters are estimated from the human data to describe the time profile: incubation period or onset time for fever; rise time of fever; and near-maximum body temperature. Inhaled dose-dependence and variability are characterized for each of the three parameters. These parameters enable a stochastic model for the response of an exposed population through incorporation of individual-by-individual variability by drawing random samples from the statistical distributions of these three parameters for each individual. This model provides risk assessors and medical decisionmakers reliable representations of the predicted health impacts of early-phase febrile illness for as long as one week after aerosol exposures of human populations to F. tularensis. © 2018 Society for Risk Analysis.

  16. Real-time airborne gamma-ray background estimation using NASVD with MLE and radiation transport for calibration

    NASA Astrophysics Data System (ADS)

    Kulisek, J. A.; Schweppe, J. E.; Stave, S. C.; Bernacki, B. E.; Jordan, D. V.; Stewart, T. N.; Seifert, C. E.; Kernan, W. J.

    2015-06-01

    Helicopter-mounted gamma-ray detectors can provide law enforcement officials the means to quickly and accurately detect, identify, and locate radiological threats over a wide geographical area. The ability to accurately distinguish radiological threat-generated gamma-ray signatures from background gamma radiation in real time is essential in order to realize this potential. This problem is non-trivial, especially in urban environments for which the background may change very rapidly during flight. This exacerbates the challenge of estimating background due to the poor counting statistics inherent in real-time airborne gamma-ray spectroscopy measurements. To address this challenge, we have developed a new technique for real-time estimation of background gamma radiation from aerial measurements without the need for human analyst intervention. The method can be calibrated using radiation transport simulations along with data from previous flights over areas for which the isotopic composition need not be known. Over the examined measured and simulated data sets, the method generated accurate background estimates even in the presence of a strong, 60Co source. The potential to track large and abrupt changes in background spectral shape and magnitude was demonstrated. The method can be implemented fairly easily in most modern computing languages and environments.

  17. Incompressible Deformation Estimation Algorithm (IDEA) from Tagged MR Images

    PubMed Central

    Liu, Xiaofeng; Abd-Elmoniem, Khaled Z.; Stone, Maureen; Murano, Emi Z.; Zhuo, Jiachen; Gullapalli, Rao P.; Prince, Jerry L.

    2013-01-01

    Measuring the three-dimensional motion of muscular tissues, e.g., the heart or the tongue, using magnetic resonance (MR) tagging is typically carried out by interpolating the two-dimensional motion information measured on orthogonal stacks of images. The incompressibility of muscle tissue is an important constraint on the reconstructed motion field and can significantly help to counter the sparsity and incompleteness of the available motion information. Previous methods utilizing this fact produced incompressible motions with limited accuracy. In this paper, we present an incompressible deformation estimation algorithm (IDEA) that reconstructs a dense representation of the three-dimensional displacement field from tagged MR images and the estimated motion field is incompressible to high precision. At each imaged time frame, the tagged images are first processed to determine components of the displacement vector at each pixel relative to the reference time. IDEA then applies a smoothing, divergence-free, vector spline to interpolate velocity fields at intermediate discrete times such that the collection of velocity fields integrate over time to match the observed displacement components. Through this process, IDEA yields a dense estimate of a three-dimensional displacement field that matches our observations and also corresponds to an incompressible motion. The method was validated with both numerical simulation and in vivo human experiments on the heart and the tongue. PMID:21937342

  18. Modelling survival: exposure pattern, species sensitivity and uncertainty

    PubMed Central

    Ashauer, Roman; Albert, Carlo; Augustine, Starrlight; Cedergreen, Nina; Charles, Sandrine; Ducrot, Virginie; Focks, Andreas; Gabsi, Faten; Gergs, André; Goussen, Benoit; Jager, Tjalling; Kramer, Nynke I.; Nyman, Anna-Maija; Poulsen, Veronique; Reichenberger, Stefan; Schäfer, Ralf B.; Van den Brink, Paul J.; Veltman, Karin; Vogel, Sören; Zimmer, Elke I.; Preuss, Thomas G.

    2016-01-01

    The General Unified Threshold model for Survival (GUTS) integrates previously published toxicokinetic-toxicodynamic models and estimates survival with explicitly defined assumptions. Importantly, GUTS accounts for time-variable exposure to the stressor. We performed three studies to test the ability of GUTS to predict survival of aquatic organisms across different pesticide exposure patterns, time scales and species. Firstly, using synthetic data, we identified experimental data requirements which allow for the estimation of all parameters of the GUTS proper model. Secondly, we assessed how well GUTS, calibrated with short-term survival data of Gammarus pulex exposed to four pesticides, can forecast effects of longer-term pulsed exposures. Thirdly, we tested the ability of GUTS to estimate 14-day median effect concentrations of malathion for a range of species and use these estimates to build species sensitivity distributions for different exposure patterns. We find that GUTS adequately predicts survival across exposure patterns that vary over time. When toxicity is assessed for time-variable concentrations species may differ in their responses depending on the exposure profile. This can result in different species sensitivity rankings and safe levels. The interplay of exposure pattern and species sensitivity deserves systematic investigation in order to better understand how organisms respond to stress, including humans. PMID:27381500

  19. Fine and ultrafine particle doses in the respiratory tract from digital printing operations.

    PubMed

    Voliotis, Aristeidis; Karali, Irene; Kouras, Athanasios; Samara, Constantini

    2017-01-01

    In this study, we report for the first time particle number doses in different parts of the human respiratory tract and real-time deposition rates for particles in the 10 nm to 10 μm size range emitted by digital printing operations. Particle number concentrations (PNCs) and size distribution were measured in a typical small-sized printing house using a NanoScan scanning mobility particle sizer and an optical particle sizer. Particle doses in human lung were estimated applying a multiple-path particle dosimetry model under two different breathing scenarios. PNC was dominated by the ultrafine particle fractions (UFPs, i.e., particles smaller than 100 nm) exhibiting almost nine times higher levels in comparison to the background values. The average deposition rate fοr each scenario in the whole lung was estimated at 2.0 and 2.9 × 10 7 particles min -1 , while the respective highest particle dose in the tracheobronchial tree (2.0 and 2.9 × 10 9 particles) was found for diameter of 50 nm. The majority of particles appeared to deposit in the acinar region and most of them were in the UFP size range. For both scenarios, the maximum deposition density (9.5 × 10 7 and 1.5 × 10 8 particles cm -2 ) was observed at the lobar bronchi. Overall, the differences in the estimated particle doses between the two scenarios were 30-40% for both size ranges.

  20. Meeting the oral health needs of 12-year-olds in China: human resources for oral health.

    PubMed

    Sun, Xiangyu; Bernabé, Eduardo; Liu, Xuenan; Zheng, Shuguo; Gallagher, Jennifer E

    2017-06-20

    An appropriate level of human resources for oral health [HROH] is required to meet the oral health needs of population, and enable maximum improvement in health outcomes. The aim of this study was to estimate the required HROH to meet the oral health needs of the World Health Organization [WHO] reference group of 12-year-olds in China and consider the implications for education, practice, policy and HROH nationally. We estimated the need of HROH to meet the needs of 12-year-olds based on secondary analysis of the epidemiological and questionnaire data from the 3rd Chinese National Oral Health Survey, including caries experience and periodontal factors (calculus), dentally-related behaviour (frequency of toothbrushing and sugar intake), and social factors (parental education). Children's risk for dental caries was classified in four levels from low (level 1) to high (level 4). We built maximum and minimum intervention models of dental care for each risk level, informed by contemporary evidence-based practice. The needs-led HROH model we used in the present study incorporated need for treatment and risk-based prevention using timings verified by experts in China. These findings were used to estimate HROH for the survey sample, extrapolated to 12-year-olds nationally and the total population, taking account of urban and rural coverage, based on different levels of clinical commitment (60-90%). We found that between 40,139 and 51,906 dental professionals were required to deliver care for 12-year-olds nationally based on 80% clinical commitment. We demonstrated that the majority of need for HROH was in the rural population (72.5%). Over 93% of HROH time was dedicated to prevention within the model. Extrapolating the results to the total population, the estimate for HROH nationally was 3.16-4.09 million to achieve national coverage; however, current HROH are only able to serve an estimated 5% of the population with minimum intervention based on a HROH spending 90% of their time in providing clinical care. The findings highlight the gap between dental workforce needs and workforce capacity in China. Significant implications for health policy and human resources for oral health in this country with a developing health system are discussed including the need for public health action.

  1. Handling of thermal paper: Implications for dermal exposure to bisphenol A and its alternatives

    PubMed Central

    Bernier, Meghan R.

    2017-01-01

    Bisphenol A (BPA) is an endocrine disrupting chemical used in a wide range of consumer products including photoactive dyes used in thermal paper. Recent studies have shown that dermal absorption of BPA can occur when handling these papers. Yet, regulatory agencies have largely dismissed thermal paper as a major source of BPA exposure. Exposure estimates provided by agencies such as the European Food Safety Authority (EFSA) are based on assumptions about how humans interact with this material, stating that ‘typical’ exposures for adults involve only one handling per day for short periods of time (<1 minute), with limited exposure surfaces (three fingertips). The objective of this study was to determine how individuals handle thermal paper in one common setting: a cafeteria providing short-order meals. We observed thermal paper handling in a college-aged population (n = 698 subjects) at the University of Massachusetts’ dining facility. We find that in this setting, individuals handle receipts for an average of 11.5 min, that >30% of individuals hold thermal paper with more than three fingertips, and >60% allow the paper to touch their palm. Only 11% of the participants we observed were consistent with the EFSA model for time of contact and dermal surface area. Mathematical modeling based on handling times we measured and previously published transfer coefficients, concentrations of BPA in paper, and absorption factors indicate the most conservative estimated intake from handling thermal paper in this population is 51.1 ng/kg/day, similar to EFSA’s estimates of 59 ng/kg/day from dermal exposures. Less conservative estimates, using published data on concentrations in thermal paper and transfer rates to skin, indicate that exposures are likely significantly higher. Based on our observational data, we propose that the current models for estimating dermal BPA exposures are not consistent with normal human behavior and should be reevaluated. PMID:28570582

  2. Handling of thermal paper: Implications for dermal exposure to bisphenol A and its alternatives.

    PubMed

    Bernier, Meghan R; Vandenberg, Laura N

    2017-01-01

    Bisphenol A (BPA) is an endocrine disrupting chemical used in a wide range of consumer products including photoactive dyes used in thermal paper. Recent studies have shown that dermal absorption of BPA can occur when handling these papers. Yet, regulatory agencies have largely dismissed thermal paper as a major source of BPA exposure. Exposure estimates provided by agencies such as the European Food Safety Authority (EFSA) are based on assumptions about how humans interact with this material, stating that 'typical' exposures for adults involve only one handling per day for short periods of time (<1 minute), with limited exposure surfaces (three fingertips). The objective of this study was to determine how individuals handle thermal paper in one common setting: a cafeteria providing short-order meals. We observed thermal paper handling in a college-aged population (n = 698 subjects) at the University of Massachusetts' dining facility. We find that in this setting, individuals handle receipts for an average of 11.5 min, that >30% of individuals hold thermal paper with more than three fingertips, and >60% allow the paper to touch their palm. Only 11% of the participants we observed were consistent with the EFSA model for time of contact and dermal surface area. Mathematical modeling based on handling times we measured and previously published transfer coefficients, concentrations of BPA in paper, and absorption factors indicate the most conservative estimated intake from handling thermal paper in this population is 51.1 ng/kg/day, similar to EFSA's estimates of 59 ng/kg/day from dermal exposures. Less conservative estimates, using published data on concentrations in thermal paper and transfer rates to skin, indicate that exposures are likely significantly higher. Based on our observational data, we propose that the current models for estimating dermal BPA exposures are not consistent with normal human behavior and should be reevaluated.

  3. World Health Organization Estimates of the Relative Contributions of Food to the Burden of Disease Due to Selected Foodborne Hazards: A Structured Expert Elicitation

    PubMed Central

    Hald, Tine; Aspinall, Willy; Devleesschauwer, Brecht; Cooke, Roger; Corrigan, Tim; Havelaar, Arie H.; Gibb, Herman J.; Torgerson, Paul R.; Kirk, Martyn D.; Angulo, Fred J.; Lake, Robin J.; Speybroeck, Niko; Hoffmann, Sandra

    2016-01-01

    Background The Foodborne Disease Burden Epidemiology Reference Group (FERG) was established in 2007 by the World Health Organization (WHO) to estimate the global burden of foodborne diseases (FBDs). This estimation is complicated because most of the hazards causing FBD are not transmitted solely by food; most have several potential exposure routes consisting of transmission from animals, by humans, and via environmental routes including water. This paper describes an expert elicitation study conducted by the FERG Source Attribution Task Force to estimate the relative contribution of food to the global burden of diseases commonly transmitted through the consumption of food. Methods and Findings We applied structured expert judgment using Cooke’s Classical Model to obtain estimates for 14 subregions for the relative contributions of different transmission pathways for eleven diarrheal diseases, seven other infectious diseases and one chemical (lead). Experts were identified through international networks followed by social network sampling. Final selection of experts was based on their experience including international working experience. Enrolled experts were scored on their ability to judge uncertainty accurately and informatively using a series of subject-matter specific ‘seed’ questions whose answers are unknown to the experts at the time they are interviewed. Trained facilitators elicited the 5th, and 50th and 95th percentile responses to seed questions through telephone interviews. Cooke’s Classical Model uses responses to the seed questions to weigh and aggregate expert responses. After this interview, the experts were asked to provide 5th, 50th, and 95th percentile estimates for the ‘target’ questions regarding disease transmission routes. A total of 72 experts were enrolled in the study. Ten panels were global, meaning that the experts should provide estimates for all 14 subregions, whereas the nine panels were subregional, with experts providing estimates for one or more subregions, depending on their experience in the region. The size of the 19 hazard-specific panels ranged from 6 to 15 persons with several experts serving on more than one panel. Pathogens with animal reservoirs (e.g. non-typhoidal Salmonella spp. and Toxoplasma gondii) were in general assessed by the experts to have a higher proportion of illnesses attributable to food than pathogens with mainly a human reservoir, where human-to-human transmission (e.g. Shigella spp. and Norovirus) or waterborne transmission (e.g. Salmonella Typhi and Vibrio cholerae) were judged to dominate. For many pathogens, the foodborne route was assessed relatively more important in developed subregions than in developing subregions. The main exposure routes for lead varied across subregions, with the foodborne route being assessed most important only in two subregions of the European region. Conclusions For the first time, we present worldwide estimates of the proportion of specific diseases attributable to food and other major transmission routes. These findings are essential for global burden of FBD estimates. While gaps exist, we believe the estimates presented here are the best current source of guidance to support decision makers when allocating resources for control and intervention, and for future research initiatives. PMID:26784029

  4. World Health Organization Estimates of the Relative Contributions of Food to the Burden of Disease Due to Selected Foodborne Hazards: A Structured Expert Elicitation.

    PubMed

    Hald, Tine; Aspinall, Willy; Devleesschauwer, Brecht; Cooke, Roger; Corrigan, Tim; Havelaar, Arie H; Gibb, Herman J; Torgerson, Paul R; Kirk, Martyn D; Angulo, Fred J; Lake, Robin J; Speybroeck, Niko; Hoffmann, Sandra

    2016-01-01

    The Foodborne Disease Burden Epidemiology Reference Group (FERG) was established in 2007 by the World Health Organization (WHO) to estimate the global burden of foodborne diseases (FBDs). This estimation is complicated because most of the hazards causing FBD are not transmitted solely by food; most have several potential exposure routes consisting of transmission from animals, by humans, and via environmental routes including water. This paper describes an expert elicitation study conducted by the FERG Source Attribution Task Force to estimate the relative contribution of food to the global burden of diseases commonly transmitted through the consumption of food. We applied structured expert judgment using Cooke's Classical Model to obtain estimates for 14 subregions for the relative contributions of different transmission pathways for eleven diarrheal diseases, seven other infectious diseases and one chemical (lead). Experts were identified through international networks followed by social network sampling. Final selection of experts was based on their experience including international working experience. Enrolled experts were scored on their ability to judge uncertainty accurately and informatively using a series of subject-matter specific 'seed' questions whose answers are unknown to the experts at the time they are interviewed. Trained facilitators elicited the 5th, and 50th and 95th percentile responses to seed questions through telephone interviews. Cooke's Classical Model uses responses to the seed questions to weigh and aggregate expert responses. After this interview, the experts were asked to provide 5th, 50th, and 95th percentile estimates for the 'target' questions regarding disease transmission routes. A total of 72 experts were enrolled in the study. Ten panels were global, meaning that the experts should provide estimates for all 14 subregions, whereas the nine panels were subregional, with experts providing estimates for one or more subregions, depending on their experience in the region. The size of the 19 hazard-specific panels ranged from 6 to 15 persons with several experts serving on more than one panel. Pathogens with animal reservoirs (e.g. non-typhoidal Salmonella spp. and Toxoplasma gondii) were in general assessed by the experts to have a higher proportion of illnesses attributable to food than pathogens with mainly a human reservoir, where human-to-human transmission (e.g. Shigella spp. and Norovirus) or waterborne transmission (e.g. Salmonella Typhi and Vibrio cholerae) were judged to dominate. For many pathogens, the foodborne route was assessed relatively more important in developed subregions than in developing subregions. The main exposure routes for lead varied across subregions, with the foodborne route being assessed most important only in two subregions of the European region. For the first time, we present worldwide estimates of the proportion of specific diseases attributable to food and other major transmission routes. These findings are essential for global burden of FBD estimates. While gaps exist, we believe the estimates presented here are the best current source of guidance to support decision makers when allocating resources for control and intervention, and for future research initiatives.

  5. [Estimation of time detection limit for human cytochrome b in females of Lutzomyia evansi].

    PubMed

    Vergara, José Gabriel; Verbel-Vergara, Daniel; Montesino, Ana Milena; Pérez-Doria, Alveiro; Bejarano, Eduar Elías

    2017-03-29

    Molecular biology techniques have allowed a better knowledge of sources of blood meals in vector insects. However, the usefulness of these techniques depends on both the quantity of ingested blood and the digestion process in the insect. To identify the time limit for detection of the human cytochrome b (Cyt b) gene in experimentally fed females of Lutzomyia evansi. Eight groups of L. evansi females were fed on human blood and sacrificed at intervals of 24 hours post-ingestion. Total DNA was extracted from each female and a segment of 358 bp of Cyt b was amplified. In order to eliminate false positives, amplification products were subjected to a restriction fragment length polymorphism (RFLP) analysis. The human Cyt b gene segment was detected in 86% (49/57) of the females of L. evansi, from 0 to 168 hours after blood ingestion. In 7% (4/57) of the individuals we amplified insect DNA, while in the remaining 7%, the band of interest was not amplified. We did not find any statistical differences between groups of females sacrificed at different times post-blood meal regarding the amplification of the human Cyt b gene segment or the number of samples amplified. The human Cyt b gene segment was detectable in L. evansi females up to 168 hours after blood ingestion.

  6. Comparison of a novel non-contact biomotion sensor with wrist actigraphy in estimating sleep quality in patients with obstructive sleep apnoea.

    PubMed

    Pallin, Michael; O'Hare, Emer; Zaffaroni, Alberto; Boyle, Patricia; Fagan, Ciara; Kent, Brian; Heneghan, Conor; de Chazal, Philip; McNicholas, Walter T

    2014-08-01

    Ambulatory monitoring is of major clinical interest in the diagnosis of obstructive sleep apnoea syndrome. We compared a novel non-contact biomotion sensor, which provides an estimate of both sleep time and sleep-disordered breathing, with wrist actigraphy in the assessment of total sleep time in adult humans suspected of obstructive sleep apnoea syndrome. Both systems were simultaneously evaluated against polysomnography in 103 patients undergoing assessment for obstructive sleep apnoea syndrome in a hospital-based sleep laboratory (84 male, aged 55 ± 14 years and apnoea-hypopnoea index 21 ± 23). The biomotion sensor demonstrated similar accuracy to wrist actigraphy for sleep/wake determination (77.3%: biomotion; 76.5%: actigraphy), and the biomotion sensor demonstrated higher specificity (52%: biomotion; 34%: actigraphy) and lower sensitivity (86%: biomotion; 94%: actigraphy). Notably, total sleep time estimation by the biomotion sensor was superior to actigraphy (average overestimate of 10 versus 57 min), especially at a higher apnoea-hypopnoea index. In post hoc analyses, we assessed the improved apnoea-hypopnoea index accuracy gained by combining respiratory measurements from polysomnography for total recording time (equivalent to respiratory polygraphy) with total sleep time derived from actigraphy or the biomotion sensor. Here, the number of misclassifications of obstructive sleep apnoea severity compared with full polysomnography was reduced from 10/103 (for total respiratory recording time alone) to 7/103 and 4/103 (for actigraphy and biomotion sensor total sleep time estimate, respectively). We conclude that the biomotion sensor provides a viable alternative to actigraphy for sleep estimation in the assessment of obstructive sleep apnoea syndrome. As a non-contact device, it is suited to longitudinal assessment of sleep, which could also be combined with polygraphy in ambulatory studies. © 2014 European Sleep Research Society.

  7. Host selection and gonotrophic cycle length of Anopheles punctimacula in southern Mexico.

    PubMed

    Ulloa, Armando; Gonzalez-Cerón, Lilia; Rodríguez, Mario H

    2006-12-01

    The host preference, survival rates, and length of the gonotrophic cycle of Anopheles punctimacula was investigated in southern México. Mosquitoes were collected in 15-day separate experiments during the rainy and dry seasons. Daily changes in the parous-nulliparous ratio were recorded and the gonotrophic cycle length was estimated by a time series analysis. Anopheles punctimacula was most abundant during the dry season and preferred animals to humans. The daily survival rate in mosquitoes collected in animal traps was 0.96 (parity rate = 0.86; gonotrophic cycle = 4 days). The length of gonotrophic cycle of 4 days was estimated on the base of a high correlation coefficient value appearing every 4 days. The minimum time estimated for developing mature eggs after blood feeding was 72 h. The proportion of mosquitoes living enough to transmit Plasmodium vivax malaria during the dry season was 0.35.

  8. Contributions of past and present human generations to committed warming caused by carbon dioxide.

    PubMed

    Friedlingstein, Pierre; Solomon, Susan

    2005-08-02

    We developed a highly simplified approach to estimate the contributions of the past and present human generations to the increase of atmospheric CO(2) and associated global average temperature increases. For each human generation of adopted 25-year length, we use simplified emission test cases to estimate the committed warming passed to successive children, grandchildren, and later generations. We estimate that the last and the current generation contributed approximately two thirds of the present-day CO(2)-induced warming. Because of the long time scale required for removal of CO(2) from the atmosphere as well as the time delays characteristic of physical responses of the climate system, global mean temperatures are expected to increase by several tenths of a degree for at least the next 20 years even if CO(2) emissions were immediately cut to zero; that is, there is a commitment to additional CO(2)-induced warming even in the absence of emissions. If the rate of increase of CO(2) emissions were to continue up to 2025 and then were cut to zero, a temperature increase of approximately 1.3 degrees C compared to preindustrial conditions would still occur in 2100, whereas a constant-CO(2)-emissions scenario after 2025 would more than double the 2100 warming. These calculations illustrate the manner in which each generation inherits substantial climate change caused by CO(2) emissions that occurred previously, particularly those of their parents, and shows that current CO(2) emissions will contribute significantly to the climate change of future generations.

  9. Time series modeling of human operator dynamics in manual control tasks

    NASA Technical Reports Server (NTRS)

    Biezad, D. J.; Schmidt, D. K.

    1984-01-01

    A time-series technique is presented for identifying the dynamic characteristics of the human operator in manual control tasks from relatively short records of experimental data. Control of system excitation signals used in the identification is not required. The approach is a multi-channel identification technique for modeling multi-input/multi-output situations. The method presented includes statistical tests for validity, is designed for digital computation, and yields estimates for the frequency responses of the human operator. A comprehensive relative power analysis may also be performed for validated models. This method is applied to several sets of experimental data; the results are discussed and shown to compare favorably with previous research findings. New results are also presented for a multi-input task that has not been previously modeled to demonstrate the strengths of the method.

  10. Time Series Modeling of Human Operator Dynamics in Manual Control Tasks

    NASA Technical Reports Server (NTRS)

    Biezad, D. J.; Schmidt, D. K.

    1984-01-01

    A time-series technique is presented for identifying the dynamic characteristics of the human operator in manual control tasks from relatively short records of experimental data. Control of system excitation signals used in the identification is not required. The approach is a multi-channel identification technique for modeling multi-input/multi-output situations. The method presented includes statistical tests for validity, is designed for digital computation, and yields estimates for the frequency response of the human operator. A comprehensive relative power analysis may also be performed for validated models. This method is applied to several sets of experimental data; the results are discussed and shown to compare favorably with previous research findings. New results are also presented for a multi-input task that was previously modeled to demonstrate the strengths of the method.

  11. Abundance and Survival Rates of the Hawai’i Island Associated Spinner Dolphin (Stenella longirostris) Stock

    PubMed Central

    Tyne, Julian A.; Pollock, Kenneth H.; Johnston, David W.; Bejder, Lars

    2014-01-01

    Reliable population estimates are critical to implement effective management strategies. The Hawai’i Island spinner dolphin (Stenella longirostris) is a genetically distinct stock that displays a rigid daily behavioural pattern, foraging offshore at night and resting in sheltered bays during the day. Consequently, they are exposed to frequent human interactions and disturbance. We estimated population parameters of this spinner dolphin stock using a systematic sampling design and capture–recapture models. From September 2010 to August 2011, boat-based photo-identification surveys were undertaken monthly over 132 days (>1,150 hours of effort; >100,000 dorsal fin images) in the four main resting bays along the Kona Coast, Hawai’i Island. All images were graded according to photographic quality and distinctiveness. Over 32,000 images were included in the analyses, from which 607 distinctive individuals were catalogued and 214 were highly distinctive. Two independent estimates of the proportion of highly distinctive individuals in the population were not significantly different (p = 0.68). Individual heterogeneity and time variation in capture probabilities were strongly indicated for these data; therefore capture–recapture models allowing for these variations were used. The estimated annual apparent survival rate (product of true survival and permanent emigration) was 0.97 SE±0.05. Open and closed capture–recapture models for the highly distinctive individuals photographed at least once each month produced similar abundance estimates. An estimate of 221±4.3 SE highly distinctive spinner dolphins, resulted in a total abundance of 631±60.1 SE, (95% CI 524–761) spinner dolphins in the Hawai’i Island stock, which is lower than previous estimates. When this abundance estimate is considered alongside the rigid daily behavioural pattern, genetic distinctiveness, and the ease of human access to spinner dolphins in their preferred resting habitats, this Hawai’i Island stock is likely more vulnerable to negative impacts from human disturbance than previously believed. PMID:24465917

  12. Abundance and survival rates of the Hawai'i Island associated spinner dolphin (Stenella longirostris) stock.

    PubMed

    Tyne, Julian A; Pollock, Kenneth H; Johnston, David W; Bejder, Lars

    2014-01-01

    Reliable population estimates are critical to implement effective management strategies. The Hawai'i Island spinner dolphin (Stenella longirostris) is a genetically distinct stock that displays a rigid daily behavioural pattern, foraging offshore at night and resting in sheltered bays during the day. Consequently, they are exposed to frequent human interactions and disturbance. We estimated population parameters of this spinner dolphin stock using a systematic sampling design and capture-recapture models. From September 2010 to August 2011, boat-based photo-identification surveys were undertaken monthly over 132 days (>1,150 hours of effort; >100,000 dorsal fin images) in the four main resting bays along the Kona Coast, Hawai'i Island. All images were graded according to photographic quality and distinctiveness. Over 32,000 images were included in the analyses, from which 607 distinctive individuals were catalogued and 214 were highly distinctive. Two independent estimates of the proportion of highly distinctive individuals in the population were not significantly different (p = 0.68). Individual heterogeneity and time variation in capture probabilities were strongly indicated for these data; therefore capture-recapture models allowing for these variations were used. The estimated annual apparent survival rate (product of true survival and permanent emigration) was 0.97 SE ± 0.05. Open and closed capture-recapture models for the highly distinctive individuals photographed at least once each month produced similar abundance estimates. An estimate of 221 ± 4.3 SE highly distinctive spinner dolphins, resulted in a total abundance of 631 ± 60.1 SE, (95% CI 524-761) spinner dolphins in the Hawai'i Island stock, which is lower than previous estimates. When this abundance estimate is considered alongside the rigid daily behavioural pattern, genetic distinctiveness, and the ease of human access to spinner dolphins in their preferred resting habitats, this Hawai'i Island stock is likely more vulnerable to negative impacts from human disturbance than previously believed.

  13. Multistep Lattice-Voxel method utilizing lattice function for Monte-Carlo treatment planning with pixel based voxel model.

    PubMed

    Kumada, H; Saito, K; Nakamura, T; Sakae, T; Sakurai, H; Matsumura, A; Ono, K

    2011-12-01

    Treatment planning for boron neutron capture therapy generally utilizes Monte-Carlo methods for calculation of the dose distribution. The new treatment planning system JCDS-FX employs the multi-purpose Monte-Carlo code PHITS to calculate the dose distribution. JCDS-FX allows to build a precise voxel model consisting of pixel based voxel cells in the scale of 0.4×0.4×2.0 mm(3) voxel in order to perform high-accuracy dose estimation, e.g. for the purpose of calculating the dose distribution in a human body. However, the miniaturization of the voxel size increases calculation time considerably. The aim of this study is to investigate sophisticated modeling methods which can perform Monte-Carlo calculations for human geometry efficiently. Thus, we devised a new voxel modeling method "Multistep Lattice-Voxel method," which can configure a voxel model that combines different voxel sizes by utilizing the lattice function over and over. To verify the performance of the calculation with the modeling method, several calculations for human geometry were carried out. The results demonstrated that the Multistep Lattice-Voxel method enabled the precise voxel model to reduce calculation time substantially while keeping the high-accuracy of dose estimation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Time-Domain Receiver Function Deconvolution using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Moreira, L. P.

    2017-12-01

    Receiver Functions (RF) are well know method for crust modelling using passive seismological signals. Many different techniques were developed to calculate the RF traces, applying the deconvolution calculation to radial and vertical seismogram components. A popular method used a spectral division of both components, which requires human intervention to apply the Water Level procedure to avoid instabilities from division by small numbers. One of most used method is an iterative procedure to estimate the RF peaks and applying the convolution with vertical component seismogram, comparing the result with the radial component. This method is suitable for automatic processing, however several RF traces are invalid due to peak estimation failure.In this work it is proposed a deconvolution algorithm using Genetic Algorithm (GA) to estimate the RF peaks. This method is entirely processed in the time domain, avoiding the time-to-frequency calculations (and vice-versa), and totally suitable for automatic processing. Estimated peaks can be used to generate RF traces in a seismogram format for visualization. The RF trace quality is similar for high magnitude events, although there are less failures for RF calculation of smaller events, increasing the overall performance for high number of events per station.

  15. Nonequilibrium Thermodynamics in Biological Systems

    NASA Astrophysics Data System (ADS)

    Aoki, I.

    2005-12-01

    1. Respiration Oxygen-uptake by respiration in organisms decomposes macromolecules such as carbohydrate, protein and lipid and liberates chemical energy of high quality, which is then used to chemical reactions and motions of matter in organisms to support lively order in structure and function in organisms. Finally, this chemical energy becomes heat energy of low quality and is discarded to the outside (dissipation function). Accompanying this heat energy, entropy production which inevitably occurs by irreversibility also is discarded to the outside. Dissipation function and entropy production are estimated from data of respiration. 2. Human body From the observed data of respiration (oxygen absorption), the entropy production in human body can be estimated. Entropy production from 0 to 75 years old human has been obtained, and extrapolated to fertilized egg (beginning of human life) and to 120 years old (maximum period of human life). Entropy production show characteristic behavior in human life span : early rapid increase in short growing phase and later slow decrease in long aging phase. It is proposed that this tendency is ubiquitous and constitutes a Principle of Organization in complex biotic systems. 3. Ecological communities From the data of respiration of eighteen aquatic communities, specific (i.e. per biomass) entropy productions are obtained. They show two phase character with respect to trophic diversity : early increase and later decrease with the increase of trophic diversity. The trophic diversity in these aquatic ecosystems is shown to be positively correlated with the degree of eutrophication, and the degree of eutrophication is an "arrow of time" in the hierarchy of aquatic ecosystems. Hence specific entropy production has the two phase: early increase and later decrease with time. 4. Entropy principle for living systems The Second Law of Thermodynamics has been expressed as follows. 1) In isolated systems, entropy increases with time and approaches to a maximum value. This is well-known classical Clausius principle. 2) In open systems near equilibrium entropy production always decreases with time approaching a minimum stationary level. This is the minimum entropy production principle by Prigogine. These two principle are established ones. However, living systems are not isolated and not near to equilibrium. Hence, these two principles can not be applied to living systems. What is entropy principle for living systems? Answer: Entropy production in living systems consists of multi-stages with time: early increasing, later decreasing and/or intermediate stages. This tendency is supported by various living systems.

  16. Robust, automatic GPS station velocities and velocity time series

    NASA Astrophysics Data System (ADS)

    Blewitt, G.; Kreemer, C.; Hammond, W. C.

    2014-12-01

    Automation in GPS coordinate time series analysis makes results more objective and reproducible, but not necessarily as robust as the human eye to detect problems. Moreover, it is not a realistic option to manually scan our current load of >20,000 time series per day. This motivates us to find an automatic way to estimate station velocities that is robust to outliers, discontinuities, seasonality, and noise characteristics (e.g., heteroscedasticity). Here we present a non-parametric method based on the Theil-Sen estimator, defined as the median of velocities vij=(xj-xi)/(tj-ti) computed between all pairs (i, j). Theil-Sen estimators produce statistically identical solutions to ordinary least squares for normally distributed data, but they can tolerate up to 29% of data being problematic. To mitigate seasonality, our proposed estimator only uses pairs approximately separated by an integer number of years (N-δt)<(tj-ti )<(N+δt), where δt is chosen to be small enough to capture seasonality, yet large enough to reduce random error. We fix N=1 to maximally protect against discontinuities. In addition to estimating an overall velocity, we also use these pairs to estimate velocity time series. To test our methods, we process real data sets that have already been used with velocities published in the NA12 reference frame. Accuracy can be tested by the scatter of horizontal velocities in the North American plate interior, which is known to be stable to ~0.3 mm/yr. This presents new opportunities for time series interpretation. For example, the pattern of velocity variations at the interannual scale can help separate tectonic from hydrological processes. Without any step detection, velocity estimates prove to be robust for stations affected by the Mw7.2 2010 El Mayor-Cucapah earthquake, and velocity time series show a clear change after the earthquake, without any of the usual parametric constraints, such as relaxation of postseismic velocities to their preseismic values.

  17. Human decomposition and the reliability of a 'Universal' model for post mortem interval estimations.

    PubMed

    Cockle, Diane L; Bell, Lynne S

    2015-08-01

    Human decomposition is a complex biological process driven by an array of variables which are not clearly understood. The medico-legal community have long been searching for a reliable method to establish the post-mortem interval (PMI) for those whose deaths have either been hidden, or gone un-noticed. To date, attempts to develop a PMI estimation method based on the state of the body either at the scene or at autopsy have been unsuccessful. One recent study has proposed that two simple formulae, based on the level of decomposition humidity and temperature, could be used to accurately calculate the PMI for bodies outside, on or under the surface worldwide. This study attempted to validate 'Formula I' [1] (for bodies on the surface) using 42 Canadian cases with known PMIs. The results indicated that bodies exposed to warm temperatures consistently overestimated the known PMI by a large and inconsistent margin for Formula I estimations. And for bodies exposed to cold and freezing temperatures (less than 4°C), then the PMI was dramatically under estimated. The ability of 'Formulae II' to estimate the PMI for buried bodies was also examined using a set of 22 known Canadian burial cases. As these cases used in this study are retrospective, some of the data needed for Formula II was not available. The 4.6 value used in Formula II to represent the standard ratio of time that burial decelerates the rate of decomposition was examined. The average time taken to achieve each stage of decomposition both on, and under the surface was compared for the 118 known cases. It was found that the rate of decomposition was not consistent throughout all stages of decomposition. The rates of autolysis above and below the ground were equivalent with the buried cases staying in a state of putrefaction for a prolonged period of time. It is suggested that differences in temperature extremes and humidity levels between geographic regions may make it impractical to apply formulas developed in one region to any other region. These results also suggest that there are other variables, apart from temperature and humidity that may impact the rate of human decomposition. These variables, or complex of variables, are considered regionally specific. Neither of the Universal Formulae performed well, and our results do not support the proposition of Universality for PMI estimation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Early Upper Paleolithic colonization across Europe: Time and mode of the Gravettian diffusion

    PubMed Central

    Cascalheira, João; Gonçalves, Célia

    2017-01-01

    This study presents new models on the origin, speed and mode of the wave-of-advance leading to the definitive occupation of Europe’s outskirts by Anatomically Modern Humans, during the Gravettian, between c. 37 and 30 ka ago. These models provide the estimation for possible demic dispersal routes for AMH at a stable spread rate of c. 0.7 km/year, with the likely origin in Central Europe at the site of Geissenklosterle in Germany and reaching all areas of the European landscape. The results imply that: 1. The arrival of the Gravettian populations into the far eastern European plains and to southern Iberia found regions with very low human occupation or even devoid of hominins; 2. Human demography was likely lower than previous estimates for the Upper Paleolithic; 3. The likely early AMH paths across Europe followed the European central plains and the Mediterranean coast to reach to the ends of the Italian and Iberian peninsulas. PMID:28542642

  19. Microplastics in bivalves cultured for human consumption.

    PubMed

    Van Cauwenberghe, Lisbeth; Janssen, Colin R

    2014-10-01

    Microplastics are present throughout the marine environment and ingestion of these plastic particles (<1 mm) has been demonstrated in a laboratory setting for a wide array of marine organisms. Here, we investigate the presence of microplastics in two species of commercially grown bivalves: Mytilus edulis and Crassostrea gigas. Microplastics were recovered from the soft tissues of both species. At time of human consumption, M. edulis contains on average 0.36 ± 0.07 particles g(-1) (wet weight), while a plastic load of 0.47 ± 0.16 particles g(-1) ww was detected in C. gigas. As a result, the annual dietary exposure for European shellfish consumers can amount to 11,000 microplastics per year. The presence of marine microplastics in seafood could pose a threat to food safety, however, due to the complexity of estimating microplastic toxicity, estimations of the potential risks for human health posed by microplastics in food stuffs is not (yet) possible. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Space Use and Movement of a Neotropical Top Predator: The Endangered Jaguar

    PubMed Central

    Stabach, Jared A.; Fleming, Chris H.; Calabrese, Justin M.; De Paula, Rogério C.; Ferraz, Kátia M. P. M.; Kantek, Daniel L. Z.; Miyazaki, Selma S.; Pereira, Thadeu D. C.; Araujo, Gediendson R.; Paviolo, Agustin; De Angelo, Carlos; Di Bitetti, Mario S.; Cruz, Paula; Lima, Fernando; Cullen, Laury; Sana, Denis A.; Ramalho, Emiliano E.; Carvalho, Marina M.; Soares, Fábio H. S.; Zimbres, Barbara; Silva, Marina X.; Moraes, Marcela D. F.; Vogliotti, Alexandre; May, Joares A.; Haberfeld, Mario; Rampim, Lilian; Sartorello, Leonardo; Ribeiro, Milton C.; Leimgruber, Peter

    2016-01-01

    Accurately estimating home range and understanding movement behavior can provide important information on ecological processes. Advances in data collection and analysis have improved our ability to estimate home range and movement parameters, both of which have the potential to impact species conservation. Fitting continuous-time movement model to data and incorporating the autocorrelated kernel density estimator (AKDE), we investigated range residency of forty-four jaguars fit with GPS collars across five biomes in Brazil and Argentina. We assessed home range and movement parameters of range resident animals and compared AKDE estimates with kernel density estimates (KDE). We accounted for differential space use and movement among individuals, sex, region, and habitat quality. Thirty-three (80%) of collared jaguars were range resident. Home range estimates using AKDE were 1.02 to 4.80 times larger than KDE estimates that did not consider autocorrelation. Males exhibited larger home ranges, more directional movement paths, and a trend towards larger distances traveled per day. Jaguars with the largest home ranges occupied the Atlantic Forest, a biome with high levels of deforestation and high human population density. Our results fill a gap in the knowledge of the species’ ecology with an aim towards better conservation of this endangered/critically endangered carnivore—the top predator in the Neotropics. PMID:28030568

  1. Space Use and Movement of a Neotropical Top Predator: The Endangered Jaguar.

    PubMed

    Morato, Ronaldo G; Stabach, Jared A; Fleming, Chris H; Calabrese, Justin M; De Paula, Rogério C; Ferraz, Kátia M P M; Kantek, Daniel L Z; Miyazaki, Selma S; Pereira, Thadeu D C; Araujo, Gediendson R; Paviolo, Agustin; De Angelo, Carlos; Di Bitetti, Mario S; Cruz, Paula; Lima, Fernando; Cullen, Laury; Sana, Denis A; Ramalho, Emiliano E; Carvalho, Marina M; Soares, Fábio H S; Zimbres, Barbara; Silva, Marina X; Moraes, Marcela D F; Vogliotti, Alexandre; May, Joares A; Haberfeld, Mario; Rampim, Lilian; Sartorello, Leonardo; Ribeiro, Milton C; Leimgruber, Peter

    2016-01-01

    Accurately estimating home range and understanding movement behavior can provide important information on ecological processes. Advances in data collection and analysis have improved our ability to estimate home range and movement parameters, both of which have the potential to impact species conservation. Fitting continuous-time movement model to data and incorporating the autocorrelated kernel density estimator (AKDE), we investigated range residency of forty-four jaguars fit with GPS collars across five biomes in Brazil and Argentina. We assessed home range and movement parameters of range resident animals and compared AKDE estimates with kernel density estimates (KDE). We accounted for differential space use and movement among individuals, sex, region, and habitat quality. Thirty-three (80%) of collared jaguars were range resident. Home range estimates using AKDE were 1.02 to 4.80 times larger than KDE estimates that did not consider autocorrelation. Males exhibited larger home ranges, more directional movement paths, and a trend towards larger distances traveled per day. Jaguars with the largest home ranges occupied the Atlantic Forest, a biome with high levels of deforestation and high human population density. Our results fill a gap in the knowledge of the species' ecology with an aim towards better conservation of this endangered/critically endangered carnivore-the top predator in the Neotropics.

  2. A New Formulation of Equivalent Effective Stratospheric Chlorine (EESC)

    NASA Technical Reports Server (NTRS)

    Newman, P. A.; Daniel, J. S.; Waugh, D. W.; Nash, E. R.

    2007-01-01

    Equivalent effective stratospheric chlorine (EESC) is a convenient parameter to quantify the effects of halogens (chlorine and bromine) on ozone depletion in the stratosphere. We show and discuss a new formulation of EESC that now includes the effects of age-of-air dependent fractional release values and an age-of-air spectrum. This new formulation provides quantitative estimates of EESC that can be directly related to inorganic chlorine and bromine throughout the stratosphere. Using this EESC formulation, we estimate that human-produced ozone depleting substances will recover to 1980 levels in 2041 in the midlatitudes, and 2067 over Antarctica. These recovery dates are based upon the assumption that the international agreements for regulating ozone-depleting substances are adhered to. In addition to recovery dates, we also estimate the uncertainties in the estimated time of recovery. The midlatitude recovery of 2041 has a 95% confidence uncertainty from 2028 to 2049, while the 2067 Antarctic recovery has a 95% confidence uncertainty from 2056 to 2078. The principal uncertainties are from the estimated mean age-of-air, and the assumption that the mean age-of-air and fractional release values are time independent. Using other model estimates of age decrease due to climate change, we estimate that midlatitude recovery may be accelerated from 2041 to 2031.

  3. Preventing Heat Injuries by Predicting Individualized Human Core Temperature

    DTIC Science & Technology

    2015-10-14

    hardware/software warning system of an impending rise in TC and generate alerts to potentially prevent heat injuries. PREVENTING HEAT INJURIES BY...TC estimates, provides ahead-of-time alerts about an impending rise in TC and 2) an individualized model that uses non-invasive measurements of AC...PREDICTION AND ALERT ALGORITHMS Here, we detail the development of an algorithm that uses a time series of recent-past TC measurements to provide

  4. Investigation of dynamic SPECT measurements of the arterial input function in human subjects using simulation, phantom and human studies

    NASA Astrophysics Data System (ADS)

    Winant, Celeste D.; Aparici, Carina Mari; Zelnik, Yuval R.; Reutter, Bryan W.; Sitek, Arkadiusz; Bacharach, Stephen L.; Gullberg, Grant T.

    2012-01-01

    Computer simulations, a phantom study and a human study were performed to determine whether a slowly rotating single-photon computed emission tomography (SPECT) system could provide accurate arterial input functions for quantification of myocardial perfusion imaging using kinetic models. The errors induced by data inconsistency associated with imaging with slow camera rotation during tracer injection were evaluated with an approach called SPECT/P (dynamic SPECT from positron emission tomography (PET)) and SPECT/D (dynamic SPECT from database of SPECT phantom projections). SPECT/P simulated SPECT-like dynamic projections using reprojections of reconstructed dynamic 94Tc-methoxyisobutylisonitrile (94Tc-MIBI) PET images acquired in three human subjects (1 min infusion). This approach was used to evaluate the accuracy of estimating myocardial wash-in rate parameters K1 for rotation speeds providing 180° of projection data every 27 or 54 s. Blood input and myocardium tissue time-activity curves (TACs) were estimated using spatiotemporal splines. These were fit to a one-compartment perfusion model to obtain wash-in rate parameters K1. For the second method (SPECT/D), an anthropomorphic cardiac torso phantom was used to create real SPECT dynamic projection data of a tracer distribution derived from 94Tc-MIBI PET scans in the blood pool, myocardium, liver and background. This method introduced attenuation, collimation and scatter into the modeling of dynamic SPECT projections. Both approaches were used to evaluate the accuracy of estimating myocardial wash-in parameters for rotation speeds providing 180° of projection data every 27 and 54 s. Dynamic cardiac SPECT was also performed in a human subject at rest using a hybrid SPECT/CT scanner. Dynamic measurements of 99mTc-tetrofosmin in the myocardium were obtained using an infusion time of 2 min. Blood input, myocardium tissue and liver TACs were estimated using the same spatiotemporal splines. The spatiotemporal maximum-likelihood expectation-maximization (4D ML-EM) reconstructions gave more accurate reconstructions than did standard frame-by-frame static 3D ML-EM reconstructions. The SPECT/P results showed that 4D ML-EM reconstruction gave higher and more accurate estimates of K1 than did 3D ML-EM, yielding anywhere from a 44% underestimation to 24% overestimation for the three patients. The SPECT/D results showed that 4D ML-EM reconstruction gave an overestimation of 28% and 3D ML-EM gave an underestimation of 1% for K1. For the patient study the 4D ML-EM reconstruction provided continuous images as a function of time of the concentration in both ventricular cavities and myocardium during the 2 min infusion. It is demonstrated that a 2 min infusion with a two-headed SPECT system rotating 180° every 54 s can produce measurements of blood pool and myocardial TACs, though the SPECT simulation studies showed that one must sample at least every 30 s to capture a 1 min infusion input function.

  5. Development and use of long-term, global data records of forest, water, and urban change for terrestrial ecology and carbon cycle science

    NASA Astrophysics Data System (ADS)

    Sexton, J. O.

    2015-12-01

    Earth's human population has risen over the last century from less than 2 billion to over 7 billion people. The current "Anthropocene Era" has brought changes in Earth's landforms, climate, biodiversity, atmosphere, and hydrologic and biogeochemical cycles, as well as the expansion and intensification of human land use. As the emerging nexus of the physical, biological, and social sciences, measurements of Earth's natural and anthropogenic land cover are needed to understand and manage the coupled dynamics of human and natural systems. In recent years, NASA-sponsored efforts have produced global, time-serial estimates of tree cover using the MOderate-resolution Imaging Spectroradiometer (MODIS) and the world's first global, Landsat-based datasets representing tree and forest cover change from 1990 to 2010. These data are fueling global and national estimates of the rate and acceleration of deforestation as well as international commitments to conserve forest ecosystems. Likewise, Landsat-based datasets documenting Earth's inland surface waters are enabling the world's first global, high-resolution estimates of water cover based on repeatable satellite measurements. Meanwhile, long-term, time-serial estimates of impervious surface cover are being used to model the effect of urbanization on storm-water runoff, watershed health, and stream biodiversity. MODIS-based records of plant phenology are depicting the vulnerability and resilience of ecosystems to drought and are informing land managers of the sensitivity of wildlife to climate and plant phenology. Natural ecosystems are complex and potentially chaotic even in the absence of anthropogenic influence, and so understanding these interactions between physical, biological, and social systems is increasingly crucial under escalating human impacts. Globally consistent, locally accurate, and publicly available records spanning multiple decades at high frequency are the living legacy of the NASA Earth Science Programs. Satellite-based monitoring of ecosystem dynamics has improved the objectivity, precision, and sustainability of ecosystem management, which is paramount not only for conserving ecosystem function, but also for adapting socio-economic systems to their changing biophysical environment.

  6. Relationship between Milk Microbiota, Bacterial Load, Macronutrients, and Human Cells during Lactation.

    PubMed

    Boix-Amorós, Alba; Collado, Maria C; Mira, Alex

    2016-01-01

    Human breast milk is considered the optimal nutrition for infants, providing essential nutrients and a broad range of bioactive compounds, as well as its own microbiota. However, the interaction among those components and the biological role of milk microorganisms is still uncovered. Thus, our aim was to identify the relationships between milk microbiota composition, bacterial load, macronutrients, and human cells during lactation. Bacterial load was estimated in milk samples from a total of 21 healthy mothers through lactation time by bacteria-specific qPCR targeted to the single-copy gene fusA. Milk microbiome composition and diversity was estimated by 16S-pyrosequencing and the structure of these bacteria in the fluid was studied by flow cytometry, qPCR, and microscopy. Fat, protein, lactose, and dry extract of milk as well as the number of somatic cells were also analyzed. We observed that milk bacterial communities were generally complex, and showed individual-specific profiles. Milk microbiota was dominated by Staphylococcus, Pseudomonas, Streptococcus, and Acinetobacter. Staphylococcus aureus was not detected in any of these samples from healthy mothers. There was high variability in composition and number of bacteria per milliliter among mothers and in some cases even within mothers at different time points. The median bacterial load was 10(6) bacterial cells/ml through time, higher than those numbers reported by 16S gene PCR and culture methods. Furthermore, milk bacteria were present in a free-living, "planktonic" state, but also in equal proportion associated to human immune cells. There was no correlation between bacterial load and the amount of immune cells in milk, strengthening the idea that milk bacteria are not sensed as an infection by the immune system.

  7. Relationship between Milk Microbiota, Bacterial Load, Macronutrients, and Human Cells during Lactation

    PubMed Central

    Boix-Amorós, Alba; Collado, Maria C.; Mira, Alex

    2016-01-01

    Human breast milk is considered the optimal nutrition for infants, providing essential nutrients and a broad range of bioactive compounds, as well as its own microbiota. However, the interaction among those components and the biological role of milk microorganisms is still uncovered. Thus, our aim was to identify the relationships between milk microbiota composition, bacterial load, macronutrients, and human cells during lactation. Bacterial load was estimated in milk samples from a total of 21 healthy mothers through lactation time by bacteria-specific qPCR targeted to the single-copy gene fusA. Milk microbiome composition and diversity was estimated by 16S-pyrosequencing and the structure of these bacteria in the fluid was studied by flow cytometry, qPCR, and microscopy. Fat, protein, lactose, and dry extract of milk as well as the number of somatic cells were also analyzed. We observed that milk bacterial communities were generally complex, and showed individual-specific profiles. Milk microbiota was dominated by Staphylococcus, Pseudomonas, Streptococcus, and Acinetobacter. Staphylococcus aureus was not detected in any of these samples from healthy mothers. There was high variability in composition and number of bacteria per milliliter among mothers and in some cases even within mothers at different time points. The median bacterial load was 106 bacterial cells/ml through time, higher than those numbers reported by 16S gene PCR and culture methods. Furthermore, milk bacteria were present in a free-living, “planktonic” state, but also in equal proportion associated to human immune cells. There was no correlation between bacterial load and the amount of immune cells in milk, strengthening the idea that milk bacteria are not sensed as an infection by the immune system. PMID:27148183

  8. Using Integrated Assessment Models to Estimate the Economic Damages from Temperature Related Human Health Effects in the US

    NASA Astrophysics Data System (ADS)

    Gilmore, E.; Calvin, K. V.; Puett, R.; Sapkota, A.; Schwarber, A.

    2014-12-01

    Climate change is projected to increase risks to human health. One pathway that may be particularly difficult to manage is adverse human health impacts (e.g. premature mortality and morbidity) from increases in mean temperatures and changing patterns of temperature extremes. Modeling how these health risks evolve over decadal time-scales is challenging as the severity of the impacts depends on changes in climate as well as socioeconomic conditions. Here, we show estimates of health damages as well as both direct and indirect economic damages that span climate and socioeconomic dimensions for each US state to 2050. We achieve this objective by extending the integrated assessment model (IAM), Global Change Assessment Model (GCAM-USA). First, we quantify the change in premature mortality. We identify a range of exposure-response relationships for temperature related mortality through a critical review of the literature. We then implement these relationships in the GCAM by coupling them with projections of future temperature patterns and population estimates. Second, we monetize the effect of these adverse health effects, including both direct and indirect economic costs through labor force participation and productivity along a range of possible economic pathways. Finally, we evaluate how uncertainty in the parameters and assumptions affects the range of possible estimates. We conclude that the model is sensitive to assumptions regarding exposure-response relationship and population growth. The economic damages, however, are driven by the estimates of income and GDP growth as well as the potential for adaptation measures, namely the use and effectiveness of air conditioning.

  9. Evaluation of [18F]Mefway biodistribution and dosimetry based on whole-body PET imaging of mice.

    PubMed

    Constantinescu, Cristian C; Sevrioukov, Evgueni; Garcia, Adriana; Pan, Min-Liang; Mukherjee, Jogeshwar

    2013-04-01

    [(18)F]Mefway is a novel radiotracer specific to the serotonin 5-HT1A receptor class. In preparation for using this tracer in humans, we have performed whole-body PET studies in mice to evaluate the biodistribution and dosimetry of [(18)F]Mefway. Six mice (three females and three males) received IV injections of [(18)F]Mefway and were scanned for 2 h in an Inveon-dedicated PET scanner. Each animal also received a high-resolution CT scan using an Inveon CT. The CT images were used to draw volume of interest on the following organs: the brain, large intestine, stomach, heart, kidneys, liver, lungs, pancreas, bone, spleen, testes, thymus, gallbladder, uterus, and urinary bladder. All organ time-activity curves without decay correction were normalized to the injected activity. The area under the normalized curves was then used to compute the residence times in each organ. Data were analyzed using PMOD and Matlab software. The absorbed doses in mouse organs were computed using the RAdiation Dose Assessment Resource animal models for dose assessment. The residence times in mouse organs were converted to human values using scale factors based on differences between organ and body weights. OLINDA/EXM 1.1 software was used to compute the absorbed human doses in multiple organs for both female and male phantoms. The highest mouse residence times were found in the liver, urinary bladder, and kidneys. The largest doses in mice were found in the urinary bladder (critical organ), kidney, and liver for both females and males, indicating primary elimination via urinary system. The projected human effective doses were 1.21E - 02 mSv/MBq for the adult female model and 1.13E - 02 mSv/MBq for the adult male model. The estimated human biodistribution of [(18)F]Mefway was similar to that of [(11)C]WAY 100,635, a 5-HT1A tracer for which dosimetry has been evaluated in humans. The elimination of radiotracer was primarily via the kidney and urinary bladder with the urinary bladder being the critical organ. Whole-body mouse imaging can be used as a preclinical tool to provide initial estimates of the absorbed doses of [(18)F]Mefway in humans.

  10. Manipulator Performance Evaluation Using Fitts' Taping Task

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draper, J.V.; Jared, B.C.; Noakes, M.W.

    1999-04-25

    Metaphorically, a teleoperator with master controllers projects the user's arms and hands into a re- mote area, Therefore, human users interact with teleoperators at a more fundamental level than they do with most human-machine systems. Instead of inputting decisions about how the system should func- tion, teleoperator users input the movements they might make if they were truly in the remote area and the remote machine must recreate their trajectories and impedance. This intense human-machine inter- action requires displays and controls more carefully attuned to human motor capabilities than is neces- sary with most systems. It is important for teleoperatedmore » manipulators to be able to recreate human trajectories and impedance in real time. One method for assessing manipulator performance is to observe how well a system be- haves while a human user completes human dexterity tasks with it. Fitts' tapping task has been, used many times in the past for this purpose. This report describes such a performance assessment. The International Submarine Engineering (ISE) Autonomous/Teleoperated Operations Manipulator (ATOM) servomanipulator system was evalu- ated using a generic positioning accuracy task. The task is a simple one but has the merits of (1) pro- ducing a performance function estimate rather than a point estimate and (2) being widely used in the past for human and servomanipulator dexterity tests. Results of testing using this task may, therefore, allow comparison with other manipulators, and is generically representative of a broad class of tasks. Results of the testing indicate that the ATOM manipulator is capable of performing the task. Force reflection had a negative impact on task efficiency in these data. This was most likely caused by the high resistance to movement the master controller exhibited with the force reflection engaged. Measurements of exerted forces were not made, so it is not possible to say whether the force reflection helped partici- pants control force during testing.« less

  11. Modelling past land use using archaeological and pollen data

    NASA Astrophysics Data System (ADS)

    Pirzamanbein, Behnaz; Lindström, johan; Poska, Anneli; Gaillard-Lemdahl, Marie-José

    2016-04-01

    Accurate maps of past land use are necessary for studying the impact of anthropogenic land-cover changes on climate and biodiversity. We develop a Bayesian hierarchical model to reconstruct the land use using Gaussian Markov random fields. The model uses two observations sets: 1) archaeological data, representing human settlements, urbanization and agricultural findings; and 2) pollen-based land estimates of the three land-cover types Coniferous forest, Broadleaved forest and Unforested/Open land. The pollen based estimates are obtained from the REVEALS model, based on pollen counts from lakes and bogs. Our developed model uses the sparse pollen-based estimations to reconstruct the spatial continuous cover of three land cover types. Using the open-land component and the archaeological data, the extent of land-use is reconstructed. The model is applied on three time periods - centred around 1900 CE, 1000 and, 4000 BCE over Sweden for which both pollen-based estimates and archaeological data are available. To estimate the model parameters and land use, a block updated Markov chain Monte Carlo (MCMC) algorithm is applied. Using the MCMC posterior samples uncertainties in land-use predictions are computed. Due to lack of good historic land use data, model results are evaluated by cross-validation. Keywords. Spatial reconstruction, Gaussian Markov random field, Fossil pollen records, Archaeological data, Human land-use, Prediction uncertainty

  12. The Role of Heart-Rate Variability Parameters in Activity Recognition and Energy-Expenditure Estimation Using Wearable Sensors.

    PubMed

    Park, Heesu; Dong, Suh-Yeon; Lee, Miran; Youn, Inchan

    2017-07-24

    Human-activity recognition (HAR) and energy-expenditure (EE) estimation are major functions in the mobile healthcare system. Both functions have been investigated for a long time; however, several challenges remain unsolved, such as the confusion between activities and the recognition of energy-consuming activities involving little or no movement. To solve these problems, we propose a novel approach using an accelerometer and electrocardiogram (ECG). First, we collected a database of six activities (sitting, standing, walking, ascending, resting and running) of 13 voluntary participants. We compared the HAR performances of three models with respect to the input data type (with none, all, or some of the heart-rate variability (HRV) parameters). The best recognition performance was 96.35%, which was obtained with some selected HRV parameters. EE was also estimated for different choices of the input data type (with or without HRV parameters) and the model type (single and activity-specific). The best estimation performance was found in the case of the activity-specific model with HRV parameters. Our findings indicate that the use of human physiological data, obtained by wearable sensors, has a significant impact on both HAR and EE estimation, which are crucial functions in the mobile healthcare system.

  13. Air quality co-benefits of subnational carbon policies

    DOE PAGES

    Thompson, Tammy M.; Rausch, Sebastian; Saari, Rebecca K.; ...

    2016-05-18

    To mitigate climate change, governments ranging from city to multi-national have adopted greenhouse gas (GHG) emissions reduction targets. While the location of GHG reductions does not affect their climate benefits, it can impact human health benefits associated with co-emitted pollutants. Here, an advanced modeling framework is used to explore how subnational level GHG targets influence air pollutant co-benefits from ground level ozone and fine particulate matter. Two carbon policy scenarios are analyzed, each reducing the same total amount of GHG emissions in the Northeast US: an economy-wide Cap and Trade (CAT) program reducing emissions from all sectors of the economy,more » and a Clean Energy Standard (CES) reducing emissions from the electricity sector only. Results suggest that a regional CES policy will cost about 10 times more than a CAT policy. Despite having the same regional targets in the Northeast, carbon leakage to non-capped regions varies between policies. Consequently, a regional CAT policy will result in national carbon reductions that are over six times greater than the carbon reduced by the CES in 2030. Monetized regional human health benefits of the CAT and CES policies are 844% and 185% of the costs of each policy, respectively. Benefits for both policies are thus estimated to exceed their costs in the Northeast US. The estimated value of human health co-benefits associated with air pollution reductions for the CES scenario is two times that of the CAT scenario. Implications: In this research, an advanced modeling framework is used to determine the potential impacts of regional carbon policies on air pollution co-benefits associated with ground level ozone and fine particulate matter. Study results show that spatially heterogeneous GHG policies have the potential to create areas of air pollution dis-benefit. It is also shown that monetized human health benefits within the area covered by policy may be larger than the model estimated cost of the policy. These findings are of particular interest both as U.S. states work to develop plans to meet state-level carbon emissions reduction targets set by the EPA through the Clean Power Plan, and in the absence of comprehensive national carbon policy.« less

  14. Air quality co-benefits of subnational carbon policies.

    PubMed

    Thompson, Tammy M; Rausch, Sebastian; Saari, Rebecca K; Selin, Noelle E

    2016-10-01

    To mitigate climate change, governments ranging from city to multi-national have adopted greenhouse gas (GHG) emissions reduction targets. While the location of GHG reductions does not affect their climate benefits, it can impact human health benefits associated with co-emitted pollutants. Here, an advanced modeling framework is used to explore how subnational level GHG targets influence air pollutant co-benefits from ground level ozone and fine particulate matter. Two carbon policy scenarios are analyzed, each reducing the same total amount of GHG emissions in the Northeast US: an economy-wide Cap and Trade (CAT) program reducing emissions from all sectors of the economy, and a Clean Energy Standard (CES) reducing emissions from the electricity sector only. Results suggest that a regional CES policy will cost about 10 times more than a CAT policy. Despite having the same regional targets in the Northeast, carbon leakage to non-capped regions varies between policies. Consequently, a regional CAT policy will result in national carbon reductions that are over six times greater than the carbon reduced by the CES in 2030. Monetized regional human health benefits of the CAT and CES policies are 844% and 185% of the costs of each policy, respectively. Benefits for both policies are thus estimated to exceed their costs in the Northeast US. The estimated value of human health co-benefits associated with air pollution reductions for the CES scenario is two times that of the CAT scenario. In this research, an advanced modeling framework is used to determine the potential impacts of regional carbon policies on air pollution co-benefits associated with ground level ozone and fine particulate matter. Study results show that spatially heterogeneous GHG policies have the potential to create areas of air pollution dis-benefit. It is also shown that monetized human health benefits within the area covered by policy may be larger than the model estimated cost of the policy. These findings are of particular interest both as U.S. states work to develop plans to meet state-level carbon emissions reduction targets set by the EPA through the Clean Power Plan, and in the absence of comprehensive national carbon policy.

  15. Estimating repetitive spatiotemporal patterns from resting-state brain activity data.

    PubMed

    Takeda, Yusuke; Hiroe, Nobuo; Yamashita, Okito; Sato, Masa-Aki

    2016-06-01

    Repetitive spatiotemporal patterns in spontaneous brain activities have been widely examined in non-human studies. These studies have reported that such patterns reflect past experiences embedded in neural circuits. In human magnetoencephalography (MEG) and electroencephalography (EEG) studies, however, spatiotemporal patterns in resting-state brain activities have not been extensively examined. This is because estimating spatiotemporal patterns from resting-state MEG/EEG data is difficult due to their unknown onsets. Here, we propose a method to estimate repetitive spatiotemporal patterns from resting-state brain activity data, including MEG/EEG. Without the information of onsets, the proposed method can estimate several spatiotemporal patterns, even if they are overlapping. We verified the performance of the method by detailed simulation tests. Furthermore, we examined whether the proposed method could estimate the visual evoked magnetic fields (VEFs) without using stimulus onset information. The proposed method successfully detected the stimulus onsets and estimated the VEFs, implying the applicability of this method to real MEG data. The proposed method was applied to resting-state functional magnetic resonance imaging (fMRI) data and MEG data. The results revealed informative spatiotemporal patterns representing consecutive brain activities that dynamically change with time. Using this method, it is possible to reveal discrete events spontaneously occurring in our brains, such as memory retrieval. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. How can streamflow and climate-landscape data be used to estimate baseflow mean response time?

    NASA Astrophysics Data System (ADS)

    Zhang, Runrun; Chen, Xi; Zhang, Zhicai; Soulsby, Chris; Gao, Man

    2018-02-01

    Mean response time (MRT) is a metric describing the propagation of catchment hydraulic behavior that reflects both hydro-climatic conditions and catchment characteristics. To provide a comprehensive understanding of catchment response over a longer-time scale for hydraulic processes, the MRT function for baseflow generation was derived using an instantaneous unit hydrograph (IUH) model that describes the subsurface response to effective rainfall inputs. IUH parameters were estimated based on the "match test" between the autocorrelation function (ACFs) derived from the filtered base flow time series and from the IUH parameters, under the GLUE framework. Regionalization of MRT was conducted using estimates and hydroclimate-landscape indices in 22 sub-basins of the Jinghe River Basin (JRB) in the Loess Plateau of northwest China. Results indicate there is strong equifinality in determination of the best parameter sets but the median values of the MRT estimates are relatively stable in the acceptable range of the parameters. MRTs vary markedly over the studied sub-basins, ranging from tens of days to more than a year. Climate, topography and geomorphology were identified as three first-order controls on recharge-baseflow response processes. Human activities involving the cultivation of permanent crops may elongate the baseflow MRT and hence increase the dynamic storage. Cross validation suggests the model can be used to estimate MRTs in ungauged catchments in similar regions of throughout the Loess Plateau. The proposed method provides a systematic approach for MRT estimation and regionalization in terms of hydroclimate and catchment characteristics, which is helpful in the sustainable water resources utilization and ecological protection in the Loess Plateau.

  17. Temporal uncertainty analysis of human errors based on interrelationships among multiple factors: a case of Minuteman III missile accident.

    PubMed

    Rong, Hao; Tian, Jin; Zhao, Tingdi

    2016-01-01

    In traditional approaches of human reliability assessment (HRA), the definition of the error producing conditions (EPCs) and the supporting guidance are such that some of the conditions (especially organizational or managerial conditions) can hardly be included, and thus the analysis is burdened with incomprehensiveness without reflecting the temporal trend of human reliability. A method based on system dynamics (SD), which highlights interrelationships among technical and organizational aspects that may contribute to human errors, is presented to facilitate quantitatively estimating the human error probability (HEP) and its related variables changing over time in a long period. Taking the Minuteman III missile accident in 2008 as a case, the proposed HRA method is applied to assess HEP during missile operations over 50 years by analyzing the interactions among the variables involved in human-related risks; also the critical factors are determined in terms of impact that the variables have on risks in different time periods. It is indicated that both technical and organizational aspects should be focused on to minimize human errors in a long run. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  18. Human Life History Evolution Explains Dissociation between the Timing of Tooth Eruption and Peak Rates of Root Growth

    PubMed Central

    Dean, M. Christopher; Cole, Tim J.

    2013-01-01

    We explored the relationship between growth in tooth root length and the modern human extended period of childhood. Tooth roots provide support to counter chewing forces and so it is advantageous to grow roots quickly to allow teeth to erupt into function as early as possible. Growth in tooth root length occurs with a characteristic spurt or peak in rate sometime between tooth crown completion and root apex closure. Here we show that in Pan troglodytes the peak in root growth rate coincides with the period of time teeth are erupting into function. However, the timing of peak root velocity in modern humans occurs earlier than expected and coincides better with estimates for tooth eruption times in Homo erectus. With more time to grow longer roots prior to eruption and smaller teeth that now require less support at the time they come into function, the root growth spurt no longer confers any advantage in modern humans. We suggest that a prolonged life history schedule eventually neutralised this adaptation some time after the appearance of Homo erectus. The root spurt persists in modern humans as an intrinsic marker event that shows selection operated, not primarily on tooth tissue growth, but on the process of tooth eruption. This demonstrates the overarching influence of life history evolution on several aspects of dental development. These new insights into tooth root growth now provide an additional line of enquiry that may contribute to future studies of more recent life history and dietary adaptations within the genus Homo. PMID:23342167

  19. An EMG-based robot control scheme robust to time-varying EMG signal features.

    PubMed

    Artemiadis, Panagiotis K; Kyriakopoulos, Kostas J

    2010-05-01

    Human-robot control interfaces have received increased attention during the past decades. With the introduction of robots in everyday life, especially in providing services to people with special needs (i.e., elderly, people with impairments, or people with disabilities), there is a strong necessity for simple and natural control interfaces. In this paper, electromyographic (EMG) signals from muscles of the human upper limb are used as the control interface between the user and a robot arm. EMG signals are recorded using surface EMG electrodes placed on the user's skin, making the user's upper limb free of bulky interface sensors or machinery usually found in conventional human-controlled systems. The proposed interface allows the user to control in real time an anthropomorphic robot arm in 3-D space, using upper limb motion estimates based only on EMG recordings. Moreover, the proposed interface is robust to EMG changes with respect to time, mainly caused by muscle fatigue or adjustments of contraction level. The efficiency of the method is assessed through real-time experiments, including random arm motions in the 3-D space with variable hand speed profiles.

  20. More reliable estimates of divergence times in Pan using complete mtDNA sequences and accounting for population structure.

    PubMed

    Stone, Anne C; Battistuzzi, Fabia U; Kubatko, Laura S; Perry, George H; Trudeau, Evan; Lin, Hsiuman; Kumar, Sudhir

    2010-10-27

    Here, we report the sequencing and analysis of eight complete mitochondrial genomes of chimpanzees (Pan troglodytes) from each of the three established subspecies (P. t. troglodytes, P. t. schweinfurthii and P. t. verus) and the proposed fourth subspecies (P. t. ellioti). Our population genetic analyses are consistent with neutral patterns of evolution that have been shaped by demography. The high levels of mtDNA diversity in western chimpanzees are unlike those seen at nuclear loci, which may reflect a demographic history of greater female to male effective population sizes possibly owing to the characteristics of the founding population. By using relaxed-clock methods, we have inferred a timetree of chimpanzee species and subspecies. The absolute divergence times vary based on the methods and calibration used, but relative divergence times show extensive uniformity. Overall, mtDNA produces consistently older times than those known from nuclear markers, a discrepancy that is reduced significantly by explicitly accounting for chimpanzee population structures in time estimation. Assuming the human-chimpanzee split to be between 7 and 5 Ma, chimpanzee time estimates are 2.1-1.5, 1.1-0.76 and 0.25-0.18 Ma for the chimpanzee/bonobo, western/(eastern + central) and eastern/central chimpanzee divergences, respectively.

  1. Electrical Impedance Tomography: a new study method for neonatal Respiratory Distress Syndrome?

    PubMed Central

    Chatziioannidis, I; Samaras, T; Nikolaidis, N

    2011-01-01

    Treatment of cardiorespiratory system diseases is a procedure that usually demands data collection on terms of the anatomy and the operation of the organs that are under study. Electrical Impedance Tomography (EIT) is an alternative approach, in comparison to existing techniques. With EIT electrodes are placed in the perimeter of the human body and images of the estimated organ are reconstructed, using the measurement of its impendence (or resistance) distribution and determining its alteration through time, while at the same time the patient is not exposed to ionizing radiation. Its clinical use presupposes the correct placement of the electrodes over the perimeter of the human body, the rapid data collection and electrical safety. It is a low cost technique and it is implemented near the patient. It is able to determine the distribution of ventilation, blood supply, diffused or localized lung defects, but it can also estimate therapeutic interventions or alteration to assisted ventilation of the neonate. EIT was developed at the beginning of the 1980s, but it has only recently begun to be implemented on neonates, and especially in the study of their respiratory system function. The low rate of image analysis is considered to be a drawback, but it is offset by the potential offered for the estimation of lungs' function (both under normal and pathological conditions), since ventilation and resistance are two quite similar concepts. In this review the most important studies about EIT are mentioned as a method of estimating respiratory distress syndrome in neonates. In terms of the above mentioned development, it is supposed that this technique will offer a great amount of help to the doctor in his / her estimations of the cardiorespiratory system and to his / her selection of the best intervening strategies. PMID:22435017

  2. Rapid simultaneous high-resolution mapping of myelin water fraction and relaxation times in human brain using BMC-mcDESPOT.

    PubMed

    Bouhrara, Mustapha; Spencer, Richard G

    2017-02-15

    A number of central nervous system (CNS) diseases exhibit changes in myelin content and magnetic resonance longitudinal, T 1 , and transverse, T 2 , relaxation times, which therefore represent important biomarkers of CNS pathology. Among the methods applied for measurement of myelin water fraction (MWF) and relaxation times, the multicomponent driven equilibrium single pulse observation of T 1 and T 2 (mcDESPOT) approach is of particular interest. mcDESPOT permits whole brain mapping of multicomponent T 1 and T 2 , with data acquisition accomplished within a clinically realistic acquisition time. Unfortunately, previous studies have indicated the limited performance of mcDESPOT in the setting of the modest signal-to-noise range of high-resolution mapping, required for the depiction of small structures and to reduce partial volume effects. Recently, we showed that a new Bayesian Monte Carlo (BMC) analysis substantially improved determination of MWF from mcDESPOT imaging data. However, our previous study was limited in that it did not discuss determination of relaxation times. Here, we extend the BMC analysis to the simultaneous determination of whole-brain MWF and relaxation times using the two-component mcDESPOT signal model. Simulation analyses and in-vivo human brain studies indicate the overall greater performance of this approach compared to the stochastic region contraction (SRC) algorithm, conventionally used to derive parameter estimates from mcDESPOT data. SRC estimates of the transverse relaxation time of the long T 2 fraction, T 2,l , and the longitudinal relaxation time of the short T 1 fraction, T 1,s , clustered towards the lower and upper parameter search space limits, respectively, indicating failure of the fitting procedure. We demonstrate that this effect is absent in the BMC analysis. Our results also showed improved parameter estimation for BMC as compared to SRC for high-resolution mapping. Overall we find that the combination of BMC analysis and mcDESPOT, BMC-mcDESPOT, shows excellent performance for accurate high-resolution whole-brain mapping of MWF and bi-component transverse and longitudinal relaxation times within a clinically realistic acquisition time. Published by Elsevier Inc.

  3. [The physiological classification of human thermal states under high environmental temperatures].

    PubMed

    Bobrov, A F; Kuznets, E I

    1995-01-01

    The paper deals with the physiological classification of human thermal states in a hot environment. A review of the basic systems of classifications of thermal states is given, their main drawbacks are discussed. On the basis of human functional state research in a broad range of environmental temperatures the system of evaluation and classification of human thermal states is proposed. New integral one-dimensional multi-parametric criteria for evaluation are used. For the development of these criteria methods of factor, cluster and canonical correlation analyses are applied. Stochastic nomograms capable of identification of human thermal state for different intensity of influence are given. In this case evaluation of intensity is estimated according to one-dimensional criteria taking into account environmental temperature, physical load and time of man's staying in overheating conditions.

  4. Using Call Detail Records for Modeling Coastal Recreation Behavior

    EPA Science Inventory

    Call data records (CDR) are data from cellular phone networks that can be used to understand human mobility or where people go spatially. They can be used to estimate visitation to an area such as a coastal access point for a given time window, as well as provide information on t...

  5. A Music Handbook for Elementary Classroom Teachers.

    ERIC Educational Resources Information Center

    Teply, Karleen I.

    Designed as a resource for elementary teachers, this booklet contains proven classroom activities and lesson plans as well as a human resource guide to help incorporate music into the K-6 curriculum. Fourteen lesson plans grouped by grades K-3 or 4-6 comprise the first section. For each lesson instructional objective, time estimate, materials,…

  6. Everything You Always Wanted to Know about the Superintendency, but Were Afraid To Ask.

    ERIC Educational Resources Information Center

    McAdams, Richard P.

    1995-01-01

    Each of 33 educational administration graduate students at Lehigh University asked a superintendent to estimate division of his/her time and energy among five broad categories: CEO function to the school board, human resource management, instructional leadership, business management, and community relations. Most superintendents would rather spend…

  7. Effects of Welfare Reform on Vocational Education and Training

    ERIC Educational Resources Information Center

    Dave, Dhaval M.; Reichman, Nancy E.; Corman, Hope; Das, Dhiman

    2011-01-01

    Exploiting variation in welfare reform across states and over time and using relevant comparison groups, this study estimates the effects of welfare reform on an important source of human capital acquisition among women at risk for relying on welfare: vocational education and training. The results suggest that welfare reform reduced enrollment in…

  8. A Human Factors Engineering Assessment of the Buffalo Mine Protection Clearance Vehicle Roof Hatch

    DTIC Science & Technology

    2007-10-01

    this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data ...sources, gathering and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden...3 2. Method 4 2.1 Anthropometric Data

  9. Applying a mathematical model to estimate the fractional accessibility to quenching of serum albumin by risperidone

    NASA Astrophysics Data System (ADS)

    Carqueja, Marilena; Cortez, Celia Martins

    2014-10-01

    In this work we report the results from application of a mathematical model to estimate the fractional accessibility to fluorescence quenching by risperidone in human and bovine sera albumins. Risperidone is an atypical antipsychotic drug used to treat many kinds of psychiatric disorders. Results showed that but the fractional accessibility for trypyophan 134, sub domain 1B, is about 3 times higher than that to tryptophan 212, showing that the primary binding site for risperidone is close to tryptophan 134, in domain IB of BSA.

  10. The Dynamics of Population, Built-up Areas and their Evolving Associations in Gridded Population across Time and Space

    NASA Astrophysics Data System (ADS)

    Stevens, F. R.; Gaughan, A. E.; Tatem, A. J.; Linard, C.; Sorichetta, A.; Nieves, J. J.; Reed, P.

    2017-12-01

    Gridded population data is commonly used to understand the `now' of hazard risk and mitigation management, health and disease modelling, and global change-, economic-, environmental-, and sustainability-related research. But to understand how human population change at local to global scales influences and is influenced by environmental changes requires novel ways of treating data and statistically describing associations of measured population counts with associated covariates. One of the most critical components in such gridded estimates is the relationship between built-up areas and population located in these areas. This relationship is rarely static and accurately estimating changes in built-areas through time and the changing human population around them is critical when applying gridded population datasets in studies of other environmental change. The research presented here discusses these issues in the context of multitemporal, gridded population data, using new technologies and sources of remotely-sensed and modeled built-up areas. We discuss applications of these data in environmental analyses and intercomparisons with other such data across scales.

  11. A methodology for overall consequence modeling in chemical industry.

    PubMed

    Arunraj, N S; Maiti, J

    2009-09-30

    Risk assessment in chemical process industry is a very important issue for safeguarding human and the ecosystem from damages caused to them. Consequence assessment is an integral part of risk assessment. However, the commonly used consequence estimation methods involve time-consuming complex mathematical models and simple assimilation of losses without considering all the consequence factors. This lead to the deterioration of quality of estimated risk value. So, the consequence modeling has to be performed in detail considering all major losses with optimal time to improve the decisive value of risk. The losses can be broadly categorized into production loss, assets loss, human health and safety loss, and environment loss. In this paper, a conceptual framework is developed to assess the overall consequence considering all the important components of major losses. Secondly, a methodology is developed for the calculation of all the major losses, which are normalized to yield the overall consequence. Finally, as an illustration, the proposed methodology is applied to a case study plant involving benzene extraction. The case study result using the proposed consequence assessment scheme is compared with that from the existing methodologies.

  12. Spread of Zika virus in the Americas.

    PubMed

    Zhang, Qian; Sun, Kaiyuan; Chinazzi, Matteo; Pastore Y Piontti, Ana; Dean, Natalie E; Rojas, Diana Patricia; Merler, Stefano; Mistry, Dina; Poletti, Piero; Rossi, Luca; Bray, Margaret; Halloran, M Elizabeth; Longini, Ira M; Vespignani, Alessandro

    2017-05-30

    We use a data-driven global stochastic epidemic model to analyze the spread of the Zika virus (ZIKV) in the Americas. The model has high spatial and temporal resolution and integrates real-world demographic, human mobility, socioeconomic, temperature, and vector density data. We estimate that the first introduction of ZIKV to Brazil likely occurred between August 2013 and April 2014 (90% credible interval). We provide simulated epidemic profiles of incident ZIKV infections for several countries in the Americas through February 2017. The ZIKV epidemic is characterized by slow growth and high spatial and seasonal heterogeneity, attributable to the dynamics of the mosquito vector and to the characteristics and mobility of the human populations. We project the expected timing and number of pregnancies infected with ZIKV during the first trimester and provide estimates of microcephaly cases assuming different levels of risk as reported in empirical retrospective studies. Our approach represents a modeling effort aimed at understanding the potential magnitude and timing of the ZIKV epidemic and it can be potentially used as a template for the analysis of future mosquito-borne epidemics.

  13. Spread of Zika virus in the Americas

    PubMed Central

    Zhang, Qian; Sun, Kaiyuan; Chinazzi, Matteo; Pastore y Piontti, Ana; Dean, Natalie E.; Rojas, Diana Patricia; Merler, Stefano; Mistry, Dina; Poletti, Piero; Rossi, Luca; Bray, Margaret; Halloran, M. Elizabeth; Longini, Ira M.; Vespignani, Alessandro

    2017-01-01

    We use a data-driven global stochastic epidemic model to analyze the spread of the Zika virus (ZIKV) in the Americas. The model has high spatial and temporal resolution and integrates real-world demographic, human mobility, socioeconomic, temperature, and vector density data. We estimate that the first introduction of ZIKV to Brazil likely occurred between August 2013 and April 2014 (90% credible interval). We provide simulated epidemic profiles of incident ZIKV infections for several countries in the Americas through February 2017. The ZIKV epidemic is characterized by slow growth and high spatial and seasonal heterogeneity, attributable to the dynamics of the mosquito vector and to the characteristics and mobility of the human populations. We project the expected timing and number of pregnancies infected with ZIKV during the first trimester and provide estimates of microcephaly cases assuming different levels of risk as reported in empirical retrospective studies. Our approach represents a modeling effort aimed at understanding the potential magnitude and timing of the ZIKV epidemic and it can be potentially used as a template for the analysis of future mosquito-borne epidemics. PMID:28442561

  14. Legacy Sediments in U.S. River Environments: Atrazine and Aggradation to Zinc and Zoobenthos

    NASA Astrophysics Data System (ADS)

    Wohl, E.

    2014-12-01

    Legacy sediments are those that are altered by human activities. Alterations include (i) human-caused aggradation (and subsequent erosion), such as sediment accumulating upstream from relict or contemporary dams, (ii) human-caused lack of continuing deposition that results in changing moisture and nutrient levels within existing sediments, such as on floodplains that no longer receive lateral or vertical accretion deposits because of levees, bank stabilization, and other channel engineering, and (iii) human-generated contaminants such as PCBs and pesticides that adsorb to fine sediment. Existing estimates of human alterations of river systems suggest that legacy sediments are ubiquitous. Only an estimated 2% of river miles in the United States are not affected by flow regulation that alters sediment transport, for example, and less than half of major river basins around the world are minimally altered by flow regulation. Combined with extensive but poorly documented reduction in floodplain sedimentation, as well as sediment contamination by diverse synthetic compounds, excess nutrients, and heavy metals, these national and global estimates suggest that legacy sediments now likely constitute a very abundant type of fluvial sediment. Because legacy sediments can alter river form and function for decades to centuries after the cessation of the human activity that created the legacy sediments, river management and restoration must be informed by accurate knowledge of the distribution and characteristics of legacy sediments. Geomorphologists can contribute understanding of sediment dynamics, including: the magnitude, frequency, and duration of flows that mobilize sediments with adsorbed contaminants; sites where erosion and deposition are most likely to occur under specified flow and sediment supply; residence time of sediments; and the influence of surface and subsurface water fluxes on sediment stability and geochemistry.

  15. A Review of Mercury Bioavailability in Humans and Fish.

    PubMed

    Bradley, Mark A; Barst, Benjamin D; Basu, Niladri

    2017-02-10

    To estimate human exposure to methylmercury (MeHg), risk assessors often assume 95%-100% bioavailability in their models. However, recent research suggests that assuming all, or most, of the ingested mercury (Hg) is absorbed into systemic circulation may be erroneous. The objective of this paper is to review and discuss the available state of knowledge concerning the assimilation or bioavailability of Hg in fish and humans. In fish, this meant reviewing studies on assimilation efficiency, that is the difference between ingested and excreted Hg over a given period of time. In humans, this meant reviewing studies that mostly investigated bioaccessibility (digestive processes) rather than bioavailability (cumulative digestive + absorptive processes), although studies incorporating absorption for a fuller picture of bioavailability were also included where possible. The outcome of this review shows that in a variety of organisms and experimental models that Hg bioavailability and assimilation is less than 100%. Specifically, 25 studies on fish were reviewed, and assimilation efficiencies ranged from 10% to 100% for MeHg and from 2% to 51% for Hg(II). For humans, 20 studies were reviewed with bioaccessibility estimates ranging from 2% to 100% for MeHg and 0.2% to 94% for Hg(II). The overall absorption estimates ranged from 12% to 79% for MeHg and 49% to 69% for Hg(II), and were consistently less than 100%. For both fish and humans, a number of cases are discussed in which factors (e.g., Hg source, cooking methods, nutrients) are shown to affect Hg bioavailability. The summaries presented here challenge a widely-held assumption in the Hg risk assessment field, and the paper discusses possible ways forward for the field.

  16. A Review of Mercury Bioavailability in Humans and Fish

    PubMed Central

    Bradley, Mark A.; Barst, Benjamin D.; Basu, Niladri

    2017-01-01

    To estimate human exposure to methylmercury (MeHg), risk assessors often assume 95%–100% bioavailability in their models. However, recent research suggests that assuming all, or most, of the ingested mercury (Hg) is absorbed into systemic circulation may be erroneous. The objective of this paper is to review and discuss the available state of knowledge concerning the assimilation or bioavailability of Hg in fish and humans. In fish, this meant reviewing studies on assimilation efficiency, that is the difference between ingested and excreted Hg over a given period of time. In humans, this meant reviewing studies that mostly investigated bioaccessibility (digestive processes) rather than bioavailability (cumulative digestive + absorptive processes), although studies incorporating absorption for a fuller picture of bioavailability were also included where possible. The outcome of this review shows that in a variety of organisms and experimental models that Hg bioavailability and assimilation is less than 100%. Specifically, 25 studies on fish were reviewed, and assimilation efficiencies ranged from 10% to 100% for MeHg and from 2% to 51% for Hg(II). For humans, 20 studies were reviewed with bioaccessibility estimates ranging from 2% to 100% for MeHg and 0.2% to 94% for Hg(II). The overall absorption estimates ranged from 12% to 79% for MeHg and 49% to 69% for Hg(II), and were consistently less than 100%. For both fish and humans, a number of cases are discussed in which factors (e.g., Hg source, cooking methods, nutrients) are shown to affect Hg bioavailability. The summaries presented here challenge a widely-held assumption in the Hg risk assessment field, and the paper discusses possible ways forward for the field. PMID:28208586

  17. Drastic population fluctuations explain the rapid extinction of the passenger pigeon.

    PubMed

    Hung, Chih-Ming; Shaner, Pei-Jen L; Zink, Robert M; Liu, Wei-Chung; Chu, Te-Chin; Huang, Wen-San; Li, Shou-Hsien

    2014-07-22

    To assess the role of human disturbances in species' extinction requires an understanding of the species population history before human impact. The passenger pigeon was once the most abundant bird in the world, with a population size estimated at 3-5 billion in the 1800s; its abrupt extinction in 1914 raises the question of how such an abundant bird could have been driven to extinction in mere decades. Although human exploitation is often blamed, the role of natural population dynamics in the passenger pigeon's extinction remains unexplored. Applying high-throughput sequencing technologies to obtain sequences from most of the genome, we calculated that the passenger pigeon's effective population size throughout the last million years was persistently about 1/10,000 of the 1800's estimated number of individuals, a ratio 1,000-times lower than typically found. This result suggests that the passenger pigeon was not always super abundant but experienced dramatic population fluctuations, resembling those of an "outbreak" species. Ecological niche models supported inference of drastic changes in the extent of its breeding range over the last glacial-interglacial cycle. An estimate of acorn-based carrying capacity during the past 21,000 y showed great year-to-year variations. Based on our results, we hypothesize that ecological conditions that dramatically reduced population size under natural conditions could have interacted with human exploitation in causing the passenger pigeon's rapid demise. Our study illustrates that even species as abundant as the passenger pigeon can be vulnerable to human threats if they are subject to dramatic population fluctuations, and provides a new perspective on the greatest human-caused extinction in recorded history.

  18. Direct estimate of the spontaneous germ line mutation rate in African green monkeys.

    PubMed

    Pfeifer, Susanne P

    2017-12-01

    Here, I provide the first direct estimate of the spontaneous mutation rate in an Old World monkey, using a seven individual, three-generation pedigree of African green monkeys. Eight de novo mutations were identified within ∼1.5 Gbp of accessible genome, corresponding to an estimated point mutation rate of 0.94 × 10 -8 per site per generation, suggesting an effective population size of ∼12000 for the species. This estimation represents a significant improvement in our knowledge of the population genetics of the African green monkey, one of the most important nonhuman primate models in biomedical research. Furthermore, by comparing mutation rates in Old World monkeys with the only other direct estimates in primates to date-humans and chimpanzees-it is possible to uniquely address how mutation rates have evolved over longer time scales. While the estimated spontaneous mutation rate for African green monkeys is slightly lower than the rate of 1.2 × 10 -8 per base pair per generation reported in chimpanzees, it is similar to the lower range of rates of 0.96 × 10 -8 -1.28 × 10 -8 per base pair per generation recently estimated from whole genome pedigrees in humans. This result suggests a long-term constraint on mutation rate that is quite different from similar evidence pertaining to recombination rate evolution in primates. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  19. Usefulness of telomere length in DNA from human teeth for age estimation.

    PubMed

    Márquez-Ruiz, Ana Belén; González-Herrera, Lucas; Valenzuela, Aurora

    2018-03-01

    Age estimation is widely used to identify individuals in forensic medicine. However, the accuracy of the most commonly used procedures is markedly reduced in adulthood, and these methods cannot be applied in practice when morphological information is limited. Molecular methods for age estimation have been extensively developed in the last few years. The fact that telomeres shorten at each round of cell division has led to the hypothesis that telomere length can be used as a tool to predict age. The present study thus aimed to assess the correlation between telomere length measured in dental DNA and age, and the effect of sex and tooth type on telomere length; a further aim was to propose a statistical regression model to estimate the biological age based on telomere length. DNA was extracted from 91 tooth samples belonging to 77 individuals of both sexes and 15 to 85 years old and was used to determine telomere length by quantitative real-time PCR. Our results suggested that telomere length was not affected by sex and was greater in molar teeth. We found a significant correlation between age and telomere length measured in DNA from teeth. However, the equation proposed to predict age was not accurate enough for forensic age estimation on its own. Age estimation based on telomere length in DNA from tooth samples may be useful as a complementary method which provides an approximate estimate of age, especially when human skeletal remains are the only forensic sample available.

  20. Improving Estimation of Ground Casualty Risk From Reentering Space Objects

    NASA Technical Reports Server (NTRS)

    Ostrom, Chris L.

    2017-01-01

    A recent improvement to the long-term estimation of ground casualties from reentering space debris is the further refinement and update to the human population distribution. Previous human population distributions were based on global totals with simple scaling factors for future years, or a coarse grid of population counts in a subset of the world's countries, each cell having its own projected growth rate. The newest population model includes a 5-fold refinement in both latitude and longitude resolution. All areas along a single latitude are combined to form a global population distribution as a function of latitude, creating a more accurate population estimation based on non-uniform growth at the country and area levels. Previous risk probability calculations used simplifying assumptions that did not account for the ellipsoidal nature of the Earth. The new method uses first, a simple analytical method to estimate the amount of time spent above each latitude band for a debris object with a given orbit inclination and second, a more complex numerical method that incorporates the effects of a non-spherical Earth. These new results are compared with the prior models to assess the magnitude of the effects on reentry casualty risk.

  1. Dating the Origin of Language Using Phonemic Diversity

    PubMed Central

    2012-01-01

    Language is a key adaptation of our species, yet we do not know when it evolved. Here, we use data on language phonemic diversity to estimate a minimum date for the origin of language. We take advantage of the fact that phonemic diversity evolves slowly and use it as a clock to calculate how long the oldest African languages would have to have been around in order to accumulate the number of phonemes they possess today. We use a natural experiment, the colonization of Southeast Asia and Andaman Islands, to estimate the rate at which phonemic diversity increases through time. Using this rate, we estimate that present-day languages date back to the Middle Stone Age in Africa. Our analysis is consistent with the archaeological evidence suggesting that complex human behavior evolved during the Middle Stone Age in Africa, and does not support the view that language is a recent adaptation that has sparked the dispersal of humans out of Africa. While some of our assumptions require testing and our results rely at present on a single case-study, our analysis constitutes the first estimate of when language evolved that is directly based on linguistic data. PMID:22558135

  2. BFEE: A User-Friendly Graphical Interface Facilitating Absolute Binding Free-Energy Calculations.

    PubMed

    Fu, Haohao; Gumbart, James C; Chen, Haochuan; Shao, Xueguang; Cai, Wensheng; Chipot, Christophe

    2018-03-26

    Quantifying protein-ligand binding has attracted the attention of both theorists and experimentalists for decades. Many methods for estimating binding free energies in silico have been reported in recent years. Proper use of the proposed strategies requires, however, adequate knowledge of the protein-ligand complex, the mathematical background for deriving the underlying theory, and time for setting up the simulations, bookkeeping, and postprocessing. Here, to minimize human intervention, we propose a toolkit aimed at facilitating the accurate estimation of standard binding free energies using a geometrical route, coined the binding free-energy estimator (BFEE), and introduced it as a plug-in of the popular visualization program VMD. Benefitting from recent developments in new collective variables, BFEE can be used to generate the simulation input files, based solely on the structure of the complex. Once the simulations are completed, BFEE can also be utilized to perform the post-treatment of the free-energy calculations, allowing the absolute binding free energy to be estimated directly from the one-dimensional potentials of mean force in simulation outputs. The minimal amount of human intervention required during the whole process combined with the ergonomic graphical interface makes BFEE a very effective and practical tool for the end-user.

  3. The use of Leptodyctium riparium (Hedw.) Warnst in the estimation of minimum postmortem interval.

    PubMed

    Lancia, Massimo; Conforti, Federica; Aleffi, Michele; Caccianiga, Marco; Bacci, Mauro; Rossi, Riccardo

    2013-01-01

    The estimation of the postmortem interval (PMI) is still one of the most challenging issues in forensic investigations, especially in cases in which advanced transformative phenomena have taken place. The dating of skeletal remains is even more difficult and sometimes only a rough determination of the PMI is possible. Recent studies suggest that plant analysis can provide a reliable estimation for skeletal remains dating, when traditional techniques are not applicable. Forensic Botany is a relatively recent discipline that includes many subdisciplines such as Palynology, Anatomy, Dendrochronology, Limnology, Systematic, Ecology, and Molecular Biology. In a recent study, Cardoso et al. (Int J Legal Med 2010;124:451) used botanical evidence for the first time to establish the PMI of human skeletal remains found in a forested area of northern Portugal from the growth rate of mosses and shrub roots. The present paper deals with a case in which the study of the growth rate of the bryophyte Leptodyctium riparium (Hedw.) Warnst, was used in estimating the PMI of some human skeletal remains that were found in a wooded area near Perugia, in Central Italy. © 2012 American Academy of Forensic Sciences.

  4. Improving Estimation of Ground Casualty Risk from Reentering Space Objects

    NASA Technical Reports Server (NTRS)

    Ostrom, C.

    2017-01-01

    A recent improvement to the long-term estimation of ground casualties from reentering space debris is the further refinement and update to the human population distribution. Previous human population distributions were based on global totals with simple scaling factors for future years, or a coarse grid of population counts in a subset of the world's countries, each cell having its own projected growth rate. The newest population model includes a 5-fold refinement in both latitude and longitude resolution. All areas along a single latitude are combined to form a global population distribution as a function of latitude, creating a more accurate population estimation based on non-uniform growth at the country and area levels. Previous risk probability calculations used simplifying assumptions that did not account for the ellipsoidal nature of the earth. The new method uses first, a simple analytical method to estimate the amount of time spent above each latitude band for a debris object with a given orbit inclination, and second, a more complex numerical method that incorporates the effects of a non-spherical Earth. These new results are compared with the prior models to assess the magnitude of the effects on reentry casualty risk.

  5. Human Activity and Habitat Characteristics Influence Shorebird Habitat Use and Behavior at a Vancouver Island Migratory Stopover Site.

    PubMed

    Murchison, Colleen R; Zharikov, Yuri; Nol, Erica

    2016-09-01

    Pacific Rim National Park Reserve on Vancouver Island, British Columbia, Canada, has 16 km of coastal beaches that attract many thousands of people and shorebirds (S.O. Charadrii) every year. To identify locations where shorebirds concentrate and to determine the impact of human activity and habitat characteristics on shorebirds, we conducted shorebird and visitor surveys at 20 beach sectors (across 20 total km of beach) during fall migration in 2011-2014 and spring migration in 2012 and 2013. Using zero-inflated negative binomial regression and a model selection approach, we found that beach width and number of people influenced shorebird use of beach sectors (Bayesian information criterion weight of top model = 0.69). Shorebird absence from beaches was associated with increasing number of people (parameter estimate from top model: 0.38; 95 % CI 0.19, 0.57) and decreasing beach width (parameter estimate: -0.32; 95 % CI -0.47, -0.17). Shorebirds spent more time at wider beaches (parameter estimate: 0.68; 95 % CI 0.49, 0.87). Close proximity to people increased the proportion of time shorebirds spent moving, while shorebirds spent more time moving and less time foraging on wider beaches than on narrower ones. Shorebird disturbance increased with proximity of people, activity speed, and presence of dogs. Based on our findings, management options, for reducing shorebird disturbance at Pacific Rim National Park Reserve and similar shorebird stopover areas, include mandatory buffer distances between people and shorebirds, restrictions on fast-moving activities (e.g., running, biking), prohibiting dogs, and seasonal closures of wide beach sections.

  6. Dynamics of different-sized solid-state nanocrystals as tracers for a drug-delivery system in the interstitium of a human tumor xenograft

    PubMed Central

    Kawai, Masaaki; Higuchi, Hideo; Takeda, Motohiro; Kobayashi, Yoshio; Ohuchi, Noriaki

    2009-01-01

    Introduction Recent anticancer drugs have been made larger to pass selectively through tumor vessels and stay in the interstitium. Understanding drug movement in association with its size at the single-molecule level and estimating the time needed to reach the targeted organ is indispensable for optimizing drug delivery because single cell-targeted therapy is the ongoing paradigm. This report describes the tracking of single solid nanoparticles in tumor xenografts and the estimation of arrival time. Methods Different-sized nanoparticles measuring 20, 40, and 100 nm were injected into the tail vein of the female Balb/c nu/nu mice bearing human breast cancer on their backs. The movements of the nanoparticles were visualized through the dorsal skin-fold chamber with the high-speed confocal microscopy that we manufactured. Results An analysis of the particle trajectories revealed diffusion to be inversely related to the particle size and position in the tumor, whereas the velocity of the directed movement was related to the position. The difference in the velocity was the greatest for 40-nm particles in the perivascular to the intercellular region: difference = 5.8 nm/s. The arrival time of individual nanoparticles at tumor cells was simulated. The estimated times for the 20-, 40-, and 100-nm particles to reach the tumor cells were 158.0, 218.5, and 389.4 minutes, respectively, after extravasation. Conclusions This result suggests that the particle size can be individually designed for each goal. These data and methods are also important for understanding drug pharmacokinetics. Although this method may be subject to interference by surface molecules attached on the particles, it has the potential to elucidate the pharmacokinetics involved in constructing novel drug-delivery systems involving cell-targeted therapy. PMID:19575785

  7. Modeling Reef Fish Biomass, Recovery Potential, and Management Priorities in the Western Indian Ocean.

    PubMed

    McClanahan, Timothy R; Maina, Joseph M; Graham, Nicholas A J; Jones, Kendall R

    2016-01-01

    Fish biomass is a primary driver of coral reef ecosystem services and has high sensitivity to human disturbances, particularly fishing. Estimates of fish biomass, their spatial distribution, and recovery potential are important for evaluating reef status and crucial for setting management targets. Here we modeled fish biomass estimates across all reefs of the western Indian Ocean using key variables that predicted the empirical data collected from 337 sites. These variables were used to create biomass and recovery time maps to prioritize spatially explicit conservation actions. The resultant fish biomass map showed high variability ranging from ~15 to 2900 kg/ha, primarily driven by human populations, distance to markets, and fisheries management restrictions. Lastly, we assembled data based on the age of fisheries closures and showed that biomass takes ~ 25 years to recover to typical equilibrium values of ~1200 kg/ha. The recovery times to biomass levels for sustainable fishing yields, maximum diversity, and ecosystem stability or conservation targets once fishing is suspended was modeled to estimate temporal costs of restrictions. The mean time to recovery for the whole region to the conservation target was 8.1(± 3SD) years, while recovery to sustainable fishing thresholds was between 0.5 and 4 years, but with high spatial variation. Recovery prioritization scenario models included one where local governance prioritized recovery of degraded reefs and two that prioritized minimizing recovery time, where countries either operated independently or collaborated. The regional collaboration scenario selected remote areas for conservation with uneven national responsibilities and spatial coverage, which could undermine collaboration. There is the potential to achieve sustainable fisheries within a decade by promoting these pathways according to their social-ecological suitability.

  8. Modeling Reef Fish Biomass, Recovery Potential, and Management Priorities in the Western Indian Ocean

    PubMed Central

    McClanahan, Timothy R.; Maina, Joseph M.; Graham, Nicholas A. J.; Jones, Kendall R.

    2016-01-01

    Fish biomass is a primary driver of coral reef ecosystem services and has high sensitivity to human disturbances, particularly fishing. Estimates of fish biomass, their spatial distribution, and recovery potential are important for evaluating reef status and crucial for setting management targets. Here we modeled fish biomass estimates across all reefs of the western Indian Ocean using key variables that predicted the empirical data collected from 337 sites. These variables were used to create biomass and recovery time maps to prioritize spatially explicit conservation actions. The resultant fish biomass map showed high variability ranging from ~15 to 2900 kg/ha, primarily driven by human populations, distance to markets, and fisheries management restrictions. Lastly, we assembled data based on the age of fisheries closures and showed that biomass takes ~ 25 years to recover to typical equilibrium values of ~1200 kg/ha. The recovery times to biomass levels for sustainable fishing yields, maximum diversity, and ecosystem stability or conservation targets once fishing is suspended was modeled to estimate temporal costs of restrictions. The mean time to recovery for the whole region to the conservation target was 8.1(± 3SD) years, while recovery to sustainable fishing thresholds was between 0.5 and 4 years, but with high spatial variation. Recovery prioritization scenario models included one where local governance prioritized recovery of degraded reefs and two that prioritized minimizing recovery time, where countries either operated independently or collaborated. The regional collaboration scenario selected remote areas for conservation with uneven national responsibilities and spatial coverage, which could undermine collaboration. There is the potential to achieve sustainable fisheries within a decade by promoting these pathways according to their social-ecological suitability. PMID:27149673

  9. Tularemia Outbreaks and Common Vole (Microtus arvalis) Irruptive Population Dynamics in Northwestern Spain, 1997-2014.

    PubMed

    Luque-Larena, Juan José; Mougeot, François; Roig, Dolors Vidal; Lambin, Xavier; Rodríguez-Pastor, Ruth; Rodríguez-Valín, Elena; Anda, Pedro; Escudero, Raquel

    2015-09-01

    During the last decades, large tularemia outbreaks in humans have coincided in time and space with population outbreaks of common voles in northwestern Spain, leading us to hypothesize that this rodent species acts as a key spillover agent of Francisella tularensis in the region. Here, we evaluate for the first time a potential link between irruptive vole numbers and human tularemia outbreaks in Spain. We compiled vole abundance estimates obtained through live-trapping monitoring studies and official reports of human tularemia cases during the period 1997-2014. We confirm a significant positive association between yearly cases of tularemia infection in humans and vole abundance. High vole densities during outbreaks (up to 1000 voles/hectare) may therefore enhance disease transmission and spillover contamination in the environment. If this ecological link is further confirmed, the apparent multiannual cyclicity of common vole outbreaks might provide a basis for forecasting the risk of tularemia outbreaks in northwestern Spain.

  10. Quick Estimation Model for the Concentration of Indoor Airborne Culturable Bacteria: An Application of Machine Learning.

    PubMed

    Liu, Zhijian; Li, Hao; Cao, Guoqing

    2017-07-30

    Indoor airborne culturable bacteria are sometimes harmful to human health. Therefore, a quick estimation of their concentration is particularly necessary. However, measuring the indoor microorganism concentration (e.g., bacteria) usually requires a large amount of time, economic cost, and manpower. In this paper, we aim to provide a quick solution: using knowledge-based machine learning to provide quick estimation of the concentration of indoor airborne culturable bacteria only with the inputs of several measurable indoor environmental indicators, including: indoor particulate matter (PM 2.5 and PM 10 ), temperature, relative humidity, and CO₂ concentration. Our results show that a general regression neural network (GRNN) model can sufficiently provide a quick and decent estimation based on the model training and testing using an experimental database with 249 data groups.

  11. Multiple-reflection model of human skin and estimation of pigment concentrations

    NASA Astrophysics Data System (ADS)

    Ohtsuki, Rie; Tominaga, Shoji; Tanno, Osamu

    2012-07-01

    We describe a new method for estimating the concentrations of pigments in the human skin using surface spectral reflectance. We derive an equation that expresses the surface spectral reflectance of the human skin. First, we propose an optical model of the human skin that accounts for the stratum corneum. We also consider the difference between the scattering coefficient of the epidermis and that of the dermis. We then derive an equation by applying the Kubelka-Munk theory to an optical model of the human skin. Unlike a model developed in a recent study, the present equation considers pigments as well as multiple reflections and the thicknesses of the skin layers as factors that affect the color of the human skin. In two experiments, we estimate the pigment concentrations using the measured surface spectral reflectances. Finally, we confirm the feasibility of the concentrations estimated by the proposed method by evaluating the estimated pigment concentrations in the skin.

  12. Genetic traces of east-to-west human expansion waves in Eurasia.

    PubMed

    Chaix, Raphaëlle; Austerlitz, Frédéric; Hegay, Tatyana; Quintana-Murci, Lluís; Heyer, Evelyne

    2008-07-01

    In this study, we describe the landscape of human demographic expansions in Eurasia using a large continental Y chromosome and mitochondrial DNA dataset. Variation at these two uniparentally-inherited genetic systems retraces expansions that occurred in the past 60 ky, and shows a clear decrease of expansion ages from east to west Eurasia. To investigate the demographic events at the origin of this westward decrease of expansion ages, the estimated divergence ages between Eurasian populations are compared with the estimated expansion ages within each population. Both markers suggest that the demographic expansion diffused from east to west in Eurasia in a demic way, i.e., through migrations of individuals (and not just through diffusion of new technologies), highlighting the prominent role of eastern regions within Eurasia during Palaeolithic times. (c) 2008 Wiley-Liss, Inc.

  13. Size-resolved emission rates of airborne bacteria and fungi in an occupied classroom

    PubMed Central

    Qian, J; Hospodsky, D; Yamamoto, N; Nazaroff, W W; Peccia, J

    2012-01-01

    The role of human occupancy as a source of indoor biological aerosols is poorly understood. Size-resolved concentrations of total and biological particles in indoor air were quantified in a classroom under occupied and vacant conditions. Per-occupant emission rates were estimated through a mass-balance modeling approach, and the microbial diversity of indoor and outdoor air during occupancy was determined via rDNA gene sequence analysis. Significant increases of total particle mass and bacterial genome concentrations were observed during the occupied period compared to the vacant case. These increases varied in magnitude with the particle size and ranged from 3 to 68 times for total mass, 12–2700 times for bacterial genomes, and 1.5–5.2 times for fungal genomes. Emission rates per person-hour because of occupancy were 31 mg, 37 × 106 genome copies, and 7.3 × 106 genome copies for total particle mass, bacteria, and fungi, respectively. Of the bacterial emissions, ∼18% are from taxa that are closely associated with the human skin microbiome. This analysis provides size-resolved, per person-hour emission rates for these biological particles and illustrates the extent to which being in an occupied room results in exposure to bacteria that are associated with previous or current human occupants. Practical Implications Presented here are the first size-resolved, per person emission rate estimates of bacterial and fungal genomes for a common occupied indoor space. The marked differences observed between total particle and bacterial size distributions suggest that size-dependent aerosol models that use total particles as a surrogate for microbial particles incorrectly assess the fate of and human exposure to airborne bacteria. The strong signal of human microbiota in airborne particulate matter in an occupied setting demonstrates that the aerosol route can be a source of exposure to microorganisms emitted from the skin, hair, nostrils, and mouths of other occupants. PMID:22257156

  14. Human impact parameterization in global hydrological models improves estimates of monthly discharges and hydrological extremes: a multi-model validation study

    NASA Astrophysics Data System (ADS)

    Veldkamp, Ted; Ward, Philip; de Moel, Hans; Aerts, Jeroen; Muller Schmied, Hannes; Portmann, Felix; Zhao, Fang; Gerten, Dieter; Masaki, Yoshimitsu; Pokhrel, Yadu; Satoh, Yusuke; Gosling, Simon; Zaherpour, Jamal; Wada, Yoshihide

    2017-04-01

    Human impacts on freshwater resources and hydrological features form the core of present-day water related hazards, like flooding, droughts, water scarcity, and water quality issues. Driven by the societal and scientific needs to correctly model such water related hazards a fair amount of resources has been invested over the past decades to represent human activities and their interactions with the hydrological cycle in global hydrological models (GHMs). Use of these GHMs - including the human dimension - is widespread, especially in water resources research. Evaluation or comparative assessments of the ability of such GHMs to represent real-world hydrological conditions are, unfortunately, however often limited to (near-)natural river basins. Such studies are, therefore, not able to test the model representation of human activities and its associated impact on estimates of freshwater resources or assessments of hydrological extremes. Studies that did perform a validation exercise - including the human dimension and looking into managed catchments - either focused only on one hydrological model, and/or incorporated only a few data points (i.e. river basins) for validation. To date, a comprehensive comparative analysis that evaluates whether and where incorporating the human dimension actually improves the performance of different GHMs with respect to their representation of real-world hydrological conditions and extremes is missing. The absence of such study limits the potential benchmarking of GHMs and their outcomes in hydrological hazard and risk assessments significantly, potentially hampering incorporation of GHMs and their modelling results in actual policy making and decision support with respect to water resources management. To address this issue, we evaluate in this study the performance of five state-of-the-art GHMs that include anthropogenic activities in their modelling scheme, with respect to their representation of monthly discharges and hydrological extremes. To this end, we compared their monthly discharge simulations under a naturalized and a time-dependent human impact simulation, with monthly GRDC river discharge observations of 2,412 stations over the period 1971-2010. Evaluation metrics that were used to assess the performance of the GHMs included the modified Kling-Gupta Efficiency index, and its individual parameters describing the linear correlation coefficient, the bias ratio, and the variability ratio, as well as indicators for hydrological extremes (Q90, Q10). Our results show that inclusion of anthropogenic activities in the modelling framework generally enhances the overall performance of the GHMs studied, mainly driven by bias-improvements, and to a lesser extent due to changes in modelled hydrological variability. Whilst the inclusion of anthropogenic activities takes mainly effect in the managed catchments, a significant share of the (near-)natural catchments is influenced as well. To get estimates of hydrological extremes right, especially when looking at low-flows, inclusion of human activities is paramount. Whilst high-flow estimates are mainly decreased, impact of human activities on low-flows is ambiguous, i.e. due to the relative importance of the timing of return flows and reservoir operations. Even with inclusion of the human dimension we find, nevertheless, a persistent overestimation of hydrological extremes across all models, which should be accounted for in future assessments.

  15. Analytical Framework for Identifying and Differentiating Recent Hitchhiking and Severe Bottleneck Effects from Multi-Locus DNA Sequence Data

    DOE PAGES

    Sargsyan, Ori

    2012-05-25

    Hitchhiking and severe bottleneck effects have impact on the dynamics of genetic diversity of a population by inducing homogenization at a single locus and at the genome-wide scale, respectively. As a result, identification and differentiation of the signatures of such events from DNA sequence data at a single locus is challenging. This study develops an analytical framework for identifying and differentiating recent homogenization events at multiple neutral loci in low recombination regions. The dynamics of genetic diversity at a locus after a recent homogenization event is modeled according to the infinite-sites mutation model and the Wright-Fisher model of reproduction withmore » constant population size. In this setting, I derive analytical expressions for the distribution, mean, and variance of the number of polymorphic sites in a random sample of DNA sequences from a locus affected by a recent homogenization event. Based on this framework, three likelihood-ratio based tests are presented for identifying and differentiating recent homogenization events at multiple loci. Lastly, I apply the framework to two data sets. First, I consider human DNA sequences from four non-coding loci on different chromosomes for inferring evolutionary history of modern human populations. The results suggest, in particular, that recent homogenization events at the loci are identifiable when the effective human population size is 50000 or greater in contrast to 10000, and the estimates of the recent homogenization events are agree with the “Out of Africa” hypothesis. Second, I use HIV DNA sequences from HIV-1-infected patients to infer the times of HIV seroconversions. The estimates are contrasted with other estimates derived as the mid-time point between the last HIV-negative and first HIV-positive screening tests. Finally, the results show that significant discrepancies can exist between the estimates.« less

  16. Human language reveals a universal positivity bias

    PubMed Central

    Dodds, Peter Sheridan; Clark, Eric M.; Desu, Suma; Frank, Morgan R.; Reagan, Andrew J.; Williams, Jake Ryland; Mitchell, Lewis; Harris, Kameron Decker; Kloumann, Isabel M.; Bagrow, James P.; Megerdoomian, Karine; McMahon, Matthew T.; Tivnan, Brian F.; Danforth, Christopher M.

    2015-01-01

    Using human evaluation of 100,000 words spread across 24 corpora in 10 languages diverse in origin and culture, we present evidence of a deep imprint of human sociality in language, observing that (i) the words of natural human language possess a universal positivity bias, (ii) the estimated emotional content of words is consistent between languages under translation, and (iii) this positivity bias is strongly independent of frequency of word use. Alongside these general regularities, we describe interlanguage variations in the emotional spectrum of languages that allow us to rank corpora. We also show how our word evaluations can be used to construct physical-like instruments for both real-time and offline measurement of the emotional content of large-scale texts. PMID:25675475

  17. Whole-body biodistribution and estimation of radiation-absorbed doses of the dopamine D1 receptor radioligand 11C-NNC 112 in humans.

    PubMed

    Cropley, Vanessa L; Fujita, Masahiro; Musachio, John L; Hong, Jinsoo; Ghose, Subroto; Sangare, Janet; Nathan, Pradeep J; Pike, Victor W; Innis, Robert B

    2006-01-01

    The present study estimated radiation-absorbed doses of the dopamine D(1) receptor radioligand [(11)C]((+)-8-chloro-5-(7-benzofuranyl)-7-hydroxy-3-methyl-2,3,4,5-tetrahydro-1H-3-benzazepine) (NNC 112) in humans, based on dynamic whole-body PET in healthy subjects. Whole-body PET was performed on 7 subjects after injection of 710 +/- 85 MBq of (11)C-NNC 112. Fourteen frames were acquired for a total of 120 min in 7 segments of the body. Regions of interest were drawn on compressed planar images of source organs that could be identified. Radiation dose estimates were calculated from organ residence times using the OLINDA 1.0 program. The organs with the highest radiation-absorbed doses were the gallbladder, liver, lungs, kidneys, and urinary bladder wall. Biexponential fitting of mean bladder activity demonstrated that 15% of activity was excreted via the urine. With a 2.4-h voiding interval, the effective dose was 5.7 microSv/MBq (21.1 mrem/mCi). (11)C-NNC 112 displays a favorable radiation dose profile in humans and would allow multiple PET examinations per year to be performed on the same subject.

  18. Shared sensory estimates for human motion perception and pursuit eye movements.

    PubMed

    Mukherjee, Trishna; Battifarano, Matthew; Simoncini, Claudio; Osborne, Leslie C

    2015-06-03

    Are sensory estimates formed centrally in the brain and then shared between perceptual and motor pathways or is centrally represented sensory activity decoded independently to drive awareness and action? Questions about the brain's information flow pose a challenge because systems-level estimates of environmental signals are only accessible indirectly as behavior. Assessing whether sensory estimates are shared between perceptual and motor circuits requires comparing perceptual reports with motor behavior arising from the same sensory activity. Extrastriate visual cortex both mediates the perception of visual motion and provides the visual inputs for behaviors such as smooth pursuit eye movements. Pursuit has been a valuable testing ground for theories of sensory information processing because the neural circuits and physiological response properties of motion-responsive cortical areas are well studied, sensory estimates of visual motion signals are formed quickly, and the initiation of pursuit is closely coupled to sensory estimates of target motion. Here, we analyzed variability in visually driven smooth pursuit and perceptual reports of target direction and speed in human subjects while we manipulated the signal-to-noise level of motion estimates. Comparable levels of variability throughout viewing time and across conditions provide evidence for shared noise sources in the perception and action pathways arising from a common sensory estimate. We found that conditions that create poor, low-gain pursuit create a discrepancy between the precision of perception and that of pursuit. Differences in pursuit gain arising from differences in optic flow strength in the stimulus reconcile much of the controversy on this topic. Copyright © 2015 the authors 0270-6474/15/358515-16$15.00/0.

  19. Shared Sensory Estimates for Human Motion Perception and Pursuit Eye Movements

    PubMed Central

    Mukherjee, Trishna; Battifarano, Matthew; Simoncini, Claudio

    2015-01-01

    Are sensory estimates formed centrally in the brain and then shared between perceptual and motor pathways or is centrally represented sensory activity decoded independently to drive awareness and action? Questions about the brain's information flow pose a challenge because systems-level estimates of environmental signals are only accessible indirectly as behavior. Assessing whether sensory estimates are shared between perceptual and motor circuits requires comparing perceptual reports with motor behavior arising from the same sensory activity. Extrastriate visual cortex both mediates the perception of visual motion and provides the visual inputs for behaviors such as smooth pursuit eye movements. Pursuit has been a valuable testing ground for theories of sensory information processing because the neural circuits and physiological response properties of motion-responsive cortical areas are well studied, sensory estimates of visual motion signals are formed quickly, and the initiation of pursuit is closely coupled to sensory estimates of target motion. Here, we analyzed variability in visually driven smooth pursuit and perceptual reports of target direction and speed in human subjects while we manipulated the signal-to-noise level of motion estimates. Comparable levels of variability throughout viewing time and across conditions provide evidence for shared noise sources in the perception and action pathways arising from a common sensory estimate. We found that conditions that create poor, low-gain pursuit create a discrepancy between the precision of perception and that of pursuit. Differences in pursuit gain arising from differences in optic flow strength in the stimulus reconcile much of the controversy on this topic. PMID:26041919

  20. Spatially robust estimates of biological nitrogen (N) fixation imply substantial human alteration of the tropical N cycle

    USGS Publications Warehouse

    Sullivan, Benjamin W.; Smith, William K.; Townsend, Alan R.; Nasto, Megan K.; Reed, Sasha C.; Chazdon, Robin L.; Cleveland, Cory C.

    2014-01-01

    Biological nitrogen fixation (BNF) is the largest natural source of exogenous nitrogen (N) to unmanaged ecosystems and also the primary baseline against which anthropogenic changes to the N cycle are measured. Rates of BNF in tropical rainforest are thought to be among the highest on Earth, but they are notoriously difficult to quantify and are based on little empirical data. We adapted a sampling strategy from community ecology to generate spatial estimates of symbiotic and free-living BNF in secondary and primary forest sites that span a typical range of tropical forest legume abundance. Although total BNF was higher in secondary than primary forest, overall rates were roughly five times lower than previous estimates for the tropical forest biome. We found strong correlations between symbiotic BNF and legume abundance, but we also show that spatially free-living BNF often exceeds symbiotic inputs. Our results suggest that BNF in tropical forest has been overestimated, and our data are consistent with a recent top-down estimate of global BNF that implied but did not measure low tropical BNF rates. Finally, comparing tropical BNF within the historical area of tropical rainforest with current anthropogenic N inputs indicates that humans have already at least doubled reactive N inputs to the tropical forest biome, a far greater change than previously thought. Because N inputs are increasing faster in the tropics than anywhere on Earth, both the proportion and the effects of human N enrichment are likely to grow in the future.

  1. Elbow joint angle and elbow movement velocity estimation using NARX-multiple layer perceptron neural network model with surface EMG time domain parameters.

    PubMed

    Raj, Retheep; Sivanandan, K S

    2017-01-01

    Estimation of elbow dynamics has been the object of numerous investigations. In this work a solution is proposed for estimating elbow movement velocity and elbow joint angle from Surface Electromyography (SEMG) signals. Here the Surface Electromyography signals are acquired from the biceps brachii muscle of human hand. Two time-domain parameters, Integrated EMG (IEMG) and Zero Crossing (ZC), are extracted from the Surface Electromyography signal. The relationship between the time domain parameters, IEMG and ZC with elbow angular displacement and elbow angular velocity during extension and flexion of the elbow are studied. A multiple input-multiple output model is derived for identifying the kinematics of elbow. A Nonlinear Auto Regressive with eXogenous inputs (NARX) structure based multiple layer perceptron neural network (MLPNN) model is proposed for the estimation of elbow joint angle and elbow angular velocity. The proposed NARX MLPNN model is trained using Levenberg-marquardt based algorithm. The proposed model is estimating the elbow joint angle and elbow movement angular velocity with appreciable accuracy. The model is validated using regression coefficient value (R). The average regression coefficient value (R) obtained for elbow angular displacement prediction is 0.9641 and for the elbow anglular velocity prediction is 0.9347. The Nonlinear Auto Regressive with eXogenous inputs (NARX) structure based multiple layer perceptron neural networks (MLPNN) model can be used for the estimation of angular displacement and movement angular velocity of the elbow with good accuracy.

  2. Computational laser intensity stabilisation for organic molecule concentration estimation in low-resource settings

    NASA Astrophysics Data System (ADS)

    Haider, Shahid A.; Kazemzadeh, Farnoud; Wong, Alexander

    2017-03-01

    An ideal laser is a useful tool for the analysis of biological systems. In particular, the polarization property of lasers can allow for the concentration of important organic molecules in the human body, such as proteins, amino acids, lipids, and carbohydrates, to be estimated. However, lasers do not always work as intended and there can be effects such as mode hopping and thermal drift that can cause time-varying intensity fluctuations. The causes of these effects can be from the surrounding environment, where either an unstable current source is used or the temperature of the surrounding environment is not temporally stable. This intensity fluctuation can cause bias and error in typical organic molecule concentration estimation techniques. In a low-resource setting where cost must be limited and where environmental factors, like unregulated power supplies and temperature, cannot be controlled, the hardware required to correct for these intensity fluctuations can be prohibitive. We propose a method for computational laser intensity stabilisation that uses Bayesian state estimation to correct for the time-varying intensity fluctuations from electrical and thermal instabilities without the use of additional hardware. This method will allow for consistent intensities across all polarization measurements for accurate estimates of organic molecule concentrations.

  3. Retrospective determination of the contamination in the HML's counting chambers.

    PubMed

    Kramer, Gary H; Hauck, Barry; Capello, Kevin; Phan, Quoc

    2008-09-01

    The original documentation surrounding the purchase of the Human Monitoring Laboratory's (HML) counting chambers clearly showed that the steel contained low levels of radioactivity, presumably as a result of A-bomb fallout or perhaps to the inadvertent mixing of radioactive sources with scrap steel. Monte Carlo simulations have been combined with experimental measurements to estimate the level of contamination in the steel of the HML's whole body counting chamber. A 24-h empty chamber background count showed the presence of 137Cs and 60Co. The estimated activity of 137Cs in the 51 tons of steel was 2.7 kBq in 2007 (51.3 microBq g(-1) steel) which would have been 8 kBq at the time of manufacture. The 60Co that was found in the background spectrum is postulated to be contained in the bed-frame. The estimated amount in 2007 was 5 Bq and its origin is likely to be contaminated scrap metal entering the steel production cycle sometime in the past. The estimated activities are 10 to 25 times higher than the estimated minimum detectable activity for this measurement. These amounts have no impact on the usefulness of the whole body counter.

  4. Evaluation of Denoising Strategies to Address Motion-Correlated Artifacts in Resting-State Functional Magnetic Resonance Imaging Data from the Human Connectome Project

    PubMed Central

    Kandala, Sridhar; Nolan, Dan; Laumann, Timothy O.; Power, Jonathan D.; Adeyemo, Babatunde; Harms, Michael P.; Petersen, Steven E.; Barch, Deanna M.

    2016-01-01

    Abstract Like all resting-state functional connectivity data, the data from the Human Connectome Project (HCP) are adversely affected by structured noise artifacts arising from head motion and physiological processes. Functional connectivity estimates (Pearson's correlation coefficients) were inflated for high-motion time points and for high-motion participants. This inflation occurred across the brain, suggesting the presence of globally distributed artifacts. The degree of inflation was further increased for connections between nearby regions compared with distant regions, suggesting the presence of distance-dependent spatially specific artifacts. We evaluated several denoising methods: censoring high-motion time points, motion regression, the FMRIB independent component analysis-based X-noiseifier (FIX), and mean grayordinate time series regression (MGTR; as a proxy for global signal regression). The results suggest that FIX denoising reduced both types of artifacts, but left substantial global artifacts behind. MGTR significantly reduced global artifacts, but left substantial spatially specific artifacts behind. Censoring high-motion time points resulted in a small reduction of distance-dependent and global artifacts, eliminating neither type. All denoising strategies left differences between high- and low-motion participants, but only MGTR substantially reduced those differences. Ultimately, functional connectivity estimates from HCP data showed spatially specific and globally distributed artifacts, and the most effective approach to address both types of motion-correlated artifacts was a combination of FIX and MGTR. PMID:27571276

  5. Biological Monitoring of Air Pollutants and Its Influence on Human Beings

    PubMed Central

    Cen, Shihong

    2015-01-01

    Monitoring air pollutants via plants is an economic, convenient and credible method compared with the traditional ways. Plants show different damage symptoms to different air pollutants, which can be used to determine the species of air pollutants. Besides, pollutants mass concentration scope can be estimated by the damage extent of plants and the span of polluted time. Based on the domestic and foreign research, this paper discusses the principles, mechanism, advantages and disadvantages of plant-monitoring, and exemplifies plenty of such plants and the minimum mass concentration and pollution time of the plants showing damage symptoms. Finally, this paper introduced the human health effects of air pollutants on immune function of the body, such as decrease of the body's immune function, decline of lung function, respiratory and circulatory system changes, inducing and promoting human allergic diseases, respiratory diseases and other diseases. PMID:26628931

  6. Early Divergent Strains of Yersinia pestis in Eurasia 5,000 Years Ago

    PubMed Central

    Rasmussen, Simon; Allentoft, Morten Erik; Nielsen, Kasper; Orlando, Ludovic; Sikora, Martin; Sjögren, Karl-Göran; Pedersen, Anders Gorm; Schubert, Mikkel; Van Dam, Alex; Kapel, Christian Moliin Outzen; Nielsen, Henrik Bjørn; Brunak, Søren; Avetisyan, Pavel; Epimakhov, Andrey; Khalyapin, Mikhail Viktorovich; Gnuni, Artak; Kriiska, Aivar; Lasak, Irena; Metspalu, Mait; Moiseyev, Vyacheslav; Gromov, Andrei; Pokutta, Dalia; Saag, Lehti; Varul, Liivi; Yepiskoposyan, Levon; Sicheritz-Pontén, Thomas; Foley, Robert A.; Lahr, Marta Mirazón; Nielsen, Rasmus; Kristiansen, Kristian; Willerslev, Eske

    2015-01-01

    Summary The bacteria Yersinia pestis is the etiological agent of plague and has caused human pandemics with millions of deaths in historic times. How and when it originated remains contentious. Here, we report the oldest direct evidence of Yersinia pestis identified by ancient DNA in human teeth from Asia and Europe dating from 2,800 to 5,000 years ago. By sequencing the genomes, we find that these ancient plague strains are basal to all known Yersinia pestis. We find the origins of the Yersinia pestis lineage to be at least two times older than previous estimates. We also identify a temporal sequence of genetic changes that lead to increased virulence and the emergence of the bubonic plague. Our results show that plague infection was endemic in the human populations of Eurasia at least 3,000 years before any historical recordings of pandemics. PMID:26496604

  7. Musculoskeletal-see-through mirror: computational modeling and algorithm for whole-body muscle activity visualization in real time.

    PubMed

    Murai, Akihiko; Kurosaki, Kosuke; Yamane, Katsu; Nakamura, Yoshihiko

    2010-12-01

    In this paper, we present a system that estimates and visualizes muscle tensions in real time using optical motion capture and electromyography (EMG). The system overlays rendered musculoskeletal human model on top of a live video image of the subject. The subject therefore has an impression that he/she sees the muscles with tension information through the cloth and skin. The main technical challenge lies in real-time estimation of muscle tension. Since existing algorithms using mathematical optimization to distribute joint torques to muscle tensions are too slow for our purpose, we develop a new algorithm that computes a reasonable approximation of muscle tensions based on the internal connections between muscles known as neuronal binding. The algorithm can estimate the tensions of 274 muscles in only 16 ms, and the whole visualization system runs at about 15 fps. The developed system is applied to assisting sport training, and the user case studies show its usefulness. Possible applications include interfaces for assisting rehabilitation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Principal Component Relaxation Mode Analysis of an All-Atom Molecular Dynamics Simulation of Human Lysozyme

    NASA Astrophysics Data System (ADS)

    Nagai, Toshiki; Mitsutake, Ayori; Takano, Hiroshi

    2013-02-01

    A new relaxation mode analysis method, which is referred to as the principal component relaxation mode analysis method, has been proposed to handle a large number of degrees of freedom of protein systems. In this method, principal component analysis is carried out first and then relaxation mode analysis is applied to a small number of principal components with large fluctuations. To reduce the contribution of fast relaxation modes in these principal components efficiently, we have also proposed a relaxation mode analysis method using multiple evolution times. The principal component relaxation mode analysis method using two evolution times has been applied to an all-atom molecular dynamics simulation of human lysozyme in aqueous solution. Slow relaxation modes and corresponding relaxation times have been appropriately estimated, demonstrating that the method is applicable to protein systems.

  9. Surveillance of low pathogenic novel H7N9 avian influenza in commercial poultry barns: detection of outbreaks and estimation of virus introduction time.

    PubMed

    Pinsent, Amy; Blake, Isobel M; White, Michael T; Riley, Steven

    2014-08-01

    Both high and low pathogenic subtype A avian influenza remain ongoing threats to the commercial poultry industry globally. The emergence of a novel low pathogenic H7N9 lineage in China presents itself as a new concern to both human and animal health and may necessitate additional surveillance in commercial poultry operations in affected regions. Sampling data was simulated using a mechanistic model of H7N9 influenza transmission within commercial poultry barns together with a stochastic observation process. Parameters were estimated using maximum likelihood. We assessed the probability of detecting an outbreak at time of slaughter using both real-time polymerase chain reaction (rt-PCR) and a hemagglutinin inhibition assay (HI assay) before considering more intense sampling prior to slaughter. The day of virus introduction and R0 were estimated jointly from weekly flock sampling data. For scenarios where R0 was known, we estimated the day of virus introduction into a barn under different sampling frequencies. If birds were tested at time of slaughter, there was a higher probability of detecting evidence of an outbreak using an HI assay compared to rt-PCR, except when the virus was introduced <2 weeks before time of slaughter. Prior to the initial detection of infection N sample = 50 (1%) of birds were sampled on a weekly basis once, but after infection was detected, N sample = 2000 birds (40%) were sampled to estimate both parameters. We accurately estimated the day of virus introduction in isolation with weekly and 2-weekly sampling. A strong sampling effort would be required to infer both the day of virus introduction and R0. Such a sampling effort would not be required to estimate the day of virus introduction alone once R0 was known, and sampling N sample = 50 of birds in the flock on a weekly or 2 weekly basis would be sufficient.

  10. Estimation of prediagnostic duration of type 2 diabetes mellitus by lens autofluorometry

    NASA Astrophysics Data System (ADS)

    Kessel, Line; Glumer, Charlotte; Larsen, Michael

    2003-10-01

    Type 2 diabetes mellitus is a global epidemic with the number of affected subjects exceeding 4% of the adult population world-wide. Undiagnosed and untreated, the disease results in long-term complications such as myocardial infarction, stroke, and blindness. Treatment reduces the number and severity of long-term complications but treatment is often delayed by a time-lag of 10 years or more from the onset of disease to diagnosis. Earlier diagnosis can be achieved by systematic screening programs but the potential time won is unknown. The aim of the present study was to develop a mathematical model estimating the prediagnostic duration of type 2 diabetes mellitus using lens autofluorescence as an indicator of lifetime glycemic load. Fluorometry of the human is lens a quantitative measurement which is attractive because of the ease by which it can be performed. It is our hope that lens fluorometry will prove useful in estimating the prediagnostic duration of type 2 diabetes mellitus in population studies, a property of profound clinical relevance that is difficult to estimate by any other currently available method.

  11. Bone volume fraction and structural parameters for estimation of mechanical stiffness and failure load of human cancellous bone samples; in-vitro comparison of ultrasound transit time spectroscopy and X-ray μCT.

    PubMed

    Alomari, Ali Hamed; Wille, Marie-Luise; Langton, Christian M

    2018-02-01

    Conventional mechanical testing is the 'gold standard' for assessing the stiffness (N mm -1 ) and strength (MPa) of bone, although it is not applicable in-vivo since it is inherently invasive and destructive. The mechanical integrity of a bone is determined by its quantity and quality; being related primarily to bone density and structure respectively. Several non-destructive, non-invasive, in-vivo techniques have been developed and clinically implemented to estimate bone density, both areal (dual-energy X-ray absorptiometry (DXA)) and volumetric (quantitative computed tomography (QCT)). Quantitative ultrasound (QUS) parameters of velocity and attenuation are dependent upon both bone quantity and bone quality, although it has not been possible to date to transpose one particular QUS parameter into separate estimates of quantity and quality. It has recently been shown that ultrasound transit time spectroscopy (UTTS) may provide an accurate estimate of bone density and hence quantity. We hypothesised that UTTS also has the potential to provide an estimate of bone structure and hence quality. In this in-vitro study, 16 human femoral bone samples were tested utilising three techniques; UTTS, micro computed tomography (μCT), and mechanical testing. UTTS was utilised to estimate bone volume fraction (BV/TV) and two novel structural parameters, inter-quartile range of the derived transit time (UTTS-IQR) and the transit time of maximum proportion of sonic-rays (TTMP). μCT was utilised to derive BV/TV along with several bone structure parameters. A destructive mechanical test was utilised to measure the stiffness and strength (failure load) of the bone samples. BV/TV was calculated from the derived transit time spectrum (TTS); the correlation coefficient (R 2 ) with μCT-BV/TV was 0.885. For predicting mechanical stiffness and strength, BV/TV derived by both μCT and UTTS provided the strongest correlation with mechanical stiffness (R 2 =0.567 and 0.618 respectively) and mechanical strength (R 2 =0.747 and 0.736 respectively). When respective structural parameters were incorporated to BV/TV, multiple regression analysis indicated that none of the μCT histomorphometric parameters could improve the prediction of mechanical stiffness and strength, while for UTTS, adding TTMP to BV/TV increased the prediction of mechanical stiffness to R 2 =0.711 and strength to R 2 =0.827. It is therefore envisaged that UTTS may have the ability to estimate BV/TV along with providing an improved prediction of osteoporotic fracture risk, within routine clinical practice in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Gait-Event-Based Synchronization Method for Gait Rehabilitation Robots via a Bioinspired Adaptive Oscillator.

    PubMed

    Chen, Gong; Qi, Peng; Guo, Zhao; Yu, Haoyong

    2017-06-01

    In the field of gait rehabilitation robotics, achieving human-robot synchronization is very important. In this paper, a novel human-robot synchronization method using gait event information is proposed. This method includes two steps. First, seven gait events in one gait cycle are detected in real time with a hidden Markov model; second, an adaptive oscillator is utilized to estimate the stride percentage of human gait using any one of the gait events. Synchronous reference trajectories for the robot are then generated with the estimated stride percentage. This method is based on a bioinspired adaptive oscillator, which is a mathematical tool, first proposed to explain the phenomenon of synchronous flashing among fireflies. The proposed synchronization method is implemented in a portable knee-ankle-foot robot and tested in 15 healthy subjects. This method has the advantages of simple structure, flexible selection of gait events, and fast adaptation. Gait event is the only information needed, and hence the performance of synchronization holds when an abnormal gait pattern is involved. The results of the experiments reveal that our approach is efficient in achieving human-robot synchronization and feasible for rehabilitation robotics application.

  13. The time-evolution of DCIS size distributions with applications to breast cancer growth and progression.

    PubMed

    Dowty, James G; Byrnes, Graham B; Gertig, Dorota M

    2014-12-01

    Ductal carcinoma in situ (DCIS) lesions are non-invasive tumours of the breast that are thought to precede most invasive breast cancers (IBCs). As individual DCIS lesions are initiated, grow and invade (i.e. become IBC), the size distribution of the DCIS lesions present in a given human population will evolve. We derive a differential equation governing this evolution and show, for given assumptions about growth and invasion, that there is a unique distribution which does not vary with time. Further, we show that any initial distribution converges to this stationary distribution exponentially quickly. Therefore, it is reasonable to assume that the stationary distribution governs the size of DCIS lesions in human populations which are relatively stable with respect to the determinants of breast cancer. Based on this assumption and the size data of 110 DCIS lesions detected in a mammographic screening programme between 1993 and 2000, we produce maximum likelihood estimates for certain growth and invasion parameters. Assuming that DCIS size is proportional to a positive power p of the time since tumour initiation, we estimate p to be 0.50 with a 95% confidence interval of (0.35, 0.71). Therefore, we estimate that DCIS lesions follow a square-root growth law and hence that they grow rapidly when small and relatively slowly when large. Our approach and results should be useful for other mathematical studies of cancer, especially those investigating biological mechanisms of invasion. © The Authors 2013. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  14. Pharmacokinetic and pharmacodynamic modelling of the novel human granulocyte colony-stimulating factor derivative Maxy-G34 and pegfilgrastim in rats.

    PubMed

    Scholz, M; Engel, C; Apt, D; Sankar, S L; Goldstein, E; Loeffler, M

    2009-12-01

    This study aims to compare pharmacokinetics and pharmacodynamics of pegfilgrastim, a pharmaceutical recombinant human granulocyte colony-stimulating factor (rhG-CSF), with that of a newly developed reagent, Maxy-G34. This comparison was performed using rat experiments and biomathematical modelling of granulopoiesis. Healthy rats and those with cyclophosphamide-induced neutropenia were treated with either pegfilgrastim or Maxy-G34 under various schedules. Time courses of absolute neutrophil count (ANC) and G-CSF serum level were measured and we constructed a combined pharmacokinetic/pharmacodynamic model of both drugs. Neutropenic episodes were assessed by experimental data and model simulations. Both Pegfilgrastim and Maxy-G34 showed strong dose-dependent efficacy in reducing neutropenic episodes. However, time courses of ANC and G-CSF serum levels were markedly different. The biomathematical model showed good agreement with these data. We estimated that differences between the two drugs could be explained by lower bioavailability and reduced elimination of Maxy-G34. Based on the data and model interpolations, we estimated that Maxy-G34 is superior in reducing neutropenic episodes. Also, we predicted that G-CSF administration 48 h after cyclophosphamide would be superior to its administration after 2 or 24 h, for both derivatives. Maxy-G34 is a highly potent drug for stimulation of neutrophil production in rats. By our modelling approach, we quantified differences between Maxy-G34 and pegfilgrastim, related to pharmacokinetic parameters. Model simulations can be used to estimate optimal dosing and timing options in the present preclinical rat model.

  15. Marginal biotin deficiency can be induced experimentally in humans using a cost-effective outpatient design.

    PubMed

    Stratton, Shawna L; Henrich, Cindy L; Matthews, Nell I; Bogusiewicz, Anna; Dawson, Amanda M; Horvath, Thomas D; Owen, Suzanne N; Boysen, Gunnar; Moran, Jeffery H; Mock, Donald M

    2012-01-01

    To date, marginal, asymptomatic biotin deficiency has been successfully induced experimentally by the use of labor-intensive inpatient designs requiring rigorous dietary control. We sought to determine if marginal biotin deficiency could be induced in humans in a less expensive outpatient design incorporating a self-selected, mixed general diet. We sought to examine the efficacy of three outpatient study designs: two based on oral avidin dosing and one based on a diet high in undenatured egg white for a period of 28 d. In study design 1, participants (n = 4; 3 women) received avidin in capsules with a biotin binding capacity of 7 times the estimated dietary biotin intake of a typical self-selected diet. In study design 2, participants (n = 2; 2 women) received double the amount of avidin capsules (14 times the estimated dietary biotin intake). In study design 3, participants (n = 5; 3 women) consumed egg-white beverages containing avidin with a biotin binding capacity of 7 times the estimated dietary biotin intake. Established indices of biotin status [lymphocyte propionyl-CoA carboxylase activity; urinary excretion of 3-hydroxyisovaleric acid, 3-hydroxyisovaleryl carnitine (3HIA-carnitine), and biotin; and plasma concentration of 3HIA-carnitine] indicated that study designs 1 and 2 were not effective in inducing marginal biotin deficiency, but study design 3 was as effective as previous inpatient study designs that induced deficiency by egg-white beverage. Marginal biotin deficiency can be induced experimentally by using a cost-effective outpatient design by avidin delivery in egg-white beverages. This design should be useful to the broader nutritional research community.

  16. A joint-space numerical model of metabolic energy expenditure for human multibody dynamic system.

    PubMed

    Kim, Joo H; Roberts, Dustyn

    2015-09-01

    Metabolic energy expenditure (MEE) is a critical performance measure of human motion. In this study, a general joint-space numerical model of MEE is derived by integrating the laws of thermodynamics and principles of multibody system dynamics, which can evaluate MEE without the limitations inherent in experimental measurements (phase delays, steady state and task restrictions, and limited range of motion) or muscle-space models (complexities and indeterminacies from excessive DOFs, contacts and wrapping interactions, and reliance on in vitro parameters). Muscle energetic components are mapped to the joint space, in which the MEE model is formulated. A constrained multi-objective optimization algorithm is established to estimate the model parameters from experimental walking data also used for initial validation. The joint-space parameters estimated directly from active subjects provide reliable MEE estimates with a mean absolute error of 3.6 ± 3.6% relative to validation values, which can be used to evaluate MEE for complex non-periodic tasks that may not be experimentally verifiable. This model also enables real-time calculations of instantaneous MEE rate as a function of time for transient evaluations. Although experimental measurements may not be completely replaced by model evaluations, predicted quantities can be used as strong complements to increase reliability of the results and yield unique insights for various applications. Copyright © 2015 John Wiley & Sons, Ltd.

  17. The Y-Chromosome Tree Bursts into Leaf: 13,000 High-Confidence SNPs Covering the Majority of Known Clades

    PubMed Central

    Hallast, Pille; Batini, Chiara; Zadik, Daniel; Maisano Delser, Pierpaolo; Wetton, Jon H.; Arroyo-Pardo, Eduardo; Cavalleri, Gianpiero L.; de Knijff, Peter; Destro Bisol, Giovanni; Dupuy, Berit Myhre; Eriksen, Heidi A.; Jorde, Lynn B.; King, Turi E.; Larmuseau, Maarten H.; López de Munain, Adolfo; López-Parra, Ana M.; Loutradis, Aphrodite; Milasin, Jelena; Novelletto, Andrea; Pamjav, Horolma; Sajantila, Antti; Schempp, Werner; Sears, Matt; Tolun, Aslıhan; Tyler-Smith, Chris; Van Geystelen, Anneleen; Watkins, Scott; Winney, Bruce; Jobling, Mark A.

    2015-01-01

    Many studies of human populations have used the male-specific region of the Y chromosome (MSY) as a marker, but MSY sequence variants have traditionally been subject to ascertainment bias. Also, dating of haplogroups has relied on Y-specific short tandem repeats (STRs), involving problems of mutation rate choice, and possible long-term mutation saturation. Next-generation sequencing can ascertain single nucleotide polymorphisms (SNPs) in an unbiased way, leading to phylogenies in which branch-lengths are proportional to time, and allowing the times-to-most-recent-common-ancestor (TMRCAs) of nodes to be estimated directly. Here we describe the sequencing of 3.7 Mb of MSY in each of 448 human males at a mean coverage of 51×, yielding 13,261 high-confidence SNPs, 65.9% of which are previously unreported. The resulting phylogeny covers the majority of the known clades, provides date estimates of nodes, and constitutes a robust evolutionary framework for analyzing the history of other classes of mutation. Different clades within the tree show subtle but significant differences in branch lengths to the root. We also apply a set of 23 Y-STRs to the same samples, allowing SNP- and STR-based diversity and TMRCA estimates to be systematically compared. Ongoing purifying selection is suggested by our analysis of the phylogenetic distribution of nonsynonymous variants in 15 MSY single-copy genes. PMID:25468874

  18. Y-chromosome analysis confirms highly sex-biased dispersal and suggests a low male effective population size in bonobos (Pan paniscus).

    PubMed

    Eriksson, Jonas; Siedel, Heike; Lukas, Dieter; Kayser, Manfred; Erler, Axel; Hashimoto, Chie; Hohmann, Gottfried; Boesch, Christophe; Vigilant, Linda

    2006-04-01

    Dispersal is a rare event that is difficult to observe in slowly maturing, long-lived wild animal species such as the bonobo. In this study we used sex-linked (mitochondrial DNA sequence and Y-chromosome microsatellite) markers from the same set of individuals to estimate the magnitude of difference in effective dispersal between the sexes and to investigate the long-term demographic history of bonobos. We sampled 34 males from four distinct geographical areas across the bonobo distribution range. As predicted for a female-dispersing species, we found much higher levels of differentiation among local bonobo populations based upon Y-chromosomal than mtDNA genetic variation. Specifically, almost all of the Y-chromosomal variation distinguished populations, while nearly all of the mtDNA variation was shared between populations. Furthermore, genetic distance correlated with geographical distance for mtDNA but not for the Y chromosome. Female bonobos have a much higher migration rate and/or effective population size as compared to males, and the estimate for the mitochondrial TMRCA (time to most recent common ancestor) was approximately 10 times greater than the estimate for the Y chromosome (410,000 vs. 40,000-45,000). For humans the difference is merely a factor of two, suggesting a more stable demographic history in bonobos in comparison to humans.

  19. DNA methylation-based measures of biological age: meta-analysis predicting time to death

    PubMed Central

    Chen, Brian H.; Marioni, Riccardo E.; Colicino, Elena; Peters, Marjolein J.; Ward-Caviness, Cavin K.; Tsai, Pei-Chien; Roetker, Nicholas S.; Just, Allan C.; Demerath, Ellen W.; Guan, Weihua; Bressler, Jan; Fornage, Myriam; Studenski, Stephanie; Vandiver, Amy R.; Moore, Ann Zenobia; Tanaka, Toshiko; Kiel, Douglas P.; Liang, Liming; Vokonas, Pantel; Schwartz, Joel; Lunetta, Kathryn L.; Murabito, Joanne M.; Bandinelli, Stefania; Hernandez, Dena G.; Melzer, David; Nalls, Michael; Pilling, Luke C.; Price, Timothy R.; Singleton, Andrew B.; Gieger, Christian; Holle, Rolf; Kretschmer, Anja; Kronenberg, Florian; Kunze, Sonja; Linseisen, Jakob; Meisinger, Christine; Rathmann, Wolfgang; Waldenberger, Melanie; Visscher, Peter M.; Shah, Sonia; Wray, Naomi R.; McRae, Allan F.; Franco, Oscar H.; Hofman, Albert; Uitterlinden, André G.; Absher, Devin; Assimes, Themistocles; Levine, Morgan E.; Lu, Ake T.; Tsao, Philip S.; Hou, Lifang; Manson, JoAnn E.; Carty, Cara L.; LaCroix, Andrea Z.; Reiner, Alexander P.; Spector, Tim D.; Feinberg, Andrew P.; Levy, Daniel; Baccarelli, Andrea; van Meurs, Joyce; Bell, Jordana T.; Peters, Annette; Deary, Ian J.; Pankow, James S.; Ferrucci, Luigi; Horvath, Steve

    2016-01-01

    Estimates of biological age based on DNA methylation patterns, often referred to as “epigenetic age”, “DNAm age”, have been shown to be robust biomarkers of age in humans. We previously demonstrated that independent of chronological age, epigenetic age assessed in blood predicted all-cause mortality in four human cohorts. Here, we expanded our original observation to 13 different cohorts for a total sample size of 13,089 individuals, including three racial/ethnic groups. In addition, we examined whether incorporating information on blood cell composition into the epigenetic age metrics improves their predictive power for mortality. All considered measures of epigenetic age acceleration were predictive of mortality (p≤8.2×10−9), independent of chronological age, even after adjusting for additional risk factors (p<5.4×10−4), and within the racial/ethnic groups that we examined (non-Hispanic whites, Hispanics, African Americans). Epigenetic age estimates that incorporated information on blood cell composition led to the smallest p-values for time to death (p=7.5×10−43). Overall, this study a) strengthens the evidence that epigenetic age predicts all-cause mortality above and beyond chronological age and traditional risk factors, and b) demonstrates that epigenetic age estimates that incorporate information on blood cell counts lead to highly significant associations with all-cause mortality. PMID:27690265

  20. Temporary hearing loss influences post-stimulus time histogram and single neuron action potential estimates from human compound action potentials

    PubMed Central

    Lichtenhan, Jeffery T.; Chertoff, Mark E.

    2008-01-01

    An analytic compound action potential (CAP) obtained by convolving functional representations of the post-stimulus time histogram summed across auditory nerve neurons [P(t)] and a single neuron action potential [U(t)] was fit to human CAPs. The analytic CAP fit to pre- and postnoise-induced temporary hearing threshold shift (TTS) estimated in vivoP(t) and U(t) and the number of neurons contributing to the CAPs (N). The width of P(t) decreased with increasing signal level and was wider at the lowest signal level following noise exposure. P(t) latency decreased with increasing signal level and was shorter at all signal levels following noise exposure. The damping and oscillatory frequency of U(t) increased with signal level. For subjects with large amounts of TTS, U(t) had greater damping than before noise exposure particularly at low signal levels. Additionally, U(t) oscillation was lower in frequency at all click intensities following noise exposure. N increased with signal level and was smaller after noise exposure at the lowest signal level. Collectively these findings indicate that neurons contributing to the CAP during TTS are fewer in number, shorter in latency, and poorer in synchrony than before noise exposure. Moreover, estimates of single neuron action potentials may decay more rapidly and have a lower oscillatory frequency during TTS. PMID:18397026

  1. Isolation and partial purification of anticoagulant fractions from the venom of the Iranian snake Echis carinatus.

    PubMed

    Babaie, Mahdi; Zolfagharian, Hossein; Salmanizadeh, Hossein; Mirakabadi, Abbas Zare; Alizadeh, Hafezeh

    2013-01-01

    Many snake venoms comprise different factors, which can either promote or inhibit the blood coagulation pathway. Coagulation disorders and hemorrhage belong to the most prominent features of bites of the many vipers. A number of these factors interact with components of the human blood coagulation. This study is focused on the effect of Echis carinatus snake venom on blood coagulation pathway. Anticoagulant factors were purified from the Iranian Echis carinatus venom by two steps: gel filtration (Sephadex G-75) and ion-exchange (DEAE-Sephadex) chromatography, in order to study the anticoagulant effect of crude venom and their fractions. The prothrombin time was estimated on human plasma for each fraction. Our results showed that protrombin time value was increase from 13.4 s to 170 s for F2C and to 280 s for F2D. Our study showed that these fractions of the venom delay the prothrombine time and thus can be considered as anticoagulant factors. They were shown to exhibit proteolytic activity. The molecular weights of these anticoagulants (F2C, F2D) were estimated by SDS/PAGE electrophoresis. F2C comprises two protein bands with molecular weights of 50 and 79 kDa and F2D a single band with a molecular weight of 42 kDa.

  2. Productivity Losses Associated with Head and Neck Cancer Using the Human Capital and Friction Cost Approaches.

    PubMed

    Pearce, Alison M; Hanly, Paul; Timmons, Aileen; Walsh, Paul M; O'Neill, Ciaran; O'Sullivan, Eleanor; Gooberman-Hill, Rachael; Thomas, Audrey Alforque; Gallagher, Pamela; Sharp, Linda

    2015-08-01

    Previous studies suggest that productivity losses associated with head and neck cancer (HNC) are higher than in other cancers. These studies have only assessed a single aspect of productivity loss, such as temporary absenteeism or premature mortality, and have only used the Human Capital Approach (HCA). The Friction Cost Approach (FCA) is increasingly recommended, although has not previously been used to assess lost production from HNC. The aim of this study was to estimate the lost productivity associated with HNC due to different types of absenteeism and premature mortality, using both the HCA and FCA. Survey data on employment status were collected from 251 HNC survivors in Ireland and combined with population-level survival estimates and national wage data. The cost of temporary and permanent time off work, reduced working hours and premature mortality using both the HCA and FCA were calculated. Estimated total productivity losses per employed person of working age were EUR253,800 using HCA and EUR6800 using FCA. The main driver of HCA costs was premature mortality (38% of total) while for FCA it was temporary time off (73% of total). The productivity losses associated with head and neck cancer are substantial, and return to work assistance could form an important part of rehabilitation. Use of both the HCA and FCA approaches allowed different drivers of productivity losses to be identified, due to the different assumptions of the two methods. For future estimates of productivity losses, the use of both approaches may be pragmatic.

  3. The 2017 plague outbreak in Madagascar: Data descriptions and epidemic modelling.

    PubMed

    Nguyen, Van Kinh; Parra-Rojas, César; Hernandez-Vargas, Esteban A

    2018-06-01

    From August to November 2017, Madagascar endured an outbreak of plague. A total of 2417 cases of plague were confirmed, causing a death toll of 209. Public health intervention efforts were introduced and successfully stopped the epidemic at the end of November. The plague, however, is endemic in the region and occurs annually, posing the risk of future outbreaks. To understand the plague transmission, we collected real-time data from official reports, described the outbreak's characteristics, and estimated transmission parameters using statistical and mathematical models. The pneumonic plague epidemic curve exhibited multiple peaks, coinciding with sporadic introductions of new bubonic cases. Optimal climate conditions for rat flea to flourish were observed during the epidemic. Estimate of the plague basic reproduction number during the large wave of the epidemic was high, ranging from 5 to 7 depending on model assumptions. The incubation and infection periods for bubonic and pneumonic plague were 4.3 and 3.4 days and 3.8 and 2.9 days, respectively. Parameter estimation suggested that even with a small fraction of the population exposed to infected rat fleas (1/10,000) and a small probability of transition from a bubonic case to a secondary pneumonic case (3%), the high human-to-human transmission rate can still generate a large outbreak. Controlling rodent and fleas can prevent new index cases, but managing human-to-human transmission is key to prevent large-scale outbreaks. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Meiotic gene-conversion rate and tract length variation in the human genome.

    PubMed

    Padhukasahasram, Badri; Rannala, Bruce

    2013-02-27

    Meiotic recombination occurs in the form of two different mechanisms called crossing-over and gene-conversion and both processes have an important role in shaping genetic variation in populations. Although variation in crossing-over rates has been studied extensively using sperm-typing experiments, pedigree studies and population genetic approaches, our knowledge of variation in gene-conversion parameters (ie, rates and mean tract lengths) remains far from complete. To explore variability in population gene-conversion rates and its relationship to crossing-over rate variation patterns, we have developed and validated using coalescent simulations a comprehensive Bayesian full-likelihood method that can jointly infer crossing-over and gene-conversion rates as well as tract lengths from population genomic data under general variable rate models with recombination hotspots. Here, we apply this new method to SNP data from multiple human populations and attempt to characterize for the first time the fine-scale variation in gene-conversion parameters along the human genome. We find that the estimated ratio of gene-conversion to crossing-over rates varies considerably across genomic regions as well as between populations. However, there is a great degree of uncertainty associated with such estimates. We also find substantial evidence for variation in the mean conversion tract length. The estimated tract lengths did not show any negative relationship with the local heterozygosity levels in our analysis.European Journal of Human Genetics advance online publication, 27 February 2013; doi:10.1038/ejhg.2013.30.

  5. Rabies in Kazakhstan.

    PubMed

    Sultanov, Akmetzhan A; Abdrakhmanov, Sarsenbay K; Abdybekova, Aida M; Karatayev, Bolat S; Torgerson, Paul R

    2016-08-01

    Rabies is a neglected zoonotic disease. There is a sparsity of data on this disease with regard to the incidence of human and animal disease in many low and middle income countries. Furthermore, rabies results in a large economic impact and a high human burden of disease. Kazakhstan is a large landlocked middle income country that gained independence from the Soviet Union in 1991 and is endemic for rabies. We used detailed public health and veterinary surveillance data from 2003 to 2015 to map where livestock rabies is occurring. We also estimate the economic impact and human burden of rabies. Livestock and canine rabies occurred over most of Kazakhstan, but there were regional variations in disease distribution. There were a mean of 7.1 officially recorded human fatalities due to rabies per year resulting in approximately 457 Disability Adjusted Life Years (DALYs). A mean of 64,289 individuals per annum underwent post exposure prophylaxis (PEP) which may have resulted in an additional 1140 DALYs annually. PEP is preventing at least 118 cases of human rabies each year or possibly as many as 1184 at an estimated cost of $1193 or $119 per DALY averted respectively. The estimated economic impact of rabies in Kazakhstan is $20.9 million per annum, with nearly half of this cost being attributed to the cost of PEP and the loss of income whilst being treated. A further $5.4 million per annum was estimated to be the life time loss of income for fatal cases. Animal vaccination programmes and animal control programmes also contributed substantially to the economic losses. The direct costs due to rabies fatalities of agricultural animals was relatively low. This study demonstrates that in Kazakhstan there is a substantial economic cost and health impact of rabies. These costs could be reduced by modifying the vaccination programme that is now practised. The study also fills some data gaps on the epidemiology and economic effects of rabies in respect to Kazakhstan.

  6. Deformation behavior of human enamel and dentin-enamel junction under compression.

    PubMed

    Zaytsev, Dmitry; Panfilov, Peter

    2014-01-01

    Deformation behavior under uniaxial compression of human enamel and dentin-enamel junction (DEJ) is considered in comparison with human dentin. This deformation scheme allows estimating the total response from all levels of the hierarchical composite material in contrast with the indentation, which are limited by the mesoscopic and microscopic scales. It was shown for the first time that dental enamel is the strength (up to 1850MPa) hard tissue, which is able to consider some elastic (up to 8%) and plastic (up to 5%) deformation under compression. In so doing, it is almost undeformable substance under the creep condition. Mechanical properties of human enamel depend on the geometry of sample. Human dentin exhibits the similar deformation behavior under compression, but the values of its elasticity (up to 40%) and plasticity (up to 18%) are much more, while its strength (up to 800MPa) is less in two times. Despite the difference in mechanical properties, human enamel is able to suppress the cracking alike dentin. Deformation behavior under the compression of the samples contained DEJ as the same to dentin. This feature allows a tooth to be elastic-plastic (as dentin) and wear resistible (as enamel), simultaneously. © 2013 Elsevier B.V. All rights reserved.

  7. Plasticity of the Intrinsic Period of the Human Circadian Timing System

    PubMed Central

    Scheer, Frank A.J.L.; Wright, Kenneth P.; Kronauer, Richard E.; Czeisler, Charles A.

    2007-01-01

    Human expeditions to Mars will require adaptation to the 24.65-h Martian solar day-night cycle (sol), which is outside the range of entrainment of the human circadian pacemaker under lighting intensities to which astronauts are typically exposed. Failure to entrain the circadian time-keeping system to the desired rest-activity cycle disturbs sleep and impairs cognitive function. Furthermore, differences between the intrinsic circadian period and Earth's 24-h light-dark cycle underlie human circadian rhythm sleep disorders, such as advanced sleep phase disorder and non-24-hour sleep-wake disorders. Therefore, first, we tested whether exposure to a model-based lighting regimen would entrain the human circadian pacemaker at a normal phase angle to the 24.65-h Martian sol and to the 23.5-h day length often required of astronauts during short duration space exploration. Second, we tested here whether such prior entrainment to non-24-h light-dark cycles would lead to subsequent modification of the intrinsic period of the human circadian timing system. Here we show that exposure to moderately bright light (∼450 lux; ∼1.2 W/m2) for the second or first half of the scheduled wake episode is effective for entraining individuals to the 24.65-h Martian sol and a 23.5-h day length, respectively. Estimations of the circadian periods of plasma melatonin, plasma cortisol, and core body temperature rhythms collected under forced desynchrony protocols revealed that the intrinsic circadian period of the human circadian pacemaker was significantly longer following entrainment to the Martian sol as compared to following entrainment to the 23.5-h day. The latter finding of after-effects of entrainment reveals for the first time plasticity of the period of the human circadian timing system. Both findings have important implications for the treatment of circadian rhythm sleep disorders and human space exploration. PMID:17684566

  8. COnstrained Data Extrapolation (CODE): A new approach for high definition vascular imaging from low resolution data.

    PubMed

    Song, Yang; Hamtaei, Ehsan; Sethi, Sean K; Yang, Guang; Xie, Haibin; Mark Haacke, E

    2017-12-01

    To introduce a new approach to reconstruct high definition vascular images using COnstrained Data Extrapolation (CODE) and evaluate its capability in estimating vessel area and stenosis. CODE is based on the constraint that the full width half maximum of a vessel can be accurately estimated and, since it represents the best estimate for the width of the object, higher k-space data can be generated from this information. To demonstrate the potential of extracting high definition vessel edges using low resolution data, both simulated and human data were analyzed to better visualize the vessels and to quantify both area and stenosis measurements. The results from CODE using one-fourth of the fully sampled k-space data were compared with a compressed sensing (CS) reconstruction approach using the same total amount of data but spread out between the center of k-space and the outer portions of the original k-space to accelerate data acquisition by a factor of four. For a sufficiently high signal-to-noise ratio (SNR) such as 16 (8), we found that objects as small as 3 voxels in the 25% under-sampled data (6 voxels when zero-filled) could be used for CODE and CS and provide an estimate of area with an error <5% (10%). For estimating up to a 70% stenosis with an SNR of 4, CODE was found to be more robust to noise than CS having a smaller variance albeit a larger bias. Reconstruction times were >200 (30) times faster for CODE compared to CS in the simulated (human) data. CODE was capable of producing sharp sub-voxel edges and accurately estimating stenosis to within 5% for clinically relevant studies of vessels with a width of at least 3pixels in the low resolution images. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Cross-species prediction of human survival probabilities for accelerated anthrax vaccine absorbed (AVA) regimens and the potential for vaccine and antibiotic dose sparing.

    PubMed

    Stark, G V; Sivko, G S; VanRaden, M; Schiffer, J; Taylor, K L; Hewitt, J A; Quinn, C P; Nuzum, E O

    2016-12-12

    Anthrax vaccine adsorbed (AVA, BioThrax) was recently approved by the Food and Drug Administration (FDA) for a post-exposure prophylaxis (PEP) indication in adults 18-65years of age. The schedule is three doses administered subcutaneous (SC) at 2-week intervals (0, 2, and 4weeks), in conjunction with a 60-day course of antimicrobials. The Public Health Emergency Medical Countermeasures Enterprise (PHEMCE) developed an animal model to support assessment of a shortened antimicrobial PEP duration following Bacillus anthracis exposure. A nonhuman primate (NHP) study was completed to evaluate the efficacy of a two dose anthrax vaccine absorbed (AVA) schedule (0, 2weeks) aerosol challenged with high levels of B. anthracis spores at week4- the time point at which humans would receive the third vaccination of the approved PEP schedule. Here we use logistic regression models to combine the survival data from the NHP study along with serum anthrax lethal toxin neutralizing activity (TNA) and anti-PA IgG measured by enzyme linked immunosorbent assay (ELISA) data to perform a cross-species analysis to estimate survival probabilities in vaccinated human populations at this time interval (week4 of the PEP schedule). The bridging analysis demonstrated that high levels of NHP protection also yield high predicted probability of human survival just 2weeks after the second dose of vaccine with the full or half antigen dose regimen. The absolute difference in probability of human survival between the full and half antigen dose was estimated to be at most approximately 20%, indicating that more investigation of the half-antigen dose for vaccine dose sparing strategies may be warranted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Selective attention increases choice certainty in human decision making.

    PubMed

    Zizlsperger, Leopold; Sauvigny, Thomas; Haarmeier, Thomas

    2012-01-01

    Choice certainty is a probabilistic estimate of past performance and expected outcome. In perceptual decisions the degree of confidence correlates closely with choice accuracy and reaction times, suggesting an intimate relationship to objective performance. Here we show that spatial and feature-based attention increase human subjects' certainty more than accuracy in visual motion discrimination tasks. Our findings demonstrate for the first time a dissociation of choice accuracy and certainty with a significantly stronger influence of voluntary top-down attention on subjective performance measures than on objective performance. These results reveal a so far unknown mechanism of the selection process implemented by attention and suggest a unique biological valence of choice certainty beyond a faithful reflection of the decision process.

  11. Human Pose Estimation from Monocular Images: A Comprehensive Survey

    PubMed Central

    Gong, Wenjuan; Zhang, Xuena; Gonzàlez, Jordi; Sobral, Andrews; Bouwmans, Thierry; Tu, Changhe; Zahzah, El-hadi

    2016-01-01

    Human pose estimation refers to the estimation of the location of body parts and how they are connected in an image. Human pose estimation from monocular images has wide applications (e.g., image indexing). Several surveys on human pose estimation can be found in the literature, but they focus on a certain category; for example, model-based approaches or human motion analysis, etc. As far as we know, an overall review of this problem domain has yet to be provided. Furthermore, recent advancements based on deep learning have brought novel algorithms for this problem. In this paper, a comprehensive survey of human pose estimation from monocular images is carried out including milestone works and recent advancements. Based on one standard pipeline for the solution of computer vision problems, this survey splits the problem into several modules: feature extraction and description, human body models, and modeling methods. Problem modeling methods are approached based on two means of categorization in this survey. One way to categorize includes top-down and bottom-up methods, and another way includes generative and discriminative methods. Considering the fact that one direct application of human pose estimation is to provide initialization for automatic video surveillance, there are additional sections for motion-related methods in all modules: motion features, motion models, and motion-based methods. Finally, the paper also collects 26 publicly available data sets for validation and provides error measurement methods that are frequently used. PMID:27898003

  12. Human biodistribution and dosimetry of [18F]nifene, an α4β2* nicotinic acetylcholine receptor PET tracer.

    PubMed

    Betthauser, Tobey J; Hillmer, Ansel T; Lao, Patrick J; Ehlerding, Emily; Mukherjee, Jogeshwar; Stone, Charles K; Christian, Bradley T

    2017-12-01

    The α4β2* nicotinic acetylcholine receptor (nAChR) system is implicated in many neuropsychiatric pathologies. [ 18 F]Nifene is a positron emission tomography (PET) ligand that has shown promise for in vivo imaging of the α4β2* nAChR system in preclinical models and humans. This work establishes the radiation burden associated with [ 18 F]nifene PET scans in humans. Four human subjects (2M, 2F) underwent whole-body PET/CT scans to determine the human biodistribution of [ 18 F]nifene. Source organs were identified and time-activity-curves (TACs) were extracted from the PET time-series. Dose estimates were calculated for each subject using OLINDA/EXM v1.1. [ 18 F]Nifene was well tolerated by all subjects with no adverse events reported. The mean whole-body effective dose was 28.4±3.8 mSv/MBq without bladder voiding, and 22.6±1.9 mSv/MBq with hourly micturition. The urinary bladder radiation dose limited the maximum injected dose for a single scan to 278 MBq without urinary bladder voiding, and 519 MBq with hourly voiding. [ 18 F]Nifene is a safe PET radioligand for imaging the α4β2* nAChR system in humans. This works presents human internal dosimetry for [ 18 F]nifene in humans for the first time. These results facilitate safe development of future [ 18 F]nifene studies to image the α4β2* nAChR system in humans. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Prospective and retrospective duration memory in the hippocampus: is time in the foreground or background?

    PubMed Central

    MacDonald, Christopher J.

    2014-01-01

    Psychologists have long distinguished between prospective and retrospective timing to highlight the difference between our sense of duration during an experience in passing and our sense of duration in hindsight. Humans and other animals use prospective timing in the seconds-to-minutes range in order to learn durations, and can organize their behaviour based upon this knowledge when they know that duration information will be important ahead of time. By contrast, when durations are estimated after the fact, thus precluding the subject from consciously attending to temporal information, duration information must be extracted from other memory representations. The accumulated evidence from prospective timing research has generally led to the hippocampus (HPC) being casted in a supporting role with prefrontal–striatal, cortical or cerebellar circuits playing the lead. Here, I review findings from the animal and human literature that have led to this conclusion and consider that the contribution of the HPC to duration memory is understated because we have little understanding about how we remember duration. PMID:24446497

  14. Understanding the transmission dynamics of Leishmania donovani to provide robust evidence for interventions to eliminate visceral leishmaniasis in Bihar, India

    USDA-ARS?s Scientific Manuscript database

    Molecular tools enable the collection of accurate estimates of human blood index (HBI) in Phlebotomus argentipes. The refinement of a metacyclic-specific qPCR assay to identify L. donovani in P. argentipes would enable quantification of the entomological inoculation rate (EIR) for the first time. Li...

  15. Understanding the transmission dynamics of Leishmania donovani to provide robust evidence for interventions to eliminate visceral leishmaniasis in Bihar, India

    USDA-ARS?s Scientific Manuscript database

    Molecular tools enable the collection of accurate estimates of human blood index (HBI) in P. argentipes. The refinement of a metacyclic-specific qPCR assay to identify L. donovani in P. argentipes would enable quantification of the entomological inoculation rate (EIR) for the first time. Likewise, a...

  16. Flavonoid intake from food and beverages: What We Eat in America, NHANES 2007-2008, Tables 1-4

    USDA-ARS?s Scientific Manuscript database

    The Food Surveys Research Group of the Beltsville Human Nutrition Research Center has released 4 flavonoid intake data tables that make available, for the first time, nationally representative estimates of the intake of 29 individual flavonoids in six classes (as well as the sum of those flavonoids)...

  17. Wildfire risk estimation in the Mediterranean area

    Treesearch

    A.A. Ager; H.K. Preisler; B. Arca; D Spano; M. Salis

    2014-01-01

    We analyzed wildland fire occurrence and size data from Sardinia, Italy, and Corsica, France, to examine spatiotemporal patterns of fire occurrence in relation to weather, land use, anthropogenic features, and time of year. Fires on these islands are largely human caused and can be attributed to negligence, agro-pastoral land use, and arson. Of particular interest was...

  18. Effects of Welfare Reform on Vocational Education and Training. NBER Working Paper No. 16659

    ERIC Educational Resources Information Center

    Dave, Dhaval M.; Reichman, Nancy E.; Corman, Hope; Das, Dhiman

    2011-01-01

    Exploiting variation in welfare reform across states and over time and using relevant comparison groups, this study estimates the effects of welfare reform on an important source of human capital acquisition among women at risk for relying on welfare: vocational education and training. The results indicate that welfare reform reduced enrollment in…

  19. Human-Robot Control Strategies for the NASA/DARPA Robonaut

    NASA Technical Reports Server (NTRS)

    Diftler, M. A.; Culbert, Chris J.; Ambrose, Robert O.; Huber, E.; Bluethmann, W. J.

    2003-01-01

    The Robotic Systems Technology Branch at the NASA Johnson Space Center (JSC) is currently developing robot systems to reduce the Extra-Vehicular Activity (EVA) and planetary exploration burden on astronauts. One such system, Robonaut, is capable of interfacing with external Space Station systems that currently have only human interfaces. Robonaut is human scale, anthropomorphic, and designed to approach the dexterity of a space-suited astronaut. Robonaut can perform numerous human rated tasks, including actuating tether hooks, manipulating flexible materials, soldering wires, grasping handrails to move along space station mockups, and mating connectors. More recently, developments in autonomous control and perception for Robonaut have enabled dexterous, real-time man-machine interaction. Robonaut is now capable of acting as a practical autonomous assistant to the human, providing and accepting tools by reacting to body language. A versatile, vision-based algorithm for matching range silhouettes is used for monitoring human activity as well as estimating tool pose.

  20. Free-viewpoint video of human actors using multiple handheld Kinects.

    PubMed

    Ye, Genzhi; Liu, Yebin; Deng, Yue; Hasler, Nils; Ji, Xiangyang; Dai, Qionghai; Theobalt, Christian

    2013-10-01

    We present an algorithm for creating free-viewpoint video of interacting humans using three handheld Kinect cameras. Our method reconstructs deforming surface geometry and temporal varying texture of humans through estimation of human poses and camera poses for every time step of the RGBZ video. Skeletal configurations and camera poses are found by solving a joint energy minimization problem, which optimizes the alignment of RGBZ data from all cameras, as well as the alignment of human shape templates to the Kinect data. The energy function is based on a combination of geometric correspondence finding, implicit scene segmentation, and correspondence finding using image features. Finally, texture recovery is achieved through jointly optimization on spatio-temporal RGB data using matrix completion. As opposed to previous methods, our algorithm succeeds on free-viewpoint video of human actors under general uncontrolled indoor scenes with potentially dynamic background, and it succeeds even if the cameras are moving.

  1. Different approaches to valuing the lost productivity of patients with migraine.

    PubMed

    Lofland, J H; Locklear, J C; Frick, K D

    2001-01-01

    To calculate and compare the human capital approach (HCA) and friction cost approach (FCA) methods for estimating the cost of lost productivity of migraineurs after the initiation of sumatriptan from a US societal perspective. Secondary, retrospective analysis to a prospective observational study. A mixed-model managed care organisation in western Pennsylvania, USA. Patients with migraine using sumatriptan therapy. Patient-reported questionnaires collected at baseline, 3 and 6 months after initiation of sumatriptan therapy. The cost of lost productivity estimated with the HCA and FCA methods. Of the 178 patients who completed the study, 51% were full-time employees, 13% were part-time, 18% were not working and 17% changed work status. Twenty-four percent reported a clerical or administrative position. From the HCA, the estimated total cost of lost productivity for 6 months following the initiation of sumatriptan was $US117905 (1996 values). From the FCA, the six-month estimated total cost of lost productivity ranged from $US28329 to $US117905 (1996 values). This was the first study to retrospectively estimate lost productivity of patients with migraine using the FCA methodology. Our results demonstrate that depending on the assumptions and illustrations employed, the FCA can yield lost productivity estimates that vary greatly as a percentage of the HCA estimate. Prospective investigations are needed to better determine the components and the nature of the lost productivity for chronic episodic diseases such as migraine headache.

  2. Estimating the Distribution of the Incubation Periods of Human Avian Influenza A(H7N9) Virus Infections.

    PubMed

    Virlogeux, Victor; Li, Ming; Tsang, Tim K; Feng, Luzhao; Fang, Vicky J; Jiang, Hui; Wu, Peng; Zheng, Jiandong; Lau, Eric H Y; Cao, Yu; Qin, Ying; Liao, Qiaohong; Yu, Hongjie; Cowling, Benjamin J

    2015-10-15

    A novel avian influenza virus, influenza A(H7N9), emerged in China in early 2013 and caused severe disease in humans, with infections occurring most frequently after recent exposure to live poultry. The distribution of A(H7N9) incubation periods is of interest to epidemiologists and public health officials, but estimation of the distribution is complicated by interval censoring of exposures. Imputation of the midpoint of intervals was used in some early studies, resulting in estimated mean incubation times of approximately 5 days. In this study, we estimated the incubation period distribution of human influenza A(H7N9) infections using exposure data available for 229 patients with laboratory-confirmed A(H7N9) infection from mainland China. A nonparametric model (Turnbull) and several parametric models accounting for the interval censoring in some exposures were fitted to the data. For the best-fitting parametric model (Weibull), the mean incubation period was 3.4 days (95% confidence interval: 3.0, 3.7) and the variance was 2.9 days; results were very similar for the nonparametric Turnbull estimate. Under the Weibull model, the 95th percentile of the incubation period distribution was 6.5 days (95% confidence interval: 5.9, 7.1). The midpoint approximation for interval-censored exposures led to overestimation of the mean incubation period. Public health observation of potentially exposed persons for 7 days after exposure would be appropriate. © The Author 2015. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Optimal External Wrench Distribution During a Multi-Contact Sit-to-Stand Task.

    PubMed

    Bonnet, Vincent; Azevedo-Coste, Christine; Robert, Thomas; Fraisse, Philippe; Venture, Gentiane

    2017-07-01

    This paper aims at developing and evaluating a new practical method for the real-time estimate of joint torques and external wrenches during multi-contact sit-to-stand (STS) task using kinematics data only. The proposed method allows also identifying subject specific body inertial segment parameters that are required to perform inverse dynamics. The identification phase is performed using simple and repeatable motions. Thanks to an accurately identified model the estimate of the total external wrench can be used as an input to solve an under-determined multi-contact problem. It is solved using a constrained quadratic optimization process minimizing a hybrid human-like energetic criterion. The weights of this hybrid cost function are adjusted and a sensitivity analysis is performed in order to reproduce robustly human external wrench distribution. The results showed that the proposed method could successfully estimate the external wrenches under buttocks, feet, and hands during STS tasks (RMS error lower than 20 N and 6 N.m). The simplicity and generalization abilities of the proposed method allow paving the way of future diagnosis solutions and rehabilitation applications, including in-home use.

  4. Completely automated estimation of prostate volume for 3-D side-fire transrectal ultrasound using shape prior approach

    NASA Astrophysics Data System (ADS)

    Li, Lu; Narayanan, Ramakrishnan; Miller, Steve; Shen, Feimo; Barqawi, Al B.; Crawford, E. David; Suri, Jasjit S.

    2008-02-01

    Real-time knowledge of capsule volume of an organ provides a valuable clinical tool for 3D biopsy applications. It is challenging to estimate this capsule volume in real-time due to the presence of speckles, shadow artifacts, partial volume effect and patient motion during image scans, which are all inherent in medical ultrasound imaging. The volumetric ultrasound prostate images are sliced in a rotational manner every three degrees. The automated segmentation method employs a shape model, which is obtained from training data, to delineate the middle slices of volumetric prostate images. Then a "DDC" algorithm is applied to the rest of the images with the initial contour obtained. The volume of prostate is estimated with the segmentation results. Our database consists of 36 prostate volumes which are acquired using a Philips ultrasound machine using a Side-fire transrectal ultrasound (TRUS) probe. We compare our automated method with the semi-automated approach. The mean volumes using the semi-automated and complete automated techniques were 35.16 cc and 34.86 cc, with the error of 7.3% and 7.6% compared to the volume obtained by the human estimated boundary (ideal boundary), respectively. The overall system, which was developed using Microsoft Visual C++, is real-time and accurate.

  5. Adaptive Fault Detection on Liquid Propulsion Systems with Virtual Sensors: Algorithms and Architectures

    NASA Technical Reports Server (NTRS)

    Matthews, Bryan L.; Srivastava, Ashok N.

    2010-01-01

    Prior to the launch of STS-119 NASA had completed a study of an issue in the flow control valve (FCV) in the Main Propulsion System of the Space Shuttle using an adaptive learning method known as Virtual Sensors. Virtual Sensors are a class of algorithms that estimate the value of a time series given other potentially nonlinearly correlated sensor readings. In the case presented here, the Virtual Sensors algorithm is based on an ensemble learning approach and takes sensor readings and control signals as input to estimate the pressure in a subsystem of the Main Propulsion System. Our results indicate that this method can detect faults in the FCV at the time when they occur. We use the standard deviation of the predictions of the ensemble as a measure of uncertainty in the estimate. This uncertainty estimate was crucial to understanding the nature and magnitude of transient characteristics during startup of the engine. This paper overviews the Virtual Sensors algorithm and discusses results on a comprehensive set of Shuttle missions and also discusses the architecture necessary for deploying such algorithms in a real-time, closed-loop system or a human-in-the-loop monitoring system. These results were presented at a Flight Readiness Review of the Space Shuttle in early 2009.

  6. Temporal parameter change of human postural control ability during upright swing using recursive least square method

    NASA Astrophysics Data System (ADS)

    Goto, Akifumi; Ishida, Mizuri; Sagawa, Koichi

    2010-01-01

    The purpose of this study is to derive quantitative assessment indicators of the human postural control ability. An inverted pendulum is applied to standing human body and is controlled by ankle joint torque according to PD control method in sagittal plane. Torque control parameters (KP: proportional gain, KD: derivative gain) and pole placements of postural control system are estimated with time from inclination angle variation using fixed trace method as recursive least square method. Eight young healthy volunteers are participated in the experiment, in which volunteers are asked to incline forward as far as and as fast as possible 10 times over 10 [s] stationary intervals with their neck joint, hip joint and knee joint fixed, and then return to initial upright posture. The inclination angle is measured by an optical motion capture system. Three conditions are introduced to simulate unstable standing posture; 1) eyes-opened posture for healthy condition, 2) eyes-closed posture for visual impaired and 3) one-legged posture for lower-extremity muscle weakness. The estimated parameters Kp, KD and pole placements are applied to multiple comparison test among all stability conditions. The test results indicate that Kp, KD and real pole reflect effect of lower-extremity muscle weakness and KD also represents effect of visual impairment. It is suggested that the proposed method is valid for quantitative assessment of standing postural control ability.

  7. Bioavailability and Pharmacodynamics of Promethazine in Human Subjects

    NASA Technical Reports Server (NTRS)

    Boyd, J. L.; Boster, B.; Wang, Z.; Shah, V.; Berens, K. L.; Sipes, W. E.; Anderson, K. E.; Putcha, L.

    2004-01-01

    The acute effects of exposure to microgravity include the development of space motion sickness, which usually requires therapeutic intervention. The current drug of choice, promethazine (PMZ), is available to astronauts in three different dosage forms during space flight; its side effects include nausea, dizziness, sedation and impaired psychomotor performance. This ground-based study is designed to validate flight-suitable methods for pharmacodynamic evaluation of PMZ and to estimate bioavailability and pharmacodynamics of PMZ. Experimental design consists of intramuscular administration of three doses of PMZ (12.5,25 and 50 mg) and placebo in a randomized double blind fashion to human subjects and collecting blood, urine and saliva samples for 72 h. Subjects also complete cognitive performance test batteries, WinSCAT (Windows based Space Cognitive Assessment Test) and ARES (ANAM Readiness Evaluation System). Preliminary results indicate a significant relationship (p=9.88e-05) between circulating PMZ levels and cognitive performance parameters. Time to accurately complete memory tasks increases significantly with concentrations; higher concentrations also increase response time and decrease accuracy of substitution and matching tasks. AUC and half-life estimates for PMZ ranged between 0.12 and 1.7 mg.h/L and 15 and 50 h, respectively. These preliminary results indicate that PMZ may exhibit dose-dependent pharmacokinetics in humans; also, WinSCAT and ARES are sensitive for pharmacodynamic assessment of PMZ, and may be applicable for assessing the pharmacodynamics of other neurocognitive drugs.

  8. Comparison of a hybrid medication distribution system to simulated decentralized distribution models.

    PubMed

    Gray, John P; Ludwig, Brad; Temple, Jack; Melby, Michael; Rough, Steve

    2013-08-01

    The results of a study to estimate the human resource and cost implications of changing the medication distribution model at a large medical center are presented. A two-part study was conducted to evaluate alternatives to the hospital's existing hybrid distribution model (64% of doses dispensed via cart fill and 36% via automated dispensing cabinets [ADCs]). An assessment of nurse, pharmacist, and pharmacy technician workloads within the hybrid system was performed through direct observation, with time standards calculated for each dispensing task; similar time studies were conducted at a comparator hospital with a decentralized medication distribution system involving greater use of ADCs. The time study data were then used in simulation modeling of alternative distribution scenarios: one involving no use of cart fill, one involving no use of ADCs, and one heavily dependent on ADC dispensing (89% via ADC and 11% via cart fill). Simulation of the base-case and alternative scenarios indicated that as the modeled percentage of doses dispensed from ADCs rose, the calculated pharmacy technician labor requirements decreased, with a proportionately greater increase in the nursing staff workload. Given that nurses are a higher-cost resource than pharmacy technicians, the projected human resource opportunity cost of transitioning from the hybrid system to a decentralized system similar to the comparator facility's was estimated at $229,691 per annum. Based on the simulation results, it was decided that a transition from the existing hybrid medication distribution system to a more ADC-dependent model would result in an unfavorable shift in staff skill mix and corresponding human resource costs at the medical center.

  9. A MODEL TO EVALUATE PAST EXPOSURE TO 2,3,7,8 ...

    EPA Pesticide Factsheets

    Data from several studies suggest that concentrations of dioxins rose in the environment from the 1930s to about the 1960s/70s and have been declining over the last decade or two. The most direct evidence of this trend comes from lake core sediments, which can be used to estimate past atmospheric depositions of dioxins. The primary source of human exposure to dioxins is through the food supply. The pathway relating atmospheric depositions to concentrations in food is quite complex, and accordingly, it is not known to what extent the trend in human exposure mirrors the trend in atmospheric depositions. This paper describes an attempt to statistically reconstruct the pattern of past human exposure to the most toxic dioxin congener, 2,3,7,8-TCDD (abbreviated TCDD), through use of a simple pharmacokinetic (PK) model which included a time-varying TCDD exposure dose. This PK model was fit to TCDD body burden data (i.e., TCDD concentrations in lipid) from five U.S. studies dating from 1972 to 1987 and covering a wide age range. A Bayesian statistical approach was used to fit TCDD exposure; model parameters other than exposure were all previously known or estimated from other data sources. The primary results of the analysis are as follows: 1.) use of a time-varying exposure dose provided a far better fit to the TCDD body burden data than did using a dose that was constant over time; this is strong evidence that exposure to TCDD has, in fact, varied during the

  10. Temporally and spatially partitioned behaviours of spinner dolphins: implications for resilience to human disturbance

    PubMed Central

    Johnston, David W.; Christiansen, Fredrik

    2017-01-01

    Selective forces shape the evolution of wildlife behavioural strategies and influence the spatial and temporal partitioning of behavioural activities to maximize individual fitness. Globally, wildlife is increasingly exposed to human activities which may affect their behavioural activities. The ability of wildlife to compensate for the effects of human activities may have implications for their resilience to disturbance. Resilience theory suggests that behavioural systems which are constrained in their repertoires are less resilient to disturbance than flexible systems. Using behavioural time-series data, we show that spinner dolphins (Stenella longirostris) spatially and temporally partition their behavioural activities on a daily basis. Specifically, spinner dolphins were never observed foraging during daytime, where resting was the predominant activity. Travelling and socializing probabilities were higher in early mornings and late afternoons when dolphins were returning from or preparing for nocturnal feeding trips, respectively. The constrained nature of spinner dolphin behaviours suggests they are less resilient to human disturbance than other cetaceans. These dolphins experience the highest exposure rates to human activities ever reported for any cetaceans. Over the last 30 years human activities have increased significantly in Hawaii, but the spinner dolphins still inhabit these bays. Recent abundance estimates (2011 and 2012) however, are lower than all previous estimates (1979–1981, 1989–1992 and 2003), indicating a possible long-term impact. Quantification of the spatial and temporal partitioning of wildlife behavioural schedules provides critical insight for conservation measures that aim to mitigate the effects of human disturbance. PMID:28280561

  11. Temporally and spatially partitioned behaviours of spinner dolphins: implications for resilience to human disturbance.

    PubMed

    Tyne, Julian A; Johnston, David W; Christiansen, Fredrik; Bejder, Lars

    2017-01-01

    Selective forces shape the evolution of wildlife behavioural strategies and influence the spatial and temporal partitioning of behavioural activities to maximize individual fitness. Globally, wildlife is increasingly exposed to human activities which may affect their behavioural activities. The ability of wildlife to compensate for the effects of human activities may have implications for their resilience to disturbance. Resilience theory suggests that behavioural systems which are constrained in their repertoires are less resilient to disturbance than flexible systems. Using behavioural time-series data, we show that spinner dolphins ( Stenella longirostris ) spatially and temporally partition their behavioural activities on a daily basis. Specifically, spinner dolphins were never observed foraging during daytime, where resting was the predominant activity. Travelling and socializing probabilities were higher in early mornings and late afternoons when dolphins were returning from or preparing for nocturnal feeding trips, respectively. The constrained nature of spinner dolphin behaviours suggests they are less resilient to human disturbance than other cetaceans. These dolphins experience the highest exposure rates to human activities ever reported for any cetaceans. Over the last 30 years human activities have increased significantly in Hawaii, but the spinner dolphins still inhabit these bays. Recent abundance estimates (2011 and 2012) however, are lower than all previous estimates (1979-1981, 1989-1992 and 2003), indicating a possible long-term impact. Quantification of the spatial and temporal partitioning of wildlife behavioural schedules provides critical insight for conservation measures that aim to mitigate the effects of human disturbance.

  12. The Price of a Neglected Zoonosis: Case-Control Study to Estimate Healthcare Utilization Costs of Human Brucellosis.

    PubMed

    Vered, Oded; Simon-Tuval, Tzahit; Yagupsky, Pablo; Malul, Miki; Cicurel, Assi; Davidovitch, Nadav

    2015-01-01

    Human brucellosis has reemerged as a serious public health threat to the Bedouin population of southern Israel in recent years. Little is known about its economic implications derived from elevated healthcare utilization (HCU). Our objective was to estimate the HCU costs associated with human brucellosis from the insurer perspective. A case-control retrospective study was conducted among Clalit Health Services (CHS) enrollees. Brucellosis cases were defined as individuals that were diagnosed with brucellosis at the Clinical Microbiology Laboratory of Soroka University Medical Center in the 2010-2012 period (n = 470). Control subjects were randomly selected and matched 1:3 by age, sex, clinic, and primary physician (n = 1,410). HCU data, demographic characteristics and comorbidities were obtained from CHS computerized database. Mean±SD age of the brucellosis cases was 26.6±17.6 years. 63% were male and 85% were Bedouins. No significant difference in Charlson comorbidity index was found between brucellosis cases and controls (0.41 vs. 0.45, respectively, P = 0.391). Before diagnosis (baseline), the average total annual HCU cost of brucellosis cases was slightly yet significantly higher than that of the control group ($439 vs. $382, P<0.05), however, no significant differences were found at baseline in the predominant components of HCU, i.e. hospitalizations, diagnostic procedures, and medications. At the year following diagnosis, the average total annual HCU costs of brucellosis cases was significantly higher than that of controls ($1,327 vs. $380, respectively, P<0.001). Most of the difference stems from 7.9 times higher hospitalization costs (p<0.001). Additional elevated costs were 3.6 times higher laboratory tests (P<0.001), 2.8 times higher emergency room visits (P<0.001), 1.8 times higher medication (P<0.001) and 1.3 times higher diagnostic procedures (P<0.001). We conclude that human brucellosis is associated with elevated HCU costs. Considering these results in cost-effective analyses may be crucial for both reducing health inequities and optimal allocation of health systems' scarce resources.

  13. Human-centric predictive model of task difficulty for human-in-the-loop control tasks

    PubMed Central

    Majewicz Fey, Ann

    2018-01-01

    Quantitatively measuring the difficulty of a manipulation task in human-in-the-loop control systems is ill-defined. Currently, systems are typically evaluated through task-specific performance measures and post-experiment user surveys; however, these methods do not capture the real-time experience of human users. In this study, we propose to analyze and predict the difficulty of a bivariate pointing task, with a haptic device interface, using human-centric measurement data in terms of cognition, physical effort, and motion kinematics. Noninvasive sensors were used to record the multimodal response of human user for 14 subjects performing the task. A data-driven approach for predicting task difficulty was implemented based on several task-independent metrics. We compare four possible models for predicting task difficulty to evaluated the roles of the various types of metrics, including: (I) a movement time model, (II) a fusion model using both physiological and kinematic metrics, (III) a model only with kinematic metrics, and (IV) a model only with physiological metrics. The results show significant correlation between task difficulty and the user sensorimotor response. The fusion model, integrating user physiology and motion kinematics, provided the best estimate of task difficulty (R2 = 0.927), followed by a model using only kinematic metrics (R2 = 0.921). Both models were better predictors of task difficulty than the movement time model (R2 = 0.847), derived from Fitt’s law, a well studied difficulty model for human psychomotor control. PMID:29621301

  14. Epidermal growth in the bottlenose dolphin, Tursiops truncatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, B.D.; St. Aubin, D.J.; Geraci, J.R.

    1985-07-01

    Epidermal growth in two mature female bottlenose dolphins, Tursiops truncatus, was investigated by following the movement of a cohort of tritiated thymidine-labeled epidermal cells for 59 days. The majority of the cells migrated in a cluster which was estimated to reach the skin surface in 73 days. The authors calculate that the outermost cell layer is sloughed 12 times per day. Turnover time and sloughing rate are estimated to be 1.7 times longer and 8.5 times faster than the respective values for epidermal cell kinetics in humans. This apparent inconsistency of slow transit time and rapid sloughing rate is reconciledmore » by the convoluted structure of the stratum germinativum in the dolphin which results in a ratio of germinatival to superficial cells of 876:1. The stratum germinativum of dolphin epidermis appears to lack morphologically distinct, spatially segregated subpopulations of anchoring and stem cells. Dolphin epidermis has a large capacity for cell population, relatively long turnover time, and rapid sloughing rate. The adaptive advantages of these characteristics are discussed.« less

  15. Dual Quaternions as Constraints in 4D-DPM Models for Pose Estimation.

    PubMed

    Martinez-Berti, Enrique; Sánchez-Salmerón, Antonio-José; Ricolfe-Viala, Carlos

    2017-08-19

    The goal of this research work is to improve the accuracy of human pose estimation using the Deformation Part Model (DPM) without increasing computational complexity. First, the proposed method seeks to improve pose estimation accuracy by adding the depth channel to DPM, which was formerly defined based only on red-green-blue (RGB) channels, in order to obtain a four-dimensional DPM (4D-DPM). In addition, computational complexity can be controlled by reducing the number of joints by taking it into account in a reduced 4D-DPM. Finally, complete solutions are obtained by solving the omitted joints by using inverse kinematics models. In this context, the main goal of this paper is to analyze the effect on pose estimation timing cost when using dual quaternions to solve the inverse kinematics.

  16. Quick Estimation Model for the Concentration of Indoor Airborne Culturable Bacteria: An Application of Machine Learning

    PubMed Central

    Liu, Zhijian; Li, Hao; Cao, Guoqing

    2017-01-01

    Indoor airborne culturable bacteria are sometimes harmful to human health. Therefore, a quick estimation of their concentration is particularly necessary. However, measuring the indoor microorganism concentration (e.g., bacteria) usually requires a large amount of time, economic cost, and manpower. In this paper, we aim to provide a quick solution: using knowledge-based machine learning to provide quick estimation of the concentration of indoor airborne culturable bacteria only with the inputs of several measurable indoor environmental indicators, including: indoor particulate matter (PM2.5 and PM10), temperature, relative humidity, and CO2 concentration. Our results show that a general regression neural network (GRNN) model can sufficiently provide a quick and decent estimation based on the model training and testing using an experimental database with 249 data groups. PMID:28758941

  17. Location- and lesion-dependent estimation of mammographic background tissue complexity.

    PubMed

    Avanaki, Ali; Espig, Kathryn; Kimpe, Tom

    2017-01-01

    We specify a notion of perceived background tissue complexity (BTC) that varies with lesion shape, lesion size, and lesion location in the image. We propose four unsupervised BTC estimators based on: perceived pre and postlesion similarity of images, lesion border analysis (LBA; conspicuous lesion should be brighter than its surround), tissue anomaly detection, and local energy. The latter two are existing methods adapted for location- and lesion-dependent BTC estimation. For evaluation, we ask human observers to measure BTC (threshold visibility amplitude of a given lesion inserted) at specified locations in a mammogram. As expected, both human measured and computationally estimated BTC vary with lesion shape, size, and location. BTCs measured by different human observers are correlated ([Formula: see text]). BTC estimators are correlated to each other ([Formula: see text]) and less so to human observers ([Formula: see text]). With change in lesion shape or size, LBA estimated BTC changes in the same direction as human measured BTC. Proposed estimators can be generalized to other modalities (e.g., breast tomosynthesis) and used as-is or customized to a specific human observer, to construct BTC-aware model observers with applications, such as optimization of contrast-enhanced medical imaging systems and creation of a diversified image dataset with characteristics of a desired population.

  18. Location- and lesion-dependent estimation of mammographic background tissue complexity

    PubMed Central

    Avanaki, Ali; Espig, Kathryn; Kimpe, Tom

    2017-01-01

    Abstract. We specify a notion of perceived background tissue complexity (BTC) that varies with lesion shape, lesion size, and lesion location in the image. We propose four unsupervised BTC estimators based on: perceived pre and postlesion similarity of images, lesion border analysis (LBA; conspicuous lesion should be brighter than its surround), tissue anomaly detection, and local energy. The latter two are existing methods adapted for location- and lesion-dependent BTC estimation. For evaluation, we ask human observers to measure BTC (threshold visibility amplitude of a given lesion inserted) at specified locations in a mammogram. As expected, both human measured and computationally estimated BTC vary with lesion shape, size, and location. BTCs measured by different human observers are correlated (ρ=0.67). BTC estimators are correlated to each other (0.84<ρ<0.95) and less so to human observers (ρ≤0.81). With change in lesion shape or size, LBA estimated BTC changes in the same direction as human measured BTC. Proposed estimators can be generalized to other modalities (e.g., breast tomosynthesis) and used as-is or customized to a specific human observer, to construct BTC-aware model observers with applications, such as optimization of contrast-enhanced medical imaging systems and creation of a diversified image dataset with characteristics of a desired population. PMID:28097214

  19. Predictive framework for estimating exposure of birds to pharmaceuticals

    USGS Publications Warehouse

    Bean, Thomas G.; Arnold, Kathryn E.; Lane, Julie M.; Bergström, Ed; Thomas-Oates, Jane; Rattner, Barnett A.; Boxall, Allistair B.A.

    2017-01-01

    We present and evaluate a framework for estimating concentrations of pharmaceuticals over time in wildlife feeding at wastewater treatment plants (WWTPs). The framework is composed of a series of predictive steps involving the estimation of pharmaceutical concentration in wastewater, accumulation into wildlife food items, and uptake by wildlife with subsequent distribution into, and elimination from, tissues. Because many pharmacokinetic parameters for wildlife are unavailable for the majority of drugs in use, a read-across approach was employed using either rodent or human data on absorption, distribution, metabolism, and excretion. Comparison of the different steps in the framework against experimental data for the scenario where birds are feeding on a WWTP contaminated with fluoxetine showed that estimated concentrations in wastewater treatment works were lower than measured concentrations; concentrations in food could be reasonably estimated if experimental bioaccumulation data are available; and read-across from rodent data worked better than human to bird read-across. The framework provides adequate predictions of plasma concentrations and of elimination behavior in birds but yields poor predictions of distribution in tissues. The approach holds promise, but it is important that we improve our understanding of the physiological similarities and differences between wild birds and domesticated laboratory mammals used in pharmaceutical efficacy/safety trials, so that the wealth of data available can be applied more effectively in ecological risk assessments.

  20. Predictive framework for estimating exposure of birds to pharmaceuticals.

    PubMed

    Bean, Thomas G; Arnold, Kathryn E; Lane, Julie M; Bergström, Ed; Thomas-Oates, Jane; Rattner, Barnett A; Boxall, Alistair B A

    2017-09-01

    We present and evaluate a framework for estimating concentrations of pharmaceuticals over time in wildlife feeding at wastewater treatment plants (WWTPs). The framework is composed of a series of predictive steps involving the estimation of pharmaceutical concentration in wastewater, accumulation into wildlife food items, and uptake by wildlife with subsequent distribution into, and elimination from, tissues. Because many pharmacokinetic parameters for wildlife are unavailable for the majority of drugs in use, a read-across approach was employed using either rodent or human data on absorption, distribution, metabolism, and excretion. Comparison of the different steps in the framework against experimental data for the scenario where birds are feeding on a WWTP contaminated with fluoxetine showed that estimated concentrations in wastewater treatment works were lower than measured concentrations; concentrations in food could be reasonably estimated if experimental bioaccumulation data are available; and read-across from rodent data worked better than human to bird read-across. The framework provides adequate predictions of plasma concentrations and of elimination behavior in birds but yields poor predictions of distribution in tissues. The approach holds promise, but it is important that we improve our understanding of the physiological similarities and differences between wild birds and domesticated laboratory mammals used in pharmaceutical efficacy/safety trials, so that the wealth of data available can be applied more effectively in ecological risk assessments. Environ Toxicol Chem 2017;36:2335-2344. © 2017 SETAC. © 2017 SETAC.

  1. Using Combined Diagnostic Test Results to Hindcast Trends of Infection from Cross-Sectional Data

    PubMed Central

    Rydevik, Gustaf; Innocent, Giles T.; Marion, Glenn; White, Piran C. L.; Billinis, Charalambos; Barrow, Paul; Mertens, Peter P. C.; Gavier-Widén, Dolores; Hutchings, Michael R.

    2016-01-01

    Infectious disease surveillance is key to limiting the consequences from infectious pathogens and maintaining animal and public health. Following the detection of a disease outbreak, a response in proportion to the severity of the outbreak is required. It is thus critical to obtain accurate information concerning the origin of the outbreak and its forward trajectory. However, there is often a lack of situational awareness that may lead to over- or under-reaction. There is a widening range of tests available for detecting pathogens, with typically different temporal characteristics, e.g. in terms of when peak test response occurs relative to time of exposure. We have developed a statistical framework that combines response level data from multiple diagnostic tests and is able to ‘hindcast’ (infer the historical trend of) an infectious disease epidemic. Assuming diagnostic test data from a cross-sectional sample of individuals infected with a pathogen during an outbreak, we use a Bayesian Markov Chain Monte Carlo (MCMC) approach to estimate time of exposure, and the overall epidemic trend in the population prior to the time of sampling. We evaluate the performance of this statistical framework on simulated data from epidemic trend curves and show that we can recover the parameter values of those trends. We also apply the framework to epidemic trend curves taken from two historical outbreaks: a bluetongue outbreak in cattle, and a whooping cough outbreak in humans. Together, these results show that hindcasting can estimate the time since infection for individuals and provide accurate estimates of epidemic trends, and can be used to distinguish whether an outbreak is increasing or past its peak. We conclude that if temporal characteristics of diagnostics are known, it is possible to recover epidemic trends of both human and animal pathogens from cross-sectional data collected at a single point in time. PMID:27384712

  2. The lawful imprecision of human surface tilt estimation in natural scenes

    PubMed Central

    2018-01-01

    Estimating local surface orientation (slant and tilt) is fundamental to recovering the three-dimensional structure of the environment. It is unknown how well humans perform this task in natural scenes. Here, with a database of natural stereo-images having groundtruth surface orientation at each pixel, we find dramatic differences in human tilt estimation with natural and artificial stimuli. Estimates are precise and unbiased with artificial stimuli and imprecise and strongly biased with natural stimuli. An image-computable Bayes optimal model grounded in natural scene statistics predicts human bias, precision, and trial-by-trial errors without fitting parameters to the human data. The similarities between human and model performance suggest that the complex human performance patterns with natural stimuli are lawful, and that human visual systems have internalized local image and scene statistics to optimally infer the three-dimensional structure of the environment. These results generalize our understanding of vision from the lab to the real world. PMID:29384477

  3. The lawful imprecision of human surface tilt estimation in natural scenes.

    PubMed

    Kim, Seha; Burge, Johannes

    2018-01-31

    Estimating local surface orientation (slant and tilt) is fundamental to recovering the three-dimensional structure of the environment. It is unknown how well humans perform this task in natural scenes. Here, with a database of natural stereo-images having groundtruth surface orientation at each pixel, we find dramatic differences in human tilt estimation with natural and artificial stimuli. Estimates are precise and unbiased with artificial stimuli and imprecise and strongly biased with natural stimuli. An image-computable Bayes optimal model grounded in natural scene statistics predicts human bias, precision, and trial-by-trial errors without fitting parameters to the human data. The similarities between human and model performance suggest that the complex human performance patterns with natural stimuli are lawful, and that human visual systems have internalized local image and scene statistics to optimally infer the three-dimensional structure of the environment. These results generalize our understanding of vision from the lab to the real world. © 2018, Kim et al.

  4. Estimation of bio-signal based on human motion for integrated visualization of daily-life.

    PubMed

    Umetani, Tomohiro; Matsukawa, Tsuyoshi; Yokoyama, Kiyoko

    2007-01-01

    This paper describes a method for the estimation of bio-signals based on human motion in daily life for an integrated visualization system. The recent advancement of computers and measurement technology has facilitated the integrated visualization of bio-signals and human motion data. It is desirable to obtain a method to understand the activities of muscles based on human motion data and evaluate the change in physiological parameters according to human motion for visualization applications. We suppose that human motion is generated by the activities of muscles reflected from the brain to bio-signals such as electromyograms. This paper introduces a method for the estimation of bio-signals based on neural networks. This method can estimate the other physiological parameters based on the same procedure. The experimental results show the feasibility of the proposed method.

  5. Dating human skeletal remains: investigating the viability of measuring the equilibrium between 210Po and 210Pb as a means of estimating the post-mortem interval.

    PubMed

    Swift, B

    1998-11-30

    Estimating the post-mortem interval in skeletal remains is a notoriously difficult task; forensic pathologists often rely heavily upon experience in recognising morphological appearances. Previous techniques have involved measuring physical or chemical changes within the hydroxyapatite matrix, radiocarbon dating and 90Sr dating, though no individual test has been advocated. Within this paper it is proposed that measuring the equilibrium between two naturally occurring radio-isotopes, 210Po and 210Pb, and comparison with post-mortem examination samples would produce a new method of dating human skeletal remains. Possible limitations exist, notably the effect of diagenesis, time limitations and relative cost, though this technique could provide a relatively accurate means of determining the post-mortem interval. It is therefore proposed that a large study be undertaken to provide a calibration scale against which bones uncovered can be dated.

  6. Comparative Population Genomics Analysis of the Mammalian Fungal Pathogen Pneumocystis

    PubMed Central

    Ma, Liang; Wei Huang, Da; Khil, Pavel P.; Dekker, John P.; Kutty, Geetha; Bishop, Lisa; Liu, Yueqin; Deng, Xilong; Pagni, Marco; Hirsch, Vanessa; Lempicki, Richard A.

    2018-01-01

    ABSTRACT Pneumocystis species are opportunistic mammalian pathogens that cause severe pneumonia in immunocompromised individuals. These fungi are highly host specific and uncultivable in vitro. Human Pneumocystis infections present major challenges because of a limited therapeutic arsenal and the rise of drug resistance. To investigate the diversity and demographic history of natural populations of Pneumocystis infecting humans, rats, and mice, we performed whole-genome and large-scale multilocus sequencing of infected tissues collected in various geographic locations. Here, we detected reduced levels of recombination and variations in historical demography, which shape the global population structures. We report estimates of evolutionary rates, levels of genetic diversity, and population sizes. Molecular clock estimates indicate that Pneumocystis species diverged before their hosts, while the asynchronous timing of population declines suggests host shifts. Our results have uncovered complex patterns of genetic variation influenced by multiple factors that shaped the adaptation of Pneumocystis populations during their spread across mammals. PMID:29739910

  7. Prediction of Human Pharmacokinetic Profile After Transdermal Drug Application Using Excised Human Skin.

    PubMed

    Yamamoto, Syunsuke; Karashima, Masatoshi; Arai, Yuta; Tohyama, Kimio; Amano, Nobuyuki

    2017-09-01

    Although several mathematical models have been reported for the estimation of human plasma concentration profiles of drug substances after dermal application, the successful cases that can predict human pharmacokinetic profiles are limited. Therefore, the aim of this study is to investigate the prediction of human plasma concentrations after dermal application using in vitro permeation parameters obtained from excised human skin. The in vitro skin permeability of 7 marketed drug products was evaluated. The plasma concentration-time profiles of the drug substances in humans after their dermal application were simulated using compartment models and the clinical pharmacokinetic parameters. The transdermal process was simulated using the in vitro skin permeation rate and lag time assuming a zero-order absorption. These simulated plasma concentration profiles were compared with the clinical data. The result revealed that the steady-state plasma concentration of diclofenac and the maximum concentrations of nicotine, bisoprolol, rivastigmine, and lidocaine after topical application were within 2-fold of the clinical data. Furthermore, the simulated concentration profiles of bisoprolol, nicotine, and rivastigmine reproduced the decrease in absorption due to drug depletion from the formulation. In conclusion, this simple compartment model using in vitro human skin permeation parameters as zero-order absorption predicted the human plasma concentrations accurately. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  8. Influence of O-methylated metabolite penetrating the blood-brain barrier to estimation of dopamine synthesis capacity in human L-[β-(11)C]DOPA PET.

    PubMed

    Matsubara, Keisuke; Ikoma, Yoko; Okada, Maki; Ibaraki, Masanobu; Suhara, Tetsuya; Kinoshita, Toshibumi; Ito, Hiroshi

    2014-02-01

    O-methyl metabolite (L-[β-(11)C]OMD) of (11)C-labeled L-3,4-dihydroxyphenylalanine (L-[β-(11)C]DOPA) can penetrate into brain tissue through the blood-brain barrier, and can complicate the estimation of dopamine synthesis capacity by positron emission tomography (PET) study with L-[β-(11)C]DOPA. We evaluated the impact of L-[β-(11)C]OMD on the estimation of the dopamine synthesis capacity in a human L-[β-(11)C]DOPA PET study. The metabolite correction with mathematical modeling of L-[β-(11)C]OMD kinetics in a reference region without decarboxylation and further metabolism, proposed by a previous [(18)F]FDOPA PET study, were implemented to estimate radioactivity of tissue L-[β-(11)C]OMD in 10 normal volunteers. The component of L-[β-(11)C]OMD in tissue time-activity curves (TACs) in 10 regions were subtracted by the estimated radioactivity of L-[β-(11)C]OMD. To evaluate the influence of omitting blood sampling and metabolite correction, relative dopamine synthesis rate (kref) was estimated by Gjedde-Patlak analysis with reference tissue input function, as well as the net dopamine synthesis rate (Ki) by Gjedde-Patlak analysis with the arterial input function and TAC without and with metabolite correction. Overestimation of Ki was observed without metabolite correction. However, the kref and Ki with metabolite correction were significantly correlated. These data suggest that the influence of L-[β-(11)C]OMD is minimal for the estimation of kref as dopamine synthesis capacity.

  9. Humans make efficient use of natural image statistics when performing spatial interpolation.

    PubMed

    D'Antona, Anthony D; Perry, Jeffrey S; Geisler, Wilson S

    2013-12-16

    Visual systems learn through evolution and experience over the lifespan to exploit the statistical structure of natural images when performing visual tasks. Understanding which aspects of this statistical structure are incorporated into the human nervous system is a fundamental goal in vision science. To address this goal, we measured human ability to estimate the intensity of missing image pixels in natural images. Human estimation accuracy is compared with various simple heuristics (e.g., local mean) and with optimal observers that have nearly complete knowledge of the local statistical structure of natural images. Human estimates are more accurate than those of simple heuristics, and they match the performance of an optimal observer that knows the local statistical structure of relative intensities (contrasts). This optimal observer predicts the detailed pattern of human estimation errors and hence the results place strong constraints on the underlying neural mechanisms. However, humans do not reach the performance of an optimal observer that knows the local statistical structure of the absolute intensities, which reflect both local relative intensities and local mean intensity. As predicted from a statistical analysis of natural images, human estimation accuracy is negligibly improved by expanding the context from a local patch to the whole image. Our results demonstrate that the human visual system exploits efficiently the statistical structure of natural images.

  10. Mobile elements reveal small population size in the ancient ancestors of Homo sapiens.

    PubMed

    Huff, Chad D; Xing, Jinchuan; Rogers, Alan R; Witherspoon, David; Jorde, Lynn B

    2010-02-02

    The genealogies of different genetic loci vary in depth. The deeper the genealogy, the greater the chance that it will include a rare event, such as the insertion of a mobile element. Therefore, the genealogy of a region that contains a mobile element is on average older than that of the rest of the genome. In a simple demographic model, the expected time to most recent common ancestor (TMRCA) is doubled if a rare insertion is present. We test this expectation by examining single nucleotide polymorphisms around polymorphic Alu insertions from two completely sequenced human genomes. The estimated TMRCA for regions containing a polymorphic insertion is two times larger than the genomic average (P < <10(-30)), as predicted. Because genealogies that contain polymorphic mobile elements are old, they are shaped largely by the forces of ancient population history and are insensitive to recent demographic events, such as bottlenecks and expansions. Remarkably, the information in just two human DNA sequences provides substantial information about ancient human population size. By comparing the likelihood of various demographic models, we estimate that the effective population size of human ancestors living before 1.2 million years ago was 18,500, and we can reject all models where the ancient effective population size was larger than 26,000. This result implies an unusually small population for a species spread across the entire Old World, particularly in light of the effective population sizes of chimpanzees (21,000) and gorillas (25,000), which each inhabit only one part of a single continent.

  11. GARCH modelling of covariance in dynamical estimation of inverse solutions

    NASA Astrophysics Data System (ADS)

    Galka, Andreas; Yamashita, Okito; Ozaki, Tohru

    2004-12-01

    The problem of estimating unobserved states of spatially extended dynamical systems poses an inverse problem, which can be solved approximately by a recently developed variant of Kalman filtering; in order to provide the model of the dynamics with more flexibility with respect to space and time, we suggest to combine the concept of GARCH modelling of covariance, well known in econometrics, with Kalman filtering. We formulate this algorithm for spatiotemporal systems governed by stochastic diffusion equations and demonstrate its feasibility by presenting a numerical simulation designed to imitate the situation of the generation of electroencephalographic recordings by the human cortex.

  12. Location- and lesion-dependent estimation of background tissue complexity for anthropomorphic model observer

    NASA Astrophysics Data System (ADS)

    Avanaki, Ali R. N.; Espig, Kathryn; Knippel, Eddie; Kimpe, Tom R. L.; Xthona, Albert; Maidment, Andrew D. A.

    2016-03-01

    In this paper, we specify a notion of background tissue complexity (BTC) as perceived by a human observer that is suited for use with model observers. This notion of BTC is a function of image location and lesion shape and size. We propose four unsupervised BTC estimators based on: (i) perceived pre- and post-lesion similarity of images, (ii) lesion border analysis (LBA; conspicuous lesion should be brighter than its surround), (iii) tissue anomaly detection, and (iv) mammogram density measurement. The latter two are existing methods we adapt for location- and lesion-dependent BTC estimation. To validate the BTC estimators, we ask human observers to measure BTC as the visibility threshold amplitude of an inserted lesion at specified locations in a mammogram. Both human-measured and computationally estimated BTC varied with lesion shape (from circular to oval), size (from small circular to larger circular), and location (different points across a mammogram). BTCs measured by different human observers are correlated (ρ=0.67). BTC estimators are highly correlated to each other (0.84

  13. Investigation of in-body path loss in different human subjects for localization of capsule endoscope.

    PubMed

    Ara, Perzila; Cheng, Shaokoon; Heimlich, Michael; Dutkiewicz, Eryk

    2015-01-01

    Recent developments in capsule endoscopy have highlighted the need for accurate techniques to estimate the location of a capsule endoscope. A highly accurate location estimation of a capsule endoscope in the gastrointestinal (GI) tract in the range of several millimeters is a challenging task. This is mainly because the radio-frequency signals encounter high loss and a highly dynamic channel propagation environment. Therefore, an accurate path-loss model is required for the development of accurate localization algorithms. This paper presents an in-body path-loss model for the human abdomen region at 2.4 GHz frequency. To develop the path-loss model, electromagnetic simulations using the Finite-Difference Time-Domain (FDTD) method were carried out on two different anatomical human models. A mathematical expression for the path-loss model was proposed based on analysis of the measured loss at different capsule locations inside the small intestine. The proposed path-loss model is a good approximation to model in-body RF propagation, since the real measurements are quite infeasible for the capsule endoscopy subject.

  14. Modular neuron-based body estimation: maintaining consistency over different limbs, modalities, and frames of reference

    PubMed Central

    Ehrenfeld, Stephan; Herbort, Oliver; Butz, Martin V.

    2013-01-01

    This paper addresses the question of how the brain maintains a probabilistic body state estimate over time from a modeling perspective. The neural Modular Modality Frame (nMMF) model simulates such a body state estimation process by continuously integrating redundant, multimodal body state information sources. The body state estimate itself is distributed over separate, but bidirectionally interacting modules. nMMF compares the incoming sensory and present body state information across the interacting modules and fuses the information sources accordingly. At the same time, nMMF enforces body state estimation consistency across the modules. nMMF is able to detect conflicting sensory information and to consequently decrease the influence of implausible sensor sources on the fly. In contrast to the previously published Modular Modality Frame (MMF) model, nMMF offers a biologically plausible neural implementation based on distributed, probabilistic population codes. Besides its neural plausibility, the neural encoding has the advantage of enabling (a) additional probabilistic information flow across the separate body state estimation modules and (b) the representation of arbitrary probability distributions of a body state. The results show that the neural estimates can detect and decrease the impact of false sensory information, can propagate conflicting information across modules, and can improve overall estimation accuracy due to additional module interactions. Even bodily illusions, such as the rubber hand illusion, can be simulated with nMMF. We conclude with an outlook on the potential of modeling human data and of invoking goal-directed behavioral control. PMID:24191151

  15. Effects of age, season, gender and urban-rural status on time-activity: CanadianHuman Activity Pattern Survey 2 (CHAPS 2).

    PubMed

    Matz, Carlyn J; Stieb, David M; Davis, Karelyn; Egyed, Marika; Rose, Andreas; Chou, Benedito; Brion, Orly

    2014-02-19

    Estimation of population exposure is a main component of human health risk assessment for environmental contaminants. Population-level exposure assessments require time-activity pattern distributions in relation to microenvironments where people spend their time. Societal trends may have influenced time-activity patterns since previous Canadian data were collected 15 years ago. The Canadian Human Activity Pattern Survey 2 (CHAPS 2) was a national survey conducted in 2010-2011 to collect time-activity information from Canadians of all ages. Five urban and two rural locations were sampled using telephone surveys. Infants and children, key groups in risk assessment activities, were over-sampled. Survey participants (n = 5,011) provided time-activity information in 24-hour recall diaries and responded to supplemental questionnaires concerning potential exposures to specific pollutants, dwelling characteristics, and socio-economic factors. Results indicated that a majority of the time was spent indoors (88.9%), most of which was indoors at home, with limited time spent outdoors (5.8%) or in a vehicle (5.3%). Season, age, gender and rurality were significant predictors of time activity patterns. Compared to earlier data, adults reported spending more time indoors at home and adolescents reported spending less time outdoors, which could be indicative of broader societal trends. These findings have potentially important implications for assessment of exposure and risk. The CHAPS 2 data also provide much larger sample sizes to allow for improved precision and are more representative of infants, children and rural residents.

  16. Effects of extreme weather on human health: methodology review

    NASA Astrophysics Data System (ADS)

    Wu, R.; Liss, A.; Naumova, E. N.

    2012-12-01

    This work critically evaluates current methodology applied to estimate the effects of extreme weather events (EWE) on human health. Specifically, we focus on uncertainties associated with: a) the main statistical approaches for estimating the effects of EWE, b) definitions of health outcomes and EWE, and c) possible sources of errors and biases in currently available data sets. The EWE, which include heat waves, cold spells, ice storms, flood, drought and tornadoes, are known for their massive effects on ecosystems, economies, infrastructures. In particular, human lives and health are frequently impacted by EWE; however, the estimate of such effects is complex and lacks a systematic methodology. An accurate and reliable estimate of health impacts is critical for developing preparedness and effective prevention strategies, better allocating scarce resources for mitigating negative impacts of EWE, and detecting vulnerable populations and regions in a timely manner. We reviewed 82 manuscripts published between 1993 and 2011, selected from MedPub and Medline databases using predetermined sets of keywords, such as extreme weather, mortality, morbidity and hospitalization. We classified publications based on their geographical locations, types of included health outcomes, methods for detecting EWE and statistical methodology employed to determine the presence and magnitude of EWE associated health outcomes. We determined that 57% of the reviewed manuscripts applied time-series analysis and the associations analysis and were conducted in temperate regions of the US, Canada, Korea, Japan and Europe respectively. About 60% of reviewed studies focused primarily on mortality data, 30% on morbidity outcomes and 9% studied both mortality and morbidity with respect to direct effects of extreme heat waves and cold spells. A wide range of EWE definitions were employed in those manuscripts, which limited the ability to compare the results to a certain degree. We observed at least three main sources of uncertainty, which may lead to an estimate bias: potential misrepresentation and misspecification of the biological causal mechanism in statistical models, completeness and quality of reporting EWE-specific health outcomes, and incomplete accounting for spatial uncertainties in historical environmental records. Finally we show that some of those systematic biases can be reduced by performing proper adjustments, while some of them still need further studies and efforts. Reducing bias provides more accurate representation of disease burden. Better understanding of EWE and their impacts on human health, combined with other preventive strategies, can provide better protection from EWE for vulnerable populations in the future.

  17. Transmission dynamics and elimination potential of zoonotic tuberculosis in morocco

    PubMed Central

    Justus Bless, Philipp; Crump, Lisa; Lohmann, Petra; Laager, Mirjam; Chitnis, Nakul; Zinsstag, Jakob

    2017-01-01

    Bovine tuberculosis (BTB) is an endemic zoonosis in Morocco caused by Mycobacterium bovis, which infects many domestic animals and is transmitted to humans through consumption of raw milk or from contact with infected animals. The prevalence of BTB in Moroccan cattle is estimated at 18%, and 33% at the individual and the herd level respectively, but the human M. bovis burden needs further clarification. The current control strategy based on test and slaughter should be improved through local context adaptation taking into account a suitable compensation in order to reduce BTB prevalence in Morocco and decrease the disease burden in humans and animals. We established a simple compartmental deterministic mathematical model for BTB transmission in cattle and humans to provide a general understanding of BTB, in particular regarding transmission to humans. Differential equations were used to model the different pathways between the compartments for cattle and humans. Scenarios of test and slaughter were simulated to determine the effects of varying the proportion of tested animals (p) on the time to elimination of BTB (individual animal prevalence of less than one in a thousand) in cattle and humans. The time to freedom from disease ranged from 75 years for p = 20% to 12 years for p = 100%. For p > 60% the time to elimination was less than 20 years. The cumulated cost was largely stable: for p values higher than 40%, cost ranged from 1.47 to 1.60 billion euros with a time frame of 12 to 32 years to reach freedom from disease. The model simulations also suggest that using a 2mm cut off instead of a 4mm cut off in the Single Intradermal Comparative Cervical Tuberculin skin test (SICCT) would result in cheaper and quicker elimination programs. This analysis informs Moroccan bovine tuberculosis control policy regarding time frame, range of cost and levels of intervention. However, further research is needed to clarify the national human-bovine tuberculosis ratio in Morocco. PMID:28152056

  18. Transmission dynamics and elimination potential of zoonotic tuberculosis in morocco.

    PubMed

    Abakar, Mahamat Fayiz; Yahyaoui Azami, Hind; Justus Bless, Philipp; Crump, Lisa; Lohmann, Petra; Laager, Mirjam; Chitnis, Nakul; Zinsstag, Jakob

    2017-02-01

    Bovine tuberculosis (BTB) is an endemic zoonosis in Morocco caused by Mycobacterium bovis, which infects many domestic animals and is transmitted to humans through consumption of raw milk or from contact with infected animals. The prevalence of BTB in Moroccan cattle is estimated at 18%, and 33% at the individual and the herd level respectively, but the human M. bovis burden needs further clarification. The current control strategy based on test and slaughter should be improved through local context adaptation taking into account a suitable compensation in order to reduce BTB prevalence in Morocco and decrease the disease burden in humans and animals. We established a simple compartmental deterministic mathematical model for BTB transmission in cattle and humans to provide a general understanding of BTB, in particular regarding transmission to humans. Differential equations were used to model the different pathways between the compartments for cattle and humans. Scenarios of test and slaughter were simulated to determine the effects of varying the proportion of tested animals (p) on the time to elimination of BTB (individual animal prevalence of less than one in a thousand) in cattle and humans. The time to freedom from disease ranged from 75 years for p = 20% to 12 years for p = 100%. For p > 60% the time to elimination was less than 20 years. The cumulated cost was largely stable: for p values higher than 40%, cost ranged from 1.47 to 1.60 billion euros with a time frame of 12 to 32 years to reach freedom from disease. The model simulations also suggest that using a 2mm cut off instead of a 4mm cut off in the Single Intradermal Comparative Cervical Tuberculin skin test (SICCT) would result in cheaper and quicker elimination programs. This analysis informs Moroccan bovine tuberculosis control policy regarding time frame, range of cost and levels of intervention. However, further research is needed to clarify the national human-bovine tuberculosis ratio in Morocco.

  19. Estimation of the health and economic burden of neurocysticercosis in India.

    PubMed

    Singh, B B; Khatkar, M S; Gill, J P S; Dhand, N K

    2017-01-01

    Taenia solium is an endemic parasite in India which occurs in two forms in humans: cysticercosis (infection of soft tissues) and taeniosis (intestinal infection). Neurocysticercosis (NCC) is the most severe form of cysticercosis in which cysts develop in the central nervous system. This study was conducted to estimate health and economic impact due to human NCC-associated active epilepsy in India. Input data were sourced from published research literature, census data and other official records. Economic losses due to NCC-associated active epilepsy were estimated based on cost of treatment, hospitalisation and severe injury as well as loss of income. The disability-adjusted life years (DALYs) due to NCC were estimated by combining years of life lost due to early death and the number of years compromised due to disability taking the disease incidence into account. DALYs were estimated for five age groups, two genders and four regions, and then combined. To account for uncertainty, probability distributions were used for disease incidence data and other input parameters. In addition, sensitivity analyses were conducted to determine the impact of certain input parameters on health and economic estimates. It was estimated that in 2011, human NCC-associated active epilepsy caused an annual median loss of Rupees 12.03 billion (uncertainty interval [95% UI] Rs. 9.16-15.57 billion; US $ 185.14 million) with losses of Rs. 9.78 billion (95% UI Rs. 7.24-13.0 billion; US $ 150.56 million) from the North and Rs. 2.22 billion (95% UI Rs. 1.58-3.06 billion; US $ 34.14 million) from the South. The disease resulted in a total of 2.10 million (95% UI 0.99-4.10 million) DALYs per annum without age weighting and time discounting with 1.81 million (95% UI 0.84-3.57 million) DALYs from the North and 0.28 million (95% UI 0.13-0.55 million) from the South. The health burden per thousand persons per year was 1.73 DALYs (95% UI 0.82-3.39). The results indicate that human NCC causes significant health and economic impact in India. Programs for controlling the disease should be initiated to reduce the socio-economic impact of the disease in India. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Diesel exhaust and lung cancer in the trucking industry: exposure-response analyses and risk assessment.

    PubMed

    Steenland, K; Deddens, J; Stayner, L

    1998-09-01

    Diesel exhaust is considered a probable human carcinogen by the International Agency for Research on Cancer (IARC). The epidemiologic evidence rests on studies of lung cancer among truck drivers, bus drivers, shipyard workers, and railroad workers. The general public is exposed to diesel exhaust in ambient air. Two regulatory agencies are now considering regulating levels of diesel exhaust: the California EPA (ambient levels) and the Mine Safety Health Administration (MSHA) (occupational levels). To date, there have been few quantitative exposure-response analyses of diesel and lung cancer based on human data. We conducted exposure-response analyses among workers in the trucking industry, adjusted for smoking. Diesel exhaust exposure was estimated based on a 1990 industrial hygiene survey. Past exposures were estimated assuming that they were a function of 1) the number of heavy duty trucks on the road, 2) the particulate emissions (grams/mile) of diesel engines over time, and 3) leaks from trucks' exhaust systems for long-haul drivers. Regardless of assumptions about past exposure, all analyses resulted in significant positive trends in lung cancer risk with increasing cumulative exposure. A male truck driver exposed to 5 micrograms/m3 of elemental carbon (a typical exposure in 1990, approximately five times urban background levels) would have a lifetime excess risk of lung cancer of 1-2% above a background risk of 5%. We found a lifetime excess risk ten times higher than the 1 per 1,000 excess risk allowed by OSHA in setting regulations. There are about 2.8 million truck drivers in the U.S. Our results depend on estimates about unknown past exposures, and should be viewed as exploratory. They conform reasonably well to recent estimates for diesel-exposed railroad workers done by the California EPA, although those results themselves have been disputed.

Top