Sample records for human tk6 cells

  1. Re-evaluation of the Mutagenic Response to Phosphorothioate Nucleotides in Human Lymphoblastoid TK6 Cells

    PubMed Central

    Saleh, Amer F.; Priestley, Catherine C.; Gooderham, Nigel J.; Fellows, Mick D.

    2015-01-01

    The degradation of phosphorothioate oligonucleotides (PS-ONDs) and the release of potentially genotoxic modified mononucleotides raise a safety concern for OND-based therapeutics. Deoxyadenosine monophosphorothioate (dAMPαS), a PS nucleotide analog, has been reported to be a potent in vitro mutagen at the thymidine kinase (TK) locus in human TK6 lymphoblastoid cells. This led us to explore the mechanism behind the apparent positive response induced by dAMPαS in the TK gene-mutation assay in TK6 cells. In this work, treatment of TK6 cells with dAMPαS produced a dose-dependent increase in cytotoxicity and mutant frequency at the TK locus. Surprisingly, when the colonies from dAMPαS were re-challenged with the selective agent trifluorothymidine (TFT), the TFT-resistant phenotype was lost. Moreover, dAMPαS-induced colonies displayed distinct growth kinetics and required longer incubation time than 4-nitroquinoline-1-oxide-induced colonies to start growing. Treatment of TK6 cells with dAMPαS induced cell cycle arrest at the G1 phase, enabling cells to grow, and form a colony after the efficacy of TFT in the culture medium was lost. Our findings suggest that a fraction of parental “nonmutant” TK6 cells escaped the toxicity of TFT, possibly via G1 arrest, and resumed growth after the degradation of TFT. We conclude that dAMPαS did not induce real TFT-resistant mutants and caution should be taken with interpretation of mutation data from TK gene-mutation assay in TK6 cells when assessing modified nucleotides. PMID:25711235

  2. Further characterization of loss of heterozygosity enhanced by p53 abrogation in human lymphoblastoid TK6 cells: disappearance of endpoint hotspots.

    PubMed

    Yatagai, Fumio; Morimoto, Shigeko; Kato, Takesi; Honma, Masamitsu

    2004-06-13

    Loss of heterozygosity (LOH) is the predominant mechanism of spontaneous mutagenesis at the heterozygous thymindine kinase locus (tk) in TK6 cells. LOH events detected in spontaneous TK(-) mutants (110 clones from p53 wild-type cells TK6-20C and 117 clones from p53-abrogated cells TK6-E6) were analyzed using 13 microsatellite markers spanning the whole of chromosome 17. Our analysis indicated an approximately 60-fold higher frequency of terminal deletions in p53-abrogated cells TK6-E6 compared to p53 wild-type cells TK6-20C whereas frequencies of point mutations (non-LOH events), interstitial deletions, and crossing over events were found to increase only less than twofold by such p53 abrogation. We then made use of an additional 17 microsatellite markers which provided an average map-interval of 1.6Mb to map various LOH endpoints on the 45Mb portion of chromosome 17q corresponding to the maximum length of LOH tracts (i.e. from the distal marker D17S932 to the terminal end). There appeared to be four prominent peaks (I-IV) in the distribution of LOH endpoints/Mb of Tk6-20C cells that were not evident in p53-abrogated cells TK6-E6, where they appeared to be rather broadly distributed along the 15-20Mb length (D17S1807 to D17S1607) surrounding two of the peaks that we detected in TK6-20C cells (peaks II and III). We suggest that the chromosomal instability that is so evident in TK6-E6 cells may be due to DNA double-strand break repair occurring through non homologous end-joining rather than allelic recombination.

  3. Hydroquinone induces TK6 cell growth arrest and apoptosis through PARP-1/p53 regulatory pathway.

    PubMed

    Luo, Hao; Liang, Hairong; Chen, Jiajia; Xu, Yongchun; Chen, Yuting; Xu, Longmei; Yun, Lin; Liu, Jiaxian; Yang, Hui; Liu, Linhua; Peng, Jianming; Liu, Zhidong; Tang, Lin; Chen, Wen; Tang, Huanwen

    2017-09-01

    Hydroquinone (HQ), one of the most important metabolites derived from benzene, induces cell cycle arrest and apoptosis. Poly(ADP-ribose) polymerase-1 (PARP-1) participates in various biological processes, including DNA repair and cell cycle regulation. To explore whether PARP-1 regulatory pathway mediated HQ-induced cell cycle arrest and apoptosis, we assessed the effect of PARP-1 suppression on induction of apoptosis analyzed by FACSCalibur flow cytometer in PARP-1 deficientTK6 cells (TK6-shPARP-1). We observed an increase in the fraction of cells in G1 phase by 7.6% and increased apoptosis by 4.5% in PARP-1-deficient TK6 cells (TK6-shPARP-1) compared to those negative control cells (TK6-shNC cells) in response to HQ treatment. Furthermore, HQ might activate the extrinsic pathways of apoptosis via up-regulation of Fas expression, followed by caspase-3 activation, apoptotic body, and sub G1 accumulation. Enhanced p53 expression was observed in TK6-shPARP-1 cells than in TK6-shNC cells after HQ treatment. In contrast, Fas expression was lower in TK6-shPARP-1 cells than in TK6-shNC cells. Therefore, we conclude that HQ may activate apoptotic signals via Fas up-regulation and p53-mediated apoptosis in TK6-shNC cells. The reduction of PARP-1 expression further intensified up-regulation of p53 in TK6-shPARP-1 cells, resulting in an increased G1→S phase cell arrest and apoptosis in TK6-shPARP-1 cells compared to TK6-shNC cells. © 2017 Wiley Periodicals, Inc.

  4. [Efficacy of HSV-tk/GCV system on human laryngeal squamous cell cancer in vitro].

    PubMed

    Ding, Xiu-yong; Qin, Yong; Li, Fu-ying; Cong, Tie-chuan

    2006-05-01

    Efficacy of HSV-tk/GCV system antitumor effects was assessed on human laryngeal cancer cell line Hep-2 in vitro. To assess the HSV-tk/CGV system whether has an antitumour effect on human laryngeal squamous cell cancer Hep-2 in vitro. The mechanisms of cytotoxity were also assessed. Hep-2 cells were transfected with HSV-tk gene by lipofection. Reverse transcription polymerase chain reaction (RT-PCR) was used to detect the HSV-tk gene expression. MTT was utilized to test for the cytotoxicity of this system. The cell-circle arrest and apoptosis were analyzed by flowcytometry assay. HSV-tk gene transfected cells demonstrated obvious cytoreductivity followed by ganciclovir (GCV) administration and this cytoreductivity showed partial GCV dose-independent. HSV-tk gene transfected cells demonstrated obvious s-phase arrest, no apoptosis and necrosis occurred. The HSV-tk/GCV system can inhabit the growth of Hep-2 cells effectively. S-phase arrest perhaps is the main reason that leads to the cell inhibition in our study. HSV-tk/GCV system has potential antitumor effects for the future clinical practice.

  5. Effect of caffeine on radiation-induced apoptosis in TK6 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhen, W.; Vaughan, A.T.M.

    1995-02-01

    Apoptosis has been measured in cells of the human TK6 lymphoblastoid cell line by recording the release of endonuclease-digested DNA from affected cells using flow cytometry. In asynchronously dividing cells, DNA degradation characteristic of apoptosis was first seen 12 h after irradiation as a defined DNA fluorescent peak of sub-G{sub 1}-phase content, reaching a maximum of 30-50% of the population by 24-72 h. Treating cells with 2 mM caffeine either before or up to 3 h after irradiation eliminated the degradation of DNA entirely. In addition, the percentage of cells in which apoptosis could be detected microscopically decreased from 62.4more » {+-} 0.95% to 16.7 {+-} 1.5% 72 h after caffeine treatment. Delaying caffeine treatment for 12 h after irradiation reduced DNA degradation by approximately 50% compared to cells receiving radiation alone. DNA degradation induced by serum deprivation was unaffected by caffeine treatment. These data support the contention that irradiation of TK6 cells produces a long-lived cellular signal which triggers apoptosis. Apoptosis produced by serum deprivation does not operate through the same pathway. 36 refs., 5 figs.« less

  6. Inhibition of autophagy enhances Hydroquinone-induced TK6 cell death.

    PubMed

    Xu, Longmei; Liu, Jiaxian; Chen, Yuting; Yun, Lin; Chen, Shaoyun; Zhou, Kairu; Lai, Bei; Song, Li; Yang, Hui; Liang, Hairong; Tang, Huanwen

    2017-06-01

    Hydroquinone (HQ), one of the metabolic products of benzene, is a carcinogen. It can induce apoptosis in lymphoma cells. However, whether HQ can induce autophagy and what roles autophagy plays in TK6 cells exposured to HQ remains unclear. In this study, we found that HQ could induce autophagy through techniques of qRT-PCR, Western blot, immunofluorescent assay of LC3 and transmission electron microscope. Furthermore, inhibiting autophagy using 3-methyladenine (3-MA) or chloroquine (CQ) significantly enhanced HQ-induced cell apoptosis, suggesting that autophagy may be a survival mechanism. Our study also showed that HQ activated PARP-1. Moreover, knockdown of PARP-1 strongly exhibited decreased autophagy related genes expression. In contrast, the absence of SIRT1 increased that. Altogether, our data provided evidence that HQ induced autophagy in TK6 cells and autophagy protected TK6 from HQ attack-induced injury in vitro, and the autophagy was partially mediated via activation of the PARP-1-SIRT1 signaling pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Effect of chemical mutagens and carcinogens on gene expression profiles in human TK6 cells.

    PubMed

    Godderis, Lode; Thomas, Reuben; Hubbard, Alan E; Tabish, Ali M; Hoet, Peter; Zhang, Luoping; Smith, Martyn T; Veulemans, Hendrik; McHale, Cliona M

    2012-01-01

    Characterization of toxicogenomic signatures of carcinogen exposure holds significant promise for mechanistic and predictive toxicology. In vitro transcriptomic studies allow the comparison of the response to chemicals with diverse mode of actions under controlled experimental conditions. We conducted an in vitro study in TK6 cells to characterize gene expression signatures of exposure to 15 genotoxic carcinogens frequently used in European industries. We also examined the dose-responsive changes in gene expression, and perturbation of biochemical pathways in response to these carcinogens. TK6 cells were exposed at 3 dose levels for 24 h with and without S9 human metabolic mix. Since S9 had an impact on gene expression (885 genes), we analyzed the gene expression data from cells cultures incubated with S9 and without S9 independently. The ribosome pathway was affected by all chemical-dose combinations. However in general, no similar gene expression was observed among carcinogens. Further, pathways, i.e. cell cycle, DNA repair mechanisms, RNA degradation, that were common within sets of chemical-dose combination were suggested by clustergram. Linear trends in dose-response of gene expression were observed for Trichloroethylene, Benz[a]anthracene, Epichlorohydrin, Benzene, and Hydroquinone. The significantly altered genes were involved in the regulation of (anti-) apoptosis, maintenance of cell survival, tumor necrosis factor-related pathways and immune response, in agreement with several other studies. Similarly in S9+ cultures, Benz[a]pyrene, Styrene and Trichloroethylene each modified over 1000 genes at high concentrations. Our findings expand our understanding of the transcriptomic response to genotoxic carcinogens, revealing the alteration of diverse sets of genes and pathways involved in cellular homeostasis and cell cycle control.

  8. Effect of Chemical Mutagens and Carcinogens on Gene Expression Profiles in Human TK6 Cells

    PubMed Central

    Godderis, Lode; Thomas, Reuben; Hubbard, Alan E.; Tabish, Ali M.; Hoet, Peter; Zhang, Luoping; Smith, Martyn T.; Veulemans, Hendrik; McHale, Cliona M.

    2012-01-01

    Characterization of toxicogenomic signatures of carcinogen exposure holds significant promise for mechanistic and predictive toxicology. In vitro transcriptomic studies allow the comparison of the response to chemicals with diverse mode of actions under controlled experimental conditions. We conducted an in vitro study in TK6 cells to characterize gene expression signatures of exposure to 15 genotoxic carcinogens frequently used in European industries. We also examined the dose-responsive changes in gene expression, and perturbation of biochemical pathways in response to these carcinogens. TK6 cells were exposed at 3 dose levels for 24 h with and without S9 human metabolic mix. Since S9 had an impact on gene expression (885 genes), we analyzed the gene expression data from cells cultures incubated with S9 and without S9 independently. The ribosome pathway was affected by all chemical-dose combinations. However in general, no similar gene expression was observed among carcinogens. Further, pathways, i.e. cell cycle, DNA repair mechanisms, RNA degradation, that were common within sets of chemical-dose combination were suggested by clustergram. Linear trends in dose–response of gene expression were observed for Trichloroethylene, Benz[a]anthracene, Epichlorohydrin, Benzene, and Hydroquinone. The significantly altered genes were involved in the regulation of (anti-) apoptosis, maintenance of cell survival, tumor necrosis factor-related pathways and immune response, in agreement with several other studies. Similarly in S9+ cultures, Benz[a]pyrene, Styrene and Trichloroethylene each modified over 1000 genes at high concentrations. Our findings expand our understanding of the transcriptomic response to genotoxic carcinogens, revealing the alteration of diverse sets of genes and pathways involved in cellular homeostasis and cell cycle control. PMID:22723965

  9. Integration of metabolic activation with a predictive toxicogenomics signature to classify genotoxic versus nongenotoxic chemicals in human TK6 cells

    PubMed Central

    Buick, Julie K.; Moffat, Ivy; Williams, Andrew; Swartz, Carol D.; Recio, Leslie; Hyduke, Daniel R.; Li, Heng‐Hong; Fornace, Albert J.; Aubrecht, Jiri

    2015-01-01

    The use of integrated approaches in genetic toxicology, including the incorporation of gene expression data to determine the molecular pathways involved in the response, is becoming more common. In a companion article, a genomic biomarker was developed in human TK6 cells to classify chemicals as genotoxic or nongenotoxic. Because TK6 cells are not metabolically competent, we set out to broaden the utility of the biomarker for use with chemicals requiring metabolic activation. Specifically, chemical exposures were conducted in the presence of rat liver S9. The ability of the biomarker to classify genotoxic (benzo[a]pyrene, BaP; aflatoxin B1, AFB1) and nongenotoxic (dexamethasone, DEX; phenobarbital, PB) agents correctly was evaluated. Cells were exposed to increasing chemical concentrations for 4 hr and collected 0 hr, 4 hr, and 20 hr postexposure. Relative survival, apoptosis, and micronucleus frequency were measured at 24 hr. Transcriptome profiles were measured with Agilent microarrays. Statistical modeling and bioinformatics tools were applied to classify each chemical using the genomic biomarker. BaP and AFB1 were correctly classified as genotoxic at the mid‐ and high concentrations at all three time points, whereas DEX was correctly classified as nongenotoxic at all concentrations and time points. The high concentration of PB was misclassified at 24 hr, suggesting that cytotoxicity at later time points may cause misclassification. The data suggest that the use of S9 does not impair the ability of the biomarker to classify genotoxicity in TK6 cells. Finally, we demonstrate that the biomarker is also able to accurately classify genotoxicity using a publicly available dataset derived from human HepaRG cells. Environ. Mol. Mutagen. 56:520–534, 2015. © 2015 The Authors. Environmental and Molecular Mutagenesis Published by Wiley Periodicals, Inc. PMID:25733247

  10. Analysis of cellular response by exposure to acute or chronic radiation in human lymphoblastoid TK-6 cells

    NASA Astrophysics Data System (ADS)

    Ohnishi, T.; Yasumoto, J.; Takahashi, A.; Ohnishi, K.

    To clarify the biological effects of low-dose rate radiation on human health for long-term stay in space, we analyzed the induction of apoptosis and apoptosis-related gene expression after irradiation with different dose-rate in human lymphoblastoid TK-6 cells harboring wild-type p53 gene. We irradiated TK-6 cells by X-ray at 1.5 Gy (1 Gy/min) and then sampled at 25 hr after culturing. We also irradiated by gamma-ray at 1.5 Gy (1 mGy/min) and then sampled immediately or 25 hr after irradiation. For DNA ladder analysis, we extracted DNA from these samples and electrophoresed with 2% agarose gel. In addition, we extracted mRNA from these samples for DNA-array analysis. mRNA from non-irradiated cells was used as a control. After labeling the cDNA against mRNA with [α -33P]-dCTP and hybridizing onto DNA array (Human Apoptosis Expression Array, R&D Systems), we scanned the profiles of the spots by a phosphorimager (BAS5000, FUJI FILM) and calculated using a NIH Image program. The data of each DNA-array were normalized with eight kinds of house keeping genes. We analyzed the expression level of apoptosis-related genes such as p53-related, Bcl-2 family, Caspase family and Fas-related genes. DNA ladders were obviously detected in the cells exposed to a high dose-rate radiation. We detected the induction of the gene expression of apoptosis-promotive genes. In contrast, almost no apoptosis was observed in the cells exposed to the chronic radiation at a low dose-rate. In addition, we detected the induction of the gene expression of apoptosis-suppressive genes as compared with apoptosis promotive-genes immediately after chronic irradiation. These results lead the importance of biological meaning of exposure to radiation at low dose-rate from an aspect of carcinogenesis. Finally, the effects of chronic irradiation become a highly important issue in space radiation biology for human health.

  11. Characteristics of genomic instability in clones of TK6 human lymphoblasts surviving exposure to 56Fe ions

    NASA Technical Reports Server (NTRS)

    Evans, Helen H.; Horng, Min-Fen; Ricanati, Marlene; Diaz-Insua, Mireya; Jordan, Robert; Schwartz, Jeffrey L.

    2002-01-01

    Genomic instability in the human lymphoblast cell line TK6 was studied in clones surviving 36 generations after exposure to accelerated 56Fe ions. Clones were assayed for 20 characteristics, including chromosome aberrations, plating efficiency, apoptosis, cell cycle distribution, response to a second irradiation, and mutant frequency at two loci. The primary effect of the 56Fe-ion exposure on the surviving clones was a significant increase in the frequency of unstable chromosome aberrations compared to the very low spontaneous frequency, along with an increase in the phenotypic complexity of the unstable clones. The radiation-induced increase in the frequency of unstable chromosome aberrations was much greater than that observed previously in clones of the related cell line, WTK1, which in comparison to the TK6 cell line expresses an increased radiation resistance, a mutant TP53 protein, and an increased frequency of spontaneous unstable chromosome aberrations. The characteristics of the unstable clones of the two cell lines also differed. Most of the TK6 clones surviving exposure to 56Fe ions showed unstable cytogenetic abnormalities, while the phenotype of the WTK1 clones was more diverse. The results underscore the importance of genotype in the characteristics of instability after radiation exposure.

  12. Application of the TGx‐28.65 transcriptomic biomarker to classify genotoxic and non‐genotoxic chemicals in human TK6 cells in the presence of rat liver S9

    PubMed Central

    Buick, Julie K.; Williams, Andrew; Swartz, Carol D.; Recio, Leslie; Li, Heng‐Hong; Fornace, Albert J.; Thomson, Errol M.; Aubrecht, Jiri

    2016-01-01

    In vitro transcriptional signatures that predict toxicities can facilitate chemical screening. We previously developed a transcriptomic biomarker (known as TGx‐28.65) for classifying agents as genotoxic (DNA damaging) and non‐genotoxic in human lymphoblastoid TK6 cells. Because TK6 cells do not express cytochrome P450s, we confirmed accurate classification by the biomarker in cells co‐exposed to 1% 5,6 benzoflavone/phenobarbital‐induced rat liver S9 for metabolic activation. However, chemicals may require different types of S9 for activation. Here we investigated the response of TK6 cells to higher percentages of Aroclor‐, benzoflavone/phenobarbital‐, or ethanol‐induced rat liver S9 to expand TGx‐28.65 biomarker applicability. Transcriptional profiles were derived 3 to 4 hr following a 4 hr co‐exposure of TK6 cells to test chemicals and S9. Preliminary studies established that 10% Aroclor‐ and 5% ethanol‐induced S9 alone did not induce the TGx‐28.65 biomarker genes. Seven genotoxic and two non‐genotoxic chemicals (and concurrent solvent and positive controls) were then tested with one of the S9s (selected based on cell survival and micronucleus induction). Relative survival and micronucleus frequency was assessed by flow cytometry in cells 20 hr post‐exposure. Genotoxic/non‐genotoxic chemicals were accurately classified using the different S9s. One technical replicate of cells co‐treated with dexamethasone and 10% Aroclor‐induced S9 was falsely classified as genotoxic, suggesting caution in using high S9 concentrations. Even low concentrations of genotoxic chemicals (those not causing cytotoxicity) were correctly classified, demonstrating that TGx‐28.65 is a sensitive biomarker of genotoxicity. A meta‐analysis of datasets from 13 chemicals supports that different S9s can be used in TK6 cells, without impairing classification using the TGx‐28.65 biomarker. Environ. Mol. Mutagen. 57:243–260, 2016. © 2016 Her Majesty the

  13. The benzene metabolite, hydroquinone and etoposide both induce endoreduplication in human lymphoblastoid TK6 cells

    PubMed Central

    Ji, Zhiying; Zhang, Luoping; Guo, Weihong; McHale, Cliona M.; Smith, Martyn T.

    2009-01-01

    Both occupational exposure to the leukemogen benzene and in vitro exposure to its metabolite hydroquinone (HQ) lead to the induction of numerical and structural chromosome changes. Several studies have shown that HQ can form DNA adducts, disrupt microtubule assembly and inhibit DNA topoisomerase II (topo II) activity. As these are potential mechanisms underlying endoreduplication (END), a phenomenon that involves DNA amplification without corresponding cell division, we hypothesized that HQ could cause END. We measured END in the human lymphoblastoid cell line, TK6, treated with HQ (0–20 μM) and etoposide (0–0.2 μM) for 48 h. Etoposide was used as a positive control as it is a topo II poison and established human leukemogen that has previously been shown to induce END in Chinese hamster ovary cells. Both HQ and etoposide significantly induced END in a dose-dependent manner (Ptrend < 0.0001 and Ptrend = 0.0003, respectively). Since END may underlie the acquisition of high chromosome numbers by tumour cells, it may play a role in inducing genomic instability and subsequent carcinogenesis from HQ and etoposide. In order to further explore the cytogenetic effects of HQ and etoposide, we also examined specific structural changes. HQ did not induce translocations of chromosome 11 [t(11;?)] but significantly induced translocations of chromosome 21 [t(21;?)] and structural chromosome aberrations (SCA) (Ptrend = 0.0415 and Ptrend < 0.0001, respectively). Etoposide potently induced all these structural changes (Ptrend < 0.0001). The lack of an effect of HQ on t(11;?) and the reduced ability of HQ to induce t(21;?) and SCA, compared with etoposide, further suggests that HQ acts primarily as a topo II catalytic inhibitor rather than as a topo II poison in intact human cells. PMID:19491217

  14. Two structurally distinct inhibitors of glycogen synthase kinase 3 induced centromere positive micronuclei in human lymphoblastoid TK6 cells.

    PubMed

    Mishima, Masayuki; Tanaka, Kenji; Takeiri, Akira; Harada, Asako; Kubo, Chiyomi; Sone, Sachiko; Nishimura, Yoshikazu; Tachibana, Yukako; Okazaki, Makoto

    2008-08-25

    Glycogen synthase kinase 3 (GSK3) is an attractive novel pharmacological target. Inhibition of GSK3 is recently regarded as one of the viable approaches to therapy for Alzheimer's disease, cancer, diabetes mellitus, osteoporosis, and bipolar mood disorder. Here, we have investigated the aneugenic potential of two potent and highly specific inhibitors of GSK3 by using an in vitro micronucleus test with human lymphoblastoid TK6 cells. One inhibitor was a newly synthesized maleimide derivative and the other was a previously known aminopyrimidine derivative. Both compounds elicited statistically significant and concentration-dependent increases in micronucleated cells. One hundred micronuclei (MN) of each were analyzed using centromeric DNA staining with fluorescence in situ hybridization. Both the two structurally distinct compounds induced centromere-positive micronuclei (CMN). Calculated from the frequency of MN cells and the percentage of CMN, CMN cell incidence after treatment with the maleimide compound at 1.2 microM, 2.4 microM, and 4.8 microM was 11.6, 27.7, and 56.3 per 1000 cells, respectively; the negative control was 4.5. CMN cell incidence after the treatment with the aminopyrimidine compound at 1.8 microM, 3.6 microM, and 5.4 microM was 6.7, 9.8 and 17.2 per 1000 cells, respectively. Both compounds exhibited concentration-dependent increase in the number of mitotic cells. The frequency of CMN cells correlated well with mitotic cell incidence after treatment with either compound. Furthermore, both inhibitors induced abnormal mitotic cells with asymmetric mitotic spindles and lagging anaphase chromosomes. These results lend further support to the hypothesis that the inhibition of GSK3 activity affects microtubule function and exhibits an aneugenic mode of action.

  15. miR-7-5p overexpression suppresses cell proliferation and promotes apoptosis through inhibiting the ability of DNA damage repair of PARP-1 and BRCA1 in TK6 cells exposed to hydroquinone.

    PubMed

    Luo, Hao; Liang, Hairong; Chen, Yuting; Chen, Shaoyun; Xu, Yongchun; Xu, Longmei; Liu, Jiaxian; Zhou, Kairu; Peng, Jucheng; Guo, Guoqiang; Lai, Bei; Song, Li; Yang, Hui; Liu, Linhua; Peng, Jianming; Liu, Zhidong; Tang, Lin; Chen, Wen; Tang, Huanwen

    2018-03-01

    Hydroquinone (HQ), one of the major metabolic products of benzene, is a carcinogen, which induces apoptosis and inhibit proliferation in lymphoma cells. microRNA-7-5p (miR-7-5p), a tumor suppressor, participates in various biological processes including cell proliferation and apoptosis regulation by repressing expression of specific oncogenic target genes. To explore whether miR-7-5p is involved in HQ-induced cell proliferation and apoptosis, we assessed the effect of miR-7-5p overexpression on induction of apoptosis analyzed by FACSCalibur flow cytometer in transfection of TK6 cells with miR-7-5p mimic (TK6- miR-7-5p). We observed an increased apoptosis by 25.43% and decreased proliferation by 28.30% in TK6-miR-7-5p cells compared to those negative control cells (TK6-shNC) in response to HQ treatment. Furthermore, HQ might active the apoptotic pathway via partly downregulation the expression of BRCA1 and PARP-1, followed by p53 activation, in TK6-miR-7-5p cells. In contrast, attenuated p53 and BRCA1 expression was observed in shPARP-1 cells than in NC cells after HQ treatment. Therefore, we conclude that HQ may activate apoptotic signals via inhibiting the tumor suppressive effects of miR-7-5p, which may be mediated partly by upregulating the expression of PARP-1 and BRCA1 in control cells. The increase of miR-7-5p expression further intensified downregulation of PARP-1 and BRCA1 in TK6-miR-7-5p cells, resulting in an increase of apoptosis and proliferation inhibited. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Mechanisms of mutagenesis in human cells exposed to 55 MeV protons

    NASA Technical Reports Server (NTRS)

    Gauny, S.; Wiese, C.; Kronenberg, A.

    2001-01-01

    Protons represent the major type of charged particle radiation in spaceflight environments. The purpose of this study was to assess mutations arising in human lymphoid cells exposed to protons. Mutations were quantitated at the thymidine kinase (TK1) locus in cell lines derived from the same donor: TK6 cells (wt TP53) and WTK1 cells (mutant TP53). WTK1 cells were much more susceptible to mutagenesis following proton exposure than TK6 cells. Intragenic deletions were observed among early-arising TK1 mutants in TK6 cells, but not in WTK1 cells where all of the mutants arose by LOH. Deletion was the predominant mode of LOH in TK6 cells, while allelic recombination was the major mode of LOH in WTK1 cells. Deletions were of variable lengths, from <1 cM to 64 cM, while mutations that arose by allelic recombination often extended to the telomere. In summary, proton exposures elicited many types of mutations at an autosomal locus in human cells. Most involved large scale loss of genetic information, either through deletion or by recombination.

  17. Morphological study of the TK cholangiocarcinoma cell line with three-dimensional cell culture.

    PubMed

    Akiyoshi, Kohei; Kamada, Minori; Akiyama, Nobutake; Suzuki, Masafumi; Watanabe, Michiko; Fujioka, Kouki; Ikeda, Keiichi; Mizuno, Shuichi; Manome, Yoshinobu

    2014-04-01

    Cholangiocarcinoma is an intractable carcinoma originating from the bile duct epithelium. To gain an understanding of the cell biology of cholangiocarcinoma, in vitro cell culture is valuable. However, well‑characterized cell lines are limited. In the present study, the morphology of the TK cholangiocarcinoma cell line was analyzed by three‑dimensional culture. Dispersed TK cells were injected into a gelatin mesh scaffold and cultivated for 3‑20 days. The morphology of the TK cells was investigated by phase‑contrast microscopy, optical microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). TK cells were observed to proliferate three-dimensionally in the scaffold. The cells exhibited a globoid structure and attached to the scaffold. The SEM observation demonstrated typical microvilli and plicae on the surface of the structure. Light microscopy and TEM confirmed intercellular and cell‑to‑scaffold attachment in the three‑dimensional mesh. The culture also exhibited the formation of a duct-like structure covered by structured microvilli. In conclusion, three‑dimensional culture of TK cells demonstrated the morphological characteristics of cholangiocarcinoma in vitro. Production of high levels of carbohydrate antigen (CA)19‑9, CA50 and carcinoembryonic antigen was previously confirmed in the TK cell line. As a characteristic morphology was demonstrated in the present study, the TK cholangiocarcinoma cell line may be useful as an experimental model for further study of cholangiocarcinoma.

  18. Monitoring of tumor growth and metastasis potential in MDA-MB-435s/ tk-luc human breast cancer xenografts

    NASA Astrophysics Data System (ADS)

    Chang, Ya-Fang; Lin, Yi-Yu; Wang, Hsin-Ell; Liu, Ren-Shen; Pang, Fei; Hwang, Jeng-Jong

    2007-02-01

    Molecular imaging of reporter gene expression provides a rapid, sensitive and non-invasive monitoring of tumor behaviors. In this study, we reported the establishment of a novel animal model for longitudinal examination of tumor growth kinetics and metastatic spreading in vivo. The highly metastatic human breast carcinoma MDA-MB-435s cell line was engineered to stably express herpes simplex virus type 1 thymidine kinase (HSV-1- tk) and luciferase ( luc). Both 131I-FIAU and D-luciferin were used as reporter probes. For orthotopic tumor formation, MDA-MB-435s/ tk-luc cells were implanted into the first nipple of 6-week-old female NOD/SCID mice. For metastatic study, cells were injected via the lateral tail vein. Mice-bearing MDA-MB-435s/ tk-luc tumors were scanned for tumor growth and metastatsis using Xenogen IVIS50 system. Gamma scintigraphy and whole-body autoradiography were also applied to confirm the tumor localization. The results of bioluminescence imaging as well as histopathological finding showed that tumors could be detected in femur, spine, ovary, lungs, kidney, adrenal gland, lymph nodes and muscle at 16 weeks post i.v. injection, and correlated photons could be quantified. This MDA-MB-435s/ tk-luc human breast carcinoma-bearing mouse model combined with multimodalities of molecular imaging may facilitate studies on the molecular mechanisms of cancer invasion and metastasis.

  19. Genetic Regulation of Charged Particle Mutagenesis in Human Cells

    NASA Technical Reports Server (NTRS)

    Kronenberg, Amy; Gauny, S.; Cherbonnel-Lasserre, C.; Liu, W.; Wiese, C.

    1999-01-01

    Our studies use a series of syngeneic, and where possible, isogenic human B-lymphoblastoid cell lines to assess the genetic factors that modulate susceptibility apoptosis and their impact on the mutagenic risks of low fluence exposures to 1 GeV Fe ions and 55 MeV protons. These ions are representative of the types of charged particle radiation that are of particular significance for human health in the space radiation environment. The model system employs cell lines derived from the male donor WIL-2. These cells have a single X chromosome and they are hemizygous for one mutation marker, hypoxanthine phosphoribosyltransferase (HPRT). TK6 and WTK1 cells were each derived from descendants of WIL-2 and were each selected as heterozygotes for a second mutation marker, the thymidine kinase (TK) gene located on chromosome 17q. The HPRT and TK loci can detect many different types of mutations, from single basepair substitutions up to large scale loss of heterozygosity (LOH). The single expressing copy of TK in the TK6 and WTKI cell lines is found on the same copy of chromosome 17, and this allele can be identified by a restriction fragment length polymorphism (RFLP) identified when high molecular weight DNA is digested by the SacI restriction endonuclease and hybridized against the cDNA probe for TK. A large series of polymorphic linked markers has been identified that span more than 60 cM of DNA (approx. 60 megabasepairs) and distinguish the copy of chromosome 17 bearing the initially active TK allele from the copy of chromosome 17 bearing the silent TK allele in both TK6 and WTKI cells. TK6 cells express normal p53 protein while WTKI cells express homozygous mutant p53. Expression of mutant p53 can increase susceptibility to x-ray-induced mutations. It's been suggested that the increased mutagenesis in p53 mutant cells might be due to reduced apoptosis.

  20. Monitoring apoptosis of TK-GFP-expressing ACC-M cells induced by ACV using FRET technique

    NASA Astrophysics Data System (ADS)

    Xiong, Tao; Zhang, Zhihong; Lin, Juqiang; Yang, Jie; Zeng, Shaoqun; Luo, Qingming

    2006-05-01

    Apoptosis is an evolutionary conserved cellular process that plays an important role during development, but it is also involved in tissue homeostasis and in many diseases. To study the characteristics of suicide gene system of the herpes simplex virus thymidine kinase (HSV-tk) gene in tumor cells and explore the apoptosis phenomena in this system and its effect on the human adenoid cystic carcinoma line ACC-M cell, we detected apoptosis of CD3- (ECFP-CRS-DsRed) and TK-GFP-expressing ACC-M (ACC-M-TK-GFP-CD3) cells induced by acyclovir (ACV) using fluorescence resonance energy transfer (FRET) technique. CD3 is a FRET-based indicator for activity of caspase-3, which is composed of an enhanced cyan fluorescent protein, a caspase-3 sensitive linker, and a red fluorescent protein from Discosoma with efficient maturation property. FRET from ECFP to DsRed could be detected in normal ACC-M-TK-GFP-CD3 cells, and the FRET efficient was remarkably decreased and then disappeared during the cells apoptosis induced by ACV. It was due to the activated caspase-3 cleaved the CD3 fusion protein. In this study, the results suggested that the ACV-induced apoptosis of ACC-M-TK-GFP-CD3 cells was through caspase-3 pathway.

  1. Monitoring apoptosis of TK-GFP-expressing ACC-M cells induced by ACV using FRET technique

    NASA Astrophysics Data System (ADS)

    Xiong, Tao; Zhang, Zhihong; Lin, Juqiang; Yang, Jie; Zeng, Shaoqun; Luo, Qingming

    2006-09-01

    Apoptosis is an evolutionary conserved cellular process that plays an important role during development, but it is also involved in tissue homeostasis and in many diseases. To study the characteristics of suicide gene system of the herpes simplex virus thymidine kinase (HSV-tk) gene in tumor cells and explore the apoptosis phenomena in this system and its effect on the human adenoid cystic carcinoma line ACC-M cell, we detected apoptosis of CD3- (ECFP-CRS-DsRed) and TK-GFP-expressing ACC-M (ACC-M-TK-GFP-CD3) cells induced by acyclovir (ACV) using fluorescence resonance energy transfer (FRET) technique. CD3 is a FRET-based indicator for activity of caspase-3, which is composed of an enhanced cyan fluorescent protein, a caspase-3 sensitive linker, and a red fluorescent protein from Discosoma with efficient maturation property. FRET from ECFP to DsRed could be detected in normal ACC-M-TK-GFP-CD3 cells, and the FRET efficient was remarkably decreased and then disappeared during the cells apoptosis induced by ACV. It was due to the activated caspase-3 cleaved the CD3 fusion protein. In this study, the results suggested that the AVC-induced apoptosis of ACC-M-TK-GFP-CD3 cells was through caspase-3 pathway.

  2. Hydroquinone-induced malignant transformation of TK6 cells by facilitating SIRT1-mediated p53 degradation and up-regulating KRAS.

    PubMed

    Chen, Yuting; Chen, Jiajia; Yun, Lin; Xu, Longmei; Liu, Jiaxian; Xu, Yongchun; Yang, Hui; Liang, Hairong; Tang, Huanwen

    2016-09-30

    Hydroquinone (HQ), known as one of the metabolic products of benzene, causes a number of hematologic malignancies. The study evaluated the potential mechanism of Sirtuin 1 (SIRT1) in HQ-induced TK6 cell malignant transformation. The data of our study show that short term exposure of TK6 cells to HQ led to a decrease expression of SIRT1. Knockdown of SIRT1 sensitized to the HQ-induced apoptosis in vitro and increased the expression of p53, p21 and γ-H2AX. Furthermore, chronic HQ-treated (20μM once a week for 19 weeks) caused carcinogenic transformation and was confirmed by abnormal cell proliferation, matrix metalloproteinase 9(MMP9) and subcutaneous tumor formation in nude mice. SIRT1 increased KRAS expression, and decreased H3K9 and H3K18 acetylation, inhibited p53 signaling and the level of caspase-3 in HQ-induced transformation cells. Taken together, these data suggest that SIRT1 is involved in HQ-induced malignant transformation associated with suppressing p53 signaling and activation of KRAS. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Enhancement of expression of survivin promoter-driven CD/TK double suicide genes by the nuclear matrix attachment region in transgenic gastric cancer cells.

    PubMed

    Niu, Ying; Li, Jian-Sheng; Luo, Xian-Run

    2014-01-25

    This work aimed to study a novel transgenic expression system of the CD/TK double suicide genes enhanced by the nuclear matrix attachment region (MAR) for gene therapy. The recombinant vector pMS-CD/TK containing the MAR-survivin promoter-CD/TK cassette was developed and transfected into human gastric cancer SGC-7901 cells. Expression of the CD/TK genes was detected by quantitative real-time PCR (qPCR) and Western blot. Cell viability and apoptosis were measured using the methyl thiazolyl tetrazolium (MTT) assay and flow cytometry. When the MAR fragment was inserted into the upstream of the survivin promoter, the qPCR result showed that the expression of the CD/TK genes significantly increased 7.7-fold in the transgenic SGC-7901 cells with plasmid pMS-CD/TK compared with that without MAR. MTT and flow cytometry analyses indicated that treatment with the prodrugs (5-FC+GCV) significantly decreased the cellular survival rate and enhanced the cellular apoptosis in the SGC-7901 cells. The expression of the CD/TK double suicide genes driven by the survivin promoter can be enhanced by the MAR fragment in human gastric cancer cells. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Analysis of negative historical control group data from the in vitro micronucleus assay using TK6 cells.

    PubMed

    Lovell, David P; Fellows, Mick; Marchetti, Francesco; Christiansen, Joan; Elhajouji, Azeddine; Hashimoto, Kiyohiro; Kasamoto, Sawako; Li, Yan; Masayasu, Ozaki; Moore, Martha M; Schuler, Maik; Smith, Robert; Stankowski, Leon F; Tanaka, Jin; Tanir, Jennifer Y; Thybaud, Veronique; Van Goethem, Freddy; Whitwell, James

    2018-01-01

    The recent revisions of the Organisation for Economic Co-operation and Development (OECD) genetic toxicology test guidelines emphasize the importance of historical negative controls both for data quality and interpretation. The goal of a HESI Genetic Toxicology Technical Committee (GTTC) workgroup was to collect data from participating laboratories and to conduct a statistical analysis to understand and publish the range of values that are normally seen in experienced laboratories using TK6 cells to conduct the in vitro micronucleus assay. Data from negative control samples from in vitro micronucleus assays using TK6 cells from 13 laboratories were collected using a standard collection form. Although in some cases statistically significant differences can be seen within laboratories for different test conditions, they were very small. The mean incidence of micronucleated cells/1000 cells ranged from 3.2/1000 to 13.8/1000. These almost four-fold differences in micronucleus levels cannot be explained by differences in scoring method, presence or absence of exogenous metabolic activation (S9), length of treatment, presence or absence of cytochalasin B or different solvents used as vehicles. The range of means from the four laboratories using flow cytometry methods (3.7-fold: 3.5-12.9 micronucleated cells/1000 cells) was similar to that from the nine laboratories using other scoring methods (4.3-fold: 3.2-13.8 micronucleated cells/1000 cells). No laboratory could be identified as an outlier or as showing unacceptably high variability. Quality Control (QC) methods applied to analyse the intra-laboratory variability showed that there was evidence of inter-experimental variability greater than would be expected by chance (i.e. over-dispersion). However, in general, this was low. This study demonstrates the value of QC methods in helping to analyse the reproducibility of results, building up a 'normal' range of values, and as an aid to identify variability within a

  5. [Experimental research in vitro of TK/GCV system for osteosarcoma MG-63 cell damage].

    PubMed

    Zhang, Hua-Dong; Lu, Zhi; Feng, Yi; Liu, Xiao-Li; Hou, Hui-Ming

    2014-03-01

    To study the killing effects of the liposome-mediated thymidine kinase (TK)/ganciclovir (GCV) system on MG-63 osteosarcoma (OS) cells and its bystander effects. Liposome-mediated TK gene transfected into MG-63 OS cells, the efficiency of transfection was analyzed by flow cytometry and observed under inverted fluorescence microscope. Non-transfected osteosarcoma MG-63 cells were divided into three groups,in the experimental group 1 transfected TK/GCV cells cultured in solutiona liquid mixture by supernatant by 1/10,1/7,1/5,1/2 ratio to original broth; in the experimental group 2 transfected cells cultured in solutiona liquid mixture of supernatant filtered through 0.22 microm filter by 1/10,1/7, 1/5, 1/2 ratio to original broth, in control group the transfection cells cultured in original culture solution. Cell growth inhibition rate and osteosarcoma cell sensitivity to TK/GCV system were measured by MTT assay in each group. The TK gene was transfected into MG-63 OS cells successfully by liposome-mediated, flow cytometry instrument detection TK gene transfection cell transfection efficiency can reach 75.5%. Six days later the MTT assay showed that in the experimental group 1 inhibition rate of all concentration ratio of the mixed culture fluid were statistically significant as compared with the control group (P < 0.05), and in the experimental group 2 that of the 1/10 and 1/7 of concentration ratio of mixed culture medium was not statistically significant as compared with the control group (P > 0.05). TK gene transfected MG-63 cells increased with the the GCV concentration,the cell apoptosis rate increased. The experiment demonstrated that the MG-63 OS cells are sensitive to the liposome-mediated TK/GCV system and bystander effects are significant.

  6. Molecular Mechanisms of Radiation-Induced Genomic Instability in Human Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard L. Liber; Jeffrey L. Schwartz

    2005-10-31

    There are many different model systems that have been used to study chromosome instability. What is clear from all these studies is that conclusions concerning chromosome instability depend greatly on the model system and instability endpoint that is studied. The model system for our studies was the human B-lymphoblastoid cell line TK6. TK6 was isolated from a spontaneously immortalized lymphoblast culture. Thus there was no outside genetic manipulation used to immortalize them. TK6 is a relatively stable p53-normal immortal cell line (37). It shows low gene and chromosome mutation frequencies (19;28;31). Our general approach to studying instability in TK6 cellsmore » has been to isolate individual clones and analyze gene and chromosome mutation frequencies in each. This approach maximizes the possibility of detecting low frequency events that might be selected against in mass cultures.« less

  7. KSHV-TK is a tyrosine kinase that disrupts focal adhesions and induces Rho-mediated cell contraction

    PubMed Central

    Gill, Michael B; Turner, Rachel; Stevenson, Philip G; Way, Michael

    2015-01-01

    Paradoxically, the thymidine kinase (TK) encoded by Kaposi sarcoma-associated herpesvirus (KSHV) is an extremely inefficient nucleoside kinase, when compared to TKs from related herpesviruses. We now show that KSHV-TK, in contrast to HSV1-TK, associates with the actin cytoskeleton and induces extensive cell contraction followed by membrane blebbing. These dramatic changes in cell morphology depend on the auto-phosphorylation of tyrosines 65, 85 and 120 in the N-terminus of KSHV-TK. Phosphorylation of tyrosines 65/85 and 120 results in an interaction with Crk family proteins and the p85 regulatory subunit of PI3-Kinase, respectively. The interaction of Crk with KSHV-TK leads to tyrosine phoshorylation of this cellular adaptor. Auto-phosphorylation of KSHV-TK also induces a loss of FAK and paxillin from focal adhesions, resulting in activation of RhoA-ROCK signalling to myosin II and cell contraction. In the absence of FAK or paxillin, KSHV-TK has no effect on focal adhesion integrity or cell morphology. Our observations demonstrate that by acting as a tyrosine kinase, KSHV-TK modulates signalling and cell morphology. PMID:25471072

  8. Gene expression deregulation in postnatal skeletal muscle of TK2 deficient mice reveals a lower pool of proliferating myogenic progenitor cells.

    PubMed

    Paredes, João A; Zhou, Xiaoshan; Höglund, Stefan; Karlsson, Anna

    2013-01-01

    Loss of thymidine kinase 2 (TK2) causes a heterogeneous myopathic form of mitochondrial DNA (mtDNA) depletion syndrome (MDS) in humans that predominantly affects skeletal muscle tissue. In mice, TK2 deficiency also affects several tissues in addition to skeletal muscle, including brain, heart, adipose tissue, kidneys and causes death about 3 weeks after birth. We analysed skeletal muscle and heart muscle tissues of Tk2 knockout mice at postnatal development phase and observed that TK2 deficient pups grew slower and their skeletal muscles appeared significantly underdeveloped, whereas heart was close to normal in size. Both tissues showed mtDNA depletion and mitochondria with altered ultrastructure, as revealed by transmission electron microscopy. Gene expression microarray analysis showed a strong down-regulation of genes involved in cell cycle and cell proliferation in both tissues, suggesting a lower pool of undifferentiated proliferating cells. Analysis of isolated primary myoblasts from Tk2 knockout mice showed slow proliferation, less ability to differentiate and signs of premature senescence, even in absence of mtDNA depletion. Our data demonstrate that TK2 deficiency disturbs myogenic progenitor cells function in postnatal skeletal muscle and we propose this as one of the causes of underdeveloped phenotype and myopathic characteristic of the TK2 deficient mice, in addition to the progressive mtDNA depletion, mitochondrial damage and respiratory chain deficiency in post-mitotic differentiated tissue.

  9. Gene Expression Deregulation in Postnatal Skeletal Muscle of TK2 Deficient Mice Reveals a Lower Pool of Proliferating Myogenic Progenitor Cells

    PubMed Central

    Paredes, João A.; Zhou, Xiaoshan; Höglund, Stefan; Karlsson, Anna

    2013-01-01

    Loss of thymidine kinase 2 (TK2) causes a heterogeneous myopathic form of mitochondrial DNA (mtDNA) depletion syndrome (MDS) in humans that predominantly affects skeletal muscle tissue. In mice, TK2 deficiency also affects several tissues in addition to skeletal muscle, including brain, heart, adipose tissue, kidneys and causes death about 3 weeks after birth. We analysed skeletal muscle and heart muscle tissues of Tk2 knockout mice at postnatal development phase and observed that TK2 deficient pups grew slower and their skeletal muscles appeared significantly underdeveloped, whereas heart was close to normal in size. Both tissues showed mtDNA depletion and mitochondria with altered ultrastructure, as revealed by transmission electron microscopy. Gene expression microarray analysis showed a strong down-regulation of genes involved in cell cycle and cell proliferation in both tissues, suggesting a lower pool of undifferentiated proliferating cells. Analysis of isolated primary myoblasts from Tk2 knockout mice showed slow proliferation, less ability to differentiate and signs of premature senescence, even in absence of mtDNA depletion. Our data demonstrate that TK2 deficiency disturbs myogenic progenitor cells function in postnatal skeletal muscle and we propose this as one of the causes of underdeveloped phenotype and myopathic characteristic of the TK2 deficient mice, in addition to the progressive mtDNA depletion, mitochondrial damage and respiratory chain deficiency in post-mitotic differentiated tissue. PMID:23341978

  10. NBS1 knockdown by small interfering RNA increases ionizing radiation mutagenesis and telomere association in human cells

    NASA Technical Reports Server (NTRS)

    Zhang, Ying; Lim, Chang U K.; Williams, Eli S.; Zhou, Junqing; Zhang, Qinming; Fox, Michael H.; Bailey, Susan M.; Liber, Howard L.

    2005-01-01

    Hypomorphic mutations which lead to decreased function of the NBS1 gene are responsible for Nijmegen breakage syndrome, a rare autosomal recessive hereditary disorder that imparts an increased predisposition to development of malignancy. The NBS1 protein is a component of the MRE11/RAD50/NBS1 complex that plays a critical role in cellular responses to DNA damage and the maintenance of chromosomal integrity. Using small interfering RNA transfection, we have knocked down NBS1 protein levels and analyzed relevant phenotypes in two closely related human lymphoblastoid cell lines with different p53 status, namely wild-type TK6 and mutated WTK1. Both TK6 and WTK1 cells showed an increased level of ionizing radiation-induced mutation at the TK and HPRT loci, impaired phosphorylation of H2AX (gamma-H2AX), and impaired activation of the cell cycle checkpoint regulating kinase, Chk2. In TK6 cells, ionizing radiation-induced accumulation of p53/p21 and apoptosis were reduced. There was a differential response to ionizing radiation-induced cell killing between TK6 and WTK1 cells after NBS1 knockdown; TK6 cells were more resistant to killing, whereas WTK1 cells were more sensitive. NBS1 deficiency also resulted in a significant increase in telomere association that was independent of radiation exposure and p53 status. Our results provide the first experimental evidence that NBS1 deficiency in human cells leads to hypermutability and telomere associations, phenotypes that may contribute to the cancer predisposition seen among patients with this disease.

  11. The TP53 dependence of radiation-induced chromosome instability in human lymphoblastoid cells

    NASA Technical Reports Server (NTRS)

    Schwartz, Jeffrey L.; Jordan, Robert; Evans, Helen H.; Lenarczyk, Marek; Liber, Howard

    2003-01-01

    The dose and TP53 dependence for the induction of chromosome instability were examined in cells of three human lymphoblastoid cell lines derived from WIL2 cells: TK6, a TP53-normal cell line, NH32, a TP53-knockout created from TK6, and WTK1, a WIL2-derived cell line that spontaneously developed a TP53 mutation. Cells of each cell line were exposed to (137)Cs gamma rays, and then surviving clones were isolated and expanded in culture for approximately 35 generations before the frequency and characteristics of the instability were analyzed. The presence of dicentric chromosomes, formed by end-to-end fusions, served as a marker of chromosomal instability. Unexposed TK6 cells had low levels of chromosomal instability (0.002 +/- 0.001 dicentrics/cell). Exposure of TK6 cells to doses as low as 5 cGy gamma rays increased chromosome instability levels nearly 10-fold to 0.019 +/- 0.008 dicentrics/cell. There was no further increase in instability levels beyond 5 cGy. In contrast to TK6 cells, unexposed cultures of WTK1 and NH32 cells had much higher levels of chromosome instability of 0.034 +/- 0.007 and 0.041 +/- 0.009, respectively, but showed little if any effect of radiation on levels of chromosome instability. The results suggest that radiation exposure alters the normal TP53-dependent cell cycle checkpoint controls that recognize alterations in telomere structure and activate apoptosis.

  12. Using HSV-TK/GCV suicide gene therapy to inhibit lens epithelial cell proliferation for treatment of posterior capsular opacification

    PubMed Central

    Jiang, Yong-Xiang; Liu, Tian-Jing; Yang, Jin; Chen, Yan; Fang, Yan-Wen

    2011-01-01

    Purpose To establish a novel, targeted lentivirus-based HSV-tk (herpes simplex virus thymidine kinase)/GCV (ganciclovir) gene therapy system to inhibit lens epithelial cell proliferation for treatment of posterior capsular opacification (PCO) after cataract surgery. Methods An enhanced Cre recombinase (Cre/loxP) system with a lentiviral vector expressing Cre under the control of the lens-specific promoter LEP503 (Lenti-LEP503-HSVtk-Cre [LTKCRE]) was constructed, as well as another lentiviral vector containing a switching unit. The latter vector contains a stuffer sequence encoding EGFP (Lenti-hPGK-Loxp-EGFP-pA-Loxp-HSVtk [PGFPTK]) with a functional polyadenylation signal between two loxP sites, followed by the herpes simplex virus thymidine kinase (HSV-tk) gene, both under the control of the human posphoglycerate kinase (hPGK) promoter. Expression of the downstream gene (HSV-tk) is activated by co-expression of Cre. Human lens epithelial cells (HLECs) or retinal pigmental epithelial cells (RPECs) were co-infected with LTKCRE and PGFPTK. The inhibitory effects on HLECs and RPECs infected by the enhanced specific lentiviral vector combination at the concentration of 20 µg/ml GCV were assayed and compared. Results The specific gene expression of Cre and HSV-tk in HLECs is activated by the LEP503 promoter. LTKCRE and PGFPTK co-infected HLECs, but not RPECs, expressed high levels of the HSV-tk protein. After 96 h of GCV treatment, the percentage of apoptotic HLECs infected by the enhanced specific lentiviral vector combination was 87.23%, whereas that of apoptotic RPECs was only 10.12%. Electron microscopy showed that GCV induced apoptosis and necrosis of the infected HLECs. Conclusions The enhanced specific lentiviral vector combination selectively and effectively expressed HSV-tk in HLECs. A concentration of 20 µg/ml, GCV is effective against the proliferation of HLECs in vitro. This cell-type-specific gene therapy using a Cre/loxP lentivirus system may be a

  13. Ability of circulating human hematopoietic lineage negative cells to support hematopoiesis.

    PubMed

    Peris, Pilar; Roforth, Matthew M; Nicks, Kristy M; Fraser, Daniel; Fujita, Koji; Jilka, Robert L; Khosla, Sundeep; McGregor, Ulrike

    2015-01-01

    Hematopoietic stem cell (HSC) self-renewal is regulated by osteoblast and/or endothelial cells within the hematopoietic niche. However, the true identity of the supporting cells and the nature of the secreted factors remain uncertain. We developed a novel mouse model and analyzed whether circulating human peripheral hematopoietic lineage negative/AP+ (lin-/AP+) cells support hematopoiesis in vivo. Thus, immunocompromised (Rag) mice expressing thymidine kinase (Tk) under the control of the 3.6Col1α1 promoter (Tk-Rag) were treated with ganciclovir, resulting in osteoblast progenitor cell ablation and subsequent loss of hematopoiesis (evaluated by measuring mouse Ter119+ erythroid cells). Following hematopoietic cell depletion, human bone marrow-derived marrow stromal cells (MSCs) or lin-/AP+ cells were infused into Tk-Rag mice and compared with saline infusions. Ganciclovir significantly reduced (7.4-fold) Ter119+ cells in the bone marrow of Tk-Rag mice compared to saline injections. Infusion of either MSCs or lin-/AP+ cells into ganciclovir-treated mice resulted in a 3.3-fold and 2.7-fold increase (P < 0.01), respectively, in Ter119+ cells compared to mice receiving saline. Relative to lin-/AP- cells, lin-/AP+ cells expressed high levels of mesenchymal, endothelial, and hematopoiesis supporting genes. Thus, human peripheral blood lin-/AP+ cells represent a novel cell type capable of supporting hematopoiesis in a manner comparable to MSCs. © 2014 Wiley Periodicals, Inc.

  14. Selective elimination of long INterspersed element-1 expressing tumour cells by targeted expression of the HSV-TK suicide gene

    PubMed Central

    Chendeb, Mariam; Schneider, Robert; Davidson, Irwin; Fadloun, Anas

    2017-01-01

    In gene therapy, effective and selective suicide gene expression is crucial. We exploited the endogenous Long INterspersed Element-1 (L1) machinery often reactivated in human cancers to integrate the Herpes Simplex Virus Thymidine Kinase (HSV-TK) suicide gene selectively into the genome of cancer cells. We developed a plasmid-based system directing HSV-TK expression only when reverse transcribed and integrated in the host genome via the endogenous L1 ORF1/2 proteins and an Alu element. Delivery of these new constructs into cells followed by Ganciclovir (GCV) treatment selectively induced mortality of L1 ORF1/2 protein expressing cancer cells, but had no effect on primary cells that do not express L1 ORF1/2. This novel strategy for selective targeting of tumour cells provides high tolerability as the HSV-TK gene cannot be expressed without reverse transcription and integration, and high selectivity as these processes take place only in cancer cells expressing high levels of functional L1 ORF1/2. PMID:28415677

  15. Different mechanisms of radiation-induced loss of heterozygosity in two human lymphoid cell lines from a single donor

    NASA Technical Reports Server (NTRS)

    Wiese, C.; Gauny, S. S.; Liu, W. C.; Cherbonnel-Lasserre, C. L.; Kronenberg, A.

    2001-01-01

    Allelic loss is an important mutational mechanism in human carcinogenesis. Loss of heterozygosity (LOH) at an autosomal locus is one outcome of the repair of DNA double-strand breaks (DSBs) and can occur by deletion or by mitotic recombination. We report that mitotic recombination between homologous chromosomes occurred in human lymphoid cells exposed to densely ionizing radiation. We used cells derived from the same donor that express either normal TP53 (TK6 cells) or homozygous mutant TP53 (WTK1 cells) to assess the influence of TP53 on radiation-induced mutagenesis. Expression of mutant TP53 (Met 237 Ile) was associated with a small increase in mutation frequencies at the hemizygous HPRT (hypoxanthine phosphoribosyl transferase) locus, but the mutation spectra were unaffected at this locus. In contrast, WTK1 cells (mutant TP53) were 30-fold more susceptible than TK6 cells (wild-type TP53) to radiation-induced mutagenesis at the TK1 (thymidine kinase) locus. Gene dosage analysis combined with microsatellite marker analysis showed that the increase in TK1 mutagenesis in WTK1 cells could be attributed, in part, to mitotic recombination. The microsatellite marker analysis over a 64-cM region on chromosome 17q indicated that the recombinational events could initiate at different positions between the TK1 locus and the centromere. Virtually all of the recombinational LOH events extended beyond the TK1 locus to the most telomeric marker. In general, longer LOH tracts were observed in mutants from WTK1 cells than in mutants from TK6 cells. Taken together, the results demonstrate that the incidence of radi-ation-induced mutations is dependent on the genetic background of the cell at risk, on the locus examined, and on the mechanisms for mutation available at the locus of interest.

  16. Hypomethylation mediated by decreased DNMTs involves in the activation of proto-oncogene MPL in TK6 cells treated with hydroquinone.

    PubMed

    Liu, Linhua; Ling, Xiaoxuan; Liang, Hairong; Gao, Yuting; Yang, Hui; Shao, Junli; Tang, Huanwen

    2012-03-25

    Hydroquinone (HQ), one of the most important metabolites derived from benzene, is known to be associated with acute myelogenous leukemia (AML) risk, however, its carcinogenic mechanism remains unclear. In this study, the epigenetic mechanism of HQ exposure was investigated. We characterized the epigenomic response of TK6 cells to HQ exposure, and examined the mRNA expression of DNA methyltransferases (DNMTs) including DNMT1, DNMT3a and DNMT3b, methyl-CpG-binding domain protein 2 (MBD2) and six proto-oncogenes (MPL, RAF1, MYB, MYC, ERBB2 and BRAF). Compared to the control cells, HQ exposure (2.5, 5.0, 10.0 and 20.0 μM for 48 h) resulted in the decrease of DNMTs and MBD2 expression, the global hypomethylation and increase of MPL at mRNA level. Meanwhile, most of these changes were in dose-dependent manner. Moreover, inhibition of DNMTs induced by 5-aza-2'-deoxycytidine (5-AZA), an identified DNMT inhibitor, caused more induction of MPL expression at mRNA level compared to the HQ (10.0 μM) pre-treated group. Furthermore, treatment of HQ potentially led to MPL itself hypomethylation (10.0 and 20.0 μM reduced by 47% and 44%, respectively), further revealing that the activation of proto-oncogene MPL was related to hypomethylation in its DNA sequences. In conclusion, hypomethylation, including global and specific hypomethylation, might be involved in the activation of MPL, and the hypomethylation could be induced by decreased DNMTs in TK6 cells exposed to HQ. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Mutagenesis in human cells with accelerated H and Fe ions

    NASA Technical Reports Server (NTRS)

    Kronenberg, Amy

    1994-01-01

    The overall goals of this research were to determine the risks of mutation induction and the spectra of mutations induced by energetic protons and iron ions at two loci in human lymphoid cells. During the three year grant period the research has focused in three major areas: (1) the acquisition of sufficient statistics for human TK6 cell mutation experiments using Fe ions (400 MeV/amu), Fe ions (600 MeV/amu) and protons (250 MeV/amu); (2) collection of thymidine kinase- deficient (tk) mutants or hypoxanthine phosphoribosyltransferase deficient (hprt) mutants induced by either Fe 400 MeV/amu, Fe 600 MeV/amu, or H 250 MeV/amu for subsequent molecular analysis; and (3) molecular characterization of mutants isolated after exposure to Fe ions (600 MeV/amu). As a result of the shutdown of the BEVALAC heavy ion accelerator in December 1992, efforts were rearranged somewhat in time to complete our dose-response studies and to complete mutant collections in particular for the Fe ion beams prior to the shutdown. These goals have been achieved. A major effort was placed on collection, re-screening, and archiving of 3 different series of mutants for the various particle beam exposures: tk-ng mutants, tk-sg mutants, and hprt-deficient mutants. Where possible, groups of mutants were isolated for several particle fluences. Comparative analysis of mutation spectra has occured with characterization of the mutation spectrum for hprt-deficient mutants obtained after exposure of TK6 cells to Fe ions (600 MeV/amu) and a series of spontaneous mutants.

  18. MOLECULAR ANALYSIS OF MUTATIONS INDUCED BY MUTAGENS IN THE TK GENE OF MOUSE LYMPHOMA CELLS

    EPA Science Inventory

    MOLECULAR ANALYSIS OF MUTATIONS INDUCED BY BROMATE AND N- ETHYL-N-NITROSOUREA IN THE TK GENE OF MOUSE L YMPHOMA CELLS

    The mouse lymphoma assay is widely used to identify chemical mutagens The Tk +1- gene located on an autosome in mouse lymphoma cells may recover a wide ra...

  19. [Retroviral-mediated transfer of a hygromycin phosphotransferase-thymidine kinase fusion gene into human bladder carcinoma cell].

    PubMed

    Ye, C; Chen, S; Pei, X; Li, L; Feng, K

    1999-08-01

    To evaluate the therapeutic efficacy of retroviral-mediated hygromycin phosphotransferase-thymidine kinase fusion gene (HyTK)/GCV on human bladder carcinoma cell. A retroviral expression vector pL (HyTK) SN was constructed. By using FuGENE 6-mediated transfection and "ping-pong effect" technique, high-titer of retroviral supernatant was obtained and HyTK gene was transferred into EJ cells. A retroviral vector encoding, enhanced green fluorescent protein, EGFP was used to rapidly detect the transduction efficiency. Antitumor effects were observed after GCV treatment. In vitro experiments demonstrated the EJ cells transferred by HyTK gene were killed in the GCV treatment. Non-transduced parental cells were not sensitive to GCV, but they were dead by the bystander killing of neighboring cells when mixed with EJ/HyTK cells at various ratios. In addition, this not only affect wild-type EJ cells but also cells from different bladder carcinoma cell lines. Retroviral-mediated HyTK/GCV systems were a promising suicide gene therapy for bladder carcinoma. EGFP may act as a convenient and rapid reporter to monitor retroviral-mediated gene transfer and expression in bladder carcinoma cells.

  20. Spontaneous and radiation-induced genomic instability in human cell lines differing in cellular TP53 status.

    PubMed

    Moore, Stephen R; Ritter, Linda E; Gibbons, Catherine F; Grosovsky, Andrew J

    2005-10-01

    Structural chromosomal rearrangements are commonly observed in tumor karyotypes and in radiation-induced genomic instability. Here we report the effects of TP53 deficiency on karyotypic stability before and after irradiation using related cells and clones differing in cellular TP53 status. The parental cell line, TK6, is a TP53 wild-type human B-lymphoblastoid line with a highly stable karyotype. In the two TK6 derivatives used here, TP53 has been inactivated by biochemical means (expression of HPV16 E6; TK6-5E) or genetic means (allelic inactivation; NH32). Biochemical inactivation of TP53 (TK6-5E) had little effect on the spontaneous karyotype, whereas allelic inactivation of TP53 (NH32) resulted in a modest increase in spontaneous karyotypic instability. After 2 Gy gamma irradiation, the number of unstable clones derived from TP53-deficient cells was significantly elevated compared to the TP53 wild-type counterpart. Extensively destabilized clones were common after irradiation in the set of clones derived from NH32 cells, and one was observed in the set of TK6-5E clones; however, they were never observed in TK6-derived clones. In two of the irradiated NH32 clones, whole chromosomes or chromosome bands were preferentially involved in alterations. These results suggest that genomic instability may differ both quantitatively and qualitatively as a consequence of altered TP53 expression. Some of the results showing repeated and preferential chromosome involvement in aberrations support a model in which instability may be driven by cis mechanisms.

  1. Caspase-3-independent pathways proceeding in bystander effect of HSV-tk/GCV system

    NASA Astrophysics Data System (ADS)

    Lin, Juqiang; Ma, Yan; Zeng, Shaoqun; Zhang, Zhihong

    2008-02-01

    HSV-tk/GCV system, which is the virus-directed enzyme/prodrug therapy of herpes simplex virus (HSV) thymidine kinase (tk) gene / the anti-viral reagent ganciclovir (GCV), is one of the promising approaches in the rapidly growing area of gene therapy. As gene therapy of cancer such as suicide gene therapy has entered the clinic, another therapy effect which is called 'bystander effect' was reported. Bystander effect can lead to killing of non-transduced tumor cells in the immediate vicinity of GCV-treated HSV-TK-positive cells. Now the magnitude of 'bystander effect' is an essential factor for this anti-tumor approach in vivo. However, the mechanism which HSV-tk/ACV brings "bystander effect" is poorly understood. In this study, we monitor the activation of caspase-3 in HSV-tk/GCV system by a FRET probe CD3, a FRET-based indicator for activity of caspase3, which is composed of an enhanced cyan fluorescent protein, a caspase-sensitive linker, and a red fluorescent protein from Discosoma with efficient maturation property. Through application of CD3 we have visualized the activation of caspase-3 in tk gene positive human adenoid cystic carcinoma (ACC-M) cells but not in bystander effect of HSV-tk/GCV system induced by GCV. This finding provides needed information for understanding the mechanisms by which suicide gene approaches actually kill cancer cells, and may prove to be helpful for the clinical treatment of cancers.

  2. Cadmium chloride, benzo[a]pyrene and cyclophosphamide tested in the in vitro mammalian cell micronucleus test (MNvit) in the human lymphoblastoid cell line TK6 at Covance laboratories, Harrogate UK in support of OECD draft Test Guideline 487.

    PubMed

    Fowler, Paul; Whitwell, James; Jeffrey, Laura; Young, Jamie; Smith, Katie; Kirkland, David

    2010-10-29

    The following genotoxic chemicals were tested in the in vitro micronucleus assay, at Covance Laboratories, Harrogate, UK in the human lymphoblastoid cell line TK6. Cadmium chloride (an inorganic carcinogen), benzo[a]pyrene (a polycyclic aromatic hydrocarbon requiring metabolic activation) and cyclophosphamide (an alkylating agent requiring metabolic activation) were treated with and without cytokinesis block (by addition of cytochalasin B). This work formed part of a collaborative evaluation of the toxicity measures recommended in the draft OECD Test Guideline 487 for the in vitro micronucleus test. The toxicity measures used, capable of detecting both cytostasis and cell death, were relative population doubling, relative increase in cell counts and relative cell counts for treatments in the absence of cytokinesis block, and replication index or cytokinesis blocked proliferation index in the presence of cytokinesis block. All of the chemicals tested gave significant increases in the percentage of micronucleated cells with and without cytokinesis block at concentrations giving approximately 60% toxicity (cytostasis and cell death) or less by all of the toxicity measures used. The outcomes from this series of tests support the use of relative increase in cell counts and relative population doubling, as well as relative cell counts, as appropriate measures of cytotoxicity for the non-cytokinesis blocked in the in vitro micronucleus assay. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Characterization of multilocus lesions in human cells exposed to X radiation and radon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaudhry, M.A.; Jiang, Q.; Ricanati, M.

    Human TK6 lymphoblasts were exposed to X radiation or radon, and thymidine kinase negative (TK{sup -/-}) mutants were selected, isolated and harvested for analysis of structural changes in the TK gene. A large majority (82%) of the radon-induced mutants, 74% of the X-radiation-induced mutants and 45% of the spontaneous mutants lost the entire active TK allele. To analyze these mutants further we measured the loss of heterozygosity at several loci neighboring the TK locus on chromosome 17q. A greater proportion (61%) of the radon-induced mutants than X-radiation-induced or spontaneous mutants harbored the smaller lesions involving the TK allele alone ormore » extending from the TK locus to one or both of the closest neighboring sequences tested. Further, 21% of the X-radiation-induced mutants but only 5% of the radon-induced mutants lost heterozygosity at the col1A1 locus, 31 Mb from the TK gene. These results are in agreement with a recent analysis of radon- and X-radiation-induced lesions inactivating the HPRT gene of TK6 cells, in which we reported that a lower percentage of radon- than X-radiation-induced mutants showed lesions extending to markers 800 kb or more from the HPRT gene on the X chromosome. In the present study, we observed that the percentage of slowly growing and very slowly growing TK{sup -/-} mutants was greater after treatment with radon than after treatment with X radiation, regardless of the type of lesion present. It is possible, therefore, that the radon-induced lesions are complex and/or less easily repaired, leading to slow growth in a large proportion of the surviving mutant cells. 36 refs., 6 figs., 2 tabs.« less

  4. Design of a functional cyclic HSV1-TK reporter and its application to PET imaging of apoptosis

    PubMed Central

    Wang, Zhe; Wang, Fu; Hida, Naoki; Kiesewetter, Dale O; Tian, Jie; Niu, Gang; Chen, Xiaoyuan

    2017-01-01

    Positron emission tomography (PET) is a sensitive and noninvasive imaging method that is widely used to explore molecular events in living subjects. PET can precisely and quantitatively evaluate cellular apoptosis, which has a crucial role in various physiological and pathological processes. In this protocol, we describe the design and use of an engineered cyclic herpes simplex virus 1–thymidine kinase (HSV1-TK) PET reporter whose kinase activity is specifically switched on by apoptosis. The expression of cyclic TK (cTK) in healthy cells leads to inactive product, whereas the activation of apoptosis through the caspase-3 pathway cleaves cTK, thus restoring its activity and enabling PET imaging. In addition to detailing the design and construction of the cTK plasmid in this protocol, we include assays for evaluating the function and specificity of the cTK reporter in apoptotic cells, such as assays for measuring the cell uptake of PET tracer in apoptotic cells, correlating doxorubicin (Dox)-induced cell apoptosis to cTK function recovery, and in vivo PET imaging of cancer cell apoptosis, and we also include corresponding data acquisition methods. The time to build the entire cTK reporter is ~2–3 weeks. The selection of a stable cancer cell line takes ~4–6 weeks. The time to implement assays regarding cTK function in apoptotic cells and the in vivo imaging varies depending on the experiment. The cyclization strategy described in this protocol can also be adapted to create other reporter systems for broad biomedical applications. PMID:25927390

  5. Different DNA damage response of cis and trans isomers of commonly used UV filter after the exposure on adult human liver stem cells and human lymphoblastoid cells.

    PubMed

    Sharma, Anežka; Bányiová, Katarína; Babica, Pavel; El Yamani, Naouale; Collins, Andrew Richard; Čupr, Pavel

    2017-09-01

    2-ethylhexyl 4-methoxycinnamate (EHMC), used in many categories of personal care products (PCPs), is one of the most discussed ultraviolet filters because of its endocrine-disrupting effects. EHMC is unstable in sunlight and can be transformed from trans-EHMC to emergent cis-EHMC. Toxicological studies are focusing only on trans-EHMC; thus the toxicological data for cis-EHMC are missing. In this study, the in vitro genotoxic effects of trans- and cis-EHMC on adult human liver stem cells HL1-hT1 and human-derived lymphoblastoid cells TK-6 using a high-throughput comet assay were studied. TK-6 cells treated with cis-EHMC showed a high level of DNA damage when compared to untreated cells in concentrations 1.56 to 25μgmL -1 . trans-EHMC showed genotoxicity after exposure to the two highest concentrations 12.5 and 25μgmL -1 . The increase in DNA damage on HL1-hT1 cells induced by cis-EHMC and trans-EHMC was detected at the concentration 25μgmL -1 . The No observed adverse effect level (NOAEL, mg kg -1 bwday -1 ) was determined using a Quantitative in vitro to in vivo extrapolation (QIVIVE) approach: NOAEL trans-EHMC =3.07, NOAEL cis-EHMC =0.30 for TK-6 and NOAEL trans-EHMC =26.46, NOAEL cis-EHMC =20.36 for HL1-hT1. The hazard index (HI) was evaluated by comparing the reference dose (RfD, mgkg -1 bwday -1 ) obtained from our experimental data with the chronic daily intake (CDI) of the female population. Using comet assay experimental data with the more sensitive TK-6 cells, HI cis-EHMC was 7 times higher than HI trans-EHMC . In terms of CDI, relative contributions were; dermal exposure route>oral>inhalation. According to our results we recommend the RfD trans-EHMC =0.20 and RfD cis-EHMC =0.02 for trans-EHMC and cis-EHMC, respectively, to use for human health risk assessment. The significant difference in trans-EHMC and cis-EHMC response points to the need for toxicological reevaluation and application reassessment of both isomers in PCPs. Copyright © 2017 Elsevier B

  6. A development of chimeric VEGFR2 TK inhibitor based on two ligand conformers from PDB: 1Y6A complex--medicinal chemistry consequences of a TKs analysis.

    PubMed

    Lintnerová, Lucia; García-Caballero, Melissa; Gregáň, Fridrich; Melicherčík, Milan; Quesada, Ana R; Dobiaš, Juraj; Lác, Ján; Sališová, Marta; Boháč, Andrej

    2014-01-24

    VEGFR2 is an important mediator of angiogenesis and influences fate of some cancer stem cells. Here we analysed all 34 structures of VEGFR2 TK available from PDB database. From them a complex PDB: 1Y6A has an exceptional AAZ ligand bound to TK in form of two conformers (U- and S-shaped). This observation inspired us to develop three chimeric bispyridyl VEGFR2 inhibitors by combining structural features of both AAZ conformers and/or their relative ligand AAX (PDB: 1Y6B). Our most interesting inhibitor 22SYM has an enzymatic VEGFR2 TK activity (IC50: 15.1 nM) comparable or better to the active compounds from clinical drugs Nexavar and Sutent. 22SYM inhibits growth, migration and tube formation of endothelial cells (EC) and selectively induces EC apoptosis. 22SYM also inhibits in vivo angiogenesis in Zebrafish embryo assay. Additionally to the above results, we proved here that tyrosine kinases in an inactive form possessing Type I inhibitors can adopt both a closed or an opened conformation of kinase A-loop independently on their DFG-out arrangement. We proposed here that an activity of certain Type I inhibitors (e.g. 22SYM-like) in complex with DFG-out TK can be negatively influenced by collisions with a dynamically moving TK A-loop. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  7. Antitumor activity of combined endostatin and thymidine kinase gene therapy in C6 glioma models.

    PubMed

    Chen, Yan; Huang, Honglan; Yao, Chunshan; Su, Fengbo; Guan, Wenming; Yan, Shijun; Ni, Zhaohui

    2016-09-01

    The combination of Endostatin (ES) and Herpes Simplex Virus thymidine kinase (HSV-TK) gene therapy is known to have antitumor activity in bladder cancer. The potential effect of ES and TK therapy in glioma has not yet been investigated. In this study, pTK-internal ribosome entry site (IRES), pIRES-ES, and pTK-IRES-ES plasmids were constructed; pIRES empty vector served as the negative control. The recombinant constructs were transfected into human umbilical vein endothelial cells (HUVECs) ECV304 and C6 rat glioma cell line. Ganciclovir (GCV) was used to induce cell death in transfected C6 cells. We found that ECV304 cells expressing either ES or TK-ES showed reduced proliferation, decreased migration capacity, and increased apoptosis, as compared to untransfected cells or controls. pTK-IRES-ES/GCV or pTK-IRES/GCV significantly suppressed cell proliferation and induced cell apoptosis in C6 cells, as compared to the control. In addition, the administration of pIRES-ES, pTK-IRES/GCV, or pTK-IRES-ES/GCV therapy improved animal activity and behavior; was associated with prolonged animal survival, and a lower microvessel density (MVD) value in tumor tissues of C6 glioma rats. In comparison to others, dual gene therapy in form of pTK-IRES-ES/GCV had a significant antitumor activity against C6 glioma. These findings indicate combined TK and ES gene therapy was associated with a superior antitumor efficacy as compared to single gene therapy in C6 glioma. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  8. Activation of caspase-3 noninvolved in the bystander effect of the herpes simplex virus thymidine kinase gene/ganciclovir (HSV-tk/GCV) system.

    PubMed

    Zhang, Zhihong; Lin, Juqiang; Chu, Jun; Ma, Yan; Zeng, Shaoqun; Luo, Qingming

    2008-01-01

    Use of the herpes simplex virus thymidine kinase gene/ganciclovir (HSV-tk/GCV) system is one of the promising approaches in the rapidly growing area of gene therapy. The "bystander effect," a phenomenon in which HSV-tk+ cells exposed to GCV are toxic to adjacent HSV-tk- cells, was reported to play an important role in suicide gene therapy. However, the mechanism by which HSV-tk/GCV induces the bystander effect is poorly understood. We monitored the activation of caspase-3 in living cells induced by the HSV-tk/GCV system using a genetically encoded fluorescence resonance energy transfer (FRET) probe CD3, , a caspase-3 recognition site fused with a cyan fluorescent protien (CFP) and a red fluorescent protein (DsRed) which we reported and named in a previous paper. Fluorescence protein (FP)-based multicolor cellular labeling, combined with the multichannel fluorescence imaging and FRET imaging techniques, provides a novel and improved approach to directly determine whether the activation of caspase-3 involved in the HSV-tk/GCV system induces cell apoptosis in tk gene-expressing cells and their neighboring cells. FRET ratio images of CD3, and fluorescence images of the fusion protein of thymidine kinase linked with green fluorescent protein (TK-GFP), indicated that HSV-tk/GCV system-induced apoptosis in human adenoid cystic carcinoma (ACC-M) cells was via a caspase-3 pathway, and the activation of caspase-3 was not involved in the bystander effect of HSV-tk/GCV system.

  9. Formation of the accumulative human metabolite and human-specific glutathione conjugate of diclofenac in TK-NOG chimeric mice with humanized livers.

    PubMed

    Kamimura, Hidetaka; Ito, Satoshi; Nozawa, Kohei; Nakamura, Shota; Chijiwa, Hiroyuki; Nagatsuka, Shin-ichiro; Kuronuma, Miyuki; Ohnishi, Yasuyuki; Suemizu, Hiroshi; Ninomiya, Shin-ichi

    2015-03-01

    3'-Hydroxy-4'-methoxydiclofenac (VI) is a human-specific metabolite known to accumulate in the plasma of patients after repeated administration of diclofenac sodium. Diclofenac also produces glutathione-conjugated metabolites, some of which are human-specific. In the present study, we investigated whether these metabolites could be generated in humanized chimeric mice produced from TK-NOG mice. After a single oral administration of diclofenac to humanized mice, the unchanged drug in plasma peaked at 0.25 hour and then declined with a half-life (t1/2) of 2.4 hours. 4'-Hydroxydiclofenac (II) and 3'-hydroxydiclofenac also peaked at 0.25 hour and were undetectable within 24 hours. However, VI peaked at 8 hours and declined with a t1/2 of 13 hours. When diclofenac was given once per day, peak and trough levels of VI reached plateau within 3 days. Studies with administration of II suggested VI was generated via II as an intermediate. Among six reported glutathione-conjugated metabolites of diclofenac, M1 (5-hydroxy-4-(glutathion-S-yl)diclofenac) to M6 (2'-(glutathion-S-yl)monoclofenac), we found three dichlorinated conjugates [M1, M2 (4'-hydroxy-3'-(glutathion-S-yl)diclofenac), and M3 (5-hydroxy-6-(glutathion-S-yl)diclofenac)], and a single monochlorinated conjugate [M4 (2'-hydroxy-3'-(glutathion-S-yl)monoclofenac) or M5 (4'-hydroxy-2'-(glutathion-S-yl)monoclofenac)], in the bile of humanized chimeric mice. M4 and M5 are positional isomers and have been previously reported as human-specific in vitro metabolites likely generated via arene oxide and quinone imine-type intermediates, respectively. The biliary monochlorinated metabolite exhibited the same mass spectrum as those of M4 and M5, and we discuss whether this conjugate corresponded to M4 or M5. Overall, humanized TK-NOG chimeric mice were considered to be a functional tool for the study of drug metabolism of diclofenac in humans. Copyright © 2015 by The American Society for Pharmacology and Experimental

  10. Gene conversion is strongly induced in human cells by double-strand breaks and is modulated by the expression of BCL-x(L)

    NASA Technical Reports Server (NTRS)

    Wiese, Claudia; Pierce, Andrew J.; Gauny, Stacey S.; Jasin, Maria; Kronenberg, Amy; Chatterjee, A. (Principal Investigator)

    2002-01-01

    Homology-directed repair (HDR) of DNA double-strand breaks (DSBs) contributes to the maintenance of genomic stability in rodent cells, and it has been assumed that HDR is of similar importance in DSB repair in human cells. However, some outcomes of homologous recombination can be deleterious, suggesting that factors exist to regulate HDR. We demonstrated previously that overexpression of BCL-2 or BCL-x(L) enhanced the frequency of X-ray-induced TK1 mutations, including loss of heterozygosity events presumed to arise by mitotic recombination. The present study was designed to test whether HDR is a prominent DSB repair pathway in human cells and to determine whether ectopic expression of BCL-x(L) affects HDR. Using TK6-neo cells, we find that a single DSB in an integrated HDR reporter stimulates gene conversion 40-50-fold, demonstrating efficient DSB repair by gene conversion in human cells. Significantly, DSB-induced gene conversion events are 3-4-fold more frequent in TK6 cells that stably overexpress the antiapoptotic protein BCL-X(L). Thus, HDR plays an important role in maintaining genomic integrity in human cells, and ectopic expression of BCL-x(L) enhances HDR of DSBs. This is the first study to highlight a function for BCL-x(L) in modulating DSB repair in human cells.

  11. Effects of Cationic Microbubble Carrying CD/TK Double Suicide Gene and αVβ3 Integrin Antibody in Human Hepatocellular Carcinoma HepG2 Cells.

    PubMed

    Li, Jiale; Zhou, Ping; Li, Lan; Zhang, Yan; Shao, Yang; Tang, Li; Tian, Shuangming

    2016-01-01

    Hepatocellular carcinoma (HCC), mostly derived from hepatitis or cirrhosisis, is one of the most common types of liver cancer. T-cell mediated immune response elicited by CD/TK double suicide gene has shown a substantial antitumor effect in HCC. Integrin αVβ3 over expresssion has been suggested to regulate the biology behavior of HCC. In this study, we investigated the strategy of incorporating CD/TK double suicide gene and anti-αVβ3 integrin monoclonal antibodies into cationic microbubbles (CMBsαvβ3), and evaluated its killing effect in HCC cells. To improve the transfection efficiency of targeted CD/TK double suicide gene, we adopted cationic microbubbles (CMBs), a cationic delivery agent with enhanced DNA-carrying capacity. The ultrasound and high speed shearing method was used to prepare the non-targeting cationic microbubbles (CMBs). Using the biotin-avidin bridge method, αVβ3 integrin antibody was conjugated to CMBs, and CMBsαvβ3 was generated to specifically target to HepG2 cells. The morphology and physicochemical properties of the CMBsαvβ3 was detected by optical microscope and zeta detector. The conjugation of plasmid and the antibody in CMBsαvβ3 were examined by immunofluorescent microscopy and flow cytometry. The binding capacities of CMBsαvβ3 and CMBs to HCC HepG2 and normal L-02 cells were compared using rosette formation assay. To detect EGFP fluorescence and examine the transfection efficiencies of CMBsαvβ3 and CMBs in HCC cells, fluorescence microscope and contrast-enhanced sonography were adopted. mRNA and protein level of CD/TK gene were detected by RT-PCR and Western blot, respectively. To evaluate the anti-tumor effect of CMBsαvβ3, HCC cells with CMBsαvβ3 were exposed to 5-flurocytosine / ganciclovir (5-FC/GCV). Then, cell cycle distribution after treatment were detected by PI staining and flow cytometry. Apoptotic cells death were detected by optical microscope and assessed by MTT assay and TUNEL-staining assay. CMBs

  12. A gene delivery system with a human artificial chromosome vector based on migration of mesenchymal stem cells towards human glioblastoma HTB14 cells.

    PubMed

    Kinoshita, Yusuke; Kamitani, Hideki; Mamun, Mahabub Hasan; Wasita, Brian; Kazuki, Yasuhiro; Hiratsuka, Masaharu; Oshimura, Mitsuo; Watanabe, Takashi

    2010-05-01

    Mesenchymal stem cells (MSCs) have been expected to become useful gene delivery vehicles against human malignant gliomas when coupled with an appropriate vector system, because they migrate towards the lesion. Human artificial chromosomes (HACs) are non-integrating vectors with several advantages for gene therapy, namely, no limitations on the size and number of genes that can be inserted. We investigated the migration of human immortalized MSCs bearing a HAC vector containing the herpes simplex virus thymidine kinase gene (HAC-tk-hiMSCs) towards malignant gliomas in vivo. Red fluorescence protein-labeled human glioblastoma HTB14 cells were implanted into a subcortical region in nude mice. Four days later, green fluorescence protein-labeled HAC-tk-hiMSCs were injected into a contralateral subcortical region (the HTB14/HAC-tk-hiMSC injection model). Tropism to the glioma mass and the route of migration were visualized by fluorescence microscopy and immunohistochemical staining. HAC-tk-hiMSCs began to migrate toward the HTB14 glioma area via the corpus callosum on day 4, and gathered around the HTB14 glioma mass on day 7. To test whether the delivered gene could effectively treat glioblastoma in vivo, HTB14/HAC-tk-hiMSC injected mice were treated with ganciclovir (GCV) or PBS. The HTB14 glioma mass was significantly reduced by GCV treatment in mice injected with HAC-tk-hiMSCs. It was confirmed that gene delivery by our HAC-hiMSC system was effective after migration of MSCs to the glioma mass in vivo. Therefore, MSCs containing HACs carrying an anticancer gene or genes may provide a new tool for the treatment of malignant gliomas and possibly of other tumor types.

  13. Evidence for an involvement of thymidine kinase in the excision repair of ultraviolet-irradiated herpes simplex virus in human cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Intine, R.V.; Rainbow, A.J.

    1990-01-01

    A wild-type strain of herpes simplex virus type 1 (HSV-1:KOS) encoding a functional thymidine kinase (tk+) and a tk- mutant strain (HSV-1:PTK3B) were used to study the role of the viral tk in the repair of UV-irradiated HSV-1 in human cells. UV survival of HSV-1:PTK3B was substantially reduced compared with that of HSV-1:KOS when infecting normal human cells. In contrast, the UV survival of HSV-1:PTK3B was similar to that of HSV-1:KOS when infecting excision repair-deficient cells from a xeroderma pigmentosum patient from complementation group A. These results suggest that the repair of UV-irradiated HSV-1 in human cells depends, in partmore » at least, on expression of the viral tk and that the repair process influenced by tk activity is excision repair or a process dependent on excision repair.« less

  14. Targeted transgenic overexpression of mitochondrial thymidine kinase (TK2) alters mitochondrial DNA (mtDNA) and mitochondrial polypeptide abundance: transgenic TK2, mtDNA, and antiretrovirals.

    PubMed

    Hosseini, Seyed H; Kohler, James J; Haase, Chad P; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-03-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-gamma. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity.

  15. Genomic instability in human lymphoid cells exposed to 1 GeV/amu Fe ions

    NASA Technical Reports Server (NTRS)

    Grosovsky, A.; Bethel, H.; Parks, K.; Ritter, L.; Giver, C.; Gauny, S.; Wiese, C.; Kronenberg, A.

    2001-01-01

    The goal of this study was to assess whether charged particle radiations of importance to spaceflight elicit genomic instability in human TK6 lymphoblasts. The incidence of genomic instability in TK6 cells was assessed 21 days after exposure to 2, 4, or 6 Fe ions (1 GeV/amu, LET= 146 keV/micrometers). Three indices of instability were used: intraclonal karyotypic heterogeneity, mutation rate analysis at the thymidine kinase (TK1) locus, and re-cloning efficiency. Fifteen of sixty clones demonstrated karyotypic heterogeneity. Five clones had multiple indicators of karyotypic change. One clone was markedly hypomutable and polyploid. Six clones were hypomutable, while 21 clones were mutators. Of these, seven were karyotypically unstable. Six clones had low re-cloning efficiencies, one of which was a mutator. All had normal karyotypes. In summary, many clones that survived exposure to a low fluence of Fe ions manifested one or more forms of genomic instability that may hasten the development of neoplasia through deletion or by recombination.

  16. Genomic instability in human lymphoid cells exposed to 1 GeV/amu Fe ions.

    PubMed

    Grosovsky, A; Bethel, H; Parks, K; Ritter, L; Giver, C; Gauny, S; Wiese, C; Kronenberg, A

    2001-01-01

    The goal of this study was to assess whether charged particle radiations of importance to spaceflight elicit genomic instability in human TK6 lymphoblasts. The incidence of genomic instability in TK6 cells was assessed ~21 days after exposure to 2, 4, or 6 Fe ions (1 GeV/amu, LET= 146 keV/micrometers). Three indices of instability were used: intraclonal karyotypic heterogeneity, mutation rate analysis at the thymidine kinase (TK1) locus, and re-cloning efficiency. Fifteen of sixty clones demonstrated karyotypic heterogeneity. Five clones had multiple indicators of karyotypic change. One clone was markedly hypomutable and polyploid. Six clones were hypomutable, while 21 clones were mutators. Of these, seven were karyotypically unstable. Six clones had low re-cloning efficiencies, one of which was a mutator. All had normal karyotypes. In summary, many clones that survived exposure to a low fluence of Fe ions manifested one or more forms of genomic instability that may hasten the development of neoplasia through deletion or by recombination.

  17. Simultaneous imaging of temporal changes of NF-κB activity and viable tumor cells in Huh7/NF-κB-tk-luc2/rfp tumor-bearing mice.

    PubMed

    Wang, Wei-Hsun; Chiang, I-Tsang; Liu, Yu-Chang; Hsu, Fei-Ting; Chen, Hong-Wen; Chen, Chuan-Lin; Lee, Yi-Jang; Lin, Wuu-Jyh; Hwang, Jeng-Jong

    2013-01-01

    Few studies have reported that the effect of sorafenib on advanced human hepatocellular carcinoma (HCC) is taking place via the inhibition of NF-κB signal transduction. Here we constructed a human HCC Huh7 stable clone with NF-κB-responsive element to drive dual reporter genes, herpes simplex virus thymidine kinase (tk) and firefly luciferase (luc2), and co-transfected with a third red fluorescent protein (rfp) gene, renamed as Huh7/NF-κB-tk-luc2/rfp cells, and combined with bioluminescent imaging (BLI) and red fluorescent protein imaging (RFPI) to monitor the effect of sorafenib on NF-κB activation and tumor inhibition. The results show that sorafenib could suppress the NF-κB-DNA binding activity, and the expression of downstream effector proteins. Notably, the relative photon fluxes obtained from RFPI and BLI, which represent the viable tumor cells and cells with NF-κB activation, decreased after sorafenib treatment by 50 to 65%, and 87.5 to >90%, respectively, suggesting that NF-κB activation is suppressed in viable HCC cells by sorafenib. Simultaneous molecular imaging of the temporal change of NF-κB activity and of viable cells in the same Huh7/NF-κB-tk-luc2/rfp tumors of the animal may reflect the real status of NF-κB activity and the viable tumor cells at the time of imaging.

  18. Both p53-PUMA/NOXA-Bax-mitochondrion and p53-p21cip1 pathways are involved in the CDglyTK-mediated tumor cell suppression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zhendong, E-mail: zdyu@hotmail.com; Wang, Hao; Zhang, Libin

    CDglyTK fusion suicide gene has been well characterized to effectively kill tumor cells. However, the exact mechanism and downstream target genes are not fully understood. In our study, we found that CDglyTK/prodrug treatment works more efficiently in p53 wild-type (HONE1) cells than in p53 mutant (CNE1) cells. We then used adenovirus-mediated gene delivery system to either knockdown or overexpress p53 and its target genes in these cells. Consistent results showed that both p53-PUMA/NOXA/Bcl2-Bax and p53-p21 pathways contribute to the CDglyTK induced tumor cell suppression. Our work for the first time addressed the role of p53 related genes in the CDglyTK/prodrugmore » system.« less

  19. Onset and organ specificity of Tk2 deficiency depends on Tk1 down-regulation and transcriptional compensation.

    PubMed

    Dorado, Beatriz; Area, Estela; Akman, Hasan O; Hirano, Michio

    2011-01-01

    Deficiency of thymidine kinase 2 (TK2) is a frequent cause of isolated myopathy or encephalomyopathy in children with mitochondrial DNA (mtDNA) depletion. To determine the bases of disease onset, organ specificity and severity of TK2 deficiency, we have carefully characterized Tk2 H126N knockin mice (Tk2-/-). Although normal until postnatal day 8, Tk2-/- mice rapidly develop fatal encephalomyopathy between postnatal days 10 and 13. We have observed that wild-type Tk2 activity is constant in the second week of life, while Tk1 activity decreases significantly between postnatal days 8 and 13. The down-regulation of Tk1 activity unmasks Tk2 deficiency in Tk2-/- mice and correlates with the onset of mtDNA depletion in the brain and the heart. Resistance to pathology in Tk2 mutant organs depends on compensatory mechanisms to the reduced mtDNA level. Our analyses at postnatal day 13 have revealed that Tk2-/- heart significantly increases mitochondrial transcript levels relative to the mtDNA content. This transcriptional compensation allows the heart to maintain normal levels of mtDNA-encoded proteins. The up-regulation in mitochondrial transcripts is not due to increased expression of the master mitochondrial biogenesis regulators peroxisome proliferator-activated receptor-gamma coactivator 1 alpha and nuclear respiratory factors 1 and 2, or to enhanced expression of the mitochondrial transcription factors A, B1 or B2. Instead, Tk2-/- heart compensates for mtDNA depletion by down-regulating the expression of the mitochondrial transcriptional terminator transcription factor 3 (MTERF3). Understanding the molecular mechanisms that allow Tk2 mutant organs to be spared may help design therapies for Tk2 deficiency.

  20. Onset and organ specificity of Tk2 deficiency depends on Tk1 down-regulation and transcriptional compensation

    PubMed Central

    Dorado, Beatriz; Area, Estela; Akman, Hasan O.; Hirano, Michio

    2011-01-01

    Deficiency of thymidine kinase 2 (TK2) is a frequent cause of isolated myopathy or encephalomyopathy in children with mitochondrial DNA (mtDNA) depletion. To determine the bases of disease onset, organ specificity and severity of TK2 deficiency, we have carefully characterized Tk2 H126N knockin mice (Tk2−/−). Although normal until postnatal day 8, Tk2−/− mice rapidly develop fatal encephalomyopathy between postnatal days 10 and 13. We have observed that wild-type Tk2 activity is constant in the second week of life, while Tk1 activity decreases significantly between postnatal days 8 and 13. The down-regulation of Tk1 activity unmasks Tk2 deficiency in Tk2−/− mice and correlates with the onset of mtDNA depletion in the brain and the heart. Resistance to pathology in Tk2 mutant organs depends on compensatory mechanisms to the reduced mtDNA level. Our analyses at postnatal day 13 have revealed that Tk2−/− heart significantly increases mitochondrial transcript levels relative to the mtDNA content. This transcriptional compensation allows the heart to maintain normal levels of mtDNA-encoded proteins. The up-regulation in mitochondrial transcripts is not due to increased expression of the master mitochondrial biogenesis regulators peroxisome proliferator-activated receptor-gamma coactivator 1 alpha and nuclear respiratory factors 1 and 2, or to enhanced expression of the mitochondrial transcription factors A, B1 or B2. Instead, Tk2−/− heart compensates for mtDNA depletion by down-regulating the expression of the mitochondrial transcriptional terminator transcription factor 3 (MTERF3). Understanding the molecular mechanisms that allow Tk2 mutant organs to be spared may help design therapies for Tk2 deficiency. PMID:20940150

  1. Sulforaphane rescues amyloid-β peptide-mediated decrease in MerTK expression through its anti-inflammatory effect in human THP-1 macrophages.

    PubMed

    Jhang, Kyoung A; Park, Jin-Sun; Kim, Hee-Sun; Chong, Young Hae

    2018-03-12

    Mer tyrosine kinase (MerTK) activity necessary for amyloid-stimulated phagocytosis strongly implicates that MerTK dysregulation might contribute to chronic inflammation implicated in Alzheimer's disease (AD) pathology. However, the precise mechanism involved in the regulation of MerTK expression by amyloid-β (Aβ) in proinflammatory environment has not yet been ascertained. The objective of this study was to determine the underlying mechanism involved in Aβ-mediated decrease in MerTK expression through Aβ-mediated regulation of MerTK expression and its modulation by sulforaphane in human THP-1 macrophages challenged with Aβ1-42. We used protein preparation, Ca 2+ influx fluorescence imaging, nuclear fractionation, Western blotting techniques, and small interfering RNA (siRNA) knockdown to perform our study. Aβ1-42 elicited a marked decrease in MerTK expression along with increased intracellular Ca 2+ level and induction of proinflammatory cytokines such as IL-1β and TNF-α. Ionomycin A and thapsigargin also increased intracellular Ca 2+ levels and production of IL-1β and TNF-α, mimicking the effect of Aβ1-42. In contrast, the Aβ1-42-evoked responses were attenuated by depletion of Ca 2+ with ethylene glycol tetraacetic acid. Furthermore, recombinant IL-1β or TNF-α elicited a decrease in MerTK expression. However, immunodepletion of IL-1β or TNF-α with neutralizing antibodies significantly inhibited Aβ1-42-mediated downregulation of MerTK expression. Notably, sulforaphane treatment potently inhibited Aβ1-42-induced intracellular Ca 2+ level and rescued the decrease in MerTK expression by blocking nuclear factor-κB (NF-κB) nuclear translocation, thereby decreasing IL-1β and TNF-α production upon Aβ1-42 stimulation. Such adverse effects of sulforaphane were replicated by BAY 11-7082, a NF-κB inhibitor. Moreover, sulforaphane's anti-inflammatory effects on Aβ1-42-induced production of IL-1β and TNF-α were significantly diminished by si

  2. Responses of the L51781Y tk/sup +//tk/sup -/ mouse lymphoma cell forward mutation assay: III. 72 coded chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGregor, D.B.; Brown, A.; Cattanach, P.

    Seventy-two chemicals were tested for their mutagenic potential in the L51781Y tk/sup +///sup -/ mouse lymphoma cell forward mutation assay, using procedures based upon those described previously. Cultures were exposed to the chemicals for 4 hr, then cultured for 2 days before planting in soft agar with or without trifluorothymidine (TFT), 3 ..mu..g/ml. The chemicals were tested at least twice. Significant responses were obtained with allyl isothiocyanate, p-benzoquinone dioxime, benzyl acetate, 2-biphenylamine HCl, bis(2-chloro-1-methylethyl)ether, cadmium chloride, chlordane, chlorobenzene, chlorobenzilate, 2-chloroethanol, chlorothalonil, cytarabine x HCl, p,p'-DDE, diazinon, 2,6-dichloro-p-phenylenediamine, N,N-diethylthiourea, diglycidylresorcinol ether, 2,4-dimethoxy aniline x HCl, disperse yellow 3, endosulfan, 1,2-epoxyhexadecane, ethylmore » acrylate, ethyl benzene, ethylene thiourea, F D and C yellow Number 6, furan, heptachlor, isophorone, mercuric chloride, 4,4'-methylenedianiline x 2 HCl, methyl viologen, nickel sulfate x 6H/sub 2/O, 4,4'-oxydianiline, pentachloroethane, piperonyl butoxide, propyl gallate, quinoline, rotenone, 2,4,5,6-tetrachloro-4-nitro-anisole, 1,1,1,2-tetrachloroethane, trichlorfon, 2,4,6-trichlorophenol, 2,4,5-trimethoxybenzaldehyde, 1,1,3-trimethyl-2-thiourea, 1-vinyl-3-cyclopetene dioxide, vinyl toluene, and ziram. The assay was incapable of providing a clear indication of whether some chemicals were mutagens; these benzyl alcohol, 1,4-dichlorobenzene, phenol, succinic acid-2,2-dimethyl hydrazide, and toluene.« less

  3. Imaging grafted cells with [18F]FHBG using an optimized HSV1-TK mammalian expression vector in a brain injury rodent model.

    PubMed

    Salabert, Anne-Sophie; Vaysse, Laurence; Beaurain, Marie; Alonso, Mathieu; Arribarat, Germain; Lotterie, Jean-Albert; Loubinoux, Isabelle; Tafani, Mathieu; Payoux, Pierre

    2017-01-01

    Cell transplantation is an innovative therapeutic approach after brain injury to compensate for tissue damage. To have real-time longitudinal monitoring of intracerebrally grafted cells, we explored the feasibility of a molecular imaging approach using thymidine kinase HSV1-TK gene encoding and [18F]FHBG as a reporter probe to image enzyme expression. A stable neuronal cell line expressing HSV1-TK was developed with an optimised mammalian expression vector to ensure long-term transgene expression. After [18F]FHBG incubation under defined parameters, calibration ranges from 1 X 104 to 3 X 106 Neuro2A-TK cells were analysed by gamma counter or by PET-camera. In parallel, grafting with different quantities of [18F]FHBG prelabelled Neuro2A-TK cells was carried out in a rat brain injury model induced by stereotaxic injection of malonate toxin. Image acquisition of the rats was then performed with PET/CT camera to study the [18F]FHBG signal of transplanted cells in vivo. Under the optimised incubation conditions, [18F]FHBG cell uptake rate was around 2.52%. In-vitro calibration range analysis shows a clear linear correlation between the number of cells and the signal intensity. The PET signal emitted into rat brain correlated well with the number of cells injected and the number of surviving grafted cells was recorded via the in-vitro calibration range. PET/CT acquisitions also allowed validation of the stereotaxic injection procedure. Technique sensitivity was evaluated under 5 X 104 grafted cells in vivo. No [18F]FHBG or [18F]metabolite release was observed showing a stable cell uptake even 2 h post-graft. The development of this kind of approach will allow grafting to be controlled and ensure longitudinal follow-up of cell viability and biodistribution after intracerebral injection.

  4. [Killing effects of PWZL plasmid-mediated double suicide gene on human lens epithelium cells].

    PubMed

    Yan, Xiao-ran; Wu, Hong; Yu, Hai-tao; Wang, Xiu; Zhang, Yu

    2008-04-01

    To investigate the killing efficiency of PWZL plasmid-mediated herpes simplex virus-thymidine kinase (TK) and E. coli cytosine deaminase (CD) on human lens epithelium cells followed by the treatment of prodrugs. PWZL plasmid was used as a vehicle, to transduce double suicide genes into the human lens epithelium in vitro, then the cells were treated with fluorocytosine (5-FC) and/or ganciclovir (GCV) at different concentrations. The cell growth of the lens epithelium cells was observed by light microscope. MTT analysis was used to estimate the cell survival rate and the bystander effect was analyzed simultaneously. The significance of difference between each group was treated by statistical tests. The CD and TK gene could be joined into PWZL plasmid successfully, and did not have any special effect on normal cells. There was no significant difference in cell viability between CD-TK transfected cells and control cells. Cell viability in cells treated with prodrugs was decreased in a time-dependent manner. At the end of the experiment, cell viability was lowest in GCV 10 mg/L +5-FC 60 mg/L group, GCV 10 mg/L + 5-FC 100 mg/L group and GCV 100 mg/L + 5-FC 100 mg/L group. There were no significant differences between these three groups (X2 = 1.25 , P > 0.01). Analysis of bystander effect indicated that the cell viability in GCV 100 mg/L + 5-FC 100 mg/L group and GCV 10 mg/L +5-FC 60 mg/L group was significantly lower than that in the controls (t = 10.26, 13.16; P < 0.01). PWZL plasmid can transfect the CD and TK genes into lens epithelium cells successfully and efficiently. CD and TK genes can be expressed steadily. Transfection of double suicide gene reduces the dosage of prodrugs required for killing cells. The combination of 5-FC with GCV shows the greatest killing effect and also has the bystander effect.

  5. Dioscin augments HSV-tk-mediated suicide gene therapy for melanoma by promoting connexin-based intercellular communication

    PubMed Central

    Li, Bin; Wu, Yingya; Liu, Xijuan; Tan, Yuhui; Du, Biaoyan

    2017-01-01

    Suicide gene therapy is a promising strategy against melanoma. However, the low efficiency of the gene transfer technique can limit its application. Our preliminary data showed that dioscin, a glucoside saponin, could upregulate the expression of connexins Cx26 and Cx43, major components of gap junctions, in melanoma cells. We hypothesized that dioscin may increase the bystander effect of herpes simplex virus thymidine kinase/ganciclovir (HSV-tk/GCV) through increasing the formation of gap junctions. Further analysis showed that dioscin indeed could increase the gap junctional intercellular communication in B16 melanoma cells, resulting in more efficient GCV-induced bystander killing in B16tk cells. By contrast, overexpression of dominant negative Cx43 impaired the cell-cell communication of B16 cells and subsequently weakened the bystander effect of HSV-tk/GCV gene therapy. In vivo, combination treatment with dioscin and GCV of tumor-bearing mice with 30% positive B16tk cells and 70% wild-type B16 cells caused a significant reduction in tumor volume and weight compared to treatment with GCV or dioscin alone. Taken together, these results demonstrated that dioscin could augment the bystander effect of the HSV-tk/GCV system through increasing connexin-mediated gap junction coupling. PMID:27903977

  6. Bromovinyl-deoxyuridine: A selective substrate for mitochondrial thymidine kinase in cell extracts.

    PubMed

    Franzolin, Elisa; Rampazzo, Chiara; Pérez-Pérez, María-Jesús; Hernández, Ana-Isabel; Balzarini, Jan; Bianchi, Vera

    2006-05-26

    Cellular models of mitochondrial thymidine kinase (TK2) deficiency require a reliable method to measure TK2 activity in whole cell extracts containing two interfering deoxyribonucleoside kinases, thymidine kinase 1 (TK1) and deoxycytidine kinase. We tested the value of the thymidine analog (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU) as a TK2-specific substrate. With extracts of OSTTK1- cells containing TK2 as the only thymidine kinase and a highly specific TK2 inhibitor we established conditions to detect the low TK2 activity commonly present in cells. With extracts of TK1-proficient osteosarcoma cells and normal human fibroblasts we showed that BVDU, but not 1-(beta-d-arabinofuranosyl)thymine (Ara-T), discriminates TK2 activity even in the presence of 100-fold excess TK1. A comparison with current procedures based on TK2 inhibition demonstrated the better performance of the new TK2 assay. When cultured human fibroblasts passed from proliferation to quiescence TK2 activity increased by 3-fold, stressing the importance of TK2 function in the absence of TK1.

  7. The receptor tyrosine kinase MerTK activates phospholipase C γ2 during recognition of apoptotic thymocytes by murine macrophages

    PubMed Central

    Todt, Jill C.; Hu, Bin; Curtis, Jeffrey L.

    2008-01-01

    Apoptotic leukocytes must be cleared efficiently by macrophages (Mø). Apoptotic cell phagocytosis by Mø requires the receptor tyrosine kinase (RTK) MerTK (also known as c-Mer and Tyro12), the phosphatidylserine receptor (PS-R), and the classical protein kinase C (PKC) isoform βII, which translocates to Mø membrane and cytoskeletal fractions in a PS-R-dependent fashion. How these molecules cooperate to induce phagocytosis is unknown. Because the phosphatidylinositol-specific phospholipase (PI-PLC) PLC γ2 is downstream of RTKs in some cell types and can activate classical PKCs, we hypothesized that MerTK signals via PLC γ2. To test this hypothesis, we examined the interaction of MerTK and PLC γ2 in resident murine PMø and in the murine Mø cell line J774A.1 (J774) following exposure to apoptotic thymocytes. We found that, as with PMø, J774 phagocytosis of apoptotic thymocytes was inhibited by antibody against MerTK. Western blotting and immunoprecipitation showed that exposure to apoptotic cells produced three time-dependent changes in PMø and J774: (1) tyrosine phosphorylation of MerTK; (2) association of PLC γ2 with MerTK; and (3) tyrosine phosphorylation of PLC γ2. Phosphorylation of PLC γ2 and its association with MerTK was also induced by cross-linking MerTK using antibody. A PI-PLC appears to be required for phagocytosis of apoptotic cells because the PI-PLC inhibitor Et-18-OCH3 and the PLC inhibitor U73122, but not the inactive control U73343, blocked phagocytosis without impairing adhesion. On apoptotic cell adhesion to Mø, MerTK signals at least in part via PLC γ2. PMID:14704368

  8. Genotoxic effects of high-energy iron particles in human lymphoblasts differing in radiation sensitivity

    NASA Technical Reports Server (NTRS)

    Evans, H. H.; Horng, M. F.; Evans, T. E.; Jordan, R.; Schwartz, J. L.

    2001-01-01

    The effects of (56)Fe particles and (137)Cs gamma radiation were compared in TK6 and WTK1 human lymphoblasts, two related cell lines which differ in TP53 status and in the ability to rejoin DNA double-strand breaks. Both cell lines were more sensitive to the cytotoxic and clastogenic effects of (56)Fe particles than to those of gamma rays. However, the mutagenicity of (56)Fe particles and gamma rays at the TK locus was the same per unit dose and was higher for gamma rays than for (56)Fe particles at isotoxic doses. The respective RBEs for TK6 and WTK1 cells were 1.5 and 1.9 for cytotoxicity and 2.5 and 1.9 for clastogenicity, but only 1 for mutagenicity. The results indicate that complex lesions induced by (56)Fe particles are repaired less efficiently than gamma-ray-induced lesions, leading to fewer colony-forming cells, a slightly higher proportion of aberrant cells at the first division, and a lower frequency of viable mutants at isotoxic doses. WTK1 cells (mutant TP53) were more resistant to the cytotoxic effects of both gamma rays and (56)Fe particles, but showed greater cytogenetic and mutagenic damage than TK6 cells (TP53(+)). A deficiency in the number of damaged TK6 cells (a) reaching the first mitosis after exposure and (b) forming viable mutants can explain these results.

  9. Frozen human cells can record radiation damage accumulated during space flight: mutation induction and radioadaptation.

    PubMed

    Yatagai, Fumio; Honma, Masamitsu; Takahashi, Akihisa; Omori, Katsunori; Suzuki, Hiromi; Shimazu, Toru; Seki, Masaya; Hashizume, Toko; Ukai, Akiko; Sugasawa, Kaoru; Abe, Tomoko; Dohmae, Naoshi; Enomoto, Shuichi; Ohnishi, Takeo; Gordon, Alasdair; Ishioka, Noriaki

    2011-03-01

    To estimate the space-radiation effects separately from other space-environmental effects such as microgravity, frozen human lymphoblastoid TK6 cells were sent to the "Kibo" module of the International Space Station (ISS), preserved under frozen condition during the mission and finally recovered to Earth (after a total of 134 days flight, 72 mSv). Biological assays were performed on the cells recovered to Earth. We observed a tendency of increase (2.3-fold) in thymidine kinase deficient (TK(-)) mutations over the ground control. Loss of heterozygosity (LOH) analysis on the mutants also demonstrated a tendency of increase in proportion of the large deletion (beyond the TK locus) events, 6/41 in the in-flight samples and 1/17 in the ground control. Furthermore, in-flight samples exhibited 48% of the ground-control level in TK(-) mutation frequency upon exposure to a subsequent 2 Gy dose of X-rays, suggesting a tendency of radioadaptation when compared with the ground-control samples. The tendency of radioadaptation was also supported by the post-flight assays on DNA double-strand break repair: a 1.8- and 1.7-fold higher efficiency of in-flight samples compared to ground control via non-homologous end-joining and homologous recombination, respectively. These observations suggest that this system can be used as a biodosimeter, because DNA damage generated by space radiation is considered to be accumulated in the cells preserved frozen during the mission, Furthermore, this system is also suggested to be applicable for evaluating various cellular responses to low-dose space radiation, providing a better understanding of biological space-radiation effects as well as estimation of health influences of future space explores. © Springer-Verlag 2010

  10. STAT3/NF-κB-Regulated Lentiviral TK/GCV Suicide Gene Therapy for Cisplatin-Resistant Triple-Negative Breast Cancer

    PubMed Central

    Kuo, Wei-Ying; Hwu, Luen; Wu, Chun-Yi; Lee, Jhih-Shian; Chang, Chi-Wei; Liu, Ren-Shyan

    2017-01-01

    Triple-negative breast cancer (TNBC) represents approximately 20% of all breast cancers and appears resistance to conventional cytotoxic chemotherapy, demonstrating a particularly poor prognosis and a significantly worse clinical outcome than other types of cancer. Suicide gene therapy has been used for the in vivo treatment of various solid tumors in recent clinical trials. In tumor microenvironment, STAT3/NF-κB pathways are constitutively activated in stromal cells as well as in cancer stem cells (CSCs). In this study, we have cloned a novel STAT3/NF-κB-based reporter system to drive the expression of herpes simplex virus thymidine kinase (HSV-TK) against breast cancer. Lentiviral vector expressing HSV-TK under the regulation of STAT3/NF-κB fused response element was developed. In this setting, we exploited the constitutive STAT3/NF-κB activation in tumors to achieve higher transgene expression than that driven by a constitutively active CMV promotor in vivo. An orthotropic MDA-MB-231 triple negative breast cancer mouse model was used for evaluating the feasibility of STAT3-NF-κB-TK/GCV suicide gene therapy system. The basal promoter activity of Lenti-CMV-TK and Lenti-STAT3-NF-κB-TK in MDA-MB-231 cells was compared by 3H-FEAU uptake assay. The Lenti-CMV-TK showed ~5 fold higher 3H-FEAU uptake then Lenti -STAT3-NF-κB-TK. In clonogenic assay, cells expressing Lenti-CMV-TK were 2-fold more sensitive to GCV than Lenti-STAT3-NF-κB-TK transduced cells. In vitro effect of STAT3-NF-κB-induced transgene expression was determined by 10ng/mL TNF-α induction and confirmed by western blot analysis and DsRedm fluorescent microscopy. In vivo evaluation of therapeutic effect by bioluminescence and [18F]FHBG microPET imaging indicated that Lenti-STAT3-NF-κB-TK showed more tumor growth retardation than Lenti-CMV-TK when GCV (20 mg/kg) was administered. The invasiveness and expression of cancer stem cell markers were both decreased after STAT3/NF-κB-regulated HSV-TK

  11. In Vitro Antitumor Effects of AHR Ligands Aminoflavone (AFP 464) and Benzothiazole (5F 203) in Human Renal Carcinoma Cells.

    PubMed

    Luzzani, Gabriela A; Callero, Mariana A; Kuruppu, Anchala I; Trapani, Valentina; Flumian, Carolina; Todaro, Laura; Bradshaw, Tracey D; Loaiza Perez, Andrea I

    2017-12-01

    We investigated activity and mechanism of action of two AhR ligand antitumor agents, AFP 464 and 5F 203 on human renal cancer cells, specifically examining their effects on cell cycle progression, apoptosis, and migration. TK-10, SN12C, Caki-1, and ACHN human renal cancer cell lines were treated with AFP 464 and 5F 203. We evaluated cytotoxicity by MTS assays, cell cycle arrest, and apoptosis by flow cytometry and corroborated a mechanism of action involving AhR signal transduction activation. Changes in migration properties by wound healing assays were investigated: 5F 203-sensitive cells show decreased migration after treatment, therefore, we measured c-Met phosphorylation by Western blot in these cells. A 5F 203 induced a decrease in cell viability which was more marked than AFP 464. This cytotoxicity was reduced after treatment with the AhR inhibitor α-NF for both compounds indicating AhR signaling activation plays a role in the mechanism of action. A 5F 203 is sequestered by TK-10 cells and induces CYP1A1 expression; 5F 203 potently inhibited migration of TK-10, Caki-1, and SN12C cells, and inhibited c-Met receptor phosphorylation in TK-10 cells. AhR ligand antitumor agents AFP 464 and 5F 203 represent potential new candidates for the treatment of renal cancer. A 5F 203 only inhibited migration of sensitive cells and c-Met receptor phosphorylation in TK-10 cells. c-Met receptor signal transduction is important in migration and metastasis. Therefore, we consider that 5F 203 offers potential for the treatment of metastatic renal carcinoma. J. Cell. Biochem. 118: 4526-4535, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. DPYD, TYMS, TYMP, TK1, and TK2 Genetic Expressions as Response Markers in Locally Advanced Rectal Cancer Patients Treated with Fluoropyrimidine-Based Chemoradiotherapy

    PubMed Central

    Wu, Chan-Han; Huang, Chun-Ming; Chung, Fu-Yen; Huang, Ching-Wen; Tsai, Hsiang-Lin; Chen, Chin-Fan; Wang, Jaw-Yuan

    2013-01-01

    This study is to investigate multiple chemotherapeutic agent- and radiation-related genetic biomarkers in locally advanced rectal cancer (LARC) patients following fluoropyrimidine-based concurrent chemoradiotherapy (CCRT) for response prediction. We initially selected 6 fluoropyrimidine metabolism-related genes (DPYD, ORPT, TYMS, TYMP, TK1, and TK2) and 3 radiotherapy response-related genes (GLUT1, HIF-1 α, and HIF-2 α) as targets for gene expression identification in 60 LARC cancer specimens. Subsequently, a high-sensitivity weighted enzymatic chip array was designed and constructed to predict responses following CCRT. After CCRT, 39 of 60 (65%) LARC patients were classified as responders (pathological tumor regression grade 2 ~ 4). Using a panel of multiple genetic biomarkers (chip), including DPYD, TYMS, TYMP, TK1, and TK2, at a cutoff value for 3 positive genes, a sensitivity of 89.7% and a specificity of 81% were obtained (AUC: 0.915; 95% CI: 0.840–0.991). Negative chip results were significantly correlated to poor CCRT responses (TRG 0-1) (P = 0.014, hazard ratio: 22.704, 95% CI: 3.055–235.448 in multivariate analysis). Disease-free survival analysis showed significantly better survival rate in patients with positive chip results (P = 0.0001). We suggest that a chip including DPYD, TYMS, TYMP, TK1, and TK2 genes is a potential tool to predict response in LARC following fluoropyrimidine-based CCRT. PMID:24455740

  13. Expression of phosphodiesterase 6 (PDE6) in human breast cancer cells.

    PubMed

    Dong, Hongli; Claffey, Kevin P; Brocke, Stefan; Epstein, Paul M

    2013-01-01

    Considerable epidemiological evidence demonstrates a positive association between artificial light at night (LAN) levels and incidence rates of breast cancer, suggesting that exposure to LAN is a risk factor for breast cancer. There is a 30-50% higher risk of breast cancer in the highest LAN exposed countries compared to the lowest LAN countries, and studies showing higher incidence of breast cancer among shift workers exposed to more LAN have led the International Agency for Research on Cancer to classify shift work as a probable human carcinogen. Nevertheless, the means by which light can affect breast cancer is still unknown. In this study we examined established human breast cancer cell lines and patients' primary breast cancer tissues for expression of genetic components of phosphodiesterase 6 (PDE6), a cGMP-specific PDE involved in transduction of the light signal, and previously thought to be selectively expressed in photoreceptors. By microarray analysis we find highly significant expression of mRNA for the PDE6B, PDE6C, and PDE6D genes in both the cell lines and patients' tissues, minimal expression of PDE6A and PDE6G and no expression of PDE6H. Using antibody specific for PDE6β, we find expression of PDE6B protein in a wide range of patients' tissues by immunohistochemistry, and in MCF-7 breast cancer cells by immunofluorescence and Western blot analysis. Considerable expression of key circadian genes, PERIOD 2, CLOCK, TIMELESS, CRYPTOCHROME 1, and CRYPTOCHROME 2 was also seen in all breast cancer cell lines and all patients' breast cancer tissues. These studies indicate that genes for PDE6 and control of circadian rhythm are expressed in human breast cancer cells and tissues and may play a role in transducing the effects of light on breast cancer.

  14. Expression of a suicidal gene under control of the human secreted protein acidic and rich in cysteine (SPARC) promoter in tumor or stromal cells led to the inhibition of tumor cell growth

    PubMed Central

    Lopez, María V.; Blanco, Patricia; Viale, Diego L.; Cafferata, Eduardo G.; Carbone, Cecilia; Gould, David; Chernajovsky, Yuti; Podhajcer, Osvaldo L.

    2009-01-01

    The successful use of transcriptional targeting for cancer therapy depends on the activity of a given promoter inside the malignant cell. Because solid human tumors evolve as a “cross-talk” between the different cell types within the tumor, we hypothesized that targeting the entire tumor mass might have better therapeutic effect. Secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein overexpressed in different human cancers malignant melanomas both in the malignant cells compartment as in the stromal one (fibroblasts and endothelial cells). We have shown that expression of the herpes simplex virus-thymidine kinase (TK) gene driven by the SPARC promoter in combination with ganciclovir inhibited human melanoma cell growth in monolayer as well as in multicellular spheroids. This inhibitory effect was observed both in homotypic spheroids composed of melanoma cells alone as well as in spheroids made of melanoma cells and stromal cells. Expression of the TK gene was also efficient to inhibit the in vivo tumor growth of established melanomas when TK was expressed either by the malignant cells themselves or by coadministered endothelial cells. Our data suggest that the use of therapeutic genes driven by SPARC promoter could be a valuable strategy for cancer therapy aiming to target all the cellular components of the tumor mass. PMID:17041094

  15. Fialuridine induces acute liver failure in chimeric TK-NOG mice: a model for detecting hepatic drug toxicity prior to human testing.

    PubMed

    Xu, Dan; Nishimura, Toshi; Nishimura, Sachiko; Zhang, Haili; Zheng, Ming; Guo, Ying-Ying; Masek, Marylin; Michie, Sara A; Glenn, Jeffrey; Peltz, Gary

    2014-04-01

    Seven of 15 clinical trial participants treated with a nucleoside analogue (fialuridine [FIAU]) developed acute liver failure. Five treated participants died, and two required a liver transplant. Preclinical toxicology studies in mice, rats, dogs, and primates did not provide any indication that FIAU would be hepatotoxic in humans. Therefore, we investigated whether FIAU-induced liver toxicity could be detected in chimeric TK-NOG mice with humanized livers. Control and chimeric TK-NOG mice with humanized livers were treated orally with FIAU 400, 100, 25, or 2.5 mg/kg/d. The response to drug treatment was evaluated by measuring plasma lactate and liver enzymes, by assessing liver histology, and by electron microscopy. After treatment with FIAU 400 mg/kg/d for 4 d, chimeric mice developed clinical and serologic evidence of liver failure and lactic acidosis. Analysis of liver tissue revealed steatosis in regions with human, but not mouse, hepatocytes. Electron micrographs revealed lipid and mitochondrial abnormalities in the human hepatocytes in FIAU-treated chimeric mice. Dose-dependent liver toxicity was detected in chimeric mice treated with FIAU 100, 25, or 2.5 mg/kg/d for 14 d. Liver toxicity did not develop in control mice that were treated with the same FIAU doses for 14 d. In contrast, treatment with another nucleotide analogue (sofosbuvir 440 or 44 mg/kg/d po) for 14 d, which did not cause liver toxicity in human trial participants, did not cause liver toxicity in mice with humanized livers. FIAU-induced liver toxicity could be readily detected using chimeric TK-NOG mice with humanized livers, even when the mice were treated with a FIAU dose that was only 10-fold above the dose used in human participants. The clinical features, laboratory abnormalities, liver histology, and ultra-structural changes observed in FIAU-treated chimeric mice mirrored those of FIAU-treated human participants. The use of chimeric mice in preclinical toxicology studies could improve

  16. A combinatorial approach of inclusion complexation and dendrimer synthesization for effective targeting EGFR-TK.

    PubMed

    Shende, Pravin; Patil, Sampada; Gaud, R S

    2017-07-01

    The aim of the present study was to use a combinatorial approach of inclusion complexation and dendrimer synthesization of gefitinib using solvent-free technique for targeting EGFR-TK to treat Non-Small-Cell Lung Cancer (NSCLC). The inclusion complex of gefitinib with β-cyclodextrin was prepared by trituration method. This complex encapsulated G4 PAMAM dendrimers were synthesized by Michael addition and amidation reactions using green chemistry and then PEGylated by conjugation reaction. FTIR and DSC confirmed the formation of inclusion complex of gefitinib and β-cyclodextrin and PEGylation of G4 PAMAM dendrimers. Gefitinib showed higher solubility, encapsulation efficiency and controlled release profile from PEGylated dendrimers compared to inclusion complex. The PEGylated dendrimers of inclusion complex of gefitinib were found to reduce hemolytic toxicity and lesser GI 50 value on Human lung cancer cell line A-549 by effective targeting EGFR-TK. A combinatorial approach of inclusion complexation and dendrimer synthesization is one of the alternative advanced approaches to treat NSCLC. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Targeted Transgenic Overexpression of Mitochondrial Thymidine Kinase (TK2) Alters Mitochondrial DNA (mtDNA) and Mitochondrial Polypeptide Abundance

    PubMed Central

    Hosseini, Seyed H.; Kohler, James J.; Haase, Chad P.; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-01-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-γ. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity. PMID:17322372

  18. Transcriptomic profiling of TK2 deficient human skeletal muscle suggests a role for the p53 signalling pathway and identifies growth and differentiation factor-15 as a potential novel biomarker for mitochondrial myopathies

    PubMed Central

    2014-01-01

    Background Mutations in the gene encoding thymidine kinase 2 (TK2) result in the myopathic form of mitochondrial DNA depletion syndrome which is a mitochondrial encephalomyopathy presenting in children. In order to unveil some of the mechanisms involved in this pathology and to identify potential biomarkers and therapeutic targets we have investigated the gene expression profile of human skeletal muscle deficient for TK2 using cDNA microarrays. Results We have analysed the whole transcriptome of skeletal muscle from patients with TK2 mutations and compared it to normal muscle and to muscle from patients with other mitochondrial myopathies. We have identified a set of over 700 genes which are differentially expressed in TK2 deficient muscle. Bioinformatics analysis reveals important changes in muscle metabolism, in particular, in glucose and glycogen utilisation, and activation of the starvation response which affects aminoacid and lipid metabolism. We have identified those transcriptional regulators which are likely to be responsible for the observed changes in gene expression. Conclusion Our data point towards the tumor suppressor p53 as the regulator at the centre of a network of genes which are responsible for a coordinated response to TK2 mutations which involves inflammation, activation of muscle cell death by apoptosis and induction of growth and differentiation factor 15 (GDF-15) in muscle and serum. We propose that GDF-15 may represent a potential novel biomarker for mitochondrial dysfunction although further studies are required. PMID:24484525

  19. The pyrimidine nucleotide carrier PNC1 and mitochondrial trafficking of thymidine phosphates in cultured human cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franzolin, Elisa; Miazzi, Cristina; Frangini, Miriam

    2012-10-15

    In cycling cells cytosolic de novo synthesis of deoxynucleotides is the main source of precursors for mitochondrial (mt) DNA synthesis. The transfer of deoxynucleotides across the inner mt membrane requires protein carriers. PNC1, a SLC25 family member, exchanges pyrimidine nucleoside triphosphates in liposomes and its downregulation decreases mtUTP concentration in cultured cells. By an isotope-flow protocol we confirmed transport of uridine nucleotides by PNC1 in intact cultured cells and investigated PNC1 involvement in the mt trafficking of thymidine phosphates. Key features of our approach were the manipulation of PNC1 expression by RNA interference or inducible overexpression, the employment of cellsmore » proficient or deficient for cytosolic thymidine kinase (TK1) to distinguish the direction of flow of thymidine nucleotides across the mt membrane during short pulses with [{sup 3}H]-thymidine, the determination of mtdTTP specific radioactivity to quantitate the rate of mtdTTP export to the cytoplasm. Downregulation of PNC1 in TK1{sup -} cells increased labeled dTTP in mitochondria due to a reduced rate of export. Overexpression of PNC1 in TK1{sup +} cells increased mtdTTP pool size and radioactivity, suggesting an involvement in the import of thymidine phosphates. Thus PNC1 is a component of the network regulating the mtdTTP pool in human cells. -- Highlights: Black-Right-Pointing-Pointer Thymidine phosphates exchange between mitochondria and cytosol in mammalian cells. Black-Right-Pointing-Pointer siRNA-downregulation of PNC1 delays mitochondrial dTTP export in TK1{sup -} cells. Black-Right-Pointing-Pointer PNC1 overexpression accumulates dTTP in mitochondria of TK1{sup +} cells. Black-Right-Pointing-Pointer PNC1 exchanges thymidine nucleotides across the mitochondrial inner membrane. Black-Right-Pointing-Pointer PNC1 participates in the regulation of the mtdTTP pool supporting mtDNA synthesis.« less

  20. Tissue kallikrein-modified human endothelial progenitor cell implantation improves cardiac function via enhanced activation of akt and increased angiogenesis.

    PubMed

    Yao, Yuyu; Sheng, Zulong; Li, YeFei; Fu, Cong; Ma, Genshan; Liu, Naifeng; Chao, Julie; Chao, Lee

    2013-05-01

    Endothelial progenitor cells (EPCs) have been shown to enhance angiogenesis not only by incorporating into the vasculature but also by secreting cytokines, thereby serving as an ideal vehicle for gene transfer. As tissue kallikrein (TK) has pleiotropic effects in inhibiting apoptosis and oxidative stress, and promoting angiogenesis, we evaluated the salutary potential of kallikrein-modified human EPCs (hEPCs; Ad.hTK-hEPCs) after acute myocardial infarction (MI). We genetically modified hEPCs with a TK gene and evaluated cell survival, engraftment, revascularization, and functional improvement in a nude mouse left anterior descending ligation model. hEPCs were manipulated to overexpress the TK gene. In vitro, the antiapoptotic and paracrine effects were assessed under oxidative stress. TK protects hEPCs from oxidative stress-induced apoptosis via inhibition of activation of caspase-3 and -9, induction of Akt phosphorylation, and secretion of vascular endothelial growth factor. In vivo, the Ad.hTK-hEPCs were transplanted after MI via intracardiac injection. The surviving cells were tracked after transplantation using near-infrared optical imaging. Left ventricular (LV) function was evaluated by transthoracic echocardiography. Capillary density was quantified using immunohistochemical staining. Engrafted Ad.hTK-hEPCs exhibited advanced protection against ischemia by increasing LV ejection fraction. Compared with Ad.Null-hEPCs, transplantation with Ad.hTK-hEPCs significantly decreased cardiomyocyte apoptosis in association with increased retention of transplanted EPCs in the myocardium. Capillary density and arteriolar density in the infarct border zone was significantly higher in Ad.hTK-hEPC-transplanted mice than in Ad.Null-hEPC-treated mice. Transplanted hEPCs were clearly incorporated into CD31(+) capillaries. These results indicate that implantation of kallikrein-modified EPCs in the heart provides advanced benefits in protection against ischemia-induced MI by

  1. Introduction of Exogenous HSV-TK Suicide Gene Increases Safety of Keratinocyte-Derived Induced Pluripotent Stem Cells by Providing Genetic "Emergency Exit" Switch.

    PubMed

    Sułkowski, Maciej; Konieczny, Paweł; Chlebanowska, Paula; Majka, Marcin

    2018-01-09

    Since their invention in 2006, induced Pluripotent Stem (iPS) cells remain a great promise for regenerative medicine circumventing the ethical issues linked to Embryonic Stem (ES) cell research. iPS cells can be generated in a patient-specific manner as an unlimited source of various cell types for in vitro drug screening, developmental biology studies and regenerative use. Having the capacity of differentiating into the cells of all three primary germ layers, iPS cells have high potential to form teratoma tumors. This remains their main disadvantage and hazard which, until resolved, prevents utilization of iPS cells in clinic. Here, we present an approach for increasing iPS cells safety by introducing genetic modification-exogenous suicide gene Herpes Simplex Virus Thymidine Kinase ( HSV-TK ). Its expression results in specific vulnerability of genetically modified cells to prodrug-ganciclovir (GCV). We show that HSV-TK expressing cells can be eradicated both in vitro and in vivo with high specificity and efficiency with low doses of GCV. Described strategy increases iPS cells safety for future clinical applications by generating "emergency exit" switch allowing eradication of transplanted cells in case of their malfunction.

  2. Induction of mutations by bismuth-212 alpha particles at two genetic loci in human B-lymphoblasts.

    PubMed

    Metting, N F; Palayoor, S T; Macklis, R M; Atcher, R W; Liber, H L; Little, J B

    1992-12-01

    The human lymphoblast cell line TK6 was exposed to the alpha-particle-emitting radon daughter 212Bi by adding DTPA-chelated 212Bi directly to the cell suspension. Cytotoxicity and mutagenicity at two genetic loci were measured, and the molecular nature of mutant clones was studied by Southern blot analysis. Induced mutant fractions were 2.5 x 10(-5)/Gy at the hprt locus and 3.75 x 10(-5)/Gy at the tk locus. Molecular analysis of HPRT- mutant DNAs showed a high frequency (69%) of clones with partial or full deletions of the hprt gene among radiation-induced mutants compared with spontaneous mutants (31%). Chi-squared analyses of mutational spectra show a significant difference (P < or = 0.005) between spontaneous mutants and alpha-particle-induced mutants. Comparison with published studies of accelerator-produced heavy-ion exposures of TK6 cells indicates that the induction of mutations at the hprt locus, and perhaps a subset of mutations at the tk locus, is a simple linear function of particle fluence regardless of the ion species or its LET.

  3. CHROMOSOME 11 ABERRATIONS IN SMALL COLONY L5178Y TK-/-MUTANTS EARLY IN THEIR CLONAL HISTORY

    EPA Science Inventory

    The authors have developed a cytogenetic technique that allows observation of chromosome rearrangements associated with TK-/- mutagenesis of the L5178Y/TK+/-3.7.2C cell line early in mutant clonal history. For a series of mutagenic treatments they show that the major proportion (...

  4. Assessment of α-fetoprotein targeted HSV1-tk expression in hepatocellular carcinoma with in vivo imaging.

    PubMed

    Park, Ju Hui; Kim, Kwang Il; Lee, Kyo Chul; Lee, Yong Jin; Lee, Tae Sup; Chung, Wee Sup; Lim, Sang Moo; Kang, Joo Hyun

    2015-02-01

    Tumor-specific enhancer/promoter is applicable for targeting gene expression in tumors and helpful for tumor-targeting imaging and therapy. We aimed to acquire α-fetoprotein (AFP)-producing hepatocellular carcinoma (HCC) specific images using adenovirus containing HSV1-tk gene controlled by AFP enhancer/promoter and evaluate in vivo ganciclovir (GCV)-medicated therapeutic effects on AFP-targeted HSV1-tk expression with (18)F-FDG positron emission tomography (PET). Recombinant adenovirus expressing HSV1-tk under AFP enhancer/promoter was produced (AdAFP-TK) and the expression levels were evaluated by RT-PCR and (125)I-IVDU uptake. GCV-mediated HSV1-tk cytotoxicity was determined by MTT assay. After the mixture of AdAFP-fLuc and AdAFP-TK was administrated, bioluminescent images (BLIs) and (18)F-FHBG PET images were obtained in tumor-bearing mice. In vivo therapeutic effects of AdAFP-TK and GCV in the HuH-7 xenograft model were monitored by (18)F-FDG PET. When infected with AdAFP-TK, cell viability in HuH-7 was reduced, but those in HT-29 and SK-Hep-1 were not significantly decreased at any GCV concentration less than 100 μM. AFP-targeted fLuc and HSV1-tk expression were clearly visualized by BLI and (18)F-FHBG PET images in AFP-producing HCC, respectively. In vivo GCV-mediated tumor growth inhibition by AFP-targeted HSV1-tk expression was monitored by (18)F-FDG PET. Recombinant AdAFP-TK could be applied for AFP-targeted HCC gene therapy and imaging in AFP-producing HCC.

  5. SEQUENCE ANALYSIS OF MUTATIONS INDUCED BY N-ETHYL-N-NITROSOUREA IN THE TK AND HPRT GENES OF MOUSE LYMPHOMA CELLS.

    EPA Science Inventory

    The mouse lymphoma assay is widely used to identify chemicals that are capable of inducing mutational damages. The Tk+/- gene located on an autosome in mouse lymphoma cells may recover a wider range of mutational events than the X-linked Hprt locus. However, chemical-induced muta...

  6. Neural stem cell-based dual suicide gene delivery for metastatic brain tumors.

    PubMed

    Wang, C; Natsume, A; Lee, H J; Motomura, K; Nishimira, Y; Ohno, M; Ito, M; Kinjo, S; Momota, H; Iwami, K; Ohka, F; Wakabayashi, T; Kim, S U

    2012-11-01

    In our previous works, we demonstrated that human neural stem cells (NSCs) transduced with the cytosine deaminase (CD) gene showed remarkable 'bystander killer effect' on glioma and medulloblastoma cells after administration of the prodrug 5-fluorocytosine (5-FC). In addition, herpes simplex virus thymidine kinase (TK) is a widely studied enzyme used for suicide gene strategies, for which the prodrug is ganciclovir (GCV). To apply this strategy to brain metastasis treatment, we established here a human NSC line (F3.CD-TK) expressing the dual suicide genes CD and TK. We examined whether F3.CD-TK cells intensified the antitumor effect on lung cancer brain metastases. In vitro studies showed that F3.CD-TK cells exerted a marked bystander effect on human lung cancer cells after treatment with 5-FC and GCV. In a novel experimental brain metastases model, intravenously administered F3 cells migrated near lung cancer metastatic lesions, which were induced by the injection of lung cancer cells via the intracarotid artery. More importantly, F3.CD-TK cells in the presence of prodrugs 5-FC and GCV decreased tumor size and considerably prolonged animal survival. The results of the present study indicate that the dual suicide gene-engineered, NSC-based treatment strategy might offer a new promising therapeutic modality for brain metastases.

  7. Immunomodulation of glioma cells after gene therapy: induction of major histocompatibility complex class I but not class II antigen in vitro.

    PubMed

    Parsa, A T; Chi, J H; Hurley, P T; Jeyapalan, S A; Bruce, J N

    2001-09-01

    Acquired immunity has been demonstrated in Fischer rats bearing syngeneic 9L tumors after herpes simplex virus (HSV) thymidine kinase (TK) gene transfection and ganciclovir treatment. The nature of this immunity in rats and its relevance to the HSV TK/ganciclovir protocol for human subjects remain to be determined. In this study, levels of major histocompatibility complex (MHC) Class I and II antigen expression were measured before and after HSV TK transfection, in an effort to document immunomodulatory changes caused by gene therapy. Tumor cells from the 9L gliosarcoma cell line, three primary human glioma cultures, and the human glioma cell line U87 MG were transduced with HSV TK vector-containing supernatant from fibroblast-producing cells (titer of 5 x 10(6) colony-forming units/ml) and selected in G418 medium for neomycin resistance. Clones were pooled or individually selected for cell-killing assays with ganciclovir, to confirm TK expression (10(3) cells/well in a 96-well dish). Northern analyses using MHC Class I and Class II complementary deoxyribonucleic acid probes were performed on blots containing total ribonucleic acid from wild-type tumor cells and HSV TK transfectants. A beta-actin complementary deoxyribonucleic acid probe served as an internal control. Cell surface expression was confirmed with flow cytometry. The induction of MHC Class I was tested for cycloheximide and genistein sensitivity. All cell cultures exhibited increases in MHC Class I but not MHC Class II expression, as determined by Northern analysis densitometry and flow cytometry. Cycloheximide treatment did not diminish the up-regulation of MHC Class I after retroviral transfection, implicating a signal transduction pathway that does not require ongoing protein synthesis. Genistein pretreatment of cell cultures did diminish the up-regulation of MHC Class I, implicating a tyrosine kinase in the signaling cascade. Induction of MHC Class I in rat and human glioma cells after HSV TK

  8. 6-Gingerdiols as the Major Metabolites of 6-Gingerol in Cancer Cells and in Mice and Their Cytotoxic Effects on Human Cancer Cells

    PubMed Central

    Lv, Lishuang; Chen, Huadong; Soroka, Dominique; Chen, Xiaoxin; Leung, TinChung; Sang, Shengmin

    2012-01-01

    6-Gingerol, a major pungent component of ginger (Zingiber officinale Roscoe, Zingiberaceae), has been reported to have anti-tumor activities. However, the metabolic fate of 6-gingerol and the contribution of its metabolites to the observed activities are still unclear. In the present study, we investigated the biotransformation of 6-gingerol in different cancer cells and in mice, purified and identified the major metabolites from human lung cancer cells, and determined the effects of the major metabolites on the proliferation of human cancer cells. Our results show that 6-gingerol is extensively metabolized in H-1299 human lung cancer cells, CL-13 mouse lung cancer cells, HCT-116 and HT-29 human colon cancer cells, and in mice. The two major metabolites in H-1299 cells were purified and identified as (3R,5S)-6-gingerdiol (M1) and (3S,5S)-6-gingerdiol (M2) based on the analysis of their 1D and 2D NMR data. Both metabolites induced cytotoxicity in cancer cells after 24 hours, with M1 having a comparable effect to 6-gingerol in H-1299 cells. PMID:23066935

  9. 6-gingerdiols as the major metabolites of 6-gingerol in cancer cells and in mice and their cytotoxic effects on human cancer cells.

    PubMed

    Lv, Lishuang; Chen, Huadong; Soroka, Dominique; Chen, Xiaoxin; Leung, TinChung; Sang, Shengmin

    2012-11-14

    6-Gingerol, a major pungent component of ginger (Zingiber officinale Roscoe, Zingiberaceae), has been reported to have antitumor activities. However, the metabolic fate of 6-gingerol and the contribution of its metabolites to the observed activities are still unclear. In the present study, we investigated the biotransformation of 6-gingerol in different cancer cells and in mice, purified and identified the major metabolites from human lung cancer cells, and determined the effects of the major metabolites on the proliferation of human cancer cells. Our results show that 6-gingerol is extensively metabolized in H-1299 human lung cancer cells, CL-13 mouse lung cancer cells, HCT-116 and HT-29 human colon cancer cells, and in mice. The two major metabolites in H-1299 cells were purified and identified as (3R,5S)-6-gingerdiol (M1) and (3S,5S)-6-gingerdiol (M2) based on the analysis of their 1D and 2D NMR data. Both metabolites induced cytotoxicity in cancer cells after 24 h, with M1 having a comparable effect to 6-gingerol in H-1299 cells.

  10. Gene therapy of uterine leiomyoma: adenovirus-mediated herpes simplex virus thymidine kinase/ganciclovir treatment inhibits growth of human and rat leiomyoma cells in vitro and in a nude mouse model.

    PubMed

    Salama, S A; Kamel, M; Christman, G; Wang, H Q; Fouad, H M; Al-Hendy, A

    2007-01-01

    Uterine leiomyomas (LM) affect a high percentage of reproductive-age women. They develop as discrete, well-defined tumors that are easily accessible with imaging techniques--making this disease ideal for localized gene therapy approaches. In this study, we determined the efficacy of adenovirus-mediated herpes simplex virus thymidine kinase gene transfer in combination with ganciclovir (Ad-TK/GCV) as a potential therapy for LM. Rat ELT-3 LM cells and human LM cells were transfected with different multiplicity of infections (10-100 plaque forming units [PFU]/cell) of Ad-TK and treated with GCV (5, 10, or 20 microg/ml) for 5 days. To test the bystander effect, Ad-TK-transfected ELT-3 cells (100 PFU/cell) or LM cells (10 PFU/cell) were cocultured with corresponding nontransfected cells at increasing percentages and treated with GCV followed by cell counting. In ELT-3 cells transfected with Ad-TK/GCV (10, 20, 50, or 100 PFU/cell), the cell count was reduced by 24, 42, 77, and 87%, respectively, compared with the control cells (transfected with Ad-Lac Z/GCV). Similarly, in LM cells transfected with Ad-TK/GCV (10, 50, or 100 PFU/cell), the cell count was reduced by 31, 62, and 82%, respectively, compared with the control. A strong bystander effect was noted in both ELT-3 and LM cells with significant killing (p = 0.001) at a ratio of infected:uninfected cells of only 1:99 and maximal killing at 1:4. This study demonstrates the potential efficacy of the Ad-TK/GCV gene therapy approach as a viable nonsurgical alternative treatment for uterine LM.

  11. Human plasma metabolic profiles of benzydamine, a flavin-containing monooxygenase probe substrate, simulated with pharmacokinetic data from control and humanized-liver mice.

    PubMed

    Yamazaki-Nishioka, Miho; Shimizu, Makiko; Suemizu, Hiroshi; Nishiwaki, Megumi; Mitsui, Marina; Yamazaki, Hiroshi

    2018-02-01

    1. Benzydamine is used clinically as a nonsteroidal anti-inflammatory drug in oral rinses and is employed in preclinical research as a flavin-containing monooxygenase (FMO) probe substrate. In this study, plasma concentrations of benzydamine and its primary N-oxide and N-demethylated metabolites were investigated in control TK-NOG mice, in humanized-liver mice, and in mice whose liver cells had been ablated with ganciclovir. 2. Following oral administration of benzydamine (10 mg/kg) in humanized-liver TK-NOG mice, plasma concentrations of benzydamine N-oxide were slightly higher than those of demethyl benzydamine. In contrast, in control and ganciclovir-treated TK-NOG mice, concentrations of demethyl benzydamine were slightly higher than those of benzydamine N-oxide. 3. Simulations of human plasma concentrations of benzydamine and its N-oxide were achieved using simplified physiologically based pharmacokinetic models based on data from control TK-NOG mice and from reported benzydamine concentrations after low-dose administration in humans. Estimated clearance rates based on data from humanized-liver and ganciclovir-treated TK-NOG mice were two orders magnitude high. 4. The pharmacokinetic profiles of benzydamine were different for control and humanized-liver TK-NOG mice. Humanized-liver mice are generally accepted human models; however, drug oxidation in mouse kidney might need to be considered when probe substrates undergo FMO-dependent drug oxidation in mouse liver and kidney.

  12. Canthin-6-one induces cell death, cell cycle arrest and differentiation in human myeloid leukemia cells.

    PubMed

    Vieira Torquato, Heron F; Ribeiro-Filho, Antonio C; Buri, Marcus V; Araújo Júnior, Roberto T; Pimenta, Renata; de Oliveira, José Salvador R; Filho, Valdir C; Macho, Antonio; Paredes-Gamero, Edgar J; de Oliveira Martins, Domingos T

    2017-04-01

    Canthin-6-one is a natural product isolated from various plant genera and from fungi with potential antitumor activity. In the present study, we evaluate the antitumor effects of canthin-6-one in human myeloid leukemia lineages. Kasumi-1 lineage was used as a model for acute myeloid leukemia. Cells were treated with canthin-6-one and cell death, cell cycle and differentiation were evaluated in both total cells (Lin + ) and leukemia stem cell population (CD34 + CD38 - Lin -/low ). Among the human lineages tested, Kasumi-1 was the most sensitive to canthin-6-one. Canthin-6-one induced cell death with apoptotic (caspase activation, decrease of mitochondrial potential) and necrotic (lysosomal permeabilization, double labeling of annexin V/propidium iodide) characteristics. Moreover, canthin-6-one induced cell cycle arrest at G 0 /G 1 (7μM) and G 2 (45μM) evidenced by DNA content, BrdU incorporation and cyclin B1/histone 3 quantification. Canthin-6-one also promoted differentiation of Kasumi-1, evidenced by an increase in the expression of myeloid markers (CD11b and CD15) and the transcription factor PU.1. Furthermore, a reduction of the leukemic stem cell population and clonogenic capability of stem cells were observed. These results show that canthin-6-one can affect Kasumi-1 cells by promoting cell death, cell cycle arrest and cell differentiation depending on concentration used. Canthin-6-one presents an interesting cytotoxic activity against leukemic cells and represents a promising scaffold for the development of molecules for anti-leukemic applications, especially by its anti-leukemic stem cell activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Retrovirus-mediated transfer of a hygromycin phosphotransferase-thymidine kinase fusion gene into human CD34+ bone marrow cells.

    PubMed

    Akatsuka, Y; Emi, N; Kato, H; Abe, A; Tanimoto, M; Lupton, S D; Saito, H

    1994-12-01

    Retrovirus-mediated gene transfer into human hematopoietic stem cells has been proposed as a means of therapy for various inherited diseases and as a method of gene marking. The transduction efficiency of an amphotropic retroviral vector (PA317/HyTK) containing a hygromycin phosphotransferase-thymidine kinase fusion gene was examined with human CD34+ bone marrow cells in the presence of interleukin-3 (IL-3), interleukin-6 (IL-6), and stem cell factor. Transduction efficiencies determined from the ability of transduced granulocyte-macrophage colony forming units (CFU-GM) to grow in hygromycin B and from polymerase chain reaction analysis of individual transduced CFU-GM growing in the presence of hygromycin B were 0.3-3.0% (mean +/- S.D., 1.1 +/- 0.9%) and 0.1-1.2% (mean +/- S.D., 0.5 +/- 0.4%), respectively. Ganciclovir at a dose of approximately 1 microM reduced the number of CFU-GM derived from vector-infected CD34+ cells by 50%. These findings demonstrate that human hematopoietic stem cells infected with this retroviral vector are susceptible to ganciclovir, offering the potential to control transduced gene expression in vivo.

  14. [Hypoxia responsive element regulated herpes simplex virus-thymidine kinase system enhances killing effect of gancyclovir on Ewing's sarcoma cell line under hypoxic condition].

    PubMed

    Si, Ying-jian; Guang, Li-xia; Yuan, Fa-huan; Zhang, Ke-bin

    2006-08-01

    To find out a possible approach to improve the effectiveness of radiotherapy and chemotherapy for Ewing's sarcoma by constructing a eukaryotic expression vector expressing herpes simplex virus-thymidine kinase (HSV-TK) regulated by hypoxia responsive element (HRE) under hypoxia and to evaluate the effects of this HRE regulated HSV-TK system on killing effect of gancyclovir (GCV) on Ewing's sarcoma cell line SK-ES under hypoxic condition. The HRE was synthesized according to the literature and cloned into the enhancer site of pIRES(2)-EGFP vector to obtain the pHRE recombinant plasmid. The HSV-TK was amplified by PCR and cloned into the multiple clone site of pIRES(2)-EGFP and pHRE to obtain pTK and pHRE-TK recombinant plasmid. The human Ewing's sarcoma cell line SK-ES was transfected by pTK or pHRE-TK recombinant plasmid with liposome and then was exposed to normoxic (21% oxygen) or hypoxic (3% oxygen) condition. The expression of enhanced green fluorescent protein (EGFP) was monitored by fluorescent microscopy. The sensitivity of human Ewing's sarcoma cell line SK-ES transfected with pTK or pHRE-TK recombinant plasmid to the anti-tumour drug GCV was determined with the method of tetrazolium (MTT) after treating with GCV for five days. (1) The result of sequencing showed that the recombinant plasmid pHRE contained HRE, and that the recombinant plasmid pTK and pHRE-TK contained HSV-TK gene in the sense direction. (2) Comparison of fluorescent optical density (FOD) showed that (1) the EGFP FOD value of pHRE and pHRE-TK group cells exposed to hypoxia was significantly higher than those exposed to normoxia (P < 0.01); (2) when the cells were exposed to hypoxia, the EGFP FOD value of pHRE and pHRE-TK group cells was significantly higher than that of pTK and empty vector group (P < 0.01); (3) there was no significant difference among the four groups of cells when they were exposed to normoxia (P > 0.05). (3) Comparison of the sensitivity of four groups of cells to GCV

  15. BCL6 antagonizes NOTCH2 to maintain survival of human follicular lymphoma cells

    PubMed Central

    Valls, Ester; Lobry, Camille; Geng, Huimin; Wang, Ling; Cardenas, Mariano; Rivas, Martín; Cerchietti, Leandro; Oh, Philmo; Yang, Shao Ning; Oswald, Erin; Graham, Camille W.; Jiang, Yanwen; Hatzi, Katerina; Agirre, Xabier; Perkey, Eric; Li, Zhuoning; Tam, Wayne; Bhatt, Kamala; Leonard, John P.; Zweidler-McKay, Patrick A.; Maillard, Ivan; Elemento, Olivier; Ci, Weimin; Aifantis, Iannis; Melnick, Ari

    2017-01-01

    Summary Although the BCL6 transcriptional repressor is frequently expressed in human follicular lymphomas (FL), its biological role in this disease remains unknown. Herein we comprehensively identify the set of gene promoters directly targeted by BCL6 in primary human FLs. We noted that BCL6 binds and represses NOTCH2 and Notch pathway genes. Moreover, BCL6 and NOTCH2 pathway gene expression is inversely correlated in FL. Notably BCL6 up-regulation is associated with repression of Notch2 and its target genes in primary human and murine germinal center cells. Repression of Notch2 is an essential function of BCL6 in FL and GC B-cells since inducible expression of Notch2 abrogated GC formation in mice and kills FL cells. Indeed BCL6-targeting compounds or gene silencing leads to the induction of NOTCH2 activity and compromises survival of FL cells whereas NOTCH2 depletion or pathway antagonists rescue FL cells from such effects. Moreover, BCL6 inhibitors induced NOTCH2 expression and suppressed growth of human FL xenografts in vivo and primary human FL specimens ex vivo. These studies suggest that established FLs are thus dependent on BCL6 through its suppression of NOTCH2. PMID:28232365

  16. Synergistic and Antagonistic Mutation Responses of Human MCL-5 Cells to Mixtures of Benzo[a]pyrene and 2-Amino-1-Methyl-6-Phenylimidazo[4,5-b]pyridine: Dose-Related Variation in the Joint Effects of Common Dietary Carcinogens.

    PubMed

    David, Rhiannon; Ebbels, Timothy; Gooderham, Nigel

    2016-01-01

    Chemical carcinogens such as benzo[a]pyrene (BaP) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) may contribute to the etiology of human diet-associated cancer. Individually, these compounds are genotoxic, but the consequences of exposure to mixtures of these chemicals have not been systematically examined. We determined the mutagenic response to mixtures of BaP and PhIP at concentrations relevant to human exposure (micromolar to subnanomolar). Human MCL-5 cells (metabolically competent) were exposed to BaP or PhIP individually or in mixtures. Mutagenicity was assessed at the thymidine kinase (TK) locus, CYP1A activity was determined by ethoxyresorufin-O-deethylase (EROD) activity and qRT-PCR, and cell cycle was measured by flow cytometry. Mixtures of BaP and PhIP produced dose responses different from those of the individual chemicals; we observed remarkably increased mutant frequency (MF) at lower concentrations of the mixtures (not mutagenic individually), and decreased MF at higher concentrations of the mixtures, than the calculated predicted additive MF of the individual chemicals. EROD activity and CYP1A1 mRNA levels were correlated with TK MF, supporting involvement of the CYP1A family in mutation. Moreover, a cell cycle G2/M phase block was observed at high-dose combinations, consistent with DNA damage sensing and repair. Mixtures of these genotoxic chemicals produced mutation responses that differed from those expected for the additive effects of the individual chemicals. The increase in MF for certain combinations of chemicals at low concentrations that were not genotoxic for the individual chemicals, as well as the nonmonotonic dose response, may be important for understanding the mutagenic potential of food and the etiology of diet-associated cancers. David R, Ebbels T, Gooderham N. 2016. Synergistic and antagonistic mutation responses of human MCL-5 cells to mixtures of benzo[a]pyrene and 2-amino-1-methyl-6-phenylimidazo[4,5-b

  17. Synergistic and Antagonistic Mutation Responses of Human MCL-5 Cells to Mixtures of Benzo[a]pyrene and 2-Amino-1-Methyl-6-Phenylimidazo[4,5-b]pyridine: Dose-Related Variation in the Joint Effects of Common Dietary Carcinogens

    PubMed Central

    David, Rhiannon; Ebbels, Timothy; Gooderham, Nigel

    2015-01-01

    Background Chemical carcinogens such as benzo[a]pyrene (BaP) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) may contribute to the etiology of human diet-associated cancer. Individually, these compounds are genotoxic, but the consequences of exposure to mixtures of these chemicals have not been systematically examined. Objectives We determined the mutagenic response to mixtures of BaP and PhIP at concentrations relevant to human exposure (micromolar to subnanomolar). Methods Human MCL-5 cells (metabolically competent) were exposed to BaP or PhIP individually or in mixtures. Mutagenicity was assessed at the thymidine kinase (TK) locus, CYP1A activity was determined by ethoxyresorufin-O-deethylase (EROD) activity and qRT-PCR, and cell cycle was measured by flow cytometry. Results Mixtures of BaP and PhIP produced dose responses different from those of the individual chemicals; we observed remarkably increased mutant frequency (MF) at lower concentrations of the mixtures (not mutagenic individually), and decreased MF at higher concentrations of the mixtures, than the calculated predicted additive MF of the individual chemicals. EROD activity and CYP1A1 mRNA levels were correlated with TK MF, supporting involvement of the CYP1A family in mutation. Moreover, a cell cycle G2/M phase block was observed at high-dose combinations, consistent with DNA damage sensing and repair. Conclusions Mixtures of these genotoxic chemicals produced mutation responses that differed from those expected for the additive effects of the individual chemicals. The increase in MF for certain combinations of chemicals at low concentrations that were not genotoxic for the individual chemicals, as well as the nonmonotonic dose response, may be important for understanding the mutagenic potential of food and the etiology of diet-associated cancers. Citation David R, Ebbels T, Gooderham N. 2016. Synergistic and antagonistic mutation responses of human MCL-5 cells to mixtures of benzo

  18. Sensitivity of human cells expressing low-fidelity or weak-catalytic-activity variants of DNA polymerase ζ to genotoxic stresses.

    PubMed

    Suzuki, Tetsuya; Grúz, Petr; Honma, Masamitsu; Adachi, Noritaka; Nohmi, Takehiko

    2016-09-01

    Translesion DNA polymerases (TLS pols) play critical roles in defense mechanisms against genotoxic agents. The defects or mutations of TLS pols are predicted to result in hypersensitivity of cells to environmental mutagens. In this study, human cells expressing DNA polymerase ζ (Pol ζ) variants with low fidelity or weak catalytic activity have been established with Nalm-6-MSH+ cells and their sensitivity to mutagenicity and cytotoxicity of benzo[a]pyrene diol epoxide (BPDE) and ultraviolet-C light (UV-C) was examined. The low-fidelity mutants were engineered by knocking-in DNA sequences that direct changes of leucine 2618 to either phenylalanine (L2618F) or methionine (L2618M) of Pol ζ. The weak-catalytic-activity mutants were generated by knocking-in DNA sequences that direct changes of either tyrosine 2779 to phenylalanine (Y2779F) or aspartate 2781 to asparagine (D2781N). In addition, a +1 frameshift mutation, i.e., CCC to CCCC, was introduced in the coding region of the TK1 gene to measure the mutant frequencies. Doubling time and spontaneous TK mutant frequencies of the established cell lines were similar to those of the wild-type cells. The low-fidelity mutants displayed, however, higher sensitivity to the mutagenicity of BPDE and UV-C than the wild-type cells although their cytotoxic sensitivity was not changed. In contrast, the weak-catalytic-activity mutants were more sensitive to the cytotoxicity of BPDE and UV-C than the wild-type cells, and displayed much higher sensitivity to the clastogenicity of BPDE than the wild-type cells in an in vitro micronucleus assay. These results indicate that human Pol ζ is involved in TLS across DNA lesions induced by BPDE and UV-C and also that the TLS plays important roles in induction of mutations, clastogenicity and in cellular survival of the damaged human cells. Similarities and differences in in vivo roles of yeast and human Pol ζ in genome integrity are discussed. Copyright © 2016 Elsevier B.V. All rights

  19. The E6 and E7 genes of human papillomavirus type 6 have weak immortalizing activity in human epithelial cells.

    PubMed Central

    Halbert, C L; Demers, G W; Galloway, D A

    1992-01-01

    Previous studies have shown that the E7 gene of human papillomavirus (HPV) type 16 or 18 alone was sufficient for immortalization of human foreskin epithelial cells (HFE) and that the efficiency was increased in cooperation with the respective E6 gene, whereas the HPV6 E6 or E7 gene was not active in HFE. To detect weak immortalizing activities of the HPV6 genes, cells were infected with recombinant retroviruses containing HPV genes, alone and in homologous and heterologous combinations. The HPV6 genes, alone or together (HPV6 E6 plus HPV6 E7), were not able to immortalize cells. However the HPV6 E6 gene, in concert with HPV16 E7, increased the frequency of immortalization threefold over that obtained with HPV16 E7 alone. Interestingly, 6 of 20 clones containing the HPV16 E6 gene and the HPV6 E7 gene were immortalized, whereas neither gene alone was sufficient. Thus, the HPV6 E6 and E7 genes have weak immortalizing activities which can be detected in cooperation with the more active transforming genes of HPV16. Acute expression of the HPV6 and HPV16 E6 and E7 genes revealed that only HPV16 E7 was able to stimulate the proliferation of cells in organotypic culture, resulting in increased expression of the proliferative cell nuclear antigen and the formation of a disorganized epithelial layer. Additionally, combinations of genes that immortalized HFE cells (HPV16 E6 plus HPV16 E7, HPV16 E6 plus HPV6 E7, and HPV6 E6 plus HPV16 E7) also stimulated proliferation. Images PMID:1312623

  20. Induction of genomic instability in TK6 human lymphoblasts exposed to 137Cs gamma radiation: comparison to the induction by exposure to accelerated 56Fe particles

    NASA Technical Reports Server (NTRS)

    Evans, Helen H.; Horng, Min-Fen; Ricanati, Marlene; Diaz-Insua, M.; Jordan, Robert; Schwartz, Jeffrey L.

    2003-01-01

    The induction of genomic instability in TK6 human lymphoblasts by exposure to (137)Cs gamma radiation was investigated by measuring the frequency and characteristics of unstable clones isolated approximately 36 generations after exposure. Clones surviving irradiation and control clones were analyzed for 17 characteristics including chromosomal aberrations, growth defects, alterations in response to a second irradiation, and mutant frequencies at the thymidine kinase and Na(+)/K(+) ATPase loci. Putative unstable clones were defined as those that exhibited a significant alteration in one or more characteristics compared to the controls. The frequency and characteristics of the unstable clones were compared in clones exposed to (137)Cs gamma rays or (56)Fe particles. The majority of the unstable clones isolated after exposure to either gamma rays or (56)Fe particles exhibited chromosomal instability. Alterations in growth characteristics, radiation response and mutant frequencies occurred much less often than cytogenetic alterations in these unstable clones. The frequency and complexity of the unstable clones were greater after exposure to (56)Fe particles than to gamma rays. Unstable clones that survived 36 generations after exposure to gamma rays exhibited increases in the incidence of dicentric chromosomes but not of chromatid breaks, whereas unstable clones that survived 36 generations after exposure to (56)Fe particles exhibited increases in both chromatid and chromosome aberrations.

  1. Knockdown of MAGEA6 Activates AMP-Activated Protein Kinase (AMPK) Signaling to Inhibit Human Renal Cell Carcinoma Cells.

    PubMed

    Ye, Xueting; Xie, Jing; Huang, Hang; Deng, Zhexian

    2018-01-01

    Melanoma antigen A6 (MAGEA6) is a cancer-specific ubiquitin ligase of AMP-activated protein kinase (AMPK). The current study tested MAGEA6 expression and potential function in renal cell carcinoma (RCC). MAGEA6 and AMPK expression in human RCC tissues and RCC cells were tested by Western blotting assay and qRT-PCR assay. shRNA method was applied to knockdown MAGEA6 in human RCC cells. Cell survival and proliferation were tested by MTT assay and BrdU ELISA assay, respectively. Cell apoptosis was tested by the TUNEL assay and single strand DNA ELISA assay. The 786-O xenograft in nude mouse model was established to test RCC cell growth in vivo. MAGEA6 is specifically expressed in RCC tissues as well as in the established (786-O and A498) and primary human RCC cells. MAGEA6 expression is correlated with AMPKα1 downregulation in RCC tissues and cells. It is not detected in normal renal tissues nor in the HK-2 renal epithelial cells. MAGEA6 knockdown by targeted-shRNA induced AMPK stabilization and activation, which led to mTOR complex 1 (mTORC1) in-activation and RCC cell death/apoptosis. AMPK inhibition, by AMPKα1 shRNA or the dominant negative AMPKα1 (T172A), almost reversed MAGEA6 knockdown-induced RCC cell apoptosis. Conversely, expression of the constitutive-active AMPKα1 (T172D) mimicked the actions by MAGEA6 shRNA. In vivo, MAGEA6 shRNA-bearing 786-O tumors grew significantly slower in nude mice than the control tumors. AMPKα1 stabilization and activation as well as mTORC1 in-activation were detected in MAGEA6 shRNA tumor tissues. MAGEA6 knockdown inhibits human RCC cells via activating AMPK signaling. © 2018 The Author(s). Published by S. Karger AG, Basel.

  2. Reversion of mtDNA depletion in a patient with TK2 deficiency.

    PubMed

    Vilà, M R; Segovia-Silvestre, T; Gámez, J; Marina, A; Naini, A B; Meseguer, A; Lombès, A; Bonilla, E; DiMauro, S; Hirano, M; Andreu, A L

    2003-04-08

    Mutations in the thymidine kinase 2 (TK2) gene cause a myopathic form of the mitochondrial DNA depletion syndrome (MDS). Here, the authors report the unusual clinical, biochemical, and molecular findings in a 14-year-old patient in whom pathogenic mutations were identified in the TK2 gene. This report extends the phenotypic expression of primary TK2 deficiency and suggests that factors other than TK2 may modify expression of the clinical phenotype in patients with MDS syndrome.

  3. Cell Culture Systems To Study Human Herpesvirus 6A/B Chromosomal Integration.

    PubMed

    Gravel, Annie; Dubuc, Isabelle; Wallaschek, Nina; Gilbert-Girard, Shella; Collin, Vanessa; Hall-Sedlak, Ruth; Jerome, Keith R; Mori, Yasuko; Carbonneau, Julie; Boivin, Guy; Kaufer, Benedikt B; Flamand, Louis

    2017-07-15

    Human herpesviruses 6A/B (HHV-6A/B) can integrate their viral genomes in the telomeres of human chromosomes. The viral and cellular factors contributing to HHV-6A/B integration remain largely unknown, mostly due to the lack of efficient and reproducible cell culture models to study HHV-6A/B integration. In this study, we characterized the HHV-6A/B integration efficiencies in several human cell lines using two different approaches. First, after a short-term infection (5 h), cells were processed for single-cell cloning and analyzed for chromosomally integrated HHV-6A/B (ciHHV-6A/B). Second, cells were infected with HHV-6A/B and allowed to grow in bulk for 4 weeks or longer and then analyzed for the presence of ciHHV-6. Using quantitative PCR (qPCR), droplet digital PCR, and fluorescent in situ hybridization, we could demonstrate that HHV-6A/B integrated in most human cell lines tested, including telomerase-positive (HeLa, MCF-7, HCT-116, and HEK293T) and telomerase-negative cell lines (U2OS and GM847). Our results also indicate that inhibition of DNA replication, using phosphonoacetic acid, did not affect HHV-6A/B integration. Certain clones harboring ciHHV-6A/B spontaneously express viral genes and proteins. Treatment of cells with phorbol ester or histone deacetylase inhibitors triggered the expression of many viral genes, including U39 , U90 , and U100 , without the production of infectious virus, suggesting that the tested stimuli were not sufficient to trigger full reactivation. In summary, both integration models yielded comparable results and should enable the identification of viral and cellular factors contributing to HHV-6A/B integration and the screening of drugs influencing viral gene expression, as well as the release of infectious HHV-6A/B from the integrated state. IMPORTANCE The analysis and understanding of HHV-6A/B genome integration into host DNA is currently limited due to the lack of reproducible and efficient viral integration systems. In the

  4. Primary human cervical carcinoma cells require human papillomavirus E6 and E7 expression for ongoing proliferation

    PubMed Central

    Magaldi, Thomas G.; Almstead, Laura L.; Bellone, Stefania; Prevatt, Edward G.; Santin, Alessandro D.; DiMaio, Daniel

    2011-01-01

    Repression of human papillomavirus (HPV) E6 and E7 oncogenes in established cervical carcinoma cell lines causes senescence due to reactivation of cellular tumor suppressor pathways. Here, we determined whether ongoing expression of HPV16 or HPV18 oncogenes is required for the proliferation of primary human cervical carcinoma cells in serum-free conditions at low passage number after isolation from patients. We used an SV40 viral vector expressing the bovine papillomavirus E2 protein to repress E6 and E7 in these cells. To enable efficient SV40 infection and E2 gene delivery, we first incubated the primary cervical cancer cells with the ganglioside GM1, a cell-surface receptor for SV40 limiting in these cells. Repression of HPV in primary cervical carcinoma cells caused them to undergo senescence, but the E2 protein had little effect on HPV-negative primary cells. These data suggest that E6 and E7 dependence is an inherent property of human cervical cancer cells. PMID:22056390

  5. Enhanced degradation of p53 protein in HPV-6 and BPV-1 E6-immortalized human mammary epithelial cells.

    PubMed Central

    Band, V; Dalal, S; Delmolino, L; Androphy, E J

    1993-01-01

    Normal mammary epithelial cells are efficiently immortalized by the E6 gene of human papillomavirus (HPV)-16, a virus commonly associated with cervical cancers. Surprisingly, introduction of the E6 gene from HPV-6, which is rarely found in cervical cancer, or bovine papillomavirus (BPV)-1, into normal mammary cells resulted in the generation of immortal cell lines. The establishment of HPV-6 and BPV-1 E6-immortalized cells was less efficient and required a longer period in comparison to HPV-16 E6. These HPV-6- and BPV-1 E6-immortalized cells demonstrated dramatically reduced levels of p53 protein by immunoprecipitation. While the half-life of p53 protein in normal mammary epithelial cells was approximately 3 h, it was reduced to approximately 15 min in all the E6-immortalized cells. These results demonstrate that the E6 genes of both high-risk and low-risk papilloma viruses immortalize human mammary epithelial cells and induce a marked degradation of p53 protein in vivo. Images PMID:8387914

  6. Gene Therapy for Human Lung Adenocarcinoma Using a Suicide Gene Driven by a Lung-Specific Promoter Delivered by JC Virus-Like Particles.

    PubMed

    Chao, Chun-Nun; Lin, Mien-Chun; Fang, Chiung-Yao; Chen, Pei-Lain; Chang, Deching; Shen, Cheng-Huang; Wang, Meilin

    2016-01-01

    Lung adenocarcinoma, the most commonly diagnosed type of lung cancer, has a poor prognosis even with combined surgery, chemotherapy, or molecular targeted therapies. Most patients are diagnosed with an in-operable advanced or metastatic disease, both pointing to the necessity of developing effective therapies for lung adenocarcinoma. Surfactant protein B (SP-B) has been found to be overexpressed in lung adenocarcinoma. In addition, it has also been demonstrated that human lung adenocarcinoma cells are susceptible to the JC polyomavirus (JCPyV) infection. Therefore, we designed that the JCPyV virus-like particle (VLP) packaged with an SP-B promoter-driven thymidine kinase suicide gene (pSPB-tk) for possible gene therapy of human lung adenocarcinoma. Plasmids expressing the GFP (pSPB-gfp) or thymidine kinase gene (pSPB-tk) under the control of the human SP-B promoter were constructed. The promoter's tissue specificity was tested by transfection of pSPB-gfp into A549, CH27, and H460 human lung carcinoma cells and non-lung cells. The JCPyV VLP's gene transfer efficiency and the selective cytotoxicity of pSPB-tk combined with ganciclovir (GCV) were tested in vitro and in a xenograft mouse model. In the current study, we found that SP-B promoter-driven GFP was specifically expressed in human lung adenocarcinoma (A549) and large cell carcinoma (H460) cells. JCPyV VLPs were able to deliver a GFP reporter gene into A549 cells for expression. Selective cytotoxicity was observed in A549 but not non-lung cells that were transfected with pSPB-tk or infected with pSPB-tk-carrying JCPyV VLPs. In mice injected with pSPB-tk-carrying JCPyV VLPs through the tail vein and treated with ganciclovir (GCV), a potent 80% inhibition of growth of human lung adenocarcinoma nodules resulted. The JCPyV VLPs combined with the use of SP-B promoter demonstrates effectiveness as a potential gene therapy against human lung adenocarcinoma.

  7. Unequal homologous recombination between tandemly arranged sequences stably incorporated into cultured rat cells.

    PubMed Central

    Stringer, J R; Kuhn, R M; Newman, J L; Meade, J C

    1985-01-01

    Cultured rat cells deficient in endogenous thymidine kinase activity (tk) were stably transformed with a recombination-indicator DNA substrate constructed in vitro by rearrangement of the herpes simplex virus tk gene sequences into a partially redundant permutation of the functional gene. The recombination-indicator DNA did not express tk, but was designed to allow formation of a functional tk gene via homologous recombination. A clonal cell line (519) was isolated that harbored several permuted herpes simplex virus tk genes. 519 cells spontaneously produced progeny that survived in medium containing hypoxanthine, aminopterin, and thymidine. Acquisition of resistance to hypoxanthine, aminopterin, and thymidine was accompanied by the rearrangement of the defective tk gene to functional configuration. The rearrangement apparently occurred by unequal exchange between one permuted tk gene and a replicated copy of itself. Recombination was between 500-base-pair tracts of DNA sequence homology that were separated by 3.4 kilobases. Exchanges occurred spontaneously at a frequency of approximately 5 X 10(-6) events per cell per generation. Recombination also mediated reversion to the tk- phenotype; however, the predominant mechanism by which cells escaped death in the presence of drugs rendered toxic by thymidine kinase was not recombination, but rather inactivation of the intact tk gene. Images PMID:3016511

  8. Tissue kallikrein induces SH-SY5Y cell proliferation via epidermal growth factor receptor and extracellular signal-regulated kinase1/2 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Zhengyu; Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437; Yang, Qi

    2014-03-28

    Highlights: • TK promotes EGFR phosphorylation in SH-SY5Y cells. • TK activates ERK1/2 and p38 phosphorylation in SH-SY5Y cells. • TK mediates SH-SY5Y cell proliferation via EGFR and ERK1/2 pathway. - Abstract: Tissue kallikrein (TK) is well known to take most of its biological functions through bradykinin receptors. In the present study, we found a novel signaling pathway mediated by TK through epidermal growth factor receptor (EGFR) in human SH-SY5Y cells. We discovered that TK facilitated the activation of EGFR, extracellular signal-regulated kinase (ERK) 1/2 and p38 cascade. Interestingly, not p38 but ERK1/2 phosphorylation was severely compromised in cells depletedmore » of EGFR. Nevertheless, impairment of signaling of ERK1/2 seemed not to be restricted to EGFR phosphorylation. We also observed that TK stimulation could induce SH-SY5Y cell proliferation, which was reduced by EGFR down-regulation or ERK1/2 inhibitor. Overall, our findings provided convincing evidence that TK could mediate cell proliferation via EGFR and ERK1/2 pathway in vitro.« less

  9. Targeted impairment of thymidine kinase 2 expression in cells induces mitochondrial DNA depletion and reveals molecular mechanisms of compensation of mitochondrial respiratory activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villarroya, Joan, E-mail: joanvillarroya@gmail.com; Institut de Recerca l'Hospital de la Santa Creu i Sant Pau, Barcelona; Lara, Mari-Carmen

    Highlights: {yields} We impaired TK2 expression in Ost TK1{sup -} cells via siRNA-mediated interference (TK2{sup -}). {yields} TK2 impairment caused severe mitochondrial DNA (mtDNA) depletion in quiescent cells. {yields} Despite mtDNA depletion, TK2{sup -} cells show high cytochrome oxidase activity. {yields} Depletion of mtDNA occurs without imbalance in the mitochondrial dNTP pool. {yields} Nuclear-encoded ENT1, DNA-pol {gamma}, TFAM and TP gene expression is lowered in TK2{sup -} cells. -- Abstract: The mitochondrial DNA (mtDNA) depletion syndrome comprises a clinically heterogeneous group of diseases characterized by reductions of the mtDNA abundance, without associated point mutations or rearrangements. We have developed themore » first in vitro model to study of mtDNA depletion due to reduced mitochondrial thymidine kinase 2 gene (TK2) expression in order to understand the molecular mechanisms involved in mtDNA depletion syndrome due to TK2 mutations. Small interfering RNA targeting TK2 mRNA was used to decrease TK2 expression in Ost TK1{sup -} cells, a cell line devoid of endogenous thymidine kinase 1 (TK1). Stable TK2-deficient cell lines showed a reduction of TK2 levels close to 80%. In quiescent conditions, TK2-deficient cells showed severe mtDNA depletion, also close to 80% the control levels. However, TK2-deficient clones showed increased cytochrome c oxidase activity, higher cytochrome c oxidase subunit I transcript levels and higher subunit II protein expression respect to control cells. No alterations of the deoxynucleotide pools were found, whereas a reduction in the expression of genes involved in nucleoside/nucleotide homeostasis (human equilibrative nucleoside transporter 1, thymidine phosphorylase) and mtDNA maintenance (DNA-polymerase {gamma}, mitochondrial transcription factor A) was observed. Our findings highlight the importance of cellular compensatory mechanisms that enhance the expression of respiratory components to ensure respiratory

  10. Sensitivity of C6 Glioma Cells Carrying the Human Poliovirus Receptor to Oncolytic Polioviruses.

    PubMed

    Sosnovtseva, A O; Lipatova, A V; Grinenko, N F; Baklaushev, V P; Chumakov, P M; Chekhonin, V P

    2016-10-01

    A humanized line of rat C6 glioma cells expressing human poliovirus receptor was obtained and tested for the sensitivity to oncolytic effects of vaccine strains of type 1, 2, and 3 polioviruses. Presentation of the poliovirus receptor on the surface of C6 glioma cells was shown to be a necessary condition for the interaction of cells with polioviruses, but insufficient for complete poliovirus oncolysis.

  11. Cytoplasmically Retargeted HSV1-tk/GFP Reporter Gene Mutants for Optimization of Noninvasive Molecular-Genetic Imaging

    PubMed Central

    Ponomarev, Vladimir; Doubrovin, Michael; Serganova, Inna; Beresten, Tatiana; Vider, Jelena; Shavrin, Aleksander; Ageyeva, Ludmila; Balatoni, Julius; Blasberg, Ronald; Tjuvajev, Juri Gelovani

    2003-01-01

    Abstract To optimize the sensitivity of imaging HSV1-tk/GFP reporter gene expression, a series of HSV1-tk/GFP mutants was developed with altered nuclear localization and better cellular enzymatic activity, compared to that of the native HSV1-tk/GFP fusion protein (HSV1-tk/GFP). Several modifications of HSV1-tk/GFP reporter gene were performed, including targeted inactivating mutations in the nuclear localization signal (NLS), the addition of a nuclear export signal (NES), a combination of both mutation types, and a truncation of the first 135 bp of the native hsv1-tk coding sequence containing a “cryptic” testicular promoter and the NLS. A recombinant HSV1-tk/GFP protein and a highly sensitive sandwich enzyme-linked immunosorbent assay for HSV1-tk/GFP were developed to quantitate the amount of reporter gene product in different assays to allow normalization of the data. These different mutations resulted in various degrees of nuclear clearance, predominant cytoplasmic distribution, and increased total cellular enzymatic activity of the HSV1-tk/GFP mutants, compared to native HSV1-tk/GFP when expressed at the same levels. This appears to be the result of improvedmetabolic bioavailability of cytoplasmically retargeted mutant HSV1-tk/GFP enzymes for reaction with the radiolabeled probe (e.g., FIAU). The analysis of enzymatic properties of different HSV1-tk/GFP mutants using FIAU as a substrate revealed no significant differences from that of the native HSV1-tk/GFP. Improved total cellular enzymatic activity of cytoplasmically retargeted HSV1-tk/GFP mutants observed in vitro was confirmed by noninvasive imaging of transduced subcutaneous tumor xenografts bearing these reporters using [131I]FIAU and a γ-camera. PMID:12869307

  12. Arecoline decreases interleukin-6 production and induces apoptosis and cell cycle arrest in human basal cell carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Li-Wen; Hsieh, Bau-Shan; Cheng, Hsiao-Ling

    2012-01-15

    Arecoline, the most abundant areca alkaloid, has been reported to decrease interleukin-6 (IL-6) levels in epithelial cancer cells. Since IL-6 overexpression contributes to the tumorigenic potency of basal cell carcinoma (BCC), this study was designed to investigate whether arecoline altered IL-6 expression and its downstream regulation of apoptosis and the cell cycle in cultured BCC-1/KMC cells. BCC-1/KMC cells and a human keratinocyte cell line, HaCaT, were treated with arecoline at concentrations ranging from 10 to 100 μg/ml, then IL-6 production and expression of apoptosis- and cell cycle progress-related factors were examined. After 24 h exposure, arecoline inhibited BCC-1/KMC cell growthmore » and decreased IL-6 production in terms of mRNA expression and protein secretion, but had no effect on HaCaT cells. Analysis of DNA fragmentation and chromatin condensation showed that arecoline induced apoptosis of BCC-1/KMC cells in a dose-dependent manner, activated caspase-3, and decreased expression of the anti-apoptotic protein Bcl-2. In addition, arecoline induced progressive and sustained accumulation of BCC-1/KMC cells in G2/M phase as a result of reducing checkpoint Cdc2 activity by decreasing Cdc25C phosphatase levels and increasing p53 levels. Furthermore, subcutaneous injection of arecoline led to decreased BCC-1/KMC tumor growth in BALB/c mice by inducing apoptosis. This study demonstrates that arecoline has potential for preventing BCC tumorigenesis by reducing levels of the tumor cell survival factor IL-6, increasing levels of the tumor suppressor factor p53, and eliciting cell cycle arrest, followed by apoptosis. Highlights: ► Arecoline has potential to prevent against basal cell carcinoma tumorigenesis. ► It has more effectiveness on BCC as compared with a human keratinocyte cell line. ► Mechanisms involved including reducing tumor cells’ survival factor IL-6, ► Decreasing Cdc25C phosphatase, enhancing tumor suppressor factor p53,

  13. 6,7-Dimorpholinoalkoxy quinazoline derivatives as potent EGFR inhibitors with enhanced antiproliferative activities against tumor cells.

    PubMed

    Zhang, Yaling; Chen, Li; Xu, Hongjiang; Li, Xiabing; Zhao, Lijun; Wang, Wei; Li, Baolin; Zhang, Xiquan

    2018-03-10

    A series of novel 6,7-dimorpholinoalkoxy quinazoline derivatives was designed, synthesized and evaluated as potent EGFR inhibitors. Most of synthesized derivatives exhibited moderate to excellent antiproliferative activities against five human tumor cell lines. Compound 8d displayed the most remarkable inhibitory activities against tumor cells expressing wild type (A431, A549 and SW480 cells) or mutant (HCC827 and NCI-H1975 cells) epidermal growth factor receptor (EGFR) (with IC 50 values in the range of 0.37-4.87 μM), as well as more potent inhibitory effects against recombinant EGFR tyrosine kinase (EGFR-TK, wt or T790M) (with the IC 50 values of 7.0 and 9.3 nM, respectively). Molecular docking showed that 8d can form four hydrogen bonds with EGFR, and two of them were located in the Asp855-Phe856-Gly857 (DFG) motif of EGFR. Meanwhile, 8d can significantly block EGF-induced EGFR activation and the phosphorylation of its downstream proteins such as Akt and Erk1/2 in human NSCLC cells. Also, 8d mediated cell apoptosis and the prolongation of cell cycle progression in G0/G1-phase in A549 cells. The work would have remarkable implications for further design and development of more potent EGFR tyrosine kinase inhibitors (TKIs). Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  14. Phagocytosis of microparticles by alveolar macrophages during acute lung injury requires MerTK.

    PubMed

    Mohning, Michael P; Thomas, Stacey M; Barthel, Lea; Mould, Kara J; McCubbrey, Alexandria L; Frasch, S Courtney; Bratton, Donna L; Henson, Peter M; Janssen, William J

    2018-01-01

    Microparticles are a newly recognized class of mediators in the pathophysiology of lung inflammation and injury, but little is known about the factors that regulate their accumulation and clearance. The primary objective of our study was to determine whether alveolar macrophages engulf microparticles and to elucidate the mechanisms by which this occurs. Alveolar microparticles were quantified in bronchoalveolar fluid of mice with lung injury induced by LPS and hydrochloric acid. Microparticle numbers were greatest at the peak of inflammation and declined as inflammation resolved. Isolated, fluorescently labeled particles were placed in culture with macrophages to evaluate ingestion in the presence of endocytosis inhibitors. Ingestion was blocked with cytochalasin D and wortmannin, consistent with a phagocytic process. In separate experiments, mice were treated intratracheally with labeled microparticles, and their uptake was assessed though microscopy and flow cytometry. Resident alveolar macrophages, not recruited macrophages, were the primary cell-ingesting microparticles in the alveolus during lung injury. In vitro, microparticles promoted inflammatory signaling in LPS primed epithelial cells, signifying the importance of microparticle clearance in resolving lung injury. Microparticles were found to have phosphatidylserine exposed on their surfaces. Accordingly, we measured expression of phosphatidylserine receptors on macrophages and found high expression of MerTK and Axl in the resident macrophage population. Endocytosis of microparticles was markedly reduced in MerTK-deficient macrophages in vitro and in vivo. In conclusion, microparticles are released during acute lung injury and peak in number at the height of inflammation. Resident alveolar macrophages efficiently clear these microparticles through MerTK-mediated phagocytosis.

  15. Human Lymphoid Tissues Harbor a Distinct CD69+CXCR6+ NK Cell Population.

    PubMed

    Lugthart, Gertjan; Melsen, Janine E; Vervat, Carly; van Ostaijen-Ten Dam, Monique M; Corver, Willem E; Roelen, Dave L; van Bergen, Jeroen; van Tol, Maarten J D; Lankester, Arjan C; Schilham, Marco W

    2016-07-01

    Knowledge of human NK cells is based primarily on conventional CD56(bright) and CD56(dim) NK cells from blood. However, most cellular immune interactions occur in lymphoid organs. Based on the coexpression of CD69 and CXCR6, we identified a third major NK cell subset in lymphoid tissues. This population represents 30-60% of NK cells in marrow, spleen, and lymph node but is absent from blood. CD69(+)CXCR6(+) lymphoid tissue NK cells have an intermediate expression of CD56 and high expression of NKp46 and ICAM-1. In contrast to circulating NK cells, they have a bimodal expression of the activating receptor DNAX accessory molecule 1. CD69(+)CXCR6(+) NK cells do not express the early markers c-kit and IL-7Rα, nor killer cell Ig-like receptors or other late-differentiation markers. After cytokine stimulation, CD69(+)CXCR6(+) NK cells produce IFN-γ at levels comparable to CD56(dim) NK cells. They constitutively express perforin but require preactivation to express granzyme B and exert cytotoxicity. After hematopoietic stem cell transplantation, CD69(+)CXCR6(+) lymphoid tissue NK cells do not exhibit the hyperexpansion observed for both conventional NK cell populations. CD69(+)CXCR6(+) NK cells constitute a separate NK cell population with a distinct phenotype and function. The identification of this NK cell population in lymphoid tissues provides tools to further evaluate the cellular interactions and role of NK cells in human immunity. Copyright © 2016 by The American Association of Immunologists, Inc.

  16. Human Papillomavirus Type 18 E6 and E7 Genes Integrate into Human Hepatoma Derived Cell Line Hep G2

    PubMed Central

    Ma, Tianzhong; Su, Zhongjing; Chen, Ling; Liu, Shuyan; Zhu, Ningxia; Wen, Lifeng; Yuan, Yan; Lv, Leili; Chen, Xiancai; Huang, Jianmin; Chen, Haibin

    2012-01-01

    Background and Objectives Human papillomaviruses have been linked causally to some human cancers such as cervical carcinoma, but there is very little research addressing the effect of HPV infection on human liver cells. We chose the human hepatoma derived cell line Hep G2 to investigate whether HPV gene integration took place in liver cells as well. Methods We applied PCR to detect the possible integration of HPV genes in Hep G2 cells. We also investigated the expression of the integrated E6 and E7 genes by using RT-PCR and Western blotting. Then, we silenced E6 and E7 expression and checked the cell proliferation and apoptosis in Hep G2 cells. Furthermore, we analyzed the potential genes involved in cell cycle and apoptosis regulatory pathways. Finally, we used in situ hybridization to detect HPV 16/18 in hepatocellular carcinoma samples. Results Hep G2 cell line contains integrated HPV 18 DNA, leading to the expression of the E6 and E7 oncogenic proteins. Knockdown of the E7 and E6 genes expression reduced cell proliferation, caused the cell cycle arrest at the S phase, and increased apoptosis. The human cell cycle and apoptosis real-time PCR arrays analysis demonstrated E6 and E7-mediated regulation of some genes such as Cyclin H, UBA1, E2F4, p53, p107, FASLG, NOL3 and CASP14. HPV16/18 was found in only 9% (9/100) of patients with hepatocellular carcinoma. Conclusion Our investigations showed that HPV 18 E6 and E7 genes can be integrated into the Hep G2, and we observed a low prevalence of HPV 16/18 in hepatocellular carcinoma samples. However, the precise risk of HPV as causative agent of hepatocellular carcinoma needs further study. PMID:22655088

  17. Echovirus 6 Infects Human Exocrine and Endocrine Pancreatic Cells and Induces Pro-Inflammatory Innate Immune Response

    PubMed Central

    Sarmiento, Luis; Frisk, Gun; Anagandula, Mahesh; Hodik, Monika; Barchetta, Ilaria; Netanyah, Eitan; Cabrera-Rode, Eduardo; Cilio, Corrado M.

    2017-01-01

    Human enteroviruses (HEV), especially coxsackievirus serotype B (CVB) and echovirus (E), have been associated with diseases of both the exocrine and endocrine pancreas, but so far evidence on HEV infection in human pancreas has been reported only in islets and ductal cells. This study aimed to investigate the capability of echovirus strains to infect human exocrine and endocrine pancreatic cells. Infection of explanted human islets and exocrine cells with seven field strains of E6 caused cytopathic effect, virus titer increase and production of HEV protein VP1 in both cell types. Virus particles were found in islets and acinar cells infected with E6. No cytopathic effect or infectious progeny production was observed in exocrine cells exposed to the beta cell-tropic strains of E16 and E30. Endocrine cells responded to E6, E16 and E30 by upregulating the transcription of interferon-induced with helicase C domain 1 (IF1H1), 2′-5′-oligoadenylate synthetase 1 (OAS1), interferon-β (IFN-β), chemokine (C–X–C motif) ligand 10 (CXCL10) and chemokine (C–C motif) ligand 5 (CCL5). Echovirus 6, but not E16 or E30, led to increased transcription of these genes in exocrine cells. These data demonstrate for the first time that human exocrine cells represent a target for E6 infection and suggest that certain HEV serotypes can replicate in human pancreatic exocrine cells, while the pancreatic endocrine cells are permissive to a wider range of HEV. PMID:28146100

  18. Application of oligonucleotide array CGH to the simultaneous detection of a deletion in the nuclear TK2 gene and mtDNA depletion.

    PubMed

    Zhang, Shulin; Li, Fang-Yuan; Bass, Harold N; Pursley, Amber; Schmitt, Eric S; Brown, Blaire L; Brundage, Ellen K; Mardach, Rebecca; Wong, Lee-Jun

    2010-01-01

    Thymidine kinase 2 (TK2), encoded by the TK2 gene on chromosome 16q22, is one of the deoxyribonucleoside kinases responsible for the maintenance of mitochondrial deoxyribonucleotide pools. Defects in TK2 mainly cause a myopathic form of the mitochondrial DNA depletion syndrome (MDDS). Currently, only point mutations and small insertions and deletions have been reported in TK2 gene; gross rearrangements of TK2 gene and possible hepatic involvement in patients with TK2 mutations have not been described. We report a non-consanguineous Jordanian family with three deceased siblings due to mtDNA depletion. Sequence analysis of the father detected a heterozygous c.761T>A (p.I254N) mutation in his TK2 gene; however, point mutations in the mother were not detected. Subsequent gene dosage analysis using oligonucleotide array CGH identified an intragenic approximately 5.8-kb deletion encompassing the 5'UTR to intron 2 of her TK2 gene. Sequence analysis confirmed that the deletion spans c.1-495 to c.283-2899 of the TK2 gene (nucleotide 65,136,256-65,142,086 of chromosome 16). Analysis of liver and muscle specimens from one of the deceased infants in this family revealed compound heterozygosity for the paternal point mutation and maternal intragenic deletion. In addition, a significant reduction of the mtDNA content in liver and muscle was detected (10% and 20% of age- and tissue-matched controls, respectively). Prenatal diagnosis was performed in the third pregnancy. The fetus was found to carry both the point mutation and the deletion. This child died 6months after birth due to myopathy. A serum specimen demonstrated elevated liver transaminases in two of the infants from whom results were available. This report expands the mutation spectrum associated with TK2 deficiency. While the myopathic form of MDDS appears to be the main phenotype of TK2 mutations, liver dysfunction may also be a part of the mitochondrial depletion syndrome caused by TK2 gene defects.

  19. Effect of Wasabi Component 6-(Methylsulfinyl)hexyl Isothiocyanate and Derivatives on Human Pancreatic Cancer Cells

    PubMed Central

    Chen, Yu-Jen; Huang, Yu-Chuen; Tsai, Tung-Hu

    2014-01-01

    The naturally occurring compound 6-(methylsulfinyl)hexyl isothiocyanate (6-MITC) was isolated from Wasabia japonica (Wasabi), a pungent spice used in Japanese food worldwide. The synthetic derivatives 6-(methylsulfenyl)hexyl isothiocyanate (I7447) and 6-(methylsulfonyl)hexyl isothiocyanate (I7557) are small molecule compounds derived from 6-MITC. This study aimed to evaluate the effect of these compounds on human pancreatic cancer cells. Human pancreatic cancer cell lines PANC-1 and BxPC-3 were used to perform an MTT assay for cell viability and Liu's stain for morphological observation. The cell cycle was analyzed by DNA histogram. Aldehyde dehydrogenase (ALDH) activity was used as a marker for cancer stem cells (CSC). Western blotting was performed for the expression of proteins related to CSC signaling. The results showed that compounds 6-MITC and I7557, but not I7447, inhibited viability of both PANC-1 and BxPC-3 cells. Morphological observation showed mitotic arrest and apoptosis in 6-MITC- and I7557-treated cells. These two compounds induced G2/M phase arrest and hypoploid population. Percentages of ALDH-positive PANC-1 cells were markedly reduced by 6-MITC and I7557 treatment. The expression of CSC signaling molecule SOX2, but not NOTCH1, ABCG2, Sonic hedgehog, or OCT4, was inhibited by 6-MITC and I7557. In conclusion, wasabi compounds 6-MITC and I7557 may possess activity against the growth and CSC phenotypes of human pancreatic cancer cells. PMID:24575144

  20. Effect of Wasabi Component 6-(Methylsulfinyl)hexyl Isothiocyanate and Derivatives on Human Pancreatic Cancer Cells.

    PubMed

    Chen, Yu-Jen; Huang, Yu-Chuen; Tsai, Tung-Hu; Liao, Hui-Fen

    2014-01-01

    The naturally occurring compound 6-(methylsulfinyl)hexyl isothiocyanate (6-MITC) was isolated from Wasabia japonica (Wasabi), a pungent spice used in Japanese food worldwide. The synthetic derivatives 6-(methylsulfenyl)hexyl isothiocyanate (I7447) and 6-(methylsulfonyl)hexyl isothiocyanate (I7557) are small molecule compounds derived from 6-MITC. This study aimed to evaluate the effect of these compounds on human pancreatic cancer cells. Human pancreatic cancer cell lines PANC-1 and BxPC-3 were used to perform an MTT assay for cell viability and Liu's stain for morphological observation. The cell cycle was analyzed by DNA histogram. Aldehyde dehydrogenase (ALDH) activity was used as a marker for cancer stem cells (CSC). Western blotting was performed for the expression of proteins related to CSC signaling. The results showed that compounds 6-MITC and I7557, but not I7447, inhibited viability of both PANC-1 and BxPC-3 cells. Morphological observation showed mitotic arrest and apoptosis in 6-MITC- and I7557-treated cells. These two compounds induced G2/M phase arrest and hypoploid population. Percentages of ALDH-positive PANC-1 cells were markedly reduced by 6-MITC and I7557 treatment. The expression of CSC signaling molecule SOX2, but not NOTCH1, ABCG2, Sonic hedgehog, or OCT4, was inhibited by 6-MITC and I7557. In conclusion, wasabi compounds 6-MITC and I7557 may possess activity against the growth and CSC phenotypes of human pancreatic cancer cells.

  1. Molecular mechanism inhibiting human hepatocarcinoma cell invasion by 6-shogaol and 6-gingerol.

    PubMed

    Weng, Chia-Jui; Chou, Chai-Ping; Ho, Chi-Tang; Yen, Gow-Chin

    2012-08-01

    We previously demonstrated that 6-shogaol and 6-gingerol, two active compounds in ginger (Zingiber officinale), possess antiinvasive activity against highly metastatic hepatoma cells. The aims of this study were to evaluate the inhibitory effect and molecular mechanism underlying the transcription and translation of matrix metalloproteinases (MMPs) and urokinase-type plasminogen activator (uPA) in Hep3B cells as well as the antiangiogenic activity of 6-gingerol and 6-shogaol. By gelatin zymography and luciferase reporter gene assays, we found that 6-gingerol and 6-shogaol regulate MMP-2/-9 transcription. Moreover, 6-gingerol directly decreased expression of uPA, but the 6-shogaol-mediated decrease in uPA was accompanied by up-regulation of plasminogen activator inhibitor (PAI)-1. 6-Gingerol and 6-shogaol concentrations of ≥ 10 μM and ≥ 2.5 μM, respectively, significantly inhibited the phosphorylation of mitogen-activated protein kinase (MAPK) and PI3K/Akt signaling, the activation of NF-κB, and the translocation of NF-κB and STAT3. Incubation of 6-gingerol or 6-shogaol with human umbilical vein endothelial cells or rat aortas significantly attenuated tube formation. 6-Shogaol and 6-gingerol effectively inhibit invasion and metastasis of hepatocellular carcinoma through diverse molecular mechanisms, including inhibition of the MAPK and PI3k/Akt pathways and NF-κB and STAT3 activities to suppress expression of MMP-2/-9 and uPA and block angiogenesis. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Enhancement of in vivo antitumor activity of a novel antimitotic 1-phenylpropenone derivative, AM-132, by tumor necrosis factor-alpha or interleukin-6.

    PubMed

    Tatsumi, Y; Arioka, H; Ikeda, S; Fukumoto, H; Miyamoto, K; Fukuoka, K; Ohe, Y; Saijo, N; Nishio, K

    2001-07-01

    TK5048 and its derivatives, AM-132, AM-138, and AM-97, are recently developed antimitotic (AM) compounds. These 1-phenylpropenone derivatives induce cell cycle arrest at the G2 / M phase of the cell cycle. TK5048 inhibited tubulin polymerization in human lung cancer PC-14 cells in a concentration-dependent manner. In a polymerization assay using bovine brain tubulin, AM-132 and AM-138 were quite strong, AM-97 was moderately strong, and TK5048 was a relatively weak inhibitor of tubulin polymerization. A murine leukemia cell line resistant to a sulfonamide antimitotic agent, E7010, which binds to colchicine-binding sites on tubulin, was cross-resistant to the in vitro growth-inhibitory effect of AM compounds. Inhibition of tubulin polymerization is therefore one of the mechanisms of action of these AM compounds against tumor cells. To profile the antitumor effect of AM compounds, the in vivo antitumor effect of AM-132 was evaluated against cytokine-secreting Lewis lung carcinoma (LLC). Tumor-bearing mice were treated with intravenous AM-132 using three different treatment schedules. LLC tumors expressing tumor necrosis factor-alpha (TNF-alpha), granulocyte macrophage colony-stimulating factor (GM-CSF), or interleukin (IL)-6 were very sensitive to AM-132. In particular, LLC tumors expressing IL-6 were markedly reduced by AM-132 treatment, and showed coloring of the tumor surface and unusual hemorrhagic necrosis. These results suggest a combined effect of AM-132 and cytokines on the blood supply to tumors.

  3. Engineering of Systematic Elimination of a Targeted Chromosome in Human Cells.

    PubMed

    Sato, Hiroshi; Kato, Hiroki; Yamaza, Haruyoshi; Masuda, Keiji; Nguyen, Huong Thi Nguyen; Pham, Thanh Thi Mai; Han, Xu; Hirofuji, Yuta; Nonaka, Kazuaki

    2017-01-01

    Embryonic trisomy leads to abortion or congenital genetic disorders in humans. The most common autosomal chromosome abnormalities are trisomy of chromosomes 13, 18, and 21. Although alteration of gene dosage is thought to contribute to disorders caused by extra copies of chromosomes, genes associated with specific disease phenotypes remain unclear. To generate a normal cell from a trisomic cell as a means of etiological analysis or candidate therapy for trisomy syndromes, we developed a system to eliminate a targeted chromosome from human cells. Chromosome 21 was targeted by integration of a DNA cassette in HeLa cells that harbored three copies of chromosome 21. The DNA cassette included two inverted loxP sites and a herpes simplex virus thymidine kinase (HSV-tk) gene. This system causes missegregation of chromosome 21 after expression of Cre recombinase and subsequently enables the selection of cells lacking the chromosome by culturing in a medium that includes ganciclovir (GCV). Cells harboring only two copies of chromosome 21 were efficiently induced by transfection of a Cre expression vector, indicating that this approach is useful for eliminating a targeted chromosome.

  4. Analysis of DOK-6 function in downstream signaling of RET in human neuroblastoma cells.

    PubMed

    Kurotsuchi, Ai; Murakumo, Yoshiki; Jijiwa, Mayumi; Kurokawa, Kei; Itoh, Yasutomo; Kodama, Yoshinori; Kato, Takuya; Enomoto, Atsushi; Asai, Naoya; Terasaki, Hiroko; Takahashi, Masahide

    2010-05-01

    Point mutations and structural alterations of the RET tyrosine kinase gene cause multiple endocrine neoplasia type 2 (MEN 2) and papillary thyroid carcinoma, respectively. RET activation by glial cell line-derived neurotrophic factor (GDNF) is essential for the development of the enteric nervous system and the kidney. The signal through RET tyrosine kinase requires several adaptor proteins including the DOK (downstream of kinase) family of proteins. Of the seven members of the DOK protein family, DOK-1, -4, -5, and -6 have been reported to play roles in the GDNF-RET signaling pathway. Although DOK-6 has been shown to bind to RET and promote GDNF-induced neurite outgrowth in mouse Neuro2A cells, DOK-6 function in human cells remains unclear. In the present study, we investigated the role of DOK-6 in GDNF-RET signaling in human cells including neuroblastoma cells. DOK-6 was constitutively localized to the plasma membrane via its pleckstrin homology (PH) domain, and was phosphorylated following RET activation via a MEN2A mutation or GDNF stimulation. However, DOK-6 could not significantly affect downstream signaling and neurite outgrowth in human neuroblastoma cells. The binding affinity of the DOK-6 phosphotyrosine-binding (PTB) domain to RET was much lower than that of the DOK-1, DOK-4, and SHC PTB domains to RET. These findings indicate that DOK-6 is involved in RET signaling with less influence when compared with DOK-1, DOK-4, and SHC.

  5. Tissue kallikrein promotes cardiac neovascularization by enhancing endothelial progenitor cell functional capacity.

    PubMed

    Yao, Yuyu; Sheng, Zulong; Li, Yefei; Yan, Fengdi; Fu, Cong; Li, Yongjun; Ma, Genshan; Liu, Naifeng; Chao, Julie; Chao, Lee

    2012-08-01

    Tissue kallikrein (TK) has been demonstrated to improve neovasculogenesis after myocardial infarction (MI). In the present study, we examined the role and underlying mechanisms of TK in peripheral endothelial progenitor cell (EPC) function. Peripheral blood-derived mononuclear cells containing EPCs were isolated from rat. The in vitro effects of TK on EPC differentiation, apoptosis, migration, and vascular tube formation capacity were studied in the presence or absence of TK, kinin B(2) receptor antagonist (icatibant), and phosphatidylinositol-3 kinase inhibitor (LY294002). Apoptosis was evaluated by flow-cytometry analysis using Annexin V-FITC/PI staining, as well as western-blot analysis of Akt phosphorylation and cleaved caspase-3. Using an MI mouse model, we then examined the in vivo effects of human TK gene adenoviral vector (Ad.hTK) administration on the number of CD34(+)Flk-1(+) progenitors in the peripheral circulation, heart tissue, extent of vasculogenesis, and heart function. Administration of TK significantly increased the number of Dil-LDL/UEA-lectin double-positive early EPCs, as well as their migration and tube formation properties in vitro. Transduction of TK in cultured EPCs attenuated apoptosis induced by hypoxia and led to an increase in Akt phosphorylation and a decrease in cleaved caspase-3 levels. The beneficial effects of TK were blocked by pretreatment with icatibant and LY294002. The expression of recombinant human TK in the ischemic mouse heart significantly improved cardiac contractility and reduced infarct size 7 days after gene delivery. Compared with the Ad.Null group, Ad.hTK reduced mortality and preserved left ventricular function by increasing the number of CD34(+)Flk-1(+) EPCs and promoting the growth of capillaries and arterioles in the peri-infarct myocardium. These data provide direct evidence that TK promotes vessel growth by increasing the number of EPCs and enhancing their functional properties through the kinin B(2) receptor

  6. Taxator-tk: precise taxonomic assignment of metagenomes by fast approximation of evolutionary neighborhoods

    PubMed Central

    Dröge, J.; Gregor, I.; McHardy, A. C.

    2015-01-01

    Motivation: Metagenomics characterizes microbial communities by random shotgun sequencing of DNA isolated directly from an environment of interest. An essential step in computational metagenome analysis is taxonomic sequence assignment, which allows identifying the sequenced community members and reconstructing taxonomic bins with sequence data for the individual taxa. For the massive datasets generated by next-generation sequencing technologies, this cannot be performed with de-novo phylogenetic inference methods. We describe an algorithm and the accompanying software, taxator-tk, which performs taxonomic sequence assignment by fast approximate determination of evolutionary neighbors from sequence similarities. Results: Taxator-tk was precise in its taxonomic assignment across all ranks and taxa for a range of evolutionary distances and for short as well as for long sequences. In addition to the taxonomic binning of metagenomes, it is well suited for profiling microbial communities from metagenome samples because it identifies bacterial, archaeal and eukaryotic community members without being affected by varying primer binding strengths, as in marker gene amplification, or copy number variations of marker genes across different taxa. Taxator-tk has an efficient, parallelized implementation that allows the assignment of 6 Gb of sequence data per day on a standard multiprocessor system with 10 CPU cores and microbial RefSeq as the genomic reference data. Availability and implementation: Taxator-tk source and binary program files are publicly available at http://algbio.cs.uni-duesseldorf.de/software/. Contact: Alice.McHardy@uni-duesseldorf.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25388150

  7. Complete regression of human malignant mesothelioma xenografts following local injection of midkine promoter-driven oncolytic adenovirus

    PubMed Central

    Kubo, Shuji; Kawasaki, Yoshiko; Yamaoka, Norie; Tagawa, Masatoshi; Kasahara, Noriyuki; Terada, Nobuyuki; Okamura, Haruki

    2010-01-01

    Background Malignant mesothelioma is a highly aggressive tumor with poor prognosis. Conventional therapies for mesothelioma are generally non-curative, and new treatment paradigms are urgently needed. We hypothesized that the tumor-specific midkine (Mdk) promoter could confer transcriptional targeting to oncolytic adenoviruses for effective treatment of malignant mesothelioma. Methods We analyzed Mdk expression by quantitative RT-PCR in six human mesothelioma cell lines, and tested Mdk promoter activity by luciferase reporter assay. Based on these data, we constructed a replication-selective oncolytic adenovirus, designated AdMdk-E1-iresTK, which contains an Mdk promoter-driven adenoviral E1 gene and HSV-thymidine kinase (TK) suicide gene, and CMV promoter-driven green fluorescent protein (GFP) marker gene. Selectivity of viral replication and cytolysis were characterized in normal vs. mesothelioma cells in vitro, and intratumoral spread and antitumor efficacy were investigated in vivo. Results Mdk promoter activity was restricted in normal cells, but highly activated in mesothelioma cell lines. AdMdk-E1-iresTK was seen to efficiently replicate, produce viral progeny, and spread in multiple mesothelioma cell lines. Lytic spread of AdMdk-E1-iresTK mediated efficient killing of these mesothelioma cells, and its in vitro cytocidal effect was significantly enhanced by treatment with the prodrug, ganciclovir. Intratumoral injection of AdMdk-E1-iresTK caused complete regression of MESO4 and MSTO human mesothelioma xenografts in athymic mice. In vivo fluorescence imaging demonstrated intratumoral spread of AdMdk-E1-iresTK-derived signals, which vanished after tumor eradication. Conclusions These data indicate that transcriptional targeting of viral replication by the Mdk promoter represents a promising general strategy for oncolytic virotherapy of cancers with upregulated Mdk expression, including malignant mesothelioma. PMID:20635326

  8. Production and characterisation of a novel chicken IgY antibody raised against C-terminal peptide from human thymidine kinase 1.

    PubMed

    Wu, Chuanjing; Yang, Rongjiang; Zhou, Ji; Bao, Shing; Zou, Li; Zhang, Pinggan; Mao, Yongrong; Wu, Jianping; He, Qimin

    2003-06-01

    Egg yolk is a good source of highly specific antibodies against mammalian antigens because of the phylogenetic distance between birds and mammals. Chicken egg yolk immunoglobulins (IgY) were generated to a synthetic 31-amino acid peptide from the C-terminal of human HeLa thymidine kinase 1 (TK1) enzyme. The anti-TK1 IgY antibody was purified using affinity chromatography against the 31-amino acid peptide. The purified antibody inhibited the catalytic activity of the TK1 enzyme in the CEM TK1(+) cells and recognized the 25-kDa subunit and tetrameric form of TK1, which has a pI value of 8.3. No immunoreaction was observed in CEM TK1(-) cells. Western blot of the serum TK1 (S-TK1) also showed that only a single band was found in the serum of patients with malignancies. No band was seen in healthy serum. Furthermore, dot blots and enhanced chemiluminescence (ECL) detection of S-TK1 performed on sera of preoperative patients with gastric cancer (GC) (n=31) and healthy controls (n=62) showed that the levels of S-TK1 in the sera of cancer patients were significantly different (P<0.01). Using ECL dot blots, 0.1 pg of TK1 in 3 microl sera could be detected. Immunohistostaining of tissues in the 11 advanced-stage cancer patients (four breast carcinomas, three hepatocarcinomas and four thyroid carcinomas) indicated that a strong staining of TK1 enzyme was found in the cytoplasm of malignant cells. No staining or weak staining was seen in normal tissues. We suggest that screening for TK1 using anti-TK1 IgY may be potentially useful for serological and immunohistochemical detection of TK1 as an early prognosis and for monitoring patients undergoing treatment.

  9. Effects of pre-radiation exposure to LLLT of normal and malignant cells.

    PubMed

    Barasch, Andrei; Raber-Durlacher, Judith; Epstein, Joel B; Carroll, James

    2016-06-01

    Low-level laser therapy (LLLT) efficacy for the prevention of cancer treatment-induced oral mucositis (OM) has been amply described. However, potential protection of malignant cells remains a legitimate concern for clinicians. We tested LLLT-induced protection from ionizing radiation killing in both malignant and normal cells. We treated six groups each of normal human lymphoblasts (TK6) and human leukemia cells (HL60) with He-Ne LLLT (632.8 nm, 35 mW, CW, 1 cm(2), 35 mW/cm(2) for 3-343 s, 0.1-12 J/cm(2)) prior to exposure to ionizing radiation (IR). Cells were then incubated and counted daily to determine their survival. Optimization of IR dose and incubation time was established prior to testing the effect of LLLT. Growth curves for both cell lines showed significant declines after exposure to 50-200 cGy IR when compared to controls. Pre-radiation exposure to LLLT (4.0 J/cm(2)) followed by 1-h incubation blocked this decline in TK6 but not in HL60 cells. The latter cells were sensitized to the killing effects of IR in a dose-dependent manner. This study shows that pre-IR LLLT treatment results in a differential response of normal vs. malignant cells, suggesting that LLLT does not confer protection and may even sensitize cancer cells to IR killing.

  10. Poor recognition of O6-isopropyl dG by MGMT triggers double strand break-mediated cell death and micronucleus induction in FANC-deficient cells

    PubMed Central

    Hashimoto, Kiyohiro; Sharma, Vyom; Sasanuma, Hiroyuki; Tian, Xu; Takata, Minoru; Takeda, Shunichi; Swenberg, James A.; Nakamura, Jun

    2016-01-01

    Isopropyl methanesulfonate (IPMS) is the most potent genotoxic compound among methanesulfonic acid esters. The genotoxic potential of alkyl sulfonate esters is believed to be due to their alkylating ability of the O6 position of guanine. Understanding the primary repair pathway activated in response to IPMS-induced DNA damage is important to profile the genotoxic potential of IPMS. In the present study, both chicken DT40 and human TK6 cell-based DNA damage response (DDR) assays revealed that dysfunction of the FANC pathway resulted in higher sensitivity to IPMS compared to EMS or MMS. O6-alkyl dG is primarily repaired by methyl guanine methyltransferase (MGMT), while isopropyl dG is less likely to be a substrate for MGMT. Comparison of the cytotoxic potential of IPMS and its isomer n-propyl methanesulfonate (nPMS) revealed that the isopropyl moiety avoids recognition by MGMT and leads to higher cytotoxicity. Next, the micronucleus (MN) assay showed that FANC deficiency increases the sensitivity of DT40 cells to MN induction by IPMS. Pretreatment with O6-benzyl guanine (OBG), an inhibitor of MGMT, increased the MN frequency in DT40 cells treated with nPMS, but not IPMS. Lastly, IPMS induced more double strand breaks in FANC-deficient cells compared to wild-type cells in a time-dependent manner. All together, these results suggest that IPMS-derived O6-isopropyl dG escapes recognition by MGMT, and the unrepaired DNA damage leads to double strand breaks, resulting in MN induction. FANC, therefore, plays a pivotal role in preventing MN induction and cell death caused by IPMS. PMID:27486975

  11. Adult cases of mitochondrial DNA depletion due to TK2 defect: an expanding spectrum.

    PubMed

    Béhin, A; Jardel, C; Claeys, K G; Fagart, J; Louha, M; Romero, N B; Laforêt, P; Eymard, B; Lombès, A

    2012-02-28

    In this study we aim to demonstrate the occurrence of adult forms of TK2 mutations causing progressive mitochondrial myopathy with significant muscle mitochondrial DNA (mtDNA) depletion. Patients' investigations included serum creatine kinase, blood lactate, electromyographic, echocardiographic, and functional respiratory analyses as well as TK2 gene sequencing and TK2 activity measurement. Mitochondrial activities and mtDNA were analyzed in the patients' muscle biopsy. The 3 adult patients with TK2 mutations presented with slowly progressive myopathy compatible with a fairly normal life during decades. Apart from its much slower progression, these patients' phenotype closely resembled that of pediatric cases including early onset, absence of CNS symptoms, generalized muscle weakness predominating on axial and proximal muscles but affecting facial, ocular, and respiratory muscles, typical mitochondrial myopathy with a mosaic pattern of COX-negative and ragged-red fibers, combined mtDNA-dependent respiratory complexes deficiency and mtDNA depletion. In accordance with the disease's relatively slow progression, the residual mtDNA content was higher than that observed in pediatric cases. That difference was not explained by the type of the TK2 mutations or by the residual TK2 activity. TK2 mutations can cause mitochondrial myopathy with a slow progression. Comparison of patients with similar mutations but different disease progression might address potential mechanisms of mtDNA maintenance modulation.

  12. Plasmodium falciparum full life cycle and Plasmodium ovale liver stages in humanized mice.

    PubMed

    Soulard, Valérie; Bosson-Vanga, Henriette; Lorthiois, Audrey; Roucher, Clémentine; Franetich, Jean-François; Zanghi, Gigliola; Bordessoulles, Mallaury; Tefit, Maurel; Thellier, Marc; Morosan, Serban; Le Naour, Gilles; Capron, Frédérique; Suemizu, Hiroshi; Snounou, Georges; Moreno-Sabater, Alicia; Mazier, Dominique

    2015-07-24

    Experimental studies of Plasmodium parasites that infect humans are restricted by their host specificity. Humanized mice offer a means to overcome this and further provide the opportunity to observe the parasites in vivo. Here we improve on previous protocols to achieve efficient double engraftment of TK-NOG mice by human primary hepatocytes and red blood cells. Thus, we obtain the complete hepatic development of P. falciparum, the transition to the erythrocytic stages, their subsequent multiplication, and the appearance of mature gametocytes over an extended period of observation. Furthermore, using sporozoites derived from two P. ovale-infected patients, we show that human hepatocytes engrafted in TK-NOG mice sustain maturation of the liver stages, and the presence of late-developing schizonts indicate the eventual activation of quiescent parasites. Thus, TK-NOG mice are highly suited for in vivo observations on the Plasmodium species of humans.

  13. [Human herpesvirus-6 pneumonitis following autologous peripheral blood stem cell transplantation].

    PubMed

    Saitoh, Yuu; Gotoh, Moritaka; Yoshizawa, Seiichiro; Akahane, Daigo; Fujimoto, Hiroaki; Ito, Yoshikazu; Ohyashiki, Kazuma

    2018-01-01

    A-46-year-old man was diagnosed with peripheral T cell lymphoma, not otherwise specified. He achieved a complete remission after pirarubicin, cyclophosphamide, vincristine, and prednisolone (THP-COP) therapy and successful autologous peripheral blood stem-cell transplantation (AutoSCT). However, 6 months post AutoSCT, he complained of fever. Chest computed tomography of the patient displayed bilateral interstitial pneumonitis. Human herpesvirus-6 (HHV-6) DNA was detected in his bronchoalveolar lavage fluid. Therefore, the patient was confirmed for HHV-6 pneumonitis. The treatment with foscarnet was effective, and no relapse was noticed in the patient. Besides, we have experienced pneumonitis of unknown origin in some patients after autologous or allogeneic stem-cell transplantations. Moreover, most of the above patients were clinically diagnosed using serum or plasma markers. Therefore, examining respiratory symptoms after AutoSCT would enable a more accurate diagnosis as well as treatment of patients with HHV-6 pneumonitis.

  14. A combination hepatoma-targeted therapy based on nanotechnology: pHRE-Egr1-HSV-TK/131I-antiAFPMcAb-GCV/MFH

    NASA Astrophysics Data System (ADS)

    Lin, Mei; Huang, Junxing; Jiang, Xingmao; Zhang, Jia; Yu, Hong; Ye, Jun; Zhang, Dongsheng

    2016-09-01

    Combination targeted therapy is a promising cancer therapeutic strategy. Here, using PEI-Mn0.5Zn0.5Fe2O4 nanoparticles (PEI-MZF-NPs) as magnetic media for MFH (magnetic fluid hyperthermia) and gene transfer vector for gene-therapy, a combined therapy, pHRE-Egr1-HSV-TK/131I-antiAFPMcAb-GCV/MFH, for hepatoma is developed. AntiAFPMcAb (Monoclonal antibody AFP) is exploited for targeting. The plasmids pHRE-Egr1-HSV-TK are achieved by incorporation of pEgr1-HSV-TK and pHRE-Egr1-EGFP. Restriction enzyme digestion and PCR confirm the recombinant plasmids pHRE-Egr1-HSV-TK are successfully constructed. After exposure to the magnetic field, PEI-MZF-NPs/pHRE-Egr1-EGFP fluid is warmed rapidly and then the temperature is maintained at 43 °C or so, which is quite appropriate for cancer treatment. The gene expression reaches the peak when treated with 200 μCi 131I for 24 hours, indicating that the dose of 200 μCi might be the optimal dose for irradiation and 24 h irradiation later is the best time to initiate MFH. The in vitro and in vivo experiments demonstrate that pHRE-Egr1-HSV-TK/131I-antiAFPMcAb-GCV/MFH can greatly suppress hepatic tumor cell proliferation and induce cell apoptosis and necrosis and effectively inhibit the tumor growth, much better than any monotherapy does alone. Furthermore, the combination therapy has few or no adverse effects. It might be applicable as a strategy to treat hepatic cancer.

  15. Purification and characterization of 2-oxoglutarate:ferredoxin oxidoreductase from a thermophilic, obligately chemolithoautotrophic bacterium, Hydrogenobacter thermophilus TK-6.

    PubMed Central

    Yoon, K S; Ishii, M; Igarashi, Y; Kodama, T

    1996-01-01

    2-Oxoglutarate:ferredoxin oxidoreductase from a thermophilic, obligately autotrophic, hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus TK-6, was purified to homogeneity by precipitation with ammonium sulfate and by fractionation by DEAE-Sepharose CL-6B, polyacrylate-quaternary amine, hydroxyapatite, and Superdex-200 chromatography. The purified enzyme had a molecular mass of about 105 kDa and comprised two subunits (70 kDa and 35 kDa). The activity of the 2-oxoglutarate:ferredoxin oxidoreductase was detected by the use of 2-oxoglutarate, coenzyme A, and one of several electron acceptors in substrate amounts (ferredoxin isolated from H. thermophilus, flavin adenine dinucleotide, flavin mononucleotide, or methyl viologen). NAD, NADP, and ferredoxins from Chlorella spp. and Clostridium pasteurianum were ineffective. The enzyme was extremely thermostable; the temperature optimum for 2-oxoglutarate oxidation was above 80 degrees C, and the time for a 50% loss of activity at 70 degrees C under anaerobic conditions was 22 h. The optimum pH for a 2-oxoglutarate oxidation reaction was 7.6 to 7.8. The apparent Km values for 2-oxoglutarate and coenzyme A at 70 degrees C were 1.42 mM and 80 microM, respectively. PMID:8655524

  16. Silencing expression of the catalytic subunit of DNA-dependent protein kinase by small interfering RNA sensitizes human cells for radiation-induced chromosome damage, cell killing, and mutation

    NASA Technical Reports Server (NTRS)

    Peng, Yuanlin; Zhang, Qinming; Nagasawa, Hatsumi; Okayasu, Ryuichi; Liber, Howard L.; Bedford, Joel S.

    2002-01-01

    Targeted gene silencing in mammalian cells by RNA interference (RNAi) using small interfering RNAs (siRNAs) was recently described by Elbashir et al. (S. M. Elbashir et al., Nature (Lond.), 411: 494-498, 2001). We have used this methodology in several human cell strains to reduce expression of the Prkdc (DNA-PKcs) gene coding for the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) that is involved in the nonhomologous end joining of DNA double-strand breaks. We have also demonstrated a radiosensitization for several phenotypic endpoints of radiation damage. In low-passage normal human fibroblasts, siRNA knock-down of DNA-PKcs resulted in a reduced capacity for restitution of radiation-induced interphase chromosome breaks as measured by premature chromosome condensation, an increased yield of acentric chromosome fragments at the first postirradiation mitosis, and an increased radiosensitivity for cell killing. For three strains of related human lymphoblasts, DNA-PKcs-targeted siRNA transfection resulted in little or no increase in radiosensitivity with respect to cell killing, a 1.5-fold decrease in induced mutant yield in TK6- and p53-null NH32 cells, but about a 2-fold increase in induced mutant yield in p53-mutant WTK1 cells at both the hypoxanthine quanine phosphoribosyl transferase (hprt) and the thymidine kinase loci.

  17. Myopathic mtDNA Depletion Syndrome Due to Mutation in TK2 Gene.

    PubMed

    Martín-Hernández, Elena; García-Silva, María Teresa; Quijada-Fraile, Pilar; Rodríguez-García, María Elena; Hernández-Laín, Aurelio; Coca-Robinot, David; Rivera, Henry; Fernández-Toral, Joaquín; Arenas, Joaquín; Martín, MiguelÁngel; Martínez-Azorín, Francisco

    2016-02-29

    Whole-exome sequencing (WES) was used to identify the disease gene(s) in a Spanish girl with failure to thrive, muscle weakness, mild facial weakness, elevated creatine kinase (CK), deficiency of mitochondrial complex III and depletion of mtDNA. With WES data, it was possible to get the whole mtDNA sequencing and discard any pathogenic variant in this genome. The analysis of whole exome uncovered a homozygous pathogenic mutation in Thymidine kinase 2 gene (TK2; NM_004614.4:c.323C>T, p.T108M). TK2 mutations have been identified mainly in patients with the myopathic form of mtDNA depletion syndromes (MDS). This patient presents an atypical TK2 related-myopathic form of MDS, because despite having a very low content of mtDNA (<20%), she presents a slower and less severe evolution of the disease. In conclusion, our data confirm the role of TK2 gene in MDS and expanded the phenotypic spectrum.

  18. Myopathic mtDNA Depletion Syndrome Due to Mutation in TK2 Gene.

    PubMed

    Martín-Hernández, Elena; García-Silva, María Teresa; Quijada-Fraile, Pilar; Rodríguez-García, María Elena; Rivera, Henry; Hernández-Laín, Aurelio; Coca-Robinot, David; Fernández-Toral, Joaquín; Arenas, Joaquín; Martín, Miguel A; Martínez-Azorín, Francisco

    2017-01-01

    Whole-exome sequencing was used to identify the disease gene(s) in a Spanish girl with failure to thrive, muscle weakness, mild facial weakness, elevated creatine kinase, deficiency of mitochondrial complex III and depletion of mtDNA. With whole-exome sequencing data, it was possible to get the whole mtDNA sequencing and discard any pathogenic variant in this genome. The analysis of whole exome uncovered a homozygous pathogenic mutation in thymidine kinase 2 gene ( TK2; NM_004614.4:c.323 C>T, p.T108M). TK2 mutations have been identified mainly in patients with the myopathic form of mtDNA depletion syndromes. This patient presents an atypical TK2-related myopathic form of mtDNA depletion syndromes, because despite having a very low content of mtDNA (<20%), she presents a slower and less severe evolution of the disease. In conclusion, our data confirm the role of TK2 gene in mtDNA depletion syndromes and expanded the phenotypic spectrum.

  19. B cells are critical to T-cell-mediated antitumor immunity induced by a combined immune-stimulatory/conditionally cytotoxic therapy for glioblastoma.

    PubMed

    Candolfi, Marianela; Curtin, James F; Yagiz, Kader; Assi, Hikmat; Wibowo, Mia K; Alzadeh, Gabrielle E; Foulad, David; Muhammad, A K M G; Salehi, Sofia; Keech, Naomi; Puntel, Mariana; Liu, Chunyan; Sanderson, Nicholas R; Kroeger, Kurt M; Dunn, Robert; Martins, Gislaine; Lowenstein, Pedro R; Castro, Maria G

    2011-10-01

    We have demonstrated that modifying the tumor microenvironment through intratumoral administration of adenoviral vectors (Ad) encoding the conditional cytotoxic molecule, i.e., HSV1-TK and the immune-stimulatory cytokine, i.e., fms-like tyrosine kinase 3 ligand (Flt3L) leads to T-cell-dependent tumor regression in rodent models of glioblastoma. We investigated the role of B cells during immune-mediated glioblastoma multiforme regression. Although treatment with Ad-TK+Ad-Flt3L induced tumor regression in 60% of wild-type (WT) mice, it completely failed in B-cell-deficient Igh6(-/-) mice. Tumor-specific T-cell precursors were detected in Ad-TK+Ad-Flt3L-treated WT mice but not in Igh6(-/-) mice. The treatment also failed in WT mice depleted of total B cells or marginal zone B cells. Because we could not detect circulating antibodies against tumor cells and the treatment was equally efficient in WT mice and in mice with B-cell-specific deletion of Prdm 1 (encoding Blimp-1), in which B cells are present but unable to fully differentiate into antibody-secreting plasma cells, tumor regression in this model is not dependent on B cells' production of tumor antigen-specific immunoglobulins. Instead, B cells seem to play a role as antigen-presenting cells (APCs). Treatment with Ad-TK+Ad-Flt3L led to an increase in the number of B cells in the cervical lymph nodes, which stimulated the proliferation of syngeneic T cells and induced clonal expansion of antitumor T cells. Our data show that B cells act as APCs, playing a critical role in clonal expansion of tumor antigen-specific T cells and brain tumor regression.

  20. The human phosphotyrosine signaling network: Evolution and hotspots of hijacking in cancer

    PubMed Central

    Li, Lei; Tibiche, Chabane; Fu, Cong; Kaneko, Tomonori; Moran, Michael F.; Schiller, Martin R.; Li, Shawn Shun-Cheng; Wang, Edwin

    2012-01-01

    Phosphotyrosine (pTyr) signaling, which plays a central role in cell–cell and cell–environment interactions, has been considered to be an evolutionary innovation in multicellular metazoans. However, neither the emergence nor the evolution of the human pTyr signaling system is currently understood. Tyrosine kinase (TK) circuits, each of which consists of a TK writer, a kinase substrate, and a related reader, such as Src homology (SH) 2 domains and pTyr-binding (PTB) domains, comprise the core machinery of the pTyr signaling network. In this study, we analyzed the evolutionary trajectories of 583 literature-derived and 50,000 computationally predicted human TK circuits in 19 representative eukaryotic species and assigned their evolutionary origins. We found that human TK circuits for intracellular pTyr signaling originated largely from primitive organisms, whereas the inter- or extracellular signaling circuits experienced significant expansion in the bilaterian lineage through the “back-wiring” of newly evolved kinases to primitive substrates and SH2/PTB domains. Conversely, the TK circuits that are involved in tissue-specific signaling evolved mainly in vertebrates by the back-wiring of vertebrate substrates to primitive kinases and SH2/PTB domains. Importantly, we found that cancer signaling preferentially employs the pTyr sites, which are linked to more TK circuits. Our work provides insights into the evolutionary paths of the human pTyr signaling circuits and suggests the use of a network approach for cancer intervention through the targeting of key pTyr sites and their associated signaling hubs in the network. PMID:22194470

  1. The therapeutic effect of PEI-Mn0.5Zn0.5Fe2O4 nanoparticles/pEgr1-HSV-TK/GCV associated with radiation and magnet-induced heating on hepatoma

    NASA Astrophysics Data System (ADS)

    Lin, Mei; Huang, Junxing; Zhang, Jia; Wang, Li; Xiao, Wei; Yu, Hong; Li, Yuntao; Li, Hongbo; Yuan, Chenyan; Hou, Xinxin; Zhang, Hao; Zhang, Dongsheng

    2013-01-01

    Comprehensive therapy based on the integration of hyperthermia, radiation, gene therapy and chemotherapy is a promising area of study in cancer treatment. Using PEI-Mn0.5Zn0.5Fe2O4 nanoparticles (PEI-MZF-NPs) as a gene transfer vector, the authors transfected self-prepared pEgr1-HSV-TK into HepG2 cells and measured the expression of the exogenous gene HSV-TK by RT-PCR. The results showed that HSV-TK was successfully transfected into HepG2 cells and the expression levels of HSV-TK remained stable. Besides, PEI-MZF-NPs were used as magnetic media for thermotherapy to treat hepatoma by magnet-induced heating, combined with radiation-gene therapy. Both in vitro and in vivo results suggest that this combined treatment with gene, radiation and heating has a better therapeutic effect than any of them alone. The apoptotic rate and necrotic rate of the combined treatment group was 51.84% and 15.45%, respectively. In contrast, it was only 20.55% and 6.80% in the radiation-gene group, 7.49% and 3.62% in the radiation-alone group, 15.23% and 7.90% in the heating-alone group, and only 3.52% and 2.16% in the blank control group. The inhibition rate of cell proliferation (88.5%) of the combined treatment group was significantly higher than that of the radiation-gene group (59.5%), radiation-alone group (37.6%) and heating-alone group (60.6%). The tumor volume and mass inhibition rate of the combined treatment group was 94.45% and 93.38%, respectively, significantly higher than 41.28% and 33.58% of the radiation-alone group, 60.76% and 52.18% of the radiation-gene group, 79.91% and 77.40% of the heating-alone group. It is therefore concluded that this combined application of heating, radiation and gene therapy has a good synergistic and complementary effect and PEI-MZF-NPs can act as a novel non-viral gene vector and magnetic induction medium, which offers a viable approach for the treatment of cancer.

  2. Enhancement of in vivo Antitumor Activity of a Novel Antimitotic 1‐Phenylpropenone Derivative, AM‐132, by Tumor Necrosis Factor‐cc or Interleukin‐6

    PubMed Central

    Tatsumi, Yasuaki; Arioka, Hitoshi; Ikeda, Shun‐ichi; Fukumoto, Hisao; Miyamoto, Ken‐ichi; Fukuoka, Kazuya; Ohe, Yuichiro; Saijo, Nagahiro

    2001-01-01

    TK5048 and its derivatives, AM‐132, AM‐138, and AM‐97, are recently developed antimitotic (AM) compounds. These 1‐phenylpropenone derivatives induce cell cycle arrest at the G2/M phase of the cell cycle. TK5048 inhibited tubulin polymerization in human lung cancer PC‐14 cells in a concentration‐dependent manner. In a polymerization assay using bovine brain tubulin, AM‐132 and AM‐138 were quite strong, AM‐97 was moderately strong, and TK5048 was a relatively weak inhibitor of tubulin polymerization. A murine leukemia cell line resistant to a sulfonamide antimitotic agent, E7010, which binds to colchicine‐binding sites on tubulin, was cross‐resistant to the in vitro growth‐inhibitory effect of AM compounds. Inhibition of tubulin polymerization is therefore one of the mechanisms of action of these AM compounds against tumor cells. To profile the antitumor effect of AM compounds, the in vivo antitumor effect of AM‐132 was evaluated against cytokine‐secreting Lewis lung carcinoma (LLC). Tumor‐bearing mice were treated with intravenous AM‐132 using three different treatment schedules. LLC tumors expressing tumor necrosis factor‐a (TNF‐α), granulocyte macrophage colony‐stimulating factor (GM‐CSF), or interleukin (TL)‐6 were very sensitive to AM‐132. In particular, LLC tumors expressing IL‐6 were markedly reduced by AM‐132 treatment, and showed coloring of the tumor surface and unusual hemorrhagic necrosis. These results suggest a combined effect of AM‐132 and cytokines on the blood supply to tumors. PMID:11473728

  3. Glycosyltransferase ST6GAL1 contributes to the regulation of pluripotency in human pluripotent stem cells

    PubMed Central

    Wang, Yu-Chieh; Stein, Jason W.; Lynch, Candace L.; Tran, Ha T.; Lee, Chia-Yao; Coleman, Ronald; Hatch, Adam; Antontsev, Victor G.; Chy, Hun S.; O’Brien, Carmel M.; Murthy, Shashi K.; Laslett, Andrew L.; Peterson, Suzanne E.; Loring, Jeanne F.

    2015-01-01

    Many studies have suggested the significance of glycosyltransferase-mediated macromolecule glycosylation in the regulation of pluripotent states in human pluripotent stem cells (hPSCs). Here, we observed that the sialyltransferase ST6GAL1 was preferentially expressed in undifferentiated hPSCs compared to non-pluripotent cells. A lectin which preferentially recognizes α-2,6 sialylated galactosides showed strong binding reactivity with undifferentiated hPSCs and their glycoproteins, and did so to a much lesser extent with differentiated cells. In addition, downregulation of ST6GAL1 in undifferentiated hPSCs led to a decrease in POU5F1 (also known as OCT4) protein and significantly altered the expression of many genes that orchestrate cell morphogenesis during differentiation. The induction of cellular pluripotency in somatic cells was substantially impeded by the shRNA-mediated suppression of ST6GAL1, partially through interference with the expression of endogenous POU5F1 and SOX2. Targeting ST6GAL1 activity with a sialyltransferase inhibitor during cell reprogramming resulted in a dose-dependent reduction in the generation of human induced pluripotent stem cells (hiPSCs). Collectively, our data indicate that ST6GAL1 plays an important role in the regulation of pluripotency and differentiation in hPSCs, and the pluripotent state in human cells can be modulated using pharmacological tools to target sialyltransferase activity. PMID:26304831

  4. Senescence of immortal human fibroblasts by the introduction of normal human chromosome 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandhu, A.K.; Hubbard, K.; Kaur, G.P.

    1994-06-07

    In these studies the authors show that introduction of a normal human chromosome 6 or 6q can suppress the immortal phenotype of simian virus 40-transformed human fibroblasts (SV/HF). Normal human fibroblasts have a limited life span in culture. Immortal clones of SV/HF displayed nonrandom rearrangements in chromosome 6. Single human chromosomes present in mouse/human monochromosomal hybrids were introduced into SV/HF via microcell fusion and maintained by selection for a dominant selectable marker gpt, previously integrated into the human chromosome. Clones of SV/HF cells bearing chromosome 6 displayed limited potential for cell division and morphological characteristics of senescent cells. The lossmore » of chromosome 6 from the suppressed clones correlated with the reappearance of immortal clones. Introduced chromosome 6 in the senescing cells was distinguished from those of parental cells by analysis for DNA sequences specific for the donor chromosome. The results further show that suppression of immortal phenotype in SV/HF is specific to chromosome 6. Introduction of individual human chromosomes 2, 8, or 19 did not impart cellular senescence in SV/HF. In addition, introduction of chromosome 6 into human glioblastoma cells did not lead to senescence. Based upon these results the authors propose that at least one of the genes (SEN6) for cellular senescence in human fibroblasts is present on the long arm of chromosome 6.« less

  5. Multiple Mechanisms Are Involved in 6-Gingerol-Induced Cell Growth Arrest and Apoptosis in Human Colorectal Cancer Cells

    PubMed Central

    Lee, Seong-Ho; Cekanova, Maria; Baek, Seung Joon

    2008-01-01

    6-Gingerol, a natural product of ginger, has been known to possess anti-tumorigenic and pro-apoptotic activities. However, the mechanisms by which it prevents cancer are not well understood in human colorectal cancer. Cyclin D1 is a proto-oncogene that is overexpressed in many cancers and plays a role in cell proliferation through activation by β-catenin signaling. Nonsteroidal anti-inflammatory drug (NSAID)-activated gene-1 (NAG-1) is a cytokine associated with pro-apoptotic and anti-tumorigenic properties. In the present study, we examined whether 6-gingerol influences cyclin D1 and NAG-1 expression and determined the mechanisms by which 6-gingerol affects the growth of human colorectal cancer cells in vitro. 6-Gingerol treatment suppressed cell proliferation and induced apoptosis and G1 cell cycle arrest. Subsequently, 6-gingerol suppressed cyclin D1 expression and induced NAG-1 expression. Cyclin D1 suppression was related to inhibition of β-catenin translocation and cyclin D1 proteolysis. Furthermore, experiments using inhibitors and siRNA transfection confirm the involvement of the PKCε and glycogen synthase kinase (GSK)-3β pathways in 6-gingerol-induced NAG-1 expression. The results suggest that 6-gingerol stimulates apoptosis through upregulation of NAG-1 and G1 cell cycle arrest through downregulation of cyclin D1. Multiple mechanisms appear to be involved in 6-gingerol action, including protein degradation as well as β-catenin, PKCε, and GSK-3β pathways. PMID:18058799

  6. Comparative Study of 6-Mercaptopurine Metabolism in Human Leukemic Leukocytes and L1210 Cells

    PubMed Central

    Higuchi, Tomihiko; Nakamura, Toru; Uchino, Haruto; Wakisaka, Gyoichi

    1977-01-01

    Leukocytes from patients with leukemia and L1210 cells from mice were examined for the rate of formation and cellular concentration of phosphoribosylpyrophosphate, the rate of thioinosinic acid formation, and a number of selected enzymes involved in purine nucleotide synthesis. The amount of thioinosinic acid formed in L1210 cells was much higher than that in human leukemic leukocytes. In cell extracts, the synthesis of thioinosinic acid was similar in both cell types, and the amount of purine phosphoribosyltransferase was not rate limiting in either case. Much higher concentrations and rates of formation of phosphoribosylpyrophosphate were found in L1210 cells than in human leukemic leukocytes. The difference in response to 6-mercaptopurine between L1210 cells and human leukemic leukocytes might be attributed to their difference in supply of phosphoribosylpyrophosphate. Phosphoribosylpyrophosphate-amidotransferase was found to be high in L1210 cells, but was not detected in human leukemic leukocytes. PMID:921247

  7. Enrichment of human embryonic stem cell-derived NKX6.1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo.

    PubMed

    Rezania, Alireza; Bruin, Jennifer E; Xu, Jean; Narayan, Kavitha; Fox, Jessica K; O'Neil, John J; Kieffer, Timothy J

    2013-11-01

    Human embryonic stem cells (hESCs) are considered a potential alternative to cadaveric islets as a source of transplantable cells for treating patients with diabetes. We previously described a differentiation protocol to generate pancreatic progenitor cells from hESCs, composed of mainly pancreatic endoderm (PDX1/NKX6.1-positive), endocrine precursors (NKX2.2/synaptophysin-positive, hormone/NKX6.1-negative), and polyhormonal cells (insulin/glucagon-positive, NKX6.1-negative). However, the relative contributions of NKX6.1-negative versus NKX6.1-positive cell fractions to the maturation of functional β-cells remained unclear. To address this question, we generated two distinct pancreatic progenitor cell populations using modified differentiation protocols. Prior to transplant, both populations contained a high proportion of PDX1-expressing cells (~85%-90%) but were distinguished by their relatively high (~80%) or low (~25%) expression of NKX6.1. NKX6.1-high and NKX6.1-low progenitor populations were transplanted subcutaneously within macroencapsulation devices into diabetic mice. Mice transplanted with NKX6.1-low cells remained hyperglycemic throughout the 5-month post-transplant period whereas diabetes was reversed in NKX6.1-high recipients within 3 months. Fasting human C-peptide levels were similar between groups throughout the study, but only NKX6.1-high grafts displayed robust meal-, glucose- and arginine-responsive insulin secretion as early as 3 months post-transplant. NKX6.1-low recipients displayed elevated fasting glucagon levels. Theracyte devices from both groups contained almost exclusively pancreatic endocrine tissue, but NKX6.1-high grafts contained a greater proportion of insulin-positive and somatostatin-positive cells, whereas NKX6.1-low grafts contained mainly glucagon-expressing cells. Insulin-positive cells in NKX6.1-high, but not NKX6.1-low grafts expressed nuclear MAFA. Collectively, this study demonstrates that a pancreatic endoderm

  8. A soluble NADH-dependent fumarate reductase in the reductive tricarboxylic acid cycle of Hydrogenobacter thermophilus TK-6.

    PubMed

    Miura, Akane; Kameya, Masafumi; Arai, Hiroyuki; Ishii, Masaharu; Igarashi, Yasuo

    2008-11-01

    Fumarate reductase (FRD) is an enzyme that reduces fumarate to succinate. In many organisms, it is bound to the membrane and uses electron donors such as quinol. In this study, an FRD from a thermophilic chemolithoautotrophic bacterium, Hydrogenobacter thermophilus TK-6, was purified and characterized. FRD activity using NADH as an electron donor was not detected in the membrane fraction but was found in the soluble fraction. The purified enzyme was demonstrated to be a novel type of FRD, consisting of five subunits. One subunit showed high sequence identity to the catalytic subunits of known FRDs. Although the genes of typical FRDs are assembled in a cluster, the five genes encoding the H. thermophilus FRD were distant from each other in the genome. Furthermore, phylogenetic analysis showed that the H. thermophilus FRD was located in a distinct position from those of known soluble FRDs. This is the first report of a soluble NADH-dependent FRD in Bacteria and of the purification of a FRD that operates in the reductive tricarboxylic acid cycle.

  9. Administration of herpes simplex-thymidine kinase-expressing donor T cells with a T-cell-depleted allogeneic marrow graft.

    PubMed

    Tiberghien, P; Ferrand, C; Lioure, B; Milpied, N; Angonin, R; Deconinck, E; Certoux, J M; Robinet, E; Saas, P; Petracca, B; Juttner, C; Reynolds, C W; Longo, D L; Hervé, P; Cahn, J Y

    2001-01-01

    Administration of donor T cells expressing the herpes simplex-thymidine kinase (HS-tk) with a hematopoietic stem cell (HSC) transplantation could allow, if graft-versus-host disease (GVHD) was to occur, a selective in vivo depletion of these T cells by the use of ganciclovir (GCV). The study evaluates the feasibility of such an approach. Escalating numbers of donor HS-tk-expressing CD3(+) gene-modified cells (GMCs) are infused with a T-cell-depleted bone marrow transplantation (BMT). Twelve patients with hematological malignancies received 2 x 10(5) (n = 5), 6 x 10(5) (n = 5), or 20 x 10(5) (n = 2) donor CD3(+) GMCs/kg with a BMT from a human leukocyte antigen (HLA)-identical sibling. No acute toxicity was associated with GMC administration. An early increase of circulating GMCs followed by a progressive decrease and long-lasting circulation of GMCs was documented. GCV treatment resulted in significant rapid decrease in circulating GMCs. Three patients developed acute GVHD, with a grade of at least II, while one patient developed chronic GVHD. Treatment with GCV alone was associated with a complete remission (CR) in 2 patients with acute GVHD, while the addition of glucocorticoids was necessary to achieve a CR in the last case. Long-lasting CR occurred with GCV treatment in the patient with chronic GVHD. Unfortunately, Epstein-Barr virus-lymphoproliferative disease occurred in 3 patients. Overall, the administration of low numbers of HS-tk-expressing T cells early following an HLA-identical BMT is associated with no acute toxicity, persistent circulation of the GMCs, and GCV-sensitive GVHD. Such findings open the way to the infusion of higher numbers of gene-modified donor T cells to enhance post-BMT immune competence while preserving GCV-sensitive alloreactivity.

  10. Differential effects of human papillomavirus type 6, 16, and 18 DNAs on immortalization and transformation of human cervical epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pecoraro, G.; Morgan, D.; Defendi, V.

    1989-01-01

    The human papillomaviruses (HPVs) are associated with specific benign and malignant lesions of the skin and mucosal epithelia. Cloned viral DNAs from HPV types 6b, 16, and 18 associated with different pathological manifestations of genital neoplasia in vivo were introduced into primary human cervical epithelial cells by electroporation. Cells transfected with HPV16 or HPV18 DNA acquired indefinite lifespans, distinct morphological alterations, and anchorage-independent growth (HPV18), and contain integrated transcriptionally active viral genomes. HPV6b or plasmid electroporated cells senesced at low passage. The alterations in growth and differentiation of the cells appear to reflect the progressive oncogenic processes that result inmore » cervical carcinoma in vivo.« less

  11. The use of Tcl and Tk to improve design and code reutilization

    NASA Technical Reports Server (NTRS)

    Rodriguez, Lisbet; Reinholtz, Kirk

    1995-01-01

    Tcl and Tk facilitate design and code reuse in the ZIPSIM series of high-performance, high-fidelity spacecraft simulators. Tcl and Tk provide a framework for the construction of the Graphical User Interfaces for the simulators. The interfaces are architected such that a large proportion of the design and code is used for several applications, which has reduced design time and life-cycle costs.

  12. Metabolically Generated Stable Isotope-Labeled Deoxynucleoside Code for Tracing DNA N6-Methyladenine in Human Cells.

    PubMed

    Liu, Baodong; Liu, Xiaoling; Lai, Weiyi; Wang, Hailin

    2017-06-06

    DNA N 6 -methyl-2'-deoxyadenosine (6mdA) is an epigenetic modification in both eukaryotes and bacteria. Here we exploited stable isotope-labeled deoxynucleoside [ 15 N 5 ]-2'-deoxyadenosine ([ 15 N 5 ]-dA) as an initiation tracer and for the first time developed a metabolically differential tracing code for monitoring DNA 6mdA in human cells. We demonstrate that the initiation tracer [ 15 N 5 ]-dA undergoes a specific and efficient adenine deamination reaction leading to the loss the exocyclic amine 15 N, and further utilizes the purine salvage pathway to generate mainly both [ 15 N 4 ]-dA and [ 15 N 4 ]-2'-deoxyguanosine ([ 15 N 4 ]-dG) in mammalian genomes. However, [ 15 N 5 ]-dA is largely retained in the genomes of mycoplasmas, which are often found in cultured cells and experimental animals. Consequently, the methylation of dA generates 6mdA with a consistent coding pattern, with a predominance of [ 15 N 4 ]-6mdA. Therefore, mammalian DNA 6mdA can be potentially discriminated from that generated by infecting mycoplasmas. Collectively, we show a promising approach for identification of authentic DNA 6mdA in human cells and determine if the human cells are contaminated with mycoplasmas.

  13. Immortalization of human prostate epithelial cells by HPV 16 E6/E7 open reading frames.

    PubMed

    Choo, C K; Ling, M T; Chan, K W; Tsao, S W; Zheng, Z; Zhang, D; Chan, L C; Wong, Y C

    1999-08-01

    The exact pathogenesis for prostate cancer is not known. Progress made in prostate cancer research has been slow, largely due to the lack of suitable in vitro models. Here, we report our work on the immortalization of a human prostate epithelial cell line and show that it can be used as a model to study prostate tumorigenesis. Replication-defective retrovirus harboring the human papillomavirus (HPV) type 16 E6 and E7 open reading frames was used to infect primary human prostate epithelial cells. Polymerase chain reaction, followed by Southern hybridization for the HPV 16 E6/E7, Western blot for prostatic acid phosphatase, telomeric repeat amplification protocol assay for telomerase activity, two-dimensional gels for cytokeratins, and cytogenetic analysis were undertaken to characterized the infected cells. The retrovirus-infected cell line, HPr-1, continued to grow in culture for more than 80 successive passages. Normal primary cells failed to proliferate after passage 6. HPr-1 cells bore close resemblance to normal primary prostate epithelial cells, both morphologically and biochemically. However, they possessed telomerase activity and proliferated indefinitely. Cytogenetic analysis of HPr-1 cells revealed a human male karyotype with clonal abnormalities and the appearance of multiple double minutes. The HPr-1 cells expressed prostatic acid phosphatase and cytokeratins K8 and K18, proving that they were prostate epithelial cells. They were benign in nude mice tumor formation and soft agar colony formation assay. The HPr-1 cell line is an in vitro representation of early prostate neoplastic progression. Copyright 1999 Wiley-Liss, Inc.

  14. [Expressions of CXCL16/CXCR6 and CXCL12/CXCR4 in first-trimester human trophoblast cells].

    PubMed

    Huang, Yu; Li, Da-jin; Wang, Ming-yan; Cheng, Hai-dong

    2006-06-01

    To investigate the transcription and protein expressions of chemokines CXCL16, CXCL12 and their receptors CXCR6, CXCR4 in first-trimester human cytotrophoblast cells and human choriocarcinoma cell line JAR. Transcriptions of CXCR6, CXCL16, CXCR4, CXCL12 in purified first-trimester human trophoblast cells and JAR line were assessed by semi-quantitative RT-PCR, and protein expressions of CXCR6, CXCL16, CXCR4, CXCL12 were analyzed in primary cultured villous cytotrophoblasts (VCT), extravillous cytotrophoblasts (EVCT), JAR line and placentas by immunostaining. CXCR6 and CXCR4 were highly transcribed in primary cultured trophoblast cells with mRNA relative level of 1.12 +/- 0.25 and 1.08 +/- 0.11 respectively, and their ligands CXCL16 and CXCL12 were transcribed moderately with mRNA relative level of 0.89 +/- 0.11 and 0.78 +/- 0.10 respectively. It was demonstrated that CXCL16, CXCL12, CXCR6 and CXCR4 were expressed in primary cultured VCT, EVCT, JAR line and placentas by immunostaining. The co-expression of CXCL16/CXCR6 and CXCL12/CXCR4 in trophoblast cells may play a role in the proliferation and differentiation of first-trimester trophoblast cells in a manner of autocrine.

  15. 6-Gingerol Mediates its Anti Tumor Activities in Human Oral and Cervical Cancer Cell Lines through Apoptosis and Cell Cycle Arrest.

    PubMed

    Kapoor, Vaishali; Aggarwal, Sadhna; Das, Satya N

    2016-04-01

    6-Gingerol, a potent nutraceutical, has been shown to have antitumor activity in different tumors, although its mechanism of action is not well understood. In this study, we evaluated antitumor activities of 6-gingerol on human oral (SCC4, KB) and cervical cancer (HeLa) cell lines with or without wortmannin, rapamycin, and cisplatin. Tumor cell proliferation was observed using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H tetrazolium, inner salt assay, cell cycle analysis by propidium iodide labeling and flow cytometry, apoptosis by Annexin-V binding assay, and caspase activity by chemiluminescence assay. 6-Gingerol showed dose-dependent cytotoxicity in all three cell lines. Combinations of 6-gingerol with wortmannin and cisplatin showed additive effects, while with rapamycin, it showed 50% cytotoxicity that was equivalent to IC50 of 6-gingerol alone. Treatment with 6-gingerol resulted in G2-phase arrest in KB and HeLa cells and S-phase arrest in SCC4 cells. 6-Gingerol, wortmannin, and rapamycin treatment showed almost two-fold higher expression of caspase 3 in all cell lines. The results imply that 6-gingerol either alone or in combination with PI-3 K inhibitor and cisplatin may provide better therapeutic effects in oral and cervical carcinoma. Thus, 6-gingerol appears to be a safe and potent chemotherapeutic/chemopreventive compound acting through cell cycle arrest and induction of apoptosis in human oral and cervical tumor cells. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Novel selective human mitochondrial kinase inhibitors: design, synthesis and enzymatic activity.

    PubMed

    Ciliberti, Nunzia; Manfredini, Stefano; Angusti, Angela; Durini, Elisa; Solaroli, Nicola; Vertuani, Silvia; Buzzoni, Lisa; Bonache, Maria Cruz; Ben-Shalom, Efrat; Karlsson, Anna; Saada, Ann; Balzarini, Jan

    2007-04-15

    Selective and effective TK2 inhibitors can be obtained by introduction of bulky lipophilic chains (acyl or alkyl entities) at the 2' position of araT and BVaraU, nucleoside analogues naturally endowed with a low TK2 affinity. These derivatives showed a competitive inhibitory activity against TK2 in micromolar range. BVaraU nucleoside analogues, modified on the 2'-O-acyl chain with a terminal N-Boc amino-group, conserved or increased the inhibitory activity against TK2 (7l and 7m IC(50): 6.4 and 3.8 microM, respectively). The substitution of an ester for a carboxamide moiety at the 2' position of araT afforded a consistent reduction of the inhibitory activity (25, IC(50): 480 microM). On the contrary, modifications at 2'-OH position of araC and araG, have provided inactive derivatives against TK2 and dGK, respectively. The biological activity of a representative compound, 2'-O-decanoyl-BVaraU, was also investigated in normal human fibroblasts and was found to impair mitochondrial function due to TK2 inhibition.

  17. Gallic Acid Protects 6-OHDA Induced Neurotoxicity by Attenuating Oxidative Stress in Human Dopaminergic Cell Line.

    PubMed

    Chandrasekhar, Y; Phani Kumar, G; Ramya, E M; Anilakumar, K R

    2018-06-01

    Gallic acid is one of the most important polyphenolic compounds, which is considered an excellent free radical scavenger. 6-Hydroxydopamine (6-OHDA) is a neurotoxin, which has been implicated in mainly Parkinson's disease (PD). In this study, we investigated the molecular mechanism of the neuroprotective effects of gallic acid on 6-OHDA induced apoptosis in human dopaminergic cells, SH-SY5Y. Our results showed that 6-OHDA induced cytotoxicity in SH-SY5Y cells was suppressed by pre-treatment with gallic acid. The percentage of live cells (90%) was high in the pre-treatment of gallic acid when compared with 6-OHDA alone treated cell line. Moreover, gallic acid was very effective in attenuating the disruption of mitochondrial membrane potential, elevated levels of intracellular ROS and apoptotic cell death induced by 6-OHDA. Gallic acid also lowered the ratio of the pro-apoptotic Bax protein and the anti-apoptotic Bcl-2 protein in SH-SY5Y cells. 6-OHDA exposure was up-regulated caspase-3 and Keap-1 and, down-regulated Nrf2, BDNF and p-CREB, which were sufficiently reverted by gallic acid pre-treatment. These findings indicate that gallic acid is able to protect the neuronal cells against 6-OHDA induced injury and proved that gallic acid might potentially serve as an agent for prevention of several human neurodegenerative diseases caused by oxidative stress and apoptosis.

  18. Pre-clinical development of gene modification of haematopoietic stem cells with chimeric antigen receptors for cancer immunotherapy.

    PubMed

    Larson, Sarah M; Truscott, Laurel C; Chiou, Tzu-Ting; Patel, Amie; Kao, Roy; Tu, Andy; Tyagi, Tulika; Lu, Xiang; Elashoff, David; De Oliveira, Satiro N

    2017-05-04

    Patients with refractory or recurrent B-lineage hematologic malignancies have less than 50% of chance of cure despite intensive therapy and innovative approaches are needed. We hypothesize that gene modification of haematopoietic stem cells (HSC) with an anti-CD19 chimeric antigen receptor (CAR) will produce a multi-lineage, persistent immunotherapy against B-lineage malignancies that can be controlled by the HSVsr39TK suicide gene. High-titer third-generation self-inactivating lentiviral constructs were developed to deliver a second-generation CD19-specific CAR and the herpes simplex virus thymidine kinase HSVsr39TK to provide a suicide gene to allow ablation of gene-modified cells if necessary. Human HSC were transduced with such lentiviral vectors and evaluated for function of both CAR and HSVsr39TK. Satisfactory transduction efficiency was achieved; the addition of the suicide gene did not impair CAR expression or antigen-specific cytotoxicity, and determined marked cytotoxicity to ganciclovir. NSG mice transplanted with gene-modified human HSC showed CAR expression not significantly different between transduced cells with or without HSVsr39TK, and expression of anti-CD19 CAR conferred anti-tumor survival advantage. Treatment with ganciclovir led to significant ablation of gene-modified cells in mouse tissues. Haematopoietic stem cell transplantation is frequently part of the standard of care for patients with relapsed and refractory B cell malignancies; following HSC collection, a portion of the cells could be modified to express the CD19-specific CAR and give rise to a persistent, multi-cell lineage, HLA-independent immunotherapy, enhancing the graft-versus-malignancy activity.

  19. ClearTK 2.0: Design Patterns for Machine Learning in UIMA.

    PubMed

    Bethard, Steven; Ogren, Philip; Becker, Lee

    2014-05-01

    ClearTK adds machine learning functionality to the UIMA framework, providing wrappers to popular machine learning libraries, a rich feature extraction library that works across different classifiers, and utilities for applying and evaluating machine learning models. Since its inception in 2008, ClearTK has evolved in response to feedback from developers and the community. This evolution has followed a number of important design principles including: conceptually simple annotator interfaces, readable pipeline descriptions, minimal collection readers, type system agnostic code, modules organized for ease of import, and assisting user comprehension of the complex UIMA framework.

  20. Tissue kallikrein protects neurons from hypoxia/reoxygenation-induced cell injury through Homer1b/c.

    PubMed

    Su, Jingjing; Tang, Yuping; Zhou, Houguang; Liu, Ling; Dong, Qiang

    2012-11-01

    Previous studies have demonstrated that human tissue kallikrein (TK) gene delivery protects against mouse cerebral ischemia/reperfusion (I/R) injury through bradykinin B2 receptor (B2R) activation. We have also reported that exogenous TK administration can suppress glutamate- or acidosis-induced neurotoxicity through the extracellular signal-regulated kinase1/2 (ERK1/2) pathway. To further explore the neuroprotection mechanisms of TK, in the present study we performed immunoprecipitation analysis and identified a scaffolding protein Homer1b/c using MALDI-TOF MS analysis. Here, we tested the hypothesis that TK reduces cell injury induced by oxygen and glucose deprivation/reoxygenation (OGD/R) through activating Homer1b/c. We found that TK increased the expression of Homer1b/c in a concentration- and time-dependent manner. Moreover, TK facilitated the translocation of Homer1b/c to the plasma membrane under OGD/R condition by confocal microscope assays. We also observed that overexpression of Homer1b/c showed the neuroprotection against OGD/R-induced cell injury by enhancing cell survival, reducing LDH release, caspase-3 activity and cell apoptosis. However, the knockdown of Homer1b/c by small interfering RNA showed the opposite effects, indicating that Homer1b/c had protective effects against OGD/R-induced neuronal injury. More interestingly, TK exerted its much more significantly neuroprotective effects after Homer1b/c overexpression, whereas it exerted its reduced effects after Homer1b/c knockdown. In addition, TK pretreatment increased the phosphorylation of the ERK1/2 and Akt-GSK3β through Homer1b/c activation. The beneficial effects of Homer1b/c were abolished by the ERK1/2 or PI3K antagonist. Therefore, we propose novel signaling mechanisms involved in the anti-hypoxic function of TK through activation of Homer1b/c-ERK1/2 and Homer1b/c-PI3K-Akt signaling pathways. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. T-cell suicide gene therapy prompts thymic renewal in adults after hematopoietic stem cell transplantation.

    PubMed

    Vago, Luca; Oliveira, Giacomo; Bondanza, Attilio; Noviello, Maddalena; Soldati, Corrado; Ghio, Domenico; Brigida, Immacolata; Greco, Raffaella; Lupo Stanghellini, Maria Teresa; Peccatori, Jacopo; Fracchia, Sergio; Del Fiacco, Matteo; Traversari, Catia; Aiuti, Alessandro; Del Maschio, Alessandro; Bordignon, Claudio; Ciceri, Fabio; Bonini, Chiara

    2012-08-30

    The genetic modification of T cells with a suicide gene grants a mechanism of control of adverse reactions, allowing safe infusion after partially incompatible hematopoietic stem cell transplantation (HSCT). In the TK007 clinical trial, 22 adults with hematologic malignancies experienced a rapid and sustained immune recovery after T cell-depleted HSCT and serial infusions of purified donor T cells expressing the HSV thymidine kinase suicide gene (TK+ cells). After a first wave of circulating TK+ cells, the majority of T cells supporting long-term immune reconstitution did not carry the suicide gene and displayed high numbers of naive lymphocytes, suggesting the thymus-dependent development of T cells, occurring only upon TK+ -cell engraftment. Accordingly, after the infusions, we documented an increase in circulating TCR excision circles and CD31+ recent thymic emigrants and a substantial expansion of the active thymic tissue as shown by chest tomography scans. Interestingly, a peak in the serum level of IL-7 was observed after each infusion of TK+ cells, anticipating the appearance of newly generated T cells. The results of the present study show that the infusion of genetically modified donor T cells after HSCT can drive the recovery of thymic activity in adults, leading to immune reconstitution.

  2. mtDNA depletion myopathy: elucidation of the tissue specificity in the mitochondrial thymidine kinase (TK2) deficiency.

    PubMed

    Saada, Ann; Shaag, Avraham; Elpeleg, Orly

    2003-05-01

    Decreased mitochondrial thymidine kinase (TK2) activity is associated with mitochondrial DNA (mtDNA) depletion and respiratory chain dysfunction and is manifested by isolated, fatal skeletal myopathy. Other tissues such as liver, brain, heart, and skin remain unaffected throughout the patients' life. In order to elucidate the mechanism of tissue specificity in the disease we have investigated the expression of the mitochondrial deoxynucleotide carrier, the mtDNA content and the activity of TK2 in mitochondria of various tissues. Our results suggest that low basal TK2 activity combined with a high requirement for mitochondrial encoded proteins in muscle predispose this tissue to the devastating effect of TK2 deficiency.

  3. CXCR6, a newly defined biomarker of tissue-specific stem cell asymmetric self-renewal, identifies more aggressive human melanoma cancer stem cells.

    PubMed

    Taghizadeh, Rouzbeh; Noh, Minsoo; Huh, Yang Hoon; Ciusani, Emilio; Sigalotti, Luca; Maio, Michele; Arosio, Beatrice; Nicotra, Maria R; Natali, PierGiorgio; Sherley, James L; La Porta, Caterina A M

    2010-12-22

    A fundamental problem in cancer research is identifying the cell type that is capable of sustaining neoplastic growth and its origin from normal tissue cells. Recent investigations of a variety of tumor types have shown that phenotypically identifiable and isolable subfractions of cells possess the tumor-forming ability. In the present paper, using two lineage-related human melanoma cell lines, primary melanoma line IGR39 and its metastatic derivative line IGR37, two main observations are reported. The first one is the first phenotypic evidence to support the origin of melanoma cancer stem cells (CSCs) from mutated tissue-specific stem cells; and the second one is the identification of a more aggressive subpopulation of CSCs in melanoma that are CXCR6+. We defined CXCR6 as a new biomarker for tissue-specific stem cell asymmetric self-renewal. Thus, the relationship between melanoma formation and ABCG2 and CXCR6 expression was investigated. Consistent with their non-metastatic character, unsorted IGR39 cells formed significantly smaller tumors than unsorted IGR37 cells. In addition, ABCG2+ cells produced tumors that had a 2-fold greater mass than tumors produced by unsorted cells or ABCG2- cells. CXCR6+ cells produced more aggressive tumors. CXCR6 identifies a more discrete subpopulation of cultured human melanoma cells with a more aggressive MCSC phenotype than cells selected on the basis of the ABCG2+ phenotype alone. The association of a more aggressive tumor phenotype with asymmetric self-renewal phenotype reveals a previously unrecognized aspect of tumor cell physiology. Namely, the retention of some tissue-specific stem cell attributes, like the ability to asymmetrically self-renew, impacts the natural history of human tumor development. Knowledge of this new aspect of tumor development and progression may provide new targets for cancer prevention and treatment.

  4. Development and characterization of a new marine fish cell line from turbot (Scophthalmus maximus).

    PubMed

    Wang, N; Wang, X L; Sha, Z X; Tian, Y S; Chen, S L

    2010-12-01

    A new marine fish cell line, TK, derived from turbot (Scophthalmus maximus) kidney, was established by the method of trypsin digestion and subcultured for more than 50 passages over a period of 300 days. The TK cells were maintained in Minimum Essential Medium Eagle (MEM) supplemented with HEPES, antibiotics, fetal bovine serum (FBS), 2-Mercaptoethanol (2-Me), and basic fibroblast growth factor (bFGF). The suitable growth temperature for TK cells was 24°C, and microscopically, TK cells were composed of fibroblast-like cells. Chromosome analysis revealed that the TK cell line has a normal diploid karyotype with 2n=44. Two fish viruses LCDV-C (lymphocystis disease virus from China) and TRBIV (turbot reddish body iridovirus) were used to determine the virus susceptibility of TK cell line. The TK cell line was found to be susceptible to TRBIV, and the infection was confirmed by cytopathic effect (CPE) and transmission electron microscopy, which detected the viral particles in the cytoplasm of virus-infected cells. Finally, significant green fluorescent signals were observed when the TK cells were transfected with pEGFP-N3 vector, indicating its potential utility for fish virus study and genetic manipulation.

  5. Trichosanthes kirilowii Exerts Androgenic Activity via Regulation of PSA and KLK2 in 22Rv1 Prostate Cancer Cells.

    PubMed

    Jeong, Soo-Jin; Choi, Ji-Yoon; Dong, Mi-Sook; Seo, Chang-Seob; Shin, Hyeun-Kyoo

    2017-01-01

    The androgen comprises a group of hormones that play roles in male reproductive activity as well as personal characteristics. We investigated the androgenic activity of various herbal medicines in human prostate cancer 22Rv1 cells. Herbal extracts of Trichosanthes kirilowii (TK), Asarum sieboldii (AS), Sanguisorba officinalis (SO), and Xanthium strumarium (XS) were selected to have androgenic effects based on a preliminary in vitro screening system. TK, AS, SO, and XS enhanced the proliferation of 22Rv1 cells without having cytotoxic effects. All tested herbal extracts increased androgen receptor (AR)-induced transcriptional activity in the absence or presence of dihydrotestosterone (DHT). In an AR-binding assay, TK, but not AS, SO, or XS, produced a significant inhibition of AR binding activity, indicating it has androgenic activity. Additionally, TK treatment positively regulated mRNA expression of the AR-related molecular targets prostate-specific antigen (PSA) and kallikrein 2 (KLK2) compared with untreated control. Taken together, TK-enhanced AR-mediated transcriptional activity might be an attractive candidate drug for treating androgen-related diseases. Trichosantheskirilowii (TK), Asarumsieboldii (AS), Sanguisorbaofficinalis (SO), and Xanthium strumarium (XS) enhanced the proliferation of 22Rv1 cells without having cytotoxic effects.TK, AS, SO, and XS increased androgen receptor (AR)-induced transcriptional activity.TK, but not AS, SO, or XS, produced a significant inhibition against AR-binding activity.TK treatment positively regulated mRNA expression of the AR-related molecular targets prostate-specific antigen and kallikrein 2. Abbreviations used: BPH: benign prostatic hyperplasia; AR: androgen receptor; DHT: dihydrotestosterone; PSA: prostate-specific antigen; TK: Trichosanthes kirilowii; AS: Asarum sieboldii; SO: Sanguisorba officinalis; XS: Xanthium strumarium; ATCC: American Type Culture Collection; FBS: fetal bovine serum; PBS: phosphate

  6. Trichosanthes kirilowii Exerts Androgenic Activity via Regulation of PSA and KLK2 in 22Rv1 Prostate Cancer Cells

    PubMed Central

    Jeong, Soo-Jin; Choi, Ji-Yoon; Dong, Mi-Sook; Seo, Chang-Seob; Shin, Hyeun-Kyoo

    2017-01-01

    Background: The androgen comprises a group of hormones that play roles in male reproductive activity as well as personal characteristics. Objective: We investigated the androgenic activity of various herbal medicines in human prostate cancer 22Rv1 cells. Materials and Methods: Herbal extracts of Trichosanthes kirilowii (TK), Asarum sieboldii (AS), Sanguisorba officinalis (SO), and Xanthium strumarium (XS) were selected to have androgenic effects based on a preliminary in vitro screening system. Results: TK, AS, SO, and XS enhanced the proliferation of 22Rv1 cells without having cytotoxic effects. All tested herbal extracts increased androgen receptor (AR)-induced transcriptional activity in the absence or presence of dihydrotestosterone (DHT). In an AR-binding assay, TK, but not AS, SO, or XS, produced a significant inhibition of AR binding activity, indicating it has androgenic activity. Additionally, TK treatment positively regulated mRNA expression of the AR-related molecular targets prostate-specific antigen (PSA) and kallikrein 2 (KLK2) compared with untreated control. Conclusion: Taken together, TK-enhanced AR-mediated transcriptional activity might be an attractive candidate drug for treating androgen-related diseases. SUMMARY Trichosantheskirilowii (TK), Asarumsieboldii (AS), Sanguisorbaofficinalis (SO), and Xanthium strumarium (XS) enhanced the proliferation of 22Rv1 cells without having cytotoxic effects.TK, AS, SO, and XS increased androgen receptor (AR)-induced transcriptional activity.TK, but not AS, SO, or XS, produced a significant inhibition against AR-binding activity.TK treatment positively regulated mRNA expression of the AR-related molecular targets prostate-specific antigen and kallikrein 2. Abbreviations used: BPH: benign prostatic hyperplasia; AR: androgen receptor; DHT: dihydrotestosterone; PSA: prostate-specific antigen; TK: Trichosanthes kirilowii; AS: Asarum sieboldii; SO: Sanguisorba officinalis; XS: Xanthium strumarium; ATCC: American

  7. A Soluble NADH-Dependent Fumarate Reductase in the Reductive Tricarboxylic Acid Cycle of Hydrogenobacter thermophilus TK-6

    PubMed Central

    Miura, Akane; Kameya, Masafumi; Arai, Hiroyuki; Ishii, Masaharu; Igarashi, Yasuo

    2008-01-01

    Fumarate reductase (FRD) is an enzyme that reduces fumarate to succinate. In many organisms, it is bound to the membrane and uses electron donors such as quinol. In this study, an FRD from a thermophilic chemolithoautotrophic bacterium, Hydrogenobacter thermophilus TK-6, was purified and characterized. FRD activity using NADH as an electron donor was not detected in the membrane fraction but was found in the soluble fraction. The purified enzyme was demonstrated to be a novel type of FRD, consisting of five subunits. One subunit showed high sequence identity to the catalytic subunits of known FRDs. Although the genes of typical FRDs are assembled in a cluster, the five genes encoding the H. thermophilus FRD were distant from each other in the genome. Furthermore, phylogenetic analysis showed that the H. thermophilus FRD was located in a distinct position from those of known soluble FRDs. This is the first report of a soluble NADH-dependent FRD in Bacteria and of the purification of a FRD that operates in the reductive tricarboxylic acid cycle. PMID:18757546

  8. Genetic analysis of mouse embryonic stem cells bearing Msh3 and Msh2 single and compound mutations.

    PubMed

    Abuin, A; Zhang, H; Bradley, A

    2000-01-01

    We have previously described the use of homologous recombination and CRE-loxP-mediated marker recycling to generate mouse embryonic stem (ES) cell lines homozygous for mutations at the Msh3, Msh2, and both Msh3 and Msh2 loci (2). In this study, we describe the analysis of these ES cells with respect to processes known to be affected by DNA mismatch repair. ES cells homozygous for the Msh2 mutation displayed increased resistance to killing by the cytotoxic drug 6-thioguanine (6TG), indicating that the 6TG cytotoxic mechanism is mediated by Msh2. The mutation rate of the herpes simplex virus thymidine kinase 1 (HSV-tk1) gene was unchanged in Msh3-deficient ES cell lines but markedly elevated in Msh2-deficient and Msh3 Msh2 double-mutant cells. Notably, the HSV-tk1 mutation rate was 11-fold higher, on average, than that of the hypoxanthine-guanine phosphoribosyl transferase (Hprt) locus in Msh2-deficient cells. Sequence analysis of HSV-tk1 mutants from these cells indicated the presence of a frameshift hotspot within the HSV-tk1 coding region. Msh3-deficient cells displayed a modest (16-fold) elevation in the instability of a dinucleotide repeat, whereas Msh2-deficient and Msh2 Msh3 double-mutant cells displayed markedly increased levels of repeat instability. Targeting frequencies of nonisogenic vectors were elevated in Msh2-deficient ES cell lines, confirming the role of Msh2 in blocking recombination between diverged sequences (homeologous recombination) in mammalian cells. These results are consistent with accumulating data from other laboratories and support the current model of DNA mismatch repair in mammalian cells.

  9. Knockdown of human serine/threonine kinase 33 suppresses human small cell lung carcinoma by blocking RPS6/BAD signaling transduction.

    PubMed

    Sun, E L; Liu, C X; Ma, Z X; Mou, X Y; Mu, X A; Ni, Y H; Li, X L; Zhang, D; Ju, Y R

    2017-01-01

    Small cell lung cancer (SCLC) is characterized by rapid growth rate and a tendency to metastasize to distinct sites of patients' bodies. The human serine/threonine kinase 33 (STK33) gene has shown its potency as a therapeutic target for prevention of lung carcinomas including non-small cell lung cancer (NSCLC), but its function in the oncogenesis and development of SCLC remains unrevealed. In the current study, it was hypothesized that STK33 played a key role in the proliferation, survival, and invasion of SCLC cells. The expression of STK33 in human SCLC cell lines NCI-H466 and DMS153 was inhibited by specific shRNA. The cell proliferation, cell apoptosis, and cell invasion of the cells were assessed with a series of in vitro assays. To explore the mechanism through which STK33 gene exerted its function in the carcinogenesis of SCLC cells, the effect of STK33 knockdown on the activity of S6K1/RPS6/BAD signaling was detected. Then the results were further confirmed with STK33 inhibitor ML281 and in vivo assays. The results demonstrated that inhibition of STK33 in SCLC cells suppressed the cell proliferation and invasion while induced cell apoptosis. Associated with the change in the phenotypic features, knockdown of STK33 also decreased the phosphorylation of RPS6 and BAD while increased the expression of cleaved caspase 9, indicating that apoptosis induced by STK33 suppression was mediated via mitochondrial pathway. Similar to the results of STK33 knockdown, incubating NCI-H466 cells with STK33 inhibitor also reduced the cell viability by suppressing RPS6/BAD pathways. Additionally, STK33 knockdown also inhibited tumor growth and RPS6/BAD activity in mice models. Findings outlined in our study were different from that in NSCLC to some extent: knockdown of STK33 in SCLC cells induced the apoptosis through mitochondrial pathway but independent of S6K1 function, inferring that the function of STK33 might be cancer type specific.

  10. Cytotoxic effect of sanguiin H-6 on MCF-7 and MDA-MB-231 human breast carcinoma cells.

    PubMed

    Park, Eun-Ji; Lee, Dahae; Baek, Seon-Eun; Kim, Ki Hyun; Kang, Ki Sung; Jang, Tae Su; Lee, Hye Lim; Song, Ji Hoon; Yoo, Jeong-Eun

    2017-09-15

    Sanguiin H-6 is a dimer of casuarictin linked by a bond between the gallic acid residue and one of the hexahydroxydiphenic acid units. It is an effective compound extracted from Rubus coreanus. It has an anticancer effect against several human cancer cells; however, its effect on breast cancer cells has not been clearly demonstrated. Thus, we aimed to investigate the anticancer effect and mechanism of action of sanguiin H-6 against two human breast carcinoma cell lines (MCF-7 and MDA-MB-231). We found that sanguiin H-6 significantly reduced cell viability in a concentration-dependent manner. It also increased the rates at which MCF-7 and MDA-MB-231 cells underwent apoptosis. Furthermore, sanguiin H-6 induced the cleavage of caspase-8, caspase-3, and poly(ADP-ribose) polymerase, which resulted in apoptosis. However, cleavage of caspase-9 was only detectable in MCF-7 cells. In addition, sanguiin H-6 increased the ratio of Bax to Bcl-2 in both MCF-7 and MDA-MB-231 cells. These findings suggest that sanguiin H-6 is a potent therapeutic agent against breast cancer cells. In addition, it exerts its anticancer effect in an estrogen-receptor-independent manner. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Selective enhancement of radiation response of herpes simplex virus thymidine kinase transduced 9L gliosarcoma cells in vitro and in vivo by antiviral agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jae Ho; Kim, Sang Hie; Kolozsvary, A.

    1995-11-01

    The purpose of this investigation was to demonstrate in a well-characterized tumor model that the radiosensitivity of tumor cells transduced with a herpes simplex virus thymidine kinase gene (HS-tk) would be selectively enhanced by antiviral agents. Rat 9L gliosarcoma cells transduced with a retroviral vector containing an HS-tk gene, 9L-tk cells were exposed to various doses or irradiation under either in vitro or in vivo conditions. The radiation sensitizing potential of two antiviral drugs, bromovinyl deoxyuridine (BVdU) and dihydroxymethyl ethyl methyl guanine (acyclovir), was evaluated in vitro. The radiosensitizing ability of BVdU was also evaluated with a 9L-tk tumor growingmore » in the rat brain. Tumors growing in the right hemisphere of rat brains were irradiated stereotactically with single-dose irradiation. The radiation response of 9L-tk cells was selectively enhanced by antiviral agents relative to nontransduced cells. In the cell culture, when a 24-h drug exposure (20 {mu}g/ml) preceded radiation, the sensitizer enhancement ratio (SER) for BVdU and acyclovir was 1.4 {plus_minus} 0.1 and 1.3 {plus_minus} 0.1, respectively. Exposure of cells to 10 {mu}g/ml acyclovir for two 24-h periods both pre- and postirradiation resulted in a SER of 1.6 {plus_minus} 0.1. In vivo, a significant increase in median survival time of rats with 9L-tk tumors was found when BVdU was administered prior to single-dose irradiation relative to the survival time of similar rats receiving radiation alone. An antiviral agent can enhance cell killing by radiation with selective action in cells transduced with the herpes simplex virus thymidine kinase gene. The results suggest that the three-pronged therapy of HS-tk gene transduction, systemically administered antiviral drug, and stereotactically targeted radiation therapy will improve the effectiveness of radiation therapy for the treatment of radioresistant tumors. 25 refs., 6 figs.« less

  12. ClearTK 2.0: Design Patterns for Machine Learning in UIMA

    PubMed Central

    Bethard, Steven; Ogren, Philip; Becker, Lee

    2014-01-01

    ClearTK adds machine learning functionality to the UIMA framework, providing wrappers to popular machine learning libraries, a rich feature extraction library that works across different classifiers, and utilities for applying and evaluating machine learning models. Since its inception in 2008, ClearTK has evolved in response to feedback from developers and the community. This evolution has followed a number of important design principles including: conceptually simple annotator interfaces, readable pipeline descriptions, minimal collection readers, type system agnostic code, modules organized for ease of import, and assisting user comprehension of the complex UIMA framework. PMID:29104966

  13. tkLayout: a design tool for innovative silicon tracking detectors

    NASA Astrophysics Data System (ADS)

    Bianchi, G.

    2014-03-01

    A new CMS tracker is scheduled to become operational for the LHC Phase 2 upgrade in the early 2020's. tkLayout is a software package developed to create 3d models for the design of the CMS tracker and to evaluate its fundamental performance figures. The new tracker will have to cope with much higher luminosity conditions, resulting in increased track density, harsher radiation exposure and, especially, much higher data acquisition bandwidth, such that equipping the tracker with triggering capabilities is envisaged. The design of an innovative detector involves deciding on an architecture offering the best trade-off among many figures of merit, such as tracking resolution, power dissipation, bandwidth, cost and so on. Quantitatively evaluating these figures of merit as early as possible in the design phase is of capital importance and it is best done with the aid of software models. tkLayout is a flexible modeling tool: new performance estimates and support for different detector geometries can be quickly added, thanks to its modular structure. Besides, the software executes very quickly (about two minutes), so that many possible architectural variations can be rapidly modeled and compared, to help in the choice of a viable detector layout and then to optimize it. A tracker geometry is generated from simple configuration files, defining the module types, layout and materials. Support structures are automatically added and services routed to provide a realistic tracker description. The tracker geometries thus generated can be exported to the standard CMS simulation framework (CMSSW) for full Monte Carlo studies. tkLayout has proven essential in giving guidance to CMS in studying different detector layouts and exploring the feasibility of innovative solutions for tracking detectors, in terms of design, performance and projected costs. This tool has been one of the keys to making important design decisions for over five years now and has also enabled project engineers

  14. Reduction of Werner Syndrome Protein Enhances G:C → A:T Transition by O6-Methylguanine in Human Cells.

    PubMed

    Suzuki, Tetsuya; Kuramoto, Yoshie; Kamiya, Hiroyuki

    2018-05-21

    O 6 -Methylguanine ( O 6 -MeG) is a damaged base produced by methylating reagents. The Werner syndrome protein (WRN) is a cancer-related human DNA helicase. The effects of WRN reduction on O 6 -MeG-caused mutagenesis were assessed by an siRNA-mediated knockdown in human U2OS cells, using a shuttle plasmid with a single O 6 -MeG base in the supF gene. The plasmid DNA was replicated in the cells, isolated, and electroporated into an Escherichia coli indicator strain. The lowered amount of WRN increased the frequency of mutations induced by O 6 -MeG, mainly G:C → A:T substitution. The increased mutation rate suggested that the cancer-related WRN suppresses the G:C → A:T substitution by O 6 -MeG in human cells.

  15. CXCL16 and CXCR6 are upregulated in psoriasis and mediate cutaneous recruitment of human CD8+ T cells.

    PubMed

    Günther, Claudia; Carballido-Perrig, Nicole; Kaesler, Susanne; Carballido, José M; Biedermann, Tilo

    2012-03-01

    Psoriatic skin lesions are characterized by an inflammatory infiltrate, consisting of dendritic cells, monocytes, and both CD4(+) and CD8(+) T lymphocytes. Although the chemokines involved in the migration of CD4(+) T cells into psoriatic skin are well characterized, those regulating CD8(+) T-cell recruitment are less understood. We found that the percentages of peripheral blood CD8(+) T cells expressing CXCR6 were higher in psoriatic patients than in healthy or atopic individuals. In addition, CXCR6 expression in psoriatic patients was more abundant in the CD8(+) than in the CD4(+) T-cell compartment. CXCR6 mRNA expression was also stronger in skin CD8(+) T cells than in the corresponding blood-derived counterparts. Immunofluorescence analysis revealed profound upregulation of the CXCR6 ligand CXCL16 by monocytes, keratinocytes, and dendritic cells in psoriatic skin compared with healthy or atopic dermatitis skin. In line with this, CXCR6(+) CD8(+) T cells also were most prevalent in psoriatic skin. Furthermore, CXCL16 induced Ca(2+) influx and chemotactic migration of psoriatic skin-derived CD8(+) T cells in vitro. Most importantly, CXCL16 potently recruited human CD8(+) T cells to human skin grafts previously transplanted onto SCID mice in vivo. These investigations indicate that CXCL16-CXCR6 interactions mediate homing of CD8(+) T cells into human skin, and thereby contribute to psoriasis pathogenesis.

  16. Human CD134 (OX40) expressed on T cells plays a key role for human herpesvirus 6B replication after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Nagamata, Satoshi; Nagasaka, Miwako; Kawabata, Akiko; Kishimoto, Kenji; Hasegawa, Daiichiro; Kosaka, Yoshiyuki; Mori, Takeshi; Morioka, Ichiro; Nishimura, Noriyuki; Iijima, Kazumoto; Yamada, Hideto; Kawamoto, Shinichiro; Yakushijin, Kimikazu; Matsuoka, Hiroshi; Mori, Yasuko

    2018-05-01

    CD134 (OX40), which is a cellular receptor for human herpesvirus-6B (HHV-6B) and expresses on activated T cells, may play a key role for HHV-6B replication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Therefore, we examined the CD134 expression on T cells and HHV-6B replication after allo-HSCT, and analyzed the correlation between them. Twenty-three patients after allo-HSCT were enrolled. The percentages of CD134-positive cells within the CD4 + and CD8 + cell populations were measured by flow cytometry, and the viral copy number of HHV-6B was simultaneously quantified by real-time PCR. The correlation between CD134 and HHV-6B viral load was then statistically analyzed. HHV-6B reactivation occurred in 11 of 23 patients (47.8%). CD134 expression was seen on T cells and was coincident with the time of peak viral load. The percentage of CD134-positive cells decreased significantly when HHV-6B DNA disappeared (p = .005 in CD4 + T cells, p = .02 in CD8 + T cells). In the 4 patients who underwent umbilical cord blood transplantation (UCBT), the viral load varied with the percentage of CD134-positive cells. In the comparison between the HHV-6B reactivation group and non-reactivation group, maximum percentages of CD134-positive cells among CD4 + T cells in reactivation group were significantly higher than those in non-reactivation group (p = .04). This is the first study to show that a correlation of CD134 expression on T cells with HHV-6B replication after allo-HSCT, especially in UCBT. The results possibly indicate that CD134 on T cells plays a key role for HHV-6B replication after allo-HSCT. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. 3'-Azido-2',3'-dideoxythymidine induced deficiency of thymidine kinases 1, 2 and deoxycytidine kinase in H9 T-lymphoid cells.

    PubMed

    Gröschel, Bettina; Kaufmann, Andreas; Höver, Gerold; Cinatl, Jaroslav; Doerr, Hans Wilhelm; Noordhuis, Paul; Loves, Willem J P; Peters, Godefridus J; Cinatl, Jindrich

    2002-07-15

    Continuous cultivation of T-lymphoid H9 cells in the presence of 3'-azido-2',3'-dideoxythymidine (AZT) resulted in a cell variant cross-resistant to both thymidine and deoxycytidine analogs. Cytotoxic effects of AZT, 2',3'-didehydro-3'-deoxythymidine as well as different deoxycytidine analogs such as 2',3'-dideoxycytidine, 2',2'-difluoro-2'-deoxycytidine (dFdC) and 1-ss-D-arabinofuranosylcytosine (Ara-C) were strongly reduced in H9 cells continuously exposed to AZT when compared to parental cells (>8.3-, >6.6-, >9.1-, 5 x 10(4)-, 5 x 10(3)-fold, respectively). Moreover, anti-HIV-1 effects of AZT, d4T, ddC and 2',3'-dideoxy-3'-thiacytidine (3TC) were significantly diminished (>222-, >25-, >400-, >200-fold, respectively) in AZT-resistant H9 cells. Study of cellular mechanisms responsible for cross-resistance to pyrimidine analogs in AZT-resistant H9 cells revealed decreased mRNA levels of thymidine kinase 1 (TK1) and lack of deoxycytidine kinase (dCK) mRNA expression. The loss of dCK gene expression was confirmed by western blot analysis of dCK protein as well as dCK enzyme activity assay. Moreover, enzyme activity of TK1 and TK2 was reduced in AZT-resistant cells. In order to determine whether lack of dCK affected the formation of the active triphosphate of the deoxycytidine analog dFdC, dFdCTP accumulation and retention was measured in H9 parental and AZT-resistant cells after exposure to 1 and 10 microM dFdC. Parental H9 cells accumulated about 30 and 100 pmol dFdCTP/10(6) cells after 4hr, whereas in AZT-resistant cells no dFdCTP accumulation was detected. These results demonstrate that continuous treatment of H9 cells in the presence of AZT selected for a thymidine analog resistant cell variant with cross-resistance to deoxycytidine analogs, due to deficiency in TK1, TK2, and dCK.

  18. Enzymatic activity of a subtilisin homolog, Tk-SP, from Thermococcus kodakarensis in detergents and its ability to degrade the abnormal prion protein

    PubMed Central

    2013-01-01

    Background Tk-SP is a member of subtilisin-like serine proteases from a hyperthermophilic archaeon Thermococcus kodakarensis. It has been known that the hyper-stable protease, Tk-SP, could exhibit enzymatic activity even at high temperature and in the presence of chemical denaturants. In this work, the enzymatic activity of Tk-SP was measured in the presence of detergents and EDTA. In addition, we focused to demonstrate that Tk-SP could degrade the abnormal prion protein (PrPSc), a protease-resistant isoform of normal prion protein (PrPC). Results Tk-SP was observed to maintain its proteolytic activity with nonionic surfactants and EDTA at 80°C. We optimized the condition in which Tk-SP functions efficiently, and demonstrated that the enzyme is highly stable in the presence of 0.05% (w/v) nonionic surfactants and 0.01% (w/v) EDTA, retaining up to 80% of its activity. Additionally, we also found that Tk-SP can degrade PrPSc to a level undetectable by western-blot analysis. Conclusions Our results indicate that Tk-SP has a great potential for technological applications, such as thermo-stable detergent additives. In addition, it is also suggested that Tk-SP-containing detergents can be developed to decrease the secondary infection risks of transmissible spongiform encephalopathies (TSE). PMID:23448268

  19. Genetic Analysis of Mouse Embryonic Stem Cells Bearing Msh3 and Msh2 Single and Compound Mutations

    PubMed Central

    Abuin, Alejandro; Zhang, HeJu; Bradley, Allan

    2000-01-01

    We have previously described the use of homologous recombination and CRE-loxP-mediated marker recycling to generate mouse embryonic stem (ES) cell lines homozygous for mutations at the Msh3, Msh2, and both Msh3 and Msh2 loci (2). In this study, we describe the analysis of these ES cells with respect to processes known to be affected by DNA mismatch repair. ES cells homozygous for the Msh2 mutation displayed increased resistance to killing by the cytotoxic drug 6-thioguanine (6TG), indicating that the 6TG cytotoxic mechanism is mediated by Msh2. The mutation rate of the herpes simplex virus thymidine kinase 1 (HSV-tk1) gene was unchanged in Msh3-deficient ES cell lines but markedly elevated in Msh2-deficient and Msh3 Msh2 double-mutant cells. Notably, the HSV-tk1 mutation rate was 11-fold higher, on average, than that of the hypoxanthine-guanine phosphoribosyl transferase (Hprt) locus in Msh2-deficient cells. Sequence analysis of HSV-tk1 mutants from these cells indicated the presence of a frameshift hotspot within the HSV-tk1 coding region. Msh3-deficient cells displayed a modest (16-fold) elevation in the instability of a dinucleotide repeat, whereas Msh2-deficient and Msh2 Msh3 double-mutant cells displayed markedly increased levels of repeat instability. Targeting frequencies of nonisogenic vectors were elevated in Msh2-deficient ES cell lines, confirming the role of Msh2 in blocking recombination between diverged sequences (homeologous recombination) in mammalian cells. These results are consistent with accumulating data from other laboratories and support the current model of DNA mismatch repair in mammalian cells. PMID:10594017

  20. Serum TK levels in CLL identify Binet stage A patients within biologically defined prognostic subgroups most likely to undergo disease progression.

    PubMed

    Matthews, Christine; Catherwood, Mark A; Morris, T C M; Kettle, Paul J; Drake, Mary B; Gilmore, William S; Alexander, H Denis

    2006-10-01

    Serum thymidine kinase (TK) levels have been shown to be correlated with survival in many malignancies, including chronic lymphocytic leukaemia (CLL). This study was designed to investigate associations between TK levels and other prognostic markers, in newly and previously diagnosed Binet stage A patients. Furthermore, the use of serum TK measurement to identify subcategories of disease within those defined by IgV(H) mutational status, gene usage and chromosomal aberrations was investigated. Ninety-one CLL patients were enrolled. Serum TK levels were measured using a radioenzyme assay. IgV(H) mutational status and V(H) gene usage were determined using BIOMED-2 primers and protocol. Recurring chromosomal abnormalities were detected by interphase fluorescent in situ hybridisation (FISH). Flow cytometry and reverse transcriptase polymerase chain reaction (RT-PCR) determined CD38 and Zap-70 expression, respectively. Significantly higher serum TK levels were found in IgV(H) unmutated, compared with IgV(H) mutated, patients (P < 0.001). Elevated TK levels were also found in patients with CD38 and Zap-70 positivity (P = 0.004, P < 0.001, respectively), short lymphocyte doubling time (LDT) (P = 0.044) and poor or intermediate prognosis chromosomal aberrations (P < 0.001). A TK level of >8.5 U/L best identified patients with progressive disease. Elevated TK levels could identify patients categorised, at diagnosis, into good prognosis subgroups by the various biological markers (mutated IgV(H), good prognosis chromosomal aberrations, Zap-70(-) and CD38(-)) who subsequently showed disease progression. Additionally, patients with V(H)3-21 gene usage showed high TK levels, irrespective of mutational status, and serum TK measurement retained predictive power as disease progressed in all subcategories studied.

  1. A gene involved in control of human cellular senescence on human chromosome 1q

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hensler, P.J.; Pereira-Smith, O.M.; Annab, L.A.

    1994-04-01

    Normal cells in culture exhibit limited division potential and have been used as a model for cellular senescence. In contrast, tumor-derived or carcinogen- or virus-transformed cells are capable of indefinite division. Fusion of normal human diploid fibroblasts with immortal human cells yielded hybrids having limited life spans, indicating that cellular senescence was dominant. Fusions of various immortal human cell lines with each other led to the identification of four complementation groups for indefinite division. The purpose of this study was to determine whether human chromosome 1 could complement the recessive immortal defect of human cell lines assigned to one ofmore » the four complementation groups. Using microcell fusion, the authors introduced a single normal human chromosome 1 into immortal human cell lines representing the complementation groups and determined that it caused loss of proliferative potential of an osteosarcoma-derived cell line (TE85), a cytomegalovirus-transformed lung fibroblast cell line (CMV-Mj-HEL-1), and a Ki-ras[sup +]-transformed derivative of TE85 (143B TK[sup [minus

  2. Genotoxic effect of 6-gingerol on human hepatoma G2 cells.

    PubMed

    Yang, Guang; Zhong, Laifu; Jiang, Liping; Geng, Chengyan; Cao, Jun; Sun, Xiance; Ma, Yufang

    2010-04-15

    6-gingerol, a major component of ginger, has antioxidant, anti-apoptotic, and anti-inflammatory activities. However, some dietary phytochemicals possess pro-oxidant effects as well, and the risk of adverse effects is increased by raising the use of doses. The aim of this study was to assess the genotoxic effects of 6-gingerol and to clarify the mechanisms, using human hepatoma G2 (HepG2) cells. Exposure of the cells to 6-gingerol caused significant increase of DNA migration in comet assay, increase of micronuclei frequencies at high concentrations at 20-80 and 20-40 microM, respectively. These results indicate that 6-gingerol caused DNA strand breaks and chromosome damage. To further elucidate the underlying mechanisms, we tested lysosomal membrane stability, mitochondrial membrane potential, the intracellular generation of reactive oxygen species (ROS) and reduced glutathione (GSH). In addition, the level of oxidative DNA damage was evaluated by immunocytochemical analysis on 8-hydroxydeoxyguanosine (8-OHdG). Results showed that lysosomal membrane stability was reduced after treatment by 6-gingerol (20-80 microM) for 40 min, mitochondrial membrane potential decreased after treatment for 50 min, GSH and ROS levels were significantly increased after treatment for 60 min. These suggest 6-gingerol induces genotoxicity probably by oxidative stress; lysosomal and mitochondrial damage were observed in 6-gingerol-induced toxicity. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  3. The NifTK software platform for image-guided interventions: platform overview and NiftyLink messaging.

    PubMed

    Clarkson, Matthew J; Zombori, Gergely; Thompson, Steve; Totz, Johannes; Song, Yi; Espak, Miklos; Johnsen, Stian; Hawkes, David; Ourselin, Sébastien

    2015-03-01

    To perform research in image-guided interventions, researchers need a wide variety of software components, and assembling these components into a flexible and reliable system can be a challenging task. In this paper, the NifTK software platform is presented. A key focus has been high-performance streaming of stereo laparoscopic video data, ultrasound data and tracking data simultaneously. A new messaging library called NiftyLink is introduced that uses the OpenIGTLink protocol and provides the user with easy-to-use asynchronous two-way messaging, high reliability and comprehensive error reporting. A small suite of applications called NiftyGuide has been developed, containing lightweight applications for grabbing data, currently from position trackers and ultrasound scanners. These applications use NiftyLink to stream data into NiftyIGI, which is a workstation-based application, built on top of MITK, for visualisation and user interaction. Design decisions, performance characteristics and initial applications are described in detail. NiftyLink was tested for latency when transmitting images, tracking data, and interleaved imaging and tracking data. NiftyLink can transmit tracking data at 1,024 frames per second (fps) with latency of 0.31 milliseconds, and 512 KB images with latency of 6.06 milliseconds at 32 fps. NiftyIGI was tested, receiving stereo high-definition laparoscopic video at 30 fps, tracking data from 4 rigid bodies at 20-30 fps and ultrasound data at 20 fps with rendering refresh rates between 2 and 20 Hz with no loss of user interaction. These packages form part of the NifTK platform and have proven to be successful in a variety of image-guided surgery projects. Code and documentation for the NifTK platform are available from http://www.niftk.org . NiftyLink is provided open-source under a BSD license and available from http://github.com/NifTK/NiftyLink . The code for this paper is tagged IJCARS-2014.

  4. Development of a sufficient and effective procedure for transformation of an oleaginous yeast, Rhodosporidium toruloides DMKU3-TK16.

    PubMed

    Tsai, Yung-Yu; Ohashi, Takao; Kanazawa, Takenori; Polburee, Pirapan; Misaki, Ryo; Limtong, Savitree; Fujiyama, Kazuhito

    2017-05-01

    Rhodosporidium toruloides DMKU3-TK16 (TK16), a basidiomycetous yeast isolated in Thailand, can produce a large amount of oil corresponding to approximately 70 % of its dry cell weight. However, lack of a sufficient and efficient transformation method makes further genetic manipulation of this organism difficult. We here developed a new transformation system for R. toruloides using a lithium acetate method with the Sh ble gene as a selective marker under the control of the R. toruloides ATCC 10657 GPD1 promoter. A linear DNA fragment containing the Sh ble gene expression cassette was integrated into the genome, and its integration was confirmed by colony PCR and Southern blot. Then, we further optimized the parameters affecting the transformation efficiency, such as the amount of linear DNA, the growth phase, the incubation time in the transformation mixture, the heat shock treatment temperature, the addition of DMSO and carrier DNA, and the recovery incubation time. With the developed method, the transformation efficiency of approximately 25 transformants/μg DNA was achieved. Compared with the initial trial, transformation efficiency was enhanced 417-fold. We further demonstrated the heterologous production of EGFP in TK16 by microscopic observation and immunoblot analysis, and use the technique to disrupt the endogenous URA3 gene. The newly developed method is thus simple and time saving, making it useful for efficient introduction of an exogenous gene into R. toruloides strains. Accordingly, this new practical approach should facilitate the molecular manipulation, such as target gene introduction and deletion, of TK16 and other R. toruloides strains as a major source of biodiesel.

  5. Retained sensitivity to cytotoxic pyrimidine nucleoside analogs in thymidine kinase 2 deficient human fibroblasts.

    PubMed

    Bjerke, Mia; Solaroli, Nicola; Lesko, Nicole; Balzarini, Jan; Johansson, Magnus; Karlsson, Anna

    2010-01-01

    Thymidine kinase 2 (TK2) is a mitochondrial deoxyribonucleoside kinase that phosphorylates several nucleoside analogs used in anti-viral and anti-cancer therapy. A fibroblast cell line with decreased TK2 activity was investigated in order to obtain insights in the effects of TK2 deficiency on nucleotide metabolism. The role of TK2 for the sensitivity against cytotoxic nucleoside analogs was also investigated. The TK2 deficient cells retained their sensitivity against all pyrimidine nucleoside analogs tested. This study suggests that nucleoside analog phosphorylation mediated by TK2 may be less important, compared to other deoxyribonucleoside kinases, for the cytotoxic effects of these compounds.

  6. Low p16INK4a Expression in Early Passage Human Prostate Basal Epithelial Cells Enables Immortalization by Telomerase Expression Alone.

    PubMed

    Graham, Mindy Kim; Principessa, Lorenzo; Antony, Lizamma; Meeker, Alan K; Isaacs, John T

    2017-03-01

    There are two principal senescence barriers that must be overcome to successfully immortalize primary human epithelial cells in culture, stress-induced senescence, and replicative senescence. The p16 INK4a /retinoblastoma protein (p16/Rb) pathway mediates stress-induced senescence, and is generally upregulated by primary epithelial cells in response to the artificial conditions from tissue culture. Replicative senescence is associated with telomere loss. Following each round of cell division, telomeres progressively shorten. Once telomeres shorten to a critical length, the DNA damage response pathway is activated, and the tumor suppressor p53 pathway triggers replicative senescence. Exogenous expression of telomerase in normal human epithelial cells extends the replicative capacity of cells, and in some cases, immortalizes cells. However reliable immortalization of epithelial cells usually requires telomerase activity coupled with inactivation of the p16/Rb pathway. A lentiviral vector, pLOX-TERT-iresTK (Addgene #12245), containing a CMV promoter upstream of a bicistronic coding cassette that includes loxP sites flanking the catalytic subunit of human telomerase gene (TERT) and herpes simplex virus type-1 thymidine kinase gene (HSV1-tk) was used to transduce normal prostate basal epithelial cells (PrECs) initiated in cell culture from prostate cancer patients undergoing radical prostatectomies. Transduction of early (i.e., <7) passage PrECs with TERT led to successful immortalization. However, attempts to immortalize late (i.e., >7) passage PrECs were unsuccessful. Late passage PrECs, which acquired elevated p16, were unable to overcome the senescence barrier. Immortalized PrECs (TERT-PrECs) retained a normal male karyotype and low p16 expression. Additionally, TERT-PrECs were non-tumorigenic when inoculated into intact male immunodeficient NSG mice. The present studies document that early passage human PrECs have sufficiently low p16 to permit immortalization by

  7. Chorein interacts with α-tubulin and histone deacetylase 6, and overexpression preserves cell viability during nutrient deprivation in human embryonic kidney 293 cells.

    PubMed

    Sasaki, Natsuki; Nakamura, Masayuki; Kodama, Akiko; Urata, Yuka; Shiokawa, Nari; Hayashi, Takehiro; Sano, Akira

    2016-11-01

    The autophagy pathway has recently been implicated in several neurodegenerative diseases. Recently, it was reported that chorein-depleted cells showed accumulation of autophagic markers and impaired autophagic flux. Here, we demonstrate that chorein overexpression preserves cell viability from starvation-induced cell death in human embryonic kidney 293 (HEK293) cells. Subsequent coimmunoprecipitation and reverse coimmunoprecipitation assays using extracts from chorein that stably overexpressed HEK293 cells revealed that chorein interacts with α-tubulin and histone deacetylase 6, a known α-tubulin deacetylater and central component of basal autophagy. Indeed, acetylated α-tubulin immunoreactivity was significantly decreased in chorein that stably overexpressed HEK293 cells. These results suggest that chorein/histone deacetylase 6/α-tubulin interactions may play an important role in starvation-induced cell stress, and their disruption may be one of the molecular pathogenic mechanisms of chorea-acanthocytosis.-Sasaki, N., Nakamura, M., Kodama, A., Urata, Y., Shiokawa, N., Hayashi, T., Sano, A. Chorein interacts with α-tubulin and histone deacetylase 6, and overexpression preserves cell viability during nutrient deprivation in human embryonic kidney 293 cells. © FASEB.

  8. Comparison of the Life Cycles of Genetically Distant Species C and Species D Human Adenoviruses Ad6 and Ad26 in Human Cells.

    PubMed

    Turner, Mallory A; Middha, Sumit; Hofherr, Sean E; Barry, Michael A

    2015-12-01

    Our understanding of adenovirus (Ad) biology is largely extrapolated from human species C Ad5. Most humans are immune to Ad5, so lower-seroprevalence viruses like human Ad6 and Ad26 are being tested as therapeutic vectors. Ad6 and Ad26 differ at the DNA level by 34%. To better understand how this might impact their biology, we examined the life cycle of the two viruses in human lung cells in vitro. Both viruses infected A549 cells with similar efficiencies, executed DNA replication with identical kinetics within 12 h, and began killing cells within 72 h. While Ad6-infected cells remained adherent until death, Ad26-infected cells detached within 12 h of infection but remained viable. Next-generation sequencing (NGS) of mRNA from infected cells demonstrated that viral transcripts constituted 1% of cellular mRNAs within 6 h and 8 to 16% within 12 h. Quantitative PCR and NGS revealed the activation of key early genes at 6 h and transition to late gene activation by 12 h by both viruses. There were marked differences in the balance of E1A and E1B activation by the two viruses and in the expression of E3 immune evasion mRNAs. Ad6 was markedly more effective at suppressing major histocompatibility complex class I (MHC I) display on the cell surface and in evading TRAIL-mediated apoptosis than was Ad26. These data demonstrate shared as well as divergent life cycles in these genetically distant human adenoviruses. An understanding of these differences expands the knowledge of alternative Ad species and may inform the selection of related Ads for therapeutic development. A burgeoning number of adenoviruses (Ads) are being harnessed as therapeutics, yet the biology of these viruses is generally extrapolated from Ad2 and Ad5. Here, we are the first to compare the transcriptional programs of two genetically distant Ads by mRNA next-generation sequencing (NGS). Species C Ad6 and Ad26 are being pursued as lower-seroprevalence Ad vectors but differ at the DNA level by 34%. Head

  9. Effects of Modeled Microgravity on Expression Profiles of Micro RNA in Human Lymphoblastoid Cells

    NASA Technical Reports Server (NTRS)

    Mangala, Lingegowda S.; Emami, Kamal; Story, Michael; Ramesh, Govindarajan; Rohde, Larry; Wu, Honglu

    2010-01-01

    Among space radiation and other environmental factors, microgravity or an altered gravity is undoubtedly the most significant stress experienced by living organisms during flight. In comparison to the static 1g, microgravity has been shown to alter global gene expression patterns and protein levels in cultured cells or animals. Micro RNA (miRNA) has recently emerged as an important regulator of gene expression, possibly regulating as many as one-third of all human genes. miRNA represents a class of single-stranded noncoding regulatory RNA molecules ( 22 nt) that control gene expressions by inhibiting the translation of mRNA to proteins. However, very little is known on the effect of altered gravity on miRNA expression. We hypothesized that the miRNA expression profile will be altered in zero gravity resulting in regulation of the gene expression and functional changes of the cells. To test this hypothesis, we cultured TK6 human lymphoblastoid cells in Synthecon s Rotary cell culture system (bioreactors) for 72 h either in the rotating (10 rpm) to model the microgravity in space or in the static condition. The cell viability was determined before and after culturing the cells in the bioreactor using both trypan blue and guava via count. Expressions of a panel of 352 human miRNA were analyzed using the miRNA PCRarray. Out of 352 miRNAs, expressions of 75 were significantly altered by a change of greater than 1.5 folds and seven miRNAs were altered by a fold change greater than 2 under the rotating culture condition. Among these seven, miR-545 and miR-517a were down regulated by 2 folds, whereas miR-150, miR-302a, miR-139-3p, miR-515-3p and miR-564 were up regulated by 2 to 8 folds. To confirm whether this altered miRNA expression correlates with gene expression and functional changes of the cells, we performed DNA Illumina Microarray Analysis and validated the related genes using q-RT PCR.

  10. Identification and characterization of enhancer agonist human cytotoxic T-cell epitopes of the human papillomavirus type 16 (HPV16) E6/E7

    PubMed Central

    Tsang, Kwong Y.; Fantini, Massimo; Fernando, Romaine I.; Palena, Claudia; David, Justin M.; Hodge, James W.; Gabitzsch, Elizabeth S.; Jones, Frank R.; Schlom, Jeffrey

    2017-01-01

    Human papillomavirus (HPV) is associated with the etiology of cervical carcinoma, head and neck squamous cell carcinoma, and several other cancer types. Vaccines directed against HPV virus-like particles and coat proteins have been extremely successful in the prevention of cervical cancer through the activation of host HPV-specific antibody responses; however, HPV-associated cancers remain a major public health problem. The development of a therapeutic vaccine will require the generation of T-cell responses directed against early HPV proteins (E6/E7) expressed in HPV-infected tumor cells. Clinical studies using various vaccine platforms have demonstrated that both HPV-specific human T cells can be generated and patient benefit can be achieved. However, no HPV therapeutic vaccine has been approved by the Food and Drug Administration to date. One method of enhancing the potential efficacy of a therapeutic vaccine is the generation of agonist epitopes. We report the first description of enhancer cytotoxic T lymphocyte agonist epitopes for HPV E6 and E7. While the in silico algorithm revealed six epitopes with potentially improved binding to human leukocyte antigen–A2 allele (HLA-A2)–Class I, 5/6 demonstrated enhanced binding to HLA-Class I in cell-based assays and only 3/6 had a greater ability to activate HPV-specific T cells which could lyse tumor cells expressing native HPV, compared to their native epitope counterparts. These agonist epitopes have potential for use in a range of HPV therapeutic vaccine platforms and for use in HPV-specific adoptive T- or natural killer–cell platforms. PMID:28389098

  11. Phosphoproteomics Reveals Regulatory T Cell-Mediated DEF6 Dephosphorylation That Affects Cytokine Expression in Human Conventional T Cells

    PubMed Central

    Joshi, Rubin N.; Binai, Nadine A.; Marabita, Francesco; Sui, Zhenhua; Altman, Amnon; Heck, Albert J. R.; Tegnér, Jesper; Schmidt, Angelika

    2017-01-01

    Regulatory T cells (Tregs) control key events of immune tolerance, primarily by suppression of effector T cells. We previously revealed that Tregs rapidly suppress T cell receptor (TCR)-induced calcium store depletion in conventional CD4+CD25− T cells (Tcons) independently of IP3 levels, consequently inhibiting NFAT signaling and effector cytokine expression. Here, we study Treg suppression mechanisms through unbiased phosphoproteomics of primary human Tcons upon TCR stimulation and Treg-mediated suppression, respectively. Tregs induced a state of overall decreased phosphorylation as opposed to TCR stimulation. We discovered novel phosphosites (T595_S597) in the DEF6 (SLAT) protein that were phosphorylated upon TCR stimulation and conversely dephosphorylated upon coculture with Tregs. Mutation of these DEF6 phosphosites abrogated interaction of DEF6 with the IP3 receptor and affected NFAT activation and cytokine transcription in primary Tcons. This novel mechanism and phosphoproteomics data resource may aid in modifying sensitivity of Tcons to Treg-mediated suppression in autoimmune disease or cancer. PMID:28993769

  12. 6-Shogaol induces apoptosis in human colorectal carcinoma cells via ROS production, caspase activation, and GADD 153 expression.

    PubMed

    Pan, Min-Hsiung; Hsieh, Min-Chi; Kuo, Jen-Min; Lai, Ching-Shu; Wu, Hou; Sang, Shengmin; Ho, Chi-Tang

    2008-05-01

    Ginger, the rhizome of Zingiber officinale, is a traditional medicine with anti-inflammatory and anticarcinogenic properties. This study examined the growth inhibitory effects of the structurally related compounds 6-gingerol and 6-shogaol on human cancer cells. 6-Shogaol [1-(4-hydroxy-3-methoxyphenyl)-4-decen-3-one] inhibits the growth of human cancer cells and induces apoptosis in COLO 205 cells through modulation of mitochondrial functions regulated by reactive oxygen species (ROS). ROS generation occurs in the early stages of 6-shogaol-induced apoptosis, preceding cytochrome c release, caspase activation, and DNA fragmentation. Up-regulation of Bax, Fas, and FasL, as well as down-regulation of Bcl-2 and Bcl-X(L )were observed in 6-shogaol-treated COLO 205 cells. N-acetylcysteine (NAC), but not by other antioxidants, suppress 6-shogaol-induced apoptosis. The growth arrest and DNA damage (GADD)-inducible transcription factor 153 (GADD153) mRNA and protein is markedly induced in a time- and concentration-dependent manner in response to 6-shogaol.

  13. BMP6 down-regulates GDNF expression through SMAD1/5 and ERK1/2 signaling pathways in human granulosa-lutein cells.

    PubMed

    Zhang, Xin-Yue; Chang, Hsun-Ming; Taylor, Elizabeth L; Leung, Peter C K; Liu, Rui-Zhi

    2018-05-09

    Bone morphogenetic protein 6 (BMP6) is a critical regulator of follicular development that is expressed in mammalian oocytes and granulosa cells. Glial cell line-derived neurotrophic factor (GDNF) is an intraovarian neurotrophic factor that plays an essential role in regulating mammalian oocyte maturation. The aim of this study was to investigate the effect of BMP6 on the regulation of GDNF expression and the potential underlying mechanisms. We used an established immortalized human granulosa cell line (SVOG cells) and primary human granulosa-lutein cells as in vitro cell models. Our results showed that BMP6 significantly down-regulated the expression of GDNF in both SVOG and primary human granulosa-lutein cells. Using dual inhibition approaches (kinase receptor inhibitor and small interfering RNA knockdown), our results showed that both ALK2 and ALK3 are involved in BMP6-induced down-regulation of GDNF. In addition, BMP6 induced the phosphorylation of SMAD1/5/8 and ERK1/2 but not AKT or p38. Among three downstream mediators, both SMAD1 and SMAD5 are involved in BMP6-induced down-regulation of GDNF. Moreover, concomitant knockdown of endogenous SMAD4 and inhibition of ERK1/2 activity completely reversed BMP6-induced down-regulation of GDNF, indicating that both SMAD and ERK1/2 signaling pathways are required for the regulatory effect of BMP6 on GDNF expression. Our findings suggest an additional role for an intrafollicular growth factor in regulating follicular function through their paracrine interactions in human granulosa cells.

  14. Genetically engineered suicide gene in mesenchymal stem cells using a Tet-On system for anaplastic thyroid cancer.

    PubMed

    Kalimuthu, Senthilkumar; Oh, Ji Min; Gangadaran, Prakash; Zhu, Liya; Lee, Ho Won; Jeon, Yong Hyun; Jeong, Shin Young; Lee, Sang-Woo; Lee, Jaetae; Ahn, Byeong-Cheol

    2017-01-01

    Anaplastic thyroid cancer (ATC) is the most aggressive malignancy of the thyroid, during which undifferentiated tumors arise from the thyroid follicular epithelium. ATC has a very poor prognosis due to its aggressive behavior and poor response to conventional therapies. Gene-directed enzyme/prodrug therapy using genetically engineered mesenchymal stromal cells (MSC) is a promising therapeutic strategy. The doxycycline (DOX)-controlled Tet inducible system is the most widely utilized regulatory system and could be a useful tool for therapeutic gene-based therapies. For example, use a synthetic "tetracycline-on" switch system to control the expression of the therapeutic gene thymidine kinase, which converts prodrugs to active drugs. The aim of this study was to develop therapeutic MSCs, harboring an inducible suicide gene, and to validate therapeutic gene expression using optical molecular imaging of ATC. We designed the Tet-On system using a retroviral vector expressing herpes simplex virus thymidine kinase (HSV1-sr39TK) with dual reporters (eGFP-Fluc2). Mouse bone marrow-derived mesenchymal stromal cells (BM-MSC) were transduced using this system with (MSC-Tet-TK/Fluc2) or without (MSC-TK/Fluc) the Tet-On system. Transduced cells were screened and characterized. Engineered MSCs were co-cultured with ATC (CAL62/Rluc) cells in the presence of the prodrug ganciclovir (GCV) and stimulated with DOX. The efficiency of cell killing monitored by assessing Rluc (CAL62/Rluc) and Fluc (MSC-Tet-TK/Fluc and MSC-TK/Fluc) activities using IVIS imaging. Fluc activity increased in MSC-Tet-TK/Fluc cells in a dose dependent manner following DOX treatment (R2 = 0.95), whereas no signal was observed in untreated cells. eGFP could also be visualized after induction with DOX, and the HSV1-TK protein could be detected by western blotting. In MSC-TK/Fluc cells, the Fluc activity increased with increasing cell number (R2 = 0.98), and eGFP could be visualized by fluorescence microscopy. The

  15. A New Sandwich ELISA for Quantification of Thymidine Kinase 1 Protein Levels in Sera from Dogs with Different Malignancies Can Aid in Disease Management

    PubMed Central

    Jagarlamudi, Kiran Kumar; Moreau, Laura; Westberg, Sara; Rönnberg, Henrik; Eriksson, Staffan

    2015-01-01

    Thymidine kinase 1 (TK1) is a DNA precursor enzyme whose expression is closely correlated with cell proliferation and cell turnover. Sensitive serum TK1 activity assays have been used for monitoring and prognosis of hematological malignancies in both humans and dogs. Here we describe the development of a specific sandwich TK1-ELISA for the quantification of TK1 protein levels in sera from dogs with different malignancies. A combination of rabbit polyclonal anti-dog TK1 antibody and a mouse monoclonal anti-human TK1 antibody was used. Different concentrations of recombinant canine TK1 was used as standard. Clinical evaluation of the ELISA was done by using sera from 42 healthy dogs, 43 dogs with hematological tumors and 55 with solid tumors. An established [3H]-dThd phosphorylation assay was used to determine the TK1 activity levels in the same sera. The mean TK1 activities in dogs with hematological tumors were significantly higher than those found in healthy dogs. In agreement with earlier studies, no significant difference was observed in serum TK1 activities between healthy dogs and dogs with solid tumors. However, the mean TK1 protein levels determined by new TK1-ELISA were significantly higher not only in hematological tumors but also in solid tumors compared to healthy dogs (mean ± SD = 1.30 ± 1.16, 0.67 ± 0.55 and 0.27± 0.10 ng/mL, respectively). Moreover, TK1-ELISA had significantly higher ability to distinguish lymphoma cases from healthy based on receiver operating characteristic analyses (area under the curve, AUC, of 0.96) to that of the activity assay (AUC, 0.84). Furthermore, fluctuations in TK1 protein levels during the course of chemotherapy in dogs with lymphoma closely associated with clinical outcome. Overall, the TK1-ELISA showed significant linear correlation with the TK1 activity assay (r s = 0.6, p<0.0001). Thus, the new TK1-ELISA has sufficient sensitivity and specificity for routine clinical use in veterinary oncology. PMID:26366881

  16. Characterization of immortalized human mammary epithelial cell line HMEC 2.6.

    PubMed

    Joshi, Pooja S; Modur, Vishnu; Cheng, JiMing; Robinson, Kathy; Rao, Krishna

    2017-10-01

    Primary human mammary epithelial cells have a limited life span which makes it difficult to study them in vitro for most purposes. To overcome this problem, we have developed a cell line that was immortalized using defined genetic elements, and we have characterized this immortalized non-tumorigenic human mammary epithelial cell line to establish it as a potential model system. human mammary epithelial cells were obtained from a healthy individual undergoing reduction mammoplasty at SIU School of Medicine. The cells were transduced with CDK4R24C followed by transduction with human telomerase reverse transcriptase. Post all manipulation, the cells displayed a normal cell cycle phase distribution and were near diploid in nature, which was confirmed by flow cytometry and karyotyping. In vitro studies showed that the cells were anchorage dependent and were non-invasive in nature. The cell line expressed basal epithelial markers such as cytokeratin 7, CD10, and p63 and was negative for the expression of estrogen receptor and progesterone receptor. Upon G-band karyotyping, the cell line displayed the presence of a few cytogenic abnormalities, including trisomy 20 and trisomy 7, which are also commonly present in other immortalized mammary cell lines. Furthermore, the benign nature of these cells was confirmed by multiple in vitro and in vivo experiments. Therefore, we think that this cell line could serve as a good model to understand the molecular mechanisms involved in the development and progression of breast cancer and to also assess the effect of novel therapeutics on human mammary epithelial cells.

  17. Synthesis of a probe for monitoring HSV1-tk reporter gene expression using chemical exchange saturation transfer MRI

    PubMed Central

    Bar-Shir, Amnon; Liu, Guanshu; Greenberg, Marc M; Bulte, Jeff W M; Gilad, Assaf A

    2013-01-01

    In experiments involving transgenic animals or animals treated with transgenic cells, it is important to have a method to monitor the expression of the relevant genes longitudinally and noninvasively. An MRI-based reporter gene enables monitoring of gene expression in the deep tissues of living subjects. This information can be co-registered with detailed high-resolution anatomical and functional information. We describe here the synthesis of the reporter probe, 5-methyl-5,6-dihydrothymidine (5-MDHT), which can be used for imaging of the herpes simplex virus type 1 thymidine kinase (HSV1-tk) reporter gene expression in rodents by MRI. The protocol also includes data acquisition and data processing routines customized for chemical exchange saturation transfer (CEST) contrast mechanisms. The dihydropyrimidine 5-MDHT is synthesized through a catalytic hydrogenation of the 5,6-double bond of thymidine to yield 5,6-dihydrothymidine, which is methylated on the C-5 position of the resulting saturated pyrimidine ring. The synthesis of 5-MDHT can be completed within 5 d, and the compound is stable for more than 1 year. PMID:24177294

  18. Phylodynamics of Merkel-cell polyomavirus and human polyomavirus 6: A long-term history with humans.

    PubMed

    Torres, Carolina; Barrios, Melina Elizabeth; Cammarata, Robertina Viviana; Victoria, Matías; Fernandez-Cassi, Xavier; Bofill-Mas, Silvia; Colina, Rodney; Blanco Fernández, María Dolores; Mbayed, Viviana Andrea

    2018-04-20

    New human polyomaviruses have been described in the last years, including the Merkel-cell polyomavirus (MCPyV; Human polyomavirus 5) and the Human polyomavirus 6 (HPyV6). Although their infection is usually asymptomatic, in immunocompromised host can cause life-threatening pathologies, such as the Merkel cell carcinoma, an aggressive skin neoplasia associated to the MCPyV. Despite being prevalent viruses in population, epidemiological data from South America are scarce, as well as the characterization of the viral types circulating and their origin. The aims of this work were to describe MCPyV and HPyV6 from environmental samples with different geographical origin and to analyze their phylogenetic and evolutionary histories, particularly for MCPyV. Partial and complete genome sequences were obtained from sewage samples from Argentina, Uruguay and Spain. A total number of 87 sequences were obtained for MCPyV and 33 for HPyV6. Phylogenetic analysis showed that MCPyV sequences distributed according to their geographic origin in Europe/North America, Africa, Asia, South America and Oceania groups, suggesting that viral diversification might have followed human migrations across the globe. In particular, viruses from Argentina associated with Europe/North America and South America genotypes, whereas those from Uruguay and Spain also grouped with Africa genotype, reflecting the origin of the current population in each country, which could arrive not only during ancient human migration but also during recent migratory events. In addition, the South American group presented a high level of clusterization, showing internal clusters that could be related to specific locations, such as French Guiana and Brazil or the Southern region into South America, such as Argentina and Uruguay, suggesting a long term evolutionary process in the region. Additionally, in this work, we carried out the first analysis about the evolutionary history of MCPyV trough the integration of

  19. Safety and immunogenicity of a gE/gI/TK gene-deleted pseudorabies virus variant expressing the E2 protein of classical swine fever virus in pigs.

    PubMed

    Lei, Jian-Lin; Xia, Shui-Li; Wang, Yimin; Du, Mingliang; Xiang, Guang-Tao; Cong, Xin; Luo, Yuzi; Li, Lian-Feng; Zhang, Lingkai; Yu, Jiahui; Hu, Yonghao; Qiu, Hua-Ji; Sun, Yuan

    2016-06-01

    Classical swine fever (CSF) and pseudorabies (PR) are both major infectious diseases of pigs, causing enormous economic losses to the swine industry in many countries. A marker vaccine that enables differentiation of infected from vaccinated animals (DIVA) is highly desirable for control and eradication of these two diseases in endemic areas. Since late 2011, PR outbreaks have been frequently reported in many Bartha-K61-vaccinated pig farms in China. It has been demonstrated that a pseudorabies virus (PRV) variant with altered antigenicity and increased pathogenicity was responsible for the outbreaks. Previously, we showed that rPRVTJ-delgE/gI/TK, a gE/gI/TK-deleted PRV variant, was safe for susceptible animals and provided a complete protection against lethal PRV variant challenge, indicating that rPRVTJ-delgE/gI/TK can be used as an attractive vaccine vector. To develop a safe bivalent vaccine against CSF and PR, we generated a recombinant virus rPRVTJ-delgE/gI/TK-E2 expressing the E2 protein of classical swine fever virus (CSFV) based on rPRVTJ-delgE/gI/TK and evaluated its safety and immunogenicity in pigs. The results indicated that pigs (n=5) immunized with rPRVTJ-delgE/gI/TK-E2 of different doses did not exhibit clinical signs or viral shedding following immunization, the immunized pigs produced anti-PRV or anti-CSFV neutralizing antibodies and the pigs immunized with 10(6) or 10(5) TCID50 rPRVTJ-delgE/gI/TK-E2 were completely protected against the lethal challenge with either CSFV Shimen strain or variant PRV TJ strain. These findings suggest that rPRVTJ-delgE/gI/TK-E2 is a promising bivalent DIVA vaccine candidate against CSFV and PRV coinfections. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  20. ESAT-6 and HspX Improve the Effectiveness of BCG to Induce Human Dendritic Cells-Dependent Th1 and NK Cells Activation

    PubMed Central

    Marongiu, Laura; Donini, Marta; Toffali, Lara; Zenaro, Elena; Dusi, Stefano

    2013-01-01

    The limited efficacy of the BCG vaccine against tuberculosis is partly due to the missing expression of immunogenic proteins. We analyzed whether the addition to BCG of ESAT-6 and HspX, two Mycobacterium tuberculosis (Mtb) antigens, could enhance its capacity to activate human dendritic cells (DCs). BCG showed a weak ability to induce DC maturation, cytokine release, and CD4+ lymphocytes and NK cells activation. The addition of ESAT-6 or HspX alone to BCG-stimulated DC did not improve these processes, whereas their simultaneous addition enhanced BCG-dependent DC maturation and cytokine release, as well as the ability of BCG-treated DCs to stimulate IFN-γ release and CD69 expression by CD4+ lymphocytes and NK cells. Addition of TLR2-blocking antibody decreased IL-12 release by BCG-stimulated DCs incubated with ESAT-6 and HspX, as well as IFN-γ secretion by CD4+ lymphocytes co-cultured with these cells. Moreover, HspX and ESAT-6 improved the capacity of BCG-treated DCs to induce the expression of memory phenotype marker CD45RO in naïve CD4+ T cells. Our results indicate that ESAT-6 and HspX cooperation enables BCG-treated human DCs to induce T lymphocyte and NK cell-mediated immune responses through TLR2-dependent IL-12 secretion. Therefore ESAT-6 and HspX represent good candidates for improving the effectiveness of BCG vaccination. PMID:24130733

  1. Lack of complex I activity in human cells carrying a mutation in MtDNA-encoded ND4 subunit is corrected by the Saccharomyces cerevisiae NADH-quinone oxidoreductase (NDI1) gene.

    PubMed

    Bai, Y; Hájek, P; Chomyn, A; Chan, E; Seo, B B; Matsuno-Yagi, A; Yagi, T; Attardi, G

    2001-10-19

    The gene for the single subunit, rotenone-insensitive, and flavone-sensitive internal NADH-quinone oxidoreductase of Saccharomyces cerevisiae (NDI1) can completely restore the NADH dehydrogenase activity in mutant human cells that lack the essential mitochondrial DNA (mtDNA)-encoded subunit ND4. In particular, the NDI1 gene was introduced into the nuclear genome of the human 143B.TK(-) cell line derivative C4T, which carries a homoplasmic frameshift mutation in the ND4 gene. Two transformants with a low or high level of expression of the exogenous gene were chosen for a detailed analysis. In these cells the corresponding protein is localized in mitochondria, its NADH-binding site faces the matrix compartment as in yeast mitochondria, and in perfect correlation with its abundance restores partially or fully NADH-dependent respiration that is rotenone-insensitive, flavone-sensitive, and antimycin A-sensitive. Thus the yeast enzyme has become coupled to the downstream portion of the human respiratory chain. Furthermore, the P:O ratio with malate/glutamate-dependent respiration in the transformants is approximately two-thirds of that of the wild-type 143B.TK(-) cells, as expected from the lack of proton pumping activity in the yeast enzyme. Finally, whereas the original mutant cell line C4T fails to grow in medium containing galactose instead of glucose, the high NDI1-expressing transformant has a fully restored capacity to grow in galactose medium. The present observations substantially expand the potential of the yeast NDI1 gene for the therapy of mitochondrial diseases involving complex I deficiency.

  2. Wasabi 6-(methylsulfinyl)hexyl isothiocyanate induces apoptosis in human colorectal cancer cells through p53-independent mitochondrial dysfunction pathway.

    PubMed

    Yano, Satoshi; Wu, Shusong; Sakao, Kozue; Hou, De-Xing

    2018-05-14

    6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC), a major bioactive compound in Wasabi [Wasabia japonica (Miq.) Matsum.], has revealed the inhibitory effect on colon carcinogenesis in rat cancer model although the underlying mechanism is unclear. In this study, we used two types of human colorectal cancer cells (HCT116 p53 +/+ and HCT116 p53 -/- ) to investigate the anticancer activity and molecular mechanisms of 6-MSITC. Interestingly, 6-MSITC inhibited the cell proliferation in both types of cells with similar IC 50 value although a light increase in the phosphorylation and accumulation of P53 protein was observed in HCT116 p53 +/+ cells at 24 h after treatment. In addition, 6-MSITC increased the ratio of proapoptotic cells in both types of cells with the same fashion in a p53-independent manner. The data from mitochondrial analysis revealed that 6-MSITC enhanced the ratio of proapoptotic B-cell lymphoma-2-associated X protein/antiapoptotic myeloid cell leukemia 1, and sequentially caused mitochondrial membrane potential (ΔΨ m ) loss, cytochrome c release, and caspase-3 activation in both types of cells. Taken together, Wasabi 6-MSITC induced apoptosis of human colorectal cancer cells in p53-independent mitochondrial dysfunction pathway. These findings suggest that 6-MSITC might be a potential agent for colon cancer chemoprevention although with p53 mutation. © 2018 BioFactors, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  3. Human Beta Defensin 2 Selectively Inhibits HIV-1 in Highly Permissive CCR6⁺CD4⁺ T Cells.

    PubMed

    Lafferty, Mark K; Sun, Lingling; Christensen-Quick, Aaron; Lu, Wuyuan; Garzino-Demo, Alfredo

    2017-05-16

    Chemokine receptor type 6 (CCR6)⁺CD4⁺ T cells are preferentially infected and depleted during HIV disease progression, but are preserved in non-progressors. CCR6 is expressed on a heterogeneous population of memory CD4⁺ T cells that are critical to mucosal immunity. Preferential infection of these cells is associated, in part, with high surface expression of CCR5, CXCR4, and α4β7. In addition, CCR6⁺CD4⁺ T cells harbor elevated levels of integrated viral DNA and high levels of proliferation markers. We have previously shown that the CCR6 ligands MIP-3α and human beta defensins inhibit HIV replication. The inhibition required CCR6 and the induction of APOBEC3G. Here, we further characterize the induction of apolipoprotein B mRNA editing enzyme (APOBEC3G) by human beta defensin 2. Human beta defensin 2 rapidly induces transcriptional induction of APOBEC3G that involves extracellular signal-regulated kinases 1/2 (ERK1/2) activation and the transcription factors NFATc2, NFATc1, and IRF4. We demonstrate that human beta defensin 2 selectively protects primary CCR6⁺CD4⁺ T cells infected with HIV-1. The selective protection of CCR6⁺CD4⁺ T cell subsets may be critical in maintaining mucosal immune function and preventing disease progression.

  4. Differential role of thiopurine methyltransferase in the cytotoxic effects of 6-mercaptopurine and 6-thioguanine on human leukemia cells.

    PubMed

    Karim, Hazhar; Ghalali, Aram; Lafolie, Pierre; Vitols, Sigurd; Fotoohi, Alan K

    2013-07-26

    The thiopurine antimetabolites, 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG) are inactive pro-drugs that require intracellular metabolism for activation to cytotoxic metabolites. Thiopurine methyltransferase (TPMT) is one of the most important enzymes in this process metabolizing both 6-MP and 6-TG to different methylated metabolites including methylthioinosine monophosphate (meTIMP) and methylthioguanosine monophosphate (meTGMP), respectively, with different suggested pharmacological and cytotoxic properties. While meTIMP is a potent inhibitor of de novo purine synthesis (DNPS) and significantly contributes to the cytotoxic effects of 6-MP, meTGMP, does not add much to the effects of 6-TG, and the cytotoxicity of 6-TG seems to be more dependent on incorporation of thioguanine nucleotides (TGNs) into DNA rather than inhibition of DNPS. In order to investigate the role of TPMT in metabolism and thus, cytotoxic effects of 6-MP and 6-TG, we knocked down the expression of the gene encoding the TPMT enzyme using specifically designed small interference RNA (siRNA) in human MOLT4 leukemia cells. The knock-down was confirmed at RNA, protein, and enzyme function levels. Apoptosis was determined using annexin V and propidium iodide staining and FACS analysis. The results showed a 34% increase in sensitivity of MOLT4 cells to 1μM 6-TG after treatment with TPMT-targeting siRNA, as compared to cells transfected with non-targeting siRNA, while the sensitivity of the cells toward 6-MP was not affected significantly by down-regulation of the TPMT gene. This differential contribution of the enzyme TPMT to the cytotoxicity of the two thiopurines is probably due to its role in formation of the meTIMP, the cytotoxic methylated metabolite of 6-MP, while in case of 6-TG methylation by TPMT substantially deactivates the drug. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Human Cytomegalovirus UL18 Utilizes US6 for Evading the NK and T-Cell Responses

    PubMed Central

    Kim, Youngkyun; Park, Boyoun; Cho, Sunglim; Shin, Jinwook; Cho, Kwangmin; Jun, Youngsoo; Ahn, Kwangseog

    2008-01-01

    Human cytomegalovirus (HCMV) US6 glycoprotein inhibits TAP function, resulting in down-regulation of MHC class I molecules at the cell surface. Cells lacking MHC class I molecules are susceptible to NK cell lysis. HCMV expresses UL18, a MHC class I homolog that functions as a surrogate to prevent host cell lysis. Despite a high level of sequence and structural homology between UL18 and MHC class I molecules, surface expression of MHC class I, but not UL18, is down regulated by US6. Here, we describe a mechanism of action by which HCMV UL18 avoids attack by the self-derived TAP inhibitor US6. UL18 abrogates US6 inhibition of ATP binding by TAP and, thereby, restores TAP-mediated peptide translocation. In addition, UL18 together with US6 interferes with the physical association between MHC class I molecules and TAP that is required for optimal peptide loading. Thus, regardless of the recovery of TAP function, surface expression of MHC class I molecules remains decreased. UL18 represents a unique immune evasion protein that has evolved to evade both the NK and the T cell immune responses. PMID:18688275

  6. Conditional Cytotoxic Anti-HIV Gene Therapy for Selectable Cell Modification

    PubMed Central

    Garg, Himanshu; Joshi, Anjali

    2016-01-01

    Gene therapy remains one of the potential strategies to achieve a cure for HIV infection. One of the major limitations of anti-HIV gene therapy concerns recovering an adequate number of modified cells to generate an HIV-proof immune system. Our study addresses this issue by developing a methodology that can mark conditional vector-transformed cells for selection and subsequently target HIV-infected cells for elimination by treatment with ganciclovir (GCV). We used the herpes simplex virus thymidine kinase (TK) mutant SR39, which is highly potent at killing cells at low GCV concentrations. This gene was cloned into a conditional HIV vector, pNL-GFPRRESA, which expresses the gene of interest as well as green fluorescent protein (GFP) in the presence of HIV Tat protein. We show here that TK-SR39 was more potent that wild-type TK (TK-WT) at eliminating infected cells at lower concentrations of GCV. As the vector expresses GFP in the presence of Tat, transient expression of Tat either by Tat RNA transfection or transduction by a nonintegrating lentiviral (NIL) vector marked the cells with GFP for selection. In cells selected by this strategy, TK-SR39 was more potent at limiting virus replication than TK-WT. Finally, in Jurkat cells modified and selected by this approach, infection with CXCR4-tropic Lai virus could be suppressed by treatment with GCV. GCV treatment limited the number of HIV-infected cells, virus production, as well as virus-induced cytopathic effects in this model. We provide proof of principle that TK-SR39 in a conditional HIV vector can provide a safe and effective anti-HIV strategy. PMID:26800572

  7. Conditional Cytotoxic Anti-HIV Gene Therapy for Selectable Cell Modification.

    PubMed

    Garg, Himanshu; Joshi, Anjali

    2016-05-01

    Gene therapy remains one of the potential strategies to achieve a cure for HIV infection. One of the major limitations of anti-HIV gene therapy concerns recovering an adequate number of modified cells to generate an HIV-proof immune system. Our study addresses this issue by developing a methodology that can mark conditional vector-transformed cells for selection and subsequently target HIV-infected cells for elimination by treatment with ganciclovir (GCV). We used the herpes simplex virus thymidine kinase (TK) mutant SR39, which is highly potent at killing cells at low GCV concentrations. This gene was cloned into a conditional HIV vector, pNL-GFPRRESA, which expresses the gene of interest as well as green fluorescent protein (GFP) in the presence of HIV Tat protein. We show here that TK-SR39 was more potent that wild-type TK (TK-WT) at eliminating infected cells at lower concentrations of GCV. As the vector expresses GFP in the presence of Tat, transient expression of Tat either by Tat RNA transfection or transduction by a nonintegrating lentiviral (NIL) vector marked the cells with GFP for selection. In cells selected by this strategy, TK-SR39 was more potent at limiting virus replication than TK-WT. Finally, in Jurkat cells modified and selected by this approach, infection with CXCR4-tropic Lai virus could be suppressed by treatment with GCV. GCV treatment limited the number of HIV-infected cells, virus production, as well as virus-induced cytopathic effects in this model. We provide proof of principle that TK-SR39 in a conditional HIV vector can provide a safe and effective anti-HIV strategy.

  8. A high-resolution whole genome radiation hybrid map of human chromosome 17q22-q25.3 across the genes for GH and TK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, J.W.; Schafer, A.J.; Critcher, R.

    1996-04-15

    We have constructed a whole genome radiation hybrid (WG-RH) map across a region of human chromosome 17q, from growth hormone (GH) to thymidine kinase (TK). A panel of 128 WG-RH hybrid cell lines generated by X-irradiation and fusion has been tested for the retention of 39 sequence-tagged site (STS) markers by the polymerase chain reaction. This genome mapping technique has allowed the integration of existing VNTR and microsatellite markers with additional new markers and existing STS markers previously mapped to this region by other means. The WG-RH map includes eight expressed sequence tag (EST) and three anonymous markers developed formore » this study, together with 23 anonymous microsatellites and five existing ESTs. Analysis of these data resulted in a high-density comprehensive map across this region of the genome. A subset of these markers has been used to produce a framework map consisting of 20 loci ordered with odds greater than 1000:1. The markers are of sufficient density to build a YAC contig across this region based on marker content. We have developed sequence tags for both ends of a 2.1-Mb YAC and mapped these using the WG-RH panel, allowing a direct comparison of cRay{sub 6000} to physical distance. 31 refs., 3 figs., 2 tabs.« less

  9. Functional and phenotypical analysis of IL-6-secreting CD4+ T cells in human adipose tissue.

    PubMed

    de Jong, Anja J; Pollastro, Sabrina; Kwekkeboom, Joanneke C; Andersen, Stefan N; Dorjée, Annemarie L; Bakker, Aleida M; Alzaid, Fawaz; Soprani, Antoine; Nelissen, Rob G H H; Mullers, Jan B; Venteclef, Nicolas; de Vries, Niek; Kloppenburg, Margreet; Toes, René E M; Ioan-Facsinay, Andreea

    2018-03-01

    Emerging evidence indicates that a dynamic interplay between the immune system and adipocytes contributes to the disturbed homeostasis in adipose tissue of obese subjects. Recently, we observed IL-6-secretion by CD4 + T cells from the stromal vascular fraction (SVF) of the infrapatellar fat pad (IFP) of knee osteoarthritis patients directly ex vivo. Here we show that human IL-6 + CD4 + T cells from SVF display a more activated phenotype than the IL-6 - T cells, as evidenced by the expression of the activation marker CD69. Analysis of cytokines secretion, as well as expression of chemokine receptors and transcription factors associated with different Th subsets (Treg, Th1, Th2, Th17 and Tfh) revealed that IL-6-secreting CD4 + T cells cannot be assigned to a conventional Th subset. TCRβ gene analysis revealed that IL-6 + and IL-6 - CD4 + T cells appear clonally unrelated to each other, suggesting a different specificity of these cells. In line with these observations, adipocytes are capable of enhancing IL-6 production by CD4 + T cells. Thus, IL-6 + CD4 + T cells are TCRαβ T cells expressing an activated phenotype potentially resulting from an interplay with adipocytes that could be involved in the inflammatory processes in the OA joint. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Molecular and clinical characterization of the myopathic form of mitochondrial DNA depletion syndrome caused by mutations in the thymidine kinase (TK2) gene.

    PubMed

    Chanprasert, Sirisak; Wang, Jing; Weng, Shao-Wen; Enns, Gregory M; Boué, Daniel R; Wong, Brenda L; Mendell, Jerry R; Perry, Deborah A; Sahenk, Zarife; Craigen, William J; Alcala, Francisco J Climent; Pascual, Juan M; Melancon, Serge; Zhang, Victor Wei; Scaglia, Fernando; Wong, Lee-Jun C

    2013-01-01

    Mitochondrial DNA (mtDNA) depletion syndromes (MDSs) are a clinically and molecularly heterogeneous group of mitochondrial cytopathies characterized by severe mtDNA copy number reduction in affected tissues. Clinically, MDSs are mainly categorized as myopathic, encephalomyopathic, hepatocerebral, or multi-systemic forms. To date, the myopathic form of MDS is mainly caused by mutations in the TK2 gene, which encodes thymidine kinase 2, the first and rate limiting step enzyme in the phosphorylation of pyrimidine nucleosides. We analyzed 9 unrelated families with 11 affected subjects exhibiting the myopathic form of MDS, by sequencing the TK2 gene. Twelve mutations including 4 novel mutations were detected in 9 families. Skeletal muscle specimens were available from 7 out of 11 subjects. Respiratory chain enzymatic activities in skeletal muscle were measured in 6 subjects, and enzymatic activities were reduced in 3 subjects. Quantitative analysis of mtDNA content in skeletal muscle was performed in 5 subjects, and marked mtDNA content reduction was observed in each. In addition, we outline the molecular and clinical characteristics of this syndrome in a total of 52 patients including those previously reported, and a total of 36 TK2 mutations are summarized. Clinically, hypotonia and proximal muscle weakness are the major phenotypes present in all subjects. In summary, our study expands the molecular and clinical spectrum associated with TK2 deficiency. © 2013.

  11. In vitro differentiation of adipose-tissue-derived mesenchymal stem cells into neural retinal cells through expression of human PAX6 (5a) gene.

    PubMed

    Rezanejad, Habib; Soheili, Zahra-Soheila; Haddad, Farhang; Matin, Maryam M; Samiei, Shahram; Manafi, Ali; Ahmadieh, Hamid

    2014-04-01

    The neural retina is subjected to various degenerative conditions. Regenerative stem-cell-based therapy holds great promise for treating severe retinal degeneration diseases, although many drawbacks remain to be overcome. One important problem is to gain authentically differentiated cells for replacement. Paired box 6 protein (5a) (PAX6 (5a)) is a highly conserved master control gene that has an essential role in the development of the vertebrate visual system. Human adipose-tissue-derived stem cell (hADSC) isolation was performed by using fat tissues and was confirmed by the differentiation potential of the cells into adipocytes and osteocytes and by their surface marker profile. The coding region of the human PAX6 (5a) gene isoform was cloned and lentiviral particles were propagated in HEK293T. The differentiation of hADSCs into retinal cells was characterized by morphological characteristics, quantitative real-time reverse transcription plus the polymerase chain reaction (qPCR) and immunocytochemistry (ICC) for some retinal cell-specific and retinal pigmented epithelial (RPE) cell-specific markers. hADSCs were successfully isolated. Flow cytometric analysis of surface markers indicated the high purity (~97 %) of isolated hADSCs. After 30 h of post-transduction, cells gradually showed the characteristic morphology of neuronal cells and small axon-like processes emerged. qPCR and ICC confirmed the differentiation of some neural retinal cells and RPE cells. Thus, PAX6 (5a) transcription factor expression, together with medium supplemented with fibronectin, is able to induce the differentiation of hADSCs into retinal progenitors, RPE cells and photoreceptors.

  12. 6-Shogaol, an active constituent of dietary ginger, induces autophagy by inhibiting the AKT/mTOR pathway in human non-small cell lung cancer A549 cells.

    PubMed

    Hung, Jen-Yu; Hsu, Ya-Ling; Li, Chien-Te; Ko, Ying-Chin; Ni, Wen-Chiu; Huang, Ming-Shyan; Kuo, Po-Lin

    2009-10-28

    This study is the first study to investigate the anticancer effect of 6-shogaol in human non-small cell lung cancer A549 cells. 6-Shogaol inhibited cell proliferation by inducing autophagic cell death, but not, predominantly, apoptosis. Pretreatment of cells with 3-methyladenine (3-MA), an autophagy inhibitor, suppressed 6-shogaol mediated antiproliferation activity, suggesting that induction of autophagy by 6-shogaol is conducive to cell death. We also found that 6-shogaol inhibited survival signaling through the AKT/mTOR signaling pathway by blocking the activation of AKT and downstream targets, including the mammalian target of rapamycin (mTOR), forkhead transcription factors (FKHR) and glycogen synthase kinase-3beta (GSK-3beta). Phosphorylation of both of mTOR's downstream targets, p70 ribosomal protein S6 kinase (p70S6 kinase) and 4E-BP1, was also diminished. Overexpression of AKT by AKT cDNA transfection decreased 6-shogaol mediated autophagic cell death, supporting inhibition of AKT beneficial to autophagy. Moreover, reduction of AKT expression by siRNA potentiated 6-shogaol's effect, also supporting inhibition of AKT beneficial to autophagy. Taken together, these findings suggest that 6-shogaol may be a promising chemopreventive agent against human non-small cell lung cancer.

  13. Development of Virus-Specific CD4+ and CD8+ Regulatory T Cells Induced by Human Herpesvirus 6 Infection

    PubMed Central

    Wang, Fang; Chi, Jing; Peng, Guangyong; Zhou, Feng; Wang, Jinfeng; Li, Lingyun; Feng, Dongju; Xie, Fangyi; Gu, Bin; Qin, Jian; Chen, Yun

    2014-01-01

    Human herpesvirus 6 (HHV-6) is an important immunosuppressive and immunomodulatory virus. The mechanisms by which HHV-6 establishes latency and immunosuppression in its host are not well understood. Here we characterized HHV-6-specific T cells in peripheral blood mononuclear cells (PBMCs) from HHV-6-infected donors. Our results showed that HHV-6 infection could induce both CD4+ and CD8+ HHV-6-specific regulatory T (Treg) cells. These HHV-6-specific Treg cells had potent suppressive activity and expressed high levels of Treg-associated molecules CD25, FoxP3, and GITR. Both CD4+ and CD8+ Treg cells secreted gamma interferon (IFN-γ) and interleukin-10 (IL-10) but little or no IL-2, IL-4, or transforming growth factor β (TGF-β). Furthermore, HHV-6-specifc Treg cells not only could suppress naive and HHV-6-specific CD4+ effector T cell immune responses but also could impair dendritic cell (DC) maturation and functions. In addition, the suppressive effects mediated by HHV-6-specific Treg cells were mainly through a cell-to-cell contact-dependent mechanism but not through the identified cytokines. These results suggest that HHV-6 may utilize the induction of Treg cells as a strategy to escape antivirus immune responses and maintain the latency and immunosuppression in infected hosts. PMID:24198406

  14. Rb and FZR1/Cdh1 determine CDK4/6-cyclin D requirement in C. elegans and human cancer cells.

    PubMed

    The, Inge; Ruijtenberg, Suzan; Bouchet, Benjamin P; Cristobal, Alba; Prinsen, Martine B W; van Mourik, Tim; Koreth, John; Xu, Huihong; Heck, Albert J R; Akhmanova, Anna; Cuppen, Edwin; Boxem, Mike; Muñoz, Javier; van den Heuvel, Sander

    2015-01-06

    Cyclin-dependent kinases 4 and 6 (CDK4/6) in complex with D-type cyclins promote cell cycle entry. Most human cancers contain overactive CDK4/6-cyclin D, and CDK4/6-specific inhibitors are promising anti-cancer therapeutics. Here, we investigate the critical functions of CDK4/6-cyclin D kinases, starting from an unbiased screen in the nematode Caenorhabditis elegans. We found that simultaneous mutation of lin-35, a retinoblastoma (Rb)-related gene, and fzr-1, an orthologue to the APC/C co-activator Cdh1, completely eliminates the essential requirement of CDK4/6-cyclin D (CDK-4/CYD-1) in C. elegans. CDK-4/CYD-1 phosphorylates specific residues in the LIN-35 Rb spacer domain and FZR-1 amino terminus, resembling inactivating phosphorylations of the human proteins. In human breast cancer cells, simultaneous knockdown of Rb and FZR1 synergistically bypasses cell division arrest induced by the CDK4/6-specific inhibitor PD-0332991. Our data identify FZR1 as a candidate CDK4/6-cyclin D substrate and point to an APC/C(FZR1) activity as an important determinant in response to CDK4/6-inhibitors.

  15. Rb and FZR1/Cdh1 determine CDK4/6-cyclin D requirement in C. elegans and human cancer cells

    PubMed Central

    The, Inge; Ruijtenberg, Suzan; Bouchet, Benjamin P.; Cristobal, Alba; Prinsen, Martine B. W.; van Mourik, Tim; Koreth, John; Xu, Huihong; Heck, Albert J. R.; Akhmanova, Anna; Cuppen, Edwin; Boxem, Mike; Muñoz, Javier; van den Heuvel, Sander

    2015-01-01

    Cyclin-dependent kinases 4 and 6 (CDK4/6) in complex with D-type cyclins promote cell cycle entry. Most human cancers contain overactive CDK4/6-cyclin D, and CDK4/6-specific inhibitors are promising anti-cancer therapeutics. Here, we investigate the critical functions of CDK4/6-cyclin D kinases, starting from an unbiased screen in the nematode Caenorhabditis elegans. We found that simultaneous mutation of lin-35, a retinoblastoma (Rb)-related gene, and fzr-1, an orthologue to the APC/C co-activator Cdh1, completely eliminates the essential requirement of CDK4/6-cyclin D (CDK-4/CYD-1) in C. elegans. CDK-4/CYD-1 phosphorylates specific residues in the LIN-35 Rb spacer domain and FZR-1 amino terminus, resembling inactivating phosphorylations of the human proteins. In human breast cancer cells, simultaneous knockdown of Rb and FZR1 synergistically bypasses cell division arrest induced by the CDK4/6-specific inhibitor PD-0332991. Our data identify FZR1 as a candidate CDK4/6-cyclin D substrate and point to an APC/CFZR1 activity as an important determinant in response to CDK4/6-inhibitors. PMID:25562820

  16. Homologous recombination between overlapping thymidine kinase gene fragments stably inserted into a mouse cell genome.

    PubMed

    Lin, F L; Sternberg, N

    1984-05-01

    We have constructed a substrate to study homologous recombination between adjacent segments of chromosomal DNA. This substrate, designated lambda tk2 , consists of one completely defective and one partially defective herpes simplex virus thymidine kinase (tk) gene cloned in bacteriophage lambda DNA. The two genes have homologous 984-base-pair sequences and are separated by 3 kilobases of largely vector DNA. When lambda tk2 DNA was transferred into mouse LMtk- cells by the calcium phosphate method, rare TK+ transformants were obtained that contained many (greater than 40) copies of the unrecombined DNA. Tk- revertants, which had lost most of the copies of unrecombined DNA, were isolated from these TK+-transformed lines. Two of these Tk- lines were further studied by analysis of their reversion back to the Tk+ phenotype. They generated ca. 200 Tk+ revertants per 10(8) cells after growth in nonselecting medium for 5 days. All of these Tk+ revertants have an intact tk gene reconstructed by homologous recombination; they also retain various amounts of unrecombined lambda tk2 DNA. Southern blot analysis suggested that at least some of the recombination events involve unequal sister chromatid exchanges. We also tested three agents, mitomycin C, 12-O-tetradecanoyl-phorbol-13-acetate, and mezerein, that are thought to stimulate recombination to determine whether they affect the reversion from Tk- to Tk+. Only mitomycin C increased the number of Tk+ revertants.

  17. INDUCTION OF CELL CYCLE ARREST AND APOPTOSIS BY ORMENIS ERIOLEPIS A MORROCAN ENDEMIC PLANT IN VARIOUS HUMAN CANCER CELL LINES.

    PubMed

    Belayachi, Lamiae; Aceves-Luquero, Clara; Merghoub, Nawel; de Mattos, Silvia Fernández; Amzazi, Saaîd; Villalonga, Priam; Bakri, Youssef

    2017-01-01

    Ormenis eriolepis Coss (Asteraceae) is an endemic Moroccan subspecies, traditionally named "Hellala" or "Fergoga". It's usually used for its hypoglycemic effect as well as for the treatment of stomacal pain. As far as we know, there is no scientific exploration of anti tumoral activity of Ormenis eriolepis extracts. In this regard, we performed a screening of organic extracts and fractions in a panel of both hematological and solid cancer cell lines, to evaluate the potential in vitro anti tumoral activity and to elucidate the respective mechanisms that may be responsible for growth arrest and cell death induction. The plant was extracted using organic solvents, and four different extracts were screened on Jurkat, Jeko-1, TK-6, LN229, SW620, U2OS, PC-3 and NIH3T3 cells. Cell viability assays revealed that, the IC50 values were (11,63±5,37μg/ml) for Jurkat, (13,33±1,67μg/ml) for Jeko-1, (41,67±1,98μg/ml) for LN229 and (19,31±4,88μg/ml) for PC-3 cells upon treatment with Oe-DF and Oe-HE respectively. Both the fraction and extract exhibited no effects on TK6 and NIH3T3. Cytometry analysis accompanied by DNA damage signaling protein levels monitoring (p-H2A.X), showed that both the Dichloromethane Fraction and Hexanic extract induce DNA double stranded breaks (DSBs) accompanied by cell cycle arrest in G1 (Jurkat, Jeko -1 and LN22) and G2/M (PC-3) phases which is agreed with the caspase activity observed. Additional experiments with selective inhibitors of stress and survival pathways (JNK, MAPK, Rho, p53, and JAK3) indicated that none of these pathways was significantly involved in apoptosis induction. The bioactive compound analysis by CG/MS indicated that the major compounds in Oe-DF were: Linoleic Acid (15,89%), Podophyllotoxin (17,89%) and Quercetin (22,95%). For Oe-HE the major molecules were: Linoleic Acid (9,76%), α-curcumene (7,07%), α-bisabolol (5,49%), Campesterol (4,41%), Stigmasterol (14,08%) and β-sitosterol (7,49%). Our data suggest that

  18. INDUCTION OF CELL CYCLE ARREST AND APOPTOSIS BY ORMENIS ERIOLEPIS A MORROCAN ENDEMIC PLANT IN VARIOUS HUMAN CANCER CELL LINES

    PubMed Central

    Belayachi, Lamiae; Aceves-Luquero, Clara; Merghoub, Nawel; de Mattos, Silvia Fernández; Amzazi, Saaîd; Villalonga, Priam; Bakri, Youssef

    2017-01-01

    Background: Ormenis eriolepis Coss (Asteraceae) is an endemic Moroccan subspecies, traditionally named “Hellala” or “Fergoga”. It’s usually used for its hypoglycemic effect as well as for the treatment of stomacal pain. As far as we know, there is no scientific exploration of anti tumoral activity of Ormenis eriolepis extracts. Materials and Methods: In this regard, we performed a screening of organic extracts and fractions in a panel of both hematological and solid cancer cell lines, to evaluate the potential in vitro anti tumoral activity and to elucidate the respective mechanisms that may be responsible for growth arrest and cell death induction. The plant was extracted using organic solvents, and four different extracts were screened on Jurkat, Jeko-1, TK-6, LN229, SW620, U2OS, PC-3 and NIH3T3 cells. Results: Cell viability assays revealed that, the IC50 values were (11,63±5,37μg/ml) for Jurkat, (13,33±1,67μg/ml) for Jeko-1, (41,67±1,98μg/ml) for LN229 and (19,31±4,88μg/ml) for PC-3 cells upon treatment with Oe-DF and Oe-HE respectively. Both the fraction and extract exhibited no effects on TK6 and NIH3T3. Cytometry analysis accompanied by DNA damage signaling protein levels monitoring (p-H2A.X), showed that both the Dichloromethane Fraction and Hexanic extract induce DNA double stranded breaks (DSBs) accompanied by cell cycle arrest in G1 (Jurkat, Jeko -1 and LN22) and G2/M (PC-3) phases which is agreed with the caspase activity observed. Additional experiments with selective inhibitors of stress and survival pathways (JNK, MAPK, Rho, p53, and JAK3) indicated that none of these pathways was significantly involved in apoptosis induction. The bioactive compound analysis by CG/MS indicated that the major compounds in Oe-DF were: Linoleic Acid (15,89%), Podophyllotoxin (17,89%) and Quercetin (22,95%). For Oe-HE the major molecules were: Linoleic Acid (9,76%), α-curcumene (7,07%), α-bisabolol (5,49%), Campesterol (4,41%), Stigmasterol (14

  19. Error-free replicative bypass of (6–4) photoproducts by DNA polymerase ζ in mouse and human cells

    PubMed Central

    Yoon, Jung-Hoon; Prakash, Louise; Prakash, Satya

    2010-01-01

    The ultraviolet (UV)-induced (6–4) pyrimidine–pyrimidone photoproduct [(6–4) PP] confers a large structural distortion in DNA. Here we examine in human cells the roles of translesion synthesis (TLS) DNA polymerases (Pols) in promoting replication through a (6–4) TT photoproduct carried on a duplex plasmid where bidirectional replication initiates from an origin of replication. We show that TLS contributes to a large fraction of lesion bypass and that it is mostly error-free. We find that, whereas Pol η and Pol ι provide alternate pathways for mutagenic TLS, surprisingly, Pol ζ functions independently of these Pols and in a predominantly error-free manner. We verify and extend these observations in mouse cells and conclude that, in human cells, TLS during replication can be markedly error-free even opposite a highly distorting DNA lesion. PMID:20080950

  20. Stimulation of interleukin-1beta-independent interleukin-6 production in human dental pulp cells by lipopolysaccharide.

    PubMed

    Hosoya, S; Matsushima, K; Ohbayashi, E; Yamazaki, M; Shibata, Y; Abiko, Y

    1996-12-01

    Dental pulpal infection is most commonly caused by extensive dental caries. A principal driving force behind pulpal disease response appears to lie in the immune system's response to bacteria. However, the production of interleukin (IL)-1beta and IL-6 in human dental pulp (HDP) cells in response to lipopolysaccharide (LPS) has not been well characterized. We examined IL-1beta and IL-6 production in HDP cells by challenging with LPS from Porphyromonas endodontalis, which is a Gram-negative bacteria found in root canals. Our results presented here showed that when HDP cells were stimulated by LPS, the production of IL-6 always preceded that of IL-1beta. Since the IL-6 production was observed even in the presence of the IL-1beta receptor antagonist, we concluded IL-6 production was independent of the IL-1beta molecule in LPS-stimulated HDP cells. This idea was further supported by the results obtained from RT-PCR experiments, in which IL-6 mRNA, but not IL-1beta mRNA, was present in the RNA preparation isolated from the early stage of cells.

  1. ImTK: an open source multi-center information management toolkit

    NASA Astrophysics Data System (ADS)

    Alaoui, Adil; Ingeholm, Mary Lou; Padh, Shilpa; Dorobantu, Mihai; Desai, Mihir; Cleary, Kevin; Mun, Seong K.

    2008-03-01

    The Information Management Toolkit (ImTK) Consortium is an open source initiative to develop robust, freely available tools related to the information management needs of basic, clinical, and translational research. An open source framework and agile programming methodology can enable distributed software development while an open architecture will encourage interoperability across different environments. The ISIS Center has conceptualized a prototype data sharing network that simulates a multi-center environment based on a federated data access model. This model includes the development of software tools to enable efficient exchange, sharing, management, and analysis of multimedia medical information such as clinical information, images, and bioinformatics data from multiple data sources. The envisioned ImTK data environment will include an open architecture and data model implementation that complies with existing standards such as Digital Imaging and Communications (DICOM), Health Level 7 (HL7), and the technical framework and workflow defined by the Integrating the Healthcare Enterprise (IHE) Information Technology Infrastructure initiative, mainly the Cross Enterprise Document Sharing (XDS) specifications.

  2. Inhibition of interleukin-17-stimulated interleukin-6 and -8 production by cranberry components in human gingival fibroblasts and epithelial cells.

    PubMed

    Tipton, D A; Cho, S; Zacharia, N; Dabbous, M K

    2013-10-01

    Gingival epithelial cells and fibroblasts participate in periodontal inflammation and destruction, producing interleukin (IL)-6, a regulator of osteoclastic bone resorption, and the neutrophil chemoattractant IL-8. IL-17, a product of T-helper 17 cells, may play a role in periodontitis by stimulating cytokine production by gingival cells. The cranberry (Vaccinium macrocarpon) is rich in polyphenols, particularly proanthocyanidins, which have antioxidant and other beneficial properties. Cranberry components inhibit pro-inflammatory activities of lipopolysaccharide-stimulated human macrophages, gingival fibroblasts, and epithelial cells, but little is known of its effects on IL-17-stimulated cytokine production. The objectives were to determine the effects of IL-17 ± cranberry components on IL-6 and IL-8 production by human gingival epithelial cells and fibroblasts. Cranberry high molecular weight non-dialyzable material (NDM), which is rich in proanthocyanidins, was derived from cranberry juice. Human gingival epithelial cells and normal human gingival fibroblasts were incubated with NDM (5-50 μg/mL), IL-17 (0.5-100 ng/mL), or NDM + IL-17 in serum-free medium for 6 d. IL-6 and IL-8 in culture supernatants were measured by ELISA. Membrane damage and viability were assessed by lactate dehydrogenase activity released into cell supernatants and activity of a mitochondrial enzyme, respectively. Data were analyzed using ANOVA and Scheffe's F procedure for post hoc comparisons. In both cell lines, IL-17 (≥ ~5-10 ng/mL) significantly stimulated production of IL-6 (p < 0.005) and IL-8 (p < 0.03). Non-toxic levels of NDM inhibited constitutive IL-6 and IL-8 production by epithelial cells (p ≤ 0.01) and fibroblasts (p ≤ 0.03) as well as IL-17-stimulated cytokine production by epithelial cells [IL-6 (maximum ~80% inhibition; p ≤ 0.0001); IL-8 (maximum ~70% inhibition; p ≤ 0.03)] and fibroblasts [IL-6 (maximum ~90% inhibition; p ≤ 0.0001); IL

  3. Characterization of a hydroxyurea-resistant human KB cell line with supersensitivity to 6-thioguanine.

    PubMed

    Yen, Y; Grill, S P; Dutschman, G E; Chang, C N; Zhou, B S; Cheng, Y C

    1994-07-15

    Hydroxyurea (HU) is currently used in the clinic for the treatment of chronic myelogenous leukemia, head and neck carcinoma, and sarcoma. One of its drawbacks, however, is the development of HU resistance. To study this problem, we developed a HU-resistant human KB cell line which exhibits a 15-fold resistance to HU. The characterization of this HU-resistant phenotype revealed a gene amplification of the M2 subunit of ribonucleotide reductase (RR), increased levels of M2 mRNA and protein, and a 3-fold increase of RR activity. This HU-resistant cell line also expressed a "collateral sensitivity" to 6-thioguanine (6-TG), with a 10-fold decrease in the dose inhibiting cell growth by 50% as compared to the KB parental line. The mechanism responsible for this supersensitivity to 6-TG is believed to be related to an increasingly efficient conversion of 6-TG to its triphosphate form, which is subsequently incorporated into DNA. After passage of the resistant cells in the absence of HU, the cell line reverts. The revertant cells lose their resistance to HU and concomitantly their sensitivity to 6-TG. This phenomenon is due to the return of RR to levels comparable to that of the KB parental cell line. These observations and their relevance to cancer chemotherapy will be discussed in this paper. Our results suggest that a clinical protocol could be designed which would allow for a lower dose of 6-TG to be used by taking advantage of the increased RR activity in HU-refractory cancer patients. Two drugs which display collateral sensitivity are known as a "Ying-Yang" pair. Alternate treatment with two different Ying-Yang pairs is the rationale for the "Ying-Yang Ping-Pong" theory in cancer treatment. This rationale allows for effective cancer chemotherapy with reduced toxicity.

  4. Human Papillomavirus E6E7-Mediated Adenovirus Cell Killing: Selectivity of Mutant Adenovirus Replication in Organotypic Cultures of Human Keratinocytes

    PubMed Central

    Balagué, Cristina; Noya, Francisco; Alemany, Ramon; Chow, Louise T.; Curiel, David T.

    2001-01-01

    Replication-competent adenoviruses are being investigated as potential anticancer agents. Exclusive virus replication in cancer cells has been proposed as a safety trait to be considered in the design of oncolytic adenoviruses. From this perspective, we have investigated several adenovirus mutants for their potential to conditionally replicate and promote the killing of cells expressing human papillomavirus (HPV) E6 and E7 oncoproteins, which are present in a high percentage of anogenital cancers. For this purpose, we have employed an organotypic model of human stratified squamous epithelium derived from primary keratinocytes that have been engineered to express HPV-18 oncoproteins stably. We show that, whereas wild-type adenovirus promotes a widespread cytopathic effect in all infected cells, E1A- and E1A/E1B-deleted adenoviruses cause no deleterious effect regardless of the coexpression of HPV18 E6E7. An adenovirus deleted in the CR2 domain of E1A, necessary for binding to the pRB family of pocket proteins, shows no selectivity of replication as it efficiently kills all normal and E6E7-expressing keratinocytes. Finally, an adenovirus mutant deleted in the CR1 and CR2 domains of E1A exhibits preferential replication and cell killing in HPV E6E7-expressing cultures. We conclude that the organotypic keratinocyte culture represents a distinct model to evaluate adenovirus selectivity and that, based on this model, further modifications of the adenovirus genome are required to restrict adenovirus replication to tumor cells. PMID:11462032

  5. In vitro and in vivo characterization of a dual-function green fluorescent protein--HSV1-thymidine kinase reporter gene driven by the human elongation factor 1 alpha promoter.

    PubMed

    Luker, Gary D; Luker, Kathryn E; Sharma, Vijay; Pica, Christina M; Dahlheimer, Julie L; Ocheskey, Joe A; Fahrner, Timothy J; Milbrandt, Jeffrey; Piwnica-Worms, David

    2002-01-01

    Toward the goal of monitoring activity of native mammalian promoters with molecular imaging techniques, we stably transfected DU145 prostate carcinoma cells with a fusion construct of enhanced green fluorescent protein (EGFP) and wild-type herpes simplex virus-1 thymidine kinase (HSV1-TK) as a reporter gene driven by the promoter for human elongation factor 1 alpha (EF-1 alpha-EGFP-TK). Using this model system, expression of EGFP was quantified by flow cytometry and fluorescence microscopy, while the HSV1-TK component of the reporter was quantified with 8-[3H]ganciclovir (8-[3H]GCV). As analyzed by flow cytometry, passage of EGFP-TK-DU145 transfected cells (ETK) in vitro resulted in populations of cells with high and low expression of EGFP over time. High and low ETK cells retained 23-fold and 5-fold more GCV, respectively, than control. While differences in uptake and retention of GCV corresponded to relative expression of the reporter gene in each subpopulation of cells as determined by both flow cytometry (EGFP) and quantitative RT-PCR, the correlation was not linear. Furthermore, in high ETK cells, net retention of various radiolabeled nucleoside analogues varied; the rank order was 8-[3H]GCV < 9-(4-fluoro-3-hydroxymethylbutyl)guanine ([18F]FHBG) approximately 8-[3H]penciclovir (8-[3H]PCV) < 2'-fluoro-2'-deoxy-5-iodouracil-beta-D-arabinofuranoside (2-[14C]FIAU). Xenograft tumors of ETK cells in vivo accumulated 2.5-fold more 8-[3H]GCV per gram of tissue and showed greater fluorescence from EGFP than control DU145 cells, demonstrating that the reporter gene functioned in vivo. These data extend previous reports by showing that a human promoter can be detected in vitro and in vivo with a dual-function reporter exploiting optical and radiotracer techniques.

  6. Exosomes from dental pulp stem cells rescue human dopaminergic neurons from 6-hydroxy-dopamine-induced apoptosis.

    PubMed

    Jarmalavičiūtė, Akvilė; Tunaitis, Virginijus; Pivoraitė, Ugnė; Venalis, Algirdas; Pivoriūnas, Augustas

    2015-07-01

    Stem cells derived from the dental pulp of human exfoliated deciduous teeth (SHEDs) have unique neurogenic properties that could be potentially exploited for therapeutic use. The importance of paracrine SHED signaling for neuro-regeneration has been recognized, but the exact mechanisms behind these effects are presently unknown. In the present study, we investigated the neuro-protective potential of exosomes and micro-vesicles derived from SHEDs on human dopaminergic neurons during oxidative stress-induced by 6-hydroxy-dopamine (6-OHDA). ReNcell VM human neural stem cells were differentiated into dopaminergic neurons and treated with 100 μmol/L of 6-OHDA alone or in combination with exosomes or micro-vesicles purified by ultracentrifugation from SHEDs cultivated in serum-free medium under two conditions: in standard two-dimensional culture flasks or on laminin-coated micro-carriers in a bioreactor. Real-time monitoring of apoptosis was performed with the use of time-lapse confocal microscopy and the CellEvent Caspase-3/7 green detection reagent. Exosomes but not micro-vesicles derived from SHEDs grown on the laminin-coated three-dimensional alginate micro-carriers suppressed 6-OHDA-induced apoptosis in dopaminergic neurons by approximately 80% throughout the culture period. Strikingly, no such effects were observed for the exosomes derived from SHEDs grown under standard culture conditions. Our results suggest that exosomes derived from SHEDs are considered as new potential therapeutic tool in the treatment of Parkinson's disease. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  7. Gamma camera dual imaging with a somatostatin receptor and thymidine kinase after gene transfer with a bicistronic adenovirus in mice.

    PubMed

    Zinn, Kurt R; Chaudhuri, Tandra R; Krasnykh, Victor N; Buchsbaum, Donald J; Belousova, Natalya; Grizzle, William E; Curiel, David T; Rogers, Buck E

    2002-05-01

    To compare two systems for assessing gene transfer to cancer cells and xenograft tumors with noninvasive gamma camera imaging. A replication-incompetent adenovirus encoding the human type 2 somatostatin receptor (hSSTr2) and the herpes simplex virus thymidine kinase (TK) enzyme (Ad-hSSTr2-TK) was constructed. A-427 human lung cancer cells were infected in vitro and mixed with uninfected cells at different ratios. A-427 tumors in nude mice (n = 23) were injected with 1 x 10(6) to 5 x 10(8) plaque-forming units (pfu) of Ad-hSSTr2-TK. The expressed hSSTr2 and TK proteins were imaged owing to internally bound, or trapped, technetium 99m ((99m)Tc)-labeled hSSTr2-binding peptide (P2045) and radioiodinated 2'-deoxy-2'-fluoro-beta-D-arabinofuranosyl-5-iodouracil (FIAU), respectively. Iodine 125 ((125)I)-labeled FIAU was used in vitro and iodine 131 ((131)I)-labeled FIAU, in vivo. The (99m)Tc-labeled P2045 and (125)I- or (131)I-labeled FIAU were imaged simultaneously with different window settings with an Anger gamma camera. Treatment effects were tested with analysis of variance. Infected cells in culture trapped (125)I-labeled FIAU and (99m)Tc-labeled P2045; uptake correlated with the percentage of Ad-hSSTr2-TK-positive cells. For 100% of infected cells, 24% +/- 0.4 (mean +/- SD) of the added (99m)Tc-labeled P2045 was trapped, which is significantly lower (P <.05) than the 40% +/- 2 of (125)I-labeled FIAU that was trapped. For the highest Ad-hSSTr2-TK tumor dose (5 x 10(8) pfu), the uptake of (99m)Tc-labeled P2045 was 11.1% +/- 2.9 of injected dose per gram of tumor (thereafter, dose per gram), significantly higher (P <.05) than the uptake of (131)I-labeled FIAU at 1.6% +/- 0.4 dose per gram. (99m)Tc-labeled P2045 imaging consistently depicted hSSTr2 gene transfer in tumors at all adenovirus doses. Tumor uptake of (99m)Tc-labeled P2045 positively correlated with Ad-hSSTr2-TK dose; (131)I-labeled FIAU tumor uptake did not correlate with vector dose. The hSSTr2 and TK

  8. Qualitative and quantitative analysis of tachykinin NK2 receptors in chemically defined human colonic neuronal pathways.

    PubMed

    Jaafari, Nadia; Khomitch-Baud, Alexandra; Gilhodes, Jean-Claude; Hua, Guoqiang; Julé, Yvon

    2008-04-01

    The involvement of NK2 receptors (NK2r) in the neuroregulation of human colonic motility has been mainly assessed by using pharmacological approaches. The aim of this study was to characterize the intramural neurons and nerve varicosities expressing NK2r in human colonic neuronal pathways. Neuronal coding in the myenteric plexus and external muscle layers was identified on the basis of the patterns of colocalization of tachykinins (TK), vesicular acetylcholine transporter (VAChT), nitric oxide synthase (NOS), glutamate decarboxylase (GAD), and vasoactive intestinal peptide (VIP) with NK2r immunoreactivity. The proportions of chemically defined synaptophysin-immunoreactive nerve varicosities were accurately determined by using specific software. NK2r immunoreactivity was detected in the soma of many myenteric neurons (71.8%). A large proportion of these neurons was immunoreactive to VAChT (39.3%), TK (30%), and GAD (23.5%) and, to a lesser extent, to NOS and VIP. The proportions of nerve varicosities expressing NK2r showed significant regional differences: the highest proportion (59.8%) was located in the myenteric plexus. High proportions of the myenteric nerve varicosities expressing NK2r were immunoreactive to VIP (80.9%) and NOS (77.9%), and lower proportions were recorded with VAChT, TK, and GAD. In the circular and longitudinal muscle layers, the proportions of nerve varicosities expressing NK2r were 49.6% and 45.3%, respectively. The chemically defined intramuscular varicosities were closely apposed to smooth muscle cells expressing NK2r. In conclusion, the data obtained in this study, in which the expression of NK2r was mapped in the human colonic neuronal pathways, confirm that these receptors are involved in the neuroneuronal and neuromuscular processes regulating human colonic motility. Copyright 2008 Wiley-Liss, Inc.

  9. Homologous recombination between overlapping thymidine kinase gene fragments stably inserted into a mouse cell genome.

    PubMed Central

    Lin, F L; Sternberg, N

    1984-01-01

    We have constructed a substrate to study homologous recombination between adjacent segments of chromosomal DNA. This substrate, designated lambda tk2 , consists of one completely defective and one partially defective herpes simplex virus thymidine kinase (tk) gene cloned in bacteriophage lambda DNA. The two genes have homologous 984-base-pair sequences and are separated by 3 kilobases of largely vector DNA. When lambda tk2 DNA was transferred into mouse LMtk- cells by the calcium phosphate method, rare TK+ transformants were obtained that contained many (greater than 40) copies of the unrecombined DNA. Tk- revertants, which had lost most of the copies of unrecombined DNA, were isolated from these TK+-transformed lines. Two of these Tk- lines were further studied by analysis of their reversion back to the Tk+ phenotype. They generated ca. 200 Tk+ revertants per 10(8) cells after growth in nonselecting medium for 5 days. All of these Tk+ revertants have an intact tk gene reconstructed by homologous recombination; they also retain various amounts of unrecombined lambda tk2 DNA. Southern blot analysis suggested that at least some of the recombination events involve unequal sister chromatid exchanges. We also tested three agents, mitomycin C, 12-O-tetradecanoyl-phorbol-13-acetate, and mezerein, that are thought to stimulate recombination to determine whether they affect the reversion from Tk- to Tk+. Only mitomycin C increased the number of Tk+ revertants. Images PMID:6328272

  10. Activated Microglia Desialylate and Phagocytose Cells via Neuraminidase, Galectin-3, and Mer Tyrosine Kinase

    PubMed Central

    Nomura, Koji; Vilalta, Anna; Allendorf, David H.; Hornik, Tamara C.

    2017-01-01

    Activated microglia can phagocytose dying, stressed, or excess neurons and synapses via the phagocytic receptor Mer tyrosine kinase (MerTK). Galectin-3 (Gal-3) can cross-link surface glycoproteins by binding galactose residues that are normally hidden below terminal sialic acid residues. Gal-3 was recently reported to opsonize cells via activating MerTK. We found that LPS-activated BV-2 microglia rapidly released Gal-3, which was blocked by calcineurin inhibitors. Gal-3 bound to MerTK on microglia and to stressed PC12 (neuron-like) cells, and it increased microglial phagocytosis of PC12 cells or primary neurons, which was blocked by inhibition of MerTK. LPS-activated microglia exhibited a sialidase activity that desialylated PC12 cells and could be inhibited by Tamiflu, a neuraminidase (sialidase) inhibitor. Sialidase treatment of PC12 cells enabled Gal-3 to bind and opsonize the live cells for phagocytosis by microglia. LPS-induced microglial phagocytosis of PC12 was prevented by small interfering RNA knockdown of Gal-3 in microglia, lactose inhibition of Gal-3 binding, inhibition of neuraminidase with Tamiflu, or inhibition of MerTK by UNC569. LPS-induced phagocytosis of primary neurons by primary microglia was also blocked by inhibition of MerTK. We conclude that activated microglia release Gal-3 and a neuraminidase that desialylates microglial and PC12 surfaces, enabling Gal-3 binding to PC12 cells and their phagocytosis via MerTK. Thus, Gal-3 acts as an opsonin of desialylated surfaces, and inflammatory loss of neurons or synapses may potentially be blocked by inhibiting neuraminidases, Gal-3, or MerTK. PMID:28500071

  11. Immunohistochemical analysis of S6K1 and S6K2 localization in human breast tumors.

    PubMed

    Filonenko, Valeriy V; Tytarenko, Ruslana; Azatjan, Sergey K; Savinska, Lilya O; Gaydar, Yuriy A; Gout, Ivan T; Usenko, Vasiliy S; Lyzogubov, Valeriy V

    2004-12-01

    To perform an immunohistochemical analysis of human breast adenomas and adenocarcinomas as well as normal breast tissues in respect of S6 ribosomal protein kinase (S6K) expression and localization in normal and transformed cells. The expression level and localization of S6K have been detected in formalin fixed, paraffin embedded sections of normal human breast tissues, adenomas and adenocarcinomas with different grade of differentiation. Immunohistochemical detection of S6K1 and S6K2 in normal human breast tissues and breast tumors were performed using specific monoclonal and polyclonal antibodies against S6K1 and S6K2 with following semiquantitative analysis. The increase of S6K content in the cytoplasm of epithelial cells in benign and malignant tumors has been detected. Nuclear accumulation of S6K1 and to a greater extend S6K2 have been found in breast adenocarcinomas. About 80% of breast adenocarcinomas cases revealed S6K2 nuclear staining comparing to normal tissues. In 31% of cases more then 50% of cancer cells had strong nuclear staining. Accumulation of S6K1 in the nucleus of neoplastic cells has been demonstrated in 25% of cases. Nuclear localization of S6K in the epithelial cells in normal breast tissues has not been detected. Immunohistochemical analysis of S6K1 and S6K2 expression in normal human breast tissues, benign and malignant breast tumors clearly indicates that both kinases are overexpressed in breast tumors. Semiquantitative analysis of peculiarities of S6K localization in normal tissues and tumors revealed that nucleoplasmic accumulation of S6K (especially S6K2) is a distinguishing feature of cancer cells.

  12. The Stilbenoid Tyrosine Kinase Inhibitor, G6, Suppresses Jak2-V617F-mediated Human Pathological Cell Growth in Vitro and in Vivo*

    PubMed Central

    Kirabo, Annet; Embury, Jennifer; Kiss, Róbert; Polgár, Tímea; Gali, Meghanath; Majumder, Anurima; Bisht, Kirpal S.; Cogle, Christopher R.; Keserű, György M.; Sayeski, Peter P.

    2011-01-01

    Using structure-based virtual screening, we previously identified a novel stilbenoid inhibitor of Jak2 tyrosine kinase named G6. Here, we hypothesized that G6 suppresses Jak2-V617F-mediated human pathological cell growth in vitro and in vivo. We found that G6 inhibited proliferation of the Jak2-V617F expressing human erythroleukemia (HEL) cell line by promoting marked cell cycle arrest and inducing apoptosis. The G6-dependent increase in apoptosis levels was concomitant with increased caspase 3/7 activity and cleavage of PARP. G6 also selectively inhibited phosphorylation of STAT5, a downstream signaling target of Jak2. Using a mouse model of Jak2-V617F-mediated hyperplasia, we found that G6 significantly decreased the percentage of blast cells in the peripheral blood, reduced splenomegaly, and corrected a pathologically low myeloid to erythroid ratio in the bone marrow by eliminating HEL cell engraftment in this tissue. In addition, drug efficacy correlated with the presence of G6 in the plasma, marrow, and spleen. Collectively, these data demonstrate that the stilbenoid compound, G6, suppresses Jak2-V617F-mediated aberrant cell growth. As such, G6 may be a potential therapeutic lead candidate against Jak2-mediated, human disease. PMID:21127060

  13. Using CamiTK for rapid prototyping of interactive computer assisted medical intervention applications.

    PubMed

    Promayon, Emmanuel; Fouard, Céline; Bailet, Mathieu; Deram, Aurélien; Fiard, Gaëlle; Hungr, Nikolai; Luboz, Vincent; Payan, Yohan; Sarrazin, Johan; Saubat, Nicolas; Selmi, Sonia Yuki; Voros, Sandrine; Cinquin, Philippe; Troccaz, Jocelyne

    2013-01-01

    Computer Assisted Medical Intervention (CAMI hereafter) is a complex multi-disciplinary field. CAMI research requires the collaboration of experts in several fields as diverse as medicine, computer science, mathematics, instrumentation, signal processing, mechanics, modeling, automatics, optics, etc. CamiTK is a modular framework that helps researchers and clinicians to collaborate together in order to prototype CAMI applications by regrouping the knowledge and expertise from each discipline. It is an open-source, cross-platform generic and modular tool written in C++ which can handle medical images, surgical navigation, biomedicals simulations and robot control. This paper presents the Computer Assisted Medical Intervention ToolKit (CamiTK) and how it is used in various applications in our research team.

  14. Up-regulation of lymphocyte antigen 6 complex expression in side-population cells derived from a human trophoblast cell line HTR-8/SVneo.

    PubMed

    Inagaki, Tetsunori; Kusunoki, Soshi; Tabu, Kouichi; Okabe, Hitomi; Yamada, Izumi; Taga, Tetsuya; Matsumoto, Akemi; Makino, Shintaro; Takeda, Satoru; Kato, Kiyoko

    2016-01-01

    The continual proliferation and differentiation of trophoblasts are critical for the maintenance of pregnancy. It is well known that the tissue stem cells are associated with the development of tissues and pathologies. It has been demonstrated that side-population (SP) cells identified by fluorescence-activated cell sorting (FACS) are enriched with stem cells. The SP cells in HTR-8/SVneo cells derived from human primary trophoblast cells were isolated by FACS. HTR-8/SVneo-SP cell cultures generated both SP and non-SP (NSP) subpopulations. In contrast, NSP cell cultures produced NSP cells and failed to produce SP cells. These SP cells showed self-renewal capability by serial colony-forming assay. Microarray expression analysis using a set of HTR-8/SVneo-SP and -NSP cells revealed that SP cells overexpressed several stemness genes including caudal type homeobox2 (CDX2) and bone morphogenic proteins (BMPs), and lymphocyte antigen 6 complex locus D (LY6D) gene was the most highly up-regulated in HTR-8/SVneo-SP cells. LY6D gene reduced its expression in the course of a 7-day cultivation in differentiation medium. SP cells tended to reduce its fraction by treatment of LY6D siRNA indicating that LY6D had potential to maintain cell proliferation of HTR-8/SVneo-SP cells. On ontology analysis, epithelial-mesenchymal transition (EMT) pathway was involved in the up-regulated genes on microarray analysis. HTR-SVneo-SP cells showed enhanced migration. This is the first report that LY6D was important for the maintenance of HTR-8/SVneo-SP cells. EMT was associated with the phenotype of these SP cells.

  15. The human vascular endothelial cell line HUV-EC-C harbors the integrated HHV-6B genome which remains stable in long term culture.

    PubMed

    Shioda, Setsuko; Kasai, Fumio; Ozawa, Midori; Hirayama, Noriko; Satoh, Motonobu; Kameoka, Yousuke; Watanabe, Ken; Shimizu, Norio; Tang, Huamin; Mori, Yasuko; Kohara, Arihiro

    2018-02-01

    Human herpes virus 6 (HHV-6) is a common human pathogen that is most often detected in hematopoietic cells. Although human cells harboring chromosomally integrated HHV-6 can be generated in vitro, the availability of such cell lines originating from in vivo tissues is limited. In this study, chromosomally integrated HHV-6B has been identified in a human vascular endothelial cell line, HUV-EC-C (IFO50271), derived from normal umbilical cord tissue. Sequence analysis revealed that the viral genome was similar to the HHV-6B HST strain. FISH analysis using a HHV-6 DNA probe showed one signal in each cell, detected at the distal end of the long arm of chromosome 9. This was consistent with a digital PCR assay, validating one copy of the viral DNA. Because exposure of HUV-EC-C to chemicals did not cause viral reactivation, long term cell culture of HUV-EC-C was carried out to assess the stability of viral integration. The growth rate was altered depending on passage numbers, and morphology also changed during culture. SNP microarray profiles showed some differences between low and high passages, implying that the HUV-EC-C genome had changed during culture. However, no detectable change was observed in chromosome 9, where HHV-6B integration and the viral copy number remained unchanged. Our results suggest that integrated HHV-6B is stable in HUV-EC-C despite genome instability.

  16. Functional efficacy of human recombinant FGF-2s tagged with (His)6 and (His-Asn)6 at the N- and C-termini in human gingival fibroblast and periodontal ligament-derived cells.

    PubMed

    Lee, Ji-Hye; Lee, Ji-Eun; Kang, Kyung-Jung; Jang, Young-Joo

    2017-07-01

    Fibroblast growth factor (FGF) is a multifunctional growth factor that induces cell proliferation, survival, migration, and differentiation in various cell types and tissues. With these biological functions, FGF-2 has been evaluated for clinical use in the regeneration of damaged tissues. The expression of hFGF-2 in Escherichia coli and a purification system using the immobilized metal affinity chromatography (IMAC) is well established to generate a continuous supply of FGF-2. Although hexa-histidine tag (H 6 ) is commonly used for IMAC purification, hexa-histidine-asparagine tag (HN 6 ) is also efficient for purification as it is easily exposed on the surface of the protein. In this study, four different tagging constructs of hFGF-2 based on tag positions and types (H 6 -FGF2, FGF2-H 6 , HN 6 -FGF2, and FGF2-HN 6 ) were designed and expressed under the inducible T7 expression system in E. coli. The experimental conditions of expression and purification of each recombinant protein were optimized. The effective dosages of the recombinant proteins were determined based on the increase of cell proliferation in human gingival fibroblast. ED50s of H 6 -FGF2, FGF2-H 6 , HN 6 -FGF2, and FGF2-HN 6 were determined (4.42 ng/ml, 3.55 ng/ml, 3.54 ng/ml, and 4.14 ng/ml, respectively) and found to be comparable to commercial FGF-2 (3.67 ng/ml). All the recombinant hFGF-2s inhibit the osteogenic induction and mineralization in human periodontal ligament-derived cells. Our data suggested that biological activities of the recombinant hFGF-2 are irrelevant to types and positions of tags, but may have an influence on the expression efficiency and solubility. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The HDAC6/8/10 inhibitor TH34 induces DNA damage-mediated cell death in human high-grade neuroblastoma cell lines.

    PubMed

    Kolbinger, Fiona R; Koeneke, Emily; Ridinger, Johannes; Heimburg, Tino; Müller, Michael; Bayer, Theresa; Sippl, Wolfgang; Jung, Manfred; Gunkel, Nikolas; Miller, Aubry K; Westermann, Frank; Witt, Olaf; Oehme, Ina

    2018-06-09

    High histone deacetylase (HDAC) 8 and HDAC10 expression levels have been identified as predictors of exceptionally poor outcomes in neuroblastoma, the most common extracranial solid tumor in childhood. HDAC8 inhibition synergizes with retinoic acid treatment to induce neuroblast maturation in vitro and to inhibit neuroblastoma xenograft growth in vivo. HDAC10 inhibition increases intracellular accumulation of chemotherapeutics through interference with lysosomal homeostasis, ultimately leading to cell death in cultured neuroblastoma cells. So far, no HDAC inhibitor covering HDAC8 and HDAC10 at micromolar concentrations without inhibiting HDACs 1, 2 and 3 has been described. Here, we introduce TH34 (3-(N-benzylamino)-4-methylbenzhydroxamic acid), a novel HDAC6/8/10 inhibitor for neuroblastoma therapy. TH34 is well-tolerated by non-transformed human skin fibroblasts at concentrations up to 25 µM and modestly impairs colony growth in medulloblastoma cell lines, but specifically induces caspase-dependent programmed cell death in a concentration-dependent manner in several human neuroblastoma cell lines. In addition to the induction of DNA double-strand breaks, HDAC6/8/10 inhibition also leads to mitotic aberrations and cell-cycle arrest. Neuroblastoma cells display elevated levels of neuronal differentiation markers, mirrored by formation of neurite-like outgrowths under maintained TH34 treatment. Eventually, after long-term treatment, all neuroblastoma cells undergo cell death. The combination of TH34 with plasma-achievable concentrations of retinoic acid, a drug applied in neuroblastoma therapy, synergistically inhibits colony growth (combination index (CI) < 0.1 for 10 µM of each). In summary, our study supports using selective HDAC inhibitors as targeted antineoplastic agents and underlines the therapeutic potential of selective HDAC6/8/10 inhibition in high-grade neuroblastoma.

  18. Computer-aided active-site-directed modeling of the Herpes Simplex Virus 1 and human thymidine kinase

    NASA Astrophysics Data System (ADS)

    Folkers, Gerd; Trumpp-Kallmeyer, Susanne; Gutbrod, Oliver; Krickl, Sabine; Fetzer, Jürgen; Keil, Günther M.

    1991-10-01

    Thymidine kinase (TK), which is induced by Herpes Simplex Virus 1 (HSV1), plays a key role in the antiviral activity of guanine derivatives such as aciclovir (ACV). In contrast, ACV shows only low affinity to the corresponding host cell enzyme. In order to define the differences in substrate binding of the two enzymes on molecular level, models for the three-dimensional (3-D) structures of the active sites of HSV1-TK and human TK were developed. The reconstruction of the active sites started from primary and secondary structure analysis of various kinases. The results were validated to homologous enzymes with known 3-D structures. The models predict that both enzymes consist of a central core β-sheet structure, connected by loops and α-helices very similar to the overall structure of other nucleotide binding enzymes. The phosphate binding is made up of a highly conserved glycine-rich loop at the N-terminus of the proteins and a conserved region at the C-terminus. The thymidine recognition site was found about 100 amino acids downstream from the phosphate binding loop. The differing substrate specificity of human and HSV1-TK can be explained by amino-acid substitutions in the homologous regions. To achieve a better understanding of the structure of the active site and how the thymidine kinase proteins interact with their substrates, the corresponding complexes of thymidine and dihydroxypropoxyguanine (DHPG) with HSV1 and human TK were built. For the docking of the guanine derivative, the X-ray structure of Elongation Factor Tu (EF-Tu), co-crystallized with guanosine diphosphate, was taken as reference. Fitting of thymidine into the active sites was done with respect to similar interactions found in thymidylate kinase. To complement the analysis of the 3-D structures of the two kinases and the substrate enzyme interactions, site-directed mutagenesis of the thymidine recognition site of HSV1-TK has been undertaken, changing Asp162 in the thymidine recognition site

  19. Laboratory and Clinical Aspects of Human Herpesvirus 6 Infections

    PubMed Central

    Bonnafous, Pascale; Gautheret-Dejean, Agnès

    2015-01-01

    SUMMARY Human herpesvirus 6 (HHV-6) is a widespread betaherpesvirus which is genetically related to human cytomegalovirus (HCMV) and now encompasses two different species: HHV-6A and HHV-6B. HHV-6 exhibits a wide cell tropism in vivo and, like other herpesviruses, induces a lifelong latent infection in humans. As a noticeable difference with respect to other human herpesviruses, genomic HHV-6 DNA is covalently integrated into the subtelomeric region of cell chromosomes (ciHHV-6) in about 1% of the general population. Although it is infrequent, this may be a confounding factor for the diagnosis of active viral infection. The diagnosis of HHV-6 infection is performed by both serologic and direct methods. The most prominent technique is the quantification of viral DNA in blood, other body fluids, and organs by means of real-time PCR. Many active HHV-6 infections, corresponding to primary infections, reactivations, or exogenous reinfections, are asymptomatic. However, the virus may be the cause of serious diseases, particularly in immunocompromised individuals. As emblematic examples of HHV-6 pathogenicity, exanthema subitum, a benign disease of infancy, is associated with primary infection, whereas further virus reactivations can induce severe encephalitis cases, particularly in hematopoietic stem cell transplant recipients. Generally speaking, the formal demonstration of the causative role of HHV-6 in many acute and chronic human diseases is difficult due to the ubiquitous nature of the virus, chronicity of infection, existence of two distinct species, and limitations of current investigational tools. The antiviral compounds ganciclovir, foscarnet, and cidofovir are effective against active HHV-6 infections, but the indications for treatment, as well as the conditions of drug administration, are not formally approved to date. There are still numerous pending questions about HHV-6 which should stimulate future research works on the pathophysiology, diagnosis, and

  20. Clinical significance and diagnostic capacity of serum TK1, CEA, CA 19-9 and CA 72-4 levels in gastric and colorectal cancer patients.

    PubMed

    Ning, Shufang; Wei, Wene; Li, Jilin; Hou, Bingbing; Zhong, Jianhong; Xie, Yuxuan; Liu, Haizhou; Mo, Xianwei; Chen, Jiansi; Zhang, Litu

    2018-01-01

    Despite extensive progress in treatment for cancer in recent decades, the early diagnosis for gastric cancer (GC) and colorectal cancer (CRC) remains poor. In this study, we explore the diagnostic value of joint detection of thymidine kinase 1 (TK1), carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA 19-9) and carbohydrate antigen 72-4 (CA 72-4) in the diagnosis of GC and CRC, and to evaluated the relationship between TK1 expression and clinical pathological characteristics in the patients. Serum TK1, CA 19-9, CA 72-4 and CEA levels were measured in 169 patients with GC, 344 patients with CRC and 75 healthy controls using electro-chemiluminescence. The TK1 concentration was significantly higher in patients with cancer than in healthy controls and patients with clinical stage Ⅲ+Ⅳ had higher TK1 levels than clinical stage Ⅰ+Ⅱ ( P <0.05). The levels of TK1 is significantly associated with tumor stage, lymph node metastasis, distant metastasis, tumor differentiation and age ( P <0.05). When the tumor markers (TK1, CA 19-9 and CA 72-4) were detected respectively, the area under receiver operating characteristics curve (AUC) of TK1 for three cancers was the highest (0.823-0.895). However, the combination of AUC was higher than that for each tumor marker detected respectively (0.934-0.953), and the Hosmer-Lemeshow test showed an adequate model of calibration (P>0.05). Moreover, the AUCs varied significantly between the combination tests and single biomarker tests (Z test, P <0.01). In conclusion, serum TK1 may be an independent tumor marker for GC and CRC patients, and the combination of TK1, CA 19-9 and CA 72-4 and CEA performed even better. This study suggests that combination detection of four tumor markers may prove to be useful for the diagnosis of GC and CRC.

  1. Generation of H1 PAX6WT/EGFP reporter cells to purify PAX6 positive neural stem/progenitor cells.

    PubMed

    Wu, Wei; Liu, Juli; Su, Zhenghui; Li, Zhonghao; Ma, Ning; Huang, Ke; Zhou, Tiancheng; Wang, Linli

    2018-08-25

    Neural conversion from human pluripotent cells (hPSCs) is a potential therapy to neurological disease in the future. However, this is still limited by efficiency and stability of existed protocols used for neural induction from hPSCs. To overcome this obstacle, we developed a reporter system to screen PAX6 + neural progenitor/stem cells using transcription activator like effector nuclease (TALEN). We found that knock-in 2 A-EGFP cassette into PAX6 exon of human embryonic stem cells H1 with TALEN-based homology recombination could establish PAX6 WT/EGFP H1 reporter cell line fast and efficiently. This reporter cell line could differentiate into PAX6 and EGFP double positive neural progenitor/stem cells (NPCs/NSCs) after neural induction. Those PAX6 WT/EGFP NPCs could be purified, expanded and specified to post-mitotic neurons in vitro efficiently. With this reporter cell line, we also screened out 1 NPC-specific microRNA, hsa-miR-99a-5p, and 3 ESCs-enriched miRNAs, hsa-miR-302c-5p, hsa-miR-512-3p and hsa-miR-518 b. In conclusion, the TALEN-based neural stem cell screening system is safe and efficient and could help researcher to acquire adequate and pure neural progenitor cells for further application. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Altered chromosome 6 in immortal human fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbard-Smith, K.; Pardinas, J.R.; Jha, K.K.

    1992-05-01

    Human diploid fibroblasts have a limited life span in vitro, and spontaneous immortalization is an extremely rare event. We have used transformation of human diploid fibroblasts by an origin-defective simian virus 40 genome to develop series of genetically matched immortal cell lines to analyze immortalization. Comparison of a preimmortal transformant (SVtsA/HF-A) with its uncloned and cloned immortalized derivatives (AR5 and HAL) has failed to reveal any major alteration involving the simian virus 40 genome. Karyotypic analysis, however, demonstrated that all of the immortal cell lines in this series have alterations of chromosome 6 involving loss of the portion distal tomore » 6q21. The karyotypic analysis was corroborated by DNA analyses. Southern analysis demonstrated that only one copy of three proto-oncogene loci (ros1, c-myb, and mas1) on 6q was retained in immortal cells. Polymerase chain reaction analysis of the microsatellite polymorphism at 6q22 (D6S87) showed loss of heterozygosity. In addition, elevated expression of c-myb (6q22-23) was observed. We hypothesize that the region at and/or distal to 6q21 plays a role in immortalization, consistent with the presence of a growth suppressor gene. 66 refs., 6 figs., 2 tabs.« less

  3. Remnant living cells that escape cell loss in late-stage tumors exhibit cancer stem cell-like characteristics

    PubMed Central

    Chen, Y-L; Wang, S-Y; Liu, R-S; Wang, H-E; Chen, J-C; Chiou, S-H; Chang, C A; Lin, L-T; Tan, D T W; Lee, Y-J

    2012-01-01

    A balance between cell proliferation and cell loss is essential for tumor progression. Although up to 90% of cells are lost in late-stage carcinomas, the progression and characteristics of remnant living cells in tumor mass are unclear. Here we used molecular imaging to track the progression of living cells in a syngeneic tumor model, and ex vivo investigated the properties of this population at late-stage tumor. The piggyBac transposon system was used to stably introduce the dual reporter genes, including monomeric red fluorescent protein (mRFP) and herpes simplex virus type-1 thymidine kinase (HSV1-tk) genes for fluorescence-based and radionuclide-based imaging of tumor growth in small animals, respectively. Iodine-123-labeled 5-iodo-2′-fluoro-1-beta-𝒟-arabinofuranosyluracil was used as a radiotracer for HSV1-tk gene expression in tumors. The fluorescence- and radionuclide-based imaging using the single-photon emission computed tomography/computed tomography revealed that the number of living cells reached the maximum at 1 week after implantation of 4T1 tumors, and gradually decreased and clustered near the side of the body until 4 weeks accompanied by enlargement of tumor mass. The remnant living cells at late-stage tumor were isolated and investigated ex vivo. The results showed that these living cells could form mammospheres and express cancer stem cell (CSC)-related biomarkers, including octamer-binding transcription factor 4, SRY (sex-determining region Y)-box 2, and CD133 genes compared with those cultured in vitro. Furthermore, this HSV1-tk-expressing CSC-like population was sensitive to ganciclovir applied for the suicide therapy. Taken together, the current data suggested that cells escaping from cell loss in late-stage tumors exhibit CSC-like characteristics, and HSV1-tk may be considered a theranostic agent for targeting this population in vivo. PMID:23034334

  4. Effects of Simulated Microgravity on the Expression Profile of Microrna in Human Lymphoblastoid Cells

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Wu, Honglu; Ramesh, Govindarajan; Rohde, Larry; Story, Michael; Mangala, Lingegowda

    2012-07-01

    EFFECTS OF SIMULATED MICROGRAVITY ON THE EXPRESSION PROFILE OF MICRORNA IN HUMAN LYMPHOBLASTOID CELLS Lingegowda S. Mangala1,2, Ye Zhang1,3, Zhenhua He2, Kamal Emami1, Govindarajan T. Ramesh4, Michael Story 5, Larry H. Rohde2, and Honglu Wu1 1 NASA Johnson Space Center, Houston, Texas, USA 2 University of Houston Clear Lake, Houston, Texas, USA 3 Wyle Integrated Science and Engineering Group, Houston, Texas, USA 4 Norfolk State University, Norfolk, VA, USA 5 University of Texas, Southwestern Medical Center, Dallas, Texas, USA This study explores the changes in expression of microRNA (miRNA) and related genes under simulated microgravity conditions. In comparison to static 1g, microgravity has been shown to alter global gene expression patterns and protein levels in cultured cells or animals. miRNA has recently emerged as an important regulator of gene expression, possibly regulating as many as one-third of all human genes. However, very little is known about the effect of altered gravity on miRNA expression. To test the hypothesis that the miRNA expression profile would be altered in zero gravity resulting in altered regulation of gene expression leading to metabolic or functional changes in cells, we cultured TK6 human lymphoblastoid cells in a High Aspect Ratio Vessel (HARV; bioreactor) for 72 h either in the rotating condition to model microgravity in space or in the static condition as a control. Expression of several miRNA was changed significantly in the simulated microgravity condition including miR-150, miR-34a, miR-423-5p, miR-22 and miR-141, miR-618 and miR-222. To confirm whether this altered miRNA expression correlates with gene expression and functional changes of the cells, we performed DNA microarray and validated the related genes using q-RT PCR. Network and pathway analysis of gene and miRNA expression profiles indicates that the regulation of cell communication and catalytic activities, as well as pathways involved in immune response_IL-15

  5. Draft Genome Sequence of Gordonia sp. Strain UCD-TK1 (Phylum Actinobacteria)

    PubMed Central

    Koenigsaecker, Tynisha M.; Coil, David A.

    2016-01-01

    Here, we present the draft genome of Gordonia sp. strain UCD-TK1. The assembly contains 5,470,576 bp in 98 contigs. This strain was isolated from a disinfected ambulatory surgery center. PMID:27738036

  6. Differential toxic effects of azathioprine, 6-mercaptopurine and 6-thioguanine on human hepatocytes.

    PubMed

    Petit, Elise; Langouet, Sophie; Akhdar, Hanane; Nicolas-Nicolaz, Christophe; Guillouzo, André; Morel, Fabrice

    2008-04-01

    Thiopurines (azathioprine, 6-mercaptopurine and 6-thioguanine) are therapeutic compounds widely administered in the clinic for their multiple uses (autoimmune diseases, post-transplant immunosuppression and cancer). Despite these advantages, their therapeutic potential is limited by occasional adverse effects (myelotoxicity and hepatotoxicity) and by a relatively frequent lack of efficacy. Previous studies have demonstrated that azathioprine decreased the viability of rat hepatocytes. In order to investigate cytotoxic effects of thiopurines in human liver, we used primary human hepatocytes and a highly differentiated human hepatoma cell line, HepaRG, treated or not with azathioprine, 6-mercaptopurine and 6-thioguanine. In parallel, expression of the genes involved in the metabolism of thiopurines, glutathione synthesis and antioxidant defences was measured by quantitative PCR. We clearly demonstrate that human liver parenchymal cells were much less sensitive than rat hepatocytes to thiopurine treatments. The toxic effects appeared after 96 h of treatment while ATP depletion was observed after a 24 h incubation with azathioprine and 6-mercaptopurine. Toxic effects were more pronounced for azathioprine and 6-mercaptopurine, when compared to 6-thioguanine, and might explain glutathione synthesis and antioxidant enzyme induction only by these two drugs. Finally, we also demonstrate for the first time an up-regulation by azathioprine and 6-mercaptopurine of inosine monophosphate dehydrogenase which might have consequences on the de novo biosynthesis of guanine nucleotides and thiopurines metabolism.

  7. Human Herpesvirus-6 cytopathic inclusions: an exceptional and recognizable finding on skin biopsy during HHV6 reactivation after autologous stem-cell transplantation.

    PubMed

    Roux, Jennifer; Battistella, Maxime; Fornecker, Luc; Legoff, Jérôme; Deau, Bénédicte; Houhou, Nadira; Bouaziz, Jean-David; Thieblemont, Catherine; Janin, Anne

    2012-08-01

    Skin rash are common in immunocompromised patients, particularly after bone marrow transplantation. Human herpes virus 6 (HHV6) reactivation is often suspected, but its clinical presentation and the routine laboratory tests may be unspecific, thus leading to late diagnosis. In this case, we report specific intralymphocytic cytopathic inclusions on skin biopsy as a sign of systemic HHV6 reactivation. A 56-year-old patient presented progressive erythroderma and fever occurring after autologous hematopoietic stem-cell transplantation for mantle cell lymphoma. The skin biopsy showed a perivascular infiltrate of medium-to-large lymphocytes with irregular nuclei containing a large central basophilic inclusion surrounded by a clear halo. High levels of HHV-6 genomic in skin biopsy confirm HHV-6-induced cytopathic effect. The clinical course improved with intravenous foscavir. The specific histopathological findings encountered in this case are exceptional but recognizable, and along with HHV-6 DNA detection allow a prompt recognition of HHV6 skin rash.

  8. Biodegradation of isopropanol and acetone under denitrifying conditions by Thauera sp. TK001 for nitrate-mediated microbially enhanced oil recovery.

    PubMed

    Fida, Tekle Tafese; Gassara, Fatma; Voordouw, Gerrit

    2017-07-15

    Amendment of reservoir fluid with injected substrates can enhance the growth and activity of microbes. The present study used isopropyl alcohol (IPA) or acetone to enhance the indigenous anaerobic nitrate-reducing bacterium Thauera sp. TK001. The strain was able to grow on IPA or acetone and nitrate. To monitor effects of strain TK001 on oil recovery, sand-packed columns containing heavy oil were flooded with minimal medium at atmospheric or high (400psi) pressure. Bioreactors were then inoculated with 0.5 pore volume (PV) of minimal medium containing Thauera sp. TK001 with 25mM of acetone or 22.2mM of IPA with or without 80mM nitrate. Incubation without flow for two weeks and subsequent injection with minimal medium gave an additional 17.0±6.7% of residual oil in place (ROIP) from low-pressure bioreactors and an additional 18.3% of ROIP from the high-pressure bioreactors. These results indicate that acetone or IPA, which are commonly used organic solvents, are good substrates for nitrate-mediated microbial enhanced oil recovery (MEOR), comparable to glucose, acetate or molasses, tested previously. This technology may be used for coupling biodegradation of IPA and/or acetone in waste streams to MEOR where these waste streams are generated in close proximity to an oil field. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Novel human breast cancer cell lines IBH-4, IBH-6, and IBH-7 growing in nude mice.

    PubMed

    Bruzzone, Ariana; Vanzulli, Silvia Inés; Soldati, Rocío; Giulianelli, Sebastián; Lanari, Claudia; Lüthy, Isabel Alicia

    2009-05-01

    Breast cancer is the most frequent cancer in women. However, in vivo hormone receptor positive and metastatic models are scarce. The aim of the present manuscript was to assess if the novel steroid receptor positive human cell lines IBH-4, IBH-6, and IBH-7 developed in our laboratory from primary infiltrant ductal carcinomas are good models to study in vivo human breast cancer. Cell lines or tumors were inoculated to nude mice in the presence or absence of hormone supplementation. Growth was analyzed by ANOVA followed by Tukey-Kramer's test. Steroid hormone expression was assessed by immunohistochemistry and Western blotting. The histology of the tumors was analyzed. IBH-4 and IBH-6 cells were inoculated to nude mice and 100% of the injected mice developed tumors in the presence or absence of hormone treatment, although tamoxifen inhibited growth. IBH-4 and IBH-6 cell lines in vivo gave rise to poorly differentiated carcinomas with areas of solid growth and sarcomatoid areas showing no morphological signs of epithelial differentiation. Distinct features of malignancy were observed. IBH-7 tumors in animals receiving estradiol were semi-differentiated adenocarcinomas. IBH-7 cells grew only in the presence of estradiol, but even with hormone addition, the tumor take was 20%. These tumors metastasized to the uterus and lung and vascular tumor emboli were evident. IBH-7 tumors were invasive and able to break through the peritoneum. As a conclusion, IBH-4 and IBH-6 are good models for studying tumor progression, whereas IBH-7 is a good model for tumor take, being metastatic and strictly estrogen-dependent.

  10. Interleukin-6 Directly Impairs the Erythroid Development of Human TF-1 Erythroleukemic Cells

    PubMed Central

    McCranor, Bryan J.; Kim, Min Jung; Cruz, Nicole M.; Xue, Qian-Li; Berger, Alan E.; Walston, Jeremy D.; Civin, Curt I.; Roy, Cindy N.

    2013-01-01

    Anemia of inflammation or chronic disease is a highly prevalent form of anemia. The inflammatory cytokine interleukin-6 (IL-6) negatively correlates with hemoglobin concentration in many disease states. The IL-6-hepcidin antimicrobial peptide axis promotes iron-restricted anemia; however the full role of IL-6 in anemia of inflammation is not well-defined. We previously reported that chronic inflammation had a negative impact on maturation of erythroid progenitors in a mouse model. We hypothesized that IL-6 may be responsible for impaired erythropoiesis, independent of iron restriction. To test the hypothesis we utilized the human erythroleukemia TF-1 cell line to model erythroid maturation and exposed them to varying doses of IL-6 over six days. At 10 ng/ml, IL-6 significantly repressed erythropoietin-dependent TF-1 erythroid maturation. While IL-6 did not decrease the expression of genes associated with hemoglobin synthesis, we observed impaired hemoglobin synthesis as demonstrated by decreased benzidine staining. We also observed that IL-6 down regulated expression of the gene SLC4a1 which is expressed late in erythropoiesis. Those findings suggested that IL-6-dependent inhibition of hemoglobin synthesis might occur. We investigated the impact of IL-6 on mitochondria. IL-6 decreased the mitochondrial membrane potential at all treatment doses, and significantly decreased mitochondrial mass at the highest dose. Our studies indicate that IL-6 may impair mitochondrial function in maturing erythroid cells resulting in impaired hemoglobin production and erythroid maturation. Our findings may indicate a novel pathway of action for IL-6 in the anemia of inflammation, and draw attention to the potential for new therapeutic targets that affect late erythroid development. PMID:24119518

  11. Forced expression of the Ikaros 6 isoform in human placental blood CD34(+) cells impairs their ability to differentiate toward the B-lymphoid lineage.

    PubMed

    Tonnelle, C; Bardin, F; Maroc, C; Imbert, A M; Campa, F; Dalloul, A; Schmitt, C; Chabannon, C

    2001-11-01

    Studies in mice suggest that the Ikaros (Ik) gene encodes several isoforms and is a critical regulator of hematolymphoid differentiation. Little is known on the role of Ikaros in human stem cell differentiation. Herein, the biological consequences of the forced expression of Ikaros 6 (Ik6) in human placental blood CD34(+) progenitors are evaluated. Ik6 is one of the isoforms produced from the Ikaros premessenger RNA by alternative splicing and is thought to behave as a dominant negative isoform of the gene product because it lacks the DNA binding domain present in transcriptionally active isoforms. The results demonstrate that human cord blood CD34(+) cells that express high levels of Ik6 as a result of retrovirally mediated gene transfer have a reduced capacity to produce lymphoid B cells in 2 independent assays: (1) in vitro reinitiation of human hematopoiesis during coculture with the MS-5 murine stromal cell line and (2) xenotransplantation in nonobese diabetic-severe combined immunodeficient mice. These results suggest that Ikaros plays an important role in stem cell commitment in humans and that the balance between the different isoforms is a key element of this regulatory system; they support the hypothesis that posttranscriptional events can participate in the control of human hematopoietic differentiation.

  12. Detection of Human Herpesvirus 6B (HHV-6B) Reactivation in Hematopoietic Cell Transplant Recipients with Inherited Chromosomally Integrated HHV-6A by Droplet Digital PCR.

    PubMed

    Sedlak, Ruth Hall; Hill, Joshua A; Nguyen, Thuy; Cho, Michelle; Levin, Greg; Cook, Linda; Huang, Meei-Li; Flamand, Louis; Zerr, Danielle M; Boeckh, Michael; Jerome, Keith R

    2016-05-01

    The presence of inherited chromosomally integrated human herpesvirus 6 (ciHHV-6) in hematopoietic cell transplant (HCT) donors or recipients confounds molecular testing for HHV-6 reactivation, which occurs in 30 to 50% of transplants. Here we describe a multiplex droplet digital PCR clinical diagnostic assay that concurrently distinguishes between HHV-6 species (A or B) and identifies inherited ciHHV-6. By applying this assay to recipient post-HCT plasma and serum samples, we demonstrated reactivation of HHV-6B in 25% (4/16 recipients) of HCT recipients with donor- or recipient-derived inherited ciHHV-6A, underscoring the need for diagnostic testing for HHV-6 infection even in the presence of ciHHV-6. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. Rfx6 Directs Islet Formation and Insulin Production in Mice and Humans

    PubMed Central

    Smith, Stuart B.; Qu, Hui-Qi; Taleb, Nadine; Kishimoto, Nina; Scheel, David W.; Lu, Yang; Patch, Ann-Marie; Grabs, Rosemary; Wang, Juehu; Lynn, Francis C.; Miyatsuka, Takeshi; Mitchell, John; Seerke, Rina; Désir, Julie; Eijnden, Serge Vanden; Abramowicz, Marc; Kacet, Nadine; Weill, Jacques; Renard, Marie-Éve; Gentile, Mattia; Hansen, Inger; Dewar, Ken; Hattersley, Andrew T.; Wang, Rennian; Wilson, Maria E.; Johnson, Jeffrey D.; Polychronakos, Constantin; German, Michael S.

    2009-01-01

    Insulin from the β-cells of the pancreatic islets of Langerhans controls energy homeostasis in vertebrates, and its deficiency causes diabetes mellitus. During embryonic development, the transcription factor Neurogenin3 initiates the differentiation of the β-cells and other islet cell types from pancreatic endoderm, but the genetic program that subsequently completes this differentiation remains incompletely understood. Here we show that the transcription factor Rfx6 directs islet cell differentiation downstream of Neurogenin3. Mice lacking Rfx6 failed to generate any of the normal islet cell types except for pancreatic-polypeptide-producing cells. In human infants with a similar autosomal recessive syndrome of neonatal diabetes, genetic mapping and subsequent sequencing identified mutations in the human RFX6 gene. These studies demonstrate a unique position for Rfx6 in the hierarchy of factors that coordinate pancreatic islet development in both mice and humans. Rfx6 could prove useful in efforts to generate β-cells for patients with diabetes. PMID:20148032

  14. The history of N-methanocarbathymidine: the investigation of a conformational concept leads to the discovery of a potent and selective nucleoside antiviral agent.

    PubMed

    Marquez, Victor E; Hughes, Stephen H; Sei, Shizuko; Agbaria, Riad

    2006-09-01

    Conformationally locked (North)-methanocarbathymidine (N-MCT) and (South)-methanocarbathymidine (S-MCT) have been used to investigate the conformational preferences of kinases and polymerases. The herpes kinases show a distinct bias for S-MCT, while DNA polymerases almost exclusively incorporate the North 5'-triphosphate (N-MCT-TP). Only N-MCT demonstrated potent antiviral activity against herpes simplex viruses (HSV-1 and 2) and Kaposi's sarcoma-associated herpesvirus (KSHV). The activity of N-MCT depends on its metabolic transformation to N-MCT-TP by the herpes kinases (HSV-tk or KSHV-tk), which catalyze the mono and diphosphorylation steps; cellular kinases generate the triphosphate. N-MCT at a dose of 5.6 mg/kg was totally protective for mice inoculated intranasally with HSV-1. Tumor cells that are not responsive to antiviral therapy became sensitive to N-MCT if the cells expressed HSV-tk. N-MCT given twice daily (100 mg/kg) for 7 days completely inhibited the growth of MC38 tumors derived from cells that express HSV-tk in mice while exhibiting no effect on tumors derived from non-transduced cells. After i.p. administration, N-MCT was rapidly absorbed and distributed in all organs examined with slow penetration into brain and testes. N-MCT-TP was also a potent inhibitor of HIV replication in human osteosarcoma (HOS) cells expressing HSV-tk.

  15. Inhibition of Focal Adhesion Kinase Signaling by Integrin α6β1 Supports Human Pluripotent Stem Cell Self-Renewal.

    PubMed

    Villa-Diaz, Luis G; Kim, Jin Koo; Laperle, Alex; Palecek, Sean P; Krebsbach, Paul H

    2016-07-01

    Self-renewal of human embryonic stem cells and human induced pluripotent stem cells (hiPSCs)-known as pluripotent stem cells (PSC)-is influenced by culture conditions, including the substrate on which they are grown. However, details of the molecular mechanisms interconnecting the substrate and self-renewal of these cells remain unclear. We describe a signaling pathway in hPSCs linking self-renewal and expression of pluripotency transcription factors to integrin α6β1 and inactivation of focal adhesion kinase (FAK). Disruption of this pathway results in hPSC differentiation. In hPSCs, α6β1 is the dominant integrin and FAK is not phosphorylated at Y397, and thus, it is inactive. During differentiation, integrin α6 levels diminish and Y397 FAK is phosphorylated and activated. During reprogramming of fibroblasts into iPSCs, integrin α6 is upregulated and FAK is inactivated. Knockdown of integrin α6 and activation of β1 integrin lead to FAK phosphorylation and reduction of Nanog, Oct4, and Sox2, suggesting that integrin α6 functions in inactivation of integrin β1 and FAK signaling and prevention of hPSC differentiation. The N-terminal domain of FAK, where Y397 is localized, is in the nuclei of hPSCs interacting with Oct4 and Sox2, and this immunolocalization is regulated by Oct4. hPSCs remodel the extracellular microenvironment and deposit laminin α5, the primary ligand of integrin α6β1. Knockdown of laminin α5 resulted in reduction of integrin α6 expression, phosphorylation of FAK and decreased Oct4. In conclusion, hPSCs promote the expression of integrin α6β1, and nuclear localization and inactivation of FAK to supports stem cell self-renewal. Stem Cells 2016;34:1753-1764. © 2016 AlphaMed Press.

  16. Fragile-to-fragile liquid transition at Tg and stable-glass phase nucleation rate maximum at the Kauzmann temperature TK

    NASA Astrophysics Data System (ADS)

    Tournier, Robert F.

    2014-12-01

    An undercooled liquid is unstable. The driving force of the glass transition at Tg is a change of the undercooled-liquid Gibbs free energy. The classical Gibbs free energy change for a crystal formation is completed including an enthalpy saving. The crystal growth critical nucleus is used as a probe to observe the Laplace pressure change Δp accompanying the enthalpy change -Vm×Δp at Tg where Vm is the molar volume. A stable glass-liquid transition model predicts the specific heat jump of fragile liquids at T≤Tg, the Kauzmann temperature TK where the liquid entropy excess with regard to crystal goes to zero, the equilibrium enthalpy between TK and Tg, the maximum nucleation rate at TK of superclusters containing magic atom numbers, and the equilibrium latent heats at Tg and TK. Strong-to-fragile and strong-to-strong liquid transitions at Tg are also described and all their thermodynamic parameters are determined from their specific heat jumps. The existence of fragile liquids quenched in the amorphous state, which do not undergo liquid-liquid transition during heating preceding their crystallization, is predicted. Long ageing times leading to the formation at TK of a stable glass composed of superclusters containing up to 147 atom, touching and interpenetrating, are evaluated from nucleation rates. A fragile-to-fragile liquid transition occurs at Tg without stable-glass formation while a strong glass is stable after transition.

  17. An application of LOH analysis for detecting the genetic influences of space environmental radiation

    NASA Astrophysics Data System (ADS)

    Yatagai, F.; Umebayashi, Y.; Honma, M.; Abe, T.; Suzuki, H.; Shimazu, T.; Ishioka, N.; Iwaki, M.

    To detect the genetic influence of space environmental radiation at the chromosome level we proposed an application of loss of heterozygosity LOH analysis system for the mutations induced in human lymphoblastoid TK6 cells Surprisingly we succeeded the mutation detection in the frozen dells which were exposed to a low-dose 10 cGy of carbon-ion beam irradiation Mutation assays were performed within a few days or after about one month preservation at --80 r C following irradiation The results showed an increase in mutation frequency at the thymidine kinase TK gene locus 1 6-fold 2 5 X 10 -6 to 3 9 X 10 -6 and 2 1-fold 2 5 X 10 -6 to 5 3 X 10 -6 respectively Although the relative distributions of mutation classes were not changed by the radiation exposure in either assay an interesting characteristic was detected using this LOH analysis system two TK locus markers and eleven microsatellite loci spanning chromosome 17 The radiation-specific patterns of interstitial deletions were observed in the hemizygous LOH mutants which were considered as a result of end-joining repair of carbon ion-induced DNA double-strand breaks These results clearly demonstrate that this analysis can be used for the detection of low-dose ionizing radiation effects in the frozen cells In addition we performed so called adaptive response experiments in which TK6 cells were pre-irradiated with low-dose 2 5 sim 10 cGy of X-ray and then exposed to challenging dose 2Gy of X-rays Interestingly the

  18. Human papillomavirus (HPV)-18 E6 oncoprotein interferes with the epithelial cell polarity Par3 protein.

    PubMed

    Facciuto, Florencia; Bugnon Valdano, Marina; Marziali, Federico; Massimi, Paola; Banks, Lawrence; Cavatorta, Ana Laura; Gardiol, Daniela

    2014-05-01

    High-risk human papillomavirus (HPV) infection is the principal risk factor for the development of cervical cancer. The HPV E6 oncoprotein has the ability to target and interfere with several PSD-95/DLG/ZO-1 (PDZ) domain-containing proteins that are involved in the control of cell polarity. This function can be significant for E6 oncogenic activity because a deficiency in cell polarisation is a marker of tumour progression. The establishment and control of polarity in epithelial cells depend on the correct asymmetrical distribution of proteins and lipids at the cell borders and on specialised cell junctions. In this report, we have investigated the effects of HPV E6 protein on the polarity machinery, with a focus on the PDZ partitioning defective 3 (Par3) protein, which is a key component of tight junctions (TJ) and the polarity network. We demonstrate that E6 is able to bind and induce the mislocalisation of Par3 protein in a PDZ-dependent manner without significant reduction in Par3 protein levels. In addition, the high-risk HPV-18 E6 protein promotes a delay in TJ formation when analysed by calcium switch assays. Taken together, the data presented in this study contribute to our understanding of the molecular mechanism by which HPVs induce the loss of cell polarity, with potential implications for the development and progression of HPV-associated tumours. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  19. Molecular hydrogen protects human lymphocyte AHH-1 cells against 12C6+ heavy ion radiation.

    PubMed

    Yang, Yanyong; Gao, Fu; Zhang, Hong; Hunag, Yijuan; Zhang, Pei; Liu, Cong; Li, Bailong; Cai, Jianming

    2013-12-01

    To investigate the potential protective role of molecular hydrogen (H(2)) against (12)C(6+) heavy ion radiation, which is a major hazard for space travel and has been also widely used in heavy ion radiotherapy. H(2) was dissolved in Roswell Park Memorial Institute (RPMI) 1640 medium under high pressure (0.4 Mpa) to a saturated level by using an apparatus produced by our department. A 2-[6-(4'-hydroxy) phenoxy-3H-xanthen-3-on-9-yl] benzoate (HPF) probe and a 2',7'-Dichlorodihydrofluorescein diacetate (H2DCFH-DA) fluorescent dye were used to measure the intracellular reactive oxygen species (ROS) level. Cell apoptosis were determined by double-staining with Annexin V-fluorescein isothiocyanate (Annexin V-FITC) and propidium iodide (PI) as well as a Hoechst 33342 staining method alternatively. Subsequently, cell cycle analysis was performed using a PI staining method and the expression of apoptotic protein was examined by Western blot. In this study, we demonstrated H(2) reduced ROS level in Human lymphocyte AHH-1 cells as well as in the radiolysis of water. Our data also showed H(2) attenuated (12)C(6+) radiation- induced cell apoptosis and also alleviated radiation-induced G2/M cell cycle arrest. Heavy ion radiation-induced Caspase 3 activation was also inhibited by H(2) treatment. In conclusion, these data showed that H(2) attenuated (12)C(6+) radiation-induced cell apoptosis through reducing the ROS level and modulating apoptotic molecules, thus indicating the potential of H(2) as a safe and effective radioprotectant.

  20. Reversible conversion of immortal human cells from telomerase-positive to telomerase-negative cells.

    PubMed

    Kumakura, Shin-ichi; Tsutsui, Takeo W; Yagisawa, Junko; Barrett, J Carl; Tsutsui, Takeki

    2005-04-01

    Immortal cell lines and tumors maintain their telomeres via the telomerase pathway or via a telomerase-independent pathway, referred to as alternative lengthening of telomeres (ALT). Here, we show the reversible conversion of the human papillomavirus type 16 E6-induced immortal human fibroblasts E6 Cl 6 from telomerase-positive (Tel(+)) to telomerase-negative (Tel(-)) cells. Tel(+) cells converted spontaneously to Tel(-) cells that reverted to Tel(+) cells following treatment with trichostatin A (TSA) and/or 5-aza-2'-deoxycytidine (5-AZC), which induced the reversion from complete to partial methylation of the CpG islands of the human telomerase reverse transcriptase (hTERT) promoter in Tel(-) E6 Cl 6 cells. Tel(-) E6 Cl 6 cells lacked the phenotypes characteristic of ALT cell lines such as very long and heterogenous telomeres and ALT-associated promyelocytic leukemia nuclear bodies (APB) but grew for >240 population doublings (PD) after they became telomerase negative. The ratios of histone H3 (H3) lysine (K) 9 methylation to each of H3-K4 methylation, H3-K9 acetylation, and H3-K14 acetylation of the chromatin containing the hTERT promoter in Tel(-) E6 Cl 6 cells and ALT cell lines were greater than those in Tel(+) cells and decreased following treatment with TSA and/or 5-AZC, inversely corresponding to telomerase activity. Our findings suggest the possibility that human tumors may be able to reversibly interconvert their telomere maintenance phenotypes by chromatin structure-mediated regulation of hTERT expression.

  1. CXCR6 marks a novel subset of T-betloEomeshi natural killer cells residing in human liver

    PubMed Central

    Stegmann, Kerstin A.; Robertson, Francis; Hansi, Navjyot; Gill, Upkar; Pallant, Celeste; Christophides, Theodoros; Pallett, Laura J.; Peppa, Dimitra; Dunn, Claire; Fusai, Giuseppe; Male, Victoria; Davidson, Brian R.; Kennedy, Patrick; Maini, Mala K.

    2016-01-01

    Natural killer cells (NK) are highly enriched in the human liver, where they can regulate immunity and immunopathology. We probed them for a liver-resident subset, distinct from conventional bone-marrow-derived NK. CXCR6+ NK were strikingly enriched in healthy and diseased liver compared to blood (p < 0.0001). Human hepatic CXCR6+ NK had an immature phenotype (predominantly CD56brightCD16−CD57−), and expressed the tissue-residency marker CD69. CXCR6+ NK produced fewer cytotoxic mediators and pro-inflammatory cytokines than the non-liver-specific CXCR6− fraction. Instead CXCR6+ NK could upregulate TRAIL, a key death ligand in hepatitis pathogenesis. CXCR6 demarcated liver NK into two transcriptionally distinct populations: T-bethiEomeslo(CXCR6−) and T-betloEomeshi(CXCR6+); the latter was virtually absent in the periphery. The small circulating CXCR6+ subset was predominantly T-bethiEomeslo, suggesting its lineage was closer to CXCR6− peripheral than CXCR6+ liver NK. These data reveal a large subset of human liver-resident T-betloEomeshi NK, distinguished by their surface expression of CXCR6, adapted for hepatic tolerance and inducible anti-viral immunity. PMID:27210614

  2. TK Modeler version 1.0, a Microsoft® Excel®-based modeling software for the prediction of diurnal blood/plasma concentration for toxicokinetic use.

    PubMed

    McCoy, Alene T; Bartels, Michael J; Rick, David L; Saghir, Shakil A

    2012-07-01

    TK Modeler 1.0 is a Microsoft® Excel®-based pharmacokinetic (PK) modeling program created to aid in the design of toxicokinetic (TK) studies. TK Modeler 1.0 predicts the diurnal blood/plasma concentrations of a test material after single, multiple bolus or dietary dosing using known PK information. Fluctuations in blood/plasma concentrations based on test material kinetics are calculated using one- or two-compartment PK model equations and the principle of superposition. This information can be utilized for the determination of appropriate dosing regimens based on reaching a specific desired C(max), maintaining steady-state blood/plasma concentrations, or other exposure target. This program can also aid in the selection of sampling times for accurate calculation of AUC(24h) (diurnal area under the blood concentration time curve) using sparse-sampling methodologies (one, two or three samples). This paper describes the construction, use and validation of TK Modeler. TK Modeler accurately predicted blood/plasma concentrations of test materials and provided optimal sampling times for the calculation of AUC(24h) with improved accuracy using sparse-sampling methods. TK Modeler is therefore a validated, unique and simple modeling program that can aid in the design of toxicokinetic studies. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Purification of infectious human herpesvirus 6A virions and association of host cell proteins

    PubMed Central

    Hammarstedt, Maria; Ahlqvist, Jenny; Jacobson, Steven; Garoff, Henrik; Fogdell-Hahn, Anna

    2007-01-01

    Background Viruses that are incorporating host cell proteins might trigger autoimmune diseases. It is therefore of interest to identify possible host proteins associated with viruses, especially for enveloped viruses that have been suggested to play a role in autoimmune diseases, like human herpesvirus 6A (HHV-6A) in multiple sclerosis (MS). Results We have established a method for rapid and morphology preserving purification of HHV-6A virions, which in combination with parallel analyses with background control material released from mock-infected cells facilitates qualitative and quantitative investigations of the protein content of HHV-6A virions. In our iodixanol gradient purified preparation, we detected high levels of viral DNA by real-time PCR and viral proteins by metabolic labelling, silver staining and western blots. In contrast, the background level of cellular contamination was low in the purified samples as demonstrated by the silver staining and metabolic labelling analyses. Western blot analyses showed that the cellular complement protein CD46, the receptor for HHV-6A, is associated with the purified and infectious virions. Also, the cellular proteins clathrin, ezrin and Tsg101 are associated with intact HHV-6A virions. Conclusion Cellular proteins are associated with HHV-6A virions. The relevance of the association in disease and especially in autoimmunity will be further investigated. PMID:17949490

  4. Genistein and tyrphostin AG556 decrease ultra-rapidly activating delayed rectifier K+ current of human atria by inhibiting EGF receptor tyrosine kinase.

    PubMed

    Xiao, Guo-Sheng; Zhang, Yan-Hui; Wu, Wei; Sun, Hai-Ying; Wang, Yan; Li, Gui-Rong

    2017-03-01

    The ultra-rapidly activating delayed rectifier K + current I Kur (encoded by K v 1.5 or KCNA5) plays an important role in human atrial repolarization. The present study investigates the regulation of this current by protein tyrosine kinases (PTKs). Whole-cell patch voltage clamp technique and immunoprecipitation and Western blotting analysis were used to investigate whether the PTK inhibitors genistein, tyrphostin AG556 (AG556) and PP2 regulate human atrial I Kur and hKv1.5 channels stably expressed in HEK 293 cells. Human atrial I Kur was decreased by genistein (a broad-spectrum PTK inhibitor) and AG556 (a highly selective EGFR TK inhibitor) in a concentration-dependent manner. Inhibition of I Kur induced by 30 μM genistein or 10 μM AG556 was significantly reversed by 1 mM orthovanadate (a protein tyrosine phosphatase inhibitor). Similar results were observed in HEK 293 cells stably expressing hK v 1.5 channels. On the other hand, the Src family kinase inhibitor PP2 (1 μM) slightly enhanced I Kur and hK v 1.5 current, and the current increase was also reversed by orthovanadate. Immunoprecipitation and Western blotting analysis showed that genistein, AG556, and PP2 decreased tyrosine phosphorylation of hK v 1.5 channels and that the decrease was countered by orthovanadate. The PTK inhibitors genistein and AG556 decrease human atrial I Kur and cloned hK v 1.5 channels by inhibiting EGFR TK, whereas the Src kinase inhibitor PP2 increases I Kur and hK v 1.5 current. These results imply that EGFR TK and the soluble Src kinases may have opposite effects on human atrial I Kur . © 2017 The British Pharmacological Society.

  5. Polyphenolic Profile and Targeted Bioactivity of Methanolic Extracts from Mediterranean Ethnomedicinal Plants on Human Cancer Cell Lines.

    PubMed

    Pollio, Antonino; Zarrelli, Armando; Romanucci, Valeria; Di Mauro, Alfredo; Barra, Federica; Pinto, Gabriele; Crescenzi, Elvira; Roscetto, Emanuela; Palumbo, Giuseppe

    2016-03-23

    The methanol extracts of the aerial part of four ethnomedicinal plants of Mediterranean region, two non-seed vascular plants, Equisetum hyemale L. and Phyllitis scolopendrium (L.) Newman, and two Spermatophyta, Juniperus communis L. (J. communis) and Cotinus coggygria Scop. (C. coggygria), were screened against four human cells lines (A549, MCF7, TK6 and U937). Only the extracts of J. communis and C. coggygria showed marked cytotoxic effects, affecting both cell morphology and growth. A dose-dependent effect of these two extracts was also observed on the cell cycle distribution. Incubation of all the cell lines in a medium containing J. communis extract determined a remarkable accumulation of cells in the G2/M phase, whereas the C. coggygria extract induced a significant increase in the percentage of G1 cells. The novelty of our findings stands on the observation that the two extracts, consistently, elicited coherent effects on the cell cycle in four cell lines, independently from their phenotype, as two of them have epithelial origin and grow adherent and two are lymphoblastoid and grow in suspension. Even the expression profiles of several proteins regulating cell cycle progression and cell death were affected by both extracts. LC-MS investigation of methanol extract of C. coggygria led to the identification of twelve flavonoids (compounds 1-11, 19) and eight polyphenols derivatives (12-18, 20), while in J. communis extract, eight flavonoids (21-28), a α-ionone glycoside (29) and a lignin (30) were found. Although many of these compounds have interesting individual biological activities, their natural blends seem to exert specific effects on the proliferation of cell lines either growing adherent or in suspension, suggesting potential use in fighting cancer.

  6. TK3 eBook software to author, distribute, and use electronic course content for medical education.

    PubMed

    Morton, David A; Foreman, K Bo; Goede, Patricia A; Bezzant, John L; Albertine, Kurt H

    2007-03-01

    The methods for authoring and distributing course content are undergoing substantial changes due to advancement in computer technology. Paper has been the traditional method to author and distribute course content. Paper enables students to personalize content through highlighting and note taking but does not enable the incorporation of multimedia elements. Computers enable multimedia content but lack the capability of the user to personalize the content. Therefore, we investigated TK3 eBooks as a potential solution to incorporate the benefits of both paper and computer technology. The objective of our study was to assess the utility of TK3 eBooks in the context of authoring and distributing dermatology course content for use by second-year medical students at the University of Utah School of Medicine during the spring of 2004. We incorporated all dermatology course content into TK3 eBook format. TK3 eBooks enable students to personalize information through tools such as "notebook," "hiliter," "stickies," mark pages, and keyword search. Students were given the course content in both paper and eBook formats. At the conclusion of the dermatology course, students completed a questionnaire designed to evaluate the effectiveness of the eBooks compared with paper. Students perceived eBooks as an effective way to distribute course content and as a study tool. However, students preferred paper over eBooks to take notes during lecture. In conclusion, the present study demonstrated that eBooks provide a convenient method for authoring, distributing, and using course content but that students preferred paper to take notes during lecture.

  7. Genotoxicity analysis of two halonitromethanes, a novel group of disinfection by-products (DBPs), in human cells treated in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liviac, Danae; Creus, Amadeu; Marcos, Ricard

    Halonitromethanes (HNMs) constitute an emerging class of disinfection by-products (DBPs) produced when chlorine and/or ozone are used for water treatment. The HNMs are structurally similar to halomethanes, but have a nitro-group in place of hydrogen bonded to the central carbon atom. Since little information exists on the genotoxic potential of HNMs, a study has been carried out with two HNM compounds, namely trichloronitromethane (TCNM) and bromonitromethane (BNM) by using human cells. Primary damage induction has been measured with the Comet assay, which is used to determine both the repair kinetics of the induced damage and the proportion of induced oxidativemore » damage. In addition, the fixed DNA damage has been evaluated by using the micronucleus (MN) assay. The results obtained indicate that both compounds are genotoxic, inducing high levels of DNA breaks in the Comet assay, and that this DNA damage repairs well over time. In addition, oxidized bases constitute a high proportion of DNA-induced damage (50-75%). Contrarily, no positive effects were observed in the frequency of micronucleus, which measures both clastogenic and aneugenic effects, neither using TK6 cells nor peripheral blood lymphocytes. This lack of fixed genetic damage would minimize the potential mutagenic risk associated with HNMs exposure.« less

  8. The low molecular weight Dextran 40 inhibits the adhesion of T lymphocytes to endothelial cells

    PubMed Central

    TERMEER, C C; WEISS, J M; SCHÖPF, E; VANSCHEIDT, W; SIMON, J C

    1998-01-01

    Dextrans are complex colloidal macromolecules widely used as haemorrheologic substances and anti-thrombotic agents. Here we describe a novel function of Dextran 40 by demonstrating an inhibition of T lymphocyte adhesion to endothelial cells (EC). We applied an established microassay in which constitutive and tumour necrosis factor-alpha (TNF-α)-induced binding of mouse T lymphoma cells (TK-1) to mouse endothelioma (eEND.2) cells is mediated by the interaction of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) on EC with their counter-receptors the LFA-1 heterodimer (CD11a/CD18) and VLA-4 on T cells. Dextran 40 in therapeutically achievable levels (2–32 mg/ml) reduced both constitutive and TNF-α-stimulated TK-1 adhesion to eEND.2. Selective preincubation of eEND.2 or TK-1 revealed that Dextran 40 acted exclusively on the T cells. To explore further the mechanisms by which Dextran 40 interfered with TK-1 adhesion, their LFA-1 and VLA-4 expression was analysed by FACS. The surface expression levels of neither receptor were affected by Dextran 40. However, confocal microscopy revealed that Dextran 40 interfered with the activation-dependent capping and clustering of LFA-1 and VLA-4 on the surface of TK-1. We conclude that Dextran 40 inhibits the capacity of TK-1 T cells to adhere to eEND.2 endothelial cells and thus may be useful for therapeutic intervention in diseases associated with enhanced T lymphocyte binding to microvascular endothelium. PMID:9844053

  9. Saponin 6 derived from Anemone taipaiensis induces U87 human malignant glioblastoma cell apoptosis via regulation of Fas and Bcl‑2 family proteins.

    PubMed

    Ji, Chen-Chen; Tang, Hai-Feng; Hu, Yi-Yang; Zhang, Yun; Zheng, Min-Hua; Qin, Hong-Yan; Li, San-Zhong; Wang, Xiao-Yang; Fei, Zhou; Cheng, Guang

    2016-07-01

    Glioblastoma multiforme (GBM) is the most common and aggressive type of brain tumor, and is associated with a poor prognosis. Saponin 6, derived from Anemone taipaiensis, exerts potent cytotoxic effects against the human hepatocellular carcinoma HepG2 cell line and the human promyelocytic leukemia HL‑60 cell line; however, the effects of saponin 6 on glioblastoma remain unknown. The present study aimed to evaluate the effects of saponin 6 on human U87 malignant glioblastoma (U87 MG) cells. The current study revealed that saponin 6 induced U87 MG cell death in a dose‑ and time‑dependent manner, with a half maximal inhibitory concentration (IC50) value of 2.83 µM after treatment for 48 h. However, saponin 6 was needed to be used at a lesser potency in HT‑22 cells, with an IC50 value of 6.24 µM. Cell apoptosis was assessed by flow cytometry using Annexin V‑fluorescein isothiocyanate/propidium iodide double staining. DNA fragmentation and alterations in nuclear morphology were examined by terminal deoxynucleotidyl transferase‑mediated dUTP nick end labeling and transmission electron microscopy, respectively. The present study demonstrated that treatment with saponin 6 induced cell apoptosis in U87 MG cells, and resulted in DNA fragmentation and nuclear morphological alterations typical of apoptosis. In addition, flow cytometric analysis revealed that saponin 6 was able to induce cell cycle arrest. The present study also demonstrated that saponin 6‑induced apoptosis of U87 MG cells was attributed to increases in the protein expression levels of Fas, Fas ligand, and cleaved caspase‑3, ‑8 and ‑9, and decreases in the levels of B‑cell lymphoma 2. The current study indicated that saponin 6 may exhibit selective cytotoxicity toward U87 MG cells by activating apoptosis via the extrinsic and intrinsic pathways. Therefore, saponin 6 derived from A. taipaiensis may possess therapeutic potential for the treatment of GBM.

  10. Human rotavirus strain Wa downregulates NHE1 and NHE6 expressions in rotavirus-infected Caco-2 cells.

    PubMed

    Chen, Honglang; Song, Lijun; Li, Guixian; Chen, Wenfeng; Zhao, Shumin; Zhou, Ruoxia; Shi, Xiaoying; Peng, Zhenying; Zhao, Wenchang

    2017-06-01

    Rotavirus (RV) is the most common cause of severe gastroenteritis and fatal dehydration in human infants and neonates of different species. However, the pathogenesis of rotavirus-induced diarrhea is poorly understood. Secretory diarrhea caused by rotavirus may lead to a combination of excessive secretion of fluid and electrolytes into the intestinal lumen. Fluid absorption in the small intestine is driven by Na + -coupled transport mechanisms at the luminal membrane, including Na + /H + exchanger (NHE). Here, we performed qRT-PCR to detect the transcription of NHEs. Western blotting was employed for protein detection. Furthermore, immunocytochemistry was used to validate the NHE's protein expression. Finally, intracellular Ca 2+ concentration was detected by confocal laser scanning microscopy. The results demonstrated that the NHE6 mRNA and protein expressed in the human colon adenocarcinoma cell line (Caco-2). Furthermore, RV-Wa induced decreased expression of the NHE1 and NHE6 in Caco-2 cell in a time-dependent manner. In addition, intracellular Ca 2+ concentration in RV-Wa-infected Caco-2 cells was higher than that in the mock-infected cells. Furthermore, RV-Wa also can downregulate the expression of calmodulin (CaM) and calmodulin kinase II (CaMKII) in Caco-2 cells. These findings provides important insights into the mechanisms of rotavirus-induced diarrhea. Further studies on the underlying pathophysiological mechanisms that downregulate NHEs in RV-induced diarrhea are required.

  11. HES6 reverses nuclear reprogramming of insulin-producing cells following cell fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ball, Andrew J.; Abrahamsson, Annelie E.; Tyrberg, Bjoern

    2007-04-06

    To examine the mechanism by which growth-stimulated pancreatic {beta}-cells dedifferentiate, somatic cell fusions were performed between MIN6, a highly differentiated mouse insulinoma, and {beta}lox5, a cell line derived from human {beta}-cells which progressively dedifferentiated in culture. MIN6/{beta}lox5 somatic cells hybrids underwent silencing of insulin expression and a marked decline in PDX1, NeuroD, and MafA, indicating that {beta}lox5 expresses a dominant transacting factor(s) that represses {beta}-cell differentiation. Expression of Hes1, which inhibits endocrine differentiation was higher in hybrid cells than in parental MIN6 cells. Hes6, a repressor of Hes1, was highly expressed in primary {beta}-cells as well as MIN6, but wasmore » repressed in hybrids. Hes6 overexpression using a retroviral vector led to a decrease in Hes1 levels, an increase in {beta}-cell transcription factors and partial restoration of insulin expression. We conclude that the balance of Notch activators and inhibitors may play an important role in maintaining the {beta}-cell differentiated state.« less

  12. Generation and characteristics of human Sertoli cell line immortalized by overexpression of human telomerase

    PubMed Central

    Wen, Liping; Yuan, Qingqing; Sun, Min; Niu, Minghui; Wang, Hong; Fu, Hongyong; Zhou, Fan; Yao, Chencheng; Wang, Xiaobo; Li, Zheng; He, Zuping

    2017-01-01

    Sertoli cells are required for normal spermatogenesis and they can be reprogrammed to other types of functional cells. However, the number of primary Sertoli cells is rare and human Sertoli cell line is unavailable. In this study, we have for the first time reported a stable human Sertoli cell line, namely hS1 cells, by overexpression of human telomerase. The hS1 cells expressed a number of hallmarks for human Sertoli cells, including SOX9, WT1, GDNF, SCF, BMP4, BMP6, GATA4, and VIM, and they were negative for 3β-HSD, SMA, and VASA. Higher levels of AR and FSHR were observed in hS1 cells compared to primary human Sertoli cells. Microarray analysis showed that 70.4% of global gene profiles of hS1 cells were similar to primary human Sertoli cells. Proliferation assay demonstrated that hS1 cells proliferated rapidly and they could be passaged for more than 30 times in 6 months. Neither Y chromosome microdeletion nor tumorgenesis was detected in this cell line and 90% normal karyotypes existed in hS1 cells. Collectively, we have established the first human Sertoli cell line with phenotype of primary human Sertoli cells, an unlimited proliferation potential and high safety, which could offer sufficient human Sertoli cells for basic research as well as reproductive and regenerative medicine. PMID:28152522

  13. Beta3 subunits promote expression and nicotine-induced up-regulation of human nicotinic alpha6* nicotinic acetylcholine receptors expressed in transfected cell lines.

    PubMed

    Tumkosit, Prem; Kuryatov, Alexander; Luo, Jie; Lindstrom, Jon

    2006-10-01

    Nicotinic acetylcholine receptors (AChRs) containing alpha6 subunits are typically found at aminergic nerve endings where they play important roles in nicotine addiction and Parkinson's disease. alpha6* AChRs usually contain beta3 subunits. beta3 subunits are presumed to assemble only in the accessory subunit position within AChRs where they do not participate in forming acetylcholine binding sites. Assembly of subunits in the accessory position may be a critical final step in assembly of mature AChRs. Human alpha6 AChRs subtypes were permanently transfected into human tsA201 human embryonic kidney (HEK) cell lines. alpha6beta2beta3 and alpha6beta4beta3 cell lines were found to express much larger amounts of AChRs and were more sensitive to nicotine-induced increase in the amount of AChRs than were alpha6beta2 or alpha6beta4 cell lines. The increased sensitivity to nicotine-induced up-regulation was due not to a beta3-induced increase in affinity for nicotine but probably to a direct effect on assembly of AChR subunits. HEK cells express only a small amount of mature alpha6beta2 AChRs, but many of these subunits are on the cell surface. This contrasts with Xenopus laevis oocytes, which express a large amount of incorrectly assembled alpha6beta2 subunits that bind cholinergic ligands but form large amorphous intracellular aggregates. Monoclonal antibodies (mAbs) were made to the alpha6 and beta3 subunits to aid in the characterization of these AChRs. The alpha6 mAbs bind to epitopes C-terminal of the extracellular domain. These data demonstrate that both cell type and the accessory subunit beta3 can play important roles in alpha6* AChR expression, stability, and up-regulation by nicotine.

  14. TkPl_SU: An Open-source Perl Script Builder for Seismic Unix

    NASA Astrophysics Data System (ADS)

    Lorenzo, J. M.

    2017-12-01

    TkPl_SU (beta) is a graphical user interface (GUI) to select parameters for Seismic Unix (SU) modules. Seismic Unix (Stockwell, 1999) is a widely distributed free software package for processing seismic reflection and signal processing. Perl/Tk is a mature, well-documented and free object-oriented graphical user interface for Perl. In a classroom environment, shell scripting of SU modules engages students and helps focus on the theoretical limitations and strengths of signal processing. However, complex interactive processing stages, e.g., selection of optimal stacking velocities, killing bad data traces, or spectral analysis requires advanced flows beyond the scope of introductory classes. In a research setting, special functionality from other free seismic processing software such as SioSeis (UCSD-NSF) can be incorporated readily via an object-oriented style to programming. An object oriented approach is a first step toward efficient extensible programming of multi-step processes, and a simple GUI simplifies parameter selection and decision making. Currently, in TkPl_SU, Perl 5 packages wrap 19 of the most common SU modules that are used in teaching undergraduate and first-year graduate student classes (e.g., filtering, display, velocity analysis and stacking). Perl packages (classes) can advantageously add new functionality around each module and clarify parameter names for easier usage. For example, through the use of methods, packages can isolate the user from repetitive control structures, as well as replace the names of abbreviated parameters with self-describing names. Moose, an extension of the Perl 5 object system, greatly facilitates an object-oriented style. Perl wrappers are self-documenting via Perl programming document markup language.

  15. Overexpression of interleukin-6 and -8, cell growth inhibition and morphological changes in 2-hydroxyethyl methacrylate-treated human dental pulp mesenchymal stem cells.

    PubMed

    Trubiani, O; Cataldi, A; De Angelis, F; D'Arcangelo, C; Caputi, S

    2012-01-01

    To evaluate morphological features, cell growth and interleukin-6 (IL-6) and interleukin-8 (IL-8) secretion in expanded ex vivo human dental pulp mesenchymal stem cells (DP-MSCs) after exposure to 2-hydroxyethyl methacrylate (HEMA).   Dental pulp mesenchymal stem cells were derived from the dental pulps of 10 young donors. After in vitro isolation, DP-MSCs were treated with 3 and 5 mmol L(-1) HEMA, and after 24, 48 and 72 h of incubation, their morphological features, cell growth, IL-6 and IL-8 secretion were analysed. Differences in the cell growth and in the interleukin secretion were analysed for statistical significance with two-way anova tests and the Holm-Sidak method for multiple comparisons.   Dental pulp mesenchymal stem cells revealed a decrease in cell growth with both treatments (P < 0.05), more evident at 5 mmol L(-1) . Microscopic analysis displayed extensive cytotoxic effects in treated cells, which lost their fibroblastoid features and became retracted, even roundish, with a large number of granules. An up-regulation of IL-6 and IL-8 in treated cells cytokines was evident (P < 0.05).   2-Hydroxyethyl methacrylate exhibited cytotoxicity, inhibited cell growth and induced morphological changes in cultured DP-MSCs. Moreover, in treated samples, an up-regulation of soluble mediators of inflammation such as IL-6 and IL-8 cytokines was found. The direct application of HEMA potentially induces an inflammation process that could be the starting point for toxic response and cell damage in DP-MSCs. © 2011 International Endodontic Journal.

  16. Glucocorticoid-dependent induction of interleukin-6 receptor expression in human hepatocytes facilitates interleukin-6 stimulation of amino acid transport.

    PubMed

    Fischer, C P; Bode, B P; Takahashi, K; Tanabe, K K; Souba, W W

    1996-05-01

    The authors studied the effects of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) on glutamine and alanine transport in isolated human hepatocytes. They also evaluated the role of dexamethasone in modulating this response and its effects on the expression of the plasma membrane high-affinity IL-6 receptor. Animal studies indicate that cytokines are important mediators of the increased hepatic amino acid uptake that occurs during cancer and sepsis, but studies in human tissues are lacking. The control of transport by cytokines and cytokine receptor expression in the liver may provide a mechanism by which hepatocytes can modulate amino acid availability during catabolic disease states. Human hepatocytes were isolated from wedge biopsy specimens and plated in 24-well trays. Interleukin-6 and TNF-alpha, in combination with the synthetic glucocorticoid dexamethasone, were added to hepatocytes in culture, and the transport of radiolabeled glutamine and alanine was measured. Fluorescent-activated cell sorter (FACS) analysis was used to study the effects of dexamethasone on IL-6 receptor number in the well-differentiated human hepatoma HepG2. Both IL-6 and TNF-alpha exerted a small stimulatory effect on alanine and glutamine transport. Dexamethasone alone did not alter transport rates, but pretreatment of cells augmented the effects of both cytokines on carrier-mediated amino acid uptake. Dexamethasone pretreatment and a combination of IL-6 and TNF-alpha resulted in a greater than twofold increase in transport activity. Fluorescent-activated cell sorter analysis demonstrated that dexamethasone induced a threefold increase in the expression of high-affinity IL-6 receptors. Interleukin-6 and TNF-alpha work coordinately with glucocorticoids to stimulate amino acid uptake in human hepatocytes. Dexamethasone exerts a permissive effect on cytokine-mediated increases in transport by increasing IL-6 receptor expression on the cell surface. It is likely that this

  17. PARP-1 may be involved in hydroquinone-induced apoptosis by poly ADP-ribosylation of ZO-2

    PubMed Central

    Liu, Jiaxian; Yuan, Qian; Ling, Xiaoxuan; Tan, Qiang; Liang, Hairong; Chen, Jialong; Lin, Lianzai; Xiao, Yongmei; Chen, Wen; Liu, Linhua; Tang, Huanwen

    2017-01-01

    Hydroquinone (HQ), a major reactive metabolite of benzene, contributes to benzene-induced leukemia. The molecular mechanisms that underlie this activity remain to be elucidated. Poly ADP-ribosylation (PARylation) is a type of reversible posttranslational modification that is performed by enzymes in the PAR polymerase (PARP) family and mediates different biological processes, including apoptosis. Zona occludens 2 (ZO-2) is a tight junction scaffold protein, which is involved in cell proliferation and apoptosis. The present study investigated the activity and mechanisms regulated by PARP-1 during HQ-induced apoptosis using TK6 lymphoblastoid cells and PARP-1-silenced TK6 cells. The results revealed that exposure to 10 µM HQ for 72 h induced apoptosis in TK6 cells and that apoptosis was attenuated in PARP-1-silenced TK6 cells. In cells treated with HQ, inhibition of PARP-1 increased the expression of B cell leukemia/lymphoma 2 (Bcl-2), increased ATP production and reduced reactive oxygen species (ROS) production relative to the levels observed in cells treated with HQ alone. Co-localization of ZO-2 and PAR (or PARP-1 protein) was determined using immunofluorescence confocal microscopy. The findings of the present study revealed that ZO-2 was PARylated via an interaction with PARP-1, which was consistent with an analysis of protein expression that was performed using western blot analysis, which determined that ZO-2 protein expression was upregulated in HQ-treated control cells and downregulated in HQ-treated PARP-1-silenced TK6 cells. These findings indicated that prolonged exposure to a low dose of HQ induced TK6 cells to undergo apoptosis, whereas inhibiting PARP-1 attenuates cellular apoptosis by activating Bcl-2 and energy-saving processes and reducing ROS. The present study determined that PARP-1 was involved in HQ-induced apoptosis by PARylation of ZO-2. PMID:28983606

  18. 6-Shogaol induces cell cycle arrest and apoptosis in human hepatoma cells through pleiotropic mechanisms.

    PubMed

    Wu, Jung-Ju; Omar, Hany A; Lee, Ying-Ray; Teng, Yen-Ni; Chen, Pin-Shern; Chen, Yu-Chung; Huang, Hsiao-Shan; Lee, Kuan-Han; Hung, Jui-Hsiang

    2015-09-05

    Shogaols are a group of the active constituents of ginger that have been identified to have various biological activities. The aim of the current study was to investigate the antitumor activity of 6-shogaol in hepatocellular carcinoma (HCC) and the possible involvement of reactive oxygen species as a putative mechanism of action. HCC cell lines, HepG2 and Huh-7, were used to study the in vitro anti-cancer activity of 6-shogaol via the application of various molecular biology techniques. Results showed that 6-shogaol effectively inhibited the cell viability, caused cell cycle arrest at G2/M phase and induced apoptosis in HCC cells as indicated by MTT assay, DAPI nuclear staining, annexin V assay, cell cycle analysis, and activation of caspase-3. Western blot analysis revealed the ability of 6-shogaol to target cancer survival signaling pathways mediated by mitogen-activated protein kinase (MAPK), 5' AMP-activated protein kinase (AMPK) and Akt. In addition, 6-Shogaol induced alteration of cyclin proteins expression and caused cleavage of protein kinase C delta. Furthermore, 6-Shogaol was able to induce the production of reactive oxygen species and endoplasmic reticulum (ER) stress-associated proteins and the consequent activation of autophagy in HepG2 cells. Taken together, the current study highlights evidences that 6-shogaol induces apoptosis, modulates cyclins expression and targets cancer survival signaling pathways in HCC cell lines, at least in part, via the production of reactive oxygen species. These findings support 6-shogaol's clinical promise as a potential candidate for HCC therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. High expression of B7-H6 in human glioma tissues promotes tumor progression.

    PubMed

    Jiang, Tianwei; Wu, Wei; Zhang, Huasheng; Zhang, Xiangsheng; Zhang, Dingding; Wang, Qiang; Huang, Lei; Wang, Ye; Hang, Chunhua

    2017-06-06

    B7-H6, a new member of B7-family ligand, also known as NCR3LG1, plays an important role in NK cells mediated immune responses. Many studies have shown that it is highly expressed in various human cancers, and its expression levels are significantly associated with cancer patients' clinicopathological parameters and postoperative prognoses. But, still the exact role of B7-H6 expression in human glioma remains elusive. In the present study, we have characterized the B7-H6 expression in the human glioma tissues as well as glioma cell lines, U87 and U251. We observed that B7-H6 was highly expressed in the human glioma tissues, and its expression was significantly associated with cancer progression. By using the RNA interference technology, we successfully ablated B7-H6 expression in human glioma cell lines to further study its contribution towards various biological features of this malignancy. Our study identified that the B7-H6 knockdown in U87 and U251 glioma cells significantly suppressed cell proliferation, migration, invasion, and enhanced apoptosis along with induction of cell cycle arrest. It thus suggested that B7-H6 play an important role in the regulation of the biological behavior of these glioma cells. However, the detailed mechanism of B7-H6 mediated regulation of glioma cancer cell transformation and its prognostic value merits further investigation.

  20. Assay of 6-thioinosinic acid and 6-thioguanine nucleotides, active metabolites of 6-mercaptopurine, in human red blood cells.

    PubMed

    Lennard, L

    1987-12-25

    A highly sensitive reversed-phase high-performance liquid chromatographic assay, with ultraviolet detection, for 6-thioinosinic acid and the 6-thioguanine nucleotides (6TGNs) was developed. The 6TGNs are major red blood cell metabolites of the immunosuppressive agent azathioprine and the cytotoxic drugs 6-thioguanine and 6-mercaptopurine. The assay is based on the specific extraction, via phenyl mercury adduct formation, of the thiopurine released on acid hydrolysis of the thionucleotide metabolite. Red blood cell 6TGN concentrations in eighteen leukaemic children receiving chronic 6-mercaptopurine chemotherapy were measured and compared to a previously published spectrophotofluorometric assay. Linear regression analysis gave r = 0.991; P less than 0.001; y = 40 + 0.94x.

  1. Anti-invasion effects of 6-shogaol and 6-gingerol, two active components in ginger, on human hepatocarcinoma cells.

    PubMed

    Weng, Chia-Jui; Wu, Cheng-Feng; Huang, Hsiao-Wen; Ho, Chi-Tang; Yen, Gow-Chin

    2010-11-01

    Hepatocellular carcinoma is the most common type of liver cancer and is highly metastatic. Metastasis is considered to be the major cause of death in cancer patients. Ginger is a natural dietary rhizome with anti-oxidative, anti-inflammatory, and anti-carcinogenic activities. The aims of this study were to evaluate the anti-invasion activity of 6-shogaol and 6-gingerol, two compounds found in ginger, on hepatoma cells. The migratory and invasive abilities of phorbol 12-myristate 13-acetate (PMA)-treated HepG2 and PMA-untreated Hep3B cells were both reduced in a dose-dependent manner by treatment with 6-shogaol and 6-gingerol. Upon incubation of PMA-treated HepG2 cells and PMA-untreated Hep3B cells with 6-shogaol and 6-gingerol, matrix metalloproteinase (MMP)-9 activity decreased, whereas the expression of tissue inhibitor metalloproteinase protein (TIMP)-1 increased in both cell types. Additionally, urokinase-type plasminogen activator activity was dose-dependently decreased in Hep3B cells after incubation with 6-shogaol for 24 h. Analysis with semi-quantitative reverse transcription-PCR showed that the regulation of MMP-9 by 6-shogaol and 6-gingerol and the regulation of TIMP-1 by 6-shogaol in Hep3B cells may on the transcriptional level. These results suggest that 6-shogaol and 6-gingerol might both exert anti-invasive activity against hepatoma cells through regulation of MMP-9 and TIMP-1 and that 6-shogaol could further regulate urokinase-type plasminogen activity.

  2. Human Bone Marrow-Derived Mesenchymal Cell Reactions to 316L Stainless Steel: An in Vitro Study on Cell Viability and Interleukin-6 Expression.

    PubMed

    Anwar, Iwan Budiwan; Santoso, Asep; Saputra, Eko; Ismail, Rifky; Jamari, J; Van der Heide, Emile

    2017-06-01

    Purpose: Human bone marrow-derived mesenchymal cell (hBMC) reactions to 316L stainless steel (316L-SS) have never been evaluated. The objective of this study was to assess cell viability and interleukin-6 expression of hBMC cultures upon treatment with a 316L-SS implant. Methods: A cytotoxicity analysis was conducted with a 3-(4,5-dimethylthiazol 2-yl)-2,5-diphenyltetrazolium (MTT) assay after a period of 24, 48 and 72 hours of incubation. Expression of interleukin-6 was measured using enzyme-linked immunosorbent assay (ELISA). Results: Cell viability measurement was performed via IC50 formula. All treatment group showed a > 50 % cell viability with a range of 56,5 - 96,9 % at 24 hours, 51,8-77,3% at 48 hours and 70,1- 120 % at 72 hours. Interleukin-6 expression was downregulated subsequent to treatment with 316L-SS compared to the control group. Conclusion: We found that 316L-SS did not exhibit toxicity towards hBMC culture.

  3. Human Bone Marrow-Derived Mesenchymal Cell Reactions to 316L Stainless Steel: An in Vitro Study on Cell Viability and Interleukin-6 Expression

    PubMed Central

    Anwar, Iwan Budiwan; Santoso, Asep; Saputra, Eko; Ismail, Rifky; Jamari, J.; Van der Heide, Emile

    2017-01-01

    Purpose: Human bone marrow-derived mesenchymal cell (hBMC) reactions to 316L stainless steel (316L-SS) have never been evaluated. The objective of this study was to assess cell viability and interleukin-6 expression of hBMC cultures upon treatment with a 316L-SS implant. Methods: A cytotoxicity analysis was conducted with a 3-(4,5-dimethylthiazol 2-yl)-2,5-diphenyltetrazolium (MTT) assay after a period of 24, 48 and 72 hours of incubation. Expression of interleukin-6 was measured using enzyme-linked immunosorbent assay (ELISA). Results: Cell viability measurement was performed via IC50 formula. All treatment group showed a > 50 % cell viability with a range of 56,5 - 96,9 % at 24 hours, 51,8-77,3% at 48 hours and 70,1- 120 % at 72 hours. Interleukin-6 expression was downregulated subsequent to treatment with 316L-SS compared to the control group. Conclusion: We found that 316L-SS did not exhibit toxicity towards hBMC culture. PMID:28761837

  4. Neuroprotective effects of seaweeds against 6-hydroxidopamine-induced cell death on an in vitro human neuroblastoma model.

    PubMed

    Silva, Joana; Alves, Celso; Pinteus, Susete; Mendes, Susana; Pedrosa, Rui

    2018-02-14

    Parkinson's disease (PD) is a progressive neurodegenerative disorder of the central nervous system. Although the causes of PD pathogenesis remain incomplete, some evidences has suggested that oxidative stress is an important mediator in its pathogenesis. The aim of this study was to evaluate the protective effects of seaweeds with high antioxidant activity on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in the human neuroblastoma cell line SH-SY5Y, as well as the associated intracellular signaling pathways. Cell viability studies were assessed by 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium (MTT) bromide assay and the intracellular signaling pathways analyzed were: hydrogen peroxide (H 2 O 2 ) production, changes in the mitochondrial membrane potential and Caspase-3 activity. Exposure of SH-SY5Y cells to 6-OHDA (10-1000 μM) reduced cell's viability in a concentration and time-dependent manner. The data suggest that the cell death induced by 6-OHDA was mediated by an increase of H 2 O 2 production, the depolarization of mitochondrial membrane potential and the increase of Caspase-3 activity. Extracts from S. polyshides, P. pavonica, S. muticum, C. tomentosum and U. compressa revealed to efficiently protect cell's viability in the presence of 6-OHDA (100 μM; 24 h). These effects appear to be associated with the reduction of H 2 O 2 cell's production, the protection of mitochondrial membrane's potential and the reduction of Caspase-3 activity. These results suggest that seaweeds can be a promising source of new compounds with neuroprotective potential.

  5. Interleukin-15-transferred cytokine-induced killer cells elevated anti-tumor activity in a gastric tumor-bearing nude mice model.

    PubMed

    Peng, Zheng; Liang, Wentao; Li, Zexue; Xu, Yingxin; Chen, Lin

    2016-02-01

    Gastric cancer is the second leading cause of cancer-related mortality worldwide. Adoptive cell therapy (ACT) for gastric cancer is a novel therapy modality. However, the therapeutic effectiveness in vivo is still limited. The objective of this study was to assess the value of interleukin-15 (IL-15)-transferred cytokine-induced killer (CIK) cells in ACT for gastric cancer. IL-15-IRES-TK retroviral vector was constructed and transferred into the CIK cells. A gastric tumor-bearing nude mice model was constructed by subcutaneously injecting gastric cancer cells, BGC-823. Gastric tumor-bearing nude mice were randomly divided into three groups (five mice each group) and injected with physiological saline, CIK cells, and IL-15-IRES-TK-transfected CIK cells for 2 weeks, respectively. IL-15-IRES-TK-transferred CIK cells were prepared successfully and flow cytometry (FCM) analysis indicated that the transfection rate reached 85.7% after 5 days culture. In vivo experiment, we found that CIK cells retarded tumor growth by reducing tumor volume and tumor weight, as well as increasing tumor inhibition rate. Furthermore, IL-15-IRES-TK-transferred CIK cells showed a much stronger inhibition on tumor growth than CIK cells alone. Tumor morphology observation and growth indexes also showed that IL-15-transfected CIK cells had stronger cytotoxicity to tumor tissue than CIK cells. IL-15-IRES-TK transfection could elevate the effects of CIK cells to gastric carcinoma. The engineered CIK cells carrying IL-15-IRES-TK may be used in the ACT for gastric carcinoma, but prudent clinical trial is still indispensable. © 2015 International Federation for Cell Biology.

  6. Alpharetroviral self-inactivating vectors produced by a superinfection-resistant stable packaging cell line allow genetic modification of primary human T lymphocytes.

    PubMed

    Labenski, Verena; Suerth, Julia D; Barczak, Elke; Heckl, Dirk; Levy, Camille; Bernadin, Ornellie; Charpentier, Emmanuelle; Williams, David A; Fehse, Boris; Verhoeyen, Els; Schambach, Axel

    2016-08-01

    Primary human T lymphocytes represent an important cell population for adoptive immunotherapies, including chimeric-antigen and T-cell receptor applications, as they have the capability to eliminate non-self, virus-infected and tumor cells. Given the increasing numbers of clinical immunotherapy applications, the development of an optimal vector platform for genetic T lymphocyte engineering, which allows cost-effective high-quality vector productions, remains a critical goal. Alpharetroviral self-inactivating vectors (ARV) have several advantages compared to other vector platforms, including a more random genomic integration pattern and reduced likelihood for inducing aberrant splicing of integrated proviruses. We developed an ARV platform for the transduction of primary human T lymphocytes. We demonstrated functional transgene transfer using the clinically relevant herpes-simplex-virus thymidine kinase variant TK.007. Proof-of-concept of alpharetroviral-mediated T-lymphocyte engineering was shown in vitro and in a humanized transplantation model in vivo. Furthermore, we established a stable, human alpharetroviral packaging cell line in which we deleted the entry receptor (SLC1A5) for RD114/TR-pseudotyped ARVs to prevent superinfection and enhance genomic integrity of the packaging cell line and viral particles. We showed that superinfection can be entirely prevented, while maintaining high recombinant virus titers. Taken together, this resulted in an improved production platform representing an economic strategy for translating the promising features of ARVs for therapeutic T-lymphocyte engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Human Papillomavirus Type 16 E6 Induces Self-Ubiquitination of the E6AP Ubiquitin-Protein Ligase

    PubMed Central

    Kao, Wynn H.; Beaudenon, Sylvie L.; Talis, Andrea L.; Huibregtse, Jon M.; Howley, Peter M.

    2000-01-01

    The E6 protein of the high-risk human papillomaviruses (HPVs) and the cellular ubiquitin-protein ligase E6AP form a complex which causes the ubiquitination and degradation of p53. We show here that HPV16 E6 promotes the ubiquitination and degradation of E6AP itself. The half-life of E6AP is shorter in HPV-positive cervical cancer cells than in HPV-negative cervical cancer cells, and E6AP is stabilized in HPV-positive cancer cells when expression of the viral oncoproteins is repressed. Expression of HPV16 E6 in cells results in a threefold decrease in the half-life of transfected E6AP. E6-mediated degradation of E6AP requires (i) the binding of E6 to E6AP, (ii) the catalytic activity of E6AP, and (iii) activity of the 26S proteasome, suggesting that E6-E6AP interaction results in E6AP self-ubiquitination and degradation. In addition, both in vitro and in vivo experiments indicate that E6AP self-ubiquitination results primarily from an intramolecular transfer of ubiquitin from the active-site cysteine to one or more lysine residues; however, intermolecular transfer can also occur in the context of an E6-mediated E6AP multimer. Finally, we demonstrate that an E6 mutant that is able to immortalize human mammary epithelial cells but is unable to degrade p53 retains its ability to bind and degrade E6AP, raising the possibility that E6-mediated degradation of E6AP contributes to its ability to transform mammalian cells. PMID:10864652

  8. Tests for genotoxicity and mutagenicity of furan and its metabolite cis-2-butene-1,4-dial in L5178Y tk+/- mouse lymphoma cells.

    PubMed

    Kellert, Marco; Brink, Andreas; Richter, Ingrid; Schlatter, Josef; Lutz, Werner K

    2008-12-08

    Furan is found in various food items and is cytotoxic and carcinogenic in the liver of rats and mice. Metabolism of furan includes the formation of an unsaturated dialdehyde, cis-2-butene-1,4-dial (BDA). In view of the multifunctional electrophilic reactivity of BDA, adduct formation with protein and DNA may explain some of the toxic effects. Short-term tests for genotoxicity of furan in mammalian cells are inconclusive, little is known for BDA. We investigated BDA generated by hydrolysis of 2,5-diacetoxy-2,5-dihydrofuran for genotoxicity in L5178Y tk+/- mouse lymphoma cells using standard procedures for the comet assay, the micronucleus test, and the mouse lymphoma thymidine kinase gene mutation assay, using 4-h incubation periods. Cytotoxicity was remarkable: cell viability at concentrations>or=50 microM was reduced to <50%. In the dose range up to 25 microM, viability was >90%. Measures of comet-tail length and thymidine-kinase mutant frequency were increased 1.6- and 2.4-fold above control, respectively. Analysis of three fully independent replicates with a linear mixed-effects model showed a highly significant increase with concentration for both endpoints. Compared to methyl methanesulfonate used as a positive control, BDA was of similar potency with respect to genotoxicity, but it was much more cytotoxic. Furan added to cell cultures at doses that resulted in time-averaged effective concentrations of up to 3100 microM was neither cytotoxic nor genotoxic. A potential cross-linking activity of BDA was investigated by checking whether gamma radiation-induced DNA migration in the comet assay could be reduced by pre-treatment with BDA. In contrast to the effect of the positive control glutaraldehyde, BDA treatment did not reduce the comet tail length. On the contrary, an increase was observed at >or=100 microM BDA, which was attributable to early apoptotic cells. Although BDA was found to be a relatively potent genotoxic agent in terms of the concentration

  9. Implementing a framework for integrating toxicokinetics into human health risk assessment for agrochemicals.

    PubMed

    Terry, Claire; Hays, Sean; McCoy, Alene T; McFadden, Lisa G; Aggarwal, Manoj; Rasoulpour, Reza J; Juberg, Daland R

    2016-03-01

    A strategic and comprehensive program in which toxicokinetic (TK) measurements are made for all agrochemicals undergoing toxicity testing (both new compounds and compounds already registered for use) is described. This approach provides the data to more accurately assess the toxicokinetics of agrochemicals and their metabolites in laboratory animals and humans. Having this knowledge provides the ability to conduct more insightful toxicity studies, refine and interpret exposure assessments and reduce uncertainty in risk assessments. By developing a better understanding of TK across species, including humans via in vitro metabolism studies, any differences across species in TK can be identified early and the most relevant species can be selected for toxicity tests. It also provides the ability to identify any non-linearities in TK as a function of dose, which in turn can be used to identify a kinetically derived maximum dose (KMD) and avoid dosing inappropriately outside of the kinetic linear range. Measuring TK in key life stages also helps to identify changes in ADME parameters from in utero to adults. A robust TK database can also be used to set internal concentration based "Reference Concentrations" and Biomonitoring Equivalents (BE), and support selection of Chemical Specific Adjustment Factors (CSAF). All of these factors support the reduction of uncertainty throughout the entire risk assessment process. This paper outlines how a TK research strategy can be integrated into new agrochemical toxicity testing programs, together with a proposed Framework for future use. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells

    NASA Astrophysics Data System (ADS)

    Yang, Ruifeng; Zheng, Ying; Burrows, Michelle; Liu, Shujing; Wei, Zhi; Nace, Arben; Guo, Wei; Kumar, Suresh; Cotsarelis, George; Xu, Xiaowei

    2014-01-01

    Epithelial stem cells (EpSCs) in the hair follicle bulge are required for hair follicle growth and cycling. The isolation and propagation of human EpSCs for tissue engineering purposes remains a challenge. Here we develop a strategy to differentiate human iPSCs (hiPSCs) into CD200+/ITGA6+ EpSCs that can reconstitute the epithelial components of the hair follicle and interfollicular epidermis. The hiPSC-derived CD200+/ITGA6+ cells show a similar gene expression signature as EpSCs directly isolated from human hair follicles. Human iPSC-derived CD200+/ITGA6+ cells are capable of generating all hair follicle lineages including the hair shaft, and the inner and outer root sheaths in skin reconstitution assays. The regenerated hair follicles possess a KRT15+ stem cell population and produce hair shafts expressing hair-specific keratins. These results suggest an approach for generating large numbers of human EpSCs for tissue engineering and new treatments for hair loss, wound healing and other degenerative skin disorders.

  11. 6-Gingerol prevents MEHP-induced DNA damage in human umbilical vein endothelia cells.

    PubMed

    Yang, G; Gao, X; Jiang, L; Sun, X; Liu, X; Chen, M; Yao, X; Sun, Q; Wang, S

    2017-11-01

    Mono (2-ethylhexyl) phthalate (MEHP) is the principal metabolite of di (2-etylhexyl) phthalate, which is widely used as a plasticizer, especially in medical devices. MEHP has toxic effects on cardiovascular system. The aim of this study was to investigate the possibility that 6-gingerol may inhibit the oxidative DNA damage of MEHP in human umbilical vein endothelial cells (HUVECs) and the potential mechanism. The comet assay was used to monitor DNA strand breaks. We have shown that 6-gingerol significantly reduced the DNA strand breaks caused by MEHP. MEHP increased the levels of reactive oxygen species and malondialdehyde, decreased the level of glutathione and activity of superoxide dismutase, and altered the mitochondrial membrane potential. In addition, DNA damage-associated proteins (p53 and p-Chk2 (T68)) were significantly increased by the treatment of MEHP. Those effects can all be protected by 6-gingerol. The results firmly indicate that 6-gingerol may have a strong protective ability against the DNA damage caused by MEHP in HUVECs, and the mechanism may relate to the antioxidant activity.

  12. Selective sensitivity to wasabi-derived 6-(methylsulfinyl)hexyl isothiocyanate of human breast cancer and melanoma cell lines studied in vitro.

    PubMed

    Nomura, Takahiro; Shinoda, Shoko; Yamori, Takao; Sawaki, Saeko; Nagata, Ikuko; Ryoyama, Kazuo; Fuke, Yoko

    2005-01-01

    Recently, attention has focused on the anticancer properties of an aromatic component 6-(methylsulfinyl)hexyl isothiocyanate (6-MITC) in a typical Japanese spice, wasabi. In this paper, anticancer activity of 6-MITC in vitro was studied by using a human cancer cell (HCC) panel. 6-MITC directly affected the cells in the HCC panel and inhibited their growth in culture. The mean concentration required to inhibit 50% of control cell growth was 3.9 microM, which is a sufficiently low dosage for practical use. The suppression influenced not only the cell growth, but also the survival of these cells. The mean concentration to suppress cells to a 50% survival was 43.7 microM. The reduction activity of 6-MITC was differential, and it suppressed specific cells. These severely suppressed cell lines included breast cancer and melanoma cell lines. For example, one melanoma line was seriously damaged at a concentration of 0.3 microM of 6-MITC. Compared with other MITCs (2-MITC, 4-MITC and 8-MITC), 6-MITC showed the most effective suppression and with the most specific manner of the cells mentioned above. A "COMPARE" analysis using a computerized algorithm, which was based on the HCC database, suggested that the suppression mechanism of 6-MITC is unique and may be different from that of other known chemicals. The actual mechanism may not a simple one but may involve multiple pathways. On account of its sufficiently small size, 6-MITC is a new possible candidate for controlling cancer cells.

  13. The function of the soluble interleukin 6 (IL-6) receptor in vivo: sensitization of human soluble IL-6 receptor transgenic mice towards IL- 6 and prolongation of the plasma half-life of IL-6

    PubMed Central

    1996-01-01

    Interleukin 6 (IL-6) is considered an important mediator of acute inflammatory responses. Moreover, IL-6 functions as a differentiation and growth factor of hematopoietic precursor cells, B cells, T cells, keratinocytes, neuronal cells, osteoclasts, and endothelial cells. IL-6 exhibits its action via a receptor complex consisting of a specific IL- 6 receptor (IL-6R) and a signal transducing subunit (gp130). Soluble forms of both receptor components are generated by shedding and are found in patients with various diseases such as acquired immune deficiency syndrome, rheumatoid arthritis, and others. The function of the soluble (s)IL-6R in vivo is unknown. Since human (h)IL-6 acts on human and murine target cells, but murine IL-6 on murine cells only, we constructed transgenic mice expressing the hsIL-6R. We report here that in the presence of hsIL-6R, mice are hypersensitized towards hIL-6, mounting an acute phase protein gene induction at significantly lower IL-6 dosages compared to control animals. Furthermore, in hsIL-6R transgenic mice, the detected acute phase response persists for a longer period of time. The IL-6/IL-6R complex prolongs markedly the Il- 6 plasma half-life. Our results reinforce the role of the hsIL-6R as an agonistic protein, help to understand the function of the hsIL-6R in vivo, and highlight the significance of the receptor in the induction of the acute phase response. PMID:8666898

  14. Human herpesvirus 6 infection after hematopoietic cell transplantation: is routine surveillance necessary?

    PubMed

    Betts, Brian C; Young, Jo-Anne H; Ustun, Celalettin; Cao, Qing; Weisdorf, Daniel J

    2011-10-01

    Human herpesvirus 6 (HHV6) may be an important pathogen following allogeneic hematopoietic cell transplantation (HCT). We prospectively evaluated weekly HHV6 viremia testing after allogeneic HCT using a quantitative polymerase chain reaction (PCR)-based assay. HHV-6 viremia was detected in 46 of 82 (56%) patients at a median of 23 days post-HCT (range: day +10 to +168). More males (65% vs females 39%, P = .03) and recipients of umbilical cord blood (UCB 69% vs unrelated donor [URD], 46% vs sibling donor [20%] grafts, P = 0.01) reactivated HHV-6. Patients with HHV6 viremia had more cytomegalovirus (CMV) reactivation (26% vs 5.5%, P = .01) and unexplained fever and rash (23.9% vs 2.7%, P = .01) compared with patients without HHV6 viremia. High-level HHV6 (≥ 25,000 copies/mL) versus lower levels were associated with more culture-negative pneumonitis (72.7% vs 22.8%, P = .01). Twenty HHV6-positive patients were treated with foscarnet, ganciclovir, or cidofovir for HHV6 or other coexistent viruses. Within 2 weeks, HHV6 viremia resolved more commonly in treated (65%) than untreated patients (31%), P = .02. Survival at 3 months was similar in treated and untreated patients (90% vs 81%, P = .4). Survival at 3 and 6 months post-HCT were not affected by HHV6 positivity (3 months HHV6+ 85% vs 78%, P = .46; 6 months HHV6+ 70% vs 72%, P = .89) or by HHV6 level (3-month high level 73% vs 89%, P = .23; 6-month high level 64% vs 71%, P = .54). Neither the occurrence of HHV6, degree of viremia, nor use of antiviral drugs influenced short-term survival after HCT. Copyright © 2011 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  15. The Gas6/TAM System and Multiple Sclerosis.

    PubMed

    Bellan, Mattia; Pirisi, Mario; Sainaghi, Pier Paolo

    2016-10-28

    Growth arrest specific 6 (Gas6) is a multimodular circulating protein, the biological actions of which are mediated by the interaction with three transmembrane tyrosine kinase receptors: Tyro3, Axl, and MerTK, collectively named TAM. Over the last few decades, many progresses have been done in the understanding of the biological activities of this highly pleiotropic system, which plays a role in the regulation of immune response, inflammation, coagulation, cell growth, and clearance of apoptotic bodies. Recent findings have further related Gas6 and TAM receptors to neuroinflammation in general and, specifically, to multiple sclerosis (MS). In this paper, we review the biology of the Gas6/TAM system and the current evidence supporting its potential role in the pathogenesis of MS.

  16. Human papillomavirus type 16 E6 and E 7 proteins alter NF-kB in cultured cervical epithelial cells and inhibition of NF-kB promotes cell growth and immortalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vandermark, Erik R.; Deluca, Krysta A.; Gardner, Courtney R.

    2012-03-30

    The NF-kB family of transcription factors regulates important biological functions including cell growth, survival and the immune response. We found that Human Papillomavirus type 16 (HPV-16) E7 and E6/E7 proteins inhibited basal and TNF-alpha-inducible NF-kB activity in human epithelial cells cultured from the cervical transformation zone, the anatomic region where most cervical cancers develop. In contrast, HPV-16 E6 regulated NF-kB in a cell type- and cell growth-dependent manner. NF-kB influenced immortalization of cervical cells by HPV16. Inhibition of NF-kB by an IkB alpha repressor mutant increased colony formation and immortalization by HPV-16. In contrast, activation of NF-kB by constitutive expressionmore » of p65 inhibited proliferation and immortalization. Our results suggest that inhibition of NF-kB by HPV-16 E6/E7 contributes to immortalization of cells from the cervical transformation zone.« less

  17. The Design and Development of Potent Small Molecules as Anticancer Agents Targeting EGFR TK and Tubulin Polymerization

    PubMed Central

    Ihmaid, Saleh; Ahmed, Hany E. A.; Zayed, Mohamed F.

    2018-01-01

    Some novel anthranilate diamides derivatives 4a–e, 6a–c and 9a–d were designed and synthesized to be evaluated for their in vitro anticancer activity. Structures of all newly synthesized compounds were confirmed by infra-red (IR), high-resolution mass (HR-MS) spectra, 1H nuclear magnetic resonance (NMR) and 13C nuclear magnetic resonance (NMR) analyses. Cytotoxic screening was performed according to (3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium (MTT) assay method using erlotinib as a reference drug against two different types of breast cancer cells. The molecular docking study was performed for representative compounds against two targets, epidermal growth factor receptor (EGFR) and tubulin in colchicine binding site to assess their binding affinities in order to rationalize their anticancer activity in a qualitative way. The data obtained from the molecular modeling was correlated with that obtained from the biological screening. These data showed considerable anticancer activity for these newly synthesized compounds. Biological data for most of the anthranilate diamide showed excellent activity with nanomolar or sub nanomolar half maximal inhibitory concentration (IC50) values against tumor cells. EGFR tyrosine kinase (TK) inhibition assay, tubulin inhibition assay and apoptosis analysis were performed for selected compounds to get more details about their mechanism of action. Extensive structure activity relationship (SAR) analyses were also carried out. PMID:29385728

  18. INCREASED IL-8 AND IL-6 EXPRESSION IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES

    EPA Science Inventory

    INCREASED IL-6 AND IL-8 EXPRESSION IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES.
    R Silbajoris1, A G Lenz2, I Jaspers3, J M Samet1. 1NHEERL, USEPA, RTP, NC, USA; 2GSF-Institute for Inhalation Biology, Neuherberg, Germany; 3 CEMLB, UNC-CH, Chapel Hill, ...

  19. Escin suppresses migration and invasion involving the alteration of CXCL16/CXCR6 axis in human gastric adenocarcinoma AGS cells.

    PubMed

    Lee, Hyun Sook; Hong, Ji Eun; Kim, Eun Ji; Kim, Sun Hyo

    2014-01-01

    Escin, a natural mixture of triterpene saponins isolated from horse chestnut, has been reported to possess anticancer activity in many human cancer cells. However, the effect of escin on the metastasis has not been studied. The present study examined the effect of escin on the migration and invasion of AGS human gastric cancer cells. To examine the effects of escin on metastatic capacities of gastric cancer cells, AGS cells were cultured in the presence of 0-4 μmol/L escin. Escin inhibited cell migration and invasion in AGS cells. However, escin did not affect the viability of these cells at these concentrations. The chemokine receptor and its ligands play an important role in cancer metastasis. Escin decreased the production of soluble C-X-C motif chemokine (CXCL)16 but increased the expression of trans-membranous CXCL16. The expression of C-X-C chemokine receptor (CXCR)6 was not affected by escin treatment. Exogenous CXCL16 reversed escin-induced migration inhibition. In addition, escin inhibited the phosphorylation of focal adhesion kinase and Akt. These results demonstrate that escin inhibited the migration and invasion of AGS cells, which is associated with altered CXCL16/CXCR6 axis. These findings suggest that escin has potential as an antimetastatic agent in gastric cancer.

  20. Human herpesvirus 6.

    PubMed Central

    Braun, D K; Dominguez, G; Pellett, P E

    1997-01-01

    Human herpesvirus 6 variant A (HHV-6A) and human herpesvirus 6 variant B (HHV-6B) are two closely related yet distinct viruses. These visuses belong to the Roseolovirus genus of the betaherpesvirus subfamily; they are most closely related to human herpesvirus 7 and then to human cytomegalovirus. Over 95% of people older than 2 years of age are seropositive for either or both HHV-6 variants, and current serologic methods are incapable of discriminating infection with one variant from infection with the other. HHV-6A has not been etiologically linked to any human disease, but such an association will probably be found soon. HHV-6B is the etiologic agent of the common childhood illness exanthem subitum (roseola infantum or sixth disease) and related febrile illnesses. These viruses are frequently active and associated with illness in immunocompromised patients and may play a role in the etiology of Hodgkin's disease and other malignancies. HHV-6 is a commensal inhabitant of brains; various neurologic manifestations, including convulsions and encephalitis, can occur during primary HHV-6 infection or in immunocompromised patients. HHV-6 and distribution in the central nervous system are altered in patients with multiple sclerosis; the significance of this is under investigation. PMID:9227865

  1. Morphine protects SH-SY5Y human neuroblastoma cells against 6-hydroxydopamine-induced cell damage: involvement of anti-oxidant, calcium blocking, and anti-apoptotic properties.

    PubMed

    Elyasi, Leila; Eftekhar-Vaghefi, Seyed Hassan; Esmaeili-Mahani, Saeed

    2014-06-01

    Parkinson's disease is a neurodegenerative disorder characterized by progressive and selective death of dopaminergic neurons. Understanding the neuroprotective effects of chemical reagents has attracted increasing attention. The μ opioid agonist morphine exerts both toxic and protective effects. However, until recently, the neuroprotective role of morphine against 6-hydroxydopamine (6-OHDA)-induced cell death has not been studied. Here, we investigated the effects of morphine on 6-OHDA-induced neurotoxicity in human neuroblastoma SH-SY5Y cell line as an in vitro model of Parkinson's disease. Cell damage was induced by 150 μM 6-OHDA, and the cells' viability was examined by MTT assay. Intracellular calcium, reactive oxygen species (ROS), and mitochondrial membrane potential were determined by the fluorescence spectrophotometry method. Fragmented DNA and biochemical markers of apoptosis were also determined by gel electrophoresis and immunoblotting, respectively. The data showed that 6-OHDA caused a loss of cell viability and mitochondrial membrane potential. In addition, intracellular ROS and calcium levels, activated caspase-3, Bax:Bcl-2 ratio, cytochrome c release, as well as DNA fragmentation were significantly increased in 6-OHDA-treated cells. Incubation of SH-SY5Y cells with morphine (100 μM) elicited a protective effect and reduced biochemical markers of cell damage and death. These results suggest that morphine has neuroprotective effects against 6-OHDA-induced neurotoxicity, and such effects are accompanied by its anti-oxidant, calcium blocking, and anti-apoptotic properties.

  2. Stat6 activity-related Th2 cytokine profile and tumor growth advantage of human colorectal cancer cells in vitro and in vivo.

    PubMed

    Li, Ben Hui; Xu, Shuang Bing; Li, Feng; Zou, Xiao Guang; Saimaiti, Abudukeyoumu; Simayi, Dilixia; Wang, Ying Hong; Zhang, Yan; Yuan, Jia; Zhang, Wen Jie

    2012-03-01

    Signal transducer and activator of transcription 6 (Stat6) is critical in Th2 polarization of immune cells and active Stat6 activity has been suggested in anti-tumor immunity in animal models. The present study aims at investigating the impact of natural Stat6 activity on tumor microenvironment in human colorectal cancer cells in vitro and in vivo. Using colorectal cancer cell lines HT-29 and Caco-2 whose IL-4/Stat6 activities were known and nude mice as a model, we examined correlative relationships between Stat6 activities and gene expression profiles together with cellular behaviors in vitro and in vivo. HT-29 cells carrying active Stat6 signaling displayed spontaneous expression profiles favoring Th2 cytokines, cell cycle promotion, anti-apoptosis and pro-metastasis with increased mRNA levels of IL-4, IL-13, GATA-3, CDK4, CD44v6 and S100A4 using RT-PCR. In contrast, Caco-2 cells carrying defective Stat6 signaling exhibited spontaneous expression profiles favoring Th1 and Th17 cytokines, cell cycle inhibition, pro-apoptosis and anti-metastasis with elevated mRNA expression of IFNγ, TNFα, IL-12A, IL-17, IL-23, T-bet, CDKN1A, CDKNIB, CDKN2A and NM23-H1. Xenograft tumors of Stat6-active HT-29 cells showed a growth advantage over those of Stat6-defective Caco-2 cells. Furthermore, mice bearing HT-29 tumors expressed increased levels of Th2 cytokines IL-4 and IL-5 in the blood and pro-growth and/or pro-metastasis proteins CDK4 and CD44v6 in the tumor. To the contrary, mice bearing Caco-2 tumors expressed heightened levels of Th1 cytokines IFNγ and TNF in the blood and pro-apoptosis and anti-metastatic proteins p53 and p27(kip1) in the tumor. Colorectal cancer cells carrying active Stat6 signaling may create a microenvironment favoring Th2 cytokines and promoting expression of genes related to pro-growth, pro-metastasis and anti-apoptosis, which leads to a tumor growth advantage in vivo. These findings may imply why Stat6 pathway is constitutively activated in a

  3. Chimeric antigen receptors with human scFvs preferentially induce T cell anti-tumor activity against tumors with high B7H6 expression.

    PubMed

    Gacerez, Albert T; Hua, Casey K; Ackerman, Margaret E; Sentman, Charles L

    2018-05-01

    B7H6 is emerging as a promising tumor antigen that is known to be expressed on a wide array of tumors and is reported to stimulate anti-tumor responses from the immune system. As such, B7H6 presents a good target for tumor-specific immunotherapies. B7H6-specific chimeric antigen receptors (CAR) based on a murine antibody showed successful targeting and elimination of tumors expressing B7H6. However, mouse single chain variable fragments (scFvs) have the potential to induce host anti-CAR responses that may limit efficacy, so human scFvs specific for B7H6 were selected by yeast surface display. In this study, we validate the functionality of these human scFvs when formatted into chimeric antigen receptors. The data indicate that T cells expressing these B7H6-specific human scFvs as CARs induced potent anti-tumor activity in vitro and in vivo against tumors expressing high amounts of B7H6. Importantly, these human scFv-based CARs are sensitive to changes in B7H6 expression which may potentially spare non-tumor cells that express B7H6 and provides the foundation for future clinical development.

  4. S6K2-mediated regulation of TRBP as a determinant of miRNA expression in human primary lymphatic endothelial cells

    PubMed Central

    Warner, Matthew J.; Bridge, Katherine S.; Hewitson, James P.; Hodgkinson, Michael R.; Heyam, Alex; Massa, Bailey C.; Haslam, Jessica C.; Chatzifrangkeskou, Maria; Evans, Gareth J.O.; Plevin, Michael J.; Sharp, Tyson V.; Lagos, Dimitris

    2016-01-01

    MicroRNAs (miRNAs) are short non-coding RNAs that silence mRNAs. They are generated following transcription and cleavage by the DROSHA/DGCR8 and DICER/TRBP/PACT complexes. Although it is known that components of the miRNA biogenesis machinery can be phosphorylated, it remains poorly understood how these events become engaged during physiological cellular activation. We demonstrate that S6 kinases can phosphorylate the extended C-terminal domain of TRBP and interact with TRBP in situ in primary cells. TRBP serines 283/286 are essential for S6K-mediated TRBP phosphorylation, optimal expression of TRBP, and the S6K-TRBP interaction in human primary cells. We demonstrate the functional relevance of this interaction in primary human dermal lymphatic endothelial cells (HDLECs). Angiopoietin-1 (ANG1) can augment miRNA biogenesis in HDLECs through enhancing TRBP phosphorylation and expression in an S6K2-dependent manner. We propose that the S6K2/TRBP node controls miRNA biogenesis in HDLECs and provides a molecular link between the mTOR pathway and the miRNA biogenesis machinery. PMID:27407113

  5. Progranulin Deficiency Reduces CDK4/6/pRb Activation and Survival of Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    de la Encarnación, Ana; Alquézar, Carolina; Esteras, Noemí; Martín-Requero, Ángeles

    2015-12-01

    Null mutations in GRN are associated with frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP). However, the influence of progranulin (PGRN) deficiency in neurodegeneration is largely unknown. In neuroblastoma cells, silencing of GRN gene causes significantly reduced cell survival after serum withdrawal. The following observations suggest that alterations of the CDK4/6/retinoblastoma protein (pRb) pathway, secondary to changes in PI3K/Akt and ERK1/2 activation induced by PGRN deficiency, are involved in the control of serum deprivation-induced apoptosis: (i) inhibiting CDK4/6 levels or their associated kinase activity by sodium butyrate or PD332991 sensitized control SH-SY5Y cells to serum deprivation-induced apoptosis without affecting survival of PGRN-deficient cells; (ii) CDK4/6/pRb seems to be downstream of the PI3K/Akt and ERK1/2 signaling pathways since their specific inhibitors, LY294002 and PD98059, were able to decrease CDK6-associated kinase activity and induce death of control SH-SY5Y cells; (iii) PGRN-deficient cells show reduced stimulation of PI3K/Akt, ERK1/2, and CDK4/6 activities compared with control cells in the absence of serum; and (iv) supplementation of recombinant human PGRN was able to rescue survival of PGRN-deficient cells. These observations highlight the important role of PGRN-mediated stimulation of the PI3K/Akt-ERK1/2/CDK4/6/pRb pathway in determining the cell fate survival/death under serum deprivation.

  6. Altered levels of the Taraxacum kok-saghyz (Russian dandelion) small rubber particle protein, TkSRPP3, result in qualitative and quantitative changes in rubber metabolism.

    PubMed

    Collins-Silva, Jillian; Nural, Aise Taban; Skaggs, Amanda; Scott, Deborah; Hathwaik, Upul; Woolsey, Rebekah; Schegg, Kathleen; McMahan, Colleen; Whalen, Maureen; Cornish, Katrina; Shintani, David

    2012-07-01

    Several proteins have been identified and implicated in natural rubber biosynthesis, one of which, the small rubber particle protein (SRPP), was originally identified in Hevea brasiliensis as an abundant protein associated with cytosolic vesicles known as rubber particles. While previous in vitro studies suggest that SRPP plays a role in rubber biosynthesis, in vivo evidence is lacking to support this hypothesis. To address this issue, a transgene approach was taken in Taraxacum kok-saghyz (Russian dandelion or Tk) to determine if altered SRPP levels would influence rubber biosynthesis. Three dandelion SRPPs were found to be highly abundant on dandelion rubber particles. The most abundant particle associated SRPP, TkSRPP3, showed temporal and spatial patterns of expression consistent with patterns of natural rubber accumulation in dandelion. To confirm its role in rubber biosynthesis, TkSRPP3 expression was altered in Russian dandelion using over-expression and RNAi methods. While TkSRPP3 over-expressing lines had slightly higher levels of rubber in their roots, relative to the control, TkSRPP3 RNAi lines showed significant decreases in root rubber content and produced dramatically lower molecular weight rubber than the control line. Not only do results here provide in vivo evidence of TkSRPP proteins affecting the amount of rubber in dandelion root, but they also suggest a function in regulating the molecular weight of the cis-1, 4-polyisoprene polymer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Human papillomavirus E6 protein enriches the CD55(+) population in cervical cancer cells, promoting radioresistance and cancer aggressiveness.

    PubMed

    Leung, Thomas Ho-Yin; Tang, Hermit Wai-Man; Siu, Michelle Kwan-Yee; Chan, David Wai; Chan, Karen Kar-Loen; Cheung, Annie Nga-Yin; Ngan, Hextan Yuen-Sheung

    2018-02-01

    Accumulating evidence indicates that the human papillomavirus (HPV) E6 protein plays a crucial role in the development of cervical cancer. Subpopulations of cells that reside within tumours are responsible for tumour resistance to cancer therapy and recurrence. However, the identity of such cells residing in cervical cancer and their relationship with the HPV-E6 protein have not been identified. Here, we isolated sphere-forming cells, which showed self-renewal ability, from primary cervical tumours. Gene expression profiling revealed that cluster of differentiation (CD) 55 was upregulated in primary cervical cancer sphere cells. Flow-cytometric analysis detected abundant CD55(+) populations among a panel of HPV-positive cervical cancer cell lines, whereas few CD55(+) cells were found in HPV-negative cervical cancer and normal cervical epithelial cell lines. The CD55(+) subpopulation isolated from the C33A cell line showed significant sphere-forming ability and enhanced tumourigenicity, cell migration, and radioresistance. In contrast, the suppression of CD55 in HPV-positive CaSki cells inhibited tumourigenicity both in vitro and in vivo, and sensitized cells to radiation treatment. In addition, ectopic expression of the HPV-E6 protein in HPV-negative cervical cancer cells dramatically enriched the CD55(+) subpopulation. CRISPR/Cas9 knockout of CD55 in an HPV-E6-overexpressing stable clone abolished the tumourigenic effects of the HPV-E6 protein. Taken together, our data suggest that HPV-E6 protein expression enriches the CD55(+) population, which contributes to tumourigenicity and radioresistance in cervical cancer cells. Targeting CD55 via CRISPR/Cas9 may represent a novel avenue for developing new strategies and effective therapies for the treatment of cervical cancer. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John

  8. CXCR6 is expressed in human prostate cancer in vivo and is involved in the in vitro invasion of PC3 and LNCap cells.

    PubMed

    Hu, Weidong; Zhen, Xinming; Xiong, Bin; Wang, Bicheng; Zhang, Weibing; Zhou, Wenhui

    2008-07-01

    In spite of the clinical importance of prostate cancer (PCa) bone metastasis, the precise mechanisms for the directed migration of malignant cells remain unclear. In the present study, the expression of CXCR6 in human PCa and benign prostatic hyperplasia samples, and the expression of CXCL16 in human osseous tissues were determined by immunohistochemistry. It was found that the level of CXCR6 protein expression was elevated in human malignant prostate tumors, and CXCL16 was expressed positively by human osteocytes in vivo. The in vitro experiments further confirmed that the PCa cell lines PC3 and LNCap expressed CXCR6 at both the mRNA and protein levels, and exogenous CXCL16 has the potential to stimulate the invasion of PC3 and LNCap. To further elucidate the role of the CXCL16-CXCR6 axis in PCa progression, we compared the expression of CXCR6 and CXCR4 in human PCa tissues and the effects of CXCL16 and CXCL12 on the in vitro invasion of PC3 and LNCap cells. It was shown that CXCR6 and CXCR4 proteins were coexpressed and elevated in human PCa samples, and CXCL16 and CXCL12 promoted the invasion of PC3 and LNCap via their respective receptors. Furthermore, in contrast to CXCL12, which enhanced the activity of matrix metalloproteinase (MMP) 9 and MMP2 in PC3 and LNCap, CXCL16 ligation resulted in stronger MMP9 and MMP2 activity in LNCap but not in PC3. Our results suggest that besides CXCL12/CXCR4, CXCL16/CXCR6 might be another important factor involved in PCa bone metastasis.

  9. [COMPARISON OF CYTOPROTECTIVE EFFECTS OF HEMANTANE AND AMANTADINE UNDER CONDITIONS OF 6-HYDROXYDOPAMINE NEUROTOXIN ACTION ON CULTURED HUMAN NEUROBLASTOMA CELLS].

    PubMed

    Logvinov, I O; Antipova, T A; Nepoklonov, A V; Valdman, E A

    2016-01-01

    Potential neuroprotective activity of the novel antiparkinsonian drug hemantane (hydrochloride N-2-(adamantyl)-hexamethylenimine) in comparison to amantadine has been studied in various regimes of administration on human neuroblastoma SH-SY5Y cell line injury induced by 6-hydroxydopamine (6-OHDA), which is used as in vitro model of dopaminergic neurons for Parkinson's disease. Two regimes of hemantane and amantadine administration in a range of final concentrations 10⁻⁶-10⁻⁸ M were used either prior to or immediately after 6-OHDA introduction. MTT colorimetric assay was used to assess the viability of test cells. Significant decrease in viability of SH-SY5Y cells treated with 6-OHDA was observed. The addition of hemantane to cell medium produced cytoprotective effects in both regimes of administration--before and after 6-OHDA--at concentrations 10⁻⁷ M and 10⁻⁶-10⁻⁸ M, respectively. Amantadine in con- centrations 10⁻⁷-10⁻⁸ M was effective to increase cell survival only when administered after 6-OHDA. These results show that hemantane has a greater neu-roprotective potential in comparison to amantadine.

  10. 6-Shogaol induces apoptosis in human hepatocellular carcinoma cells and exhibits anti-tumor activity in vivo through endoplasmic reticulum stress.

    PubMed

    Hu, Rong; Zhou, Ping; Peng, Yong-Bo; Xu, Xiaojun; Ma, Jiang; Liu, Qun; Zhang, Lei; Wen, Xiao-Dong; Qi, Lian-Wen; Gao, Ning; Li, Ping

    2012-01-01

    6-Shogaol is an active compound isolated from Ginger (Zingiber officinale Rosc). In this work, we demonstrated that 6-shogaol induces apoptosis in human hepatocellular carcinoma cells in relation to caspase activation and endoplasmic reticulum (ER) stress signaling. Proteomic analysis revealed that ER stress was accompanied by 6-shogaol-induced apoptosis in hepatocellular carcinoma cells. 6-shogaol affected the ER stress signaling by regulating unfolded protein response (UPR) sensor PERK and its downstream target eIF2α. However, the effect on the other two UPR sensors IRE1 and ATF6 was not obvious. In prolonged ER stress, 6-shogaol inhibited the phosphorylation of eIF2α and triggered apoptosis in SMMC-7721 cells. Salubrinal, an activator of the PERK/eIF2α pathway, strikingly enhanced the phosphorylation of eIF2α in SMMC-7721 cells with no toxicity. However, combined treatment with 6-shogaol and salubrinal resulted in significantly increase of apoptosis and dephosphorylation of eIF2α. Overexpression of eIF2α prevented 6-shogaol-mediated apoptosis in SMMC-7721 cells, whereas inhibition of eIF2α by small interfering RNA markedly enhanced 6-shogaol-mediated cell death. Furthermore, 6-shogaol-mediated inhibition of tumor growth of mouse SMMC-7721 xenograft was associated with induction of apoptosis, activation of caspase-3, and inactivation of eIF2α. Altogether our results indicate that the PERK/eIF2α pathway plays an important role in 6-shogaol-mediated ER stress and apoptosis in SMMC-7721 cells in vitro and in vivo.

  11. 6-Shogaol Induces Apoptosis in Human Hepatocellular Carcinoma Cells and Exhibits Anti-Tumor Activity In Vivo through Endoplasmic Reticulum Stress

    PubMed Central

    Peng, Yong-Bo; Xu, Xiaojun; Ma, Jiang; Liu, Qun; Zhang, Lei; Wen, Xiao-Dong; Qi, Lian-Wen; Gao, Ning; Li, Ping

    2012-01-01

    6-Shogaol is an active compound isolated from Ginger (Zingiber officinale Rosc). In this work, we demonstrated that 6-shogaol induces apoptosis in human hepatocellular carcinoma cells in relation to caspase activation and endoplasmic reticulum (ER) stress signaling. Proteomic analysis revealed that ER stress was accompanied by 6-shogaol-induced apoptosis in hepatocellular carcinoma cells. 6-shogaol affected the ER stress signaling by regulating unfolded protein response (UPR) sensor PERK and its downstream target eIF2α. However, the effect on the other two UPR sensors IRE1 and ATF6 was not obvious. In prolonged ER stress, 6-shogaol inhibited the phosphorylation of eIF2α and triggered apoptosis in SMMC-7721 cells. Salubrinal, an activator of the PERK/eIF2α pathway, strikingly enhanced the phosphorylation of eIF2α in SMMC-7721 cells with no toxicity. However, combined treatment with 6-shogaol and salubrinal resulted in significantly increase of apoptosis and dephosphorylation of eIF2α. Overexpression of eIF2α prevented 6-shogaol-mediated apoptosis in SMMC-7721 cells, whereas inhibition of eIF2α by small interfering RNA markedly enhanced 6-shogaol-mediated cell death. Furthermore, 6-shogaol-mediated inhibition of tumor growth of mouse SMMC-7721 xenograft was associated with induction of apoptosis, activation of caspase-3, and inactivation of eIF2α. Altogether our results indicate that the PERK/eIF2α pathway plays an important role in 6-shogaol-mediated ER stress and apoptosis in SMMC-7721 cells in vitro and in vivo. PMID:22768104

  12. CXCR6 marks a novel subset of T-bet(lo)Eomes(hi) natural killer cells residing in human liver.

    PubMed

    Stegmann, Kerstin A; Robertson, Francis; Hansi, Navjyot; Gill, Upkar; Pallant, Celeste; Christophides, Theodoros; Pallett, Laura J; Peppa, Dimitra; Dunn, Claire; Fusai, Giuseppe; Male, Victoria; Davidson, Brian R; Kennedy, Patrick; Maini, Mala K

    2016-05-23

    Natural killer cells (NK) are highly enriched in the human liver, where they can regulate immunity and immunopathology. We probed them for a liver-resident subset, distinct from conventional bone-marrow-derived NK. CXCR6+ NK were strikingly enriched in healthy and diseased liver compared to blood (p < 0.0001). Human hepatic CXCR6+ NK had an immature phenotype (predominantly CD56(bright)CD16-CD57-), and expressed the tissue-residency marker CD69. CXCR6+ NK produced fewer cytotoxic mediators and pro-inflammatory cytokines than the non-liver-specific CXCR6- fraction. Instead CXCR6+ NK could upregulate TRAIL, a key death ligand in hepatitis pathogenesis. CXCR6 demarcated liver NK into two transcriptionally distinct populations: T-bet(hi)Eomes(lo)(CXCR6-) and T-bet(lo)Eomes(hi)(CXCR6+); the latter was virtually absent in the periphery. The small circulating CXCR6+ subset was predominantly T-bet(hi)Eomes(lo), suggesting its lineage was closer to CXCR6- peripheral than CXCR6+ liver NK. These data reveal a large subset of human liver-resident T-bet(lo)Eomes(hi) NK, distinguished by their surface expression of CXCR6, adapted for hepatic tolerance and inducible anti-viral immunity.

  13. Cell motion predicts human epidermal stemness

    PubMed Central

    Toki, Fujio; Tate, Sota; Imai, Matome; Matsushita, Natsuki; Shiraishi, Ken; Sayama, Koji; Toki, Hiroshi; Higashiyama, Shigeki

    2015-01-01

    Image-based identification of cultured stem cells and noninvasive evaluation of their proliferative capacity advance cell therapy and stem cell research. Here we demonstrate that human keratinocyte stem cells can be identified in situ by analyzing cell motion during their cultivation. Modeling experiments suggested that the clonal type of cultured human clonogenic keratinocytes can be efficiently determined by analysis of early cell movement. Image analysis experiments demonstrated that keratinocyte stem cells indeed display a unique rotational movement that can be identified as early as the two-cell stage colony. We also demonstrate that α6 integrin is required for both rotational and collective cell motion. Our experiments provide, for the first time, strong evidence that cell motion and epidermal stemness are linked. We conclude that early identification of human keratinocyte stem cells by image analysis of cell movement is a valid parameter for quality control of cultured keratinocytes for transplantation. PMID:25897083

  14. 6-Shogaol induces apoptosis in human leukemia cells through a process involving caspase-mediated cleavage of eIF2α.

    PubMed

    Liu, Qun; Peng, Yong-Bo; Zhou, Ping; Qi, Lian-Wen; Zhang, Mu; Gao, Ning; Liu, E-Hu; Li, Ping

    2013-11-12

    6-Shogaol is a promising antitumor agent isolated from dietary ginger (Zingiber officinale). However, little is known about the efficacy of 6-shogaol on leukemia cells. Here we investigated the underlying mechanism of 6-shogaol induced apoptosis in human leukemia cells in vitro and in vivo. Three leukemia cell lines and primary leukemia cells were used to investigate the apoptosis effect of 6-shogaol. A shotgun approach based on label-free proteome with LC-CHIP Q-TOF MS/MS was employed to identify the cellular targets of 6-shogaol and the differentially expressed proteins were analyzed by bioinformatics protocols. The present study indicated that 6-shogaol selectively induced apoptosis in transformed and primary leukemia cells but not in normal cells. Eukaryotic translation initiation factor 2 alpha (eIF2α), a key regulator in apoptosis signaling pathway, was significantly affected in both Jurkat and U937 proteome profiles. The docking results suggested that 6-shogaol might bind well to eIF2α at Ser51 of the N-terminal domain. Immunoblotting data indicated that 6-shogaol induced apoptosis through a process involving dephosphorylation of eIF2α and caspase activation-dependent cleavage of eIF2α. Furthermore, 6-shogaol markedly inhibited tumor growth and induced apoptosis in U937 xenograft mouse model. The potent anti-leukemia activity of 6-shogaol found both in vitro and in vivo in our study make this compound a potential anti-tumor agent for hematologic malignancies.

  15. Human Adipose-derived Stem Cells Ameliorate Cigarette Smoke-induced Murine Myelosuppression via TSG-6

    PubMed Central

    Xie, Jie; Broxmeyer, Hal E.; Feng, Dongni; Schweitzer, Kelly S.; Yi, Ru; Cook, Todd G.; Chitteti, Brahmananda R.; Barwinska, Daria; Traktuev, Dmitry O.; Van Demark, Mary J.; Justice, Matthew J.; Ou, Xuan; Srour, Edward F.; Prockop, Darwin J.; Petrache, Irina; March, Keith L.

    2015-01-01

    Objective Bone marrow-derived hematopoietic stem and progenitor cells (HSC/HPC) are critical to homeostasis and tissue repair. The aims of this study were to delineate the myelotoxicity of cigarette smoking (CS) in a murine model, to explore human adipose-derived stem cells (hASC) as a novel approach to mitigate this toxicity, and to identify key mediating factors for ASC activities. Methods C57BL/6 mice were exposed to CS with or without i.v. injection of regular or siRNA-transfected hASC. For in vitro experiments, cigarette smoke extract (CSE) was used to mimic the toxicity of CS exposure. Analysis of bone marrow hematopoietic progenitor cells (HPC) were performed both by flow cytometry and colony forming unit assays. Results In this study, we demonstrate that as few as three days of CS exposure result in marked cycling arrest and diminished clonogenic capacity of HPC, followed by depletion of phenotypically-defined HSC/HPC. Intravenous injection of hASC substantially ameliorated both acute and chronic CS-induced myelosuppression. This effect was specifically dependent on the anti-inflammatory factor TSG-6, which is induced from xenografted hASC, primarily located in the lung and capable of responding to host inflammatory signals. Gene expression analysis within bone marrow HSC/HPC revealed several specific signaling molecules altered by CS and normalized by hASC. Conclusion Our results suggest that systemic administration of hASC or TSG-6 may be novel approaches to reverse cigarette smoking-induced myelosuppression. PMID:25329668

  16. Targeting 6-phosphogluconate dehydrogenase in the oxidative PPP sensitizes leukemia cells to antimalarial agent dihydroartemisinin.

    PubMed

    Elf, S; Lin, R; Xia, S; Pan, Y; Shan, C; Wu, S; Lonial, S; Gaddh, M; Arellano, M L; Khoury, H J; Khuri, F R; Lee, B H; Boggon, T J; Fan, J; Chen, J

    2017-01-12

    The oxidative pentose phosphate pathway (PPP) is crucial for cancer cell metabolism and tumor growth. We recently reported that targeting a key oxidative PPP enzyme, 6-phosphogluconate dehydrogenase (6PGD), using our novel small-molecule 6PGD inhibitors Physcion and its derivative S3, shows anticancer effects. Notably, humans with genetic deficiency of either 6PGD or another oxidative PPP enzyme, glucose-6-phosphate dehydrogenase, exhibit non-immune hemolytic anemia upon exposure to aspirin and various antimalarial drugs. Inspired by these clinical observations, we examined the anticancer potential of combined treatment with 6PGD inhibitors and antimalarial drugs. We found that stable knockdown of 6PGD sensitizes leukemia cells to antimalarial agent dihydroartemisinin (DHA). Combined treatment with DHA and Physcion activates AMP-activated protein kinase, leading to synergistic inhibition of human leukemia cell viability. Moreover, our combined therapy synergistically attenuates tumor growth in xenograft nude mice injected with human K562 leukemia cells and cell viability of primary leukemia cells from human patients, but shows minimal toxicity to normal hematopoietic cells in mice as well as red blood cells and mononucleocytes from healthy human donors. Our findings reveal the potential for combined therapy using optimized doses of Physcion and DHA as a novel antileukemia treatment without inducing hemolysis.

  17. The overexpressed human 46-kDa mannose 6-phosphate receptor mediates endocytosis and sorting of. beta. -glucuronidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, H.; Grubb, J.H.; Sly, W.S.

    1990-10-01

    The authors studied the function of the human small (46-kDa) mannose 6-phosphate receptor (SMPR) in transfected mouse L cells that do not express the larger insulin-like growth factor II/mannose 6-phosphate receptor. Cells overexpressing human SMPR were studied for enzyme binding to cell surface receptors, for binding to intracellular receptors in permeabilized cells, and for receptor-mediated endocytosis of recombinant human {beta}-glucuronidase. Specific binding to human SMPR in permeabilized cells showed a pH optimum between pH 6.0 and pH 6.5. Binding was significant in the present of EDTA but was enhanced by added divalent cations. Up to 2.3{percent} of the total functionalmore » receptor could be detected on the cell surface by enzyme binding. They present experiments showing that at very high levels of overexpression, and at pH 6.5, human SMPR mediated the endocytosis of {beta}-glucuronidase. At pH 7.5, the rate of endocytosis was only 14{percent} the rate seen at pH 6.5. Cells overexpressing human SMPR also showed reduced secretion of newly synthesized {beta}-glucuronidase when compared to cells transfected with vector only, suggesting that overexpressed human SMPR can participate in sorting of newly synthesized {beta}-glucuronidase and partially correct the sorting defect in mouse L cells that do not express the insulin-like growth factor II/mannose 6-phosphate receptor.« less

  18. Mangiferin inhibits lipopolysaccharide-induced production of interleukin-6 in human oral epithelial cells by suppressing toll-like receptor signaling.

    PubMed

    Li, Hao; Wang, Qi; Chen, Xinmin; Ding, Yi; Li, Wei

    2016-11-01

    Oral epithelial cells have currently been found to play an important role in inflammatory modulation in periodontitis. Mangiferin is a natural glucosylxanthone with anti-inflammatory activity. The aim of this study was to investigate the regulatory effect of mangiferin on lipopolysaccharide (LPS)-induced production of proinflammatory cytokine interleukin-6 (IL-6) in oral epithelial cells and the underlying mechanisms. The levels of LPS-induced IL-6 production in OKF6/TERT-2 oral keratinocytes were detected using enzyme-linked immunosorbent assay (ELISA). The expression of Toll-like receptor (TLR) 2 and TLR4 was determined using western blot analysis. And the phosphorylation of TLR downstream nuclear factor-κB (NF-κB), p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK) was examined using cell-based protein phosphorylation ELISA kits. We found that mangiferin reduced LPS-upregulated IL-6 production in OKF6/TERT-2 cells. Additionally, mangiferin inhibited LPS-induced TLR2 and TLR4 overexpression, and suppressed the phosphorylation of NF-κB, p38 MAPK and JNK. Moreover, mangiferin repressed IL-6 production and TLR signaling activation in a dose-dependent manner after 24h treatment. Mangiferin decreases LPS-induced production of IL-6 in human oral epithelial cells by suppressing TLR signaling, and this glucosylxanthone may have potential for the treatment of periodontitis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. PAX6 maintains β cell identity by repressing genes of alternative islet cell types.

    PubMed

    Swisa, Avital; Avrahami, Dana; Eden, Noa; Zhang, Jia; Feleke, Eseye; Dahan, Tehila; Cohen-Tayar, Yamit; Stolovich-Rain, Miri; Kaestner, Klaus H; Glaser, Benjamin; Ashery-Padan, Ruth; Dor, Yuval

    2017-01-03

    Type 2 diabetes is thought to involve a compromised β cell differentiation state, but the mechanisms underlying this dysfunction remain unclear. Here, we report a key role for the TF PAX6 in the maintenance of adult β cell identity and function. PAX6 was downregulated in β cells of diabetic db/db mice and in WT mice treated with an insulin receptor antagonist, revealing metabolic control of expression. Deletion of Pax6 in β cells of adult mice led to lethal hyperglycemia and ketosis that were attributed to loss of β cell function and expansion of α cells. Lineage-tracing, transcriptome, and chromatin analyses showed that PAX6 is a direct activator of β cell genes, thus maintaining mature β cell function and identity. In parallel, we found that PAX6 binds promoters and enhancers to repress alternative islet cell genes including ghrelin, glucagon, and somatostatin. Chromatin analysis and shRNA-mediated gene suppression experiments indicated a similar function of PAX6 in human β cells. We conclude that reduced expression of PAX6 in metabolically stressed β cells may contribute to β cell failure and α cell dysfunction in diabetes.

  20. PAX6 maintains β cell identity by repressing genes of alternative islet cell types

    PubMed Central

    Swisa, Avital; Avrahami, Dana; Eden, Noa; Zhang, Jia; Feleke, Eseye; Dahan, Tehila; Cohen-Tayar, Yamit; Stolovich-Rain, Miri; Kaestner, Klaus H.; Glaser, Benjamin; Ashery-Padan, Ruth

    2016-01-01

    Type 2 diabetes is thought to involve a compromised β cell differentiation state, but the mechanisms underlying this dysfunction remain unclear. Here, we report a key role for the TF PAX6 in the maintenance of adult β cell identity and function. PAX6 was downregulated in β cells of diabetic db/db mice and in WT mice treated with an insulin receptor antagonist, revealing metabolic control of expression. Deletion of Pax6 in β cells of adult mice led to lethal hyperglycemia and ketosis that were attributed to loss of β cell function and expansion of α cells. Lineage-tracing, transcriptome, and chromatin analyses showed that PAX6 is a direct activator of β cell genes, thus maintaining mature β cell function and identity. In parallel, we found that PAX6 binds promoters and enhancers to repress alternative islet cell genes including ghrelin, glucagon, and somatostatin. Chromatin analysis and shRNA-mediated gene suppression experiments indicated a similar function of PAX6 in human β cells. We conclude that reduced expression of PAX6 in metabolically stressed β cells may contribute to β cell failure and α cell dysfunction in diabetes. PMID:27941241

  1. Stress-induced localization of HSPA6 (HSP70B') and HSPA1A (HSP70-1) proteins to centrioles in human neuronal cells.

    PubMed

    Khalouei, Sam; Chow, Ari M; Brown, Ian R

    2014-05-01

    The localization of yellow fluorescent protein (YFP)-tagged HSP70 proteins was employed to identify stress-sensitive sites in human neurons following temperature elevation. Stable lines of human SH-SY5Y neuronal cells were established that expressed YFP-tagged protein products of the human inducible HSP70 genes HSPA6 (HSP70B') and HSPA1A (HSP70-1). Following a brief period of thermal stress, YFP-tagged HSPA6 and HSPA1A rapidly appeared at centrioles in the cytoplasm of human neuronal cells, with HSPA6 demonstrating a more prolonged signal compared to HSPA1A. Each centriole is composed of a distal end and a proximal end, the latter linking the centriole doublet. The YFP-tagged HSP70 proteins targeted the proximal end of centrioles (identified by γ-tubulin marker) rather than the distal end (centrin marker). Centrioles play key roles in cellular polarity and migration during neuronal differentiation. The proximal end of the centriole, which is involved in centriole stabilization, may be stress-sensitive in post-mitotic, differentiating human neurons.

  2. Human replication protein Cdc6 is selectively cleaved by caspase 3 during apoptosis

    PubMed Central

    Pelizon, Cristina; d’Adda di Fagagna, Fabrizio; Farrace, Lorena; Laskey, Ronald A.

    2002-01-01

    In eukaryotes, the initiation of DNA replication involves the ordered assembly on chromatin of pre-replicative complexes (pre-RCs), including the origin recognition complex (ORC), Cdc6, Cdt1 and the minichromosome maintenance proteins (MCMs). In light of its indispensable role in the formation of pre-RCs, Cdc6 binding to chromatin represents a key step in the regulation of DNA replication and cell proliferation. Here, we study the human Cdc6 (HuCdc6) protein during programmed cell death (apoptosis). We find that HuCdc6, but not HuOrc2 (a member of the ORC) or HuMcm5 (one of the MCMs), is specifically cleaved in several human cell lines induced to undergo apoptosis by a variety of stimuli. Expression of caspase-uncleavable mutant HuCdc6 attenuates apoptosis, delaying cell death. Therefore, an important function for cleavage of HuCdc6 is to prevent a wounded cell from replicating and to facilitate death. PMID:12151338

  3. Sulfation of 6-Gingerol by the Human Cytosolic Sulfotransferases: A Systematic Analysis.

    PubMed

    Luo, Lijun; Mei, Xue; Xi, Yuecheng; Zhou, Chunyang; Hui, Ying; Kurogi, Katsuhisa; Sakakibara, Yoichi; Suiko, Masahito; Liu, Ming-Cheh

    2016-02-01

    Previous studies have demonstrated the presence of the sulfated form of 6-gingerol, a major pharmacologically active component of ginger, in plasma samples of normal human subjects who were administered 6-gingerol. The current study was designed to systematically identify the major human cytosolic sulfotransferase enzyme(s) capable of mediating the sulfation of 6-gingerol. Of the 13 known human cytosolic sulfotransferases examined, six (SULT1A1, SULT1A2, SULT1A3, SULT1B1, SULT1C4, SULT1E1) displayed significant sulfating activity toward 6-gingerol. Kinetic parameters of SULT1A1, SULT1A3, SULT1C4, and SULT1E1 that showed stronger 6-gingerol-sulfating activity were determined. Of the four human organ samples tested, small intestine and liver cytosols displayed considerably higher 6-gingerol-sulfating activity than those of the lung and kidney. Moreover, sulfation of 6-gingerol was shown to occur in HepG2 human hepatoma cells and Caco-2 human colon adenocarcinoma cells under the metabolic setting. Collectively, these results provided useful information relevant to the metabolism of 6-gingerol through sulfation both in vitro and in vivo. Georg Thieme Verlag KG Stuttgart · New York.

  4. IL-6 promotes an increase in human mast cell number and reactivity through suppression of SOCS3

    PubMed Central

    Desai, Avanti; Jung, Mi-Yeon; Olivera, Ana; Gilfillan, Alasdair M.; Prussin, Calman; Kirshenbaum, Arnold S.; Beaven, Michael A.; Metcalfe, Dean D.

    2015-01-01

    Background IL-6, which is reported to be elevated in association with mastocytosis, asthma and urticaria, is used in conjunction with stem cell factor (SCF) to generate human MCs (HuMCs) from progenitor (CD34+) cells. Despite these associations, the effects on, and mechanisms by which prolonged exposure to IL-6 alters HuMC number and function are not well understood. Objectives To study the effect of IL-6 on HuMC function, the mechanisms by which IL-6 exerts its effects, and the relationship of these findings to mastocytosis. Methods HuMCs were cultured in SCF with or without IL-6. The responses to FcεRI aggregation, and the expression of proteases and receptors including the soluble IL-6 receptor (sIL-6R) were then quantitated. Epigenetic changes in SOCS3 were determined using methylation specific PCR. Serum samples from healthy controls and patients with mastocytosis were assayed for IL-6, tryptase, and sIL-6R. Results IL-6 enhanced MC proliferation, maturation, and reactivity following FcεRI aggregation. IL-6 reduced expression of SOCS3, which correlated with methylation of the SOCS3 promoter, and increased expression and activation of STAT3. IL-6 also suppressed constitutive production of sIL-6R and serum levels of sIL-6R were similarly reduced in patients with mastocytosis. Conclusion IL-6 increases mast cell proliferation and formation of a more reactive phenotype enabled by suppressing proteolytic cleavage of sIL-6R from IL-6R and down regulation of the SOCS3 auto-inhibitory pathway. We suggest IL-6 blockade might ameliorate MC related symptoms and pathology in MC-related diseases associated with elevated IL-6 including mastocytosis. PMID:26774658

  5. Protective Effects of Fisetin Against 6-OHDA-Induced Apoptosis by Activation of PI3K-Akt Signaling in Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    Watanabe, Ryoko; Kurose, Takumi; Morishige, Yuta; Fujimori, Ko

    2018-02-01

    6-Hydroxydopamine (6-OHDA) induces the production of reactive oxygen species (ROS) that are associated with various neurodegenerative diseases such as Parkinson's disease. 3,3',4',7-Tetrahydroxyflavone (fisetin), a plant flavonoid has a variety of physiological effects such as antioxidant activity. In this study, we investigated the molecular mechanism of the neuroprotective effects of fisetin against 6-OHDA-induced cell death in human neuroblastoma SH-SY5Y cells. 6-OHDA-mediated cell toxicity was reduced in a fisetin concentration-dependent manner. 6-OHDA-mediated elevation of the expression of the oxidative stress-related genes such as hemeoxygenase-1, NAD(P)H dehydrogenase quinone 1, NF-E2-related factor 2, and γ-glutamate-cysteine ligase modifier was suppressed by fisetin. Fisetin also lowered the ratio of the proapoptotic Bax protein and the antiapoptotic Bcl-2 protein in SH-SY5Y cells. Moreover, fisetin effectively suppressed 6-OHDA-mediated activation of caspase-3 and caspase-9, which leads to the cell death, while, 6-OHDA-induced caspase-3/7 activity was lowered. Furthermore, fisetin activated the PI3K-Akt signaling, which inhibits the caspase cascade, and fisetin-mediated inhibition of 6-OHDA-induced cell death was negated by the co-treatment with an Akt inhibitor. These results indicate that fisetin protects 6-OHDA-induced cell death by activating PI3K-Akt signaling in human neuronal SH-SY5Y cells. This is the first report that the PI3K-Akt signaling is involved in the fisetin-protected ROS-mediated neuronal cell death.

  6. Targeting Gas6/TAM in cancer cells and tumor microenvironment.

    PubMed

    Wu, Guiling; Ma, Zhiqiang; Cheng, Yicheng; Hu, Wei; Deng, Chao; Jiang, Shuai; Li, Tian; Chen, Fulin; Yang, Yang

    2018-01-31

    Growth arrest-specific 6, also known as Gas6, is a human gene encoding the Gas6 protein, which was originally found to be upregulated in growth-arrested fibroblasts. Gas6 is a member of the vitamin K-dependent family of proteins expressed in many human tissues and regulates several biological processes in cells, including proliferation, survival and migration, by binding to its receptors Tyro3, Axl and Mer (TAM). In recent years, the roles of Gas6/TAM signalling in cancer cells and the tumour microenvironment have been studied, and some progress has made in targeted therapy, providing new potential directions for future investigations of cancer treatment. In this review, we introduce the Gas6 and TAM receptors and describe their involvement in different cancers and discuss the roles of Gas6 in cancer cells, the tumour microenvironment and metastasis. Finally, we introduce recent studies on Gas6/TAM targeting in cancer therapy, which will assist in the experimental design of future analyses and increase the potential use of Gas6 as a therapeutic target for cancer.

  7. Formation of human hepatocyte-like cells with different cellular phenotypes by human umbilical cord blood-derived cells in the human-rat chimeras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yan; Xiao, Dong; Zhang, Ruo-Shuang

    2007-06-15

    We took advantage of the proliferative and permissive environment of the developing pre-immune fetus to develop a noninjury human-rat xenograft small animal model, in which the in utero transplantation of low-density mononuclear cells (MNCs) from human umbilical cord blood (hUCB) into fetal rats at 9-11 days of gestation led to the formation of human hepatocyte-like cells (hHLCs) with different cellular phenotypes, as revealed by positive immunostaining for human-specific alpha-fetoprotein (AFP), cytokeratin 19 (CK19), cytokeratin 8 (CK8), cytokeratin 18 (CK18), and albumin (Alb), and with some animals exhibiting levels as high as 10.7% of donor-derived human cells in the recipient liver.more » More interestingly, donor-derived human cells stained positively for CD34 and CD45 in the liver of 2-month-old rat. Human hepatic differentiation appeared to partially follow the process of hepatic ontogeny, as evidenced by the expression of AFP gene at an early stage and albumin gene at a later stage. Human hepatocytes generated in this model retained functional properties of normal hepatocytes. In this xenogeneic system, the engrafted donor-derived human cells persisted in the recipient liver for at least 6 months after birth. Taken together, these findings suggest that the donor-derived human cells with different cellular phenotypes are found in the recipient liver and hHLCs hold biological activity. This humanized small animal model, which offers an in vivo environment more closely resembling the situations in human, provides an invaluable approach for in vivo investigating human stem cell behaviors, and further in vivo examining fundamental mechanisms controlling human stem cell fates in the future.« less

  8. Protective effect of orexin-A on 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y human dopaminergic neuroblastoma cells.

    PubMed

    Esmaeili-Mahani, Saeed; Vazifekhah, Somayeh; Pasban-Aliabadi, Hamzeh; Abbasnejad, Mehdi; Sheibani, Vahid

    2013-12-01

    Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by progressive and selective death of midbrain dopaminergic neurons. Pharmacologic treatment of PD can be divided into symptomatic and neuroprotective therapies. Orexin-A (hypocretin-1) is a hypothalamic peptide that exerts its biological effects by stimulation of two specific, membrane-bound orexin receptors. Recent studies have shown that orexin-A has a protective role during neuronal damage. Here, we investigated the effects of orexin-A on 6-OHDA-induced neurotoxicity in human neuroblastoma SH-SY5Y cell line as an in vitro model of Parkinson's disease. Cell damage was induced by 150μM 6-OHDA and the cells viability was examined by MTT assay. Intracellular reactive oxygen species (ROS) was determined by fluorescence spectrophotometry method. Immunoblotting and DNA analysis were also employed to determine the levels of biochemical markers of apoptosis in the cells. The data showed that 6-OHDA could decrease the viability of the cells. In addition, intracellular ROS, activated caspase 3, Bax/Bcl-2 ratio, cytochrome c as well as DNA fragmentation were significantly increased in 6-OHDA-treated cells. Pretreatment of cells with orexin-A (80pM) elicited protective effect and reduced biochemical markers of cell death. The results suggest that orexin-A has protective effects against 6-OHDA-induced neurotoxicity and its protective effects are accompanied by its antioxidant and anti-apoptotic properties and contribute to our knowledge of the pharmacology of orexin-A. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Human papillomavirus (HPV) oncoprotein E6 facilitates Calcineurin-Nuclear factor for activated T cells 2 (NFAT2) signaling to promote cellular proliferation in cervical cell carcinoma.

    PubMed

    Ram, Babul Moni; Dolpady, Jayashree; Kulkarni, Rakesh; Usha, R; Bhoria, Usha; Poli, Usha Rani; Islam, Mojahidul; Trehanpati, Nirupma; Ramakrishna, Gayatri

    2018-01-01

    The calcineurin-NFAT signaling pathway regulates cell proliferation, differentiation, and development in diverse cell types and organ systems. Deregulation of calcineurin-NFAT signaling has been reported in leukaemias and few solid tumors such as breast and colon. In the present study, we found elevated calcineurin protein levels and phosphatase activity in cervical cancer cell lines and depletion of the same attenuated cell proliferation. Additionally, nuclear levels of NFAT2, a downstream target of calcineurin, viz, was found elevated in human papillomavirus (HPV) infected cells, HeLa and SiHa, compared to the HPV negative cells, HaCaT and C33A, indicative of its higher DNA binding activity. The nuclear levels of both NFAT1 and NFAT3 remain unaltered implicating they have little role in cervical carcinogenesis. Similar to the in vitro studies, the HPV infected human squamous cell carcinoma specimens showed higher NFAT2 levels compared to the normal cervical epithelium. Depletion of NFAT2 by RNAi attenuated growth of SiHa cells. Overexpression of HPV16 oncoproteins viz, E6 and E7 increased NFAT2 expression levels and DNA binding activity, while knockdown of E6 by RNAi decreased the same. Briefly, we now report an activation of calcineurin-NFAT2 axis in cervical cancer and a novel role of HPV oncoprotein in facilitating NFAT2 dependent cell proliferation. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Interleukin-6 production by human monocytes stimulated with Cryptococcus neoformans components.

    PubMed Central

    Delfino, D; Cianci, L; Lupis, E; Celeste, A; Petrelli, M L; Curró, F; Cusumano, V; Teti, G

    1997-01-01

    In order to ascertain if Cryptococcus neoformans components can induce interleukin-6 (IL-6) production, we stimulated human whole blood with purified capsular products. Their potencies in stimulating IL-6 release were mannoproteins > galactoxylomannan = glucuronoxylomannan > alpha(1-3)glucan. IL-6 production was tumor necrosis factor alpha independent and required the presence of monocytes and plasma. Since IL-6 can stimulate replication of the human immunodeficiency virus in monocytic cells, these findings may be clinically relevant. PMID:9169790

  11. 6-shogaol induces autophagic cell death then triggered apoptosis in colorectal adenocarcinoma HT-29 cells.

    PubMed

    Li, Ting-Yi; Chiang, Been-Huang

    2017-09-01

    6-shogaol is a phytochemical of dietary ginger, we found that 6-shogaol could induced both autophagic and apoptotic death in human colon adenocarcinoma (HT-29) cells. Results of this study showed that 6-shogal induced cell cycle arrest, autophagy, and apoptosis in HT-29 cells in a time sequence. After 6h, 6-shogal induced apparent G2/M arrest, then the HT-29 cells formed numerous autophagosomes in each phase of the cell cycle. After 18h, increases in acidic vesicles and LAMP-1 (Lysosome-associated membrane proteins 1) showed that 6-shogaol had caused autophagic cell death. After 24h, cell shrinkage and Caspase-3/7 activities rising, suggesting that apoptotic cell death had increased. And after 48h, the result of TUNEL assay indicated the highest occurrence of apoptosis upon 6-shogaol treatment. It appeared that apoptosis is triggered by autophagy in 6-shogaol treated HT-29 cells, the damage of autophagic cell death initiated apoptosis program. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. 6-Shogaol induces apoptosis in human leukemia cells through a process involving caspase-mediated cleavage of eIF2α

    PubMed Central

    2013-01-01

    Background 6-Shogaol is a promising antitumor agent isolated from dietary ginger (Zingiber officinale). However, little is known about the efficacy of 6-shogaol on leukemia cells. Here we investigated the underlying mechanism of 6-shogaol induced apoptosis in human leukemia cells in vitro and in vivo. Methods Three leukemia cell lines and primary leukemia cells were used to investigate the apoptosis effect of 6-shogaol. A shotgun approach based on label-free proteome with LC-CHIP Q-TOF MS/MS was employed to identify the cellular targets of 6-shogaol and the differentially expressed proteins were analyzed by bioinformatics protocols. Results The present study indicated that 6-shogaol selectively induced apoptosis in transformed and primary leukemia cells but not in normal cells. Eukaryotic translation initiation factor 2 alpha (eIF2α), a key regulator in apoptosis signaling pathway, was significantly affected in both Jurkat and U937 proteome profiles. The docking results suggested that 6-shogaol might bind well to eIF2α at Ser51 of the N-terminal domain. Immunoblotting data indicated that 6-shogaol induced apoptosis through a process involving dephosphorylation of eIF2α and caspase activation–dependent cleavage of eIF2α. Furthermore, 6-shogaol markedly inhibited tumor growth and induced apoptosis in U937 xenograft mouse model. Conclusion The potent anti-leukemia activity of 6-shogaol found both in vitro and in vivo in our study make this compound a potential anti-tumor agent for hematologic malignancies. PMID:24215632

  13. Human Albumin Prevents 6-Hydroxydopamine-Induced Loss of Tyrosine Hydroxylase in In Vitro and In Vivo

    PubMed Central

    Zhang, Li-Juan; Xue, Yue-Qiang; Yang, Chun; Yang, Wei-Hua; Chen, Long; Zhang, Qian-Jin; Qu, Ting-Yu; Huang, Shile; Zhao, Li-Ru; Wang, Xiao-Min; Duan, Wei-Ming

    2012-01-01

    Human albumin has recently been demonstrated to protect brain neurons from injury in rat ischemic brain. However, there is no information available about whether human albumin can prevent loss of tyrosine hydroxylase (TH) expression of dopaminergic (DA) neurons induced by 6-hydroxydopamine (6-OHDA) toxicity that is most commonly used to create a rat model of Parkinson's disease (PD). In the present study, two microliters of 1.25% human albumin were stereotaxically injected into the right striatum of rats one day before or 7 days after the 6-OHDA lesion in the same side. D-Amphetamine-induced rotational asymmetry was measured 7 days, 3 and 10 weeks after 6-OHDA lesion. We observed that intrastriatal administration of human albumin significantly reduced the degree of rotational asymmetry. The number of TH-immunoreactive neurons present in the substantia nigra was greater in 6-OHDA lesioned rats following human albumin-treatment than non-human albumin treatment. TH-immunoreactivity in the 6-OHDA-lesioned striatum was also significantly increased in the human albumin-treated rats. To examine the mechanisms underlying the effects of human albumin, we challenged PC12 cells with 6-OHDA as an in vitro model of PD. Incubation with human albumin prevented 6-OHDA-induced reduction of cell viability in PC12 cell cultures, as measured by MTT assay. Furthermore, human albumin reduced 6-OHDA-induced formation of reactive oxygen species (ROS) and apoptosis in cultured PC12 cells, as assessed by flow cytometry. Western blot analysis showed that human albumin inhibited 6-OHDA-induced activation of JNK, c-Jun, ERK, and p38 mitogen-activated protein kinases (MAPK) signaling in PC12 cultures challenged with 6-OHDA. Human albumin may protect against 6-OHDA toxicity by influencing MAPK pathway followed by anti-ROS formation and anti-apoptosis. PMID:22815976

  14. Human T cells expressing BEND3 on their surface represent a novel subpopulation that preferentially produces IL-6 and IL-8.

    PubMed

    Shiheido, Hirokazu; Kitagori, Koji; Sasaki, Chiyomi; Kobayashi, Shio; Aoyama, Takane; Urata, Kozue; Oku, Takuma; Hirayama, Yoshitaka; Yoshitomi, Hiroyuki; Hikida, Masaki; Yoshifuji, Hajime; Mimori, Tsuneyo; Watanabe, Takeshi; Shimizu, Jun

    2014-06-01

    BEN domain-containing protein 3 (BEND3) has no transmembrane region, is localized in the cytoplasm, and is involved in chromatin function and transcription. We here identified a novel subpopulation of human T cells that expressed BEND3 on their cell surface (BEND3(+) T cells). BEND3(+) T cells consisted of approximately 3% of T cells in the peripheral blood, were present in both CD4(+) and CD8(+) T cells, and were also observed in cord blood. The stimulation of BEND3(+) T cells through the TCR/CD3 complex led to the production of various kinds of cytokines; however, the levels of IL-6 and IL-8 produced by BEND3(+) T cells were higher than those by BEND3(-) T cells. The proportion of BEND3(+) T cells was also increased in some patients with inflammatory diseases. Taken together, these results indicate that BEND3(+) T cells are a new subpopulation of T cells in terms of their cytokine profile. Further analyses on BEND3(+) T cells may be of importance and useful in understanding human T cell immunology.

  15. Clostridium perfringens enterotoxin is a superantigen reactive with human T cell receptors V beta 6.9 and V beta 22

    PubMed Central

    1992-01-01

    Candidate superantigens were screened for their ability to induce lysis of human histocompatibility leukocyte antigen class II-positive targets by human CD8+ influenza-specific cytotoxic T cell (CTL) lines. Clostridium perfringens enterotoxin (CPET) induced major histocompatibility complex unrestricted killing by some but not all CTL lines. Using "anchored" polymerase chain reactions, CPET was shown to selectively stimulate peripheral blood lymphocytes bearing T cell receptor V beta 6.9 and V beta 22 in five healthy donors. V beta 24, V beta 21, V beta 18, V beta 5, and V beta 6.1-5 appeared to be weakly stimulated. Antigen processing was not required for CPET to induce proliferation. Like the staphylococcal enterotoxins, CPET is a major cause of food poisoning. These data suggest that superantigenic and enterotoxigenic properties may be closely linked. PMID:1512551

  16. Vascular endothelial growth factor receptor 1 (VEGFR1) tyrosine kinase signaling facilitates granulation tissue formation with recruitment of VEGFR1+ cells from bone marrow.

    PubMed

    Park, Keiichi; Amano, Hideki; Ito, Yoshiya; Mastui, Yoshio; Kamata, Mariko; Yamazaki, Yasuharu; Takeda, Akira; Shibuya, Masabumi; Majima, Masataka

    2018-06-01

    Vascular endothelial growth factor (VEGF)-A facilitates wound healing. VEGF-A binds to VEGF receptor 1 (VEGFR1) and VEGFR2 and induces wound healing through the receptor's tyrosine kinase (TK) domain. During blood flow recovery and lung regeneration, expression of VEGFR1 is elevated. However, the precise mechanism of wound healing, especially granulation formation on VEGFR1, is not well understood. We hypothesized that VEGFR1-TK signaling induces wound healing by promoting granulation tissue formation. A surgical sponge implantation model was made by implanting a sponge disk into dorsal subcutaneous tissue of mice. Granulation formation was estimated from the weight of the sponge and the granulation area from the immunohistochemical analysis of collagen I. The expression of fibroblast markers was estimated from the expression of transforming growth factor-beta (TGF-β) and cellular fibroblast growth factor-2 (FGF-2) using real-time PCR (polymerase chain reaction) and from the immunohistochemical analysis of S100A4. VEGFR1 TK knockout (TK -/- ) mice exhibited suppressed granulation tissue formation compared to that in wild-type (WT) mice. Expression of FGF-2, TGF-β, and VEGF-A was significantly suppressed in VEGFR1 TK -/- mice, and the accumulation of VEGFR1 + cells in granulation tissue was reduced in VEGFR1 TK -/- mice compared to that in WT mice. The numbers of VEGFR1 + cells and S100A4 + cells derived from bone marrow (BM) were higher in WT mice transplanted with green fluorescent protein (GFP) transgenic WT BM than in VEGFR1 TK -/- mice transplanted with GFP transgenic VEGFR1 TK -/- BM. These results indicated that VEGFR1-TK signaling induced the accumulation of BM-derived VEGFR1 + cells expressing F4/80 and S100A4 and contributed to granulation formation around the surgically implanted sponge area in a mouse model.

  17. Essential role of TRPC6 channels in G2/M phase transition and development of human glioma.

    PubMed

    Ding, Xia; He, Zhuohao; Zhou, Kechun; Cheng, Ju; Yao, Hailan; Lu, Dongliang; Cai, Rong; Jin, Yening; Dong, Bin; Xu, Yinghui; Wang, Yizheng

    2010-07-21

    Patients with glioblastoma multiforme, the most aggressive form of glioma, have a median survival of approximately 12 months. Calcium (Ca(2+)) signaling plays an important role in cell proliferation, and some members of the Ca(2+)-permeable transient receptor potential canonical (TRPC) family of channel proteins have demonstrated a role in the proliferation of many types of cancer cells. In this study, we investigated the role of TRPC6 in cell cycle progression and in the development of human glioma. TRPC6 protein and mRNA expression were assessed in glioma (n = 33) and normal (n = 17) brain tissues from patients and in human glioma cell lines U251, U87, and T98G. Activation of TRPC6 channels was tested by platelet-derived growth factor-induced Ca(2+) imaging. The effect of inhibiting TRPC6 activity or expression using the dominant-negative mutant TRPC6 (DNC6) or RNA interference, respectively, was tested on cell growth, cell cycle progression, radiosensitization of glioma cells, and development of xenografted human gliomas in a mouse model. The green fluorescent protein (GFP) and wild-type TRPC6 (WTC6) were used as controls. Survival of mice bearing xenografted tumors in the GFP, DNC6, and WTC6 groups (n = 13, 15, and 13, respectively) was compared using Kaplan-Meier analysis. All statistical tests were two-sided. Functional TRPC6 was overexpressed in human glioma cells. Inhibition of TRPC6 activity or expression attenuated the increase in intracellular Ca(2+) by platelet-derived growth factor, suppressed cell growth and clonogenic ability, induced cell cycle arrest at the G2/M phase, and enhanced the antiproliferative effect of ionizing radiation. Cyclin-dependent kinase 1 activation and cell division cycle 25 homolog C expression regulated the cell cycle arrest. Inhibition of TRPC6 activity also reduced tumor volume in a subcutaneous mouse model of xenografted human tumors (P = .014 vs GFP; P < .001 vs WTC6) and increased mean survival in mice in an intracranial

  18. ACTIVATION OF DIOXIN RESPONSE ELEMENT (DRE)-ASSOCIATED GENES BY BENZO(A)PYRENE 3,6-QUINONE AND BENZO(A)PYRENE 1,6-QUINONE IN MCF-10A HUMAN MAMMARY EPITHELIAL CELLS

    PubMed Central

    Burchiel, Scott W.; Thompson, Todd A.; Lauer, Fredine T.; Oprea, Tudor I.

    2007-01-01

    Benzo(a)pyrene (BaP) is a known human carcinogen and a suspected breast cancer complete carcinogen. BaP is metabolized by several metabolic pathways, some having bioactivation and others detoxification properties. BaP-quinones (BPQs) are formed via cytochrome P450 and peroxidase dependent pathways. Previous studies by our laboratory have shown that BPQs have significant growth promoting and anti-apoptotic activities in human MCF-10A mammary epithelial cells examined in vitro. Previous results suggest that BPQs act via redox-cycling and oxidative stress. However, because two specific BPQs (1,6-BPQ and 3,6-BPQ) differed in their ability to produce reactive oxygen species (ROS) and yet both had strong proliferative and EGF receptor activating activity, we utilized mRNA expression arrays and qRT-PCR to determine potential pathways and mechanisms of gene activation. The results of the present studies demonstrated that 1,6-BPQ and 3,6-BPQ activate dioxin response elements (DRE, also known as xenobiotic response elements, XRE) and anti-oxidant response elements (ARE, also known and electrophile response elements, EpRE). 3,6-BPQ had greater DRE activity than 1,6-BPQ, whereas the opposite was true for the activation of ARE. Both 3,6-BPQ and 1,6-BPQ induced oxidative stress associated genes (HMOX1, GCLC, GCLM, and SLC7A11), phase 2 enzyme genes (NQO1, NQO2, ALDH3A1) PAH metabolizing genes (CYP1B1, EPHX1, AKR1C1), and certain EGF receptor associated genes (EGFR, IER3, ING1, SQSTM1 and TRIM16). The results of these studies demonstrate that BPQs activate numerous pathways in human mammary epithelial cells associated with increased cell growth and survival that may play important roles in tumor promotion. PMID:17466351

  19. Regulation of 1-alpha, 25-dihydroxyvitamin D3 on interleukin-6 and interleukin-8 induced by sulfur mustard (HD) on human skin cells.

    PubMed

    Arroyo, Carmen M; Kan, Robert K; Burman, Damon L; Kahler, David W; Nelson, Marian R; Corun, Charlene M; Guzman, Juanita J; Broomfield, Clarence A

    2003-05-01

    The regulatory effects of the active form of vitamin D, 1-alpha, 25-dihydroxyvitamin D3 (1-alpha, 25 (OH)2D3) were assessed on the cytokine and chemokine secretion induced by sulfur mustard on human skin fibroblasts and human epidermal keratinocytes. Stimulation of human skin fibroblasts with sulfur mustard (10(-4) M for 24 hr at 37 degrees ) resulted in approximately a 5 times increase in the secretion of interleukin-6 and over a 10 times increase for interleukin-8, which was inhibited by 1-alpha, 25 (OH)2D3, at 6 by 4 times on sulfur mustard-stimulated human epidermal keratinocytes at concentrations 6 and interleukin-8 induced by sulfur mustard on human skin fibroblasts/human epidermal keratinocytes, apparent at nanomolar concentrations. Our results indicate that the suppression of these inflammatory mediators by 1-alpha, 25 (OH)2D3 is dependent on the source of the primary cultures, cell densities, and kinetics of pretreatments. In contrast to the inhibition of cytokine/chemokine production, cell proliferation was enhanced by almost 1.7 times on treated human epidermal keratinocytes with 1-alpha, 25 (OH)2D3 (1 x 10(-9) M) after sulfur mustard-stimulation (10(-4) M for 24 hr at 37 degrees C). The observed enhancement diversified based on cell density, and kinetics of pretreatment with a maximal synergism (s) observed at 1 x 10(-9) M. Photomicrographs show typical signs of cellular degeneration caused by sulfur mustard such as chromatin condensation. The observed cellular degeneration was lessened when human epidermal keratinocytes were treated with 1-alpha, 25 (OH)2D3 (2 x 10(-9) M). 1-alpha, 25(OH)2D3 could be an alternative treatment for cutaneous inflammation disorders caused by sulfur mustard because we have demonstrated its ability to suppress inflammatory

  20. Reactivation of Chromosomally Integrated Human Herpesvirus-6 by Telomeric Circle Formation

    PubMed Central

    Prusty, Bhupesh K.; Krohne, George; Rudel, Thomas

    2013-01-01

    More than 95% of the human population is infected with human herpesvirus-6 (HHV-6) during early childhood and maintains latent HHV-6 genomes either in an extra-chromosomal form or as a chromosomally integrated HHV-6 (ciHHV-6). In addition, approximately 1% of humans are born with an inheritable form of ciHHV-6 integrated into the telomeres of chromosomes. Immunosuppression and stress conditions can reactivate latent HHV-6 replication, which is associated with clinical complications and even death. We have previously shown that Chlamydia trachomatis infection reactivates ciHHV-6 and induces the formation of extra-chromosomal viral DNA in ciHHV-6 cells. Here, we propose a model and provide experimental evidence for the mechanism of ciHHV-6 reactivation. Infection with Chlamydia induced a transient shortening of telomeric ends, which subsequently led to increased telomeric circle (t-circle) formation and incomplete reconstitution of circular viral genomes containing single viral direct repeat (DR). Correspondingly, short t-circles containing parts of the HHV-6 DR were detected in cells from individuals with genetically inherited ciHHV-6. Furthermore, telomere shortening induced in the absence of Chlamydia infection also caused circularization of ciHHV-6, supporting a t-circle based mechanism for ciHHV-6 reactivation. PMID:24367281

  1. [Prediction and evolution of B cell epitopes of hemagglutinin in human-infecting H6N1 avian influenza virus].

    PubMed

    Yang, Jianke; Yuan, Jian; Gao, Jiguang; Zhu, Xiaolei; Lin, Aiqin

    2015-01-01

    To predict B cell epitopes of hemagglutinin (HA) of human-infecting H6N1 avian influenza virus and analyze their evolutionary characteristics. The dataset was downloaded from GISAID and GenBank databases. And the linear and conformational B cell epitopes of HA were predicted separately by various bioinformatic software. Furthermore, the conservation, adaptation and other evolutionary characteristics were also analyzed by some bioinformatic means. Four linear epitopes (A, B, C and D) and two conformational epitopes (E and F) were obtained after consideration of multiple factors. And the C epitope and sites ( 41, 157, 186, 187) mutated easily, but the other epitopes were very conservative and the D epitope was the most conservative. Interestingly, the site 157 was identified under positive selection, suggesting that it may be a particularly important site to make the virus evade the attack from the host immune system. The HA of human-infecting H6N1 avian influenza virus has five conservative B cell epitopes (three linear and two conformational) and one site under positive selection. The findings would facilitate the vaccine development, virus control and pathogenesis understanding.

  2. Distribution of AAV-TK following intracranial convection-enhanced delivery into rats.

    PubMed

    Cunningham, J; Oiwa, Y; Nagy, D; Podsakoff, G; Colosi, P; Bankiewicz, K S

    2000-01-01

    Adeno-associated virus (AAV)-based vectors are being tested in animal models as viable treatments for glioma and neurodegenerative disease and could potentially be employed to target a variety of central nervous system disorders. The relationship between dose of injected vector and its resulting distribution in brain tissue has not been previously reported nor has the most efficient method of delivery been determined. Here we report that convection-enhanced delivery (CED) of 2.5 x 10(8), 2.5 x 10(9), or 2.5 x 10(10) particles of AAV-thymidine kinase (AAV-TK) into rat brain revealed a clear dose response. In the high-dose group, a volume of 300 mm3 of brain tissue was partially transduced. Results showed that infusion pump and subcutaneous osmotic pumps were both capable of delivering vector via CED and that total particle number was the most important determining factor in obtaining efficient expression. Results further showed differences in histopathology between the delivery groups. While administration of vector using infusion pump had relatively benign effects, the use of osmotic pumps resulted in notable toxicity to the surrounding brain tissue. To determine tissue distribution of vector following intracranial delivery, PCR analysis was performed on tissues from rats that received high doses of AAV-TK. Three weeks following CED, vector could be detected in both hemispheres of the brain, spinal cord, spleen, and kidney.

  3. High-throughput PBPK and Microdosimetry: Cell-level Exposures in a Virtual Tissue Context (WC9)

    EPA Science Inventory

    Toxicokinetic (TK) models can determine whether chemical exposures produce potentially hazardous tissue concentrations. Tissue microdosimetry TK models relate whole-body chemical exposures to cell-scale concentrations. As a proof of concept, we approximated the micro-anatomic arc...

  4. 6-Methylsulfinylhexyl isothiocyanate modulates endothelial cell function and suppresses leukocyte adhesion.

    PubMed

    Okamoto, Takayuki; Akita, Nobuyuki; Nagai, Masashi; Hayashi, Tatsuya; Suzuki, Koji

    2014-01-01

    6-Methylsulfinylhexyl isothiocyanate (6-MSITC) is an active compound in wasabi (Wasabia japonica Matsum.), which is one of the most popular spices in Japan. 6-MSITC suppresses lipopolysaccharide-induced macrophage activation, arachidonic- or adenosine diphosphate-induced platelet activation, and tumor cell proliferation. These data indicate that 6-MSITC has several biological activities involving anti-inflammatory, anti-coagulant, and anti-apoptosis properties. Endothelial cells (ECs) maintain vascular homeostasis and play crucial roles in crosstalk between blood coagulation and vascular inflammation. In this study, we determined the anti-coagulant and anti-inflammatory effects of 6-MSITC on human umbilical vein endothelial cells (HUVECs). 6-MSITC slightly reduced tissue factor expression, but did not alter von Willebrand factor release in activated HUVECs. 6-MSITC modulated the generation of activated protein C, which is essential for negative regulation of blood coagulation, on normal ECs. In addition, 6-MSITC reduced tumor necrosis factor-α (TNF-α)-induced interleukin-6 and monocyte chemoattractant protein-1 expression. 6-MSITC markedly attenuated TNF-α-induced adhesion of human monoblast U937 cells to HUVECs and reduced vascular cell adhesion molecule-1 and E-selectin mRNA expression in activated ECs. These results showed that 6-MSITC modulates EC function and suppresses cell adhesion. This study provides new insight into the mechanism of the anti-inflammatory effect of 6-MSITC, suggesting that 6-MSITC has therapeutic potential as a treatment for vasculitis and vascular inflammation.

  5. Neuroprotective effects of glyceryl nonivamide against microglia-like cells and 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y human dopaminergic neuroblastoma cells.

    PubMed

    Lin, Yi-Chin; Uang, Hao-Wei; Lin, Rong-Jyh; Chen, Ing-Jun; Lo, Yi-Ching

    2007-12-01

    Glyceryl nonivamide (GLNVA), a vanilloid receptor (VR) agonist, has been reported to have calcitonin gene-related peptide-associated vasodilatation and to prevent subarachnoid hemorrhage-induced cerebral vasospasm. In this study, we investigated the neuroprotective effects of GLNVA on activated microglia-like cell mediated- and proparkinsonian neurotoxin 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in human dopaminergic neuroblastoma SH-SY5Y cells. In coculture conditions, we used lipopolysaccharide (LPS)-stimulated BV-2 cells as a model of activated microglia. LPS-induced neuronal death was significantly inhibited by diphenylene iodonium (DPI), an inhibitor of NADPH oxidase. However, capsazepine, the selective VR1 antagonist, did not block the neuroprotective effects of GLNVA. GLNVA reduced LPS-activated microglia-mediated neuronal death, but it lacked protection in DPI-pretreated cultures. GLNVA also decreased LPS activated microglia induced overexpression of neuronal nitric-oxide synthase (nNOS) and glycoprotein 91 phagocyte oxidase (gp91(phox)) on SH-SY5Y cells. Pretreatment of BV-2 cells with GLNVA diminished LPS-induced nitric oxide production, overexpression of inducible nitric-oxide synthase (iNOS), and gp91(phox) and intracellular reactive oxygen species (iROS). GLNVA also reduced cyclooxygenase (COX)-2 expression, inhibitor of nuclear factor (NF)-kappaB (IkappaB)alpha/IkappaBbeta degradation, NF-kappaB activation, and the overproduction of tumor necrosis factor-alpha, interleukin (IL)-1beta, and prostaglandin E2 in BV-2 cells. However, GLNVA augmented anti-inflammatory cytokine IL-10 production on LPS-stimulated BV-2 cells. Furthermore, in 6-OHDA-treated SH-SY5Y cells, GLNVA rescued the changes in condensed nuclear and apoptotic bodies, prevented the decrease in mitochondrial membrane potential, and reduced cells death. GLNVA also suppressed accumulation of iROS and up-regulated heme oxygenase-1 expression. 6-OHDA-induced overexpression of nNOS, i

  6. Thymidine kinase and mtDNA depletion in human cardiomyopathy: epigenetic and translational evidence for energy starvation

    PubMed Central

    Koczor, Christopher A.; Torres, Rebecca A.; Fields, Earl J.; Boyd, Amy; He, Stanley; Patel, Nilamkumar; Lee, Eva K.; Samarel, Allen M.

    2013-01-01

    This study addresses how depletion of human cardiac left ventricle (LV) mitochondrial DNA (mtDNA) and epigenetic nuclear DNA methylation promote cardiac dysfunction in human dilated cardiomyopathy (DCM) through regulation of pyrimidine nucleotide kinases. Samples of DCM LV and right ventricle (n = 18) were obtained fresh at heart transplant surgery. Parallel samples from nonfailing (NF) controls (n = 12) were from donor hearts found unsuitable for clinical use. We analyzed abundance of mtDNA and nuclear DNA (nDNA) using qPCR. LV mtDNA was depleted in DCM (50%, P < 0.05 each) compared with NF. No detectable change in RV mtDNA abundance occurred. DNA methylation and gene expression were determined using microarray analysis (GEO accession number: GSE43435). Fifty-seven gene promoters exhibited DNA hypermethylation or hypomethylation in DCM LVs. Among those, cytosolic thymidine kinase 1 (TK1) was hypermethylated. Expression arrays revealed decreased abundance of the TK1 mRNA transcript with no change in transcripts for other relevant thymidine metabolism enzymes. Quantitative immunoblots confirmed decreased TK1 polypeptide steady state abundance. TK1 activity remained unchanged in DCM samples while mitochondrial thymidine kinase (TK2) activity was significantly reduced. Compensatory TK activity was found in cardiac myocytes in the DCM LV. Diminished TK2 activity is mechanistically important to reduced mtDNA abundance and identified in DCM LV samples here. Epigenetic and genetic changes result in changes in mtDNA and in nucleotide substrates for mtDNA replication and underpin energy starvation in DCM. PMID:23695887

  7. Production of Human Papilloma Virus Type 16 E6 Oncoprotein as a Recombinant Protein in Eukaryotic Cells

    PubMed Central

    Mirshahabi, H; Soleimanjahi, H; Pourpak, Z; Meshkat, Z; Hassan, ZM

    2012-01-01

    Background Cervical cancer is one of the most important and widespread cancer which affects women. There are several causes of cervical cancer; among them HPV types 16 and 18 are the most prominent ones which are recurrent and persistent infections. These genotypes are currently about 70% of cervical cancer causes in developing countries. Due to the importance of these viruses in cervical cancer, we pioneered the production of Human Papilloma Virus type16 E6 oncoprotein as a recombinant protein in order to develop a vaccine. Two HPV oncoproteins, E6 and E7, are consistently expressed in HPV-associated cancer cells and are responsible for malignant transformation. These oncogenic proteins represent ideal target antigens for developing vaccine and immunotherapeutic strategies against HPV-associated neoplasm. Methods In the present study, the cloned E6-oncoprotein of HPV16 in pTZ57R/T-E6 vector was used to produce professional expression vector. The target gene was subcloned in a eukaryotic expression vector. The pcDNA3-E6 vector was propagated in E.coli strain DH5α and transfected into CHO cells 72 hours post-transfection. Results The transfected cells were harvested; mRNA detection and the interest protein production were confirmed by western blot analysis using specific anti E6 monoclonal antibody. Conclusion HPV16-E6 target protein recognized by specific antibody could be an appropriate form of protein, which can be used for further studies. Due to potential effect of this protein, its DNA construction can be used for DNA vaccine in future studies. PMID:25780534

  8. ¹¹¹In-DOTA-Annexin V for imaging of apoptosis during HSV1-tk/GCV prodrug activation gene therapy in mice with NG4TL4 sarcoma.

    PubMed

    Lin, Ming-Hsien; Wu, Shih-Yen; Wang, Hsin-Ell; Liu, Ren-Shyan; Chen, Jyh-Cheng

    2016-02-01

    Apoptosis has been suggested as a cytocidal mechanism of the HSV1-tk-expressing cells when exposed to ganciclovir (GCV). This study evaluated the efficacy of (111)In-labeled Annexin V for monitoring tumor responses during prodrug activation gene therapy with HSV1-tk and GCV. Annexin V was conjugated to DOTA using N-hydroxysulfosuccinimide (sulfo-NHS) and 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC), labeled with (111)In-InCl3 and purified using size exclusion chromatography to give (111)In-DOTA-Annexin V conjugate. The radiochemical yield and the radiochemical purity of (111)In-DOTA-Annexin V were 74±12% and 98±3%, respectively (n=10). (111)In-DOTA-BSA was prepared similarly. An in vitro study to demonstrate the apoptosis of NG4TL4-STK cells after GCV treatment has been performed. Mice bearing NG4TL4-STK and NG4TL4-WT tumors were treated with GCV (10 mg/kg daily) by i.p. injection for 7 consecutive days. Before and during the GCV treatment, biodistribution studies and scintigraphic imaging were performed at 2h post injection of the radiotracers. The uptake of (111)In-DOTA-Annexin V in treated cells (13.41±1.30%) was 4.1 times higher than that in untreated cells (3.21±0.37%). The GCV-induced cell apoptosis in NG4TL4-STK tumor resulted in a significantly increasing accumulation of (111)In-DOTA-Annexin V (1.92±0.32%ID/g at day 0, 4.79±0.86%ID/g at day 2, 4.56±0.58%ID/g at day 4) was observed, but not for that of (111)In-DOTA-BSA. During consecutive GCV treatment, scintigraphic imaging with (111)In-DOTA-Annexin V revealed high uptake in NG4TL4-STK tumor compared with that in NG4TL4-WT tumor. However, no specific (111)In-DOTA-BSA accumulation in NG4TL4-STK and NG4TL4-WT tumors was observed throughout the course of GCV treatment. This study demonstrated that (111)In-DOTA-Annexin V can be used for monitoring tumor cell apoptosis during prodrug activation gene therapy with HSV1-tk and GCV for cancer treatment. Copyright © 2015 Elsevier Ltd. All rights

  9. Interleukin‑6 induces an epithelial‑mesenchymal transition phenotype in human adamantinomatous craniopharyngioma cells and promotes tumor cell migration.

    PubMed

    Zhou, Jie; Zhang, Chao; Pan, Jun; Chen, Ligang; Qi, Song-Tao

    2017-06-01

    Total resection of adamantinomatous craniopharyngioma (ACP) is complex and often leads to postoperative recurrence. This is due to the tendency of the tumor to invade the surrounding brain tissue and the generation of a local inflammatory state between the tumor cells and parenchyma. While there is evidence to suggest that interleukin‑6 (IL‑6) induces craniopharyngioma (CP)‑associated inflammation, particularly in ACP, the role of IL‑6 in the progression of ACP remains unclear. The results of the present study demonstrated that CP inflammation was associated with pathological classification, extent of surgery, degree of calcification and postoperative hypothalamic status scale. Cytokine antibody arrays were conducted to measure the expression of IL‑6 and other inflammatory factors in tumor tissues in response to various levels of inflammatory exposure. IL‑6, IL‑6 receptor (IL‑6R) and glycoprotein 130 expression was detected by immunohistochemistry. In addition, an ELISA was performed to quantify the levels of soluble IL‑6R (sIL‑6R) in the cystic fluid and supernatants of ACP cells and tumor‑associated fibroblasts. These measurements demonstrated that ACP cells produce IL‑6 and its associated proteins. In addition, the results revealed that while the viability of ACP cells was not affected, the migration of ACP cells was promoted by IL‑6 treatment in a concentration‑dependent manner. Conversely, treatment with an IL‑6‑blocking monoclonal antibody significantly decreased the migration of ACP cells. In addition, IL‑6 treatment increased the expression of vimentin and decreased the expression of E‑cadherin in a dose‑dependent manner. The findings of the present study demonstrate that IL‑6 may promote migration in vitro via the classic‑ and trans‑signaling pathways by inducing epithelial‑mesenchymal transition in ACP cell cultures.

  10. Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human adamantinomatous craniopharyngioma cells and promotes tumor cell migration

    PubMed Central

    Zhou, Jie; Zhang, Chao; Pan, Jun; Chen, Ligang; Qi, Song-Tao

    2017-01-01

    Total resection of adamantinomatous craniopharyngioma (ACP) is complex and often leads to postoperative recurrence. This is due to the tendency of the tumor to invade the surrounding brain tissue and the generation of a local inflammatory state between the tumor cells and parenchyma. While there is evidence to suggest that interleukin-6 (IL-6) induces craniopharyngioma (CP)-associated inflammation, particularly in ACP, the role of IL-6 in the progression of ACP remains unclear. The results of the present study demonstrated that CP inflammation was associated with pathological classification, extent of surgery, degree of calcification and postoperative hypothalamic status scale. Cytokine antibody arrays were conducted to measure the expression of IL-6 and other inflammatory factors in tumor tissues in response to various levels of inflammatory exposure. IL-6, IL-6 receptor (IL-6R) and glycoprotein 130 expression was detected by immunohistochemistry. In addition, an ELISA was performed to quantify the levels of soluble IL-6R (sIL-6R) in the cystic fluid and supernatants of ACP cells and tumor-associated fibroblasts. These measurements demonstrated that ACP cells produce IL-6 and its associated proteins. In addition, the results revealed that while the viability of ACP cells was not affected, the migration of ACP cells was promoted by IL-6 treatment in a concentration-dependent manner. Conversely, treatment with an IL-6-blocking monoclonal antibody significantly decreased the migration of ACP cells. In addition, IL-6 treatment increased the expression of vimentin and decreased the expression of E-cadherin in a dose-dependent manner. The findings of the present study demonstrate that IL-6 may promote migration in vitro via the classic- and trans-signaling pathways by inducing epithelial-mesenchymal transition in ACP cell cultures. PMID:28487953

  11. Hearing loss in a patient with the myopathic form of mitochondrial DNA depletion syndrome and a novel mutation in the TK2 gene.

    PubMed

    Martí, Ramon; Nascimento, Andrés; Colomer, Jaume; Lara, Mari C; López-Gallardo, Ester; Ruiz-Pesini, Eduardo; Montoya, Julio; Andreu, Antoni L; Briones, Paz; Pineda, Mercè

    2010-08-01

    Mitochondrial DNA (mtDNA) depletion syndrome (MDS) is a devastating disorder of infancy caused by a significant reduction of the number of copies of mitochondrial DNA in one or more tissues. We report a Spanish patient with the myopathic form of MDS, harboring two mutations in the thymidine kinase 2 gene (TK2): a previously reported deletion (p.K244del) and a novel nucleotide duplication in the exon 2, generating a frameshift and premature stop codon. Sensorineural hearing loss was a predominant symptom in the patient and a novel feature of MDS due to TK2 mutations. The patient survived up to the age of 8.5 y, which confirms that survival above the age of 5 y is not infrequent in patients with MDS due to TK2 deficiency.

  12. Distinct human α(1,3)-fucosyltransferases drive Lewis-X/sialyl Lewis-X assembly in human cells.

    PubMed

    Mondal, Nandini; Dykstra, Brad; Lee, Jungmin; Ashline, David J; Reinhold, Vernon N; Rossi, Derrick J; Sackstein, Robert

    2018-05-11

    In humans, six α(1,3)-fucosyltransferases (α(1,3)-FTs: FT3/FT4/FT5/FT6/FT7/FT9) reportedly fucosylate terminal lactosaminyl glycans yielding Lewis-X (Le X ; CD15) and/or sialyl Lewis-X (sLe X ; CD15s), structures that play key functions in cell migration, development, and immunity. Prior studies analyzing α(1,3)-FT specificities utilized either purified and/or recombinant enzymes to modify synthetic substrates under nonphysiological reaction conditions or molecular biology approaches wherein α(1,3)-FTs were expressed in mammalian cell lines, notably excluding investigations using primary human cells. Accordingly, although significant insights into α(1,3)-FT catalytic properties have been obtained, uncertainty persists regarding their human Le X /sLe X biosynthetic range across various glycoconjugates. Here, we undertook a comprehensive evaluation of the lactosaminyl product specificities of intracellularly expressed α(1,3)-FTs using a clinically relevant primary human cell type, mesenchymal stem cells. Cells were transfected with modified mRNA encoding each human α(1,3)-FT, and the resultant α(1,3)-fucosylated lactosaminyl glycoconjugates were analyzed using a combination of flow cytometry and MS. The data show that biosynthesis of sLe X is driven by FTs-3, -5, -6, and -7, with FT6 and FT7 having highest potency. FT4 and FT9 dominantly biosynthesize Le X , and, among all FTs, FT6 holds a unique capacity in creating sLe X and Le X determinants across protein and lipid glycoconjugates. Surprisingly, FT4 does not generate sLe X on glycolipids, and neither FT4, FT6, nor FT9 synthesizes the internally fucosylated sialyllactosamine VIM-2 (CD65s). These results unveil the relevant human lactosaminyl glycans created by human α(1,3)-FTs, providing novel insights on how these isoenzymes stereoselectively shape biosynthesis of vital glycoconjugates, thereby biochemically programming human cell migration and tuning human immunologic and developmental processes.

  13. CXCR6 identifies a putative population of retained human lung T cells characterised by co-expression of activation markers.

    PubMed

    Morgan, Angela J; Guillen, Cristina; Symon, Fiona A; Birring, Surinder S; Campbell, James J; Wardlaw, Andrew J

    2008-01-01

    Expressions of activation markers have been described on the surface of T cells in the blood and the lung in both health and disease. We have studied the distribution of activation markers on human lung T cells and have found that only certain populations exist. Importantly, the presence or absence of some markers appears to predict those of others, in particular cells which express CD103 also express CD49a and CD69, whereas cells which do not express CD69 also do not express CD49a or CD103. In view of the paucity of activation marker expression in the peripheral blood, we have hypothesised that these CD69+, CD49a+, and CD103+ (triple positive) cells are retained in the lung, possess effector function (IFNgamma secretion) and express particular chemokine receptors which allow them to be maintained in this environment. We have found that the ability of the triple negative cells to secrete IFNgamma is significantly less than the triple positive cells, suggesting that the expression of activation markers can highlight a highly specialised effector cell. We have studied the expression of 14 chemokine receptors and have found that the most striking difference between the triple negative cells and the triple positive cells is the expression of CXCR6 with 12.8+/-9.8% of triple negative cells expressing CXCR6 compared to 89.5+/-5.5% of triple positive cells. We propose therefore that CXCR6 may play an important role in the retention of T cells within the lung.

  14. Gene 33/Mig6 inhibits hexavalent chromium-induced DNA damage and cell transformation in human lung epithelial cells

    PubMed Central

    Park, Soyoung; Li, Cen; Zhao, Hong; Darzynkiewicz, Zbigniew; Xu, Dazhong

    2016-01-01

    Hexavalent Chromium [Cr(VI)] compounds are human lung carcinogens and environmental/occupational hazards. The molecular mechanisms of Cr(VI) carcinogenesis appear to be complex and are poorly defined. In this study, we investigated the potential role of Gene 33 (ERRFI1, Mig6), a multifunctional adaptor protein, in Cr(VI)-mediated lung carcinogenesis. We show that the level of Gene 33 protein is suppressed by both acute and chronic Cr(VI) treatments in a dose- and time-dependent fashion in BEAS-2B lung epithelial cells. The inhibition also occurs in A549 lung bronchial carcinoma cells. Cr(VI) suppresses Gene 33 expression mainly through post-transcriptional mechanisms, although the mRNA level of gene 33 also tends to be lower upon Cr(VI) treatments. Cr(VI)-induced DNA damage appears primarily in the S phases of the cell cycle despite the high basal DNA damage signals at the G2M phase. Knockdown of Gene 33 with siRNA significantly elevates Cr(VI)-induced DNA damage in both BEAS-2B and A549 cells. Depletion of Gene 33 also promotes Cr(VI)-induced micronucleus (MN) formation and cell transformation in BEAS-2B cells. Our results reveal a novel function of Gene 33 in Cr(VI)-induced DNA damage and lung epithelial cell transformation. We propose that in addition to its role in the canonical EGFR signaling pathway and other signaling pathways, Gene 33 may also inhibit Cr(VI)-induced lung carcinogenesis by reducing DNA damage triggered by Cr(VI). PMID:26760771

  15. IL-6 promotes an increase in human mast cell numbers and reactivity through suppression of suppressor of cytokine signaling 3.

    PubMed

    Desai, Avanti; Jung, Mi-Yeon; Olivera, Ana; Gilfillan, Alasdair M; Prussin, Calman; Kirshenbaum, Arnold S; Beaven, Michael A; Metcalfe, Dean D

    2016-06-01

    IL-6, levels of which are reported to be increased in association with mastocytosis, asthma, and urticaria, is used in conjunction with stem cell factor to generate CD34(+) cell-derived primary human mast cell (HuMC) cultures. Despite these associations, the effects on and mechanisms by which prolonged exposure to IL-6 alters HuMC numbers and function are not well understood. We sought to study the effect of IL-6 on HuMC function, the mechanisms by which IL-6 exerts its effects, and the relationship of these findings to mastocytosis. HuMCs were cultured in stem cell factor with or without IL-6. Responses to FcεRI aggregation and expression of proteases and receptors, including the soluble IL-6 receptor (sIL-6R), were then quantitated. Epigenetic changes in suppressor of cytokine signaling 3 (SOCS3) were determined by using methylation-specific PCR. Serum samples from healthy control subjects and patients with mastocytosis were assayed for IL-6, tryptase, and sIL-6R. IL-6 enhanced mast cell (MC) proliferation, maturation, and reactivity after FcεRI aggregation. IL-6 reduced expression of SOCS3, which correlated with methylation of the SOCS3 promoter and increased expression and activation of signal transducer and activator of transcription 3. IL-6 also suppressed constitutive production of sIL-6R, and serum levels of sIL-6R were similarly reduced in patients with mastocytosis. IL-6 increases MC proliferation and formation of a more reactive phenotype enabled by suppressing proteolytic cleavage of sIL-6R from IL-6R and downregulation of the SOCS3 autoinhibitory pathway. We suggest IL-6 blockade might ameliorate MC-related symptoms and pathology in patients with MC-related diseases associated with increased IL-6 levels, including mastocytosis. Published by Elsevier Inc.

  16. The Human Papillomavirus E6 Oncogene Represses a Cell Adhesion Pathway and Disrupts Focal Adhesion through Degradation of TAp63β upon Transformation

    PubMed Central

    Ben Khalifa, Youcef; Teissier, Sébastien; Tan, Meng-Kwang Marcus; Phan, Quang Tien; Daynac, Mathieu; Wong, Wei Qi; Thierry, Françoise

    2011-01-01

    Cervical carcinomas result from cellular transformation by the human papillomavirus (HPV) E6 and E7 oncogenes which are constitutively expressed in cancer cells. The E6 oncogene degrades p53 thereby modulating a large set of p53 target genes as shown previously in the cervical carcinoma cell line HeLa. Here we show that the TAp63β isoform of the p63 transcription factor is also a target of E6. The p63 gene plays an essential role in skin homeostasis and is expressed as at least six isoforms. One of these isoforms, ΔNp63α, has been found overexpressed in squamous cell carcinomas and is shown here to be constitutively expressed in Caski cells associated with HPV16. We therefore explored the role of p63 in these cells by performing microarray analyses after repression of endogenous E6/E7 expression. Upon repression of the oncogenes, a large set of p53 target genes was found activated together with many p63 target genes related to cell adhesion. However, through siRNA silencing and ectopic expression of various p63 isoforms we demonstrated that TAp63β is involved in activation of this cell adhesion pathway instead of the constitutively expressed ΔNp63α and β. Furthermore, we showed in cotransfection experiments, combined with E6AP siRNA silencing, that E6 induces an accelerated degradation of TAp63β although not through the E6AP ubiquitin ligase used for degradation of p53. Repression of E6 transcription also induces stabilization of endogenous TAp63β in cervical carcinoma cells that lead to an increased concentration of focal adhesions at the cell surface. Consequently, TAp63β is the only p63 isoform suppressed by E6 in cervical carcinoma as demonstrated previously for p53. Down-modulation of focal adhesions through disruption of TAp63β therefore appears as a novel E6-dependent pathway in transformation. These findings identify a major physiological role for TAp63β in anchorage independent growth that might represent a new critical pathway in human

  17. Gossypol inhibition of mitosis, cyclin D1 and Rb protein in human mammary cancer cells and cyclin-D1 transfected human fibrosarcoma cells.

    PubMed Central

    Ligueros, M.; Jeoung, D.; Tang, B.; Hochhauser, D.; Reidenberg, M. M.; Sonenberg, M.

    1997-01-01

    The antiproliferative effects of gossypol on human MCF-7 mammary cancer cells and cyclin D1-transfected HT-1060 human fibrosarcoma cells were investigated by cell cycle analysis and effects on the cell cycle regulatory proteins Rb and cyclin D1. Flow cytometry of MCF-7 cells at 24 h indicated that 10 microM gossypol inhibited DNA synthesis by producing a G1/S block. Western blot analysis using anti-human Rb antibodies and anti-human cyclin D1 antibodies in MCF-7 cells and high- and low-expression cyclin D1-transfected fibrosarcoma cells indicated that, after 6 h exposure, gossypol decreased the expression levels of these proteins in a dose-dependent manner. Gossypol also decreased the ratio of phosphorylated to unphosphorylated Rb protein in human mammary cancer and fibrosarcoma cell lines. Gossypol (10 microM) treated also decreased cyclin D1-associated kinase activity on histone H1 used as a substrate in MCF-7 cells. These results suggest that gossypol might suppress growth by modulating the expression of cell cycle regulatory proteins Rb and cyclin D1 and the phosphorylation of Rb protein. Images Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:9218727

  18. Comparative Chondrogenesis of Human Cell Sources in 3D Scaffolds

    PubMed Central

    Tıg̑lı, R. Seda; Ghosh, Sourabh; Laha, Michael M.; Shevde, Nirupama K.; Daheron, Laurence; Gimble, Jeffrey; Gümüşdereliog̑lu, Menemşe; Kaplan, David L.

    2009-01-01

    Cartilage tissue can be engineered by starting from a diversity of cell sources, including stem-cell based and primary cell-based platforms. Selecting an appropriate cell source for the process of cartilage tissue engineering or repair is critical and challenging due to the variety of cell options available. In this study, cellular responses of isolated human chondrocytes, human embryonic stem cells and mesenchymal stem cells (MSCs) derived from three sources, human embryonic stem cells, bone marrow and adipose tissue, were assessed for chondrogenic potential in 3D culture. All cell sources were characterized by FACS analysis to compare expression of some surface markers. The cells were differentiated in two different biomaterial matrices, silk and chitosan scaffolds, in the presence and absence of bone morphogenetic protein 6 (BMP-6) along with the standard chondrogenic differentiating factors. Embryonic stem cells derived MSCs showed unique characteristics with preserved chondrogenic phenotype in both scaffolds with regard to chondrogenesis, as determined by real time RT-PCR, histological and microscopic analyses. After 4 weeks of cultivation, embryonic stem cells derived MSCs were promising for chondrogenesis, particularly in the silk scaffolds with BMP-6. The results suggest that cell source differences are important to consider with regard to chondrogenic outcomes and with the variables addressed here, the human embryonic stem cells derived MSCs were the preferred cell source. PMID:19382119

  19. Human T cells expressing BEND3 on their surface represent a novel subpopulation that preferentially produces IL-6 and IL-8

    PubMed Central

    Shiheido, Hirokazu; Kitagori, Koji; Sasaki, Chiyomi; Kobayashi, Shio; Aoyama, Takane; Urata, Kozue; Oku, Takuma; Hirayama, Yoshitaka; Yoshitomi, Hiroyuki; Hikida, Masaki; Yoshifuji, Hajime; Mimori, Tsuneyo; Watanabe, Takeshi; Shimizu, Jun

    2014-01-01

    BEN domain-containing protein 3 (BEND3) has no transmembrane region, is localized in the cytoplasm, and is involved in chromatin function and transcription. We here identified a novel subpopulation of human T cells that expressed BEND3 on their cell surface (BEND3+ T cells). BEND3+ T cells consisted of approximately 3% of T cells in the peripheral blood, were present in both CD4+ and CD8+ T cells, and were also observed in cord blood. The stimulation of BEND3+ T cells through the TCR/CD3 complex led to the production of various kinds of cytokines; however, the levels of IL-6 and IL-8 produced by BEND3+ T cells were higher than those by BEND3− T cells. The proportion of BEND3+ T cells was also increased in some patients with inflammatory diseases. Taken together, these results indicate that BEND3+ T cells are a new subpopulation of T cells in terms of their cytokine profile. Further analyses on BEND3+ T cells may be of importance and useful in understanding human T cell immunology. PMID:25400923

  20. Long (27-nucleotides) small inhibitory RNAs targeting E6 protein eradicate effectively the cervical cancer cells harboring human papilloma virus.

    PubMed

    Cho, Jun Sik; Lee, Shin-Wha; Kim, Yong-Man; Kim, Dongho; Kim, Dae-Yeon; Kim, Young-Tak

    2015-05-01

    This study was to identify small inhibitory RNAs (siRNAs) that are effective in inhibiting growth of cervical cancer cell lines harboring human papilloma virus (HPV) and to examine how siRNAs interact with interferon beta (IFN-β) and thimerosal. The HPV18-positive HeLa and C-4I cell lines were used. Four types of siRNAs were designed according to their target (both E6 and E7 vs. E6 only) and sizes (21- vs. 27-nucleotides); Ex-18E6/21, Ex-18E6/27, Sp-18E6/21, and Sp-18E6/27. Each siRNA-transfected cells were cultured with or without IFN-b and thimerosal and their viability was measured. The viabilities of HPV18-positive tumor cells were reduced by 21- and 27-nucleotide siRNAs in proportion to the siRNA concentrations. Of the two types of siRNAs, the 27-nucleotide siRNA constructs showed greater inhibitory efficacy. Sp-18E6 siRNAs, which selectively downregulates E6 protein only, were more effective than the E6- and E7-targeting Ex-18E6 siRNAs. siRNAs and IFN-β showed the synergistic effect to inhibit HeLa cell survival and the effect was proportional to both siRNA and IFN-β concentrations. Thimerosal in the presence of siRNA exerted a dose-dependent inhibition of C-4I cell survival. Finally, co-treatment with siRNA, IFN-β, and thimerosal induced the most profound decrease in the viability of both cell lines. Long (27-nucleotides) siRNAs targeting E6-E7 mRNAs effectively reduce the viability of HPV18-positive cervical cancer cells and show the synergistic effect in combination with IFN-b and thimerosal. It is necessary to find the rational design of siRNAs and effective co-factors to eradicate particular cervical cancer.

  1. CXCL16 and CXCR6 are coexpressed in human lung cancer in vivo and mediate the invasion of lung cancer cell lines in vitro.

    PubMed

    Hu, Weidong; Liu, Yue; Zhou, Wenhui; Si, Lianlian; Ren, Liang

    2014-01-01

    Despite advances in early diagnosis and multimodality therapy for cancers, most of lung cancer patients have been locally advanced or metastatic at the time of diagnosis, suggesting the highly progressive characteristic of lung cancer cells. The mechanisms underling invasiveness and metastasis of lung cancer are yet to be elucidated. In the present study, immunohistochemistry was performed to detect the expression of CXCL16-CXCR6 in human lung cancer tissues. It was demonstrated that similar to CXCL12 and CXCR4, CXCL16 and CXCR6 were also coexpressed in human primary lung cancer tissues. After confirming the functional existence of CXCL16 and CXCR6 protein in A549, 95D and H292 cells by ELSA and flow cytometry analysis, we further explored the significance of CXCL16-CXCR6 axis in the biological functions of lung cancer cell lines in vitro. It was found that CXCL16 had no effects on the PCNA (proliferating cell nuclear antigen) expression of A549, 95D and H292 cells. However, both exogenous CXCL16 and CM (conditioned medium from A549, 95D or H292) significantly improved the in vitro viability and invasion of three lung cancer cell lines. The neutralizing antibody to CXCL16 or down-regulation of CXCR6 was able to inhibit the increased viability and invasiveness of A549, 95D and H292 cells stimulated by CXCL16 or CM. Our results imply that CXCL16-CXCR6 axis is involved in the regulation of viability and invasion rather than PCNA expression of lung caner cells, which opens the door for better understanding the mechanisms of lung tumor progression and metastasis.

  2. ILs-3, 6 and 11 increase, but ILs-10 and 24 decrease stemness of human prostate cancer cells in vitro.

    PubMed

    Yu, Dandan; Zhong, Yali; Li, Xiaoran; Li, Yaqing; Li, Xiaoli; Cao, Jing; Fan, Huijie; Yuan, Yuan; Ji, Zhenyu; Qiao, Baoping; Wen, Jian-Guo; Zhang, Mingzhi; Kvalheim, Gunnar; Nesland, Jahn M; Suo, Zhenhe

    2015-12-15

    Cancer stem cells (CSCs) are associated with cancer recurrence and metastasis. Prostate cancer cells often metastasize to the bone with a complex microenvironment of cytokines favoring cell survival. In this study, the cell stemness influence of a group of interleukins including IL-3, 6, 10, 11 and 24 on human prostate cancer cell lines LNCaP and PC-3 was explored in vitro. Sulforhodamine B(SRB) and 5-ethynyl-2'-deoxyuridine (EdU) assays were applied to examine the effect on cell proliferation, and wound healing and transwell assays were used for migration and invasion studies, in addition to colony formation, Western blotting and flowcytometry for the expression of stemness factors and chemotherapy sensitivity. We observed that ILs-3, 6 and 11 stimulated while ILs-10 and 24 inhibited the growth, invasion and migration of both cell lines. Interestingly, ILs-3, 6 and 11 significantly promoted colony formation and increased the expression of SOX2, CD44 and ABCG2 in both prostate cancer cell lines. However, ILs-10 and 24 showed the opposite effect on the expression of these factors. In line with the above findings, treatment with either IL-3 or IL-6 or IL-11 decreased the chemosensitivity to docetaxel while treatment with either IL-10 or IL-24 increased the sensitivity of docetaxel chemotherapy. In conclusion, our results suggest that ILs-3, 6 and 11 function as tumor promoters while ILs-10 and 24 function as tumor suppressors in the prostate cancer cell lines PC-3 and LNCaP in vitro, and such differences may attribute to their different effect on the stemness of PCa cells.

  3. ILs-3, 6 and 11 increase, but ILs-10 and 24 decrease stemness of human prostate cancer cells in vitro

    PubMed Central

    Yu, Dandan; Zhong, Yali; Li, Xiaoran; Li, Yaqing; Li, Xiaoli; Cao, Jing; Fan, Huijie; Yuan, Yuan; Ji, Zhenyu; Qiao, Baoping; Wen, Jian-Guo; Zhang, Mingzhi; Kvalheim, Gunnar; Nesland, Jahn M.; Suo, Zhenhe

    2015-01-01

    Cancer stem cells (CSCs) are associated with cancer recurrence and metastasis. Prostate cancer cells often metastasize to the bone with a complex microenvironment of cytokines favoring cell survival. In this study, the cell stemness influence of a group of interleukins including IL-3, 6, 10, 11 and 24 on human prostate cancer cell lines LNCaP and PC-3 was explored in vitro. Sulforhodamine B(SRB) and 5-ethynyl-2′-deoxyuridine (EdU) assays were applied to examine the effect on cell proliferation, and wound healing and transwell assays were used for migration and invasion studies, in addition to colony formation, Western blotting and flowcytometry for the expression of stemness factors and chemotherapy sensitivity. We observed that ILs-3, 6 and 11 stimulated while ILs-10 and 24 inhibited the growth, invasion and migration of both cell lines. Interestingly, ILs-3, 6 and 11 significantly promoted colony formation and increased the expression of SOX2, CD44 and ABCG2 in both prostate cancer cell lines. However, ILs-10 and 24 showed the opposite effect on the expression of these factors. In line with the above findings, treatment with either IL-3 or IL-6 or IL-11 decreased the chemosensitivity to docetaxel while treatment with either IL-10 or IL-24 increased the sensitivity of docetaxel chemotherapy. In conclusion, our results suggest that ILs-3, 6 and 11 function as tumor promoters while ILs-10 and 24 function as tumor suppressors in the prostate cancer cell lines PC-3 and LNCaP in vitro, and such differences may attribute to their different effect on the stemness of PCa cells. PMID:26528857

  4. A dual function fusion protein of Herpes simplex virus type 1 thymidine kinase and firefly luciferase for noninvasive in vivo imaging of gene therapy in malignant glioma.

    PubMed

    Söling, Ariane; Theiss, Christian; Jungmichel, Stephanie; Rainov, Nikolai G

    2004-08-04

    BACKGROUND: Suicide gene therapy employing the prodrug activating system Herpes simplex virus type 1 thymidine kinase (HSV-TK)/ ganciclovir (GCV) has proven to be effective in killing experimental brain tumors. In contrast, glioma patients treated with HSV-TK/ GCV did not show significant treatment benefit, most likely due to insufficient transgene delivery to tumor cells. Therefore, this study aimed at developing a strategy for real-time noninvasive in vivo monitoring of the activity of a therapeutic gene in brain tumor cells. METHODS: The HSV-TK gene was fused to the firefly luciferase (Luc) gene and the fusion construct HSV-TK-Luc was expressed in U87MG human malignant glioma cells. Nude mice with subcutaneous gliomas stably expressing HSV-TK-Luc were subjected to GCV treatment and tumor response to therapy was monitored in vivo by serial bioluminescence imaging. Bioluminescent signals over time were compared with tumor volumes determined by caliper. RESULTS: Transient and stable expression of the HSV-TK-Luc fusion protein in U87MG glioma cells demonstrated close correlation of both enzyme activities. Serial optical imaging of tumor bearing mice detected in all cases GCV induced death of tumor cells expressing the fusion protein and proved that bioluminescence can be reliably used for repetitive and noninvasive quantification of HSV-TK/ GCV mediated cell kill in vivo. CONCLUSION: This approach may represent a valuable tool for the in vivo evaluation of gene therapy strategies for treatment of malignant disease.

  5. Low-level light therapy potentiates NPe6-mediated photodynamic therapy in a human osteosarcoma cell line via increased ATP.

    PubMed

    Tsai, Shang-Ru; Yin, Rui; Huang, Ying-Ying; Sheu, Bor-Ching; Lee, Si-Chen; Hamblin, Michael R

    2015-03-01

    Low-level light therapy (LLLT) is used to stimulate healing, reduce pain and inflammation, and preserve tissue from dying. LLLT has been shown to protect cells in culture from dying after various cytotoxic insults, and LLLT is known to increase the cellular ATP content. Previous studies have demonstrated that maintaining a sufficiently high ATP level is necessary for the efficient induction and execution of apoptosis steps after photodynamic therapy (PDT). We asked whether LLLT would protect cells from cytotoxicity due to PDT, or conversely whether LLLT would enhance the efficacy of PDT mediated by mono-l-aspartyl chlorin(e6) (NPe6). Increased ATP could lead to enhanced cell uptake of NPe6 by the energy dependent process of endocytosis, and also to more efficient apoptosis. In this study, human osteosarcoma cell line MG-63 was subjected to 1.5J/cm(2) of 810nm near infrared radiation (NIR) followed by addition of 10μM NPe6 and after 2h incubation by 1.5J/cm(2) of 652nm red light for PDT. PDT combined with LLLT led to higher cell death and increased intracellular reactive oxygen species compared to PDT alone. The uptake of NPe6 was moderately increased by LLLT, and cellular ATP was increased. The mitochondrial respiratory chain inhibitor antimycin A abrogated the LLLT-induced increase in cytotoxicity. Taken together, these results demonstrate that LLLT potentiates NPe6-mediated PDT via increased ATP synthesis and is a potentially promising strategy that could be applied in clinical PDT. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Low-Level Light Therapy Potentiates NPe6-mediated Photodynamic Therapy in a Human Osteosarcoma Cell Line via Increased ATP

    PubMed Central

    Tsai, Shang-Ru; Yin, Rui; Huang, Ying-Ying; Sheu, Bor-Ching; Lee, Si-Chen; Hamblin, Michael R.

    2015-01-01

    Background Low-Level Light Therapy (LLLT) is used to stimulate healing, reduce pain and inflammation, and preserve tissue from dying. LLLT has been shown to protect cells in culture from dying after various cytotoxic insults, and LLLT is known to increase the cellular ATP content. Previous studies have demonstrated that maintaining a sufficiently high ATP level is necessary for the efficient induction and execution of apoptosis steps after photodynamic therapy (PDT). Methods We asked whether LLLT would protect cells from cytotoxicity due to PDT, or conversely whether LLLT would enhance the efficacy of PDT mediated by mono-L-aspartyl chlorin(e6) (NPe6). Increased ATP could lead to enhanced cell uptake of NPe6 by the energy dependent process of endocytosis, and also to more efficient apoptosis. In this study, human osteosarcoma cell line MG-63 was subjected to 1.5 J/cm2 of 810 nm near infrared radiation (NIR) followed by addition of 10 μM NPe6 and after 2 h incubation by 1.5 J/cm2 of 652 nm red light for PDT. Results PDT combined with LLLT led to higher cell death and increased intracellular reactive oxygen species compared to PDT alone. The uptake of NPe6 was moderately increased by LLLT, and cellular ATP was increased. The mitochondrial respiratory chain inhibitor antimycin A abrogated the LLLT-induced increase in cytotoxicity. Conclusions Taken together, these results demonstrate that LLLT potentiates NPe6-mediated PDT via increased ATP synthesis and is a potentially promising strategy that could be applied in clinical PDT. PMID:25462575

  7. Selective inhibition of histone deacetylase 6 (HDAC6) induces DNA damage and sensitizes transformed cells to anticancer agents.

    PubMed

    Namdar, Mandana; Perez, Gisela; Ngo, Lang; Marks, Paul A

    2010-11-16

    Histone deacetylase 6 (HDAC6) is structurally and functionally unique among the 11 human zinc-dependent histone deacetylases. Here we show that chemical inhibition with the HDAC6-selective inhibitor tubacin significantly enhances cell death induced by the topoisomerase II inhibitors etoposide and doxorubicin and the pan-HDAC inhibitor SAHA (vorinostat) in transformed cells (LNCaP, MCF-7), an effect not observed in normal cells (human foreskin fibroblast cells). The inactive analogue of tubacin, nil-tubacin, does not sensitize transformed cells to these anticancer agents. Further, we show that down-regulation of HDAC6 expression by shRNA in LNCaP cells enhances cell death induced by etoposide, doxorubicin, and SAHA. Tubacin in combination with SAHA or etoposide is more potent than either drug alone in activating the intrinsic apoptotic pathway in transformed cells, as evidenced by an increase in PARP cleavage and partial inhibition of this effect by the pan-caspase inhibitor Z-VAD-fmk. HDAC6 inhibition with tubacin induces the accumulation of γH2AX, an early marker of DNA double-strand breaks. Tubacin enhances DNA damage induced by etoposide or SAHA as indicated by increased accumulation of γH2AX and activation of the checkpoint kinase Chk2. Tubacin induces the expression of DDIT3 (CHOP/GADD153), a transcription factor up-regulated in response to cellular stress. DDIT3 induction is further increased when tubacin is combined with SAHA. These findings point to mechanisms by which HDAC6-selective inhibition can enhance the efficacy of certain anti-cancer agents in transformed cells.

  8. Xeroderma Pigmentosum Group A Suppresses Mutagenesis Caused by Clustered Oxidative DNA Adducts in the Human Genome.

    PubMed

    Sassa, Akira; Kamoshita, Nagisa; Kanemaru, Yuki; Honma, Masamitsu; Yasui, Manabu

    2015-01-01

    Clustered DNA damage is defined as multiple sites of DNA damage within one or two helical turns of the duplex DNA. This complex damage is often formed by exposure of the genome to ionizing radiation and is difficult to repair. The mutagenic potential and repair mechanisms of clustered DNA damage in human cells remain to be elucidated. In this study, we investigated the involvement of nucleotide excision repair (NER) in clustered oxidative DNA adducts. To identify the in vivo protective roles of NER, we established a human cell line lacking the NER gene xeroderma pigmentosum group A (XPA). XPA knockout (KO) cells were generated from TSCER122 cells derived from the human lymphoblastoid TK6 cell line. To analyze the mutagenic events in DNA adducts in vivo, we previously employed a system of tracing DNA adducts in the targeted mutagenesis (TATAM), in which DNA adducts were site-specifically introduced into intron 4 of thymidine kinase genes. Using the TATAM system, one or two tandem 7,8-dihydro-8-oxoguanine (8-oxoG) adducts were introduced into the genomes of TSCER122 or XPA KO cells. In XPA KO cells, the proportion of mutants induced by a single 8-oxoG (7.6%) was comparable with that in TSCER122 cells (8.1%). In contrast, the lack of XPA significantly enhanced the mutant proportion of tandem 8-oxoG in the transcribed strand (12%) compared with that in TSCER122 cells (7.4%) but not in the non-transcribed strand (12% and 11% in XPA KO and TSCER122 cells, respectively). By sequencing the tandem 8-oxoG-integrated loci in the transcribed strand, we found that the proportion of tandem mutations was markedly increased in XPA KO cells. These results indicate that NER is involved in repairing clustered DNA adducts in the transcribed strand in vivo.

  9. Xeroderma Pigmentosum Group A Suppresses Mutagenesis Caused by Clustered Oxidative DNA Adducts in the Human Genome

    PubMed Central

    Sassa, Akira; Kamoshita, Nagisa; Kanemaru, Yuki; Honma, Masamitsu; Yasui, Manabu

    2015-01-01

    Clustered DNA damage is defined as multiple sites of DNA damage within one or two helical turns of the duplex DNA. This complex damage is often formed by exposure of the genome to ionizing radiation and is difficult to repair. The mutagenic potential and repair mechanisms of clustered DNA damage in human cells remain to be elucidated. In this study, we investigated the involvement of nucleotide excision repair (NER) in clustered oxidative DNA adducts. To identify the in vivo protective roles of NER, we established a human cell line lacking the NER gene xeroderma pigmentosum group A (XPA). XPA knockout (KO) cells were generated from TSCER122 cells derived from the human lymphoblastoid TK6 cell line. To analyze the mutagenic events in DNA adducts in vivo, we previously employed a system of tracing DNA adducts in the targeted mutagenesis (TATAM), in which DNA adducts were site-specifically introduced into intron 4 of thymidine kinase genes. Using the TATAM system, one or two tandem 7,8-dihydro-8-oxoguanine (8-oxoG) adducts were introduced into the genomes of TSCER122 or XPA KO cells. In XPA KO cells, the proportion of mutants induced by a single 8-oxoG (7.6%) was comparable with that in TSCER122 cells (8.1%). In contrast, the lack of XPA significantly enhanced the mutant proportion of tandem 8-oxoG in the transcribed strand (12%) compared with that in TSCER122 cells (7.4%) but not in the non-transcribed strand (12% and 11% in XPA KO and TSCER122 cells, respectively). By sequencing the tandem 8-oxoG-integrated loci in the transcribed strand, we found that the proportion of tandem mutations was markedly increased in XPA KO cells. These results indicate that NER is involved in repairing clustered DNA adducts in the transcribed strand in vivo. PMID:26559182

  10. Mitotic control of human papillomavirus genome-containing cells is regulated by the function of the PDZ-binding motif of the E6 oncoprotein.

    PubMed

    Marsh, Elizabeth K; Delury, Craig P; Davies, Nicholas J; Weston, Christopher J; Miah, Mohammed A L; Banks, Lawrence; Parish, Joanna L; Higgs, Martin R; Roberts, Sally

    2017-03-21

    The function of a conserved PDS95/DLG1/ZO1 (PDZ) binding motif (E6 PBM) at the C-termini of E6 oncoproteins of high-risk human papillomavirus (HPV) types contributes to the development of HPV-associated malignancies. Here, using a primary human keratinocyte-based model of the high-risk HPV18 life cycle, we identify a novel link between the E6 PBM and mitotic stability. In cultures containing a mutant genome in which the E6 PBM was deleted there was an increase in the frequency of abnormal mitoses, including multinucleation, compared to cells harboring the wild type HPV18 genome. The loss of the E6 PBM was associated with a significant increase in the frequency of mitotic spindle defects associated with anaphase and telophase. Furthermore, cells carrying this mutant genome had increased chromosome segregation defects and they also exhibited greater levels of genomic instability, as shown by an elevated level of centromere-positive micronuclei. In wild type HPV18 genome-containing organotypic cultures, the majority of mitotic cells reside in the suprabasal layers, in keeping with the hyperplastic morphology of the structures. However, in mutant genome-containing structures a greater proportion of mitotic cells were retained in the basal layer, which were often of undefined polarity, thus correlating with their reduced thickness. We conclude that the ability of E6 to target cellular PDZ proteins plays a critical role in maintaining mitotic stability of HPV infected cells, ensuring stable episome persistence and vegetative amplification.

  11. [Role of CXCL16/CXCR6 axis in the metastasis of human prostate cancer].

    PubMed

    Zhou, Wen-hui; Hu, Wei-dong; Wu, Zhou-qing; Zheng, Xin-min; Wang, Bi-cheng

    2010-04-13

    To explore the roles of chemokine CXCL16 and its receptor CXCR6 in the directional invasion of human prostate cancer (PCa). The expression of CXCL16/CXCR6 in PCa samples and osseous tissues was determined by immunohistochemistry. The expression of CXCR6 in PC3 and LNCap cells was determined by reverse transcription-polymerase chain reaction (RT-PCR) and immunocytochemistry. Then the effects of CXCL16 upon the migration and invasion of human PC3 and LNCap cells were examined by Matrigel invasion assay. The expression of CXCR6 protein was detected in all clinical PCa samples. But no CXCL16 protein was detected. Positive CXCL16 expression was observed in human osseous tissues. Both PC3 and LNCap cells expressed CXCR6 mRNA (0.38+/-0.054 vs 0.41+/-0.019 respectively) and protein. In addition, CXCL16 could promote the in vitro migration and invasion of PC3 and LNCap cell lines (invading cells 211.50+/-5.60 vs 89.25+/-3.31 respectively). Such a promoting effect of CXCL16 could not be blocked influenced by antiCXCL12 or antiCXCR4. CXCL16/CXCR6 axis may be another independent chemokine factor playing a significant role in the metastasis of prostate cancer.

  12. Metabolites of ginger component [6]-shogaol remain bioactive in cancer cells and have low toxicity in normal cells: chemical synthesis and biological evaluation.

    PubMed

    Zhu, Yingdong; Warin, Renaud F; Soroka, Dominique N; Chen, Huadong; Sang, Shengmin

    2013-01-01

    Our previous study found that [6]-shogaol, a major bioactive component in ginger, is extensively metabolized in cancer cells and in mice. It is unclear whether these metabolites retain bioactivity. The aim of the current study is to synthesize the major metabolites of [6]-shogaol and evaluate their inhibition of growth and induction of apoptosis in human cancer cells. Twelve metabolites of [6]-shogaol (M1, M2, and M4-M13) were successfully synthesized using simple and easily accessible chemical methods. Growth inhibition assays showed that most metabolites of [6]-shogaol had measurable activities against human cancer cells HCT-116 and H-1299. In particular, metabolite M2 greatly retained the biological activities of [6]-shogaol, with an IC(50) of 24.43 µM in HCT-116 human colon cancer cells and an IC(50) of 25.82 µM in H-1299 human lung cancer cells. Also exhibiting a relatively high potency was thiol-conjugate M13, with IC(50) values of 45.47 and 47.77 µM toward HCT-116 and H-1299 cells, respectively. The toxicity evaluation of the synthetic metabolites (M1, M2, and M4-M13) against human normal fibroblast colon cells CCD-18Co and human normal lung cells IMR-90 demonstrated a detoxifying metabolic biotransformation of [6]-shogaol. The most active metabolite M2 had almost no toxicity to CCD-18Co and IMR-90 normal cells with IC(50)s of 99.18 and 98.30 µM, respectively. TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling) assay indicated that apoptosis was triggered by metabolites M2, M13, and its two diastereomers M13-1 and M13-2. There was no significant difference between the apoptotic effect of [6]-shogaol and the effect of M2 and M13 after 6 hour treatment.

  13. Human papilloma virus prevalence in laryngeal squamous cell carcinoma.

    PubMed

    Gungor, A; Cincik, H; Baloglu, H; Cekin, E; Dogru, S; Dursun, E

    2007-08-01

    To determine the prevalence and type of human papilloma virus deoxyribonucleic acid (DNA) in cases of laryngeal squamous cell carcinoma. We analysed the prevalence of human papilloma virus infection in archived paraffin block specimens taken from 99 cases of laryngeal squamous cell carcinoma between 1990 and 2005, using polymerase chain reaction techniques. Biopsy specimens from five proven verrucous skin lesions were used as positive controls, and peripheral blood samples from five healthy volunteers were used as negative controls. Four test samples were found to have inadequate deoxyribonucleic acid purity and were therefore excluded from the study. Human papilloma virus deoxyribonucleic acid was detected in seven of 95 cases of laryngeal squamous cell carcinoma (7.36 per cent). Human papilloma virus genotyping revealed double human papilloma virus infection in three cases and single human papilloma virus infection in the remaining four cases. The human papilloma virus genotypes detected were 6, 11 and 16 (the latter detected in only one case). In our series, a very low human papilloma virus prevalence was found among laryngeal squamous cell carcinoma cases. The human papilloma virus genotypes detected were mostly 6 and/or 11, and 16 in only one case. To the best of our knowledge, this is the first report of human papilloma virus prevalence in laryngeal squamous cell carcinoma, based on polymerase chain reaction genotyping in a Turkish population.

  14. INDUCTION OF 6-THIOGUANINE RESISTANCE IN SYNTHRONIZED HUMAN FIBROBLAST CELLS TREATED WITH METHYL METHANESULFONATE, N-ACETOXY-2-ACETHYLAMINOFLUORENE AND N-METHYL-N'-NITRO-N-NITROSOGUANIDINE

    EPA Science Inventory

    Chemical induction of 6-thioguanine resistance was studied in synchronized human fibroblast cells. Cells initially grown in a medium lacking arginine and glutamine for 24 h ceased DNA synthesis and failed to enter the S phase. After introduction of complete medium, the cells prog...

  15. Calcium alters monoamine oxidase-A parameters in human cerebellar and rat glial C6 cell extracts: possible influence by distinct signalling pathways.

    PubMed

    Cao, Xia; Li, Xin-Min; Mousseau, Darrell D

    2009-07-31

    Calcium (Ca(2+)) is known to augment monoamine oxidase-A (MAO-A) activity in cell cultures as well as in brain extracts from several species. This association between Ca(2+) and MAO-A could contribute to their respective roles in cytotoxicity. However, the effect of Ca(2+) on MAO-A function in human brain has as yet to be examined as does the contribution of specific signalling cascades. We examined the effects of Ca(2+) on MAO-A activity and on [(3)H]Ro 41-1049 binding to MAO-A in human cerebellar extracts, and compared this to its effects on MAO-A activity in glial C6 cells following the targeting of signalling pathways using specific chemical inhibitors. Ca(2+) enhances MAO-A activity as well as the association of [(3)H]Ro 41-1049 to MAO-A in human cerebellar extracts. The screening of neuronal and glial cell cultures reveals that MAO-A activity does not always correlate with the expression of either mao-A mRNA or MAO-A protein. Inhibition of the individual PI3K/Akt, ERK and p38(MAPK) signalling pathways in glial C6 cells all augment basal MAO-A activity. Inhibition of the p38(MAPK) pathway also augments Ca(2+)-sensitive MAO-A activity. We also observe the inverse relation between p38(MAPK) activation and MAO-A function in C6 cultures grown to full confluence. The Ca(2+)-sensitive component to MAO-A activity is present in human brain and in vitro studies link it to the p38(MAPK) pathway. This means of influencing MAO-A function could explain its role in pathologies as diverse as neurodegeneration and cancers.

  16. Resveratrol Downregulates Interleukin-6-Stimulated Sonic Hedgehog Signaling in Human Acute Myeloid Leukemia

    PubMed Central

    Su, Yu-Chieh; Li, Szu-Chin; Wu, Yin-Chi; Wang, Li-Min; Chao, K. S. Clifford; Liao, Hui-Fen

    2013-01-01

    IL-6 and sonic hedgehog (Shh) signaling molecules are considered to maintain the growth of cancer stem cells (CSCs). Resveratrol, an important integrant in traditional Chinese medicine, possesses certain antitumor effects. However, the mechanisms on regulating acute myeloid leukemia (AML) are unclear. This study first used human subjects to demonstrate that the plasma levels of IL-6 and IL-1β in AML patients were higher and lower, respectively, than healthy donors. The expression of Shh preproproteins, and C- and N-terminal Shh peptides increased in bone marrow and peripheral blood mononuclear cells isolated from AML patients, and the plasma N-Shh secretion was greater. To further clarify the effect of IL-6 and resveratrol in Shh signaling, human AML HL-60 cells were tested. IL-6 upregulated Shh and Gli-1 expression and was accompanied by an increase of cell viability. Resveratrol significantly decreased CSC-related Shh expression, Gli-1 nuclear translocation, and cell viability in IL-6-treated HL-60 cells and had synergistic effect with Shh inhibitor cyclopamine on inhibiting cell growth. Conclusions. IL-6 stimulated the growth of AML cells through Shh signaling, and this effect might be blocked by resveratrol. Further investigations of Shh as a prognostic marker and resveratrol as a therapeutic drug target to CSCs in AML are surely warranted. PMID:23533494

  17. Propagation of human spermatogonial stem cells in vitro.

    PubMed

    Sadri-Ardekani, Hooman; Mizrak, Sefika C; van Daalen, Saskia K M; Korver, Cindy M; Roepers-Gajadien, Hermien L; Koruji, Morteza; Hovingh, Suzanne; de Reijke, Theo M; de la Rosette, Jean J M C H; van der Veen, Fulco; de Rooij, Dirk G; Repping, Sjoerd; van Pelt, Ans M M

    2009-11-18

    Young boys treated with high-dose chemotherapy are often confronted with infertility once they reach adulthood. Cryopreserving testicular tissue before chemotherapy and autotransplantation of spermatogonial stem cells at a later stage could theoretically allow for restoration of fertility. To establish in vitro propagation of human spermatogonial stem cells from small testicular biopsies to obtain an adequate number of cells for successful transplantation. Study performed from April 2007 to July 2009 using testis material donated by 6 adult men who underwent orchidectomy as part of prostate cancer treatment. Testicular cells were isolated and cultured in supplemented StemPro medium; germline stem cell clusters that arose were subcultured on human placental laminin-coated dishes in the same medium. Presence of spermatogonia was determined by reverse transcriptase polymerase chain reaction and immunofluorescence for spermatogonial markers. To test for the presence of functional spermatogonial stem cells in culture, xenotransplantation to testes of immunodeficient mice was performed, and migrated human spermatogonial stem cells after transplantation were detected by COT-1 fluorescence in situ hybridization. The number of colonized spermatogonial stem cells transplanted at early and later points during culture were counted to determine propagation. Propagation of spermatogonial stem cells over time. Testicular cells could be cultured and propagated up to 15 weeks. Germline stem cell clusters arose in the testicular cell cultures from all 6 men and could be subcultured and propagated up to 28 weeks. Expression of spermatogonial markers on both the RNA and protein level was maintained throughout the entire culture period. In 4 of 6 men, xenotransplantation to mice demonstrated the presence of functional spermatogonial stem cells, even after prolonged in vitro culture. Spermatogonial stem cell numbers increased 53-fold within 19 days in the testicular cell culture and

  18. Synthesis and In Vitro Cytotoxicity of the 4-(Halogenoanilino)-6-bromoquinazolines and Their 6-(4-Fluorophenyl) Substituted Derivatives as Potential Inhibitors of Epidermal Growth Factor Receptor Tyrosine Kinase

    PubMed Central

    Paumo, Hugues K.

    2017-01-01

    Series of the 2-unsubstituted and 2-(4-chlorophenyl)–substituted 4-anilino-6-bromoquinazolines and their 6-(4-fluorophenyl)–substituted derivatives were evaluated for in vitro cytotoxicity against MCF-7 and HeLa cells. The 2-unsubstituted 4-anilino-6-bromoquinazolines lacked activity, whereas most of their 2-(4-chlorophenyl) substituted derivatives were found to exhibit significant cytotoxicity and selectivity against HeLa cells. Replacement of bromine with 4-fluorophenyl group for the 2-unsubstituted 4-anilinoquinazolines resulted in superior activity against HeLa cells compared to Gefitinib. The presence of a 4-fluorophenyl group in the 2-(4-chlorophenyl) substituted derivatives led to increased cytotoxicity against HeLa cells, except for the 3-chloroanilino derivative. The most active compounds, namely, 3g, 3l, and 4l, were found to exhibit a moderate to significant inhibitory effect against epidermal growth factor receptor tyrosine kinase (EGFR-TK). The EGFR molecular docking model suggested that these compounds are nicely bound to the region of EGFR. PMID:29156606

  19. Telomerase activation by the E6 gene product of human papillomavirus type 16.

    PubMed

    Klingelhutz, A J; Foster, S A; McDougall, J K

    1996-03-07

    Activation of telomerase, a ribonucleoprotein complex that synthesizes telomere repeat sequences, is linked to cell immortalization and is characteristic of most cell lines and tumours. Here we show that expression of the human papillomavirus type 16 (HPV-16) E6 protein activates telomerase in early-passage human keratinocytes and mammary epithelial cells. This activation was observed in cells pre-crisis, that is, before they became immortal, and occurred within one passage of retroviral infection with vectors expressing HPV-16 E6. Studies using HPV-16 E6 mutants showed that there was no correlation between the ability of the mutants to activate telomerase and their ability to target p53 for degradation, suggesting that telomerase activation by HPV-16 E6 is p53 independent. Keratinocytes expressing wild-type HPV-16 E6 have an extended lifespan, but do not become immortal, indicating that telomerase activation and E6-mediate degradation of p53 are insufficient for their immortalization. These results show that telomerase activation is an intrinsic, but insufficient, component of transformation by HPV.

  20. Allelic polymorphism in the T cell receptor and its impact on immune responses.

    PubMed

    Gras, Stephanie; Chen, Zhenjun; Miles, John J; Liu, Yu Chih; Bell, Melissa J; Sullivan, Lucy C; Kjer-Nielsen, Lars; Brennan, Rebekah M; Burrows, Jacqueline M; Neller, Michelle A; Khanna, Rajiv; Purcell, Anthony W; Brooks, Andrew G; McCluskey, James; Rossjohn, Jamie; Burrows, Scott R

    2010-07-05

    In comparison to human leukocyte antigen (HLA) polymorphism, the impact of allelic sequence variation within T cell receptor (TCR) loci is much less understood. Particular TCR loci have been associated with autoimmunity, but the molecular basis for this phenomenon is undefined. We examined the T cell response to an HLA-B*3501-restricted epitope (HPVGEADYFEY) from Epstein-Barr virus (EBV), which is frequently dominated by a TRBV9*01(+) public TCR (TK3). However, the common allelic variant TRBV9*02, which differs by a single amino acid near the CDR2beta loop (Gln55-->His55), was never used in this response. The structure of the TK3 TCR, its allelic variant, and a nonnaturally occurring mutant (Gln55-->Ala55) in complex with HLA-B*3501(HPVGEADYFEY) revealed that the Gln55-->His55 polymorphism affected the charge complementarity at the TCR-peptide-MHC interface, resulting in reduced functional recognition of the cognate and naturally occurring variants of this EBV peptide. Thus, polymorphism in the TCR loci may contribute toward variability in immune responses and the outcome of infection.

  1. CXCL16 and CXCR6 Are Coexpressed in Human Lung Cancer In Vivo and Mediate the Invasion of Lung Cancer Cell Lines In Vitro

    PubMed Central

    Hu, Weidong; Liu, Yue; Zhou, Wenhui; Si, Lianlian; Ren, Liang

    2014-01-01

    Despite advances in early diagnosis and multimodality therapy for cancers, most of lung cancer patients have been locally advanced or metastatic at the time of diagnosis, suggesting the highly progressive characteristic of lung cancer cells. The mechanisms underling invasiveness and metastasis of lung cancer are yet to be elucidated. In the present study, immunohistochemistry was performed to detect the expression of CXCL16-CXCR6 in human lung cancer tissues. It was demonstrated that similar to CXCL12 and CXCR4, CXCL16 and CXCR6 were also coexpressed in human primary lung cancer tissues. After confirming the functional existence of CXCL16 and CXCR6 protein in A549, 95D and H292 cells by ELSA and flow cytometry analysis, we further explored the significance of CXCL16-CXCR6 axis in the biological functions of lung cancer cell lines in vitro. It was found that CXCL16 had no effects on the PCNA (proliferating cell nuclear antigen) expression of A549, 95D and H292 cells. However, both exogenous CXCL16 and CM (conditioned medium from A549, 95D or H292) significantly improved the in vitro viability and invasion of three lung cancer cell lines. The neutralizing antibody to CXCL16 or down-regulation of CXCR6 was able to inhibit the increased viability and invasiveness of A549, 95D and H292 cells stimulated by CXCL16 or CM. Our results imply that CXCL16-CXCR6 axis is involved in the regulation of viability and invasion rather than PCNA expression of lung caner cells, which opens the door for better understanding the mechanisms of lung tumor progression and metastasis. PMID:24897301

  2. Human immune cell targeting of protein nanoparticles - caveospheres

    NASA Astrophysics Data System (ADS)

    Glass, Joshua J.; Yuen, Daniel; Rae, James; Johnston, Angus P. R.; Parton, Robert G.; Kent, Stephen J.; de Rose, Robert

    2016-04-01

    Nanotechnology has the power to transform vaccine and drug delivery through protection of payloads from both metabolism and off-target effects, while facilitating specific delivery of cargo to immune cells. However, evaluation of immune cell nanoparticle targeting is conventionally restricted to monocultured cell line models. We generated human caveolin-1 nanoparticles, termed caveospheres, which were efficiently functionalized with monoclonal antibodies. Using this platform, we investigated CD4+ T cell and CD20+ B cell targeting within physiological mixtures of primary human blood immune cells using flow cytometry, imaging flow cytometry and confocal microscopy. Antibody-functionalization enhanced caveosphere binding to targeted immune cells (6.6 to 43.9-fold) within mixed populations and in the presence of protein-containing fluids. Moreover, targeting caveospheres to CCR5 enabled caveosphere internalization by non-phagocytic CD4+ T cells--an important therapeutic target for HIV treatment. This efficient and flexible system of immune cell-targeted caveosphere nanoparticles holds promise for the development of advanced immunotherapeutics and vaccines.

  3. [6]-Gingerol Induces Cell Cycle Arrest and Cell Death of Mutant p53-expressing Pancreatic Cancer Cells

    PubMed Central

    Park, Yon Jung; Wen, Jing; Bang, Seungmin; Park, Seung Woo

    2006-01-01

    [6]-Gingerol, a major phenolic compound derived from ginger, has anti-bacterial, anti-inflammatory and anti-tumor activities. While several molecular mechanisms have been described to underlie its effects on cells in vitro and in vivo, the underlying mechanisms by which [6]-gingerol exerts anti-tumorigenic effects are largely unknown. The purpose of this study was to investigate the action of [6]-gingerol on two human pancreatic cancer cell lines, HPAC expressing wild-type (wt) p53 and BxPC-3 expressing mutated p53. We found that [6]-gingerol inhibited the cell growth through cell cycle arrest at G1 phase in both cell lines. Western blot analyses indicated that [6]-gingerol decreased both Cyclin A and Cyclin-dependent kinase (Cdk) expression. These events led to reduction in Rb phosphorylation followed by blocking of S phase entry. p53 expression was decreased by [6]-gingerol treatment in both cell lines suggesting that the induction of Cyclin-dependent kinase inhibitor, p21cip1, was p53-independent. [6]-Gingerol induced mostly apoptotic death in the mutant p53-expressing cells, while no signs of early apoptosis were detected in wild type p53-expressing cells and this was related to the increased phosphorylation of AKT. These results suggest that [6]-gingerol can circumvent the resistance of mutant p53-expressing cells towards chemotherapy by inducing apoptotic cell death while it exerts cytostatic effect on wild type p53-expressing cells by inducing temporal growth arrest. PMID:17066513

  4. Adenovirus-mediated suicide gene therapy under the control of Cox-2 promoter for colorectal cancer.

    PubMed

    Wang, Zhao-Xia; Bian, Hai-Bo; Yang, Jing-Song; De, Wei; Ji, Xiao-Hui

    2009-08-01

    Colorectal cancer is a most frequent type of gastrointestinal tract cancers. The prognosis of patients with colorectal cancer remains poor despite intensive interventions. Tumor specific promoter-directed gene therapy and adenoviral technology can be promising strategies for such advanced disease. This study was conducted to explore the possible therapeutic approach of Cox-2 promoter-directed suicide gene therapy with herpes simplex virus thymidine kinase (HSV-tk) in combination with adenoviral technology for advanced colorectal cancer. Firstly, the activity of Cox-2 promoter was assessed by dual luciferase and enhanced green fluorescent protein reporter gene assays in colorectal cancer cell lines and normal human intestinal epithelial cell line. Then, the expression of coxsackievirus and adenovirus receptor (CAR) was detected in colorectal cancer cell lines. The Cox-2 promoter-directed HSV-tk/ganciclovir (GCV) system mediated by adenovirus (Ad-Cp-TK) was developed (Ad-CMVp-TK, Ad-null and no Ad as controls). In vitro cytoxicity, colony formation and apoptosis assays were performed using Ad-Cp-TK. An animal study was carried out in which BALB/C nude mice bearing tumors were treated with Ad-Cp-TK and GCV treatments. Results showed that Cox-2 promoter possessed high transcriptional activity in a tumor-specific manner. All colorectal cancer cells were detected CAR-positive. In vitro cytotoxic and colony formation assays showed that colorectal cancer cells infected with Ad-Cp-TK became more sensitive to GCV but the sensitivity of normal cells infected with Ad-Cp-TK to GCV were not altered. Moreover, the Ad-Cp-TK system combined with GCV treatment could significantly induce apoptosis of colorectal cancer cells but not normal intestinal epithelial cells. Furthermore, this system also significantly inhibited the growth of subcutaneous tumors and prolonged survival of mice. Thus, adenovirus primary receptor was positive in colorectal cancer cells and adenovirus

  5. Complete Genome Sequence of the Facultative Methylotroph Methylobacterium extorquens TK 0001 Isolated from Soil in Poland

    PubMed Central

    Belkhelfa, Sophia; Labadie, Karine; Cruaud, Corinne; Aury, Jean-Marc; Roche, David; Bouzon, Madeleine; Salanoubat, Marcel

    2018-01-01

    ABSTRACT Methylobacterium extorquens TK 0001 (DSM 1337, ATCC 43645) is an aerobic pink-pigmented facultative methylotrophic alphaproteobacterium isolated from soil in Poland. Here, we report the whole-genome sequence and annotation of this organism, which consists of a single 5.71-Mb chromosome. PMID:29472323

  6. Reprogramming human gallbladder cells into insulin-producing β-like cells

    PubMed Central

    Benedetti, Eric; Wang, Yuhan; Pelz, Carl; Schug, Jonathan; Kaestner, Klaus H.; Grompe, Markus

    2017-01-01

    The gallbladder and cystic duct (GBCs) are parts of the extrahepatic biliary tree and share a common developmental origin with the ventral pancreas. Here, we report on the very first genetic reprogramming of patient-derived human GBCs to β-like cells for potential autologous cell replacement therapy for type 1 diabetes. We developed a robust method for large-scale expansion of human GBCs ex vivo. GBCs were reprogrammed into insulin-producing pancreatic β-like cells by a combined adenoviral-mediated expression of hallmark pancreatic endocrine transcription factors PDX1, MAFA, NEUROG3, and PAX6 and differentiation culture in vitro. The reprogrammed GBCs (rGBCs) strongly induced the production of insulin and pancreatic endocrine genes and these responded to glucose stimulation in vitro. rGBCs also expressed an islet-specific surface marker, which was used to enrich for the most highly reprogrammed cells. More importantly, global mRNA and microRNA expression profiles and protein immunostaining indicated that rGBCs adopted an overall β-like state and these rGBCs engrafted in immunodeficient mice. Furthermore, comparative global expression analyses identified putative regulators of human biliary to β cell fate conversion. In summary, we have developed, for the first time, a reliable and robust genetic reprogramming and culture expansion of primary human GBCs—derived from multiple unrelated donors—into pancreatic β-like cells ex vivo, thus showing that human gallbladder is a potentially rich source of reprogrammable cells for autologous cell therapy in diabetes. PMID:28813430

  7. Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells.

    PubMed

    Lee, Jonghyeob; Sugiyama, Takuya; Liu, Yinghua; Wang, Jing; Gu, Xueying; Lei, Ji; Markmann, James F; Miyazaki, Satsuki; Miyazaki, Jun-Ichi; Szot, Gregory L; Bottino, Rita; Kim, Seung K

    2013-11-19

    Pancreatic islet β-cell insufficiency underlies pathogenesis of diabetes mellitus; thus, functional β-cell replacement from renewable sources is the focus of intensive worldwide effort. However, in vitro production of progeny that secrete insulin in response to physiological cues from primary human cells has proven elusive. Here we describe fractionation, expansion and conversion of primary adult human pancreatic ductal cells into progeny resembling native β-cells. FACS-sorted adult human ductal cells clonally expanded as spheres in culture, while retaining ductal characteristics. Expression of the cardinal islet developmental regulators Neurog3, MafA, Pdx1 and Pax6 converted exocrine duct cells into endocrine progeny with hallmark β-cell properties, including the ability to synthesize, process and store insulin, and secrete it in response to glucose or other depolarizing stimuli. These studies provide evidence that genetic reprogramming of expandable human pancreatic cells with defined factors may serve as a general strategy for islet replacement in diabetes. DOI: http://dx.doi.org/10.7554/eLife.00940.001.

  8. De novo centriole formation in human cells is error-prone and does not require SAS-6 self-assembly.

    PubMed

    Wang, Won-Jing; Acehan, Devrim; Kao, Chien-Han; Jane, Wann-Neng; Uryu, Kunihiro; Tsou, Meng-Fu Bryan

    2015-11-26

    Vertebrate centrioles normally propagate through duplication, but in the absence of preexisting centrioles, de novo synthesis can occur. Consistently, centriole formation is thought to strictly rely on self-assembly, involving self-oligomerization of the centriolar protein SAS-6. Here, through reconstitution of de novo synthesis in human cells, we surprisingly found that normal looking centrioles capable of duplication and ciliation can arise in the absence of SAS-6 self-oligomerization. Moreover, whereas canonically duplicated centrioles always form correctly, de novo centrioles are prone to structural errors, even in the presence of SAS-6 self-oligomerization. These results indicate that centriole biogenesis does not strictly depend on SAS-6 self-assembly, and may require preexisting centrioles to ensure structural accuracy, fundamentally deviating from the current paradigm.

  9. CD4+ T Cells Coexpressing CD134 (OX40) Harbor Significantly Increased Levels of Human Herpesvirus 6B DNA Following Umbilical Cord Blood Transplantation.

    PubMed

    Pritchett, Joshua C; Green, Jaime S; Thomm, Angela M; Knox, Konstance K; Verneris, Michael R; Lund, Troy C

    2016-12-15

    Human herpesvirus 6B (HHV-6B) commonly reactivates after umbilical cord blood transplantation (UCBT) and is associated with delayed engraftment, fever, rash, and central nervous system dysfunction. Recently, CD134 (OX40) has been implicated as a potential viral entry receptor. We evaluated CD4 + CD134 + / neg-lo and CD8 + CD134 + / neg-lo cells at day 28 after UCBT in 20 subjects with previously documented HHV-6 reactivation and persistent viremia. Analysis of CD4 + CD134 + cells as compared to CD4 + CD134 neg-lo cells showed 0.308 versus 0.129 copies of HHV-6B/cell (P = .0002). CD8 + CD134 +/neg-lo cells contained little to no HHV-6B copies. Following UCBT, CD4 + CD134 + cells harbor significantly increased levels of HHV-6B, suggesting that CD134 (OX40) may facilitate viral entry. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  10. BLT-humanized C57BL/6 Rag2-/-γc-/-CD47-/- mice are resistant to GVHD and develop B- and T-cell immunity to HIV infection.

    PubMed

    Lavender, Kerry J; Pang, Wendy W; Messer, Ronald J; Duley, Amanda K; Race, Brent; Phillips, Katie; Scott, Dana; Peterson, Karin E; Chan, Charles K; Dittmer, Ulf; Dudek, Timothy; Allen, Todd M; Weissman, Irving L; Hasenkrug, Kim J

    2013-12-12

    The use of C57BL/6 Rag2(-/-)γc(-/-) mice as recipients for xenotransplantation with human immune systems (humanization) has been problematic because C57BL/6 SIRPα does not recognize human CD47, and such recognition is required to suppress macrophage-mediated phagocytosis of transplanted human hematopoietic stem cells (HSCs). We show that genetic inactivation of CD47 on the C57BL/6 Rag2(-/-)γc(-/-) background negates the requirement for CD47-signal recognition protein α (SIRPα) signaling and induces tolerance to transplanted human HSCs. These triple-knockout, bone marrow, liver, thymus (TKO-BLT) humanized mice develop organized lymphoid tissues including mesenteric lymph nodes, splenic follicles and gut-associated lymphoid tissue that demonstrate high levels of multilineage hematopoiesis. Importantly, these mice have an intact complement system and showed no signs of graft-versus-host disease (GVHD) out to 29 weeks after transplantation. Sustained, high-level HIV-1 infection was observed via either intrarectal or intraperitoneal inoculation. TKO-BLT mice exhibited hallmarks of human HIV infection including CD4(+) T-cell depletion, immune activation, and development of HIV-specific B- and T-cell responses. The lack of GVHD makes the TKO-BLT mouse a significantly improved model for long-term studies of pathogenesis, immune responses, therapeutics, and vaccines to human pathogens.

  11. Evaluation of the neurotoxic/neuroprotective role of organoselenides using differentiated human neuroblastoma SH-SY5Y cell line challenged with 6-hydroxydopamine.

    PubMed

    Lopes, Fernanda Martins; Londero, Giovana Ferreira; de Medeiros, Liana Marengo; da Motta, Leonardo Lisbôa; Behr, Guilherme Antônio; de Oliveira, Valeska Aguiar; Ibrahim, Mohammad; Moreira, José Cláudio Fonseca; Porciúncula, Lisiane de Oliveira; da Rocha, João Batista Teixeira; Klamt, Fábio

    2012-08-01

    It is well established that oxidative stress plays a major role in several neurodegenerative conditions, like Parkinson disease (PD). Hence, there is an enormous effort for the development of new antioxidants compounds with therapeutic potential for the management of PD, such as synthetic organoselenides molecules. In this study, we selected between nine different synthetic organoselenides the most eligible ones for further neuroprotection assays, using the differentiated human neuroblastoma SH-SY5Y cell line as in vitro model. Neuronal differentiation of exponentially growing human neuroblastoma SH-SY5Y cells was triggered by cultivating cells with DMEM/F12 medium with 1% of fetal bovine serum (FBS) with the combination of 10 μM retinoic acid for 7 days. Differentiated cells were further incubated with different concentrations of nine organoselenides (0.1, 0.3, 3, 10, and 30 μM) for 24 h and cell viability, neurites densities and the immunocontent of neuronal markers were evaluated. Peroxyl radical scavenging potential of each compound was determined with TRAP assay. Three organoselenides tested presented low cytotoxicity and high antioxidant properties. Pre-treatment of cells with those compounds for 24 h lead to a significantly neuroprotection against 6-hydroxydopamine (6-OHDA) toxicity, which were directly related to their antioxidant properties. Neuroprotective activity of all three organoselenides was compared to diphenyl diselenide (PhSe)₂, the simplest of the diaryl diselenides tested. Our results demonstrate that differentiated human SH-SY5Y cells are suitable cellular model to evaluate neuroprotective/neurotoxic role of compounds, and support further evaluation of selected organoselenium molecules as potential pharmacological and therapeutic drugs in the treatment of PD.

  12. CTCF-Mediated and Pax6-Associated Gene Expression in Corneal Epithelial Cell-Specific Differentiation

    PubMed Central

    Tsui, Shanli; Wang, Jie; Wang, Ling; Dai, Wei; Lu, Luo

    2016-01-01

    Background The purpose of the study is to elicit the epigenetic mechanism involving CCCTC binding factor (CTCF)-mediated chromatin remodeling that regulates PAX6 gene interaction with differentiation-associated genes to control corneal epithelial differentiation. Methods Cell cycle progression and specific keratin expressions were measured to monitor changes of differentiation-induced primary human limbal stem/progenitor (HLS/P), human corneal epithelial (HCE) and human telomerase-immortalized corneal epithelial (HTCE) cells. PAX6-interactive and differentiation-associated genes in chromatin remodeling mediated by the epigenetic factor CTCF were detected by circular chromosome conformation capture (4C) and ChIP (Chromatin immunoprecipitation)-on-chip approaches, and verified by FISH (Fluorescent in situ hybridization). Furthermore, CTCF activities were altered by CTCF-shRNA to study the effect of CTCF on mediating interaction of Pax6 and differentiation-associated genes in corneal epithelial cell fate. Results Our results demonstrated that differentiation-induced human corneal epithelial cells expressed typical corneal epithelial characteristics including morphological changes, increased keratin12 expression and G0/G1 accumulations. Expressions of CTCF and PAX6 were suppressed and elevated following the process of differentiation, respectively. During corneal epithelial cell differentiation, differentiation-induced RCN1 and ADAM17 were found interacting with PAX6 in the process of CTCF-mediated chromatin remodeling detected by 4C and verified by ChIP-on-chip and FISH. Diminished CTCF mRNA with CTCF-shRNA in HTCE cells weakened the interaction of PAX6 gene in controlling RCN1/ADAM17 and enhanced early onset of the genes in cell differentiation. Conclusion Our results explain how epigenetic factor CTCF-mediated chromatin remodeling regulates interactions between eye-specific PAX6 and those genes that are induced/associated with cell differentiation to modulate

  13. Efficiency of introns from various origins in fish cells.

    PubMed

    Bétancourt, O H; Attal, J; Théron, M C; Puissant, C; Houdebine, L M

    1993-06-01

    Several vectors containing (1) regulatory regions from Rous sarcoma virus (RSV), human cytomegalovirus (CMV), and herpes simplex thymidine kinase (TK); (2) introns from early or late SV40 genes and from trout growth hormone gene (tGH); (3) chloramphenicol acetyltransferase gene (CAT); and (4) transcription terminators from SV40 were transfected into carp EPC cells, salmon CHSE cells, tilapia TO2 cells, quail QT6 cells, and hamster CHO cells. CAT activity was measured in extracts from several cell lines 3 days after transfection and in the fish EPC stable clones. The CMV and RSV promoters were the most potent in all cell types. The intron from late SV40 genes (VP1 intron) worked properly in QT6 and CHO cells but not in EPC and very weakly in TO2 cells. The tGH intron was efficient in all cell types but preferentially in fish cells. The small t intron from SV40 was processed in all cell types. The small t and, to a lesser extent, the tGH introns amplified expression of cat gene in stable clones, in comparison to the transiently transfected cells. These results indicate that elements from mammalian genes may not be properly recognized by the fish cellular machinery and in an unpredictable manner. This finding suggests that vectors prepared to express foreign genes in transfected cultured fish cells and transgenic fish should preferably contain DNA sequences from fish genes or, alternatively, those sequences from mammalian genes that have been previously proved to be compatible with the fish cellular machinery.

  14. Tumor-Like Stem Cells Derived from Human Keloid Are Governed by the Inflammatory Niche Driven by IL-17/IL-6 Axis

    PubMed Central

    Zhang, Qunzhou; Yamaza, Takayoshi; Kelly, A. Paul; Shi, Shihong; Wang, Songlin; Brown, Jimmy; Wang, Lina; French, Samuel W.; Shi, Songtao; Le, Anh D.

    2009-01-01

    Background Alterations in the stem cell niche are likely to contribute to tumorigenesis; however, the concept of niche promoted benign tumor growth remains to be explored. Here we use keloid, an exuberant fibroproliferative dermal growth unique to human skin, as a model to characterize benign tumor-like stem cells and delineate the role of their “pathological” niche in the development of the benign tumor. Methods and Findings Subclonal assay, flow cytometric and multipotent differentiation analyses demonstrate that keloid contains a new population of stem cells, named keloid derived precursor cells (KPCs), which exhibit clonogenicity, self-renewal, distinct embryonic and mesenchymal stem cell surface markers, and multipotent differentiation. KPCs display elevated telomerase activity and an inherently upregulated proliferation capability as compared to their peripheral normal skin counterparts. A robust elevation of IL-6 and IL-17 expression in keloid is confirmed by cytokine array, western blot and ELISA analyses. The altered biological functions are tightly regulated by the inflammatory niche mediated by an autocrine/paracrine cytokine IL-17/IL-6 axis. Utilizing KPCs transplanted subcutaneously in immunocompromised mice we generate for the first time a human keloid-like tumor model that is driven by the in vivo inflammatory niche and allows testing of the anti-tumor therapeutic effect of antibodies targeting distinct niche components, specifically IL-6 and IL-17. Conclusions/Significance These findings support our hypothesis that the altered niche in keloids, predominantly inflammatory, contributes to the acquirement of a benign tumor-like stem cell phenotype of KPCs characterized by the uncontrolled self-renewal and increased proliferation, supporting the rationale for in vivo modification of the “pathological” stem cell niche as a novel therapy for keloid and other mesenchymal benign tumors. PMID:19907660

  15. Structure of the Human Activating Natural Cytotoxicity Receptor NKp30 Bound to its Tumor Cell Ligand B7-H6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y Li; Q Wang; R Mariuzza

    2011-12-31

    Natural killer (NK) cells are lymphocytes of the innate immune system that participate in the elimination of tumor cells. In humans, the activating natural cytotoxicity receptors (NCRs) NKp30, NKp44, and NKp46 play a major role in NK cell-mediated tumor cell lysis. NKp30 recognizes B7-H6, a member of the B7 family which is expressed on tumor, but not healthy, cells. To understand the basis for tumor surveillance by NCRs, we determined the structure of NKp30, a member of the CD28 family which includes CTLA-4 and PD-1, in complex with B7-H6. The overall organization of the NKp30-B7-H6-activating complex differs considerably from thosemore » of the CTLA-4-B7 and PD-1-PD-L T cell inhibitory complexes. Whereas CTLA-4 and PD-1 use only the front {beta}-sheet of their Ig-like domain to bind ligands, NKp30 uses both front and back {beta}-sheets, resulting in engagement of B7-H6 via the side, as well as face, of the {beta}-sandwich. Moreover, B7-H6 contacts NKp30 through the complementarity-determining region (CDR) - like loops of its V-like domain in an antibody-like interaction that is not observed for B7 or PD-L. This first structure of an NCR bound to ligand provides a template for designing molecules to stimulate NKp30-mediated cytolytic activity for tumor immunotherapy.« less

  16. The human haptoglobin gene promoter: interleukin-6-responsive elements interact with a DNA-binding protein induced by interleukin-6.

    PubMed Central

    Oliviero, S; Cortese, R

    1989-01-01

    Transcription of the human haptoglobin (Hp) gene is induced by interleukin-6 (IL-6) in the human hepatoma cell line Hep3B. Cis-acting elements responsible for this response are localized within the first 186 bp of the 5'-flanking region. Site-specific mutants of the Hp promoter fused to the chloramphenicol acetyl transferase (CAT) gene were analysed by transient transfection into uninduced and IL-6-treated Hep3B cells. We identified three regions, A, B and C, defined by mutation, which are important for the IL-6 response. Band shift experiments using nuclear extracts from untreated or IL-6-treated cells revealed the presence of IL-6-inducible DNA binding activities when DNA fragments containing the A or the C sequences were used. Competition experiments showed that both sequences bind to the same nuclear factors. Polymers of oligonucleotides containing either the A or the C regions confer IL-6 responsiveness to a truncated SV40 promoter. The B region forms several complexes with specific DNA-binding proteins different from those which bind to the A and C region. The B region complexes are identical in nuclear extracts from IL-6-treated and untreated cells. While important for IL-6 induction in the context of the haptoglobin promoter, the B site does not confer IL-6 inducibility to the SV40 promoter. Our results indicate that the IL-6 response of the haptoglobin promoter is dependent on the presence of multiple, partly redundant, cis-acting elements. Images PMID:2787245

  17. CCR6 Defines Memory B Cell Precursors in Mouse and Human Germinal Centers, Revealing Light-Zone Location and Predominant Low Antigen Affinity.

    PubMed

    Suan, Dan; Kräutler, Nike J; Maag, Jesper L V; Butt, Danyal; Bourne, Katherine; Hermes, Jana R; Avery, Danielle T; Young, Clara; Statham, Aaron; Elliott, Michael; Dinger, Marcel E; Basten, Antony; Tangye, Stuart G; Brink, Robert

    2017-12-19

    Memory B cells (MBCs) and plasma cells (PCs) constitute the two cellular outputs of germinal center (GC) responses that together facilitate long-term humoral immunity. Although expression of the transcription factor BLIMP-1 identifies cells undergoing PC differentiation, no such marker exists for cells committed to the MBC lineage. Here, we report that the chemokine receptor CCR6 uniquely marks MBC precursors in both mouse and human GCs. CCR6 + GC B cells were highly enriched within the GC light zone (LZ), were the most quiescent of all GC B cells, exhibited a cell-surface phenotype and gene expression signature indicative of an MBC transition, and possessed the augmented response characteristics of MBCs. MBC precursors within the GC LZ predominantly possessed a low affinity for antigen but also included cells from within the high-affinity pool. These data indicate a fundamental dichotomy between the processes that drive MBC and PC differentiation during GC responses. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The citrus methoxyflavone tangeretin affects human cell-cell interactions.

    PubMed

    Brack, Marc E; Boterberg, Tom; Depypere, Herman T; Stove, Christophe; Leclercq, Georges; Mareel, Marc M

    2002-01-01

    Two effects of the citrus methoxyflavone tangeretin on cell-cell interactions are biologically relevant. Firstly, tangeretin upregulates the function of the E-cadherin/catenin complex in human MCF-7/6 breast carcinoma cells. This leads to firm cell-cell adhesion and inhibition of invasion in vitro. Secondly, tangeretin downregulates the interleukin-2 receptor on T-lymphocytes and natural killer cells. This leads to a decrease in the cytotoxic competence of these immunocytes against cancer cells. The second effect can become important when high doses of tangeretin are combined with adjuvant tamoxifen treatment for breast cancer. Experiments with nude mice bearing MCF-7/6 tumors showed that tangeretin given orally at high doses, abrogated the therapeutic suppression of tumor growth exerted by tamoxifen. No evidence for a tumor promoting effect of tangeretin by itself was found in these experiments. Tangeretin may be an interesting molecule for application in cases where immunosuppression could be clinically beneficial.

  19. Synergic activation of toll-like receptor (TLR) 2/6 and 9 in response to Ureaplasma parvum & urealyticum in human amniotic epithelial cells.

    PubMed

    Triantafilou, Martha; De Glanville, Benjamin; Aboklaish, Ali F; Spiller, O Brad; Kotecha, Sailesh; Triantafilou, Kathy

    2013-01-01

    Ureaplasma species are the most frequently isolated microorganisms inside the amniotic cavity and have been associated with spontaneous abortion, chorioamnionitis, premature rupture of the membranes (PROM), preterm labour (PL) pneumonia in neonates and bronchopulmonary dysplasia in neonates. The mechanisms by which Ureaplasmas cause such diseases remain unclear, but it is believed that inappropriate induction of inflammatory responses is involved, triggered by the innate immune system. As part of its mechanism of activation, the innate immune system employs germ-lined encoded receptors, called pattern recognition receptors (PRRs) in order to "sense" pathogens. One such family of PRRs are the Toll like receptor family (TLR). In the current study we aimed to elucidate the role of TLRs in Ureaplasma-induced inflammation in human amniotic epithelial cells. Using silencing, as well as human embryonic kidney (HEK) transfected cell lines, we demonstrate that TLR2, TLR6 and TLR9 are involved in the inflammatory responses against Ureaplasma parvum and urealyticum serovars. Ureaplasma lipoproteins, such as Multiple Banded antigen (MBA), trigger responses via TLR2/TLR6, whereas the whole bacterium is required for TLR9 activation. No major differences were observed between the different serovars. Cell activation by Ureaplasma parvum and urealyticum seem to require lipid raft function and formation of heterotypic receptor complexes comprising of TLR2 and TLR6 on the cell surface and TLR9 intracellularly.

  20. Synergic Activation of Toll-Like Receptor (TLR) 2/6 and 9 in Response to Ureaplasma parvum & urealyticum in Human Amniotic Epithelial Cells

    PubMed Central

    Triantafilou, Martha; De Glanville, Benjamin; Aboklaish, Ali F.; Spiller, O. Brad; Kotecha, Sailesh; Triantafilou, Kathy

    2013-01-01

    Ureaplasma species are the most frequently isolated microorganisms inside the amniotic cavity and have been associated with spontaneous abortion, chorioamnionitis, premature rupture of the membranes (PROM), preterm labour (PL) pneumonia in neonates and bronchopulmonary dysplasia in neonates. The mechanisms by which Ureaplasmas cause such diseases remain unclear, but it is believed that inappropriate induction of inflammatory responses is involved, triggered by the innate immune system. As part of its mechanism of activation, the innate immune system employs germ-lined encoded receptors, called pattern recognition receptors (PRRs) in order to “sense” pathogens. One such family of PRRs are the Toll like receptor family (TLR). In the current study we aimed to elucidate the role of TLRs in Ureaplasma-induced inflammation in human amniotic epithelial cells. Using silencing, as well as human embryonic kidney (HEK) transfected cell lines, we demonstrate that TLR2, TLR6 and TLR9 are involved in the inflammatory responses against Ureaplasma parvum and urealyticum serovars. Ureaplasma lipoproteins, such as Multiple Banded antigen (MBA), trigger responses via TLR2/TLR6, whereas the whole bacterium is required for TLR9 activation. No major differences were observed between the different serovars. Cell activation by Ureaplasma parvum and urealyticum seem to require lipid raft function and formation of heterotypic receptor complexes comprising of TLR2 and TLR6 on the cell surface and TLR9 intracellularly. PMID:23593431

  1. A novel intracellular antibody against the E6 oncoprotein impairs growth of human papillomavirus 16-positive tumor cells in mouse models

    PubMed Central

    Amici, Carla; Visintin, Michela; Verachi, Francesca; Paolini, Francesca; Percario, Zulema; Di Bonito, Paola; Mandarino, Angela; Affabris, Elisabetta; Venuti, Aldo; Accardi, Luisa

    2016-01-01

    Single-chain variable fragments (scFvs) expressed as “intracellular antibodies” (intrabodies) can target intracellular antigens to hamper their function efficaciously and specifically. Here we use an intrabody targeting the E6 oncoprotein of Human papillomavirus 16 (HPV16) to address the issue of a non-invasive therapy for HPV cancer patients. A scFv against the HPV16 E6 was selected by Intracellular Antibody Capture Technology and expressed as I7nuc in the nucleus of HPV16-positive SiHa, HPV-negative C33A and 293T cells. Colocalization of I7nuc and recombinant E6 was observed in different cell compartments, obtaining evidence of E6 delocalization ascribable to I7nuc. In SiHa cells, I7nuc expressed by pLNCX retroviral vector was able to partially inhibit degradation of the main E6 target p53, and induced p53 accumulation in nucleus. When analyzing in vitro activity on cell proliferation and survival, I7nuc was able to decrease growth inducing late apoptosis and necrosis of SiHa cells. Finally, I7nuc antitumor activity was demonstrated in two pre-clinical models of HPV tumors. C57BL/6 mice were injected subcutaneously with HPV16-positive TC-1 or C3 tumor cells, infected with pLNCX retroviral vector expressing or non-expressing I7nuc. All the mice injected with I7nuc-expressing cells showed a clear delay in tumor onset; 60% and 40% of mice receiving TC-1 and C3 cells, respectively, remained tumor-free for 17 weeks of follow-up, whereas 100% of the controls were tumor-bearing 20 days post-inoculum. Our data support the therapeutic potential of E6-targeted I7nuc against HPV tumors. PMID:26788990

  2. Metabolites of Ginger Component [6]-Shogaol Remain Bioactive in Cancer Cells and Have Low Toxicity in Normal Cells: Chemical Synthesis and Biological Evaluation

    PubMed Central

    Zhu, Yingdong; Chen, Huadong; Sang, Shengmin

    2013-01-01

    Our previous study found that [6]-shogaol, a major bioactive component in ginger, is extensively metabolized in cancer cells and in mice. It is unclear whether these metabolites retain bioactivity. The aim of the current study is to synthesize the major metabolites of [6]-shogaol and evaluate their inhibition of growth and induction of apoptosis in human cancer cells. Twelve metabolites of [6]-shogaol (M1, M2, and M4–M13) were successfully synthesized using simple and easily accessible chemical methods. Growth inhibition assays showed that most metabolites of [6]-shogaol had measurable activities against human cancer cells HCT-116 and H-1299. In particular, metabolite M2 greatly retained the biological activities of [6]-shogaol, with an IC50 of 24.43 µM in HCT-116 human colon cancer cells and an IC50 of 25.82 µM in H-1299 human lung cancer cells. Also exhibiting a relatively high potency was thiol-conjugate M13, with IC50 values of 45.47 and 47.77 µM toward HCT-116 and H-1299 cells, respectively. The toxicity evaluation of the synthetic metabolites (M1, M2, and M4–M13) against human normal fibroblast colon cells CCD-18Co and human normal lung cells IMR-90 demonstrated a detoxifying metabolic biotransformation of [6]-shogaol. The most active metabolite M2 had almost no toxicity to CCD-18Co and IMR-90 normal cells with IC50s of 99.18 and 98.30 µM, respectively. TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling) assay indicated that apoptosis was triggered by metabolites M2, M13, and its two diastereomers M13-1 and M13-2. There was no significant difference between the apoptotic effect of [6]-shogaol and the effect of M2 and M13 after 6 hour treatment. PMID:23382939

  3. Characterization of human pancreatic progenitor cells.

    PubMed

    Noguchi, Hirofumi; Naziruddin, Bashoo; Jackson, Andrew; Shimoda, Masayuki; Ikemoto, Tetsuya; Fujita, Yasutaka; Chujo, Daisuke; Takita, Morihito; Kobayashi, Naoya; Onaca, Nicholas; Hayashi, Shuji; Levy, Marlon F; Matsumoto, Shinichi

    2010-01-01

    β-Cell replacement therapy via islet transplantation is an effective treatment for diabetes mellitus, but its widespread use is severely limited by the shortage of donor organs. Because pancreatic stem/progenitor cells are abundantly available in the pancreas of these patients and in donor organs, the cells could become a useful target for β-cell replacement therapy. We previously established a mouse pancreatic stem cell line without genetic manipulation. In this study, we used the techniques to identify and isolate human pancreatic stem/progenitor cells. The cells from a duct-rich population were cultured in 23 kinds of culture media, based on media for mouse pancreatic stem cells or for human embryonic stem cells. The cells in serum-free media formed "cobblestone" morphologies, similar to a mouse pancreatic stem cell line. On the other hand, the cells in serum-containing medium and the medium for human embryonic stem cells formed "fibroblast-like" morphologies. The cells divided actively until day 30, and the population doubling level (PDL) was 6-10. However, the cells stopped dividing after 30 days in any culture conditions. During the cultures, the nucleus/cytoplasm (N/C) ratio decreased, suggesting that the cells entered senescence. Exendin-4 treatment and transduction of PDX-1 and NeuroD proteins by protein transduction technology into the cells induced insulin and pancreas-related gene expression. Although the duplications of these cells were limited, this approach could provide a potential new source of insulin-producing cells for transplantation.

  4. Mouse A6-positive hepatic oval cells derived from embryonic stem cells.

    PubMed

    Yin, Dong-zhi; Cai, Ji-ye; Zheng, Qi-chang; Chen, Zheng-wei; Zhao, Jing-xian; Yuan, You-neng

    2014-02-01

    Oval cells have a potential to differentiate into a variety of cell lineages including hepatocytes and biliary epithelia. Several models have been established to activate the oval cells by incorporating a variety of toxins and carcinogens, alone or combined with surgical treatment. Those models are obviously not suitable for the study on human hepatic oval cells. It is necessary to establish a new and efficient model to study the human hepatic oval cells. In this study, the hepatocyte growth factor (HGF) and epidermal growth factor (EGF) were used to induce differentiation of mouse embryonic stem (ES) cells into hepatic oval cells. We first confirmed that hepatic oval cells derived from ES cells, which are bipotential, do exist during the course of mouse ES cells' differentiation into hepatic parenchymal cells. RT-PCR and transmission electron microscopy were applied in this study. The ratio of Sca-1+/CD34+ cells sorted by FACS in the induction group was increased from day 4 and reached the maximum on the day 8, whereas that in the control group remained at a low level. The differentiation ratio of Sca-1+/CD34+ cells in the induction group was significantly higher than that in the control group. About 92.48% of the sorted Sca-1+/CD34+ cells on the day 8 were A6 positive. Highly purified A6+/Sca-1+/CD34+ hepatic oval cells derived from ES cells could be obtained by FACS. The differentiation ratio of hepatic oval cells in the induction group (up to 4.46%) was significantly higher than that in the control group. The number of hepatic oval cells could be increased significantly by HGF and EGF. The study also examined the ultrastructures of ES-derived hepatic oval cells' membrane surface by atomic force microscopy. The ES-derived hepatic oval cells cultured and sorted by our protocols may be available for the future clinical application.

  5. Vitamin B6 Modifies the Immune Cross-Talk between Mononuclear and Colon Carcinoma Cells.

    PubMed

    Bessler, H; Djaldetti, M

    2016-01-01

    The role of vitamin B6 as a key component in a number of biological events has been well established. Based on the relationship between chronic inflammation and carcinogenesis on the one hand, and the interaction between immune and cancer cells expressed by modulated cytokine production on the other hand, the aim of the present work was to examine the possibility that vitamin B6 affects cancer development by an interference in the cross-talk between human peripheral blood mononuclear cells (PBMC) and those from two colon carcinoma cell lines. Both non-stimulated PBMC and mononuclear cells induced for cytokine production by HT-29 and RKO cells from human colon carcinoma lines were incubated without and with 4, 20 and 100 μg/ml of pyridoxal hydrochloride (vitamin B6) and secretion of TNF-α, IL-1β, IL-6, IFN-γ, IL-10, and IL-1ra was examined. Vit B6 caused a dose-dependent decrease in production of all cytokines examined, except for that of IL-1ra. The results indicate that vitamin B6 exerts an immunomodulatory effect on human PBMC. The finding that production of inflammatory cytokines is more pronounced when PBMC are in contact with malignant cells and markedly inhibited by the vitamin suggests an additional way by which vitamin B6 may exert its carcinopreventive effect.

  6. Cooperative Interactions During Human Mammary Epithelial Cell Immortalization

    DTIC Science & Technology

    2005-07-01

    papilloma virus 16 E6 or E7. Proc. Nat. Acad. Sci. USA, 92: 3687-3691, 1995. 6. Huschtscha, L. I., Neumann, A. A., Noble, J. R., and Reddel, R. R. Effects...Oncology, In press. 5. Wazer, D. E., Liu, X.-L., Chu, Q., Gao, Q., and Band, V. Immortalization of distinct human mammary epithelial cell types by human

  7. Complete Genome Sequence of the Facultative Methylotroph Methylobacterium extorquens TK 0001 Isolated from Soil in Poland.

    PubMed

    Belkhelfa, Sophia; Labadie, Karine; Cruaud, Corinne; Aury, Jean-Marc; Roche, David; Bouzon, Madeleine; Salanoubat, Marcel; Döring, Volker

    2018-02-22

    Methylobacterium extorquens TK 0001 (DSM 1337, ATCC 43645) is an aerobic pink-pigmented facultative methylotrophic alphaproteobacterium isolated from soil in Poland. Here, we report the whole-genome sequence and annotation of this organism, which consists of a single 5.71-Mb chromosome. Copyright © 2018 Belkhelfa et al.

  8. EGF-receptor phosphorylation and downstream signaling are activated by benzo[a]pyrene 3,6-quinone and benzo[a]pyrene 1,6-quinone in human mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Fragoso, Lourdes; Melendez, Karla; Hudson, Laurie G.

    2009-03-15

    Benzo[a]pyrene (BaP) is activated by xenobiotic-metabolizing enzymes to highly mutagenic and carcinogenic metabolites. Previous studies in this laboratory have shown that benzo[a]pyrene quinones (BPQs), 1,6-BPQ and 3,6-BPQ, are able to induce epidermal growth factor receptor (EGFR) cell signaling through the production of reactive oxygen species. Recently, we have reported that BPQs have the potential to induce the expression of genes involved in numerous pathways associated with cell proliferation and survival in human mammary epithelial cells. In the present study we demonstrated that BPQs not only induced EGFR tyrosine autophosphorylation, but also induced EGFR-dependent tyrosine phosphorylation of phospholipase C-{gamma}1 and severalmore » signal transducers and activators of transcription (STATs). The effects of BPQs were evaluated in a model of EGF withdrawal in MCF10-A cells. We found that BPQs (1 {mu}M), induced EGFR tyrosine phosphorylation at positions Y845, Y992, Y1068, and Y1086. PLC-{gamma}1 phosphorylation correlated with the phosphorylation of tyrosine-Y992, a proposed docking site for PLC-{gamma}1 on the EGFR. Additionally, we found that BPQs induced the activation of STAT-1, STAT-3, STAT-5a and STAT-5b. STAT5 was shown to translocate to the nucleus following 3,6-BPQ and 1,6-BPQ exposures. Although the patterns of phosphorylation at EGFR, PLC-{gamma}1 and STATs were quite similar to those induced by EGF, an important difference between BPQ-mediated signaling of the EGFR was observed. Signaling produced by EGF ligand produced a rapid disappearance of EGFR from the cell surface, whereas BPQ signaling maintained EGFR receptors on the cell membrane. Thus, the results of these studies show that 1,6-BPQ and 3,6-BPQ can produce early events as evidenced by EGFR expression, and a prolonged transactivation of EGFR leading to downstream cell signaling pathways.« less

  9. EGF-Receptor Phosphorylation and Downstream Signaling are Activated by Benzo[a]pyrene 3,6-quinone and Benzo[a]pyrene 1,6-quinone in Human Mammary Epithelial Cells

    PubMed Central

    Rodríguez-Fragoso, Lourdes; Melendez, Karla; Hudson, Laurie; Lauer, Fredine T.; Burchiel, Scott W.

    2013-01-01

    Benzo[a]pyrene (BaP) is activated by xenobiotic-metabolizing enzymes to highly mutagenic and carcinogenic metabolites. Previous studies in this laboratory have shown that benzo(a)pyrene quinones (BPQs), 1,6-BPQ and 3,6-BPQ, are able to induce epidermal growth factor receptor (EGFR) cell signaling through the production of reactive oxygen species. Recently, we have reported that BPQs have the potential to induce the expression of genes involved in numerous pathways associated with cell proliferation and survival in human mammary epithelial cells. In the present study we demonstrated that BPQs not only induced EGFR tyrosine autophosphorylation, but also induced EGFR-dependent tyrosine phosphorylation of phospholipase C-γ1 and several signal transducers and activators of transcription (STATs). The effects of BPQs were evaluated in a model of EGF withdrawal in MCF10-A cells. We found that BPQs (1 μM), induced EGFR tyrosine phosphorylation at positions Y845, Y992, Y1068, and Y1086. PLC-γ1 phosphorylation correlated with the phosphorylation of tyrosine-Y992, a proposed docking site for PLC-γ1 on the EGFR. Additionally, we found that BPQs induced the activation of STAT-1, STAT-3, STAT-5a and STAT-5b. STAT5 was shown to translocate to the nucleus following 3,6-BPQ and 1,6-BPQ exposures. Although the pattern of phosphorylation at EGFR, PLC-γ1 and STATs were quite similar to those induced by EGF, an important difference between BPQ-mediated signaling of the EGFR was observed. Signaling produced by EGF ligand produced a rapid disappearance of EGFR from the cell surface, whereas BPQ signaling maintained EGFR receptors on the cell membrane. Thus, the results of these studies show that 1,6-BPQ and 3,6-BPQ can produce early events as evidenced by EGFR expression, and a prolonged transactivation of EGFR leading to downstream cell signaling pathways. PMID:19166869

  10. EGF-receptor phosphorylation and downstream signaling are activated by benzo[a]pyrene 3,6-quinone and benzo[a]pyrene 1,6-quinone in human mammary epithelial cells.

    PubMed

    Rodríguez-Fragoso, Lourdes; Melendez, Karla; Hudson, Laurie G; Lauer, Fredine T; Burchiel, Scott W

    2009-03-15

    Benzo[a]pyrene (BaP) is activated by xenobiotic-metabolizing enzymes to highly mutagenic and carcinogenic metabolites. Previous studies in this laboratory have shown that benzo[a]pyrene quinones (BPQs), 1,6-BPQ and 3,6-BPQ, are able to induce epidermal growth factor receptor (EGFR) cell signaling through the production of reactive oxygen species. Recently, we have reported that BPQs have the potential to induce the expression of genes involved in numerous pathways associated with cell proliferation and survival in human mammary epithelial cells. In the present study we demonstrated that BPQs not only induced EGFR tyrosine autophosphorylation, but also induced EGFR-dependent tyrosine phosphorylation of phospholipase C-gamma1 and several signal transducers and activators of transcription (STATs). The effects of BPQs were evaluated in a model of EGF withdrawal in MCF10-A cells. We found that BPQs (1 muM), induced EGFR tyrosine phosphorylation at positions Y845, Y992, Y1068, and Y1086. PLC-gamma1 phosphorylation correlated with the phosphorylation of tyrosine-Y992, a proposed docking site for PLC-gamma1 on the EGFR. Additionally, we found that BPQs induced the activation of STAT-1, STAT-3, STAT-5a and STAT-5b. STAT5 was shown to translocate to the nucleus following 3,6-BPQ and 1,6-BPQ exposures. Although the patterns of phosphorylation at EGFR, PLC-gamma1 and STATs were quite similar to those induced by EGF, an important difference between BPQ-mediated signaling of the EGFR was observed. Signaling produced by EGF ligand produced a rapid disappearance of EGFR from the cell surface, whereas BPQ signaling maintained EGFR receptors on the cell membrane. Thus, the results of these studies show that 1,6-BPQ and 3,6-BPQ can produce early events as evidenced by EGFR expression, and a prolonged transactivation of EGFR leading to downstream cell signaling pathways.

  11. Altered epigenetic regulation of homeobox genes in human oral squamous cell carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcinkiewicz, Katarzyna M.; Gudas, Lorraine J., E-mail: ljgudas@med.cornell.edu

    To gain insight into oral squamous cell carcinogenesis, we performed deep sequencing (RNAseq) of non-tumorigenic human OKF6-TERT1R and tumorigenic SCC-9 cells. Numerous homeobox genes are differentially expressed between OKF6-TERT1R and SCC-9 cells. Data from Oncomine, a cancer microarray database, also show that homeobox (HOX) genes are dysregulated in oral SCC patients. The activity of Polycomb repressive complexes (PRC), which causes epigenetic modifications, and retinoic acid (RA) signaling can control HOX gene transcription. HOXB7, HOXC10, HOXC13, and HOXD8 transcripts are higher in SCC-9 than in OKF6-TERT1R cells; using ChIP (chromatin immunoprecipitation) we detected PRC2 protein SUZ12 and the epigenetic H3K27me3 markmore » on histone H3 at these genes in OKF6-TERT1R, but not in SCC-9 cells. In contrast, IRX1, IRX4, SIX2 and TSHZ3 transcripts are lower in SCC-9 than in OKF6-TERT1R cells. We detected SUZ12 and the H3K27me3 mark at these genes in SCC-9, but not in OKF6-TERT1R cells. SUZ12 depletion increased HOXB7, HOXC10, HOXC13, and HOXD8 transcript levels and decreased the proliferation of OKF6-TERT1R cells. Transcriptional responses to RA are attenuated in SCC-9 versus OKF6-TERT1R cells. SUZ12 and H3K27me3 levels were not altered by RA at these HOX genes in SCC-9 and OKF6-TERT1R cells. We conclude that altered activity of PRC2 is associated with dysregulation of homeobox gene expression in human SCC cells, and that this dysregulation potentially plays a role in the neoplastic transformation of oral keratinocytes. - Highlights: • RNAseq elucidates differences between non-tumorigenic and tumorigenic oral keratinocytes. • Changes in HOX mRNA in SCC-9 vs. OKF6-TERT1R cells are a result of altered epigenetic regulation. • RNAseq shows that retinoic acid (RA) influences gene expression in both OKF6-TERT1R and SCC-9 cells.« less

  12. Histone deacetylase 6 controls Notch3 trafficking and degradation in T-cell acute lymphoblastic leukemia cells.

    PubMed

    Pinazza, Marica; Ghisi, Margherita; Minuzzo, Sonia; Agnusdei, Valentina; Fossati, Gianluca; Ciminale, Vincenzo; Pezzè, Laura; Ciribilli, Yari; Pilotto, Giorgia; Venturoli, Carolina; Amadori, Alberto; Indraccolo, Stefano

    2018-04-12

    Several studies have revealed that endosomal sorting controls the steady-state levels of Notch at the cell surface in normal cells and prevents its inappropriate activation in the absence of ligands. However, whether this highly dynamic physiologic process can be exploited to counteract dysregulated Notch signaling in cancer cells remains unknown. T-ALL is a malignancy characterized by aberrant Notch signaling, sustained by activating mutations in Notch1 as well as overexpression of Notch3, a Notch paralog physiologically subjected to lysosome-dependent degradation in human cancer cells. Here we show that treatment with the pan-HDAC inhibitor Trichostatin A (TSA) strongly decreases Notch3 full-length protein levels in T-ALL cell lines and primary human T-ALL cells xenografted in mice without substantially reducing NOTCH3 mRNA levels. Moreover, TSA markedly reduced the levels of Notch target genes, including pTα, CR2, and DTX-1, and induced apoptosis of T-ALL cells. We further observed that Notch3 was post-translationally regulated following TSA treatment, with reduced Notch3 surface levels and increased accumulation of Notch3 protein in the lysosomal compartment. Surface Notch3 levels were rescued by inhibition of dynein with ciliobrevin D. Pharmacologic studies with HDAC1, 6, and 8-specific inhibitors disclosed that these effects were largely due to inhibition of HDAC6 in T-ALL cells. HDAC6 silencing by specific shRNA was followed by reduced Notch3 expression and increased apoptosis of T-ALL cells. Finally, HDAC6 silencing impaired leukemia outgrowth in mice, associated with reduction of Notch3 full-length protein in vivo. These results connect HDAC6 activity to regulation of total and surface Notch3 levels and suggest HDAC6 as a potential novel therapeutic target to lower Notch signaling in T-ALL and other Notch3-addicted tumors.

  13. Deletion of the thymidine kinase gene induces complete attenuation of the Georgia isolate of African swine fever virus.

    PubMed

    Sanford, B; Holinka, L G; O'Donnell, V; Krug, P W; Carlson, J; Alfano, M; Carrillo, C; Wu, Ping; Lowe, Andre; Risatti, G R; Gladue, D P; Borca, M V

    2016-02-02

    African swine fever virus (ASFV) is the etiological agent of a contagious and often lethal viral disease of domestic pigs. There are no vaccines to control Africa swine fever (ASF). Experimental vaccines have been developed using genetically modified live attenuated ASFVs obtained by specifically deleting virus genes involved in virulence, including the thymidine kinase (TK) gene. TK has been shown to be involved in the virulence of several viruses, including ASFV. Here we report the construction of a recombinant virus (ASFV-G/V-ΔTK) obtained by deleting the TK gene in a virulent strain of ASFV Georgia adapted to replicate in Vero cells (ASFV-G/VP30). ASFV-G/P-ΔTK demonstrated decreased replication both in primary swine macrophage cell cultures and in Vero cells compared with ASFV-G/VP30. In vivo, intramuscular administration of up to 10(6) TCID50 of ASFV-G/V-ΔTK does not result in ASF disease. However, these animals are not protected when challenged with the virulent parental Georgia strain. Published by Elsevier B.V.

  14. Fentanyl Buccal Tablet: A New Breakthrough Pain Medication in Early Management of Severe Vaso-Occlusive Crisis in Sickle Cell Disease.

    PubMed

    De Franceschi, Lucia; Mura, Paolo; Schweiger, Vittorio; Vencato, Elisa; Quaglia, Francesca Maria; Delmonte, Letizia; Evangelista, Maurizio; Polati, Enrico; Olivieri, Oliviero; Finco, Gabriele

    2016-07-01

    Sickle cell disease (SCD) is a worldwide distributed hereditary red cell disorder. The principal clinical manifestations of SCD are the chronic hemolytic anemia and the acute vaso-occlusive crisis (VOCs), which are mainly characterized by ischemic/reperfusion tissue injury. Pain is the main symptom of VOCs, and its management is still a challenge for hematologists, requiring a multidisciplinary approach. We carried out a crossover study on adult SCD patients, who received two different types of multimodal analgesia during two separate severe VOCs with time interval between VOCs of at least 6 months. The first VOC episode was treated with ketorolac (0.86 mg/kg/day) and tramadol (7.2 mg/kg/day) (TK treatment). In the second VOC episode, fentanyl buccal tablet (FBT; 100 μg) was introduced in a single dose after three hours from the beginning of TK analgesia (TKF treatment). We focused on the first 24 hours of acute pain management. The primary efficacy measure was the time-weighted-sum of pain intensity differences (SPID24). The secondary efficacy measures included the pain intensity difference (PID), the total pain relief (TOTPAR), and the time-wighted sum of anxiety (SAID24). SPID24 was significantly higher in TKF than in TK treatment. All the secondary measures were significantly ameliorated in TKF compared to TK treatment, without major opioid side effects. Patients satisfaction was higher with TKF treatment than with TK one. We propose that VOCs might require breakthrough pain drug strategy as vaso-occlusive phenomena and enhanced vasoconstriction promoting acute ischemic pain component exacerbate the continuous pain of VOCs. FBT might be a powerful and feasible tool in early management of acute pain during VOCs in emergency departments. © 2015 World Institute of Pain.

  15. Ruthenium complex Λ-WH0402 induces hepatocellular carcinoma LM6 (HCCLM6) cell death by triggering the Beclin-1-dependent autophagy pathway.

    PubMed

    Yuan, Jian; Lei, Zhinian; Wang, Xi; Zhu, Feng; Chen, Dongbo

    2015-05-01

    To evaluate the anticancer mechanism of the new ruthenium complex-Λ-WH0402 at the cellular level, the in vitro cytotoxicity of Λ-WH0402 was investigated on 10 human tumor cell lines. Λ-WH0402 was found to have higher anticancer activity than cisplatin toward human liver cancer HCCLM6 cells that have high tumor metastatic characteristics. Meanwhile, Λ-WH0402 showed an antimetastatic effect on HCCLM6 cells in vitro, mostly through its effect on cell adhesion, invasion and migration. In addition, Λ-WH0402 significantly reduced tumor metastasis to the lungs in orthotopic mouse hepatocellular cancer (HCC) models induced by HCCLM6 cells. Furthermore, Λ-WH0402 exerted an inhibitory effect on tumor cell growth and proliferation and induced dose-dependent cell cycle arrest in the S phase in HCCLM6 cells. Immunoblotting analysis showed that Λ-WH0402 not only decreased the expression of antiapoptotic protein Bcl-2 and nutrient-deprivation autophagy factor-1 (NAF-1), but also significantly increased the expression of Beclin-1 in HCCLM6 cells. More importantly, we identified that Λ-WH0402 treatment reduced the interaction between Bcl-2 and Beclin-1, and increased the expression of autophagic activation marker LC3B-II in HCCLM6 cells. On the whole, our results suggested that the anitcancer activity of Λ-WH0402 is mediated through promoting the Beclin-1-dependent autophagy pathway in HCCLM6 cells.

  16. Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells

    PubMed Central

    Lee, Jonghyeob; Sugiyama, Takuya; Liu, Yinghua; Wang, Jing; Gu, Xueying; Lei, Ji; Markmann, James F; Miyazaki, Satsuki; Miyazaki, Jun-ichi; Szot, Gregory L; Bottino, Rita; Kim, Seung K

    2013-01-01

    Pancreatic islet β-cell insufficiency underlies pathogenesis of diabetes mellitus; thus, functional β-cell replacement from renewable sources is the focus of intensive worldwide effort. However, in vitro production of progeny that secrete insulin in response to physiological cues from primary human cells has proven elusive. Here we describe fractionation, expansion and conversion of primary adult human pancreatic ductal cells into progeny resembling native β-cells. FACS-sorted adult human ductal cells clonally expanded as spheres in culture, while retaining ductal characteristics. Expression of the cardinal islet developmental regulators Neurog3, MafA, Pdx1 and Pax6 converted exocrine duct cells into endocrine progeny with hallmark β-cell properties, including the ability to synthesize, process and store insulin, and secrete it in response to glucose or other depolarizing stimuli. These studies provide evidence that genetic reprogramming of expandable human pancreatic cells with defined factors may serve as a general strategy for islet replacement in diabetes. DOI: http://dx.doi.org/10.7554/eLife.00940.001 PMID:24252877

  17. 5-(Furan-2-yl)-4-(3,4,5-trimethoxyphenyl)-3H-1,2-dithiol-3-one oxime (6f), a new synthetic compound, causes human fibrosarcoma HT-1080 cell apoptosis by disrupting tubulin polymerisation and inducing G2/M arrest.

    PubMed

    Zuo, Daiying; Pang, Lili; Shen, Jiwei; Guan, Qi; Bai, Zhaoshi; Zhang, Huijuan; Li, Yao; Lu, Guodong; Zhang, Weige; Wu, Yingliang

    2017-06-01

    In the current study, we synthesized a series of new compounds targeting tubulin and tested their anti-proliferative activities. Among these new synthetic com-pounds, 5-(furan-2-yl)-4-(3,4,5-trimethoxyphenyl)-3H-1,2-dithiol-3-one oxime (6f) exhibited significant anti-proliferative activity against different human cancer cell lines including human gastric adenocarcinoma SGC-7901, human non-small cell lung cancer A549, and human fibrosarcoma HT-1080. As a result, 6f was selected to further test the sensitivity to different cancer cell lines including human cervical cancer cell line HeLa, human breast cancer cell line MCF-7, non-small cell lung cancer cell line A549, human liver carcinoma cell line HepG-2, human oral squamous cell carcinoma cell lines KB, SGC-7901 and HT-1080. Among these cell lines, HT-1080 and HeLa are the most sensitive. Therefore, HT-1080 was selected to further explore the properties of anti-proliferative activity and the underlying mechanisms. Our data proved that 6f exhibited strong anti-proliferative effects against HT-1080 cells in a time- and dose-dependent manner. We showed that the growth inhibitory effect of 6f in HT-1080 cells was related with microtubule depolymerisation. Molecular docking studies revealed that 6f interacted and bound efficiently with the colchicine-binding site of tubulin. In addition, 6f treatment induced G2/M cell cycle arrest dose-dependently and subsequently induced cell apoptosis. Western blot study indicated that upregulation of cyclin B1 and p-cdc2 was related with G2/M arrest. 6f-induced cell apoptosis was associated with both mitochondrial and death receptor pathway. In conclusion, our data showed that 6f, among the newly synthetic compounds, exhibited highest anti-proliferative activity by disrupting the microtubule polymerisation, causing G2/M arrest and subsequently inducing cell apoptosis in HT-1080 cells. Hence, 6f is a promising microtubule depolymerising agent for the treatment of various cancers

  18. Diagnostic Clues to Human Herpesvirus 6 Encephalitis and Wernicke’s Encephalopathy after Pediatric Hematopoietic Cell Transplantation

    PubMed Central

    Sadighi, Zsila; Sabin, Noah D.; Hayden, Randall; Stewart, Elizabeth; Pillai, Asha

    2015-01-01

    Human herpesvirus 6 (HHV6) encephalitis and Wernicke’s encephalopathy are treatable yet frequently undiagnosed causes of encephalopathy in pediatric recipients of allogeneic and autologous hematopoietic cell transplantation. Here we review representative cases of both conditions to highlight specific and relevant neurologic features which prompted effective diagnosis and treatment. Two patients with confusion accompanied by seizures, memory changes, or specific visual hallucinations and HHV6 detectable by PCR in cerebrospinal fluid had improvement in viral load with ganciclovir or foscarnet treatment. Two patients had confusion, ataxia, or ocular changes and low serum thiamine levels, which resolved with parenteral thiamine. In all cases, definitive diagnosis and treatment were facilitated by a high index of suspicion and search for specific pathognomonic neurologic deficits accompanying the confusional state. It is critical to clinically differentiate these two conditions from other common neurologic syndromes occurring after transplant, allowing potentially improved patient outcomes by prompt diagnosis, and effective treatment. PMID:25564483

  19. Auditing the TK and TPACK Confidence of Pre-Service Teachers: Are They Ready for the Profession?

    ERIC Educational Resources Information Center

    Jamieson-Proctor, Romina; Finger, Glenn; Albion, Peter

    2010-01-01

    Teacher education graduates need appropriate levels of confidence and capabilities in relation to technological knowledge (TK) as a basis for having technological pedagogical content knowledge (TPACK) to meet the challenges of learning and teaching in the 21st century. However, it should not be assumed that tomorrow's teachers enter the profession…

  20. Identification of cells initiating human melanomas

    PubMed Central

    Schatton, Tobias; Murphy, George F.; Frank, Natasha Y.; Yamaura, Kazuhiro; Waaga-Gasser, Ana Maria; Gasser, Martin; Zhan, Qian; Jordan, Stefan; Duncan, Lyn M.; Weishaupt, Carsten; Fuhlbrigge, Robert C.; Kupper, Thomas S.; Sayegh, Mohamed H.; Frank, Markus H.

    2012-01-01

    Tumour-initiating cells capable of self-renewal and differentiation, which are responsible for tumour growth, have been identified in human haematological malignancies1,2 and solid cancers3–6. If such minority populations are associated with tumour progression in human patients, specific targeting of tumour-initiating cells could be a strategy to eradicate cancers currently resistant to systemic therapy. Here we identify a subpopulation enriched for human malignant-melanoma-initiating cells (MMIC) defined by expression of the chemoresistance mediator ABCB5 (refs 7, 8) and show that specific targeting of this tumorigenic minority population inhibits tumour growth. ABCB5+ tumour cells detected in human melanoma patients show a primitive molecular phenotype and correlate with clinical melanoma progression. In serial human-to-mouse xenotransplantation experiments, ABCB5+ melanoma cells possess greater tumorigenic capacity than ABCB5− bulk populations and re-establish clinical tumour heterogeneity. In vivo genetic lineage tracking demonstrates a specific capacity of ABCB5+ sub-populations for self-renewal and differentiation, because ABCB5+ cancer cells generate both ABCB5+ and ABCB5− progeny, whereas ABCB5− tumour populations give rise, at lower rates, exclusively to ABCB5− cells. In an initial proof-of-principle analysis, designed to test the hypothesis that MMIC are also required for growth of established tumours, systemic administration of a monoclonal antibody directed at ABCB5, shown to be capable of inducing antibody-dependent cell-mediated cytotoxicity in ABCB5+ MMIC, exerted tumour-inhibitory effects. Identification of tumour-initiating cells with enhanced abundance in more advanced disease but susceptibility to specific targeting through a defining chemoresistance determinant has important implications for cancer therapy. PMID:18202660

  1. Identification of human-selective analogues of the vascular-disrupting agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA)

    PubMed Central

    Tijono, S M; Guo, K; Henare, K; Palmer, B D; Wang, L-C S; Albelda, S M; Ching, L-M

    2013-01-01

    Background: Species selectivity of DMXAA (5,6-dimethylxanthenone-4-acetic acid, Vadimezan) for murine cells over human cells could explain in part the recent disappointing phase III trials clinical results when preclinical studies were so promising. To identify analogues with greater human clinical potential, we compared the activity of xanthenone-4-acetic acid (XAA) analogues in murine or human cellular models. Methods: Analogues with a methyl group systematically substituted at different positions of the XAA backbone were evaluated for cytokine induction in cultured murine or human leukocytes; and for anti-vascular effects on endothelial cells on matrigel. In vivo antitumour activity and cytokine production by stromal or cancer cells was measured in human A375 and HCT116 xenografts. Results: Mono-methyl XAA analogues with substitutions at the seventh and eighth positions were the most active in stimulating human leukocytes to produce IL-6 and IL-8; and for inhibition of tube formation by ECV304 human endothelial-like cells, while 5- and 6-substituted analogues were the most active in murine cell systems. Conclusion: Xanthenone-4-acetic acid analogues exhibit extreme species selectivity. Analogues that are the most active in human systems are inactive in murine models, highlighting the need for the use of appropriate in vivo animal models in selecting clinical candidates for this class of compounds. PMID:23481185

  2. Thymidine kinase 1 combined with CEA, CYFRA21-1 and NSE improved its diagnostic value for lung cancer.

    PubMed

    Jiang, Z F; Wang, M; Xu, J L

    2018-02-01

    Thymidine kinase 1 (TK1) is a tumor biomarker in human malignancies. The purpose of this study was to evaluate the diagnostic efficiency of this marker for lung cancer using the combined analysis of carcinoembryonic antigen (CEA), cytokeratin-19 fragment (CYFRA21-1), neuron specific enolase (NSE) and TK1. From 2013 to 2014, 147 patients with lung cancer and 228 patients with lung benign diseases who were admitted to our hospital were reviewed. Peripheral blood samples were collected for the detection of TK1, CEA, CYFRA21-1 and NSE. The diagnostic value of each marker was analyzed using receiver operating characteristic (ROC) curves and logistic regression equations. The serum levels of TK1, CEA, CYFRA21-1 and NSE were significantly higher than those in patients with lung benign diseases (all P<0.05). The TK1 concentration was dependent on TNM stage (P=0.005). The ROC curve analyses showed that the diagnostic value of TK1 combined with CEA, CYFRA21-1 and NSE in lung cancer was significantly higher than that of each biomarker alone (all P<0.0001). In addition, TK1 combined with CEA, CYFRA21-1, or NSE could also improve the diagnosis of the squamous cell carcinoma, adenocarcinoma and small cell lung cancer subtypes, respectively. The combined detection of TK1 and the other three markers significantly improved the diagnosis of lung cancer. Furthermore, the detection of TK1 combined with that of CYFRA21-1, CEA or NSE increased the diagnostic value of TK1 for lung squamous cell carcinoma, adenocarcinoma and SCLC, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Interleukin-6 Reduces β-Cell Oxidative Stress by Linking Autophagy With the Antioxidant Response.

    PubMed

    Marasco, Michelle R; Conteh, Abass M; Reissaus, Christopher A; Cupit V, John E; Appleman, Evan M; Mirmira, Raghavendra G; Linnemann, Amelia K

    2018-05-21

    Production of reactive oxygen species (ROS) is a key instigator of β-cell dysfunction in diabetes. The pleiotropic cytokine IL-6 has previously been linked to β-cell autophagy but has not been studied in the context of β-cell antioxidant response. We used a combination of animal models of diabetes and analysis of cultured human islets and rodent β-cells to study how IL-6 influences antioxidant response. We show that IL-6 couples autophagy to antioxidant response to reduce β-cell and human islet ROS. β cell-specific loss of IL-6 signaling in vivo renders mice more susceptible to oxidative damage and cell death by the selective β-cell toxins streptozotocin and alloxan. IL-6-driven ROS reduction is associated with an increase in the master antioxidant factor NRF2, which rapidly translocates to the mitochondria to decrease mitochondrial activity and stimulate mitophagy. IL-6 also initiates a robust transient drop in cellular cAMP, likely contributing to the stimulation of mitophagy for ROS mitigation. Our findings suggest that coupling autophagy to antioxidant response in the β cell leads to stress adaptation that can reduce cellular apoptosis. These findings have implications for β-cell survival under diabetogenic conditions and present novel targets for therapeutic intervention. © 2018 by the American Diabetes Association.

  4. Rapamycin-treated human endothelial cells preferentially activate allogeneic regulatory T cells

    PubMed Central

    Wang, Chen; Yi, Tai; Qin, Lingfeng; Maldonado, Roberto A.; von Andrian, Ulrich H.; Kulkarni, Sanjay; Tellides, George; Pober, Jordan S.

    2013-01-01

    Human graft endothelial cells (ECs) can act as antigen-presenting cells to initiate allograft rejection by host memory T cells. Rapamycin, an mTOR inhibitor used clinically to suppress T cell responses, also acts on DCs, rendering them tolerogenic. Here, we report the effects of rapamycin on EC alloimmunogenicity. Compared with mock-treated cells, rapamycin-pretreated human ECs (rapa-ECs) stimulated less proliferation and cytokine secretion from allogeneic CD4+ memory cells, an effect mimicked by shRNA knockdown of mTOR or raptor in ECs. The effects of rapamycin persisted for several days and were linked to upregulation of the inhibitory molecules PD-L1 and PD-L2 on rapa-ECs. Additionally, rapa-ECs produced lower levels of the inflammatory cytokine IL-6. CD4+ memory cells activated by allogeneic rapa-ECs became hyporesponsive to restimulation in an alloantigen-specific manner and contained higher percentages of suppressive CD4+CD25hiCD127loFoxP3+ cells that did not produce effector cytokines. In a human-mouse chimeric model of allograft rejection, rapamycin pretreatment of human arterial allografts increased graft EC expression of PD-L1 and PD-L2 and reduced subsequent infiltration of allogeneic effector T cells into the artery intima and intimal expansion. Preoperative conditioning of allograft ECs with rapamycin could potentially reduce immune-mediated rejection. PMID:23478407

  5. Neuropeptides activate human mast cell degranulation and chemokine production

    PubMed Central

    Kulka, Marianna; Sheen, Cecilia H; Tancowny, Brian P; Grammer, Leslie C; Schleimer, Robert P

    2008-01-01

    During neuronal-induced inflammation, mast cells may respond to stimuli such as neuropeptides in an FcεRI-independent manner. In this study, we characterized human mast cell responses to substance P (SP), nerve growth factor (NGF), calcitonin gene-related peptide (CGRP) and vasoactive intestinal polypeptide (VIP) and compared these responses to human mast cell responses to immunoglobulin E (IgE)/anti-IgE and compound 48/80. Primary cultured mast cells, generated from CD34+ progenitors in the presence of stem cell factor and interleukin-6 (IL-6), and human cultured mast cells (LAD2) were stimulated with these and other stimuli (gastrin, concanavalin A, radiocontrast media, and mannitol) and their degranulation and chemokine production was assessed. VIP and SP stimulated primary human mast cells and LAD cells to degranulate; gastrin, concanavalin A, radiocontrast media, mannitol, CGRP and NGF did not activate degranulation. While anti-IgE stimulation did not induce significant production of chemokines, stimulation with VIP, SP or compound 48/80 potently induced production of monocyte chemoattractant protein-1, inducible protein-10, monokine induced by interferon-γ (MIG), RANTES (regulated on activation, normal, T-cell expressed, and secreted) and IL-8. VIP, SP and compound 48/80 also activated release of tumour necrosis factor, IL-3 and granulocyte–macrophage colony-stimulating factor, but not IL-4, interferon-γ or eotaxin. Human mast cells expressed surface neurokinin 1 receptor (NK1R), NK2R, NK3R and VIP receptor type 2 (VPAC2) but not VPAC1 and activation of human mast cells by IgE/anti-IgE up-regulated expression of VPAC2, NK2R, and NK3R. These studies demonstrate the pattern of receptor expression and activation of mast cell by a host of G-protein coupled receptor ligands and suggest that SP and VIP activate a unique signalling pathway in human mast cells. These results are likely to have direct relevance to neuronally induced inflammatory diseases. PMID

  6. Interleukin-6 triggers human cerebral endothelial cells proliferation and migration: The role for KDR and MMP-9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Jianhua S.; Zhai Wenwu; Young, William L.

    2006-04-21

    Interleukin-6 (IL-6) is involved in angiogenesis. However, the underlying mechanisms are unknown. Using human cerebral endothelial cell (HCEC), we report for First time that IL-6 triggers HCEC proliferation and migration in a dose-dependent manner, specifically associated with enhancement of VEGF expression, up-regulated and phosphorylated VEGF receptor-2 (KDR), and stimulated MMP-9 secretion. We investigated the signal pathway of IL-6/IL-6R responsible for KDR's regulation. Pharmacological inhibitor of PI3K failed to inhibit IL-6-mediated VEGF overexpression, while blocking ERK1/2 with PD98059 could abolish IL-6-induced KDR overexpression. Further, neutralizing endogenous VEGF attenuated KDR expression and phosphorylation, suggesting that IL-6-induced KDR activation is independent of VEGFmore » stimulation. MMP-9 inhibitor GM6001 significantly decreases HCEC proliferation and migration (p < 0.05), indicating the crucial function of MMP-9 in promoting angiogenic changes in HCECs. We conclude that IL-6 triggers VEGF-induced angiogenic activity through increasing VEGF release, up-regulates KDR expression and phosphorylation through activating ERK1/2 signaling, and stimulates MMP-9 overexpression.« less

  7. Human Wharton's jelly stem cell conditioned medium and cell-free lysate inhibit human osteosarcoma and mammary carcinoma cell growth in vitro and in xenograft mice.

    PubMed

    Gauthaman, Kalamegam; Fong, Chui-Yee; Arularasu, Suganya; Subramanian, Arjunan; Biswas, Arijit; Choolani, Mahesh; Bongso, Ariff

    2013-02-01

    Human Wharton's jelly stem cells (hWJSCs) were shown to inhibit the growth of human mammary carcinomas. It is not known whether cell-free secretions or lysates of hWJSCs do the same on different cancers. They may be less controversial than cells to regulatory bodies for clinical application. We examined the influence of hWJSC conditioned medium (hWJSC-CM) and cell-free lysate (hWJSC-CL) on two osteosarcoma cell lines (MG-63, SKES-1) in vitro and on human mammary carcinomas in immunodeficient mice. When exposed to hWJSC-CL, increased vacuolations in MG-63 and increased membrane fragmentation in SKES-1 cells were observed, with greater cell death in SKES-1. Exposure of SKES-1 and MG-63 cells to hWJSC-CL showed significant decreases in cell proliferation of 46.48 ± 6.66% and 24.32 ± 5.67% respectively compared to controls. MG-63 and SKES-1 cells were annexin V-FITC positive and SKES-1 TUNEL positive following treatment with hWJSC-CM and hWJSC-CL. MG-63 cells were positive and SKES-1 cells negative for anti-BECLIN-1 and anti-LC3B following treatment with hWJSC-CM and hWJSC-CL. RT-PCR showed that the pro-apoptotic BAX gene and the autophagy-related ATG-5 and BECLIN-1 genes were up-regulated while the anti-apoptotic BCL2 and SURVIVIN genes were down-regulated in MG-63 and SKES-1 cells treated with hWJSC-CM and hWJSC-CL. Injections of hWJSCs and hWJSC-CM into mammary carcinomas in immunodeficient mice resulted in decreased tumor sizes and weights of 24.86 ± 6.05% to 37.03 ± 5.91% and 47.14 ± 7.36% to 55.09 ± 5.87% respectively at 6 weeks compared to controls. hWJSC-CM and hWJSC-CL inhibit mammary carcinoma and osteosarcoma cells via apoptosis and autophagy. Copyright © 2012 Wiley Periodicals, Inc.

  8. Overexpression of Peroxiredoxin 6 Protects Neoplastic Cells against Apoptosis in Canine Haemangiosarcoma.

    PubMed

    Anwar, Sh; Yanai, T; Sakai, H

    2016-07-01

    Canine haemangiosarcoma (HSA), like human angiosarcoma, is an uncommon malignant vascular endothelial cell tumour associated with a poor prognosis. The peroxiredoxin (PRDX) family of peroxidases, which comprises six members in mammals (PRDX1-6), might contribute to cancer cell survival in the face of oxidative stress as these proteins exhibit frequent upregulation in cancer cells. In this study, we investigated the expression levels of PRDX6 in spontaneously arising primary canine HSAs by immunohistochemical analysis, identifying marked expression of this protein. Both PRDX6 mRNA and protein were overexpressed in HSA cell lines compared with normal canine endothelial cells, although some variation was observed between the different HSA cell lines. Small interfering RNA-induced downregulation of PRDX6 promoted apoptosis in the HSA cell lines. The observation that PRDX6 suppression increased the cytotoxicity of these cells suggests that PRDX6 might play an important cytoprotective role. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Transforming activity of E5a protein of human papillomavirus type 6 in NIH 3T3 and C127 cells.

    PubMed

    Chen, S L; Mounts, P

    1990-07-01

    Human papillomavirus type 6 (HPV-6) is the etiologic agent of genital warts and recurrent respiratory papillomatosis. We are investigating the mechanism by which this virus stimulates cell proliferation during infection. In this paper, we report that the E5a gene of HPV-6c, an independent isolate of HPV-11, is capable of transforming NIH 3T3 cells. The E5a open reading frame (ORF) was expressed under the control of the mouse metallothionein promoter in the expression vector pMt.neo.1, which also contains the gene for G418 resistance. Transfected cells were selected for G418 resistance and analyzed for a transformed phenotype. The transformed NIH 3T3 cells overgrew a confluent monolayer, had an accelerated generation time, and were anchorage independent. In contrast, E5a did not induce foci in C127 cells, but C127 cells expressing E5a did form small colonies in suspension. The presence of the 12-kilodalton E5a gene product in the transformed NIH 3T3 cells was shown by immunoprecipitation and was localized predominantly to nuclei by an immunoperoxidase assay. A mutation in the E5a ORF was engineered to terminate translation. This mutant was defective for transformation, demonstrating that translation of the E5a ORF is required for biological activity. This is the first demonstration of a transforming oncogene in HPV-6, and the differential activity of E5a in these two cell lines should facilitate future investigations on the mechanism of transformation.

  10. Carbachol induces p70S6K1 activation through an ERK-dependent but Akt-independent pathway in human colonic epithelial cells.

    PubMed

    Jiang, Xiaohua; Sinnett-Smith, James; Rozengurt, Enrique

    2009-09-25

    Stimulation of human colonic epithelial T84 cells with the muscarinic receptor agonist carbachol, a stable analog of acetylcholine, induced Akt, p70S6K1 and ERK activation. Treatment of T84 cells with the selective inhibitor of EGF receptor (EGFR) tyrosine kinase AG1478 abrogated Akt phosphorylation on Ser(473) induced by either carbachol or EGF, indicating that carbachol-induced Akt activation is mediated through EGFR transactivation. Surprisingly, AG1478 did not suppress p70S6K1 phosphorylation on Thr(389) in response to carbachol, indicating the G protein-coupled receptor (GPCR) stimulation induces p70S6K1 activation, at least in part, via an Akt-independent pathway. In contrast, treatment with the selective MEK inhibitor U0126 (but not with the inactive analog U0124) inhibited carbachol-induced p70S6K1 activation, indicating that the MEK/ERK/RSK pathway plays a critical role in p70S6K1 activation in GPCR-stimulated T84 cells. These findings imply that GPCR activation induces p70S6K1 via ERK rather than through the canonical PI 3-kinase/Akt/TSC/mTORC1 pathway in T84 colon carcinoma cells.

  11. Carbachol induces p70S6K1 activation through an ERK-dependent but Akt-independent pathway in human colonic epithelial cells

    PubMed Central

    Jiang, Xiaohua; Sinnett-Smith, James; Rozengurt, Enrique

    2009-01-01

    Stimulation of human colonic epithelial T84 cells with the muscarinic receptor agonist carbachol, a stable analog of acetylcholine, induced Akt, p70S6K1 and ERK activation. Treatment of T84 cells with the selective inhibitor of EGF receptor (EGFR) tyrosine kinase AG1478 abrogated Akt phosphorylation on Ser473 induced by either carbachol or EGF, indicating that carbachol-induced Akt activation is mediated through EGFR transactivation. Surprisingly, AG1478 did not suppress p70S6K1 phosphorylation on Thr389 in response to carbachol, indicating the G protein-coupled receptor (GPCR) stimulation induces p70S6K1 activation, at least in part, via an Akt-independent pathway. In contrast, treatment with the selective MEK inhibitor U0126 (but not with the inactive analog U0124) inhibited carbachol-induced p70S6K1 activation, indicating that the MEK/ERK/RSK pathway plays a critical role in p70S6K1 activation in GPCR-stimulated T84 cells. These findings imply that GPCR activation induces p70S6K1 via ERK rather than through the canonical PI 3-kinase/Akt/TSC/mTORC1 pathway in T84 colon carcinoma cells. PMID:19615971

  12. De novo centriole formation in human cells is error-prone and does not require SAS-6 self-assembly

    PubMed Central

    Wang, Won-Jing; Acehan, Devrim; Kao, Chien-Han; Jane, Wann-Neng; Uryu, Kunihiro; Tsou, Meng-Fu Bryan

    2015-01-01

    Vertebrate centrioles normally propagate through duplication, but in the absence of preexisting centrioles, de novo synthesis can occur. Consistently, centriole formation is thought to strictly rely on self-assembly, involving self-oligomerization of the centriolar protein SAS-6. Here, through reconstitution of de novo synthesis in human cells, we surprisingly found that normal looking centrioles capable of duplication and ciliation can arise in the absence of SAS-6 self-oligomerization. Moreover, whereas canonically duplicated centrioles always form correctly, de novo centrioles are prone to structural errors, even in the presence of SAS-6 self-oligomerization. These results indicate that centriole biogenesis does not strictly depend on SAS-6 self-assembly, and may require preexisting centrioles to ensure structural accuracy, fundamentally deviating from the current paradigm. DOI: http://dx.doi.org/10.7554/eLife.10586.001 PMID:26609813

  13. Growth differentiation factor 3 is induced by bone morphogenetic protein 6 (BMP-6) and BMP-7 and increases luteinizing hormone receptor messenger RNA expression in human granulosa cells.

    PubMed

    Shi, Jia; Yoshino, Osamu; Osuga, Yutaka; Akiyama, Ikumi; Harada, Miyuki; Koga, Kaori; Fujimoto, Akihisa; Yano, Tetsu; Taketani, Yuji

    2012-04-01

    To examine the relevance of growth differentiation factor 3 (GDF-3) and bone morphogenetic protein (BMP) cytokines in human ovary. Molecular studies. Research laboratory. Eight women undergoing salpingo-oophorectomy and 30 women undergoing ovarian stimulation for in vitro fertilization. Localizing GDF-3 protein in human ovaries; granulosa cells (GC) cultured with GDF-3, BMP-6, or BMP-7 followed by RNA extraction. The localization of GDF-3 protein in normal human ovaries via immunohistochemical analysis, GDF-3 messenger RNA (mRNA) expression evaluation via quantitative real-time reverse transcription and polymerase chain reaction (RT-PCR), and evaluation of the effect of GDF-3 on leuteinizing hormone (LH) receptor mRNA expression via quantitative real-time RT-PCR. In the ovary, BMP cytokines, of the transforming growth factor beta (TGF-β) superfamily, are known as a luteinization inhibitor by suppressing LH receptor expression in GC. Growth differentiation factor 3, a TGF-β superfamily cytokine, is recognized as an inhibitor of BMP cytokines in other cells. Immunohistochemical analysis showed that GDF-3 was strongly detected in the GC of antral follicles. An in vitro assay revealed that BMP-6 or BMP-7 induced GDF-3 mRNA in GC. Also, GDF-3 increased LH receptor mRNA expression and inhibited the effect of BMP-7, which suppressed the LH receptor mRNA expression in GC. GDF-3, induced with BMP-6 and BMP-7, might play a role in folliculogenesis by inhibiting the effect of BMP cytokines. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  14. Thymidine kinase 2 deficiency-induced mtDNA depletion in mouse liver leads to defect β-oxidation.

    PubMed

    Zhou, Xiaoshan; Kannisto, Kristina; Curbo, Sophie; von Döbeln, Ulrika; Hultenby, Kjell; Isetun, Sindra; Gåfvels, Mats; Karlsson, Anna

    2013-01-01

    Thymidine kinase 2 (TK2) deficiency in humans causes mitochondrial DNA (mtDNA) depletion syndrome. To study the molecular mechanisms underlying the disease and search for treatment options, we previously generated and described a TK2 deficient mouse strain (TK2(-/-)) that progressively loses its mtDNA. The TK2(-/-) mouse model displays symptoms similar to humans harboring TK2 deficient infantile fatal encephalomyopathy. Here, we have studied the TK2(-/-) mouse model to clarify the pathological role of progressive mtDNA depletion in liver for the severe outcome of TK2 deficiency. We observed that a gradual depletion of mtDNA in the liver of the TK2(-/-) mice was accompanied by increasingly hypertrophic mitochondria and accumulation of fat vesicles in the liver cells. The levels of cholesterol and nonesterified fatty acids were elevated and there was accumulation of long chain acylcarnitines in plasma of the TK2(-/-) mice. In mice with hepatic mtDNA levels below 20%, the blood sugar and the ketone levels dropped. These mice also exhibited reduced mitochondrial β-oxidation due to decreased transport of long chain acylcarnitines into the mitochondria. The gradual loss of mtDNA in the liver of the TK2(-/-) mice causes impaired mitochondrial function that leads to defect β-oxidation and, as a result, insufficient production of ketone bodies and glucose. This study provides insight into the mechanism of encephalomyopathy caused by TK2 deficiency-induced mtDNA depletion that may be used to explore novel therapeutic strategies.

  15. Thymidine Kinase 2 Deficiency-Induced mtDNA Depletion in Mouse Liver Leads to Defect β-Oxidation

    PubMed Central

    von Döbeln, Ulrika; Hultenby, Kjell; Isetun, Sindra; Gåfvels, Mats; Karlsson, Anna

    2013-01-01

    Thymidine kinase 2 (TK2) deficiency in humans causes mitochondrial DNA (mtDNA) depletion syndrome. To study the molecular mechanisms underlying the disease and search for treatment options, we previously generated and described a TK2 deficient mouse strain (TK2−/−) that progressively loses its mtDNA. The TK2−/− mouse model displays symptoms similar to humans harboring TK2 deficient infantile fatal encephalomyopathy. Here, we have studied the TK2−/− mouse model to clarify the pathological role of progressive mtDNA depletion in liver for the severe outcome of TK2 deficiency. We observed that a gradual depletion of mtDNA in the liver of the TK2−/− mice was accompanied by increasingly hypertrophic mitochondria and accumulation of fat vesicles in the liver cells. The levels of cholesterol and nonesterified fatty acids were elevated and there was accumulation of long chain acylcarnitines in plasma of the TK2−/− mice. In mice with hepatic mtDNA levels below 20%, the blood sugar and the ketone levels dropped. These mice also exhibited reduced mitochondrial β-oxidation due to decreased transport of long chain acylcarnitines into the mitochondria. The gradual loss of mtDNA in the liver of the TK2−/− mice causes impaired mitochondrial function that leads to defect β-oxidation and, as a result, insufficient production of ketone bodies and glucose. This study provides insight into the mechanism of encephalomyopathy caused by TK2 deficiency-induced mtDNA depletion that may be used to explore novel therapeutic strategies. PMID:23505564

  16. An antagonistic monoclonal antibody (B-N6) specific for the human neurotensin receptor-1.

    PubMed

    Ovigne, J M; Vermot-Desroches, C; Lecron, J C; Portier, M; Lupker, J; Pecceu, F; Wijdenes, J

    1998-06-01

    The neuropeptide neurotensin (NT) interacts with two types of human receptors (hNTR) termed hNTR-1 and hNTR-2. This study describes a monoclonal antibody (MAb) specific for hNTR-1, B-N6. This MAb binds specifically to hNTR-1, but not to hNTR-2 transfected CHO cells. B-N6 and NT display a reciprocal competition and react in a similar way to trypsin, suggesting that the B-N6 epitope is at or close to the NT binding site on the third extracellular loop. Unlike B-N6, NT induces hNTR-1 internalization. Although neither NT-FITC nor B-N6 binding was detected by flow cytometry on different human cells, specific mRNA expression for hNTR-1 was detected in these cells. In CHO cells expressing hNTR-1 and a luciferase gene coupled to the krox24 reporter, B-N6 and the antagonist SR 48692 inhibited NT-induced intracellular activation of krox24 in a dose-dependent manner. From these results it is concluded that B-N6 is an antagonistic anti-hNTR-1 MAb.

  17. Lack of dependence on p53 for DNA double strand break repair of episomal vectors in human lymphoblasts

    NASA Technical Reports Server (NTRS)

    Kohli, M.; Jorgensen, T. J.

    1999-01-01

    The p53 tumor suppressor gene has been shown to be involved in a variety of repair processes, and recent findings have suggested that p53 may be involved in DNA double strand break repair in irradiated cells. The role of p53 in DNA double strand break repair, however, has not been fully investigated. In this study, we have constructed a novel Epstein-Barr virus (EBV)-based shuttle vector, designated as pZEBNA, to explore the influence of p53 on DNA strand break repair in human lymphoblasts, since EBV-based vectors do not inactivate the p53 pathway. We have compared plasmid survival of irradiated, restriction enzyme linearized, and calf intestinal alkaline phosphatase (CIP)-treated pZEBNA with a Simian virus 40 (SV40)-based shuttle vector, pZ189, in TK6 (wild-type p53) and WTK1 (mutant p53) lymphoblasts and determined that p53 does not modulate DNA double strand break repair in these cell lines. Copyright 1999 Academic Press.

  18. Cellular glucose-6-phosphate dehydrogenase (G6PD) status modulates the effects of nitric oxide (NO) on human foreskin fibroblasts.

    PubMed

    Cheng, M L; Ho, H Y; Liang, C M; Chou, Y H; Stern, A; Lu, F J; Chiu, D T

    2000-06-23

    Glucose-6-phosphate dehydrogenase (G6PD) plays an important role in cellular redox homeostasis, which is crucial for cell survival. In the present study, we found that G6PD status determines the response of cells exposed to nitric oxide (NO) donor. Treatment with NO donor, sodium nitroprusside (SNP), caused apoptosis in G6PD-deficient human foreskin fibroblasts (HFF1), whereas it was growth stimulatory in the normal counterpart (HFF3). Such effects were abolished by NO scavengers like hemoglobin. Ectopic expression of G6PD in HFF1 cells switched the cellular response to NO from apoptosis to growth stimulation. Experiments with 1H-¿1,2,4ŏxadiazolo¿4, 3-aquinoxalin-1-one and 8-bromo-cGMP showed that the effects of NO on HFF1 and HFF3 cells were independent of cGMP signalling pathway. Intriguingly, trolox prevented the SNP-induced apoptosis in HFF1 cells. These data demonstrate that G6PD plays a critical role in regulation of cell growth and survival.

  19. Cdc6 is regulated by E2F and is essential for DNA replication in mammalian cells.

    PubMed

    Yan, Z; DeGregori, J; Shohet, R; Leone, G; Stillman, B; Nevins, J R; Williams, R S

    1998-03-31

    Cdc6 has a critical regulatory role in the initiation of DNA replication in yeasts, but its function in mammalian cells has not been characterized. We show here that Cdc6 is expressed selectively in proliferating but not quiescent mammalian cells, both in culture and within tissues of intact animals. During the transition from a growth-arrested to a proliferative state, transcription of mammalian Cdc6 is regulated by E2F proteins, as revealed by a functional analysis of the human Cdc6 promoter and by the ability of exogenously expressed E2F proteins to stimulate the endogenous Cdc6 gene. Immunodepletion of Cdc6 by microinjection of anti-Cdc6 antibody blocks initiation of DNA replication in a human tumor cell line. We conclude that expression of human Cdc6 is regulated in response to mitogenic signals though transcriptional control mechanisms involving E2F proteins, and that Cdc6 is required for initiation of DNA replication in mammalian cells.

  20. Effects of Laser Printer–Emitted Engineered Nanoparticles on Cytotoxicity, Chemokine Expression, Reactive Oxygen Species, DNA Methylation, and DNA Damage: A Comprehensive in Vitro Analysis in Human Small Airway Epithelial Cells, Macrophages, and Lymphoblasts

    PubMed Central

    Pirela, Sandra V.; Miousse, Isabelle R.; Lu, Xiaoyan; Castranova, Vincent; Thomas, Treye; Qian, Yong; Bello, Dhimiter; Kobzik, Lester; Koturbash, Igor; Demokritou, Philip

    2015-01-01

    Background Engineered nanomaterials (ENMs) incorporated into toner formulations of printing equipment become airborne during consumer use. Although information on the complex physicochemical and toxicological properties of both toner powders and printer-emitted particles (PEPs) continues to grow, most toxicological studies have not used the actual PEPs but rather have primarily used raw toner powders, which are not representative of current exposures experienced at the consumer level during printing. Objectives We assessed the biological responses of a panel of human cell lines to PEPs. Methods Three physiologically relevant cell lines—small airway epithelial cells (SAECs), macrophages (THP-1 cells), and lymphoblasts (TK6 cells)—were exposed to PEPs at a wide range of doses (0.5–100 μg/mL) corresponding to human inhalation exposure durations at the consumer level of 8 hr or more. Following treatment, toxicological parameters reflecting distinct mechanisms were evaluated. Results PEPs caused significant membrane integrity damage, an increase in reactive oxygen species (ROS) production, and an increase in pro-inflammatory cytokine release in different cell lines at doses equivalent to exposure durations from 7.8 to 1,500 hr. Furthermore, there were differences in methylation patterns that, although not statistically significant, demonstrate the potential effects of PEPs on the overall epigenome following exposure. Conclusions The in vitro findings obtained in this study suggest that laser printer–emitted engineered nanoparticles may be deleterious to lung cells and provide preliminary evidence of epigenetic modifications that might translate to pulmonary disorders. Citation Pirela SV, Miousse IR, Lu X, Castranova V, Thomas T, Qian Y, Bello D, Kobzik L, Koturbash I, Demokritou P. 2016. Effects of laser printer–emitted engineered nanoparticles on cytotoxicity, chemokine expression, reactive oxygen species, DNA methylation, and DNA damage: a comprehensive in

  1. Therapeutic potential of GW501516 and the role of Peroxisome proliferator-activated receptor β/δ and B-cell lymphoma 6 in inflammatory signaling in human pancreatic cancer cells.

    PubMed

    Smith, Russell W; Coleman, Jeffrey D; Thompson, Jerry T; Vanden Heuvel, John P

    2016-12-01

    Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is a member of the nuclear receptor superfamily and a ligand-activated transcription factor that is involved in the regulation of the inflammatory response via activation of anti-inflammatory target genes and ligand-induced disassociation with the transcriptional repressor B-cell lymphoma 6 (BCL6). Chronic pancreatitis is considered to be a significant etiological factor for pancreatic cancer development, and a better understanding of the underlying mechanisms of the transition between inflammation and carcinogenesis would help further elucidate chemopreventative options. The aim of this study was to determine the role of PPARβ/δ and BCL6 in human pancreatic cancer of ductal origin, as well as the therapeutic potential of PPARβ/δ agonist, GW501516. Over-expression of PPARβ/δ inhibited basal and TNFα-induced Nfkb luciferase activity. GW501516-activated PPARβ/δ suppressed TNFα-induced Nfkb reporter activity. RNAi knockdown of Pparb attenuated the GW501516 effect on Nfkb luciferase, while knockdown of Bcl6 enhanced TNFα-induced Nfkb activity. PPARβ/δ activation induced expression of several anti-inflammatory genes in a dose-dependent manner, and GW501516 inhibited Mcp1 promoter-driven luciferase in a BCL6-dependent manner. Several pro-inflammatory genes were suppressed in a BCL6-dependent manner. Conditioned media from GW501516-treated pancreatic cancer cells suppressed pro-inflammatory expression in THP-1 macrophages as well as reduced invasiveness across a basement membrane. These results demonstrate that PPARβ/δ and BCL6 regulate anti-inflammatory signaling in human pancreatic cancer cells by inhibiting NFκB and pro-inflammatory gene expression, and via induction of anti-inflammatory target genes. Activation of PPARβ/δ may be a useful target in pancreatic cancer therapeutics.

  2. Norepinephrine upregulates VEGF, IL-8, and IL-6 expression in human melanoma tumor cell lines: implications for stress-related enhancement of tumor progression

    PubMed Central

    Yang, Eric V.; Kim, Seung-jae; Donovan, Elise L.; Chen, Min; Gross, Amy C.; Webster Marketon, Jeanette I.; Barsky, Sanford H.; Glaser, Ronald

    2009-01-01

    Studies suggest that stress can be a co-factor for the initiation and progression of cancer. The catecholamine stress hormone, norepinephrine (NE), may influence tumor progression by modulating the expression of factors implicated in angiogenesis and metastasis. The goal of this study was to examine the influence of NE on the expression of VEGF, IL-8, and IL-6 by the human melanoma cell lines, C8161, 1174MEL, and Me18105. Cells were treated with NE and levels of VEGF, IL-8, and IL-6 were measured using ELISA and real-time PCR. The expression of β-adrenergic receptors (β-ARs) mRNA and protein were also assessed. Finally, immunohistochemitry was utilized to examine the presence of β1- and β2-AR in primary and metastatic human melanoma biopsies. We show that NE treatment upregulated production of VEGF, IL-8, and IL-6 in C8161 cells and to a lesser extent 1174MEL and Me18105 cells. The upregulation was associated with induced gene expression. The effect on C8161 cells was mediated by both β1- and β2-ARs. Furthermore, 18 of 20 melanoma biopsies examined expressed β2-AR while 14 of 20 melanoma biopsies expressed β1-AR. Our data support the hypothesis that NE can stimulate the aggressive potential of melanoma tumor cells, in part, by inducing the production VEGF, IL-8, and IL-6. This line of research further suggests that interventions targeting components of the activated sympathetic-adrenal medullary (SAM) axis, or the utilization of β-AR blocking agents, may represent new strategies for slowing down the progression of malignant disease and improving cancer patients’ quality of life. PMID:18996182

  3. E6 and E7 gene silencing results in decreased methylation of tumor suppressor genes and induces phenotype transformation of human cervical carcinoma cell lines

    PubMed Central

    Long, Jia; Shen, Danbei; Zhou, Wuqing; Zhou, Qiyan; Yang, Jia; Jiang, Mingjun

    2015-01-01

    In SiHa and CaSki cells, E6 and E7-targeting shRNA specifically and effectively knocked down human papillomavirus (HPV) 16 E6 and E7 at the transcriptional level, reduced the E6 and E7 mRNA levels by more than 80% compared with control cells that expressed a scrambled-sequence shRNA. E6 and E7 repression resulted in down-regulation of DNA methyltransferase mRNA and protein expression, decreased DNA methylation and increased mRNA expression levels of tumor suppressor genes, induced a certain apoptosis and inhibited proliferation in E6 and E7 shRNA-infected SiHa and CaSki cells compared with the uninfected cells. Repression of E6 and E7 oncogenes resulted in restoration of DNA methyltransferase suppressor pathways and induced apoptosis in HPV16-positive cervical carcinoma cell lines. Our findings suggest that the potential carcinogenic mechanism of HPV16 through influencing DNA methylation pathway to activate the development of cervical cancer exist, and maybe as a candidate therapeutic strategy for cervical and other HPV-associated cancers. PMID:26329329

  4. A novel E2 box-GATA element modulates Cdc6 transcription during human cells polyploidization

    PubMed Central

    Vilaboa, Nuria; Bermejo, Rodrigo; Martinez, Pilar; Bornstein, Rafael; Calés, Carmela

    2004-01-01

    Cdc6 is a key regulator of the strict alternation of S and M phases during the mitotic cell cycle. In mammalian and plant cells that physiologically become polyploid, cdc6 is transcriptionally and post-translationally regulated. We have recently reported that Cdc6 levels are maintained in megakaryoblastic HEL cells, but severely downregulated by ectopic expression of transcriptional repressor Drosophila melanogaster escargot. Here, we show that cdc6 promoter activity is upregulated during megakaryocytic differentiation of HEL endoreplicating cells, and that Escargot interferes with such activation. Transactivation experiments showed that a 1.7 kb region located at 2800 upstream cdc6 transcription initiation site behaved as a potent enhancer in endoreplicating cells only. This activity was mainly dependent on a novel cis-regulatory element composed by an E2 box overlapping a GATA motif. Ectopic Escargot could bind this regulatory element in vitro and endogenous GATA-1 and E2A formed specific complexes in megakaryoblastic cells as well as in primary megakaryocytes. Chromatin Immunoprecipitation analysis revealed that both transcription factors were occupying the E2 box/GATA site in vivo. Altogether, these data suggest that cdc6 expression could be actively maintained during megakaryocytic differentiation through transcriptional mechanisms involving specific cis- and trans-regulatory elements. PMID:15590906

  5. The Cytotoxicity Mechanism of 6-Shogaol-Treated HeLa Human Cervical Cancer Cells Revealed by Label-Free Shotgun Proteomics and Bioinformatics Analysis.

    PubMed

    Liu, Qun; Peng, Yong-Bo; Qi, Lian-Wen; Cheng, Xiao-Lan; Xu, Xiao-Jun; Liu, Le-Le; Liu, E-Hu; Li, Ping

    2012-01-01

    Cervical cancer is one of the most common cancers among women in the world. 6-Shogaol is a natural compound isolated from the rhizome of ginger (Zingiber officinale). In this paper, we demonstrated that 6-shogaol induced apoptosis and G2/M phase arrest in human cervical cancer HeLa cells. Endoplasmic reticulum stress and mitochondrial pathway were involved in 6-shogaol-mediated apoptosis. Proteomic analysis based on label-free strategy by liquid chromatography chip quadrupole time-of-flight mass spectrometry was subsequently proposed to identify, in a non-target-biased manner, the molecular changes in cellular proteins in response to 6-shogaol treatment. A total of 287 proteins were differentially expressed in response to 24 h treatment with 15 μM 6-shogaol in HeLa cells. Significantly changed proteins were subjected to functional pathway analysis by multiple analyzing software. Ingenuity pathway analysis (IPA) suggested that 14-3-3 signaling is a predominant canonical pathway involved in networks which may be significantly associated with the process of apoptosis and G2/M cell cycle arrest induced by 6-shogaol. In conclusion, this work developed an unbiased protein analysis strategy by shotgun proteomics and bioinformatics analysis. Data observed provide a comprehensive analysis of the 6-shogaol-treated HeLa cell proteome and reveal protein alterations that are associated with its anticancer mechanism.

  6. The Cytotoxicity Mechanism of 6-Shogaol-Treated HeLa Human Cervical Cancer Cells Revealed by Label-Free Shotgun Proteomics and Bioinformatics Analysis

    PubMed Central

    Liu, Qun; Peng, Yong-Bo; Qi, Lian-Wen; Cheng, Xiao-Lan; Xu, Xiao-Jun; Liu, Le-Le; Liu, E-Hu; Li, Ping

    2012-01-01

    Cervical cancer is one of the most common cancers among women in the world. 6-Shogaol is a natural compound isolated from the rhizome of ginger (Zingiber officinale). In this paper, we demonstrated that 6-shogaol induced apoptosis and G2/M phase arrest in human cervical cancer HeLa cells. Endoplasmic reticulum stress and mitochondrial pathway were involved in 6-shogaol-mediated apoptosis. Proteomic analysis based on label-free strategy by liquid chromatography chip quadrupole time-of-flight mass spectrometry was subsequently proposed to identify, in a non-target-biased manner, the molecular changes in cellular proteins in response to 6-shogaol treatment. A total of 287 proteins were differentially expressed in response to 24 h treatment with 15 μM 6-shogaol in HeLa cells. Significantly changed proteins were subjected to functional pathway analysis by multiple analyzing software. Ingenuity pathway analysis (IPA) suggested that 14-3-3 signaling is a predominant canonical pathway involved in networks which may be significantly associated with the process of apoptosis and G2/M cell cycle arrest induced by 6-shogaol. In conclusion, this work developed an unbiased protein analysis strategy by shotgun proteomics and bioinformatics analysis. Data observed provide a comprehensive analysis of the 6-shogaol-treated HeLa cell proteome and reveal protein alterations that are associated with its anticancer mechanism. PMID:23243437

  7. Systems Ln-Fe-O ( Ln=Eu, Gd): thermodynamic properties of ternary oxides using solid-state electrochemical cells

    NASA Astrophysics Data System (ADS)

    Parida, S. C.; Rakshit, S. K.; Dash, S.; Singh, Ziley; Prasad, R.; Venugopal, V.

    2003-05-01

    The standard molar Gibbs energies of formation of LnFeO 3(s) and Ln3Fe 5O 12(s) where Ln=Eu and Gd have been determined using solid-state electrochemical technique employing different solid electrolytes. The reversible e.m.f.s of the following solid-state electrochemical cells have been measured in the temperature range from 1050 to 1255 K. Cell (I): (-)Pt / { LnFeO 3(s)+ Ln2O 3(s)+Fe(s)} // YDT/CSZ // {Fe(s)+Fe 0.95O(s)} / Pt(+); Cell (II): (-)Pt/{Fe(s)+Fe 0.95O(s)}//CSZ//{ LnFeO 3(s)+ Ln3Fe 5O 12(s)+Fe 3O 4(s)}/Pt(+); Cell (III): (-)Pt/{ LnFeO 3(s)+ Ln3Fe 5O 12(s)+Fe 3O 4(s)}//YSZ//{Ni(s)+NiO(s)}/Pt(+); and Cell(IV):(-)Pt/{Fe(s)+Fe 0.95O(s)}//YDT/CSZ//{ LnFeO 3(s)+ Ln3Fe 5O 12(s)+Fe 3O 4(s)}/Pt(+). The oxygen chemical potentials corresponding to the three-phase equilibria involving the ternary oxides have been computed from the e.m.f. data. The standard Gibbs energies of formation of solid EuFeO 3, Eu 3Fe 5O 12, GdFeO 3 and Gd 3Fe 5O 12 calculated by the least-squares regression analysis of the data obtained in the present study are given by Δ fG°m(EuFeO 3, s) /kJ mol -1 (± 3.2)=-1265.5+0.2687( T/K) (1050 ⩽ T/K ⩽ 1570), Δ fG°m(Eu 3Fe 5O 12, s)/kJ mol -1 (± 3.5)=-4626.2+1.0474( T/K) (1050 ⩽ T/K ⩽ 1255), Δ fG°m(GdFeO 3, s) /kJ mol -1 (± 3.2)=-1342.5+0.2539( T/K) (1050 ⩽ T/K ⩽ 1570), and Δ fG°m(Gd 3Fe 5O 12, s)/kJ·mol -1 (± 3.5)=-4856.0+1.0021( T/K) (1050 ⩽ T/K ⩽ 1255). The uncertainty estimates for Δ fG°m include the standard deviation in the e.m.f. and uncertainty in the data taken from the literature. Based on the thermodynamic information, oxygen potential diagrams for the systems Eu-Fe-O and Gd-Fe-O and chemical potential diagrams for the system Gd-Fe-O were computed at 1250 K.

  8. Unravelling the mystery of stem/progenitor cells in human breast milk.

    PubMed

    Fan, Yiping; Chong, Yap Seng; Choolani, Mahesh A; Cregan, Mark D; Chan, Jerry K Y

    2010-12-28

    Mammary stem cells have been extensively studied as a system to delineate the pathogenesis and treatment of breast cancer. However, research on mammary stem cells requires tissue biopsies which limit the quantity of samples available. We have previously identified putative mammary stem cells in human breast milk, and here, we further characterised the cellular component of human breast milk. We identified markers associated with haemopoietic, mesenchymal and neuro-epithelial lineages in the cellular component of human breast milk. We found 2.6 ± 0.8% (mean ± SEM) and 0.7 ± 0.2% of the whole cell population (WCP) were found to be CD133+ and CD34+ respectively, 27.8 ± 9.1% of the WCP to be positive for Stro-1 through flow-cytometry. Expressions of neuro-ectodermal stem cell markers such as nestin and cytokeratin 5 were found through reverse-transcription polymerase chain reaction (RT-PCR), and in 4.17 ± 0.2% and 0.9 ± 0.2% of the WCP on flow-cytometry. We also established the presence of a side-population (SP) (1.8 ± 0.4% of WCP) as well as CD133+ cells (1.7 ± 0.5% of the WCP). Characterisation of the sorted SP and non-SP, CD133+ and CD133- cells carried out showed enrichment of CD326 (EPCAM) in the SP cells (50.6 ± 8.6 vs 18.1 ± 6.0, P-value  = 0.02). However, culture in a wide range of in vitro conditions revealed the atypical behaviour of stem/progenitor cells in human breast milk; in that if they are present, they do not respond to established culture protocols of stem/progenitor cells. The identification of primitive cell types within human breast milk may provide a non-invasive source of relevant mammary cells for a wide-range of applications; even the possibility of banking one's own stem cell for every breastfeeding woman.

  9. Unravelling the Mystery of Stem/Progenitor Cells in Human Breast Milk

    PubMed Central

    Fan, Yiping; Chong, Yap Seng; Choolani, Mahesh A.; Cregan, Mark D.; Chan, Jerry K. Y.

    2010-01-01

    Background Mammary stem cells have been extensively studied as a system to delineate the pathogenesis and treatment of breast cancer. However, research on mammary stem cells requires tissue biopsies which limit the quantity of samples available. We have previously identified putative mammary stem cells in human breast milk, and here, we further characterised the cellular component of human breast milk. Methodology/Principal Findings We identified markers associated with haemopoietic, mesenchymal and neuro-epithelial lineages in the cellular component of human breast milk. We found 2.6±0.8% (mean±SEM) and 0.7±0.2% of the whole cell population (WCP) were found to be CD133+ and CD34+ respectively, 27.8±9.1% of the WCP to be positive for Stro-1 through flow-cytometry. Expressions of neuro-ectodermal stem cell markers such as nestin and cytokeratin 5 were found through reverse-transcription polymerase chain reaction (RT-PCR), and in 4.17±0.2% and 0.9±0.2% of the WCP on flow-cytometry. We also established the presence of a side-population (SP) (1.8±0.4% of WCP) as well as CD133+ cells (1.7±0.5% of the WCP). Characterisation of the sorted SP and non-SP, CD133+ and CD133- cells carried out showed enrichment of CD326 (EPCAM) in the SP cells (50.6±8.6 vs 18.1±6.0, P-value  = 0.02). However, culture in a wide range of in vitro conditions revealed the atypical behaviour of stem/progenitor cells in human breast milk; in that if they are present, they do not respond to established culture protocols of stem/progenitor cells. Conclusions/Significance The identification of primitive cell types within human breast milk may provide a non-invasive source of relevant mammary cells for a wide-range of applications; even the possibility of banking one's own stem cell for every breastfeeding woman. PMID:21203434

  10. Refined human artificial chromosome vectors for gene therapy and animal transgenesis

    PubMed Central

    Kazuki, Y; Hoshiya, H; Takiguchi, M; Abe, S; Iida, Y; Osaki, M; Katoh, M; Hiratsuka, M; Shirayoshi, Y; Hiramatsu, K; Ueno, E; Kajitani, N; Yoshino, T; Kazuki, K; Ishihara, C; Takehara, S; Tsuji, S; Ejima, F; Toyoda, A; Sakaki, Y; Larionov, V; Kouprina, N; Oshimura, M

    2011-01-01

    Human artificial chromosomes (HACs) have several advantages as gene therapy vectors, including stable episomal maintenance, and the ability to carry large gene inserts. We previously developed HAC vectors from the normal human chromosomes using a chromosome engineering technique. However, endogenous genes were remained in these HACs, limiting their therapeutic applications. In this study, we refined a HAC vector without endogenous genes from human chromosome 21 in homologous recombination-proficient chicken DT40 cells. The HAC was physically characterized using a transformation-associated recombination (TAR) cloning strategy followed by sequencing of TAR-bacterial artificial chromosome clones. No endogenous genes were remained in the HAC. We demonstrated that any desired gene can be cloned into the HAC using the Cre-loxP system in Chinese hamster ovary cells, or a homologous recombination system in DT40 cells. The HAC can be efficiently transferred to other type of cells including mouse ES cells via microcell-mediated chromosome transfer. The transferred HAC was stably maintained in vitro and in vivo. Furthermore, tumor cells containing a HAC carrying the suicide gene, herpes simplex virus thymidine kinase (HSV-TK), were selectively killed by ganciclovir in vitro and in vivo. Thus, this novel HAC vector may be useful not only for gene and cell therapy, but also for animal transgenesis. PMID:21085194

  11. Synthesis and biological evaluation of 5-substituted derivatives of the potent antiherpes agent (north)-methanocarbathymine.

    PubMed

    Russ, Pamela; Schelling, Pierre; Scapozza, Leonardo; Folkers, Gerd; Clercq, Erik De; Marquez, Victor E

    2003-11-06

    The conformationally locked nucleoside, (north)-methanocarbathymine (1a), is a potent and selective anti-herpes agent effective against herpes simplex type 1 (HSV1) and type 2 (HSV2) viruses. Hereby, we report on the synthesis and biological evaluation of a small set of 5-substituted pyrimidine nucleosides belonging to the same class of bicyclo[3.1.0]hexane nucleosides. Both the 5-bromovinyl (4) and the 5-bromo analogue (3) appeared to be exclusive substrates of HSV1 thymidine kinase (TK), contrasting with the 5-iodo analogue (2), which was significantly phosphorylated by the human cytosolic TK. The binding affinity constant and catalytic turnover for HSV1 TK were measured to assess the influence of the substitution on these parameters. In the plaque reduction and cytotoxicity assays, the 5-bromo analogue (3) showed good activity against HSV1 and HSV2 with less general toxicity than 1a. Against varicella-zoster virus (VZV), the north-locked 5-bromovinyl analogue (4) proved to be as potent as its conformationally unlocked 2'-deoxyriboside equivalent BVDU. The three compounds were also tested in vitro as prodrugs used in a gene therapy context on three osteosarcoma cell lines, either deficient in TK (TK(-)), nontransduced, or stably transduced with HSV1 TK. The 5-iodo compound (2, CC(50) 25 +/- 7 microM) was more efficient than ganciclovir (GCV, CC(50) 75 +/- 35 microM) in inhibiting growth of HSV1-TK transfected cells and less inhibitory than GCV toward TK(-) cells, whereas compound 3 inhibited transfected and nontransfected cell lines in a relatively similar dose-dependent manner.

  12. Efficacy and Safety of Human Retinal Progenitor Cells

    PubMed Central

    Semo, Ma'ayan; Haamedi, Nasrin; Stevanato, Lara; Carter, David; Brooke, Gary; Young, Michael; Coffey, Peter; Sinden, John; Patel, Sara; Vugler, Anthony

    2016-01-01

    Purpose We assessed the long-term efficacy and safety of human retinal progenitor cells (hRPC) using established rodent models. Methods Efficacy of hRPC was tested initially in Royal College of Surgeons (RCS) dystrophic rats immunosuppressed with cyclosporine/dexamethasone. Due to adverse effects of dexamethasone, this drug was omitted from a subsequent dose-ranging study, where different hRPC doses were tested for their ability to preserve visual function (measured by optokinetic head tracking) and retinal structure in RCS rats at 3 to 6 months after grafting. Safety of hRPC was assessed by subretinal transplantation into wild type (WT) rats and NIH-III nude mice, with analysis at 3 to 6 and 9 months after grafting, respectively. Results The optimal dose of hRPC for preserving visual function/retinal structure in dystrophic rats was 50,000 to 100,000 cells. Human retinal progenitor cells integrated/survived in dystrophic and WT rat retina up to 6 months after grafting and expressed nestin, vimentin, GFAP, and βIII tubulin. Vision and retinal structure remained normal in WT rats injected with hRPC and there was no evidence of tumors. A comparison between dexamethasone-treated and untreated dystrophic rats at 3 months after grafting revealed an unexpected reduction in the baseline visual acuity of dexamethasone-treated animals. Conclusions Human retinal progenitor cells appear safe and efficacious in the preclinical models used here. Translational Relevance Human retinal progenitor cells could be deployed during early stages of retinal degeneration or in regions of intact retina, without adverse effects on visual function. The ability of dexamethasone to reduce baseline visual acuity in RCS dystrophic rats has important implications for the interpretation of preclinical and clinical cell transplant studies. PMID:27486556

  13. Publications - PDF 91-6 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    content DGGS PDF 91-6 Publication Details Title: Summary of Alaska's mineral industry for 1990 Authors ., Bundtzen, T.K., and Wood, J.E., 1991, Summary of Alaska's mineral industry for 1990: Alaska Division of

  14. Establishment of a cell line producing bone morphogenetic protein from a human osteosarcoma.

    PubMed

    Takaoka, K; Yoshikawa, H; Masuhara, K; Sugamoto, K; Tsuda, T; Aoki, Y; Ono, K; Sakamoto, Y

    1989-07-01

    A human osteosarcoma cell line was established from a biopsy specimen from a 13-year-old girl. The osteosarcoma tissue was maintained in athymic nude mice (Balb C nu/nu) by serial transplantation for three years. The tumor was excised from a host mouse and digested with collagenase. The isolated cells were cultured by 98 passages in 14 months, and clones of osteosarcoma cells were obtained by limiting dilution. A clone named human osteosarcoma cell 6 (H-OS-6) that showed the osteoblastic phenotypes of productions of bone morphogenetic protein (BMP) and alkaline phosphatase and a response to human parathyroid hormone (h-PTH 1-34) was selected. The morphology of its chromosomes indicated its human origin. This human osteosarcoma cell line is unique in producing BMP under in vitro conditions.

  15. Human fused NKG2D-IL-15 protein controls xenografted human gastric cancer through the recruitment and activation of NK cells.

    PubMed

    Chen, Yan; Chen, Bei; Yang, Ti; Xiao, Weiming; Qian, Li; Ding, Yanbing; Ji, Mingchun; Ge, Xiaoqun; Gong, Weijuan

    2017-03-01

    Interleukin (IL)-15 plays an important role in natural killer (NK) and CD8+ T-cell proliferation and function and is more effective than IL-2 for tumor immunotherapy. The trans-presentation of IL-15 by neighboring cells is more effective for NK cell activation than its soluble IL-15. In this study, the fusion protein dsNKG2D-IL-15, which consisted of two identical extracellular domains of human NKG2D coupled to human IL-15 via a linker, was engineered in Escherichia coli. DsNKG2D-IL-15 could efficiently bind to major histocompatibility complex class I chain-related protein A (MICA) of human tumor cells with the two NKG2D domains and trans-present IL-15 to NK or CD8+ T cells. We transplanted human gastric cancer (SGC-7901) cells into nude mice and mouse melanoma cells with ectopic expression of MICA (B16BL6-MICA) into C57BL/6 mice. Then, we studied the anti-tumor effects mediated by dsNKG2D-IL-15 in the two xenografted tumor models. Human dsNKG2D-IL-15 exhibited higher efficiency than IL-15 in suppressing gastric cancer growth. Exogenous human dsNKG2D-IL-15 was centrally distributed in the mouse tumor tissues based on in vivo live imaging. The frequencies of human CD56+ cells infiltrated into the tumor tissues following the injection of peripheral blood mononuclear cells into nude mice bearing human gastric cancer were significantly increased by human dsNKG2D-IL-15 treatment. Human dsNKG2D-IL-15 also delayed the growth of transplanted melanoma (B16BL6-MICA) by activating and recruiting mouse NK and CD8+ T cells. The anti-melanoma effect of human dsNKG2D-IL-15 in C57BL/6 mice was mostly decreased by the in vivo depletion of mouse NK cells. These data highlight the potential use of human dsNKG2D-IL-15 for tumor therapy.Cellular & Molecular Immunology advance online publication, 14 September 2015; doi:10.1038/cmi.2015.81.

  16. Deregulation of the CEACAM expression pattern causes undifferentiated cell growth in human lung adenocarcinoma cells.

    PubMed

    Singer, Bernhard B; Scheffrahn, Inka; Kammerer, Robert; Suttorp, Norbert; Ergun, Suleyman; Slevogt, Hortense

    2010-01-18

    CEACAM1, CEA/CEACAM5, and CEACAM6 are cell adhesion molecules (CAMs) of the carcinoembryonic antigen (CEA) family that have been shown to be deregulated in lung cancer and in up to 50% of all human cancers. However, little is known about the functional impact of these molecules on undifferentiated cell growth and tumor progression. Here we demonstrate that cell surface expression of CEACAM1 on confluent A549 human lung adenocarcinoma cells plays a critical role in differentiated, contact-inhibited cell growth. Interestingly, CEACAM1-L, but not CEACAM1-S, negatively regulates proliferation via its ITIM domain, while in proliferating cells no CEACAM expression is detectable. Furthermore, we show for the first time that CEACAM6 acts as an inducer of cellular proliferation in A549 cells, likely by interfering with the contact-inhibiting signal triggered by CEACAM1-4L, leading to undifferentiated anchorage-independent cell growth. We also found that A549 cells expressed significant amounts of non-membrane anchored variants of CEACAM5 and CEACAM6, representing a putative source for the increased CEACAM5/6 serum levels frequently found in lung cancer patients. Taken together, our data suggest that post-confluent contact inhibition is established and maintained by CEACAM1-4L, but disturbances of CEACAM1 signalling by CEACAM1-4S and other CEACAMs lead to undifferentiated cell growth and malignant transformation.

  17. Human mesenchymal stem cell behavior on femtosecond laser-textured Ti-6Al-4V surfaces.

    PubMed

    Cunha, Alexandre; Zouani, Omar Farouk; Plawinski, Laurent; Botelho do Rego, Ana Maria; Almeida, Amélia; Vilar, Rui; Durrieu, Marie-Christine

    2015-01-01

    The aim of the present work was to investigate ultrafast laser surface texturing as a surface treatment of Ti-6Al-4V alloy dental and orthopedic implants to improve osteoblastic commitment of human mesenchymal stem cells (hMSCs). Surface texturing was carried out by direct writing with an Yb:KYW chirped-pulse regenerative amplification laser system with a central wavelength of 1030 nm and a pulse duration of 500 fs. The surface topography and chemical composition were investigated by scanning electron microscopy and x-ray photoelectron spectroscopy, respectively. Three types of surface textures with potential interest to improve implant osseointegration can be produced by this method: laser-induced periodic surface structures (LIPSSs); nanopillars (NPs); and microcolumns covered with LIPSSs, forming a bimodal roughness distribution. The potential of the laser treatment in improving hMSC differentiation was assessed by in vitro study of hMSCs spreading, adhesion, elongation and differentiation using epifluorescence microscopy at different times after cell seeding, after specific stainings and immunostainings. Cell area and focal adhesion area were lower on the laser-textured surfaces than on a polished reference surface. Obviously, the laser-textured surfaces have an impact on cell shape. Osteoblastic commitment was observed independently of the surface topography after 2 weeks of cell seeding. When the cells were cultured (after 4 weeks of seeding) in osteogenic medium, LIPSS- and NP- textured surfaces enhanced matrix mineralization and bone-like nodule formation as compared with polished and microcolumn-textured surfaces. The present work shows that surface nanotextures consisting of LIPSSs and NPs can, potentially, improve hMSC differentiation into an osteoblastic lineage.

  18. HDAC 1 and 6 modulate cell invasion and migration in clear cell renal cell carcinoma.

    PubMed

    Ramakrishnan, Swathi; Ku, ShengYu; Ciamporcero, Eric; Miles, Kiersten Marie; Attwood, Kris; Chintala, Sreenivasulu; Shen, Li; Ellis, Leigh; Sotomayor, Paula; Swetzig, Wendy; Huang, Ray; Conroy, Dylan; Orillion, Ashley; Das, Gokul; Pili, Roberto

    2016-08-09

    Class I histone deacetylases (HDACs) have been reported to be overexpressed in clear cell renal cell carcinoma (ccRCC), whereas the expression of class II HDACs is unknown. Four isogenic cell lines C2/C2VHL and 786-O/786-OVHL with differential VHL expression are used in our studies. Cobalt chloride is used to mimic hypoxia in vitro. HIF-2α knockdowns in C2 and 786-O cells is used to evaluate the effect on HDAC 1 expression and activity. Invasion and migration assays are used to investigate the role of HDAC 1 and HDAC 6 expression in ccRCC cells. Comparisons are made between experimental groups using the paired T-test, the two-sample Student's T-test or one-way ANOVA, as appropriate. ccRCC and the TCGA dataset are used to observe the clinical correlation between HDAC 1 and HDAC 6 overexpression and overall and progression free survival. Our analysis of tumor and matched non-tumor tissues from radical nephrectomies showed overexpression of class I and II HDACs (HDAC6 only in a subset of patients). In vitro, both HDAC1 and HDAC6 over-expression increased cell invasion and motility, respectively, in ccRCC cells. HDAC1 regulated invasiveness by increasing matrix metalloproteinase (MMP) expression. Furthermore, hypoxia stimulation in VHL-reconstituted cell lines increased HIF isoforms and HDAC1 expression. Presence of hypoxia response elements in the HDAC1 promoter along with chromatin immunoprecipitation data suggests that HIF-2α is a transcriptional regulator of HDAC1 gene. Conversely, HDAC6 and estrogen receptor alpha (ERα) were co-localized in cytoplasm of ccRCC cells and HDAC6 enhanced cell motility by decreasing acetylated α-tubulin expression, and this biological effect was attenuated by either biochemical or pharmacological inhibition. Finally, analysis of human ccRCC specimens revealed positive correlation between HIF isoforms and HDAC. HDAC1 mRNA upregulation was associated with worse overall survival in the TCGA dataset. Taking together, these results

  19. Rabbit notochordal cells modulate the expression of inflammatory mediators by human annulus fibrosus cells cocultured with activated macrophage-like THP-1 cells.

    PubMed

    Kim, Joo Han; Moon, Hong Joo; Lee, Jin Hoon; Kim, Jong Hyun; Kwon, Taek Hyun; Park, Youn Kwan

    2012-10-15

    We evaluated the influence of rabbit notochordal cells on the expression of inflammatory mediators by human annulus fibrosus (AF) cells cocultured with macrophage-like cells. To identify the protective effect of rabbit notochordal cells on AF during in vitro inflammation. Discogenic pain, which is an important cause of intractable lower back pain, is associated with macrophage-mediated inflammation in the AF. Although rabbit notochordal cells prevent intervertebral disc degeneration, their effects on human AF inflammation remain unknown. Human AF pellets were cocultured for 48 hours with notochordal cell clusters from adult New Zealand White rabbits and phorbol myristate acetate (PMA)-stimulated human macrophage-like THP-1 cells. Conditioned media (CM) from the cocultures were assayed by enzyme-linked immunosorbent assay. The expression of inflammatory mediators in the AF pellets was evaluated by real-time reverse-transcription polymerase chain reaction. The levels of mRNA for interleukin (IL)-6, IL-8, and inducible nitric oxide synthase (iNOS) in the AF pellets cocultured with notochordal cells and macrophages (hAF[rNC-M]) were significantly lower than those in the AF pellets cultured with macrophages alone (hAF[M]) (P < 0.05). The levels of IL-6 and IL-8 proteins in the CM of hAF(rNC-M) were significantly lower than those in the CM of hAF(M) (P < 0.05). Coculturing with notochordal cells significantly decreased the levels of mRNA for IL-6, IL-8, and iNOS in the macrophage-exposed AF pellets (P < 0.05). After 1 ng/mL IL-1β stimulation, the levels of IL-6 and IL-8 mRNA and the level of IL-8 protein production were significantly decreased in the AF pellets with notochordal cells compared with naïve AF pellets (P < 0.05). In an in vitro coculture system, rabbit notochordal cells reduced the levels of main inflammatory mediators and gene expression in the human AF during inflammation. Therefore, rabbit notochordal cells may constitute an important protective tool

  20. Human papillomavirus type 16 E6 suppresses microRNA-23b expression in human cervical cancer cells through DNA methylation of the host gene C9orf3.

    PubMed

    Yeung, Chi Lam Au; Tsang, Tsun Yee; Yau, Pak Lun; Kwok, Tim Tak

    2017-02-14

    Oncogenic protein E6 of human papillomavirus type 16 (HPV-16) is believed to involve in the aberrant methylation in cervical cancer as it upregulates DNA methyltransferase 1 (DNMT1) through tumor suppressor p53. In addition, DNA demethylating agent induces the expression of one of the HPV-16 E6 regulated microRNAs (miRs), miR-23b, in human cervical carcinoma SiHa cells. Thus, the importance of DNA methylation and miR-23b in HPV-16 E6 associated cervical cancer development is investigated. In the present study, however, it is found that miR-23b is not embedded in any typical CpG island. Nevertheless, a functional CpG island is predicted in the promoter region of C9orf3, the host gene of miR-23b, and is validated by methylation-specific PCR and bisulfite genomic sequencing analyses. Besides, c-MET is confirmed to be a target gene of miR-23b. Silencing of HPV-16 E6 is found to increase the expression of miR-23b, decrease the expression of c-MET and thus induce the apoptosis of SiHa cells through the c-MET downstream signaling pathway. Taken together, the tumor suppressive miR-23b is epigenetically inactivated through its host gene C9orf3 and this is probably a critical pathway during HPV-16 E6 associated cervical cancer development.

  1. Identification of interleukin-6 as an autocrine growth factor for Epstein-Barr virus-immortalized B cells.

    PubMed Central

    Tosato, G; Tanner, J; Jones, K D; Revel, M; Pike, S E

    1990-01-01

    Autocrine growth factors are believed to be important for maintenance of an immortalized state by Epstein-Barr virus (EBV), because cell-free supernatants of EBV-immortalized cell lines promote the proliferation of autologous cells and permit their growth at low cell density. In this study, we provide evidence for the existence of two autocrine growth factor activities produced by EBV-immortalized lines distinguished by size and biological activities. Much of the autocrine growth factor activity in lymphoblastoid cell line supernatants resided in a low-molecular-weight (less than 5,000) fraction. However, up to 20 to 30% of the autocrine growth factor activity resided in the high-molecular-weight (greater than 5,000) fraction. While the nature of the low-molecular-weight growth factor activity remains undefined, the high-molecular-weight growth factor activity was identified as interleukin-6 (IL-6). Culture supernatants from six EBV-induced lymphoblastoid cell lines tested contained IL-6 activity, because they promoted proliferation in the IL-6-dependent hybridoma cell line B9. In addition, a rabbit antibody to human IL-6 neutralized the capacity of the high-molecular-weight (greater than 5,000) fraction of a lymphoblastoid cell line supernatant to promote growth both in autologous EBV-immortalized cells and in B9 cells. Similarly, this high-molecular-weight autocrine growth factor activity was neutralized by a monoclonal antibody to human IL-6. Furthermore, characteristic bands, attributable to IL-6, were visualized in supernatants of each of four EBV-induced lymphoblastoid cell lines after immunoprecipitation with a rabbit antiserum to human IL-6. Thus, in addition to its previously reported properties, IL-6 is an autocrine growth factor for EBV-immortalized B cells cultured under serum-free conditions. Images PMID:2159561

  2. Effects of simultaneous knockdown of HER2 and PTK6 on malignancy and tumor progression in human breast cancer cells.

    PubMed

    Ludyga, Natalie; Anastasov, Natasa; Rosemann, Michael; Seiler, Jana; Lohmann, Nadine; Braselmann, Herbert; Mengele, Karin; Schmitt, Manfred; Höfler, Heinz; Aubele, Michaela

    2013-04-01

    Breast cancer is the most common malignancy in women of the Western world. One prominent feature of breast cancer is the co- and overexpression of HER2 and protein tyrosine kinase 6 (PTK6). According to the current clinical cancer therapy guidelines, HER2-overexpressing tumors are routinely treated with trastuzumab, a humanized monoclonal antibody targeting HER2. Approximately, 30% of HER2-overexpressing breast tumors at least initially respond to the anti-HER2 therapy, but a subgroup of these tumors develops resistance shortly after the administration of trastuzumab. A PTK6-targeted therapy does not yet exist. Here, we show for the first time that the simultaneous knockdown in vitro, compared with the single knockdown of HER2 and PTK6, in particular in the trastuzumab-resistant JIMT-1 cells, leads to a significantly decreased phosphorylation of crucial signaling proteins: mitogen-activated protein kinase 1/3 (MAPK 1/3, ERK 1/2) and p38 MAPK, and (phosphatase and tensin homologue deleted on chromosome ten) PTEN that are involved in tumorigenesis. In addition, dual knockdown strongly reduced the migration and invasion of the JIMT-1 cells. Moreover, the downregulation of HER2 and PTK6 led to an induction of p27, and the dual knockdown significantly diminished cell proliferation in JIMT-1 and T47D cells. In vivo experiments showed significantly reduced levels of tumor growth following HER2 or PTK6 knockdown. Our results indicate a novel strategy also for the treatment of trastuzumab resistance in tumors. Thus, the inhibition of these two signaling proteins may lead to a more effective control of breast cancer. ©2013 AACR.

  3. Metabolism of [6]-shogaol in mice and in cancer cells.

    PubMed

    Chen, Huadong; Lv, Lishuang; Soroka, Dominique; Warin, Renaud F; Parks, Tiffany A; Hu, Yuhui; Zhu, Yingdong; Chen, Xiaoxin; Sang, Shengmin

    2012-04-01

    Ginger has received extensive attention because of its antioxidant, anti-inflammatory, and antitumor activities. However, the metabolic fate of its major components is still unclear. In the present study, the metabolism of [6]-shogaol, one of the major active components in ginger, was examined for the first time in mice and in cancer cells. Thirteen metabolites were detected and identified, seven of which were purified from fecal samples collected from [6]-shogaol-treated mice. Their structures were elucidated as 1-(4'-hydroxy-3'-methoxyphenyl)-4-decen-3-ol (M6), 5-methoxy-1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-one (M7), 3',4'-dihydroxyphenyl-decan-3-one (M8), 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-ol (M9), 5-methylthio-1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-one (M10), 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-one (M11), and 5-methylthio-1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-ol (M12) on the basis of detailed analysis of their (1)H, (13)C, and two-dimensional NMR data. The rest of the metabolites were identified as 5-cysteinyl-M6 (M1), 5-cysteinyl-[6]-shogaol (M2), 5-cysteinylglycinyl-M6 (M3), 5-N-acetylcysteinyl-M6 (M4), 5-N-acetylcysteinyl-[6]-shogaol (M5), and 5-glutathiol-[6]-shogaol (M13) by analysis of the MS(n) (n = 1-3) spectra and comparison to authentic standards. Among the metabolites, M1 through M5, M10, M12, and M13 were identified as the thiol conjugates of [6]-shogaol and its metabolite M6. M9 and M11 were identified as the major metabolites in four different cancer cell lines (HCT-116, HT-29, H-1299, and CL-13), and M13 was detected as a major metabolite in HCT-116 human colon cancer cells. We further showed that M9 and M11 are bioactive compounds that can inhibit cancer cell growth and induce apoptosis in human cancer cells. Our results suggest that 1) [6]-shogaol is extensively metabolized in these two models, 2) its metabolites are bioactive compounds, and 3) the mercapturic acid pathway is one of the major biotransformation pathways of [6

  4. The Human Cell Atlas.

    PubMed

    Regev, Aviv; Teichmann, Sarah A; Lander, Eric S; Amit, Ido; Benoist, Christophe; Birney, Ewan; Bodenmiller, Bernd; Campbell, Peter; Carninci, Piero; Clatworthy, Menna; Clevers, Hans; Deplancke, Bart; Dunham, Ian; Eberwine, James; Eils, Roland; Enard, Wolfgang; Farmer, Andrew; Fugger, Lars; Göttgens, Berthold; Hacohen, Nir; Haniffa, Muzlifah; Hemberg, Martin; Kim, Seung; Klenerman, Paul; Kriegstein, Arnold; Lein, Ed; Linnarsson, Sten; Lundberg, Emma; Lundeberg, Joakim; Majumder, Partha; Marioni, John C; Merad, Miriam; Mhlanga, Musa; Nawijn, Martijn; Netea, Mihai; Nolan, Garry; Pe'er, Dana; Phillipakis, Anthony; Ponting, Chris P; Quake, Stephen; Reik, Wolf; Rozenblatt-Rosen, Orit; Sanes, Joshua; Satija, Rahul; Schumacher, Ton N; Shalek, Alex; Shapiro, Ehud; Sharma, Padmanee; Shin, Jay W; Stegle, Oliver; Stratton, Michael; Stubbington, Michael J T; Theis, Fabian J; Uhlen, Matthias; van Oudenaarden, Alexander; Wagner, Allon; Watt, Fiona; Weissman, Jonathan; Wold, Barbara; Xavier, Ramnik; Yosef, Nir

    2017-12-05

    The recent advent of methods for high-throughput single-cell molecular profiling has catalyzed a growing sense in the scientific community that the time is ripe to complete the 150-year-old effort to identify all cell types in the human body. The Human Cell Atlas Project is an international collaborative effort that aims to define all human cell types in terms of distinctive molecular profiles (such as gene expression profiles) and to connect this information with classical cellular descriptions (such as location and morphology). An open comprehensive reference map of the molecular state of cells in healthy human tissues would propel the systematic study of physiological states, developmental trajectories, regulatory circuitry and interactions of cells, and also provide a framework for understanding cellular dysregulation in human disease. Here we describe the idea, its potential utility, early proofs-of-concept, and some design considerations for the Human Cell Atlas, including a commitment to open data, code, and community.

  5. The Human Cell Atlas

    PubMed Central

    Amit, Ido; Benoist, Christophe; Birney, Ewan; Bodenmiller, Bernd; Campbell, Peter; Carninci, Piero; Clatworthy, Menna; Clevers, Hans; Deplancke, Bart; Dunham, Ian; Eberwine, James; Eils, Roland; Enard, Wolfgang; Farmer, Andrew; Fugger, Lars; Göttgens, Berthold; Hacohen, Nir; Haniffa, Muzlifah; Hemberg, Martin; Kim, Seung; Klenerman, Paul; Kriegstein, Arnold; Lein, Ed; Linnarsson, Sten; Lundberg, Emma; Lundeberg, Joakim; Majumder, Partha; Marioni, John C; Merad, Miriam; Mhlanga, Musa; Nawijn, Martijn; Netea, Mihai; Nolan, Garry; Pe'er, Dana; Phillipakis, Anthony; Ponting, Chris P; Quake, Stephen; Reik, Wolf; Rozenblatt-Rosen, Orit; Sanes, Joshua; Satija, Rahul; Schumacher, Ton N; Shalek, Alex; Shapiro, Ehud; Sharma, Padmanee; Shin, Jay W; Stegle, Oliver; Stratton, Michael; Stubbington, Michael J T; Theis, Fabian J; Uhlen, Matthias; van Oudenaarden, Alexander; Wagner, Allon; Watt, Fiona; Weissman, Jonathan; Wold, Barbara; Xavier, Ramnik; Yosef, Nir

    2017-01-01

    The recent advent of methods for high-throughput single-cell molecular profiling has catalyzed a growing sense in the scientific community that the time is ripe to complete the 150-year-old effort to identify all cell types in the human body. The Human Cell Atlas Project is an international collaborative effort that aims to define all human cell types in terms of distinctive molecular profiles (such as gene expression profiles) and to connect this information with classical cellular descriptions (such as location and morphology). An open comprehensive reference map of the molecular state of cells in healthy human tissues would propel the systematic study of physiological states, developmental trajectories, regulatory circuitry and interactions of cells, and also provide a framework for understanding cellular dysregulation in human disease. Here we describe the idea, its potential utility, early proofs-of-concept, and some design considerations for the Human Cell Atlas, including a commitment to open data, code, and community. PMID:29206104

  6. Urocortin 3 Marks Mature Human Primary and Embryonic Stem Cell-Derived Pancreatic Alpha and Beta Cells

    PubMed Central

    van der Meulen, Talitha; Xie, Ruiyu; Kelly, Olivia G.; Vale, Wylie W.; Sander, Maike; Huising, Mark O.

    2012-01-01

    The peptide hormone Urocortin 3 (Ucn 3) is abundantly and exclusively expressed in mouse pancreatic beta cells where it regulates insulin secretion. Here we demonstrate that Ucn 3 first appears at embryonic day (E) 17.5 and, from approximately postnatal day (p) 7 and onwards throughout adult life, becomes a unifying and exclusive feature of mouse beta cells. These observations identify Ucn 3 as a potential beta cell maturation marker. To determine whether Ucn 3 is similarly restricted to beta cells in humans, we conducted comprehensive immunohistochemistry and gene expression experiments on macaque and human pancreas and sorted primary human islet cells. This revealed that Ucn 3 is not restricted to the beta cell lineage in primates, but is also expressed in alpha cells. To substantiate these findings, we analyzed human embryonic stem cell (hESC)-derived pancreatic endoderm that differentiates into mature endocrine cells upon engraftment in mice. Ucn 3 expression in hESC-derived grafts increased robustly upon differentiation into mature endocrine cells and localized to both alpha and beta cells. Collectively, these observations confirm that Ucn 3 is expressed in adult beta cells in both mouse and human and appears late in beta cell differentiation. Expression of Pdx1, Nkx6.1 and PC1/3 in hESC-derived Ucn 3+ beta cells supports this. However, the expression of Ucn 3 in primary and hESC-derived alpha cells demonstrates that human Ucn 3 is not exclusive to the beta cell lineage but is a general marker for both the alpha and beta cell lineages. Ucn 3+ hESC-derived alpha cells do not express Nkx6.1, Pdx1 or PC1/3 in agreement with the presence of a separate population of Ucn 3+ alpha cells. Our study highlights important species differences in Ucn 3 expression, which have implications for its utility as a marker to identify mature beta cells in (re)programming strategies. PMID:23251699

  7. Novel leads from Heliotropium ovalifolium, 4,7,8-trimethoxy-naphthalene-2-carboxylic acid and 6-hydroxy-5,7-dimethoxy-naphthalene-2-carbaldehyde show specific IL-6 inhibitory activity in THP-1 cells and primary human monocytes.

    PubMed

    Kulkarni-Almeida, Asha; Suthar, Ashish; Goswami, Hitesh; Vishwakarma, Ram; Chauhan, Vijay Singh; Balakrishnan, Arun; Sharma, Somesh

    2008-12-01

    From our screening program, we identified the anti-inflammatory effects of the extracts of Heliotropium ovalifolium in its ability to inhibit specific cytokines. The H. ovalifolium extract was found to be moderately active with an IC(50) equaling 10 microg/ml for inhibition of interleukin-6 (IL-6) in a human monocytic cell line. Interleukin-6 is a pleiotropic cytokine with implications in the regulation of the immune response, inflammation and hematopoiesis. This prompted us to examine and identify the active molecules that are responsible for the bioactivity in THP-1 cells. Bioassay guided fractionation identified two compounds 4,7,8-trimethoxy-naphthalene-2-carboxylic acid and 6-hydroxy-5,7-dimethoxy-naphthalene-2-carbaldehyde with an IC(50) of 2.4 and 2.0 microM for IL-6 inhibition and an IC(50) of 15.6 and 7.0 microM for tumor necrosis factor-alpha (TNF-alpha) inhibition in THP-1 cells. The protein expression data were supported by the inhibitory effect on mRNA gene expression. The compounds isolated from H. ovalifolium were also non-toxic in human peripheral blood monocytes from normal donors and the activity profile was similar to that obtained on THP-1 cells. Thus, we believe that these scaffolds may be of interest to develop leads for treating rheumatoid arthritis, psoriasis, ulcerative colitis, Crohn's disease and other inflammatory disorders. However, more detailed investigations need to be carried out to explain the efficacy of these compounds as drugs.

  8. Receptor channel TRPC6 orchestrate the activation of human hepatic stellate cell under hypoxia condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyer, Soumya C, E-mail: chidambaram.soumya@gmail.com; Kannan, Anbarasu; Gopal, Ashidha

    2015-08-01

    Hepatic stellate cells (HSCs), a specialized stromal cytotype have a great impact on the biological behaviors of liver diseases. Despite this fact, the underlying mechanism that regulates HSC still remains poorly understood. The aim of the present study was to understand the role of TRPC6 signaling in regulating the molecular mechanism of HSCs in response to hypoxia. In the present study we showed that under hypoxia condition, the upregulated Hypoxia Inducible Factor 1α (HIF1α) increases NICD activation, which in turn induces the expression of transient receptor potential channel 6 (TRPC6) in HSC line lx-2. TRPC6 causes a sustained elevation ofmore » intracellular calcium which is coupled with the activation of the calcineurin-nuclear factor of activated T-cell (NFAT) pathway which activates the synthesis of extracellular matrix proteins. TRPC6 also activates SMAD2/3 dependent TGF-β signaling in facilitating upregulated expression of αSMA and collagen. As activated HSCs may be a suitable target for HCC therapy and targeting these cells rather than the HCC cells may result in a greater response. Collectively, our studies indicate for the first time the detailed mechanism of activation of HSC through TRPC6 signaling and thus being a promising therapeutic target. - Highlights: • HIF1α increases NICD, induces TRPC6 in lx2 cells. • TRPC6 a novel regulator in the activation of HSC. • HSCs as target for HCC therapy.« less

  9. Accumulation of Herpes Simplex Virus Type 1 Early and Leaky-Late Proteins Correlates with Apoptosis Prevention in Infected Human HEp-2 Cells

    PubMed Central

    Aubert, Martine; Rice, Stephen A.; Blaho, John A.

    2001-01-01

    We previously reported that a recombinant ICP27-null virus stimulated, but did not prevent, apoptosis in human HEp-2 cells during infection (M. Aubert and J. A. Blaho, J. Virol. 73:2803–2813, 1999). In the present study, we used a panel of 15 recombinant ICP27 mutant viruses to determine which features of herpes simplex virus type 1 (HSV-1) replication are required for the apoptosis-inhibitory activity. Each virus was defined experimentally as either apoptotic, partially apoptotic, or nonapoptotic based on infected HEp-2 cell morphologies, percentages of infected cells with condensed chromatin, and patterns of specific cellular death factor processing. Viruses d27-1, d1-5, d1-2, M11, M15, M16, n504R, n406R, n263R, and n59R are apoptotic or partially apoptotic in HEp-2 cells and severely defective for growth in Vero cells. Viruses d2-3, d3-4, d4-5, d5-6, and d6-7 are nonapoptotic, demonstrating that ICP27 contains a large amino-terminal region, including its RGG box RNA binding domain, which is not essential for apoptosis prevention. Accumulations of viral TK, VP16, and gD but not gC, ICP22, or ICP4 proteins correlated with prevention of apoptosis during the replication of these viruses. Of the nonapoptotic viruses, d4-5 did not produce gC, indicating that accumulation of true late gene products is not necessary for the prevention process. Analyses of viral DNA synthesis in HEp-2 cells indicated that apoptosis prevention by HSV-1 requires that the infection proceeds to the stage in which viral DNA replication takes place. Infections performed in the presence of the drug phosphonoacetic acid confirmed that the process of viral DNA synthesis and the accumulation of true late (γ2) proteins are not required for apoptosis prevention. Based on our results, we conclude that the accumulation of HSV-1 early (β) and leaky-late (γ1) proteins correlates with the prevention of apoptosis in infected HEp-2 cells. PMID:11134315

  10. Trefoil factor 3 isolated from human breast milk downregulates cytokines (IL8 and IL6) and promotes human beta defensin (hBD2 and hBD4) expression in intestinal epithelial cells HT-29

    PubMed Central

    Barrera, Girolamo Jose; Sanchez, Gabriela; Gonzalez, Jose Emanuele

    2012-01-01

    Trefoil factors (TFF) are secretory products of mucin producing cells. They play a key role in the maintenance of the surface integrity of oral mucosa and enhance healing of the gastrointestinal mucosa by a process called restitution. TFF comprises the gastric peptides (TFF1), spasmolytic peptide (TFF2), and the intestinal trefoil factor (TFF3). They have an important and necessary role in epithelial restitution within the gastrointestinal tract. Significant amounts of TFF are present in human milk. This study aimed to determine a possible correlation between TFF3 isolated from human breast milk and levels of cytokines (IL8 and IL6) and defensins (hBD2 and hBD4) in intestinal epithelial cells HT-29 treated with trefoil. Samples of human milk were collected within 2-4 weeks postpartum from healthy human mothers (18-30-years-old) by manual breast massage, and TFF3 was purified by ammonium sulfate precipitation, isoelectric precipitation, DEAE-chromatography, and gel filtration. In this work we measured the concentrations and mRNA levels of cytokines and defensins by immunoassay (ELISA) and semiquantitative RT-PCR technique, respectively. Also we measured the peroxidase activity. We present the first evidence of human milk TFF3 purification. Here we show that the presence of TFF3 isolated from milk strongly correlates with downregulation of IL8 and IL6 in human intestinal epithelial cells. On the other hand, TFF3 activated the epithelial cells in culture to produce beta defensins 2 (hBD2) and beta defensins 4 (hBD4). These findings suggest that TFF can activate intestinal epithelial cells and could actively participate in the immune system of breastfed babies by inducing the production of peptides related to innate defence, such as defensins. PMID:23198942

  11. Neuroprotective effects of human mesenchymal stem cells on neural cultures exposed to 6-hydroxydopamine: implications for reparative therapy in Parkinson's disease.

    PubMed

    Cova, Lidia; Bossolasco, Patrizia; Armentero, Marie-Therese; Diana, Valentina; Zennaro, Eleonora; Mellone, Manuela; Calzarossa, Cinzia; Cerri, Silvia; Deliliers, Giorgio Lambertenghi; Polli, Elio; Blandini, Fabio; Silani, Vincenzo

    2012-03-01

    Stem cell (SC) transplantation represents a promising tool to treat neurodegenerative disorders, such as Parkinson's disease (PD), but positive therapeutic outcomes require elucidation of the biological mechanisms involved. Therefore, we investigated human Mesenchymal SCs (hMSCs) ability to protect murine differentiated Neural SCs (mdNSCs) against the cytotoxic effects of 6-hydroxydopamine (6-OHDA) in a co-culture model mimicking the in vivo neurovascular niche. The internalization of 6-OHDA mainly relies on its uptake by the dopamine active transporter (DAT), but its toxicity could also involve other pathways. We demonstrated that mdNSCs consistently expressed DAT along the differentiative process. Exposure to 6-OHDA did not affect hMSCs, but induced DAT-independent apoptosis in mdNSCs with generation of reactive oxygen species and caspases 3/7 activation. The potential neuroprotective action of hMSCs on mdNSCs exposed to 6-OHDA was tested in different co-culture conditions, in which hMSCs were added to mdNSCs prior to, simultaneously, or after 6-OHDA treatment. In the presence of the neurotoxin, the majority of mdNSCs acquired an apoptotic phenotype, while co-cultures with hMSCs significantly increased their survival (up to 70%) in all conditions. Multiplex human angiogenic array analysis on the conditioned media demonstrated that cytokine release by hMSCs was finely modulated. Moreover, sole growth factor addition yielded a similar neuroprotective effect on mdNSCs. In conclusion, our findings demonstrate that hMSCs protect mdNSCs against 6-OHDA neurotoxicity, and rescue cells from ongoing neurodegeneration likely through the release of multiple cytokines. Our findings provide novel insights for the development of therapeutic strategies designed to counteract the neurodegenerative processes of PD.

  12. Retroviral-mediated gene therapy for the treatment of hepatocellular carcinoma: an innovative approach for cancer therapy.

    PubMed Central

    Huber, B E; Richards, C A; Krenitsky, T A

    1991-01-01

    An approach involving retroviral-mediated gene therapy for the treatment of neoplastic disease is described. This therapeutic approach is called "virus-directed enzyme/prodrug therapy" (VDEPT). The VDEPT approach exploits the transcriptional differences between normal and neoplastic cells to achieve selective killing of neoplastic cells. We now describe development of the VDEPT approach for the treatment of hepatocellular carcinoma. Replication-defective, amphotrophic retroviruses were constructed containing a chimeric varicella-zoster virus thymidine kinase (VZV TK) gene that is transcriptionally regulated by either the hepatoma-associated alpha-fetoprotein or liver-associated albumin transcriptional regulatory sequences. Subsequent to retroviral infection, expression of VZV TK was limited to either alpha-fetoprotein- or albumin-positive cells, respectively. VZV TK metabolically activated the nontoxic prodrug 6-methoxypurine arabinonucleoside (araM), ultimately leading to the formation of the cytotoxic anabolite adenine arabinonucleoside triphosphate (araATP). Cells that selectively expressed VZV TK became selectively sensitive to araM due to the VZV TK-dependent anabolism of araM to araATP. Hence, these retroviral-delivered chimeric genes generated tissue-specific expression of VZV TK, tissue-specific anabolism of araM to araATP, and tissue-specific cytotoxicity due to araM exposure. By utilizing such retroviral vectors, araM was anabolized to araATP in hepatoma cells, producing a selective cytotoxic effect. Images PMID:1654555

  13. Chocolate procyanidins decrease the leukotriene-prostacyclin ratio in humans and human aortic endothelial cells.

    PubMed

    Schramm, D D; Wang, J F; Holt, R R; Ensunsa, J L; Gonsalves, J L; Lazarus, S A; Schmitz, H H; German, J B; Keen, C L

    2001-01-01

    Polyphenolic phytochemicals inhibit vascular and inflammatory processes that contribute to disease. These effects are hypothesized to result from polyphenol-mediated alterations in cellular eicosanoid synthesis. The objective was to determine and compare the ability of cocoa procyanidins to alter eicosanoid synthesis in human subjects and cultured human aortic endothelial cells. After an overnight fast, 10 healthy subjects (4 men and 6 women) consumed 37 g low-procyanidin (0.09 mg/g) and high-procyanidin (4.0 mg/g) chocolate; the treatments were separated by 1 wk. The investigation had a randomized, blinded, crossover design. Plasma samples were collected before treatment and 2 and 6 h after treatment. Eicosanoids were quantitated by enzyme immunoassay. Endothelial cells were treated in vitro with procyanidins to determine whether the effects of procyanidin in vivo were associated with procyanidin-induced alterations in endothelial cell eicosanoid synthesis. Relative to the effects of the low-procyanidin chocolate, high-procyanidin chocolate induced increases in plasma prostacyclin (32%; P<0.05) and decreases in plasma leukotrienes (29%; P<0.04). After the in vitro procyanidin treatments, aortic endothelial cells synthesized twice as much 6-keto-prostaglandin F(1alpha) (P<0.01) and 16% less leukotriene (P<0.05) as did control cells. The in vitro and in vivo effects of procyanidins on plasma leukotriene-prostacyclin ratios in culture medium were also comparable: decreases of 58% and 52%, respectively. Data from this short-term investigation support the concept that certain food-derived flavonoids can favorably alter eicosanoid synthesis in humans, providing a plausible hypothesis for a mechanism by which they can decrease platelet activation in humans.

  14. Repair of O6-alkylguanines in the nuclear DNA of human lymphocytes and leukaemic cells: analysis at the single-cell level.

    PubMed Central

    Thomale, J.; Seiler, F.; Müller, M. R.; Seeber, S.; Rajewsky, M. F.

    1994-01-01

    Inter-individual and cell-cell variability of repair of O6-alkylguanines (O6-AlkGua) in nuclear DNA was studied at the single-cell level in peripheral lymphocytes from healthy donors and in leukaemic cells isolated from patients with chronic lymphatic leukaemia (CLL) or acute myeloid leukaemia (AML). Cells were pulse exposed to N-ethyl- or N-(n-)butyl-N-nitrosourea in vitro, and O6-AlkGua residues in DNA were quantified using an anti-(O6-AlkGua) monoclonal antibody and electronically intensified fluorescence. The kinetics of O6-AlkGua elimination revealed considerable inter-individual differences in O6-ethylguanine (O6-EtGua) half-life (t1/2) values in DNA, ranging from 1.5 to 4.5 h (five AML patients), from 0.8 to 2.8 h (five CLL patients) and from 1.2 to 7.3 h (five healthy donors). The elimination from DNA of equimolar amounts of O6-butylguanine was generally 3-5 times slower in comparison with O6-EtGua. The t1/2 values of individual samples varied in parallel for both DNA alkylation products. Upon preincubation with O6-benzylguanine, the activity of the DNA repair protein O6-alkylguanine-DNA alkyltransferase (AT) in both lymphocytes and leukaemic blasts was reduced to < or = 1%. However, while the rate of O6-EtGua elimination from DNA was decelerated it was not abolished, suggesting the possible involvement of additional repair systems that might be co-regulated with AT. Within individual samples, no major cell subpopulations were observed whose repair kinetics would differ significantly from the remaining cells. Images Figure 1 PMID:8142257

  15. The Asian-American E6 Variant Protein of Human Papillomavirus 16 Alone Is Sufficient To Promote Immortalization, Transformation, and Migration of Primary Human Foreskin Keratinocytes

    PubMed Central

    Niccoli, Sarah; Abraham, Suraj; Richard, Christina

    2012-01-01

    We examined how well the human papillomavirus (HPV) E6 oncogene can function in the absence of the E7 oncogene during the carcinogenic process in human keratinocytes using a common HPV variant strongly associated with cervical cancer: the Asian-American E6 variant (AAE6). This E6 variant is 20 times more frequently detected in cervical cancer than the prototype European E6 variant, as evidenced by independent epidemiological data. Using cell culture and cell-based functional assays, we assessed how this variant can perform crucial carcinogenesis steps compared to the prototype E6 variant. The ability to immortalize and transform primary human foreskin keratinocytes (PHFKs) to acquire resilient phenotypes and the ability to promote cell migration were evaluated. The immortalization capability was assayed based on population doublings, number of passages, surpassing mortality stages 1 and 2, human telomerase reverse transcriptase (hTERT) expression, and the ability to overcome G1 arrest via p53 degradation. Transformation and migration efficiency were analyzed using a combination of functional cell-based assays. We observed that either AAE6 or prototype E6 proteins alone were sufficient to immortalize PHFKs, although AAE6 was more potent in doing so. The AAE6 variant protein alone pushed PHFKs through transformation and significantly increased their migration ability over that of the E6 prototype. Our findings are in line with epidemiological data that the AA variant of HPV16 confers an increased risk over the European prototype for cervical cancer, as evidenced by a superior immortalization, transformation, and metastatic potential. PMID:22951839

  16. Tuft (caveolated) cells in two human colon carcinoma cell lines.

    PubMed Central

    Barkla, D. H.; Whitehead, R. H.; Foster, H.; Tutton, P. J.

    1988-01-01

    The presence of an unusual cell type in two human colon carcinoma cell lines is reported. The cells show the same morphology as "tuft" (caveolated) cells present in normal gastrointestinal epithelium. Tuft cells were seen in cell line LIM 1863 growing in vitro and in human colon carcinoma cell line LIM 2210 growing as subcutaneous solid tumour xenografts in nude mice. Characteristic morphologic features of tuft cells included a wide base, narrow apex and a tuft of long microvilli projecting from the apical surface. The microvilli are attached by a core of long microfilaments passing deep into the apical cytoplasm. Between the microvilli are parallel arrays of vesicles (caveoli) containing flocculent material. Two different but not mutually exclusive explanations for the presence of tuft cells are proposed. The first explanation is that tuft cells came from the resected tumour and have survived by mitotic division during subsequent passages. The second explanation suggests that tuft cells are the progeny of undifferentiated tumour cells. Descriptions of tuft cells in colon carcinomas are uncommon and possible reasons for this are presented. The morphology of tuft cells is consistent with that of a highly differentiated cell specialised for absorption, and these new models provide an opportunity to further investigate the structure and function of tuft cells. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:3414781

  17. The Ron Receptor Regulates Kupffer Cell-Dependent Cytokine Production and Hepatocyte Survival Following Endotoxin Exposure in Mice

    PubMed Central

    Stuart, William D.; Kulkarni, Rishikesh M.; Gray, Jerilyn K.; Vasiliauskas, Juozas; Leonis, Mike A.; Waltz, Susan E.

    2011-01-01

    Previous studies demonstrated that targeted deletion of the Ron receptor tyrosine kinase (TK) domain in mice leads to marked hepatocyte protection in a well-characterized model of lipopolysaccharide (LPS)-induced acute liver failure in D-galactosamine (GalN)-sensitized mice. Hepatocyte protection in TK−/− mice was observed despite paradoxically elevated serum levels of tumor necrosis factor alpha (TNFα). To understand the role of Ron in the liver, purified populations of Kupffer cells and hepatocytes from wild-type (TK+/+) and TK−/− mice were studied. Utilizing quantitative RT-PCR, we demonstrated that Ron is expressed in these cell-types. Moreover, we also recapitulated the protected hepatocyte phenotype and exaggerated cytokine production observed in the TK−/− mice in vivo through the use of purified cultured cells ex vivo. We show that isolated TK−/− Kupffer cells produce increased levels of TNFα and select cytokines compared to TK+/+ cells following LPS stimulation. We also show that conditioned media from LPS-treated TK−/− Kupffer cells was more toxic to hepatocytes than control media, suggesting the exaggerated levels of cytokines produced from the TK−/− Kupffer cells are detrimental to wild type hepatocytes. In addition, we observed that TK−/− hepatocytes were more resistant to cell death compared to TK+/+ hepatocytes, suggesting that Ron functions in both the epithelial and inflammatory cell compartments to regulate acute liver injury. These findings were confirmed in vivo in mice with hepatocyte and macrophage cell-type-specific conditional Ron deletions. Mice with Ron loss selectively in hepatocytes exhibited less liver damage and increased survival compared to mice with Ron loss in macrophages. In conclusion, we have dissected cell-type-specific roles for Ron such that this receptor modulates cytokine production from Kupffer cells and inhibits hepatocyte survival in response to injury. PMID:21520175

  18. Distribution and Metabolism of Lipocurc™ (Liposomal Curcumin) in Dog and Human Blood Cells: Species Selectivity and Pharmacokinetic Relevance.

    PubMed

    Bolger, Gordon T; Licollari, Albert; Tan, Aimin; Greil, Richard; Vcelar, Brigitta; Majeed, Muhammad; Helson, Lawrence

    2017-07-01

    The aim of this study was to investigate the distribution of curcumin (in the form of Lipocurc™) and its major metabolite tetrahydrocurcumin (THC) in Beagle dog and human red blood cells, peripheral blood mononuclear cells (PBMC) and hepatocytes. Lipocurc™ was used as the source of curcumin for the cell distribution assays. In vitro findings with red blood cells were also compared to in vivo pharmacokinetic data available from preclinical studies in dogs and phase I clinical studies in humans. High levels of curcumin were measured in PBMCs (625.5 ng/g w.w. cell pellet or 7,297 pg/10 6 cells in dog and 353.7 ng/g w.w. cell pellet or 6,809 pg/10 6 cells in human) and in hepatocytes (414.5 ng/g w.w. cell pellet or 14,005 pg/10 6 cells in dog and 813.5 ng/g w.w. cell pellet or 13,780 pg/10 6 cells in human). Lower curcumin levels were measured in red blood cells (dog: 78.4 ng/g w.w. cell pellet or 7.2 pg/10 6 cells, human: 201.5 ng/g w.w. cell pellet or 18.6 pg/10 6 cells). A decrease in the medium concentration of curcumin was observed in red blood cells and hepatocytes, but not in PBMCs. Red blood cell levels of THC were ~5-fold higher in dog compared to human and similar between dog and human for hepatocytes and PBMCs. The ratio of THC to curcumin found in the red blood cell medium following incubation was 6.3 for dog compared to 0.006 for human, while for PBMCs and hepatocytes the ratio of THC to curcumin in the medium did not display such marked species differences. There was an excellent correlation between the in vitro disposition of curcumin and THC following incubation with red blood cells and in vivo plasma levels of curcumin and THC in dog and human following intravenous infusion. The disposition of curcumin in blood cells is, therefore, species-dependent and of pharmacokinetic relevance. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  19. Enhanced Stem Cell Differentiation and Immunopurification of Genome Engineered Human Retinal Ganglion Cells.

    PubMed

    Sluch, Valentin M; Chamling, Xitiz; Liu, Melissa M; Berlinicke, Cynthia A; Cheng, Jie; Mitchell, Katherine L; Welsbie, Derek S; Zack, Donald J

    2017-11-01

    Human pluripotent stem cells have the potential to promote biological studies and accelerate drug discovery efforts by making possible direct experimentation on a variety of human cell types of interest. However, stem cell cultures are generally heterogeneous and efficient differentiation and purification protocols are often lacking. Here, we describe the generation of clustered regularly-interspaced short palindromic repeats(CRISPR)-Cas9 engineered reporter knock-in embryonic stem cell lines in which tdTomato and a unique cell-surface protein, THY1.2, are expressed under the control of the retinal ganglion cell (RGC)-enriched gene BRN3B. Using these reporter cell lines, we greatly improved adherent stem cell differentiation to the RGC lineage by optimizing a novel combination of small molecules and established an anti-THY1.2-based protocol that allows for large-scale RGC immunopurification. RNA-sequencing confirmed the similarity of the stem cell-derived RGCs to their endogenous human counterparts. Additionally, we developed an in vitro axonal injury model suitable for studying signaling pathways and mechanisms of human RGC cell death and for high-throughput screening for neuroprotective compounds. Using this system in combination with RNAi-based knockdown, we show that knockdown of dual leucine kinase (DLK) promotes survival of human RGCs, expanding to the human system prior reports that DLK inhibition is neuroprotective for murine RGCs. These improvements will facilitate the development and use of large-scale experimental paradigms that require numbers of pure RGCs that were not previously obtainable. Stem Cells Translational Medicine 2017;6:1972-1986. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  20. Activation of Wnt signaling pathway by human papillomavirus E6 and E7 oncogenes in HPV16-positive oropharyngeal squamous carcinoma cells.

    PubMed

    Rampias, Theodore; Boutati, Eleni; Pectasides, Eirini; Sasaki, Clarence; Kountourakis, Panteleimon; Weinberger, Paul; Psyrri, Amanda

    2010-03-01

    We sought to determine the role of human papillomavirus (HPV) E6 and E7 oncogenes in nuclear beta-catenin accumulation, a hallmark of activated canonical Wnt signaling pathway. We used HPV16-positive oropharyngeal cancer cell lines 147T and 090, HPV-negative cell line 040T, and cervical cell lines SiHa (bearing integrated HPV16) and HeLa (bearing integrated HPV18) to measure the cytoplasmic and nuclear beta-catenin levels and the beta-catenin/Tcf transcriptional activity before and after E6/E7 gene silencing. Repression of HPV E6 and E7 genes induced a substantial reduction in nuclear beta-catenin levels. Luciferase assay showed that transcriptional activation of Tcf promoter by beta-catenin was lower after silencing. The protein levels of beta-catenin are tightly regulated by the ubiquitin/proteasome system. We therefore performed expression analysis of regulators of beta-catenin degradation and nuclear transport and showed that seven in absentia homologue (Siah-1) mRNA and protein levels were substantially upregulated after E6/E7 repression. Siah-1 protein promotes the degradation of beta-catenin through the ubiquitin/proteasome system. To determine whether Siah-1 is important for the proteasomal degradation of beta-catenin in HPV16-positive oropharyngeal cancer cells, we introduced a Siah-1 expression vector into 147T and 090 cells and found substantial reduction of endogenous beta-catenin in these cells. Thus, E6 and E7 are involved in beta-catenin nuclear accumulation and activation of Wnt signaling in HPV-induced cancers. In addition, we show the significance of the endogenous Siah-1-dependent ubiquitin/proteasome pathway for beta-catenin degradation and its regulation by E6/E7 viral oncoproteins in HPV16-positive oropharyngeal cancer cells.

  1. Induction of cross-tolerance between protective effect of morphine and nicotine in 6-hydroxydopamine-induce neurotoxicity in SH-SY5Y human dopaminergic neuroblastoma cells.

    PubMed

    Elyasi, Leila; Eftekhar-Vaghefi, Seyed Hassan; Asadi-Shekaaria, Majid; Esmaeili-Mahani, Saeed

    2018-06-27

    Parkinson's disease is a progressive neurodegenerative disease characterized by progressive and selective death of dopaminergic neurons. It has been reported that nicotine and morphine have protective roles during neuronal damage in Parkinson's disease. In addition, the induction of cross-tolerance between their biological effects has been shown in numerous reports. Here, we investigated the effects of nicotine and morphine on 6-OHDA-induced neurotoxicity in human neuroblastoma SH-SY5Y cell line as an in vitro model of Parkinson's disease. Cell damage was induced by 150 μM 6-OHDA and the cells viability was examined by MTT assay. Intracellular reactive oxygen species, calcium level and mitochondrial membrane potential were determined by fluorescence spectrophotometer method. Biochemical markers of apoptosis were also evaluated by immunoblotting. The data showed that morphine and nicotine prevent 6-OHDA- induced cell damage and apoptosis. However, the protective effects of nicotine were not observed in chronic morphine-pretreated cells. Morphine had no protective effects in chronic nicotine-incubated cells. A cross-tolerance between protective effects of morphine and nicotine was occurred in 6-OHDA-induced SH-SY5Y cell toxicity.

  2. Monkey Adrenal Chromaffin Cells Express α6β4* Nicotinic Acetylcholine Receptors

    PubMed Central

    Scadden, Mick´l; Carmona-Hidalgo, Beatriz; McIntosh, J. Michael; Albillos, Almudena

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) that contain α6 and β4 subunits have been demonstrated functionally in human adrenal chromaffin cells, rat dorsal root ganglion neurons, and on noradrenergic terminals in the hippocampus of adolescent mice. In human adrenal chromaffin cells, α6β4* nAChRs (the asterisk denotes the possible presence of additional subunits) are the predominant subtype whereas in rodents, the predominant nAChR is the α3β4* subtype. Here we present molecular and pharmacological evidence that chromaffin cells from monkey (Macaca mulatta) also express α6β4* receptors. PCR was used to show the presence of transcripts for α6 and β4 subunits and pharmacological characterization was performed using patch-clamp electrophysiology in combination with α-conotoxins that target the α6β4* subtype. Acetylcholine-evoked currents were sensitive to inhibition by BuIA[T5A,P6O] and MII[H9A,L15A]; α-conotoxins that inhibit α6-containing nAChRs. Two additional agonists were used to probe for the expression of α7 and β2-containing nAChRs. Cells with currents evoked by acetylcholine were relatively unresponsive to the α7-selctive agonist choline but responded to the agonist 5-I-A-85380. These studies provide further insights into the properties of natively expressed α6β4* nAChRs. PMID:24727685

  3. Reactive Oxygen Stimulation of Interleukin-6 Release in the Human Trophoblast Cell Line HTR-8/SVneo by the Trichlorethylene Metabolite S-(1,2-Dichloro)-l-Cysteine.

    PubMed

    Hassan, Iman; Kumar, Anjana M; Park, Hae-Ryung; Lash, Lawrence H; Loch-Caruso, Rita

    2016-09-01

    Trichloroethylene (TCE) is a common environmental pollutant associated with adverse reproductive outcomes in humans. TCE intoxication occurs primarily through its biotransformation to bioactive metabolites, including S-(1,2-dichlorovinyl)-l-cysteine (DCVC). TCE induces oxidative stress and inflammation in the liver and kidney. Although the placenta is capable of xenobiotic metabolism and oxidative stress and inflammation in placenta have been associated with adverse pregnancy outcomes, TCE toxicity in the placenta remains poorly understood. We determined the effects of DCVC by using the human extravillous trophoblast cell line HTR-8/SVneo. Exposure to 10 and 20 μM DCVC for 10 h increased reactive oxygen species (ROS) as measured by carboxydichlorofluorescein fluorescence. Moreover, 10 and 20 μM DCVC increased mRNA expression and release of interleukin-6 (IL-6) after 24-h exposure, and these responses were inhibited by the cysteine conjugate beta-lyase inhibitor aminooxyacetic acid and by treatments with antioxidants (alpha-tocopherol and deferoxamine), suggesting that DCVC-stimulated IL-6 release in HTR-8/SVneo cells is dependent on beta-lyase metabolic activation and increased generation of ROS. HTR-8/SVneo cells exhibited decreased mitochondrial membrane potential at 5, 10, and 20 μM DCVC at 5, 10, and 24 h, showing that DCVC induces mitochondrial dysfunction in HTR-8/Svneo cells. The present study demonstrates that DCVC stimulated ROS generation in the human placental cell line HTR-8/SVneo and provides new evidence of mechanistic linkage between DCVC-stimulated ROS and increase in proinflammatory cytokine IL-6. Because abnormal activation of cytokines can disrupt trophoblast functions necessary for placental development and successful pregnancy, follow-up investigations relating these findings to physiologic outcomes are warranted. © 2016 by the Society for the Study of Reproduction, Inc.

  4. Pretargeting vs. direct targeting of human betalox5 islet cells subcutaneously implanted in mice using an anti-human islet cell antibody.

    PubMed

    Liu, Guozheng; Dou, Shuping; Akalin, Ali; Rusckowski, Mary; Streeter, Philip R; Shultz, Leonard D; Greiner, Dale L

    2012-07-01

    We previously demonstrated MORF/cMORF pretargeting of human islets and betalox 5 cells (a human beta cell line) transplanted subcutaneously in mice with the anti-human islet antibody, HPi1. We now compare pretargeting with direct targeting in the beta cell transplant model to evaluate the degree to which target/non-target (T/NT) ratios may be improved by pretargeting. Specific binding of an anti-human islet antibody HPi1 to the beta cells transplanted subcutaneously in mice was examined against a negative control antibody. We then compared pretargeting by MORF-HPi1 plus 111In-labeled cMORF to direct targeting by 111In-labeled HPi1. HPi1 binding to betalox5 human cells in the transplant was shown by immunofluorescence. Normal organ 111In backgrounds by pretargeting were always lower, although target accumulations were similar. More importantly, the transplant to pancreas and liver ratios was, respectively, 26 and 10 by pretargeting as compared to 9 and 0.6 by direct targeting. Pretargeting greatly improves the T/NT ratios, and based on the estimated endocrine to exocrine ratio within a pancreas, pretargeting may be approaching the sensitivity required for successful imaging of human islets within this organ. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Isolation of a new herpes virus from human CD4 sup + T cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frenkel, N.; Schirmer, E.C.; Wyatt, L.S.

    1990-01-01

    A new human herpes virus has been isolated from CD4{sup +} T cells purified from peripheral blood mononuclear cells of a healthy individual (RK), following incubation of the cells under conditions promoting T-cell activation. The virus could not be recovered from nonactivated cells. Cultures of lymphocytes infected with the RK virus exhibited a cytopathic effect, and electron microscopic analyses revealed a characteristic herpes virus structure. RK virus DNA did not hybridize with large probes derived from herpes simplex virus, Epstein-Barr virus, varicella-zoster virus, and human cytomegalovirus. The genetic relatedness of the RK virus to the recently identified T-lymphotropic human herpesmore » virus 6 (HHV-6) was investigated by restriction enzyme analyses using 21 different enzymes and by blot hydridization analyses using 11 probes derived from two strains of HHV-6 (Z29 and U1102). Whereas the two HHV-6 strains exhibited only limited restriction enzyme polymorphism, cleavage of the RK virus DNA yielded distinct patterns. Of the 11 HHV-6 DNA probes tested, only 6 cross-hybridized with DNA fragments derived from the RK virus. Taken together, the maximal homology amounted to 31 kilobases of the 75 kilobases tested. The authors conclude that the RK virus is distinct from previously characterized human herpesviruses. The authors propose to designate it as the prototype of a new herpes virus, the seventh human herpes virus identified to date.« less

  6. Productive Infection of Human Embryonic Stem Cell-Derived NKX2.1+ Respiratory Progenitors with Human Rhinovirus.

    PubMed

    Jenny, Robert A; Hirst, Claire; Lim, Sue Mei; Goulburn, Adam L; Micallef, Suzanne J; Labonne, Tanya; Kicic, Anthony; Ling, Kak-Ming; Stick, Stephen M; Ng, Elizabeth S; Trounson, Alan; Giudice, Antonietta; Elefanty, Andrew G; Stanley, Edouard G

    2015-06-01

    Airway epithelial cells generated from pluripotent stem cells (PSCs) represent a resource for research into a variety of human respiratory conditions, including those resulting from infection with common human pathogens. Using an NKX2.1-GFP reporter human embryonic stem cell line, we developed a serum-free protocol for the generation of NKX2.1(+) endoderm that, when transplanted into immunodeficient mice, matured into respiratory cell types identified by expression of CC10, MUC5AC, and surfactant proteins. Gene profiling experiments indicated that day 10 NKX2.1(+) endoderm expressed markers indicative of early foregut but lacked genes associated with later stages of respiratory epithelial cell differentiation. Nevertheless, NKX2.1(+) endoderm supported the infection and replication of the common respiratory pathogen human rhinovirus HRV1b. Moreover, NKX2.1(+) endoderm upregulated expression of IL-6, IL-8, and IL-1B in response to infection, a characteristic of human airway epithelial cells. Our experiments provide proof of principle for the use of PSC-derived respiratory epithelial cells in the study of cell-virus interactions. This report provides proof-of-principle experiments demonstrating, for the first time, that human respiratory progenitor cells derived from stem cells in the laboratory can be productively infected with human rhinovirus, the predominant cause of the common cold. ©AlphaMed Press.

  7. Different Variations of Néel Temperature TN and Kondo Temperature TK in the Alloy System Ce(Ru1-xOsx)2Al10 under Uniaxial Pressure

    NASA Astrophysics Data System (ADS)

    Takeuchi, Takashi; Hayashi, Kyosuke; Umeo, Kazunori; Takabatake, Toshiro

    2018-05-01

    We report magnetic, transport, and specific-heat measurements for single crystals of the antiferromagnetic (AFM) Kondo semiconductor alloy series Ce(Ru1-xOsx)2Al10 (0 ≤ x ≤ 1), which crystallize into an orthorhombic structure. The specific-heat and resistivity data show that the isoelectronic substitution does not damage the hybridization gap or the AFM transition. The Kondo temperature TK increases linearly with x, whereas the Néel temperature TN exhibits a maximum value of 29.2 K for x = 0.71. Under increasing uniaxial pressure P || a, TN increases for x = 0 but decreases for x = 1, while TK increases in the entire range of x. Under P || b, in contrast, TN increases steadily in the whole range of x while TK remains unchanged for each x. The strongly anisotropic change in TN indicates the presence of another mechanism to enhance TN in this system in addition to the anisotropic hybridization of the 4f state with conduction bands.

  8. Directing adult human periodontal ligament-derived stem cells to retinal fate.

    PubMed

    Huang, Li; Liang, Jiajian; Geng, Yiqun; Tsang, Wai-Ming; Yao, Xiaowu; Jhanji, Vishal; Zhang, Mingzhi; Cheung, Herman S; Pang, Chi Pui; Yam, Gary Hin-Fai

    2013-06-06

    To investigate the retinal fate competence of human postnatal periodontal ligament (PDL)-derived stem cells (PDLSC) through a directed differentiation mimicking mammalian retinogenesis. Human teeth were collected from healthy subjects younger than 35 years old. Primary PDLSC were isolated by collagenase digestion and cultivated. PDLSC at passage 3 were cultured in the induction media containing Noggin (antagonist of bone morphogenic protein) and Dkk-1 (antagonist of Wnt/β-catenin signaling). Gene expression of neural crest cells, retinal progenitors, and retinal neurons, including photoreceptors, was revealed by RNA analyses, immunofluorescence, and flow cytometry. The neuronal-like property of differentiated cells in response to excitatory glutamate was examined by fluo-4-acetoxymethyl calcium imaging assay. Primary human PDLSC stably expressed marker genes for neural crest (Notch1, BMP2, Slug, Snail, nestin, and Tuj1), mesenchymal stem cell (CD44, CD90, and vimentin), and embryonic stem cell (c-Myc, Klf4, Nanog, and SSEA4). Under low attachment culture, PDLSC generated neurospheres expressing nestin, p75/NGFR, Pax6, and Tuj1 (markers of neural progenitors). When neurospheres were plated on Matrigel-coated surface, they exhibited rosette-like outgrowth. They expressed eye field transcription factors (Pax6, Rx, Lhx, Otx2). By flow cytometry, 94% of cells were Pax6(nuclear)Rx(+), indicative of retinal progenitors. At prolonged induction, they expressed photoreceptor markers (Nrl, rhodopsin and its kinase) and showed significant responsiveness to excitatory glutamate. Primary human PDLSC could be directed to retinal progenitors with competence for photoreceptor differentiation. Human neural crest-derived PDL is readily accessible and can be an ample autologous source of undifferentiated cells for retinal cell regeneration.

  9. Epithelial to mesenchymal transition in human endocrine islet cells

    PubMed Central

    Moreno-Amador, José Luis; Téllez, Noèlia; Marin, Sandra; Aloy-Reverté, Caterina; Semino, Carlos; Nacher, Montserrat

    2018-01-01

    Background β-cells undergo an epithelial to mesenchymal transition (EMT) when expanded in monolayer culture and give rise to highly proliferative mesenchymal cells that retain the potential to re-differentiate into insulin-producing cells. Objective To investigate whether EMT takes place in the endocrine non-β cells of human islets. Methodology Human islets isolated from 12 multiorgan donors were dissociated into single cells, purified by magnetic cell sorting, and cultured in monolayer. Results Co-expression of insulin and the mesenchymal marker vimentin was identified within the first passage (p1) and increased subsequently (insulin+vimentin+ 7.2±6% at p1; 43±15% at p4). The endocrine non-β-cells did also co-express vimentin (glucagon+vimentin+ 59±1.5% and 93±6%, somatostatin+vimentin+ 16±9.4% and 90±10% at p1 and p4 respectively; PP+vimentin+ 74±14% at p1; 88±12% at p2). The percentage of cells expressing only endocrine markers was progressively reduced (0.6±0.2% insulin+, 0.2±0.1% glucagon+, and 0.3±0.2% somatostatin+ cells at p4, and 0.7±0.3% PP+ cells at p2. Changes in gene expression were also indicated of EMT, with reduced expression of endocrine markers and the epithelial marker CDH-1 (p<0.01), and increased expression of mesenchymal markers (CDH-2, SNAI2, ZEB1, ZEB2, VIM, NT5E and ACTA2; p<0.05). Treatment with the EMT inhibitor A83-01 significantly reduced the percentage of co-expressing cells and preserved the expression of endocrine markers. Conclusions In adult human islets, all four endocrine islet cell types undergo EMT when islet cells are expanded in monolayer conditions. The presence of EMT in all islet endocrine cells could be relevant to design of strategies aiming to re-differentiate the expanded islet cells towards a β-cell phenotype. PMID:29360826

  10. Metabolism of bilirubin by human cytochrome P450 2A6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abu-Bakar, A'edah, E-mail: a.abubakar@uq.edu.au; Arthur, Dionne M.; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Adelaide

    2012-05-15

    The mouse cytochrome P450 (CYP) 2A5 has recently been shown to function as hepatic “Bilirubin Oxidase” (Abu-Bakar, A., et al., 2011. Toxicol. Appl. Pharmacol. 257, 14–22). To date, no information is available on human CYP isoforms involvement in bilirubin metabolism. In this paper we provide novel evidence for human CYP2A6 metabolising the tetrapyrrole bilirubin. Incubation of bilirubin with recombinant yeast microsomes expressing the CYP2A6 showed that bilirubin inhibited CYP2A6-dependent coumarin 7-hydroxylase activity to almost 100% with an estimated K{sub i} of 2.23 μM. Metabolite screening by a high-performance liquid chromatography/electrospray ionisation mass spectrometry indicated that CYP2A6 oxidised bilirubin to biliverdinmore » and to three other smaller products with m/z values of 301, 315 and 333. Molecular docking analyses indicated that bilirubin and its positively charged intermediate interacted with key amino acid residues at the enzyme's active site. They were stabilised at the site in a conformation favouring biliverdin formation. By contrast, the end product, biliverdin was less fitting to the active site with the critical central methylene bridge distanced from the CYP2A6 haem iron facilitating its release. Furthermore, bilirubin treatment of HepG2 cells increased the CYP2A6 protein and activity levels with no effect on the corresponding mRNA. Co-treatment with cycloheximide (CHX), a protein synthesis inhibitor, resulted in increased half-life of the CYP2A6 compared to cells treated only with CHX. Collectively, the observations indicate that the CYP2A6 may function as human “Bilirubin Oxidase” where bilirubin is potentially a substrate and a regulator of the enzyme. -- Highlights: ► Human CYP2A6 interacts with bilirubin with a high affinity. ► Bilirubin docking to the CYP2A6 active site is more stable than biliverdin docking. ► Recombinant CYP2A6 microsomes metabolised bilirubin to biliverdin. ► Bilirubin increased the

  11. Jumonji Domain Containing Protein 6: A Novel Oxygen Sensor in the Human Placenta.

    PubMed

    Alahari, Sruthi; Post, Martin; Caniggia, Isabella

    2015-08-01

    Persistent low oxygen is implicated in the pathogenesis of placental-associated pathologies such as preeclampsia, a serious disorder of pregnancy. Emerging evidence implicates a novel family of Jumonji C catalytic domain proteins as mediators of hypoxic gene expression. Here, we investigated the regulatory relationship between Jumonji C domain containing protein 6 (JMJD6) and hypoxia-inducible factor (HIF)1A in the human placenta at physiological and pathological conditions. JMJD6 expression inversely correlated with changes in oxygen tension during early placental development, ie, high at 7-9 weeks when-partial pressure of O2 is low and declining afterwards when-partial pressure of O2 increases. Moreover, JMJD6 protein was significantly elevated in early-onset preeclamptic placentae, localizing to the syncytiotrophoblast layer and syncytial knots. Exposure of primary isolated trophoblast cells, human villous explants, and JEG3 choriocarcinoma cells to low oxygen (3%) and sodium nitroprusside (inducer of oxidative stress) also resulted in elevated JMJD6 levels, which was abrogated by HIF1A knockdown. In normoxia, knockdown of JMJD6 in JEG3 cells stabilized HIF1A with a concomitant decrease in von Hippel-Lindau (VHL) tumor suppressor protein, a negative regulator of HIF1A stability. In contrast, overexpression of JMJD6 enhanced VHL expression and destabilized HIF1A. JMJD6 regulation of VHL stability did not involve the ubiquitin-proteasome system but likely occurred through lysyl hydroxylation and small ubiquitin-like modifier 1-dependent small ubiquitin-like modifierylation. In summary, our data signify a novel role for JMJD6 as an oxygen sensor in the human placenta, and alterations in the JMJD6-VHL-HIF1A feedback loop may indirectly contribute to elevated HIF1A found in preeclampsia.

  12. A unique cell-surface protein phenotype distinguishes human small-cell from non-small-cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baylin, S.B.; Gazdar, A.F.; Minna, J.D.

    1982-08-01

    Radioiodination (/sup 125/I) and two-dimensional polyacrylamide gel electrophoresis was used to determine that small-(oat) cell lung carcinoma (SCC)-a tumor with neuroedocrine features-possesses a surface protein pattern distinct from the other types of lung cancer cells (squamous, adeno-, and large-cell undifferentiated carcinoma). Twelve distinguishing proteins, 40 to 70 kilodaltons (kDal), characterized four separate lines of SCC; three of these, designated E (60 kDal; pI = 7.3), S (30 kDal; pI = 6.0), and U 57 kDal; pI = 5.6), may be unique SCC gene products and were identified only in (/sup 35/S)methionine labeling of SCC and not in non-SCC or humanmore » fibroblasts. Two lines of adeno-, one of squamous, and one of undifferentiated large-cell lung carcinoma exhibited similar surface protein patterns to one another. Nine distinguishing proteins (40 to 100 kDal) and at least five large proteins (>100 kDal) were unique to these lines. The surface protein phenotypes for SCC and non-SCC were distinct from those for human lymphoblastoid cells and fibroblasts. However, the neuroendocrine features of SCC were further substantiated because 6 of the 12 distinguishing SCC surface proteins, including E and U, were identified on human neuroblastoma cells. The proteins identified should (i) help define differentiation steps for normal and neoplastic bronchial epithelial cells, (ii) prove useful in better classifying lung cancers, and (iii) be instrumental in tracing formation of neuroendocrine cells.« less

  13. Inositol Hexakisphosphate Inhibits Osteoclastogenesis on RAW 264.7 Cells and Human Primary Osteoclasts

    PubMed Central

    Arriero, María del Mar; Ramis, Joana M.; Perelló, Joan; Monjo, Marta

    2012-01-01

    Background Inoxitol hexakisphosphate (IP6) has been found to have an important role in biomineralization and a direct effect inhibiting mineralization of osteoblasts in vitro without impairing extracellular matrix production and expression of alkaline phosphatase. IP6 has been proposed to exhibit similar effects to those of bisphosphonates on bone resorption, however, its direct effect on osteoclasts (OCL) is presently unknown. Methodology/Principal Findings The aim of the present study was to investigate the effect of IP6 on the RAW 264.7 monocyte/macrophage mouse cell line and on human primary osteoclasts. On one hand, we show that IP6 decreases the osteoclastogenesis in RAW 264.7 cells induced by RANKL, without affecting cell proliferation or cell viability. The number of TRAP positive cells and mRNA levels of osteoclast markers such as TRAP, calcitonin receptor, cathepsin K and MMP-9 was decreased by IP6 on RANKL-treated cells. On the contrary, when giving IP6 to mature osteoclasts after RANKL treatment, a significant increase of bone resorption activity and TRAP mRNA levels was found. On the other hand, we show that 1 µM of IP6 inhibits osteoclastogenesis of human peripheral blood mononuclear cells (PBMNC) and their resorption activity both, when given to undifferentiated and to mature osteoclasts. Conclusions/Significance Our results demonstrate that IP6 inhibits osteoclastogenesis on human PBMNC and on the RAW264.7 cell line. Thus, IP6 may represent a novel type of selective inhibitor of osteoclasts and prove useful for the treatment of osteoporosis. PMID:22905230

  14. Detection of human herpes virus 6 (HHV 6) in the skin of a patient with primary HHV 6 infection and erythroderma.

    PubMed Central

    Sumiyoshi, Y; Akashi, K; Kikuchi, M

    1994-01-01

    Human herpes virus 6 (HHV 6) has been implicated as the causative agent of exanthema subitum in young children. Recently, we reported two cases of a severe, infectious, mononucleosis-like syndrome resulting from a primary HHV 6 infection in immunocompetent adults. Both of these patients had the skin condition generally referred to as "erythroderma". A skin-biopsy specimen from one of them, a 43 year old man, was examined. Using immunohistochemical staining and in situ hybridisation, lymphocytes infected with HHV 6 were found in the skin. It is proposed that the erythroderma in immunocompetent adults infected with primary HHV 6 is provoked by infiltration of infected inflammatory cells or infected neoplastic lymphocytes into the dermis. Images PMID:7962635

  15. Interactions of endosulfan and methoxychlor involving CYP3A4 and CYP2B6 in human HepaRG cells.

    PubMed

    Savary, Camille C; Jossé, Rozenn; Bruyère, Arnaud; Guillet, Fabrice; Robin, Marie-Anne; Guillouzo, André

    2014-08-01

    Humans are usually exposed to several pesticides simultaneously; consequently, combined actions between pesticides themselves or between pesticides and other chemicals need to be addressed in the risk assessment. Many pesticides are efficient activators of pregnane X receptor (PXR) and/or constitutive androstane receptor (CAR), two major nuclear receptors that are also activated by other substrates. In the present work, we searched for interactions between endosulfan and methoxychlor, two organochlorine pesticides whose major routes of metabolism involve CAR- and PXR-regulated CYP3A4 and CYP2B6, and whose mechanisms of action in humans remain poorly understood. For this purpose, HepaRG cells were treated with both pesticides separately or in mixture for 24 hours or 2 weeks at concentrations relevant to human exposure levels. In combination they exerted synergistic cytotoxic effects. Whatever the duration of treatment, both compounds increased CYP3A4 and CYP2B6 mRNA levels while differently affecting their corresponding activities. Endosulfan exerted a direct reversible inhibition of CYP3A4 activity that was confirmed in human liver microsomes. By contrast, methoxychlor induced this activity. The effects of the mixture on CYP3A4 activity were equal to the sum of those of each individual compound, suggesting an additive effect of each pesticide. Despite CYP2B6 activity being unchanged and increased with endosulfan and methoxychlor, respectively, no change was observed with their mixture, supporting an antagonistic effect. Altogether, our data suggest that CAR and PXR activators endosulfan and methoxychlor can interact together and with other exogenous substrates in human hepatocytes. Their effects on CYP3A4 and CYP2B6 activities could have important consequences if extrapolated to the in vivo situation. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  16. SLITRK6 mutations cause myopia and deafness in humans and mice

    PubMed Central

    Tekin, Mustafa; Chioza, Barry A.; Matsumoto, Yoshifumi; Diaz-Horta, Oscar; Cross, Harold E.; Duman, Duygu; Kokotas, Haris; Moore-Barton, Heather L.; Sakoori, Kazuto; Ota, Maya; Odaka, Yuri S.; Foster, Joseph; Cengiz, F. Basak; Tokgoz-Yilmaz, Suna; Tekeli, Oya; Grigoriadou, Maria; Petersen, Michael B.; Sreekantan-Nair, Ajith; Gurtz, Kay; Xia, Xia-Juan; Pandya, Arti; Patton, Michael A.; Young, Juan I.; Aruga, Jun; Crosby, Andrew H.

    2013-01-01

    Myopia is by far the most common human eye disorder that is known to have a clear, albeit poorly defined, heritable component. In this study, we describe an autosomal-recessive syndrome characterized by high myopia and sensorineural deafness. Our molecular investigation in 3 families led to the identification of 3 homozygous nonsense mutations (p.R181X, p.S297X, and p.Q414X) in SLIT and NTRK-like family, member 6 (SLITRK6), a leucine-rich repeat domain transmembrane protein. All 3 mutant SLITRK6 proteins displayed defective cell surface localization. High-resolution MRI of WT and Slitrk6-deficient mouse eyes revealed axial length increase in the mutant (the endophenotype of myopia). Additionally, mutant mice exhibited auditory function deficits that mirrored the human phenotype. Histological investigation of WT and Slitrk6-deficient mouse retinas in postnatal development indicated a delay in synaptogenesis in Slitrk6-deficient animals. Taken together, our results showed that SLITRK6 plays a crucial role in the development of normal hearing as well as vision in humans and in mice and that its disruption leads to a syndrome characterized by severe myopia and deafness. PMID:23543054

  17. Hair growth-promoting effect of Geranium sibiricum extract in human dermal papilla cells and C57BL/6 mice.

    PubMed

    Boisvert, William A; Yu, Miri; Choi, Youngbin; Jeong, Gi Hee; Zhang, Yi-Lin; Cho, Sunghun; Choi, Changsun; Lee, Sanghyun; Lee, Bog-Hieu

    2017-02-13

    Geranium sibiricum L. has been used as a medicinal plant to treat diarrhea, bacterial infection, and cancer in Bulgaria, Peru, and Korea. However, its hair growth-promoting effect was not investigated so far. This study examined the effects of Geranium sibiricum L. extract (GSE) on hair growth, using in vitro and in vivo models. Antioxidant, proliferation and migration assay of GSE was performed with human dermal papilla cells (hDPCs). Hair-growth promoting effect was measured in animal model. Relative expression of interleukin-1, vascular endothelial growth factor, hepatocyte growth factor, and transforming growth factor beta 1 was determined by real time RT-PCR. Expression of Ki-67 and stem cell factor were analyzed by immunohistochemistry. GSE treatment proliferated and migrated human dermal papilla cells (hDPCs) more than treatment of 10 μM minoxidil. GSE significantly stimulated the expression of Ki-67 protein and the mRNA levels of hepatocyte growth factor and vascular endothelial growth factor in hDPCs. Topical application of 1,000 ppm GSE for 3 weeks promoted more significant hair growth on shaved C57BL/6 mice than did 5% minoxidil. The histological morphology of hair follicles demonstrated an active anagen phase with the induction of stem cell factor. GSE treatment significantly reduced the number of mast cells and the expression of transforming growth factor beta 1 in mouse skin tissues. These results demonstrated that GSE promotes hair growth in vitro and in vivo by regulating growth factors and the cellular response.

  18. Kaposi's Sarcoma-Associated Herpesvirus Interleukin-6 Modulates Endothelial Cell Movement by Upregulating Cellular Genes Involved in Migration.

    PubMed

    Giffin, Louise; West, John A; Damania, Blossom

    2015-12-08

    Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of human Kaposi's sarcoma, a tumor that arises from endothelial cells, as well as two B cell lymphoproliferative diseases, primary effusion lymphoma and multicentric Castleman's disease. KSHV utilizes a variety of mechanisms to evade host immune responses and promote cellular transformation and growth in order to persist for the life of the host. A viral homolog of human interleukin-6 (hIL-6) named viral interleukin-6 (vIL-6) is encoded by KSHV and expressed in KSHV-associated cancers. Similar to hIL-6, vIL-6 is secreted, but the majority of vIL-6 is retained within the endoplasmic reticulum, where it can initiate functional signaling through part of the interleukin-6 receptor complex. We sought to determine how intracellular vIL-6 modulates the host endothelial cell environment by analyzing vIL-6's impact on the endothelial cell transcriptome. vIL-6 significantly altered the expression of many cellular genes associated with cell migration. In particular, vIL-6 upregulated the host factor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) at the protein and message levels. CEACAM1 has been implicated in tumor invasion and metastasis and promotes migration and vascular remodeling in endothelial cells. We report that vIL-6 upregulates CEACAM1 by a STAT3-dependent mechanism and that CEACAM1 promotes vIL-6-mediated migration. Furthermore, latent and de novo KSHV infections of endothelial cells also induce CEACAM1 expression. Collectively, our data suggest that vIL-6 modulates endothelial cell migration by upregulating the expression of cellular factors, including CEACAM1. Kaposi's sarcoma-associated herpesvirus (KSHV) is linked with the development of three human malignancies, Kaposi's sarcoma, multicentric Castleman's disease, and primary effusion lymphoma. KSHV expresses many factors that enable the virus to manipulate the host environment in order to persist and induce disease

  19. Generation of Corneal Keratocytes from Human Embryonic Stem Cells.

    PubMed

    Hertsenberg, Andrew J; Funderburgh, James L

    2016-01-01

    Human Embryonic Stem Cells (hESC) offer an important resource as a limitless supply of any differentiated cell type of the human body. Keratocytes, cells from the corneal stroma, may have the potential for restoration of vision in cell therapy and biomedical engineering applications, but these specialized cells are not readily expanded in vitro. Here we describe a two-part method to produce keratocytes from the H1 hESC cell line. The hESC cells, maintained and expanded in feeder-free culture medium are first differentiated to neural crest cells using the stromal-derived inducing activity (SDIA) of the PA6 mouse embryonic fibroblast cell line. The resulting neural crest cells are selected by their expression of cell-surface CD271 and subsequently cultured as 3D pellets in a defined differentiation medium to induce a keratocyte phenotype.

  20. Metabolism of [6]-Shogaol in Mice and in Cancer Cells

    PubMed Central

    Chen, Huadong; Lv, Lishuang; Soroka, Dominique; Warin, Renaud F.; Parks, Tiffany A.; Hu, Yuhui; Zhu, Yingdong; Chen, Xiaoxin

    2012-01-01

    Ginger has received extensive attention because of its antioxidant, anti-inflammatory, and antitumor activities. However, the metabolic fate of its major components is still unclear. In the present study, the metabolism of [6]-shogaol, one of the major active components in ginger, was examined for the first time in mice and in cancer cells. Thirteen metabolites were detected and identified, seven of which were purified from fecal samples collected from [6]-shogaol-treated mice. Their structures were elucidated as 1-(4′-hydroxy-3′-methoxyphenyl)-4-decen-3-ol (M6), 5-methoxy-1-(4′-hydroxy-3′-methoxyphenyl)-decan-3-one (M7), 3′,4′-dihydroxyphenyl-decan-3-one (M8), 1-(4′-hydroxy-3′-methoxyphenyl)-decan-3-ol (M9), 5-methylthio-1-(4′-hydroxy-3′-methoxyphenyl)-decan-3-one (M10), 1-(4′-hydroxy-3′-methoxyphenyl)-decan-3-one (M11), and 5-methylthio-1-(4′-hydroxy-3′-methoxyphenyl)-decan-3-ol (M12) on the basis of detailed analysis of their 1H, 13C, and two-dimensional NMR data. The rest of the metabolites were identified as 5-cysteinyl-M6 (M1), 5-cysteinyl-[6]-shogaol (M2), 5-cysteinylglycinyl-M6 (M3), 5-N-acetylcysteinyl-M6 (M4), 5-N-acetylcysteinyl-[6]-shogaol (M5), and 5-glutathiol-[6]-shogaol (M13) by analysis of the MSn (n = 1–3) spectra and comparison to authentic standards. Among the metabolites, M1 through M5, M10, M12, and M13 were identified as the thiol conjugates of [6]-shogaol and its metabolite M6. M9 and M11 were identified as the major metabolites in four different cancer cell lines (HCT-116, HT-29, H-1299, and CL-13), and M13 was detected as a major metabolite in HCT-116 human colon cancer cells. We further showed that M9 and M11 are bioactive compounds that can inhibit cancer cell growth and induce apoptosis in human cancer cells. Our results suggest that 1) [6]-shogaol is extensively metabolized in these two models, 2) its metabolites are bioactive compounds, and 3) the mercapturic acid pathway is one of the major