Human-like object tracking and gaze estimation with PKD android
Wijayasinghe, Indika B.; Miller, Haylie L.; Das, Sumit K; Bugnariu, Nicoleta L.; Popa, Dan O.
2018-01-01
As the use of robots increases for tasks that require human-robot interactions, it is vital that robots exhibit and understand human-like cues for effective communication. In this paper, we describe the implementation of object tracking capability on Philip K. Dick (PKD) android and a gaze tracking algorithm, both of which further robot capabilities with regard to human communication. PKD's ability to track objects with human-like head postures is achieved with visual feedback from a Kinect system and an eye camera. The goal of object tracking with human-like gestures is twofold : to facilitate better human-robot interactions and to enable PKD as a human gaze emulator for future studies. The gaze tracking system employs a mobile eye tracking system (ETG; SensoMotoric Instruments) and a motion capture system (Cortex; Motion Analysis Corp.) for tracking the head orientations. Objects to be tracked are displayed by a virtual reality system, the Computer Assisted Rehabilitation Environment (CAREN; MotekForce Link). The gaze tracking algorithm converts eye tracking data and head orientations to gaze information facilitating two objectives: to evaluate the performance of the object tracking system for PKD and to use the gaze information to predict the intentions of the user, enabling the robot to understand physical cues by humans. PMID:29416193
Human-like object tracking and gaze estimation with PKD android
NASA Astrophysics Data System (ADS)
Wijayasinghe, Indika B.; Miller, Haylie L.; Das, Sumit K.; Bugnariu, Nicoleta L.; Popa, Dan O.
2016-05-01
As the use of robots increases for tasks that require human-robot interactions, it is vital that robots exhibit and understand human-like cues for effective communication. In this paper, we describe the implementation of object tracking capability on Philip K. Dick (PKD) android and a gaze tracking algorithm, both of which further robot capabilities with regard to human communication. PKD's ability to track objects with human-like head postures is achieved with visual feedback from a Kinect system and an eye camera. The goal of object tracking with human-like gestures is twofold: to facilitate better human-robot interactions and to enable PKD as a human gaze emulator for future studies. The gaze tracking system employs a mobile eye tracking system (ETG; SensoMotoric Instruments) and a motion capture system (Cortex; Motion Analysis Corp.) for tracking the head orientations. Objects to be tracked are displayed by a virtual reality system, the Computer Assisted Rehabilitation Environment (CAREN; MotekForce Link). The gaze tracking algorithm converts eye tracking data and head orientations to gaze information facilitating two objectives: to evaluate the performance of the object tracking system for PKD and to use the gaze information to predict the intentions of the user, enabling the robot to understand physical cues by humans.
NASA Astrophysics Data System (ADS)
Roth, Eatai; Howell, Darrin; Beckwith, Cydney; Burden, Samuel A.
2017-05-01
Humans, interacting with cyber-physical systems (CPS), formulate beliefs about the system's dynamics. It is natural to expect that human operators, tasked with teleoperation, use these beliefs to control the remote robot. For tracking tasks in the resulting human-cyber-physical system (HCPS), theory suggests that human operators can achieve exponential tracking (in stable systems) without state estimation provided they possess an accurate model of the system's dynamics. This internalized inverse model, however, renders a portion of the system state unobservable to the human operator—the zero dynamics. Prior work shows humans can track through observable linear dynamics, thus we focus on nonlinear dynamics rendered unobservable through tracking control. We propose experiments to assess the human operator's ability to learn and invert such models, and distinguish this behavior from that achieved by pure feedback control.
Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion
Filippeschi, Alessandro; Schmitz, Norbert; Miezal, Markus; Bleser, Gabriele; Ruffaldi, Emanuele; Stricker, Didier
2017-01-01
Motion tracking based on commercial inertial measurements units (IMUs) has been widely studied in the latter years as it is a cost-effective enabling technology for those applications in which motion tracking based on optical technologies is unsuitable. This measurement method has a high impact in human performance assessment and human-robot interaction. IMU motion tracking systems are indeed self-contained and wearable, allowing for long-lasting tracking of the user motion in situated environments. After a survey on IMU-based human tracking, five techniques for motion reconstruction were selected and compared to reconstruct a human arm motion. IMU based estimation was matched against motion tracking based on the Vicon marker-based motion tracking system considered as ground truth. Results show that all but one of the selected models perform similarly (about 35 mm average position estimation error). PMID:28587178
2017-06-01
implement human following on a mobile robot in an indoor environment . B. FUTURE WORK Future work that could be conducted in the realm of this thesis...FEASIBILITY OF CONDUCTING HUMAN TRACKING AND FOLLOWING IN AN INDOOR ENVIRONMENT USING A MICROSOFT KINECT AND THE ROBOT OPERATING SYSTEM by...FEASIBILITY OF CONDUCTING HUMAN TRACKING AND FOLLOWING IN AN INDOOR ENVIRONMENT USING A MICROSOFT KINECT AND THE ROBOT OPERATING SYSTEM 5. FUNDING NUMBERS
Modeling human tracking error in several different anti-tank systems
NASA Technical Reports Server (NTRS)
Kleinman, D. L.
1981-01-01
An optimal control model for generating time histories of human tracking errors in antitank systems is outlined. Monte Carlo simulations of human operator responses for three Army antitank systems are compared. System/manipulator dependent data comparisons reflecting human operator limitations in perceiving displayed quantities and executing intended control motions are presented. Motor noise parameters are also discussed.
Optimal Configuration of Human Motion Tracking Systems: A Systems Engineering Approach
NASA Technical Reports Server (NTRS)
Henderson, Steve
2005-01-01
Human motion tracking systems represent a crucial technology in the area of modeling and simulation. These systems, which allow engineers to capture human motion for study or replication in virtual environments, have broad applications in several research disciplines including human engineering, robotics, and psychology. These systems are based on several sensing paradigms, including electro-magnetic, infrared, and visual recognition. Each of these paradigms requires specialized environments and hardware configurations to optimize performance of the human motion tracking system. Ideally, these systems are used in a laboratory or other facility that was designed to accommodate the particular sensing technology. For example, electromagnetic systems are highly vulnerable to interference from metallic objects, and should be used in a specialized lab free of metal components.
Human movement tracking based on Kalman filter
NASA Astrophysics Data System (ADS)
Zhang, Yi; Luo, Yuan
2006-11-01
During the rehabilitation process of the post-stroke patients is conducted, their movements need to be localized and learned so that incorrect movement can be instantly modified or tuned. Therefore, tracking these movement becomes vital and necessary for the rehabilitative course. In the technologies of human movement tracking, the position prediction of human movement is very important. In this paper, we first analyze the configuration of the human movement system and choice of sensors. Then, The Kalman filter algorithm and its modified algorithm are proposed and to be used to predict the position of human movement. In the end, on the basis of analyzing the performance of the method, it is clear that the method described can be used to the system of human movement tracking.
Robust control of dielectric elastomer diaphragm actuator for human pulse signal tracking
NASA Astrophysics Data System (ADS)
Ye, Zhihang; Chen, Zheng; Asmatulu, Ramazan; Chan, Hoyin
2017-08-01
Human pulse signal tracking is an emerging technology that is needed in traditional Chinese medicine. However, soft actuation with multi-frequency tracking capability is needed for tracking human pulse signal. Dielectric elastomer (DE) is one type of soft actuating that has great potential in human pulse signal tracking. In this paper, a DE diaphragm actuator was designed and fabricated to track human pulse pressure signal. A physics-based and control-oriented model has been developed to capture the dynamic behavior of DE diaphragm actuator. Using the physical model, an H-infinity robust control was designed for the actuator to reject high-frequency sensing noises and disturbances. The robust control was then implemented in real-time to track a multi-frequency signal, which verified the tracking capability and robustness of the control system. In the human pulse signal tracking test, a human pulse signal was measured at the City University of Hong Kong and then was tracked using DE actuator at Wichita State University in the US. Experimental results have verified that the DE actuator with its robust control is capable of tracking human pulse signal.
PROBLEM OF FORMING IN A MAN-OPERATOR A HABIT OF TRACKING A MOVING TARGET,
Cybernetics stimulated the large-scale use of the method of functional analogy which makes it possible to compare technical and human activity systems...interesting and highly efficient human activity because of the psychological control factor involved in its operation. The human tracking system is
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovesdi, C.; Spielman, Z.; LeBlanc, K.
An important element of human factors engineering (HFE) pertains to measurement and evaluation (M&E). The role of HFE-M&E should be integrated throughout the entire control room modernization (CRM) process and be used for human-system performance evaluation and diagnostic purposes with resolving potential human engineering deficiencies (HEDs) and other human machine interface (HMI) design issues. NUREG-0711 describes how HFE in CRM should employ a hierarchical set of measures, particularly during integrated system validation (ISV), including plant performance, personnel task performance, situation awareness, cognitive workload, and anthropometric/ physiological factors. Historically, subjective measures have been primarily used since they are easier to collectmore » and do not require specialized equipment. However, there are pitfalls with relying solely on subjective measures in M&E such that negatively impact reliability, sensitivity, and objectivity. As part of comprehensively capturing a diverse set of measures that strengthen findings and inferences made of the benefits from emerging technologies like advanced displays, this paper discusses the value of using eye tracking as an objective method that can be used in M&E. A brief description of eye tracking technology and relevant eye tracking measures is provided. Additionally, technical considerations and the unique challenges with using eye tracking in full-scaled simulations are addressed. Finally, this paper shares preliminary findings regarding the use of a wearable eye tracking system in a full-scale simulator study. These findings should help guide future full-scale simulator studies using eye tracking as a methodology to evaluate human-system performance.« less
NASA Technical Reports Server (NTRS)
Uhlemann, H.; Geiser, G.
1975-01-01
Multivariable manual compensatory tracking experiments were carried out in order to determine typical strategies of the human operator and conditions for improvement of his performance if one of the visual displays of the tracking errors is supplemented by an auditory feedback. Because the tracking error of the system which is only visually displayed is found to decrease, but not in general that of the auditorally supported system, it was concluded that the auditory feedback unloads the visual system of the operator who can then concentrate on the remaining exclusively visual displays.
Dynamic inverse models in human-cyber-physical systems
NASA Astrophysics Data System (ADS)
Robinson, Ryan M.; Scobee, Dexter R. R.; Burden, Samuel A.; Sastry, S. Shankar
2016-05-01
Human interaction with the physical world is increasingly mediated by automation. This interaction is characterized by dynamic coupling between robotic (i.e. cyber) and neuromechanical (i.e. human) decision-making agents. Guaranteeing performance of such human-cyber-physical systems will require predictive mathematical models of this dynamic coupling. Toward this end, we propose a rapprochement between robotics and neuromechanics premised on the existence of internal forward and inverse models in the human agent. We hypothesize that, in tele-robotic applications of interest, a human operator learns to invert automation dynamics, directly translating from desired task to required control input. By formulating the model inversion problem in the context of a tracking task for a nonlinear control system in control-a_ne form, we derive criteria for exponential tracking and show that the resulting dynamic inverse model generally renders a portion of the physical system state (i.e., the internal dynamics) unobservable from the human operator's perspective. Under stability conditions, we show that the human can achieve exponential tracking without formulating an estimate of the system's state so long as they possess an accurate model of the system's dynamics. These theoretical results are illustrated using a planar quadrotor example. We then demonstrate that the automation can intervene to improve performance of the tracking task by solving an optimal control problem. Performance is guaranteed to improve under the assumption that the human learns and inverts the dynamic model of the altered system. We conclude with a discussion of practical limitations that may hinder exact dynamic model inversion.
Human supervision and microprocessor control of an optical tracking system
NASA Technical Reports Server (NTRS)
Bigley, W. J.; Vandenberg, J. D.
1981-01-01
Gunners using small calibre anti-aircraft systems have not been able to track high-speed air targets effectively. Substantial improvement in the accuracy of surface fire against attacking aircraft has been realized through the design of a director-type weapon control system. This system concept frees the gunner to exercise a supervisory/monitoring role while the computer takes over continuous target tracking. This change capitalizes on a key consideration of human factors engineering while increasing system accuracy. The advanced system design, which uses distributed microprocessor control, is discussed at the block diagram level and is contrasted with the previous implementation.
Scanning mid-IR laser apparatus with eye tracking for refractive surgery
NASA Astrophysics Data System (ADS)
Telfair, William B.; Yoder, Paul R., Jr.; Bekker, Carsten; Hoffman, Hanna J.; Jensen, Eric F.
1999-06-01
A robust, real-time, dynamic eye tracker has been integrated with the short pulse mid-infrared laser scanning delivery system previously described. This system employs a Q- switched Nd:YAG laser pumped optical parametric oscillator operating at 2.94 micrometers. Previous ablation studies on human cadaver eyes and in-vivo cat eyes demonstrated very smooth ablations with extremely low damage levels similar to results with an excimer. A 4-month healing study with cats indicated no adverse healing effects. In order to treat human eyes, the tracker is required because the eyes move during the procedure due to both voluntary and involuntary motions such as breathing, heartbeat, drift, loss of fixation, saccades and microsaccades. Eye tracking techniques from the literature were compared. A limbus tracking system was best for this application. Temporal and spectral filtering techniques were implemented to reduce tracking errors, reject stray light, and increase signal to noise ratio. The expanded-capability system (IRVision AccuScan 2000 Laser System) has been tested in the lab on simulated eye targets, glass eyes, cadaver eyes, and live human subjects. Circular targets ranging from 10-mm to 14-mm diameter were successfully tracked. The tracker performed beyond expectations while the system performed myopic photorefractive keratectomy procedures on several legally blind human subjects.
Li, Bin; Fu, Hong; Wen, Desheng; Lo, WaiLun
2018-05-19
Eye tracking technology has become increasingly important for psychological analysis, medical diagnosis, driver assistance systems, and many other applications. Various gaze-tracking models have been established by previous researchers. However, there is currently no near-eye display system with accurate gaze-tracking performance and a convenient user experience. In this paper, we constructed a complete prototype of the mobile gaze-tracking system ' Etracker ' with a near-eye viewing device for human gaze tracking. We proposed a combined gaze-tracking algorithm. In this algorithm, the convolutional neural network is used to remove blinking images and predict coarse gaze position, and then a geometric model is defined for accurate human gaze tracking. Moreover, we proposed using the mean value of gazes to resolve pupil center changes caused by nystagmus in calibration algorithms, so that an individual user only needs to calibrate it the first time, which makes our system more convenient. The experiments on gaze data from 26 participants show that the eye center detection accuracy is 98% and Etracker can provide an average gaze accuracy of 0.53° at a rate of 30⁻60 Hz.
The TREC Interactive Track: An Annotated Bibliography.
ERIC Educational Resources Information Center
Over, Paul
2001-01-01
Discussion of the study of interactive information retrieval (IR) at the Text Retrieval Conferences (TREC) focuses on summaries of the Interactive Track at each conference. Describes evolution of the track, which has changed from comparing human-machine systems with fully automatic systems to comparing interactive systems that focus on the search…
25 CFR 900.52 - What type of property is the property management system required to track?
Code of Federal Regulations, 2012 CFR
2012-04-01
... INDIAN HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES CONTRACTS UNDER THE INDIAN SELF-DETERMINATION AND EDUCATION ASSISTANCE ACT Standards for Tribal or Tribal Organization Management Systems... required to track? The property management system of the Indian tribe or tribal organization shall track...
25 CFR 900.52 - What type of property is the property management system required to track?
Code of Federal Regulations, 2014 CFR
2014-04-01
... INDIAN HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES CONTRACTS UNDER THE INDIAN SELF-DETERMINATION AND EDUCATION ASSISTANCE ACT Standards for Tribal or Tribal Organization Management Systems... required to track? The property management system of the Indian tribe or tribal organization shall track...
25 CFR 900.52 - What type of property is the property management system required to track?
Code of Federal Regulations, 2011 CFR
2011-04-01
... INDIAN HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES CONTRACTS UNDER THE INDIAN SELF-DETERMINATION AND EDUCATION ASSISTANCE ACT Standards for Tribal or Tribal Organization Management Systems... required to track? The property management system of the Indian tribe or tribal organization shall track...
25 CFR 900.52 - What type of property is the property management system required to track?
Code of Federal Regulations, 2010 CFR
2010-04-01
... INDIAN HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES CONTRACTS UNDER THE INDIAN SELF-DETERMINATION AND EDUCATION ASSISTANCE ACT Standards for Tribal or Tribal Organization Management Systems... required to track? The property management system of the Indian tribe or tribal organization shall track...
25 CFR 900.52 - What type of property is the property management system required to track?
Code of Federal Regulations, 2013 CFR
2013-04-01
... INDIAN HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES CONTRACTS UNDER THE INDIAN SELF-DETERMINATION AND EDUCATION ASSISTANCE ACT Standards for Tribal or Tribal Organization Management Systems... required to track? The property management system of the Indian tribe or tribal organization shall track...
Interacting with target tracking algorithms in a gaze-enhanced motion video analysis system
NASA Astrophysics Data System (ADS)
Hild, Jutta; Krüger, Wolfgang; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen
2016-05-01
Motion video analysis is a challenging task, particularly if real-time analysis is required. It is therefore an important issue how to provide suitable assistance for the human operator. Given that the use of customized video analysis systems is more and more established, one supporting measure is to provide system functions which perform subtasks of the analysis. Recent progress in the development of automated image exploitation algorithms allow, e.g., real-time moving target tracking. Another supporting measure is to provide a user interface which strives to reduce the perceptual, cognitive and motor load of the human operator for example by incorporating the operator's visual focus of attention. A gaze-enhanced user interface is able to help here. This work extends prior work on automated target recognition, segmentation, and tracking algorithms as well as about the benefits of a gaze-enhanced user interface for interaction with moving targets. We also propose a prototypical system design aiming to combine both the qualities of the human observer's perception and the automated algorithms in order to improve the overall performance of a real-time video analysis system. In this contribution, we address two novel issues analyzing gaze-based interaction with target tracking algorithms. The first issue extends the gaze-based triggering of a target tracking process, e.g., investigating how to best relaunch in the case of track loss. The second issue addresses the initialization of tracking algorithms without motion segmentation where the operator has to provide the system with the object's image region in order to start the tracking algorithm.
Towards an IMU Evaluation Framework for Human Body Tracking.
Venek, Verena; Kremser, Wolfgang; Schneider, Cornelia
2018-01-01
Existing full-body tracking systems, which use Inertial Measurement Units (IMUs) as sensing unit, require expert knowledge for setup and data collection. Thus, the daily application for human body tracking is difficult. In particular, in the field of active and assisted living (AAL), tracking human movements would enable novel insights not only into the quantity but also into the quality of human movement, for example by monitoring functional training. While the current market offers a wide range of products with vastly different properties, literature lacks guidelines for choosing IMUs for body tracking applications. Therefore, this paper introduces developments towards an IMU evaluation framework for human body tracking which compares IMUs against five requirement areas that consider device features and data quality. The data quality is assessed by conducting a static and a dynamic error analysis. In a first application to four IMUs of different component consumption, the IMU evaluation framework convinced as promising tool for IMU selection.
Zimmermann, Jan; Vazquez, Yuriria; Glimcher, Paul W; Pesaran, Bijan; Louie, Kenway
2016-09-01
Video-based noninvasive eye trackers are an extremely useful tool for many areas of research. Many open-source eye trackers are available but current open-source systems are not designed to track eye movements with the temporal resolution required to investigate the mechanisms of oculomotor behavior. Commercial systems are available but employ closed source hardware and software and are relatively expensive, limiting wide-spread use. Here we present Oculomatic, an open-source software and modular hardware solution to eye tracking for use in humans and non-human primates. Oculomatic features high temporal resolution (up to 600Hz), real-time eye tracking with high spatial accuracy (<0.5°), and low system latency (∼1.8ms, 0.32ms STD) at a relatively low-cost. Oculomatic compares favorably to our existing scleral search-coil system while being fully non invasive. We propose that Oculomatic can support a wide range of research into the properties and neural mechanisms of oculomotor behavior. Copyright © 2016 Elsevier B.V. All rights reserved.
Multi-object tracking of human spermatozoa
NASA Astrophysics Data System (ADS)
Sørensen, Lauge; Østergaard, Jakob; Johansen, Peter; de Bruijne, Marleen
2008-03-01
We propose a system for tracking of human spermatozoa in phase-contrast microscopy image sequences. One of the main aims of a computer-aided sperm analysis (CASA) system is to automatically assess sperm quality based on spermatozoa motility variables. In our case, the problem of assessing sperm quality is cast as a multi-object tracking problem, where the objects being tracked are the spermatozoa. The system combines a particle filter and Kalman filters for robust motion estimation of the spermatozoa tracks. Further, the combinatorial aspect of assigning observations to labels in the particle filter is formulated as a linear assignment problem solved using the Hungarian algorithm on a rectangular cost matrix, making the algorithm capable of handling missing or spurious observations. The costs are calculated using hidden Markov models that express the plausibility of an observation being the next position in the track history of the particle labels. Observations are extracted using a scale-space blob detector utilizing the fact that the spermatozoa appear as bright blobs in a phase-contrast microscope. The output of the system is the complete motion track of each of the spermatozoa. Based on these tracks, different CASA motility variables can be computed, for example curvilinear velocity or straight-line velocity. The performance of the system is tested on three different phase-contrast image sequences of varying complexity, both by visual inspection of the estimated spermatozoa tracks and by measuring the mean squared error (MSE) between the estimated spermatozoa tracks and manually annotated tracks, showing good agreement.
Real-time Human Activity Recognition
NASA Astrophysics Data System (ADS)
Albukhary, N.; Mustafah, Y. M.
2017-11-01
The traditional Closed-circuit Television (CCTV) system requires human to monitor the CCTV for 24/7 which is inefficient and costly. Therefore, there’s a need for a system which can recognize human activity effectively in real-time. This paper concentrates on recognizing simple activity such as walking, running, sitting, standing and landing by using image processing techniques. Firstly, object detection is done by using background subtraction to detect moving object. Then, object tracking and object classification are constructed so that different person can be differentiated by using feature detection. Geometrical attributes of tracked object, which are centroid and aspect ratio of identified tracked are manipulated so that simple activity can be detected.
A framework for activity detection in wide-area motion imagery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, Reid B; Ruggiero, Christy E; Morrison, Jack D
2009-01-01
Wide-area persistent imaging systems are becoming increasingly cost effective and now large areas of the earth can be imaged at relatively high frame rates (1-2 fps). The efficient exploitation of the large geo-spatial-temporal datasets produced by these systems poses significant technical challenges for image and video analysis and data mining. In recent years there has been significant progress made on stabilization, moving object detection and tracking and automated systems now generate hundreds to thousands of vehicle tracks from raw data, with little human intervention. However, the tracking performance at this scale, is unreliable and average track length is much smallermore » than the average vehicle route. This is a limiting factor for applications which depend heavily on track identity, i.e. tracking vehicles from their points of origin to their final destination. In this paper we propose and investigate a framework for wide-area motion imagery (W AMI) exploitation that minimizes the dependence on track identity. In its current form this framework takes noisy, incomplete moving object detection tracks as input, and produces a small set of activities (e.g. multi-vehicle meetings) as output. The framework can be used to focus and direct human users and additional computation, and suggests a path towards high-level content extraction by learning from the human-in-the-loop.« less
An Empirical Human Controller Model for Preview Tracking Tasks.
van der El, Kasper; Pool, Daan M; Damveld, Herman J; van Paassen, Marinus Rene M; Mulder, Max
2016-11-01
Real-life tracking tasks often show preview information to the human controller about the future track to follow. The effect of preview on manual control behavior is still relatively unknown. This paper proposes a generic operator model for preview tracking, empirically derived from experimental measurements. Conditions included pursuit tracking, i.e., without preview information, and tracking with 1 s of preview. Controlled element dynamics varied between gain, single integrator, and double integrator. The model is derived in the frequency domain, after application of a black-box system identification method based on Fourier coefficients. Parameter estimates are obtained to assess the validity of the model in both the time domain and frequency domain. Measured behavior in all evaluated conditions can be captured with the commonly used quasi-linear operator model for compensatory tracking, extended with two viewpoints of the previewed target. The derived model provides new insights into how human operators use preview information in tracking tasks.
3D Tracking of Mating Events in Wild Swarms of the Malaria Mosquito Anopheles gambiae
Butail, Sachit; Manoukis, Nicholas; Diallo, Moussa; Yaro, Alpha S.; Dao, Adama; Traoré, Sekou F.; Ribeiro, José M.; Lehmann, Tovi; Paley, Derek A.
2013-01-01
We describe an automated tracking system that allows us to reconstruct the 3D kinematics of individual mosquitoes in swarms of Anopheles gambiae. The inputs to the tracking system are video streams recorded from a stereo camera system. The tracker uses a two-pass procedure to automatically localize and track mosquitoes within the swarm. A human-in-the-loop step verifies the estimates and connects broken tracks. The tracker performance is illustrated using footage of mating events filmed in Mali in August 2010. PMID:22254411
Human image tracking technique applied to remote collaborative environments
NASA Astrophysics Data System (ADS)
Nagashima, Yoshio; Suzuki, Gen
1993-10-01
To support various kinds of collaborations over long distances by using visual telecommunication, it is necessary to transmit visual information related to the participants and topical materials. When people collaborate in the same workspace, they use visual cues such as facial expressions and eye movement. The realization of coexistence in a collaborative workspace requires the support of these visual cues. Therefore, it is important that the facial images be large enough to be useful. During collaborations, especially dynamic collaborative activities such as equipment operation or lectures, the participants often move within the workspace. When the people move frequently or over a wide area, the necessity for automatic human tracking increases. Using the movement area of the human being or the resolution of the extracted area, we have developed a memory tracking method and a camera tracking method for automatic human tracking. Experimental results using a real-time tracking system show that the extracted area fairly moves according to the movement of the human head.
Quantifying Pilot Visual Attention in Low Visibility Terminal Operations
NASA Technical Reports Server (NTRS)
Ellis, Kyle K.; Arthur, J. J.; Latorella, Kara A.; Kramer, Lynda J.; Shelton, Kevin J.; Norman, Robert M.; Prinzel, Lawrence J.
2012-01-01
Quantifying pilot visual behavior allows researchers to determine not only where a pilot is looking and when, but holds implications for specific behavioral tracking when these data are coupled with flight technical performance. Remote eye tracking systems have been integrated into simulators at NASA Langley with effectively no impact on the pilot environment. This paper discusses the installation and use of a remote eye tracking system. The data collection techniques from a complex human-in-the-loop (HITL) research experiment are discussed; especially, the data reduction algorithms and logic to transform raw eye tracking data into quantified visual behavior metrics, and analysis methods to interpret visual behavior. The findings suggest superior performance for Head-Up Display (HUD) and improved attentional behavior for Head-Down Display (HDD) implementations of Synthetic Vision System (SVS) technologies for low visibility terminal area operations. Keywords: eye tracking, flight deck, NextGen, human machine interface, aviation
Mosberger, Rafael; Andreasson, Henrik; Lilienthal, Achim J
2014-09-26
This article presents a novel approach for vision-based detection and tracking of humans wearing high-visibility clothing with retro-reflective markers. Addressing industrial applications where heavy vehicles operate in the vicinity of humans, we deploy a customized stereo camera setup with active illumination that allows for efficient detection of the reflective patterns created by the worker's safety garments. After segmenting reflective objects from the image background, the interest regions are described with local image feature descriptors and classified in order to discriminate safety garments from other reflective objects in the scene. In a final step, the trajectories of the detected humans are estimated in 3D space relative to the camera. We evaluate our tracking system in two industrial real-world work environments on several challenging video sequences. The experimental results indicate accurate tracking performance and good robustness towards partial occlusions, body pose variation, and a wide range of different illumination conditions.
Mosberger, Rafael; Andreasson, Henrik; Lilienthal, Achim J.
2014-01-01
This article presents a novel approach for vision-based detection and tracking of humans wearing high-visibility clothing with retro-reflective markers. Addressing industrial applications where heavy vehicles operate in the vicinity of humans, we deploy a customized stereo camera setup with active illumination that allows for efficient detection of the reflective patterns created by the worker's safety garments. After segmenting reflective objects from the image background, the interest regions are described with local image feature descriptors and classified in order to discriminate safety garments from other reflective objects in the scene. In a final step, the trajectories of the detected humans are estimated in 3D space relative to the camera. We evaluate our tracking system in two industrial real-world work environments on several challenging video sequences. The experimental results indicate accurate tracking performance and good robustness towards partial occlusions, body pose variation, and a wide range of different illumination conditions. PMID:25264956
Collaborative real-time motion video analysis by human observer and image exploitation algorithms
NASA Astrophysics Data System (ADS)
Hild, Jutta; Krüger, Wolfgang; Brüstle, Stefan; Trantelle, Patrick; Unmüßig, Gabriel; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen
2015-05-01
Motion video analysis is a challenging task, especially in real-time applications. In most safety and security critical applications, a human observer is an obligatory part of the overall analysis system. Over the last years, substantial progress has been made in the development of automated image exploitation algorithms. Hence, we investigate how the benefits of automated video analysis can be integrated suitably into the current video exploitation systems. In this paper, a system design is introduced which strives to combine both the qualities of the human observer's perception and the automated algorithms, thus aiming to improve the overall performance of a real-time video analysis system. The system design builds on prior work where we showed the benefits for the human observer by means of a user interface which utilizes the human visual focus of attention revealed by the eye gaze direction for interaction with the image exploitation system; eye tracker-based interaction allows much faster, more convenient, and equally precise moving target acquisition in video images than traditional computer mouse selection. The system design also builds on prior work we did on automated target detection, segmentation, and tracking algorithms. Beside the system design, a first pilot study is presented, where we investigated how the participants (all non-experts in video analysis) performed in initializing an object tracking subsystem by selecting a target for tracking. Preliminary results show that the gaze + key press technique is an effective, efficient, and easy to use interaction technique when performing selection operations on moving targets in videos in order to initialize an object tracking function.
Robust human detection, tracking, and recognition in crowded urban areas
NASA Astrophysics Data System (ADS)
Chen, Hai-Wen; McGurr, Mike
2014-06-01
In this paper, we present algorithms we recently developed to support an automated security surveillance system for very crowded urban areas. In our approach for human detection, the color features are obtained by taking the difference of R, G, B spectrum and converting R, G, B to HSV (Hue, Saturation, Value) space. Morphological patch filtering and regional minimum and maximum segmentation on the extracted features are applied for target detection. The human tracking process approach includes: 1) Color and intensity feature matching track candidate selection; 2) Separate three parallel trackers for color, bright (above mean intensity), and dim (below mean intensity) detections, respectively; 3) Adaptive track gate size selection for reducing false tracking probability; and 4) Forward position prediction based on previous moving speed and direction for continuing tracking even when detections are missed from frame to frame. The Human target recognition is improved with a Super-Resolution Image Enhancement (SRIE) process. This process can improve target resolution by 3-5 times and can simultaneously process many targets that are tracked. Our approach can project tracks from one camera to another camera with a different perspective viewing angle to obtain additional biometric features from different perspective angles, and to continue tracking the same person from the 2nd camera even though the person moved out of the Field of View (FOV) of the 1st camera with `Tracking Relay'. Finally, the multiple cameras at different view poses have been geo-rectified to nadir view plane and geo-registered with Google- Earth (or other GIS) to obtain accurate positions (latitude, longitude, and altitude) of the tracked human for pin-point targeting and for a large area total human motion activity top-view. Preliminary tests of our algorithms indicate than high probability of detection can be achieved for both moving and stationary humans. Our algorithms can simultaneously track more than 100 human targets with averaged tracking period (time length) longer than the performance of the current state-of-the-art.
Precise Head Tracking in Hearing Applications
NASA Astrophysics Data System (ADS)
Helle, A. M.; Pilinski, J.; Luhmann, T.
2015-05-01
The paper gives an overview about two research projects, both dealing with optical head tracking in hearing applications. As part of the project "Development of a real-time low-cost tracking system for medical and audiological problems (ELCoT)" a cost-effective single camera 3D tracking system has been developed which enables the detection of arm and head movements of human patients. Amongst others, the measuring system is designed for a new hearing test (based on the "Mainzer Kindertisch"), which analyzes the directional hearing capabilities of children in cooperation with the research project ERKI (Evaluation of acoustic sound source localization for children). As part of the research project framework "Hearing in everyday life (HALLO)" a stereo tracking system is being used for analyzing the head movement of human patients during complex acoustic events. Together with the consideration of biosignals like skin conductance the speech comprehension and listening effort of persons with reduced hearing ability, especially in situations with background noise, is evaluated. For both projects the system design, accuracy aspects and results of practical tests are discussed.
Tracking scanning laser ophthalmoscope (TSLO)
NASA Astrophysics Data System (ADS)
Hammer, Daniel X.; Ferguson, R. Daniel; Magill, John C.; White, Michael A.; Elsner, Ann E.; Webb, Robert H.
2003-07-01
The effectiveness of image stabilization with a retinal tracker in a multi-function, compact scanning laser ophthalmoscope (TSLO) was demonstrated in initial human subject tests. The retinal tracking system uses a confocal reflectometer with a closed loop optical servo system to lock onto features in the fundus. The system is modular to allow configuration for many research and clinical applications, including hyperspectral imaging, multifocal electroretinography (MFERG), perimetry, quantification of macular and photo-pigmentation, imaging of neovascularization and other subretinal structures (drusen, hyper-, and hypo-pigmentation), and endogenous fluorescence imaging. Optical hardware features include dual wavelength imaging and detection, integrated monochromator, higher-order motion control, and a stimulus source. The system software consists of a real-time feedback control algorithm and a user interface. Software enhancements include automatic bias correction, asymmetric feature tracking, image averaging, automatic track re-lock, and acquisition and logging of uncompressed images and video files. Normal adult subjects were tested without mydriasis to optimize the tracking instrumentation and to characterize imaging performance. The retinal tracking system achieves a bandwidth of greater than 1 kHz, which permits tracking at rates that greatly exceed the maximum rate of motion of the human eye. The TSLO stabilized images in all test subjects during ordinary saccades up to 500 deg/sec with an inter-frame accuracy better than 0.05 deg. Feature lock was maintained for minutes despite subject eye blinking. Successful frame averaging allowed image acquisition with decreased noise in low-light applications. The retinal tracking system significantly enhances the imaging capabilities of the scanning laser ophthalmoscope.
Person detection, tracking and following using stereo camera
NASA Astrophysics Data System (ADS)
Wang, Xiaofeng; Zhang, Lilian; Wang, Duo; Hu, Xiaoping
2018-04-01
Person detection, tracking and following is a key enabling technology for mobile robots in many human-robot interaction applications. In this article, we present a system which is composed of visual human detection, video tracking and following. The detection is based on YOLO(You only look once), which applies a single convolution neural network(CNN) to the full image, thus can predict bounding boxes and class probabilities directly in one evaluation. Then the bounding box provides initial person position in image to initialize and train the KCF(Kernelized Correlation Filter), which is a video tracker based on discriminative classifier. At last, by using a stereo 3D sparse reconstruction algorithm, not only the position of the person in the scene is determined, but also it can elegantly solve the problem of scale ambiguity in the video tracker. Extensive experiments are conducted to demonstrate the effectiveness and robustness of our human detection and tracking system.
Sub-micron accurate track navigation method ``Navi'' for the analysis of Nuclear Emulsion
NASA Astrophysics Data System (ADS)
Yoshioka, T.; Yoshida, J.; Kodama, K.
2011-03-01
Sub-micron accurate track navigation in Nuclear Emulsion is realized by using low energy signals detected by automated Nuclear Emulsion read-out systems. Using those much dense ``noise'', about 104 times larger than the real tracks, the accuracy of the track position navigation reaches to be sub micron only by using the information of a microscope field of view, 200 micron times 200 micron. This method is applied to OPERA analysis in Japan, i.e. support of human eye checks of the candidate tracks, confirmation of neutrino interaction vertexes and to embed missing track segments to the track data read-out by automated systems.
McCamy, Michael B.; Otero-Millan, Jorge; Leigh, R. John; King, Susan A.; Schneider, Rosalyn M.; Macknik, Stephen L.; Martinez-Conde, Susana
2015-01-01
Human eyes move continuously, even during visual fixation. These “fixational eye movements” (FEMs) include microsaccades, intersaccadic drift and oculomotor tremor. Research in human FEMs has grown considerably in the last decade, facilitated by the manufacture of noninvasive, high-resolution/speed video-oculography eye trackers. Due to the small magnitude of FEMs, obtaining reliable data can be challenging, however, and depends critically on the sensitivity and precision of the eye tracking system. Yet, no study has conducted an in-depth comparison of human FEM recordings obtained with the search coil (considered the gold standard for measuring microsaccades and drift) and with contemporary, state-of-the art video trackers. Here we measured human microsaccades and drift simultaneously with the search coil and a popular state-of-the-art video tracker. We found that 95% of microsaccades detected with the search coil were also detected with the video tracker, and 95% of microsaccades detected with video tracking were also detected with the search coil, indicating substantial agreement between the two systems. Peak/mean velocities and main sequence slopes of microsaccades detected with video tracking were significantly higher than those of the same microsaccades detected with the search coil, however. Ocular drift was significantly correlated between the two systems, but drift speeds were higher with video tracking than with the search coil. Overall, our combined results suggest that contemporary video tracking now approaches the search coil for measuring FEMs. PMID:26035820
Appearance-based multimodal human tracking and identification for healthcare in the digital home.
Yang, Mau-Tsuen; Huang, Shen-Yen
2014-08-05
There is an urgent need for intelligent home surveillance systems to provide home security, monitor health conditions, and detect emergencies of family members. One of the fundamental problems to realize the power of these intelligent services is how to detect, track, and identify people at home. Compared to RFID tags that need to be worn all the time, vision-based sensors provide a natural and nonintrusive solution. Observing that body appearance and body build, as well as face, provide valuable cues for human identification, we model and record multi-view faces, full-body colors and shapes of family members in an appearance database by using two Kinects located at a home's entrance. Then the Kinects and another set of color cameras installed in other parts of the house are used to detect, track, and identify people by matching the captured color images with the registered templates in the appearance database. People are detected and tracked by multisensor fusion (Kinects and color cameras) using a Kalman filter that can handle duplicate or partial measurements. People are identified by multimodal fusion (face, body appearance, and silhouette) using a track-based majority voting. Moreover, the appearance-based human detection, tracking, and identification modules can cooperate seamlessly and benefit from each other. Experimental results show the effectiveness of the human tracking across multiple sensors and human identification considering the information of multi-view faces, full-body clothes, and silhouettes. The proposed home surveillance system can be applied to domestic applications in digital home security and intelligent healthcare.
Appearance-Based Multimodal Human Tracking and Identification for Healthcare in the Digital Home
Yang, Mau-Tsuen; Huang, Shen-Yen
2014-01-01
There is an urgent need for intelligent home surveillance systems to provide home security, monitor health conditions, and detect emergencies of family members. One of the fundamental problems to realize the power of these intelligent services is how to detect, track, and identify people at home. Compared to RFID tags that need to be worn all the time, vision-based sensors provide a natural and nonintrusive solution. Observing that body appearance and body build, as well as face, provide valuable cues for human identification, we model and record multi-view faces, full-body colors and shapes of family members in an appearance database by using two Kinects located at a home's entrance. Then the Kinects and another set of color cameras installed in other parts of the house are used to detect, track, and identify people by matching the captured color images with the registered templates in the appearance database. People are detected and tracked by multisensor fusion (Kinects and color cameras) using a Kalman filter that can handle duplicate or partial measurements. People are identified by multimodal fusion (face, body appearance, and silhouette) using a track-based majority voting. Moreover, the appearance-based human detection, tracking, and identification modules can cooperate seamlessly and benefit from each other. Experimental results show the effectiveness of the human tracking across multiple sensors and human identification considering the information of multi-view faces, full-body clothes, and silhouettes. The proposed home surveillance system can be applied to domestic applications in digital home security and intelligent healthcare. PMID:25098207
Remote Safety Monitoring for Elderly Persons Based on Omni-Vision Analysis
Xiang, Yun; Tang, Yi-ping; Ma, Bao-qing; Yan, Hang-chen; Jiang, Jun; Tian, Xu-yuan
2015-01-01
Remote monitoring service for elderly persons is important as the aged populations in most developed countries continue growing. To monitor the safety and health of the elderly population, we propose a novel omni-directional vision sensor based system, which can detect and track object motion, recognize human posture, and analyze human behavior automatically. In this work, we have made the following contributions: (1) we develop a remote safety monitoring system which can provide real-time and automatic health care for the elderly persons and (2) we design a novel motion history or energy images based algorithm for motion object tracking. Our system can accurately and efficiently collect, analyze, and transfer elderly activity information and provide health care in real-time. Experimental results show that our technique can improve the data analysis efficiency by 58.5% for object tracking. Moreover, for the human posture recognition application, the success rate can reach 98.6% on average. PMID:25978761
Kotani, Manato; Shimono, Kohei; Yoneyama, Toshihiro; Nakako, Tomokazu; Matsumoto, Kenji; Ogi, Yuji; Konoike, Naho; Nakamura, Katsuki; Ikeda, Kazuhito
2017-09-01
Eye tracking systems are used to investigate eyes position and gaze patterns presumed as eye contact in humans. Eye contact is a useful biomarker of social communication and known to be deficient in patients with autism spectrum disorders (ASDs). Interestingly, the same eye tracking systems have been used to directly compare face scanning patterns in some non-human primates to those in human. Thus, eye tracking is expected to be a useful translational technique for investigating not only social attention and visual interest, but also the effects of psychiatric drugs, such as oxytocin, a neuropeptide that regulates social behavior. In this study, we report on a newly established method for eye tracking in common marmosets as unique New World primates that, like humans, use eye contact as a mean of communication. Our investigation was aimed at characterizing these primates face scanning patterns and evaluating the effects of oxytocin on their eye contact behavior. We found that normal common marmosets spend more time viewing the eyes region in common marmoset's picture than the mouth region or a scrambled picture. In oxytocin experiment, the change in eyes/face ratio was significantly greater in the oxytocin group than in the vehicle group. Moreover, oxytocin-induced increase in the change in eyes/face ratio was completely blocked by the oxytocin receptor antagonist L-368,899. These results indicate that eye tracking in common marmosets may be useful for evaluating drug candidates targeting psychiatric conditions, especially ASDs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Vision-Based Leader Vehicle Trajectory Tracking for Multiple Agricultural Vehicles
Zhang, Linhuan; Ahamed, Tofael; Zhang, Yan; Gao, Pengbo; Takigawa, Tomohiro
2016-01-01
The aim of this study was to design a navigation system composed of a human-controlled leader vehicle and a follower vehicle. The follower vehicle automatically tracks the leader vehicle. With such a system, a human driver can control two vehicles efficiently in agricultural operations. The tracking system was developed for the leader and the follower vehicle, and control of the follower was performed using a camera vision system. A stable and accurate monocular vision-based sensing system was designed, consisting of a camera and rectangular markers. Noise in the data acquisition was reduced by using the least-squares method. A feedback control algorithm was used to allow the follower vehicle to track the trajectory of the leader vehicle. A proportional–integral–derivative (PID) controller was introduced to maintain the required distance between the leader and the follower vehicle. Field experiments were conducted to evaluate the sensing and tracking performances of the leader-follower system while the leader vehicle was driven at an average speed of 0.3 m/s. In the case of linear trajectory tracking, the RMS errors were 6.5 cm, 8.9 cm and 16.4 cm for straight, turning and zigzag paths, respectively. Again, for parallel trajectory tracking, the root mean square (RMS) errors were found to be 7.1 cm, 14.6 cm and 14.0 cm for straight, turning and zigzag paths, respectively. The navigation performances indicated that the autonomous follower vehicle was able to follow the leader vehicle, and the tracking accuracy was found to be satisfactory. Therefore, the developed leader-follower system can be implemented for the harvesting of grains, using a combine as the leader and an unloader as the autonomous follower vehicle. PMID:27110793
Vision-Based Leader Vehicle Trajectory Tracking for Multiple Agricultural Vehicles.
Zhang, Linhuan; Ahamed, Tofael; Zhang, Yan; Gao, Pengbo; Takigawa, Tomohiro
2016-04-22
The aim of this study was to design a navigation system composed of a human-controlled leader vehicle and a follower vehicle. The follower vehicle automatically tracks the leader vehicle. With such a system, a human driver can control two vehicles efficiently in agricultural operations. The tracking system was developed for the leader and the follower vehicle, and control of the follower was performed using a camera vision system. A stable and accurate monocular vision-based sensing system was designed, consisting of a camera and rectangular markers. Noise in the data acquisition was reduced by using the least-squares method. A feedback control algorithm was used to allow the follower vehicle to track the trajectory of the leader vehicle. A proportional-integral-derivative (PID) controller was introduced to maintain the required distance between the leader and the follower vehicle. Field experiments were conducted to evaluate the sensing and tracking performances of the leader-follower system while the leader vehicle was driven at an average speed of 0.3 m/s. In the case of linear trajectory tracking, the RMS errors were 6.5 cm, 8.9 cm and 16.4 cm for straight, turning and zigzag paths, respectively. Again, for parallel trajectory tracking, the root mean square (RMS) errors were found to be 7.1 cm, 14.6 cm and 14.0 cm for straight, turning and zigzag paths, respectively. The navigation performances indicated that the autonomous follower vehicle was able to follow the leader vehicle, and the tracking accuracy was found to be satisfactory. Therefore, the developed leader-follower system can be implemented for the harvesting of grains, using a combine as the leader and an unloader as the autonomous follower vehicle.
21 CFR 20.43 - Multitrack processing.
Code of Federal Regulations, 2011 CFR
2011-04-01
... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PUBLIC... maintained by that component. A multitrack system provides two or more tracks for processing requests, based... single track, ordinarily on a first-in, first-out basis. (c) If a multitrack processing system is...
21 CFR 20.43 - Multitrack processing.
Code of Federal Regulations, 2010 CFR
2010-04-01
... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PUBLIC... maintained by that component. A multitrack system provides two or more tracks for processing requests, based... single track, ordinarily on a first-in, first-out basis. (c) If a multitrack processing system is...
NASA Technical Reports Server (NTRS)
Agarwal, G. C.; Osafo-Charles, F.; Oneill, W. D.; Gottlieb, G. L.
1982-01-01
Time series analysis is applied to model human operator dynamics in pursuit and compensatory tracking modes. The normalized residual criterion is used as a one-step analytical tool to encompass the processes of identification, estimation, and diagnostic checking. A parameter constraining technique is introduced to develop more reliable models of human operator dynamics. The human operator is adequately modeled by a second order dynamic system both in pursuit and compensatory tracking modes. In comparing the data sampling rates, 100 msec between samples is adequate and is shown to provide better results than 200 msec sampling. The residual power spectrum and eigenvalue analysis show that the human operator is not a generator of periodic characteristics.
Security Applications Of Computer Motion Detection
NASA Astrophysics Data System (ADS)
Bernat, Andrew P.; Nelan, Joseph; Riter, Stephen; Frankel, Harry
1987-05-01
An important area of application of computer vision is the detection of human motion in security systems. This paper describes the development of a computer vision system which can detect and track human movement across the international border between the United States and Mexico. Because of the wide range of environmental conditions, this application represents a stringent test of computer vision algorithms for motion detection and object identification. The desired output of this vision system is accurate, real-time locations for individual aliens and accurate statistical data as to the frequency of illegal border crossings. Because most detection and tracking routines assume rigid body motion, which is not characteristic of humans, new algorithms capable of reliable operation in our application are required. Furthermore, most current detection and tracking algorithms assume a uniform background against which motion is viewed - the urban environment along the US-Mexican border is anything but uniform. The system works in three stages: motion detection, object tracking and object identi-fication. We have implemented motion detection using simple frame differencing, maximum likelihood estimation, mean and median tests and are evaluating them for accuracy and computational efficiency. Due to the complex nature of the urban environment (background and foreground objects consisting of buildings, vegetation, vehicles, wind-blown debris, animals, etc.), motion detection alone is not sufficiently accurate. Object tracking and identification are handled by an expert system which takes shape, location and trajectory information as input and determines if the moving object is indeed representative of an illegal border crossing.
The 14th Annual Conference on Manual Control. [digital simulation of human operator dynamics
NASA Technical Reports Server (NTRS)
1978-01-01
Human operator dynamics during actual manual control or while monitoring the automatic control systems involved in air-to-air tracking, automobile driving, the operator of undersea vehicles, and remote handling are examined. Optimal control models and the use of mathematical theory in representing man behavior in complex man machine system tasks are discussed with emphasis on eye/head tracking and scanning; perception and attention allocation; decision making; and motion simulation and effects.
Smart Distributed Sensor Fields: Algorithms for Tactical Sensors
2013-12-23
ranging from detecting, identifying, localizing/tracking interesting events, discarding irrelevant data, to providing actionable intelligence currently...tracking interesting events, discarding irrelevant data, to providing actionable intelligence currently requires significant human super- vision. Human...view of the overall system. The main idea is to reduce the problem to the relevant data, and then reason intelligently over that data. This process
NASA Technical Reports Server (NTRS)
Foyle, David C.; Goodman, Allen; Hooley, Becky L.
2003-01-01
An overview is provided of the Human Performance Modeling (HPM) element within the NASA Aviation Safety Program (AvSP). Two separate model development tracks for performance modeling of real-world aviation environments are described: the first focuses on the advancement of cognitive modeling tools for system design, while the second centers on a prescriptive engineering model of activity tracking for error detection and analysis. A progressive implementation strategy for both tracks is discussed in which increasingly more complex, safety-relevant applications are undertaken to extend the state-of-the-art, as well as to reveal potential human-system vulnerabilities in the aviation domain. Of particular interest is the ability to predict the precursors to error and to assess potential mitigation strategies associated with the operational use of future flight deck technologies.
Robust multiperson detection and tracking for mobile service and social robots.
Li, Liyuan; Yan, Shuicheng; Yu, Xinguo; Tan, Yeow Kee; Li, Haizhou
2012-10-01
This paper proposes an efficient system which integrates multiple vision models for robust multiperson detection and tracking for mobile service and social robots in public environments. The core technique is a novel maximum likelihood (ML)-based algorithm which combines the multimodel detections in mean-shift tracking. First, a likelihood probability which integrates detections and similarity to local appearance is defined. Then, an expectation-maximization (EM)-like mean-shift algorithm is derived under the ML framework. In each iteration, the E-step estimates the associations to the detections, and the M-step locates the new position according to the ML criterion. To be robust to the complex crowded scenarios for multiperson tracking, an improved sequential strategy to perform the mean-shift tracking is proposed. Under this strategy, human objects are tracked sequentially according to their priority order. To balance the efficiency and robustness for real-time performance, at each stage, the first two objects from the list of the priority order are tested, and the one with the higher score is selected. The proposed method has been successfully implemented on real-world service and social robots. The vision system integrates stereo-based and histograms-of-oriented-gradients-based human detections, occlusion reasoning, and sequential mean-shift tracking. Various examples to show the advantages and robustness of the proposed system for multiperson tracking from mobile robots are presented. Quantitative evaluations on the performance of multiperson tracking are also performed. Experimental results indicate that significant improvements have been achieved by using the proposed method.
Virtual three-dimensional blackboard: three-dimensional finger tracking with a single camera
NASA Astrophysics Data System (ADS)
Wu, Andrew; Hassan-Shafique, Khurram; Shah, Mubarak; da Vitoria Lobo, N.
2004-01-01
We present a method for three-dimensional (3D) tracking of a human finger from a monocular sequence of images. To recover the third dimension from the two-dimensional images, we use the fact that the motion of the human arm is highly constrained owing to the dependencies between elbow and forearm and the physical constraints on joint angles. We use these anthropometric constraints to derive a 3D trajectory of a gesticulating arm. The system is fully automated and does not require human intervention. The system presented can be used as a visualization tool, as a user-input interface, or as part of some gesture-analysis system in which 3D information is important.
An MRI-Compatible Robotic System With Hybrid Tracking for MRI-Guided Prostate Intervention
Krieger, Axel; Iordachita, Iulian I.; Guion, Peter; Singh, Anurag K.; Kaushal, Aradhana; Ménard, Cynthia; Pinto, Peter A.; Camphausen, Kevin; Fichtinger, Gabor
2012-01-01
This paper reports the development, evaluation, and first clinical trials of the access to the prostate tissue (APT) II system—a scanner independent system for magnetic resonance imaging (MRI)-guided transrectal prostate interventions. The system utilizes novel manipulator mechanics employing a steerable needle channel and a novel six degree-of-freedom hybrid tracking method, comprising passive fiducial tracking for initial registration and subsequent incremental motion measurements. Targeting accuracy of the system in prostate phantom experiments and two clinical human-subject procedures is shown to compare favorably with existing systems using passive and active tracking methods. The portable design of the APT II system, using only standard MRI image sequences and minimal custom scanner interfacing, allows the system to be easily used on different MRI scanners. PMID:22009867
A gunner model for an AAA tracking task with interrupted observations
NASA Technical Reports Server (NTRS)
Yu, C. F.; Wei, K. C.; Vikmanis, M.
1982-01-01
The problem of modeling a trained human operator's tracking performance in an anti-aircraft system under various display blanking conditions is discussed. The input to the gunner is the observable tracking error subjected to repeated interruptions (blanking). A simple and effective gunner model was developed. The effect of blanking on the gunner's tracking performance is approached via modeling the observer and controller gains.
ACT-Vision: active collaborative tracking for multiple PTZ cameras
NASA Astrophysics Data System (ADS)
Broaddus, Christopher; Germano, Thomas; Vandervalk, Nicholas; Divakaran, Ajay; Wu, Shunguang; Sawhney, Harpreet
2009-04-01
We describe a novel scalable approach for the management of a large number of Pan-Tilt-Zoom (PTZ) cameras deployed outdoors for persistent tracking of humans and vehicles, without resorting to the large fields of view of associated static cameras. Our system, Active Collaborative Tracking - Vision (ACT-Vision), is essentially a real-time operating system that can control hundreds of PTZ cameras to ensure uninterrupted tracking of target objects while maintaining image quality and coverage of all targets using a minimal number of sensors. The system ensures the visibility of targets between PTZ cameras by using criteria such as distance from sensor and occlusion.
Real time eye tracking using Kalman extended spatio-temporal context learning
NASA Astrophysics Data System (ADS)
Munir, Farzeen; Minhas, Fayyaz ul Amir Asfar; Jalil, Abdul; Jeon, Moongu
2017-06-01
Real time eye tracking has numerous applications in human computer interaction such as a mouse cursor control in a computer system. It is useful for persons with muscular or motion impairments. However, tracking the movement of the eye is complicated by occlusion due to blinking, head movement, screen glare, rapid eye movements, etc. In this work, we present the algorithmic and construction details of a real time eye tracking system. Our proposed system is an extension of Spatio-Temporal context learning through Kalman Filtering. Spatio-Temporal Context Learning offers state of the art accuracy in general object tracking but its performance suffers due to object occlusion. Addition of the Kalman filter allows the proposed method to model the dynamics of the motion of the eye and provide robust eye tracking in cases of occlusion. We demonstrate the effectiveness of this tracking technique by controlling the computer cursor in real time by eye movements.
Automatic Contour Tracking in Ultrasound Images
ERIC Educational Resources Information Center
Li, Min; Kambhamettu, Chandra; Stone, Maureen
2005-01-01
In this paper, a new automatic contour tracking system, EdgeTrak, for the ultrasound image sequences of human tongue is presented. The images are produced by a head and transducer support system (HATS). The noise and unrelated high-contrast edges in ultrasound images make it very difficult to automatically detect the correct tongue surfaces. In…
Adaptive Shape Kernel-Based Mean Shift Tracker in Robot Vision System
2016-01-01
This paper proposes an adaptive shape kernel-based mean shift tracker using a single static camera for the robot vision system. The question that we address in this paper is how to construct such a kernel shape that is adaptive to the object shape. We perform nonlinear manifold learning technique to obtain the low-dimensional shape space which is trained by training data with the same view as the tracking video. The proposed kernel searches the shape in the low-dimensional shape space obtained by nonlinear manifold learning technique and constructs the adaptive kernel shape in the high-dimensional shape space. It can improve mean shift tracker performance to track object position and object contour and avoid the background clutter. In the experimental part, we take the walking human as example to validate that our method is accurate and robust to track human position and describe human contour. PMID:27379165
Improvement of Hand Movement on Visual Target Tracking by Assistant Force of Model-Based Compensator
NASA Astrophysics Data System (ADS)
Ide, Junko; Sugi, Takenao; Nakamura, Masatoshi; Shibasaki, Hiroshi
Human motor control is achieved by the appropriate motor commands generating from the central nerve system. A test of visual target tracking is one of the effective methods for analyzing the human motor functions. We have previously examined a possibility for improving the hand movement on visual target tracking by additional assistant force through a simulation study. In this study, a method for compensating the human hand movement on visual target tracking by adding an assistant force was proposed. Effectiveness of the compensation method was investigated through the experiment for four healthy adults. The proposed compensator precisely improved the reaction time, the position error and the variability of the velocity of the human hand. The model-based compensator proposed in this study is constructed by using the measurement data on visual target tracking for each subject. The properties of the hand movement for different subjects can be reflected in the structure of the compensator. Therefore, the proposed method has possibility to adjust the individual properties of patients with various movement disorders caused from brain dysfunctions.
Human tracking over camera networks: a review
NASA Astrophysics Data System (ADS)
Hou, Li; Wan, Wanggen; Hwang, Jenq-Neng; Muhammad, Rizwan; Yang, Mingyang; Han, Kang
2017-12-01
In recent years, automated human tracking over camera networks is getting essential for video surveillance. The tasks of tracking human over camera networks are not only inherently challenging due to changing human appearance, but also have enormous potentials for a wide range of practical applications, ranging from security surveillance to retail and health care. This review paper surveys the most widely used techniques and recent advances for human tracking over camera networks. Two important functional modules for the human tracking over camera networks are addressed, including human tracking within a camera and human tracking across non-overlapping cameras. The core techniques of human tracking within a camera are discussed based on two aspects, i.e., generative trackers and discriminative trackers. The core techniques of human tracking across non-overlapping cameras are then discussed based on the aspects of human re-identification, camera-link model-based tracking and graph model-based tracking. Our survey aims to address existing problems, challenges, and future research directions based on the analyses of the current progress made toward human tracking techniques over camera networks.
Anomaly detection driven active learning for identifying suspicious tracks and events in WAMI video
NASA Astrophysics Data System (ADS)
Miller, David J.; Natraj, Aditya; Hockenbury, Ryler; Dunn, Katherine; Sheffler, Michael; Sullivan, Kevin
2012-06-01
We describe a comprehensive system for learning to identify suspicious vehicle tracks from wide-area motion (WAMI) video. First, since the road network for the scene of interest is assumed unknown, agglomerative hierarchical clustering is applied to all spatial vehicle measurements, resulting in spatial cells that largely capture individual road segments. Next, for each track, both at the cell (speed, acceleration, azimuth) and track (range, total distance, duration) levels, extreme value feature statistics are both computed and aggregated, to form summary (p-value based) anomaly statistics for each track. Here, to fairly evaluate tracks that travel across different numbers of spatial cells, for each cell-level feature type, a single (most extreme) statistic is chosen, over all cells traveled. Finally, a novel active learning paradigm, applied to a (logistic regression) track classifier, is invoked to learn to distinguish suspicious from merely anomalous tracks, starting from anomaly-ranked track prioritization, with ground-truth labeling by a human operator. This system has been applied to WAMI video data (ARGUS), with the tracks automatically extracted by a system developed in-house at Toyon Research Corporation. Our system gives promising preliminary results in highly ranking as suspicious aerial vehicles, dismounts, and traffic violators, and in learning which features are most indicative of suspicious tracks.
Guna, Jože; Jakus, Grega; Pogačnik, Matevž; Tomažič, Sašo; Sodnik, Jaka
2014-02-21
We present the results of an evaluation of the performance of the Leap Motion Controller with the aid of a professional, high-precision, fast motion tracking system. A set of static and dynamic measurements was performed with different numbers of tracking objects and configurations. For the static measurements, a plastic arm model simulating a human arm was used. A set of 37 reference locations was selected to cover the controller's sensory space. For the dynamic measurements, a special V-shaped tool, consisting of two tracking objects maintaining a constant distance between them, was created to simulate two human fingers. In the static scenario, the standard deviation was less than 0.5 mm. The linear correlation revealed a significant increase in the standard deviation when moving away from the controller. The results of the dynamic scenario revealed the inconsistent performance of the controller, with a significant drop in accuracy for samples taken more than 250 mm above the controller's surface. The Leap Motion Controller undoubtedly represents a revolutionary input device for gesture-based human-computer interaction; however, due to its rather limited sensory space and inconsistent sampling frequency, in its current configuration it cannot currently be used as a professional tracking system.
Guna, Jože; Jakus, Grega; Pogačnik, Matevž; Tomažič, Sašo; Sodnik, Jaka
2014-01-01
We present the results of an evaluation of the performance of the Leap Motion Controller with the aid of a professional, high-precision, fast motion tracking system. A set of static and dynamic measurements was performed with different numbers of tracking objects and configurations. For the static measurements, a plastic arm model simulating a human arm was used. A set of 37 reference locations was selected to cover the controller's sensory space. For the dynamic measurements, a special V-shaped tool, consisting of two tracking objects maintaining a constant distance between them, was created to simulate two human fingers. In the static scenario, the standard deviation was less than 0.5 mm. The linear correlation revealed a significant increase in the standard deviation when moving away from the controller. The results of the dynamic scenario revealed the inconsistent performance of the controller, with a significant drop in accuracy for samples taken more than 250 mm above the controller's surface. The Leap Motion Controller undoubtedly represents a revolutionary input device for gesture-based human-computer interaction; however, due to its rather limited sensory space and inconsistent sampling frequency, in its current configuration it cannot currently be used as a professional tracking system. PMID:24566635
Calibration-free gaze tracking for automatic measurement of visual acuity in human infants.
Xiong, Chunshui; Huang, Lei; Liu, Changping
2014-01-01
Most existing vision-based methods for gaze tracking need a tedious calibration process. In this process, subjects are required to fixate on a specific point or several specific points in space. However, it is hard to cooperate, especially for children and human infants. In this paper, a new calibration-free gaze tracking system and method is presented for automatic measurement of visual acuity in human infants. As far as I know, it is the first time to apply the vision-based gaze tracking in the measurement of visual acuity. Firstly, a polynomial of pupil center-cornea reflections (PCCR) vector is presented to be used as the gaze feature. Then, Gaussian mixture models (GMM) is employed for gaze behavior classification, which is trained offline using labeled data from subjects with healthy eyes. Experimental results on several subjects show that the proposed method is accurate, robust and sufficient for the application of measurement of visual acuity in human infants.
Voice tracking and spoken word recognition in the presence of other voices
NASA Astrophysics Data System (ADS)
Litong-Palima, Marisciel; Violanda, Renante; Saloma, Caesar
2004-12-01
We study the human hearing process by modeling the hair cell as a thresholded Hopf bifurcator and compare our calculations with experimental results involving human subjects in two different multi-source listening tasks of voice tracking and spoken-word recognition. In the model, we observed noise suppression by destructive interference between noise sources which weakens the effective noise strength acting on the hair cell. Different success rate characteristics were observed for the two tasks. Hair cell performance at low threshold levels agree well with results from voice-tracking experiments while those of word-recognition experiments are consistent with a linear model of the hearing process. The ability of humans to track a target voice is robust against cross-talk interference unlike word-recognition performance which deteriorates quickly with the number of uncorrelated noise sources in the environment which is a response behavior that is associated with linear systems.
Human emotions track changes in the acoustic environment.
Ma, Weiyi; Thompson, William Forde
2015-11-24
Emotional responses to biologically significant events are essential for human survival. Do human emotions lawfully track changes in the acoustic environment? Here we report that changes in acoustic attributes that are well known to interact with human emotions in speech and music also trigger systematic emotional responses when they occur in environmental sounds, including sounds of human actions, animal calls, machinery, or natural phenomena, such as wind and rain. Three changes in acoustic attributes known to signal emotional states in speech and music were imposed upon 24 environmental sounds. Evaluations of stimuli indicated that human emotions track such changes in environmental sounds just as they do for speech and music. Such changes not only influenced evaluations of the sounds themselves, they also affected the way accompanying facial expressions were interpreted emotionally. The findings illustrate that human emotions are highly attuned to changes in the acoustic environment, and reignite a discussion of Charles Darwin's hypothesis that speech and music originated from a common emotional signal system based on the imitation and modification of environmental sounds.
Human Centered Hardware Modeling and Collaboration
NASA Technical Reports Server (NTRS)
Stambolian Damon; Lawrence, Brad; Stelges, Katrine; Henderson, Gena
2013-01-01
In order to collaborate engineering designs among NASA Centers and customers, to in clude hardware and human activities from multiple remote locations, live human-centered modeling and collaboration across several sites has been successfully facilitated by Kennedy Space Center. The focus of this paper includes innovative a pproaches to engineering design analyses and training, along with research being conducted to apply new technologies for tracking, immersing, and evaluating humans as well as rocket, vehic le, component, or faci lity hardware utilizing high resolution cameras, motion tracking, ergonomic analysis, biomedical monitoring, wor k instruction integration, head-mounted displays, and other innovative human-system integration modeling, simulation, and collaboration applications.
Overview of Microbial Source Tracking Methods Targeting Human Fecal Pollution Sources
Exposure to human fecal waste can be a public health risk dueto the presence of human pathogens. Human fecal pollutioncan be introduced into water resources from damagedsewer lines, faulty septic systems, combined sewer overflows,illicit dumping activities, and even recreational ...
20th Annual Systems Engineering Conference. Volume 1, Monday-Tuesday
2017-10-26
Environment will follow Mr. Thompson’s presentation with a presentation focusing on how ESOH Risk Management is an integral part of the RIO Management...office successes and failures in implementing the DoDI 5000.02 acquisition ESOH policy. HUMAN SYSTEMS INTEGRATION (HSI) Track Chair: Matthew...practices, process improvements, applications and approaches to program integration . INTEROPERABILITY/NET - CENTRIC OPERATIONS Track Chairs
Eye Tracking Based Control System for Natural Human-Computer Interaction
Lin, Shu-Fan
2017-01-01
Eye movement can be regarded as a pivotal real-time input medium for human-computer communication, which is especially important for people with physical disability. In order to improve the reliability, mobility, and usability of eye tracking technique in user-computer dialogue, a novel eye control system with integrating both mouse and keyboard functions is proposed in this paper. The proposed system focuses on providing a simple and convenient interactive mode by only using user's eye. The usage flow of the proposed system is designed to perfectly follow human natural habits. Additionally, a magnifier module is proposed to allow the accurate operation. In the experiment, two interactive tasks with different difficulty (searching article and browsing multimedia web) were done to compare the proposed eye control tool with an existing system. The Technology Acceptance Model (TAM) measures are used to evaluate the perceived effectiveness of our system. It is demonstrated that the proposed system is very effective with regard to usability and interface design. PMID:29403528
Eye Tracking Based Control System for Natural Human-Computer Interaction.
Zhang, Xuebai; Liu, Xiaolong; Yuan, Shyan-Ming; Lin, Shu-Fan
2017-01-01
Eye movement can be regarded as a pivotal real-time input medium for human-computer communication, which is especially important for people with physical disability. In order to improve the reliability, mobility, and usability of eye tracking technique in user-computer dialogue, a novel eye control system with integrating both mouse and keyboard functions is proposed in this paper. The proposed system focuses on providing a simple and convenient interactive mode by only using user's eye. The usage flow of the proposed system is designed to perfectly follow human natural habits. Additionally, a magnifier module is proposed to allow the accurate operation. In the experiment, two interactive tasks with different difficulty (searching article and browsing multimedia web) were done to compare the proposed eye control tool with an existing system. The Technology Acceptance Model (TAM) measures are used to evaluate the perceived effectiveness of our system. It is demonstrated that the proposed system is very effective with regard to usability and interface design.
Three dimensional tracking with misalignment between display and control axes
NASA Technical Reports Server (NTRS)
Ellis, Stephen R.; Tyler, Mitchell; Kim, Won S.; Stark, Lawrence
1992-01-01
Human operators confronted with misaligned display and control frames of reference performed three dimensional, pursuit tracking in virtual environment and virtual space simulations. Analysis of the components of the tracking errors in the perspective displays presenting virtual space showed that components of the error due to visual motor misalignment may be linearly separated from those associated with the mismatch between display and control coordinate systems. Tracking performance improved with several hours practice despite previous reports that such improvement did not take place.
Human body motion capture from multi-image video sequences
NASA Astrophysics Data System (ADS)
D'Apuzzo, Nicola
2003-01-01
In this paper is presented a method to capture the motion of the human body from multi image video sequences without using markers. The process is composed of five steps: acquisition of video sequences, calibration of the system, surface measurement of the human body for each frame, 3-D surface tracking and tracking of key points. The image acquisition system is currently composed of three synchronized progressive scan CCD cameras and a frame grabber which acquires a sequence of triplet images. Self calibration methods are applied to gain exterior orientation of the cameras, the parameters of internal orientation and the parameters modeling the lens distortion. From the video sequences, two kinds of 3-D information are extracted: a three-dimensional surface measurement of the visible parts of the body for each triplet and 3-D trajectories of points on the body. The approach for surface measurement is based on multi-image matching, using the adaptive least squares method. A full automatic matching process determines a dense set of corresponding points in the triplets. The 3-D coordinates of the matched points are then computed by forward ray intersection using the orientation and calibration data of the cameras. The tracking process is also based on least squares matching techniques. Its basic idea is to track triplets of corresponding points in the three images through the sequence and compute their 3-D trajectories. The spatial correspondences between the three images at the same time and the temporal correspondences between subsequent frames are determined with a least squares matching algorithm. The results of the tracking process are the coordinates of a point in the three images through the sequence, thus the 3-D trajectory is determined by computing the 3-D coordinates of the point at each time step by forward ray intersection. Velocities and accelerations are also computed. The advantage of this tracking process is twofold: it can track natural points, without using markers; and it can track local surfaces on the human body. In the last case, the tracking process is applied to all the points matched in the region of interest. The result can be seen as a vector field of trajectories (position, velocity and acceleration). The last step of the process is the definition of selected key points of the human body. A key point is a 3-D region defined in the vector field of trajectories, whose size can vary and whose position is defined by its center of gravity. The key points are tracked in a simple way: the position at the next time step is established by the mean value of the displacement of all the trajectories inside its region. The tracked key points lead to a final result comparable to the conventional motion capture systems: 3-D trajectories of key points which can be afterwards analyzed and used for animation or medical purposes.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 25 Indians 2 2013-04-01 2013-04-01 false What are the minimum internal control standards for gaming promotions and player tracking systems? 543.12 Section 543.12 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR HUMAN SERVICES MINIMUM INTERNAL CONTROL STANDARDS FOR CLASS II GAMING § 543.12 What are the minimum internal contro...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 25 Indians 2 2014-04-01 2014-04-01 false What are the minimum internal control standards for gaming promotions and player tracking systems? 543.12 Section 543.12 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR HUMAN SERVICES MINIMUM INTERNAL CONTROL STANDARDS FOR CLASS II GAMING § 543.12 What are the minimum internal contro...
A Customized DNA Microarray for Microbial Source Tracking in Environmental Systems
It is estimated that more than 160, 000 miles of rivers and streams in the United States are impaired due to the presence of waterborne pathogens. These pathogens typically originate from human and other animal fecal pollution sources; therefore, a rapid microbial source tracking...
Jung, Kwang Bo; Lee, Hana; Son, Ye Seul; Lee, Ji Hye; Cho, Hyun-Soo; Lee, Mi-Ok; Oh, Jung-Hwa; Lee, Jaemin; Kim, Seokho; Jung, Cho-Rok; Kim, Janghwan; Son, Mi-Young
2018-01-01
Human intestinal organoids (hIOs) derived from human pluripotent stem cells (hPSCs) have immense potential as a source of intestines. Therefore, an efficient system is needed for visualizing the stage of intestinal differentiation and further identifying hIOs derived from hPSCs. Here, 2 fluorescent biosensors were developed based on human induced pluripotent stem cell (hiPSC) lines that stably expressed fluorescent reporters driven by intestine-specific gene promoters Krüppel-like factor 5 monomeric Cherry (KLF5 mCherry ) and intestine-specific homeobox enhanced green fluorescence protein (ISX eGFP ). Then hIOs were efficiently induced from those transgenic hiPSC lines in which mCherry- or eGFP-expressing cells, which appeared during differentiation, could be identified in intact living cells in real time. Reporter gene expression had no adverse effects on differentiation into hIOs and proliferation. Using our reporter system to screen for hIO differentiation factors, we identified DMH1 as an efficient substitute for Noggin. Transplanted hIOs under the kidney capsule were tracked with fluorescence imaging (FLI) and confirmed histologically. After orthotopic transplantation, the localization of the hIOs in the small intestine could be accurately visualized using FLI. Our study establishes a selective system for monitoring the in vitro differentiation and for tracking the in vivo localization of hIOs and contributes to further improvement of cell-based therapies and preclinical screenings in the intestinal field.-Jung, K. B., Lee, H., Son, Y. S., Lee, J. H., Cho, H.-S., Lee, M.-O., Oh, J.-H., Lee, J., Kim, S., Jung, C.-R., Kim, J., Son, M.-Y. In vitro and in vivo imaging and tracking of intestinal organoids from human induced pluripotent stem cells. © FASEB.
24/7 security system: 60-FPS color EMCCD camera with integral human recognition
NASA Astrophysics Data System (ADS)
Vogelsong, T. L.; Boult, T. E.; Gardner, D. W.; Woodworth, R.; Johnson, R. C.; Heflin, B.
2007-04-01
An advanced surveillance/security system is being developed for unattended 24/7 image acquisition and automated detection, discrimination, and tracking of humans and vehicles. The low-light video camera incorporates an electron multiplying CCD sensor with a programmable on-chip gain of up to 1000:1, providing effective noise levels of less than 1 electron. The EMCCD camera operates in full color mode under sunlit and moonlit conditions, and monochrome under quarter-moonlight to overcast starlight illumination. Sixty frame per second operation and progressive scanning minimizes motion artifacts. The acquired image sequences are processed with FPGA-compatible real-time algorithms, to detect/localize/track targets and reject non-targets due to clutter under a broad range of illumination conditions and viewing angles. The object detectors that are used are trained from actual image data. Detectors have been developed and demonstrated for faces, upright humans, crawling humans, large animals, cars and trucks. Detection and tracking of targets too small for template-based detection is achieved. For face and vehicle targets the results of the detection are passed to secondary processing to extract recognition templates, which are then compared with a database for identification. When combined with pan-tilt-zoom (PTZ) optics, the resulting system provides a reliable wide-area 24/7 surveillance system that avoids the high life-cycle cost of infrared cameras and image intensifiers.
Can smartwatches replace smartphones for posture tracking?
Mortazavi, Bobak; Nemati, Ebrahim; VanderWall, Kristina; Flores-Rodriguez, Hector G; Cai, Jun Yu Jacinta; Lucier, Jessica; Naeim, Arash; Sarrafzadeh, Majid
2015-10-22
This paper introduces a human posture tracking platform to identify the human postures of sitting, standing or lying down, based on a smartwatch. This work develops such a system as a proof-of-concept study to investigate a smartwatch's ability to be used in future remote health monitoring systems and applications. This work validates the smartwatches' ability to track the posture of users accurately in a laboratory setting while reducing the sampling rate to potentially improve battery life, the first steps in verifying that such a system would work in future clinical settings. The algorithm developed classifies the transitions between three posture states of sitting, standing and lying down, by identifying these transition movements, as well as other movements that might be mistaken for these transitions. The system is trained and developed on a Samsung Galaxy Gear smartwatch, and the algorithm was validated through a leave-one-subject-out cross-validation of 20 subjects. The system can identify the appropriate transitions at only 10 Hz with an F-score of 0.930, indicating its ability to effectively replace smart phones, if needed.
Seo, Joonho; Koizumi, Norihiro; Funamoto, Takakazu; Sugita, Naohiko; Yoshinaka, Kiyoshi; Nomiya, Akira; Homma, Yukio; Matsumoto, Yoichiro; Mitsuishi, Mamoru
2011-06-01
Applying ultrasound (US)-guided high-intensity focused ultrasound (HIFU) therapy for kidney tumours is currently very difficult, due to the unclearly observed tumour area and renal motion induced by human respiration. In this research, we propose new methods by which to track the indistinct tumour area and to compensate the respiratory tumour motion for US-guided HIFU treatment. For tracking indistinct tumour areas, we detect the US speckle change created by HIFU irradiation. In other words, HIFU thermal ablation can coagulate tissue in the tumour area and an intraoperatively created coagulated lesion (CL) is used as a spatial landmark for US visual tracking. Specifically, the condensation algorithm was applied to robust and real-time CL speckle pattern tracking in the sequence of US images. Moreover, biplanar US imaging was used to locate the three-dimensional position of the CL, and a three-actuator system drives the end-effector to compensate for the motion. Finally, we tested the proposed method by using a newly devised phantom model that enables both visual tracking and a thermal response by HIFU irradiation. In the experiment, after generation of the CL in the phantom kidney, the end-effector successfully synchronized with the phantom motion, which was modelled by the captured motion data for the human kidney. The accuracy of the motion compensation was evaluated by the error between the end-effector and the respiratory motion, the RMS error of which was approximately 2 mm. This research shows that a HIFU-induced CL provides a very good landmark for target motion tracking. By using the CL tracking method, target motion compensation can be realized in the US-guided robotic HIFU system. Copyright © 2011 John Wiley & Sons, Ltd.
What interests them in the pictures?--differences in eye-tracking between rhesus monkeys and humans.
Hu, Ying-Zhou; Jiang, Hui-Hui; Liu, Ci-Rong; Wang, Jian-Hong; Yu, Cheng-Yang; Carlson, Synnöve; Yang, Shang-Chuan; Saarinen, Veli-Matti; Rizak, Joshua D; Tian, Xiao-Guang; Tan, Hen; Chen, Zhu-Yue; Ma, Yuan-Ye; Hu, Xin-Tian
2013-10-01
Studies estimating eye movements have demonstrated that non-human primates have fixation patterns similar to humans at the first sight of a picture. In the current study, three sets of pictures containing monkeys, humans or both were presented to rhesus monkeys and humans. The eye movements on these pictures by the two species were recorded using a Tobii eye-tracking system. We found that monkeys paid more attention to the head and body in pictures containing monkeys, whereas both monkeys and humans paid more attention to the head in pictures containing humans. The humans always concentrated on the eyes and head in all the pictures, indicating the social role of facial cues in society. Although humans paid more attention to the hands than monkeys, both monkeys and humans were interested in the hands and what was being done with them in the pictures. This may suggest the importance and necessity of hands for survival. Finally, monkeys scored lower in eye-tracking when fixating on the pictures, as if they were less interested in looking at the screen than humans. The locations of fixation in monkeys may provide insight into the role of eye movements in an evolutionary context.
Research on the position estimation of human movement based on camera projection
NASA Astrophysics Data System (ADS)
Yi, Zhang; Yuan, Luo; Hu, Huosheng
2005-06-01
During the rehabilitation process of the post-stroke patients is conducted, their movements need to be localized and learned so that incorrect movement can be instantly modified or tuned. Therefore, tracking these movement becomes vital and necessary for the rehabilitative course. During human movement tracking, the position estimation of human movement is very important. In this paper, the character of the human movement system is first analyzed. Next, camera and inertial sensor are used to respectively measure the position of human movement, and the Kalman filter algorithm is proposed to fuse the two measurement to get a optimization estimation of the position. In the end, the performance of the method is analyzed.
Multisensor-based human detection and tracking for mobile service robots.
Bellotto, Nicola; Hu, Huosheng
2009-02-01
One of fundamental issues for service robots is human-robot interaction. In order to perform such a task and provide the desired services, these robots need to detect and track people in the surroundings. In this paper, we propose a solution for human tracking with a mobile robot that implements multisensor data fusion techniques. The system utilizes a new algorithm for laser-based leg detection using the onboard laser range finder (LRF). The approach is based on the recognition of typical leg patterns extracted from laser scans, which are shown to also be very discriminative in cluttered environments. These patterns can be used to localize both static and walking persons, even when the robot moves. Furthermore, faces are detected using the robot's camera, and the information is fused to the legs' position using a sequential implementation of unscented Kalman filter. The proposed solution is feasible for service robots with a similar device configuration and has been successfully implemented on two different mobile platforms. Several experiments illustrate the effectiveness of our approach, showing that robust human tracking can be performed within complex indoor environments.
Numerical simulation of active track tensioning system for autonomous hybrid vehicle
NASA Astrophysics Data System (ADS)
Mȩżyk, Arkadiusz; Czapla, Tomasz; Klein, Wojciech; Mura, Gabriel
2017-05-01
One of the most important components of a high speed tracked vehicle is an efficient suspension system. The vehicle should be able to operate both in rough terrain for performance of engineering tasks as well as on the road with high speed. This is especially important for an autonomous platform that operates either with or without human supervision, so that the vibration level can rise compared to a manned vehicle. In this case critical electronic and electric parts must be protected to ensure the reliability of the vehicle. The paper presents a dynamic parameters determination methodology of suspension system for an autonomous high speed tracked platform with total weight of about 5 tonnes and hybrid propulsion system. Common among tracked vehicles suspension solutions and cost-efficient, the torsion-bar system was chosen. One of the most important issues was determining optimal track tensioning - in this case an active hydraulic system was applied. The selection of system parameters was performed with using numerical model based on multi-body dynamic approach. The results of numerical analysis were used to define parameters of active tensioning control system setup. LMS Virtual.Lab Motion was used for multi-body dynamics numerical calculation and Matlab/SIMULINK for control system simulation.
Context in Models of Human-Machine Systems
NASA Technical Reports Server (NTRS)
Callantine, Todd J.; Null, Cynthia H. (Technical Monitor)
1998-01-01
All human-machine systems models represent context. This paper proposes a theory of context through which models may be usefully related and integrated for design. The paper presents examples of context representation in various models, describes an application to developing models for the Crew Activity Tracking System (CATS), and advances context as a foundation for integrated design of complex dynamic systems.
Human-tracking strategies for a six-legged rescue robot based on distance and view
NASA Astrophysics Data System (ADS)
Pan, Yang; Gao, Feng; Qi, Chenkun; Chai, Xun
2016-03-01
Human tracking is an important issue for intelligent robotic control and can be used in many scenarios, such as robotic services and human-robot cooperation. Most of current human-tracking methods are targeted for mobile/tracked robots, but few of them can be used for legged robots. Two novel human-tracking strategies, view priority strategy and distance priority strategy, are proposed specially for legged robots, which enable them to track humans in various complex terrains. View priority strategy focuses on keeping humans in its view angle arrange with priority, while its counterpart, distance priority strategy, focuses on keeping human at a reasonable distance with priority. To evaluate these strategies, two indexes(average and minimum tracking capability) are defined. With the help of these indexes, the view priority strategy shows advantages compared with distance priority strategy. The optimization is done in terms of these indexes, which let the robot has maximum tracking capability. The simulation results show that the robot can track humans with different curves like square, circular, sine and screw paths. Two novel control strategies are proposed which specially concerning legged robot characteristics to solve human tracking problems more efficiently in rescue circumstances.
Multiple Drosophila Tracking System with Heading Direction
Sirigrivatanawong, Pudith; Arai, Shogo; Thoma, Vladimiros; Hashimoto, Koichi
2017-01-01
Machine vision systems have been widely used for image analysis, especially that which is beyond human ability. In biology, studies of behavior help scientists to understand the relationship between sensory stimuli and animal responses. This typically requires the analysis and quantification of animal locomotion. In our work, we focus on the analysis of the locomotion of the fruit fly Drosophila melanogaster, a widely used model organism in biological research. Our system consists of two components: fly detection and tracking. Our system provides the ability to extract a group of flies as the objects of concern and furthermore determines the heading direction of each fly. As each fly moves, the system states are refined with a Kalman filter to obtain the optimal estimation. For the tracking step, combining information such as position and heading direction with assignment algorithms gives a successful tracking result. The use of heading direction increases the system efficiency when dealing with identity loss and flies swapping situations. The system can also operate with a variety of videos with different light intensities. PMID:28067800
Reconstructing the flight kinematics of swarming and mating in wild mosquitoes
Butail, Sachit; Manoukis, Nicholas; Diallo, Moussa; Ribeiro, José M.; Lehmann, Tovi; Paley, Derek A.
2012-01-01
We describe a novel tracking system for reconstructing three-dimensional tracks of individual mosquitoes in wild swarms and present the results of validating the system by filming swarms and mating events of the malaria mosquito Anopheles gambiae in Mali. The tracking system is designed to address noisy, low frame-rate (25 frames per second) video streams from a stereo camera system. Because flying A. gambiae move at 1–4 m s−1, they appear as faded streaks in the images or sometimes do not appear at all. We provide an adaptive algorithm to search for missing streaks and a likelihood function that uses streak endpoints to extract velocity information. A modified multi-hypothesis tracker probabilistically addresses occlusions and a particle filter estimates the trajectories. The output of the tracking algorithm is a set of track segments with an average length of 0.6–1 s. The segments are verified and combined under human supervision to create individual tracks up to the duration of the video (90 s). We evaluate tracking performance using an established metric for multi-target tracking and validate the accuracy using independent stereo measurements of a single swarm. Three-dimensional reconstructions of A. gambiae swarming and mating events are presented. PMID:22628212
Rotational symmetric HMD with eye-tracking capability
NASA Astrophysics Data System (ADS)
Liu, Fangfang; Cheng, Dewen; Wang, Qiwei; Wang, Yongtian
2016-10-01
As an important auxiliary function of head-mounted displays (HMDs), eye tracking has an important role in the field of intelligent human-machine interaction. In this paper, an eye-tracking HMD system (ET-HMD) is designed based on the rotational symmetric system. The tracking principle in this paper is based on pupil-corneal reflection. The ET-HMD system comprises three optical paths for virtual display, infrared illumination, and eye tracking. The display optics is shared by three optical paths and consists of four spherical lenses. For the eye-tracking path, an extra imaging lens is added to match the image sensor and achieve eye tracking. The display optics provides users a 40° diagonal FOV with a ״ 0.61 OLED, the 19 mm eye clearance, and 10 mm exit pupil diameter. The eye-tracking path can capture 15 mm × 15 mm of the users' eyes. The average MTF is above 0.1 at 26 lp/mm for the display path, and exceeds 0.2 at 46 lp/mm for the eye-tracking path. Eye illumination is simulated using LightTools with an eye model and an 850 nm near-infrared LED (NIR-LED). The results of the simulation show that the illumination of the NIR-LED can cover the area of the eye model with the display optics that is sufficient for eye tracking. The integrated optical system HMDs with eye-tracking feature can help improve the HMD experience of users.
Laser system for identification, tracking, and control of flying insects
USDA-ARS?s Scientific Manuscript database
Flying insects are common vectors for transmission of pathogens and inflict significant harm on humans in large parts of the developing world. Besides the direct impact to humans, these pathogens also cause harm to crops and result in agricultural losses. Here, we present a laser-based system that c...
Towards free 3D end-point control for robotic-assisted human reaching using binocular eye tracking.
Maimon-Dror, Roni O; Fernandez-Quesada, Jorge; Zito, Giuseppe A; Konnaris, Charalambos; Dziemian, Sabine; Faisal, A Aldo
2017-07-01
Eye-movements are the only directly observable behavioural signals that are highly correlated with actions at the task level, and proactive of body movements and thus reflect action intentions. Moreover, eye movements are preserved in many movement disorders leading to paralysis (or amputees) from stroke, spinal cord injury, Parkinson's disease, multiple sclerosis, and muscular dystrophy among others. Despite this benefit, eye tracking is not widely used as control interface for robotic interfaces in movement impaired patients due to poor human-robot interfaces. We demonstrate here how combining 3D gaze tracking using our GT3D binocular eye tracker with custom designed 3D head tracking system and calibration method enables continuous 3D end-point control of a robotic arm support system. The users can move their own hand to any location of the workspace by simple looking at the target and winking once. This purely eye tracking based system enables the end-user to retain free head movement and yet achieves high spatial end point accuracy in the order of 6 cm RMSE error in each dimension and standard deviation of 4 cm. 3D calibration is achieved by moving the robot along a 3 dimensional space filling Peano curve while the user is tracking it with their eyes. This results in a fully automated calibration procedure that yields several thousand calibration points versus standard approaches using a dozen points, resulting in beyond state-of-the-art 3D accuracy and precision.
Utku, Semih; Özcanhan, Mehmet Hilal; Unluturk, Mehmet Suleyman
2016-04-01
Patient delivery time is no longer considered as the only critical factor, in ambulatory services. Presently, five clinical performance indicators are used to decide patient satisfaction. Unfortunately, the emergency ambulance services in rapidly growing metropolitan areas do not meet current satisfaction expectations; because of human errors in the management of the objects onboard the ambulances. But, human involvement in the information management of emergency interventions can be reduced by electronic tracking of personnel, assets, consumables and drugs (PACD) carried in the ambulances. Electronic tracking needs the support of automation software, which should be integrated to the overall hospital information system. Our work presents a complete solution based on a centralized database supported by radio frequency identification (RFID) and bluetooth low energy (BLE) identification and tracking technologies. Each object in an ambulance is identified and tracked by the best suited technology. The automated identification and tracking reduces manual paper documentation and frees the personnel to better focus on medical activities. The presence and amounts of the PACD are automatically monitored, warning about their depletion, non-presence or maintenance dates. The computerized two way hospital-ambulance communication link provides information sharing and instantaneous feedback for better and faster diagnosis decisions. A fully implemented system is presented, with detailed hardware and software descriptions. The benefits and the clinical outcomes of the proposed system are discussed, which lead to improved personnel efficiency and more effective interventions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
A soft biomimetic tongue: model reconstruction and motion tracking
NASA Astrophysics Data System (ADS)
Lu, Xuanming; Xu, Weiliang; Li, Xiaoning
2016-04-01
A bioinspired robotic tongue which is actuated by a network of compressed air is proposed for the purpose of mimicking the movements of human tongue. It can be applied in the fields such as medical science and food engineering. The robotic tongue is made of two kinds of silicone rubber Ecoflex 0030 and PDMS with the shape simplified from real human tongue. In order to characterize the robotic tongue, a series of experiments were carried out. Laser scan was applied to reconstruct the static model of robotic tongue when it was under pressurization. After each scan, the robotic tongue was scattered into dense points in the same 3D coordinate system and the coordinates of each point were recorded. Motion tracking system (OptiTrack) was used to track and record the whole process of deformation dynamically during the loading and unloading phase. In the experiments, five types of deformation were achieved including roll-up, roll-down, elongation, groove and twist. Utilizing the discrete points generated by laser scan, the accurate parameterized outline of robotic tongue under different pressure was obtained, which could help demonstrate the static characteristic of robotic tongue. The precise deformation process under one pressure was acquired through the OptiTrack system which contains a series of digital cameras, markers on the robotic tongue and a set of hardware and software for data processing. By means of tracking and recording different process of deformation under different pressure, the dynamic characteristic of robotic tongue could be achieved.
Human emotions track changes in the acoustic environment
Ma, Weiyi; Thompson, William Forde
2015-01-01
Emotional responses to biologically significant events are essential for human survival. Do human emotions lawfully track changes in the acoustic environment? Here we report that changes in acoustic attributes that are well known to interact with human emotions in speech and music also trigger systematic emotional responses when they occur in environmental sounds, including sounds of human actions, animal calls, machinery, or natural phenomena, such as wind and rain. Three changes in acoustic attributes known to signal emotional states in speech and music were imposed upon 24 environmental sounds. Evaluations of stimuli indicated that human emotions track such changes in environmental sounds just as they do for speech and music. Such changes not only influenced evaluations of the sounds themselves, they also affected the way accompanying facial expressions were interpreted emotionally. The findings illustrate that human emotions are highly attuned to changes in the acoustic environment, and reignite a discussion of Charles Darwin’s hypothesis that speech and music originated from a common emotional signal system based on the imitation and modification of environmental sounds. PMID:26553987
Real-time video analysis for retail stores
NASA Astrophysics Data System (ADS)
Hassan, Ehtesham; Maurya, Avinash K.
2015-03-01
With the advancement in video processing technologies, we can capture subtle human responses in a retail store environment which play decisive role in the store management. In this paper, we present a novel surveillance video based analytic system for retail stores targeting localized and global traffic estimate. Development of an intelligent system for human traffic estimation in real-life poses a challenging problem because of the variation and noise involved. In this direction, we begin with a novel human tracking system by an intelligent combination of motion based and image level object detection. We demonstrate the initial evaluation of this approach on available standard dataset yielding promising result. Exact traffic estimate in a retail store require correct separation of customers from service providers. We present a role based human classification framework using Gaussian mixture model for this task. A novel feature descriptor named graded colour histogram is defined for object representation. Using, our role based human classification and tracking system, we have defined a novel computationally efficient framework for two types of analytics generation i.e., region specific people count and dwell-time estimation. This system has been extensively evaluated and tested on four hours of real-life video captured from a retail store.
Webcam mouse using face and eye tracking in various illumination environments.
Lin, Yuan-Pin; Chao, Yi-Ping; Lin, Chung-Chih; Chen, Jyh-Horng
2005-01-01
Nowadays, due to enhancement of computer performance and popular usage of webcam devices, it has become possible to acquire users' gestures for the human-computer-interface with PC via webcam. However, the effects of illumination variation would dramatically decrease the stability and accuracy of skin-based face tracking system; especially for a notebook or portable platform. In this study we present an effective illumination recognition technique, combining K-Nearest Neighbor classifier and adaptive skin model, to realize the real-time tracking system. We have demonstrated that the accuracy of face detection based on the KNN classifier is higher than 92% in various illumination environments. In real-time implementation, the system successfully tracks user face and eyes features at 15 fps under standard notebook platforms. Although KNN classifier only initiates five environments at preliminary stage, the system permits users to define and add their favorite environments to KNN for computer access. Eventually, based on this efficient tracking algorithm, we have developed a "Webcam Mouse" system to control the PC cursor using face and eye tracking. Preliminary studies in "point and click" style PC web games also shows promising applications in consumer electronic markets in the future.
Català, Andreu; Rodríguez Martín, Daniel; van der Aa, Nico; Chen, Wei; Rauterberg, Matthias
2013-01-01
Background Freezing of gait (FoG) is one of the most disturbing and least understood symptoms in Parkinson disease (PD). Although the majority of existing assistive systems assume accurate detections of FoG episodes, the detection itself is still an open problem. The specificity of FoG is its dependency on the context of a patient, such as the current location or activity. Knowing the patient's context might improve FoG detection. One of the main technical challenges that needs to be solved in order to start using contextual information for FoG detection is accurate estimation of the patient's position and orientation toward key elements of his or her indoor environment. Objective The objectives of this paper are to (1) present the concept of the monitoring system, based on wearable and ambient sensors, which is designed to detect FoG using the spatial context of the user, (2) establish a set of requirements for the application of position and orientation tracking in FoG detection, (3) evaluate the accuracy of the position estimation for the tracking system, and (4) evaluate two different methods for human orientation estimation. Methods We developed a prototype system to localize humans and track their orientation, as an important prerequisite for a context-based FoG monitoring system. To setup the system for experiments with real PD patients, the accuracy of the position and orientation tracking was assessed under laboratory conditions in 12 participants. To collect the data, the participants were asked to wear a smartphone, with and without known orientation around the waist, while walking over a predefined path in the marked area captured by two Kinect cameras with non-overlapping fields of view. Results We used the root mean square error (RMSE) as the main performance measure. The vision based position tracking algorithm achieved RMSE = 0.16 m in position estimation for upright standing people. The experimental results for the proposed human orientation estimation methods demonstrated the adaptivity and robustness to changes in the smartphone attachment position, when the fusion of both vision and inertial information was used. Conclusions The system achieves satisfactory accuracy on indoor position tracking for the use in the FoG detection application with spatial context. The combination of inertial and vision information has the potential for correct patient heading estimation even when the inertial wearable sensor device is put into an a priori unknown position. PMID:25098265
Takač, Boris; Català, Andreu; Rodríguez Martín, Daniel; van der Aa, Nico; Chen, Wei; Rauterberg, Matthias
2013-07-15
Freezing of gait (FoG) is one of the most disturbing and least understood symptoms in Parkinson disease (PD). Although the majority of existing assistive systems assume accurate detections of FoG episodes, the detection itself is still an open problem. The specificity of FoG is its dependency on the context of a patient, such as the current location or activity. Knowing the patient's context might improve FoG detection. One of the main technical challenges that needs to be solved in order to start using contextual information for FoG detection is accurate estimation of the patient's position and orientation toward key elements of his or her indoor environment. The objectives of this paper are to (1) present the concept of the monitoring system, based on wearable and ambient sensors, which is designed to detect FoG using the spatial context of the user, (2) establish a set of requirements for the application of position and orientation tracking in FoG detection, (3) evaluate the accuracy of the position estimation for the tracking system, and (4) evaluate two different methods for human orientation estimation. We developed a prototype system to localize humans and track their orientation, as an important prerequisite for a context-based FoG monitoring system. To setup the system for experiments with real PD patients, the accuracy of the position and orientation tracking was assessed under laboratory conditions in 12 participants. To collect the data, the participants were asked to wear a smartphone, with and without known orientation around the waist, while walking over a predefined path in the marked area captured by two Kinect cameras with non-overlapping fields of view. We used the root mean square error (RMSE) as the main performance measure. The vision based position tracking algorithm achieved RMSE = 0.16 m in position estimation for upright standing people. The experimental results for the proposed human orientation estimation methods demonstrated the adaptivity and robustness to changes in the smartphone attachment position, when the fusion of both vision and inertial information was used. The system achieves satisfactory accuracy on indoor position tracking for the use in the FoG detection application with spatial context. The combination of inertial and vision information has the potential for correct patient heading estimation even when the inertial wearable sensor device is put into an a priori unknown position.
Ehsani, Hossein; Rostami, Mostafa; Gudarzi, Mohammad
2016-02-01
Computation of muscle force patterns that produce specified movements of muscle-actuated dynamic models is an important and challenging problem. This problem is an undetermined one, and then a proper optimization is required to calculate muscle forces. The purpose of this paper is to develop a general model for calculating all muscle activation and force patterns in an arbitrary human body movement. For this aim, the equations of a multibody system forward dynamics, which is considered for skeletal system of the human body model, is derived using Lagrange-Euler formulation. Next, muscle contraction dynamics is added to this model and forward dynamics of an arbitrary musculoskeletal system is obtained. For optimization purpose, the obtained model is used in computed muscle control algorithm, and a closed-loop system for tracking desired motions is derived. Finally, a popular sport exercise, biceps curl, is simulated by using this algorithm and the validity of the obtained results is evaluated via EMG signals.
Modeling human target acquisition in ground-to-air weapon systems
NASA Technical Reports Server (NTRS)
Phatak, A. V.; Mohr, R. L.; Vikmanis, M.; Wei, K. C.
1982-01-01
The problems associated with formulating and validating mathematical models for describing and predicting human target acquisition response are considered. In particular, the extension of the human observer model to include the acquisition phase as well as the tracking segment is presented. Relationship of the Observer model structure to the more complex Standard Optimal Control model formulation and to the simpler Transfer Function/Noise representation is discussed. Problems pertinent to structural identifiability and the form of the parameterization are elucidated. A systematic approach toward the identification of the observer acquisition model parameters from ensemble tracking error data is presented.
NASA Technical Reports Server (NTRS)
Phatak, A. V.; Kessler, K. M.
1975-01-01
The selection of the structure of optimal control type models for the human gunner in an anti aircraft artillery system is considered. Several structures within the LQG framework may be formulated. Two basic types are considered: (1) kth derivative controllers; and (2) proportional integral derivative (P-I-D) controllers. It is shown that a suitable criterion for model structure determination can be based on the ensemble statistics of the tracking error. In the case when the ensemble tracking steady state error is zero, it is suggested that a P-I-D controller formulation be used in preference to the kth derivative controller.
Nearly automatic motion capture system for tracking octopus arm movements in 3D space.
Zelman, Ido; Galun, Meirav; Akselrod-Ballin, Ayelet; Yekutieli, Yoram; Hochner, Binyamin; Flash, Tamar
2009-08-30
Tracking animal movements in 3D space is an essential part of many biomechanical studies. The most popular technique for human motion capture uses markers placed on the skin which are tracked by a dedicated system. However, this technique may be inadequate for tracking animal movements, especially when it is impossible to attach markers to the animal's body either because of its size or shape or because of the environment in which the animal performs its movements. Attaching markers to an animal's body may also alter its behavior. Here we present a nearly automatic markerless motion capture system that overcomes these problems and successfully tracks octopus arm movements in 3D space. The system is based on three successive tracking and processing stages. The first stage uses a recently presented segmentation algorithm to detect the movement in a pair of video sequences recorded by two calibrated cameras. In the second stage, the results of the first stage are processed to produce 2D skeletal representations of the moving arm. Finally, the 2D skeletons are used to reconstruct the octopus arm movement as a sequence of 3D curves varying in time. Motion tracking, segmentation and reconstruction are especially difficult problems in the case of octopus arm movements because of the deformable, non-rigid structure of the octopus arm and the underwater environment in which it moves. Our successful results suggest that the motion-tracking system presented here may be used for tracking other elongated objects.
Connectivity in the human brain dissociates entropy and complexity of auditory inputs☆
Nastase, Samuel A.; Iacovella, Vittorio; Davis, Ben; Hasson, Uri
2015-01-01
Complex systems are described according to two central dimensions: (a) the randomness of their output, quantified via entropy; and (b) their complexity, which reflects the organization of a system's generators. Whereas some approaches hold that complexity can be reduced to uncertainty or entropy, an axiom of complexity science is that signals with very high or very low entropy are generated by relatively non-complex systems, while complex systems typically generate outputs with entropy peaking between these two extremes. In understanding their environment, individuals would benefit from coding for both input entropy and complexity; entropy indexes uncertainty and can inform probabilistic coding strategies, whereas complexity reflects a concise and abstract representation of the underlying environmental configuration, which can serve independent purposes, e.g., as a template for generalization and rapid comparisons between environments. Using functional neuroimaging, we demonstrate that, in response to passively processed auditory inputs, functional integration patterns in the human brain track both the entropy and complexity of the auditory signal. Connectivity between several brain regions scaled monotonically with input entropy, suggesting sensitivity to uncertainty, whereas connectivity between other regions tracked entropy in a convex manner consistent with sensitivity to input complexity. These findings suggest that the human brain simultaneously tracks the uncertainty of sensory data and effectively models their environmental generators. PMID:25536493
Automated tracking for advanced satellite laser ranging systems
NASA Astrophysics Data System (ADS)
McGarry, Jan F.; Degnan, John J.; Titterton, Paul J., Sr.; Sweeney, Harold E.; Conklin, Brion P.; Dunn, Peter J.
1996-06-01
NASA's Satellite Laser Ranging Network was originally developed during the 1970's to track satellites carrying corner cube reflectors. Today eight NASA systems, achieving millimeter ranging precision, are part of a global network of more than 40 stations that track 17 international satellites. To meet the tracking demands of a steadily growing satellite constellation within existing resources, NASA is embarking on a major automation program. While manpower on the current systems will be reduced to a single operator, the fully automated SLR2000 system is being designed to operate for months without human intervention. Because SLR2000 must be eyesafe and operate in daylight, tracking is often performed in a low probability of detection and high noise environment. The goal is to automatically select the satellite, setup the tracking and ranging hardware, verify acquisition, and close the tracking loop to optimize data yield. TO accomplish the autotracking tasks, we are investigating (1) improved satellite force models, (2) more frequent updates of orbital ephemerides, (3) lunar laser ranging data processing techniques to distinguish satellite returns from noise, and (4) angular detection and search techniques to acquire the satellite. A Monte Carlo simulator has been developed to allow optimization of the autotracking algorithms by modeling the relevant system errors and then checking performance against system truth. A combination of simulator and preliminary field results will be presented.
Coarse-to-fine markerless gait analysis based on PCA and Gauss-Laguerre decomposition
NASA Astrophysics Data System (ADS)
Goffredo, Michela; Schmid, Maurizio; Conforto, Silvia; Carli, Marco; Neri, Alessandro; D'Alessio, Tommaso
2005-04-01
Human movement analysis is generally performed through the utilization of marker-based systems, which allow reconstructing, with high levels of accuracy, the trajectories of markers allocated on specific points of the human body. Marker based systems, however, show some drawbacks that can be overcome by the use of video systems applying markerless techniques. In this paper, a specifically designed computer vision technique for the detection and tracking of relevant body points is presented. It is based on the Gauss-Laguerre Decomposition, and a Principal Component Analysis Technique (PCA) is used to circumscribe the region of interest. Results obtained on both synthetic and experimental tests provide significant reduction of the computational costs, with no significant reduction of the tracking accuracy.
NASA Technical Reports Server (NTRS)
Sadoff, Melvin
1958-01-01
The results of a fixed-base simulator study of the effects of variable longitudinal control-system dynamics on pilot opinion are presented and compared with flight-test data. The control-system variables considered in this investigation included stick force per g, time constant, and dead-band, or stabilizer breakout force. In general, the fairly good correlation between flight and simulator results for two pilots demonstrates the validity of fixed-base simulator studies which are designed to complement and supplement flight studies and serve as a guide in control-system preliminary design. However, in the investigation of certain problem areas (e.g., sensitive control-system configurations associated with pilot- induced oscillations in flight), fixed-base simulator results did not predict the occurrence of an instability, although the pilots noted the system was extremely sensitive and unsatisfactory. If it is desired to predict pilot-induced-oscillation tendencies, tests in moving-base simulators may be required. It was found possible to represent the human pilot by a linear pilot analog for the tracking task assumed in the present study. The criterion used to adjust the pilot analog was the root-mean-square tracking error of one of the human pilots on the fixed-base simulator. Matching the tracking error of the pilot analog to that of the human pilot gave an approximation to the variation of human-pilot behavior over a range of control-system dynamics. Results of the pilot-analog study indicated that both for optimized control-system dynamics (for poor airplane dynamics) and for a region of good airplane dynamics, the pilot response characteristics are approximately the same.
An automated data exploitation system for airborne sensors
NASA Astrophysics Data System (ADS)
Chen, Hai-Wen; McGurr, Mike
2014-06-01
Advanced wide area persistent surveillance (WAPS) sensor systems on manned or unmanned airborne vehicles are essential for wide-area urban security monitoring in order to protect our people and our warfighter from terrorist attacks. Currently, human (imagery) analysts process huge data collections from full motion video (FMV) for data exploitation and analysis (real-time and forensic), providing slow and inaccurate results. An Automated Data Exploitation System (ADES) is urgently needed. In this paper, we present a recently developed ADES for airborne vehicles under heavy urban background clutter conditions. This system includes four processes: (1) fast image registration, stabilization, and mosaicking; (2) advanced non-linear morphological moving target detection; (3) robust multiple target (vehicles, dismounts, and human) tracking (up to 100 target tracks); and (4) moving or static target/object recognition (super-resolution). Test results with real FMV data indicate that our ADES can reliably detect, track, and recognize multiple vehicles under heavy urban background clutters. Furthermore, our example shows that ADES as a baseline platform can provide capability for vehicle abnormal behavior detection to help imagery analysts quickly trace down potential threats and crimes.
Human motion tracking by temporal-spatial local gaussian process experts.
Zhao, Xu; Fu, Yun; Liu, Yuncai
2011-04-01
Human pose estimation via motion tracking systems can be considered as a regression problem within a discriminative framework. It is always a challenging task to model the mapping from observation space to state space because of the high-dimensional characteristic in the multimodal conditional distribution. In order to build the mapping, existing techniques usually involve a large set of training samples in the learning process which are limited in their capability to deal with multimodality. We propose, in this work, a novel online sparse Gaussian Process (GP) regression model to recover 3-D human motion in monocular videos. Particularly, we investigate the fact that for a given test input, its output is mainly determined by the training samples potentially residing in its local neighborhood and defined in the unified input-output space. This leads to a local mixture GP experts system composed of different local GP experts, each of which dominates a mapping behavior with the specific covariance function adapting to a local region. To handle the multimodality, we combine both temporal and spatial information therefore to obtain two categories of local experts. The temporal and spatial experts are integrated into a seamless hybrid system, which is automatically self-initialized and robust for visual tracking of nonlinear human motion. Learning and inference are extremely efficient as all the local experts are defined online within very small neighborhoods. Extensive experiments on two real-world databases, HumanEva and PEAR, demonstrate the effectiveness of our proposed model, which significantly improve the performance of existing models.
High-Speed Noninvasive Eye-Tracking System
NASA Technical Reports Server (NTRS)
Talukder, Ashit; LaBaw, Clayton; Michael-Morookian, John; Monacos, Steve; Serviss, Orin
2007-01-01
The figure schematically depicts a system of electronic hardware and software that noninvasively tracks the direction of a person s gaze in real time. Like prior commercial noninvasive eye-tracking systems, this system is based on (1) illumination of an eye by a low-power infrared light-emitting diode (LED); (2) acquisition of video images of the pupil, iris, and cornea in the reflected infrared light; (3) digitization of the images; and (4) processing the digital image data to determine the direction of gaze from the centroids of the pupil and cornea in the images. Relative to the prior commercial systems, the present system operates at much higher speed and thereby offers enhanced capability for applications that involve human-computer interactions, including typing and computer command and control by handicapped individuals,and eye-based diagnosis of physiological disorders that affect gaze responses.
Hacker tracking Security system for HMI
NASA Astrophysics Data System (ADS)
Chauhan, Rajeev Kumar
2011-12-01
Conventional Supervisory control and data Acquisition (SCADA) systems use PC, notebook, thin client, and PDA as a Client. Nowadays the Process Industries are following multi shift system that's why multi- client of different category have to work at a single human Machine Interface (HMI). They may hack the HMI Display and change setting of the other client. This paper introduces a Hacker tracking security (HTS) System for HMI. This is developed by using the conventional and Biometric authentication. HTS system is developed by using Numeric passwords, Smart card, biometric, blood flow and Finger temperature. This work is also able to identify the hackers.
Object tracking with adaptive HOG detector and adaptive Rao-Blackwellised particle filter
NASA Astrophysics Data System (ADS)
Rosa, Stefano; Paleari, Marco; Ariano, Paolo; Bona, Basilio
2012-01-01
Scenarios for a manned mission to the Moon or Mars call for astronaut teams to be accompanied by semiautonomous robots. A prerequisite for human-robot interaction is the capability of successfully tracking humans and objects in the environment. In this paper we present a system for real-time visual object tracking in 2D images for mobile robotic systems. The proposed algorithm is able to specialize to individual objects and to adapt to substantial changes in illumination and object appearance during tracking. The algorithm is composed by two main blocks: a detector based on Histogram of Oriented Gradient (HOG) descriptors and linear Support Vector Machines (SVM), and a tracker which is implemented by an adaptive Rao-Blackwellised particle filter (RBPF). The SVM is re-trained online on new samples taken from previous predicted positions. We use the effective sample size to decide when the classifier needs to be re-trained. Position hypotheses for the tracked object are the result of a clustering procedure applied on the set of particles. The algorithm has been tested on challenging video sequences presenting strong changes in object appearance, illumination, and occlusion. Experimental tests show that the presented method is able to achieve near real-time performances with a precision of about 7 pixels on standard video sequences of dimensions 320 × 240.
Ultrasonic ranging for the oculometer
NASA Technical Reports Server (NTRS)
Guy, W. J.
1981-01-01
Ultrasonic tracking techniques are investigated for an oculometer. Two methods are reported in detail. The first is based on measurements of time from the start of a transmit burst to a received echo. Knowing the sound velocity, distance can be calculated. In the second method, a continuous signal is transmitted. Target movement causes phase shifting of the echo. By accumulating these phase shifts, tracking from a set point can be achieved. Both systems have problems with contoured targets, but work well on flat plates and the back of a human head. Also briefly reported is an evaluation of an ultrasonic ranging system. Interface circuits make this system compatible with the echo time design. While the system is consistently accurate, it has a beam too narrow for oculometer use. Finally, comments are provided on a tracking system using the Doppler frequency shift to give range data.
Al-Nawashi, Malek; Al-Hazaimeh, Obaida M; Saraee, Mohamad
2017-01-01
Abnormal activity detection plays a crucial role in surveillance applications, and a surveillance system that can perform robustly in an academic environment has become an urgent need. In this paper, we propose a novel framework for an automatic real-time video-based surveillance system which can simultaneously perform the tracking, semantic scene learning, and abnormality detection in an academic environment. To develop our system, we have divided the work into three phases: preprocessing phase, abnormal human activity detection phase, and content-based image retrieval phase. For motion object detection, we used the temporal-differencing algorithm and then located the motions region using the Gaussian function. Furthermore, the shape model based on OMEGA equation was used as a filter for the detected objects (i.e., human and non-human). For object activities analysis, we evaluated and analyzed the human activities of the detected objects. We classified the human activities into two groups: normal activities and abnormal activities based on the support vector machine. The machine then provides an automatic warning in case of abnormal human activities. It also embeds a method to retrieve the detected object from the database for object recognition and identification using content-based image retrieval. Finally, a software-based simulation using MATLAB was performed and the results of the conducted experiments showed an excellent surveillance system that can simultaneously perform the tracking, semantic scene learning, and abnormality detection in an academic environment with no human intervention.
NASA Astrophysics Data System (ADS)
Liu, Yu-Che; Huang, Chung-Lin
2013-03-01
This paper proposes a multi-PTZ-camera control mechanism to acquire close-up imagery of human objects in a surveillance system. The control algorithm is based on the output of multi-camera, multi-target tracking. Three main concerns of the algorithm are (1) the imagery of human object's face for biometric purposes, (2) the optimal video quality of the human objects, and (3) minimum hand-off time. Here, we define an objective function based on the expected capture conditions such as the camera-subject distance, pan tile angles of capture, face visibility and others. Such objective function serves to effectively balance the number of captures per subject and quality of captures. In the experiments, we demonstrate the performance of the system which operates in real-time under real world conditions on three PTZ cameras.
Yeo, Boon Y.; McLaughlin, Robert A.; Kirk, Rodney W.; Sampson, David D.
2012-01-01
We present a high-resolution three-dimensional position tracking method that allows an optical coherence tomography (OCT) needle probe to be scanned laterally by hand, providing the high degree of flexibility and freedom required in clinical usage. The method is based on a magnetic tracking system, which is augmented by cross-correlation-based resampling and a two-stage moving window average algorithm to improve upon the tracker's limited intrinsic spatial resolution, achieving 18 µm RMS position accuracy. A proof-of-principle system was developed, with successful image reconstruction demonstrated on phantoms and on ex vivo human breast tissue validated against histology. This freehand scanning method could contribute toward clinical implementation of OCT needle imaging. PMID:22808429
Face pose tracking using the four-point algorithm
NASA Astrophysics Data System (ADS)
Fung, Ho Yin; Wong, Kin Hong; Yu, Ying Kin; Tsui, Kwan Pang; Kam, Ho Chuen
2017-06-01
In this paper, we have developed an algorithm to track the pose of a human face robustly and efficiently. Face pose estimation is very useful in many applications such as building virtual reality systems and creating an alternative input method for the disabled. Firstly, we have modified a face detection toolbox called DLib for the detection of a face in front of a camera. The detected face features are passed to a pose estimation method, known as the four-point algorithm, for pose computation. The theory applied and the technical problems encountered during system development are discussed in the paper. It is demonstrated that the system is able to track the pose of a face in real time using a consumer grade laptop computer.
Jin, Qiang; Feng, Lei; Zhang, Shui-Jun; Wang, Dan-Dan; Wang, Fang-Jun; Zhang, Yi; Cui, Jing-Nan; Guo, Wen-Zhi; Ge, Guang-Bo; Yang, Ling
2017-09-19
In this study, a novel fluorescent detection system for biological sensing of human albumin (HA) was developed on the basis of the pseudoesterase activity and substrate preference of HA. The designed near-infrared (NIR) fluorescent probe (DDAP) could be effectively hydrolyzed by HA, accompanied by significant changes in both color and fluorescence spectrum. The sensing mechanism was fully investigated by fluorescence spectroscopy, NMR, and mass spectra. DDAP exhibited excellent selectivity and sensitivity toward HA over a variety of human plasma proteins, hydrolases, and abundant biomolecules found in human body. The probe has been successfully applied to measure native HA in diluted plasma samples and the secreted HA in the hepatocyte culture supernatant. DDAP has also been used for fluorescence imaging of HA reabsorption in living renal cells, and the results show that the probe exhibits good cell permeability, low cytotoxicity and high imaging resolution. Furthermore, DDAP has been successfully used for real-time tracking the uptaking and degradation of albumin in ex vivo mouse kidney models for the first time. All these results clearly demonstrated that DDAP-based assay held great promise for real-time sensing and tracking HA in complex biological systems, which would be very useful for basic researches and clinical diagnosis of HA-associated diseases.
Connectivity in the human brain dissociates entropy and complexity of auditory inputs.
Nastase, Samuel A; Iacovella, Vittorio; Davis, Ben; Hasson, Uri
2015-03-01
Complex systems are described according to two central dimensions: (a) the randomness of their output, quantified via entropy; and (b) their complexity, which reflects the organization of a system's generators. Whereas some approaches hold that complexity can be reduced to uncertainty or entropy, an axiom of complexity science is that signals with very high or very low entropy are generated by relatively non-complex systems, while complex systems typically generate outputs with entropy peaking between these two extremes. In understanding their environment, individuals would benefit from coding for both input entropy and complexity; entropy indexes uncertainty and can inform probabilistic coding strategies, whereas complexity reflects a concise and abstract representation of the underlying environmental configuration, which can serve independent purposes, e.g., as a template for generalization and rapid comparisons between environments. Using functional neuroimaging, we demonstrate that, in response to passively processed auditory inputs, functional integration patterns in the human brain track both the entropy and complexity of the auditory signal. Connectivity between several brain regions scaled monotonically with input entropy, suggesting sensitivity to uncertainty, whereas connectivity between other regions tracked entropy in a convex manner consistent with sensitivity to input complexity. These findings suggest that the human brain simultaneously tracks the uncertainty of sensory data and effectively models their environmental generators. Copyright © 2014. Published by Elsevier Inc.
National Antimicrobial Resistance Monitoring System (NARMS) Program
USDA-ARS?s Scientific Manuscript database
The National Antimicrobial Resistance Monitoring System (NARMS) – Enteric Bacteria is a national public health surveillance system in the United States that tracks changes in the susceptibility of certain enteric bacteria to antimicrobial agents of human and veterinary medical importance. The NARMS ...
2012-03-19
PETER MA, EV74, WEARS A SUIT COVERED WITH SPHERICAL REFLECTORS THAT ENABLE HIS MOTIONS TO BE TRACKED BY THE MOTION CAPTURE SYSTEM. THE HUMAN MODEL IN RED ON THE SCREEN IN THE BACKGROUND REPRESENTS THE SYSTEM-GENERATED IMAGE OF PETER'S POSITION.
Infrared dim and small target detecting and tracking method inspired by Human Visual System
NASA Astrophysics Data System (ADS)
Dong, Xiabin; Huang, Xinsheng; Zheng, Yongbin; Shen, Lurong; Bai, Shengjian
2014-01-01
Detecting and tracking dim and small target in infrared images and videos is one of the most important techniques in many computer vision applications, such as video surveillance and infrared imaging precise guidance. Recently, more and more algorithms based on Human Visual System (HVS) have been proposed to detect and track the infrared dim and small target. In general, HVS concerns at least three mechanisms including contrast mechanism, visual attention and eye movement. However, most of the existing algorithms simulate only a single one of the HVS mechanisms, resulting in many drawbacks of these algorithms. A novel method which combines the three mechanisms of HVS is proposed in this paper. First, a group of Difference of Gaussians (DOG) filters which simulate the contrast mechanism are used to filter the input image. Second, a visual attention, which is simulated by a Gaussian window, is added at a point near the target in order to further enhance the dim small target. This point is named as the attention point. Eventually, the Proportional-Integral-Derivative (PID) algorithm is first introduced to predict the attention point of the next frame of an image which simulates the eye movement of human being. Experimental results of infrared images with different types of backgrounds demonstrate the high efficiency and accuracy of the proposed method to detect and track the dim and small targets.
Gold Standard Testing of Motion Based Tracking Systems
2017-03-15
NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER H0L0 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER 9...LABORATORY 711TH HUMAN PERFORMANCE WING, AIRMAN SYSTEMS DIRECTORATE, WRIGHT-PATTERSON AIR FORCE BASE, OH 45433 AIR FORCE MATERIEL COMMAND UNITED STATES AIR...711th Human Performance Wing 711th Human Performance Wing Air Force Research Laboratory Air Force Research Laboratory This report is published in the
Automated vehicle for railway track fault detection
NASA Astrophysics Data System (ADS)
Bhushan, M.; Sujay, S.; Tushar, B.; Chitra, P.
2017-11-01
For the safety reasons, railroad tracks need to be inspected on a regular basis for detecting physical defects or design non compliances. Such track defects and non compliances, if not detected in a certain interval of time, may eventually lead to severe consequences such as train derailments. Inspection must happen twice weekly by a human inspector to maintain safety standards as there are hundreds and thousands of miles of railroad track. But in such type of manual inspection, there are many drawbacks that may result in the poor inspection of the track, due to which accidents may cause in future. So to avoid such errors and severe accidents, this automated system is designed.Such a concept would surely introduce automation in the field of inspection process of railway track and can help to avoid mishaps and severe accidents due to faults in the track.
Real Time Eye Tracking and Hand Tracking Using Regular Video Cameras for Human Computer Interaction
2011-01-01
Paperwork Reduction Project (0704-0188) Washington, DC 20503. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) January...understand us. More specifically, the computer should be able to infer what we wish to see, do , and interact with through our movements, gestures, and...in depth freedom. Our system differs from the majority of other systems in that we do not use infrared, stereo-cameras, specially-constructed
Data fusion for target tracking and classification with wireless sensor network
NASA Astrophysics Data System (ADS)
Pannetier, Benjamin; Doumerc, Robin; Moras, Julien; Dezert, Jean; Canevet, Loic
2016-10-01
In this paper, we address the problem of multiple ground target tracking and classification with information obtained from a unattended wireless sensor network. A multiple target tracking (MTT) algorithm, taking into account road and vegetation information, is proposed based on a centralized architecture. One of the key issue is how to adapt classical MTT approach to satisfy embedded processing. Based on track statistics, the classification algorithm uses estimated location, velocity and acceleration to help to classify targets. The algorithms enables tracking human and vehicles driving both on and off road. We integrate road or trail width and vegetation cover, as constraints in target motion models to improve performance of tracking under constraint with classification fusion. Our algorithm also presents different dynamic models, to palliate the maneuvers of targets. The tracking and classification algorithms are integrated into an operational platform (the fusion node). In order to handle realistic ground target tracking scenarios, we use an autonomous smart computer deposited in the surveillance area. After the calibration step of the heterogeneous sensor network, our system is able to handle real data from a wireless ground sensor network. The performance of system is evaluated in a real exercise for intelligence operation ("hunter hunt" scenario).
Freestanding Triboelectric Nanogenerator Enables Noncontact Motion-Tracking and Positioning.
Guo, Huijuan; Jia, Xueting; Liu, Lue; Cao, Xia; Wang, Ning; Wang, Zhong Lin
2018-04-24
Recent development of interactive motion-tracking and positioning technologies is attracting increasing interests in many areas, such as wearable electronics, intelligent electronics, and the internet of things. For example, the so-called somatosensory technology can afford users strong empathy of immersion and realism due to their consistent interaction with the game. Here, we report a noncontact self-powered positioning and motion-tracking system based on a freestanding triboelectric nanogenerator (TENG). The TENG was fabricated by a nanoengineered surface in the contact-separation mode with the use of a free moving human body (hands or feet) as the trigger. The poly(tetrafluoroethylene) (PTFE) arrays based interactive interface can give an output of 222 V from casual human motions. Different from previous works, this device also responses to a small action at certain heights of 0.01-0.11 m from the device with a sensitivity of about 315 V·m -1 , so that the mechanical sensing is possible. Such a distinctive noncontact sensing feature promotes a wide range of potential applications in smart interaction systems.
NASA Astrophysics Data System (ADS)
Naqvi, Rizwan Ali; Park, Kang Ryoung
2016-06-01
Gaze tracking systems are widely used in human-computer interfaces, interfaces for the disabled, game interfaces, and for controlling home appliances. Most studies on gaze detection have focused on enhancing its accuracy, whereas few have considered the discrimination of intentional gaze fixation (looking at a target to activate or select it) from unintentional fixation while using gaze detection systems. Previous research methods based on the use of a keyboard or mouse button, eye blinking, and the dwell time of gaze position have various limitations. Therefore, we propose a method for discriminating between intentional and unintentional gaze fixation using a multimodal fuzzy logic algorithm applied to a gaze tracking system with a near-infrared camera sensor. Experimental results show that the proposed method outperforms the conventional method for determining gaze fixation.
Modelling of a Double-Track Railway Contact System Electric Field Intensity
NASA Astrophysics Data System (ADS)
Belinsky, Stanislav; Khanzhina, Olga; Sidorov, Alexander
2017-12-01
Working conditions of personnel that serves contact system (CS) are affected by factors including health and safety, security and working hours (danger of rolling stock accidents, danger of electric shock strokes, work at height, severity and tension of work, increased noise level, etc.) Low frequency electromagnetic fields as part of both electric and magnetic fields are among of the most dangerous and harmful factors. These factors can affect not only the working personnel, but also a lot of people, who do not work with the contact system itself, but could be influenced by electromagnetic field as the result of their professional activity. People, who use public transport or live not far from the electrified lines, are endangered by these factors as well. There are results of the theoretical researches in which low frequency electric fields of railway contact system were designed with the use of mathematical and computer modelling. Significant features of electric field distribution near double-track railway in presence or absence of human body were established. The studies showed the dependence of low frequency electric field parameters on the distance to the track axis, height, and presence or absence of human body. The obtained data were compared with permissible standards established in the Russian Federation and other countries with advanced electrified railway system. Evaluation of low frequency electric fields harmful effect on personnel is the main result of this work. It is also established, that location of personnel, voltage and current level, amount of tracks and other factors influence electric fields of contact systems.
Analysis of the human operator subsystems
NASA Technical Reports Server (NTRS)
Jones, Lynette A.; Hunter, Ian W.
1991-01-01
Except in low-bandwidth systems, knowledge of the human operator transfer function is essential for high-performance telerobotic systems. This information has usually been derived from detailed analyses of tracking performance, in which the human operator is considered as a complete system rather than as a summation of a number of subsystems, each of which influences the operator's output. Studies of one of these subsystems, the limb mechanics system, demonstrate that large parameter variations can occur that can have a profound effect on the stability of force-reflecting telerobot systems. An objective of this research was to decompose the performance of the human operator system in order to establish how the dynamics of each of the elements influence the operator's responses.
Proton Radiography With Timepix Based Time Projection Chambers.
Biegun, Aleksandra K; Visser, Jan; Klaver, Tom; Ghazanfari, Nafiseh; van Goethem, Marc-Jan; Koffeman, Els; van Beuzekom, Martin; Brandenburg, Sytze
2016-04-01
The development of a proton radiography system to improve the imaging of patients in proton beam therapy is described. The system comprises gridpix based time projection chambers, which are based on the Timepix chip designed by the Medipix collaboration, for tracking the protons. This type of detector was chosen to have minimal impact on the actual determination of the proton tracks by the tracking detectors. To determine the residual energy of the protons, a BaF 2 crystal with a photomultiplier tube is used. We present data taken in a feasibility experiment with phantoms that represent tissue equivalent materials found in the human body. The obtained experimental results show a good agreement with the performed simulations.
A real-time optical tracking and measurement processing system for flying targets.
Guo, Pengyu; Ding, Shaowen; Zhang, Hongliang; Zhang, Xiaohu
2014-01-01
Optical tracking and measurement for flying targets is unlike the close range photography under a controllable observation environment, which brings extreme conditions like diverse target changes as a result of high maneuver ability and long cruising range. This paper first designed and realized a distributed image interpretation and measurement processing system to achieve resource centralized management, multisite simultaneous interpretation and adaptive estimation algorithm selection; then proposed a real-time interpretation method which contains automatic foreground detection, online target tracking, multiple features location, and human guidance. An experiment is carried out at performance and efficiency evaluation of the method by semisynthetic video. The system can be used in the field of aerospace tests like target analysis including dynamic parameter, transient states, and optical physics characteristics, with security control.
A Real-Time Optical Tracking and Measurement Processing System for Flying Targets
Guo, Pengyu; Ding, Shaowen; Zhang, Hongliang; Zhang, Xiaohu
2014-01-01
Optical tracking and measurement for flying targets is unlike the close range photography under a controllable observation environment, which brings extreme conditions like diverse target changes as a result of high maneuver ability and long cruising range. This paper first designed and realized a distributed image interpretation and measurement processing system to achieve resource centralized management, multisite simultaneous interpretation and adaptive estimation algorithm selection; then proposed a real-time interpretation method which contains automatic foreground detection, online target tracking, multiple features location, and human guidance. An experiment is carried out at performance and efficiency evaluation of the method by semisynthetic video. The system can be used in the field of aerospace tests like target analysis including dynamic parameter, transient states, and optical physics characteristics, with security control. PMID:24987748
Miniaturized sensors to monitor simulated lunar locomotion.
Hanson, Andrea M; Gilkey, Kelly M; Perusek, Gail P; Thorndike, David A; Kutnick, Gilead A; Grodsinsky, Carlos M; Rice, Andrea J; Cavanagh, Peter R
2011-02-01
Human activity monitoring is a useful tool in medical monitoring, military applications, athletic coaching, and home healthcare. We propose the use of an accelerometer-based system to track crewmember activity during space missions in reduced gravity environments. It is unclear how the partial gravity environment of the Moorn or Mars will affect human locomotion. Here we test a novel analogue of lunar gravity in combination with a custom wireless activity tracking system. A noninvasive wireless accelerometer-based sensor system, the activity tracking device (ATD), was developed. The system has two sensor units; one footwear-mounted and the other waist-mounted near the midlower back. Subjects (N=16) were recruited to test the system in the enhanced Zero Gravity Locomotion Simulator (eZLS) at NASA Glenn Research Center. Data were used to develop an artificial neural network for activity recognition. The eZLS demonstrated the ability to replicate reduced gravity environments. There was a 98% agreement between the ATD and force plate-derived stride times during running (9.7 km x h(-1)) at both 1 g and 1/6 g. A neural network was designed and successfully trained to identify lunar walking, running, hopping, and loping from ATD measurements with 100% accuracy. The eZLS is a suitable tool for examining locomotor activity at simulated lunar gravity. The accelerometer-based ATD system is capable of monitoring human activity and may be suitable for use during remote, long-duration space missions. A neural network has been developed to use data from the ATD to aid in remote activity monitoring.
NASA Technical Reports Server (NTRS)
Denning, Peter J.
1990-01-01
Although powerful computers have allowed complex physical and manmade hardware systems to be modeled successfully, we have encountered persistent problems with the reliability of computer models for systems involving human learning, human action, and human organizations. This is not a misfortune; unlike physical and manmade systems, human systems do not operate under a fixed set of laws. The rules governing the actions allowable in the system can be changed without warning at any moment, and can evolve over time. That the governing laws are inherently unpredictable raises serious questions about the reliability of models when applied to human situations. In these domains, computers are better used, not for prediction and planning, but for aiding humans. Examples are systems that help humans speculate about possible futures, offer advice about possible actions in a domain, systems that gather information from the networks, and systems that track and support work flows in organizations.
Hybrid markerless tracking of complex articulated motion in golf swings.
Fung, Sim Kwoh; Sundaraj, Kenneth; Ahamed, Nizam Uddin; Kiang, Lam Chee; Nadarajah, Sivadev; Sahayadhas, Arun; Ali, Md Asraf; Islam, Md Anamul; Palaniappan, Rajkumar
2014-04-01
Sports video tracking is a research topic that has attained increasing attention due to its high commercial potential. A number of sports, including tennis, soccer, gymnastics, running, golf, badminton and cricket have been utilised to display the novel ideas in sports motion tracking. The main challenge associated with this research concerns the extraction of a highly complex articulated motion from a video scene. Our research focuses on the development of a markerless human motion tracking system that tracks the major body parts of an athlete straight from a sports broadcast video. We proposed a hybrid tracking method, which consists of a combination of three algorithms (pyramidal Lucas-Kanade optical flow (LK), normalised correlation-based template matching and background subtraction), to track the golfer's head, body, hands, shoulders, knees and feet during a full swing. We then match, track and map the results onto a 2D articulated human stick model to represent the pose of the golfer over time. Our work was tested using two video broadcasts of a golfer, and we obtained satisfactory results. The current outcomes of this research can play an important role in enhancing the performance of a golfer, provide vital information to sports medicine practitioners by providing technically sound guidance on movements and should assist to diminish the risk of golfing injuries. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ting, Lai-Lei; Chuang, Ho-Chiao; Liao, Ai-Ho; Kuo, Chia-Chun; Yu, Hsiao-Wei; Zhou, Yi-Liang; Tien, Der-Chi; Jeng, Shiu-Chen; Chiou, Jeng-Fong
2018-05-01
This study proposed respiratory motion compensation system (RMCS) combined with an ultrasound image tracking algorithm (UITA) to compensate for respiration-induced tumor motion during radiotherapy, and to address the problem of inaccurate radiation dose delivery caused by respiratory movement. This study used an ultrasound imaging system to monitor respiratory movements combined with the proposed UITA and RMCS for tracking and compensation of the respiratory motion. Respiratory motion compensation was performed using prerecorded human respiratory motion signals and also sinusoidal signals. A linear accelerator was used to deliver radiation doses to GAFchromic EBT3 dosimetry film, and the conformity index (CI), root-mean-square error, compensation rate (CR), and planning target volume (PTV) were used to evaluate the tracking and compensation performance of the proposed system. Human respiratory pattern signals were captured using the UITA and compensated by the RMCS, which yielded CR values of 34-78%. In addition, the maximum coronal area of the PTV ranged from 85.53 mm 2 to 351.11 mm 2 (uncompensated), which reduced to from 17.72 mm 2 to 66.17 mm 2 after compensation, with an area reduction ratio of up to 90%. In real-time monitoring of the respiration compensation state, the CI values for 85% and 90% isodose areas increased to 0.7 and 0.68, respectively. The proposed UITA and RMCS can reduce the movement of the tracked target relative to the LINAC in radiation therapy, thereby reducing the required size of the PTV margin and increasing the effect of the radiation dose received by the treatment target. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Cross-Modal Attention Effects in the Vestibular Cortex during Attentive Tracking of Moving Objects.
Frank, Sebastian M; Sun, Liwei; Forster, Lisa; Tse, Peter U; Greenlee, Mark W
2016-12-14
The midposterior fundus of the Sylvian fissure in the human brain is central to the cortical processing of vestibular cues. At least two vestibular areas are located at this site: the parietoinsular vestibular cortex (PIVC) and the posterior insular cortex (PIC). It is now well established that activity in sensory systems is subject to cross-modal attention effects. Attending to a stimulus in one sensory modality enhances activity in the corresponding cortical sensory system, but simultaneously suppresses activity in other sensory systems. Here, we wanted to probe whether such cross-modal attention effects also target the vestibular system. To this end, we used a visual multiple-object tracking task. By parametrically varying the number of tracked targets, we could measure the effect of attentional load on the PIVC and the PIC while holding the perceptual load constant. Participants performed the tracking task during functional magnetic resonance imaging. Results show that, compared with passive viewing of object motion, activity during object tracking was suppressed in the PIVC and enhanced in the PIC. Greater attentional load, induced by increasing the number of tracked targets, was associated with a corresponding increase in the suppression of activity in the PIVC. Activity in the anterior part of the PIC decreased with increasing load, whereas load effects were absent in the posterior PIC. Results of a control experiment show that attention-induced suppression in the PIVC is stronger than any suppression evoked by the visual stimulus per se. Overall, our results suggest that attention has a cross-modal modulatory effect on the vestibular cortex during visual object tracking. In this study we investigate cross-modal attention effects in the human vestibular cortex. We applied the visual multiple-object tracking task because it is known to evoke attentional load effects on neural activity in visual motion-processing and attention-processing areas. Here we demonstrate a load-dependent effect of attention on the activation in the vestibular cortex, despite constant visual motion stimulation. We find that activity in the parietoinsular vestibular cortex is more strongly suppressed the greater the attentional load on the visual tracking task. These findings suggest cross-modal attentional modulation in the vestibular cortex. Copyright © 2016 the authors 0270-6474/16/3612720-09$15.00/0.
A Fuzzy Aproach For Facial Emotion Recognition
NASA Astrophysics Data System (ADS)
Gîlcă, Gheorghe; Bîzdoacă, Nicu-George
2015-09-01
This article deals with an emotion recognition system based on the fuzzy sets. Human faces are detected in images with the Viola - Jones algorithm and for its tracking in video sequences we used the Camshift algorithm. The detected human faces are transferred to the decisional fuzzy system, which is based on the variable fuzzyfication measurements of the face: eyebrow, eyelid and mouth. The system can easily determine the emotional state of a person.
Identification of human operator performance models utilizing time series analysis
NASA Technical Reports Server (NTRS)
Holden, F. M.; Shinners, S. M.
1973-01-01
The results of an effort performed by Sperry Systems Management Division for AMRL in applying time series analysis as a tool for modeling the human operator are presented. This technique is utilized for determining the variation of the human transfer function under various levels of stress. The human operator's model is determined based on actual input and output data from a tracking experiment.
WPSS: watching people security services
NASA Astrophysics Data System (ADS)
Bouma, Henri; Baan, Jan; Borsboom, Sander; van Zon, Kasper; Luo, Xinghan; Loke, Ben; Stoeller, Bram; van Kuilenburg, Hans; Dijk, Judith
2013-10-01
To improve security, the number of surveillance cameras is rapidly increasing. However, the number of human operators remains limited and only a selection of the video streams are observed. Intelligent software services can help to find people quickly, evaluate their behavior and show the most relevant and deviant patterns. We present a software platform that contributes to the retrieval and observation of humans and to the analysis of their behavior. The platform consists of mono- and stereo-camera tracking, re-identification, behavioral feature computation, track analysis, behavior interpretation and visualization. This system is demonstrated in a busy shopping mall with multiple cameras and different lighting conditions.
Robot Tracking of Human Subjects in Field Environments
NASA Technical Reports Server (NTRS)
Graham, Jeffrey; Shillcutt, Kimberly
2003-01-01
Future planetary exploration will involve both humans and robots. Understanding and improving their interaction is a main focus of research in the Intelligent Systems Branch at NASA's Johnson Space Center. By teaming intelligent robots with astronauts on surface extra-vehicular activities (EVAs), safety and productivity can be improved. The EVA Robotic Assistant (ERA) project was established to study the issues of human-robot teams, to develop a testbed robot to assist space-suited humans in exploration tasks, and to experimentally determine the effectiveness of an EVA assistant robot. A companion paper discusses the ERA project in general, its history starting with ASRO (Astronaut-Rover project), and the results of recent field tests in Arizona. This paper focuses on one aspect of the research, robot tracking, in greater detail: the software architecture and algorithms. The ERA robot is capable of moving towards and/or continuously following mobile or stationary targets or sequences of targets. The contributions made by this research include how the low-level pose data is assembled, normalized and communicated, how the tracking algorithm was generalized and implemented, and qualitative performance reports from recent field tests.
Integrated mobile robot control
NASA Technical Reports Server (NTRS)
Amidi, Omead; Thorpe, Charles
1991-01-01
This paper describes the structure, implementation, and operation of a real-time mobile robot controller which integrates capabilities such as: position estimation, path specification and tracking, human interfaces, fast communication, and multiple client support. The benefits of such high-level capabilities in a low-level controller was shown by its implementation for the Navlab autonomous vehicle. In addition, performance results from positioning and tracking systems are reported and analyzed.
MotionFlow: Visual Abstraction and Aggregation of Sequential Patterns in Human Motion Tracking Data.
Jang, Sujin; Elmqvist, Niklas; Ramani, Karthik
2016-01-01
Pattern analysis of human motions, which is useful in many research areas, requires understanding and comparison of different styles of motion patterns. However, working with human motion tracking data to support such analysis poses great challenges. In this paper, we propose MotionFlow, a visual analytics system that provides an effective overview of various motion patterns based on an interactive flow visualization. This visualization formulates a motion sequence as transitions between static poses, and aggregates these sequences into a tree diagram to construct a set of motion patterns. The system also allows the users to directly reflect the context of data and their perception of pose similarities in generating representative pose states. We provide local and global controls over the partition-based clustering process. To support the users in organizing unstructured motion data into pattern groups, we designed a set of interactions that enables searching for similar motion sequences from the data, detailed exploration of data subsets, and creating and modifying the group of motion patterns. To evaluate the usability of MotionFlow, we conducted a user study with six researchers with expertise in gesture-based interaction design. They used MotionFlow to explore and organize unstructured motion tracking data. Results show that the researchers were able to easily learn how to use MotionFlow, and the system effectively supported their pattern analysis activities, including leveraging their perception and domain knowledge.
48 CFR 307.7106 - Acquisition milestones.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false Acquisition milestones. 307.7106 Section 307.7106 Federal Acquisition Regulations System HEALTH AND HUMAN SERVICES COMPETITION... to track progress of the acquisition. The milestone schedule signatories (see the Requirements and...
48 CFR 307.7106 - Acquisition milestones.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Acquisition milestones. 307.7106 Section 307.7106 Federal Acquisition Regulations System HEALTH AND HUMAN SERVICES COMPETITION... to track progress of the acquisition. The milestone schedule signatories (see the Requirements and...
GT-CATS: Tracking Operator Activities in Complex Systems
NASA Technical Reports Server (NTRS)
Callantine, Todd J.; Mitchell, Christine M.; Palmer, Everett A.
1999-01-01
Human operators of complex dynamic systems can experience difficulties supervising advanced control automation. One remedy is to develop intelligent aiding systems that can provide operators with context-sensitive advice and reminders. The research reported herein proposes, implements, and evaluates a methodology for activity tracking, a form of intent inferencing that can supply the knowledge required for an intelligent aid by constructing and maintaining a representation of operator activities in real time. The methodology was implemented in the Georgia Tech Crew Activity Tracking System (GT-CATS), which predicts and interprets the actions performed by Boeing 757/767 pilots navigating using autopilot flight modes. This report first describes research on intent inferencing and complex modes of automation. It then provides a detailed description of the GT-CATS methodology, knowledge structures, and processing scheme. The results of an experimental evaluation using airline pilots are given. The results show that GT-CATS was effective in predicting and interpreting pilot actions in real time.
A Magnetic Tracking System based on Highly Sensitive Integrated Hall Sensors
NASA Astrophysics Data System (ADS)
Schlageter, Vincent; Drljaca, Predrag; Popovic, Radivoje S.; KuČERA, Pavel
A tracking system with five degrees of freedom based on a 2D-array of 16 Hall sensors and a permanent magnet is presented in this paper. The sensitivity of the Hall sensors is increased by integrated micro- and external macro-flux-concentrators. Detection distance larger than 20cm (during one hour without calibration) is achieved using a magnet of 0.2cm3. This corresponds to a resolution of the sensors of 0.05µTrms. The position and orientation of the marker is displayed in real time at least 20 times per second. The sensing system is small enough to be hand-held and can be used in a normal environment. This presented tracking system has been successfully applied to follow a small swallowed magnet through the entire human digestive tube. This approach is extremely promising as a new non-invasive diagnostic technique in gastro-enterology.
A Kinect-Based Real-Time Compressive Tracking Prototype System for Amphibious Spherical Robots
Pan, Shaowu; Shi, Liwei; Guo, Shuxiang
2015-01-01
A visual tracking system is essential as a basis for visual servoing, autonomous navigation, path planning, robot-human interaction and other robotic functions. To execute various tasks in diverse and ever-changing environments, a mobile robot requires high levels of robustness, precision, environmental adaptability and real-time performance of the visual tracking system. In keeping with the application characteristics of our amphibious spherical robot, which was proposed for flexible and economical underwater exploration in 2012, an improved RGB-D visual tracking algorithm is proposed and implemented. Given the limited power source and computational capabilities of mobile robots, compressive tracking (CT), which is the effective and efficient algorithm that was proposed in 2012, was selected as the basis of the proposed algorithm to process colour images. A Kalman filter with a second-order motion model was implemented to predict the state of the target and select candidate patches or samples for the CT tracker. In addition, a variance ratio features shift (VR-V) tracker with a Kalman estimation mechanism was used to process depth images. Using a feedback strategy, the depth tracking results were used to assist the CT tracker in updating classifier parameters at an adaptive rate. In this way, most of the deficiencies of CT, including drift and poor robustness to occlusion and high-speed target motion, were partly solved. To evaluate the proposed algorithm, a Microsoft Kinect sensor, which combines colour and infrared depth cameras, was adopted for use in a prototype of the robotic tracking system. The experimental results with various image sequences demonstrated the effectiveness, robustness and real-time performance of the tracking system. PMID:25856331
A Kinect-based real-time compressive tracking prototype system for amphibious spherical robots.
Pan, Shaowu; Shi, Liwei; Guo, Shuxiang
2015-04-08
A visual tracking system is essential as a basis for visual servoing, autonomous navigation, path planning, robot-human interaction and other robotic functions. To execute various tasks in diverse and ever-changing environments, a mobile robot requires high levels of robustness, precision, environmental adaptability and real-time performance of the visual tracking system. In keeping with the application characteristics of our amphibious spherical robot, which was proposed for flexible and economical underwater exploration in 2012, an improved RGB-D visual tracking algorithm is proposed and implemented. Given the limited power source and computational capabilities of mobile robots, compressive tracking (CT), which is the effective and efficient algorithm that was proposed in 2012, was selected as the basis of the proposed algorithm to process colour images. A Kalman filter with a second-order motion model was implemented to predict the state of the target and select candidate patches or samples for the CT tracker. In addition, a variance ratio features shift (VR-V) tracker with a Kalman estimation mechanism was used to process depth images. Using a feedback strategy, the depth tracking results were used to assist the CT tracker in updating classifier parameters at an adaptive rate. In this way, most of the deficiencies of CT, including drift and poor robustness to occlusion and high-speed target motion, were partly solved. To evaluate the proposed algorithm, a Microsoft Kinect sensor, which combines colour and infrared depth cameras, was adopted for use in a prototype of the robotic tracking system. The experimental results with various image sequences demonstrated the effectiveness, robustness and real-time performance of the tracking system.
A dual-loop model of the human controller in single-axis tracking tasks
NASA Technical Reports Server (NTRS)
Hess, R. A.
1977-01-01
A dual loop model of the human controller in single axis compensatory tracking tasks is introduced. This model possesses an inner-loop closure which involves feeding back that portion of the controlled element output rate which is due to control activity. The sensory inputs to the human controller are assumed to be system error and control force. The former is assumed to be sensed via visual, aural, or tactile displays while the latter is assumed to be sensed in kinesthetic fashion. A nonlinear form of the model is briefly discussed. This model is then linearized and parameterized. A set of general adaptive characteristics for the parameterized model is hypothesized. These characteristics describe the manner in which the parameters in the linearized model will vary with such things as display quality. It is demonstrated that the parameterized model can produce controller describing functions which closely approximate those measured in laboratory tracking tasks for a wide variety of controlled elements.
NASA Astrophysics Data System (ADS)
Vermilya, Jenny R.
In this dissertation, I use 42 in-depth qualitative interviews with veterinary medical students to explore the experience of being in an educational program that tracks students based on the species of non-human animals that they wish to treat. Specifically, I examine how tracking produces multiple boundaries for veterinary students. The boundaries between different animal species produce consequences for the treatment of those animals; this has been well documented. Using a symbolic interactionist perspective, my research extends the body of knowledge on species boundaries by revealing other consequences of this boundary work. For example, I analyze the symbolic boundaries involved in the gendering of animals, practitioners, and professions. I also examine how boundaries influence the collective identity of students entering an occupation segmented into various specialties. The collective identity of veterinarian is one characterized by care, thus students have to construct different definitions of care to access and maintain the collective identity. The tracking system additionally produces consequences for the knowledge created and reproduced in different areas of animal medicine, creating a system of power and inequality based on whose knowledge is privileged, how, and why. Finally, socially constructed boundaries generated from tracking inevitably lead to cases that do not fit. In particular, horses serve as a "border species" for veterinary students who struggle to place them into the tracking system. I argue that border species, like other metaphorical borders, have the potential to challenge discourses and lead to social change.
USDA-ARS?s Scientific Manuscript database
Background. The National Antimicrobial Resistance Monitor System (NARMS) tracks antimicrobial susceptibility in enteric bacteria from humans, retail meats and food animals. We analyzed changes in ceftiofur resistance (TioR), nalidixic acid resistance (NalR) and multidrug resistance (MDR-AmpC, define...
Recognition and localization of relevant human behavior in videos
NASA Astrophysics Data System (ADS)
Bouma, Henri; Burghouts, Gertjan; de Penning, Leo; Hanckmann, Patrick; ten Hove, Johan-Martijn; Korzec, Sanne; Kruithof, Maarten; Landsmeer, Sander; van Leeuwen, Coen; van den Broek, Sebastiaan; Halma, Arvid; den Hollander, Richard; Schutte, Klamer
2013-06-01
Ground surveillance is normally performed by human assets, since it requires visual intelligence. However, especially for military operations, this can be dangerous and is very resource intensive. Therefore, unmanned autonomous visualintelligence systems are desired. In this paper, we present an improved system that can recognize actions of a human and interactions between multiple humans. Central to the new system is our agent-based architecture. The system is trained on thousands of videos and evaluated on realistic persistent surveillance data in the DARPA Mind's Eye program, with hours of videos of challenging scenes. The results show that our system is able to track the people, detect and localize events, and discriminate between different behaviors, and it performs 3.4 times better than our previous system.
Human Mobility Monitoring in Very Low Resolution Visual Sensor Network
Bo Bo, Nyan; Deboeverie, Francis; Eldib, Mohamed; Guan, Junzhi; Xie, Xingzhe; Niño, Jorge; Van Haerenborgh, Dirk; Slembrouck, Maarten; Van de Velde, Samuel; Steendam, Heidi; Veelaert, Peter; Kleihorst, Richard; Aghajan, Hamid; Philips, Wilfried
2014-01-01
This paper proposes an automated system for monitoring mobility patterns using a network of very low resolution visual sensors (30 × 30 pixels). The use of very low resolution sensors reduces privacy concern, cost, computation requirement and power consumption. The core of our proposed system is a robust people tracker that uses low resolution videos provided by the visual sensor network. The distributed processing architecture of our tracking system allows all image processing tasks to be done on the digital signal controller in each visual sensor. In this paper, we experimentally show that reliable tracking of people is possible using very low resolution imagery. We also compare the performance of our tracker against a state-of-the-art tracking method and show that our method outperforms. Moreover, the mobility statistics of tracks such as total distance traveled and average speed derived from trajectories are compared with those derived from ground truth given by Ultra-Wide Band sensors. The results of this comparison show that the trajectories from our system are accurate enough to obtain useful mobility statistics. PMID:25375754
Driver fatigue detection based on eye state.
Lin, Lizong; Huang, Chao; Ni, Xiaopeng; Wang, Jiawen; Zhang, Hao; Li, Xiao; Qian, Zhiqin
2015-01-01
Nowadays, more and more traffic accidents occur because of driver fatigue. In order to reduce and prevent it, in this study, a calculation method using PERCLOS (percentage of eye closure time) parameter characteristics based on machine vision was developed. It determined whether a driver's eyes were in a fatigue state according to the PERCLOS value. The overall workflow solutions included face detection and tracking, detection and location of the human eye, human eye tracking, eye state recognition, and driver fatigue testing. The key aspects of the detection system incorporated the detection and location of human eyes and driver fatigue testing. The simplified method of measuring the PERCLOS value of the driver was to calculate the ratio of the eyes being open and closed with the total number of frames for a given period. If the eyes were closed more than the set threshold in the total number of frames, the system would alert the driver. Through many experiments, it was shown that besides the simple detection algorithm, the rapid computing speed, and the high detection and recognition accuracies of the system, the system was demonstrated to be in accord with the real-time requirements of a driver fatigue detection system.
Risk Interfaces to Support Integrated Systems Analysis and Development
NASA Technical Reports Server (NTRS)
Mindock, Jennifer; Lumpkins, Sarah; Shelhamer, Mark; Anton, Wilma; Havenhill, Maria
2016-01-01
Objectives for systems analysis capability: Develop integrated understanding of how a complex human physiological-socio-technical mission system behaves in spaceflight. Why? Support development of integrated solutions that prevent unwanted outcomes (Implementable approaches to minimize mission resources(mass, power, crew time, etc.)); Support development of tools for autonomy (need for exploration) (Assess and maintain resilience -individuals, teams, integrated system). Output of this exercise: -Representation of interfaces based on Human System Risk Board (HSRB) Risk Summary information and simple status based on Human Research Roadmap; Consolidated HSRB information applied to support communication; Point-of-Departure for HRP Element planning; Ability to track and communicate status of collaborations. 4
Teaching Case: MiHotel--Applicant Processing System Design Case
ERIC Educational Resources Information Center
Miller, Robert E.; Dunn, Paul
2018-01-01
This teaching case describes the functionality of an applicant processing system designed for a fictitious hotel chain. The system detailed in the case includes a webform where applicants complete and submit job applications. The system also includes a desktop application used by hotel managers and Human Resources to track applications and process…
NASA Astrophysics Data System (ADS)
Gorczynska, Iwona; Migacz, Justin; Zawadzki, Robert J.; Sudheendran, Narendran; Jian, Yifan; Tiruveedhula, Pavan K.; Roorda, Austin; Werner, John S.
2015-07-01
We tested and compared the capability of multiple optical coherence tomography (OCT) angiography methods: phase variance, amplitude decorrelation and speckle variance, with application of the split spectrum technique, to image the choroiretinal complex of the human eye. To test the possibility of OCT imaging stability improvement we utilized a real-time tracking scanning laser ophthalmoscopy (TSLO) system combined with a swept source OCT setup. In addition, we implemented a post- processing volume averaging method for improved angiographic image quality and reduction of motion artifacts. The OCT system operated at the central wavelength of 1040nm to enable sufficient depth penetration into the choroid. Imaging was performed in the eyes of healthy volunteers and patients diagnosed with age-related macular degeneration.
Applications of airborne ultrasound in human-computer interaction.
Dahl, Tobias; Ealo, Joao L; Bang, Hans J; Holm, Sverre; Khuri-Yakub, Pierre
2014-09-01
Airborne ultrasound is a rapidly developing subfield within human-computer interaction (HCI). Touchless ultrasonic interfaces and pen tracking systems are part of recent trends in HCI and are gaining industry momentum. This paper aims to provide the background and overview necessary to understand the capabilities of ultrasound and its potential future in human-computer interaction. The latest developments on the ultrasound transducer side are presented, focusing on capacitive micro-machined ultrasonic transducers, or CMUTs. Their introduction is an important step toward providing real, low-cost multi-sensor array and beam-forming options. We also provide a unified mathematical framework for understanding and analyzing algorithms used for ultrasound detection and tracking for some of the most relevant applications. Copyright © 2014. Published by Elsevier B.V.
A Segway RMP-based robotic transport system
NASA Astrophysics Data System (ADS)
Nguyen, Hoa G.; Kogut, Greg; Barua, Ripan; Burmeister, Aaron; Pezeshkian, Narek; Powell, Darren; Farrington, Nathan; Wimmer, Matt; Cicchetto, Brett; Heng, Chana; Ramirez, Velia
2004-12-01
In the area of logistics, there currently is a capability gap between the one-ton Army robotic Multifunction Utility/Logistics and Equipment (MULE) vehicle and a soldier"s backpack. The Unmanned Systems Branch at Space and Naval Warfare Systems Center (SPAWAR Systems Center, or SSC), San Diego, with the assistance of a group of interns from nearby High Tech High School, has demonstrated enabling technologies for a solution that fills this gap. A small robotic transport system has been developed based on the Segway Robotic Mobility Platform (RMP). We have demonstrated teleoperated control of this robotic transport system, and conducted two demonstrations of autonomous behaviors. Both demonstrations involved a robotic transporter following a human leader. In the first demonstration, the transporter used a vision system running a continuously adaptive mean-shift filter to track and follow a human. In the second demonstration, the separation between leader and follower was significantly increased using Global Positioning System (GPS) information. The track of the human leader, with a GPS unit in his backpack, was sent wirelessly to the transporter, also equipped with a GPS unit. The robotic transporter traced the path of the human leader by following these GPS breadcrumbs. We have additionally demonstrated a robotic medical patient transport capability by using the Segway RMP to power a mock-up of the Life Support for Trauma and Transport (LSTAT) patient care platform, on a standard NATO litter carrier. This paper describes the development of our demonstration robotic transport system and the various experiments conducted.
SLATE: scanning laser automatic threat extraction
NASA Astrophysics Data System (ADS)
Clark, David J.; Prickett, Shaun L.; Napier, Ashley A.; Mellor, Matthew P.
2016-10-01
SLATE is an Autonomous Sensor Module (ASM) designed to work with the SAPIENT system providing accurate location tracking and classifications of targets that pass through its field of view. The concept behind the SLATE ASM is to produce a sensor module that provides a complementary view of the world to the camera-based systems that are usually used for wide area surveillance. Cameras provide a hi-fidelity, human understandable view of the world with which tracking and identification algorithms can be used. Unfortunately, positioning and tracking in a 3D environment is difficult to implement robustly, making location-based threat assessment challenging. SLATE uses a Scanning Laser Rangefinder (SLR) that provides precise (<1cm) positions, sizes, shapes and velocities of targets within its field-of-view (FoV). In this paper we will discuss the development of the SLATE ASM including the techniques used to track and classify detections that move through the field of view of the sensor providing the accurate tracking information to the SAPIENT system. SLATE's ability to locate targets precisely allows subtle boundary-crossing judgements, e.g. on which side of a chain-link fence a target is. SLATE's ability to track targets in 3D throughout its FoV enables behavior classification such as running and walking which can provide an indication of intent and help reduce false alarm rates.
Abbott prism: a multichannel heterogeneous chemiluminescence immunoassay analyzer.
Khalil, O S; Zurek, T F; Tryba, J; Hanna, C F; Hollar, R; Pepe, C; Genger, K; Brentz, C; Murphy, B; Abunimeh, N
1991-09-01
We describe a multichannel heterogeneous immunoassay analyzer in which a sample is split between disposable reaction trays in a group of linear tracks. The system's pipettor uses noninvasive sensing of the sample volume and disposable pipet tips. Each assay track has (a) a conveyor belt for moving reaction trays to predetermined functional stations, (b) temperature-controlled tunnels, (c) noncontact transfer of the reaction mixture between incubation and detection wells, and (d) single-photon counting to detect a chemiluminescence (CL) signal from the captured immunochemical product. A novel disposable reaction tray, with separate reaction and detection wells and self-contained fluid removal, is used in conjunction with the transfer device on the track to produce a carryover-free system. The linear immunoassay track has nine predetermined positions for performing individual assay steps. Assay step sequence and timing is selected by changing the location of the assay modules between these predetermined positions. The assay methodology, a combination of microparticle capture and direct detection of a CL signal on a porous matrix, offers excellent sensitivity, specificity, and ease of automation. Immunoassay configurations have been tested for hepatitis B surface antigen and for antibodies to hepatitis B core antigen, hepatitis C virus, human immunodeficiency virus I and II, and human T-cell leukemia virus I and II.
Ubiquitous Wireless Smart Sensing and Control
NASA Technical Reports Server (NTRS)
Wagner, Raymond
2013-01-01
Need new technologies to reliably and safely have humans interact within sensored environments (integrated user interfaces, physical and cognitive augmentation, training, and human-systems integration tools). Areas of focus include: radio frequency identification (RFID), motion tracking, wireless communication, wearable computing, adaptive training and decision support systems, and tele-operations. The challenge is developing effective, low cost/mass/volume/power integrated monitoring systems to assess and control system, environmental, and operator health; and accurately determining and controlling the physical, chemical, and biological environments of the areas and associated environmental control systems.
Ubiquitous Wireless Smart Sensing and Control. Pumps and Pipes JSC: Uniquely Houston
NASA Technical Reports Server (NTRS)
Wagner, Raymond
2013-01-01
Need new technologies to reliably and safely have humans interact within sensored environments (integrated user interfaces, physical and cognitive augmentation, training, and human-systems integration tools).Areas of focus include: radio frequency identification (RFID), motion tracking, wireless communication, wearable computing, adaptive training and decision support systems, and tele-operations. The challenge is developing effective, low cost/mass/volume/power integrated monitoring systems to assess and control system, environmental, and operator health; and accurately determining and controlling the physical, chemical, and biological environments of the areas and associated environmental control systems.
NASA Astrophysics Data System (ADS)
Hayashi, Yoshikatsu; Tamura, Yurie; Sase, Kazuya; Sugawara, Ken; Sawada, Yasuji
Prediction mechanism is necessary for human visual motion to compensate a delay of sensory-motor system. In a previous study, “proactive control” was discussed as one example of predictive function of human beings, in which motion of hands preceded the virtual moving target in visual tracking experiments. To study the roles of the positional-error correction mechanism and the prediction mechanism, we carried out an intermittently-visual tracking experiment where a circular orbit is segmented into the target-visible regions and the target-invisible regions. Main results found in this research were following. A rhythmic component appeared in the tracer velocity when the target velocity was relatively high. The period of the rhythm in the brain obtained from environmental stimuli is shortened more than 10%. The shortening of the period of rhythm in the brain accelerates the hand motion as soon as the visual information is cut-off, and causes the precedence of hand motion to the target motion. Although the precedence of the hand in the blind region is reset by the environmental information when the target enters the visible region, the hand motion precedes the target in average when the predictive mechanism dominates the error-corrective mechanism.
NASA Technical Reports Server (NTRS)
Vos, Gordon A.; Fink, Patrick; Ngo, Phong H.; Morency, Richard; Simon, Cory; Williams, Robert E.; Perez, Lance C.
2017-01-01
Space Human Factors and Habitability (SHFH) Element within the Human Research Program (HRP) and the Behavioral Health and Performance (BHP) Element are conducting research regarding Net Habitable Volume (NHV), the internal volume within a spacecraft or habitat that is available to crew for required activities, as well as layout and accommodations within the volume. NASA needs methods to unobtrusively collect NHV data without impacting crew time. Data required includes metrics such as location and orientation of crew, volume used to complete tasks, internal translation paths, flow of work, and task completion times. In less constrained environments methods exist yet many are obtrusive and require significant post-processing. ?Examplesused in terrestrial settings include infrared (IR) retro-reflective marker based motion capture, GPS sensor tracking, inertial tracking, and multi-camera methods ?Due to constraints of space operations many such methods are infeasible. Inertial tracking systems typically rely upon a gravity vector to normalize sensor readings,and traditional IR systems are large and require extensive calibration. ?However, multiple technologies have not been applied to space operations for these purposes. Two of these include: 3D Radio Frequency Identification Real-Time Localization Systems (3D RFID-RTLS) ?Depth imaging systems which allow for 3D motion capture and volumetric scanning (such as those using IR-depth cameras like the Microsoft Kinect or Light Detection and Ranging / Light-Radar systems, referred to as LIDAR)
A low cost real-time motion tracking approach using webcam technology.
Krishnan, Chandramouli; Washabaugh, Edward P; Seetharaman, Yogesh
2015-02-05
Physical therapy is an important component of gait recovery for individuals with locomotor dysfunction. There is a growing body of evidence that suggests that incorporating a motor learning task through visual feedback of movement trajectory is a useful approach to facilitate therapeutic outcomes. Visual feedback is typically provided by recording the subject's limb movement patterns using a three-dimensional motion capture system and displaying it in real-time using customized software. However, this approach can seldom be used in the clinic because of the technical expertise required to operate this device and the cost involved in procuring a three-dimensional motion capture system. In this paper, we describe a low cost two-dimensional real-time motion tracking approach using a simple webcam and an image processing algorithm in LabVIEW Vision Assistant. We also evaluated the accuracy of this approach using a high precision robotic device (Lokomat) across various walking speeds. Further, the reliability and feasibility of real-time motion-tracking were evaluated in healthy human participants. The results indicated that the measurements from the webcam tracking approach were reliable and accurate. Experiments on human subjects also showed that participants could utilize the real-time kinematic feedback generated from this device to successfully perform a motor learning task while walking on a treadmill. These findings suggest that the webcam motion tracking approach is a feasible low cost solution to perform real-time movement analysis and training. Copyright © 2014 Elsevier Ltd. All rights reserved.
A low cost real-time motion tracking approach using webcam technology
Krishnan, Chandramouli; Washabaugh, Edward P.; Seetharaman, Yogesh
2014-01-01
Physical therapy is an important component of gait recovery for individuals with locomotor dysfunction. There is a growing body of evidence that suggests that incorporating a motor learning task through visual feedback of movement trajectory is a useful approach to facilitate therapeutic outcomes. Visual feedback is typically provided by recording the subject’s limb movement patterns using a three-dimensional motion capture system and displaying it in real-time using customized software. However, this approach can seldom be used in the clinic because of the technical expertise required to operate this device and the cost involved in procuring a three-dimensional motion capture system. In this paper, we describe a low cost two-dimensional real-time motion tracking approach using a simple webcam and an image processing algorithm in LabVIEW Vision Assistant. We also evaluated the accuracy of this approach using a high precision robotic device (Lokomat) across various walking speeds. Further, the reliability and feasibility of real-time motion-tracking were evaluated in healthy human participants. The results indicated that the measurements from the webcam tracking approach were reliable and accurate. Experiments on human subjects also showed that participants could utilize the real-time kinematic feedback generated from this device to successfully perform a motor learning task while walking on a treadmill. These findings suggest that the webcam motion tracking approach is a feasible low cost solution to perform real-time movement analysis and training. PMID:25555306
NASA Technical Reports Server (NTRS)
Badler, N. I.
1985-01-01
Human motion analysis is the task of converting actual human movements into computer readable data. Such movement information may be obtained though active or passive sensing methods. Active methods include physical measuring devices such as goniometers on joints of the body, force plates, and manually operated sensors such as a Cybex dynamometer. Passive sensing de-couples the position measuring device from actual human contact. Passive sensors include Selspot scanning systems (since there is no mechanical connection between the subject's attached LEDs and the infrared sensing cameras), sonic (spark-based) three-dimensional digitizers, Polhemus six-dimensional tracking systems, and image processing systems based on multiple views and photogrammetric calculations.
A visual surveillance system for person re-identification
NASA Astrophysics Data System (ADS)
El-Alfy, Hazem; Muramatsu, Daigo; Teranishi, Yuuichi; Nishinaga, Nozomu; Makihara, Yasushi; Yagi, Yasushi
2017-03-01
We attempt the problem of autonomous surveillance for person re-identification. This is an active research area, where most recent work focuses on the open challenges of re-identification, independently of prerequisites of detection and tracking. In this paper, we are interested in designing a complete surveillance system, joining all the pieces of the puzzle together. We start by collecting our own dataset from multiple cameras. Then, we automate the process of detection and tracking of human subjects in the scenes, followed by performing the re-identification task. We evaluate the recognition performance of our system, report its strengths, discuss open challenges and suggest ways to address them.
NASA Astrophysics Data System (ADS)
Zhang, Haichong K.; Aalamifar, Fereshteh; Boctor, Emad M.
2016-04-01
Synthetic aperture for ultrasound is a technique utilizing a wide aperture in both transmit and receive to enhance the ultrasound image quality. The limitation of synthetic aperture is the maximum available aperture size limit determined by the physical size of ultrasound probe. We propose Synthetic-Tracked Aperture Ultrasound (STRATUS) imaging system to overcome the limitation by extending the beamforming aperture size through ultrasound probe tracking. With a setup involving a robotic arm, the ultrasound probe is moved using the robotic arm, while the positions on a scanning trajectory are tracked in real-time. Data from each pose are synthesized to construct a high resolution image. In previous studies, we have demonstrated the feasibility through phantom experiments. However, various additional factors such as real-time data collection or motion artifacts should be taken into account when the in vivo target becomes the subject. In this work, we build a robot-based STRATUS imaging system with continuous data collection capability considering the practical implementation. A curvilinear array is used instead of a linear array to benefit from its wider capture angle. We scanned human forearms under two scenarios: one submerged the arm in the water tank under 10 cm depth, and the other directly scanned the arm from the surface. The image contrast improved 5.51 dB, and 9.96 dB for the underwater scan and the direct scan, respectively. The result indicates the practical feasibility of STRATUS imaging system, and the technique can be potentially applied to the wide range of human body.
Precision targeting with a tracking adaptive optics scanning laser ophthalmoscope
NASA Astrophysics Data System (ADS)
Hammer, Daniel X.; Ferguson, R. Daniel; Bigelow, Chad E.; Iftimia, Nicusor V.; Ustun, Teoman E.; Noojin, Gary D.; Stolarski, David J.; Hodnett, Harvey M.; Imholte, Michelle L.; Kumru, Semih S.; McCall, Michelle N.; Toth, Cynthia A.; Rockwell, Benjamin A.
2006-02-01
Precise targeting of retinal structures including retinal pigment epithelial cells, feeder vessels, ganglion cells, photoreceptors, and other cells important for light transduction may enable earlier disease intervention with laser therapies and advanced methods for vision studies. A novel imaging system based upon scanning laser ophthalmoscopy (SLO) with adaptive optics (AO) and active image stabilization was designed, developed, and tested in humans and animals. An additional port allows delivery of aberration-corrected therapeutic/stimulus laser sources. The system design includes simultaneous presentation of non-AO, wide-field (~40 deg) and AO, high-magnification (1-2 deg) retinal scans easily positioned anywhere on the retina in a drag-and-drop manner. The AO optical design achieves an error of <0.45 waves (at 800 nm) over +/-6 deg on the retina. A MEMS-based deformable mirror (Boston Micromachines Inc.) is used for wave-front correction. The third generation retinal tracking system achieves a bandwidth of greater than 1 kHz allowing acquisition of stabilized AO images with an accuracy of ~10 μm. Normal adult human volunteers and animals with previously-placed lesions (cynomolgus monkeys) were tested to optimize the tracking instrumentation and to characterize AO imaging performance. Ultrafast laser pulses were delivered to monkeys to characterize the ability to precisely place lesions and stimulus beams. Other advanced features such as real-time image averaging, automatic highresolution mosaic generation, and automatic blink detection and tracking re-lock were also tested. The system has the potential to become an important tool to clinicians and researchers for early detection and treatment of retinal diseases.
Fotiadis, Dimitris A; Astaras, Alexandros; Bamidis, Panagiotis D; Papathanasiou, Kostas; Kalfas, Anestis
2015-09-01
This paper presents a novel method for tracking the position of a medical instrument's tip. The system is based on phase locking a high frequency signal transmitted from the medical instrument's tip to a reference signal. Displacement measurement is established having the loop open, in order to get a low frequency voltage representing the medical instrument's movement; therefore, positioning is established by means of conventional measuring techniques. The voltage-controlled oscillator stage of the phase-locked loop (PLL), combined to an appropriate antenna, comprises the associated transmitter located inside the medical instrument tip. All the other low frequency PLL components, low noise amplifier and mixer, are located outside the human body, forming the receiver part of the system. The operating details of the proposed system were coded in Verilog-AMS. Simulation results indicate robust medical instrument tracking in 1-D. Experimental evaluation of the proposed position tracking system is also presented. The experiments described in this paper are based on a transmitter moving opposite a stationary receiver performing either constant velocity or uniformly accelerated movement, and also together with two stationary receivers performing constant velocity movement again. This latter setup is implemented in order to demonstrate the prototype's accuracy for planar (2-D) motion measurements. Error analysis and time-domain analysis are presented for system performance characterization. Furthermore, preliminary experimental assessment using a saline solution container to more closely approximate the human body as a radio frequency wave transmission medium has proved the system's capability of operating underneath the skin.
Representational Momentum for the Human Body: Awkwardness Matters, Experience Does Not
ERIC Educational Resources Information Center
Wilson, Margaret; Lancaster, Jessy; Emmorey, Karen
2010-01-01
Perception of the human body appears to involve predictive simulations that project forward to track unfolding body-motion events. Here we use representational momentum (RM) to investigate whether implicit knowledge of a learned arbitrary system of body movement such as sign language influences this prediction process, and how this compares to…
Sensing human hand motions for controlling dexterous robots
NASA Technical Reports Server (NTRS)
Marcus, Beth A.; Churchill, Philip J.; Little, Arthur D.
1988-01-01
The Dexterous Hand Master (DHM) system is designed to control dexterous robot hands such as the UTAH/MIT and Stanford/JPL hands. It is the first commercially available device which makes it possible to accurately and confortably track the complex motion of the human finger joints. The DHM is adaptable to a wide variety of human hand sizes and shapes, throughout their full range of motion.
Gloved Human-Machine Interface
NASA Technical Reports Server (NTRS)
Adams, Richard (Inventor); Hannaford, Blake (Inventor); Olowin, Aaron (Inventor)
2015-01-01
Certain exemplary embodiments can provide a system, machine, device, manufacture, circuit, composition of matter, and/or user interface adapted for and/or resulting from, and/or a method and/or machine-readable medium comprising machine-implementable instructions for, activities that can comprise and/or relate to: tracking movement of a gloved hand of a human; interpreting a gloved finger movement of the human; and/or in response to interpreting the gloved finger movement, providing feedback to the human.
StimTrack: An open-source software for manual transcranial magnetic stimulation coil positioning.
Ambrosini, Emilia; Ferrante, Simona; van de Ruit, Mark; Biguzzi, Stefano; Colombo, Vera; Monticone, Marco; Ferriero, Giorgio; Pedrocchi, Alessandra; Ferrigno, Giancarlo; Grey, Michael J
2018-01-01
During Transcranial Magnetic Stimulation (TMS) experiments researchers often use a neuronavigation system to precisely and accurately maintain coil position and orientation. This study aimed to develop and validate an open-source software for TMS coil navigation. StimTrack uses an optical tracker and an intuitive user interface to facilitate the maintenance of position and orientation of any type of coil within and between sessions. Additionally, online access to navigation data is provided, hereby adding e.g. the ability to start or stop the magnetic stimulator depending on the distance to target or the variation of the orientation angles. StimTrack allows repeatable repositioning of the coil within 0.7mm for translation and <1° for rotation. Stimulus-response (SR) curves obtained from 19 healthy volunteers were used to demonstrate that StimTrack can be effectively used in a typical experiment. An excellent intra and inter-session reliability (ICC >0.9) was obtained on all parameters computed on SR curves acquired using StimTrack. StimTrack showed a target accuracy similar to that of a commercial neuronavigation system (BrainSight, Rogue Research Inc.). Indeed, small differences both in position (∼0.2mm) and orientation (<1°) were found between the systems. These differences are negligible given the human error involved in landmarks registration. StimTrack, available as supplementary material, is found to be a good alternative for commercial neuronavigation systems facilitating assessment changes in corticospinal excitability using TMS. StimTrack allows researchers to tailor its functionality to their specific needs, providing added value that benefits experimental procedures and improves data quality. Copyright © 2017 Elsevier B.V. All rights reserved.
User-assisted video segmentation system for visual communication
NASA Astrophysics Data System (ADS)
Wu, Zhengping; Chen, Chun
2002-01-01
Video segmentation plays an important role for efficient storage and transmission in visual communication. In this paper, we introduce a novel video segmentation system using point tracking and contour formation techniques. Inspired by the results from the study of the human visual system, we intend to solve the video segmentation problem into three separate phases: user-assisted feature points selection, feature points' automatic tracking, and contour formation. This splitting relieves the computer of ill-posed automatic segmentation problems, and allows a higher level of flexibility of the method. First, the precise feature points can be found using a combination of user assistance and an eigenvalue-based adjustment. Second, the feature points in the remaining frames are obtained using motion estimation and point refinement. At last, contour formation is used to extract the object, and plus a point insertion process to provide the feature points for next frame's tracking.
What Can Be Done about Antibiotic Resistance?
... antibiotics for treating human disease. (See Antibiotics in agriculture .) Is there any international action on the antibiotic ... and reducing antibiotic use in animal farming and agriculture. Experts agree that a global system for tracking ...
NASA Technical Reports Server (NTRS)
Tescher, Andrew G. (Editor)
1989-01-01
Various papers on image compression and automatic target recognition are presented. Individual topics addressed include: target cluster detection in cluttered SAR imagery, model-based target recognition using laser radar imagery, Smart Sensor front-end processor for feature extraction of images, object attitude estimation and tracking from a single video sensor, symmetry detection in human vision, analysis of high resolution aerial images for object detection, obscured object recognition for an ATR application, neural networks for adaptive shape tracking, statistical mechanics and pattern recognition, detection of cylinders in aerial range images, moving object tracking using local windows, new transform method for image data compression, quad-tree product vector quantization of images, predictive trellis encoding of imagery, reduced generalized chain code for contour description, compact architecture for a real-time vision system, use of human visibility functions in segmentation coding, color texture analysis and synthesis using Gibbs random fields.
Teacher-Quality Checklist for School Districts
ERIC Educational Resources Information Center
National Council on Teacher Quality, 2010
2010-01-01
Many districts struggle with multiple--and often incompatible--data systems for tracking payroll, collecting teacher evaluations, recruiting and hiring. Aligning these systems and annually assessing where a district stands is the first step towards developing a smart human capital strategy. This checklist outlines the goals, data and questions a…
AAA gunnermodel based on observer theory. [predicting a gunner's tracking response
NASA Technical Reports Server (NTRS)
Kou, R. S.; Glass, B. C.; Day, C. N.; Vikmanis, M. M.
1978-01-01
The Luenberger observer theory is used to develop a predictive model of a gunner's tracking response in antiaircraft artillery systems. This model is composed of an observer, a feedback controller and a remnant element. An important feature of the model is that the structure is simple, hence a computer simulation requires only a short execution time. A parameter identification program based on the least squares curve fitting method and the Gauss Newton gradient algorithm is developed to determine the parameter values of the gunner model. Thus, a systematic procedure exists for identifying model parameters for a given antiaircraft tracking task. Model predictions of tracking errors are compared with human tracking data obtained from manned simulation experiments. Model predictions are in excellent agreement with the empirical data for several flyby and maneuvering target trajectories.
Humans vs Hardware: The Unique World of NASA Human System Risk Assessment
NASA Technical Reports Server (NTRS)
Anton, W.; Havenhill, M.; Overton, Eric
2016-01-01
Understanding spaceflight risks to crew health and performance is a crucial aspect of preparing for exploration missions in the future. The research activities of the Human Research Program (HRP) provide substantial evidence to support most risk reduction work. The Human System Risk Board (HSRB), acting on behalf of the Office of Chief Health and Medical Officer (OCHMO), assesses these risks and assigns likelihood and consequence ratings to track progress. Unfortunately, many traditional approaches in risk assessment such as those used in the engineering aspects of spaceflight are difficult to apply to human system risks. This presentation discusses the unique aspects of risk assessment from the human system risk perspective and how these limitations are accommodated and addressed in order to ensure that reasonable inputs are provided to support the OCHMO's overall risk posture for manned exploration missions.
Integrated bronchoscopic video tracking and 3D CT registration for virtual bronchoscopy
NASA Astrophysics Data System (ADS)
Higgins, William E.; Helferty, James P.; Padfield, Dirk R.
2003-05-01
Lung cancer assessment involves an initial evaluation of 3D CT image data followed by interventional bronchoscopy. The physician, with only a mental image inferred from the 3D CT data, must guide the bronchoscope through the bronchial tree to sites of interest. Unfortunately, this procedure depends heavily on the physician's ability to mentally reconstruct the 3D position of the bronchoscope within the airways. In order to assist physicians in performing biopsies of interest, we have developed a method that integrates live bronchoscopic video tracking and 3D CT registration. The proposed method is integrated into a system we have been devising for virtual-bronchoscopic analysis and guidance for lung-cancer assessment. Previously, the system relied on a method that only used registration of the live bronchoscopic video to corresponding virtual endoluminal views derived from the 3D CT data. This procedure only performs the registration at manually selected sites; it does not draw upon the motion information inherent in the bronchoscopic video. Further, the registration procedure is slow. The proposed method has the following advantages: (1) it tracks the 3D motion of the bronchoscope using the bronchoscopic video; (2) it uses the tracked 3D trajectory of the bronchoscope to assist in locating sites in the 3D CT "virtual world" to perform the registration. In addition, the method incorporates techniques to: (1) detect and exclude corrupted video frames (to help make the video tracking more robust); (2) accelerate the computation of the many 3D virtual endoluminal renderings (thus, speeding up the registration process). We have tested the integrated tracking-registration method on a human airway-tree phantom and on real human data.
Evaluation of tracking accuracy of the CyberKnife system using a webcam and printed calibrated grid.
Sumida, Iori; Shiomi, Hiroya; Higashinaka, Naokazu; Murashima, Yoshikazu; Miyamoto, Youichi; Yamazaki, Hideya; Mabuchi, Nobuhisa; Tsuda, Eimei; Ogawa, Kazuhiko
2016-03-08
Tracking accuracy for the CyberKnife's Synchrony system is commonly evaluated using a film-based verification method. We have evaluated a verification system that uses a webcam and a printed calibrated grid to verify tracking accuracy over three different motion patterns. A box with an attached printed calibrated grid and four fiducial markers was attached to the motion phantom. A target marker was positioned at the grid's center. The box was set up using the other three markers. Target tracking accuracy was evaluated under three conditions: 1) stationary; 2) sinusoidal motion with different amplitudes of 5, 10, 15, and 20 mm for the same cycle of 4 s and different cycles of 2, 4, 6, and 8 s with the same amplitude of 15 mm; and 3) irregular breathing patterns in six human volunteers breathing normally. Infrared markers were placed on the volunteers' abdomens, and their trajectories were used to simulate the target motion. All tests were performed with one-dimensional motion in craniocaudal direction. The webcam captured the grid's motion and a laser beam was used to simulate the CyberKnife's beam. Tracking error was defined as the difference between the grid's center and the laser beam. With a stationary target, mean tracking error was measured at 0.4 mm. For sinusoidal motion, tracking error was less than 2 mm for any amplitude and breathing cycle. For the volunteers' breathing patterns, the mean tracking error range was 0.78-1.67 mm. Therefore, accurate lesion targeting requires individual quality assurance for each patient.
NASA Astrophysics Data System (ADS)
Radzicki, Vincent R.; Boutte, David; Taylor, Paul; Lee, Hua
2017-05-01
Radar based detection of human targets behind walls or in dense urban environments is an important technical challenge with many practical applications in security, defense, and disaster recovery. Radar reflections from a human can be orders of magnitude weaker than those from objects encountered in urban settings such as walls, cars, or possibly rubble after a disaster. Furthermore, these objects can act as secondary reflectors and produce multipath returns from a person. To mitigate these issues, processing of radar return data needs to be optimized for recognizing human motion features such as walking, running, or breathing. This paper presents a theoretical analysis on the modulation effects human motion has on the radar waveform and how high levels of multipath can distort these motion effects. From this analysis, an algorithm is designed and optimized for tracking human motion in heavily clutter environments. The tracking results will be used as the fundamental detection/classification tool to discriminate human targets from others by identifying human motion traits such as predictable walking patterns and periodicity in breathing rates. The theoretical formulations will be tested against simulation and measured data collected using a low power, portable see-through-the-wall radar system that could be practically deployed in real-world scenarios. Lastly, the performance of the algorithm is evaluated in a series of experiments where both a single person and multiple people are moving in an indoor, cluttered environment.
A MATLAB-based eye tracking control system using non-invasive helmet head restraint in the macaque.
De Luna, Paolo; Mohamed Mustafar, Mohamed Faiz Bin; Rainer, Gregor
2014-09-30
Tracking eye position is vital for behavioral and neurophysiological investigations in systems and cognitive neuroscience. Infrared camera systems which are now available can be used for eye tracking without the need to surgically implant magnetic search coils. These systems are generally employed using rigid head fixation in monkeys, which maintains the eye in a constant position and facilitates eye tracking. We investigate the use of non-rigid head fixation using a helmet that constrains only general head orientation and allows some freedom of movement. We present a MATLAB software solution to gather and process eye position data, present visual stimuli, interact with various devices, provide experimenter feedback and store data for offline analysis. Our software solution achieves excellent timing performance due to the use of data streaming, instead of the traditionally employed data storage mode for processing analog eye position data. We present behavioral data from two monkeys, demonstrating that adequate performance levels can be achieved on a simple fixation paradigm and show how performance depends on parameters such as fixation window size. Our findings suggest that non-rigid head restraint can be employed for behavioral training and testing on a variety of gaze-dependent visual paradigms, reducing the need for rigid head restraint systems for some applications. While developed for macaque monkey, our system of course can work equally well for applications in human eye tracking where head constraint is undesirable. Copyright © 2014. Published by Elsevier B.V.
Teleoperation of Robonaut Using Finger Tracking
NASA Technical Reports Server (NTRS)
Champoux, Rachel G.; Luo, Victor
2012-01-01
With the advent of new finger tracking systems, the idea of a more expressive and intuitive user interface is being explored and implemented. One practical application for this new kind of interface is that of teleoperating a robot. For humanoid robots, a finger tracking interface is required due to the level of complexity in a human-like hand, where a joystick isn't accurate. Moreover, for some tasks, using one's own hands allows the user to communicate their intentions more effectively than other input. The purpose of this project was to develop a natural user interface for someone to teleoperate a robot that is elsewhere. Specifically, this was designed to control Robonaut on the international space station to do tasks too dangerous and/or too trivial for human astronauts. This interface was developed by integrating and modifying 3Gear's software, which includes a library of gestures and the ability to track hands. The end result is an interface in which the user can manipulate objects in real time in the user interface. then, the information is relayed to a simulator, the stand in for Robonaut, at a slight delay.
Eye Tracking and Head Movement Detection: A State-of-Art Survey
2013-01-01
Eye-gaze detection and tracking have been an active research field in the past years as it adds convenience to a variety of applications. It is considered a significant untraditional method of human computer interaction. Head movement detection has also received researchers' attention and interest as it has been found to be a simple and effective interaction method. Both technologies are considered the easiest alternative interface methods. They serve a wide range of severely disabled people who are left with minimal motor abilities. For both eye tracking and head movement detection, several different approaches have been proposed and used to implement different algorithms for these technologies. Despite the amount of research done on both technologies, researchers are still trying to find robust methods to use effectively in various applications. This paper presents a state-of-art survey for eye tracking and head movement detection methods proposed in the literature. Examples of different fields of applications for both technologies, such as human-computer interaction, driving assistance systems, and assistive technologies are also investigated. PMID:27170851
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stein, Peter J.; Edson, Patrick L.
2013-12-20
This project saw the completion of the design and development of a second generation, high frequency (90-120 kHz) Subsurface-Threat Detection Sonar Network (SDSN). The system was deployed, operated, and tested in Cobscook Bay, Maine near the site the Ocean Renewable Power Company TidGen™ power unit. This effort resulted in a very successful demonstration of the SDSN detection, tracking, localization, and classification capabilities in a high current, MHK environment as measured by results from the detection and tracking trials in Cobscook Bay. The new high frequency node, designed to operate outside the hearing range of a subset of marine mammals, wasmore » shown to detect and track objects of marine mammal-like target strength to ranges of approximately 500 meters. This performance range results in the SDSN system tracking objects for a significant duration - on the order of minutes - even in a tidal flow of 5-7 knots, potentially allowing time for MHK system or operator decision-making if marine mammals are present. Having demonstrated detection and tracking of synthetic targets with target strengths similar to some marine mammals, the primary hurdle to eventual automated monitoring is a dataset of actual marine mammal kinematic behavior and modifying the tracking algorithms and parameters which are currently tuned to human diver kinematics and classification.« less
A Bayesian Framework for Human Body Pose Tracking from Depth Image Sequences
Zhu, Youding; Fujimura, Kikuo
2010-01-01
This paper addresses the problem of accurate and robust tracking of 3D human body pose from depth image sequences. Recovering the large number of degrees of freedom in human body movements from a depth image sequence is challenging due to the need to resolve the depth ambiguity caused by self-occlusions and the difficulty to recover from tracking failure. Human body poses could be estimated through model fitting using dense correspondences between depth data and an articulated human model (local optimization method). Although it usually achieves a high accuracy due to dense correspondences, it may fail to recover from tracking failure. Alternately, human pose may be reconstructed by detecting and tracking human body anatomical landmarks (key-points) based on low-level depth image analysis. While this method (key-point based method) is robust and recovers from tracking failure, its pose estimation accuracy depends solely on image-based localization accuracy of key-points. To address these limitations, we present a flexible Bayesian framework for integrating pose estimation results obtained by methods based on key-points and local optimization. Experimental results are shown and performance comparison is presented to demonstrate the effectiveness of the proposed approach. PMID:22399933
Going wild: what a global small-animal tracking system could do for experimental biologists.
Wikelski, Martin; Kays, Roland W; Kasdin, N Jeremy; Thorup, Kasper; Smith, James A; Swenson, George W
2007-01-01
Tracking animals over large temporal and spatial scales has revealed invaluable and spectacular biological information, particularly when the paths and fates of individuals can be monitored on a global scale. However, only large animals (greater than approximately 300 g) currently can be followed globally because of power and size constraints on the tracking devices. And yet the vast majority of animals is small. Tracking small animals is important because they are often part of evolutionary and ecological experiments, they provide important ecosystem services and they are of conservation concern or pose harm to human health. Here, we propose a small-animal satellite tracking system that would enable the global monitoring of animals down to the size of the smallest birds, mammals (bats), marine life and eventually large insects. To create the scientific framework necessary for such a global project, we formed the ICARUS initiative (www.IcarusInitiative.org), the International Cooperation for Animal Research Using Space. ICARUS also highlights how small-animal tracking could address some of the ;Grand Challenges in Environmental Sciences' identified by the US National Academy of Sciences, such as the spread of infectious diseases or the relationship between biological diversity and ecosystem functioning. Small-animal tracking would allow the quantitative assessment of dispersal and migration in natural populations and thus help solve enigmas regarding population dynamics, extinctions and invasions. Experimental biologists may find a global small-animal tracking system helpful in testing, validating and expanding laboratory-derived discoveries in wild, natural populations. We suggest that the relatively modest investment into a global small-animal tracking system will pay off by providing unprecedented insights into both basic and applied nature. Tracking small animals over large spatial and temporal scales could prove to be one of the most powerful techniques of the early 21st century, offering potential solutions to a wide range of biological and societal questions that date back two millennia to the Greek philosopher Aristotle's enigma about songbird migration. Several of the more recent Grand Challenges in Environmental Sciences, such as the regulation and functional consequences of biological diversity or the surveillance of the population ecology of zoonotic hosts, pathogens or vectors, could also be addressed by a global small-animal tracking system. Our discussion is intended to contribute to an emerging groundswell of scientific support to make such a new technological system happen.
Atallah, Vincent; Escarmant, Patrick; Vinh‐Hung, Vincent
2016-01-01
Monitoring and controlling respiratory motion is a challenge for the accuracy and safety of therapeutic irradiation of thoracic tumors. Various commercial systems based on the monitoring of internal or external surrogates have been developed but remain costly. In this article we describe and validate Madibreast, an in‐house‐made respiratory monitoring and processing device based on optical tracking of external markers. We designed an optical apparatus to ensure real‐time submillimetric image resolution at 4 m. Using OpenCv libraries, we optically tracked high‐contrast markers set on patients' breasts. Validation of spatial and time accuracy was performed on a mechanical phantom and on human breast. Madibreast was able to track motion of markers up to a 5 cm/s speed, at a frame rate of 30 fps, with submillimetric accuracy on mechanical phantom and human breasts. Latency was below 100 ms. Concomitant monitoring of three different locations on the breast showed discrepancies in axial motion up to 4 mm for deep‐breathing patterns. This low‐cost, computer‐vision system for real‐time motion monitoring of the irradiation of breast cancer patients showed submillimetric accuracy and acceptable latency. It allowed the authors to highlight differences in surface motion that may be correlated to tumor motion. PACS number(s): 87.55.km PMID:27685116
Leduc, Nicolas; Atallah, Vincent; Escarmant, Patrick; Vinh-Hung, Vincent
2016-09-08
Monitoring and controlling respiratory motion is a challenge for the accuracy and safety of therapeutic irradiation of thoracic tumors. Various commercial systems based on the monitoring of internal or external surrogates have been developed but remain costly. In this article we describe and validate Madibreast, an in-house-made respiratory monitoring and processing device based on optical tracking of external markers. We designed an optical apparatus to ensure real-time submillimetric image resolution at 4 m. Using OpenCv libraries, we optically tracked high-contrast markers set on patients' breasts. Validation of spatial and time accuracy was performed on a mechanical phantom and on human breast. Madibreast was able to track motion of markers up to a 5 cm/s speed, at a frame rate of 30 fps, with submillimetric accuracy on mechanical phantom and human breasts. Latency was below 100 ms. Concomitant monitoring of three different locations on the breast showed discrepancies in axial motion up to 4 mm for deep-breathing patterns. This low-cost, computer-vision system for real-time motion monitoring of the irradiation of breast cancer patients showed submillimetric accuracy and acceptable latency. It allowed the authors to highlight differences in surface motion that may be correlated to tumor motion.v. © 2016 The Authors.
1981-04-01
If different Irom Report) 18. SUPPLEMENTARY NOTES 19. KEY WOROS rContlnuo nrn rever.se ., vde it nee.ssary and rdenrlfy hv brock number) Flashbl...control strategy plays a minor or secondary role in predicting the effects of an insult to the system would be more acceptable. CONCLUSIONS Humans and
User-assisted visual search and tracking across distributed multi-camera networks
NASA Astrophysics Data System (ADS)
Raja, Yogesh; Gong, Shaogang; Xiang, Tao
2011-11-01
Human CCTV operators face several challenges in their task which can lead to missed events, people or associations, including: (a) data overload in large distributed multi-camera environments; (b) short attention span; (c) limited knowledge of what to look for; and (d) lack of access to non-visual contextual intelligence to aid search. Developing a system to aid human operators and alleviate such burdens requires addressing the problem of automatic re-identification of people across disjoint camera views, a matching task made difficult by factors such as lighting, viewpoint and pose changes and for which absolute scoring approaches are not best suited. Accordingly, we describe a distributed multi-camera tracking (MCT) system to visually aid human operators in associating people and objects effectively over multiple disjoint camera views in a large public space. The system comprises three key novel components: (1) relative measures of ranking rather than absolute scoring to learn the best features for matching; (2) multi-camera behaviour profiling as higher-level knowledge to reduce the search space and increase the chance of finding correct matches; and (3) human-assisted data mining to interactively guide search and in the process recover missing detections and discover previously unknown associations. We provide an extensive evaluation of the greater effectiveness of the system as compared to existing approaches on industry-standard i-LIDS multi-camera data.
Zhang, Shengzhi; Yu, Shuai; Liu, Chaojun; Liu, Sheng
2016-06-01
Tracking the position of pedestrian is urgently demanded when the most commonly used GPS (Global Position System) is unavailable. Benefited from the small size, low-power consumption, and relatively high reliability, micro-electro-mechanical system sensors are well suited for GPS-denied indoor pedestrian heading estimation. In this paper, a real-time miniature orientation determination system (MODS) was developed for indoor heading and trajectory tracking based on a novel dual-linear Kalman filter. The proposed filter precludes the impact of geomagnetic distortions on pitch and roll that the heading is subjected to. A robust calibration approach was designed to improve the accuracy of sensors measurements based on a unified sensor model. Online tests were performed on the MODS with an improved turntable. The results demonstrate that the average RMSE (root-mean-square error) of heading estimation is less than 1°. Indoor heading experiments were carried out with the MODS mounted on the shoe of pedestrian. Besides, we integrated the existing MODS into an indoor pedestrian dead reckoning application as an example of its utility in realistic actions. A human attitude-based walking model was developed to calculate the walking distance. Test results indicate that mean percentage error of indoor trajectory tracking achieves 2% of the total walking distance. This paper provides a feasible alternative for accurate indoor heading and trajectory tracking.
Zhang, Lelin; Chi, Yu Mike; Edelstein, Eve; Schulze, Jurgen; Gramann, Klaus; Velasquez, Alvaro; Cauwenberghs, Gert; Macagno, Eduardo
2010-01-01
Wireless physiological/neurological monitoring in virtual reality (VR) offers a unique opportunity for unobtrusively quantifying human responses to precisely controlled and readily modulated VR representations of health care environments. Here we present such a wireless, light-weight head-mounted system for measuring electrooculogram (EOG) and electroencephalogram (EEG) activity in human subjects interacting with and navigating in the Calit2 StarCAVE, a five-sided immersive 3-D visualization VR environment. The system can be easily expanded to include other measurements, such as cardiac activity and galvanic skin responses. We demonstrate the capacity of the system to track focus of gaze in 3-D and report a novel calibration procedure for estimating eye movements from responses to the presentation of a set of dynamic visual cues in the StarCAVE. We discuss cyber and clinical applications that include a 3-D cursor for visual navigation in VR interactive environments, and the monitoring of neurological and ocular dysfunction in vision/attention disorders.
Applied estimation for hybrid dynamical systems using perceptional information
NASA Astrophysics Data System (ADS)
Plotnik, Aaron M.
This dissertation uses the motivating example of robotic tracking of mobile deep ocean animals to present innovations in robotic perception and estimation for hybrid dynamical systems. An approach to estimation for hybrid systems is presented that utilizes uncertain perceptional information about the system's mode to improve tracking of its mode and continuous states. This results in significant improvements in situations where previously reported methods of estimation for hybrid systems perform poorly due to poor distinguishability of the modes. The specific application that motivates this research is an automatic underwater robotic observation system that follows and films individual deep ocean animals. A first version of such a system has been developed jointly by the Stanford Aerospace Robotics Laboratory and Monterey Bay Aquarium Research Institute (MBARI). This robotic observation system is successfully fielded on MBARI's ROVs, but agile specimens often evade the system. When a human ROV pilot performs this task, one advantage that he has over the robotic observation system in these situations is the ability to use visual perceptional information about the target, immediately recognizing any changes in the specimen's behavior mode. With the approach of the human pilot in mind, a new version of the robotic observation system is proposed which is extended to (a) derive perceptional information (visual cues) about the behavior mode of the tracked specimen, and (b) merge this dissimilar, discrete and uncertain information with more traditional continuous noisy sensor data by extending existing algorithms for hybrid estimation. These performance enhancements are enabled by integrating techniques in hybrid estimation, computer vision and machine learning. First, real-time computer vision and classification algorithms extract a visual observation of the target's behavior mode. Existing hybrid estimation algorithms are extended to admit this uncertain but discrete observation, complementing the information available from more traditional sensors. State tracking is achieved using a new form of Rao-Blackwellized particle filter called the mode-observed Gaussian Particle Filter. Performance is demonstrated using data from simulation and data collected on actual specimens in the ocean. The framework for estimation using both traditional and perceptional information is easily extensible to other stochastic hybrid systems with mode-related perceptional observations available.
Human-Vehicle Interface for Semi-Autonomous Operation of Uninhabited Aero Vehicles
NASA Technical Reports Server (NTRS)
Jones, Henry L.; Frew, Eric W.; Woodley, Bruce R.; Rock, Stephen M.
2001-01-01
The robustness of autonomous robotic systems to unanticipated circumstances is typically insufficient for use in the field. The many skills of human user often fill this gap in robotic capability. To incorporate the human into the system, a useful interaction between man and machine must exist. This interaction should enable useful communication to be exchanged in a natural way between human and robot on a variety of levels. This report describes the current human-robot interaction for the Stanford HUMMINGBIRD autonomous helicopter. In particular, the report discusses the elements of the system that enable multiple levels of communication. An intelligent system agent manages the different inputs given to the helicopter. An advanced user interface gives the user and helicopter a method for exchanging useful information. Using this human-robot interaction, the HUMMINGBIRD has carried out various autonomous search, tracking, and retrieval missions.
NASA Technical Reports Server (NTRS)
Vos, Gordon A.; Fink, Patrick; Ngo, Phong H.; Morency, Richard; Simon, Cory; Williams, Robert E.; Perez, Lance C.
2015-01-01
Space Human Factors and Habitability (SHFH) Element within the Human Research Program (HRP), in collaboration with the Behavioral Health and Performance (BHP) Element, is conducting research regarding Net Habitable Volume (NHV), the internal volume within a spacecraft or habitat that is available to crew for required activities, as well as layout and accommodations within that volume. NASA is looking for innovative methods to unobtrusively collect NHV data without impacting crew time. Data required includes metrics such as location and orientation of crew, volume used to complete tasks, internal translation paths, flow of work, and task completion times. In less constrained environments methods for collecting such data exist yet many are obtrusive and require significant post-processing. Example technologies used in terrestrial settings include infrared (IR) retro-reflective marker based motion capture, GPS sensor tracking, inertial tracking, and multiple camera filmography. However due to constraints of space operations many such methods are infeasible, such as inertial tracking systems which typically rely upon a gravity vector to normalize sensor readings, and traditional IR systems which are large and require extensive calibration. However multiple technologies have not yet been applied to space operations for these explicit purposes. Two of these include 3-Dimensional Radio Frequency Identification Real-Time Localization Systems (3D RFID-RTLS) and depth imaging systems which allow for 3D motion capture and volumetric scanning (such as those using IR-depth cameras like the Microsoft Kinect or Light Detection and Ranging / Light-Radar systems, referred to as LIDAR).
20 CFR 627.903 - Actions which are at the discretion of the Governor.
Code of Federal Regulations, 2010 CFR
2010-04-01
... § 627.903 Actions which are at the discretion of the Governor. (a) Establish a State Human Resource... and management information systems to track the program experience of participants. PY 1993 and...
20 CFR 627.903 - Actions which are at the discretion of the Governor.
Code of Federal Regulations, 2011 CFR
2011-04-01
... § 627.903 Actions which are at the discretion of the Governor. (a) Establish a State Human Resource... and management information systems to track the program experience of participants. PY 1993 and...
A computer simulation approach to measurement of human control strategy
NASA Technical Reports Server (NTRS)
Green, J.; Davenport, E. L.; Engler, H. F.; Sears, W. E., III
1982-01-01
Human control strategy is measured through use of a psychologically-based computer simulation which reflects a broader theory of control behavior. The simulation is called the human operator performance emulator, or HOPE. HOPE was designed to emulate control learning in a one-dimensional preview tracking task and to measure control strategy in that setting. When given a numerical representation of a track and information about current position in relation to that track, HOPE generates positions for a stick controlling the cursor to be moved along the track. In other words, HOPE generates control stick behavior corresponding to that which might be used by a person learning preview tracking.
Microsoft Kinect Sensor Evaluation
NASA Technical Reports Server (NTRS)
Billie, Glennoah
2011-01-01
My summer project evaluates the Kinect game sensor input/output and its suitability to perform as part of a human interface for a spacecraft application. The primary objective is to evaluate, understand, and communicate the Kinect system's ability to sense and track fine (human) position and motion. The project will analyze the performance characteristics and capabilities of this game system hardware and its applicability for gross and fine motion tracking. The software development kit for the Kinect was also investigated and some experimentation has begun to understand its development environment. To better understand the software development of the Kinect game sensor, research in hacking communities has brought a better understanding of the potential for a wide range of personal computer (PC) application development. The project also entails the disassembly of the Kinect game sensor. This analysis would involve disassembling a sensor, photographing it, and identifying components and describing its operation.
Douam, Florian; Hrebikova, Gabriela; Albrecht, Yentli E. Soto; Sellau, Julie; Sharon, Yael; Ding, Qiang; Ploss, Alexander
2017-01-01
Positive-sense RNA viruses pose increasing health and economic concerns worldwide. Our limited understanding of how these viruses interact with their host and how these processes lead to virulence and disease seriously hampers the development of anti-viral strategies. Here, we demonstrate the tracking of (+) and (−) sense viral RNA at single-cell resolution within complex subsets of the human and murine immune system in different mouse models. Our results provide insights into how a prototypic flavivirus, yellow fever virus (YFV-17D), differentially interacts with murine and human hematopoietic cells in these mouse models and how these dynamics influence distinct outcomes of infection. We detect (−) YFV-17D RNA in specific secondary lymphoid compartments and cell subsets not previously recognized as permissive for YFV replication, and we highlight potential virus–host interaction events that could be pivotal in regulating flavivirus virulence and attenuation. PMID:28290449
Szczęsna, Agnieszka; Pruszowski, Przemysław
2016-01-01
Inertial orientation tracking is still an area of active research, especially in the context of out-door, real-time, human motion capture. Existing systems either propose loosely coupled tracking approaches where each segment is considered independently, taking the resulting drawbacks into account, or tightly coupled solutions that are limited to a fixed chain with few segments. Such solutions have no flexibility to change the skeleton structure, are dedicated to a specific set of joints, and have high computational complexity. This paper describes the proposal of a new model-based extended quaternion Kalman filter that allows for estimation of orientation based on outputs from the inertial measurements unit sensors. The filter considers interdependencies resulting from the construction of the kinematic chain so that the orientation estimation is more accurate. The proposed solution is a universal filter that does not predetermine the degree of freedom at the connections between segments of the model. To validation the motion of 3-segments single link pendulum captured by optical motion capture system is used. The next step in the research will be to use this method for inertial motion capture with a human skeleton model.
The Vestibular System and Human Dynamic Space Orientation
NASA Technical Reports Server (NTRS)
Meiry, J. L.
1966-01-01
The motion sensors of the vestibular system are studied to determine their role in human dynamic space orientation and manual vehicle control. The investigation yielded control models for the sensors, descriptions of the subsystems for eye stabilization, and demonstrations of the effects of motion cues on closed loop manual control. Experiments on the abilities of subjects to perceive a variety of linear motions provided data on the dynamic characteristics of the otoliths, the linear motion sensors. Angular acceleration threshold measurements supplemented knowledge of the semicircular canals, the angular motion sensors. Mathematical models are presented to describe the known control characteristics of the vestibular sensors, relating subjective perception of motion to objective motion of a vehicle. The vestibular system, the neck rotation proprioceptors and the visual system form part of the control system which maintains the eye stationary relative to a target or a reference. The contribution of each of these systems was identified through experiments involving head and body rotations about a vertical axis. Compensatory eye movements in response to neck rotation were demonstrated and their dynamic characteristics described by a lag-lead model. The eye motions attributable to neck rotations and vestibular stimulation obey superposition when both systems are active. Human operator compensatory tracking is investigated in simple vehicle orientation control system with stable and unstable controlled elements. Control of vehicle orientation to a reference is simulated in three modes: visual, motion and combined. Motion cues sensed by the vestibular system through tactile sensation enable the operator to generate more lead compensation than in fixed base simulation with only visual input. The tracking performance of the human in an unstable control system near the limits of controllability is shown to depend heavily upon the rate information provided by the vestibular sensors.
Human performance evaluation in dual-axis critical task tracking
NASA Technical Reports Server (NTRS)
Ritchie, M. L.; Nataraj, N. S.
1975-01-01
A dual axis tracking using a multiloop critical task was set up to evaluate human performance. The effects of control stick variation and display formats are evaluated. A secondary loading was used to measure the degradation in tracking performance.
Evaluation of tracking accuracy of the CyberKnife system using a webcam and printed calibrated grid
Shiomi, Hiroya; Higashinaka, Naokazu; Murashima, Yoshikazu; Miyamoto, Youichi; Yamazaki, Hideya; Mabuchi, Nobuhisa; Tsuda, Eimei; Ogawa, Kazuhiko
2016-01-01
Tracking accuracy for the CyberKnife's Synchrony system is commonly evaluated using a film‐based verification method. We have evaluated a verification system that uses a webcam and a printed calibrated grid to verify tracking accuracy over three different motion patterns. A box with an attached printed calibrated grid and four fiducial markers was attached to the motion phantom. A target marker was positioned at the grid's center. The box was set up using the other three markers. Target tracking accuracy was evaluated under three conditions: 1) stationary; 2) sinusoidal motion with different amplitudes of 5, 10, 15, and 20 mm for the same cycle of 4 s and different cycles of 2, 4, 6, and 8 s with the same amplitude of 15 mm; and 3) irregular breathing patterns in six human volunteers breathing normally. Infrared markers were placed on the volunteers’ abdomens, and their trajectories were used to simulate the target motion. All tests were performed with one‐dimensional motion in craniocaudal direction. The webcam captured the grid's motion and a laser beam was used to simulate the CyberKnife's beam. Tracking error was defined as the difference between the grid's center and the laser beam. With a stationary target, mean tracking error was measured at 0.4 mm. For sinusoidal motion, tracking error was less than 2 mm for any amplitude and breathing cycle. For the volunteers’ breathing patterns, the mean tracking error range was 0.78‐1.67 mm. Therefore, accurate lesion targeting requires individual quality assurance for each patient. PACS number(s): 87.55.D‐, 87.55.km, 87.55.Qr, 87.56.Fc PMID:27074474
Learning an intrinsic-variable preserving manifold for dynamic visual tracking.
Qiao, Hong; Zhang, Peng; Zhang, Bo; Zheng, Suiwu
2010-06-01
Manifold learning is a hot topic in the field of computer science, particularly since nonlinear dimensionality reduction based on manifold learning was proposed in Science in 2000. The work has achieved great success. The main purpose of current manifold-learning approaches is to search for independent intrinsic variables underlying high dimensional inputs which lie on a low dimensional manifold. In this paper, a new manifold is built up in the training step of the process, on which the input training samples are set to be close to each other if the values of their intrinsic variables are close to each other. Then, the process of dimensionality reduction is transformed into a procedure of preserving the continuity of the intrinsic variables. By utilizing the new manifold, the dynamic tracking of a human who can move and rotate freely is achieved. From the theoretical point of view, it is the first approach to transfer the manifold-learning framework to dynamic tracking. From the application point of view, a new and low dimensional feature for visual tracking is obtained and successfully applied to the real-time tracking of a free-moving object from a dynamic vision system. Experimental results from a dynamic tracking system which is mounted on a dynamic robot validate the effectiveness of the new algorithm.
Computer analysis of arteriograms
NASA Technical Reports Server (NTRS)
Selzer, R. H.; Armstrong, J. H.; Beckenbach, E. B.; Blankenhorn, D. H.; Crawford, D. W.; Brooks, S. H.; Sanmarco, M. E.
1977-01-01
A computer system has been developed to quantify the degree of atherosclerosis in the human femoral artery. The analysis involves first scanning and digitizing angiographic film, then tracking the outline of the arterial image and finally computing the relative amount of roughness or irregularity in the vessel wall. The image processing system and method are described.
Kimmel, Daniel L.; Mammo, Dagem; Newsome, William T.
2012-01-01
From human perception to primate neurophysiology, monitoring eye position is critical to the study of vision, attention, oculomotor control, and behavior. Two principal techniques for the precise measurement of eye position—the long-standing sclera-embedded search coil and more recent optical tracking techniques—are in use in various laboratories, but no published study compares the performance of the two methods simultaneously in the same primates. Here we compare two popular systems—a sclera-embedded search coil from C-N-C Engineering and the EyeLink 1000 optical system from SR Research—by recording simultaneously from the same eye in the macaque monkey while the animal performed a simple oculomotor task. We found broad agreement between the two systems, particularly in positional accuracy during fixation, measurement of saccade amplitude, detection of fixational saccades, and sensitivity to subtle changes in eye position from trial to trial. Nonetheless, certain discrepancies persist, particularly elevated saccade peak velocities, post-saccadic ringing, influence of luminance change on reported position, and greater sample-to-sample variation in the optical system. Our study shows that optical performance now rivals that of the search coil, rendering optical systems appropriate for many if not most applications. This finding is consequential, especially for animal subjects, because the optical systems do not require invasive surgery for implantation and repair of search coils around the eye. Our data also allow laboratories using the optical system in human subjects to assess the strengths and limitations of the technique for their own applications. PMID:22912608
Which way and how far? Tracking of translation and rotation information for human path integration.
Chrastil, Elizabeth R; Sherrill, Katherine R; Hasselmo, Michael E; Stern, Chantal E
2016-10-01
Path integration, the constant updating of the navigator's knowledge of position and orientation during movement, requires both visuospatial knowledge and memory. This study aimed to develop a systems-level understanding of human path integration by examining the basic building blocks of path integration in humans. To achieve this goal, we used functional imaging to examine the neural mechanisms that support the tracking and memory of translational and rotational components of human path integration. Critically, and in contrast to previous studies, we examined movement in translation and rotation tasks with no defined end-point or goal. Navigators accumulated translational and rotational information during virtual self-motion. Activity in hippocampus, retrosplenial cortex (RSC), and parahippocampal cortex (PHC) increased during both translation and rotation encoding, suggesting that these regions track self-motion information during path integration. These results address current questions regarding distance coding in the human brain. By implementing a modified delayed match to sample paradigm, we also examined the encoding and maintenance of path integration signals in working memory. Hippocampus, PHC, and RSC were recruited during successful encoding and maintenance of path integration information, with RSC selective for tasks that required processing heading rotation changes. These data indicate distinct working memory mechanisms for translation and rotation, which are essential for updating neural representations of current location. The results provide evidence that hippocampus, PHC, and RSC flexibly track task-relevant translation and rotation signals for path integration and could form the hub of a more distributed network supporting spatial navigation. Hum Brain Mapp 37:3636-3655, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
A Freehand Ultrasound Elastography System with Tracking for In-vivo Applications
Foroughi, Pezhman; Kang, Hyun-Jae; Carnegie, Daniel A.; van Vledder, Mark G.; Choti, Michael A.; Hager, Gregory D.; Boctor, Emad M.
2012-01-01
Ultrasound transducers are commonly tracked in modern ultrasound navigation/guidance systems. In this paper, we demonstrate the advantages of incorporating tracking information into ultrasound elastography for clinical applications. First, we address a common limitation of freehand palpation: speckle decorrelation due to out-of-plane probe motion. We show that by automatically selecting pairs of radio frequency (RF) frames with minimal lateral and out-of-plane motions combined with a fast and robust displacement estimation technique greatly improves in-vivo elastography results. We also use tracking information and image quality measure to fuse multiple images with similar strain that are taken roughly from the same location to obtain a high quality elastography image. Finally, we show that tracking information can be used to give the user partial control over the rate of compression. Our methods are tested on tissue mimicking phantom and experiments have been conducted on intra-operative data acquired during animal and human experiments involving liver ablation. Our results suggest that in challenging clinical conditions, our proposed method produces reliable strain images and eliminates the need for a manual search through the ultrasound data in order to find RF pairs suitable for elastography. PMID:23257351
ESAM: Endocrine inspired Sensor Activation Mechanism for multi-target tracking in WSNs
NASA Astrophysics Data System (ADS)
Adil Mahdi, Omar; Wahab, Ainuddin Wahid Abdul; Idris, Mohd Yamani Idna; Znaid, Ammar Abu; Khan, Suleman; Al-Mayouf, Yusor Rafid Bahar
2016-10-01
Target tracking is a significant application of wireless sensor networks (WSNs) in which deployment of self-organizing and energy efficient algorithms is required. The tracking accuracy increases as more sensor nodes are activated around the target but more energy is consumed. Thus, in this study, we focus on limiting the number of sensors by forming an ad-hoc network that operates autonomously. This will reduce the energy consumption and prolong the sensor network lifetime. In this paper, we propose a fully distributed algorithm, an Endocrine inspired Sensor Activation Mechanism for multi target-tracking (ESAM) which reflecting the properties of real life sensor activation system based on the information circulating principle in the endocrine system of the human body. Sensor nodes in our network are secreting different hormones according to certain rules. The hormone level enables the nodes to regulate an efficient sleep and wake up cycle of nodes to reduce the energy consumption. It is evident from the simulation results that the proposed ESAM in autonomous sensor network exhibits a stable performance without the need of commands from a central controller. Moreover, the proposed ESAM generates more efficient and persistent results as compared to other algorithms for tracking an invading object.
Beyl, Tim; Nicolai, Philip; Comparetti, Mirko D; Raczkowsky, Jörg; De Momi, Elena; Wörn, Heinz
2016-07-01
Scene supervision is a major tool to make medical robots safer and more intuitive. The paper shows an approach to efficiently use 3D cameras within the surgical operating room to enable for safe human robot interaction and action perception. Additionally the presented approach aims to make 3D camera-based scene supervision more reliable and accurate. A camera system composed of multiple Kinect and time-of-flight cameras has been designed, implemented and calibrated. Calibration and object detection as well as people tracking methods have been designed and evaluated. The camera system shows a good registration accuracy of 0.05 m. The tracking of humans is reliable and accurate and has been evaluated in an experimental setup using operating clothing. The robot detection shows an error of around 0.04 m. The robustness and accuracy of the approach allow for an integration into modern operating room. The data output can be used directly for situation and workflow detection as well as collision avoidance.
A psychotechnological review on eye-tracking systems: towards user experience.
Mele, Maria Laura; Federici, Stefano
2012-07-01
The aim of the present work is to show a critical review of the international literature on eye-tracking technologies by focusing on those features that characterize them as 'psychotechnologies'. A critical literature review was conducted through the main psychology, engineering, and computer sciences databases by following specific inclusion and exclusion criteria. A total of 46 matches from 1998 to 2010 were selected for content analysis. Results have been divided into four broad thematic areas. We found that, although there is a growing attention to end-users, most of the studies reviewed in this work are far from being considered as adopting holistic human-computer interaction models that include both individual differences and needs of users. User is often considered only as a measurement object of the functioning of the technological system and not as a real alter-ego of the intrasystemic interaction. In order to fully benefit from the communicative functions of gaze, the research on eye-tracking must emphasize user experience. Eye-tracking systems would become an effective assistive technology for integration, adaptation and neutralization of the environmental barrier only when a holistic model can be applied for both design processes and assessment of the functional components of the interaction.
Bilateral control of master-slave manipulators with constant time delay.
Forouzantabar, A; Talebi, H A; Sedigh, A K
2012-01-01
This paper presents a novel teleoperation controller for a nonlinear master-slave robotic system with constant time delay in communication channel. The proposed controller enables the teleoperation system to compensate human and environmental disturbances, while achieving master and slave position coordination in both free motion and contact situation. The current work basically extends the passivity based architecture upon the earlier work of Lee and Spong (2006) [14] to improve position tracking and consequently transparency in the face of disturbances and environmental contacts. The proposed controller employs a PID controller in each side to overcome some limitations of a PD controller and guarantee an improved performance. Moreover, by using Fourier transform and Parseval's identity in the frequency domain, we demonstrate that this new PID controller preserves the passivity of the system. Simulation and semi-experimental results show that the PID controller tracking performance is superior to that of the PD controller tracking performance in slave/environmental contacts. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Infectious diseases and global warming: Tracking disease incidence rates globally
DOE Office of Scientific and Technical Information (OSTI.GOV)
Low, N.C.
1995-09-01
Given the increasing importance of impact of global warming on public health, there is no global database system to monitor infectious disease and disease in general, and to which global data of climate change and environmental factors, such as temperature, greenhouse gases, and human activities, e.g., coastal development, deforestation, can be calibrated, investigated and correlated. The author proposes the diseases incidence rates be adopted as the basic global measure of morbidity of infectious diseases. The importance of a correctly chosen measure of morbidity of disease is presented. The importance of choosing disease incidence rates as the measure of morbidity andmore » the mathematical foundation of which are discussed. The author further proposes the establishment of a global database system to track the incidence rates of infectious diseases. Only such a global system can be used to calibrate and correlate other globally tracked climatic, greenhouse gases and environmental data. The infrastructure and data sources for building such a global database is discussed.« less
System learning approach to assess sustainability and ...
This paper presents a methodology that combines the power of an Artificial Neural Network and Information Theory to forecast variables describing the condition of a regional system. The novelty and strength of this approach is in the application of Fisher information, a key method in Information Theory, to preserve trends in the historical data and prevent over fitting projections. The methodology was applied to demographic, environmental, food and energy consumption, and agricultural production in the San Luis Basin regional system in Colorado, U.S.A. These variables are important for tracking conditions in human and natural systems. However, available data are often so far out of date that they limit the ability to manage these systems. Results indicate that the approaches developed provide viable tools for forecasting outcomes with the aim of assisting management toward sustainable trends. This methodology is also applicable for modeling different scenarios in other dynamic systems. Indicators are indispensable for tracking conditions in human and natural systems, however, available data is sometimes far out of date and limit the ability to gauge system status. Techniques like regression and simulation are not sufficient because system characteristics have to be modeled ensuring over simplification of complex dynamics. This work presents a methodology combining the power of an Artificial Neural Network and Information Theory to capture patterns in a real dyna
Auto-tracking system for human lumbar motion analysis.
Sui, Fuge; Zhang, Da; Lam, Shing Chun Benny; Zhao, Lifeng; Wang, Dongjun; Bi, Zhenggang; Hu, Yong
2011-01-01
Previous lumbar motion analyses suggest the usefulness of quantitatively characterizing spine motion. However, the application of such measurements is still limited by the lack of user-friendly automatic spine motion analysis systems. This paper describes an automatic analysis system to measure lumbar spine disorders that consists of a spine motion guidance device, an X-ray imaging modality to acquire digitized video fluoroscopy (DVF) sequences and an automated tracking module with a graphical user interface (GUI). DVF sequences of the lumbar spine are recorded during flexion-extension under a guidance device. The automatic tracking software utilizing a particle filter locates the vertebra-of-interest in every frame of the sequence, and the tracking result is displayed on the GUI. Kinematic parameters are also extracted from the tracking results for motion analysis. We observed that, in a bone model test, the maximum fiducial error was 3.7%, and the maximum repeatability error in translation and rotation was 1.2% and 2.6%, respectively. In our simulated DVF sequence study, the automatic tracking was not successful when the noise intensity was greater than 0.50. In a noisy situation, the maximal difference was 1.3 mm in translation and 1° in the rotation angle. The errors were calculated in translation (fiducial error: 2.4%, repeatability error: 0.5%) and in the rotation angle (fiducial error: 1.0%, repeatability error: 0.7%). However, the automatic tracking software could successfully track simulated sequences contaminated by noise at a density ≤ 0.5 with very high accuracy, providing good reliability and robustness. A clinical trial with 10 healthy subjects and 2 lumbar spondylolisthesis patients were enrolled in this study. The measurement with auto-tacking of DVF provided some information not seen in the conventional X-ray. The results proposed the potential use of the proposed system for clinical applications.
Automated motile cell capture and analysis with optical traps.
Shao, Bing; Nascimento, Jaclyn M; Shi, Linda Z; Botvinick, Elliot L
2007-01-01
Laser trapping in the near infrared regime is a noninvasive and microfluidic-compatible biomedical tool. This chapter examines the use of optical trapping as a quantitative measure of sperm motility. The single point gradient trap is used to directly measure the swimming forces of sperm from several different species. These forces could provide useful information about the overall sperm motility and semen quality. The swimming force is measured by trapping sperm and subsequently decreasing laser power until the sperm is capable of escaping the trap. Swimming trajectories were calculated by custom built software, an automatic sperm tracking algorithm called the single sperm tracking algorithm or SSTA. A real-time automated tracking and trapping system, or RATTS, which operates at video rate, was developed to perform experiments with minimal human involvement. After the experimenter initially identifies and clicks the computer mouse on the sperm-of-interest, RATTS performs all further tracking and trapping functions without human intervention. Additionally, an annular laser trap which is potentially useful for high-throughput sperm sorting based on motility and chemotaxis was developed. This low power trap offers a more gentle way for studying the effects of laser radiation, optical force, and external obstacles on sperm swimming pattern.
Zhou, Xiaolu; Li, Dongying
2018-05-09
Advancement in location-aware technologies, and information and communication technology in the past decades has furthered our knowledge of the interaction between human activities and the built environment. An increasing number of studies have collected data regarding individual activities to better understand how the environment shapes human behavior. Despite this growing interest, some challenges exist in collecting and processing individual's activity data, e.g., capturing people's precise environmental contexts and analyzing data at multiple spatial scales. In this study, we propose and implement an innovative system that integrates smartphone-based step tracking with an app and the sequential tile scan techniques to collect and process activity data. We apply the OpenStreetMap tile system to aggregate positioning points at various scales. We also propose duration, step and probability surfaces to quantify the multi-dimensional attributes of activities. Results show that, by running the app in the background, smartphones can measure multi-dimensional attributes of human activities, including space, duration, step, and location uncertainty at various spatial scales. By coordinating Global Positioning System (GPS) sensor with accelerometer sensor, this app can save battery which otherwise would be drained by GPS sensor quickly. Based on a test dataset, we were able to detect the recreational center and sports center as the space where the user was most active, among other places visited. The methods provide techniques to address key issues in analyzing human activity data. The system can support future studies on behavioral and health consequences related to individual's environmental exposure.
Synthesized multi-station tribo-test system for bio-tribological evaluation in vitro
NASA Astrophysics Data System (ADS)
Wu, Tonghai; Du, Ying; Li, Yang; Wang, Shuo; Zhang, Zhinan
2016-07-01
Tribological tests play an important role on the evaluation of long-term bio-tribological performances of prosthetic materials for commercial fabrication. Those tests focus on the motion simulation of a real joint in vitro with only normal loads and constant velocities, which are far from the real friction behavior of human joints characterized with variable loads and multiple directions. In order to accurately obtain the bio-tribological performances of artificial joint materials, a tribological tester with a miniature four-station tribological system is proposed with four distinctive features. Firstly, comparability and repeatability of a test are ensured by four equal stations of the tester. Secondly, cross-linked scratch between tribo-pairs of human joints can be simulated by using a gear-rack meshing mechanism to produce composite motions. With this mechanism, the friction tracks can be designed by varying reciprocating and rotating speeds. Thirdly, variable loading system is realized by using a ball-screw mechanism driven by a stepper motor, by which loads under different gaits during walking are simulated. Fourthly, dynamic friction force and normal load can be measured simultaneously. The verifications of the performances of the developed tester show that the variable frictional tracks can produce different wear debris compared with one-directional tracks, and the accuracy of loading and friction force is within ±5%. Thus the high consistency among different stations can be obtained. Practically, the proposed tester system could provide more comprehensive and accurate bio-tribological evaluations for prosthetic materials.
What do we know about implicit false-belief tracking?
Schneider, Dana; Slaughter, Virginia P; Dux, Paul E
2015-02-01
There is now considerable evidence that neurotypical individuals track the internal cognitions of others, even in the absence of instructions to do so. This finding has prompted the suggestion that humans possess an implicit mental state tracking system (implicit Theory of Mind, ToM) that exists alongside a system that allows the deliberate and explicit analysis of the mental states of others (explicit ToM). Here we evaluate the evidence for this hypothesis and assess the extent to which implicit and explicit ToM operations are distinct. We review evidence showing that adults can indeed engage in ToM processing even without being conscious of doing so. However, at the same time, there is evidence that explicit and implicit ToM operations share some functional features, including drawing on executive resources. Based on the available evidence, we propose that implicit and explicit ToM operations overlap and should only be considered partially distinct.
Predictive Compensator Optimization for Head Tracking Lag in Virtual Environments
NASA Technical Reports Server (NTRS)
Adelstein, Barnard D.; Jung, Jae Y.; Ellis, Stephen R.
2001-01-01
We examined the perceptual impact of plant noise parameterization for Kalman Filter predictive compensation of time delays intrinsic to head tracked virtual environments (VEs). Subjects were tested in their ability to discriminate between the VE system's minimum latency and conditions in which artificially added latency was then predictively compensated back to the system minimum. Two head tracking predictors were parameterized off-line according to cost functions that minimized prediction errors in (1) rotation, and (2) rotation projected into translational displacement with emphasis on higher frequency human operator noise. These predictors were compared with a parameterization obtained from the VE literature for cost function (1). Results from 12 subjects showed that both parameterization type and amount of compensated latency affected discrimination. Analysis of the head motion used in the parameterizations and the subsequent discriminability results suggest that higher frequency predictor artifacts are contributory cues for discriminating the presence of predictive compensation.
Three-dimensional face pose detection and tracking using monocular videos: tool and application.
Dornaika, Fadi; Raducanu, Bogdan
2009-08-01
Recently, we have proposed a real-time tracker that simultaneously tracks the 3-D head pose and facial actions in monocular video sequences that can be provided by low quality cameras. This paper has two main contributions. First, we propose an automatic 3-D face pose initialization scheme for the real-time tracker by adopting a 2-D face detector and an eigenface system. Second, we use the proposed methods-the initialization and tracking-for enhancing the human-machine interaction functionality of an AIBO robot. More precisely, we show how the orientation of the robot's camera (or any active vision system) can be controlled through the estimation of the user's head pose. Applications based on head-pose imitation such as telepresence, virtual reality, and video games can directly exploit the proposed techniques. Experiments on real videos confirm the robustness and usefulness of the proposed methods.
DOT National Transportation Integrated Search
2002-01-01
The essence of effective environmental justice practice is summarized in three fundamental principles: (1) Avoid, minimize, or mitigate disproportionately high and adverse human health and environmental effects, including social and economic effects,...
The Evolution of a Connectionist Model of Situated Human Language Understanding
NASA Astrophysics Data System (ADS)
Mayberry, Marshall R.; Crocker, Matthew W.
The Adaptive Mechanisms in Human Language Processing (ALPHA) project features both experimental and computational tracks designed to complement each other in the investigation of the cognitive mechanisms that underlie situated human utterance processing. The models developed in the computational track replicate results obtained in the experimental track and, in turn, suggest further experiments by virtue of behavior that arises as a by-product of their operation.
Development of an algorithm to model an aircraft equipped with a generic CDTI display
NASA Technical Reports Server (NTRS)
Driscoll, W. C.; Houck, J. A.
1986-01-01
A model of human pilot performance of a tracking task using a generic Cockpit Display of Traffic Information (CDTI) display is developed from experimental data. The tracking task is to use CDTI in tracking a leading aircraft at a nominal separation of three nautical miles over a prescribed trajectory in space. The analysis of the data resulting from a factorial design of experiments reveals that the tracking task performance depends on the pilot and his experience at performing the task. Performance was not strongly affected by the type of control system used (velocity vector control wheel steering versus 3D automatic flight path guidance and control). The model that is developed and verified results in state trajectories whose difference from the experimental state trajectories is small compared to the variation due to the pilot and experience factors.
2008-07-02
CAPE CANAVERAL, Fla. – Professor Peter Voci, NYIT MOCAP (Motion Capture) team director, (left) hands a component of the Orion Crew Module mockup to one of three technicians inside the mockup. The technicians wear motion capture suits. The motion tracking aims to improve efficiency of assembly processes and identify potential ergonomic risks for technicians assembling the mockup. The work is being performed in United Space Alliance's Human Engineering Modeling and Performance Lab in the RLV Hangar at NASA's Kennedy Space Center. The motion tracking aims to improve efficiency of assembly processes and identify potential ergonomic risks for technicians assembling the mockup. The work is being performed in United Space Alliance's Human Engineering Modeling and Performance Lab in the RLV Hangar at NASA's Kennedy Space Center. Part of NASA's Constellation Program, the Orion spacecraft will return humans to the moon and prepare for future voyages to Mars and other destinations in our solar system.
Dual-loop model of the human controller
NASA Technical Reports Server (NTRS)
Hess, R. A.
1978-01-01
A dual-loop model of the human controller in single-axis compensatory tracking tasks is introduced. This model possesses an inner-loop closure that involves feeding back that portion of controlled element output rate that is due to control activity. A novel feature of the model is the explicit appearance of the human's internal representation of the manipulator-controlled element dynamics in the inner loop. The sensor inputs to the human controller are assumed to be system error and control force. The former can be sensed via visual, aural, or tactile displays, whereas the latter is assumed to be sensed in kinesthetic fashion. A set of general adaptive characteristics for the model is hypothesized, including a method for selecting simplified internal models of the manipulator-controlled element dynamics. It is demonstrated that the model can produce controller describing functions that closely approximate those measured in four laboratory tracking tasks in which the controlled element dynamics vary considerably in terms of ease of control. An empirically derived expression for the normalized injected error remnant spectrum is introduced.
2016-10-01
ARL-TR-7846 ● OCT 2016 US Army Research Laboratory Application of Hybrid Along-Track Interferometry/ Displaced Phase Center...Research Laboratory Application of Hybrid Along-Track Interferometry/ Displaced Phase Center Antenna Method for Moving Human Target Detection...TYPE Technical Report 3. DATES COVERED (From - To) 2015–2016 4. TITLE AND SUBTITLE Application of Hybrid Along-Track Interferometry/ Displaced
Do Humans Have Two Systems to Track Beliefs and Belief-Like States?
ERIC Educational Resources Information Center
Apperly, Ian A.; Butterfill, Stephen A.
2009-01-01
The lack of consensus on how to characterize humans' capacity for belief reasoning has been brought into sharp focus by recent research. Children fail critical tests of belief reasoning before 3 to 4 years of age (H. Wellman, D. Cross, & J. Watson, 2001; H. Wimmer & J. Perner, 1983), yet infants apparently pass false-belief tasks at 13 or 15…
Optimization of RFID network planning using Zigbee and WSN
NASA Astrophysics Data System (ADS)
Hasnan, Khalid; Ahmed, Aftab; Badrul-aisham, Bakhsh, Qadir
2015-05-01
Everyone wants to be ease in their life. Radio frequency identification (RFID) wireless technology is used to make our life easier. RFID technology increases productivity, accuracy and convenience in delivery of service in supply chain. It is used for various applications such as preventing theft of automobiles, tolls collection without stopping, no checkout lines at grocery stores, managing traffic, hospital management, corporate campuses and airports, mobile asset tracking, warehousing, tracking library books, and to track a wealth of assets in supply chain management. Efficiency of RFID can be enhanced by integrating with wireless sensor network (WSN), zigbee mesh network and internet of things (IOT). The proposed system is used for identifying, sensing and real-time locating system (RTLS) of items in an indoor heterogeneous region. The system gives real-time richer information of object's characteristics, location and their environmental parameters like temperature, noise and humidity etc. RTLS reduce human error, optimize inventory management, increase productivity and information accuracy at indoor heterogeneous network. The power consumption and the data transmission rate of the system can be minimized by using low power hardware design.
Yamashita, M; Yamashita, A; Ishii, T; Naruo, Y; Nagatomo, M
1998-11-01
A portable recording system was developed for analysis of more than three analog signals collected in field works. Stereo audio recorder, available as consumer products, was made use for a core cornponent of the system. For the two tracks of recording, a multiplexed analog signal is stored on one track, and reference code on the other track. The reference code indicates the start of one cycle for multiplexing and swiching point of each channel. Multiplexed signal is playbacked and decoded with a reference of the code to reconstruct original profiles of the signal. Since commercial stereo recorders have cut DC component off, a fixed reference voltage is inserted in the sequence of multiplexing. Change of voltage at switching from the reference to the data channel is measured from playbacked signal to get the original data with its DC component. Movement of vehicles and human head were analyzed by the system. It was verified to be capable to record and analyze multi-channel signal at a sampling rate more than 10Hz.
An Alternative Wearable Tracking System Based on a Low-Power Wide-Area Network.
Fernández-Garcia, Raul; Gil, Ignacio
2017-03-14
This work presents an alternative wearable tracking system based on a low-power wide area network. A complete GPS receiver was integrated with a textile substrate, and the latitude and longitude coordinates were sent to the cloud by means of the SIM-less SIGFOX network. To send the coordinates over SIGFOX protocol, a specific codification algorithm was used and a customized UHF antenna on jeans fabric was designed, simulated and tested. Moreover, to guarantee the compliance to international regulations for human body exposure to electromagnetic radiation, the electromagnetic specific absorption rate of this antenna was analyzed. A specific remote server was developed to decode the latitude and longitude coordinates. Once the coordinates have been decoded, the remote server sends this information to the open source data viewer SENTILO to show the location of the sensor node in a map. The functionality of this system has been demonstrated experimentally. The results guarantee the utility and wearability of the proposed tracking system for the development of sensor nodes and point out that it can be a low cost alternative to other commercial products based on GSM networks.
Development of real-time motion capture system for 3D on-line games linked with virtual character
NASA Astrophysics Data System (ADS)
Kim, Jong Hyeong; Ryu, Young Kee; Cho, Hyung Suck
2004-10-01
Motion tracking method is being issued as essential part of the entertainment, medical, sports, education and industry with the development of 3-D virtual reality. Virtual human character in the digital animation and game application has been controlled by interfacing devices; mouse, joysticks, midi-slider, and so on. Those devices could not enable virtual human character to move smoothly and naturally. Furthermore, high-end human motion capture systems in commercial market are expensive and complicated. In this paper, we proposed a practical and fast motion capturing system consisting of optic sensors, and linked the data with 3-D game character with real time. The prototype experiment setup is successfully applied to a boxing game which requires very fast movement of human character.
Yang, Dan; Xu, Bin; Rao, Kaiyou; Sheng, Weihua
2018-01-24
Indoor occupants' positions are significant for smart home service systems, which usually consist of robot service(s), appliance control and other intelligent applications. In this paper, an innovative localization method is proposed for tracking humans' position in indoor environments based on passive infrared (PIR) sensors using an accessibility map and an A-star algorithm, aiming at providing intelligent services. First the accessibility map reflecting the visiting habits of the occupants is established through the integral training with indoor environments and other prior knowledge. Then the PIR sensors, which placement depends on the training results in the accessibility map, get the rough location information. For more precise positioning, the A-start algorithm is used to refine the localization, fused with the accessibility map and the PIR sensor data. Experiments were conducted in a mock apartment testbed. The ground truth data was obtained from an Opti-track system. The results demonstrate that the proposed method is able to track persons in a smart home environment and provide a solution for home robot localization.
From Process to Product: Your Risk Process at Work
NASA Technical Reports Server (NTRS)
Kundrot, Craig E.; Fogarty, Jenifer; Charles, John; Buquo, Lynn; Sibonga, Jean; Alexander, David; Horn, Wayne G.; Edwards, J. Michelle
2010-01-01
The Space Life Sciences Directorate (SLSD) and Human Research Program (HRP) at the NASA/Johnson Space Center work together to address and manage the human health and performance risks associated with human space flight. This includes all human system requirements before, during, and after space flight, providing for research, and managing the risk of adverse long-term health outcomes for the crew. We previously described the framework and processes developed for identifying and managing these human system risks. The focus of this panel is to demonstrate how the implementation of the framework and associated processes has provided guidance in the management and communication of human system risks. The risks of early onset osteoporosis, CO2 exposure, and intracranial hypertension in particular have all benefitted from the processes developed for human system risk management. Moreover, we are continuing to develop capabilities, particularly in the area of information architecture, which will also be described. We are working to create a system whereby all risks and associated actions can be tracked and related to one another electronically. Such a system will enhance the management and communication capabilities for the human system risks, thereby increasing the benefit to researchers and flight surgeons.
Hybrid Orientation Based Human Limbs Motion Tracking Method
Glonek, Grzegorz; Wojciechowski, Adam
2017-01-01
One of the key technologies that lays behind the human–machine interaction and human motion diagnosis is the limbs motion tracking. To make the limbs tracking efficient, it must be able to estimate a precise and unambiguous position of each tracked human joint and resulting body part pose. In recent years, body pose estimation became very popular and broadly available for home users because of easy access to cheap tracking devices. Their robustness can be improved by different tracking modes data fusion. The paper defines the novel approach—orientation based data fusion—instead of dominating in literature position based approach, for two classes of tracking devices: depth sensors (i.e., Microsoft Kinect) and inertial measurement units (IMU). The detailed analysis of their working characteristics allowed to elaborate a new method that let fuse more precisely limbs orientation data from both devices and compensates their imprecisions. The paper presents the series of performed experiments that verified the method’s accuracy. This novel approach allowed to outperform the precision of position-based joints tracking, the methods dominating in the literature, of up to 18%. PMID:29232832
Pray, Ian W; Swanson, Dallas J; Ayvar, Viterbo; Muro, Claudio; Moyano, Luz M; Gonzalez, Armando E; Garcia, Hector H; O'Neal, Seth E
2016-04-01
Taenia solium, a parasitic cestode that affects humans and pigs, is the leading cause of preventable epilepsy in the developing world. T. solium eggs are released into the environment through the stool of humans infected with an adult intestinal tapeworm (a condition called taeniasis), and cause cysticercosis when ingested by pigs or other humans. A control strategy to intervene within high-risk foci in endemic communities has been proposed as an alternative to mass antihelminthic treatment. In this ring strategy, antihelminthic treatment is targeted to humans and pigs residing within a 100 meter radius of a pig heavily-infected with cysticercosis. Our aim was to describe the roaming ranges of pigs in this region, and to evaluate whether the 100 meter radius rings encompass areas where risk factors for T. solium transmission, such as open human defecation and dense pig activity, are concentrated. In this study, we used Global Positioning System (GPS) devices to track pig roaming ranges in two rural villages of northern Peru. We selected 41 pigs from two villages to participate in a 48-hour tracking period. Additionally, we surveyed all households to record the locations of open human defecation areas. We found that pigs spent a median of 82.8% (IQR: 73.5, 94.4) of their time roaming within 100 meters of their homes. The size of home ranges varied significantly by pig age, and 93% of the total time spent interacting with open human defecation areas occurred within 100 meters of pig residences. These results indicate that 100 meter radius rings around heavily-infected pigs adequately capture the average pig's roaming area (i.e., home range) and represent an area where the great majority of exposure to human feces occurs.
Burchett, John; Shankar, Mohan; Hamza, A Ben; Guenther, Bob D; Pitsianis, Nikos; Brady, David J
2006-05-01
We use pyroelectric detectors that are differential in nature to detect motion in humans by their heat emissions. Coded Fresnel lens arrays create boundaries that help to localize humans in space as well as to classify the nature of their motion. We design and implement a low-cost biometric tracking system by using off-the-shelf components. We demonstrate two classification methods by using data gathered from sensor clusters of dual-element pyroelectric detectors with coded Fresnel lens arrays. We propose two algorithms for person identification, a more generalized spectral clustering method and a more rigorous example that uses principal component regression to perform a blind classification.
Li, Hao; Lu, Jing; Shi, Guohua; Zhang, Yudong
2010-01-01
With the use of adaptive optics (AO), high-resolution microscopic imaging of living human retina in the single cell level has been achieved. In an adaptive optics confocal scanning laser ophthalmoscope (AOSLO) system, with a small field size (about 1 degree, 280 μm), the motion of the eye severely affects the stabilization of the real-time video images and results in significant distortions of the retina images. In this paper, Scale-Invariant Feature Transform (SIFT) is used to abstract stable point features from the retina images. Kanade-Lucas-Tomasi(KLT) algorithm is applied to track the features. With the tracked features, the image distortion in each frame is removed by the second-order polynomial transformation, and 10 successive frames are co-added to enhance the image quality. Features of special interest in an image can also be selected manually and tracked by KLT. A point on a cone is selected manually, and the cone is tracked from frame to frame. PMID:21258443
Bannasch, Detlev; Mehrle, Alexander; Glatting, Karl-Heinz; Pepperkok, Rainer; Poustka, Annemarie; Wiemann, Stefan
2004-01-01
We have implemented LIFEdb (http://www.dkfz.de/LIFEdb) to link information regarding novel human full-length cDNAs generated and sequenced by the German cDNA Consortium with functional information on the encoded proteins produced in functional genomics and proteomics approaches. The database also serves as a sample-tracking system to manage the process from cDNA to experimental read-out and data interpretation. A web interface enables the scientific community to explore and visualize features of the annotated cDNAs and ORFs combined with experimental results, and thus helps to unravel new features of proteins with as yet unknown functions. PMID:14681468
Meta-T: TetrisⓇ as an experimental paradigm for cognitive skills research.
Lindstedt, John K; Gray, Wayne D
2015-12-01
Studies of human performance in complex tasks using video games are an attractive prospect, but many existing games lack a comprehensive way to modify the game and track performance beyond basic levels of analysis. Meta-T provides experimenters a tool to study behavior in a dynamic task environment with time-stressed decision-making and strong perceptual-motor elements, offering a host of experimental manipulations with a robust and detailed logging system for all user events, system events, and screen objects. Its experimenter-friendly interface provides control over detailed parameters of the task environment without need for programming expertise. Support for eye-tracking and computational cognitive modeling extend the paradigm's scope.
Sensor and tracking data integration into a common operating picture
NASA Astrophysics Data System (ADS)
Bailey, Mark E.
2003-09-01
With rapid technological developments, a new innovative range of possibilities can be actualized in mainstreaming a network with checks and balances to provide sensor and tracking data integration/information to a wider Department of Defense (DoD) audience or group of agencies. As technologies are developed, methods to display the data are required. Multiple diverse tracking devices and sensors need to be displayed on a common operating picture. Sensors and tracking devices are used to monitor an area or object for movement or boundary penetration. Tracking devices in turn determine transit patterns of humans, animals and/or vehicles. In consortium these devices can have dual applications for military requirements and for other general purposes. The DoD Counterdrug Technology Development Program Office (CDTDPO) has designed a system to distribute sensor and tracking data to multiple users in separate agencies. This information can be displayed in whole or in part as to the specific needs of the user. It is with this purpose that the Data Distribution Network (DDN) was created to disseminate information to a collective group or to a select audience.
Henneman, Elizabeth A
2017-07-01
The Institute of Medicine (now National Academy of Medicine) reports "To Err is Human" and "Crossing the Chasm" made explicit 3 previously unappreciated realities: (1) Medical errors are common and result in serious, preventable adverse events; (2) The majority of medical errors are the result of system versus human failures; and (3) It would be impossible for any system to prevent all errors. With these realities, the role of the nurse in the "near miss" process and as the final safety net for the patient is of paramount importance. The nurse's role in patient safety is described from both a systems perspective and a human factors perspective. Critical care nurses use specific strategies to identify, interrupt, and correct medical errors. Strategies to identify errors include knowing the patient, knowing the plan of care, double-checking, and surveillance. Nursing strategies to interrupt errors include offering assistance, clarifying, and verbally interrupting. Nurses correct errors by persevering, being physically present, reviewing/confirming the plan of care, or involving another nurse or physician. Each of these strategies has implications for education, practice, and research. Surveillance is a key nursing strategy for identifying medical errors and reducing adverse events. Eye-tracking technology is a novel approach for evaluating the surveillance process during common, high-risk processes such as blood transfusion and medication administration. Eye tracking has also been used to examine the impact of interruptions to care caused by bedside alarms as well as by other health care personnel. Findings from this safety-related eye-tracking research provide new insight into effective bedside surveillance and interruption management strategies. ©2017 American Association of Critical-Care Nurses.
Disappearance of the inversion effect during memory-guided tracking of scrambled biological motion.
Jiang, Changhao; Yue, Guang H; Chen, Tingting; Ding, Jinhong
2016-08-01
The human visual system is highly sensitive to biological motion. Even when a point-light walker is temporarily occluded from view by other objects, our eyes are still able to maintain tracking continuity. To investigate how the visual system establishes a correspondence between the biological-motion stimuli visible before and after the disruption, we used the occlusion paradigm with biological-motion stimuli that were intact or scrambled. The results showed that during visually guided tracking, both the observers' predicted times and predictive smooth pursuit were more accurate for upright biological motion (intact and scrambled) than for inverted biological motion. During memory-guided tracking, however, the processing advantage for upright as compared with inverted biological motion was not found in the scrambled condition, but in the intact condition only. This suggests that spatial location information alone is not sufficient to build and maintain the representational continuity of the biological motion across the occlusion, and that the object identity may act as an important information source in visual tracking. The inversion effect disappeared when the scrambled biological motion was occluded, which indicates that when biological motion is temporarily occluded and there is a complete absence of visual feedback signals, an oculomotor prediction is executed to maintain the tracking continuity, which is established not only by updating the target's spatial location, but also by the retrieval of identity information stored in long-term memory.
Lee, Chang Soo; Lee, Jiyoung
2010-09-01
A rapid and specific gyrB-based real-time PCR system has been developed for detecting Bacteroides fragilis as a human-specific marker of fecal contamination. Its specificity and sensitivity was evaluated by comparison with other 16S rRNA gene-based primers using closely related Bacteroides and Prevotella. Many studies have used 16S rRNA gene-based method targeting Bacteroides because this genus is relatively abundant in human feces and is useful for microbial source tracking. However, 16S rRNA gene-based primers are evolutionarily too conserved among taxa to discriminate between human-specific species of Bacteroides and other closely related genera, such as Prevotella. Recently, one of the housekeeping genes, gyrB, has been used as an alternative target in multilocus sequence analysis (MLSA) to provide greater phylogenetic resolution. In this study, a new B. fragilis-specific primer set (Bf904F/Bf958R) was designed by alignments of 322 gyrB genes and was compared with the performance of the 16S rRNA gene-based primers in the presence of B. fragilis, Bacteroides ovatus and Prevotella melaninogenica. Amplicons were sequenced and a phylogenetic tree was constructed to confirm the specificity of the primers to B. fragilis. The gyrB-based primers successfully discriminated B. fragilis from B. ovatus and P. melaninogenica. Real-time PCR results showed that the gyrB primer set had a comparable sensitivity in the detection of B. fragilis when compared with the 16S rRNA primer set. The host-specificity of our gyrB-based primer set was validated with human, pig, cow, and dog fecal samples. The gyrB primer system had superior human-specificity. The gyrB-based system can rapidly detect human-specific fecal source and can be used for improved source tracking of human contamination. (c) 2010 Elsevier B.V. All rights reserved.
Ambulatory position and orientation tracking fusing magnetic and inertial sensing.
Roetenberg, Daniel; Slycke, Per J; Veltink, Peter H
2007-05-01
This paper presents the design and testing of a portable magnetic system combined with miniature inertial sensors for ambulatory 6 degrees of freedom (DOF) human motion tracking. The magnetic system consists of three orthogonal coils, the source, fixed to the body and 3-D magnetic sensors, fixed to remote body segments, which measure the fields generated by the source. Based on the measured signals, a processor calculates the relative positions and orientations between source and sensor. Magnetic actuation requires a substantial amount of energy which limits the update rate with a set of batteries. Moreover, the magnetic field can easily be disturbed by ferromagnetic materials or other sources. Inertial sensors can be sampled at high rates, require only little energy and do not suffer from magnetic interferences. However, accelerometers and gyroscopes can only measure changes in position and orientation and suffer from integration drift. By combing measurements from both systems in a complementary Kalman filter structure, an optimal solution for position and orientation estimates is obtained. The magnetic system provides 6 DOF measurements at a relatively low update rate while the inertial sensors track the changes position and orientation in between the magnetic updates. The implemented system is tested against a lab-bound camera tracking system for several functional body movements. The accuracy was about 5 mm for position and 3 degrees for orientation measurements. Errors were higher during movements with high velocities due to relative movement between source and sensor within one cycle of magnetic actuation.
Gallo, P; Grimaldi, S; Latronico, M V G; Bonci, D; Pagliuca, A; Gallo, P; Ausoni, S; Peschle, C; Condorelli, G
2008-02-01
Human embryonic stem cells (hESCs) may become important for cardiac repair due to their potentially unlimited ability to generate cardiomyocytes (CMCs). Moreover, genetic manipulation of hESC-derived CMCs would be a very promising technique for curing myocardial disorders. At the present time, however, inducing the differentiation of hESCs into CMCs is extremely difficult and, therefore, an easy and standardizable technique is needed to evaluate differentiation strategies. Vectors driving cardiac-specific expression may represent an important tool not only for monitoring new cardiac-differentiation strategies, but also for the manipulation of cardiac differentiation of ESCs. To this aim, we generated cardiac-specific lentiviral vectors (LVVs) in which expression is driven by a short fragment of the cardiac troponin-I proximal promoter (TNNI3) with a human cardiac alpha-actin enhancer, and tested its suitability in inducing tissue-specific gene expression and ability to track the CMC lineage during differentiation of ESCs. We determined that (1) TNNI3-LVVs efficiently drive cardiac-specific gene expression and mark the cardiomyogenic lineage in human and mouse ESC differentiation systems (2) the cardiac alpha-actin enhancer confers a further increase in gene-expression specificity of TNNI3-LVVs in hESCs. Although this technique may not be useful in tracking small numbers of cells, data suggested that TNNI3-based LVVs are a powerful tool for manipulating human ESCs and modifying hESC-derived CMCs.
Neural mechanisms tracking popularity in real-world social networks.
Zerubavel, Noam; Bearman, Peter S; Weber, Jochen; Ochsner, Kevin N
2015-12-08
Differences in popularity are a key aspect of status in virtually all human groups and shape social interactions within them. Little is known, however, about how we track and neurally represent others' popularity. We addressed this question in two real-world social networks using sociometric methods to quantify popularity. Each group member (perceiver) viewed faces of every other group member (target) while whole-brain functional MRI data were collected. Independent functional localizer tasks were used to identify brain systems supporting affective valuation (ventromedial prefrontal cortex, ventral striatum, amygdala) and social cognition (dorsomedial prefrontal cortex, precuneus, temporoparietal junction), respectively. During the face-viewing task, activity in both types of neural systems tracked targets' sociometric popularity, even when controlling for potential confounds. The target popularity-social cognition system relationship was mediated by valuation system activity, suggesting that observing popular individuals elicits value signals that facilitate understanding their mental states. The target popularity-valuation system relationship was strongest for popular perceivers, suggesting enhanced sensitivity to differences among other group members' popularity. Popular group members also demonstrated greater interpersonal sensitivity by more accurately predicting how their own personalities were perceived by other individuals in the social network. These data offer insights into the mechanisms by which status guides social behavior.
A Menagerie of Tracks at Maryland: HARD, Enterprise, QA, and Genomics, Oh My!
2006-01-01
mutually agreeable search strategy for acquiring the desired information. Like information need negotiation in a reference interview, clarification...answer key to identify relevant nuggets in system responses. The obvious downside of this approach is that the process requires human intervention
Modular Mount Control System for Telescopes
NASA Astrophysics Data System (ADS)
Mooney, J.; Cleis, R.; Kyono, T.; Edwards, M.
The Space Observatory Control Kit (SpOCK) is the hardware, computers and software used to run small and large telescopes in the RDS division of the Air Force Research Laboratories (AFRL). The system is used to track earth satellites, celestial objects, terrestrial objects and aerial objects. The system will track general targets when provided with state vectors in one of five coordinate systems. Client-toserver and server-to-gimbals communication occurs via human-readable s-expressions that may be evaluated by the computer language called Racket. Software verification is achieved by scripts that exercise these expressions by sending them to the server, and receiving the expressions that the server evaluates. This paper describes the adaptation of a modular mount control system developed primarily for LEO satellite imaging on large and small portable AFRL telescopes with a goal of orbit determination and the generation of satellite metrics.
Training industrial robots with gesture recognition techniques
NASA Astrophysics Data System (ADS)
Piane, Jennifer; Raicu, Daniela; Furst, Jacob
2013-01-01
In this paper we propose to use gesture recognition approaches to track a human hand in 3D space and, without the use of special clothing or markers, be able to accurately generate code for training an industrial robot to perform the same motion. The proposed hand tracking component includes three methods: a color-thresholding model, naïve Bayes analysis and Support Vector Machine (SVM) to detect the human hand. Next, it performs stereo matching on the region where the hand was detected to find relative 3D coordinates. The list of coordinates returned is expectedly noisy due to the way the human hand can alter its apparent shape while moving, the inconsistencies in human motion and detection failures in the cluttered environment. Therefore, the system analyzes the list of coordinates to determine a path for the robot to move, by smoothing the data to reduce noise and looking for significant points used to determine the path the robot will ultimately take. The proposed system was applied to pairs of videos recording the motion of a human hand in a „real‟ environment to move the end-affector of a SCARA robot along the same path as the hand of the person in the video. The correctness of the robot motion was determined by observers indicating that motion of the robot appeared to match the motion of the video.
Angarita-Jaimes, N C; Parker, J E A; Abe, M; Mashauri, F; Martine, J; Towers, C E; McCall, P J; Towers, D P
2016-04-01
Many vectors of malaria and other infections spend most of their adult life within human homes, the environment where they bloodfeed and rest, and where control has been most successful. Yet, knowledge of peri-domestic mosquito behaviour is limited, particularly how mosquitoes find and attack human hosts or how insecticides impact on behaviour. This is partly because technology for tracking mosquitoes in their natural habitats, traditional dwellings in disease-endemic countries, has never been available. We describe a sensing device that enables observation and recording of nocturnal mosquitoes attacking humans with or without a bed net, in the laboratory and in rural Africa. The device addresses requirements for sub-millimetre resolution over a 2.0 × 1.2 × 2.0 m volume while using minimum irradiance. Data processing strategies to extract individual mosquito trajectories and algorithms to describe behaviour during host/net interactions are introduced. Results from UK laboratory and Tanzanian field tests showed that Culex quinquefasciatus activity was higher and focused on the bed net roof when a human host was present, in colonized and wild populations. Both C. quinquefasciatus and Anopheles gambiae exhibited similar behavioural modes, with average flight velocities varying by less than 10%. The system offers considerable potential for investigations in vector biology and many other fields. © 2016 The Authors.
A multimodal dataset for authoring and editing multimedia content: The MAMEM project.
Nikolopoulos, Spiros; Petrantonakis, Panagiotis C; Georgiadis, Kostas; Kalaganis, Fotis; Liaros, Georgios; Lazarou, Ioulietta; Adam, Katerina; Papazoglou-Chalikias, Anastasios; Chatzilari, Elisavet; Oikonomou, Vangelis P; Kumar, Chandan; Menges, Raphael; Staab, Steffen; Müller, Daniel; Sengupta, Korok; Bostantjopoulou, Sevasti; Katsarou, Zoe; Zeilig, Gabi; Plotnik, Meir; Gotlieb, Amihai; Kizoni, Racheli; Fountoukidou, Sofia; Ham, Jaap; Athanasiou, Dimitrios; Mariakaki, Agnes; Comanducci, Dario; Sabatini, Edoardo; Nistico, Walter; Plank, Markus; Kompatsiaris, Ioannis
2017-12-01
We present a dataset that combines multimodal biosignals and eye tracking information gathered under a human-computer interaction framework. The dataset was developed in the vein of the MAMEM project that aims to endow people with motor disabilities with the ability to edit and author multimedia content through mental commands and gaze activity. The dataset includes EEG, eye-tracking, and physiological (GSR and Heart rate) signals collected from 34 individuals (18 able-bodied and 16 motor-impaired). Data were collected during the interaction with specifically designed interface for web browsing and multimedia content manipulation and during imaginary movement tasks. The presented dataset will contribute towards the development and evaluation of modern human-computer interaction systems that would foster the integration of people with severe motor impairments back into society.
Memory-Based Multiagent Coevolution Modeling for Robust Moving Object Tracking
Wang, Yanjiang; Qi, Yujuan; Li, Yongping
2013-01-01
The three-stage human brain memory model is incorporated into a multiagent coevolutionary process for finding the best match of the appearance of an object, and a memory-based multiagent coevolution algorithm for robust tracking the moving objects is presented in this paper. Each agent can remember, retrieve, or forget the appearance of the object through its own memory system by its own experience. A number of such memory-based agents are randomly distributed nearby the located object region and then mapped onto a 2D lattice-like environment for predicting the new location of the object by their coevolutionary behaviors, such as competition, recombination, and migration. Experimental results show that the proposed method can deal with large appearance changes and heavy occlusions when tracking a moving object. It can locate the correct object after the appearance changed or the occlusion recovered and outperforms the traditional particle filter-based tracking methods. PMID:23843739
Memory-based multiagent coevolution modeling for robust moving object tracking.
Wang, Yanjiang; Qi, Yujuan; Li, Yongping
2013-01-01
The three-stage human brain memory model is incorporated into a multiagent coevolutionary process for finding the best match of the appearance of an object, and a memory-based multiagent coevolution algorithm for robust tracking the moving objects is presented in this paper. Each agent can remember, retrieve, or forget the appearance of the object through its own memory system by its own experience. A number of such memory-based agents are randomly distributed nearby the located object region and then mapped onto a 2D lattice-like environment for predicting the new location of the object by their coevolutionary behaviors, such as competition, recombination, and migration. Experimental results show that the proposed method can deal with large appearance changes and heavy occlusions when tracking a moving object. It can locate the correct object after the appearance changed or the occlusion recovered and outperforms the traditional particle filter-based tracking methods.
NASA Technical Reports Server (NTRS)
Allen, R. W.; Jex, H. R.
1972-01-01
In order to test various components of a regenerative life support system and to obtain data on the physiological and psychological effects of long-duration exposure to confinement in a space station atmosphere, four carefully screened young men were sealed in space station simulator for 90 days. A tracking test battery was administered during the above experiment. The battery included a clinical test (critical instability task) related to the subject's dynamic time delay, and a conventional steady tracking task, during which dynamic response (describing functions) and performance measures were obtained. Good correlation was noted between the clinical critical instability scores and more detailed tracking parameters such as dynamic time delay and gain-crossover frequency. The comprehensive data base on human operator tracking behavior obtained in this study demonstrate that sophisticated visual-motor response properties can be efficiently and reliably measured over extended periods of time.
Real time markerless motion tracking using linked kinematic chains
Luck, Jason P [Arvada, CO; Small, Daniel E [Albuquerque, NM
2007-08-14
A markerless method is described for tracking the motion of subjects in a three dimensional environment using a model based on linked kinematic chains. The invention is suitable for tracking robotic, animal or human subjects in real-time using a single computer with inexpensive video equipment, and does not require the use of markers or specialized clothing. A simple model of rigid linked segments is constructed of the subject and tracked using three dimensional volumetric data collected by a multiple camera video imaging system. A physics based method is then used to compute forces to align the model with subsequent volumetric data sets in real-time. The method is able to handle occlusion of segments and accommodates joint limits, velocity constraints, and collision constraints and provides for error recovery. The method further provides for elimination of singularities in Jacobian based calculations, which has been problematic in alternative methods.
Development and human factors analysis of neuronavigation vs. augmented reality.
Pandya, Abhilash; Siadat, Mohammad-Reza; Auner, Greg; Kalash, Mohammad; Ellis, R Darin
2004-01-01
This paper is focused on the human factors analysis comparing a standard neuronavigation system with an augmented reality system. We use a passive articulated arm (Microscribe, Immersion technology) to track a calibrated end-effector mounted video camera. In real time, we superimpose the live video view with the synchronized graphical view of CT-derived segmented object(s) of interest within a phantom skull. Using the same robotic arm, we have developed a neuronavigation system able to show the end-effector of the arm on orthogonal CT scans. Both the AR and the neuronavigation systems have been shown to be within 3mm of accuracy. A human factors study was conducted in which subjects were asked to draw craniotomies and answer questions to gage their understanding of the phantom objects. The human factors study included 21 subjects and indicated that the subjects performed faster, with more accuracy and less errors using the Augmented Reality interface.
Position Tracking During Human Walking Using an Integrated Wearable Sensing System.
Zizzo, Giulio; Ren, Lei
2017-12-10
Progress has been made enabling expensive, high-end inertial measurement units (IMUs) to be used as tracking sensors. However, the cost of these IMUs is prohibitive to their widespread use, and hence the potential of low-cost IMUs is investigated in this study. A wearable low-cost sensing system consisting of IMUs and ultrasound sensors was developed. Core to this system is an extended Kalman filter (EKF), which provides both zero-velocity updates (ZUPTs) and Heuristic Drift Reduction (HDR). The IMU data was combined with ultrasound range measurements to improve accuracy. When a map of the environment was available, a particle filter was used to impose constraints on the possible user motions. The system was therefore composed of three subsystems: IMUs, ultrasound sensors, and a particle filter. A Vicon motion capture system was used to provide ground truth information, enabling validation of the sensing system. Using only the IMU, the system showed loop misclosure errors of 1% with a maximum error of 4-5% during walking. The addition of the ultrasound sensors resulted in a 15% reduction in the total accumulated error. Lastly, the particle filter was capable of providing noticeable corrections, which could keep the tracking error below 2% after the first few steps.
Virtual targeting in three-dimensional space with sound and light interference
NASA Astrophysics Data System (ADS)
Chua, Florence B.; DeMarco, Robert M.; Bergen, Michael T.; Short, Kenneth R.; Servatius, Richard J.
2006-05-01
Law enforcement and the military are critically concerned with the targeting and firing accuracy of opponents. Stimuli which impede opponent targeting and firing accuracy can be incorporated into defense systems. An automated virtual firing range was developed to assess human targeting accuracy under conditions of sound and light interference, while avoiding dangers associated with live fire. This system has the ability to quantify sound and light interference effects on targeting and firing accuracy in three dimensions. This was achieved by development of a hardware and software system that presents the subject with a sound or light target, preceded by a sound or light interference. SonyXplod. TM 4-way speakers present sound interference and sound targeting. The Martin ® MiniMAC TM Profile operates as a source of light interference, while a red laser light serves as a target. A tracking system was created to monitor toy gun movement and firing in three-dimensional space. Data are collected via the Ascension ® Flock of Birds TM tracking system and a custom National Instrument ® LabVIEW TM 7.0 program to monitor gun movement and firing. A test protocol examined system parameters. Results confirm that the system enables tracking of virtual shots from a fired simulation gun to determine shot accuracy and location in three dimensions.
Newcastle Disease Virus as a Vaccine Vector for Development of Human and Veterinary Vaccines
Kim, Shin-Hee; Samal, Siba K.
2016-01-01
Viral vaccine vectors have shown to be effective in inducing a robust immune response against the vaccine antigen. Newcastle disease virus (NDV), an avian paramyxovirus, is a promising vaccine vector against human and veterinary pathogens. Avirulent NDV strains LaSota and B1 have long track records of safety and efficacy. Therefore, use of these strains as vaccine vectors is highly safe in avian and non-avian species. NDV replicates efficiently in the respiratory track of the host and induces strong local and systemic immune responses against the foreign antigen. As a vaccine vector, NDV can accommodate foreign sequences with a good degree of stability and as a RNA virus, there is limited possibility for recombination with host cell DNA. Using NDV as a vaccine vector in humans offers several advantages over other viral vaccine vectors. NDV is safe in humans due to host range restriction and there is no pre-existing antibody to NDV in the human population. NDV is antigenically distinct from common human pathogens. NDV replicates to high titer in a cell line acceptable for human vaccine development. Therefore, NDV is an attractive vaccine vector for human pathogens for which vaccines are currently not available. NDV is also an attractive vaccine vector for animal pathogens. PMID:27384578
Newcastle Disease Virus as a Vaccine Vector for Development of Human and Veterinary Vaccines.
Kim, Shin-Hee; Samal, Siba K
2016-07-04
Viral vaccine vectors have shown to be effective in inducing a robust immune response against the vaccine antigen. Newcastle disease virus (NDV), an avian paramyxovirus, is a promising vaccine vector against human and veterinary pathogens. Avirulent NDV strains LaSota and B1 have long track records of safety and efficacy. Therefore, use of these strains as vaccine vectors is highly safe in avian and non-avian species. NDV replicates efficiently in the respiratory track of the host and induces strong local and systemic immune responses against the foreign antigen. As a vaccine vector, NDV can accommodate foreign sequences with a good degree of stability and as a RNA virus, there is limited possibility for recombination with host cell DNA. Using NDV as a vaccine vector in humans offers several advantages over other viral vaccine vectors. NDV is safe in humans due to host range restriction and there is no pre-existing antibody to NDV in the human population. NDV is antigenically distinct from common human pathogens. NDV replicates to high titer in a cell line acceptable for human vaccine development. Therefore, NDV is an attractive vaccine vector for human pathogens for which vaccines are currently not available. NDV is also an attractive vaccine vector for animal pathogens.
SU-G-JeP3-08: Robotic System for Ultrasound Tracking in Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhlemann, I; Graduate School for Computing in Medicine and Life Sciences, University of Luebeck; Jauer, P
Purpose: For safe and accurate real-time tracking of tumors for IGRT using 4D ultrasound, it is necessary to make use of novel, high-end force-sensitive lightweight robots designed for human-machine interaction. Such a robot will be integrated into an existing robotized ultrasound system for non-invasive 4D live tracking, using a newly developed real-time control and communication framework. Methods: The new KUKA LWR iiwa robot is used for robotized ultrasound real-time tumor tracking. Besides more precise probe contact pressure detection, this robot provides an additional 7th link, enhancing the dexterity of the kinematic and the mounted transducer. Several integrated, certified safety featuresmore » create a safe environment for the patients during treatment. However, to remotely control the robot for the ultrasound application, a real-time control and communication framework has to be developed. Based on a client/server concept, client-side control commands are received and processed by a central server unit and are implemented by a client module running directly on the robot’s controller. Several special functionalities for robotized ultrasound applications are integrated and the robot can now be used for real-time control of the image quality by adjusting the transducer position, and contact pressure. The framework was evaluated looking at overall real-time capability for communication and processing of three different standard commands. Results: Due to inherent, certified safety modules, the new robot ensures a safe environment for patients during tumor tracking. Furthermore, the developed framework shows overall real-time capability with a maximum average latency of 3.6 ms (Minimum 2.5 ms; 5000 trials). Conclusion: The novel KUKA LBR iiwa robot will advance the current robotized ultrasound tracking system with important features. With the developed framework, it is now possible to remotely control this robot and use it for robotized ultrasound tracking applications, including image quality control and target tracking.« less
Development of an in vitro diaphragm motion reproduction system.
Liao, Ai-Ho; Chuang, Ho-Chiao; Shih, Ming-Chih; Hsu, Hsiao-Yu; Tien, Der-Chi; Kuo, Chia-Chun; Jeng, Shiu-Chen; Chiou, Jeng-Fong
2017-07-01
This study developed an in vitro diaphragm motion reproduction system (IVDMRS) based on noninvasive and real-time ultrasound imaging to track the internal displacement of the human diaphragm and diaphragm phantoms with a respiration simulation system (RSS). An ultrasound image tracking algorithm (UITA) was used to retrieve the displacement data of the tracking target and reproduce the diaphragm motion in real time using a red laser to irradiate the diaphragm phantom in vitro. This study also recorded the respiration patterns in 10 volunteers. Both simulated and the respiration patterns in 10 human volunteers signals were input to the RSS for conducting experiments involving the reproduction of diaphragm motion in vitro using the IVDMRS. The reproduction accuracy of the IVDMRS was calculated and analyzed. The results indicate that the respiration frequency substantially affects the correlation between ultrasound and kV images, as well as the reproduction accuracy of the IVDMRS due to the system delay time (0.35s) of ultrasound imaging and signal transmission. The utilization of a phase lead compensator (PLC) reduced the error caused by this delay, thereby improving the reproduction accuracy of the IVDMRS by 14.09-46.98%. Applying the IVDMRS in clinical treatments will allow medical staff to monitor the target displacements in real time by observing the movement of the laser beam. If the target displacement moves outside the planning target volume (PTV), the treatment can be immediately stopped to ensure that healthy tissues do not receive high doses of radiation. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
2000-06-01
Micro-scale design (MSD) is a term that has been coined recently by transportation and land use planners to describe the human-scale features of the built environment. This concept focuses on accessibility to desired activities rather than on mobilit...
Catalogue Creation for Space Situational Awareness with Optical Sensors
NASA Astrophysics Data System (ADS)
Hobson, T.; Clarkson, I.; Bessell, T.; Rutten, M.; Gordon, N.; Moretti, N.; Morreale, B.
2016-09-01
In order to safeguard the continued use of space-based technologies, effective monitoring and tracking of man-made resident space objects (RSOs) is paramount. The diverse characteristics, behaviours and trajectories of RSOs make space surveillance a challenging application of the discipline that is tracking and surveillance. When surveillance systems are faced with non-canonical scenarios, it is common for human operators to intervene while researchers adapt and extend traditional tracking techniques in search of a solution. A complementary strategy for improving the robustness of space surveillance systems is to place greater emphasis on the anticipation of uncertainty. Namely, give the system the intelligence necessary to autonomously react to unforeseen events and to intelligently and appropriately act on tenuous information rather than discard it. In this paper we build from our 2015 campaign and describe the progression of a low-cost intelligent space surveillance system capable of autonomously cataloguing and maintaining track of RSOs. It currently exploits robotic electro-optical sensors, high-fidelity state-estimation and propagation as well as constrained initial orbit determination (IOD) to intelligently and adaptively manage its sensors in order to maintain an accurate catalogue of RSOs. In a step towards fully autonomous cataloguing, the system has been tasked with maintaining surveillance of a portion of the geosynchronous (GEO) belt. Using a combination of survey and track-refinement modes, the system is capable of maintaining a track of known RSOs and initiating tracks on previously unknown objects. Uniquely, due to the use of high-fidelity representations of a target's state uncertainty, as few as two images of previously unknown RSOs may be used to subsequently initiate autonomous search and reacquisition. To achieve this capability, particularly within the congested environment of the GEO-belt, we use a constrained admissible region (CAR) to generate a plausible estimate of the unknown RSO's state probability density function and disambiguate measurements using a particle-based joint probability data association (JPDA) method. Additionally, the use of alternative CAR generation methods, incorporating catalogue-based priors, is explored and tested. We also present the findings of two field trials of an experimental system that incorporates these techniques. The results demonstrate that such a system is capable of autonomously searching for an RSO that was briefly observed days prior in a GEO-survey and discriminating it from the measurements of other previously catalogued RSOs.
Automated enclosure and protection system for compact solar-tracking spectrometers
NASA Astrophysics Data System (ADS)
Heinle, Ludwig; Chen, Jia
2018-04-01
A novel automated enclosure for protecting solar-tracking atmospheric instruments was designed, constructed, and successfully tested under various weather conditions. A complete automated measurement system, consisting of a compact solar-tracking Fourier transform infrared (FTIR) spectrometer (EM27/SUN) and the enclosure, has been deployed in central Munich to monitor greenhouse gases since 2016 and withstood all critical weather conditions, including rain, storms, and snow. It provided ground-based measurements of column-averaged concentrations of CO2, CH4, O2, and H2O throughout this time.The enclosure protects the instrument from harmful environmental influences while allowing open-path measurements in sunny weather. The newly developed and patented cover, a key component of the enclosure, permits unblocked solar measurements while reliably protecting the instrument. This enables dynamic decision regarding taking measurements, and thus increases the number of data samples. This enclosure leads to a fully automated measurement system, which collects data whenever possible without any human interaction. In the long term, the enclosure will provide the foundation for a permanent greenhouse gas monitoring sensor network.
Wein, Wolfgang; Karamalis, Athanasios; Baumgartner, Adrian; Navab, Nassir
2015-06-01
The transfer of preoperative CT data into the tracking system coordinates within an operating room is of high interest for computer-aided orthopedic surgery. In this work, we introduce a solution for intra-operative ultrasound-CT registration of bones. We have developed methods for fully automatic real-time bone detection in ultrasound images and global automatic registration to CT. The bone detection algorithm uses a novel bone-specific feature descriptor and was thoroughly evaluated on both in-vivo and ex-vivo data. A global optimization strategy aligns the bone surface, followed by a soft tissue aware intensity-based registration to provide higher local registration accuracy. We evaluated the system on femur, tibia and fibula anatomy in a cadaver study with human legs, where magnetically tracked bone markers were implanted to yield ground truth information. An overall median system error of 3.7 mm was achieved on 11 datasets. Global and fully automatic registration of bones aquired with ultrasound to CT is feasible, with bone detection and tracking operating in real time for immediate feedback to the surgeon.
Motion tracing system for ultrasound guided HIFU
NASA Astrophysics Data System (ADS)
Xiao, Xu; Jiang, Tingyi; Corner, George; Huang, Zhihong
2017-03-01
One main limitation in HIFU treatment is the abdominal movement in liver and kidney caused by respiration. The study has set up a tracking model which mainly compromises of a target carrying box and a motion driving balloon. A real-time B-mode ultrasound guidance method suitable for tracking of the abdominal organ motion in 2D was established and tested. For the setup, the phantoms mimicking moving organs are carefully prepared with agar surrounding round-shaped egg-white as the target of focused ultrasound ablation. Physiological phantoms and animal tissues are driven moving reciprocally along the main axial direction of the ultrasound image probe with slightly motion perpendicular to the axial direction. The moving speed and range could be adjusted by controlling the inflation and deflation speed and amount of the balloon driven by a medical ventilator. A 6-DOF robotic arm was used to position the focused ultrasound transducer. The overall system was trying to estimate to simulate the actual movement caused by human respiration. HIFU ablation experiments using phantoms and animal organs were conducted to test the tracking effect. Ultrasound strain elastography was used to post estimate the efficiency of the tracking algorithms and system. In moving state, the axial size of the lesion (perpendicular to the movement direction) are averagely 4mm, which is one third larger than the lesion got when the target was not moving. This presents the possibility of developing a low-cost real-time method of tracking organ motion during HIFU treatment in liver or kidney.
Autonomous Space Object Catalogue Construction and Upkeep Using Sensor Control Theory
NASA Astrophysics Data System (ADS)
Moretti, N.; Rutten, M.; Bessell, T.; Morreale, B.
The capability to track objects in space is critical to safeguard domestic and international space assets. Infrequent measurement opportunities, complex dynamics and partial observability of orbital state makes the tracking of resident space objects nontrivial. It is not uncommon for human operators to intervene with space tracking systems, particularly in scheduling sensors. This paper details the development of a system that maintains a catalogue of geostationary objects through dynamically tasking sensors in real time by managing the uncertainty of object states. As the number of objects in space grows the potential for collision grows exponentially. Being able to provide accurate assessment to operators regarding costly collision avoidance manoeuvres is paramount; the accuracy of which is highly dependent on how object states are estimated. The system represents object state and uncertainty using particles and utilises a particle filter for state estimation. Particle filters capture the model and measurement uncertainty accurately, allowing for a more comprehensive representation of the state’s probability density function. Additionally, the number of objects in space is growing disproportionally to the number of sensors used to track them. Maintaining precise positions for all objects places large loads on sensors, limiting the time available to search for new objects or track high priority objects. Rather than precisely track all objects our system manages the uncertainty in orbital state for each object independently. The uncertainty is allowed to grow and sensor data is only requested when the uncertainty must be reduced. For example when object uncertainties overlap leading to data association issues or if the uncertainty grows to beyond a field of view. These control laws are formulated into a cost function, which is optimised in real time to task sensors. By controlling an optical telescope the system has been able to construct and maintain a catalogue of approximately 100 geostationary objects.
Localization and Tracking of Implantable Biomedical Sensors
Umay, Ilknur; Fidan, Barış; Barshan, Billur
2017-01-01
Implantable sensor systems are effective tools for biomedical diagnosis, visualization and treatment of various health conditions, attracting the interest of researchers, as well as healthcare practitioners. These systems efficiently and conveniently provide essential data of the body part being diagnosed, such as gastrointestinal (temperature, pH, pressure) parameter values, blood glucose and pressure levels and electrocardiogram data. Such data are first transmitted from the implantable sensor units to an external receiver node or network and then to a central monitoring and control (computer) unit for analysis, diagnosis and/or treatment. Implantable sensor units are typically in the form of mobile microrobotic capsules or implanted stationary (body-fixed) units. In particular, capsule-based systems have attracted significant research interest recently, with a variety of applications, including endoscopy, microsurgery, drug delivery and biopsy. In such implantable sensor systems, one of the most challenging problems is the accurate localization and tracking of the microrobotic sensor unit (e.g., robotic capsule) inside the human body. This article presents a literature review of the existing localization and tracking techniques for robotic implantable sensor systems with their merits and limitations and possible solutions of the proposed localization methods. The article also provides a brief discussion on the connection and cooperation of such techniques with wearable biomedical sensor systems. PMID:28335384
An Alternative Wearable Tracking System Based on a Low-Power Wide-Area Network
Fernández-Garcia, Raul; Gil, Ignacio
2017-01-01
This work presents an alternative wearable tracking system based on a low-power wide area network. A complete GPS receiver was integrated with a textile substrate, and the latitude and longitude coordinates were sent to the cloud by means of the SIM-less SIGFOX network. To send the coordinates over SIGFOX protocol, a specific codification algorithm was used and a customized UHF antenna on jeans fabric was designed, simulated and tested. Moreover, to guarantee the compliance to international regulations for human body exposure to electromagnetic radiation, the electromagnetic specific absorption rate of this antenna was analyzed. A specific remote server was developed to decode the latitude and longitude coordinates. Once the coordinates have been decoded, the remote server sends this information to the open source data viewer SENTILO to show the location of the sensor node in a map. The functionality of this system has been demonstrated experimentally. The results guarantee the utility and wearability of the proposed tracking system for the development of sensor nodes and point out that it can be a low cost alternative to other commercial products based on GSM networks. PMID:28335424
Assessing the Performance of Human-Automation Collaborative Planning Systems
2011-06-01
process- ing and incorporating vast amounts of incoming information into their solutions. How- ever, these algorithms are brittle and unable to account for...planning system, a descriptive Mission Performance measure may address the total travel time on the path or the cost of the path (e.g. total work...minimizing costs or collisions [4, 32, 33]. Error measures for such a path planning system may track how many collisions occur or how much threat
Human-centered design of human-computer-human dialogs in aerospace systems
NASA Technical Reports Server (NTRS)
Mitchell, Christine M.
1994-01-01
The second six months of this grant saw further development of GT-CATS, the Georgia Tech Crew Activity Tracking System, and progress on research exploring tutoring concepts for tutors for mode management. The latter included data analysis and a preliminary paper summarizing the development and evaluation of the VNAV Tutor. A follow-on to the VNAV Tutor is planned. Research in this direction will examine the use of OFMspert and GT-CATS to create an 'intelligent' tutor for mode management, a more extensive domain of application than only vertical navigation, and alternative pedagogy, such as substituting focused 'cases' of reported mode management situations rather than lessons defined by full LOFT scenarios.
Tracking Enrolments and Graduations in Humanities Education in South Africa: Are We in Crisis?
ERIC Educational Resources Information Center
Yu, K.; Pillay, V.
2011-01-01
In this article we respond to the perceived crisis in humanities education in South Africa which posits firstly that large numbers of students are leaving this field and that secondly, the value of a humanities education has declined. To do this we track the enrolments and graduation rates in humanities at both undergraduate and postgraduate…
Protecting our environmental wealth: Connecting ecosystem goods and services to human well-being
Ecosystems produce essential outputs upon which people’s well-being and livelihood depend. These outputs are referred to as “ecosystem goods and services” (EGS). National accounting systems do not track the goods and services produced by ecosystems, and we do not have a consist...
Wearable Internet of Things - from human activity tracking to clinical integration.
Kumari, Poonam; Lopez-Benitez, Miguel; Gyu Myoung Lee; Tae-Seong Kim; Minhas, Atul S
2017-07-01
Wearable devices for human activity tracking have been emerging rapidly. Most of them are capable of sending health statistics to smartphones, smartwatches or smart bands. However, they only provide the data for individual analysis and their data is not integrated into clinical practice. Leveraging on the Internet of Things (IoT), edge and cloud computing technologies, we propose an architecture which is capable of providing cloud based clinical services using human activity data. Such services could supplement the shortage of staff in primary healthcare centers thereby reducing the burden on healthcare service providers. The enormous amount of data created from such services could also be utilized for planning future therapies by studying recovery cycles of existing patients. We provide a prototype based on our architecture and discuss its salient features. We also provide use cases of our system in personalized and home based healthcare services. We propose an International Telecommunication Union based standardization (ITU-T) for our design and discuss future directions in wearable IoT.
Canine scent detection and microbial source tracking of human waste contamination in storm drains.
Van De Werfhorst, Laurie C; Murray, Jill L S; Reynolds, Scott; Reynolds, Karen; Holden, Patricia A
2014-06-01
Human fecal contamination of surface waters and drains is difficult to diagnose. DNA-based and chemical analyses of water samples can be used to specifically quantify human waste contamination, but their expense precludes routine use. We evaluated canine scent tracking, using two dogs trained to respond to the scent of municipal wastewater, as a field approach for surveying human fecal contamination. Fecal indicator bacteria, as well as DNA-based and chemical markers of human waste, were analyzed in waters sampled from canine scent-evaluated sites (urban storm drains and creeks). In the field, the dogs responded positively (70% and 100%) at sites for which sampled waters were then confirmed as contaminated with human waste. When both dogs indicated a negative response, human waste markers were absent. Overall, canine scent tracking appears useful for prioritizing sampling sites for which DNA-based and similarly expensive assays can confirm and quantify human waste contamination.
New Exoskeleton Arm Concept Design And Actuation For Haptic Interaction With Virtual Objects
NASA Astrophysics Data System (ADS)
Chakarov, D.; Veneva, I.; Tsveov, M.; Tiankov, T.
2014-12-01
In the work presented in this paper the conceptual design and actuation of one new exoskeleton of the upper limb is presented. The device is designed for application where both motion tracking and force feedback are required, such as human interaction with virtual environment or rehabilitation tasks. The choice is presented of mechanical structure kinematical equivalent to the structure of the human arm. An actuation system is selected based on braided pneumatic muscle actuators. Antagonistic drive system for each joint is shown, using pulley and cable transmissions. Force/displacement diagrams are presented of two antagonistic acting muscles. Kinematics and dynamic estimations are performed of the system exoskeleton and upper limb. Selected parameters ensure in the antagonistic scheme joint torque regulation and human arm range of motion.
Adaptive Parameter Estimation of Person Recognition Model in a Stochastic Human Tracking Process
NASA Astrophysics Data System (ADS)
Nakanishi, W.; Fuse, T.; Ishikawa, T.
2015-05-01
This paper aims at an estimation of parameters of person recognition models using a sequential Bayesian filtering method. In many human tracking method, any parameters of models used for recognize the same person in successive frames are usually set in advance of human tracking process. In real situation these parameters may change according to situation of observation and difficulty level of human position prediction. Thus in this paper we formulate an adaptive parameter estimation using general state space model. Firstly we explain the way to formulate human tracking in general state space model with their components. Then referring to previous researches, we use Bhattacharyya coefficient to formulate observation model of general state space model, which is corresponding to person recognition model. The observation model in this paper is a function of Bhattacharyya coefficient with one unknown parameter. At last we sequentially estimate this parameter in real dataset with some settings. Results showed that sequential parameter estimation was succeeded and were consistent with observation situations such as occlusions.
NASA Astrophysics Data System (ADS)
DeSena, J. T.; Martin, S. R.; Clarke, J. C.; Dutrow, D. A.; Newman, A. J.
2012-06-01
As the number and diversity of sensing assets available for intelligence, surveillance and reconnaissance (ISR) operations continues to expand, the limited ability of human operators to effectively manage, control and exploit the ISR ensemble is exceeded, leading to reduced operational effectiveness. Automated support both in the processing of voluminous sensor data and sensor asset control can relieve the burden of human operators to support operation of larger ISR ensembles. In dynamic environments it is essential to react quickly to current information to avoid stale, sub-optimal plans. Our approach is to apply the principles of feedback control to ISR operations, "closing the loop" from the sensor collections through automated processing to ISR asset control. Previous work by the authors demonstrated non-myopic multiple platform trajectory control using a receding horizon controller in a closed feedback loop with a multiple hypothesis tracker applied to multi-target search and track simulation scenarios in the ground and space domains. This paper presents extensions in both size and scope of the previous work, demonstrating closed-loop control, involving both platform routing and sensor pointing, of a multisensor, multi-platform ISR ensemble tasked with providing situational awareness and performing search, track and classification of multiple moving ground targets in irregular warfare scenarios. The closed-loop ISR system is fullyrealized using distributed, asynchronous components that communicate over a network. The closed-loop ISR system has been exercised via a networked simulation test bed against a scenario in the Afghanistan theater implemented using high-fidelity terrain and imagery data. In addition, the system has been applied to space surveillance scenarios requiring tracking of space objects where current deliberative, manually intensive processes for managing sensor assets are insufficiently responsive. Simulation experiment results are presented. The algorithm to jointly optimize sensor schedules against search, track, and classify is based on recent work by Papageorgiou and Raykin on risk-based sensor management. It uses a risk-based objective function and attempts to minimize and balance the risks of misclassifying and losing track on an object. It supports the requirement to generate tasking for metric and feature data concurrently and synergistically, and account for both tracking accuracy and object characterization, jointly, in computing reward and cost for optimizing tasking decisions.
The seam visual tracking method for large structures
NASA Astrophysics Data System (ADS)
Bi, Qilin; Jiang, Xiaomin; Liu, Xiaoguang; Cheng, Taobo; Zhu, Yulong
2017-10-01
In this paper, a compact and flexible weld visual tracking method is proposed. Firstly, there was the interference between the visual device and the work-piece to be welded when visual tracking height cannot change. a kind of weld vision system with compact structure and tracking height is researched. Secondly, according to analyze the relative spatial pose between the camera, the laser and the work-piece to be welded and study with the theory of relative geometric imaging, The mathematical model between image feature parameters and three-dimensional trajectory of the assembly gap to be welded is established. Thirdly, the visual imaging parameters of line structured light are optimized by experiment of the weld structure of the weld. Fourth, the interference that line structure light will be scatters at the bright area of metal and the area of surface scratches will be bright is exited in the imaging. These disturbances seriously affect the computational efficiency. The algorithm based on the human eye visual attention mechanism is used to extract the weld characteristics efficiently and stably. Finally, in the experiment, It is verified that the compact and flexible weld tracking method has the tracking accuracy of 0.5mm in the tracking of large structural parts. It is a wide range of industrial application prospects.
A marker-free system for the analysis of movement disabilities.
Legrand, L; Marzani, F; Dusserre, L
1998-01-01
A major step toward improving the treatments of disabled persons may be achieved by using motion analysis equipment. We are developing such a system. It allows the analysis of plane human motion (e.g. gait) without using the tracking of markers. The system is composed of one fixed camera which acquires an image sequence of a human in motion. Then the treatment is divided into two steps: first, a large number of pixels belonging to the boundaries of the human body are extracted at each acquisition time. Secondly, a two-dimensional model of the human body, based on tapered superquadrics, is successively matched with the sets of pixels previously extracted; a specific fuzzy clustering process is used for this purpose. Moreover, an optical flow procedure gives a prediction of the model location at each acquisition time from its location at the previous time. Finally we present some results of this process applied to a leg in motion.
A Framework to Guide the Assessment of Human-Machine Systems.
Stowers, Kimberly; Oglesby, James; Sonesh, Shirley; Leyva, Kevin; Iwig, Chelsea; Salas, Eduardo
2017-03-01
We have developed a framework for guiding measurement in human-machine systems. The assessment of safety and performance in human-machine systems often relies on direct measurement, such as tracking reaction time and accidents. However, safety and performance emerge from the combination of several variables. The assessment of precursors to safety and performance are thus an important part of predicting and improving outcomes in human-machine systems. As part of an in-depth literature analysis involving peer-reviewed, empirical articles, we located and classified variables important to human-machine systems, giving a snapshot of the state of science on human-machine system safety and performance. Using this information, we created a framework of safety and performance in human-machine systems. This framework details several inputs and processes that collectively influence safety and performance. Inputs are divided according to human, machine, and environmental inputs. Processes are divided into attitudes, behaviors, and cognitive variables. Each class of inputs influences the processes and, subsequently, outcomes that emerge in human-machine systems. This framework offers a useful starting point for understanding the current state of the science and measuring many of the complex variables relating to safety and performance in human-machine systems. This framework can be applied to the design, development, and implementation of automated machines in spaceflight, military, and health care settings. We present a hypothetical example in our write-up of how it can be used to aid in project success.
Multivariable control of a rolling spider drone
NASA Astrophysics Data System (ADS)
Lyu, Haifeng
The research and application of Unmanned Aerial Vehicles (UAVs) has been a hot topic recently. A UAV is dened as an aircraft which is designed not to carry a human pilot or operated with remote electronic input by the flight controller. In this thesis, the design of a control system for a quadcopter named Rolling Spider Drone is conducted. The thesis work presents the design of two kinds of controllers that can control the Drone to keep it balanced and track different kinds of input trajectories. The nonlinear mathematical model for the Drone is derived by the Newton-Euler method. The rotational subsystem and translational system are derived to describe the attitude and position motion of Drone. Techniques from linear control theory are employed to linearize the highly coupled and nonlinear quadcopter plant around equilibrium points and apply the linear feedback controller to stabilize the system. The controller is a digital tracking system that deploys LQR for system stability design. Fixed gain and adaptive gain scheduled controllers are developed and compared with different LQR weights. Step references and reference trajectories involving signicant variation for the yaw angle in the xy-plane and three-dimensional spaces are tracked in the simulation. The physical implementation and an output feedback controller are considered for future work.
Neural mechanisms tracking popularity in real-world social networks
Zerubavel, Noam; Bearman, Peter S.; Weber, Jochen; Ochsner, Kevin N.
2015-01-01
Differences in popularity are a key aspect of status in virtually all human groups and shape social interactions within them. Little is known, however, about how we track and neurally represent others’ popularity. We addressed this question in two real-world social networks using sociometric methods to quantify popularity. Each group member (perceiver) viewed faces of every other group member (target) while whole-brain functional MRI data were collected. Independent functional localizer tasks were used to identify brain systems supporting affective valuation (ventromedial prefrontal cortex, ventral striatum, amygdala) and social cognition (dorsomedial prefrontal cortex, precuneus, temporoparietal junction), respectively. During the face-viewing task, activity in both types of neural systems tracked targets’ sociometric popularity, even when controlling for potential confounds. The target popularity–social cognition system relationship was mediated by valuation system activity, suggesting that observing popular individuals elicits value signals that facilitate understanding their mental states. The target popularity–valuation system relationship was strongest for popular perceivers, suggesting enhanced sensitivity to differences among other group members’ popularity. Popular group members also demonstrated greater interpersonal sensitivity by more accurately predicting how their own personalities were perceived by other individuals in the social network. These data offer insights into the mechanisms by which status guides social behavior. PMID:26598684
Gawthrop, Peter J.; Lakie, Martin; Loram, Ian D.
2017-01-01
Key points A human controlling an external system is described most easily and conventionally as linearly and continuously translating sensory input to motor output, with the inevitable output remnant, non‐linearly related to the input, attributed to sensorimotor noise.Recent experiments show sustained manual tracking involves repeated refractoriness (insensitivity to sensory information for a certain duration), with the temporary 200–500 ms periods of irresponsiveness to sensory input making the control process intrinsically non‐linear.This evidence calls for re‐examination of the extent to which random sensorimotor noise is required to explain the non‐linear remnant.This investigation of manual tracking shows how the full motor output (linear component and remnant) can be explained mechanistically by aperiodic sampling triggered by prediction error thresholds.Whereas broadband physiological noise is general to all processes, aperiodic sampling is associated with sensorimotor decision making within specific frontal, striatal and parietal networks; we conclude that manual tracking utilises such slow serial decision making pathways up to several times per second. Abstract The human operator is described adequately by linear translation of sensory input to motor output. Motor output also always includes a non‐linear remnant resulting from random sensorimotor noise from multiple sources, and non‐linear input transformations, for example thresholds or refractory periods. Recent evidence showed that manual tracking incurs substantial, serial, refractoriness (insensitivity to sensory information of 350 and 550 ms for 1st and 2nd order systems respectively). Our two questions are: (i) What are the comparative merits of explaining the non‐linear remnant using noise or non‐linear transformations? (ii) Can non‐linear transformations represent serial motor decision making within the sensorimotor feedback loop intrinsic to tracking? Twelve participants (instructed to act in three prescribed ways) manually controlled two systems (1st and 2nd order) subject to a periodic multi‐sine disturbance. Joystick power was analysed using three models, continuous‐linear‐control (CC), continuous‐linear‐control with calculated noise spectrum (CCN), and intermittent control with aperiodic sampling triggered by prediction error thresholds (IC). Unlike the linear mechanism, the intermittent control mechanism explained the majority of total power (linear and remnant) (77–87% vs. 8–48%, IC vs. CC). Between conditions, IC used thresholds and distributions of open loop intervals consistent with, respectively, instructions and previous measured, model independent values; whereas CCN required changes in noise spectrum deviating from broadband, signal dependent noise. We conclude that manual tracking uses open loop predictive control with aperiodic sampling. Because aperiodic sampling is inherent to serial decision making within previously identified, specific frontal, striatal and parietal networks we suggest that these structures are intimately involved in visuo‐manual tracking. PMID:28833126
NASA Technical Reports Server (NTRS)
Johnson, Nicholas L.
2006-01-01
Since the end of the Apollo program in 1972, human space flight has been restricted to altitudes below 600 km above the Earth s surface with most missions restricted to a ceiling below 400 km. An investigation of the tracked satellite population transiting and influencing the human space flight regime during the past 11 years (equivalent to a full solar cycle) has recently been completed. The overall effects of satellite breakups and solar activity are typically less pronounced in the human space flight regime than other regions of low Earth orbit. As of January 2006 nearly 1500 tracked objects resided in or traversed the human space flight regime, although two-thirds of these objects were in orbits of moderate to high eccentricity, significantly reducing their effect on human space flight safety. During the period investigated, the spatial density of tracked objects in the 350-400 km altitude regime of the International Space Station demonstrated a steady decline, actually decreasing by 50% by the end of the period. On the other hand, the region immediately above 600 km experienced a significant increase in its population density. This regime is important for future risk assessments, since this region represents the reservoir of debris which will influence human space flight safety in the future. The paper seeks to put into sharper perspective the risks posed to human space flight by the tracked satellite population, as well as the influences of solar activity and the effects of compliance with orbital debris mitigation guidelines on human space flight missions. Finally, the methods and successes of characterizing the population of smaller debris at human space flight regimes are addressed.
Saini, Sanjay; Zakaria, Nordin; Rambli, Dayang Rohaya Awang; Sulaiman, Suziah
2015-01-01
The high-dimensional search space involved in markerless full-body articulated human motion tracking from multiple-views video sequences has led to a number of solutions based on metaheuristics, the most recent form of which is Particle Swarm Optimization (PSO). However, the classical PSO suffers from premature convergence and it is trapped easily into local optima, significantly affecting the tracking accuracy. To overcome these drawbacks, we have developed a method for the problem based on Hierarchical Multi-Swarm Cooperative Particle Swarm Optimization (H-MCPSO). The tracking problem is formulated as a non-linear 34-dimensional function optimization problem where the fitness function quantifies the difference between the observed image and a projection of the model configuration. Both the silhouette and edge likelihoods are used in the fitness function. Experiments using Brown and HumanEva-II dataset demonstrated that H-MCPSO performance is better than two leading alternative approaches-Annealed Particle Filter (APF) and Hierarchical Particle Swarm Optimization (HPSO). Further, the proposed tracking method is capable of automatic initialization and self-recovery from temporary tracking failures. Comprehensive experimental results are presented to support the claims.
VERDEX: A virtual environment demonstrator for remote driving applications
NASA Technical Reports Server (NTRS)
Stone, Robert J.
1991-01-01
One of the key areas of the National Advanced Robotics Centre's enabling technologies research program is that of the human system interface, phase 1 of which started in July 1989 and is currently addressing the potential of virtual environments to permit intuitive and natural interactions between a human operator and a remote robotic vehicle. The aim of the first 12 months of this program (to September, 1990) is to develop a virtual human-interface demonstrator for use later as a test bed for human factors experimentation. This presentation will describe the current state of development of the test bed, and will outline some human factors issues and problems for more general discussion. In brief, the virtual telepresence system for remote driving has been designed to take the following form. The human operator will be provided with a helmet-mounted stereo display assembly, facilities for speech recognition and synthesis (using the Marconi Macrospeak system), and a VPL DataGlove Model 2 unit. The vehicle to be used for the purposes of remote driving is a Cybermotion Navmaster K2A system, which will be equipped with a stereo camera and microphone pair, mounted on a motorized high-speed pan-and-tilt head incorporating a closed-loop laser ranging sensor for camera convergence control (currently under contractual development). It will be possible to relay information to and from the vehicle and sensory system via an umbilical or RF link. The aim is to develop an interactive audio-visual display system capable of presenting combined stereo TV pictures and virtual graphics windows, the latter featuring control representations appropriate for vehicle driving and interaction using a graphical 'hand,' slaved to the flex and tracking sensors of the DataGlove and an additional helmet-mounted Polhemus IsoTrack sensor. Developments planned for the virtual environment test bed include transfer of operator control between remote driving and remote manipulation, dexterous end effector integration, virtual force and tactile sensing (also the focus of a current ARRL contract, initially employing a 14-pneumatic bladder glove attachment), and sensor-driven world modeling for total virtual environment generation and operator-assistance in remote scene interrogation.
The Design of WORKER'S Behavior Analysis Method in Workplace Using Indoor Positioning Technology
NASA Astrophysics Data System (ADS)
Tabata, K.; Konno, H.; Nakajima, M.
2016-06-01
This study presents a method for analyzing workers' behavior using indoor positioning technology and field test in the workplace. Recently, various indoor positioning methods, such as Wi-Fi, Bluetooth low energy (BLE), visible light communication, Japan's indoor messaging system, ultra-wide band (UWB), and pedestrian dead reckoning (PDR), have been investigated. The development of these technologies allows tracking of movement of both people and/or goods in indoor spaces, people and/or goods behavior analysis is expected as one of the key technologies for operation optimization. However, when we use these technologies for human tracking, there are some problem as follows. 1) Many cases need to use dedicated facilities (e.g. UWB). 2) When we use smartphone as sensing device, battery depletion is one of the big problem (especially using PDR). 3) the accuracy is instability for tracking (e.g. Wi-Fi). Based on these matters, in this study we designed and developed an indoor positioning system using BLE positioning. And, we adopted smartphone for business use as sensing device, developed a smartphone application runs on android OS. Moreover, we conducted the field test of developed system at Itoki Corporation's ITOKI Tokyo Innovation Center, SYNQA, office (Tokyo, Japan). Over 40 workers participated in this field test, and worker tracking log data were collected for 6 weeks. We analyzed the characteristics of the workers' behavior using this log data as a prototyping.
[Design of Adjustable Magnetic Field Generating Device in the Capsule Endoscope Tracking System].
Ruan, Chao; Guo, Xudong; Yang, Fei
2015-08-01
The capsule endoscope swallowed from the mouth into the digestive system can capture the images of important gastrointestinal tract regions. It can compensate for the blind spot of traditional endoscopic techniques. It enables inspection of the digestive system without discomfort or need for sedation. However, currently available clinical capsule endoscope has some limitations such as the diagnostic information being not able to correspond to the orientation in the body, since the doctor is unable to control the capsule motion and orientation. To solve the problem, it is significant to track the position and orientation of the capsule in the human body. This study presents an AC excitation wireless tracking method in the capsule endoscope, and the sensor embedded in the capsule can measure the magnetic field generated by excitation coil. And then the position and orientation of the capsule can be obtained by solving a magnetic field inverse problem. Since the magnetic field decays with distance dramatically, the dynamic range of the received signal spans three orders of magnitude, we designed an adjustable alternating magnetic field generating device. The device can adjust the strength of the alternating magnetic field automatically through the feedback signal from the sensor. The prototype experiment showed that the adjustable magnetic field generating device was feasible. It could realize the automatic adjustment of the magnetic field strength successfully, and improve the tracking accuracy.
Observation and analysis of high-speed human motion with frequent occlusion in a large area
NASA Astrophysics Data System (ADS)
Wang, Yuru; Liu, Jiafeng; Liu, Guojun; Tang, Xianglong; Liu, Peng
2009-12-01
The use of computer vision technology in collecting and analyzing statistics during sports matches or training sessions is expected to provide valuable information for tactics improvement. However, the measurements published in the literature so far are either unreliably documented to be used in training planning due to their limitations or unsuitable for studying high-speed motion in large area with frequent occlusions. A sports annotation system is introduced in this paper for tracking high-speed non-rigid human motion over a large playing area with the aid of motion camera, taking short track speed skating competitions as an example. The proposed system is composed of two sub-systems: precise camera motion compensation and accurate motion acquisition. In the video registration step, a distinctive invariant point feature detector (probability density grads detector) and a global parallax based matching points filter are used, to provide reliable and robust matching across a large range of affine distortion and illumination change. In the motion acquisition step, a two regions' relationship constrained joint color model and Markov chain Monte Carlo based joint particle filter are emphasized, by dividing the human body into two relative key regions. Several field tests are performed to assess measurement errors, including comparison to popular algorithms. With the help of the system presented, the system obtains position data on a 30 m × 60 m large rink with root-mean-square error better than 0.3975 m, velocity and acceleration data with absolute error better than 1.2579 m s-1 and 0.1494 m s-2, respectively.
ERIC Educational Resources Information Center
Finkel, Ed
2016-01-01
Does America needs more welders and fewer philosophers? Community college humanities professors and administrators say it benefits all students, whether liberal arts or career track, to take courses in philosophy, history, political science, language arts, and other liberal arts subjects. And they're developing innovative humanities curricula to…
MetaTracker: integration and abstraction of 3D motion tracking data from multiple hardware systems
NASA Astrophysics Data System (ADS)
Kopecky, Ken; Winer, Eliot
2014-06-01
Motion tracking has long been one of the primary challenges in mixed reality (MR), augmented reality (AR), and virtual reality (VR). Military and defense training can provide particularly difficult challenges for motion tracking, such as in the case of Military Operations in Urban Terrain (MOUT) and other dismounted, close quarters simulations. These simulations can take place across multiple rooms, with many fast-moving objects that need to be tracked with a high degree of accuracy and low latency. Many tracking technologies exist, such as optical, inertial, ultrasonic, and magnetic. Some tracking systems even combine these technologies to complement each other. However, there are no systems that provide a high-resolution, flexible, wide-area solution that is resistant to occlusion. While frameworks exist that simplify the use of tracking systems and other input devices, none allow data from multiple tracking systems to be combined, as if from a single system. In this paper, we introduce a method for compensating for the weaknesses of individual tracking systems by combining data from multiple sources and presenting it as a single tracking system. Individual tracked objects are identified by name, and their data is provided to simulation applications through a server program. This allows tracked objects to transition seamlessly from the area of one tracking system to another. Furthermore, it abstracts away the individual drivers, APIs, and data formats for each system, providing a simplified API that can be used to receive data from any of the available tracking systems. Finally, when single-piece tracking systems are used, those systems can themselves be tracked, allowing for real-time adjustment of the trackable area. This allows simulation operators to leverage limited resources in more effective ways, improving the quality of training.
Army Research Laboratory (ARL) 2009 Annual Review
2009-01-01
shooting performance simulator with a high - speed weapon tracking system that provides real-time continuous weapon aim point data . This 13-acre...HMMVV’s (humvees), helicopter and plane parts and in new Navy DDX and DDG ships . As a result of the high performance and low weight of composite...improve Soldier-system performance . a high -resolution understanding of the Soldier’s Dr. Laurel Allender Director for Human Research and
Integrating optical finger motion tracking with surface touch events.
MacRitchie, Jennifer; McPherson, Andrew P
2015-01-01
This paper presents a method of integrating two contrasting sensor systems for studying human interaction with a mechanical system, using piano performance as the case study. Piano technique requires both precise small-scale motion of fingers on the key surfaces and planned large-scale movement of the hands and arms. Where studies of performance often focus on one of these scales in isolation, this paper investigates the relationship between them. Two sensor systems were installed on an acoustic grand piano: a monocular high-speed camera tracking the position of painted markers on the hands, and capacitive touch sensors attach to the key surfaces which measure the location of finger-key contacts. This paper highlights a method of fusing the data from these systems, including temporal and spatial alignment, segmentation into notes and automatic fingering annotation. Three case studies demonstrate the utility of the multi-sensor data: analysis of finger flexion or extension based on touch and camera marker location, timing analysis of finger-key contact preceding and following key presses, and characterization of individual finger movements in the transitions between successive key presses. Piano performance is the focus of this paper, but the sensor method could equally apply to other fine motor control scenarios, with applications to human-computer interaction.
Integrating optical finger motion tracking with surface touch events
MacRitchie, Jennifer; McPherson, Andrew P.
2015-01-01
This paper presents a method of integrating two contrasting sensor systems for studying human interaction with a mechanical system, using piano performance as the case study. Piano technique requires both precise small-scale motion of fingers on the key surfaces and planned large-scale movement of the hands and arms. Where studies of performance often focus on one of these scales in isolation, this paper investigates the relationship between them. Two sensor systems were installed on an acoustic grand piano: a monocular high-speed camera tracking the position of painted markers on the hands, and capacitive touch sensors attach to the key surfaces which measure the location of finger-key contacts. This paper highlights a method of fusing the data from these systems, including temporal and spatial alignment, segmentation into notes and automatic fingering annotation. Three case studies demonstrate the utility of the multi-sensor data: analysis of finger flexion or extension based on touch and camera marker location, timing analysis of finger-key contact preceding and following key presses, and characterization of individual finger movements in the transitions between successive key presses. Piano performance is the focus of this paper, but the sensor method could equally apply to other fine motor control scenarios, with applications to human-computer interaction. PMID:26082732
An audiovisual emotion recognition system
NASA Astrophysics Data System (ADS)
Han, Yi; Wang, Guoyin; Yang, Yong; He, Kun
2007-12-01
Human emotions could be expressed by many bio-symbols. Speech and facial expression are two of them. They are both regarded as emotional information which is playing an important role in human-computer interaction. Based on our previous studies on emotion recognition, an audiovisual emotion recognition system is developed and represented in this paper. The system is designed for real-time practice, and is guaranteed by some integrated modules. These modules include speech enhancement for eliminating noises, rapid face detection for locating face from background image, example based shape learning for facial feature alignment, and optical flow based tracking algorithm for facial feature tracking. It is known that irrelevant features and high dimensionality of the data can hurt the performance of classifier. Rough set-based feature selection is a good method for dimension reduction. So 13 speech features out of 37 ones and 10 facial features out of 33 ones are selected to represent emotional information, and 52 audiovisual features are selected due to the synchronization when speech and video fused together. The experiment results have demonstrated that this system performs well in real-time practice and has high recognition rate. Our results also show that the work in multimodules fused recognition will become the trend of emotion recognition in the future.
The Role of Visual Working Memory in Attentive Tracking of Unique Objects
ERIC Educational Resources Information Center
Makovski, Tal; Jiang, Yuhong V.
2009-01-01
When tracking moving objects in space humans usually attend to the objects' spatial locations and update this information over time. To what extent do surface features assist attentive tracking? In this study we asked participants to track identical or uniquely colored objects. Tracking was enhanced when objects were unique in color. The benefit…
An error analysis perspective for patient alignment systems.
Figl, Michael; Kaar, Marcus; Hoffman, Rainer; Kratochwil, Alfred; Hummel, Johann
2013-09-01
This paper analyses the effects of error sources which can be found in patient alignment systems. As an example, an ultrasound (US) repositioning system and its transformation chain are assessed. The findings of this concept can also be applied to any navigation system. In a first step, all error sources were identified and where applicable, corresponding target registration errors were computed. By applying error propagation calculations on these commonly used registration/calibration and tracking errors, we were able to analyse the components of the overall error. Furthermore, we defined a special situation where the whole registration chain reduces to the error caused by the tracking system. Additionally, we used a phantom to evaluate the errors arising from the image-to-image registration procedure, depending on the image metric used. We have also discussed how this analysis can be applied to other positioning systems such as Cone Beam CT-based systems or Brainlab's ExacTrac. The estimates found by our error propagation analysis are in good agreement with the numbers found in the phantom study but significantly smaller than results from patient evaluations. We probably underestimated human influences such as the US scan head positioning by the operator and tissue deformation. Rotational errors of the tracking system can multiply these errors, depending on the relative position of tracker and probe. We were able to analyse the components of the overall error of a typical patient positioning system. We consider this to be a contribution to the optimization of the positioning accuracy for computer guidance systems.
Measuring Human Performance in Simulated Nuclear Power Plant Control Rooms Using Eye Tracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovesdi, Casey Robert; Rice, Brandon Charles; Bower, Gordon Ross
Control room modernization will be an important part of life extension for the existing light water reactor fleet. As part of modernization efforts, personnel will need to gain a full understanding of how control room technologies affect performance of human operators. Recent advances in technology enables the use of eye tracking technology to continuously measure an operator’s eye movement, which correlates with a variety of human performance constructs such as situation awareness and workload. This report describes eye tracking metrics in the context of how they will be used in nuclear power plant control room simulator studies.
Kim, Kwangtaek; Kim, Joongrock; Choi, Jaesung; Kim, Junghyun; Lee, Sangyoun
2015-01-01
Vision-based hand gesture interactions are natural and intuitive when interacting with computers, since we naturally exploit gestures to communicate with other people. However, it is agreed that users suffer from discomfort and fatigue when using gesture-controlled interfaces, due to the lack of physical feedback. To solve the problem, we propose a novel complete solution of a hand gesture control system employing immersive tactile feedback to the user's hand. For this goal, we first developed a fast and accurate hand-tracking algorithm with a Kinect sensor using the proposed MLBP (modified local binary pattern) that can efficiently analyze 3D shapes in depth images. The superiority of our tracking method was verified in terms of tracking accuracy and speed by comparing with existing methods, Natural Interaction Technology for End-user (NITE), 3D Hand Tracker and CamShift. As the second step, a new tactile feedback technology with a piezoelectric actuator has been developed and integrated into the developed hand tracking algorithm, including the DTW (dynamic time warping) gesture recognition algorithm for a complete solution of an immersive gesture control system. The quantitative and qualitative evaluations of the integrated system were conducted with human subjects, and the results demonstrate that our gesture control with tactile feedback is a promising technology compared to a vision-based gesture control system that has typically no feedback for the user's gesture inputs. Our study provides researchers and designers with informative guidelines to develop more natural gesture control systems or immersive user interfaces with haptic feedback. PMID:25580901
Kim, Kwangtaek; Kim, Joongrock; Choi, Jaesung; Kim, Junghyun; Lee, Sangyoun
2015-01-08
Vision-based hand gesture interactions are natural and intuitive when interacting with computers, since we naturally exploit gestures to communicate with other people. However, it is agreed that users suffer from discomfort and fatigue when using gesture-controlled interfaces, due to the lack of physical feedback. To solve the problem, we propose a novel complete solution of a hand gesture control system employing immersive tactile feedback to the user's hand. For this goal, we first developed a fast and accurate hand-tracking algorithm with a Kinect sensor using the proposed MLBP (modified local binary pattern) that can efficiently analyze 3D shapes in depth images. The superiority of our tracking method was verified in terms of tracking accuracy and speed by comparing with existing methods, Natural Interaction Technology for End-user (NITE), 3D Hand Tracker and CamShift. As the second step, a new tactile feedback technology with a piezoelectric actuator has been developed and integrated into the developed hand tracking algorithm, including the DTW (dynamic time warping) gesture recognition algorithm for a complete solution of an immersive gesture control system. The quantitative and qualitative evaluations of the integrated system were conducted with human subjects, and the results demonstrate that our gesture control with tactile feedback is a promising technology compared to a vision-based gesture control system that has typically no feedback for the user's gesture inputs. Our study provides researchers and designers with informative guidelines to develop more natural gesture control systems or immersive user interfaces with haptic feedback.
Pray, Ian W.; Swanson, Dallas J.; Ayvar, Viterbo; Muro, Claudio; Moyano, Luz M.; Gonzalez, Armando E.; Garcia, Hector H.; O’Neal, Seth E.
2016-01-01
Background Taenia solium, a parasitic cestode that affects humans and pigs, is the leading cause of preventable epilepsy in the developing world. T. solium eggs are released into the environment through the stool of humans infected with an adult intestinal tapeworm (a condition called taeniasis), and cause cysticercosis when ingested by pigs or other humans. A control strategy to intervene within high-risk foci in endemic communities has been proposed as an alternative to mass antihelminthic treatment. In this ring strategy, antihelminthic treatment is targeted to humans and pigs residing within a 100 meter radius of a pig heavily-infected with cysticercosis. Our aim was to describe the roaming ranges of pigs in this region, and to evaluate whether the 100 meter radius rings encompass areas where risk factors for T. solium transmission, such as open human defecation and dense pig activity, are concentrated. Methodology/Principal Findings In this study, we used Global Positioning System (GPS) devices to track pig roaming ranges in two rural villages of northern Peru. We selected 41 pigs from two villages to participate in a 48-hour tracking period. Additionally, we surveyed all households to record the locations of open human defecation areas. We found that pigs spent a median of 82.8% (IQR: 73.5, 94.4) of their time roaming within 100 meters of their homes. The size of home ranges varied significantly by pig age, and 93% of the total time spent interacting with open human defecation areas occurred within 100 meters of pig residences. Conclusions/Significance These results indicate that 100 meter radius rings around heavily-infected pigs adequately capture the average pig’s roaming area (i.e., home range) and represent an area where the great majority of exposure to human feces occurs. PMID:27035825
NASA Astrophysics Data System (ADS)
Permadi, Ginanjar Setyo; Adi, Kusworo; Gernowo, Rahmad
2018-02-01
RSA algorithm give security in the process of the sending of messages or data by using 2 key, namely private key and public key .In this research to ensure and assess directly systems are made have meet goals or desire using a comprehensive evaluation methods HOT-Fit system .The purpose of this research is to build a information system sending mail by applying methods of security RSA algorithm and to evaluate in uses the method HOT-Fit to produce a system corresponding in the faculty physics. Security RSA algorithm located at the difficulty of factoring number of large coiled factors prima, the results of the prime factors has to be done to obtain private key. HOT-Fit has three aspects assessment, in the aspect of technology judging from the system status, the quality of system and quality of service. In the aspect of human judging from the use of systems and satisfaction users while in the aspect of organization judging from the structure and environment. The results of give a tracking system sending message based on the evaluation acquired.
Space station needs, attributes, and architectural options: Technology development
NASA Technical Reports Server (NTRS)
Robert, A. C.
1983-01-01
The technology development of the space station is examined as it relates to space station growth and equipment requirements for future missions. Future mission topics are refined and used to establish a systems data base. Technology for human factors engineering, space maintenance, satellite design, and laser communications and tracking is discussed.
Ruckenstein, Minna
2015-01-01
This chapter demonstrates how ethnographically-oriented research on emergent technologies, in this case self-tracking technologies, adds to Techno-Anthropology's aims of understanding techno-engagements and solving problems that deal with human-technology relations within and beyond health informatics. Everyday techno-relations have been a long-standing research interest in anthropology, underlining the necessity of empirical engagement with the ways in which people and technologies co-construct their daily conditions. By focusing on the uses of a food tracking application, MealLogger, designed for photographing meals and visualizing eating rhythms to share with health care professionals, the chapter details how personal data streams support and challenge health care practices. The interviewed professionals, from doctors to nutritionists, have used food tracking for treating patients with eating disorders, weight problems, and mental health issues. In general terms, self-tracking advances the practices of visually and temporally documenting, retrieving, communicating, and understanding physical and mental processes and, by doing so, it offers a new kind of visual mediation. The professionals point out how a visual food journal opens a window onto everyday life, bypassing customary ways of seeing and treating patients, thereby highlighting how self-tracking practices can aid in escaping the clinical gaze by promoting a new kind of communication through visualization and narration. Health care professionals are also, however, acutely aware of the barriers to adopting self-tracking practices as part of existing patient care. The health care system is neither used to, nor comfortable with, personal data that originates outside the system; it is not seen as evidence and its institutional position remains insecure.
Statistics of natural movements are reflected in motor errors.
Howard, Ian S; Ingram, James N; Körding, Konrad P; Wolpert, Daniel M
2009-09-01
Humans use their arms to engage in a wide variety of motor tasks during everyday life. However, little is known about the statistics of these natural arm movements. Studies of the sensory system have shown that the statistics of sensory inputs are key to determining sensory processing. We hypothesized that the statistics of natural everyday movements may, in a similar way, influence motor performance as measured in laboratory-based tasks. We developed a portable motion-tracking system that could be worn by subjects as they went about their daily routine outside of a laboratory setting. We found that the well-documented symmetry bias is reflected in the relative incidence of movements made during everyday tasks. Specifically, symmetric and antisymmetric movements are predominant at low frequencies, whereas only symmetric movements are predominant at high frequencies. Moreover, the statistics of natural movements, that is, their relative incidence, correlated with subjects' performance on a laboratory-based phase-tracking task. These results provide a link between natural movement statistics and motor performance and confirm that the symmetry bias documented in laboratory studies is a natural feature of human movement.
NASA Astrophysics Data System (ADS)
Claus, Daniel; Reichert, Carsten; Herkommer, Alois
2017-05-01
This paper relates to the improvement of conventional surgical stereo microscopy via the application of digital recording devices and adaptive optics. The research is aimed at improving the working conditions of the surgeon during the operation, such that free head movement is possible. The depth clues known from conventional stereo microscopy in interaction with the human eye's functionality, such as convergence, disparity, angular elevation, parallax, and accommodation, are implemented in a digital recording system via adaptive optomechanical components. Two laterally moving pupil apertures have been used mimicking the digital implementation of the eye's vergence and head motion. The natural eye's accommodation is mimicked via the application of a tunable lens. Additionally, another system has been built, which enables tracking the surgeon's eye pupil through a digital displaying stereoscopic microscope to supply the necessary information for steering the recording system. The optomechanical design and experimental results for both systems, digital recording stereoscopic microscope and pupil tracking system, are shown.
Deep Space Network (DSN), Network Operations Control Center (NOCC) computer-human interfaces
NASA Technical Reports Server (NTRS)
Ellman, Alvin; Carlton, Magdi
1993-01-01
The Network Operations Control Center (NOCC) of the DSN is responsible for scheduling the resources of DSN, and monitoring all multi-mission spacecraft tracking activities in real-time. Operations performs this job with computer systems at JPL connected to over 100 computers at Goldstone, Australia and Spain. The old computer system became obsolete, and the first version of the new system was installed in 1991. Significant improvements for the computer-human interfaces became the dominant theme for the replacement project. Major issues required innovating problem solving. Among these issues were: How to present several thousand data elements on displays without overloading the operator? What is the best graphical representation of DSN end-to-end data flow? How to operate the system without memorizing mnemonics of hundreds of operator directives? Which computing environment will meet the competing performance requirements? This paper presents the technical challenges, engineering solutions, and results of the NOCC computer-human interface design.
Lockheed Martin Response to the OSP Challenge
NASA Technical Reports Server (NTRS)
Sullivan, Robert T.; Munkres, Randy; Megna, Thomas D.; Beckham, Joanne
2003-01-01
The Lockheed Martin Orbital Space Plane System provides crew transfer and rescue for the International Space Station more safely and affordably than current human space transportation systems. Through planned upgrades and spiral development, it is also capable of satisfying the Nation's evolving space transportation requirements and enabling the national vision for human space flight. The OSP System, formulated through rigorous requirements definition and decomposition, consists of spacecraft and launch vehicle flight elements, ground processing facilities and existing transportation, launch complex, range, mission control, weather, navigation, communication and tracking infrastructure. The concept of operations, including procurement, mission planning, launch preparation, launch and mission operations and vehicle maintenance, repair and turnaround, is structured to maximize flexibility and mission availability and minimize program life cycle cost. The approach to human rating and crew safety utilizes simplicity, performance margin, redundancy, abort modes and escape modes to mitigate credible hazards that cannot be designed out of the system.
Homography-based multiple-camera person-tracking
NASA Astrophysics Data System (ADS)
Turk, Matthew R.
2009-01-01
Multiple video cameras are cheaply installed overlooking an area of interest. While computerized single-camera tracking is well-developed, multiple-camera tracking is a relatively new problem. The main multi-camera problem is to give the same tracking label to all projections of a real-world target. This is called the consistent labelling problem. Khan and Shah (2003) introduced a method to use field of view lines to perform multiple-camera tracking. The method creates inter-camera meta-target associations when objects enter at the scene edges. They also said that a plane-induced homography could be used for tracking, but this method was not well described. Their homography-based system would not work if targets use only one side of a camera to enter the scene. This paper overcomes this limitation and fully describes a practical homography-based tracker. A new method to find the feet feature is introduced. The method works especially well if the camera is tilted, when using the bottom centre of the target's bounding-box would produce inaccurate results. The new method is more accurate than the bounding-box method even when the camera is not tilted. Next, a method is presented that uses a series of corresponding point pairs "dropped" by oblivious, live human targets to find a plane-induced homography. The point pairs are created by tracking the feet locations of moving targets that were associated using the field of view line method. Finally, a homography-based multiple-camera tracking algorithm is introduced. Rules governing when to create the homography are specified. The algorithm ensures that homography-based tracking only starts after a non-degenerate homography is found. The method works when not all four field of view lines are discoverable; only one line needs to be found to use the algorithm. To initialize the system, the operator must specify pairs of overlapping cameras. Aside from that, the algorithm is fully automatic and uses the natural movement of live targets for training. No calibration is required. Testing shows that the algorithm performs very well in real-world sequences. The consistent labelling problem is solved, even for targets that appear via in-scene entrances. Full occlusions are handled. Although implemented in Matlab, the multiple-camera tracking system runs at eight frames per second. A faster implementation would be suitable for real-world use at typical video frame rates.
A versatile pitch tracking algorithm: from human speech to killer whale vocalizations.
Shapiro, Ari Daniel; Wang, Chao
2009-07-01
In this article, a pitch tracking algorithm [named discrete logarithmic Fourier transformation-pitch detection algorithm (DLFT-PDA)], originally designed for human telephone speech, was modified for killer whale vocalizations. The multiple frequency components of some of these vocalizations demand a spectral (rather than temporal) approach to pitch tracking. The DLFT-PDA algorithm derives reliable estimations of pitch and the temporal change of pitch from the harmonic structure of the vocal signal. Scores from both estimations are combined in a dynamic programming search to find a smooth pitch track. The algorithm is capable of tracking killer whale calls that contain simultaneous low and high frequency components and compares favorably across most signal to noise ratio ranges to the peak-picking and sidewinder algorithms that have been used for tracking killer whale vocalizations previously.
Wilcox, Lauren; Patel, Rupa; Chen, Yunan; Shachak, Aviv
2013-12-01
Health Information Technologies, such as electronic health records (EHR) and secure messaging, have already transformed interactions among patients and clinicians. In addition, technologies supporting asynchronous communication outside of clinical encounters, such as email, SMS, and patient portals, are being increasingly used for follow-up, education, and data reporting. Meanwhile, patients are increasingly adopting personal tools to track various aspects of health status and therapeutic progress, wishing to review these data with clinicians during consultations. These issues have drawn increasing interest from the human-computer interaction (HCI) community, with special focus on critical challenges in patient-centered interactions and design opportunities that can address these challenges. We saw this community presenting and interacting at the ACM SIGCHI 2013, Conference on Human Factors in Computing Systems, (also known as CHI), held April 27-May 2nd, 2013 at the Palais de Congrès de Paris in France. CHI 2013 featured many formal avenues to pursue patient-centered health communication: a well-attended workshop, tracks of original research, and a lively panel discussion. In this report, we highlight these events and the main themes we identified. We hope that it will help bring the health care communication and the HCI communities closer together. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Yang, X; Liu, H; Li, D; Zhou, X; Jung, W C; Deans, A E; Cui, Y; Cheng, L
2001-04-01
To investigate the feasibility of using a sensitive digital optical imaging technique to detect green fluorescent protein (GFP) expressed in rabbit vasculature and human arterial smooth muscle cells. A GFP plasmid was transfected into human arterial smooth muscle cells to obtain a GFP-smooth muscle cell solution. This solution was imaged in cell phantoms by using a prototype digital optical imaging system. For in vivo validation, a GFP-lentivirus vector was transfected during surgery into the carotid arteries of two rabbits, and GFP-targeted vessels were harvested for digital optical imaging ex vivo. Optical imaging of cell phantoms resulted in a spatial resolution of 25 microm/pixel. Fluorescent signals were detected as diffusely distributed bright spots. At ex vivo optical imaging of arterial tissues, the average fluorescent signal was significantly higher (P <.05) in GFP-targeted tissues (mean +/- SD, 9,357.3 absolute units of density +/- 1,001.3) than in control tissues (5,633.7 absolute units of density +/- 985.2). Both fluorescence microscopic and immunohistochemical findings confirmed these differences between GFP-targeted and control vessels. The digital optical imaging system was sensitive to GFPs and may potentially provide an in vivo imaging tool to monitor and track vascular gene transfer and expression in experimental investigations.
Chemical and biological tracers to determine groundwater flow in karstic aquifer, Yucatan Peninsula
NASA Astrophysics Data System (ADS)
Lenczewski, M.; Leal-Bautista, R. M.; McLain, J. E.
2013-05-01
Little is known about the extent of pollution in groundwater in the Yucatan Peninsula; however current population growth, both from international tourism and Mexican nationals increases the potential for wastewater release of a vast array of contaminants including personal care products, pharmaceuticals (Rx), and pathogenic microorganisms. Pathogens and Rx in groundwater can persist and can be particularly acute in this region where high permeability of the karst bedrock and the lack of top soil permit the rapid transport of contaminants into groundwater aquifers. The objective of this research is to develop and utilize novel biological and chemical source tracking methods to distinguish between different sources of anthropogenic pollution in degraded groundwater. Although several methods have been used successfully to track fecal contamination sources in small scale studies, little is known about their spatial limitations, as source tracking studies rarely include sample collection over a wide geographical area and with different sources of water. In addition, although source tracking methods to distinguish human from animal fecal contamination are widely available, this work has developed source tracking distinguish between separate human populations is highly unique. To achieve this objective, we collected water samples from a series of drinking wells, cenotes (sinkholes), wastewater treatment plants, and injection wells across the Yucatan Peninsula and examine potential source tracers within the collected water samples. The result suggests that groundwater sources impacted by tourist vs. local populations contain different chemical stressors. This work has developed a more detailed understanding of the presence and persistence of personal care products, pharmaceuticals, and fecal indicators in a karstic system; such understanding will be a vital component for the protection Mexican groundwater and human health. Quantification of different pollution sources within groundwater samples identified point sources of pollution, identify potential remediation strategies, and contribute to an improved understanding of the environmental impact of tourism and tourism-generated waste products on this groundwater-dependent ecosystem.
MRI-based dynamic tracking of an untethered ferromagnetic microcapsule navigating in liquid
NASA Astrophysics Data System (ADS)
Dahmen, Christian; Belharet, Karim; Folio, David; Ferreira, Antoine; Fatikow, Sergej
2016-04-01
The propulsion of ferromagnetic objects by means of MRI gradients is a promising approach to enable new forms of therapy. In this work, necessary techniques are presented to make this approach work. This includes path planning algorithms working on MRI data, ferromagnetic artifact imaging and a tracking algorithm which delivers position feedback for the ferromagnetic objects, and a propulsion sequence to enable interleaved magnetic propulsion and imaging. Using a dedicated software environment, integrating path-planning methods and real-time tracking, a clinical MRI system is adapted to provide this new functionality for controlled interventional targeted therapeutic applications. Through MRI-based sensing analysis, this article aims to propose a framework to plan a robust pathway to enhance the navigation ability to reach deep locations in the human body. The proposed approaches are validated with different experiments.
Blair, Mark R; Watson, Marcus R; Walshe, R Calen; Maj, Fillip
2009-09-01
Humans have an extremely flexible ability to categorize regularities in their environment, in part because of attentional systems that allow them to focus on important perceptual information. In formal theories of categorization, attention is typically modeled with weights that selectively bias the processing of stimulus features. These theories make differing predictions about the degree of flexibility with which attention can be deployed in response to stimulus properties. Results from 2 eye-tracking studies show that humans can rapidly learn to differently allocate attention to members of different categories. These results provide the first unequivocal demonstration of stimulus-responsive attention in a categorization task. Furthermore, the authors found clear temporal patterns in the shifting of attention within trials that follow from the informativeness of particular stimulus features. These data provide new insights into the attention processes involved in categorization. (c) 2009 APA, all rights reserved.
2008-07-02
CAPE CANAVERAL, Fla. – A United Space Alliance technician (right) hands off a component of the Orion Crew Module mockup to one of the other technicians inside the mockup. The technicians wear motion capture suits. The motion tracking aims to improve efficiency of assembly processes and identify potential ergonomic risks for technicians assembling the mockup, which was created and built at the New York Institute of Technology by a team led by Prof. Peter Voci, MFA Director at the College of Arts and Sciences. The motion tracking aims to improve efficiency of assembly processes and identify potential ergonomic risks for technicians assembling the mockup. The work is being performed in United Space Alliance's Human Engineering Modeling and Performance Lab in the RLV Hangar at NASA's Kennedy Space Center. Part of NASA's Constellation Program, the Orion spacecraft will return humans to the moon and prepare for future voyages to Mars and other destinations in our solar system.
An automatic eye detection and tracking technique for stereo video sequences
NASA Astrophysics Data System (ADS)
Paduru, Anirudh; Charalampidis, Dimitrios; Fouts, Brandon; Jovanovich, Kim
2009-05-01
Human-computer interfacing (HCI) describes a system or process with which two information processors, namely a human and a computer, attempt to exchange information. Computer-to-human (CtH) information transfer has been relatively effective through visual displays and sound devices. On the other hand, the human-tocomputer (HtC) interfacing avenue has yet to reach its full potential. For instance, the most common HtC communication means are the keyboard and mouse, which are already becoming a bottleneck in the effective transfer of information. The solution to the problem is the development of algorithms that allow the computer to understand human intentions based on their facial expressions, head motion patterns, and speech. In this work, we are investigating the feasibility of a stereo system to effectively determine the head position, including the head rotation angles, based on the detection of eye pupils.
Feathered Detectives: Real-Time GPS Tracking of Scavenging Gulls Pinpoints Illegal Waste Dumping.
Navarro, Joan; Grémillet, David; Afán, Isabel; Ramírez, Francisco; Bouten, Willem; Forero, Manuela G
2016-01-01
Urban waste impacts human and environmental health, and waste management has become one of the major challenges of humanity. Concurrently with new directives due to manage this human by-product, illegal dumping has become one of the most lucrative activities of organized crime. Beyond economic fraud, illegal waste disposal strongly enhances uncontrolled dissemination of human pathogens, pollutants and invasive species. Here, we demonstrate the potential of novel real-time GPS tracking of scavenging species to detect environmental crime. Specifically, we were able to detect illegal activities at an officially closed dump, which was visited recurrently by 5 of 19 GPS-tracked yellow-legged gulls (Larus michahellis). In comparison with conventional land-based surveys, GPS tracking allows a much wider and cost-efficient spatiotemporal coverage, even of the most hazardous sites, while GPS data accessibility through the internet enables rapid intervention. Our results suggest that multi-species guilds of feathered detectives equipped with GPS and cameras could help fight illegal dumping at continental scales. We encourage further experimental studies, to infer waste detection thresholds in gulls and other scavenging species exploiting human waste dumps.
Feathered Detectives: Real-Time GPS Tracking of Scavenging Gulls Pinpoints Illegal Waste Dumping
Grémillet, David; Afán, Isabel; Ramírez, Francisco; Bouten, Willem; Forero, Manuela G.
2016-01-01
Urban waste impacts human and environmental health, and waste management has become one of the major challenges of humanity. Concurrently with new directives due to manage this human by-product, illegal dumping has become one of the most lucrative activities of organized crime. Beyond economic fraud, illegal waste disposal strongly enhances uncontrolled dissemination of human pathogens, pollutants and invasive species. Here, we demonstrate the potential of novel real-time GPS tracking of scavenging species to detect environmental crime. Specifically, we were able to detect illegal activities at an officially closed dump, which was visited recurrently by 5 of 19 GPS-tracked yellow-legged gulls (Larus michahellis). In comparison with conventional land-based surveys, GPS tracking allows a much wider and cost-efficient spatiotemporal coverage, even of the most hazardous sites, while GPS data accessibility through the internet enables rapid intervention. Our results suggest that multi-species guilds of feathered detectives equipped with GPS and cameras could help fight illegal dumping at continental scales. We encourage further experimental studies, to infer waste detection thresholds in gulls and other scavenging species exploiting human waste dumps. PMID:27448048
21 CFR 872.2060 - Jaw tracking device.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Jaw tracking device. 872.2060 Section 872.2060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.2060 Jaw tracking device. (a) Jaw tracking device...
21 CFR 872.2060 - Jaw tracking device.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Jaw tracking device. 872.2060 Section 872.2060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.2060 Jaw tracking device. (a) Jaw tracking device...
21 CFR 872.2060 - Jaw tracking device.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Jaw tracking device. 872.2060 Section 872.2060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.2060 Jaw tracking device. (a) Jaw tracking device...
21 CFR 872.2060 - Jaw tracking device.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Jaw tracking device. 872.2060 Section 872.2060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.2060 Jaw tracking device. (a) Jaw tracking device...
Prediction and measurement of human pilot dynamic characteristics
NASA Technical Reports Server (NTRS)
Hess, Ronald A.; Reedy, James T.
1988-01-01
An analytical and experimental study of human pilot control strategies in a manned rotorcraft simulation is described. The task simulated involves a low-speed, constant-altitude maneuvering task in which a head-down display is utilized to allow the pilot to track a moving hover point. The efficacy of the display law driving an 'acceleration symbol' is determined and the manner in which the prediction and measurement of pilot/vehicle dynamics can be made part of man/machine system evaluations is demonstrated.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 21 2011-07-01 2011-07-01 false NOX Allowance Tracking System... NOX AND SO2 TRADING PROGRAMS NOX Allowance Tracking System § 97.52 NOX Allowance Tracking System... Tracking System account, all submissions to the Administrator pertaining to the account, including, but not...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX Allowance Tracking System... NOX AND SO2 TRADING PROGRAMS NOX Allowance Tracking System § 97.52 NOX Allowance Tracking System... Tracking System account, all submissions to the Administrator pertaining to the account, including, but not...
NASA Technical Reports Server (NTRS)
Harvey, Craig
2005-01-01
NASA's vision for space exploration (February 2004) calls for development of a new crew exploration vehicle, sustained lunar operations, and human exploration of Mars. To meet the challenges of planned sustained operations as well as the limited communications between Earth and the crew (e.g., Mars exploration), many systems will require crews to operate in an autonomous environment. It has been estimated that once every 2.4 years a major medical issue will occur while in space. NASA's future travels, especially to Mars, will begin to push this timeframe. Therefore, now is the time for investigating technologies and systems that will support crews in these environments. Therefore, this summer two studies were conducted to evaluate the technology and systems that may be used by crews in future missions. The first study evaluated three commercial Indoor Positioning Systems (IPS) (Versus, Ekahau, and Radianse) that can track equipment and people within a facility. While similar to Global Positioning Systems (GPS), the specific technology used is different. Several conclusions can be drawn from the evaluation conducted, but in summary it is clear that none of the systems provides a complete solution in meeting the tracking and technology integration requirements of NASA. From a functional performance (e.g., system meets user needs) evaluation perspective, Versus performed fairly well on all performance measures as compared to Ekahau and Radianse. However, the system only provides tracking at the room level. Thus, Versus does not provide the level of fidelity required for tracking assets or people for NASA requirements. From an engineering implementation perspective, Ekahau is far simpler to implement that the other two systems because of its wi-fi design (e.g., no required runs of cable). By looking at these two perspectives, one finds there was no clear system that met NASA requirements. Thus it would be premature to suggest that any of these systems are ready for implementation and further study is required.
Three-Dimensional High-Resolution Optical/X-Ray Stereoscopic Tracking Velocimetry
NASA Technical Reports Server (NTRS)
Cha, Soyoung S.; Ramachandran, Narayanan
2004-01-01
Measurement of three-dimensional (3-D) three-component velocity fields is of great importance in a variety of research and industrial applications for understanding materials processing, fluid physics, and strain/displacement measurements. The 3-D experiments in these fields most likely inhibit the use of conventional techniques, which are based only on planar and optically-transparent-field observation. Here, we briefly review the current status of 3-D diagnostics for motion/velocity detection, for both optical and x-ray systems. As an initial step for providing 3-D capabilities, we nave developed stereoscopic tracking velocimetry (STV) to measure 3-D flow/deformation through optical observation. The STV is advantageous in system simplicity, for continually observing 3- D phenomena in near real-time. In an effort to enhance the data processing through automation and to avoid the confusion in tracking numerous markers or particles, artificial neural networks are employed to incorporate human intelligence. Our initial optical investigations have proven the STV to be a very viable candidate for reliably measuring 3-D flow motions. With previous activities are focused on improving the processing efficiency, overall accuracy, and automation based on the optical system, the current efforts is directed to the concurrent expansion to the x-ray system for broader experimental applications.
Three-Dimensional High-Resolution Optical/X-Ray Stereoscopic Tracking Velocimetry
NASA Technical Reports Server (NTRS)
Cha, Soyoung S.; Ramachandran, Naryanan
2005-01-01
Measurement of three-dimensional (3-D) three-component velocity fields is of great importance in a variety of research and industrial applications for understanding materials processing, fluid physics, and strain/displacement measurements. The 3-D experiments in these fields most likely inhibit the use of conventional techniques, which are based only on planar and optically-transparent-field observation. Here, we briefly review the current status of 3-D diagnostics for motion/velocity detection, for both optical and x-ray systems. As an initial step for providing 3-D capabilities, we have developed stereoscopic tracking velocimetry (STV) to measure 3-D flow/deformation through optical observation. The STV is advantageous in system simplicity, for continually observing 3-D phenomena in near real-time. In an effort to enhance the data processing through automation and to avoid the confusion in tracking numerous markers or particles, artificial neural networks are employed to incorporate human intelligence. Our initial optical investigations have proven the STV to be a very viable candidate for reliably measuring 3-D flow motions. With previous activities focused on improving the processing efficiency, overall accuracy, and automation based on the optical system, the current efforts is directed to the concurrent expansion to the x-ray system for broader experimental applications.
An Intrusion Detection System for the Protection of Railway Assets Using Fiber Bragg Grating Sensors
Catalano, Angelo; Bruno, Francesco Antonio; Pisco, Marco; Cutolo, Antonello; Cusano, Andrea
2014-01-01
We demonstrate the ability of Fiber Bragg Gratings (FBGs) sensors to protect large areas from unauthorized activities in railway scenarios such as stations or tunnels. We report on the technological strategy adopted to protect a specific depot, representative of a common scenario for security applications in the railway environment. One of the concerns in the protection of a railway area centers on the presence of rail-tracks, which cannot be obstructed with physical barriers. We propose an integrated optical fiber system composed of FBG strain sensors that can detect human intrusion for protection of the perimeter combined with FBG accelerometer sensors for protection of rail-track access. Several trials were carried out in indoor and outdoor environments. The results demonstrate that FBG strain sensors bonded under a ribbed rubber mat enable the detection of intruder break-in via the pressure induced on the mat, whereas the FBG accelerometers installed under the rails enable the detection of intruders walking close to the railroad tracks via the acoustic surface waves generated by footsteps. Based on a single enabling technology, this integrated system represents a valuable intrusion detection system for railway security and could be integrated with other sensing functionalities in the railway field using fiber optic technology. PMID:25268920
Zhang, Juanjuan; Collins, Steven H.
2017-01-01
This study uses theory and experiments to investigate the relationship between the passive stiffness of series elastic actuators and torque tracking performance in lower-limb exoskeletons during human walking. Through theoretical analysis with our simplified system model, we found that the optimal passive stiffness matches the slope of the desired torque-angle relationship. We also conjectured that a bandwidth limit resulted in a maximum rate of change in torque error that can be commanded through control input, which is fixed across desired and passive stiffness conditions. This led to hypotheses about the interactions among optimal control gains, passive stiffness and desired quasi-stiffness. Walking experiments were conducted with multiple angle-based desired torque curves. The observed lowest torque tracking errors identified for each combination of desired and passive stiffnesses were shown to be linearly proportional to the magnitude of the difference between the two stiffnesses. The proportional gains corresponding to the lowest observed errors were seen inversely proportional to passive stiffness values and to desired stiffness. These findings supported our hypotheses, and provide guidance to application-specific hardware customization as well as controller design for torque-controlled robotic legged locomotion. PMID:29326580
The effects of voice and manual control mode on dual task performance
NASA Technical Reports Server (NTRS)
Wickens, C. D.; Zenyuh, J.; Culp, V.; Marshak, W.
1986-01-01
Two fundamental principles of human performance, compatibility and resource competition, are combined with two structural dichotomies in the human information processing system, manual versus voice output, and left versus right cerebral hemisphere, in order to predict the optimum combination of voice and manual control with either hand, for time-sharing performance of a dicrete and continuous task. Eight right handed male subjected performed a discrete first-order tracking task, time-shared with an auditorily presented Sternberg Memory Search Task. Each task could be controlled by voice, or by the left or right hand, in all possible combinations except for a dual voice mode. When performance was analyzed in terms of a dual-task decrement from single task control conditions, the following variables influenced time-sharing efficiency in diminishing order of magnitude, (1) the modality of control, (discrete manual control of tracking was superior to discrete voice control of tracking and the converse was true with the memory search task), (2) response competition, (performance was degraded when both tasks were responded manually), (3) hemispheric competition, (performance degraded whenever two tasks were controlled by the left hemisphere) (i.e., voice or right handed control). The results confirm the value of predictive models invoice control implementation.
Burgner, J.; Simpson, A. L.; Fitzpatrick, J. M.; Lathrop, R. A.; Herrell, S. D.; Miga, M. I.; Webster, R. J.
2013-01-01
Background Registered medical images can assist with surgical navigation and enable image-guided therapy delivery. In soft tissues, surface-based registration is often used and can be facilitated by laser surface scanning. Tracked conoscopic holography (which provides distance measurements) has been recently proposed as a minimally invasive way to obtain surface scans. Moving this technique from concept to clinical use requires a rigorous accuracy evaluation, which is the purpose of our paper. Methods We adapt recent non-homogeneous and anisotropic point-based registration results to provide a theoretical framework for predicting the accuracy of tracked distance measurement systems. Experiments are conducted a complex objects of defined geometry, an anthropomorphic kidney phantom and a human cadaver kidney. Results Experiments agree with model predictions, producing point RMS errors consistently < 1 mm, surface-based registration with mean closest point error < 1 mm in the phantom and a RMS target registration error of 0.8 mm in the human cadaver kidney. Conclusions Tracked conoscopic holography is clinically viable; it enables minimally invasive surface scan accuracy comparable to current clinical methods that require open surgery. PMID:22761086
High resolution particle tracking method by suppressing the wavefront aberrations
NASA Astrophysics Data System (ADS)
Chang, Xinyu; Yang, Yuan; Kou, Li; Jin, Lei; Lu, Junsheng; Hu, Xiaodong
2018-01-01
Digital in-line holographic microscopy is one of the most efficient methods for particle tracking as it can precisely measure the axial position of particles. However, imaging systems are often limited by detector noise, image distortions and human operator misjudgment making the particles hard to locate. A general method is used to solve this problem. The normalized holograms of particles were reconstructed to the pupil plane and then fit to a linear superposition of the Zernike polynomial functions to suppress the aberrations. Relative experiments were implemented to validate the method and the results show that nanometer scale resolution was achieved even when the holograms were poorly recorded.
Automatic respiration tracking for radiotherapy using optical 3D camera
NASA Astrophysics Data System (ADS)
Li, Tuotuo; Geng, Jason; Li, Shidong
2013-03-01
Rapid optical three-dimensional (O3D) imaging systems provide accurate digitized 3D surface data in real-time, with no patient contact nor radiation. The accurate 3D surface images offer crucial information in image-guided radiation therapy (IGRT) treatments for accurate patient repositioning and respiration management. However, applications of O3D imaging techniques to image-guided radiotherapy have been clinically challenged by body deformation, pathological and anatomical variations among individual patients, extremely high dimensionality of the 3D surface data, and irregular respiration motion. In existing clinical radiation therapy (RT) procedures target displacements are caused by (1) inter-fractional anatomy changes due to weight, swell, food/water intake; (2) intra-fractional variations from anatomy changes within any treatment session due to voluntary/involuntary physiologic processes (e.g. respiration, muscle relaxation); (3) patient setup misalignment in daily reposition due to user errors; and (4) changes of marker or positioning device, etc. Presently, viable solution is lacking for in-vivo tracking of target motion and anatomy changes during the beam-on time without exposing patient with additional ionized radiation or high magnet field. Current O3D-guided radiotherapy systems relay on selected points or areas in the 3D surface to track surface motion. The configuration of the marks or areas may change with time that makes it inconsistent in quantifying and interpreting the respiration patterns. To meet the challenge of performing real-time respiration tracking using O3D imaging technology in IGRT, we propose a new approach to automatic respiration motion analysis based on linear dimensionality reduction technique based on PCA (principle component analysis). Optical 3D image sequence is decomposed with principle component analysis into a limited number of independent (orthogonal) motion patterns (a low dimension eigen-space span by eigen-vectors). New images can be accurately represented as weighted summation of those eigen-vectors, which can be easily discriminated with a trained classifier. We developed algorithms, software and integrated with an O3D imaging system to perform the respiration tracking automatically. The resulting respiration tracking system requires no human intervene during it tracking operation. Experimental results show that our approach to respiration tracking is more accurate and robust than the methods using manual selected markers, even in the presence of incomplete imaging data.
Portable Catapult Launcher For Small Aircraft
NASA Technical Reports Server (NTRS)
Rosenbaum, Bernard J. (Inventor); Petter, George E. (Inventor); Gessler, Joseph A. (Inventor); Hughes, Michael G. (Inventor)
2005-01-01
An apparatus for launching an aircraft having a multiplicity of interconnected elongated tracks of rigid material forming a track system and wherein each elongated track has a predetermined elongated track cross-sectional design, a winch system connected to the track system wherein the winch system has a variable mechanical advantage, one or more elongated elastic members wherein one end of each of the one or more elongated elastic members is adjustably connected to the track system, and a carrier slidably mounted to the track system wherein the canier is connected to the winch system and to the other end of each of the one or more elongated elastic members.
Portable catapult launcher for small aircraft
NASA Technical Reports Server (NTRS)
Rosenbaum, Bernard J. (Inventor); Petter, George E. (Inventor); Gessler, Joseph A. (Inventor); Hughes, Michael G. (Inventor)
2005-01-01
An apparatus for launching an aircraft having a multiplicity of interconnected elongated tracks of rigid material forming a track system and wherein each elongated track has a predetermined elongated track cross-sectional design, a winch system connected to the track system wherein the winch system has a variable mechanical advantage, one or more elongated elastic members wherein one end of each of the one or more elongated elastic members is adjustably connected to the track system, and a carrier slidably mounted to the track system wherein the carrier is connected to the winch system and to the other end of each of the one or more elongated elastic members.
Design of a multimodal (1H/23Na MR/CT) anthropomorphic thorax phantom.
Neumann, Wiebke; Lietzmann, Florian; Schad, Lothar R; Zöllner, Frank G
2017-06-01
This work proposes a modular, anthropomorphic MR and CT thorax phantom that enables the comparison of experimental studies for quantitative evaluation of deformable, multimodal image registration algorithms and realistic multi-nuclear MR imaging techniques. A human thorax phantom was developed with insertable modules representing lung, liver, ribs and additional tracking spheres. The quality of human tissue mimicking characteristics was evaluated for 1 H and 23 Na MR as well as CT imaging. The position of landmarks in the lung lobes was tracked during CT image acquisition at several positions during breathing cycles. 1 H MR measurements of the liver were repeated after seven months to determine long term stability. The modules possess HU, T 1 and T 2 values comparable to human tissues (lung module: -756±148HU, artificial ribs: 218±56HU (low CaCO 3 concentration) and 339±121 (high CaCO 3 concentration), liver module: T 1 =790±28ms, T 2 =65±1ms). Motion analysis showed that the landmarks in the lung lobes follow a 3D trajectory similar to human breathing motion. The tracking spheres are well detectable in both CT and MRI. The parameters of the tracking spheres can be adjusted in the following ranges to result in a distinct signal: HU values from 150 to 900HU, T 1 relaxation time from 550ms to 2000ms, T 2 relaxation time from 40ms to 200ms. The presented anthropomorphic multimodal thorax phantom fulfills the demands of a simple, inexpensive system with interchangeable components. In future, the modular design allows for complementing the present set up with additional modules focusing on specific research targets such as perfusion studies, 23 Na MR quantification experiments and an increasing level of complexity for motion studies. Copyright © 2016. Published by Elsevier GmbH.
2011-03-01
electromagnetic spectrum. With the availability of multispectral and hyperspectral systems, both spatial and spectral information for a scene are...an image. The boundary conditions for NDGRI and NDSI are set from diffuse spectral reflectance values for the range of skin types determined in [28...wearing no standard uniform and blending into the urban population. To assist with enemy detection and tracking, imaging systems that acquire spectral
Gaze-contingent control for minimally invasive robotic surgery.
Mylonas, George P; Darzi, Ara; Yang, Guang Zhong
2006-09-01
Recovering tissue depth and deformation during robotically assisted minimally invasive procedures is an important step towards motion compensation, stabilization and co-registration with preoperative data. This work demonstrates that eye gaze derived from binocular eye tracking can be effectively used to recover 3D motion and deformation of the soft tissue. A binocular eye-tracking device was integrated into the stereoscopic surgical console. After calibration, the 3D fixation point of the participating subjects could be accurately resolved in real time. A CT-scanned phantom heart model was used to demonstrate the accuracy of gaze-contingent depth extraction and motion stabilization of the soft tissue. The dynamic response of the oculomotor system was assessed with the proposed framework by using autoregressive modeling techniques. In vivo data were also used to perform gaze-contingent decoupling of cardiac and respiratory motion. Depth reconstruction, deformation tracking, and motion stabilization of the soft tissue were possible with binocular eye tracking. The dynamic response of the oculomotor system was able to cope with frequencies likely to occur under most routine minimally invasive surgical operations. The proposed framework presents a novel approach towards the tight integration of a human and a surgical robot where interaction in response to sensing is required to be under the control of the operating surgeon.
Track analysis of laser-illuminated etched track detectors using an opto-digital imaging system
NASA Astrophysics Data System (ADS)
Eghan, Moses J.; Buah-Bassuah, Paul K.; Oppon, Osborne C.
2007-11-01
An opto-digital imaging system for counting and analysing tracks on a LR-115 detector is described. One batch of LR-115 track detectors was irradiated with Am-241 for a determined period and distance for linearity test and another batch was exposed to radon gas. The laser-illuminated etched track detector area was imaged, digitized and analysed by the system. The tracks that were counted on the opto-digital system with the aid of media cybernetics software as well as spark gap counter showed comparable track density results ranging between 1500 and 2750 tracks cm-2 and 65 tracks cm-2 in the two different batch detector samples with 0.5% and 1% track counts, respectively. Track sizes of the incident alpha particles from the radon gas on the LR-115 detector demonstrating different track energies are statistically and graphically represented. The opto-digital imaging system counts and measures other track parameters at an average process time of 3-5 s.
Real-time marker-free motion capture system using blob feature analysis
NASA Astrophysics Data System (ADS)
Park, Chang-Joon; Kim, Sung-Eun; Kim, Hong-Seok; Lee, In-Ho
2005-02-01
This paper presents a real-time marker-free motion capture system which can reconstruct 3-dimensional human motions. The virtual character of the proposed system mimics the motion of an actor in real-time. The proposed system captures human motions by using three synchronized CCD cameras and detects the root and end-effectors of an actor such as a head, hands, and feet by exploiting the blob feature analysis. And then, the 3-dimensional positions of end-effectors are restored and tracked by using Kalman filter. At last, the positions of the intermediate joint are reconstructed by using anatomically constrained inverse kinematics algorithm. The proposed system was implemented under general lighting conditions and we confirmed that the proposed system could reconstruct motions of a lot of people wearing various clothes in real-time stably.
Wilson, Korey A.; Elefanty, Andrew G.; Stanley, Edouard G.; Gilbert, David M.
2016-01-01
ABSTRACT Lineage specification of both mouse and human pluripotent stem cells (PSCs) is accompanied by spatial consolidation of chromosome domains and temporal consolidation of their replication timing. Replication timing and chromatin organization are both established during G1 phase at the timing decision point (TDP). Here, we have developed live cell imaging tools to track spatio-temporal replication domain consolidation during differentiation. First, we demonstrate that the fluorescence ubiquitination cell cycle indicator (Fucci) system is incapable of demarcating G1/S or G2/M cell cycle transitions. Instead, we employ a combination of fluorescent PCNA to monitor S phase progression, cytokinesis to demarcate mitosis, and fluorescent nucleotides to label early and late replication foci and track their 3D organization into sub-nuclear chromatin compartments throughout all cell cycle transitions. We find that, as human PSCs differentiate, the length of S phase devoted to replication of spatially clustered replication foci increases, coincident with global compartmentalization of domains into temporally clustered blocks of chromatin. Importantly, re-localization and anchorage of domains was completed prior to the onset of S phase, even in the context of an abbreviated PSC G1 phase. This approach can also be employed to investigate cell fate transitions in single PSCs, which could be seen to differentiate preferentially from G1 phase. Together, our results establish real-time, live-cell imaging methods for tracking cell cycle transitions during human PSC differentiation that can be applied to study chromosome domain consolidation and other aspects of lineage specification. PMID:27433885
NASA Astrophysics Data System (ADS)
Lin, Chern-Sheng; Ho, Chien-Wa; Chang, Kai-Chieh; Hung, San-Shan; Shei, Hung-Jung; Yeh, Mau-Shiun
2006-06-01
This study describes the design and combination of an eye-controlled and a head-controlled human-machine interface system. This system is a highly effective human-machine interface, detecting head movement by changing positions and numbers of light sources on the head. When the users utilize the head-mounted display to browse a computer screen, the system will catch the images of the user's eyes with CCD cameras, which can also measure the angle and position of the light sources. In the eye-tracking system, the program in the computer will locate each center point of the pupils in the images, and record the information on moving traces and pupil diameters. In the head gesture measurement system, the user wears a double-source eyeglass frame, so the system catches images of the user's head by using a CCD camera in front of the user. The computer program will locate the center point of the head, transferring it to the screen coordinates, and then the user can control the cursor by head motions. We combine the eye-controlled and head-controlled human-machine interface system for the virtual reality applications.
Bionic Vision-Based Intelligent Power Line Inspection System
Ma, Yunpeng; He, Feijia; Xu, Jinxin
2017-01-01
Detecting the threats of the external obstacles to the power lines can ensure the stability of the power system. Inspired by the attention mechanism and binocular vision of human visual system, an intelligent power line inspection system is presented in this paper. Human visual attention mechanism in this intelligent inspection system is used to detect and track power lines in image sequences according to the shape information of power lines, and the binocular visual model is used to calculate the 3D coordinate information of obstacles and power lines. In order to improve the real time and accuracy of the system, we propose a new matching strategy based on the traditional SURF algorithm. The experimental results show that the system is able to accurately locate the position of the obstacles around power lines automatically, and the designed power line inspection system is effective in complex backgrounds, and there are no missing detection instances under different conditions. PMID:28203269
NASA Technical Reports Server (NTRS)
DAndrea, Susan E.; Kahelin, Michael W.; Horowitz, Jay G.; OConnor, Philip A.
2004-01-01
While the neurovestibular system is capable of adapting to altered environments such as microgravity, the adaptive state achieved in space in inadequate for 1G. This leads to giant and postural instabilities when returning to a gravity environment and may create serious problems in future mission to Mars. New methods are needed to improve the understanding of the adaptive capabilities of the human neurovestibular system and to develop more effective countermeasures. The concept behind the current study is that by challenging the neurovestibular system while walking or running a treadmill can help to read just the relationship between the visual, vestibular and proprioceptive signals that are altered in a microgravity environment. As a countermeasure, this device could also benefit the musculoskeletal and cardiovascular systems and at the same time decrease the overall time spent exercising. The overall goal of this research is to design, develop, build and test a dual track treadmill, which utilizes virtual reality, VR, displays.
NASA Technical Reports Server (NTRS)
DAndrea, Susan E.; Kahelin, Michael W.; Horowitz, Jay G.; OConnor, Philip A.
2004-01-01
While the neurovestibular system is capable of adapting to altered environments such as microgravity, the adaptive state achieved in space in inadequate for 1G. This leads to gait and postural instabilities when returning to a gravity environment and may create serious problems in future missions to Mars. New methods are needed to improve the understanding of the adaptive capabilities of the human neurovestibular system and to develop more effective countermeasures. The concept behind the current study is that by challenging the neurovestibular system while walking or running, a treadmill can help to readjust the relationship between the visual, vestibular and proprioceptive signals that are altered in a microgravity environment. As a countermeasure, this device could also benefit the musculoskeletal and cardiovascular systems and at the same time decrease the overall time spent exercising. The overall goal of this research is to design, develop, build and test a dual track treadmill, which utilizes virtual reality,
Undercover isotopes: tracking the fate of nitrogen in streams
Rhonda Mazza; Sherri Johnson
2009-01-01
Excess nitrogen stemming from human activities is a common water pollutant. Fertilizer runoff, sewage, and fossil fuel emission all contain nitrogen that often ends in streams, rivers, and ultimately the ocean. Research has found that more nitrogen enters a river system than can be accounted for at its mouth, indicating that instream processing is occurring. A team of...
ERIC Educational Resources Information Center
Blair, Mark R.; Watson, Marcus R.; Walshe, R. Calen; Maj, Fillip
2009-01-01
Humans have an extremely flexible ability to categorize regularities in their environment, in part because of attentional systems that allow them to focus on important perceptual information. In formal theories of categorization, attention is typically modeled with weights that selectively bias the processing of stimulus features. These theories…
Using GIS technology to analyze and understand wet meadow ecosystems
Joy Rosen; Roy Jemison; David Pawelek; Daniel Neary
1999-01-01
A Cibola National Forest wet meadow restoration was implemented as part of the Forest Road 49 enhancement near Grants, New Mexico. An Arc/View 3.0 Geographic Information System (GIS) was used to track the recovery of this ecosystem. Layers on topography, hydrology, vegetation, soils and human alterations were compiled using a GPS and commonly available data....
A biplanar X-ray approach for studying the 3D dynamics of human track formation.
Hatala, Kevin G; Perry, David A; Gatesy, Stephen M
2018-05-09
Recent discoveries have made hominin tracks an increasingly prevalent component of the human fossil record, and these data have the capacity to inform long-standing debates regarding the biomechanics of hominin locomotion. However, there is currently no consensus on how to decipher biomechanical variables from hominin tracks. These debates can be linked to our generally limited understanding of the complex interactions between anatomy, motion, and substrate that give rise to track morphology. These interactions are difficult to study because direct visualization of the track formation process is impeded by foot and substrate opacity. To address these obstacles, we developed biplanar X-ray and computer animation methods, derived from X-ray Reconstruction of Moving Morphology (XROMM), to analyze the 3D dynamics of three human subjects' feet as they walked across four substrates (three deformable muds and rigid composite panel). By imaging and reconstructing 3D positions of external markers, we quantified the 3D dynamics at the foot-substrate interface. Foot shape, specifically heel and medial longitudinal arch deformation, was significantly affected by substrate rigidity. In deformable muds, we found that depths measured across tracks did not directly reflect the motions of the corresponding regions of the foot, and that track outlines were not perfectly representative of foot size. These results highlight the complex, dynamic nature of track formation, and the experimental methods presented here offer a promising avenue for developing and refining methods for accurately inferring foot anatomy and gait biomechanics from fossil hominin tracks. Copyright © 2018 Elsevier Ltd. All rights reserved.
Human operator tracking performance with a vibrotactile display
NASA Technical Reports Server (NTRS)
Inbar, Gideon F.
1991-01-01
Vibrotactile displays have been designed and used as a sensory aid for the blind. In the present work the same 6 x 24 'Optacon' type vibrotactile display (VTD) was used to characterize human operator (HO) tracking performance in pursuit and compensatory tasks. The VTD was connected via a microprocessor to a one-dimensional joy stick manipulator. Various display schemes were tested on the VDT, and were also compared to visual tracking performance using a specially constructed photo diode matrix display comparable to the VTD.
White matter fiber tracking computation based on diffusion tensor imaging for clinical applications.
Dellani, Paulo R; Glaser, Martin; Wille, Paulo R; Vucurevic, Goran; Stadie, Axel; Bauermann, Thomas; Tropine, Andrei; Perneczky, Axel; von Wangenheim, Aldo; Stoeter, Peter
2007-03-01
Fiber tracking allows the in vivo reconstruction of human brain white matter fiber trajectories based on magnetic resonance diffusion tensor imaging (MR-DTI), but its application in the clinical routine is still in its infancy. In this study, we present a new software for fiber tracking, developed on top of a general-purpose DICOM (digital imaging and communications in medicine) framework, which can be easily integrated into existing picture archiving and communication system (PACS) of radiological institutions. Images combining anatomical information and the localization of different fiber tract trajectories can be encoded and exported in DICOM and Analyze formats, which are valuable resources in the clinical applications of this method. Fiber tracking was implemented based on existing line propagation algorithms, but it includes a heuristic for fiber crossings in the case of disk-shaped diffusion tensors. We successfully performed fiber tracking on MR-DTI data sets from 26 patients with different types of brain lesions affecting the corticospinal tracts. In all cases, the trajectories of the central spinal tract (pyramidal tract) were reconstructed and could be applied at the planning phase of the surgery as well as in intraoperative neuronavigation.
Okandan, Murat; Nielson, Gregory N.
2016-07-12
Solar tracking systems, as well as methods of using such solar tracking systems, are disclosed. More particularly, embodiments of the solar tracking systems include lateral supports horizontally positioned between uprights to support photovoltaic modules. The lateral supports may be raised and lowered along the uprights or translated to cause the photovoltaic modules to track the moving sun.
Ultra-Wideband Tracking System Design for Relative Navigation
NASA Technical Reports Server (NTRS)
Ni, Jianjun David; Arndt, Dickey; Bgo, Phong; Dekome, Kent; Dusl, John
2011-01-01
This presentation briefly discusses a design effort for a prototype ultra-wideband (UWB) time-difference-of-arrival (TDOA) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being designed for use in localization and navigation of a rover in a GPS deprived environment for surface missions. In one application enabled by the UWB tracking, a robotic vehicle carrying equipments can autonomously follow a crewed rover from work site to work site such that resources can be carried from one landing mission to the next thereby saving up-mass. The UWB Systems Group at JSC has developed a UWB TDOA High Resolution Proximity Tracking System which can achieve sub-inch tracking accuracy of a target within the radius of the tracking baseline [1]. By extending the tracking capability beyond the radius of the tracking baseline, a tracking system is being designed to enable relative navigation between two vehicles for surface missions. A prototype UWB TDOA tracking system has been designed, implemented, tested, and proven feasible for relative navigation of robotic vehicles. Future work includes testing the system with the application code to increase the tracking update rate and evaluating the linear tracking baseline to improve the flexibility of antenna mounting on the following vehicle.
Jia, Rui; Monk, Paul; Murray, David; Noble, J Alison; Mellon, Stephen
2017-09-06
Optoelectronic motion capture systems are widely employed to measure the movement of human joints. However, there can be a significant discrepancy between the data obtained by a motion capture system (MCS) and the actual movement of underlying bony structures, which is attributed to soft tissue artefact. In this paper, a computer-aided tracking and motion analysis with ultrasound (CAT & MAUS) system with an augmented globally optimal registration algorithm is presented to dynamically track the underlying bony structure during movement. The augmented registration part of CAT & MAUS was validated with a high system accuracy of 80%. The Euclidean distance between the marker-based bony landmark and the bony landmark tracked by CAT & MAUS was calculated to quantify the measurement error of an MCS caused by soft tissue artefact during movement. The average Euclidean distance between the target bony landmark measured by each of the CAT & MAUS system and the MCS alone varied from 8.32mm to 16.87mm in gait. This indicates the discrepancy between the MCS measured bony landmark and the actual underlying bony landmark. Moreover, Procrustes analysis was applied to demonstrate that CAT & MAUS reduces the deformation of the body segment shape modeled by markers during motion. The augmented CAT & MAUS system shows its potential to dynamically detect and locate actual underlying bony landmarks, which reduces the MCS measurement error caused by soft tissue artefact during movement. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benbennick, M.E.; Broton, M.S.; Fuoto, J.S.
This report describes a model tracking system for a low-level radioactive waste (LLW) disposal facility license application. In particular, the model tracks interrogatories (questions, requests for information, comments) and responses. A set of requirements and desired features for the model tracking system was developed, including required structure and computer screens. Nine tracking systems were then reviewed against the model system requirements and only two were found to meet all requirements. Using Kepner-Tregoe decision analysis, a model tracking system was selected.
NASA Astrophysics Data System (ADS)
Chen, Hai-Wen; McGurr, Mike
2016-05-01
We have developed a new way for detection and tracking of human full-body and body-parts with color (intensity) patch morphological segmentation and adaptive thresholding for security surveillance cameras. An adaptive threshold scheme has been developed for dealing with body size changes, illumination condition changes, and cross camera parameter changes. Tests with the PETS 2009 and 2014 datasets show that we can obtain high probability of detection and low probability of false alarm for full-body. Test results indicate that our human full-body detection method can considerably outperform the current state-of-the-art methods in both detection performance and computational complexity. Furthermore, in this paper, we have developed several methods using color features for detection and tracking of human body-parts (arms, legs, torso, and head, etc.). For example, we have developed a human skin color sub-patch segmentation algorithm by first conducting a RGB to YIQ transformation and then applying a Subtractive I/Q image Fusion with morphological operations. With this method, we can reliably detect and track human skin color related body-parts such as face, neck, arms, and legs. Reliable body-parts (e.g. head) detection allows us to continuously track the individual person even in the case that multiple closely spaced persons are merged. Accordingly, we have developed a new algorithm to split a merged detection blob back to individual detections based on the detected head positions. Detected body-parts also allow us to extract important local constellation features of the body-parts positions and angles related to the full-body. These features are useful for human walking gait pattern recognition and human pose (e.g. standing or falling down) estimation for potential abnormal behavior and accidental event detection, as evidenced with our experimental tests. Furthermore, based on the reliable head (face) tacking, we have applied a super-resolution algorithm to enhance the face resolution for improved human face recognition performance.
Keller, Sune H; Sibomana, Merence; Olesen, Oline V; Svarer, Claus; Holm, Søren; Andersen, Flemming L; Højgaard, Liselotte
2012-03-01
Many authors have reported the importance of motion correction (MC) for PET. Patient motion during scanning disturbs kinetic analysis and degrades resolution. In addition, using misaligned transmission for attenuation and scatter correction may produce regional quantification bias in the reconstructed emission images. The purpose of this work was the development of quality control (QC) methods for MC procedures based on external motion tracking (EMT) for human scanning using an optical motion tracking system. Two scans with minor motion and 5 with major motion (as reported by the optical motion tracking system) were selected from (18)F-FDG scans acquired on a PET scanner. The motion was measured as the maximum displacement of the markers attached to the subject's head and was considered to be major if larger than 4 mm and minor if less than 2 mm. After allowing a 40- to 60-min uptake time after tracer injection, we acquired a 6-min transmission scan, followed by a 40-min emission list-mode scan. Each emission list-mode dataset was divided into 8 frames of 5 min. The reconstructed time-framed images were aligned to a selected reference frame using either EMT or the AIR (automated image registration) software. The following 3 QC methods were used to evaluate the EMT and AIR MC: a method using the ratio between 2 regions of interest with gray matter voxels (GM) and white matter voxels (WM), called GM/WM; mutual information; and cross correlation. The results of the 3 QC methods were in agreement with one another and with a visual subjective inspection of the image data. Before MC, the QC method measures varied significantly in scans with major motion and displayed limited variations on scans with minor motion. The variation was significantly reduced and measures improved after MC with AIR, whereas EMT MC performed less well. The 3 presented QC methods produced similar results and are useful for evaluating tracer-independent external-tracking motion-correction methods for human brain scans.
Johnston, Christopher; Byappanahalli, Muruleedhara N.; Gibson, Jacqueline MacDonald; Ufnar, Jennifer A.; Whitman, Richard L.; Stewart, Jill R.
2013-01-01
Microbial source tracking assays to identify sources of waterborne contamination typically target genetic markers of host-specific microorganisms. However, no bacterial marker has been shown to be 100% host-specific, and cross-reactivity has been noted in studies evaluating known source samples. Using 485 challenge samples from 20 different human and animal fecal sources, this study evaluated microbial source tracking markers including the Bacteroides HF183 16S rRNA, M. smithii nifH, and Enterococcus esp gene targets that have been proposed as potential indicators of human fecal contamination. Bayes' Theorem was used to calculate the conditional probability that these markers or a combination of markers can correctly identify human sources of fecal pollution. All three human-associated markers were detected in 100% of the sewage samples analyzed. Bacteroides HF183 was the most effective marker for determining whether contamination was specifically from a human source, and greater than 98% certainty that contamination was from a human source was shown when both Bacteroides HF183 and M. smithii nifH markers were present. A high degree of certainty was attained even in cases where the prior probability of human fecal contamination was as low as 8.5%. The combination of Bacteroides HF183 and M. smithii nifH source tracking markers can help identify surface waters impacted by human fecal contamination, information useful for prioritizing restoration activities or assessing health risks from exposure to contaminated waters.
Ultra-Wideband Time-Difference-of-Arrival High Resolution 3D Proximity Tracking System
NASA Technical Reports Server (NTRS)
Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Phan, Chau; Dekome, Kent; Dusl, John
2010-01-01
This paper describes a research and development effort for a prototype ultra-wideband (UWB) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being studied for use in tracking of lunar./Mars rovers and astronauts during early exploration missions when satellite navigation systems are not available. U IATB impulse radio (UWB-IR) technology is exploited in the design and implementation of the prototype location and tracking system. A three-dimensional (3D) proximity tracking prototype design using commercially available UWB products is proposed to implement the Time-Difference- Of-Arrival (TDOA) tracking methodology in this research effort. The TDOA tracking algorithm is utilized for location estimation in the prototype system, not only to exploit the precise time resolution possible with UWB signals, but also to eliminate the need for synchronization between the transmitter and the receiver. Simulations show that the TDOA algorithm can achieve the fine tracking resolution with low noise TDOA estimates for close-in tracking. Field tests demonstrated that this prototype UWB TDOA High Resolution 3D Proximity Tracking System is feasible for providing positioning-awareness information in a 3D space to a robotic control system. This 3D tracking system is developed for a robotic control system in a facility called "Moonyard" at Honeywell Defense & System in Arizona under a Space Act Agreement.
Image sequence analysis workstation for multipoint motion analysis
NASA Astrophysics Data System (ADS)
Mostafavi, Hassan
1990-08-01
This paper describes an application-specific engineering workstation designed and developed to analyze motion of objects from video sequences. The system combines the software and hardware environment of a modem graphic-oriented workstation with the digital image acquisition, processing and display techniques. In addition to automation and Increase In throughput of data reduction tasks, the objective of the system Is to provide less invasive methods of measurement by offering the ability to track objects that are more complex than reflective markers. Grey level Image processing and spatial/temporal adaptation of the processing parameters is used for location and tracking of more complex features of objects under uncontrolled lighting and background conditions. The applications of such an automated and noninvasive measurement tool include analysis of the trajectory and attitude of rigid bodies such as human limbs, robots, aircraft in flight, etc. The system's key features are: 1) Acquisition and storage of Image sequences by digitizing and storing real-time video; 2) computer-controlled movie loop playback, freeze frame display, and digital Image enhancement; 3) multiple leading edge tracking in addition to object centroids at up to 60 fields per second from both live input video or a stored Image sequence; 4) model-based estimation and tracking of the six degrees of freedom of a rigid body: 5) field-of-view and spatial calibration: 6) Image sequence and measurement data base management; and 7) offline analysis software for trajectory plotting and statistical analysis.
Applications of artificial intelligence in safe human-robot interactions.
Najmaei, Nima; Kermani, Mehrdad R
2011-04-01
The integration of industrial robots into the human workspace presents a set of unique challenges. This paper introduces a new sensory system for modeling, tracking, and predicting human motions within a robot workspace. A reactive control scheme to modify a robot's operations for accommodating the presence of the human within the robot workspace is also presented. To this end, a special class of artificial neural networks, namely, self-organizing maps (SOMs), is employed for obtaining a superquadric-based model of the human. The SOM network receives information of the human's footprints from the sensory system and infers necessary data for rendering the human model. The model is then used in order to assess the danger of the robot operations based on the measured as well as predicted human motions. This is followed by the introduction of a new reactive control scheme that results in the least interferences between the human and robot operations. The approach enables the robot to foresee an upcoming danger and take preventive actions before the danger becomes imminent. Simulation and experimental results are presented in order to validate the effectiveness of the proposed method.
Advanced tracking systems design and analysis
NASA Technical Reports Server (NTRS)
Potash, R.; Floyd, L.; Jacobsen, A.; Cunningham, K.; Kapoor, A.; Kwadrat, C.; Radel, J.; Mccarthy, J.
1989-01-01
The results of an assessment of several types of high-accuracy tracking systems proposed to track the spacecraft in the National Aeronautics and Space Administration (NASA) Advanced Tracking and Data Relay Satellite System (ATDRSS) are summarized. Tracking systems based on the use of interferometry and ranging are investigated. For each system, the top-level system design and operations concept are provided. A comparative system assessment is presented in terms of orbit determination performance, ATDRSS impacts, life-cycle cost, and technological risk.
Gollee, Henrik; Gawthrop, Peter J; Lakie, Martin; Loram, Ian D
2017-11-01
A human controlling an external system is described most easily and conventionally as linearly and continuously translating sensory input to motor output, with the inevitable output remnant, non-linearly related to the input, attributed to sensorimotor noise. Recent experiments show sustained manual tracking involves repeated refractoriness (insensitivity to sensory information for a certain duration), with the temporary 200-500 ms periods of irresponsiveness to sensory input making the control process intrinsically non-linear. This evidence calls for re-examination of the extent to which random sensorimotor noise is required to explain the non-linear remnant. This investigation of manual tracking shows how the full motor output (linear component and remnant) can be explained mechanistically by aperiodic sampling triggered by prediction error thresholds. Whereas broadband physiological noise is general to all processes, aperiodic sampling is associated with sensorimotor decision making within specific frontal, striatal and parietal networks; we conclude that manual tracking utilises such slow serial decision making pathways up to several times per second. The human operator is described adequately by linear translation of sensory input to motor output. Motor output also always includes a non-linear remnant resulting from random sensorimotor noise from multiple sources, and non-linear input transformations, for example thresholds or refractory periods. Recent evidence showed that manual tracking incurs substantial, serial, refractoriness (insensitivity to sensory information of 350 and 550 ms for 1st and 2nd order systems respectively). Our two questions are: (i) What are the comparative merits of explaining the non-linear remnant using noise or non-linear transformations? (ii) Can non-linear transformations represent serial motor decision making within the sensorimotor feedback loop intrinsic to tracking? Twelve participants (instructed to act in three prescribed ways) manually controlled two systems (1st and 2nd order) subject to a periodic multi-sine disturbance. Joystick power was analysed using three models, continuous-linear-control (CC), continuous-linear-control with calculated noise spectrum (CCN), and intermittent control with aperiodic sampling triggered by prediction error thresholds (IC). Unlike the linear mechanism, the intermittent control mechanism explained the majority of total power (linear and remnant) (77-87% vs. 8-48%, IC vs. CC). Between conditions, IC used thresholds and distributions of open loop intervals consistent with, respectively, instructions and previous measured, model independent values; whereas CCN required changes in noise spectrum deviating from broadband, signal dependent noise. We conclude that manual tracking uses open loop predictive control with aperiodic sampling. Because aperiodic sampling is inherent to serial decision making within previously identified, specific frontal, striatal and parietal networks we suggest that these structures are intimately involved in visuo-manual tracking. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Radiation dose-response curves: cell repair mechanisms vs. ion track overlapping
NASA Astrophysics Data System (ADS)
Kowalska, Agata; Czerski, Konrad; Nasonova, Elena; Kutsalo, Polina; Krasavin, Eugen
2017-12-01
Chromosome aberrations in human lymphocytes exposed to different doses of particle radiation: 150 MeV and spread out Bragg peak proton beams, 22 MeV/u boron beam and 199 V/u carbon beam were studied. For comparison, an experiment with 60Co γ-rays was also performed. We investigated distributions of aberration frequency and the shape of dose-response curves for the total aberration yield as well as for exchange and non-exchange aberrations, separately. Applying the linear-quadratic model, we could derive a relation between the fitted parameters and the ion track radius which could explain experimentally observed curvature of the dose-response curves. The results compared with physical expectations clearly show that the biological effects of cell repair are much more important than the ion track overlapping. Contribution to the Topical Issue "Dynamics of Systems at the Nanoscale", edited by Andrey Solov'yov and Andrei Korol.
Textual and shape-based feature extraction and neuro-fuzzy classifier for nuclear track recognition
NASA Astrophysics Data System (ADS)
Khayat, Omid; Afarideh, Hossein
2013-04-01
Track counting algorithms as one of the fundamental principles of nuclear science have been emphasized in the recent years. Accurate measurement of nuclear tracks on solid-state nuclear track detectors is the aim of track counting systems. Commonly track counting systems comprise a hardware system for the task of imaging and software for analysing the track images. In this paper, a track recognition algorithm based on 12 defined textual and shape-based features and a neuro-fuzzy classifier is proposed. Features are defined so as to discern the tracks from the background and small objects. Then, according to the defined features, tracks are detected using a trained neuro-fuzzy system. Features and the classifier are finally validated via 100 Alpha track images and 40 training samples. It is shown that principle textual and shape-based features concomitantly yield a high rate of track detection compared with the single-feature based methods.
40 CFR 73.30 - Allowance tracking system accounts.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Allowance tracking system accounts. 73.30 Section 73.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) SULFUR DIOXIDE ALLOWANCE SYSTEM Allowance Tracking System § 73.30 Allowance tracking system...
40 CFR 73.30 - Allowance tracking system accounts.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Allowance tracking system accounts. 73.30 Section 73.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) SULFUR DIOXIDE ALLOWANCE SYSTEM Allowance Tracking System § 73.30 Allowance tracking system...
Martel, Sylvain; Mohammadi, Mahmood; Felfoul, Ouajdi; Lu, Zhao; Pouponneau, Pierre
2009-04-01
Although nanorobots may play critical roles for many applications in the human body such as targeting tumoral lesions for therapeutic purposes, miniaturization of the power source with an effective onboard controllable propulsion and steering system have prevented the implementation of such mobile robots. Here, we show that the flagellated nanomotors combined with the nanometer-sized magnetosomes of a single Magnetotactic Bacterium (MTB) can be used as an effective integrated propulsion and steering system for devices such as nanorobots designed for targeting locations only accessible through the smallest capillaries in humans while being visible for tracking and monitoring purposes using modern medical imaging modalities such as Magnetic Resonance Imaging (MRI). Through directional and magnetic field intensities, the displacement speeds, directions, and behaviors of swarms of these bacterial actuators can be controlled from an external computer.
The Roles of Feedback and Feedforward as Humans Learn to Control Unknown Dynamic Systems.
Zhang, Xingye; Wang, Shaoqian; Hoagg, Jesse B; Seigler, T Michael
2018-02-01
We present results from an experiment in which human subjects interact with an unknown dynamic system 40 times during a two-week period. During each interaction, subjects are asked to perform a command-following (i.e., pursuit tracking) task. Each subject's performance at that task improves from the first trial to the last trial. For each trial, we use subsystem identification to estimate each subject's feedforward (or anticipatory) control, feedback (or reactive) control, and feedback time delay. Over the 40 trials, the magnitudes of the identified feedback controllers and the identified feedback time delays do not change significantly. In contrast, the identified feedforward controllers do change significantly. By the last trial, the average identified feedforward controller approximates the inverse of the dynamic system. This observation provides evidence that a fundamental component of human learning is updating the anticipatory control until it models the inverse dynamics.
Control of joint motion simulators for biomechanical research
NASA Technical Reports Server (NTRS)
Colbaugh, R.; Glass, K.
1992-01-01
The authors present a hierarchical adaptive algorithm for controlling upper extremity human joint motion simulators. A joint motion simulator is a computer-controlled, electromechanical system which permits the application of forces to the tendons of a human cadaver specimen in such a way that the cadaver joint under study achieves a desired motion in a physiologic manner. The proposed control scheme does not require knowledge of the cadaver specimen dynamic model, and solves on-line the indeterminate problem which arises because human joints typically possess more actuators than degrees of freedom. Computer simulation results are given for an elbow/forearm system and wrist/hand system under hierarchical control. The results demonstrate that any desired normal joint motion can be accurately tracked with the proposed algorithm. These simulation results indicate that the controller resolved the indeterminate problem redundancy in a physiologic manner, and show that the control scheme was robust to parameter uncertainty and to sensor noise.
Effects of controlled element dynamics on human feedforward behavior in ramp-tracking tasks.
Laurense, Vincent A; Pool, Daan M; Damveld, Herman J; van Paassen, Marinus René M; Mulder, Max
2015-02-01
In real-life manual control tasks, human controllers are often required to follow a visible and predictable reference signal, enabling them to use feedforward control actions in conjunction with feedback actions that compensate for errors. Little is known about human control behavior in these situations. This paper investigates how humans adapt their feedforward control dynamics to the controlled element dynamics in a combined ramp-tracking and disturbance-rejection task. A human-in-the-loop experiment is performed with a pursuit display and vehicle-like controlled elements, ranging from a single integrator through second-order systems with a break frequency at either 3, 2, or 1 rad/s, to a double integrator. Because the potential benefits of feedforward control increase with steeper ramp segments in the target signal, three steepness levels are tested to investigate their possible effect on feedforward control with the various controlled elements. Analyses with four novel models of the operator, fitted to time-domain data, reveal feedforward control for all tested controlled elements and both (nonzero) tested levels of ramp steepness. For the range of controlled element dynamics investigated, it is found that humans adapt to these dynamics in their feedforward response, with a close to perfect inversion of the controlled element dynamics. No significant effects of ramp steepness on the feedforward model parameters are found.
21 CFR 821.20 - Devices subject to tracking.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... within § 821.1(a) must track that device in accordance with this part, if FDA issues a tracking order to... the criteria of section 519(e)(1) of the act and, by virtue of the order, the sponsor must track the...
21 CFR 821.20 - Devices subject to tracking.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... within § 821.1(a) must track that device in accordance with this part, if FDA issues a tracking order to... the criteria of section 519(e)(1) of the act and, by virtue of the order, the sponsor must track the...
Did Humans Live with Dinosaurs? Excavating "Man Tracks" along the Paluxy River
ERIC Educational Resources Information Center
Moore, Randy
2014-01-01
The alleged "man tracks" beside dinosaur tracks near Glen Rose, Texas, are among the most enduring pieces of evidence used by young-Earth creationists to reject evolution. Despite the tracks' fame, their most persistent advocate--that is, Carl Baugh of the Creation Evidence Museum--has published neither (1) peer-reviewed papers in…
Track Picture Book. Elementary Science Study.
ERIC Educational Resources Information Center
Webster, David; And Others
This picture book was designed to be used with an Elementary Science Study unit that provides opportunities for students in grades 4-6 to study animal tracks. Shown within this book are numerous examples of tracks, including those of tires, human beings, animal tracks, and others in various media, such as snow, sand, mud, dust, and cement. (CS)
A video, text, and speech-driven realistic 3-d virtual head for human-machine interface.
Yu, Jun; Wang, Zeng-Fu
2015-05-01
A multiple inputs-driven realistic facial animation system based on 3-D virtual head for human-machine interface is proposed. The system can be driven independently by video, text, and speech, thus can interact with humans through diverse interfaces. The combination of parameterized model and muscular model is used to obtain a tradeoff between computational efficiency and high realism of 3-D facial animation. The online appearance model is used to track 3-D facial motion from video in the framework of particle filtering, and multiple measurements, i.e., pixel color value of input image and Gabor wavelet coefficient of illumination ratio image, are infused to reduce the influence of lighting and person dependence for the construction of online appearance model. The tri-phone model is used to reduce the computational consumption of visual co-articulation in speech synchronized viseme synthesis without sacrificing any performance. The objective and subjective experiments show that the system is suitable for human-machine interaction.
Design and Implementation of the MARG Human Body Motion Tracking System
2004-10-01
7803-8463-6/041$20.00 ©:!004 IEEE 625 OPTOTRAK from Northern Digital Inc. is a typical example of a marker-based system [I 0]. Another is the...technique called tunneling is :used to overcome this problem. Tunneling is a software solution that runs on the end point routers/computers and allows...multicast packets to traverse the network by putting them into unicast packets. MUTUP overcomes the tunneling problem using shared memory in the
Wahl, Angela; Victor Garcia, J
2014-08-01
The gastrointestinal (GI) track represents an important battlefield where pathogens first try to gain entry into a host. It is also a universe where highly diverse and ever changing inhabitants co-exist in an exceptional equilibrium without parallel in any other organ system of the body. The gut as an organ has its own well-developed and fully functional immune organization that is similar and yet different in many important ways to the rest of the immune system. Both a compromised and an overactive immune system in the gut can have dire and severe consequences to human health. It has therefore been of great interest to develop animal models that recapitulate key aspects of the human condition to better understand the interplay of the host immune system with its friends and its foes. However, reconstitution of the GI tract in humanized mice has been difficult and highly variable in different systems. A better molecular understanding of the development of the gut immune system in mice has provided critical cues that have been recently used to develop novel humanized mouse models that fully recapitulate the genesis and key functions of the gut immune system of humans. Of particular interest is the presence of human gut-associated lymphoid tissue (GALT) aggregates in the gut of NOD/SCID BLT humanized mice that demonstrate the faithful development of bona fide human plasma cells capable of migrating to the lamina propria and producing human IgA1 and IgA2. Copyright © 2014 Elsevier B.V. All rights reserved.
77 FR 33489 - Draft Offender Tracking System Standard
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-06
... Tracking System Standard AGENCY: National Institute of Justice. ACTION: Notice of Draft Offender Tracking System Standard, Selection and Application Guide, and Certification Program Requirements. SUMMARY: In an...) A draft standard entitled, ``Offender Tracking System Standard'' (2) a draft companion document...
Normalized Metadata Generation for Human Retrieval Using Multiple Video Surveillance Cameras.
Jung, Jaehoon; Yoon, Inhye; Lee, Seungwon; Paik, Joonki
2016-06-24
Since it is impossible for surveillance personnel to keep monitoring videos from a multiple camera-based surveillance system, an efficient technique is needed to help recognize important situations by retrieving the metadata of an object-of-interest. In a multiple camera-based surveillance system, an object detected in a camera has a different shape in another camera, which is a critical issue of wide-range, real-time surveillance systems. In order to address the problem, this paper presents an object retrieval method by extracting the normalized metadata of an object-of-interest from multiple, heterogeneous cameras. The proposed metadata generation algorithm consists of three steps: (i) generation of a three-dimensional (3D) human model; (ii) human object-based automatic scene calibration; and (iii) metadata generation. More specifically, an appropriately-generated 3D human model provides the foot-to-head direction information that is used as the input of the automatic calibration of each camera. The normalized object information is used to retrieve an object-of-interest in a wide-range, multiple-camera surveillance system in the form of metadata. Experimental results show that the 3D human model matches the ground truth, and automatic calibration-based normalization of metadata enables a successful retrieval and tracking of a human object in the multiple-camera video surveillance system.
Normalized Metadata Generation for Human Retrieval Using Multiple Video Surveillance Cameras
Jung, Jaehoon; Yoon, Inhye; Lee, Seungwon; Paik, Joonki
2016-01-01
Since it is impossible for surveillance personnel to keep monitoring videos from a multiple camera-based surveillance system, an efficient technique is needed to help recognize important situations by retrieving the metadata of an object-of-interest. In a multiple camera-based surveillance system, an object detected in a camera has a different shape in another camera, which is a critical issue of wide-range, real-time surveillance systems. In order to address the problem, this paper presents an object retrieval method by extracting the normalized metadata of an object-of-interest from multiple, heterogeneous cameras. The proposed metadata generation algorithm consists of three steps: (i) generation of a three-dimensional (3D) human model; (ii) human object-based automatic scene calibration; and (iii) metadata generation. More specifically, an appropriately-generated 3D human model provides the foot-to-head direction information that is used as the input of the automatic calibration of each camera. The normalized object information is used to retrieve an object-of-interest in a wide-range, multiple-camera surveillance system in the form of metadata. Experimental results show that the 3D human model matches the ground truth, and automatic calibration-based normalization of metadata enables a successful retrieval and tracking of a human object in the multiple-camera video surveillance system. PMID:27347961
Barsingerhorn, A D; Boonstra, F N; Goossens, H H L M
2017-02-01
Current stereo eye-tracking methods model the cornea as a sphere with one refractive surface. However, the human cornea is slightly aspheric and has two refractive surfaces. Here we used ray-tracing and the Navarro eye-model to study how these optical properties affect the accuracy of different stereo eye-tracking methods. We found that pupil size, gaze direction and head position all influence the reconstruction of gaze. Resulting errors range between ± 1.0 degrees at best. This shows that stereo eye-tracking may be an option if reliable calibration is not possible, but the applied eye-model should account for the actual optics of the cornea.
Motion cue effects on human pilot dynamics in manual control
NASA Technical Reports Server (NTRS)
Washizu, K.; Tanaka, K.; Endo, S.; Itoko, T.
1977-01-01
Two experiments were conducted to study the motion cue effects on human pilots during tracking tasks. The moving-base simulator of National Aerospace Laboratory was employed as the motion cue device, and the attitude director indicator or the projected visual field was employed as the visual cue device. The chosen controlled elements were second-order unstable systems. It was confirmed that with the aid of motion cues the pilot workload was lessened and consequently the human controllability limits were enlarged. In order to clarify the mechanism of these effects, the describing functions of the human pilots were identified by making use of the spectral and the time domain analyses. The results of these analyses suggest that the sensory system of the motion cues can yield the differential informations of the signal effectively, which coincides with the existing knowledges in the physiological area.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-22
... Complaints Tracking System AGENCY: Federal Student Aid, Department of Education. ACTION: Notice of a new... Division Complaints Tracking System (SPD-CTS)'' (18-11- 19). DATES: Submit your comments on this proposed... all comments about the School Participation Division--Complaints Tracking System to: Performance...
65 Main-Track Train Collisions, 1997 through 2002 - Review, Analysis, Findings and Recommendations
DOT National Transportation Integrated Search
2006-08-01
The Collision Analysis Working Group (CAWG) reviewed and analyzed main-track collision of both freight and passenger trainss involving human factor issues and to make safety findings and recommendations. CAWG agreed to review main track train collisi...
Human motion behavior while interacting with an industrial robot.
Bortot, Dino; Ding, Hao; Antonopolous, Alexandros; Bengler, Klaus
2012-01-01
Human workers and industrial robots both have specific strengths within industrial production. Advantageously they complement each other perfectly, which leads to the development of human-robot interaction (HRI) applications. Bringing humans and robots together in the same workspace may lead to potential collisions. The avoidance of such is a central safety requirement. It can be realized with sundry sensor systems, all of them decelerating the robot when the distance to the human decreases alarmingly and applying the emergency stop, when the distance becomes too small. As a consequence, the efficiency of the overall systems suffers, because the robot has high idle times. Optimized path planning algorithms have to be developed to avoid that. The following study investigates human motion behavior in the proximity of an industrial robot. Three different kinds of encounters between the two entities under three robot speed levels are prompted. A motion tracking system is used to capture the motions. Results show, that humans keep an average distance of about 0,5m to the robot, when the encounter occurs. Approximation of the workbenches is influenced by the robot in ten of 15 cases. Furthermore, an increase of participants' walking velocity with higher robot velocities is observed.
Target tracking system based on preliminary and precise two-stage compound cameras
NASA Astrophysics Data System (ADS)
Shen, Yiyan; Hu, Ruolan; She, Jun; Luo, Yiming; Zhou, Jie
2018-02-01
Early detection of goals and high-precision of target tracking is two important performance indicators which need to be balanced in actual target search tracking system. This paper proposed a target tracking system with preliminary and precise two - stage compound. This system using a large field of view to achieve the target search. After the target was searched and confirmed, switch into a small field of view for two field of view target tracking. In this system, an appropriate filed switching strategy is the key to achieve tracking. At the same time, two groups PID parameters are add into the system to reduce tracking error. This combination way with preliminary and precise two-stage compound can extend the scope of the target and improve the target tracking accuracy and this method has practical value.
Maintaining clinical tissue archives and supporting human research: challenges and solutions.
Giannini, Caterina; Oelkers, Michael M; Edwards, William D; Aubry, Marie Christine; Muncil, Maureen M; Mohamud, Koshin H; Sandleback, Sara G; Nowak, John M; Bridgeman, Andrew; Brown, Marie E; Cheville, John C
2011-03-01
The increasing number of requests for use of clinically archived tissue in translational research poses unique challenges. Conflicts may arise between pathologists who are responsible for overseeing and preserving the tissues and investigators who need these materials for research purposes. To evaluate the status of our institution's Tissue Registry Archive and to develop updated written policies and procedures to support a new modern and robust tracking system with features of a library loan system. An observational study was performed. We found the existing process for managing loans of tissue (slides and paraffin blocks) to be insufficient for the complexity and volume of this task. After extensive customization, a new tracking system was implemented in January 2008. Analysis of the first year of the system's use (2008) showed that of the 206,330 slides and 51,416 blocks loaned out in 2008, 92% and 94%, respectively, were returned by the due date. These rates were markedly improved from those before the new system: 61% and 47%, respectively, in 2005. Material permanently "lost" in 2008 represented only 0.02% of slides and 0.05% of blocks, none of which was the only diagnostic material for the case. With expanding needs for archived tissues for clinical care and growing demands for translational research, it is essential that pathology departments at institutions with large tissue-based research endeavors have a tracking and management system in place to meet clinical, educational, and research needs, as well as legal requirements.
Effects of Detailed Illustrations on Science Learning: An Eye-Tracking Study
ERIC Educational Resources Information Center
Lin, Yu Ying; Holmqvist, Kenneth; Miyoshi, Kiyofumi; Ashida, Hiroshi
2017-01-01
The eye-tracking method was used to assess the influence of detailed, colorful illustrations on reading behaviors and learning outcomes. Based on participants' subjective ratings in a pre-study, we selected eight one-page human anatomy lessons. In the main study, participants learned these eight human anatomy lessons; four were accompanied by…
Haptic Tracking Permits Bimanual Independence
ERIC Educational Resources Information Center
Rosenbaum, David A.; Dawson, Amanda A.; Challis, John H.
2006-01-01
This study shows that in a novel task--bimanual haptic tracking--neurologically normal human adults can move their 2 hands independently for extended periods of time with little or no training. Participants lightly touched buttons whose positions were moved either quasi-randomly in the horizontal plane by 1 or 2 human drivers (Experiment 1), in…
Imaging free zinc levels in vivo - what can be learned?
De Leon-Rodriguez, Luis; Lubag, Angelo Josue M; Sherry, A Dean
2012-12-01
Our ever-expanding knowledge about the role of zinc in biology includes its role in redox modulation, immune response, neurotransmission, reproduction, diabetes, cancer, and Alzheimers disease is galvanizing interest in detecting and monitoring the various forms of Zn(II) in biological systems. This paper reviews reported strategies for detecting and tracking of labile or "free" unchelated Zn(II) in tissues. While different bound structural forms of Zn(II) have been identified and studied in vitro by multiple techniques, very few molecular imaging methods have successfully tracked the ion in vivo. A number of MRI and optical strategies have now been reported for detection of free Zn(II) in cells and tissues but only a few have been applied successfully in vivo. A recent report of a MRI sensor for in vivo tracking of Zn(II) released from pancreatic β-cells during insulin secretion exemplifies the promise of rational design of new Zn(II) sensors for tracking this biologically important ion in vivo. Such studies promise to provide new insights into zinc trafficking in vivo and the critical role of this ion in many human diseases.
Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis
Dragovic, Rebecca A.; Gardiner, Christopher; Brooks, Alexandra S.; Tannetta, Dionne S.; Ferguson, David J.P.; Hole, Patrick; Carr, Bob; Redman, Christopher W.G.; Harris, Adrian L.; Dobson, Peter J.; Harrison, Paul; Sargent, Ian L.
2011-01-01
Cellular microvesicles and nanovesicles (exosomes) are involved in many disease processes and have major potential as biomarkers. However, developments in this area are constrained by limitations in the technology available for their measurement. Here we report on the use of fluorescence nanoparticle tracking analysis (NTA) to rapidly size and phenotype cellular vesicles. In this system vesicles are visualized by light scattering using a light microscope. A video is taken, and the NTA software tracks the brownian motion of individual vesicles and calculates their size and total concentration. Using human placental vesicles and plasma, we have demonstrated that NTA can measure cellular vesicles as small as ∼50 nm and is far more sensitive than conventional flow cytometry (lower limit ∼300 nm). By combining NTA with fluorescence measurement we have demonstrated that vesicles can be labeled with specific antibody-conjugated quantum dots, allowing their phenotype to be determined. From the Clinical Editor The authors of this study utilized fluorescence nanoparticle tracking analysis (NTA) to rapidly size and phenotype cellular vesicles, demonstrating that NTA is far more sensitive than conventional flow cytometry. PMID:21601655
NASA Astrophysics Data System (ADS)
Dong, Xiabin; Huang, Xinsheng; Zheng, Yongbin; Bai, Shengjian; Xu, Wanying
2014-07-01
Infrared moving target detection is an important part of infrared technology. We introduce a novel infrared small moving target detection method based on tracking interest points under complicated background. Firstly, Difference of Gaussians (DOG) filters are used to detect a group of interest points (including the moving targets). Secondly, a sort of small targets tracking method inspired by Human Visual System (HVS) is used to track these interest points for several frames, and then the correlations between interest points in the first frame and the last frame are obtained. Last, a new clustering method named as R-means is proposed to divide these interest points into two groups according to the correlations, one is target points and another is background points. In experimental results, the target-to-clutter ratio (TCR) and the receiver operating characteristics (ROC) curves are computed experimentally to compare the performances of the proposed method and other five sophisticated methods. From the results, the proposed method shows a better discrimination of targets and clutters and has a lower false alarm rate than the existing moving target detection methods.
Marine mammal tracks from two-hydrophone acoustic recordings made with a glider
NASA Astrophysics Data System (ADS)
Küsel, Elizabeth T.; Munoz, Tessa; Siderius, Martin; Mellinger, David K.; Heimlich, Sara
2017-04-01
A multinational oceanographic and acoustic sea experiment was carried out in the summer of 2014 off the western coast of the island of Sardinia, Mediterranean Sea. During this experiment, an underwater glider fitted with two hydrophones was evaluated as a potential tool for marine mammal population density estimation studies. An acoustic recording system was also tested, comprising an inexpensive, off-the-shelf digital recorder installed inside the glider. Detection and classification of sounds produced by whales and dolphins, and sometimes tracking and localization, are inherent components of population density estimation from passive acoustics recordings. In this work we discuss the equipment used as well as analysis of the data obtained, including detection and estimation of bearing angles. A human analyst identified the presence of sperm whale (Physeter macrocephalus) regular clicks as well as dolphin clicks and whistles. Cross-correlating clicks recorded on both data channels allowed for the estimation of the direction (bearing) of clicks, and realization of animal tracks. Insights from this bearing tracking analysis can aid in population density estimation studies by providing further information (bearings), which can improve estimates.
Managing Research in a Risk World
NASA Technical Reports Server (NTRS)
Anton, W.; Havenhill, M.
2014-01-01
The Office of Chief Medical Officer (OCHMO) owns all human health and performance risks managed by the Human System Risk Board (HSRB). While the HSRB manages the risks, the Human Research Program (HRP) manages the research portion of the overall risk mitigation strategy for these risks. The HSRB manages risks according to a process that identifies and analyzes risks, plans risk mitigation and tracks and reviews the implementation of these strategies according to its decisions pertaining to the OCHMO risk posture. HRP manages risk research work using an architecture that describes evidence-based risks, gaps in our knowledge about characterizing or mitigating the risk, and the tasks needed to produce deliverables to fill the gaps and reduce the risk. A planning schedule reflecting expected research milestones is developed, and as deliverables and new evidence are generated, research progress is tracked via the Path to Risk Reduction (PRR) that reflects a risk's research plan for a design reference mission. HRP's risk research process closely interfaces with the HSRB risk management process. As research progresses, new deliverables and evidence are used by the HSRB in conjunction with other operational and non-research evidence to inform decisions pertaining to the likelihood and consequence of the risk and risk posture. Those decisions in turn guide forward work for research as it contributes to overall risk mitigation strategies. As HRP tracks its research work, it aligns its priorities by assessing the effectiveness of its contributions and maintaining specific core competencies that would be invaluable for future work for exploration missions.
Human bony labyrinth is an indicator of population history and dispersal from Africa
Ponce de León, Marcia S.; Koesbardiati, Toetik; Weissmann, John David; Milella, Marco; Reyna-Blanco, Carlos S.; Suwa, Gen; Kondo, Osamu; Malaspinas, Anna-Sapfo; White, Tim D.; Zollikofer, Christoph P. E.
2018-01-01
The dispersal of modern humans from Africa is now well documented with genetic data that track population history, as well as gene flow between populations. Phenetic skeletal data, such as cranial and pelvic morphologies, also exhibit a dispersal-from-Africa signal, which, however, tends to be blurred by the effects of local adaptation and in vivo phenotypic plasticity, and that is often deteriorated by postmortem damage to skeletal remains. These complexities raise the question of which skeletal structures most effectively track neutral population history. The cavity system of the inner ear (the so-called bony labyrinth) is a good candidate structure for such analyses. It is already fully formed by birth, which minimizes postnatal phenotypic plasticity, and it is generally well preserved in archaeological samples. Here we use morphometric data of the bony labyrinth to show that it is a surprisingly good marker of the global dispersal of modern humans from Africa. Labyrinthine morphology tracks genetic distances and geography in accordance with an isolation-by-distance model with dispersal from Africa. Our data further indicate that the neutral-like pattern of variation is compatible with stabilizing selection on labyrinth morphology. Given the increasingly important role of the petrous bone for ancient DNA recovery from archaeological specimens, we encourage researchers to acquire 3D morphological data of the inner ear structures before any invasive sampling. Such data will constitute an important archive of phenotypic variation in present and past populations, and will permit individual-based genotype–phenotype comparisons. PMID:29610337
Ao, Di; Song, Rong; Gao, JinWu
2017-08-01
Although the merits of electromyography (EMG)-based control of powered assistive systems have been certified, the factors that affect the performance of EMG-based human-robot cooperation, which are very important, have received little attention. This study investigates whether a more physiologically appropriate model could improve the performance of human-robot cooperation control for an ankle power-assist exoskeleton robot. To achieve the goal, an EMG-driven Hill-type neuromusculoskeletal model (HNM) and a linear proportional model (LPM) were developed and calibrated through maximum isometric voluntary dorsiflexion (MIVD). The two control models could estimate the real-time ankle joint torque, and HNM is more accurate and can account for the change of the joint angle and muscle dynamics. Then, eight healthy volunteers were recruited to wear the ankle exoskeleton robot and complete a series of sinusoidal tracking tasks in the vertical plane. With the various levels of assist based on the two calibrated models, the subjects were instructed to track the target displayed on the screen as accurately as possible by performing ankle dorsiflexion and plantarflexion. Two measurements, the root mean square error (RMSE) and root mean square jerk (RMSJ), were derived from the assistant torque and kinematic signals to characterize the movement performances, whereas the amplitudes of the recorded EMG signals from the tibialis anterior (TA) and the gastrocnemius (GAS) were obtained to reflect the muscular efforts. The results demonstrated that the muscular effort and smoothness of tracking movements decreased with an increase in the assistant ratio. Compared with LPM, subjects made lower physical efforts and generated smoother movements when using HNM, which implied that a more physiologically appropriate model could enable more natural and human-like human-robot cooperation and has potential value for improvement of human-exoskeleton interaction in future applications.
UWB Tracking System Design for Free-Flyers
NASA Technical Reports Server (NTRS)
Ni, Jianjun; Arndt, Dickey; Phan, Chan; Ngo, Phong; Gross, Julia; Dusl, John
2004-01-01
This paper discusses an ultra-wideband (UWB) tracking system design effort for Mini-AERCam (Autonomous Extra-vehicular Robotic Camera), a free-flying video camera system under development at NASA Johnson Space Center for aid in surveillance around the International Space Station (ISS). UWB technology is exploited to implement the tracking system due to its properties, such as high data rate, fine time resolution, and low power spectral density. A system design using commercially available UWB products is proposed. A tracking algorithm TDOA (Time Difference of Arrival) that operates cooperatively with the UWB system is developed in this research effort. Matlab simulations show that the tracking algorithm can achieve fine tracking resolution with low noise TDOA data. Lab experiments demonstrate the UWB tracking capability with fine resolution.
Brownell, M J; Harwood, V J; Kurz, R C; McQuaig, S M; Lukasik, J; Scott, T M
2007-08-01
The effect of a stormwater conveyance system on indicator bacteria levels at a Florida beach was assessed using microbial source tracking methods, and by investigating indicator bacteria population structure in water and sediments. During a rain event, regulatory standards for both fecal coliforms and Enterococcus spp. were exceeded, contrasting with significantly lower levels under dry conditions. Indicator bacteria levels were high in sediments under all conditions. The involvement of human sewage in the contamination was investigated using polymerase chain reaction (PCR) assays for the esp gene of Enterococcus faecium and for the conserved T antigen of human polyomaviruses, all of which were negative. BOX-PCR subtyping of Escherichia coli and Enterococcus showed higher population diversity during the rain event; and higher population similarity during dry conditions, suggesting that without fresh inputs, only a subset of the population survives the selective pressure of the secondary habitat. These data indicate that high indicator bacteria levels were attributable to a stormwater system that acted as a reservoir and conduit, flushing high levels of indicator bacteria to the beach during a rain event. Such environmental reservoirs of indicator bacteria further complicate the already questionable relationship between indicator organisms and human pathogens, and call for a better understanding of the ecology, fate and persistence of indicator bacteria.
Prediction and measurement of human pilot dynamic characteristics in a manned rotorcraft simulation
NASA Technical Reports Server (NTRS)
Hess, Ronald A.; Reedy, James T.
1988-01-01
An analytical and experimental study of the human pilot control strategies in a manned rotorcraft simulation is described. The task simulated involves a low-speed, constant-altitude maneuvering task in which a head-down display is utilized to allow the pilot to track a moving hover point. The efficacy of the display law driving an acceleration symbol is determined and the manner in which the prediction and measurement of pilot/vehicle dynamics can be made part of man/machine system evaluations is demonstrated.
A helmet mounted display to adapt the telerobotic environment to human vision
NASA Technical Reports Server (NTRS)
Tharp, Gregory; Liu, Andrew; Yamashita, Hitomi; Stark, Lawrence
1990-01-01
A Helmet Mounted Display system has been developed. It provides the capability to display stereo images with the viewpoint tied to subjects' head orientation. The type of display might be useful in a telerobotic environment provided the correct operating parameters are known. The effects of update frequency were tested using a 3D tracking task. The effects of blur were tested using both tracking and pick-and-place tasks. For both, researchers found that operator performance can be degraded if the correct parameters are not used. Researchers are also using the display to explore the use of head movements as part of gaze as subjects search their visual field for target objects.
Spatio-temporal features for tracking and quadruped/biped discrimination
NASA Astrophysics Data System (ADS)
Rickman, Rick; Copsey, Keith; Bamber, David C.; Page, Scott F.
2012-05-01
Techniques such as SIFT and SURF facilitate efficient and robust image processing operations through the use of sparse and compact spatial feature descriptors and show much potential for defence and security applications. This paper considers the extension of such techniques to include information from the temporal domain, to improve utility in applications involving moving imagery within video data. In particular, the paper demonstrates how spatio-temporal descriptors can be used very effectively as the basis of a target tracking system and as target discriminators which can distinguish between bipeds and quadrupeds. Results using sequences of video imagery of walking humans and dogs are presented, and the relative merits of the approach are discussed.
Visual Data Mining: An Exploratory Approach to Analyzing Temporal Patterns of Eye Movements
ERIC Educational Resources Information Center
Yu, Chen; Yurovsky, Daniel; Xu, Tian
2012-01-01
Infant eye movements are an important behavioral resource to understand early human development and learning. But the complexity and amount of gaze data recorded from state-of-the-art eye-tracking systems also pose a challenge: how does one make sense of such dense data? Toward this goal, this article describes an interactive approach based on…
The Face Perception System becomes Species-Specific at 3 Months: An Eye-Tracking Study
ERIC Educational Resources Information Center
Di Giorgio, Elisa; Meary, David; Pascalis, Olivier; Simion, Francesca
2013-01-01
The current study aimed at investigating own- vs. other-species preferences in 3-month-old infants. The infants' eye movements were recorded during a visual preference paradigm to assess whether they show a preference for own-species faces when contrasted with other-species faces. Human and monkey faces, equated for all low-level perceptual…
Decentralized asset management for collaborative sensing
NASA Astrophysics Data System (ADS)
Malhotra, Raj P.; Pribilski, Michael J.; Toole, Patrick A.; Agate, Craig
2017-05-01
There has been increased impetus to leverage Small Unmanned Aerial Systems (SUAS) for collaborative sensing applications in which many platforms work together to provide critical situation awareness in dynamic environments. Such applications require critical sensor observations to be made at the right place and time to facilitate the detection, tracking, and classification of ground-based objects. This further requires rapid response to real-world events and the balancing of multiple, competing mission objectives. In this context, human operators become overwhelmed with management of many platforms. Further, current automated planning paradigms tend to be centralized and don't scale up well to many collaborating platforms. We introduce a decentralized approach based upon information-theory and distributed fusion which enable us to scale up to large numbers of collaborating Small Unmanned Aerial Systems (SUAS) platforms. This is exercised against a military application involving the autonomous detection, tracking, and classification of critical mobile targets. We further show that, based upon monte-carlo simulation results, our decentralized approach out-performs more static management strategies employed by human operators and achieves similar results to a centralized approach while being scalable and robust to degradation of communication. Finally, we describe the limitations of our approach and future directions for our research.
Dzyubachyk, Oleh; Essers, Jeroen; van Cappellen, Wiggert A; Baldeyron, Céline; Inagaki, Akiko; Niessen, Wiro J; Meijering, Erik
2010-10-01
Complete, accurate and reproducible analysis of intracellular foci from fluorescence microscopy image sequences of live cells requires full automation of all processing steps involved: cell segmentation and tracking followed by foci segmentation and pattern analysis. Integrated systems for this purpose are lacking. Extending our previous work in cell segmentation and tracking, we developed a new system for performing fully automated analysis of fluorescent foci in single cells. The system was validated by applying it to two common tasks: intracellular foci counting (in DNA damage repair experiments) and cell-phase identification based on foci pattern analysis (in DNA replication experiments). Experimental results show that the system performs comparably to expert human observers. Thus, it may replace tedious manual analyses for the considered tasks, and enables high-content screening. The described system was implemented in MATLAB (The MathWorks, Inc., USA) and compiled to run within the MATLAB environment. The routines together with four sample datasets are available at http://celmia.bigr.nl/. The software is planned for public release, free of charge for non-commercial use, after publication of this article.
Rinaldi, Fabio; Ellendorff, Tilia Renate; Madan, Sumit; Clematide, Simon; van der Lek, Adrian; Mevissen, Theo; Fluck, Juliane
2016-01-01
Automatic extraction of biological network information is one of the most desired and most complex tasks in biological and medical text mining. Track 4 at BioCreative V attempts to approach this complexity using fragments of large-scale manually curated biological networks, represented in Biological Expression Language (BEL), as training and test data. BEL is an advanced knowledge representation format which has been designed to be both human readable and machine processable. The specific goal of track 4 was to evaluate text mining systems capable of automatically constructing BEL statements from given evidence text, and of retrieving evidence text for given BEL statements. Given the complexity of the task, we designed an evaluation methodology which gives credit to partially correct statements. We identified various levels of information expressed by BEL statements, such as entities, functions, relations, and introduced an evaluation framework which rewards systems capable of delivering useful BEL fragments at each of these levels. The aim of this evaluation method is to help identify the characteristics of the systems which, if combined, would be most useful for achieving the overall goal of automatically constructing causal biological networks from text. © The Author(s) 2016. Published by Oxford University Press.
Tracking the Evolution of Infrastructure Systems and Mass Responses Using Publically Available Data
Guan, Xiangyang; Chen, Cynthia; Work, Dan
2016-01-01
Networks can evolve even on a short-term basis. This phenomenon is well understood by network scientists, but receive little attention in empirical literature involving real-world networks. On one hand, this is due to the deceitfully fixed topology of some networks such as many physical infrastructures, whose evolution is often deemed unlikely to occur in short term; on the other hand, the lack of data prohibits scientists from studying subjects such as social networks that seem likely to evolve on a short-term basis. We show that both networks—the infrastructure network and social network—are able to demonstrate evolutionary dynamics at the system level even in the short-term, characterized by shifting between different phases as predicted in network science. We develop a methodology of tracking the evolutionary dynamics of the two networks by incorporating flows and the microstructure of networks such as motifs. This approach is applied to the human interaction network and two transportation networks (subway and taxi) in the context of Hurricane Sandy, using publically available Twitter data and transportation data. Our result shows that significant changes in the system-level structure of networks can be detected on a continuous basis. This result provides a promising channel for real-time tracking in the future. PMID:27907061
Control of a HexaPOD treatment couch for robot-assisted radiotherapy.
Hermann, Christian; Ma, Lei; Wilbert, Jürgen; Baier, Kurt; Schilling, Klaus
2012-10-01
Moving tumors, for example in the vicinity of the lungs, pose a challenging problem in radiotherapy, as healthy tissue should not be irradiated. Apart from gating approaches, one standard method is to irradiate the complete volume within which a tumor moves plus a safety margin containing a considerable volume of healthy tissue. This work deals with a system for tumor motion compensation using the HexaPOD® robotic treatment couch (Medical Intelligence GmbH, Schwabmünchen, Germany). The HexaPOD, carrying the patient during treatment, is instructed to perform translational movements such that the tumor motion, from the beams-eye view of the linear accelerator, is eliminated. The dynamics of the HexaPOD are characterized by time delays, saturations, and other non-linearities that make the design of control a challenging task. The focus of this work lies on two control methods for the HexaPOD that can be used for reference tracking. The first method uses a model predictive controller based on a model gained through system identification methods, and the second method uses a position control scheme useful for reference tracking. We compared the tracking performance of both methods in various experiments with real hardware using ideal reference trajectories, prerecorded patient trajectories, and human volunteers whose breathing motion was compensated by the system.
Autonomous antenna tracking system for mobile symphonie ground stations
NASA Technical Reports Server (NTRS)
Ernsberger, K.; Lorch, G.; Waffenschmidt, E.
1982-01-01
The implementation of a satellite tracking and antenna control system is described. Due to the loss of inclination control for the symphonie satellites, it became necessary to equip the parabolic antennas of the mobile Symphonie ground station with tracking facilities. For the relatively low required tracking accuracy of 0.5 dB, a low cost, step track system was selected. The step track system developed for this purpose and tested over a long period of time in 7 ground stations is based on a search step method with subsequent parabola interpolation. As compared with the real search step method, the system has the advantage of a higher pointing angle resolution, and thus a higher tracking accuracy. When the pilot signal has been switched off for a long period of time, as for instance after the eclipse, the antenna is repointed towards the satellite by an automatically initiated spiral search scan. The function and design of the tracking system are detailed, while easy handling and tracking results.
UWB Two-Cluster AOA Tracking Prototype System Design
NASA Technical Reports Server (NTRS)
Ngo, Phong H.; Arndt, D.; Phan, C.; Gross, J.; Jianjun; Rafford, Melinda
2006-01-01
This presentation discusses a design effort for a prototype ultra-wideband (UWB) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being studied for use in tracking of lunar/Mars rovers during early exploration missions when satellite navigation systems are not available. The UWB technology is exploited to implement the tracking system due to its properties such as fine time resolution, low power spectral density and multipath immunity. A two cluster prototype design using commercially available UWB radios is employed to implement the Angle of Arrival (AOA) tracking methodology in this design effort. In order to increase the tracking range, low noise amplifiers (LNA) and high gain horns are used at the receiving sides. Field tests were conducted jointly with the Science and Crew Operation Utility Testbed (SCOUT) vehicle near the Meteor Crater in Arizona to test the tracking capability for a moving target in an operational environment. These tests demonstrate that the UWB tracking system can co-exist with other on-board radio frequency (RF) communication systems (such as Global Positioning System (GPS), video, voice and telemetry systems), and that a tracking resolution less than 1% of the range can be achieved.
KOLAM: a cross-platform architecture for scalable visualization and tracking in wide-area imagery
NASA Astrophysics Data System (ADS)
Fraser, Joshua; Haridas, Anoop; Seetharaman, Guna; Rao, Raghuveer M.; Palaniappan, Kannappan
2013-05-01
KOLAM is an open, cross-platform, interoperable, scalable and extensible framework supporting a novel multi- scale spatiotemporal dual-cache data structure for big data visualization and visual analytics. This paper focuses on the use of KOLAM for target tracking in high-resolution, high throughput wide format video also known as wide-area motion imagery (WAMI). It was originally developed for the interactive visualization of extremely large geospatial imagery of high spatial and spectral resolution. KOLAM is platform, operating system and (graphics) hardware independent, and supports embedded datasets scalable from hundreds of gigabytes to feasibly petabytes in size on clusters, workstations, desktops and mobile computers. In addition to rapid roam, zoom and hyper- jump spatial operations, a large number of simultaneously viewable embedded pyramid layers (also referred to as multiscale or sparse imagery), interactive colormap and histogram enhancement, spherical projection and terrain maps are supported. The KOLAM software architecture was extended to support airborne wide-area motion imagery by organizing spatiotemporal tiles in very large format video frames using a temporal cache of tiled pyramid cached data structures. The current version supports WAMI animation, fast intelligent inspection, trajectory visualization and target tracking (digital tagging); the latter by interfacing with external automatic tracking software. One of the critical needs for working with WAMI is a supervised tracking and visualization tool that allows analysts to digitally tag multiple targets, quickly review and correct tracking results and apply geospatial visual analytic tools on the generated trajectories. One-click manual tracking combined with multiple automated tracking algorithms are available to assist the analyst and increase human effectiveness.
NASA Technical Reports Server (NTRS)
Crane, D. F.
1984-01-01
When human operators are performing precision tracking tasks, their dynamic response can often be modeled by quasilinear describing functions. That fact permits analysis of the effects of delay in certain man machine control systems using linear control system analysis techniques. The analysis indicates that a reduction in system stability is the immediate effect of additional control system delay, and that system characteristics moderate or exaggerate the importance of the delay. A selection of data (simulator and flight test) consistent with the analysis is reviewed. Flight simulator visual-display delay compensation, designed to restore pilot aircraft system stability, was evaluated in several studies which are reviewed here. The studies range from single-axis, tracking-task experiments (with sufficient subjects and trials to establish the statistical significance of the results) to a brief evaluation of compensation of a computer generated imagery (CGI) visual display system in a full six degree of freedom simulation. The compensation was effective, improvements in pilot performance and workload or aircraft handling qualities rating (HQR) were observed. Results from recent aircraft handling qualities research literature, which support the compensation design approach, are also reviewed.
40 CFR 97.50 - NOX Allowance Tracking System accounts.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 21 2011-07-01 2011-07-01 false NOX Allowance Tracking System accounts. 97.50 Section 97.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Tracking System § 97.50 NOX Allowance Tracking System accounts. (a) Nature and function of compliance...
40 CFR 97.50 - NOX Allowance Tracking System accounts.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX Allowance Tracking System accounts. 97.50 Section 97.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Tracking System § 97.50 NOX Allowance Tracking System accounts. (a) Nature and function of compliance...
Experiences from the anatomy track in the ontology alignment evaluation initiative.
Dragisic, Zlatan; Ivanova, Valentina; Li, Huanyu; Lambrix, Patrick
2017-12-04
One of the longest running tracks in the Ontology Alignment Evaluation Initiative is the Anatomy track which focuses on aligning two anatomy ontologies. The Anatomy track was started in 2005. In 2005 and 2006 the task in this track was to align the Foundational Model of Anatomy and the OpenGalen Anatomy Model. Since 2007 the ontologies used in the track are the Adult Mouse Anatomy and a part of the NCI Thesaurus. Since 2015 the data in the Anatomy track is also used in the Interactive track of the Ontology Alignment Evaluation Initiative. In this paper we focus on the Anatomy track in the years 2007-2016 and the Anatomy part of the Interactive track in 2015-2016. We describe the data set and the changes it went through during the years as well as the challenges it poses for ontology alignment systems. Further, we give an overview of all systems that participated in the track and the techniques they have used. We discuss the performance results of the systems and summarize the general trends. About 50 systems have participated in the Anatomy track. Many different techniques were used. The most popular matching techniques are string-based strategies and structure-based techniques. Many systems also use auxiliary information. The quality of the alignment has increased for the best performing systems since the beginning of the track and more and more systems check the coherence of the proposed alignment and implement a repair strategy. Further, interacting with an oracle is beneficial.
Development of Laser Propulsion and Tracking System for Laser-Driven Micro-Airplane
NASA Astrophysics Data System (ADS)
Ishikawa, Hiroyasu; Kajiwara, Itsuro; Hoshino, Kentaro; Yabe, Takashi; Uchida, Shigeaki; Shimane, Yoshichika
2004-03-01
The purposes of this paper are to improve the control performance of the developed laser tracking system and to develop an integrated laser propulsion/tracking system for realizing a continuous flight and control of the micro-airplane. The laser propulsion is significantly effective to achieve the miniaturization and lightening of the micro-airplane. The laser-driven micro-airplane has been studied with a paper-craft airplane and YAG laser, resulting in a successful glide of the airplane. In the next stage of the laser-driven micro-airplane development, the laser tracking is expected as key technologies to achieve continuous propulsion. Furthermore, the laser propulsion system should be combined with the laser tracking system to supply continuous propulsion. Experiments are carried out to evaluate the performance of the developed laser tracking system and integrated laser propulsion/tracking system.
Feature tracking for automated volume of interest stabilization on 4D-OCT images
NASA Astrophysics Data System (ADS)
Laves, Max-Heinrich; Schoob, Andreas; Kahrs, Lüder A.; Pfeiffer, Tom; Huber, Robert; Ortmaier, Tobias
2017-03-01
A common representation of volumetric medical image data is the triplanar view (TV), in which the surgeon manually selects slices showing the anatomical structure of interest. In addition to common medical imaging such as MRI or computed tomography, recent advances in the field of optical coherence tomography (OCT) have enabled live processing and volumetric rendering of four-dimensional images of the human body. Due to the region of interest undergoing motion, it is challenging for the surgeon to simultaneously keep track of an object by continuously adjusting the TV to desired slices. To select these slices in subsequent frames automatically, it is necessary to track movements of the volume of interest (VOI). This has not been addressed with respect to 4DOCT images yet. Therefore, this paper evaluates motion tracking by applying state-of-the-art tracking schemes on maximum intensity projections (MIP) of 4D-OCT images. Estimated VOI location is used to conveniently show corresponding slices and to improve the MIPs by calculating thin-slab MIPs. Tracking performances are evaluated on an in-vivo sequence of human skin, captured at 26 volumes per second. Among investigated tracking schemes, our recently presented tracking scheme for soft tissue motion provides highest accuracy with an error of under 2.2 voxels for the first 80 volumes. Object tracking on 4D-OCT images enables its use for sub-epithelial tracking of microvessels for image-guidance.
40 CFR 96.50 - NOX Allowance Tracking System accounts.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 21 2011-07-01 2011-07-01 false NOX Allowance Tracking System accounts. 96.50 Section 96.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... IMPLEMENTATION PLANS NOX Allowance Tracking System § 96.50 NOX Allowance Tracking System accounts. (a) Nature and...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 21 2011-07-01 2011-07-01 false NOX Allowance Tracking System... SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS NOX Allowance Tracking System § 96.52 NOX Allowance Tracking System responsibilities of NOX authorized account representative. (a) Following the...
40 CFR 96.50 - NOX Allowance Tracking System accounts.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX Allowance Tracking System accounts. 96.50 Section 96.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... IMPLEMENTATION PLANS NOX Allowance Tracking System § 96.50 NOX Allowance Tracking System accounts. (a) Nature and...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX Allowance Tracking System... SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS NOX Allowance Tracking System § 96.52 NOX Allowance Tracking System responsibilities of NOX authorized account representative. (a) Following the...
ERIC Educational Resources Information Center
Ferry, Alissa L.; Fló, Ana; Brusini, Perrine; Cattarossi, Luigi; Macagno, Francesco; Nespor, Marina; Mehler, Jacques
2016-01-01
To understand language, humans must encode information from rapid, sequential streams of syllables--tracking their order and organizing them into words, phrases, and sentences. We used Near-Infrared Spectroscopy (NIRS) to determine whether human neonates are born with the capacity to track the positions of syllables in multisyllabic sequences.…
CMU OAQA at TREC 2015 LiveQA: Discovering the Right Answer with Clues
2015-11-20
QA) system that was evaluated in the TREC 2015 LiveQA Challenge. This system answers real-user questions freshly submitted to the Yahoo ! Answers...questions on the Yahoo ! Answers site 1, which have not yet received a human answer. As per the requirements for this track, participants must deploy their... Yahoo ! Answers. We also designed and im- plemented a new data model and novel relevance ranking methods for LiveQA. During the official run, our QA web
2010-06-01
32 2. Low-Cost Framework........................................................................33 3. Low Magnetic Field ...that have a significant impact on the magnetic field measured by a MARG, which could potentially add errors that are due entirely to the test...minimize the impact on the local magnetic field , and the apparatus was made as rigidly as possible using 2 x 4s to minimize any out of plane motions that
Huang, Yi-Wen; Roa, Juan C.; Goodfellow, Paul J.; Kizer, E. Lynette; Huang, Tim H. M.; Chen, Yidong
2013-01-01
Background DNA methylation of promoter CpG islands is associated with gene suppression, and its unique genome-wide profiles have been linked to tumor progression. Coupled with high-throughput sequencing technologies, it can now efficiently determine genome-wide methylation profiles in cancer cells. Also, experimental and computational technologies make it possible to find the functional relationship between cancer-specific methylation patterns and their clinicopathological parameters. Methodology/Principal Findings Cancer methylome system (CMS) is a web-based database application designed for the visualization, comparison and statistical analysis of human cancer-specific DNA methylation. Methylation intensities were obtained from MBDCap-sequencing, pre-processed and stored in the database. 191 patient samples (169 tumor and 22 normal specimen) and 41 breast cancer cell-lines are deposited in the database, comprising about 6.6 billion uniquely mapped sequence reads. This provides comprehensive and genome-wide epigenetic portraits of human breast cancer and endometrial cancer to date. Two views are proposed for users to better understand methylation structure at the genomic level or systemic methylation alteration at the gene level. In addition, a variety of annotation tracks are provided to cover genomic information. CMS includes important analytic functions for interpretation of methylation data, such as the detection of differentially methylated regions, statistical calculation of global methylation intensities, multiple gene sets of biologically significant categories, interactivity with UCSC via custom-track data. We also present examples of discoveries utilizing the framework. Conclusions/Significance CMS provides visualization and analytic functions for cancer methylome datasets. A comprehensive collection of datasets, a variety of embedded analytic functions and extensive applications with biological and translational significance make this system powerful and unique in cancer methylation research. CMS is freely accessible at: http://cbbiweb.uthscsa.edu/KMethylomes/. PMID:23630576
Gu, Fei; Doderer, Mark S; Huang, Yi-Wen; Roa, Juan C; Goodfellow, Paul J; Kizer, E Lynette; Huang, Tim H M; Chen, Yidong
2013-01-01
DNA methylation of promoter CpG islands is associated with gene suppression, and its unique genome-wide profiles have been linked to tumor progression. Coupled with high-throughput sequencing technologies, it can now efficiently determine genome-wide methylation profiles in cancer cells. Also, experimental and computational technologies make it possible to find the functional relationship between cancer-specific methylation patterns and their clinicopathological parameters. Cancer methylome system (CMS) is a web-based database application designed for the visualization, comparison and statistical analysis of human cancer-specific DNA methylation. Methylation intensities were obtained from MBDCap-sequencing, pre-processed and stored in the database. 191 patient samples (169 tumor and 22 normal specimen) and 41 breast cancer cell-lines are deposited in the database, comprising about 6.6 billion uniquely mapped sequence reads. This provides comprehensive and genome-wide epigenetic portraits of human breast cancer and endometrial cancer to date. Two views are proposed for users to better understand methylation structure at the genomic level or systemic methylation alteration at the gene level. In addition, a variety of annotation tracks are provided to cover genomic information. CMS includes important analytic functions for interpretation of methylation data, such as the detection of differentially methylated regions, statistical calculation of global methylation intensities, multiple gene sets of biologically significant categories, interactivity with UCSC via custom-track data. We also present examples of discoveries utilizing the framework. CMS provides visualization and analytic functions for cancer methylome datasets. A comprehensive collection of datasets, a variety of embedded analytic functions and extensive applications with biological and translational significance make this system powerful and unique in cancer methylation research. CMS is freely accessible at: http://cbbiweb.uthscsa.edu/KMethylomes/.
Trajectory Specification for High-Capacity Air Traffic Control
NASA Technical Reports Server (NTRS)
Paielli, Russell A.
2004-01-01
In the current air traffic management system, the fundamental limitation on airspace capacity is the cognitive ability of human air traffic controllers to maintain safe separation with high reliability. The doubling or tripling of airspace capacity that will be needed over the next couple of decades will require that tactical separation be at least partially automated. Standardized conflict-free four-dimensional trajectory assignment will be needed to accomplish that objective. A trajectory specification format based on the Extensible Markup Language is proposed for that purpose. This format can be used to downlink a trajectory request, which can then be checked on the ground for conflicts and approved or modified, if necessary, then uplinked as the assigned trajectory. The horizontal path is specified as a series of geodetic waypoints connected by great circles, and the great-circle segments are connected by turns of specified radius. Vertical profiles for climb and descent are specified as low-order polynomial functions of along-track position, which is itself specified as a function of time. Flight technical error tolerances in the along-track, cross-track, and vertical axes define a bounding space around the reference trajectory, and conformance will guarantee the required separation for a period of time known as the conflict time horizon. An important safety benefit of this regimen is that the traffic will be able to fly free of conflicts for at least several minutes even if all ground systems and the entire communication infrastructure fail. Periodic updates in the along-track axis will adjust for errors in the predicted along-track winds.
Utilization of Historic Information in an Optimisation Task
NASA Technical Reports Server (NTRS)
Boesser, T.
1984-01-01
One of the basic components of a discrete model of motor behavior and decision making, which describes tracking and supervisory control in unitary terms, is assumed to be a filtering mechanism which is tied to the representational principles of human memory for time-series information. In a series of experiments subjects used the time-series information with certain significant limitations: there is a range-effect; asymmetric distributions seem to be recognized, but it does not seem to be possible to optimize performance based on skewed distributions. Thus there is a transformation of the displayed data between the perceptual system and representation in memory involving a loss of information. This rules out a number of representational principles for time-series information in memory and fits very well into the framework of a comprehensive discrete model for control of complex systems, modelling continuous control (tracking), discrete responses, supervisory behavior and learning.
Passive RFID Localisation Framework in Smart Homes Healthcare Settings.
Alsinglawi, Belal; Liu, Tony; Nguyen, Quang Vinh; Gunawardana, Upul; Maeder, Anthony; Simoff, Simeon
2016-01-01
In recent years, Smart Homes have become a solution to benefit impaired individuals and elderly in their daily life settings. In healthcare applications, pervasive technologies have enabled the practicality of personal monitoring using Indoor positioning technologies. Radio-Frequency Identification (RFID) is a promising technology, which is useful for non-invasive tracking of activities of daily living. Many implementations have focused on using battery-enabled tags like in RFID active tags, which require frequent maintenance and they are costly. Other systems can use wearable sensors requiring individuals to wear tags which may be inappropriate for elders. Successful implementations of a tracking system are dependent on multiple considerations beyond the physical performance of the solution, such as affordability and human acceptance. This paper presents a localisation framework using passive RFID sensors. It aims to provide a low cost solution for subject location in Smart Homes healthcare.
Bigini, Paolo; Diana, Valentina; Barbera, Sara; Fumagalli, Elena; Micotti, Edoardo; Sitia, Leopoldo; Paladini, Alessandra; Bisighini, Cinzia; De Grada, Laura; Coloca, Laura; Colombo, Laura; Manca, Pina; Bossolasco, Patrizia; Malvestiti, Francesca; Fiordaliso, Fabio; Forloni, Gianluigi; Morbidelli, Massimo; Salmona, Mario; Giardino, Daniela; Mennini, Tiziana; Moscatelli, Davide; Silani, Vincenzo; Cova, Lidia
2012-01-01
Stem Cell (SC) therapy is one of the most promising approaches for the treatment of Amyotrophic Lateral Sclerosis (ALS). Here we employed Super Paramagnetic Iron Oxide nanoparticles (SPIOn) and Hoechst 33258 to track human Amniotic Fluid Cells (hAFCs) after transplantation in the lateral ventricles of wobbler (a murine model of ALS) and healthy mice. By in vitro, in vivo and ex vivo approaches we found that: 1) the main physical parameters of SPIOn were maintained over time; 2) hAFCs efficiently internalized SPIOn into the cytoplasm while Hoechst 33258 labeled nuclei; 3) SPIOn internalization did not alter survival, cell cycle, proliferation, metabolism and phenotype of hAFCs; 4) after transplantation hAFCs rapidly spread to the whole ventricular system, but did not migrate into the brain parenchyma; 5) hAFCs survived for a long time in the ventricles of both wobbler and healthy mice; 6) the transplantation of double-labeled hAFCs did not influence mice survival. PMID:22384217
Microbial source tracking in highly vulnerable karst drinking water resources.
Diston, D; Robbi, R; Baumgartner, A; Felleisen, R
2018-02-01
Water resources situated in areas with underlying karst geology are particularly vulnerable to fecal pollution. In such vulnerable systems, microbial source tracking (MST) methods are useful tools to elucidate the pathways of both animal and human fecal pollution, leading to more accurate water use risk assessments. Here, we describe the application of a MST toolbox using both culture-dependent bacteriophage and molecular-dependent 16S rRNA assays at spring and well sites in the karstic St Imier Valley, Switzerland. Culture-dependent and molecular-dependent marker performance varied significantly, with the 16S rRNA assays displaying greater sensitivity than their phage counterpart; HF183 was the best performing human wastewater-associated marker while Rum2Bac was the best performing ruminant marker. Differences were observed in pollution regimes between the well and spring sampling sites, with the spring water being more degraded than the well site. Our results inform the choice of marker selection for MST studies and highlight differences in microbial water quality between well and spring karst sites.
Unveiling adaptation using high-resolution lineage tracking
NASA Astrophysics Data System (ADS)
Blundell, Jamie; Levy, Sasha; Fisher, Daniel; Petrov, Dmitri; Sherlock, Gavin
2013-03-01
Human diseases such as cancer and microbial infections are adaptive processes inside the human body with enormous population sizes: between 106 -1012 cells. In spite of this our understanding of adaptation in large populations is limited. The key problem is the difficulty in identifying anything more than a handful of rare, large-effect beneficial mutations. The development and use of molecular barcodes allows us to uniquely tag hundreds of thousands of cells and enable us to track tens of thousands of adaptive mutations in large yeast populations. We use this system to test some of the key theories on which our understanding of adaptation in large populations is based. We (i) measure the fitness distribution in an evolving population at different times, (ii) identify when an appreciable fraction of clones in the population have at most a single adaptive mutation and isolate a large number of clones with independent single adaptive mutations, and (iii) use this clone collection to determine the distribution of fitness effects of single beneficial mutations.
Do humans have two systems to track beliefs and belief-like states?
Apperly, Ian A; Butterfill, Stephen A
2009-10-01
The lack of consensus on how to characterize humans' capacity for belief reasoning has been brought into sharp focus by recent research. Children fail critical tests of belief reasoning before 3 to 4 years of age (H. Wellman, D. Cross, & J. Watson, 2001; H. Wimmer & J. Perner, 1983), yet infants apparently pass false-belief tasks at 13 or 15 months (K. H. Onishi & R. Baillargeon, 2005; L. Surian, S. Caldi, & D. Sperber, 2007). Nonhuman animals also fail critical tests of belief reasoning but can show very complex social behavior (e.g., J. Call & M. Tomasello, 2005). Fluent social interaction in adult humans implies efficient processing of beliefs, yet direct tests suggest that belief reasoning is cognitively demanding, even for adults (e.g., I. A. Apperly, D. Samson, & G. W. Humphreys, 2009). The authors interpret these findings by drawing an analogy with the domain of number cognition, where similarly contrasting results have been observed. They propose that the success of infants and nonhuman animals on some belief reasoning tasks may be best explained by a cognitively efficient but inflexible capacity for tracking belief-like states. In humans, this capacity persists in parallel with a later-developing, more flexible but more cognitively demanding theory-of-mind abilities.
Linear array of photodiodes to track a human speaker for video recording
NASA Astrophysics Data System (ADS)
DeTone, D.; Neal, H.; Lougheed, R.
2012-12-01
Communication and collaboration using stored digital media has garnered more interest by many areas of business, government and education in recent years. This is due primarily to improvements in the quality of cameras and speed of computers. An advantage of digital media is that it can serve as an effective alternative when physical interaction is not possible. Video recordings that allow for viewers to discern a presenter's facial features, lips and hand motions are more effective than videos that do not. To attain this, one must maintain a video capture in which the speaker occupies a significant portion of the captured pixels. However, camera operators are costly, and often do an imperfect job of tracking presenters in unrehearsed situations. This creates motivation for a robust, automated system that directs a video camera to follow a presenter as he or she walks anywhere in the front of a lecture hall or large conference room. Such a system is presented. The system consists of a commercial, off-the-shelf pan/tilt/zoom (PTZ) color video camera, a necklace of infrared LEDs and a linear photodiode array detector. Electronic output from the photodiode array is processed to generate the location of the LED necklace, which is worn by a human speaker. The computer controls the video camera movements to record video of the speaker. The speaker's vertical position and depth are assumed to remain relatively constant- the video camera is sent only panning (horizontal) movement commands. The LED necklace is flashed at 70Hz at a 50% duty cycle to provide noise-filtering capability. The benefit to using a photodiode array versus a standard video camera is its higher frame rate (4kHz vs. 60Hz). The higher frame rate allows for the filtering of infrared noise such as sunlight and indoor lighting-a capability absent from other tracking technologies. The system has been tested in a large lecture hall and is shown to be effective.
Video-tracker trajectory analysis: who meets whom, when and where
NASA Astrophysics Data System (ADS)
Jäger, U.; Willersinn, D.
2010-04-01
Unveiling unusual or hostile events by observing manifold moving persons in a crowd is a challenging task for human operators, especially when sitting in front of monitor walls for hours. Typically, hostile events are rare. Thus, due to tiredness and negligence the operator may miss important events. In such situations, an automatic alarming system is able to support the human operator. The system incorporates a processing chain consisting of (1) people tracking, (2) event detection, (3) data retrieval, and (4) display of relevant video sequence overlaid by highlighted regions of interest. In this paper we focus on the event detection stage of the processing chain mentioned above. In our case, the selected event of interest is the encounter of people. Although being based on a rather simple trajectory analysis, this kind of event embodies great practical importance because it paves the way to answer the question "who meets whom, when and where". This, in turn, forms the basis to detect potential situations where e.g. money, weapons, drugs etc. are handed over from one person to another in crowded environments like railway stations, airports or busy streets and places etc.. The input to the trajectory analysis comes from a multi-object video-based tracking system developed at IOSB which is able to track multiple individuals within a crowd in real-time [1]. From this we calculate the inter-distances between all persons on a frame-to-frame basis. We use a sequence of simple rules based on the individuals' kinematics to detect the event mentioned above to output the frame number, the persons' IDs from the tracker and the pixel coordinates of the meeting position. Using this information, a data retrieval system may extract the corresponding part of the recorded video image sequence and finally allows for replaying the selected video clip with a highlighted region of interest to attract the operator's attention for further visual inspection.
Sandberg, Warren S; Häkkinen, Matti; Egan, Marie; Curran, Paige K; Fairbrother, Pamela; Choquette, Ken; Daily, Bethany; Sarkka, Jukka-Pekka; Rattner, David
2005-09-01
When procedures and processes to assure patient location based on human performance do not work as expected, patients are brought incrementally closer to a possible "wrong patient-wrong procedure'' error. We developed a system for automated patient location monitoring and management. Real-time data from an active infrared/radio frequency identification tracking system provides patient location data that are robust and can be compared with an "expected process'' model to automatically flag wrong-location events as soon as they occur. The system also generates messages that are automatically sent to process managers via the hospital paging system, thus creating an active alerting function to annunciate errors. We deployed the system to detect and annunciate "patient-in-wrong-OR'' events. The system detected all "wrong-operating room (OR)'' events, and all "wrong-OR'' locations were correctly assigned within 0.50+/-0.28 minutes (mean+/-SD). This corresponded to the measured latency of the tracking system. All wrong-OR events were correctly annunciated via the paging function. This experiment demonstrates that current technology can automatically collect sufficient data to remotely monitor patient flow through a hospital, provide decision support based on predefined rules, and automatically notify stakeholders of errors.
Chemical Tracking Systems: Not Your Usual Global Positioning System!
ERIC Educational Resources Information Center
Roy, Ken
2007-01-01
The haphazard storing and tracking of chemicals in the laboratory is a serious safety issue facing science teachers. To get control of your chemicals, try implementing a "chemical tracking system". A chemical tracking system (CTS) is a database of chemicals used in the laboratory. If implemented correctly, a CTS will reduce purchasing costs,…
47 CFR 64.1320 - Payphone call tracking system audits.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 3 2010-10-01 2010-10-01 false Payphone call tracking system audits. 64.1320... call tracking system audits. (a) Unless it has entered into an alternative compensation arrangement... Completing Carrier must undergo an audit of its § 64.1310(a)(1) tracking system by an independent third party...
CD24 tracks divergent pluripotent states in mouse and human cells
Shakiba, Nika; White, Carl A.; Lipsitz, Yonatan Y.; Yachie-Kinoshita, Ayako; Tonge, Peter D; Hussein, Samer M. I.; Puri, Mira C.; Elbaz, Judith; Morrissey-Scoot, James; Li, Mira; Munoz, Javier; Benevento, Marco; Rogers, Ian M.; Hanna, Jacob H.; Heck, Albert J. R.; Wollscheid, Bernd; Nagy, Andras; Zandstra, Peter W
2015-01-01
Reprogramming is a dynamic process that can result in multiple pluripotent cell types emerging from divergent paths. Cell surface protein expression is a particularly desirable tool to categorize reprogramming and pluripotency as it enables robust quantification and enrichment of live cells. Here we use cell surface proteomics to interrogate mouse cell reprogramming dynamics and discover CD24 as a marker that tracks the emergence of reprogramming-responsive cells, while enabling the analysis and enrichment of transgene-dependent (F-class) and -independent (traditional) induced pluripotent stem cells (iPSCs) at later stages. Furthermore, CD24 can be used to delineate epiblast stem cells (EpiSCs) from embryonic stem cells (ESCs) in mouse pluripotent culture. Importantly, regulated CD24 expression is conserved in human pluripotent stem cells (PSCs), tracking the conversion of human ESCs to more naive-like PSC states. Thus, CD24 is a conserved marker for tracking divergent states in both reprogramming and standard pluripotent culture. PMID:26076835
Multi-viewer tracking integral imaging system and its viewing zone analysis.
Park, Gilbae; Jung, Jae-Hyun; Hong, Keehoon; Kim, Yunhee; Kim, Young-Hoon; Min, Sung-Wook; Lee, Byoungho
2009-09-28
We propose a multi-viewer tracking integral imaging system for viewing angle and viewing zone improvement. In the tracking integral imaging system, the pickup angles in each elemental lens in the lens array are decided by the positions of viewers, which means the elemental image can be made for each viewer to provide wider viewing angle and larger viewing zone. Our tracking integral imaging system is implemented with an infrared camera and infrared light emitting diodes which can track the viewers' exact positions robustly. For multiple viewers to watch integrated three-dimensional images in the tracking integral imaging system, it is needed to formulate the relationship between the multiple viewers' positions and the elemental images. We analyzed the relationship and the conditions for the multiple viewers, and verified them by the implementation of two-viewer tracking integral imaging system.
NASA Astrophysics Data System (ADS)
Cleary, Kevin R.; Banovac, Filip; Levy, Elliot; Tanaka, Daigo
2002-05-01
We have designed and constructed a liver respiratory motion simulator as a first step in demonstrating the feasibility of using a new magnetic tracking system to follow the movement of internal organs. The simulator consists of a dummy torso, a synthetic liver, a linear motion platform, a graphical user interface for image overlay, and a magnetic tracking system along with magnetically tracked instruments. While optical tracking systems are commonly used in commercial image-guided surgery systems for the brain and spine, they are limited to procedures in which a line of sight can be maintained between the tracking system and the instruments which are being tracked. Magnetic tracking systems have been proposed for image-guided surgery applications, but most currently available magnetically tracked sensors are too small to be embedded in the body. The magnetic tracking system employed here, the AURORA from Northern Digital, can use sensors as small as 0.9 mm in diameter by 8 mm in length. This makes it possible to embed these sensors in catheters and thin needles. The catheters can then be wedged in a vein in an internal organ of interest so that tracking the position of the catheter gives a good estimate of the position of the internal organ. Alternatively, a needle with an embedded sensor could be placed near the area of interest.
Automated assessment and tracking of human body thermal variations using unsupervised clustering.
Yousefi, Bardia; Fleuret, Julien; Zhang, Hai; Maldague, Xavier P V; Watt, Raymond; Klein, Matthieu
2016-12-01
The presented approach addresses a review of the overheating that occurs during radiological examinations, such as magnetic resonance imaging, and a series of thermal experiments to determine a thermally suitable fabric material that should be used for radiological gowns. Moreover, an automatic system for detecting and tracking of the thermal fluctuation is presented. It applies hue-saturated-value-based kernelled k-means clustering, which initializes and controls the points that lie on the region-of-interest (ROI) boundary. Afterward, a particle filter tracks the targeted ROI during the video sequence independently of previous locations of overheating spots. The proposed approach was tested during experiments and under conditions very similar to those used during real radiology exams. Six subjects have voluntarily participated in these experiments. To simulate the hot spots occurring during radiology, a controllable heat source was utilized near the subject's body. The results indicate promising accuracy for the proposed approach to track hot spots. Some approximations were used regarding the transmittance of the atmosphere, and emissivity of the fabric could be neglected because of the independence of the proposed approach for these parameters. The approach can track the heating spots continuously and correctly, even for moving subjects, and provides considerable robustness against motion artifact, which occurs during most medical radiology procedures.
Pan, Weiyuan; Jung, Dongwook; Yoon, Hyo Sik; Lee, Dong Eun; Naqvi, Rizwan Ali; Lee, Kwan Woo; Park, Kang Ryoung
2016-08-31
Gaze tracking is the technology that identifies a region in space that a user is looking at. Most previous non-wearable gaze tracking systems use a near-infrared (NIR) light camera with an NIR illuminator. Based on the kind of camera lens used, the viewing angle and depth-of-field (DOF) of a gaze tracking camera can be different, which affects the performance of the gaze tracking system. Nevertheless, to our best knowledge, most previous researches implemented gaze tracking cameras without ground truth information for determining the optimal viewing angle and DOF of the camera lens. Eye-tracker manufacturers might also use ground truth information, but they do not provide this in public. Therefore, researchers and developers of gaze tracking systems cannot refer to such information for implementing gaze tracking system. We address this problem providing an empirical study in which we design an optimal gaze tracking camera based on experimental measurements of the amount and velocity of user's head movements. Based on our results and analyses, researchers and developers might be able to more easily implement an optimal gaze tracking system. Experimental results show that our gaze tracking system shows high performance in terms of accuracy, user convenience and interest.
Pan, Weiyuan; Jung, Dongwook; Yoon, Hyo Sik; Lee, Dong Eun; Naqvi, Rizwan Ali; Lee, Kwan Woo; Park, Kang Ryoung
2016-01-01
Gaze tracking is the technology that identifies a region in space that a user is looking at. Most previous non-wearable gaze tracking systems use a near-infrared (NIR) light camera with an NIR illuminator. Based on the kind of camera lens used, the viewing angle and depth-of-field (DOF) of a gaze tracking camera can be different, which affects the performance of the gaze tracking system. Nevertheless, to our best knowledge, most previous researches implemented gaze tracking cameras without ground truth information for determining the optimal viewing angle and DOF of the camera lens. Eye-tracker manufacturers might also use ground truth information, but they do not provide this in public. Therefore, researchers and developers of gaze tracking systems cannot refer to such information for implementing gaze tracking system. We address this problem providing an empirical study in which we design an optimal gaze tracking camera based on experimental measurements of the amount and velocity of user’s head movements. Based on our results and analyses, researchers and developers might be able to more easily implement an optimal gaze tracking system. Experimental results show that our gaze tracking system shows high performance in terms of accuracy, user convenience and interest. PMID:27589768
TDRS-L Pre-Launch Press Conference
2014-01-21
CAPE CANAVERAL, Fla. – During a news conference at NASA's Kennedy Space Center in Florida, agency and contractor officials discussed preparations for the launch of NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft. Participants included Andy Kopito, Civil Space Programs director for Boeing Space & Intelligence Systems in El Segundo, Calif. The TDRS-L spacecraft is the second of three new satellites designed to ensure vital operational continuity for NASA by expanding the lifespan of the Tracking and Data Relay Satellite System TDRSS fleet, which consists of eight satellites in geosynchronous orbit. The spacecraft provide tracking, telemetry, command and high bandwidth data return services for numerous science and human exploration missions orbiting Earth. These include NASA's Hubble Space Telescope and the International Space Station. TDRS-L has a high-performance solar panel designed for more spacecraft power to meet the growing S-band communications requirements. TDRSS is one of NASA Space Communication and Navigation’s SCaN three networks providing space communications to NASA’s missions. For more information more about TDRS-L, visit: http://www.nasa.gov/tdrs To learn more about SCaN, visit: www.nasa.gov/scan Photo credit: NASA/Frankie Martin
A distributed database view of network tracking systems
NASA Astrophysics Data System (ADS)
Yosinski, Jason; Paffenroth, Randy
2008-04-01
In distributed tracking systems, multiple non-collocated trackers cooperate to fuse local sensor data into a global track picture. Generating this global track picture at a central location is fairly straightforward, but the single point of failure and excessive bandwidth requirements introduced by centralized processing motivate the development of decentralized methods. In many decentralized tracking systems, trackers communicate with their peers via a lossy, bandwidth-limited network in which dropped, delayed, and out of order packets are typical. Oftentimes the decentralized tracking problem is viewed as a local tracking problem with a networking twist; we believe this view can underestimate the network complexities to be overcome. Indeed, a subsequent 'oversight' layer is often introduced to detect and handle track inconsistencies arising from a lack of robustness to network conditions. We instead pose the decentralized tracking problem as a distributed database problem, enabling us to draw inspiration from the vast extant literature on distributed databases. Using the two-phase commit algorithm, a well known technique for resolving transactions across a lossy network, we describe several ways in which one may build a distributed multiple hypothesis tracking system from the ground up to be robust to typical network intricacies. We pay particular attention to the dissimilar challenges presented by network track initiation vs. maintenance and suggest a hybrid system that balances speed and robustness by utilizing two-phase commit for only track initiation transactions. Finally, we present simulation results contrasting the performance of such a system with that of more traditional decentralized tracking implementations.
UWB Tracking System Design with TDOA Algorithm
NASA Technical Reports Server (NTRS)
Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Phan, Chau; Gross, Julia; Dusl, John; Schwing, Alan
2006-01-01
This presentation discusses an ultra-wideband (UWB) tracking system design effort using a tracking algorithm TDOA (Time Difference of Arrival). UWB technology is exploited to implement the tracking system due to its properties, such as high data rate, fine time resolution, and low power spectral density. A system design using commercially available UWB products is proposed. A two-stage weighted least square method is chosen to solve the TDOA non-linear equations. Matlab simulations in both two-dimensional space and three-dimensional space show that the tracking algorithm can achieve fine tracking resolution with low noise TDOA data. The error analysis reveals various ways to improve the tracking resolution. Lab experiments demonstrate the UWBTDOA tracking capability with fine resolution. This research effort is motivated by a prototype development project Mini-AERCam (Autonomous Extra-vehicular Robotic Camera), a free-flying video camera system under development at NASA Johnson Space Center for aid in surveillance around the International Space Station (ISS).
Automatic multiple zebrafish larvae tracking in unconstrained microscopic video conditions.
Wang, Xiaoying; Cheng, Eva; Burnett, Ian S; Huang, Yushi; Wlodkowic, Donald
2017-12-14
The accurate tracking of zebrafish larvae movement is fundamental to research in many biomedical, pharmaceutical, and behavioral science applications. However, the locomotive characteristics of zebrafish larvae are significantly different from adult zebrafish, where existing adult zebrafish tracking systems cannot reliably track zebrafish larvae. Further, the far smaller size differentiation between larvae and the container render the detection of water impurities inevitable, which further affects the tracking of zebrafish larvae or require very strict video imaging conditions that typically result in unreliable tracking results for realistic experimental conditions. This paper investigates the adaptation of advanced computer vision segmentation techniques and multiple object tracking algorithms to develop an accurate, efficient and reliable multiple zebrafish larvae tracking system. The proposed system has been tested on a set of single and multiple adult and larvae zebrafish videos in a wide variety of (complex) video conditions, including shadowing, labels, water bubbles and background artifacts. Compared with existing state-of-the-art and commercial multiple organism tracking systems, the proposed system improves the tracking accuracy by up to 31.57% in unconstrained video imaging conditions. To facilitate the evaluation on zebrafish segmentation and tracking research, a dataset with annotated ground truth is also presented. The software is also publicly accessible.
Two-axis tracking solar collector mechanism
Johnson, Kenneth C.
1992-01-01
This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion.
Two-axis tracking solar collector mechanism
Johnson, Kenneth C.
1990-01-01
This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion.
Two-axis tracking solar collector mechanism
Johnson, K.C.
1992-12-08
This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion. 16 figs.
Can eye-tracking technology improve situational awareness in paramedic clinical education?
Williams, Brett; Quested, Andrew; Cooper, Simon
2013-01-01
Human factors play a significant part in clinical error. Situational awareness (SA) means being aware of one's surroundings, comprehending the present situation, and being able to predict outcomes. It is a key human skill that, when properly applied, is associated with reducing medical error: eye-tracking technology can be used to provide an objective and qualitative measure of the initial perception component of SA. Feedback from eye-tracking technology can be used to improve the understanding and teaching of SA in clinical contexts, and consequently, has potential for reducing clinician error and the concomitant adverse events.
Analysis of Feedback in after Action Reviews
1987-06-01
CONNTSM Page INTRODUCTIUN . . . . . . . . . . . . . . . . . . . A Perspective on Feedback. . ....... • • ..... • 1 Overviev of %,•urrent Research...part of their training program . The AAR is in marked contrast to the critique method of feedback which is often used in military training. The AAR...feedback is task-inherent feedback. Task-inherent feedback refers to human-machine interacting systems, e.g., computers , where in a visual tracking task
The Impact of Human-Automation Collaboration in Decentralized Multiple Unmanned Vehicle Control
2011-01-01
based decentralized auctions for robust task allocation ,[ IEEE Trans. Robot., vol. 25, no. 4, pp...operators can aid such systems by bringing their knowledge- based reasoning and experience to bear. Given a decentralized task planner and a goal- based ...experience to bear. Given a decentralized task planner and a goal- based operator interface for a network of unmanned vehicles in a search, track,
ERIC Educational Resources Information Center
Alvard, Michael; McGaffey, Ethan; Carlson, David
2015-01-01
We used global positioning system (GPS) technology and tracking analysis to measure fishing effort by marine, small-scale, fish aggregating device (FAD) fishers of the Commonwealth of Dominica. FADs are human-made structures designed to float on the surface of the water and attract fish. They are also prone to common pool resource problems. To…
Jennifer Riddell; Sarah Jovan; Pamela E. Padgett; Ken Sweat
2011-01-01
Southern California's South Coast Air Basin includes the heavily urbanized Los Angeles and Orange counties, the inland urban and suburban areas, and the surrounding mountain ranges. Historically high air pollution makes the region a natural laboratory for investigating human impacts on natural systems. Regional lichen distribution records from the early 1900s...
Jennifer Riddell; S. Jovan; Pamela Padgett; K. Sweat
2011-01-01
Southern California's South Coast Air Basin includes the heavily urbanized Los Angeles and Orange counties, the inland urban and suburban areas, and the surrounding mountain ranges. Historically high air pollution makes the region a natural laboratory for investigating human impacts on natural systems. Regional lichen distribution records from the early 1900s...
Integrated mobile robot control
NASA Astrophysics Data System (ADS)
Amidi, Omead; Thorpe, Chuck E.
1991-03-01
This paper describes the strucwre implementation and operation of a real-time mobile robot controller which integrates capabilities such as: position estimation path specification and hacking human interfaces fast communication and multiple client support The benefits of such high-level capabilities in a low-level controller was shown by its implementation for the Naviab autonomous vehicle. In addition performance results from positioning and tracking systems are reported and analyzed.
Cho, Junsang; Cheon, Wonjoong; Ahn, Sanghee; Jung, Hyunuk; Sheen, Heesoon; Park, Hee Chul
2017-01-01
Abstract Target motion–induced uncertainty in particle therapy is more complicated than that in X-ray therapy, requiring more accurate motion management. Therefore, a hybrid motion-tracking system that can track internal tumor motion and as well as an external surrogate of tumor motion was developed. Recently, many correlation tests between internal and external markers in X-ray therapy have been developed; however, the accuracy of such internal/external marker tracking systems, especially in particle therapy, has not yet been sufficiently tested. In this article, the process of installing an in-house hybrid internal/external motion-tracking system is described and the accuracy level of tracking system was acquired. Our results demonstrated that the developed in-house external/internal combined tracking system has submillimeter accuracy, and can be clinically used as a particle therapy system as well as a simulation system for moving tumor treatment. PMID:28201522
An automatic tracking system for phase-noise measurement.
Yuen, Chung Ming; Tsang, Kim Fung
2005-05-01
A low cost, automatic tracking system for phase noise measurement has been implemented successfully. The tracking system is accomplished by applying a charge pump phase-locked loop as an external reference source to a digital spectrum analyzer. Measurement of a 2.5 GHz, free-running, voltage-controlled oscillator demonstrated the tracking accuracy, thus verifying the feasibility of the system.
An optical tracking system for virtual reality
NASA Astrophysics Data System (ADS)
Hrimech, Hamid; Merienne, Frederic
2009-03-01
In this paper we present a low-cost 3D tracking system which we have developed and tested in order to move away from traditional 2D interaction techniques (keyboard and mouse) in an attempt to improve user's experience while using a CVE. Such a tracking system is used to implement 3D interaction techniques that augment user experience, promote user's sense of transportation in the virtual world as well as user's awareness of their partners. The tracking system is a passive optical tracking system using stereoscopy a technique allowing the reconstruction of three-dimensional information from a couple of images. We have currently deployed our 3D tracking system on a collaborative research platform for investigating 3D interaction techniques in CVEs.
Steady-state evoked potentials possibilities for mental-state estimation
NASA Technical Reports Server (NTRS)
Junker, Andrew M.; Schnurer, John H.; Ingle, David F.; Downey, Craig W.
1988-01-01
The use of the human steady-state evoked potential (SSEP) as a possible measure of mental-state estimation is explored. A method for evoking a visual response to a sum-of-ten sine waves is presented. This approach provides simultaneous multiple frequency measurements of the human EEG to the evoking stimulus in terms of describing functions (gain and phase) and remnant spectra. Ways in which these quantities vary with the addition of performance tasks (manual tracking, grammatical reasoning, and decision making) are presented. Models of the describing function measures can be formulated using systems engineering technology. Relationships between model parameters and performance scores during manual tracking are discussed. Problems of unresponsiveness and lack of repeatability of subject responses are addressed in terms of a need for loop closure of the SSEP. A technique to achieve loop closure using a lock-in amplifier approach is presented. Results of a study designed to test the effectiveness of using feedback to consciously connect humans to their evoked response are presented. Findings indicate that conscious control of EEG is possible. Implications of these results in terms of secondary tasks for mental-state estimation and brain actuated control are addressed.
Automated intelligent video surveillance system for ships
NASA Astrophysics Data System (ADS)
Wei, Hai; Nguyen, Hieu; Ramu, Prakash; Raju, Chaitanya; Liu, Xiaoqing; Yadegar, Jacob
2009-05-01
To protect naval and commercial ships from attack by terrorists and pirates, it is important to have automatic surveillance systems able to detect, identify, track and alert the crew on small watercrafts that might pursue malicious intentions, while ruling out non-threat entities. Radar systems have limitations on the minimum detectable range and lack high-level classification power. In this paper, we present an innovative Automated Intelligent Video Surveillance System for Ships (AIVS3) as a vision-based solution for ship security. Capitalizing on advanced computer vision algorithms and practical machine learning methodologies, the developed AIVS3 is not only capable of efficiently and robustly detecting, classifying, and tracking various maritime targets, but also able to fuse heterogeneous target information to interpret scene activities, associate targets with levels of threat, and issue the corresponding alerts/recommendations to the man-in- the-loop (MITL). AIVS3 has been tested in various maritime scenarios and shown accurate and effective threat detection performance. By reducing the reliance on human eyes to monitor cluttered scenes, AIVS3 will save the manpower while increasing the accuracy in detection and identification of asymmetric attacks for ship protection.
Permanent magnet synchronous motor servo system control based on μC/OS
NASA Astrophysics Data System (ADS)
Shi, Chongyang; Chen, Kele; Chen, Xinglong
2015-10-01
When Opto-Electronic Tracking system operates in complex environments, every subsystem must operate efficiently and stably. As a important part of Opto-Electronic Tracking system, the performance of PMSM(Permanent Magnet Synchronous Motor) servo system affects the Opto-Electronic Tracking system's accuracy and speed greatly[1][2]. This paper applied embedded real-time operating system μC/OS to the control of PMSM servo system, implemented SVPWM(Space Vector Pulse Width Modulation) algorithm in PMSM servo system, optimized the stability of PMSM servo system. Pointing on the characteristics of the Opto-Electronic Tracking system, this paper expanded μC/OS with software redundancy processes, remote debugging and upgrading. As a result, the Opto- Electronic Tracking system performs efficiently and stably.
NASA Astrophysics Data System (ADS)
Kryuchkov, B. I.; Usov, V. M.; Chertopolokhov, V. A.; Ronzhin, A. L.; Karpov, A. A.
2017-05-01
Extravehicular activity (EVA) on the lunar surface, necessary for the future exploration of the Moon, involves extensive use of robots. One of the factors of safe EVA is a proper interaction between cosmonauts and robots in extreme environments. This requires a simple and natural man-machine interface, e.g. multimodal contactless interface based on recognition of gestures and cosmonaut's poses. When travelling in the "Follow Me" mode (master/slave), a robot uses onboard tools for tracking cosmonaut's position and movements, and on the basis of these data builds its itinerary. The interaction in the system "cosmonaut-robot" on the lunar surface is significantly different from that on the Earth surface. For example, a man, dressed in a space suit, has limited fine motor skills. In addition, EVA is quite tiring for the cosmonauts, and a tired human being less accurately performs movements and often makes mistakes. All this leads to new requirements for the convenient use of the man-machine interface designed for EVA. To improve the reliability and stability of human-robot communication it is necessary to provide options for duplicating commands at the task stages and gesture recognition. New tools and techniques for space missions must be examined at the first stage of works in laboratory conditions, and then in field tests (proof tests at the site of application). The article analyzes the methods of detection and tracking of movements and gesture recognition of the cosmonaut during EVA, which can be used for the design of human-machine interface. A scenario for testing these methods by constructing a virtual environment simulating EVA on the lunar surface is proposed. Simulation involves environment visualization and modeling of the use of the "vision" of the robot to track a moving cosmonaut dressed in a spacesuit.
System considerations for detection and tracking of small targets using passive sensors
NASA Astrophysics Data System (ADS)
DeBell, David A.
1991-08-01
Passive sensors provide only a few discriminants to assist in threat assessment of small targets. Tracking of the small targets provides additional discriminants. This paper discusses the system considerations for tracking small targets using passive sensors, in particular EO sensors. Tracking helps establish good versus bad detections. Discussed are the requirements to be placed on the sensor system's accuracy, with respect to knowledge of the sightline direction. The detection of weak targets sets a requirement for two levels of tracking in order to reduce processor throughput. A system characteristic is the need to track all detections. For low thresholds, this can mean a heavy track burden. Therefore, thresholds must be adaptive in order not to saturate the processors. Second-level tracks must develop a range estimate in order to assess threat. Sensor platform maneuvers are required if the targets are moving. The need for accurate pointing, good stability, and a good update rate will be shown quantitatively, relating to track accuracy and track association.
Satellite (IRLS) tracking of elk
NASA Technical Reports Server (NTRS)
Buechner, H. K.
1972-01-01
The practicability of tracking free roaming animals in natural environments by satellite systems is reported. Satellite systems combine continuous tracking with simultaneous monitoring of physiological and environmental parameters through a combination of radio tracking and biotelemetric ground systems that lead to a better understanding of animal behavior and migration patterns.
Experimental investigation of control/display augmentation effects in a compensatory tracking task
NASA Technical Reports Server (NTRS)
Garg, Sanjay; Schmidt, David K.
1988-01-01
The effects of control/display augmentation on human performance and workload have been investigated for closed-loop, continuous-tracking tasks by a real-time, man-in-the-loop simulation study. The experimental results obtained indicate that only limited improvement in actual tracking performance is obtainable through display augmentation alone; with a very high level of display augmentation, tracking error will actually deteriorate. Tracking performance improves when status information is furnished for reasonable levels of display quickening; again, very high quickening levels lead to tracking error deterioration due to the incompatibility between the status information and the quickened signal.
Gutova, Margarita; Frank, Joseph A.; D'Apuzzo, Massimo; Khankaldyyan, Vazgen; Gilchrist, Megan M.; Annala, Alexander J.; Metz, Marianne Z.; Abramyants, Yelena; Herrmann, Kelsey A.; Ghoda, Lucy Y.; Najbauer, Joseph; Brown, Christine E.; Blanchard, M. Suzette; Lesniak, Maciej S.; Kim, Seung U.; Barish, Michael E.
2013-01-01
Numerous stem cell-based therapies are currently under clinical investigation, including the use of neural stem cells (NSCs) as delivery vehicles to target therapeutic agents to invasive brain tumors. The ability to monitor the time course, migration, and distribution of stem cells following transplantation into patients would provide critical information for optimizing treatment regimens. No effective cell-tracking methodology has yet garnered clinical acceptance. A highly promising noninvasive method for monitoring NSCs and potentially other cell types in vivo involves preloading them with ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) to enable cell tracking using magnetic resonance imaging (MRI). We report here the preclinical studies that led to U.S. Food and Drug Administration approval for first-in-human investigational use of ferumoxytol to label NSCs prior to transplantation into brain tumor patients, followed by surveillance serial MRI. A combination of heparin, protamine sulfate, and ferumoxytol (HPF) was used to label the NSCs. HPF labeling did not affect cell viability, growth kinetics, or tumor tropism in vitro, and it enabled MRI visualization of NSC distribution within orthotopic glioma xenografts. MRI revealed dynamic in vivo NSC distribution at multiple time points following intracerebral or intravenous injection into glioma-bearing mice that correlated with histological analysis. Preclinical safety/toxicity studies of intracerebrally administered HPF-labeled NSCs in mice were also performed, and they showed no significant clinical or behavioral changes, no neuronal or systemic toxicities, and no abnormal accumulation of iron in the liver or spleen. These studies support the clinical use of ferumoxytol labeling of cells for post-transplant MRI visualization and tracking. PMID:24014682
Modular Track System For Positioning Mobile Robots
NASA Technical Reports Server (NTRS)
Miller, Jeff
1995-01-01
Conceptual system for positioning mobile robotic manipulators on large main structure includes modular tracks and ancillary structures assembled easily along with main structure. System, called "tracked robotic location system" (TROLS), originally intended for application to platforms in outer space, but TROLS concept might also prove useful on Earth; for example, to position robots in factories and warehouses. T-cross-section rail keeps mobile robot on track. Bar codes mark locations along track. Each robot equipped with bar-code-recognizing circuitry so it quickly finds way to assigned location.
Relay tracking control for second-order multi-agent systems with damaged agents.
Dong, Lijing; Li, Jing; Liu, Qin
2017-11-01
This paper investigates a situation where smart agents capable of sensory and mobility are deployed to monitor a designated area. A preset number of agents start tracking when a target intrudes this area. Some of the tracking agents are possible to be out of order over the tracking course. Thus, we propose a cooperative relay tracking strategy to ensure the successful tracking with existence of damaged agents. Relay means that, when a tracking agent quits tracking due to malfunction, one of the near deployed agents replaces it to continue the tracking task. This results in jump of tracking errors and dynamic switching of topology of the multi-agent system. Switched system technique is employed to solve this specific problem. Finally, the effectiveness of proposed tracking strategy and validity of the theoretical results are verified by conducting a numerical simulation. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Music-Elicited Emotion Identification Using Optical Flow Analysis of Human Face
NASA Astrophysics Data System (ADS)
Kniaz, V. V.; Smirnova, Z. N.
2015-05-01
Human emotion identification from image sequences is highly demanded nowadays. The range of possible applications can vary from an automatic smile shutter function of consumer grade digital cameras to Biofied Building technologies, which enables communication between building space and residents. The highly perceptual nature of human emotions leads to the complexity of their classification and identification. The main question arises from the subjective quality of emotional classification of events that elicit human emotions. A variety of methods for formal classification of emotions were developed in musical psychology. This work is focused on identification of human emotions evoked by musical pieces using human face tracking and optical flow analysis. Facial feature tracking algorithm used for facial feature speed and position estimation is presented. Facial features were extracted from each image sequence using human face tracking with local binary patterns (LBP) features. Accurate relative speeds of facial features were estimated using optical flow analysis. Obtained relative positions and speeds were used as the output facial emotion vector. The algorithm was tested using original software and recorded image sequences. The proposed technique proves to give a robust identification of human emotions elicited by musical pieces. The estimated models could be used for human emotion identification from image sequences in such fields as emotion based musical background or mood dependent radio.
Renewable Energy Tracking Systems
Renewable energy generation ownership can be accounted through tracking systems. Tracking systems are highly automated, contain specific information about each MWh, and are accessible over the internet to market participants.
DOT National Transportation Integrated Search
1981-08-01
The report presents work conducted to evaluate the technical and economic feasibility of using concrete slab track systems for at-grade transit track. The functions of a rail transit track system are to guide railway vehicles and provide a safe and a...
ERIC Educational Resources Information Center
Geri, George A.; Hubbard, David C.
Two adaptive psychophysical procedures (tracking and "yes-no" staircase) for obtaining human visual contrast sensitivity functions (CSF) were evaluated. The procedures were chosen based on their proven validity and the desire to evaluate the practical effects of stimulus transients, since tracking procedures traditionally employ gradual…
NASA Technical Reports Server (NTRS)
Barton, Richard J.; Ni, David; Ngo, Phong
2010-01-01
Several prototype ultra-wideband (UWB) impulse-radio (IR) tracking systems are currently under development at NASA Johnson Space Center (JSC). These systems are being studied for use in tracking of Lunar/Mars rovers and astronauts during early exploration missions when satellite navigation systems (such as GPS) are not available. To date, the systems that have been designed and tested are intended only for two-dimensional location and tracking, but these designs can all be extended to three-dimensional tracking with only minor modifications and increases in complexity. In this presentation, we will briefly review the design and performance of two of the current 2-D systems: one designed specifically for short-range, extremely high-precision tracking (approximately 1-2 cm resolution) and the other designed specifically for much longer range tracking with less stringent precision requirements (1-2 m resolution). We will then discuss a new multi-purpose system design based on a simple UWB-IR architecture that can be deployed easily on a planetary surface to support arbitrary three-dimensional localization and tracking applications. We will discuss utilization of this system as an infrastructure to provide both short-range and long-range tracking and analyze the localization performance of the system in several different configurations. We will give theoretical performance bounds for some canonical system configurations and compare these performance bounds with both numerical simulations of the system as well as actual experimental system performance evaluations.
Tracking the global footprint of fisheries
NASA Astrophysics Data System (ADS)
Kroodsma, David A.; Mayorga, Juan; Hochberg, Timothy; Miller, Nathan A.; Boerder, Kristina; Ferretti, Francesco; Wilson, Alex; Bergman, Bjorn; White, Timothy D.; Block, Barbara A.; Woods, Paul; Sullivan, Brian; Costello, Christopher; Worm, Boris
2018-02-01
Although fishing is one of the most widespread activities by which humans harvest natural resources, its global footprint is poorly understood and has never been directly quantified. We processed 22 billion automatic identification system messages and tracked >70,000 industrial fishing vessels from 2012 to 2016, creating a global dynamic footprint of fishing effort with spatial and temporal resolution two to three orders of magnitude higher than for previous data sets. Our data show that industrial fishing occurs in >55% of ocean area and has a spatial extent more than four times that of agriculture. We find that global patterns of fishing have surprisingly low sensitivity to short-term economic and environmental variation and a strong response to cultural and political events such as holidays and closures.
Zhang, Yang; Wang, Yuan; He, Wenbo; Yang, Bin
2014-01-01
A novel Particle Tracking Velocimetry (PTV) algorithm based on Voronoi Diagram (VD) is proposed and briefed as VD-PTV. The robustness of VD-PTV for pulsatile flow is verified through a test that includes a widely used artificial flow and a classic reference algorithm. The proposed algorithm is then applied to visualize the flow in an artificial abdominal aortic aneurysm included in a pulsatile circulation system that simulates the aortic blood flow in human body. Results show that, large particles tend to gather at the upstream boundary because of the backflow eddies that follow the pulsation. This qualitative description, together with VD-PTV, has laid a foundation for future works that demand high-level quantification.
The virtual craniofacial patient: 3D jaw modeling and animation.
Enciso, Reyes; Memon, Ahmed; Fidaleo, Douglas A; Neumann, Ulrich; Mah, James
2003-01-01
In this paper, we present new developments in the area of 3D human jaw modeling and animation. CT (Computed Tomography) scans have traditionally been used to evaluate patients with dental implants, assess tumors, cysts, fractures and surgical procedures. More recently this data has been utilized to generate models. Researchers have reported semi-automatic techniques to segment and model the human jaw from CT images and manually segment the jaw from MRI images. Recently opto-electronic and ultrasonic-based systems (JMA from Zebris) have been developed to record mandibular position and movement. In this research project we introduce: (1) automatic patient-specific three-dimensional jaw modeling from CT data and (2) three-dimensional jaw motion simulation using jaw tracking data from the JMA system (Zebris).
Hayhoe, Mary M; Matthis, Jonathan Samir
2018-08-06
The development of better eye and body tracking systems, and more flexible virtual environments have allowed more systematic exploration of natural vision and contributed a number of insights. In natural visually guided behaviour, humans make continuous sequences of sensory-motor decisions to satisfy current goals, and the role of vision is to provide the relevant information in order to achieve those goals. This paper reviews the factors that control gaze in natural visually guided actions such as locomotion, including the rewards and costs associated with the immediate behavioural goals, uncertainty about the state of the world and prior knowledge of the environment. These general features of human gaze control may inform the development of artificial systems.
Hatala, Kevin G; Roach, Neil T; Ostrofsky, Kelly R; Wunderlich, Roshna E; Dingwall, Heather L; Villmoare, Brian A; Green, David J; Braun, David R; Harris, John W K; Behrensmeyer, Anna K; Richmond, Brian G
2017-11-01
Tracks can provide unique, direct records of behaviors of fossil organisms moving across their landscapes millions of years ago. While track discoveries have been rare in the human fossil record, over the last decade our team has uncovered multiple sediment surfaces within the Okote Member of the Koobi Fora Formation near Ileret, Kenya that contain large assemblages of ∼1.5 Ma fossil hominin tracks. Here, we provide detailed information on the context and nature of each of these discoveries, and we outline the specific data that are preserved on the Ileret hominin track surfaces. We analyze previously unpublished data to refine and expand upon earlier hypotheses regarding implications for hominin anatomy and social behavior. While each of the track surfaces discovered at Ileret preserves a different amount of data that must be handled in particular ways, general patterns are evident. Overall, the analyses presented here support earlier interpretations of the ∼1.5 Ma Ileret track assemblages, providing further evidence of large, human-like body sizes and possibly evidence of a group composition that could support the emergence of certain human-like patterns of social behavior. These data, used in concert with other forms of paleontological and archaeological evidence that are deposited on different temporal scales, offer unique windows through which we can broaden our understanding of the paleobiology of hominins living in East Africa at ∼1.5 Ma. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Manwell, Spencer; Chamberland, Marc J. P.; Klein, Ran; Xu, Tong; deKemp, Robert
2017-03-01
Respiratory gating is a common technique used to compensate for patient breathing motion and decrease the prevalence of image artifacts that can impact diagnoses. In this study a new data-driven respiratory gating method (PeTrack) was compared with a conventional optical tracking system. The performance of respiratory gating of the two systems was evaluated by comparing the number of respiratory triggers, patient breathing intervals and gross heart motion as measured in the respiratory-gated image reconstructions of rubidium-82 cardiac PET scans in test and control groups consisting of 15 and 8 scans, respectively. We found evidence suggesting that PeTrack is a robust patient motion tracking system that can be used to retrospectively assess patient motion in the event of failure of the conventional optical tracking system.
Engineering cell-fluorescent ion track hybrid detectors.
Niklas, Martin; Greilich, Steffen; Melzig, Claudius; Akselrod, Mark S; Debus, Jürgen; Jäkel, Oliver; Abdollahi, Amir
2013-06-11
The lack of sensitive biocompatible particle track detectors has so far limited parallel detection of physical energy deposition and biological response. Fluorescent nuclear track detectors (FNTDs) based on Al₂O₃:C,Mg single crystals combined with confocal laser scanning microscopy (CLSM) provide 3D information on ion tracks with a resolution limited by light diffraction. Here we report the development of next generation cell-fluorescent ion track hybrid detectors (Cell-Fit-HD). The biocompatibility of FNTDs was tested using six different cell lines, i.e. human non-small cell lung carcinoma (A549), glioblastoma (U87), androgen independent prostate cancer (PC3), epidermoid cancer (A431) and murine (VmDk) glioma SMA-560. To evaluate cell adherence, viability and conformal coverage of the crystals different seeding densities and alternative coating with extracellular matrix (fibronectin) was tested. Carbon irradiation was performed in Bragg peak (initial 270.55 MeV u⁻¹). A series of cell compartment specific fluorescence stains including nuclear (HOECHST), membrane (Glut-1), cytoplasm (Calcein AM, CM-DiI) were tested on Cell-Fit-HDs and a single CLSM was employed to co-detect the physical (crystal) as well as the biological (cell layer) information. The FNTD provides a biocompatible surface. Among the cells tested, A549 cells formed the most uniform, viable, tightly packed epithelial like monolayer. The ion track information was not compromised in Cell-Fit-HD as compared to the FNTD alone. Neither cell coating and culturing, nor additional staining procedures affected the properties of the FNTD surface to detect ion tracks. Standard immunofluorescence and live staining procedures could be employed to co-register cell biology and ion track information. The Cell-Fit-Hybrid Detector system is a promising platform for a multitude of studies linking biological response to energy deposition at high level of optical microscopy resolution.