Science.gov

Sample records for human transferrin receptor

  1. Human placental coated vesicles contain receptor-bound transferrin.

    PubMed Central

    Booth, A G; Wilson, M J

    1981-01-01

    Human placental coated vesicles have been purified by a method involving sucrose-density-gradient centrifugation and treatment with wheat-germ agglutinin. These preparations were free of contamination by placental microvillus fragments. Crossed immunoelectrophoresis demonstrated that the coated vesicles contained a single serum protein, which was identified as transferrin. This transferrin was only observed after the vesicles were treated with a non-ionic detergent, and its behaviour during crossed hydrophobic-interaction immunoelectrophoresis suggested that a large proportion of it was receptor-bound. No other serum proteins, including immunoglobulin G, could be detected in these preparations. Receptor-bound transferrin was the only antigen common to placental coated vesicles and microvilli, implying that other plasma-membrane proteins are excluded from the region of membrane involved in coated-vesicle formation. Images PLATE 2 PLATE 1 Fig. 1. Fig. 2. Fig. 3. PMID:6272755

  2. Epitope mapping of anti-human transferrin monoclonal antibodies: potential uses for transferrin-transferrin receptor interaction studies.

    PubMed

    Perera, Yasser; García, Darién; Guirola, Osmany; Huerta, Vivian; García, Yanet; Muñoz, Yasmiana

    2008-01-01

    Human transferrin (hTf) is an 80 kDa glycoprotein involved in iron transport from the absorption sites to the sites of storage and utilization. Additionally, transferrin also plays a relevant role as a bacteriostatic agent preventing uncontrolled bacterial growth in the host. In this work we describe a well-characterized Mabs panel in terms of precise epitope localization and estimate affinity for the two major hTf isoforms. We found at least four antigenic regions in the hTf molecule, narrowed down the interacting antigen residues within three of such regions, and located them on a molecular model of hTf. Two of the antigenic regions partially overlap with previously described transferrin-binding sites for both human receptor (antigenic region I: containing amino acid residues from Asp-69 to Asn-76 at the N-lobe) and bacterial receptors from two pathogenic species (antigenic region III: amino acid residues from Leu-665 to Ser-672 at the C-lobe). Hence, such monoclonal antibodies (Mabs) could be used as an additional tool for conformational studies and/or the characterization of the interaction between hTf and both types of receptor molecules.

  3. Metabolic and cytoskeletal modulation of transferrin receptor mobility in mitogen-activated human lymphocytes.

    PubMed Central

    Galbraith, G M; Galbraith, R M

    1980-01-01

    The transferrin receptors which appear on mitogen-activated human peripheral blood lymphocytes were found by the use of immunofluorescence techniques to display temperature-dependent patching and capping reactions upon binding of transferrin. Lateral mobility of ligand-occupied membrane sites was accompanied by both shedding and endocytosis of receptor-transferrin complexes. In the presence of sodium azide or the microfilament inhibitor cytochalasin B, cap formation and shedding were markedly inhibited. In contrast, endocytosis of patched receptor-ligand complexes was inhibited by azide and microtubule inhibitors, including colchicine, vinblastine and vincristine. Co-capping experiments performed to elucidate further the alterations in membrane configuration involved in these reactions failed to reveal any topographical relationship between transferrin receptors and lectin-binding sites in these cells. These studied indicate that temperature-dependent mobility of transferrin receptors upon mitogen-activated peripheral blood lymphocytes is dependent upon the integrity of the cytoskeletal system and metabolic function of the cell. PMID:6258830

  4. Stoichiometries of Transferrin Receptors 1 and 2 in Human Liver

    PubMed Central

    Chloupková, Maja; Zhang, An-Sheng; Enns, Caroline A.

    2009-01-01

    Mutations in either the hereditary hemochromatosis protein, HFE, or transferrin receptor 2, TfR2, result in a similarly severe form of the most common type of iron overload disease called hereditary hemochromatosis. Models of the interactions between HFE, TfR1, and TfR2 imply that these proteins are present in different molar concentrations in the liver, where they control expression of the iron regulatory hormone, hepcidin, in response to body iron loading. The aim of this study was to determine in vivo levels of mRNA by quantitative RT-PCR and concentrations of these proteins by quantitative immunoblotting in human liver tissues. The level of TfR2 mRNA was 21- and 63- fold higher than that of TfR1 and HFE, respectively. Molar concentration of TfR2 protein was the highest and determined to be 1.95 nmoles/g protein in whole cell lysates and 10.89 nmoles/g protein in microsomal membranes. Molar concentration of TfR1 protein was 4.5- and 6.1-fold lower than that of TfR2 in whole cell lysates and membranes, respectively. The level of HFE protein was below 0.53 nmoles/g of total protein. HFE is thus present in substoichiometric concentrations with respect to both TfR1 and TfR2 in human liver tissue. This finding supports a model, in which availability of HFE is limiting for formation of complexes with TfR1 or TfR2. PMID:19819738

  5. Cloning, characterization, and modeling of a monoclonal anti-human transferrin antibody that competes with the transferrin receptor.

    PubMed Central

    Orlandini, M.; Santucci, A.; Tramontano, A.; Neri, P.; Oliviero, S.

    1994-01-01

    In this report we describe the isolation and characterization of a monoclonal antibody against human serum transferrin (Tf) and the cloning and sequencing of its cDNA. The antibody competes with the transferrin receptor (TR) for binding to human Tf and is therefore expected to bind at or very close to a region of interaction between Tf and its receptor. From the deduced amino acid sequence, we constructed a 3-dimensional model of the variable domains of the antibody based on the canonical structure model for the hypervariable loops. The proposed structure of the antibody is a first step toward a more detailed characterization of the antibody-Tf complex and possibly toward a better understanding of the Tf interaction with its receptor. The model might prove useful in guiding site-directed mutagenesis studies, simplifying the experimental elucidation of the antibody structure, and in the use of automatic procedures to dock the interacting molecules as soon as structural information about the structure of the human Tf molecule will be available. PMID:7530542

  6. How the Binding of Human Transferrin Primes the Transferrin Receptor Potentiating Iron Release at Endosomal pH

    SciTech Connect

    B Eckenroth; A Steere; N Chasteen; S Everse; A Mason

    2011-12-31

    Delivery of iron to cells requires binding of two iron-containing human transferrin (hTF) molecules to the specific homodimeric transferrin receptor (TFR) on the cell surface. Through receptor-mediated endocytosis involving lower pH, salt, and an unidentified chelator, iron is rapidly released from hTF within the endosome. The crystal structure of a monoferric N-lobe hTF/TFR complex (3.22-{angstrom} resolution) features two binding motifs in the N lobe and one in the C lobe of hTF. Binding of Fe{sub N}hTF induces global and site-specific conformational changes within the TFR ectodomain. Specifically, movements at the TFR dimer interface appear to prime the TFR to undergo pH-induced movements that alter the hTF/TFR interaction. Iron release from each lobe then occurs by distinctly different mechanisms: Binding of His349 to the TFR (strengthened by protonation at low pH) controls iron release from the C lobe, whereas displacement of one N-lobe binding motif, in concert with the action of the dilysine trigger, elicits iron release from the N lobe. One binding motif in each lobe remains attached to the same {alpha}-helix in the TFR throughout the endocytic cycle. Collectively, the structure elucidates how the TFR accelerates iron release from the C lobe, slows it from the N lobe, and stabilizes binding of apohTF for return to the cell surface. Importantly, this structure provides new targets for mutagenesis studies to further understand and define this system.

  7. Recombinant Human Adenovirus: Targeting to the Human Transferrin Receptor Improves Gene Transfer to Brain Microcapillary Endothelium

    PubMed Central

    Xia, Haibin; Anderson, Brian; Mao, Qinwen; Davidson, Beverly L.

    2000-01-01

    Some inborn errors of metabolism due to deficiencies of soluble lysosomal enzymes cause global neurodegenerative disease. Representative examples include the infantile and late infantile forms of the ceroid lipofuscinoses (CLN1 or CLN2 deficiency, respectively) and mucopolysaccharidoses type VII (MPS VII), a deficiency of β-glucuronidase. Treatment of the central nervous system component of these disorders will require widespread protein or enzyme replacement, either through dissemination of the protein or through dissemination of a gene encoding it. We hypothesize that transduction of brain microcapillary endothelium (BME) with recombinant viral vectors, with secretion of enzyme product basolaterally, could allow for widespread enzyme dissemination. To achieve this, viruses should be modified to target the BME. This requires (i) identification of a BME-resident target receptor, (ii) identification of motifs targeted to that molecule, (iii) the construction of modified viruses to allow for binding to the target receptor, and (iv) demonstrated transduction of receptor-expressing cells. In proof of principal experiments, we chose the human transferrin receptor (hTfR), a molecule found at high density on human BME. A nonamer phage display library was panned for motifs which could bind hTfR. Forty-three clones were sequenced, most of which contained an AKxxK/R, KxKxPK/R, or KxK motif. Ten peptides representative of the three motifs were cloned into the HI loop of adenovirus type 5 fiber. All motifs tested retained their ability to trimerize and bind transferrin receptor, and seven allowed for recombinant adenovirus production. Importantly, the fiber-modified viruses facilitated increased gene transfer (2- to 34-fold) to hTfR expressing cell lines and human brain microcapillary endothelia expressing high levels of endogenous receptor. Our data indicate that adenoviruses can be modified in the HI loop for expanded tropism to the hTfR. PMID:11070036

  8. Expression of transferrin receptors on mitogen-stimulated human peripheral blood lymphocytes: relation to cellular activation and related metabolic events.

    PubMed Central

    Galbraith, R M; Galbraith, G M

    1981-01-01

    Mitogen-activated normal human peripheral blood lymphocytes bind transferrin to specific membrane receptors. In this study, lymphocytes stimulated with phytohaemagglutinin for 0-66 hr were examined to determine the relation of this phenomenon to cellular activation and related metabolic events. Transferrin receptors were first detected at 20-24 hr. This event was consistently preceded by RNA and protein turnover which commenced during the first 6 hr of culture, whereas initiation of DNA synthesis was detected concurrently with the appearance of receptors or slightly later (24-30 hr). Exposure of cells to inhibitors of RNA and protein synthesis early during culture (at 0 or 24 hr) prevented the expression of transferrin receptors, but also caused generalized metabolic failure, and abrogated cellular activation. In contrast, later addition of these agents at 48 hr did not interfere significantly with the process of activation, but did suppress the terminal increase in receptor-bearing cells observed during the final 18 hr in control cultures lacking inhibitor. After deliberate thermal stripping of receptors from activated cells, the reappearance of membrance binding sites which normally occurred within 30 min, was also blocked by cycloheximide, puromycin and actinomycin D. However, similar inhibition of DNA which was induced by hydroxyurea had much less effect upon both the initial appearance of receptors and their reappearance after ligand-induced depletion. These results demonstrate that the appearance of transferrin receptors upon human lymphocytes is dependent upon cellular activation and requires synthesis of protein and RNA. PMID:6172372

  9. H-Ferritin Is Preferentially Incorporated by Human Erythroid Cells through Transferrin Receptor 1 in a Threshold-Dependent Manner

    PubMed Central

    Sakamoto, Soichiro; Kawabata, Hiroshi; Masuda, Taro; Uchiyama, Tatsuki; Mizumoto, Chisaki; Ohmori, Katsuyuki; Koeffler, H. Phillip; Kadowaki, Norimitsu; Takaori-Kondo, Akifumi

    2015-01-01

    Ferritin is an iron-storage protein composed of different ratios of 24 light (L) and heavy (H) subunits. The serum level of ferritin is a clinical marker of the body’s iron level. Transferrin receptor (TFR)1 is the receptor not only for transferrin but also for H-ferritin, but how it binds two different ligands and the blood cell types that preferentially incorporate H-ferritin remain unknown. To address these questions, we investigated hematopoietic cell-specific ferritin uptake by flow cytometry. Alexa Fluor 488-labeled H-ferritin was preferentially incorporated by erythroid cells among various hematopoietic cell lines examined, and was almost exclusively incorporated by bone marrow erythroblasts among human primary hematopoietic cells of various lineages. H-ferritin uptake by erythroid cells was strongly inhibited by unlabeled H-ferritin but was only partially inhibited by a large excess of holo-transferrin. On the other hand, internalization of labeled holo-transferrin by these cells was not inhibited by H-ferritin. Chinese hamster ovary cells lacking functional endogenous TFR1 but expressing human TFR1 with a mutated RGD sequence, which is required for transferrin binding, efficiently incorporated H-ferritin, indicating that TFR1 has distinct binding sites for H-ferritin and holo-transferrin. H-ferritin uptake by these cells required a threshold level of cell surface TFR1 expression, whereas there was no threshold for holo-transferrin uptake. The requirement for a threshold level of TFR1 expression can explain why among primary human hematopoietic cells, only erythroblasts efficiently take up H-ferritin. PMID:26441243

  10. Human and Host Species Transferrin Receptor 1 Use by North American Arenaviruses

    PubMed Central

    Zong, Min; Fofana, Isabel

    2014-01-01

    ABSTRACT At least five New World (NW) arenaviruses cause hemorrhagic fevers in South America. These pathogenic clade B viruses, as well as nonpathogenic arenaviruses of the same clade, use transferrin receptor 1 (TfR1) of their host species to enter cells. Pathogenic viruses are distinguished from closely related nonpathogenic ones by their additional ability to utilize human TfR1 (hTfR1). Here, we investigate the receptor usage of North American arenaviruses, whose entry proteins share greatest similarity with those of the clade B viruses. We show that all six North American arenaviruses investigated utilize host species TfR1 orthologs and present evidence consistent with arenavirus-mediated selection pressure on the TfR1 of the North American arenavirus host species. Notably, one of these viruses, AV96010151, closely related to the prototype Whitewater Arroyo virus (WWAV), entered cells using hTfR1, consistent with a role for a WWAV-like virus in three fatal human infections whose causative agent has not been identified. In addition, modest changes were sufficient to convert hTfR1 into a functional receptor for most of these viruses, suggesting that a minor alteration in virus entry protein may allow these viruses to use hTfR1. Our data establish TfR1 as a cellular receptor for North American arenaviruses, highlight an “arms race” between these viruses and their host species, support the association of North American arenavirus with fatal human infections, and suggest that these viruses have a higher potential to emerge and cause human diseases than has previously been appreciated. IMPORTANCE hTfR1 use is a key determinant for a NW arenavirus to cause hemorrhagic fevers in humans. All known pathogenic NW arenaviruses are transmitted in South America by their host rodents. North American arenaviruses are generally considered nonpathogenic, but some of these viruses have been tentatively implicated in human fatalities. We show that these North American

  11. Prospective Design of Anti‐Transferrin Receptor Bispecific Antibodies for Optimal Delivery into the Human Brain

    PubMed Central

    Kanodia, JS; Gadkar, K; Bumbaca, D; Zhang, Y; Tong, RK; Luk, W; Hoyte, K; Lu, Y; Wildsmith, KR; Couch, JA; Watts, RJ; Dennis, MS; Ernst, JA; Scearce‐Levie, K; Atwal, JK; Joseph, S

    2016-01-01

    Anti‐transferrin receptor (TfR)‐based bispecific antibodies have shown promise for boosting antibody uptake in the brain. Nevertheless, there are limited data on the molecular properties, including affinity required for successful development of TfR‐based therapeutics. A complex nonmonotonic relationship exists between affinity of the anti‐TfR arm and brain uptake at therapeutically relevant doses. However, the quantitative nature of this relationship and its translatability to humans is heretofore unexplored. Therefore, we developed a mechanistic pharmacokinetic‐pharmacodynamic (PK‐PD) model for bispecific anti‐TfR/BACE1 antibodies that accounts for antibody‐TfR interactions at the blood‐brain barrier (BBB) as well as the pharmacodynamic (PD) effect of anti‐BACE1 arm. The calibrated model correctly predicted the optimal anti‐TfR affinity required to maximize brain exposure of therapeutic antibodies in the cynomolgus monkey and was scaled to predict the optimal affinity of anti‐TfR bispecifics in humans. Thus, this model provides a framework for testing critical translational predictions for anti‐TfR bispecific antibodies, including choice of candidate molecule for clinical development. PMID:27299941

  12. Transferrin receptor function in hereditary hemochromatosis

    SciTech Connect

    Ward, J.H.; Kushner, J.P.; Ray, F.A.; Kaplan, J.

    1984-02-01

    The binding of /sup 125/I-diferric transferrin to cultured skin fibroblasts and phytohemagglutinin-stimulated lymphocytes was studied in cells derived from individuals homozygous for hereditary hemochromatosis and from normal individuals. Receptors with a high affinity for diferric transferrin were present on all cells. Transferrin receptor number decreased by more than 50% when fibroblasts from both normal and hemochromatotic subjects were maintained in iron-supplemented medium. The number of transferrin receptors expressed by normal and hemochromatotic lymphocytes after mitogen stimulation in iron-supplemented media was less than 50% that of lymphocytes which were mitogen stimulated in standard medium. No change in the affinity of the receptors of diferric transferrin was seen in cells maintained in iron-supplemented medium. Competition experiments in the presence of deferoxamine suggested that the transferrin receptors of fibroblasts and mitogen-stimulated lymphocytes have a 70- to 100-fold higher affinity for diferric transferrin than for apotransferrin. No differences in the properties of transferrin receptors were found between patients with hereditary hemochromatosis and normal individuals. Although transferrin binding decreases when cells are exposed to high levels of iron in the medium, the failure to totally abolish transferrin binding to the receptor suggests that the concentration of diferric transferrin to which cells are exposed may be a major determinant of cellular iron loading in hereditary hemochromatosis.

  13. Erythroblast transferrin receptors and transferrin kinetics in iron deficiency and various anemias

    SciTech Connect

    Muta, K.; Nishimura, J.; Ideguchi, H.; Umemura, T.; Ibayashi, H.

    1987-06-01

    To clarify the role of transferrin receptors in cases of altered iron metabolism in clinical pathological conditions, we studied: number of binding sites; affinity; and recycling kinetics of transferrin receptors on human erythroblasts. Since transferrin receptors are mainly present on erythroblasts, the number of surface transferrin receptors was determined by assay of binding of /sup 125/I-transferrin and the percentage of erythroblasts in bone marrow mononuclear cells. The number of binding sites on erythroblasts from patients with an iron deficiency anemia was significantly greater than in normal subjects. Among those with an aplastic anemia, hemolytic anemia, myelodysplastic syndrome, and polycythemia vera compared to normal subjects, there were no considerable differences in the numbers of binding sites. The dissociation constants (Kd) were measured using Scatchard analysis. The apparent Kd was unchanged (about 10 nmol/L) in patients and normal subjects. The kinetics of endocytosis and exocytosis of /sup 125/I-transferrin, examined by acid treatment, revealed no variations in recycling kinetics among the patients and normal subjects. These data suggest that iron uptake is regulated by modulation of the number of surface transferrin receptors, thereby reflecting the iron demand of the erythroblast.

  14. Mutational analysis of the cytoplasmic tail of the human transferrin receptor. Identification of a sub-domain that is required for rapid endocytosis.

    PubMed

    Gironès, N; Alverez, E; Seth, A; Lin, I M; Latour, D A; Davis, R J

    1991-10-05

    It has been reported that the sequence Tyr20-X-Arg-Phe23 present within the cytoplasmic tail of the transferrin receptor may represent a tyrosine internalization signal (Collawn, J.F., Stangel, M., Kuhn, L.A., Esekogwu, V., Jing, S., Trowbridge, I.S., and Tainer, J. A. (1990) Cell 63, 1061-1072). However, as Tyr20 is not conserved between species (Alvarez, E., Gironès, N., and Davis, R. J. (1990) Biochem. J. 267, 31-35), the functional role of the putative tyrosine internalization signal is not clear. To address this question, we constructed a series of 32 deletions and point mutations within the cytoplasmic tail of the human transferrin receptor. The effect of these mutations on the apparent first order rate constant for receptor endocytosis was examined. It was found that the region of the cytoplasmic tail that is proximal to the transmembrane domain (residues 28-58) is dispensable for rapid endocytosis. In contrast, the distal region of the cytoplasmic tail (residues 1-27) was found to be both necessary and sufficient for the rapid internalization of the transferrin receptor. The region identified includes Tyr20-X-Arg-Phe23, but is significantly larger than this tetrapeptide. It is therefore likely that structural information in addition to the proposed tyrosine internalization signal is required for endocytosis. To test this hypothesis, we investigated whether a heterologous tyrosine internalization signal (from the low density lipoprotein receptor) could function to cause the rapid endocytosis of the transferrin receptor. It was observed that this heterologous tyrosine internalization signal did not allow rapid endocytosis. We conclude that the putative tyrosine internalization signal (Tyr20-Thr-Arg-Phe23) is not sufficient to determine rapid endocytosis of the transferrin receptor. The data reported here indicate that the transferrin receptor internalization signal is formed by a larger cytoplasmic tail structure located at the amino terminus of the receptor.

  15. Structural, functional, and tissue distribution analysis of human transferrin receptor-2 by murine monoclonal antibodies and a polyclonal antiserum.

    PubMed

    Deaglio, Silvia; Capobianco, Andrea; Calì, Angelita; Bellora, Francesca; Alberti, Federica; Righi, Luisella; Sapino, Anna; Camaschella, Clara; Malavasi, Fabio

    2002-11-15

    Human transferrin receptor-2 (TFR-2) is a protein highly homologous to TFR-1/CD71 and is endowed with the ability to bind transferrin (TF) with low affinity. High levels of TFR-2 mRNA were found in the liver and in erythroid precursors. Mutations affecting the TFR-2 gene led to hemochromatosis type 3, a form of inherited iron overload. Several issues on distribution and function of the receptor were answered by raising a panel of 9 monoclonal antibodies specific for TFR-2 by immunizing mice with murine fibroblasts transfected with the human TFR-2 cDNA. A polyclonal antiserum was also produced in mice immunized with 3 peptides derived from the TFR-2 sequence, exploiting an innovative technique. The specificity of all the reagents produced was confirmed by reactivity with TFR-2(+) target cells and simultaneous negativity with TFR-1(+) cells. Western blot analyses showed a dominant chain of approximately 90 kDa in TFR-2 transfectants and HepG2 cell line. Analysis of distribution in normal tissues and in representative cell lines revealed that TFR-2 displays a restricted expression pattern--it is present at high levels in hepatocytes and in the epithelial cells of the small intestine, including the duodenal crypts. Exposure of human TFR-2(+) cells to TF-bound iron is followed by a significant up-regulation and relocalization of membrane TFR-2. The tissue distribution pattern, the behavior following exposure to iron-loaded TF, and the features of the disease resulting from TFR-2 inactivation support the hypothesis that TFR-2 contributes to body iron sensing.

  16. Meningococcal transferrin-binding proteins A and B show cooperation in their binding kinetics for human transferrin.

    PubMed

    Stokes, Russell H; Oakhill, Jonathan S; Joannou, Christopher L; Gorringe, Andrew R; Evans, Robert W

    2005-02-01

    Neisseria meningitidis, a causative agent of bacterial meningitis and septicemia, obtains transferrin-bound iron by expressing two outer membrane-located transferrin-binding proteins, TbpA and TbpB. A novel system was developed to investigate the interaction between Tbps and human transferrin. Copurified TbpA-TbpB, recombined TbpA-TbpB, and individual TbpA and TbpB were reconstituted into liposomes and fused onto an HPA chip (BIAcore). All preparations formed stable monolayers, which, with the exception of TbpB, could be regenerated by removing bound transferrin. The ligand binding properties of these monolayers were characterized with surface plasmon resonance and shown to be specific for human transferrin. Kinetic data for diferric human transferrin binding showed that recombined TbpA-TbpB had K(a) and K(d) values similar to those of copurified TbpA-TbpB. Individual TbpA and TbpB also displayed K(a) values similar to those of copurified TbpA-TbpB, but their K(d) values were one order of magnitude higher. Chemical cross-linking studies revealed that TbpA and TbpB, in the absence of human transferrin, formed large complexes with TbpA as the predominant species. Upon human transferrin binding, a complex was formed with a molecular mass corresponding to that of a TbpB-human transferrin heterodimer as well as a higher-molecular-mass complex of this heterodimer cross-linked to TbpA. This indicates that TbpA and TbpB form a functional meningococcal receptor complex in which there is cooperativity in the human transferrin binding kinetics. However, iron loss from the diferric human transferrin-TbpA-TbpB complex was not greater than that from human transferrin alone, suggesting that additional meningococcal transport components are involved in the process of iron removal.

  17. Meningococcal Transferrin-Binding Proteins A and B Show Cooperation in Their Binding Kinetics for Human Transferrin

    PubMed Central

    Stokes, Russell H.; Oakhill, Jonathan S.; Joannou, Christopher L.; Gorringe, Andrew R.; Evans, Robert W.

    2005-01-01

    Neisseria meningitidis, a causative agent of bacterial meningitis and septicemia, obtains transferrin-bound iron by expressing two outer membrane-located transferrin-binding proteins, TbpA and TbpB. A novel system was developed to investigate the interaction between Tbps and human transferrin. Copurified TbpA-TbpB, recombined TbpA-TbpB, and individual TbpA and TbpB were reconstituted into liposomes and fused onto an HPA chip (BIAcore). All preparations formed stable monolayers, which, with the exception of TbpB, could be regenerated by removing bound transferrin. The ligand binding properties of these monolayers were characterized with surface plasmon resonance and shown to be specific for human transferrin. Kinetic data for diferric human transferrin binding showed that recombined TbpA-TbpB had Ka and Kd values similar to those of copurified TbpA-TbpB. Individual TbpA and TbpB also displayed Ka values similar to those of copurified TbpA-TbpB, but their Kd values were one order of magnitude higher. Chemical cross-linking studies revealed that TbpA and TbpB, in the absence of human transferrin, formed large complexes with TbpA as the predominant species. Upon human transferrin binding, a complex was formed with a molecular mass corresponding to that of a TbpB-human transferrin heterodimer as well as a higher-molecular-mass complex of this heterodimer cross-linked to TbpA. This indicates that TbpA and TbpB form a functional meningococcal receptor complex in which there is cooperativity in the human transferrin binding kinetics. However, iron loss from the diferric human transferrin-TbpA-TbpB complex was not greater than that from human transferrin alone, suggesting that additional meningococcal transport components are involved in the process of iron removal. PMID:15664936

  18. Regulation of cell surface transferrin receptor-2 by iron-dependent cleavage and release of a soluble form

    PubMed Central

    Pagani, Alessia; Vieillevoye, Maud; Nai, Antonella; Rausa, Marco; Ladli, Meriem; Lacombe, Catherine; Mayeux, Patrick; Verdier, Frédérique; Camaschella, Clara; Silvestri, Laura

    2015-01-01

    Transferrin receptor-2 is a transmembrane protein whose expression is restricted to hepatocytes and erythroid cells. Transferrin receptor-2 has a regulatory function in iron homeostasis, since its inactivation causes systemic iron overload. Hepatic transferrin receptor-2 participates in iron sensing and is involved in hepcidin activation, although the mechanism remains unclear. Erythroid transferrin receptor-2 associates with and stabilizes erythropoietin receptors on the erythroblast surface and is essential to control erythrocyte production in iron deficiency. We identified a soluble form of transferrin receptor-2 in the media of transfected cells and showed that cultured human erythroid cells release an endogenous soluble form. Soluble transferrin receptor-2 originates from a cleavage of the cell surface protein, which is inhibited by diferric transferrin in a dose-dependent manner. Accordingly, the shedding of the transferrin receptor-2 variant G679A, mutated in the Arginine-Glycine-Aspartic acid motif and unable to bind diferric transferrin, is not modulated by the ligand. This observation links the process of transferrin receptor-2 removal from the plasma membrane to iron homeostasis. Soluble transferrin receptor-2 does not affect the binding of erythropoietin to erythropoietin receptor or the consequent signaling and partially inhibits hepcidin promoter activation only in vitro. Whether it is a component of the signals released by erythropoiesis in iron deficiency remains to be investigated. Our results indicate that membrane transferrin receptor-2, a sensor of circulating iron, is released from the cell membrane in iron deficiency. PMID:25637053

  19. Machupo Virus Glycoprotein Determinants for Human Transferrin Receptor 1 Binding and Cell Entry

    DTIC Science & Technology

    2011-07-01

    and SABV [17,18], and a major determinant of host adaptation. However, studies on receptor use and cellular tropism suggest that the non-pathogenic...938–948. 19. Oldenburg J, Reignier T, Flanagan ML, Hamilton GA, Cannon PM (2007) Differences in tropism and pH dependence for glycoproteins from the...2010) Investigation of clade B New World arenavirus tropism by using chimeric GP1 proteins. J Virol 84: 1176–1182. 24. Bowden TA, Crispin M, Graham SC

  20. Selection of cell lines resistant to anti-transferrin receptor antibody: evidence for a mutation in transferrin receptor.

    PubMed Central

    Lesley, J F; Schulte, R J

    1984-01-01

    Some anti-murine transferrin receptor monoclonal antibodies block iron uptake in mouse cell lines and inhibit cell growth. We report here the selection and characterization of mutant murine lymphoma cell lines which escape this growth inhibition by anti-transferrin receptor antibody. Growth assays and immunoprecipitation of transferrin receptor in hybrids between independently derived mutants or between mutants and antibody-susceptible parental cell lines indicate that all of the selected lines have a similar genetic alteration that is codominantly expressed in hybrids. Anti-transferrin receptor antibodies and transferrin itself still bind to the mutant lines with saturating levels and Kd values very similar to those of the parental lines. However, reciprocal clearing experiments by immunoprecipitation and reciprocal blocking of binding to the cell surface with two anti-transferrin receptor antibodies indicate that the mutant lines have altered a fraction of their transferrin receptors such that the growth-inhibiting antibody no longer binds, whereas another portion of their transferrin receptors is similar to those of the parental lines and binds both antibodies. These results argue that the antibody-selected mutant cell lines are heterozygous in transferrin receptor expression, probably with a mutation in one of the transferrin receptor structural genes. Images PMID:6092931

  1. Iron acquisition in Pasteurella haemolytica: expression and identification of a bovine-specific transferrin receptor.

    PubMed Central

    Ogunnariwo, J A; Schryvers, A B

    1990-01-01

    Seven type 1 field isolates of Pasteurella haemolytica were screened for their ability to use different transferrins as a source of iron for growth. All seven strains were capable of using bovine but not human, porcine, avian, or equine transferrin. A screening assay failed to detect siderophore production in any of the strains tested. Iron-deficient cells from these strains expressed a binding activity, specific for bovine transferrin, that was regulated by the level of iron in the medium. Inhibition of expression by translation and transcription inhibitors suggested that iron regulation was occurring at the gene level. Affinity isolation of receptor proteins from all seven strains with biotinylated bovine transferrin identified a 100-kilodalton iron-regulated outer membrane protein as the bovine transferrin receptor. Iron-regulated outer membrane proteins of 71 and 77 kilodaltons were isolated along with the 100-kilodalton protein when less stringent washing procedures were employed in the affinity isolation procedure. Images PMID:2365453

  2. Transferrin receptors on the surfaces of retinal pigment epithelial cells are associated with the cytoskeleton.

    PubMed

    Hunt, R C; Dewey, A; Davis, A A

    1989-04-01

    Retinal pigment epithelial cells, derived from human donor eyes, have been grown in culture as monolayers on membrane filters or plastic surfaces and shown to possess transferrin receptors with a monomeric molecular mass of 93,000. These receptors internalize 125I-labelled transferrin and recycle it to the surrounding medium in a similar manner to other cell types. Scatchard analyses show that there are about 100,000 high-affinity receptors on the surface of each cell and most of these receptors are associated with the cytoskeleton. In total cell extracts, there are additional low-affinity binding sites that do not appear to be strongly associated with the cytoskeleton. The apparent interaction of transferrin receptors with the cytoskeleton was confirmed in two ways: first, using 200 kV electron microscopy for stereo analyses, skeleton-associated transferrin receptors were detected by a monoclonal anti-receptor antibody and a colloidal gold-conjugated second antibody after Triton X-100 extraction of pigment epithelial cells grown directly on laminin-coated gold grids; and, second, when cell surface receptors were labelled with radioiodinated transferrin and then incubated for various periods of time, the labelled transferrin was observed to move from a Triton X-100-insoluble fraction (a putative cytoskeletal compartment) to a Triton-soluble compartment that was not associated with the cytoskeleton. Using either horseradish peroxidase or colloidal gold-labelled transferrin, it has been shown that basolateral and apical surface-located receptors participate in receptor-mediated endocytosis via clathrin-coated pits, endosomes and tubular structures. Initially, transferrin internalized from the apical surface is observed in small endosomes that often appear to be embedded in an apical layer of microfilaments. From these peripheral regions of the cells, the labelled receptors move to larger endosomes and multivesicular bodies deeper in the cytoplasm. These structures

  3. Synthesis and characterization of human transferrin-stabilized gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Le Guével, Xavier; Daum, Nicole; Schneider, Marc

    2011-07-01

    Human transferrin has been biolabelled with gold nanoclusters (Au NCs) using a simple, fast and non-toxic method. These nanocrystals (<2 nm) are stabilized in the protein via sulfur groups and have a high fluorescence emission in the near infrared region (QY = 4.3%; λem = 695 nm). Structural investigation and photophysical measurements show a high population of clusters formed of 22-33 gold atoms covalently bound to the transferrin. In solutions with pH ranging from 5 to 10 and in buffer solutions (PBS, HEPES), those biolabelled proteins exhibit a good stability. No significant quenching effect of the fluorescent transferrin has been detected after iron loading of iron-free transferrin (apoTf) and in the presence of a specific polyclonal antibody. Additionally, antibody-induced agglomeration demonstrates no alteration in the protein activity and the receptor target ability. MTT and Vialight® Plus tests show no cytotoxicity of these labelled proteins in cells (1 µg ml - 1-1 mg ml - 1). Cell line experiments (A549) indicate also an uptake of the iron loaded fluorescent proteins inside cells. These remarkable data highlight the potential of a new type of non-toxic fluorescent transferrin for imaging and targeting.

  4. Mouse mammary tumor virus uses mouse but not human transferrin receptor 1 to reach a low pH compartment and infect cells

    SciTech Connect

    Wang Enxiu; Obeng-Adjei, Nyamekye; Ying Qihua; Davey, Robert A.; Ross, Susan R.

    2008-11-25

    Mouse mammary tumor virus (MMTV) is a pH-dependent virus that uses mouse transferrin receptor 1 (TfR1) for entry into cells. Previous studies demonstrated that MMTV could induce pH 5-dependent fusion-from-with of mouse cells. Here we show that the MMTV envelope-mediated cell-cell fusion requires both the entry receptor and low pH (pH 5). Although expression of the MMTV envelope and TfR1 was sufficient to mediate low pH-dependent syncytia formation, virus infection required trafficking to a low pH compartment; infection was independent of cathepsin-mediated proteolysis. Human TfR1 did not support virus infection, although envelope-mediated syncytia formation occurred with human cells after pH 5 treatment and this fusion depended on TfR1 expression. However, although the MMTV envelope bound human TfR1, virus was only internalized and trafficked to a low pH compartment in cells expressing mouse TfR1. Thus, while human TfR1 supported cell-cell fusion, because it was not internalized when bound to MMTV, it did not function as an entry receptor. Our data suggest that MMTV uses TfR1 for all steps of entry: cell attachment, induction of the conformational changes in Env required for membrane fusion and internalization to an appropriate acidic compartment.

  5. Uptake of 111In-labeled fully human monoclonal antibody TSP-A18 reflects transferrin receptor expression in normal organs and tissues of mice.

    PubMed

    Sugyo, Aya; Tsuji, Atsushi B; Sudo, Hitomi; Nomura, Fumiko; Satoh, Hirokazu; Koizumi, Mitsuru; Kurosawa, Gene; Kurosawa, Yoshikazu; Saga, Tsuneo

    2017-03-01

    Transferrin receptor (TfR) is an attractive molecule for targeted therapy of cancer. Various TfR-targeted therapeutic agents such as anti-TfR antibodies conjugated with anticancer agents have been developed. An antibody that recognizes both human and murine TfR is needed to predict the toxicity of antibody-based agents before clinical trials, there is no such antibody to date. In this study, a new fully human monoclonal antibody TSP-A18 that recognizes both human and murine TfR was developed and the correlation analysis of the radiolabeled antibody uptake and TfR expression in two murine strains was conducted. TSP-A18 was selected using extracellular portions of human and murine TfR from a human antibody library. The cross-reactivity of TSP-A18 with human and murine cells was confirmed by flow cytometry. Cell binding and competitive inhibition assays with [111In]TSP-A18 showed that TSP-A18 bound highly to TfR-expressing MIAPaCa-2 cells with high affinity. Biodistribution studies of [111In]TSP-A18 and [67Ga]citrate (a transferrin-mediated imaging probe) were conducted in C57BL/6J and BALB/c-nu/nu mice. [111In]TSP-A18 was accumulated highly in the spleen and bone containing marrow component of both strains, whereas high [67Ga]citrate uptake was only observed in bone containing marrow component and not in the spleen. Western blotting indicated the spleen showed the strongest TfR expression compared with other organs in both strains. There was significant correlation between [111In]TSP-A18 uptake and TfR protein expression in both strains, whereas there was significant correlation of [67Ga]citrate uptake with TfR expression only in C57BL/6J. These findings suggest that the difference in TfR expression between murine strains should be carefully considered when testing for the toxicity of anti-TfR antibody in mice and the uptake of anti-TfR antibody could reflect tissue TfR expression more accurately compared with that of transferrin-mediated imaging probe such as [67Ga]citrate.

  6. Comparison of the interactions of transferrin receptor and transferrin receptor 2 with transferrin and the hereditary hemochromatosis protein HFE.

    PubMed

    West, A P; Bennett, M J; Sellers, V M; Andrews, N C; Enns, C A; Bjorkman, P J

    2000-12-08

    The transferrin receptor (TfR) interacts with two proteins important for iron metabolism, transferrin (Tf) and HFE, the protein mutated in hereditary hemochromatosis. A second receptor for Tf, TfR2, was recently identified and found to be functional for iron uptake in transfected cells (Kawabata, H., Germain, R. S., Vuong, P. T., Nakamaki, T., Said, J. W., and Koeffler, H. P. (2000) J. Biol. Chem. 275, 16618-16625). TfR2 has a pattern of expression and regulation that is distinct from TfR, and mutations in TfR2 have been recognized as the cause of a non-HFE linked form of hemochromatosis (Camaschella, C., Roetto, A., Cali, A., De Gobbi, M., Garozzo, G., Carella, M., Majorano, N., Totaro, A., and Gasparini, P. (2000) Nat. Genet. 25, 14-15). To investigate the relationship between TfR, TfR2, Tf, and HFE, we performed a series of binding experiments using soluble forms of these proteins. We find no detectable binding between TfR2 and HFE by co-immunoprecipitation or using a surface plasmon resonance-based assay. The affinity of TfR2 for iron-loaded Tf was determined to be 27 nm, 25-fold lower than the affinity of TfR for Tf. These results imply that HFE regulates Tf-mediated iron uptake only from the classical TfR and that TfR2 does not compete for HFE binding in cells expressing both forms of TfR.

  7. Hemochromatosis due to mutations in transferrin receptor 2.

    PubMed

    Roetto, Antonella; Daraio, Filomena; Alberti, Federica; Porporato, Paolo; Calì, Angelita; De Gobbi, Marco; Camaschella, Clara

    2002-01-01

    A rare recessive disorder which leads to iron overload and severe clinical complications similar to those reported in HFE-related hemochromatosis has been delineated and sometimes called hemochromatosis type 3. The gene responsible is Transferrin Receptor 2 (TFR2), which maps to chromosome 7q22. The TFR2 gene presents a significative homology to transferrin receptor (TFRC) gene, encodes for a transmembrane protein with a large extracellular domain, is able to bind transferrin, even if with lower affinity than TFRC. The TFR2 function is still unclear. The transcript does not contain IRE elements and is not modified by the cellular iron status. At variance with TFRC, interactions between TFR2 and HFE do not occur, at least in their soluble forms. TFR2 is spliced in two alternative forms, alfa and beta. The alfa form is strongly expressed in the liver. The beta form, codified from a start site in exon 4 of the alpha, has a low and ubiquitous expression. Using anti-TFR2 monoclonal antibodies we have confirmed expression of the protein in the liver but also in duodenal epithelial cells, and studied the protein functional behaviour in cell lines, in response to iron addition, iron deprivation and olo-transferrin exposure. Our results suggest a regulatory role of TFR2 in iron metabolism. Five TFR2 homozygous mutations have been documented in HFE3 patients: a nonsense mutation (Y250X); a C insertion that causes a frameshift and a premature stop codon (E60X); a missense mutation (M172K); a 12 basepair deletion in exon 16, that causes 4 aminoacid loss (AVAQ 594-597del) in the extracellular domain of TFR2; a missense mutation in exon 17 (Q690P). The mutation analysis supports the hypothesis that all are private mutations. The pathogenetic role of TFR2 in hemochromatosis has been recently further demonstrated through the targeted expression of the Y250X human mutation in mice, which develop sings of iron overload identical to the human disease. Although the rarity of TFR2

  8. Serum transferrin receptors in detection of iron deficiency in pregnancy.

    PubMed

    Rusia, U; Flowers, C; Madan, N; Agarwal, N; Sood, S K; Sikka, M

    1999-08-01

    A prospective hospital-based study was conducted to evaluate the efficacy of serum transferrin receptors in the detection of iron deficiency in pregnant women. The iron status of 100 pregnant women with single uncomplicated term pregnancies in the first stage of labor was established using standard laboratory measures. These included complete hemogram, red cell indices, serum iron, percent transferrin saturation, and serum ferritin. In addition, serum transferrin receptor (STFR) was estimated. The results of 81 women with complete laboratory profiles were analyzed. Thirty-five (43.2%) women were anemic (hemoglobin <11 g/dl). Hemoglobin (Hb) showed a significant correlation with MCH, MCHC, serum iron, and percent transferrin saturation, suggesting that the anemia was likely to be due to iron deficiency. The mean STFR level was 18.05+/-9.9 mg/l in the anemic women and was significantly raised (p<0.001) compared with that of the nonanemic women. STFR correlated significantly with Hb (p<0.001), MCH (p<0.05), MCHC (p<0.01), serum iron (p<0.01), and percent transferrin saturation (p<0.01) and also showed a highly significant correlation with the degree of anemia. Serum ferritin in these women did not correlate with Hb, and only 54.4% of the women had levels <12 ng/ml, which does not reflect the true prevalence of iron deficiency. Serum transferrin receptor estimation is thus a useful measure for detecting iron deficiency in pregnancy.

  9. Nonhuman Transferrin Receptor 1 Is an Efficient Cell Entry Receptor for Ocozocoautla de Espinosa Virus

    PubMed Central

    Caì, Yíngyún; Yú, Shuĭqìng; Mazur, Steven; Dŏng, Lián; Janosko, Krisztina; Zhāng, Téngfēi; Müller, Marcel A.; Hensley, Lisa E.; Bavari, Sina; Jahrling, Peter B.

    2013-01-01

    Ocozocoautla de Espinosa virus (OCEV) is a novel, uncultured arenavirus. We found that the OCEV glycoprotein mediates entry into grivet and bat cells through transferrin receptor 1 (TfR1) binding but that OCEV glycoprotein precursor (GPC)-pseudotyped retroviruses poorly entered 53 human cancer cell lines. Interestingly, OCEV and Tacaribe virus could use bat, but not human, TfR1. Replacing three human TfR1 amino acids with their bat ortholog counterparts transformed human TfR1 into an efficient OCEV and Tacaribe virus receptor. PMID:24109228

  10. Aluminum stimulates uptake of non-transferrin bound iron and transferrin bound iron in human glial cells

    SciTech Connect

    Kim, Yongbae; Olivi, Luisa; Cheong, Jae Hoon; Maertens, Alex; Bressler, Joseph P. . E-mail: Bressler@kennedykrieger.org

    2007-05-01

    Aluminum and other trivalent metals were shown to stimulate uptake of transferrin bound iron and nontransferrin bound iron in erytholeukemia and hepatoma cells. Because of the association between aluminum and Alzheimer's Disease, and findings of higher levels of iron in Alzheimer's disease brains, the effects of aluminum on iron homeostasis were examined in a human glial cell line. Aluminum stimulated dose- and time-dependent uptake of nontransferrin bound iron and iron bound to transferrin. A transporter was likely involved in the uptake of nontransferrin iron because uptake reached saturation, was temperature-dependent, and attenuated by inhibitors of protein synthesis. Interestingly, the effects of aluminum were not blocked by inhibitors of RNA synthesis. Aluminum also decreased the amount of iron bound to ferritin though it did not affect levels of divalent metal transporter 1. These results suggest that aluminum disrupts iron homeostasis in Brain by several mechanisms including the transferrin receptor, a nontransferrin iron transporter, and ferritin.

  11. Apical and basolateral transferrin receptors in polarized BeWo cells recycle through separate endosomes

    PubMed Central

    1991-01-01

    Contrary to most other epithelia, trophoblasts in the human placenta, which form the physical barrier between the fetal and the maternal blood circulation, express high numbers of transferrin receptors on their apical cell surface. This study describes the establishment of a polarized trophoblast-like cell line BeWo, which exhibit a high expression of transferrin receptors on the apex of the cells. Cultured on permeable filter supports, BeWo cells formed a polarized monolayer with microvilli on their apical cell surface. Across the monolayer a transepithelial resistance developed of approximately 600 omega.cm2 within 4 d. Depletion of Ca2+ from the medium decreased the resistance to background levels, showing its dependence on the integrity of tight junctions. Within the same period of time the secretion of proteins became polarized. In addition, the compositions of integral membrane proteins at the apical and basolateral plasma membrane domains were distinct as determined by domain-selective iodination. Similar to placental trophoblasts, binding of 125I-labeled transferrin to BeWo monolayers revealed that the transferrin receptor was expressed at both plasma membrane domains. Apical and basolateral transferrin receptors were found in a 1:2 surface ratio and exhibited identical dissociation constants and molecular weights. After uptake, transferrin recycled predominantly to the domain of administration, indicating separate recycling pathways from the apical and basolateral domain. This was confirmed by using diaminobenzidine cytochemistry, a technique by which colocalization of endocytosed 125I-labeled and HRP-conjugated transferrin can be monitored. No mixing of the two types of ligands was observed, when both ligands were simultaneously internalized for 10 or 60 min from opposite domains, demonstrating that BeWo cells possess separate populations of apical and basolateral early endosomes. In conclusion, the trophoblast-like BeWo cell line can serve as a unique

  12. Transferrin Receptor Controls AMPA Receptor Trafficking Efficiency and Synaptic Plasticity

    PubMed Central

    Liu, Ke; Lei, Run; Li, Qiong; Wang, Xin-Xin; Wu, Qian; An, Peng; Zhang, Jianchao; Zhu, Minyan; Xu, Zhiheng; Hong, Yang; Wang, Fudi; Shen, Ying; Li, Hongchang; Li, Huashun

    2016-01-01

    Transferrin receptor (TFR) is an important iron transporter regulating iron homeostasis and has long been used as a marker for clathrin mediated endocytosis. However, little is known about its additional function other than iron transport in the development of central nervous system (CNS). Here we demonstrate that TFR functions as a regulator to control AMPA receptor trafficking efficiency and synaptic plasticity. The conditional knockout (KO) of TFR in neural progenitor cells causes mice to develop progressive epileptic seizure, and dramatically reduces basal synaptic transmission and long-term potentiation (LTP). We further demonstrate that TFR KO remarkably reduces the binding efficiency of GluR2 to AP2 and subsequently decreases AMPA receptor endocytosis and recycling. Thus, our study reveals that TFR functions as a novel regulator to control AMPA trafficking efficiency and synaptic plasticity. PMID:26880306

  13. Dihydroartemisinin Exerts Its Anticancer Activity through Depleting Cellular Iron via Transferrin Receptor-1

    PubMed Central

    Ba, Qian; Zhou, Naiyuan; Duan, Juan; Chen, Tao; Hao, Miao; Yang, Xinying; Li, Junyang; Yin, Jun; Chu, Ruiai; Wang, Hui

    2012-01-01

    Artemisinin and its main active metabolite dihydroartemisinin, clinically used antimalarial agents with low host toxicity, have recently shown potent anticancer activities in a variety of human cancer models. Although iron mediated oxidative damage is involved, the mechanisms underlying these activities remain unclear. In the current study, we found that dihydroartemisinin caused cellular iron depletion in time- and concentration-dependent manners. It decreased iron uptake and disturbed iron homeostasis in cancer cells, which were independent of oxidative damage. Moreover, dihydroartemisinin reduced the level of transferrin receptor-1 associated with cell membrane. The regulation of dihydroartemisinin to transferrin receptor-1 could be reversed by nystatin, a cholesterol-sequestering agent but not the inhibitor of clathrin-dependent endocytosis. Dihydroartemisinin also induced transferrin receptor-1 palmitoylation and colocalization with caveolin-1, suggesting a lipid rafts mediated internalization pathway was involved in the process. Also, nystatin reversed the influences of dihydroartemisinin on cell cycle and apoptosis related genes and the siRNA induced downregulation of transferrin receptor-1 decreased the sensitivity to dihydroartemisinin efficiently in the cells. These results indicate that dihydroartemisinin can counteract cancer through regulating cell-surface transferrin receptor-1 in a non-classical endocytic pathway, which may be a new action mechanism of DHA independently of oxidative damage. PMID:22900042

  14. Mutagenesis of the aspartic acid ligands in human serum transferrin: lobe-lobe interaction and conformation as revealed by antibody, receptor-binding and iron-release studies.

    PubMed Central

    Mason, A; He, Q Y; Tam, B; MacGillivray, R A; Woodworth, R

    1998-01-01

    Recombinant non-glycosylated human serum transferrin and mutants in which the liganding aspartic acid (D) in one or both lobes was changed to a serine residue (S) were produced in a mammalian cell system and purified from the tissue culture media. Significant downfield shifts of 20, 30, and 45 nm in the absorption maxima were found for the D63S-hTF, D392S-hTF and the double mutant, D63S/D392S-hTF when compared to wild-type hTF. A monoclonal antibody to a sequential epitope in the C-lobe of hTF reported affinity differences between the apo- and iron-forms of each mutant and the control. Cell-binding studies performed under the same buffer conditions used for the antibody work clearly showed that the mutated lobe(s) had an open cleft. It is not clear whether the receptor itself may play a role in promoting the open conformation or whether the iron remains in the cleft. PMID:9461487

  15. Evidence that His349 acts as a pH-inducible switch to accelerate receptor-mediated iron release from the C-lobe of human transferrin

    PubMed Central

    Steere, Ashley N.; Byrne, Shaina L.; Chasteen, N. Dennis; Smith, Valerie C.; MacGillivray, Ross T. A.

    2015-01-01

    His349 in human transferrin (hTF) is a residue critical to transferrin receptor (TFR)-stimulated iron release from the C-lobe. To evaluate the importance of His349 on the TFR interaction, it was replaced by alanine, aspartate, lysine, leucine, tryptophan, and tyrosine in a monoferric C-lobe hTF construct (FeChTF). Using a stop-ped-flow spectrofluorimeter, we determined rate processes assigned to iron release and conformational events (in the presence and in the absence of the TFR). Significantly, all mutant/TFR complexes feature dampened iron release rates. The critical contribution of His349 is most convincingly revealed by analysis of the kinetics as a function of pH (5.6–6.2). The FeChTF/TFR complex titrates with a pKa of approximately 5.9. By contrast, the H349A mutant/TFR complex releases iron at higher pH with a profile that is almost the inverse of that of the control complex. At the putative endosomal pH of 5.6 (in the presence of salt and chelator), iron is released from the H349W mutant/TFR and H349Y mutant/TFR complexes with a single rate constant similar to the iron release rate constant for the control; this suggests that these substitutions bypass the required pH-induced conformational change allowing the C-lobe to directly interact with the TFR to release iron. The H349K mutant proves that although the positive charge is crucial to complete iron release, the geometry at this position is also critical. The H349D mutant shows that a negative charge precludes complete iron release at pH 5.6 both in the presence and in the absence of the TFR. Thus, histidine uniquely drives the pH-induced conformational change in the C-lobe required for TFR interaction, which in turn promotes iron release. PMID:20711621

  16. Soluble transferrin receptor and transferrin receptor-ferritin index in iron deficiency anemia and anemia in rheumatoid arthritis.

    PubMed

    Margetic, Sandra; Topic, Elizabeta; Ruzic, Dragica Ferenec; Kvaternik, Marina

    2005-01-01

    The aim of the study was to evaluate the clinical efficiency of soluble transferrin receptor and transferrin receptor-ferritin index (sTfR/logF) in the diagnosis of iron deficiency anemia, as well as the differential diagnosis of iron deficiency anemia and anemia in rheumatoid arthritis. The study included 96 patients with anemia and 61 healthy volunteers as a control group. In healthy subjects there were no significant sex and age differences in the parameters tested. The study results showed these parameters to be reliable in the diagnosis of iron deficiency anemia, as well as in the differential diagnosis of iron deficiency anemia and anemia of chronic disease. The results indicate that sTfR/logF could be used to help differentiate coexisting iron deficiency in patients with anemia of chronic disease. Receiver operating characteristic analysis showed a higher discriminating power of transferrin receptor-ferritin index vs. soluble transferrin receptor in the diagnosis of iron deficiency anemia, as well as in the differential diagnosis between iron deficiency anemia and anemia of chronic disease. In patients with anemia in rheumatoid arthritis, the parameters tested showed no significant differences with respect to C-reactive protein concentration. These results suggested that the parameters tested are not affected by acute or chronic inflammatory disease.

  17. Noncoding 3' sequences of the transferrin receptor gene are required for mRNA regulation by iron.

    PubMed Central

    Owen, D; Kühn, L C

    1987-01-01

    The cell-surface receptor for transferrin mediates cellular uptake of iron from serum. Transferrin receptor protein and mRNA levels are increased in cells treated with iron chelating agents, and are decreased by treatment with iron salts or hemin. Here we report that expression of human transferrin receptor cDNA constructions in stably transfected mouse fibroblasts is regulated both by the iron chelator, desferrioxamine, and by hemin. We found that sequences within the 3' noncoding region are required for the iron-dependent feed-back regulation of receptor expression, whereas the presence of the transferrin receptor promoter region is not necessary. Regulation by iron is observed when transcription is initiated at either the SV-40 early promoter or the transferrin receptor promoter, but deletion of a 2.3 kb fragment within the 2.6 kb 3' noncoding region of the cDNA abolishes regulation and increases the constitutive level of receptor expression. Furthermore, the 3' deletion does not affect the decrease in receptors which is observed in response to growth arrest, indicating that transferrin receptor expression is controlled by at least two distinct mechanisms. Images Fig. 3. Fig. 6. Fig. 8. PMID:3608980

  18. Iron uptake from plasma transferrin by a transferrin receptor 2 mutant mouse model of haemochromatosis

    PubMed Central

    Chua, Anita C.G.; Delima, Roheeth D.; Morgan, Evan H.; Herbison, Carly E.; Tirnitz-Parker, Janina E.E.; Graham, Ross M.; Fleming, Robert E.; Britton, Robert S.; Bacon, Bruce R.; Olynyk, John K.; Trinder, Debbie

    2010-01-01

    Background & Aims Hereditary haemochromatosis type 3 is caused by mutations in transferrin receptor (TFR) 2. TFR2 has been shown to mediate iron transport in vitro and regulate iron homeostasis. The aim of this study was to determine the role of Tfr2 in iron transport in vivo using a Tfr2 mutant mouse. Methods Tfr2 mutant and wild-type mice were injected intravenously with 59Fe-transferrin and tissue 59Fe uptake was measured. Tfr1, Tfr2 and ferroportin expression was measured by real-time PCR and Western blot. Cellular localisation of ferroportin was determined by immunohistochemistry. Results Transferrin-bound iron uptake by the liver and spleen in Tfr2 mutant mice was reduced by 20% and 65%, respectively, whilst duodenal and renal uptake was unchanged compared with iron-loaded wild-type mice. In Tfr2 mutant mice, liver Tfr2 protein was absent, whilst ferroportin protein was increased in non-parenchymal cells and there was a low level of expression in hepatocytes. Tfr1 expression was unchanged compared with iron-loaded wild-type mice. Splenic Tfr2 protein expression was absent whilst Tfr1 and ferroportin protein expression was increased in Tfr2 mutant mice compared with iron-loaded wild-type mice. Conclusions A small reduction in hepatic transferrin-bound iron uptake in Tfr2 mutant mice suggests that Tfr2 plays a minor role in liver iron transport and its primary role is to regulate iron metabolism. Increased ferroportin expression due to decreased hepcidin mRNA levels is likely to be responsible for impaired splenic iron uptake in Tfr2 mutant mice. PMID:20133002

  19. Transferrin receptors in rat brain: neuropeptide-like pattern and relationship to iron distribution.

    PubMed Central

    Hill, J M; Ruff, M R; Weber, R J; Pert, C B

    1985-01-01

    We have characterized and visualized the binding of 125I-labeled transferrin to sections of rat brain. This saturable, reversible, high-affinity (Kd = 1 X 10(-9) M) binding site appears indistinguishable from transferrin receptors previously characterized in other tissues. Moreover, a monoclonal antibody raised to rat lymphocyte transferrin receptors could immunoprecipitate recovered intact transferrin solubilized from labeled brain slices, indicating that labeling was to the same molecular entity previously characterized as the transferrin receptor. The pattern of transferrin receptor distribution visualized in brain with both 125I-labeled transferrin and an anti-transferrin receptor monoclonal antibody are almost indistinguishable but differ from the pattern of iron distribution. Iron-rich brain areas generally receive neuronal projections from areas with abundant transferrin receptors, suggesting that iron may be transported neuronally. However, many brain areas with a high density of transferrin receptors appear unrelated to iron uptake and neuronal transport and form a receptor distribution pattern similar to that of other known neuropeptides. This "neuropeptide-like" distribution pattern suggests that transferrin may have neuromodulatory, perhaps behavioral, function in brain. Images PMID:2989832

  20. Transferrin Binding to Peripheral Blood Lymphocytes Activated by Phytohemagglutinin Involves a Specific Receptor

    PubMed Central

    Galbraith, Robert M.; Werner, Phillip; Arnaud, Philippe; Galbraith, Gillian M. P.

    1980-01-01

    Immunohistological studies have indicated that membrane sites binding transferrin are present upon activated human peripheral blood lymphocytes. In this study, we have investigated transferrin uptake in human lymphocytes exposed to phytohemagglutinin (PHA), by quantitative radiobinding and immunofluorescence in parallel. In stimulated lymphocytes, binding was maximal after a 30-min incubation, being greatest at 37°C, and greater at 22°C than at 4°C. Although some shedding and endocytosis of transferrin occurred at 22° and 37°C, these factors, and resulting synthesis of new sites, did not affect measurement of binding which was found to be saturable, reversible, and specific for transferrin (Ka 0.5-2.5 × 108 M−1). Binding was greater after a 48-h exposure to PHA than after 24 h, and was maximal at 66 h. Sequential Scatchard analysis revealed no significant elevation in affinity of interaction. However, although the total number of receptors increased, the proportion of cells in which binding of ligand was detected immunohistologically increased in parallel, and after appropriate correction, the cellular density of receptors remained relatively constant throughout (60,000-80,000 sites/cell). Increments in binding during the culture period were thus due predominantly to expansion of a population of cells bearing receptors. Similar differences in binding were apparent upon comparison of cells cultured in different doses of PHA, and in unstimulated cells binding was negligible. Transferrin receptors appear, therefore, to be readily detectable only upon lymphocytes that have been activated. Images PMID:6253523

  1. Delivery of iron to human cells by bovine transferrin. Implications for the growth of human cells in vitro.

    PubMed Central

    Young, S P; Garner, C

    1990-01-01

    Following suggestions that transferrin present in fetal-bovine serum, a common supplement used in tissue-culture media, may not bind well to human cells, we have isolated the protein and investigated its interaction with both human and bovine cells. Bovine transferrin bound to a human cell line, K562, at 4 degrees C with a kd of 590 nM, whereas human transferrin bound with a kd of 3.57 nM, a 165-fold difference. With a bovine cell line, NBL4, bovine transferrin bound with the higher affinity, kd 9.09 nM, whereas human transferrin bound with a kd of 41.7 nM, only a 5-fold difference. These values were reflected in an 8.6-fold difference in the rate of iron delivery by the two proteins to human cells, whereas delivery to bovine cells was the same. Nevertheless, the bovine transferrin was taken up by the human cells by a specific receptor-mediated process. Human cells cultured in bovine diferric transferrin at 40 micrograms/ml, the concentration expected in the presence of 10% fetal-bovine serum, failed to thrive, whereas cells cultured in the presence of human transferrin proliferated normally. These results suggest that growth of human cells in bovine serum could give rise to a cellular iron deficiency, which may in turn lead to the selection of clones of cells adapted for survival with less iron. This has important consequences for the use of such cells as models, since they may have aberrant iron-dependent pathways and perhaps other unknown alterations in cell function. PMID:2302189

  2. Phorbol diesters and transferrin modulate lymphoblastoid cell transferrin receptor expression by two different mechanisms

    SciTech Connect

    Alcantara, O.; Phillips, J.L.; Boldt, D.H.

    1986-12-01

    Expression of transferrin receptors (TfR) by activated lymphocytes is necessary for lymphocyte DNA synthesis and proliferation. Regulation of TfR expression, therefore, is a mechanism by which the lymphocyte's proliferative potential may be directed and controlled. The authors studied mechanisms by which lymphoblastoid cells modulate TfR expression during treatment with phorbol diesters or iron transferrin (FeTf), agents which cause downregulation of cell surface TfR. Phorbol diester-induced TfR downregulation occurred rapidly, being detectable at 2 min and reaching maximal decreases of 50% by 15 min. It was inhibited by cold but not by agents that destabilize cytoskeletal elements. Furthermore, this downregulation was reversed rapidly by washing or by treatment with the membrane interactive agent, chlorpromazine. In contrast, FeTf-induced TfR downregulation occurred slowly. Decreased expression of TfR was detectable only after 15 min and maximal downregulation was achieved after 60 min. Although FeTf-induced downregulation also was inhibited by cold, it was inhibited in addition by a group of microtubule destabilizing agents (colchicine, vinblastine, podophyllotoxin) or cytochalasin B, a microfilament inhibitor. Furthermore, FeTf-induced downregulation was not reversed readily by washing or by treatment with chlorpromazine. Phorbol diesters cause TfR downregulation by a cytoskeleton-independent mechanism. These data indicate that TfR expression is regulated by two independent mechanisms in lymphoblastoid cells, and they provide the possibility that downregulation of TfR by different mechanisms may result in different effects in these cells.

  3. Transferrin receptor facilitates TGF-β and BMP signaling activation to control craniofacial morphogenesis

    PubMed Central

    Lei, R; Zhang, K; Liu, K; Shao, X; Ding, Z; Wang, F; Hong, Y; Zhu, M; Li, H; Li, H

    2016-01-01

    The Pierre Robin Sequence (PRS), consisting of cleft palate, glossoptosis and micrognathia, is a common human birth defect. However, how this abnormality occurs remains largely unknown. Here we report that neural crest cell (NCC)-specific knockout of transferrin receptor (Tfrc), a well known transferrin transporter protein, caused micrognathia, cleft palate, severe respiratory distress and inability to suckle in mice, which highly resemble human PRS. Histological and anatomical analysis revealed that the cleft palate is due to the failure of palatal shelves elevation that resulted from a retarded extension of Meckel's cartilage. Interestingly, Tfrc deletion dramatically suppressed both transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) signaling in cranial NCCs-derived mandibular tissues, suggesting that Tfrc may act as a facilitator of these two signaling pathways during craniofacial morphogenesis. Together, our study uncovers an unknown function of Tfrc in craniofacial development and provides novel insight into the etiology of PRS. PMID:27362800

  4. Erythropoiesis-driven regulation of hepcidin in human red cell disorders is better reflected through concentrations of soluble transferrin receptor rather than growth differentiation factor 15.

    PubMed

    Fertrin, Kleber Yotsumoto; Lanaro, Carolina; Franco-Penteado, Carla Fernanda; de Albuquerque, Dulcinéia Martins; de Mello, Mariana Rezende Bandeira; Pallis, Flávia Rubia; Bezerra, Marcos André Cavalcanti; Hatzlhofer, Betania Lucena Domingues; Olbina, Gordana; Saad, Sara Terezinha Olalla; da Silva Araújo, Aderson; Westerman, Mark; Costa, Fernando Ferreira

    2014-04-01

    Growth differentiation factor 15 (GDF-15) is a bone marrow-derived cytokine whose ability to suppress iron regulator hepcidin in vitro and increased concentrations found in patients with ineffective erythropoiesis (IE)suggest that hepcidin deficiency mediated by GDF-15 may be the pathophysiological explanation for nontransfusional iron overload. We aimed to compare GDF-15 production in anemic states with different types of erythropoietic dysfunction. Complete blood counts, biochemical markers of iron status, plasma hepcidin, GDF-15, and known hepcidin regulators [interleukin-6 and erythropoietin (EPO)] were measured in 87 patients with red cell disorders comprising IE and hemolytic states: thalassemia, sickle cell anemia, and cobalamin deficiency. Healthy volunteers were also evaluated for comparison. Neither overall increased EPO,nor variable GDF-15 concentrations correlated with circulating hepcidin concentrations (P = 0.265 and P = 0.872). Relative hepcidin deficiency was found in disorders presenting with concurrent elevation of GDF-15 and soluble transferrin receptor (sTfR), a biomarker of erythropoiesis, and sTfR had the strongest correlation with hepcidin (r(s) = 0.584, P < 0.0001). Our data show that high concentrations of GDF-15 in vivo are not necessarily associated with pathological hepcidin reduction, and hepcidin deficiency was only found when associated with sTfR overproduction. sTfR elevation may be a necessary common denominator of erythropoiesis-driven mechanisms to favor iron absorption in anemic states and appears a suitable target for investigative approaches to iron disorders.

  5. Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors

    NASA Astrophysics Data System (ADS)

    Dixit, Suraj; Novak, Thomas; Miller, Kayla; Zhu, Yun; Kenney, Malcolm E.; Broome, Ann-Marie

    2015-01-01

    Therapeutic drug delivery across the blood-brain barrier (BBB) is not only inefficient, but also nonspecific to brain stroma. These are major limitations in the effective treatment of brain cancer. Transferrin peptide (Tfpep) targeted gold nanoparticles (Tfpep-Au NPs) loaded with the photodynamic pro-drug, Pc 4, have been designed and compared with untargeted Au NPs for delivery of the photosensitizer to brain cancer cell lines. In vitro studies of human glioma cancer lines (LN229 and U87) overexpressing the transferrin receptor (TfR) show a significant increase in cellular uptake for targeted conjugates as compared to untargeted particles. Pc 4 delivered from Tfpep-Au NPs clusters within vesicles after targeting with the Tfpep. Pc 4 continues to accumulate over a 4 hour period. Our work suggests that TfR-targeted Au NPs may have important therapeutic implications for delivering brain tumor therapies and/or providing a platform for noninvasive imaging.

  6. Transferrin receptor targeted PLA-TPGS micelles improved efficacy and safety in docetaxel delivery.

    PubMed

    Singh, Rahul Pratap; Sharma, Gunjan; Sonali; Agrawal, Poornima; Pandey, Bajarangprasad L; Koch, Biplob; Muthu, Madaswamy S

    2016-02-01

    The aim of this work was to develop targeted polymeric micelles of poly-lactic acid-D-α-tocopheryl polyethylene glycol 1000 succinate (PLA-TPGS), which are assembled along with D-alpha-tocopheryl polyethylene glycol 1000 succinate-transferrin conjugate (TPGS-Tf), and loaded docetaxel (DTX) as a model drug for enhanced treatment of lung cancer in comparison to non-targeted polymeric micelles and DTX injection (Docel™). A549 human lung cancer cells were employed as an in vitro model to access cytotoxicity study of the DTX loaded polymeric micelles. The safety of DTX formulations were studied by the measurement of alkaline phosphatase (ALP), lactate dehydrogenase (LDH) and total protein levels in bronchoalveolar lavage (BAL) fluid of rats after the treatments. The IC50 values demonstrated that the non-targeted and transferrin receptor targeted polymeric micelles could be 7 and 70 folds more effective than Docel™ after 24 h treatment with the A549 cells. Results suggested that transferrin receptor targeted polymeric micelles have showed better efficacy and safety than the non-targeted polymeric micelles and Docel™.

  7. Lethal Cardiomyopathy in Mice Lacking Transferrin Receptor in the Heart.

    PubMed

    Xu, Wenjing; Barrientos, Tomasa; Mao, Lan; Rockman, Howard A; Sauve, Anthony A; Andrews, Nancy C

    2015-10-20

    Both iron overload and iron deficiency have been associated with cardiomyopathy and heart failure, but cardiac iron utilization is incompletely understood. We hypothesized that the transferrin receptor (Tfr1) might play a role in cardiac iron uptake and used gene targeting to examine the role of Tfr1 in vivo. Surprisingly, we found that decreased iron, due to inactivation of Tfr1, was associated with severe cardiac consequences. Mice lacking Tfr1 in the heart died in the second week of life and had cardiomegaly, poor cardiac function, failure of mitochondrial respiration, and ineffective mitophagy. The phenotype could only be rescued by aggressive iron therapy, but it was ameliorated by administration of nicotinamide riboside, an NAD precursor. Our findings underscore the importance of both Tfr1 and iron in the heart, and may inform therapy for patients with heart failure.

  8. Transferrin receptor expression by stimulated cells in mixed lymphocyte culture.

    PubMed Central

    Salmon, M; Bacon, P A; Symmons, D P; Walton, K W

    1985-01-01

    Transferrin receptor (TRFr) expression by cells in mixed lymphocyte culture increases steadily for the first 5 days, but then reaches a plateau. By the sixth day in culture, about 20% of viable cells express TRFr in two-way mixed lymphocyte reactions. This subpopulation of TRFr-positive cells represents the proliferating population; it is heterogeneous, containing T-cell blasts and smaller cells which are a mixture of T and non-T cells. A small group of non-T cells have phenotypic similarity to natural killer (NK) cells. T cells appear to divide earlier in the course of the response than non-T cells. The biphasic nature of this response and the slower non-T reactivity may be due to a secondary stimulation of non-T cells by factors released from activated T cells (such as interleukin-2). PMID:2982734

  9. Cord blood transferrin receptors to assess fetal iron status

    PubMed Central

    Sweet, D.; Savage, G.; Tubman, R.; Lappin, T.; Halliday, H.

    2001-01-01

    OBJECTIVE—To study iron status at different gestational ages using cord blood serum transferrin receptors (STfRs).
METHODS—STfRs, iron, ferritin, total iron binding capacity, haemoglobin, and reticulocytes were measured in 144 cord blood samples. The babies were divided into three groups according to gestation (26 very preterm (24-29 weeks); 50 preterm (30-36 weeks); 68 term (37-41 weeks)).
RESULTS—Serum iron, ferritin, and total iron binding capacity were highest at term, whereas reticulocytes were highest in the very preterm. STfR levels were not influenced by gestation. Haemoglobin (r = 0.46; p < 0.0001) and reticulocytes (r = 0.42; p < 0.0001) were the only indices that independently correlated with STfR levels.
CONCLUSIONS—STfR levels in cord blood are not directly influenced by gestation and probably reflect the iron requirements of the fetus for erythropoiesis.

 PMID:11420322

  10. Characterization of the interaction between diferric transferrin and transferrin receptor 2 by functional assays and atomic force microscopy*

    PubMed Central

    Ikuta, Katsuya; Yersin, Alexandre; Ikai, Atsushi; Aisen, Philip; Kohgo, Yutaka

    2010-01-01

    Transferrin receptor (TfR2), a homologue of classical transferrin receptor 1 (TfR1), is found in two isoforms, α and β. Like TfR1, TfR2α is a type II membrane protein, but the β form lacks transmembrane portions and therefore is likely to be an intracellular protein. To investigate the functional properties of TfR2α we expressed the protein with FLAG-tagging in transferrin receptor-deficient Chinese hamster ovary cells. The association constant for binding of diferric transferrin (Tf) to TfR2α is 5.6 × 106 M−1, which is about 50 times lower than that of TfR1, with correspondingly reduced rates of iron uptake. Evidence for Tf internalization and recycling via TfR2α without degradation, as in the TfR1 pathway, was also found. The interaction of TfR2α with Tf was further investigated using atomic force microscopy (AFM), a powerful tool for investigation of the interaction between ligand and receptor at the single molecule level on the living cell surface. Dynamic force microscopy reveals a difference in the interactions of Tf with TfR2α and TfR1, with Tf-TfR1 unbinding characterized by 2 energy barriers, while only one is present for Tf-TfR2. We speculate that this difference may reflect Tf binding to TfR2α by a single lobe, whereas two lobes of Tf participate in binding to TfR1. The difference in the binding properties of Tf to TfR1 and TfR2α may help account for the different physiological roles of the two receptors. PMID:20096706

  11. Bacterial receptors for host transferrin and lactoferrin: molecular mechanisms and role in host-microbe interactions.

    PubMed

    Morgenthau, Ari; Pogoutse, Anastassia; Adamiak, Paul; Moraes, Trevor F; Schryvers, Anthony B

    2013-12-01

    Iron homeostasis in the mammalian host limits the availability of iron to invading pathogens and is thought to restrict iron availability for microbes inhabiting mucosal surfaces. The presence of surface receptors for the host iron-binding glycoproteins transferrin (Tf) and lactoferrin (Lf) in globally important Gram-negative bacterial pathogens of humans and food production animals suggests that Tf and Lf are important sources of iron in the upper respiratory or genitourinary tracts, where they exclusively reside. Lf receptors have the additional function of protecting against host cationic antimicrobial peptides, suggesting that the bacteria expressing these receptors reside in a niche where exposure is likely. In this review we compare Tf and Lf receptors with respect to their structural and functional features, their role in colonization and infection, and their distribution among pathogenic and commensal bacteria.

  12. The structural basis of transferrin sequestration by transferrin-binding protein B

    SciTech Connect

    Calmettes, Charles; Alcantara, Joenel; Yu, Rong-Hua; Schryvers, Anthony B.; Moraes, Trevor F.

    2012-03-28

    Neisseria meningitidis, the causative agent of bacterial meningitis, acquires the essential element iron from the host glycoprotein transferrin during infection through a surface transferrin receptor system composed of proteins TbpA and TbpB. Here we present the crystal structures of TbpB from N. meningitidis in its apo form and in complex with human transferrin. The structure reveals how TbpB sequesters and initiates iron release from human transferrin.

  13. Transferrin Receptor 1 Facilitates Poliovirus Permeation of Mouse Brain Capillary Endothelial Cells*

    PubMed Central

    Mizutani, Taketoshi; Ishizaka, Aya; Nihei, Coh-ichi

    2016-01-01

    As a possible route for invasion of the CNS, circulating poliovirus (PV) in the blood is believed to traverse the blood-brain barrier (BBB), resulting in paralytic poliomyelitis. However, the underlying mechanism is poorly understood. In this study, we demonstrated that mouse transferrin receptor 1 (mTfR1) is responsible for PV attachment to the cell surface, allowing invasion into the CNS via the BBB. PV interacts with the apical domain of mTfR1 on mouse brain capillary endothelial cells (MBEC4) in a dose-dependent manner via its capsid protein (VP1). We found that F-G, G-H, and H-I loops in VP1 are important for this binding. However, C-D, D-E, and E-F loops in VP1-fused Venus proteins efficiently penetrate MBEC4 cells. These results imply that the VP1 functional domain responsible for cell attachment is different from that involved in viral permeation of the brain capillary endothelium. We observed that co-treatment of MBEC4 cells with excess PV particles but not dextran resulted in blockage of transferrin transport into cells. Using the Transwell in vitro BBB model, transferrin co-treatment inhibited permeation of PV into MBEC4 cells and delayed further viral permeation via mTfR1 knockdown. With mTfR1 as a positive mediator of PV-host cell attachment and PV permeation of MBEC4 cells, our results indicate a novel role of TfR1 as a cellular receptor for human PV receptor/CD155-independent PV invasion of the CNS. PMID:26637351

  14. Downregulation of transferrin receptor surface expression by intracellular antibody

    SciTech Connect

    Peng Jilin; Wu Sha; Zhao Xiaoping; Wang Min; Li Wenhan; Shen Xin; Liu Jing; Lei Ping; Zhu Huifen; Shen Guanxin . E-mail: guanxin_shen@yahoo.com.cn

    2007-03-23

    To deplete cellular iron uptake, and consequently inhibit the proliferation of tumor cells, we attempt to block surface expression of transferrin receptor (TfR) by intracellular antibody technology. We constructed two expression plasmids (scFv-HAK and scFv-HA) coding for intracellular single-chain antibody against TfR with or without endoplasmic reticulum (ER) retention signal, respectively. Then they were transfected tumor cells MCF-7 by liposome. Applying RT-PCR, Western blotting, immunofluorescence microscopy and immunoelectron microscope experiments, we insure that scFv-HAK intrabody was successfully expressed and retained in ER contrasted to the secreted expression of scFv-HA. Flow cytometric analysis confirmed that the TfR surface expression was markedly decreased approximately 83.4 {+-} 2.5% in scFv-HAK transfected cells, while there was not significantly decrease in scFv-HA transfected cells. Further cell growth and apoptosis characteristics were evaluated by cell cycle analysis, nuclei staining and MTT assay. Results indicated that expression of scFv-HAK can dramatically induce cell cycle G1 phase arrest and apoptosis of tumor cells, and consequently significantly suppress proliferation of tumor cells compared with other control groups. For First time this study demonstrates the potential usage of anti-TfR scFv-intrabody as a growth inhibitor of TfR overexpressing tumors.

  15. Variability of the Transferrin Receptor 2 Gene in AMD

    PubMed Central

    Blasiak, Janusz; Dorecka, Mariola; Kowalska, Marta; Pawlowska, Elzbieta; Szaflik, Jerzy; Szaflik, Jacek Pawel

    2014-01-01

    Oxidative stress is a major factor in the pathogenesis of age-related macular degeneration (AMD). Iron may catalyze the Fenton reaction resulting in overproduction of reactive oxygen species. Transferrin receptor 2 plays a critical role in iron homeostasis and variability in its gene may influence oxidative stress and AMD occurrence. To verify this hypothesis we assessed the association between polymorphisms of the TFR2 gene and AMD. A total of 493 AMD patients and 171 matched controls were genotyped for the two polymorphisms of the TFR2 gene: c.1892C>T (rs2075674) and c.−258+123T>C (rs4434553). We also assessed the modulation of some AMD risk factors by these polymorphisms. The CC and TT genotypes of the c.1892C>T were associated with AMD occurrence but the latter only in obese patients. The other polymorphism was not associated with AMD occurrence, but the CC genotype was correlated with an increasing AMD frequency in subjects with BMI < 26. The TT genotype and the T allele of this polymorphism decreased AMD occurrence in subjects above 72 years, whereas the TC genotype and the C allele increased occurrence of AMD in this group. The c.1892C>T and c.−258+123T>C polymorphisms of the TRF2 gene may be associated with AMD occurrence, either directly or by modulation of risk factors. PMID:24648608

  16. Variability of the transferrin receptor 2 gene in AMD.

    PubMed

    Wysokinski, Daniel; Blasiak, Janusz; Dorecka, Mariola; Kowalska, Marta; Robaszkiewicz, Jacek; Pawlowska, Elzbieta; Szaflik, Jerzy; Szaflik, Jacek Pawel

    2014-01-01

    Oxidative stress is a major factor in the pathogenesis of age-related macular degeneration (AMD). Iron may catalyze the Fenton reaction resulting in overproduction of reactive oxygen species. Transferrin receptor 2 plays a critical role in iron homeostasis and variability in its gene may influence oxidative stress and AMD occurrence. To verify this hypothesis we assessed the association between polymorphisms of the TFR2 gene and AMD. A total of 493 AMD patients and 171 matched controls were genotyped for the two polymorphisms of the TFR2 gene: c.1892C>T (rs2075674) and c.-258+123T>C (rs4434553). We also assessed the modulation of some AMD risk factors by these polymorphisms. The CC and TT genotypes of the c.1892C>T were associated with AMD occurrence but the latter only in obese patients. The other polymorphism was not associated with AMD occurrence, but the CC genotype was correlated with an increasing AMD frequency in subjects with BMI < 26. The TT genotype and the T allele of this polymorphism decreased AMD occurrence in subjects above 72 years, whereas the TC genotype and the C allele increased occurrence of AMD in this group. The c.1892C>T and c.-258+123T>C polymorphisms of the TRF2 gene may be associated with AMD occurrence, either directly or by modulation of risk factors.

  17. Interaction of the Hereditary Hemochromatosis Protein, HFE, with Transferrin Receptor 2 Is Required for Transferrin-Induced Hepcidin Expression

    PubMed Central

    Gao, Junwei; Chen, Juxing; Kramer, Maxwell; Tsukamoto, Hidekazu; Zhang, An-Sheng; Enns, Caroline A.

    2009-01-01

    SUMMARY The mechanisms that allow the body to sense iron levels in order to maintain iron homeostasis are unknown. Patients with the most common form of hereditary iron overload have mutations in the hereditary hemochromatosis protein, HFE. They have lower levels of hepcidin, than unaffected individuals. Hepcidin, a hepatic peptide hormone, negatively regulates iron efflux from the intestines into the blood. We report two hepatic cell lines, WIF-B cells and HepG2 cells transfected with HFE, where hepcidin expression responded to iron-loaded transferrin. The response was abolished when endogenous transferrin receptor 2 (TfR2) was suppressed or in primary hepatocytes lacking either functional TfR2 or HFE. Furthermore, transferrin-treated HepG2 cells transfected with HFE chimeras containing only the α3 and cytoplasmic domains could upregulate hepcidin expression. Since the HFE α3 domain interacts with TfR2, these results supported our finding that TfR2/HFE complex is required for transcriptional regulation of hepcidin by holo-Tf. PMID:19254567

  18. Structure, function and clinical significance of transferrin receptors.

    PubMed

    Feelders, R A; Kuiper-Kramer, E P; van Eijk, H G

    1999-01-01

    Iron plays an essential role in a spectrum of metabolic processes. Cellular iron uptake is facilitated by transferrin receptor (TfR)-mediated endocytosis. In recent years more insight has been obtained in TfR physiology and the regulation of cellular iron homeostasis. The synthesis of TfR and the iron storage protein ferritin is regulated reciprocally at the post-transcriptional level according to the cellular iron status. As a result of externalization of TfR during the endocytic cycle, a soluble form of TfR can be detected in serum. The serum TfR (sTfR) level is closely related to erythroid TfR turnover and the prime determinants of the sTfR concentration are cellular iron demands and erythroid proliferation rate. In the absence of a hyperplastic erythropoiesis the sTfR level is a sensitive parameter of early tissue iron deficiency. The entire spectrum of body iron status can be assessed by measurement of serum ferritin and sTfR levels, with ferritin as marker of tissue iron stores and sTfR as index of tissue iron needs. The sTfR may be a promising tool to detect iron deficiency in inflammatory states and in the anaemia of chronic disease as its concentration is, in contrast to ferritin levels, not influenced by the acute phase response. Determination of sTfR levels may also improve assessment of body iron stores during pregnancy and in neonates. Finally, the sTfR may be a useful parameter to monitor erythropoiesis in various clinical settings, for instance in the prediction of the haematological response to erythropoietin treatment. However, standardization of the sTfR assay, with definition of reference and pathological ranges, is necessary for the definitive introduction of the sTfR as major parameter of iron metabolism.

  19. Soluble transferrin receptor, ferritin and soluble transferrin receptor--Ferritin index in assessment of anaemia in rhaeumatoid arthritis.

    PubMed

    Pavai, S; Jayaranee, S; Sargunan, S

    2007-10-01

    Anaemia of chronic disease (ACD) is a frequent complication of rheumatoid arthritis (RA). A diagnostic difficulty in RA is the distinction between iron deficiency anaemia (IDA) and ACD. The aim of our study was to evaluate the usefulness of serum soluble transferrin receptor (sTfR) and sTfR/log ferritin (TfR-F) index to diagnose iron deficiency in RA patients with anaemia. Routine laboratory indices of anaemia and sTfR were measured in 20 healthy persons to form the control group, 30 patients with iron deficiency anaemia and 28 RA patients with anaemia. Serum sTfR levels were significantly elevated above the cut-off value in patients with IDA and those in the iron depleted RA subgroup (ferritin < 60 microg/L) compared with those in the control and iron repleted RA subgroup (ferritin > 60 microg/L). The same was observed for TfR-F index. However, five patients in the iron repleted RA sub group had an elevated sTfR level, of which two had increased TfR-F index. Serum sTfR correlated well with the markers of anaemia and not with ESR. Ferritin had no correlation with markers of anaemia but correlated well with ESR. Measurement of sTfR and TfR-F index are good indicators of iron deficiency in RA patients with anaemia. To be cost effective, sTfR can be estimated in RA patients with anaemia when the ferritin level is more than 60 microg/L.

  20. Mycobacterium tuberculosis acquires iron by cell-surface sequestration and internalization of human holo-transferrin.

    PubMed

    Boradia, Vishant Mahendra; Malhotra, Himanshu; Thakkar, Janak Shrikant; Tillu, Vikas Ajit; Vuppala, Bhavana; Patil, Pravinkumar; Sheokand, Navdeep; Sharma, Prerna; Chauhan, Anoop Singh; Raje, Manoj; Raje, Chaaya Iyengar

    2014-08-28

    Mycobacterium tuberculosis (M.tb), which requires iron for survival, acquires this element by synthesizing iron-binding molecules known as siderophores and by recruiting a host iron-transport protein, transferrin, to the phagosome. The siderophores extract iron from transferrin and transport it into the bacterium. Here we describe an additional mechanism for iron acquisition, consisting of an M.tb protein that drives transport of human holo-transferrin into M.tb cells. The pathogenic strain M.tb H37Rv expresses several proteins that can bind human holo-transferrin. One of these proteins is the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH, Rv1436), which is present on the surface of M.tb and its relative Mycobacterium smegmatis. Overexpression of GAPDH results in increased transferrin binding to M.tb cells and iron uptake. Human transferrin is internalized across the mycobacterial cell wall in a GAPDH-dependent manner within infected macrophages.

  1. DEAE-Affi-Gel Blue chromatography of human serum: use for purification of native transferrin.

    PubMed

    Werner, P A; Galbraith, R M; Arnaud, P

    1983-10-01

    Human serum was subjected to chromatography on DEAE-Affi-Gel Blue which combines ion-exchange and pseudo-ligand-affinity chromatography in a 0.02 M phosphate buffer, pH 7.0. All serum proteins were bound with the exception of transferrin, IgG (immunoglobulin G) and trace amounts of IgA. After a second step of Sephadex G-100 gel chromatography, or affinity chromatography against goat anti-human IgG F(ab')2 coupled to AH-Sepharose 4B, IgG and IgA were removed. The transferrin obtained was homogeneous and of high yield (greater than 80%), and was unaltered as judged by analyses of molecular weight, isoelectric point, iron-binding capacity, antigenicity, and ability to bind to high-affinity specific cellular receptors. Thus, DEAE-Affi-Gel Blue chromatography may be used as the basis for a simple, rapid, two-step method for the purification of large amounts of native transferrin from serum.

  2. Determination of human transferrin concentrations in mouse models of neisserial infection.

    PubMed

    Perera, Yasser; Cobas, Karen; Garrido, Yainelis; Nazabal, Consuelo; Brown, Enma; Pajon, Rolando

    2006-04-20

    Transferrin constitutes the major protein involved in the transport of iron from the sites of absorption to the sites of storage and utilization. Despite the high affinity of transferrin for iron, most bacterial pathogens, such as the human restricted Neisseria meningitidis, have developed iron acquisition mechanisms. Several animal models of bacterial infection that include the exogenous supply of human transferrin have been implemented, and tests using transgenic mouse models are underway. Here we describe an ELISA sandwich procedure based on two monoclonal antibodies with negligible cross-reactivity to murine transferrin, to estimate human transferrin concentrations in mouse sera. The assay can detect as little as 10 ng/ml of human transferrin with coefficients of variation ranging from 1.6% to 4.4% (intra-assay) and 3.8% to 5% (inter-assay). The recovery values range from 90% to 110% in the assay working range (25-400 ng/ml). Human transferrin concentrations estimated in sera from 41 human transferrin transgenic mice ranged from 2 to 14 microg/ml. Further estimations of human transferrin levels in mouse sera of a previously described mouse model of N. meningitidis were also carried out. The intraperitoneal injection of 8 mg of human transferrin achieved a sustained value of human transferrin in mouse sera in the range of 1-2mg/ml over the first 24h, indicating that bacteria reaching the blood stream during this time would be exposed to levels of hTf found in normal human serum.

  3. Patterns of structural and sequence variation within isotype lineages of the Neisseria meningitidis transferrin receptor system

    PubMed Central

    Adamiak, Paul; Calmettes, Charles; Moraes, Trevor F; Schryvers, Anthony B

    2015-01-01

    Neisseria meningitidis inhabits the human upper respiratory tract and is an important cause of sepsis and meningitis. A surface receptor comprised of transferrin-binding proteins A and B (TbpA and TbpB), is responsible for acquiring iron from host transferrin. Sequence and immunological diversity divides TbpBs into two distinct lineages; isotype I and isotype II. Two representative isotype I and II strains, B16B6 and M982, differ in their dependence on TbpB for in vitro growth on exogenous transferrin. The crystal structure of TbpB and a structural model for TbpA from the representative isotype I N. meningitidis strain B16B6 were obtained. The structures were integrated with a comprehensive analysis of the sequence diversity of these proteins to probe for potential functional differences. A distinct isotype I TbpA was identified that co-varied with TbpB and lacked sequence in the region for the loop 3 α-helix that is proposed to be involved in iron removal from transferrin. The tightly associated isotype I TbpBs had a distinct anchor peptide region, a distinct, smaller linker region between the lobes and lacked the large loops in the isotype II C-lobe. Sequences of the intact TbpB, the TbpB N-lobe, the TbpB C-lobe, and TbpA were subjected to phylogenetic analyses. The phylogenetic clustering of TbpA and the TbpB C-lobe were similar with two main branches comprising the isotype 1 and isotype 2 TbpBs, possibly suggesting an association between TbpA and the TbpB C-lobe. The intact TbpB and TbpB N-lobe had 4 main branches, one consisting of the isotype 1 TbpBs. One isotype 2 TbpB cluster appeared to consist of isotype 1 N-lobe sequences and isotype 2 C-lobe sequences, indicating the swapping of N-lobes and C-lobes. Our findings should inform future studies on the interaction between TbpB and TbpA and the process of iron acquisition. PMID:25800619

  4. An unusual case of iron deficiency anemia is associated with extremely low level of transferrin receptor

    PubMed Central

    Hao, Shuangying; Li, Huihui; Sun, Xiaoyan; Li, Juan; Li, Kuanyu

    2015-01-01

    A case study of a female patient, diagnosed with iron deficiency anemia, was unresponsive to oral iron treatment and only partially responsive to parenteral iron therapy, a clinical profile resembling the iron-refractory iron deficiency anemia (IRIDA) disorder. However, the patient failed to exhibit microcytic phenotype, one of the IRIDA hallmarks. Biochemical assays revealed that serum iron, hepcidin, interluekin 6, and transferrin saturation were within the normal range of references or were comparable to her non-anemic offspring. Iron contents in serum and red blood cells and hemoglobin levels were measured, which confirmed the partial improvement of anemia after parenteral iron therapy. Strikingly, serum transferrin receptor in patient was almost undetectable, reflecting the very low activity of bone-marrow erythropoiesis. Our data demonstrate that this is not a case of systemic iron deficiency, but rather cellular iron deficit due to the low level of transferrin receptor, particularly in erythroid tissue. PMID:26339443

  5. The internalization signal and the phosphorylation site of transferrin receptor are distinct from the main basolateral sorting information.

    PubMed Central

    Dargemont, C; Le Bivic, A; Rothenberger, S; Iacopetta, B; Kühn, L C

    1993-01-01

    Wild-type human transferrin receptor (hTfR), like endogenous canine receptor, is expressed almost exclusively (97%) at the basolateral membrane of transfected Madin-Darbey canine kidney (MDCK) cells. We investigated the role of two distinct features of the hTfR cytoplasmic domain, namely the endocytic signal and the unique phosphorylation site, in polarized cell surface delivery. Basolateral location was not altered by point mutation of Ser24-->Ala24, indicating that phosphorylation is not involved in vectorial sorting of hTfR. The steady state distribution of hTfR was partially affected by a deletion of 36 cytoplasmic residues encompassing the internalization sequence. However, 80% of the receptors were still basolateral. As assessed by pulse-chase experiments in combination with biotinylation, newly synthesized wild-type and deletion mutant receptors were directly sorted to the domain of their steady state residency. Although both receptors could bind human transferrin, endocytosis of the deletion mutant was strongly impaired at either surface. These data indicate that the predominant basolateral targeting signal of hTfR is independent of the internalization sequence. Images PMID:8467813

  6. Mutation analysis of the transferrin receptor-2 gene in patients with iron overload.

    PubMed

    Lee, P L; Halloran, C; West, C; Beutler, E

    2001-01-01

    Three mutations in the transferrin receptor-2 gene have recently been identified in four Sicilian families with iron overload who had a normal hemochromatosis gene, HFE (C. Camaschella, personal communication). To determine the extent to which mutations in the transferrin receptor-2 gene occur in other populations with iron overload, we have completely sequenced this gene in 17 whites, 10 Asians, and 8 African Americans with iron overload and a C282C/C282C HFE genotype, as well as 4 subjects without iron overload and homozygous for the mutant HFE C282Y genotype, 5 patients with iron overload and homozygous for the mutant HFE C282Y genotype, and 5 normal individuals. None of the individuals exhibited the Sicilian mutations, Y250X in exon 6, M172K in exon 4, and E60X in exon 2. One iron-overloaded individual of Asian descent exhibited a I238M mutation which was subsequently found to be a polymorphism present in the Asian population at a frequency of 0.0192. The presence of the I238M mutation was not associated with an increase in ferritin or transferrin saturation levels. Three silent polymorphisms were also identified, nt 1770 (D590D) and nt 1851 (A617A) and a polymorphism at nt 2255 in the 3' UTR. Thus, mutations in the transferrin receptor-2 gene were not responsible for the iron overload seen in our subjects.

  7. Transferrin-conjugated boron nitride nanotubes: protein grafting, characterization, and interaction with human endothelial cells.

    PubMed

    Ciofani, Gianni; Del Turco, Serena; Genchi, Giada Graziana; D'Alessandro, Delfo; Basta, Giuseppina; Mattoli, Virgilio

    2012-10-15

    In this paper we report on a covalent grafting of boron nitride nanotubes with human transferrin. After silanization of the nanotube wall, transferrin was linked to the nanotubes through carbamide binding. The obtained transferrin-conjugated boron nitride nanotubes (tf-BNNTs) resulted stable in aqueous environments and were characterized in terms of scanning electron microscopy, transmission electron microscopy, size distribution analysis and Z-potential measurement. Effective covalent grafting of transferrin was demonstrated by Fourier transform infrared spectroscopy and UV-Vis spectrophotometry. The obtained tf-BNNTs were thereafter tested on human umbilical vein endothelial cells (HUVECs); in particular cellular up-take was investigated by confocal, scanning and transmission electron microscopy, demonstrating the key role of transferrin during the internalization process. Here reported for the first time in the literature, the covalent BNNT functionalization with a targeting ligand represents a fundamental step towards BNNT exploitation as smart and selective nanocarriers in a number of nanomedicine applications.

  8. A Novel Rat Model of Hereditary Hemochromatosis Due to a Mutation in Transferrin Receptor 2

    PubMed Central

    Bartnikas, Thomas B; Wildt, Sheryl J; Wineinger, Amy E; Schmitz-Abe, Klaus; Markianos, Kyriacos; Cooper, Dale M; Fleming, Mark D

    2013-01-01

    Sporadic iron overload in rats has been reported, but whether it is due to genetic or environmental causes is unknown. In the current study, phenotypic analysis of Hsd:HHCL Wistar rats revealed a low incidence of histologically detected liver iron overload. Here we characterized the pathophysiology of the iron overload and showed that the phenotype is heritable and due to a mutation in a single gene. We identified a single male rat among the 132 screened animals that exhibited predominantly periportal, hepatocellular iron accumulation. This rat expressed low RNA levels of the iron regulatory hormone hepcidin and low protein levels of transferrin receptor 2 (Tfr2), a membrane protein essential for hepcidin expression in humans and mice and mutated in forms of hereditary hemochromatosis. Sequencing of Tfr2 in the iron-overloaded rat revealed a novel Ala679Gly polymorphism in a highly conserved residue. Quantitative trait locus mapping indicated that this polymorphism correlated strongly with serum iron and transferrin saturations in male rats. Expression of the Gly679 variant in tissue culture cell lines revealed decreased steady-state levels of Tfr2. Characterization of iron metabolism in the progeny of polymorphic rats suggested that homozygosity for the Ala679Gly allele leads to a hemochromatosis phenotype. However, we currently cannot exclude the possibility that a polymorphism or mutation in the noncoding region of Tfr2 contributes to the iron-overload phenotype. Hsd:HHCL rats are the first genetic rat model of hereditary hemochromatosis and may prove useful for understanding the molecular mechanisms underlying the regulation of iron metabolism. PMID:23582421

  9. Lethal iron deprivation induced by non-neutralizing antibodies targeting transferrin receptor 1 in malignant B cells.

    PubMed

    Rodríguez, José A; Luria-Pérez, Rosendo; López-Valdés, Héctor E; Casero, David; Daniels, Tracy R; Patel, Shabnum; Avila, David; Leuchter, Richard; So, Sokuntheavy; Ortiz-Sánchez, Elizabeth; Bonavida, Benjamin; Martínez-Maza, Otoniel; Charles, Andrew C; Pellegrini, Matteo; Helguera, Gustavo; Penichet, Manuel L

    2011-11-01

    A number of antibodies have been developed that induce lethal iron deprivation (LID) by targeting the transferrin receptor 1 (TfR1/CD71) and either neutralizing transferrin (Tf) binding, blocking internalization of the receptor and/or inducing its degradation. We have developed recombinant antibodies targeting human TfR1 (ch128.1 and ch128.1Av), which induce receptor degradation and are cytotoxic to certain malignant B-cells. We now show that internalization of TfR1 bound to these antibodies can lead to its sequestration and degradation, as well as reduced Tf uptake, and the induction of a transcriptional response consistent with iron deprivation, which is mediated in part by downstream targets of p53. Cells resistant to these antibodies do not sequester and degrade TfR1 after internalization of the antibody/receptor complex, and accordingly maintain their ability to internalize Tf. These findings are expected to facilitate the rational design and clinical use of therapeutic agents targeting iron import via TfR1 in hematopoietic malignancies.

  10. Lethal iron deprivation induced by non-neutralizing antibodies targeting transferrin receptor 1 in malignant B cells

    PubMed Central

    Rodríguez, JoséA.; Luria-Pérez, Rosendo; López-Valdés, Héctor E.; Casero, David; Daniels, Tracy R.; Patel, Shabnum; Avila, David; Leuchter, Richard; So, Sokuntheavy; ánchez, Elizabeth Ortiz-S; Bonavida, Benjamin; Martínez-Maza, Otoniel; Charles, Andrew .C; Pellegrini, Matteo; Helguera, Gustavo; Penichet, Manuel L.

    2013-01-01

    A number of antibodies have been developed that induce lethal iron deprivation (LID) by targeting the transferrin receptor 1 (TfR1/CD71) and either neutralizing transferrin (Tf) binding, blocking internalization of the receptor and/or inducing its degradation. We have developed recombinant antibodies targeting human TfR1 (ch128.1 and ch128.1Av), which induce receptor degradation and are cytotoxic to certain malignant B-cells. We now show that internalization of TfR1 bound to these antibodies can lead to its sequestration and degradation, as well as reduced Tf uptake, and the induction of a transcriptional response consistent with iron deprivation, which is mediated in part by downstream targets of p53. Cells resistant to these antibodies do not sequester and degrade TfR1 after internalization of the antibody/receptor complex, and accordingly maintain their ability to internalize Tf. These findings are expected to facilitate the rational design and clinical use of therapeutic agents targeting iron import via TfR1 in hematopoietic malignancies. PMID:21870996

  11. Snx3 regulates recycling of the transferrin receptor and iron assimilation.

    PubMed

    Chen, Caiyong; Garcia-Santos, Daniel; Ishikawa, Yuichi; Seguin, Alexandra; Li, Liangtao; Fegan, Katherine H; Hildick-Smith, Gordon J; Shah, Dhvanit I; Cooney, Jeffrey D; Chen, Wen; King, Matthew J; Yien, Yvette Y; Schultz, Iman J; Anderson, Heidi; Dalton, Arthur J; Freedman, Matthew L; Kingsley, Paul D; Palis, James; Hattangadi, Shilpa M; Lodish, Harvey F; Ward, Diane M; Kaplan, Jerry; Maeda, Takahiro; Ponka, Prem; Paw, Barry H

    2013-03-05

    Sorting of endocytic ligands and receptors is critical for diverse cellular processes. The physiological significance of endosomal sorting proteins in vertebrates, however, remains largely unknown. Here we report that sorting nexin 3 (Snx3) facilitates the recycling of transferrin receptor (Tfrc) and thus is required for the proper delivery of iron to erythroid progenitors. Snx3 is highly expressed in vertebrate hematopoietic tissues. Silencing of Snx3 results in anemia and hemoglobin defects in vertebrates due to impaired transferrin (Tf)-mediated iron uptake and its accumulation in early endosomes. This impaired iron assimilation can be complemented with non-Tf iron chelates. We show that Snx3 and Vps35, a component of the retromer, interact with Tfrc to sort it to the recycling endosomes. Our findings uncover a role of Snx3 in regulating Tfrc recycling, iron homeostasis, and erythropoiesis. Thus, the identification of Snx3 provides a genetic tool for exploring erythropoiesis and disorders of iron metabolism.

  12. Snx3 regulates recycling of the transferrin receptor and iron assimilation

    PubMed Central

    Chen, Caiyong; Garcia-Santos, Daniel; Ishikawa, Yuichi; Seguin, Alexandra; Li, Liangtao; Fegan, Katherine H.; Hildick-Smith, Gordon J.; Shah, Dhvanit I.; Cooney, Jeffrey D.; Chen, Wen; King, Matthew J.; Yien, Yvette Y.; Schultz, Iman J.; Anderson, Heidi; Dalton, Arthur J.; Freedman, Matthew L.; Kingsley, Paul D.; Palis, James; Hattangadi, Shilpa M.; Lodish, Harvey F.; Ward, Diane M.; Kaplan, Jerry; Maeda, Takahiro; Ponka, Prem; Paw, Barry H.

    2013-01-01

    SUMMARY Sorting of endocytic ligands and receptors is critical for diverse cellular processes. The physiological significance of endosomal sorting proteins in vertebrates, however, remains largely unknown. Here we report that sorting nexin 3 (Snx3) facilitates the recycling of transferrin receptor (Tfrc), and thus is required for the proper delivery of iron to erythroid progenitors. Snx3 is highly expressed in vertebrate hematopoietic tissues. Silencing of Snx3 results in anemia and hemoglobin defects in vertebrates due to impaired transferrin (Tf)-mediated iron uptake and its accumulation in early endosomes. This impaired iron assimilation can be complemented with non-Tf iron chelates. We show that Snx3 and Vps35, a component of the retromer, interact with Tfrc to sort it to the recycling endosomes. Our findings uncover a role of Snx3 in regulating Tfrc recycling, iron homeostasis, and erythropoiesis. Thus, the identification of Snx3 provides a genetic tool for exploring erythropoiesis and disorders of iron metabolism. PMID:23416069

  13. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes

    PubMed Central

    1985-01-01

    Using ferritin-labeled protein A and colloidal gold-labeled anti-rabbit IgG, the fate of the sheep transferrin receptor has been followed microscopically during reticulocyte maturation in vitro. After a few minutes of incubation at 37 degrees C, the receptor is found on the cell surface or in simple vesicles of 100-200 nm, in which the receptor appears to line the limiting membrane of the vesicles. With time (60 min or longer), large multivesicular elements (MVEs) appear whose diameter may reach 1-1.5 micron. Inside these large MVEs are round bodies of approximately 50-nm diam that bear the receptor at their external surfaces. The limiting membrane of the large MVEs is relatively free from receptor. When the large MVEs fuse with the plasma membrane, their contents, the 50-nm bodies, are released into the medium. The 50-nm bodies appear to arise by budding from the limiting membrane of the intracellular vesicles. Removal of surface receptor with pronase does not prevent exocytosis of internalized receptor. It is proposed that the exocytosis of the approximately 50-nm bodies represents the mechanism by which the transferrin receptor is shed during reticulocyte maturation. PMID:2993317

  14. Receptor recognition of transferrin bound to lanthanides and actinides: a discriminating step in cellular acquisition of f-block metals

    PubMed Central

    Deblonde, Gauthier J.-P.; Sturzbecher-Hoehne, Manuel; Mason, Anne B.; Abergel, Rebecca J.

    2013-01-01

    Following an internal contamination event, the transport of actinide and lanthanide metal ions through the body is facilitated by endogenous ligands such as the human iron-transport protein transferrin (Tf). The recognition of resulting metallo-transferrin complexes (M2Tf) by the cognate transferrin receptor (TfR) is therefore a critical step for cellular uptake of these metal ions. A high performance liquid chromatography-based method has been used to probe the binding of M2Tf with TfR, yielding a direct measurement of the successive thermodynamic constants that correspond to the dissociation of TfR(M2Tf)2 and TfR(M2Tf) complexes for Fe3+, Ga3+, La3+, Nd3+, Gd3+, Yb3+, Lu3+, 232Th4+, 238UO22+, and 242Pu4+. Important features of this method are (i) its ability to distinguish both 1:1 and 1:2 complexes formed between the receptor and the metal-bound transferrin, and (ii) the requirement for very small amounts of each binding partner (<1 nmol of protein per assay). Consistent with previous reports, the strongest receptor affinity is found for Fe2Tf (Kd1 = 5 nM and Kd2 = 20 nM), while the lowest affinity was measured for Pu2Tf (Kd1 = 0.28 µM and Kd2 = 1.8 µM) binding to the TfR. Other toxic metal ions such as ThIV and UVI, when bound to Tf, are well recognized by the TfR. Under the described experimental conditions, the relative stabilities of TfR:(MxTf)y adducts follow the order Fe3+ >> Th4+ □ UO22+ □ Cm3+ > Ln3+ □ Ga3+ >>> Yb3+ □ Pu4+. This study substantiates a role for Tf in binding lanthanide fission products and actinides, and transporting them into cells by receptor mediated endocytosis. PMID:23446908

  15. Receptor recognition of transferrin bound to lanthanides and actinides: a discriminating step in cellular acquisition of f-block metals.

    PubMed

    Deblonde, Gauthier J-P; Sturzbecher-Hoehne, Manuel; Mason, Anne B; Abergel, Rebecca J

    2013-06-01

    Following an internal contamination event, the transport of actinide (An) and lanthanide (Ln) metal ions through the body is facilitated by endogenous ligands such as the human iron-transport protein transferrin (Tf). The recognition of resulting metallo-transferrin complexes (M2Tf) by the cognate transferrin receptor (TfR) is therefore a critical step for cellular uptake of these metal ions. A high performance liquid chromatography-based method has been used to probe the binding of M2Tf with TfR, yielding a direct measurement of the successive thermodynamic constants that correspond to the dissociation of TfR(M2Tf)2 and TfR(M2Tf) complexes for Fe(3+), Ga(3+), La(3+), Nd(3+), Gd(3+), Yb(3+), Lu(3+), (232)Th(4+), (238)UO2(2+), and (242)Pu(4+). Important features of this method are (i) its ability to distinguish both 1 : 1 and 1 : 2 complexes formed between the receptor and the metal-bound transferrin, and (ii) the requirement for very small amounts of each binding partner (<1 nmol of protein per assay). Consistent with previous reports, the strongest receptor affinity is found for Fe2Tf (Kd1 = 5 nM and Kd2 = 20 nM), while the lowest affinity was measured for Pu2Tf (Kd1 = 0.28 μM and Kd2 = 1.8 μM) binding to the TfR. Other toxic metal ions such as Th(IV) and U(VI), when bound to Tf, are well recognized by the TfR. Under the described experimental conditions, the relative stabilities of TfR:(MxTf)y adducts follow the order Fe(3+) > Th(4+) ~ UO2(2+) ~ Cm(3+) > Ln(3+) ~ Ga(3+) > Yb(3+) ~ Pu(4+). This study substantiates a role for Tf in binding lanthanide fission products and actinides, and transporting them into cells by receptor-mediated endocytosis.

  16. Serum transferrin receptor levels in the evaluation of iron deficiency in the neonate.

    PubMed

    Rusia, U; Flowers, C; Madan, N; Agarwal, N; Sood, S K; Sikka, M

    1996-10-01

    Iron deficiency anemia (IDA) is a major global problem. Early onset of iron deficiency in developing countries makes it imperative to identify iron deficiency in neonates. Most conventional laboratory parameters of iron status fail to distinguish neonates with iron deficient erythropoiesis. Serum transferrin receptor (STFR) levels are a recent sensitive measure of iron deficiency and the present study was carried out to evaluate the usefulness of cord serum transferrin receptors in identifying iron deficient erythropoiesis in neonates. A complete hemogram, red cell indices, iron profile: serum iron (SI), percent transferrin saturation (TS%) and serum ferritin (SF) was carried out in 100 full-term neonates and their mothers at parturition. Cord and maternal STFR levels were estimated using a sensitive enzyme-linked immunosorbent assay (ELISA) technique. Anemic women had a significantly lower SI, their TS% and high STFR levels suggesting that iron deficiency was responsible for the anemia. In the neonates of iron deficient mothers, cord SI, TS% and cord ferritin were not significantly different from those of neonates born to non-anemic mothers. Cord STFR level correlated well with hemoglobin (Hb) and laboratory parameters of iron status, and its level was significantly higher in neonates born to anemic mothers than in those born to non-anemic mothers. It was the only laboratory parameter to differentiate between neonates born to anemic and non-anemic mothers. Therefore, STFR is a sensitive index of iron status in neonates and identifies neonates with iron deficient erythropoiesis.

  17. A missense mutation in TFRC, encoding transferrin receptor 1, causes combined immunodeficiency.

    PubMed

    Jabara, Haifa H; Boyden, Steven E; Chou, Janet; Ramesh, Narayanaswamy; Massaad, Michel J; Benson, Halli; Bainter, Wayne; Fraulino, David; Rahimov, Fedik; Sieff, Colin; Liu, Zhi-Jian; Alshemmari, Salem H; Al-Ramadi, Basel K; Al-Dhekri, Hasan; Arnaout, Rand; Abu-Shukair, Mohammad; Vatsayan, Anant; Silver, Eli; Ahuja, Sanjay; Davies, E Graham; Sola-Visner, Martha; Ohsumi, Toshiro K; Andrews, Nancy C; Notarangelo, Luigi D; Fleming, Mark D; Al-Herz, Waleed; Kunkel, Louis M; Geha, Raif S

    2016-01-01

    Patients with a combined immunodeficiency characterized by normal numbers but impaired function of T and B cells had a homozygous p.Tyr20His substitution in transferrin receptor 1 (TfR1), encoded by TFRC. The substitution disrupts the TfR1 internalization motif, resulting in defective receptor endocytosis and markedly increased TfR1 expression on the cell surface. Iron citrate rescued the lymphocyte defects, and expression of wild-type but not mutant TfR1 rescued impaired transferrin uptake in patient-derived fibroblasts. Tfrc(Y20H/Y20H) mice recapitulated the immunological defects of patients. Despite the critical role of TfR1 in erythrocyte development and function, patients had only mild anemia and only slightly increased TfR1 expression in erythroid precursors. We show that STEAP3, a metalloreductase expressed in erythroblasts, associates with TfR1 and partially rescues transferrin uptake in patient-derived fibroblasts, suggesting that STEAP3 may provide an accessory TfR1 endocytosis signal that spares patients from severe anemia. These findings demonstrate the importance of TfR1 in adaptive immunity.

  18. Separation of Albumin, Ceruloplasmin, and Transferrin from Human Plasma.

    ERIC Educational Resources Information Center

    Barnes, Grady; Frieden, Earl

    1982-01-01

    Procedures are provided for separating the principal metalloproteins (albumin, ceruloplasmin, and transferrin) from plasma using column chromatographic techniques. The experiment can be completed in two separate three-hour laboratory periods during which column chromatography is illustrated and the effect of pH on charge and affinity of a protein…

  19. Influence of endurance exercise (triathlon) on circulating transferrin receptors and other indicators of iron status in female athletes.

    PubMed

    Röcker, Lothar; Hinz, Katrin; Holland, Karsten; Gunga, Hanns-Christian; Vogelgesang, Jens; Kiesewetter, Holger

    2002-01-01

    Numerous reports have described a poor iron status in female endurance athletes. However, the traditionally applied indicators of iron status (hemoglobin, ferritin, transferrin) may not truly reflect the iron status. Therefore we studied the newly developed soluble transferrin receptor and other indicators of iron status in twelve female endurance athletes before and after a triathlon race. Resting values showed a poor iron status in the participants of the race. Serum TfR concentration increased slightly after the race. However, if the values are corrected for hemoconcentration no change could be found. Hemoglobin, serum ferritin and transferrin values were increased after the race.

  20. Analysis of the Immunological Responses to Transferrin and Lactoferrin Receptor Proteins from Moraxella catarrhalis

    PubMed Central

    Yu, Rong-hua; Bonnah, Robert A.; Ainsworth, Samuel; Schryvers, Anthony B.

    1999-01-01

    Moraxella catarrhalis expresses surface receptor proteins that specifically bind host transferrin (Tf) and lactoferrin (Lf) in the first step of the iron acquisition pathway. Acute- and convalescent-phase antisera from a series of patients with M. catarrhalis pulmonary infections were tested against Tf and Lf receptor proteins purified from the corresponding isolates. After the purified proteins had been separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting, we observed strong reactivity against Tf-binding protein B (TbpB; also called OMP1) and Lf-binding protein B (LbpB) but little or no reactivity against Tf-binding protein A (TbpA) or Lf-binding protein A (LbpA), using the convalescent-phase antisera. Considerable antigenic heterogeneity was observed when TbpBs and LbpBs isolated from different strains were tested with the convalescent-phase antisera. Comparison to the reactivity against electroblotted total cellular proteins revealed that the immune response against LbpB and TbpB constitutes a significant portion of the total detectable immune response to M. catarrhalis proteins. Preparations of affinity-isolated TbpA and LbpA reacted with convalescent-phase antisera in a solid-phase binding assay, but blocking with soluble TbpB, soluble LbpB, or extracts from an LbpA− mutant demonstrated that this reactivity was attributed to contaminants in the TbpA and LbpA preparations. These studies demonstrate the immunogenicity of M. catarrhalis TbpB and LbpB in humans and support their potential as vaccine candidates. PMID:10417140

  1. Common pathway for tumor cell uptake of gallium-67 and iron-59 via a transferrin receptor

    SciTech Connect

    Larson, S.M.; Rasey, J.S.; Allen, D.R.; Nelson, N.J.; Harp, G.D.; Williams, D.L.

    1980-01-01

    We studied the tumor uptake of (/sup 67/Ga)citrate, (/sup 59/Fe)citrate, and /sup 125/I-labeled transferrin (TF) by the in vitro growth form of EMT-6, a sarcoma-like mammary tumor of BALB/c mice. In analyzing the binindg experiments, we developed a new mathematical model based on a formulation originally used to express the interaction of hormones with specific tissue receptors. The uptake of both carrier-free /sup 67/Ga and /sup 59/Fe by tumor cells was mediated by kinetically identical TF receptors. We also studied teric acid extracts of the stroma of EMT-6 tumors grown both in vivo and in vitro. Chromatography of these extracts on Sephacryl S-200 SF demonstrated that the cellular stroma contained specific TF-binding macromolecules. On the basis of these findings, we proposed the transferrin receptor hypothesis for the mechanism of /sup 67/Ga uptake by tumors. According to this view, a tumor-assisted TF receptor is the functional unit responsible for the affinity of gallum for certain neoplasms. This receptor was also active in the uptake of iron by tumors.

  2. Involvement of multiple distinct Bordetella receptor proteins in the utilization of iron liberated from transferrin by host catecholamine stress hormones

    PubMed Central

    Armstrong, Sandra K.; Brickman, Timothy J.; Suhadolc, Ryan J.

    2012-01-01

    Summary Bordetella bronchiseptica is a pathogen that can acquire iron using its native alcaligin siderophore system, but can also use the catechol xenosiderophore enterobactin via the BfeA outer membrane receptor. Transcription of bfeA is positively controlled by a regulator that requires induction by enterobactin. Catecholamine hormones also induce bfeA transcription and B. bronchiseptica can use the catecholamine norepinephrine for growth on transferrin. In this study, B. bronchiseptica was shown to use catecholamines to obtain iron from both transferrin and lactoferrin in the absence of siderophore. In the presence of siderophore, norepinephrine augmented transferrin utilization by B. bronchiseptica, as well as siderophore function in vitro. Genetic analysis identified BfrA, BfrD and BfrE as TonB dependent outer membrane catecholamine receptors. The BfeA enterobactin receptor was found to not be involved directly in catecholamine utilization; however, the BfrA, BfrD and BfrE catecholamine receptors could serve as receptors for enterobactin and its degradation product 2,3-dihydroxybenzoic acid. Thus, there is a functional link between enterobactin-dependent and catecholamine-dependent transferrin utilization. This investigation characterizes a new B. bronchiseptica mechanism for iron uptake from transferrin that uses host stress hormones that not only deliver iron directly to catecholamine receptors, but also potentiate siderophore activity by acting as iron shuttles. PMID:22458330

  3. Determination of genetic transferrin variants in human serum by high-resolution capillary zone electrophoresis(†).

    PubMed

    Caslavska, Jitka; Joneli, Jeannine; Wanzenried, Ursula; Schiess, Jeannette; Lanz, Christian; Thormann, Wolfgang

    2014-07-01

    High-resolution capillary zone electrophoresis in the routine arena with stringent quality assurance is employed for the determination of carbohydrate-deficient transferrin in human serum. The assay comprises mixing of human serum with a Fe(III) -containing solution prior to analysis of the iron-saturated mixture in a dynamically double-coated capillary using a commercial buffer at alkaline pH. In contrast to other assays, it provides sufficient resolution for proper recognition of genetic transferrin variants. Analysis of 7290 patient sera revealed 166 isoform patterns that could be assigned to genetic variants, namely, 109 BC, 53 CD, one BD and three CC variants. Several subtypes of transferrin D can be distinguished as they have large enough differences in pI values. Subtypes of transferrin C and B cannot be resolved. However, analysis of the detection time ratios of tetrasialo isoforms of transferrin BC and transferrin CD variants revealed multimodal frequency histograms, indicating the presence of subtypes of transferrin C, B and D. The data gathered over 11 years demonstrate the robustness of the high-resolution capillary zone electrophoresis assay. This is the first account of a capillary zone electrophoresis based carbohydrate-deficient transferrin assay with a broad overview on transferrin isoform patterns associated with genetic transferrin variants.

  4. Transferrin receptors and the targeted delivery of therapeutic agents against cancer

    PubMed Central

    Daniels, Tracy R.; Bernabeu, Ezequiel; Rodríguez, José A.; Patel, Shabnum; Kozman, Maggie; Chiappetta, Diego A.; Holler, Eggehard; Ljubimova, Julia Y.; Helguera, Gustavo; Penichet, Manuel L.

    2012-01-01

    Background Traditional cancer therapy can be successful in destroying tumors, but can also cause dangerous side effects. Therefore, many targeted therapies are in development. The transferrin receptor (TfR) functions in cellular iron uptake through its interaction with transferrin. This receptor is an attractive molecule for the targeted therapy of cancer since it is upregulated on the surface of many cancer types and is efficiently internalized. This receptor can be targeted in two ways: 1) for the delivery of therapeutic molecules into malignant cells or 2) to block the natural function of the receptor leading directly to cancer cell death. Scope of review In the present article we discuss the strategies used to target the TfR for the delivery of therapeutic agents into cancer cells. We provide a summary of the vast types of anti-cancer drugs that have been delivered into cancer cells employing a variety of receptor binding molecules including Tf, anti-TfR antibodies, or TfR-binding peptides alone or in combination with carrier molecules including nanoparticles and viruses. Major conclusions Targeting the TfR has been shown to be effective in delivering many different therapeutic agents and causing cytotoxic effects in cancer cells in vitro and in vivo. General significance The extensive use of TfR for targeted therapy attests to the versatility of targeting this receptor for therapeutic purposes against malignant cells. More advances in this area are expected to further improve the therapeutic potential of targeting the TfR for cancer therapy leading to an increase in the number of clinical trials of molecules targeting this receptor. PMID:21851850

  5. Hepatocyte Nuclear Factor 4α Controls Iron Metabolism and Regulates Transferrin Receptor 2 in Mouse Liver*

    PubMed Central

    Matsuo, Shunsuke; Ogawa, Masayuki; Muckenthaler, Martina U.; Mizui, Yumiko; Sasaki, Shota; Fujimura, Takafumi; Takizawa, Masayuki; Ariga, Nagayuki; Ozaki, Hiroaki; Sakaguchi, Masakiyo; Gonzalez, Frank J.; Inoue, Yusuke

    2015-01-01

    Iron is an essential element in biological systems, but excess iron promotes the formation of reactive oxygen species, resulting in cellular toxicity. Several iron-related genes are highly expressed in the liver, a tissue in which hepatocyte nuclear factor 4α (HNF4α) plays a critical role in controlling gene expression. Therefore, the role of hepatic HNF4α in iron homeostasis was examined using liver-specific HNF4α-null mice (Hnf4aΔH mice). Hnf4aΔH mice exhibit hypoferremia and a significant change in hepatic gene expression. Notably, the expression of transferrin receptor 2 (Tfr2) mRNA was markedly decreased in Hnf4aΔH mice. Promoter analysis of the Tfr2 gene showed that the basal promoter was located at a GC-rich region upstream of the transcription start site, a region that can be transactivated in an HNF4α-independent manner. HNF4α-dependent expression of Tfr2 was mediated by a proximal promoter containing two HNF4α-binding sites located between the transcription start site and the translation start site. Both the GC-rich region of the basal promoter and the HNF4α-binding sites were required for maximal transactivation. Moreover, siRNA knockdown of HNF4α suppressed TFR2 expression in human HCC cells. These results suggest that Tfr2 is a novel target gene for HNF4α, and hepatic HNF4α plays a critical role in iron homeostasis. PMID:26527688

  6. Haemophilus influenzae can use human transferrin as a sole source for required iron.

    PubMed Central

    Herrington, D A; Sparling, P F

    1985-01-01

    Haemophilus influenzae grown on enriched medium containing protoporphyrin IX rather than hemin was iron starved by the addition of the chelator ethylenediamine di-o-hydroxyphenylacetic acid. Iron starvation could be overcome in each of 33 H. influenzae type b isolates by 30% Fe-saturated human transferrin but not by human lactoferrin. Among nontypeable H. influenzae, 28 of 35 isolates, including 2 of 3 systemic isolates, were able to utilize Fe-transferrin. None of 18 H. parainfluenzae isolates was able to use Fe-transferrin. Iron starvation of H. influenzae type b resulted in increased amounts of three membrane proteins of 94,000 to 98,000 daltons. Images PMID:3872264

  7. Transferrin receptor 2 and HFE regulate furin expression via mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/Erk) signaling. Implications for transferrin-dependent hepcidin regulation

    PubMed Central

    Poli, Maura; Luscieti, Sara; Gandini, Valentina; Maccarinelli, Federica; Finazzi, Dario; Silvestri, Laura; Roetto, Antonella; Arosio, Paolo

    2010-01-01

    Background Impaired regulation of hepcidin in response to iron is the cause of genetic hemochromatosis associated with defects of HFE and transferrin receptor 2. However, the role of these proteins in the regulation of hepcidin expression is unclear. Design and Methods Hepcidin expression, SMAD and extracellular signal-regulated kinase (Erk) phosphorylation and furin expression were analyzed in hepatic HepG2 cells in which HFE and transferrin receptor 2 were down-regulated or expressed, or furin activity specifically inhibited. Furin expression was also analyzed in the liver of transferrin receptor 2 null mice. Results We showed that the silencing of HFE and transferrin receptor 2 reduced both Erk phosphorylation and furin expression, that the exogenous expression of the two enhanced the induction of phosphoErk1/2 and furin by holotransferrin, but that this did not occur when the pathogenic HFE mutant C282Y was expressed. Furin, phosphoErk1/2 and phosphoSMAD1/5/8 were down-regulated also in transferrin receptor 2-null mice. Treatment of HepG2 cells with an inhibitor of furin activity caused a strong suppression of hepcidin mRNA, probably due to the inhibition of bone morphogenic protein maturation. Conclusions The data indicate that transferrin receptor 2 and HFE are involved in holotransferrin-dependent signaling for the regulation of furin which involved Erk phosphorylation. Furin in turn may control hepcidin expression. PMID:20634490

  8. Fluorescent adduct formation with terbium: a novel strategy for transferrin glycoform identification in human body fluids and carbohydrate-deficient transferrin HPLC method validation.

    PubMed

    Sorio, Daniela; De Palo, Elio Franco; Bertaso, Anna; Bortolotti, Federica; Tagliaro, Franco

    2017-02-01

    This paper puts forward a new method for the transferrin (Tf) glycoform analysis in body fluids that involves the formation of a transferrin-terbium fluorescent adduct (TfFluo). The key idea is to validate the analytical procedure for carbohydrate-deficient transferrin (CDT), a traditional biochemical serum marker to identify chronic alcohol abuse. Terbium added to a human body-fluid sample produced TfFluo. Anion exchange HPLC technique, with fluorescence detection (λ exc 298 nm and λ em 550 nm), permitted clear separation and identification of Tf glycoform peaks without any interfering signals, allowing selective Tf sialoforms analysis in human serum and body fluids (cadaveric blood, cerebrospinal fluid, and dried blood spots) hampered for routine test. Serum samples (n = 78) were analyzed by both traditional absorbance (Abs) and fluorescence (Fl) HPLC methods and CDT% levels demonstrated a significant correlation (p < 0.001 Pearson). Intra- and inter-runs CV% was 3.1 and 4.6%, respectively. The cut-off of 1.9 CDT%, related to the HPLC Abs proposed as the reference method, by interpolation in the correlation curve with the present method demonstrated a 1.3 CDT% cut-off. Method comparison by Passing-Bablok and Bland-Altman tests demonstrated Fl versus Abs agreement. In conclusion, the novel method is a reliable test for CDT% analysis and provides a substantial analytical improvement offering important advantages in terms of types of body fluid analysis. Its sensitivity and absence of interferences extend clinical applications being reliable for CDT assay on body fluids usually not suitable for routine test. Graphical Abstract The formation of a transferrin-terbium fluorescent adduct can be used to analyze the transferrin glycoforms. The HPLC method for carbohydrate-deficient transferrin (CDT%) measurement was validated and employed to determine the levels in different body fluids.

  9. Transferrin as a drug carrier: Cytotoxicity, cellular uptake and transport kinetics of doxorubicin transferrin conjugate in the human leukemia cells.

    PubMed

    Szwed, Marzena; Matusiak, Agnieszka; Laroche-Clary, Audrey; Robert, Jacques; Marszalek, Ilona; Jozwiak, Zofia

    2014-03-01

    Leukemias are one of most common malignancies worldwide. There is a substantial need for new chemotherapeutic drugs effective against this cancer. Doxorubicin (DOX), used for treatment of leukemias and solid tumors, is poorly efficacious when it is administered systemically at conventional doses. Therefore, several strategies have been developed to reduce the side effects of this anthracycline treatment. In this study we compared the effect of DOX and doxorubicin-transferrin conjugate (DOX-TRF) on human leukemia cell lines: chronic erythromyeloblastoid leukemia (K562), sensitive and resistant (K562/DOX) to doxorubicin, and acute lymphoblastic leukemia (CCRF-CEM). Experiments were also carried out on normal cells, peripheral blood mononuclear cells (PBMC). We analyzed the chemical structure of DOX-TRF conjugate by using mass spectroscopy. The in vitro growth-inhibition assay XTT, indicated that DOX-TRF is more cytotoxic for leukemia cells sensitive and resistant to doxorubicin and significantly less sensitive to normal cells compared to DOX alone. During the assessment of intracellular DOX-TRF accumulation it was confirmed that the tested malignant cells were able to retain the examined conjugate for longer periods of time than normal lymphocytes. Comparison of kinetic parameters showed that the rate of DOX-TRF efflux was also slower in the tested cells than free DOX. The results presented here should contribute to the understanding of the differences in antitumor activities of the DOX-TRF conjugate and free drug.

  10. Effects of human serum and apo-Transferrin on Staphylococcus epidermidis RP62A biofilm formation.

    PubMed

    She, Pengfei; Chen, Lihua; Qi, Yong; Xu, Huan; Liu, Yuan; Wang, Yangxia; Luo, Zhen; Wu, Yong

    2016-12-01

    Biofilm-associated Staphylococcus epidermidis infections present clinically important features due to their high levels of resistance to traditional antibiotics. As a part of human innate immune system, serum shows different degrees of protection against systemic S. epidermidis infection. We investigated the ability of human serum as well as serum component to inhibit the formation of, and eradication of mature S. epidermidis biofilms. In addition, the synergistic effect of vancomycin combined with apo-Transferrin was checked. Human serum exhibited significant antibiofilm activities against S. epidermidis at the concentration without affecting planktonic cell growth. However, there was no effect of human serum on established biofilms. By component separation, we observed that antibiofilm effect of serum components mainly due to the proteins could be damaged by heat inactivation (e.g., complement) or heat-stable proteins ≥100 kDa. In addition, serum apo-Transferrin showed modest antibiofilm effect, but without influence on S. epidermidis initial adhesion. And there was a synergistic antibiofilm interaction between vancomycin and apo-Transferrin against S. epidermidis. Our results indicate that serum or its components (heat-inactivated components or heat-stable proteins ≥100 kDa) could inhibits S. epidermidis biofilm formation. Besides, apo-Transferrin could partially reduce the biofilm formation at the concentration that does not inhibit planktonic cell growth.

  11. Structure of the Membrane Proximal Oxioreductase Domain of Human Steap3, the Dominant Ferrireductase of the Erythroid Transferrin Cycle

    SciTech Connect

    Sendamarai, A.K.; Ohgami, R.S.; Fleming, M.D.; Lawrence, C.M.

    2009-05-27

    The daily production of 200 billion erythrocytes requires 20 mg of iron, accounting for nearly 80% of the iron demand in humans. Thus, erythroid precursor cells possess an efficient mechanism for iron uptake in which iron loaded transferrin (Tf) binds to the transferrin receptor (TfR) at the cell surface. The Tf:TfR complex then enters the endosome via receptor-mediated endocytosis. Upon endosomal acidification, iron is released from Tf, reduced to Fe{sup 2+} by Steap3, and transported across the endosomal membrane by divalent metal iron transporter 1. Steap3, the major ferrireductase in erythrocyte endosomes, is a member of a unique family of reductases. Steap3 is comprised of an N-terminal cytosolic oxidoreductase domain and a C-terminal heme-containing transmembrane domain. Cytosolic NADPH and a flavin are predicted cofactors, but the NADPH/flavin binding domain differs significantly from those in other eukaryotic reductases. Instead, Steap3 shows remarkable, although limited homology to FNO, an archaeal oxidoreductase. We have determined the crystal structure of the human Steap3 oxidoreductase domain in the absence and presence of NADPH. The structure reveals an FNO-like domain with an unexpected dimer interface and substrate binding sites that are well positioned to direct electron transfer from the cytosol to a heme moiety predicted to be fixed within the transmembrane domain. Here, we discuss possible gating mechanisms for electron transfer across the endosomal membrane.

  12. FRET reveals the organization of different receptor-ligand complexes (polymeric IgA-R and Transferrin-R) in endocytic membranes of polarized MDCK cells

    NASA Astrophysics Data System (ADS)

    Wallrabe, Horst K.; Barroso, Margarida

    2004-06-01

    FRET-based assay has been used to determine the organization of transferrin-receptor bound to holo-transferrin in basolateral endocytic membranes and compare it to the previously characterized clustered organization of polymeric IgA-receptor (pIgA-R) bound to pIgA-R ligand in apical endocytic membranes. In polarized MDCK-PTR cells, we have internalized holo-transferrin from the basolateral plasma membrane - labeled with donor and acceptor fluorophores. Transferrin-receptor-holo-transferrin complexes were imaged in the basolateral endocytic compartment using FRET confocal laser scanning microscopy in fixed and live MDCK polarized cells. A two-parameter FRET assay demonstrates whether complexes are randomly distributed or clustered: Acceptor's positive impact on E% signifies random distribution; E% being independent of acceptor fluorescence levels indicates clusters. A second parameter for clustering is E% being negatively dependent on D:A ratios. Our results indicating a clustered organization of transferrin-receptor-holo transferrin complexes fit the well-known homodimeric structure of transferrin-receptor.

  13. Transferrin Receptor 2 Dependent Alterations of Brain Iron Metabolism Affect Anxiety Circuits in the Mouse

    PubMed Central

    Pellegrino, Rosa Maria; Boda, Enrica; Montarolo, Francesca; Boero, Martina; Mezzanotte, Mariarosa; Saglio, Giuseppe; Buffo, Annalisa; Roetto, Antonella

    2016-01-01

    The Transferrin Receptor 2 (Tfr2) modulates systemic iron metabolism through the regulation of iron regulator Hepcidin (Hepc) and Tfr2 inactivation causes systemic iron overload. Based on data demonstrating Tfr2 expression in brain, we analysed Tfr2-KO mice in order to examine the molecular, histological and behavioural consequences of Tfr2 silencing in this tissue. Tfr2 abrogation caused an accumulation of iron in specific districts in the nervous tissue that was not accompanied by a brain Hepc response. Moreover, Tfr2-KO mice presented a selective overactivation of neurons in the limbic circuit and the emergence of an anxious-like behaviour. Furthermore, microglial cells showed a particular sensitivity to iron perturbation. We conclude that Tfr2 is a key regulator of brain iron homeostasis and propose a role for Tfr2 alpha in the regulation of anxiety circuits. PMID:27477597

  14. Transferrin receptor bearing cells in the peripheral blood of patients with rheumatoid arthritis.

    PubMed Central

    Salmon, M; Bacon, P A; Symmons, D P; Blann, A D

    1985-01-01

    Activated, proliferating lymphocytes are a feature of rheumatoid arthritis. They are present both in the synovial membrane and in the peripheral circulation. The expression of transferrin receptors(TFR) is a good marker of cellular proliferation. This study shows increased levels of circulating TFR-bearing lymphocytes in patients with rheumatoid arthritis (RA). The TFR+ population contains a disproportionately large number of T4+ cells, leading to a high T4:T8 ratio (5:1 in the TFR+ population, compared to 2:1 in the total circulating pool of lymphocytes). This reflects the pattern found in the rheumatoid synovium and suggests that lymphocyte activation in RA may be an extra-articular phenomenon. The TFR+ population also contains a range of non-T cells, including B cells, and a population bearing phenotypic similarities to natural killer (NK) cells. PMID:3002686

  15. Seasonal changes in haematology, lymphocyte transferrin receptors and intracellular iron in Ironman triathletes and untrained men.

    PubMed

    Broadbent, Suzanne

    2011-01-01

    We investigated whether 12 months of chronic endurance training would affect haematology, CD4(+) lymphocyte transferrin receptor (CD71) expression, CD4(+) intracellular iron and the incidence of upper respiratory tract illnesses (URTI) in Ironman triathletes compared with untrained men. Resting venous blood samples were taken from 15 Ironman triathletes (TR 30 ± 5 year) and 12 untrained men (UT 30 ± 6 year) every 4 weeks for 12 months. Erythrocyte, leukocyte and platelet concentration, haematocrit, haemoglobin (Hb) and mean corpuscular haemoglobin (MCHC) were measured with a full blood count. CD4(+) lymphocytes were analysed for changes in transferrin receptor (CD71) expression (CD4(+)CD71(+)), and intracellular iron (Fe(3+)), by flow cytometry. The TR group had significantly lower Hb, MCHC, and platelets for 10, 9 and 11 months, respectively; lower CD4(+)CD71(+) (3 months) and Fe(3+) (1 month), respectively; higher CD4(+)CD71(+) (1 month); a higher lymphocyte count for 4 months. There were no between-group differences in other variables. In both groups haematology and lymphocytes increased during spring, early summer and winter and decreased during late summer/late winter, with an inverse relationship between CD4(+)CD71(+) and Fe(3+). The TR group reported significantly fewer URTI than the UT. Low Hb and MCHC suggest an iron deficiency which may affect triathlete performance. Monthly changes in lymphocytes, CD4(+)CD71(+) and Fe(3+) suggested that spring, summer and late autumn are associated with CD4(+) proliferation. There may be seasonal relationships between haematology and lymphocyte function, independent of endurance training, possibly affecting performance but not the incidence of URTI.

  16. Regulation of transferrin receptor expression at the cell surface by insulin-like growth factors, epidermal growth factor and platelet-derived growth factor

    SciTech Connect

    Davis, R.J.; Kuck, L.; Faucher, M.; Czech, M.P.

    1986-05-01

    Addition of platelet-derived growth factor (PDGF), recombinant insulin-like growth factor I (rIGF-I) or epidermal growth factor (EGF) to BALB/c 3T3 fibroblasts causes a marked increase in the binding of (/sup 125/I) diferric transferrin to cell surface receptors. This effect is very rapid and is complete within 5 minutes. The effect is transient with (/sup 125/I) diferric transferrin binding returning to control values within 25 minutes. In contrast, PDGF and rIGF-I cause a prolonged stimulation of (/sup 125/I) diferric transferrin binding that could be observed up to 2 hours. The increase in the binding of (/sup 125/I) diferric transferrin caused by growth factors was investigated by analysis of the binding isotherm. EGF, PDGF and rIGF-I were found to increase the cell surface expression of transferrin receptors rather than to alter the affinity of the transferrin receptors. Furthermore, PDGF and rIGF-I stimulated the sustained uptake of (/sup 59/Fe) diferric transferrin by BALB/c 3T3 fibroblasts. Thus, the effect of these growth factors to increase the cell surface expression of the transferrin receptor appears to have an important physiological consequence.

  17. Bivalent Brain Shuttle Increases Antibody Uptake by Monovalent Binding to the Transferrin Receptor

    PubMed Central

    Hultqvist, Greta; Syvänen, Stina; Fang, Xiaotian T; Lannfelt, Lars; Sehlin, Dag

    2017-01-01

    The blood-brain barrier (BBB) is an obstacle for antibody passage into the brain, impeding the development of immunotherapy and antibody-based diagnostics for brain disorders. In the present study, we have developed a brain shuttle for active transport of antibodies across the BBB by receptor-mediated transcytosis. We have thus recombinantly fused two single-chain variable fragments (scFv) of the transferrin receptor (TfR) antibody 8D3 to the light chains of mAb158, an antibody selectively binding to Aβ protofibrils, which are involved in the pathogenesis of Alzheimer's disease (AD). Despite the two TfR binders, a monovalent interaction with TfR was achieved due to the short linkers that sterically hinder bivalent binding to the TfR dimer. The design enabled efficient receptor-mediated brain uptake of the fusion protein. Two hours after administration, brain concentrations were 2-3% of the injected dose per gram brain, comparable to small molecular drugs and 80-fold higher than unmodified mAb158. After three days, fusion protein concentrations in AD transgenic mouse brains were 9-fold higher than in wild type mice, demonstrating high in vivo specificity. Thus, our innovative recombinant design markedly increases mAb158 brain uptake, which makes it a strong candidate for improved Aβ immunotherapy and as a PET radioligand for early diagnosis and evaluation of treatment effect in AD. Moreover, this approach could be applied to any target within the brain. PMID:28042336

  18. The erythroid function of transferrin receptor 2 revealed by Tmprss6 inactivation in different models of transferrin receptor 2 knockout mice

    PubMed Central

    Nai, Antonella; Pellegrino, Rosa M.; Rausa, Marco; Pagani, Alessia; Boero, Martina; Silvestri, Laura; Saglio, Giuseppe; Roetto, Antonella; Camaschella, Clara

    2014-01-01

    Transferrin receptor 2 (TFR2) is a transmembrane glycoprotein expressed in the liver and in the erythroid compartment, mutated in a form of hereditary hemochromatosis. Hepatic TFR2, together with HFE, activates the transcription of the iron-regulator hepcidin, while erythroid TFR2 is a member of the erythropoietin receptor complex. The TMPRSS6 gene, encoding the liver-expressed serine protease matriptase-2, is the main inhibitor of hepcidin and inactivation of TMPRSS6 leads to iron deficiency with high hepcidin levels. Here we evaluate the phenotype resulting from the genetic loss of Tmprss6 in Tfr2 total (Tfr2−/−) and liver-specific (Tfr2LCKO) knockout mice. Tmprss6−/−Tfr2−/− and Tmprss6−/−Tfr2LCKO mice have increased hepcidin levels and show iron-deficiency anemia like Tmprss6−/−mice. However, while Tmprss6−/−Tfr2LCKO are phenotypically identical to Tmprss6−/− mice, Tmprss6−/−Tfr2−/− mice have increased red blood cell count and more severe microcytosis than Tmprss6−/− mice. In addition hepcidin expression in Tmprss6−/−Tfr2−/− mice is higher than in the wild-type animals, but lower than in Tmprss6−/− mice, suggesting partial inhibition of the hepcidin activating pathway. Our results prove that hepatic TFR2 acts upstream of TMPRSS6. In addition Tfr2 deletion causes a relative erythrocytosis in iron-deficient mice, which likely attenuates the effect of over-expression of hepcidin in Tmprss6−/− mice. Since liver-specific deletion of Tfr2 in Tmprss6−/− mice does not modify the erythrocyte count, we speculate that loss of Tfr2 in the erythroid compartment accounts for the hematologic phenotype of Tmprss6−/−Tfr2−/− mice. We propose that TFR2 is a limiting factor for erythropoiesis, particularly in conditions of iron restriction. PMID:24658816

  19. Comparison of the Antiproliferative Activity of Two Antitumour Ruthenium(III) Complexes With Their Apotransferrin and Transferrin-Bound Forms in a Human Colon Cancer Cell Line

    PubMed Central

    Keppler, B. K.; Hartmann, M.; Messori, L.; Berger, M. R.

    1996-01-01

    Two ruthenium(III) complexes, namely trans-indazolium[tetrachlorobis(indazole)- ruthenate(III)], HInd[RuInd2Cl4] and trans-imidazolium[tetrachlorobis(imidazole)- ruthenate(III)], HIm[RuIm2Cl4] exhibit high anticancer activity in an autochthonous colorectal carcinoma model in rats. Recently, it has been shown that both complexes bind specifically to human serum apotransferrin and the resulting adducts have been studied through spectroscopic and chromatographic techniques with the ultimate goal of preparing adducts with good selectivity for cancer cells due to the fact that tumour cells express high amounts of transferrin receptors on their cell surface. In order to investigate whether the cellular uptake of the complexes was mediated by apotransferrin or transferrin, we compared the antiproliferative efficacy of HInd[RuInd2Cl4] and HIm[RuIm2Cl4] with its apotransferrin- and transferrin-bound form in the human colon cancer cell line SW707 using the microculture tetrazolium test (MTT). Our results show that especially the transferrin-bound forms exhibit high antiproliferative activity, which exceeds that of the free complex, indicating that this protein can act as a carrier of the ruthenium complexes into the tumor cell. PMID:18472789

  20. Radioprotective effect of transferrin targeted citicoline liposomes.

    PubMed

    Suresh Reddy, Jannapally; Venkateswarlu, Vobalaboina; Koning, Gerben A

    2006-01-01

    The high level of expression of transferrin receptors (Tf-R) on the surface of endothelial cells of the blood-brain-barrier (BBB) had been widely utilized to deliver drugs to the brain. The primary aim of this study was to use transferrin receptor mediated endocytosis as a pathway for the rational development of holo-transferrin coupled liposomes for drug targeting to the brain. Citicoline is a neuroprotective agent used clinically to treat for instance Parkinson disease, stroke, Alzheimer's disease and brain ischemia. Citicoline does not readily cross the BBB because of its strong polar nature. Hence, citicoline was used as a model drug. (Citicoline liposomes have been prepared using dipalmitoylphosphatidylcholine (DPPC) or distearoylphosphatidylcholine (DSPC) by dry lipid film hydration-extrusion method). The effect of the use of liposomes composed of DPPC or DSPC on their citicoline encapsulation efficiency and their stability in vitro were studied. Transferrin was coupled to liposomes by a technique which involves the prevention of scavenging diferric iron atoms of transferrin. The coupling efficiency of transferrin to the liposomes was studied. In vitro evaluation of transferrin-coupled liposomes was performed for their radioprotective effect in radiation treated cell cultures. In this study, OVCAR-3 cells were used as a model cell type over-expressing the Tf-R and human umbilical vein endothelial cells (HUVEC) as BBB endothelial cell model. The average diameter of DPPC and DSPC liposomes were 138 +/- 6.3 and 79.0 +/- 3.2 nm, respectively. The citicoline encapsulation capacity of DPPC and DSPC liposomes was 81.8 +/- 12.8 and 54.9 +/- 0.04 microg/micromol of phospholipid, respectively. Liposomes prepared from DSPC showed relatively better stability than DPPC liposomes at 37 degrees C and in the presence of serum. Hence, DSPC liposomes were used for transferrin coupling and an average of 46-55 molecules of transferrin were present per liposome. Free citicoline

  1. Aluminum access to the brain: A role for transferrin and its receptor

    SciTech Connect

    Roskams, A.J.; Connor, J.R. )

    1990-11-01

    The toxicity of aluminum in plant and animal cell biology is well established, although poorly understood. Several recent studies have identified aluminum as a potential, although highly controversial, contributory factor in the pathology of Alzheimer's disease, amyotrophic lateral sclerosis, and dialysis dementia. For example, aluminum has been found in high concentrations in senile plaques and neurofibrillary tangles, which occur in the brains of subjects with Alzheimer's disease. However, a mechanism for the entry of aluminum (Al{sup 3+}) into the cells of the central nervous system (CNS) has yet to be found. Here the authors describe a possible route of entry for aluminum into the cells of the CNS via the same high-affinity receptor-ligand system that has been postulated for iron (Fe{sup 3}) aluminum is able to gain access to the central nervous system under normal physiological conditions. Furthermore, these data suggest that the interaction between transferrin and its receptor may function as a general metal ion regulatory system in the CNS, extending beyond its postulated role in iron regulation.

  2. The second transferrin receptor regulates red blood cell production in mice

    PubMed Central

    Nai, Antonella; Lidonnici, Maria Rosa; Rausa, Marco; Mandelli, Giacomo; Pagani, Alessia; Silvestri, Laura; Ferrari, Giuliana

    2015-01-01

    Transferrin receptor 2 (TFR2) contributes to hepcidin regulation in the liver and associates with erythropoietin receptor in erythroid cells. Nevertheless, TFR2 mutations cause iron overload (hemochromatosis type 3) without overt erythroid abnormalities. To clarify TFR2 erythroid function, we generated a mouse lacking Tfr2 exclusively in the bone marrow (Tfr2BMKO). Tfr2BMKO mice have normal iron parameters, reduced hepcidin levels, higher hemoglobin and red blood cell counts, and lower mean corpuscular volume than normal control mice, a phenotype that becomes more evident in iron deficiency. In Tfr2BMKO mice, the proportion of nucleated erythroid cells in the bone marrow is higher and the apoptosis lower than in controls, irrespective of comparable erythropoietin levels. Induction of moderate iron deficiency increases erythroblasts number, reduces apoptosis, and enhances erythropoietin (Epo) levels in controls, but not in Tfr2BMKO mice. Epo-target genes such as Bcl-xL and Epor are highly expressed in the spleen and in isolated erythroblasts from Tfr2BMKO mice. Low hepcidin expression in Tfr2BMKO is accounted for by erythroid expansion and production of the erythroid regulator erythroferrone. We suggest that Tfr2 is a component of a novel iron-sensing mechanism that adjusts erythrocyte production according to iron availability, likely by modulating the erythroblast Epo sensitivity. PMID:25499454

  3. Diagnosis of Iron Deficiency in Inflammatory Bowel Disease by Transferrin Receptor-Ferritin Index.

    PubMed

    Abitbol, Vered; Borderie, Didier; Polin, Vanessa; Maksimovic, Fanny; Sarfati, Gilles; Esch, Anouk; Tabouret, Tessa; Dhooge, Marion; Dreanic, Johann; Perkins, Geraldine; Coriat, Romain; Chaussade, Stanislas

    2015-07-01

    Iron deficiency is common in patients with inflammatory bowel disease (IBD), but can be difficult to diagnose in the presence of inflammation because ferritin is an acute phase reactant. The transferrin receptor-ferritin index (TfR-F) has a high sensitivity and specificity for iron deficiency diagnosis in chronic diseases. The diagnostic efficacy of TfR-F is little known in patients with IBD. The aim of the study was to assess the added value of TfR-F to iron deficiency diagnosis in a prospective cohort of patients with IBD.Consecutive IBD patients were prospectively enrolled. Patients were excluded in case of blood transfusion, iron supplementation, or lack of consent. IBD activity was assessed on markers of inflammation (C-reactive protein, endoscopy, fecal calprotectin). Hemoglobin, ferritin, vitamin B9 and B12, Lactate dehydrogenase, haptoglobin, and soluble transferrin receptor (sTfR) were assayed. TfR-F was calculated as the ratio sTfR/log ferritin. Iron deficiency was defined by ferritin <30 ng/mL or TfR-F >2 in the presence of inflammation.One-hundred fifty patients with median age 38 years (16-78) and Crohn disease (n = 105), ulcerative colitis (n = 43), or unclassified colitis (n = 2) were included. Active disease was identified in 45.3%. Anemia was diagnosed in 28%. Thirty-six patients (24%) had ferritin <30 ng/mL. Thirty-two patients (21.3%) had ferritin levels from 30 to 100 ng/ml and inflammation: 2 had vitamin B12 deficiency excluding TfR-F analysis, 13 of 30 (43.3%) had TfR-F >2. Overall, iron deficiency was diagnosed in 32.7% of the patients.TfR-F in addition to ferritin <30 ng/mL criterion increased by 36% diagnosis rates of iron deficiency. TfR-F appeared as a useful biomarker that could help physicians to diagnose true iron deficiency in patients with active IBD.

  4. Transferrin receptor-2 gene and non-C282Y homozygous patients with hemochromatosis.

    PubMed

    Aguilar-Martinez, P; Esculié-Coste, C; Bismuth, M; Giansily-Blaizot, M; Larrey, D; Schved, J F

    2001-01-01

    More than 80% of the patients affected by hereditary hemochromatosis, a common inherited iron disorder, are homozygotes for the 845G --> A (C282Y) mutation of the HFE gene. However, depending on the population, 10-20% of hereditary hemochromatosis can be linked either to other HFE genotypes, particularly the compound heterozygous state for C282Y and the 187 C --> G (H63D) mutation, or to mutations of new other genes. Recently, Camaschella et al. (Nat. Genet. 25, 14-15, 2000) identified a stop mutation (exon 6 nt 750 C --> T, Y250X) on the transferrin receptor-2 (TFR2) gene in two unrelated Sicilian families with hereditary hemochromatosis. The TFR2 gene is a transferrin receptor gene homologue that seems to be involved in iron metabolism. Moreover, one of the patients described by Camaschella et al. was a H63D homozygote. H63D homozygosity can be associated with various phenotypes from asymptomatic subjects to patients with a typical form of hereditary hemochromatosis. Thus, the Y250X mutation could be the molecular defect responsible for hereditary hemochromatosis in subjects with atypical HFE genotypes. We have searched for the Y250X mutation in 63 unrelated French subjects. Forty-three had a diagnosis of hereditary hemochromatosis based on classical criteria. This group included 12 H63D homozygotes, 3 C282Y heterozygotes, and 3 patients with none of the two most prevalent HFE mutants. These 18 patients had no other HFE sequence change and were subsequently subjected to DNA sequencing of the 15 last exons and flanking sequences of the TFR2 gene. The 25 remaining hereditary hemochromatosis patients who were tested for the Y250X mutant were compound heterozygotes for the C282Y and H63D mutations. Finally, we also tested for this TFR2 mutation 20 H63D homozygotes with milder manifestations of iron overload and no acquired cause of iron overload. None of the 63 tested subjects had the Y250X mutation. Concurrently, none of the 18 hereditary hemochromatosis patients

  5. Interaction of imatinib mesylate with human serum transferrin: The comparative spectroscopic studies.

    PubMed

    Śliwińska-Hill, Urszula

    2017-02-15

    Imatinib mesylate (Imt) is a tyrosine kinase inhibitor mainly used in the treatment of Philadelphia chromosome-positive chronic myelogenous leukemia (Ph+CML). Human serum transferrin is the most abundant serum protein responsible for the transport of iron ions and many endogenous and exogenous ligands. In this study the mechanism of interactions between the imatinib mesylate and all states of transferrin (apo-Tf, Htf and holo-Tf) has been investigated by fluorescence, ultraviolet-visible (UV-vis), circular dichroism (CD) and zeta potential spectroscopic methods. Based on the experimental results it was proved that under physiological conditions the imatinib mesylate binds to the each form of transferrin with a binding constant c.a. 10(5)M(-1). The thermodynamic parameters indicate that hydrogen bonds and van der Waals were involved in the interaction of apo-Tf with the drug and hydrophobic and ionic strength participate in the reaction of Htf and holo-Tf with imatinib mesylate. Moreover, it was shown that common metal ions, Zn(2+) and Ca(2+) strongly influenced apo-Tf-Imt binding constant. The CD studies showed that there are no conformational changes in the secondary structure of the proteins. No significant changes in secondary structure of the proteins upon binding with the drug and instability of apo-Tf-Imt system are the desirable effects from pharmacological point of view.

  6. Interaction of imatinib mesylate with human serum transferrin: The comparative spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Śliwińska-Hill, Urszula

    2017-02-01

    Imatinib mesylate (Imt) is a tyrosine kinase inhibitor mainly used in the treatment of Philadelphia chromosome-positive chronic myelogenous leukemia (Ph + CML). Human serum transferrin is the most abundant serum protein responsible for the transport of iron ions and many endogenous and exogenous ligands. In this study the mechanism of interactions between the imatinib mesylate and all states of transferrin (apo-Tf, Htf and holo-Tf) has been investigated by fluorescence, ultraviolet-visible (UV-vis), circular dichroism (CD) and zeta potential spectroscopic methods. Based on the experimental results it was proved that under physiological conditions the imatinib mesylate binds to the each form of transferrin with a binding constant c.a. 105 M- 1. The thermodynamic parameters indicate that hydrogen bonds and van der Waals were involved in the interaction of apo-Tf with the drug and hydrophobic and ionic strength participate in the reaction of Htf and holo-Tf with imatinib mesylate. Moreover, it was shown that common metal ions, Zn2 + and Ca2 + strongly influenced apo-Tf-Imt binding constant. The CD studies showed that there are no conformational changes in the secondary structure of the proteins. No significant changes in secondary structure of the proteins upon binding with the drug and instability of apo-Tf-Imt system are the desirable effects from pharmacological point of view.

  7. Double diagnostic meaning of serum transferrin receptor in hemodialysis patients: two case reports.

    PubMed

    Passanante, S; Diquattro, M; Greco, V; Li Cavoli, G; Bono, L; Palma, B; Scola, S; Faraci, C; Rotolo, U; Menozzi, I

    2004-01-01

    Hemodialysis patients on maintenance erythropoietin need an adequate supply of iron to optimize therapy and achieve and maintain target levels of hemoglobin. Evaluation of iron stores and early detection of iron deficiency are essential for management of erythropoiesis in chronic renal failure, but there is still no single biochemical or hematological parameter that is sensitive or specific enough to completely describe the distribution of iron in the body. Serum transferrin receptor (sTfR) is a marker of iron that is available for erythropoiesis. We selected 2 clinical cases in which hemodialysis patients were receiving maintenance erythropoietin. To suggest how sTfR can be used in its double diagnostic meaning according to the clinical context of the patient, sTfR was evaluated in one case as a marker of iron deficiency and in the other as a marker of erythropoiesis. The association of sTfR with hematological parameters of iron-deficient erythropoiesis (reticulocyte hemoglobin content, percentage of hypochromic erythrocytes, ratio of reticulocyte hemoglobin content to hemoglobin content) and parameters of stimulated erythropoiesis (absolute reticulocyte count, immature reticulocyte fraction) increases the accuracy of sTfR in its double diagnostic power.

  8. Reference limits and behaviour of serum transferrin receptor in children 6-10 years of age.

    PubMed

    Danise, P; Maconi, M; Morelli, G; Di Palma, A; Rescigno, G; Esposito, C; Avino, D; Talento, B

    2008-08-01

    Serum transferrin receptor (sTfR) originates mostly from erythroblasts and lesser from reticulocytes. The usefulness of sTfR has been implicated in several clinical situations, mainly as a marker of accelerated erythropoiesis or iron deficiency. The assessment of sTfR may be useful in the period of rapid growth during infancy, childhood and adolescence. We evaluated sTfR and the other quantitative and qualitative parameters of the erythropoiesis (Hb, MCV, CHr, Ret-He) and of the iron storage (serum ferritin, sTfR/ferritin index) in a total of 916 children aged 6-10 years. Children were divided into three groups: (A) healthy children, (B) with storage iron deficiency (serum ferritin < 12 microg/l) and (C) Beta trait carriers (HbA2 > 3.3). We determined reference intervals by sex and by age in healthy children. sTfR showed a slight but statistically significant age related increase but did not show significant sex differences. We compared sTfR and the other parameters investigated in the three groups of children. sTfR is not a decisive parameter that can be utilized alone in discriminating the border-line situations between normal and pathologic ones but can help in completing the panel of tests in iron deficiency and in thalassaemia Beta trait carriers.

  9. Study of maternal influences on fetal iron status at term using cord blood transferrin receptors

    PubMed Central

    Sweet, D; Savage, G; Tubman, T; Lappin, T; Halliday, H

    2001-01-01

    AIMS—To determine effects of maternal iron depletion and smoking on iron status of term babies using serum transferrin receptors (STfR) and their ratio to ferritin (TfR-F index) in cord blood.
METHODS—Iron, ferritin, STfR, and haemoglobin (Hb) concentration were measured and TfR-F index calculated in 67 cord /maternal blood pairs. Twenty six mothers were iron depleted (ferritin <10 µg/l) and 28 were smokers.
RESULTS—Maternal iron depletion was associated with decreased cord ferritin (113 v 171 µg/l) and Hb (156 v 168 g/l) but no change in STfR or TfR-F index. Smoking was associated with increased cord Hb (168 v 157 g/l) and TfR-F index (4.1 v 3.4), and decreased ferritin (123 v 190 µg/l). Cord TfR-F index and Hb were positively correlated (r = 0.48).
CONCLUSIONS—Maternal iron depletion is associated with reduced fetal iron stores but no change in free iron availability. Smoking is associated with increased fetal iron requirements for erythropoiesis.

 PMID:11124923

  10. The assessment of frequency of iron deficiency in athletes from the transferrin receptor-ferritin index.

    PubMed

    Malczewska, J; Szczepańska, B; Stupnicki, R; Sendecki, W

    2001-03-01

    The transferrin receptor-ferritin index (sTfR/logFerr) was determined in 131 male and 121 female athletes in order to assess the frequency of iron deficiency (threshold value of that index taken as 1.8). Blood was drawn for determining morphological indices as well as sTfR, ferritin, iron, total iron binding capacity (TIBC), and haptoglobin. A significantly (p <.01) higher incidence of iron deficiency was observed in women (26%) than in men (11%). The iron deficiency was latent, since no subject was found to be anemic. The plasma iron was significantly lower and TIBC higher (p <.001) in both iron-deficient subgroups than in the non-deficient ones. This confirmed the latent character of iron deficiency. Some hematological indices (Hb, MCH, MCHC, MCV) were significantly lower in iron-deficient female athletes than in male athletes, which suggested a more profound iron deficiency in the former. The sTfR/logFerr index might thus be useful in detecting iron deficiency in athletes, especially in those with erythropoiesis disorders, since physical loads may affect the widely used ferritin levels.

  11. Transferrin receptor 2: Continued expression in mouse liver in the face of iron overload and in hereditary hemochromatosis

    PubMed Central

    Fleming, Robert E.; Migas, Mary C.; Holden, Christopher C.; Waheed, Abdul; Britton, Robert S.; Tomatsu, Shunji; Bacon, Bruce R.; Sly, William S.

    2000-01-01

    Hereditary hemochromatosis (HH) is a common autosomal recessive disorder characterized by excess absorption of dietary iron and progressive iron deposition in several tissues, particularly liver. Liver disease resulting from iron toxicity is the major cause of death in HH. Hepatic iron loading in HH is progressive despite down-regulation of the classical transferrin receptor (TfR). Recently a human cDNA highly homologous to TfR was identified and reported to encode a protein (TfR2) that binds holotransferrin and mediates uptake of transferrin-bound iron. We independently identified a full-length murine EST encoding the mouse orthologue of the human TfR2. Although homologous to murine TfR in the coding region, the TfR2 transcript does not contain the iron-responsive elements found in the 3′ untranslated sequence of TfR mRNA. To determine the potential role for TfR2 in iron uptake by liver, we investigated TfR and TfR2 expression in normal mice and murine models of dietary iron overload (2% carbonyl iron), dietary iron deficiency (gastric parietal cell ablation), and HH (HFE −/−). Northern blot analyses demonstrated distinct tissue-specific patterns of expression for TfR and TfR2, with TfR2 expressed highly only in liver where TfR expression is low. In situ hybridization demonstrated abundant TfR2 expression in hepatocytes. In contrast to TfR, TfR2 expression in liver was not increased in iron deficiency. Furthermore, hepatic expression of TfR2 was not down-regulated with dietary iron loading or in the HFE −/− model of HH. From these observations, we propose that TfR2 allows continued uptake of Tf-bound iron by hepatocytes even after TfR has been down-regulated by iron overload, and this uptake contributes to the susceptibility of liver to iron loading in HH. PMID:10681454

  12. A chimeric LDL receptor containing the cytoplasmic domain of the transferrin receptor is degraded by PCSK9.

    PubMed

    Holla, Øystein L; Strøm, Thea Bismo; Cameron, Jamie; Berge, Knut Erik; Leren, Trond P

    2010-02-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to the extracellular domain of the low density lipoprotein receptor (LDLR) at the cell surface, and disrupts the normal recycling of the LDLR. However, the exact mechanism by which the LDLR is re-routed for lysosomal degradation remains to be determined. To clarify the role of the cytoplasmic domain of the LDLR for re-routing to the lysosomes, we have studied the ability of PCSK9 to degrade a chimeric receptor which contains the extracellular and transmembrane domains of the LDLR and the cytoplasmic domain of the transferrin receptor. These studies were performed in CHO T-REx cells stably transfected with a plasmid encoding the chimeric receptor and a novel assay was developed to study the effect of PCSK9 on the LDLR in these cells. Localization, function and stability of the chimeric receptor were similar to that of the wild-type LDLR. The addition of purified gain-of-function mutant D374Y-PCSK9 to the culture medium of stably transfected CHO T-REx cells showed that the chimeric receptor was degraded, albeit to a lower extent than the wild-type LDLR. In addition, a mutant LDLR, which has the three lysines in the intracellular domain substituted with arginines, was also degraded by D374Y-PCSK9. Thus, the mechanism for the PCSK9-mediated degradation of the LDLR does not appear to involve an interaction between the endosomal sorting machinery and LDLR-specific motifs in the cytoplasmic domain. Moreover, ubiquitination of lysines in the cytoplasmic domain does not appear to play a critical role in the PCSK9-mediated degradation of the LDLR.

  13. Reticulocyte haemoglobin content vs. soluble transferrin receptor and ferritin index in iron deficiency anaemia accompanied with inflammation.

    PubMed

    Marković, M; Majkić-Singh, N; Ignjatović, S; Singh, S

    2007-10-01

    Ferritin concentration, as a parameter of iron status that is commonly used in the diagnosis of iron deficiency anaemia (IDA), often has limited values if the iron deficiency is accompanied by inflammatory disease. This study evaluated the value of reticulocyte haemoglobin content (CHr) and soluble transferrin receptor-ferritin index (sTfR/F) in the diagnosis of IDA and differential diagnosis of IDA and anaemia of chronic disease. The study included 66 nonanaemic individuals as controls, 86 patients with IDA divided into noninflammatory and inflammatory subgroups, and 32 patients with anaemia of chronic disease. Blood count, iron, transferrin saturation, total iron binding capacity, ferritin, C-reactive protein, sTfR and CHr were determined. Receiver operator characteristic curve analysis showed very high discriminating power for CHr, soluble transferrin receptor (sTfR) and sTfR/F in the diagnosis of IDA. In patients with anaemia of chronic disease these parameters showed no significant difference from the control. CHr and sTfR enabled recognition of iron deficiency and were not affected by acute phase reaction. They are sensitive markers of body iron status with additional value to conventional tests for the detection of iron deficiency.

  14. The small-molecule iron transport inhibitor ferristatin/NSC306711 promotes degradation of the transferrin receptor.

    PubMed

    Horonchik, Lior; Wessling-Resnick, Marianne

    2008-07-21

    Iron delivery by transferrin (Tf) is accomplished through clathrin-mediated endocytosis of Tf receptors. The small molecule NSC306711 inhibits iron uptake from the Tf-TfR pathway. Here we show that the drug's mechanism of action is to induce internalization and degradation of unoccupied Tf receptors through an unexpected endocytic pathway. Unlike classical clathrin-mediated Tf receptor endocytosis, internalization promoted by NSC306711 is independent of clathrin and dynamin, and is sensitive to the cholesterol-depleting agents filipin and nystatin. The finding of this cholesterol-dependent Tf receptor internalization pathway through use of the small-molecule inhibitor sheds light on the pleiotropic nature of membrane trafficking dynamics and adds a complex dimension to our understanding of receptor regulation. Because of its unusual properties to inhibit iron uptake, we refer to NSC306711 as "ferristatin."

  15. Functional consequences of transferrin receptor-2 mutations causing hereditary hemochromatosis type 3.

    PubMed

    Joshi, Ricky; Shvartsman, Maya; Morán, Erica; Lois, Sergi; Aranda, Jessica; Barqué, Anna; de la Cruz, Xavier; Bruguera, Miquel; Vagace, José Manuel; Gervasini, Guillermo; Sanz, Cristina; Sánchez, Mayka

    2015-05-01

    Hereditary hemochromatosis (HH) type 3 is an autosomal recessive disorder of iron metabolism characterized by excessive iron deposition in the liver and caused by mutations in the transferrin receptor 2 (TFR2) gene. Here, we describe three new HH type 3 Spanish families with four TFR2 mutations (p.Gly792Arg, c.1606-8A>G, Gln306*, and Gln672*). The missense variation p.Gly792Arg was found in homozygosity in two adult patients of the same family, and in compound heterozygosity in an adult proband that also carries a novel intronic change (c.1606-8A>G). Two new nonsense TFR2 mutations (Gln306* and Gln672*) were detected in a pediatric case. We examine the functional consequences of two TFR2 variants (p.Gly792Arg and c.1606-8A>G) using molecular and computational methods. Cellular protein localization studies using immunofluorescence demonstrated that the plasma membrane localization of p.Gly792Arg TFR2 is impaired. Splicing studies in vitro and in vivo reveal that the c.1606-8A>G mutation leads to the creation of a new acceptor splice site and an aberrant TFR2 mRNA. The reported mutations caused HH type 3 by protein truncation, altering TFR2 membrane localization or by mRNA splicing defect, producing a nonfunctional TFR2 protein and a defective signaling transduction for hepcidin regulation. TFR2 genotyping should be considered in adult but also in pediatric cases with early-onset of iron overload.

  16. Functional consequences of transferrin receptor-2 mutations causing hereditary hemochromatosis type 3

    PubMed Central

    Joshi, Ricky; Shvartsman, Maya; Morán, Erica; Lois, Sergi; Aranda, Jessica; Barqué, Anna; de la Cruz, Xavier; Bruguera, Miquel; Vagace, José Manuel; Gervasini, Guillermo; Sanz, Cristina; Sánchez, Mayka

    2015-01-01

    Hereditary hemochromatosis (HH) type 3 is an autosomal recessive disorder of iron metabolism characterized by excessive iron deposition in the liver and caused by mutations in the transferrin receptor 2 (TFR2) gene. Here, we describe three new HH type 3 Spanish families with four TFR2 mutations (p.Gly792Arg, c.1606-8A>G, Gln306*, and Gln672*). The missense variation p.Gly792Arg was found in homozygosity in two adult patients of the same family, and in compound heterozygosity in an adult proband that also carries a novel intronic change (c.1606-8A>G). Two new nonsense TFR2 mutations (Gln306* and Gln672*) were detected in a pediatric case. We examine the functional consequences of two TFR2 variants (p.Gly792Arg and c.1606-8A>G) using molecular and computational methods. Cellular protein localization studies using immunofluorescence demonstrated that the plasma membrane localization of p.Gly792Arg TFR2 is impaired. Splicing studies in vitro and in vivo reveal that the c.1606-8A>G mutation leads to the creation of a new acceptor splice site and an aberrant TFR2 mRNA. The reported mutations caused HH type 3 by protein truncation, altering TFR2 membrane localization or by mRNA splicing defect, producing a nonfunctional TFR2 protein and a defective signaling transduction for hepcidin regulation. TFR2 genotyping should be considered in adult but also in pediatric cases with early-onset of iron overload. PMID:26029709

  17. Temporal manipulation of transferrin-receptor-1-dependent iron uptake identifies a sensitive period in mouse hippocampal neurodevelopment.

    PubMed

    Fretham, S J B; Carlson, E S; Wobken, J; Tran, P V; Petryk, A; Georgieff, M K

    2012-08-01

    Iron is a necessary substrate for neuronal function throughout the lifespan, but particularly during development. Early life iron deficiency (ID) in humans (late gestation through 2-3 yr) results in persistent cognitive and behavioral abnormalities despite iron repletion. Animal models of early life ID generated using maternal dietary iron restriction also demonstrate persistent learning and memory deficits, suggesting a critical requirement for iron during hippocampal development. Precise definition of the temporal window for this requirement has been elusive due to anemia and total body and brain ID inherent to previous dietary restriction models. To circumvent these confounds, we developed transgenic mice that express tetracycline transactivator regulated, dominant negative transferrin receptor (DNTfR1) in hippocampal neurons, disrupting TfR1 mediated iron uptake specifically in CA1 pyramidal neurons. Normal iron status was restored by doxycycline administration. We manipulated the duration of ID using this inducible model to examine long-term effects of early ID on Morris water maze learning, CA1 apical dendrite structure, and defining factors of critical periods including parvalbmin (PV) expression, perineuronal nets (PNN), and brain-derived neurotrophic factor (BDNF) expression. Ongoing ID impaired spatial memory and resulted in disorganized apical dendrite structure accompanied by altered PV and PNN expression and reduced BDNF levels. Iron repletion at P21, near the end of hippocampal dendritogenesis, restored spatial memory, dendrite structure, and critical period markers in adult mice. However, mice that remained hippocampally iron deficient until P42 continued to have spatial memory deficits, impaired CA1 apical dendrite structure, and persistent alterations in PV and PNN expression and reduced BDNF despite iron repletion. Together, these findings demonstrate that hippocampal iron availability is necessary between P21 and P42 for development of normal

  18. Glutaminolysis and Transferrin Regulate Ferroptosis.

    PubMed

    Gao, Minghui; Monian, Prashant; Quadri, Nosirudeen; Ramasamy, Ravichandran; Jiang, Xuejun

    2015-07-16

    Ferroptosis has emerged as a new form of regulated necrosis that is implicated in various human diseases. However, the mechanisms of ferroptosis are not well defined. This study reports the discovery of multiple molecular components of ferroptosis and its intimate interplay with cellular metabolism and redox machinery. Nutrient starvation often leads to sporadic apoptosis. Strikingly, we found that upon deprivation of amino acids, a more rapid and potent necrosis process can be induced in a serum-dependent manner, which was subsequently determined to be ferroptosis. Two serum factors, the iron-carrier protein transferrin and amino acid glutamine, were identified as the inducers of ferroptosis. We further found that the cell surface transferrin receptor and the glutamine-fueled intracellular metabolic pathway, glutaminolysis, played crucial roles in the death process. Inhibition of glutaminolysis, the essential component of ferroptosis, can reduce heart injury triggered by ischemia/reperfusion, suggesting a potential therapeutic approach for treating related diseases.

  19. The usefulness of soluble transferrin receptor in the diagnosis and treatment of iron deficiency anemia in children

    PubMed Central

    Yoon, Se Hoon; Kim, Dong Sup; Yu, Seung Taek; Shin, Sae Ron

    2015-01-01

    Purpose Soluble transferrin receptor (sTfR) is a truncated extracellular form of the membrane transferrin receptor produced by proteolysis. Concentrations of serum sTfR are related to iron status and erythropoiesis in the body. We investigated whether serum sTfR levels can aid in diagnosis and treatment of iron deficiency anemia (IDA) in children. Methods Ninety-eight patients with IDA were enrolled and were classified according to age at diagnosis. Group 1 comprised 78 children, aged 6-59 months, and group 2 comprised 20 adolescents, aged 12-16 years. Results In group 1, patients' serum sTfR levels correlated negatively with mean corpuscular volume; hemoglobin (Hb), ferritin, and serum iron levels; and transferrin saturation and positively with total iron binding capacity (TIBC) and red cell distribution width. In group 2, patients' serum sTfR levels did not correlate with ferritin levels and TIBC, but had a significant relationship with other iron indices. Hb and serum sTfR levels had a significant inverse relationship in both groups; however, in group 1, there was no correlation between Hb and serum ferritin levels. In 30 patients of group 1, serum sTfR levels were significantly decreased with an increase in Hb levels after iron supplementation for 1 month. Conclusion Serum sTfR levels significantly correlated with other diagnostic iron parameters of IDA and inversely correlated with an increase in Hb levels following iron supplementation. Therefore, serum sTfR levels can be a useful marker for the diagnosis and treatment of IDA in children. PMID:25729394

  20. Interaction of VO2+ ion with human serum transferrin and albumin.

    PubMed

    Sanna, Daniele; Garribba, Eugenio; Micera, Giovanni

    2009-04-01

    The complexation of VO(2+) ion with the high molecular mass components of the blood serum, human serum transferrin (hTf) and albumin (HSA), has been re-examined using EPR spectroscopy. In the case of transferrin, the results confirm those previously obtained, showing that VO(2+) ion occupies three different binding sites, A, B(1) and B(2), distinguishable in the X-band anisotropic spectrum recorded in D(2)O. With albumin the results show that a dinuclear complex (VO)(2)(d)HSA is formed in equimolar aqueous solutions or with an excess of protein; in the presence of an excess of VO(2+), the multinuclear complex (VO)(x)(m)HSA is the prevalent species, where x=5-6 indicates the equivalents of metal ion coordinated by HSA. The structure of the dinuclear species is discussed and the donor atoms involved in the metal coordination are proposed on the basis of the measured EPR parameters. Two different binding modes of albumin can be distinguished varying the pH, with only one species being present at the physiological value. The results show that the previously named "strong" site is not the N-terminal copper binding site, and some hypothesis on the metal coordination is discussed, with the (51)V A(z) values for the proposed donor sets obtained by DFT (density functional theory) calculations. Finally, preliminary results obtained in the ternary system VO(2+)/hTf/HSA are shown in order to determine the different binding strength of the two proteins. Due to the low VO(2+) concentration used, the recording of the EPR spectra through the repeated acquisition of the weak signals is essential to obtain a good signal to noise ratio in these systems.

  1. SNAP23/25 and VAMP2 mediate exocytic event of transferrin receptor-containing recycling vesicles

    PubMed Central

    Kubo, Keiji; Kobayashi, Minako; Nozaki, Shohei; Yagi, Chikako; Hatsuzawa, Kiyotaka; Katoh, Yohei; Shin, Hye-Won; Takahashi, Senye; Nakayama, Kazuhisa

    2015-01-01

    ABSTRACT We recently showed that Rab11 is involved not only in formation of recycling vesicles containing the transferrin (Tfn)–transferrin receptor (TfnR) complex at perinuclear recycling endosomes but also in tethering of recycling vesicles to the plasma membrane (PM) in concert with the exocyst tethering complex. We here aimed at identifying SNARE proteins responsible for fusion of Tfn–TfnR-containing recycling vesicles with the PM, downstream of the exocyst. We showed that exocyst subunits, Sec6 and Sec8, can interact with SNAP23 and SNAP25, both of which are PM-localizing Qbc-SNAREs, and that depletion of SNAP23 and/or SNAP25 in HeLa cells suppresses fusion of Tfn–TfnR-containing vesicles with the PM, leading to accumulation of the vesicles at the cell periphery. We also found that VAMP2, an R-SNARE, is colocalized with endocytosed Tfn on punctate endosomal structures, and that its depletion in HeLa cells suppresses recycling vesicle exocytosis. These observations indicate that fusion of recycling vesicles with the PM downstream of the exocyst is mediated by SNAP23/25 and VAMP2, and provide novel insight into non-neuronal roles of VAMP2 and SNAP25. PMID:26092867

  2. Enhanced transferrin receptor expression by proinflammatory cytokines in enterocytes as a means for local delivery of drugs to inflamed gut mucosa.

    PubMed

    Harel, Efrat; Rubinstein, Abraham; Nissan, Aviram; Khazanov, Elena; Nadler Milbauer, Mirela; Barenholz, Yechezkel; Tirosh, Boaz

    2011-01-01

    Therapeutic intervention in inflammatory bowel diseases (IBDs) is often associated with adverse effects related to drug distribution into non-diseased tissues, a situation which attracts a rational design of a targeted treatment confined to the inflamed mucosa. Upon activation of immune cells, transferrin receptor (TfR) expression increases at their surface. Because TfR is expressed in all cell types we hypothesized that its cell surface levels are regulated also in enterocytes. We, therefore, compared TfR expression in healthy and inflamed human colonic mucosa, as well as healthy and inflamed colonic mucosa of the DNBS-induced rat model. TfR expression was elevated in the colonic mucosa of IBD patients in both the basolateral and apical membranes of the enterocytes. Increased TfR expression was also observed in colonocytes of the induced colitis rats. To explore the underlying mechanism CaCo-2 cells were treated with various proinflammatory cytokines, which increased both TfR expression and transferrin cellular uptake in a mechanism that did not involve hyper proliferation. These findings were then exploited for the design of targetable carrier towards inflamed regions of the colon. Anti-TfR antibodies were conjugated to nano-liposomes. As expected, iron-starved Caco-2 cells internalized anti-TfR immunoliposomes better than controls. Ex vivo binding studies to inflamed mucosa showed that the anti-TfR immunoliposomes accumulated significantly better in the mucosa of DNBS-induced rats than the accumulation of non-specific immunoliposomes. It is concluded that targeting mucosal inflammation can be accomplished by nano-liposomes decorated with anti-TfR due to inflammation-dependent, apical, elevated expression of the receptor.

  3. Transferrin: Endocytosis and Cell Signaling in Parasitic Protozoa

    PubMed Central

    Serrano-Luna, Jesús

    2015-01-01

    Iron is the fourth most abundant element on Earth and the most abundant metal in the human body. This element is crucial for life because almost all organisms need iron for several biological activities. This is the case with pathogenic organisms, which are at the vanguard in the battle with the human host for iron. The latest regulates Fe concentration through several iron-containing proteins, such as transferrin. The transferrin receptor transports iron to each cell that needs it and maintains it away from pathogens. Parasites have developed several strategies to obtain iron as the expression of specific transferrin receptors localized on plasma membrane, internalized through endocytosis. Signal transduction pathways related to the activation of the receptor have functional importance in proliferation. The study of transferrin receptors and other proteins with action in the signaling networks is important because these proteins could be used as therapeutic targets due to their specificity or to differences with the human counterpart. In this work, we describe proteins that participate in signal transduction processes, especially those that involve transferrin endocytosis, and we compare these processes with those found in T. brucei, T. cruzi, Leishmania spp., and E. histolytica parasites. PMID:26090431

  4. Transfusion of human volunteers with older, stored red blood cells produces extravascular hemolysis and circulating non-transferrin-bound iron.

    PubMed

    Hod, Eldad A; Brittenham, Gary M; Billote, Genia B; Francis, Richard O; Ginzburg, Yelena Z; Hendrickson, Jeanne E; Jhang, Jeffrey; Schwartz, Joseph; Sharma, Shruti; Sheth, Sujit; Sireci, Anthony N; Stephens, Hannah L; Stotler, Brie A; Wojczyk, Boguslaw S; Zimring, James C; Spitalnik, Steven L

    2011-12-15

    Transfusions of RBCs stored for longer durations are associated with adverse effects in hospitalized patients. We prospectively studied 14 healthy human volunteers who donated standard leuko-reduced, double RBC units. One unit was autologously transfused "fresh" (3-7 days of storage), and the other "older" unit was transfused after 40 to 42 days of storage. Of the routine laboratory parameters measured at defined times surrounding transfusion, significant differences between fresh and older transfusions were only observed in iron parameters and markers of extravascular hemolysis. Compared with fresh RBCs, mean serum total bilirubin increased by 0.55 mg/dL at 4 hours after transfusion of older RBCs (P = .0003), without significant changes in haptoglobin or lactate dehydrogenase. In addition, only after the older transfusion, transferrin saturation increased progressively over 4 hours to a mean of 64%, and non-transferrin-bound iron appeared, reaching a mean of 3.2μM. The increased concentrations of non-transferrin-bound iron correlated with enhanced proliferation in vitro of a pathogenic strain of Escherichia coli (r = 0.94, P = .002). Therefore, circulating non-transferrin-bound iron derived from rapid clearance of transfused, older stored RBCs may enhance transfusion-related complications, such as infection.

  5. Enhanced delivery of IL-1 receptor antagonist to the central nervous system as a novel anti–transferrin receptor-IL-1RA fusion reverses neuropathic mechanical hypersensitivity

    PubMed Central

    Webster, Carl I.; Hatcher, Jon; Burrell, Matthew; Thom, George; Thornton, Peter; Gurrell, Ian; Chessell, Iain

    2016-01-01

    Abstract Neuropathic pain is a major unmet medical need, with only 30% to 35% of patients responding to the current standard of care. The discovery and development of novel therapeutics to address this unmet need have been hampered by poor target engagement, the selectivity of novel molecules, and limited access to the relevant compartments. Biological therapeutics, either monoclonal antibodies (mAbs) or peptides, offer a solution to the challenge of specificity as the intrinsic selectivity of these kinds of molecules is significantly higher than traditional medicinal chemistry–derived approaches. The interleukin-1 receptor system within the spinal cord has been implicated in the amplification of pain signals, and its central antagonism provides relief of neuropathic pain. Targeting the IL-1 system in the spinal cord with biological drugs, however, raises the even greater challenge of delivery to the central compartment. Targeting the transferrin receptor with monoclonal antibodies has proved successful in traversing the endothelial cell–derived blood–brain barrier and delivering proteins to the central nervous system. In this study, we describe a novel construct exemplifying an engineered solution to overcome these challenges. We have generated a novel anti–transferrin receptor-interleukin-1 receptor antagonist fusion that transports to the central nervous system and delivers efficacy in a model of nerve ligation–induced hypersensitivity. Approaches such as these provide promise for novel and selective analgesics that target the central compartment. PMID:28009628

  6. Observation of interactions of human serum components with transferrin by affinity capillary electrophoresis.

    PubMed

    Taga, Atsushi; Maruyama, Rie; Yamamoto, Yuka; Honda, Susumu

    2008-01-22

    Interaction of human transferrin (TF) with human serum components was investigated by affinity capillary electrophoresis. It was found that any peaks of human serum protein fractions did not give migration time change on addition of intact TF to running buffer (50mM phosphate buffer, pH 7.5), whereas two peaks belonging to alpha-globulin fraction showed marked acceleration upon addition of desialylated TF. These results provide strong evidence that the sialic acid residue in TF masks its binding ability to serum proteins. The association constants of desialylated TF to these interactive components, estimated based on the double reciprocal plot of migration time change vs. glycoprotein concentration, were at a high level of 10(7)M(-1). TF is well known as a ferric ion transfer protein, and hence formation of this protein might be changed by ferric ion. The presence of iron(II) played no essential role in this interaction, though its influence was not negligible.

  7. Escape from bacterial iron piracy through rapid evolution of transferrin

    PubMed Central

    Barber, Matthew F.; Elde, Nels C.

    2015-01-01

    Iron sequestration provides an innate defense termed nutritional immunity, leading pathogens to scavenge iron from hosts. Although the molecular basis of this battle for iron is established, its potential as a force for evolution at host-pathogen interfaces is unknown. We show that the iron transport protein transferrin is engaged in ancient and ongoing evolutionary conflicts with TbpA, a transferrin surface receptor from bacteria. Single substitutions in transferrin at rapidly evolving sites reverse TbpA binding, providing a mechanism to counteract bacterial iron piracy among great apes. Furthermore, the C2 transferrin polymorphism in humans evades TbpA variants from Haemophilus influenzae, revealing a functional basis for standing genetic variation. These findings identify a central role for nutritional immunity in the persistent evolutionary conflicts between primates and bacterial pathogens. PMID:25504720

  8. Acetaldehyde/alcohol dehydrogenase-2 (EhADH2) and clathrin are involved in internalization of human transferrin by Entamoeba histolytica.

    PubMed

    Reyes-López, Magda; Bermúdez-Cruz, Rosa María; Avila, Eva E; de la Garza, Mireya

    2011-01-01

    Transferrin (Tf) is a host glycoprotein capable of binding two ferric-iron ions to become holotransferrin (holoTf), which transports iron in to all cells. Entamoeba histolytica is a parasitic protozoan able to use holoTf as a sole iron source in vitro. The mechanism by which this parasite scavenges iron from holoTf is unknown. An E. histolytica holoTf-binding protein (EhTfbp) was purified by using an anti-human transferrin receptor (TfR) monoclonal antibody. EhTfbp was identified by MS/MS analysis and database searches as E. histolytica acetaldehyde/alcohol dehydrogenase-2 (EhADH2), an iron-dependent enzyme. Both EhTfbp and EhADH2 bound holoTf and were recognized by the anti-human TfR antibody, indicating that they correspond to the same protein. It was found that the amoebae internalized holoTf through clathrin-coated pits, suggesting that holoTf endocytosis could be important for the parasite during colonization and invasion of the intestinal mucosa and liver.

  9. Transferrin-bearing maghemite nano-constructs for biomedical applications

    NASA Astrophysics Data System (ADS)

    Piraux, H.; Hai, J.; Gaudisson, T.; Ammar, S.; Gazeau, F.; El Hage Chahine, J. M.; Hémadi, M.

    2015-05-01

    Superparamagnetic nanoparticles (NPs) are widely used in biomedicine for hyperthermia and magnetic resonance imagery. Targeting them to specific cancerous cells is, therefore, of a great value for therapy and diagnostic. Transferrin and its receptor constitute the major iron-acquisition system in human. The former crosses the plasma membrane within a few minutes by receptor-mediated endocytosis. Thus, transferrin can be a valuable vector for the delivery of NPs to specific cells and across the blood brain barrier. For such a purpose, three different sizes of maghemite NPs (5, 10, and 15 nm) were synthesized by the polyol method, coated with 3-aminopropyltriethoxysilane, and coupled to transferrin by amide bonds. The number of transferrins per nanoparticle was determined. Raw nanoparticles and the "transferrin-nanoparticle" constructs were characterized. The magnetic properties and the colloidal stability of raw NPs and transferrin-NP constructs were measured and analyzed in relation to their inorganic core size variation. They all proved to be good candidates for nanoparticle targeting for biomedical application.

  10. Immunoregulation by low density lipoproteins in man. Inhibition of mitogen-induced T lymphocyte proliferation by interference with transferrin metabolism.

    PubMed Central

    Cuthbert, J A; Lipsky, P E

    1984-01-01

    Human low density lipoprotein (LDL, d = 1.020-1.050 g/ml) inhibits mitogen-stimulated T lymphocyte DNA synthesis. Because both LDL and transferrin bind to specific cell surface receptors and enter cells by the similar means of receptor-mediated endocytosis, and because transferrin is necessary for lymphocyte DNA synthesis, we investigated the possibility that LDL may inhibit mitogen-stimulated lymphocyte responses by interfering with transferrin metabolism. LDL inhibited mitogen-stimulated lymphocyte [3H]thymidine incorporation in a concentration-dependent manner. The degree of inhibition was most marked in serum-free cultures, but was also observed in serum-containing cultures. The addition of transferrin not only augmented mitogen-induced lymphocyte [3H]thymidine incorporation in serum-free medium but also completely reversed the inhibitory effect of LDL in both serum-free and serum-containing media. Similar results were obtained when lymphocyte proliferation was assayed by counting the number of cells in culture. Transferrin also reversed the inhibition of lymphocyte responses caused by very low density lipoproteins and by cholesterol. The ability of transferrin to reverse the inhibitory effect of lipoproteins was specific, in that native but not denatured transferrin was effective whereas a variety of other proteins were ineffective. These results indicate that LDL inhibits mitogen-stimulated lymphocyte responses by interfering with transferrin metabolism. LDL only inhibited lymphocyte responses after a 48-h incubation if present from the initiation of the culture. By contrast, transferrin reversed inhibition when added after 24 h of the 48-h incubation. LDL did not inhibit lymphocyte responses by nonspecifically associating with transferrin. In addition, the acquisition of specific lymphocyte transferrin receptors was not blocked by LDL. Moreover, transferrin did not prevent the binding and uptake of fluorescent-labeled LDL by activated lymphocytes

  11. N-lobe versus C-lobe complexation of bismuth by human transferrin.

    PubMed Central

    Sun, H; Li, H; Mason, A B; Woodworth, R C; Sadler, P J

    1999-01-01

    Interactions of recombinant N-lobe of human serum transferrin (hTF/2N) with Bi3+, a metal ion widely used in medicine, have been investigated by both UV and NMR spectroscopy. The bicarbonate-independent stability constant for Bi3+ binding (K*) to hTF/2N was determined to be log K* 18.9+/-0.2 in 5 mM bicarbonate/10 mM Hepes buffer at 310 K, pH7.4. The presence of Fe3+ in the C-lobe of intact hTF perturbed Bi3+ binding to the N-lobe, whereas binding of Bi3+ to the C-lobe was unaffected by the presence of Fe3+ in the N-lobe. Reactions of Bi3+ (as bismuth nitrilotriacetate or ranitidine bismuth citrate) with hTF/2N in solutions containing 10 mM bicarbonate induced specific changes to high-field 1H-NMR peaks. The 1H co-ordination shifts induced by Bi3+ were similar to those induced by Fe3+ and Ga3+, suggesting that Bi3+ binding causes similar structural changes to those induced by hTF/2N. 13C-NMR data showed that carbonate binds to hTF/2N concomitantly with Bi3+. PMID:9854031

  12. Serum Hepcidin and Soluble Transferrin Receptor in the Assessment of Iron Metabolism in Children on a Vegetarian Diet.

    PubMed

    Ambroszkiewicz, Jadwiga; Klemarczyk, Witold; Mazur, Joanna; Gajewska, Joanna; Rowicka, Grażyna; Strucińska, Małgorzata; Chełchowska, Magdalena

    2017-03-24

    The aim of this study was to assess the effect of vegetarian diet on iron metabolism parameters paying special attention to serum hepcidin and soluble transferrin receptor (sTfR) concentrations in 43 prepubertal children (age range 4.5-9.0 years) on vegetarian and in 46 children on omnivorous diets. There were no significant differences according to age, weight, height, and body mass index (BMI) between vegetarian and omnivorous children. Vegetarians had similar intake of iron and vitamin B12 and a significantly higher intake of vitamin C (p < 0.05) compared with non-vegetarians. Hematologic parameters and serum iron concentrations were within the reference range in both groups of children. Serum transferrin levels were similar in all subjects; however, ferritin concentrations were significantly (p < 0.01) lower in vegetarians than in omnivores. In children on a vegetarian diet, median hepcidin levels were lower (p < 0.05) but sTfR concentrations significantly higher (p < 0.001) compared with omnivorous children. In the multivariate regression model, we observed associations between hepcidin level and ferritin concentration (β = 0.241, p = 0.05) in the whole group of children as well as between hepcidin concentration and CRP level (β = 0.419, p = 0.047) in vegetarians. We did not find significant associations with concentration of sTfR and selected biochemical, anthropometric, and dietary parameters in any of the studied groups of children. As hematologic parameters and iron concentrations in vegetarians and omnivores were comparable and ferritin level was lower in vegetarians, we suggest that inclusion of novel markers, in particular sTfR (not cofounded by inflammation) and hepcidin, can better detect subclinical iron deficiency in children following vegetarian diets.

  13. Insights into the mechanism of cell death induced by saporin delivered into cancer cells by an antibody fusion protein targeting the transferrin receptor 1

    PubMed Central

    Daniels-Wells, Tracy R.; Helguera, Gustavo; Rodríguez, José A.; Leoh, Lai Sum; Erb, Michael A.; Diamante, Graciel; Casero, David; Pellegrini, Matteo; Martínez-Maza, Otoniel; Penichet, Manuel L.

    2012-01-01

    We previously developed an antibody-avidin fusion protein (ch128.1Av) that targets the human transferrin receptor 1 (TfR1) and exhibits direct cytotoxicity against malignant B cells in an iron-dependent manner. ch128.1Av is also a delivery system and its conjugation with biotinylated saporin (b-SO6), a plant ribosome-inactivating toxin, results in a dramatic iron-independent cytotoxicity, both in malignant cells that are sensitive or resistant to ch128.1Av alone, in which the toxin effectively inhibits protein synthesis and triggers caspase activation. We have now found that the ch128.1Av/b-SO6 complex induces a transcriptional response consistent with oxidative stress and DNA damage, a response that is not observed with ch128.1Av alone. Furthermore, we show that the antioxidant N-acetylcysteine partially blocks saporin-induced apoptosis suggesting that oxidative stress contributes to DNA damage and ultimately saporin-induced cell death. Interestingly, the toxin was detected in nuclear extracts by immunoblotting, suggesting the possibility that saporin might induce direct DNA damage. However, confocal microscopy did not show a clear and consistent pattern of intranuclear localization. Finally, using the long-term culture-initiating cell assay we found that ch128.1Av/b-SO6 is not toxic to normal human hematopoietic stem cells suggesting that this critical cell population would be preserved in therapeutic interventions using this immunotoxin. PMID:23085102

  14. Insights into the mechanism of cell death induced by saporin delivered into cancer cells by an antibody fusion protein targeting the transferrin receptor 1.

    PubMed

    Daniels-Wells, Tracy R; Helguera, Gustavo; Rodríguez, José A; Leoh, Lai Sum; Erb, Michael A; Diamante, Graciel; Casero, David; Pellegrini, Matteo; Martínez-Maza, Otoniel; Penichet, Manuel L

    2013-02-01

    We previously developed an antibody-avidin fusion protein (ch128.1Av) that targets the human transferrin receptor 1 (TfR1) and exhibits direct cytotoxicity against malignant B cells in an iron-dependent manner. ch128.1Av is also a delivery system and its conjugation with biotinylated saporin (b-SO6), a plant ribosome-inactivating toxin, results in a dramatic iron-independent cytotoxicity, both in malignant cells that are sensitive or resistant to ch128.1Av alone, in which the toxin effectively inhibits protein synthesis and triggers caspase activation. We have now found that the ch128.1Av/b-SO6 complex induces a transcriptional response consistent with oxidative stress and DNA damage, a response that is not observed with ch128.1Av alone. Furthermore, we show that the antioxidant N-acetylcysteine partially blocks saporin-induced apoptosis suggesting that oxidative stress contributes to DNA damage and ultimately saporin-induced cell death. Interestingly, the toxin was detected in nuclear extracts by immunoblotting, suggesting the possibility that saporin might induce direct DNA damage. However, confocal microscopy did not show a clear and consistent pattern of intranuclear localization. Finally, using the long-term culture-initiating cell assay we found that ch128.1Av/b-SO6 is not toxic to normal human hematopoietic stem cells suggesting that this critical cell population would be preserved in therapeutic interventions using this immunotoxin.

  15. Anti-transferrin receptor-modified amphotericin B-loaded PLA–PEG nanoparticles cure Candidal meningitis and reduce drug toxicity

    PubMed Central

    Tang, Xiaolong; Liang, Yong; Zhu, Yongqiang; Xie, Chunmei; Yao, Aixia; Chen, Li; Jiang, Qinglin; Liu, Tingting; Wang, Xiaoyu; Qian, Yunyun; Wei, Jia; Ni, Wenxuan; Dai, Jingjing; Jiang, Zhenyou; Hou, Wei

    2015-01-01

    Fatal fungal infections in central nervous system (CNS) can occur through hematogenous spread or direct extension. At present, hydrophobic amphotericin B (AMB) is the most effective antifungal drug in clinical trials. However, AMB is hydrophobic and therefore penetrates poorly into the CNS, and therapeutic levels of AMB are hard to achieve. The transferrin receptor (TfR/CD71) located at the blood–brain barrier mediates transferrin transcytosis. In order to enhance the receptor-mediated delivery of AMB into CNS with therapeutic level, an anti-TfR antibody (OX26)-modified AMB-loaded PLA (poly[lactic acid])–PEG (polyethylene glycol)-based micellar drug delivery system was constructed. The prepared OX26-modified AMB-loaded nanoparticles (OX26-AMB-NPs) showed significant reduction of CNS fungal burden and an increase of mouse survival time. In conclusion, OX26-AMB-NPs represent a promising novel drug delivery system for intracerebral fungal infection. PMID:26491294

  16. YTRF is the conserved internalization signal of the transferrin receptor, and a second YTRF signal at position 31-34 enhances endocytosis.

    PubMed

    Collawn, J F; Lai, A; Domingo, D; Fitch, M; Hatton, S; Trowbridge, I S

    1993-10-15

    By functional analysis of mutant human transferrin receptors (TR) expressed in chicken embryo fibroblasts, we previously identified a tetrapeptide sequence, Y20TRF23, within the 61-residue cytoplasmic tail as the signal for high-efficiency endocytosis (Collawn, J. F., Stangel, M., Kuhn, L. A., Esekogwu, V., Jing, S., Trowbridge, I.S., and Tainer, J.A. (1990) Cell 63, 1061-1072). It has been inferred from other studies, however, that the TR internalization signal was localized to a much larger region, residues 7 through 26 (Girones, N., Alvarez, E., Seth, A., Lin, I-M., Latour, D.A., and Davis, R.J. (1991) J. Biol. Chem. 266, 19006-19012). Additionally, Tyr20 was reported to not be conserved in the Chinese hamster cytoplasmic tail sequence (Alvarez, E., Girones, N., and Davis, R.J. (1990) Biochem. J. 267, 31-35). In the studies reported here, we examined the effect of insertion of an extra copy of a YTRF sequence at three different locations within the human TR cytoplasmic domain and show that the insertion of another YTRF signal at position 31-34 in the wild-type TR, but not the other two locations, increases the rate of endocytosis 2-fold. Furthermore, introduction of YTRF at position 31-34 in an internalization-defective mutant receptor restores endocytosis to wild-type levels, indicating that YTRF signals at either positions 20-23 or 31-34 are necessary and sufficient to promote TR internalization and function in an independent and additive manner. We also report the complete primary structure of the Chinese hamster TR deduced from its cDNA sequence and show that the Tyr20 as well as the complete YTRF motif is conserved.

  17. Identification of new binding sites of human transferrin incubated with organophosphorus agents via Q Exactive LC-MS/MS.

    PubMed

    Sun, Fengjuan; Ding, Junjie; Yu, Huilan; Gao, Runli; Wang, Hongmei; Pei, Chengxin

    2016-06-01

    Organophosphorus agents (OPs) like sarin, VX, or soman could inhibit acetylcholinesterase activity and cause poisoning. OPs could bind many proteins, such as butyrylcholinesterase and albumin, and the adducts formed could identify the exposure. In this paper, we studied human transferrin, which was one of the proteins that could be labeled by OPs. Pure human transferrin was incubated with an overdose of organophosphorus agents, including sarin, soman, VX, tabun, cyclosarin, ethyl tabun, and propyl tabun, and then additional OPs was removed through dialysis. Trypsin was used to cleave the OP-treated proteins and Q Exactive liquid chromatography tandem mass spectrometry (Q Exactive LC-MS/MS) was used to identify them. The present study set out to accomplish two goals. The first goal was to find a good method for identifying multiple binding sites on a given protein through Q Exactive LC-MS/MS. The second goal was to investigate the labeled peptides when transferrin was incubated with a numerous molar excess of OPs. Results showed that tyrosine, lysine, and serine formed covalent bonds with OPs. Twenty OP-labeled sites were found: ten tyrosine sites (including two reported sites), seven lysine sites, and three serine sites. Characteristic fragments for labeled-tyrosine and labeled-lysine adducts were summarized in detail. In conclusion, the method by Q Exactive LC-MS/MS using in this present work is a good way to diagnose exposure to OPs accurately when the binding sites of OPs are uncertain. Novel modified peptides and the characteristic ions found in this work could help investigators assess exposure to OPs.

  18. Establishment of a miniaturized enzyme-linked immunosorbent assay for human transferrin quantification using an intelligent multifunctional analytical plate.

    PubMed

    Spies, Peter; Chen, Guo Jun; Gygax, Daniel

    2008-11-01

    A miniaturized enzyme-linked immunosorbent assay (ELISA) with a reaction volume of 5 microl for human transferrin quantification has successfully been developed using an intelligent multifunctional analytical plate (IMAPlate 5RC96), the first miniature analytical platform capable of manually performing parallel liquid transfer, reaction, and analysis. This is the first article to validate the platform for the ELISA application. The data obtained from the standards in this miniaturized ELISA can well be fitted by a one-site binding reaction mode, the coefficient of variation (CV) of the whole plate for an artificial sample (spiking a known concentration of human transferrin into the assay diluent) is 7.0%, and the mean recovery is between 94 and 114% (n=96), comparable to the values from conventional ELISA in a 96-well format plate. The IMAPlate 5RC96-based miniaturized ELISA not only can reduce sample and reagent consumption to 5% of the conventional ELISA but also can shorten the reaction time. Combined with the advantages brought by miniaturization, the easy-to-handle, parallel, and simultaneous liquid transfer features of the IMAPlate 5RC96 provide a completely new lab tool for manually performing high-throughput ELISA. Our results demonstrate that the IMAPlate 5RC96 is a convenient, robust, high-throughput lab device feasible for miniaturized ELISA in an ordinary laboratory.

  19. Evaluating the effectiveness of transferrin receptor-1 (TfR1) as a magnetic resonance reporter gene.

    PubMed

    Pereira, Sofia M; Herrmann, Anne; Moss, Diana; Poptani, Harish; Williams, Steve R; Murray, Patricia; Taylor, Arthur

    2016-05-01

    Magnetic resonance (MR) reporter genes have the potential for tracking the biodistribution and fate of cells in vivo, thus allowing the safety, efficacy and mechanisms of action of cell-based therapies to be comprehensively assessed. In this study, we evaluate the effectiveness of the iron importer transferrin receptor-1 (TfR1) as an MR reporter gene in the model cell line CHO-K1. Overexpression of the TfR1 transgene led to a reduction in the levels of endogenous TfR1 mRNA, but to a 60-fold increase in total TfR1 protein levels. Although the mRNA levels of ferritin heavy chain-1 (Fth1) did not change, Fth1 protein levels increased 13-fold. The concentration of intracellular iron increased significantly, even when cells were cultured in medium that was not supplemented with iron and the amount of iron in the extracellular environment was thus at physiological levels. However, we found that, by supplementing the cell culture medium with ferric citrate, a comparable degree of iron uptake and MR contrast could be achieved in control cells that did not express the TfR1 transgene. Sufficient MR contrast to enable the cells to be detected in vivo following their administration into the midbrain of chick embryos was obtained irrespective of the reporter gene. We conclude that TfR1 is not an effective reporter and that, to track the biodistribution of cells with MR imaging in the short term, it is sufficient to simply culture cells in the presence of ferric citrate. Copyright © 2016 The Authors Contrast Media & Molecular Imaging Published by John Wiley & Sons Ltd.

  20. Erythrocytic Iron Deficiency Enhances Susceptibility to Plasmodium chabaudi Infection in Mice Carrying a Missense Mutation in Transferrin Receptor 1

    PubMed Central

    Lelliott, Patrick M.; McMorran, Brendan J.; Foote, Simon J.

    2015-01-01

    The treatment of iron deficiency in areas of high malaria transmission is complicated by evidence which suggests that iron deficiency anemia protects against malaria, while iron supplementation increases malaria risk. Iron deficiency anemia results in an array of pathologies, including reduced systemic iron bioavailability and abnormal erythrocyte physiology; however, the mechanisms by which these pathologies influence malaria infection are not well defined. In the present study, the response to malaria infection was examined in a mutant mouse line, TfrcMRI24910, identified during an N-ethyl-N-nitrosourea (ENU) screen. This line carries a missense mutation in the gene for transferrin receptor 1 (TFR1). Heterozygous mice exhibited reduced erythrocyte volume and density, a phenotype consistent with dietary iron deficiency anemia. However, unlike the case in dietary deficiency, the erythrocyte half-life, mean corpuscular hemoglobin concentration, and intraerythrocytic ferritin content were unchanged. Systemic iron bioavailability was also unchanged, indicating that this mutation results in erythrocytic iron deficiency without significantly altering overall iron homeostasis. When infected with the rodent malaria parasite Plasmodium chabaudi adami, mice displayed increased parasitemia and succumbed to infection more quickly than their wild-type littermates. Transfusion of fluorescently labeled erythrocytes into malaria parasite-infected mice demonstrated an erythrocyte-autonomous enhanced survival of parasites within mutant erythrocytes. Together, these results indicate that TFR1 deficiency alters erythrocyte physiology in a way that is similar to dietary iron deficiency anemia, albeit to a lesser degree, and that this promotes intraerythrocytic parasite survival and an increased susceptibility to malaria in mice. These findings may have implications for the management of iron deficiency in the context of malaria. PMID:26303393

  1. An iron-dependent and transferrin-mediated cellular uptake pathway for plutonium.

    PubMed

    Jensen, Mark P; Gorman-Lewis, Drew; Aryal, Baikuntha; Paunesku, Tatjana; Vogt, Stefan; Rickert, Paul G; Seifert, Soenke; Lai, Barry; Woloschak, Gayle E; Soderholm, L

    2011-06-26

    Plutonium is a toxic synthetic element with no natural biological function, but it is strongly retained by humans when ingested. Using small-angle X-ray scattering, receptor binding assays and synchrotron X-ray fluorescence microscopy, we find that rat adrenal gland (PC12) cells can acquire plutonium in vitro through the major iron acquisition pathway--receptor-mediated endocytosis of the iron transport protein serum transferrin; however, only one form of the plutonium-transferrin complex is active. Low-resolution solution models of plutonium-loaded transferrins derived from small-angle scattering show that only transferrin with plutonium bound in the protein's C-terminal lobe (C-lobe) and iron bound in the N-terminal lobe (N-lobe) (Pu(C)Fe(N)Tf) adopts the proper conformation for recognition by the transferrin receptor protein. Although the metal-binding site in each lobe contains the same donors in the same configuration and both lobes are similar, the differences between transferrin's two lobes act to restrict, but not eliminate, cellular Pu uptake.

  2. An iron-dependent and transferrin-mediated cellular uptake pathway for plutonium.

    SciTech Connect

    Jensen, M. P.; Gorman-Lewis, D.; Aryal, B. P.; Paunesku, T.; Vogt, S.; Rickert, P. G.; Seifert, S.; Lai, B.; Woloschak, G. E.; Soderholm, L.

    2011-08-01

    Plutonium is a toxic synthetic element with no natural biological function, but it is strongly retained by humans when ingested. Using small-angle X-ray scattering, receptor binding assays and synchrotron X-ray fluorescence microscopy, we find that rat adrenal gland (PC12) cells can acquire plutonium in vitro through the major iron acquisition pathway -- receptor-mediated endocytosis of the iron transport protein serum transferrin; however, only one form of the plutonium-transferrin complex is active. Low-resolution solution models of plutonium-loaded transferrins derived from small-angle scattering show that only transferrin with plutonium bound in the protein's C-terminal lobe (C-lobe) and iron bound in the N-terminal lobe (N-lobe) (Pu{sub c}Fe{sub N}Tf) adopts the proper conformation for recognition by the transferrin receptor protein. Although the metal-binding site in each lobe contains the same donors in the same configuration and both lobes are similar, the differences between transferrin's two lobes act to restrict, but not eliminate, cellular Pu uptake.

  3. Transferrin receptor-targeted vitamin E TPGS micelles for brain cancer therapy: preparation, characterization and brain distribution in rats.

    PubMed

    Sonali; Agrawal, Poornima; Singh, Rahul Pratap; Rajesh, Chellappa V; Singh, Sanjay; Vijayakumar, Mahalingam R; Pandey, Bajrangprasad L; Muthu, Madaswamy Sona

    2016-06-01

    The effective treatment of brain cancer is hindered by the poor transport across the blood-brain barrier (BBB) and the low penetration across the blood-tumor barrier (BTB). The objective of this work was to formulate transferrin-conjugated docetaxel (DTX)-loaded d-alpha-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS or TPGS) micelles for targeted brain cancer therapy. The micelles with and without transferrin conjugation were prepared by the solvent casting method and characterized for their particle size, polydispersity, drug encapsulation efficiency, drug loading, in vitro release study and brain distribution study. Particle sizes of prepared micelles were determined at 25 °C by dynamic light scattering technique. The external surface morphology was determined by transmission electron microscopy analysis and atomic force microscopy. The encapsulation efficiency was determined by spectrophotometery. In vitro release studies of micelles and control formulations were carried out by dialysis bag diffusion method. The particle sizes of the non-targeted and targeted micelles were <20 nm. About 85% of drug encapsulation efficiency was achieved with micelles. The drug release from transferrin-conjugated micelles was sustained for >24 h with 50% of drug release. The in vivo results indicated that transferrin-targeted TPGS micelles could be a promising carrier for brain targeting due to nano-sized drug delivery, solubility enhancement and permeability which provided an improved and prolonged brain targeting of DTX in comparison to the non-targeted micelles and marketed formulation.

  4. Ferritin and Soluble Transferrin Receptors in Type 2 Diabetic and Non-diabetic Post-menopausal Women in Dhaka, Bangladesh.

    PubMed

    Md Ruhul, A; Sharmin, H; Luthfor, A; Farzana, S; Liaquat, A

    2010-12-01

    This cross-sectional comparative study was aimed at investigating the iron status of a group of post-menopausal women with and without diabetes. Thirty-five post-menopausal women in each group were selected purposively from among patients attending the out-patient department of Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders (BIRDEM), a specialist hospital, and two of its satellite clinics, all in Dhaka. Patients were enrolled based on their existing records. The subjects were matched on age, menstrual status and fasting status at blood draw. Ferritin, serum soluble transferrin receptors (sTfR) and fasting plasma glucose were measured by standard methods. Dietary information was collected by a specific food frequency questionnaire. No significant difference in plasma ferritin [62.02 ng/ml, (range: 4.68-288.89) vs 54.25 ng/ml (range: 4.58-137.17); p=0.28] was observed between the groups. But a higher level of plasma sTfR was found in diabetic women [(21.12 nmol/l (range: 7.91-39.79) vs 17.63 nmol/l (range: 10.30-110.00); p<0.01]. TFR-F index showed no difference between diabetic and control (p=0.25). Significantly a lower hemoglobin level [10.58±0.67 g/dl vs11.76±1.5 g/dl; p<0.01] was detected in diabetic women. Plasma sTfR (log) did not show any significant association with the dietary parameters and iron indices. No significant association between fasting glucose, ferritin and sTfR was seen except for haemoglobin (r=0.39, p=0.05). Total iron intake recorded was more than the requirement, and was significantly higher in control group [38.11mg/day (range: 19.83-105.63) vs 56.65 mg/day (range: 29.75-109.54); p<0.01)]. More than 97 % of total iron was of plant origin. No differences in heme iron [0.85 mg/day (range: 0.09-4.07) vs. 0.96 mg/day (range: 0.04-4.34), p= 0.17] and vitamin C intake was observed between the groups. Iron indices of non-diabetic women were within the normal range. A higher level of sTfR and a

  5. Nutritional immunity. Escape from bacterial iron piracy through rapid evolution of transferrin.

    PubMed

    Barber, Matthew F; Elde, Nels C

    2014-12-12

    Iron sequestration provides an innate defense, termed nutritional immunity, leading pathogens to scavenge iron from hosts. Although the molecular basis of this battle for iron is established, its potential as a force for evolution at host-pathogen interfaces is unknown. We show that the iron transport protein transferrin is engaged in ancient and ongoing evolutionary conflicts with TbpA, a transferrin surface receptor from bacteria. Single substitutions in transferrin at rapidly evolving sites reverse TbpA binding, providing a mechanism to counteract bacterial iron piracy among great apes. Furthermore, the C2 transferrin polymorphism in humans evades TbpA variants from Haemophilus influenzae, revealing a functional basis for standing genetic variation. These findings identify a central role for nutritional immunity in the persistent evolutionary conflicts between primates and bacterial pathogens.

  6. Targeted Delivery of Amoxicillin to C. trachomatis by the Transferrin Iron Acquisition Pathway.

    PubMed

    Hai, Jun; Serradji, Nawal; Mouton, Ludovic; Redeker, Virginie; Cornu, David; El Hage Chahine, Jean-Michel; Verbeke, Philippe; Hémadi, Miryana

    2016-01-01

    Weak intracellular penetration of antibiotics makes some infections difficult to treat. The Trojan horse strategy for targeted drug delivery is among the interesting routes being explored to overcome this therapeutic difficulty. Chlamydia trachomatis, as an obligate intracellular human pathogen, is responsible for both trachoma and sexually transmitted diseases. Chlamydia develops in a vacuole and is therefore protected by four membranes (plasma membrane, bacterial inclusion membrane, and bacterial membranes). In this work, the iron-transport protein, human serum-transferrin, was used as a Trojan horse for antibiotic delivery into the bacterial vacuole. Amoxicillin was grafted onto transferrin. The transferrin-amoxicillin construct was characterized by mass spectrometry and absorption spectroscopy. Its affinity for transferrin receptor 1, determined by fluorescence emission titration [KaffTf-amox = (1.3 ± 1.0) x 108], is very close to that of transferrin [4.3 x 108]. Transmission electron and confocal microscopies showed a co-localization of transferrin with the bacteria in the vacuole and were also used to evaluate the antibiotic capability of the construct. It is significantly more effective than amoxicillin alone. These promising results demonstrate targeted delivery of amoxicillin to suppress Chlamydia and are of interest for Chlamydiaceae and maybe other intracellular bacteria therapies.

  7. Targeted Delivery of Amoxicillin to C. trachomatis by the Transferrin Iron Acquisition Pathway

    PubMed Central

    Hai, Jun; Serradji, Nawal; Mouton, Ludovic; Redeker, Virginie; Cornu, David; El Hage Chahine, Jean-Michel

    2016-01-01

    Weak intracellular penetration of antibiotics makes some infections difficult to treat. The Trojan horse strategy for targeted drug delivery is among the interesting routes being explored to overcome this therapeutic difficulty. Chlamydia trachomatis, as an obligate intracellular human pathogen, is responsible for both trachoma and sexually transmitted diseases. Chlamydia develops in a vacuole and is therefore protected by four membranes (plasma membrane, bacterial inclusion membrane, and bacterial membranes). In this work, the iron-transport protein, human serum-transferrin, was used as a Trojan horse for antibiotic delivery into the bacterial vacuole. Amoxicillin was grafted onto transferrin. The transferrin-amoxicillin construct was characterized by mass spectrometry and absorption spectroscopy. Its affinity for transferrin receptor 1, determined by fluorescence emission titration [KaffTf-amox = (1.3 ± 1.0) x 108], is very close to that of transferrin [4.3 x 108]. Transmission electron and confocal microscopies showed a co-localization of transferrin with the bacteria in the vacuole and were also used to evaluate the antibiotic capability of the construct. It is significantly more effective than amoxicillin alone. These promising results demonstrate targeted delivery of amoxicillin to suppress Chlamydia and are of interest for Chlamydiaceae and maybe other intracellular bacteria therapies. PMID:26919720

  8. Dual single-scission event analysis of constitutive transferrin receptor (TfR) endocytosis and ligand-triggered β2-adrenergic receptor (β2AR) or Mu-opioid receptor (MOR) endocytosis.

    PubMed

    Lampe, Marko; Pierre, Fabienne; Al-Sabah, Suleiman; Krasel, Cornelius; Merrifield, Christien J

    2014-10-01

    The dynamic relationship between constitutive and ligand-triggered clathrin-mediated endocytosis is only poorly characterized, and it remains controversial whether clathrin-coated pits specialize to internalize particular receptor cargo. Here we analyzed the ligand-triggered endocytosis of the model G-protein-coupled receptors (GPCRs) β2-adrenergic receptor (β2AR) and Mu-opioid receptor (MOR) at the level of individual endocytic events using a total internal reflection fluorescence microscopy (TIRFM)-based assay. Similar to the constitutive endocytosis of transferrin receptor (TfR), ligand- triggered endocytosis of β2AR occurs via quantized scission events hosted by clathrin spots and plaques of variable size and persistence. To address whether clathrin-coated structures (CCSs) specialize to internalize particular GPCRs, we adapted the TIRFM imaging assay to simultaneously quantify the internalization of TfR and the ligand- triggered endocytosis of the β2AR or MOR. Agonist-triggered β2AR or MOR endocytosis extended the maturation time of CCSs, as shown previously, but did not affect the rate of constitutive TfR endocytosis or loading of TfR into individual endocytic vesicles. Both the β2AR and the MOR receptors entered cells in the same vesicles as TfR, and the overall evidence for CCS specialization was weak. These data support a simple model in which different cargoes internalize through common CCSs.

  9. Dual single-scission event analysis of constitutive transferrin receptor (TfR) endocytosis and ligand-triggered β2-adrenergic receptor (β2AR) or Mu-opioid receptor (MOR) endocytosis

    PubMed Central

    Lampe, Marko; Pierre, Fabienne; Al-Sabah, Suleiman; Krasel, Cornelius; Merrifield, Christien J.

    2014-01-01

    The dynamic relationship between constitutive and ligand-triggered clathrin-mediated endocytosis is only poorly characterized, and it remains controversial whether clathrin-coated pits specialize to internalize particular receptor cargo. Here we analyzed the ligand-triggered endocytosis of the model G-protein–coupled receptors (GPCRs) β2-adrenergic receptor (β2AR) and Mu-opioid receptor (MOR) at the level of individual endocytic events using a total internal reflection fluorescence microscopy (TIRFM)–based assay. Similar to the constitutive endocytosis of transferrin receptor (TfR), ligand- triggered endocytosis of β2AR occurs via quantized scission events hosted by clathrin spots and plaques of variable size and persistence. To address whether clathrin-coated structures (CCSs) specialize to internalize particular GPCRs, we adapted the TIRFM imaging assay to simultaneously quantify the internalization of TfR and the ligand- triggered endocytosis of the β2AR or MOR. Agonist-triggered β2AR or MOR endocytosis extended the maturation time of CCSs, as shown previously, but did not affect the rate of constitutive TfR endocytosis or loading of TfR into individual endocytic vesicles. Both the β2AR and the MOR receptors entered cells in the same vesicles as TfR, and the overall evidence for CCS specialization was weak. These data support a simple model in which different cargoes internalize through common CCSs. PMID:25079691

  10. Transferrin-Mediated Cellular Iron Delivery

    PubMed Central

    Luck, Ashley N.; Mason, Anne B.

    2015-01-01

    Essential to iron homeostasis is the transport of iron by the bilobal protein human serum transferrin (hTF). Each lobe (N- and C-lobe) of hTF forms a deep cleft which binds a single Fe3+. Iron-bearing hTF in the blood binds tightly to the specific transferrin receptor (TFR), a homodimeric transmembrane protein. After undergoing endocytosis, acidification of the endosome initiates the release of Fe3+ from hTF in a TFR-mediated process. Iron-free hTF remains tightly bound to the TFR at acidic pH; following recycling back to the cell surface, it is released to sequester more iron. Efficient delivery of iron is critically dependent on hTF/TFR interactions. Therefore, identification of the pH-specific contacts between hTF and the TFR is crucial. Recombinant protein production has enabled deconvolution of this complex system. The studies reviewed herein support a model in which pH-induced interrelated events control receptor-stimulated iron release from each lobe of hTF. PMID:23046645

  11. Reggies/flotillins interact with Rab11a and SNX4 at the tubulovesicular recycling compartment and function in transferrin receptor and E-cadherin trafficking.

    PubMed

    Solis, Gonzalo P; Hülsbusch, Nikola; Radon, Yvonne; Katanaev, Vladimir L; Plattner, Helmut; Stuermer, Claudia A O

    2013-09-01

    The lipid raft proteins reggie-1 and -2 (flotillins) are implicated in membrane protein trafficking but exactly how has been elusive. We find that reggie-1 and -2 associate with the Rab11a, SNX4, and EHD1-decorated tubulovesicular recycling compartment in HeLa cells and that reggie-1 directly interacts with Rab11a and SNX4. Short hairpin RNA-mediated down-regulation of reggie-1 (and -2) in HeLa cells reduces association of Rab11a with tubular structures and impairs recycling of the transferrin-transferrin receptor (TfR) complex to the plasma membrane. Overexpression of constitutively active Rab11a rescues TfR recycling in reggie-deficient HeLa cells. Similarly, in a Ca(2+) switch assay in reggie-depleted A431 cells, internalized E-cadherin is not efficiently recycled to the plasma membrane upon Ca(2+) repletion. E-cadherin recycling is rescued, however, by overexpression of constitutively active Rab11a or SNX4 in reggie-deficient A431 cells. This suggests that the function of reggie-1 in sorting and recycling occurs in association with Rab11a and SNX4. Of interest, impaired recycling in reggie-deficient cells leads to de novo E-cadherin biosynthesis and cell contact reformation, showing that cells have ways to compensate the loss of reggies. Together our results identify reggie-1 as a regulator of the Rab11a/SNX4-controlled sorting and recycling pathway, which is, like reggies, evolutionarily conserved.

  12. Receptor-based differences in human aortic smooth muscle cell membrane stiffness

    NASA Technical Reports Server (NTRS)

    Huang, H.; Kamm, R. D.; So, P. T.; Lee, R. T.

    2001-01-01

    Cells respond to mechanical stimuli with diverse molecular responses. The nature of the sensory mechanism involved in mechanotransduction is not known, but integrins may play an important role. The integrins are linked to both the cytoskeleton and extracellular matrix, suggesting that probing cells via integrins should yield different mechanical properties than probing cells via non-cytoskeleton-associated receptors. To test the hypothesis that the mechanical properties of a cell are dependent on the receptor on which the stress is applied, human aortic smooth muscle cells were plated, and magnetic beads, targeted either to the integrins via fibronectin or to the transferrin receptor by use of an IgG antibody, were attached to the cell surface. The resistance of the cell to deformation ("stiffness") was estimated by oscillating the magnetic beads at 1 Hz by use of single-pole magnetic tweezers at 2 different magnitudes. The ratio of bead displacements at different magnitudes was used to explore the mechanical properties of the cells. Cells stressed via the integrins required approximately 10-fold more force to obtain the same bead displacements as the cells stressed via the transferrin receptors. Cells stressed via integrins showed stiffening behavior as the force was increased, whereas this stiffening was significantly less for cells stressed via the transferrin receptor (P<0.001). Mechanical characteristics of vascular smooth muscle cells depend on the receptor by which the stress is applied, with integrin-based linkages demonstrating cell-stiffening behavior.

  13. Spectral and metal-binding properties of three single-point tryptophan mutants of the human transferrin N-lobe.

    PubMed Central

    He, Q Y; Mason, A B; Lyons, B A; Tam, B M; Nguyen, V; MacGillivray, R T; Woodworth, R C

    2001-01-01

    Human serum transferrin N-lobe (hTF/2N) contains three conserved tryptophan residues, Trp(8), Trp(128) and Trp(264), located in three different environments. The present report addresses the different contributions of the three tryptophan residues to the UV-visible, fluorescence and NMR spectra of hTF/2N and the effect of the mutations at each tryptophan residue on the iron-binding properties of the protein. Trp(8) resides in a hydrophobic box containing a cluster of three phenylalanine side chains and is H bonded through the indole N to an adjacent water cluster lying between two beta-sheets containing Trp(8) and Lys(296) respectively. The fluorescence of Trp(8) may be quenched by the benzene rings. The apparent increase in the rate of iron release from the Trp(8)-->Tyr mutant could be due to the interference of the mutation with the H-bond linkage resulting in an effect on the second shell network. The partial quenching in the fluorescence of Trp(128) results from the nearby His(119) residue. Difference-fluorescence spectra reveal that any protein containing Trp(128) shows a blue shift upon binding metal ion, and the NMR signal of Trp(128) broadens out and disappears upon the binding of paramagnetic metals to the protein. These data imply that Trp(128) is a major fluorescent and NMR reporter group for metal binding, and possibly for cleft closure in hTF/2N. Trp(264) is located on the surface of the protein and does not connect to any functional residues. This explains the facts that Trp(264) is the major contributor to both the absorbance and fluorescence spectra, has a strong NMR signal and the mutation at Trp(264) has little effect on the iron-binding and release behaviours of the protein. PMID:11171122

  14. Uptake of Al3+ into the N-lobe of human serum transferrin.

    PubMed Central

    Kubal, G; Mason, A B; Sadler, P J; Tucker, A; Woodworth, R C

    1992-01-01

    We have studied the binding of Al3+ to human serum apotransferrin (80 kDa) and recombinant N-lobe human apotransferrin (40 kDa) in 0.1 M-sodium bicarbonate solution at a pH meter reading in 2H2O (pH*) of 8.8 using 1H n.m.r. spectroscopy. The results show that for the intact protein, preferential binding of Al3+ to the N-lobe occurs. Molecular modelling combined with an analysis of ring-current-induced shifts suggest that n.m.r. spectroscopy can be used to probe hinge bending processes which accompany metal uptake in solution. PMID:1497609

  15. Transferrin surface-modified PLGA nanoparticles-mediated delivery of a proteasome inhibitor to human pancreatic cancer cells.

    PubMed

    Frasco, Manuela F; Almeida, Gabriela M; Santos-Silva, Filipe; Pereira, Maria do Carmo; Coelho, Manuel A N

    2015-04-01

    The aim of this study was to develop a drug delivery system based on poly(lactic-co-glycolic acid) (PLGA) nanoparticles for an efficient and targeted action of the proteasome inhibitor bortezomib against pancreatic cancer cells. The PLGA nanoparticles were formulated with a poloxamer, and further surface-modified with transferrin for tumor targeting. The nanoparticles were characterized as polymer carriers of bortezomib, and the cellular uptake and growth inhibitory effects were evaluated in pancreatic cells. Cellular internalization of nanoparticles was observed in normal and cancer cells, but with higher uptake by cancer cells. The sustained release of the loaded bortezomib from PLGA nanoparticles showed cytotoxic effects against pancreatic normal and cancer cells. Noteworthy differential cytotoxicity was attained by transferrin surface-modified PLGA nanoparticles since significant cell growth inhibition by delivered bortezomib was only observed in cancer cells. These findings demonstrate that the ligand transferrin enhanced the targeted delivery of bortezomib-loaded PLGA nanoparticles to pancreatic cancer cells. These in vitro results highlight the transferrin surface-modified PLGA nanoparticles as a promising system for targeted delivery of anticancer drugs.

  16. Evolutionary Reconstructions of the Transferrin Receptor of Caniforms Supports Canine Parvovirus Being a Re-emerged and Not a Novel Pathogen in Dogs

    PubMed Central

    Kaelber, Jason T.; Demogines, Ann; Harbison, Carole E.; Allison, Andrew B.; Goodman, Laura B.; Ortega, Alicia N.; Sawyer, Sara L.; Parrish, Colin R.

    2012-01-01

    Parvoviruses exploit transferrin receptor type-1 (TfR) for cellular entry in carnivores, and specific interactions are key to control of host range. We show that several key mutations acquired by TfR during the evolution of Caniforms (dogs and related species) modified the interactions with parvovirus capsids by reducing the level of binding. These data, along with signatures of positive selection in the TFRC gene, are consistent with an evolutionary arms race between the TfR of the Caniform clade and parvoviruses. As well as the modifications of amino acid sequence which modify binding, we found that a glycosylation site mutation in the TfR of dogs which provided resistance to the carnivore parvoviruses which were in circulation prior to about 1975 predates the speciation of coyotes and dogs. Because the closely-related black-backed jackal has a TfR similar to their common ancestor and lacks the glycosylation site, reconstructing this mutation into the jackal TfR shows the potency of that site in blocking binding and infection and explains the resistance of dogs until recent times. This alters our understanding of this well-known example of viral emergence by indicating that canine parvovirus emergence likely resulted from the re-adaptation of a parvovirus to the resistant receptor of a former host. PMID:22570610

  17. Human presynaptic receptors.

    PubMed

    Schlicker, Eberhard; Feuerstein, Thomas

    2017-04-01

    Presynaptic receptors are sites at which transmitters, locally formed mediators or hormones inhibit or facilitate the release of a given transmitter from its axon terminals. The interest in the identification of presynaptic receptors has faded in recent years and it may therefore be justified to give an overview of their occurrence in the autonomic and central nervous system; this review will focus on presynaptic receptors in human tissues. Autoreceptors are presynaptic receptors at which a given transmitter restrains its further release, though in some instances may also increase its release. Inhibitory autoreceptors represent a typical example of a negative feedback; they are tonically activated by the respective endogenous transmitter and/or are constitutively active. Autoreceptors also play a role under pathophysiological conditions, e.g. by limiting the massive noradrenaline release occurring during congestive heart failure. They can be used for therapeutic purposes; e.g., the α2-adrenoceptor antagonist mirtazapine is used as an antidepressant and the inverse histamine H3 receptor agonist pitolisant has been marketed as a new drug for the treatment of narcolepsy in 2016. Heteroreceptors are presynaptic receptors at which transmitters from adjacent neurons, locally formed mediators (e.g. endocannabinoids) or hormones (e.g. adrenaline) can inhibit or facilitate transmitter release; they may be subject to an endogenous tone. The constipating effect of the sympathetic nervous system or of the antihypertensive drug clonidine is related to the activation of inhibitory α2-adrenoceptors on postganglionic parasympathetic neurons. Part of the stimulating effect of adrenaline on the sympathetic nervous system during stress is related to its facilitatory effect on noradrenaline release via β2-adrenoceptors.

  18. Comparative binding, endocytosis, and biodistribution of antibodies and antibody-coated carriers for targeted delivery of lysosomal enzymes to ICAM-1 versus transferrin receptor

    PubMed Central

    Papademetriou, Jason; Garnacho, Carmen; Serrano, Daniel; Bhowmick, Tridib; Schuchman, Edward H.; Muro, Silvia

    2012-01-01

    Targeting lysosomal enzymes to receptors involved in transport into and across cells holds promise to enhance peripheral and brain delivery of enzyme replacement therapies for lysosomal storage disorders. Receptors being explored include those associated with clathrin-mediated pathways, yet other pathways seem also viable. Well characterized examples are that of transferrin receptor (TfR) and intercellular adhesion molecule 1 (ICAM-1), involved in iron transport and leukocyte extravasation, respectively. TfR and ICAM-1 support ERT delivery via clathrin- vs. cell adhesion molecule-mediated mechanisms, displaying different valency and size restrictions. To comparatively assess this, we used antibodies vs. larger multivalent antibody-coated carriers and evaluated TfR vs. ICAM-1 binding and endocytosis in endothelial cells, as well as in vivo biodistribution and delivery of a model lysosomal enzyme required in peripheral organs and brain: acid sphingomyelinase (ASM), deficient in types A–B Niemann Pick disease. We found similar binding of antibodies to both receptors under control conditions, with enhanced binding to activated endothelium for ICAM-1, yet only anti-TfR induced endocytosis efficiently. Contrarily, antibody-coated carriers showed enhanced binding, engulfment, and endocytosis for ICAM-1. In mice, anti-TfR enhanced brain targeting over anti-ICAM, with an opposite outcome in the lungs, while carriers enhanced ICAM-1 targeting over TfR in both organs. Both targeted carriers enhanced ASM delivery to the brain and lungs vs. free ASM, with greater enhancement for anti-ICAM carriers. Therefore, targeting TfR or ICAM-1 improves lysosomal enzyme delivery. Yet, TfR targeting may be more efficient for smaller conjugates or fusion proteins, while ICAM-1 targeting seems superior for multivalent carrier formulations. PMID:22968581

  19. Combined measurement of ferritin, soluble transferrin receptor, retinol binding protein, and C-reactive protein by an inexpensive, sensitive, and simple sandwich enzyme-linked immunosorbent assay technique.

    PubMed

    Erhardt, Juergen G; Estes, John E; Pfeiffer, Christine M; Biesalski, Hans K; Craft, Neal E

    2004-11-01

    The measurement of vitamin A (VA) and iron status is very important in the assessment of nutritional deficiencies. The objective of this research was to develop a sandwich ELISA technique for the simultaneous measurement of ferritin, soluble transferrin receptor, retinol binding protein, and C-reactive protein (CRP) as indicators for VA and iron status. The inclusion of CRP as marker of infection allows for more accurate interpretation of VA and iron status. This is accomplished in a 30-microL serum or plasma sample using an ELISA with different capture and detection antibodies and different dilutions of the sample. Commercially available clinical serum controls were used for calibration purposes. The developed assays were compared to commercially available traditional tests. Regression coefficients comparing both assays were better than 0.84 (P < 0.001). Using a limited sample set, the sandwich ELISA assay produced very similar specificity and sensitivity compared to traditional methods when common cutoff values were applied. Intra- and interassay variability was between 5 and 14% for all tests. The cost of the materials for all 5 measurements decreases to less than $1/sample if a large number of samples is analyzed. Due to the low cost, high throughput, and comparability to traditional tests, this procedure has several advantages for assessing VA and iron status in population surveys.

  20. α6 Integrin (α6(high))/Transferrin Receptor (CD71)(low) Keratinocyte Stem Cells Are More Potent for Generating Reconstructed Skin Epidermis Than Rapid Adherent Cells.

    PubMed

    Metral, Elodie; Bechetoille, Nicolas; Demarne, Frédéric; Rachidi, Walid; Damour, Odile

    2017-01-27

    The epidermis basal layer is composed of two keratinocyte populations: Keratinocyte Stem cells (KSC) and Transitory Amplifying (TA) cells that arise from KSC division. Unfortunately, no specific marker exists to differ between KSC and TA cells. Here, we aimed at comparing two different methods that pretended to isolate these two populations: (i) the rapid adhesion method on coated substrate and (ii) the flow cytometry method, which is based on the difference in cell surface expressions of the α6 integrin and transferrin receptor (CD71). Then, we compared different parameters that are known to discriminate KSC and TA populations. Interestingly, we showed that both methods allow enrichment in stem cells. However, cell sorting by flow cytometry (α6(high)/CD71(low)) phenotype leads to a better enrichment of KSC since the colony forming efficiency is five times increased versus total cell suspension, whereas it is only 1.4 times for the adhesion method. Moreover, α6(high)/CD71(low) cells give rise to a thicker pluristratified epithelium with lower seeding density and display a low Ki67 positive cells number, showing that they have reached the balance between proliferation and differentiation. We clearly demonstrated that cells isolated by a rapid adherent method are not the same population as KSC isolated by flow cytometry following α6(high)/CD71(low) phenotype.

  1. α6 Integrin (α6high)/Transferrin Receptor (CD71)low Keratinocyte Stem Cells Are More Potent for Generating Reconstructed Skin Epidermis Than Rapid Adherent Cells

    PubMed Central

    Metral, Elodie; Bechetoille, Nicolas; Demarne, Frédéric; Rachidi, Walid; Damour, Odile

    2017-01-01

    The epidermis basal layer is composed of two keratinocyte populations: Keratinocyte Stem cells (KSC) and Transitory Amplifying (TA) cells that arise from KSC division. Unfortunately, no specific marker exists to differ between KSC and TA cells. Here, we aimed at comparing two different methods that pretended to isolate these two populations: (i) the rapid adhesion method on coated substrate and (ii) the flow cytometry method, which is based on the difference in cell surface expressions of the α6 integrin and transferrin receptor (CD71). Then, we compared different parameters that are known to discriminate KSC and TA populations. Interestingly, we showed that both methods allow enrichment in stem cells. However, cell sorting by flow cytometry (α6high/CD71low) phenotype leads to a better enrichment of KSC since the colony forming efficiency is five times increased versus total cell suspension, whereas it is only 1.4 times for the adhesion method. Moreover, α6high/CD71low cells give rise to a thicker pluristratified epithelium with lower seeding density and display a low Ki67 positive cells number, showing that they have reached the balance between proliferation and differentiation. We clearly demonstrated that cells isolated by a rapid adherent method are not the same population as KSC isolated by flow cytometry following α6high/CD71low phenotype. PMID:28134816

  2. The Next Generation Non-competitive Active Polyester Nanosystems for Transferrin Receptor-mediated Peroral Transport Utilizing Gambogic Acid as a Ligand

    PubMed Central

    Saini, P.; Ganugula, R.; Arora, M.; Kumar, M. N. V. Ravi

    2016-01-01

    The current methods for targeted drug delivery utilize ligands that must out-compete endogenous ligands in order to bind to the active site facilitating the transport. To address this limitation, we present a non-competitive active transport strategy to overcome intestinal barriers in the form of tunable nanosystems (NS) for transferrin receptor (TfR) utilizing gambogic acid (GA), a xanthanoid, as its ligand. The NS made using GA conjugated poly(lactide-co-glycolide) (PLGA) have shown non-competitive affinity to TfR evaluated in cell/cell-free systems. The fluorescent PLGA-GA NS exhibited significant intestinal transport and altered distribution profile compared to PLGA NS in vivo. The PLGA-GA NS loaded with cyclosporine A (CsA), a model peptide, upon peroral dosing to rodents led to maximum plasma concentration of CsA at 6 h as opposed to 24 h with PLGA-NS with at least 2-fold higher levels in brain at 72 h. The proposed approach offers new prospects for peroral drug delivery and beyond. PMID:27388994

  3. TIBC, UIBC and Transferrin

    MedlinePlus

    ... suspected of having either iron deficiency or iron overload. These two tests are used to calculate the ... thus transferrin saturation becomes very low. In iron overload states, such as hemochromatosis , the iron level will ...

  4. Iron, transferrin and myelinogenesis

    NASA Astrophysics Data System (ADS)

    Sergeant, C.; Vesvres, M. H.; Devès, G.; Baron, B.; Guillou, F.

    2003-09-01

    Transferrin (Tf), the iron binding protein of vertebrates serum, is known to be synthesized by oligodendrocytes (Ols) in the central nervous system. It has been postulated that Tf is involved in Ols maturation and myelinogenesis. This link is particularly important in the understanding of a severe human pathology: the multiple sclerosis, which remains without efficient treatment. We generated transgenic mice containing the complete human Tf gene and extensive regulatory sequences from the 5 ' and 3 ' untranslated regions that specifically overexpress Tf in Ols. Brain cytoarchitecture of the transgenic mice appears to be normal in all brain regions examined, total myelin content is increased by 30% and motor coordination is significantly improved when compared with non-transgenic littermates. Tf role in the central nervous system may be related to its affinity for metallic cations. Normal and transgenic mice were used for determination of trace metals (iron, copper and zinc) and minerals (potassium and calcium) concentration in cerebellum and corpus callosum. The freeze-dried samples were prepared to allow proton-induced X-ray emission and Rutherford backscattering spectrometry analyses with the nuclear microprobe in Bordeaux. Preliminary results were obtained and carbon distribution was revealed as a very good analysis to distinguish precisely the white matter region. A comparison of metallic and mineral elements contents in brain between normal and transgenic mice shows that iron, copper and zinc levels remained constant. This result provides evidence that effects of Tf overexpression in the brain do not solely relate to iron transport.

  5. Revisiting nanoparticle technology for blood-brain barrier transport: Unfolding at the endothelial gate improves the fate of transferrin receptor-targeted liposomes.

    PubMed

    Johnsen, Kasper Bendix; Moos, Torben

    2016-01-28

    An unmet need exists for therapeutic compounds to traverse the brain capillary endothelial cells that denote the blood-brain barrier (BBB) to deliver effective treatment to the diseased brain. The use of nanoparticle technology for targeted delivery to the brain implies that targeted liposomes encapsulating a drug of interest will undergo receptor-mediated uptake and transport through the BBB with a subsequent unfolding of the liposomal content inside the brain, hence revealing drug release to adjacent drug-demanding neurons. As transferrin receptors (TfRs) are present on brain capillary endothelial, but not on endothelial cells elsewhere in the body, the use of TfR-targeted liposomes - colloidal particulates with a phospholipid bilayer membrane - remains the most relevant strategy to obtain efficient drug delivery to the brain. However, many studies have failed to provide sufficient quantitative data to proof passage of the BBB and significant appearance of drugs inside the brain parenchyma. Here, we critically evaluate the current evidence on the use of TfR-targeted liposomes for brain drug delivery based on a thorough investigation of all available studies within this research field. We focus on issues with respect to experimental design and data analysis that may provide an explanation to conflicting reports, and we discuss possible explanations for the current lack of sufficient transcytosis across the BBB for implementation in the design of TfR-targeted liposomes. We finally provide a list of suggestions for strategies to obtain substantial uptake and transport of drug carriers at the BBB with a concomitant transport of therapeutics into the brain.

  6. Combined radiolabel-binding and immunocytochemical evaluation of receptor–ligand interactions. Studies of transferrin receptors on activated lymphocytes

    PubMed Central

    Galbraith, Gillian M. P.; Galbraith, Robert M.

    1981-01-01

    A protocol that involved both immunohistological and radiolabel-binding procedures was devised for the study of transferrin–receptor interactions. This composite approach yielded considerably more information than did either technique used alone, and also provided a simple means for exclusion of several common potential sources of error. PMID:6277297

  7. Characterization of transferrin binding proteins 1 and 2 in invasive type b and nontypeable strains of Haemophilus influenzae.

    PubMed Central

    Gray-Owen, S D; Schryvers, A B

    1995-01-01

    Haemophilus influenzae has the ability to obtain iron from human transferrin via two bacterial cell surface transferrin binding proteins, Tbp1 and Tbp2. Although a wide array of strains have been shown to express these receptor proteins, two studies have recently identified a series of isolates which appeared to lack the ability to bind transferrin. Included in this group were the members of a cryptic genospecies of nontypeable biotype IV strains which appear to possess a tropism for female urogenital tissues and are major etiologic agents of neonatal and postpartum bacteremia due to H. influenzae. The present study employed oligonucleotide primers specific for genes encoding the Tbp proteins of a type b biotype I strain of H. influenzae to probe the genomic DNAs of isolates from the previous studies. The tbpA and tbpB genes which encode Tbp1 and Tbp2, respectively, were detected in all of the strains tested either by PCR amplification directly or by Southern hybridization analysis. All of the strains displayed a transferrin binding phenotype, and affinity isolation of receptor proteins with transferrin-conjugated Sepharose recovered Tbp1 and/or Tbp2 from 11 of 14 strains, including 2 of the nontypeable biotype IV strains. In addition, all of the strains were capable of growing on human transferrin specifically, indicating that the mechanism of iron assimilation from transferrin is functional and is not siderophore mediated. These results confirm the presence of tbp genes in all of the invasive H. influenzae isolates characterized to date, suggesting that Tbp-mediated iron acquisition is important in disease which initiates from either the respiratory or urogenital mucosa. PMID:7558284

  8. Utility of Access Soluble Transferrin Receptor (sTfR) and sTfR/log Ferritin Index in Diagnosing Iron Deficiency Anemia.

    PubMed

    Shin, Dong Hoon; Kim, Hyun Soo; Park, Min Jeong; Suh, In Bum; Shin, Kyu Sung

    2015-01-01

    The Access(®) soluble transferrin receptor (sTfR) is considered the world's first automated chemiluminescence immunoassay. In this study, the diagnostic utility of this and other tests for serum iron were evaluated by studying their interrelationships with inflammation. A total of 367 patients with anemia (iron deficiency anemia [IDA], 157; anemia of chronic disease [ACD], 210) and 80 normal controls were subjected to a battery of diagnostic tests, including complete blood cell count, serum iron, total iron-binding capacity (TIBC), C-reactive protein (CRP), ferritin, sTfR, and hepcidin. The accuracy of test parameters was determined by the area under the receiver operating characteristic curve (AUC). Patients falling within the ferritin grey zone (10-100 ng/ml) were evaluated separately, given that such individuals are typically difficult to detect and manage in actual clinical practice. CRP was used to assess the correlation between the aforementioned markers of iron and inflammation. The single most accurate diagnostic test used to differentiate IDA from ACD was serum ferritin (AUC 0.989). However, sTfR assay outperformed other tests in the ferritin grey zone (AUC 0.931), and the sTfR/log ferritin index was the most reliable parameter in both scenarios (AUC 0.994 and 0.962, respectively). Ferritin, TIBC, and hepcidin showed the highest correlation with CRP, whereas sTfR displayed the lowest. The Access sTfR and sTfR/log ferritin index enabled highly accurate diagnosis of IDA in the ferritin grey zone. This is an easy-to-use automated chemiluminescence immunoassay, amenable to routine use in hospitals.

  9. Enhanced sandwich immunoassay using antibody-functionalized magnetic iron-oxide nanoparticles for extraction and detection of soluble transferrin receptor on a photonic crystal biosensor.

    PubMed

    Peterson, Ross D; Chen, Weili; Cunningham, Brian T; Andrade, Juan E

    2015-12-15

    Iron deficiency anemia (IDA) has detrimental effects on individuals and societies worldwide. A standard sandwich assay (SA) for the detection of soluble transferrin receptor (sTfR), a biomarker of IDA, on a photonic crystal (PC) biosensor was established, but it was susceptible to non-specific signals from complex matrixes. In this study, iron-oxide nanoparticles (fAb-IONs) were used as magnetic immuno-probes to bind sTfR and minimize non-specific signals, while enhancing detection on the PC biosensor. This inverse sandwich assay (IA) method completely bound sTfR with low variability (<4% RSD) in buffer and allowed for its accurate and precise detection in sera (Liquichek™ control sera) on the PC biosensor using two certified ELISAs as reference methods. A linear dose-response curve was elicited at the fAb-IONs concentration in which the theoretical binding ratio (sTfR:fAb-IONs) was calculated to be <1 on the IA. The LoDs for sTfR in the SA and IA were similar (P>0.05) at 14 and 21 μg/mL, respectively. The inherent imprecision of the IA and reference ELISAs was σ(δ)=0.45 µg/mL and the mean biases for Liquichek™ 1, 2 and 3 were 0.18, 0.19 and -0.04 µg/mL, respectively. Whereas the inherent imprecision of the SA and reference ELISAs was σ(δ)=0.52 µg/mL and the biases for Liquichek™ 1, 2 and 3 were 0.66, 0.14 and -0.67 µg/mL, respectively. Thus, unlike the SA, the IA method measures sTfR with the same bias as the reference ELISAs. Combined magnetic separation and detection of nutrition biomarkers on PC biosensors represents a facile method for their accurate and reliable quantification in complex matrixes.

  10. Transferrin receptor-targeted pH-sensitive micellar system for diminution of drug resistance and targetable delivery in multidrug-resistant breast cancer

    PubMed Central

    Gao, Wei; Ye, Guihua; Duan, Xiaochuan; Yang, Xiaoying; Yang, Victor C

    2017-01-01

    The emergence of drug resistance is partially associated with overproduction of transferrin receptor (TfR). To overcome multidrug resistance (MDR) and achieve tumor target delivery, we designed a novel biodegradable pH-sensitive micellar system modified with HAIYPRH, a TfR ligand (7pep). First, the polymers poly(l-histidine)-coupled polyethylene glycol-2000 (PHIS-PEG2000) and 7pep-modified 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-polyethylene glycol-2000 (7pep-DSPE-PEG2000) were synthesized, and the mixed micelles were prepared by blending of PHIS-PEG2000 and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-polyethylene glycol-2000 (DSPE-PEG2000) or 7pep-DSPE-PEG2000 (7-pep HD micelles). The micelles exhibited good size uniformity, high encapsulation efficiency, and a low critical micelle concentration. By changing the polymer ratio in the micellar formulation, the pH response range was specially tailored to pH ~6.0. When loaded with antitumor drug doxorubicin (DOX), the micelle showed an acid pH-triggering drug release profile. The cellular uptake and cytotoxicity study demonstrated that 7-pep HD micelles could significantly enhance the intracellular level and antitumor efficacy of DOX in multidrug-resistant cells (MCF-7/Adr), which attributed to the synergistic effect of poly(l-histidine)-triggered endolysosom escape and TfR-mediated endocytosis. Most importantly, the in vivo imaging study confirmed the target-ability of 7-pep HD micelles to MDR tumor. These findings indicated that 7-pep HD micelles would be a promising drug delivery system in the treatment of drug-resistant tumors. PMID:28223798

  11. Depleted iron stores and iron deficiency anemia associated with reduced ferritin and hepcidin and elevated soluble transferrin receptors in a multiethnic group of preschool-age children.

    PubMed

    Weiler, Hope A; Jean-Philippe, Sonia; Cohen, Tamara R; Vanstone, Catherine A; Agellon, Sherry

    2015-09-01

    Iron deficiency anemia is prevalent in subgroups of the Canadian population. The objective of this study was to examine iron status and anemia in preschool-age children. Healthy children (n = 430, 2-5 years old, Montreal, Quebec, Canada) were sampled from randomly selected daycares. Anthropometry, demographics, and diet were assessed. Biochemistry included hemoglobin, ferritin, soluble transferrin receptors (sTfR), ferritin index, markers of inflammation (C-reactive protein, interleukin 6 (IL-6), and tumour necrosis factor alpha (TNFα)), and hepcidin. Iron deficiency and anemia cutoffs conformed to the World Health Organization criteria. Differences among categories were tested using mixed-model ANOVA or χ(2) tests. Children were 3.8 ± 1.0 years of age, with a body mass index z score of 0.48 ± 0.97, and 51% were white. Adjusted intakes of iron indicated <1% were at risk for deficiency. Hemoglobin was higher in white children, whereas ferritin was higher with greater age and female sex. Inflammatory markers and hepcidin did not vary with any demographic variable. The prevalence of iron deficiency was 16.5% (95% confidence interval (CI), 13.0-20.0). Three percent (95% CI, 1.4-4.6) of children had iron deficiency anemia and 12.8% (95% CI, 9.6-16.0) had unexplained anemia. Children with iron deficiency, with and without anemia, had lower plasma ferritin and hepcidin but higher sTfR, ferritin index, and IL-6, whereas those with unexplained anemia had elevated TNFα. We conclude that iron deficiency anemia is not very common in young children in Montreal. While iron deficiency without anemia is more common than iron deficiency with anemia, the correspondingly reduced circulating hepcidin would have enabled heightened absorption of dietary iron in support of erythropoiesis.

  12. Neptunium uptake by serum transferrin.

    PubMed

    Llorens, Isabelle; Den Auwer, Christophe; Moisy, Philippe; Ansoborlo, Eric; Vidaud, Claude; Funke, Harld

    2005-04-01

    Although of major impact in terms of biological and environmental hazards, interactions of actinide cations with biological molecules are only partially understood. Human serum transferrin (Tf) is one of the major iron carriers in charge of iron regulation in the cell cycle and consequently contamination by actinide cations is a critical issue of nuclear toxicology. Combined X-ray absorption spectroscopy (XAS) and near infrared absorption spectrometry were used to characterize a new complex between Tf and Np (IV) with the synergistic nitrilotriacetic acid (NTA) anion. Description of the neptunium polyhedron within the iron coordination site is given.

  13. Comparison of colorimetry and electrothermal atomic absorption spectroscopy for the quantification of non-transferrin bound iron in human sera.

    PubMed

    Jittangprasert, Piyada; Wilairat, Prapin; Pootrakul, Pensri

    2004-12-01

    This paper describes a comparison of two analytical techniques, one employing bathophenanthrolinedisulfonate (BPT), a most commonly-used reagent for Fe (II) determination, as chromogen and an electrothermal atomic absorption spectroscopy (ETAAS) for the quantification of non-transferrin bound iron (NTBI) in sera from thalassemic patients. Nitrilotriacetic acid (NTA) was employed as the ligand for binding iron from low molecular weight iron complexes present in the serum but without removing iron from the transferrin protein. After ultrafiltration the Fe (III)-NTA complex was then quantified by both methods. Kinetic study of the rate of the Fe (II)-BPT complex formation for various excess amounts of NTA ligand was also carried out. The kinetic data show that a minimum time duration (> 60 minutes) is necessary for complete complex formation when large excess of NTA is used. Calibration curves given by colorimetric and ETAAS methods were linear over the range of 0.15-20 microM iron (III). The colorimetric and ETAAS methods exhibited detection limit (3sigma) of 0.13 and 0.14 microM, respectively. The NTBI concentrations from 55 thalassemic serum samples measured employing BPT as chromogen were statistically compared with the results determined by ETAAS. No significant disagreement at 95% confidence level was observed. It is, therefore, possible to select any one of these two techniques for determination of NTBI in serum samples of thalassemic patients. However, the colorimetric procedure requires a longer analysis time because of a slow rate of exchange of NTA ligand with BPT, leading to the slow rate of formation of the colored complex.

  14. [Transferrin in various hematological syndrome].

    PubMed

    Gepner-Woźniewska, M; Sitarska, E; Kluciński, W; Konopka, L; Roszkowski, S

    1977-01-01

    In 100 patients with various haematological syndromes and in 22 healthy subjects serum transferrin was determined by the method of radial immunodiffusion of Mancini. The results were correlated with total iron-binding capacity, iron concentration, beta1 globulin and albumin levels. A statistically significant rise in serum transferrin concentration was demonstrated only in patients with sideropenic anaemia. In the remaining groups of patients transferrin concentration was decreased without regard to associated disturbances of iron metabolism and iron level. The comparison of the total iron-binding capacity with transferrin level determined by radial immunodiffusion may suggest presence of iron-binding proteins other than transferrin.

  15. Alteration at translational but not transcriptional level of transferrin receptor expression following manganese exposure at the blood-CSF barrier in vitro

    SciTech Connect

    Li, G. Jane; Zhao Qiuqu; Zheng Wei . E-mail: wzheng@purdue.edu

    2005-06-01

    Manganese exposure alters iron homeostasis in blood and cerebrospinal fluid (CSF), possibly by acting on iron transport mechanisms localized at the blood-brain barrier and/or blood-CSF barrier. This study was designed to test the hypothesis that manganese exposure may change the binding affinity of iron regulatory proteins (IRPs) to mRNAs encoding transferrin receptor (TfR), thereby influencing iron transport at the blood-CSF barrier. A primary culture of choroidal epithelial cells was adapted to grow on a permeable membrane sandwiched between two culture chambers to mimic blood-CSF barrier. Trace {sup 59}Fe was used to determine the transepithelial transport of iron. Following manganese treatment (100 {mu}M for 24 h), the initial flux rate constant (K {sub i}) of iron was increased by 34%, whereas the storage of iron in cells was reduced by 58%, as compared to controls. A gel shift assay demonstrated that manganese exposure increased the binding of IRP1 and IRP2 to the stem loop-containing mRNAs. Consequently, the cellular concentrations of TfR proteins were increased by 84% in comparison to controls. Assays utilizing RT-PCR, quantitative real-time reverse transcriptase-PCR, and nuclear run off techniques showed that manganese treatment did not affect the level of heterogeneous nuclear RNA (hnRNA) encoding TfR, nor did it affect the level of nascent TfR mRNA. However, manganese exposure resulted in a significantly increased level of TfR mRNA and reduced levels of ferritin mRNA. Taken together, these results suggest that manganese exposure increases iron transport at the blood-CSF barrier; the effect is likely due to manganese action on translational events relevant to the production of TfR, but not due to its action on transcriptional, gene expression of TfR. The disrupted protein-TfR mRNA interaction in the choroidal epithelial cells may explain the toxicity of manganese at the blood-CSF barrier.

  16. Insights into endosomal maturation of human holo-transferrin in the enteric parasite Entamoeba histolytica: essential roles of Rab7A and Rab5 in biogenesis of giant early endocytic vacuoles.

    PubMed

    Verma, Kuldeep; Saito-Nakano, Yumiko; Nozaki, Tomoyoshi; Datta, Sunando

    2015-12-01

    The pathogenic amoeba Entamoeba histolytica is one of the causative agents of health hazards in tropical countries. It causes amoebic dysentery, colitis and liver abscesses in human. Iron is one of the essential nutritional resources for survival and chronic infection caused by the amoeba. The parasite has developed multiple ways to import, sequester and utilize iron from various iron-binding proteins from its host. In spite of its central role in pathogenesis, the mechanism of iron uptake by the parasite is largely unknown. Here, we carried out a systematic study to understand the role of some of the amoebic homologues of mammalian endocytic Rab GTPases (Rab5 and Rab21, Rab7A and Rab7B) in intracellular transport of human holo-transferrin by the parasite. Flow cytometry and quantitative microscopic image analysis revealed that Rab5 and Rab7A are required for the biogenesis of amoebic giant endocytic vacuoles (GEVs) and regulate the early phase of intracellular trafficking of transferrin. Rab7B is involved in the late phase, leading to the degradation of transferrin in the amoebic lysosome-like compartments. Using time-lapse fluorescence imaging in fixed trophozoites, we determined the kinetics of the vesicular transport of transferrin through Rab5-, Rab7A- and Rab7B-positive compartments. The involvement of Rab7A in the early phase of endocytosis by the parasite marks a significant divergence from its host in terms of spatiotemporal regulation by the Rab GTPases.

  17. Studies on the binding of fulvic acid with transferrin by spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Xiu-feng; Yang, Guang; Dong, Yu; Zhao, Yan-qin; Sun, Xiao-ran; Chen, Lei; Chen, Hong-bo

    2015-02-01

    Transferrin has shown potential in the delivery of anticancer drugs into primarily proliferating cancer cells that over-express transferrin receptors. Fulvic acid has a wide range of biological and pharmacological activities which caused widespread concerns, the interaction of fulvic acid with human serum transferrin (Tf) has great significance for gaining a deeper insight about anticancer activities of fulvic acid. In this study, the mechanism of interaction between fulvic acid and Tf, has been investigated by using fluorescence quenching, thermodynamics, synchronous fluorescence and circular dichroism (CD) under physiological condition. Our results have shown that fulvic acid binds to Tf and form a new complex, and the calculated apparent association constants are 5.04 × 108 M-1, 5.48 × 107 M-1, 7.38 × 106 M-1 from the fluorescence quenching at 288 K, 298 K, and 310 K. The thermodynamic parameters indicate that hydrogen bonding and weak van der Waals are involved in the interaction between fulvic acid and Tf. The binding of fulvic acid to Tf causes the α-helix structure content of the protein to reduce, and resulting that peptide chains of Tf become more stretched. Our results have indicated a mechanism of the interaction between fulvic acid and Tf, which may provide information for possible design of methods to deliver drug molecules via transferrin to target tissues and cells effectively.

  18. Transferrin is required for early T-cell differentiation.

    PubMed

    Macedo, M Fatima; de Sousa, Maria; Ned, Renee M; Mascarenhas, Claudia; Andrews, Nancy C; Correia-Neves, Margarida

    2004-08-01

    Transferrin, the major plasma iron carrier, mediates iron entry into cells through interaction with its receptor. Several in vitro studies have demonstrated that transferrin plays an essential role in lymphocyte division, a role attributed to its iron transport function. In the present study we used hypotransferrinaemic (Trf(hpx/hpx)) mice to investigate the possible involvement of transferrin in T lymphocyte differentiation in vivo. The absolute number of thymocytes was substantially reduced in Trf(hpx/hpx) mice, a result that could not be attributed to increased apoptosis. Moreover, the proportions of the four major thymic subpopulations were maintained and the percentage of dividing cells was not reduced. A leaky block in the differentiation of CD4(-) CD8(-) CD3(-) CD44(-) CD25(+) (TN3) into CD4(-) CD8(-) CD3(-) CD44(-) CD25(-) (TN4) cells was observed. In addition, a similar impairment of early thymocyte differentiation was observed in mice with reduced levels of transferrin receptor. The present study demonstrates, for the first time, that transferrin itself or a pathway triggered by the interaction of transferrin with its receptor is essential for normal early T-cell differentiation in vivo.

  19. Using Soluble Transferrin Receptor and Taking Inflammation into Account When Defining Serum Ferritin Cutoffs Improved the Diagnosis of Iron Deficiency in a Group of Canadian Preschool Inuit Children from Nunavik

    PubMed Central

    Turgeon O'Brien, Huguette; Blanchet, Rosanne; Gagné, Doris; Vézina, Carole

    2016-01-01

    The prevalence of iron depletion, iron deficient erythropoiesis (IDE), and iron deficiency anemia (IDA) was assessed in preschool Inuit children using soluble transferrin receptor (sTfR) and traditional indicators of iron status while disregarding or taking inflammation into account when defining SF cutoffs. Iron depletion was defined as follows: (1) SF < 15 μg/L regardless of the C-reactive protein (CRP) level and (2) SF < 15 or <50 μg/L with CRP ≤ 5 or >5 mg/L, respectively. IDE corresponded to iron depletion combined with total iron binding capacity > 72 μmol/L and/or transferrin saturation < 16%. Iron depletion and IDE affected almost half of the children when accounting for inflammation, compared to one-third when the SF cutoff was defined regardless of CRP level (P < 0.0001). The prevalence of IDE adjusted for inflammation (45.1%) was very similar to the prevalence observed when sTfR was used as a sole marker of IDE (47.4%). The prevalence of anemia was 15%. The prevalence of IDA (IDE + hemoglobin < 110 g/L) was higher when accounting for than when disregarding inflammation (8.0% versus 6.2%, P = 0.083). Using sTfR and different SF cutoffs for children with versus without inflammation improved the diagnosis of iron depletion and IDE. Our results confirm that Inuit children are at particularly high risk for iron deficiency. PMID:27382488

  20. Using Soluble Transferrin Receptor and Taking Inflammation into Account When Defining Serum Ferritin Cutoffs Improved the Diagnosis of Iron Deficiency in a Group of Canadian Preschool Inuit Children from Nunavik.

    PubMed

    Turgeon O'Brien, Huguette; Blanchet, Rosanne; Gagné, Doris; Lauzière, Julie; Vézina, Carole

    2016-01-01

    The prevalence of iron depletion, iron deficient erythropoiesis (IDE), and iron deficiency anemia (IDA) was assessed in preschool Inuit children using soluble transferrin receptor (sTfR) and traditional indicators of iron status while disregarding or taking inflammation into account when defining SF cutoffs. Iron depletion was defined as follows: (1) SF < 15 μg/L regardless of the C-reactive protein (CRP) level and (2) SF < 15 or <50 μg/L with CRP ≤ 5 or >5 mg/L, respectively. IDE corresponded to iron depletion combined with total iron binding capacity > 72 μmol/L and/or transferrin saturation < 16%. Iron depletion and IDE affected almost half of the children when accounting for inflammation, compared to one-third when the SF cutoff was defined regardless of CRP level (P < 0.0001). The prevalence of IDE adjusted for inflammation (45.1%) was very similar to the prevalence observed when sTfR was used as a sole marker of IDE (47.4%). The prevalence of anemia was 15%. The prevalence of IDA (IDE + hemoglobin < 110 g/L) was higher when accounting for than when disregarding inflammation (8.0% versus 6.2%, P = 0.083). Using sTfR and different SF cutoffs for children with versus without inflammation improved the diagnosis of iron depletion and IDE. Our results confirm that Inuit children are at particularly high risk for iron deficiency.

  1. Study on effect of lomefloxacin on human holo-transferrin in the presence of essential and nonessential amino acids: Spectroscopic and molecular modeling approaches.

    PubMed

    Marouzi, Somaye; Sharifi Rad, Atena; Beigoli, Sima; Teimoori Baghaee, Parisa; Assaran Darban, Reza; Chamani, Jamshidkhan

    2017-04-01

    The purpose of this study was to determine how lomefloxacin (LMF) interacts with human holo-transferrin (HTF) in the presence of two kinds of essential and nonessential amino acids. The investigations were carried out by fluorescence spectroscopy, zeta potential and molecular modeling techniques under imitated physiological conditions. We were able to determine the number of binding sites, the drug binding affinity to HTF in the presence of essential and nonessential amino acids and the quenching source of HTF. The interaction between HTF with LMF suggested that the microenvironment of the Trp residues was altered causing a strong static fluorescence quenching in the binary and ternary systems. The results pointed at the formation of a complex in the binary and ternary systems which caused an enhancement of the RLS intensity that was analyzed using synchronous fluorescence spectroscopy. The density functional theory (DFT) was employed to determine the amino acid residues on HTF that interacted with LMF. Also, Steric and van der Waals forces as well as the contribution of small amounts of hydrogen bonds were stronger or Tyr 71 in chain (b) than for 128 Trp in chain (a) of HTF.

  2. Pulmonary transvascular flux of transferrin

    SciTech Connect

    Cooper, J.A.; Malik, A.B. )

    1989-11-01

    We compared the pulmonary transvascular fluxes of transferrin and albumin in the intact sheep lung. Anesthetized sheep were prepared with lung lymph fistulas. The vascular blood pool was marked with {sup 99m}Tc-erythrocytes, autologous transferrin was labeled with {sup 113m}In, and albumin was labeled with {sup 125}I. Samples of blood, plasma, lymph, and lung were obtained up to 180 min after tracer infusion. Lymph tissue radioactivities were corrected for the intravascular component and expressed as extravascular-to-plasma concentration ratios. Clearance of transferrin and albumin from the plasma space followed a two-compartment model. The clearance rate constant was 2.1 {plus minus} 0.1 x 10(-3) min for albumin and 2.4 {plus minus} 0.1 x 10(-3) min for transferrin (P less than 0.05). Lymph-to-plasma ratios for albumin and transferrin were not different. However, the extravascular-to-plasma ratio for albumin was greater than transferrin (P less than 0.05). The lymph and lung data were deconvoluted for the plasma input function and fit to a two-compartment model. The results indicate that albumin and transferrin have similar permeabilities across the vascular barrier but have different pulmonary circulation to lymph kinetics because the extravascular volume of distribution of albumin is greater than transferrin.

  3. Pharmaceutical formulation affects titanocene transferrin interactions.

    PubMed

    Buettner, Katherine M; Snoeberger, Robert C; Batista, Victor S; Valentine, Ann M

    2011-10-07

    Since the discovery of the anticancer activity of titanocene dichloride (TDC), many derivatives have been developed and evaluated. MKT4, a soluble, water-stable formulation of TDC, was used for both Phase I and Phase II human clinical trials. This formulation is investigated here by using (1)H and (13)C NMR, FT-ICR mass spectrometry, and UV/vis-detected pH-dependent speciation. DFT calculations are also utilized to assess the likelihood of proposed species. Human serum transferrin has been identified as a potential vehicle for the Ti anticancer drugs; these studies examine whether and how formulation of TDC as MKT4 may influence its interactions, both thermodynamic and kinetic, with human serum transferrin by using UV/vis absorption and fluorescence quenching. MKT4 binds differently than TDC to transferrin, showing different kinetics of binding as well as a different molar absorptivity of binding (7500 M(-1) cm(-1) per site). Malate, used in the buffer for MKT4 administration, acts as a synergistic anion for Ti binding, shifting the tyrosine to Ti charge transfer energy and decreasing the molar absorptivity to 5000 M(-1) cm(-1) per site. These differences may have had consequences after the change from TDC to MKT4 in human clinical trials.

  4. Iron piracy: acquisition of transferrin-bound iron by bacterial pathogens.

    PubMed

    Cornelissen, C N; Sparling, P F

    1994-12-01

    The mechanism of iron utilization from transferrin has been most extensively characterized in the pathogenic Neisseria species and Haemophilus species. Two transferrin-binding proteins, Tbp1 and Tbp2, have been identified in these pathogens and are thought to be components of the transferrin receptor. Tbp1 appears to be an integral, TonB-dependent outer membrane protein while Tbp2, a lipoprotein, may be peripherally associated with the outer membrane. The relative contribution of each of these proteins to transferrin binding and utilization is discussed and a model of iron uptake from transferrin is presented. Sequence comparisons of the genes encoding neisserial transferrin-binding proteins suggest that they are probably under positive selection for variation and may have resulted from inter-species genetic exchange.

  5. Binding of trivalent chromium to serum transferrin is sufficiently rapid to be physiologically relevant.

    PubMed

    Deng, Ge; Wu, Kristi; Cruce, Alex A; Bowman, Michael K; Vincent, John B

    2015-02-01

    Transferrin, the major iron transport protein in the blood, also transports trivalent chromium in vivo. Recent in vitro studies have, however, suggested that the binding of chromic ions to apotransferrin is too slow to be biologically relevant. Nevertheless, the in vitro studies have generally failed to adequately take physiological bicarbonate concentrations into account. In aqueous buffer (with ambient (bi)carbonate concentrations), the binding of chromium to transferrin is too slow to be physiologically relevant, taking days to reach equilibrium with the protein's associated conformational changes. However, in the presence of 25mM (bi)carbonate, the concentration in human blood, chromic ions bind rapidly and tightly to transferrin. Details of the kinetics of chromium binding to human serum transferrin and conalbumin (egg white transferrin) in the presence of bicarbonate and other major potential chromium ligands are described and are consistent with transferrin being the major chromic ion transporter from the blood to tissues.

  6. Structure of diferric hen serum transferrin at 2.8 A resolution.

    PubMed

    Guha Thakurta, Piyali; Choudhury, Debi; Dasgupta, Rakhi; Dattagupta, J K

    2003-10-01

    Hen serum transferrin in its diferric form (hST) has been isolated, purified and the three-dimensional structure determined by X-ray crystallography at 2.8 A resolution. The final refined structure of hST, comprising 5232 protein atoms, two Fe(3+) cations, two CO(3)(2-) anions, 54 water molecules and one fucose moiety, has an R factor of 21.5% and an R(free) of 26.9% for all data. The structure has been compared with the three-dimensional structure of hen ovotransferrin (hOT) and also with structures of some other transferrins, viz. rabbit serum transferrin (rST) and human lactoferrin (hLF). The overall conformation of the hST molecule is essentially the same as that of other transferrins. However, the relative orientation of the two lobes, which is related to the species-specific receptor-recognition property of transferrins, has been found to be different in hST from that in hOT, rST and hLF. On the basis of superposition of the N lobes, rotations of 5.8, 16.9 and 11.3 degrees are required to bring the C lobes of hOT, rST and hLF, respectively, into coincidence with that of hST. A number of additional hydrogen bonds between the two domains in the N and C lobes have been identified in the structure of hST compared with that of hOT, which indicate a greater compactness of the lobes of hST than those of hOT. Being products of the same gene, hST and hOT have 100% sequence identity and differ only in the attached carbohydrate moiety. On the other hand, despite having similar functions, hST and rST have only 51% sequence similarity. However, the nature of the interdomain interactions of hST are closer to rST than to hOT. A putative carbohydrate-binding site has been identified in the N lobe of hST at Asn52 and a fucose molecule could be modelled at the site. The variations in interdomain and interlobe interactions in hST, together with altered lobe orientation with respect to hOT, rST and hLF, which are the representatives of the other subfamily of transferrins, are

  7. Prevalence of Anaemia and Evaluation of Transferrin Receptor (sTfR) in the Diagnosis of Iron Deficiency in the Hospitalized Elderly Patients: Anaemia Clinical Studies in Chile.

    PubMed

    López-Sierra, Mauricio; Calderón, Susana; Gómez, Jorge; Pilleux, Lilian

    2012-01-01

    Iron constitutes the most prevalent nutritional deficiency worldwide. In Chile, anaemia epidemiological data is scarce, evaluating mainly children and women. Our objective was to determine prevalence of anaemia in an inpatient elderly population (≥60 years) and assess the usefulness of sTfR levels analyzed by other authors as a good predictor in the differential diagnosis of iron deficiency anaemia and anaemia of chronic disease. Method. We studied medical patients admitted at Hospital of Valdivia (HV), Chile, in a 2month period. World Health Organization criteria were used for anaemia. Results. 391 patients were hospitalized, average age 62.5 years, 247 elderly and 99 of which had anaemia. Anaemia was normocytic in 88.8%, and we observed: low serum iron in 46.3%, low ferritin 10.1%, high TIBC 2%, low % transferrin saturation (Tsat) 40%, and high sTfR 25%. Conclusions. As a first figure known in Chile, the prevalence of anaemia in the elderly inpatient was 40.1%. Our findings encourage us to promote the implementation of sTfR determination in the clinical setting to analyze the state of erythropoiesis in patients with chronic diseases wich commonly occurs in elderly.

  8. Transferrin iron uptake is stimulated by ascorbate via an intracellular reductive mechanism.

    PubMed

    Lane, Darius J R; Chikhani, Sherin; Richardson, Vera; Richardson, Des R

    2013-06-01

    Although ascorbate has long been known to stimulate dietary iron (Fe) absorption and non-transferrin Fe uptake, the role of ascorbate in transferrin Fe uptake is unknown. Transferrin is a serum Fe transport protein supplying almost all cellular Fe under physiological conditions. We sought to examine ascorbate's role in this process, particularly as cultured cells are typically ascorbate-deficient. At typical plasma concentrations, ascorbate significantly increased (59)Fe uptake from transferrin by 1.5-2-fold in a range of cells. Moreover, ascorbate enhanced ferritin expression and increased (59)Fe accumulation in ferritin. The lack of effect of cycloheximide or the cytosolic aconitase inhibitor, oxalomalate, on ascorbate-mediated (59)Fe uptake from transferrin indicate increased ferritin synthesis or cytosolic aconitase activity was not responsible for ascorbate's activity. Experiments with membrane-permeant and -impermeant ascorbate-oxidizing reagents indicate that while extracellular ascorbate is required for stimulation of (59)Fe uptake from (59)Fe-citrate, only intracellular ascorbate is needed for transferrin (59)Fe uptake. Additionally, experiments with l-ascorbate analogs indicate ascorbate's reducing ene-diol moiety is necessary for its stimulatory activity. Importantly, neither N-acetylcysteine nor buthionine sulfoximine, which increase or decrease intracellular glutathione, respectively, affected transferrin-dependent (59)Fe uptake. Thus, ascorbate's stimulatory effect is not due to a general increase in cellular reducing capacity. Ascorbate also did not affect expression of transferrin receptor 1 or (125)I-transferrin cellular flux. However, transferrin receptors, endocytosis, vacuolar-type ATPase activity and endosomal acidification were required for ascorbate's stimulatory activity. Therefore, ascorbate is a novel modulator of the classical transferrin Fe uptake pathway, acting via an intracellular reductive mechanism.

  9. The Importance of the Stem Cell Marker Prominin-1/CD133 in the Uptake of Transferrin and in Iron Metabolism in Human Colon Cancer Caco-2 Cells

    PubMed Central

    Benoit, Jean-Pierre; Garcion, Emmanuel

    2011-01-01

    As the pentaspan stem cell marker CD133 was shown to bind cholesterol and to localize in plasma membrane protrusions, we investigated a possible function for CD133 in endocytosis. Using the CD133 siRNA knockdown strategy and non-differentiated human colon cancer Caco-2 cells that constitutively over-expressed CD133, we provide for the first time direct evidence for a role of CD133 in the intracellular accumulation of fluorescently labeled extracellular compounds. Assessed using AC133 monoclonal antibody, CD133 knockdown was shown to improve Alexa488-transferrin (Tf) uptake in Caco-2 cells but had no impact on FITC-dextran or FITC-cholera-toxin. Absence of effect of the CD133 knockdown on Tf recycling established a role for CD133 in inhibiting Tf endocytosis rather than in stimulating Tf exocytosis. Use of previously identified inhibitors of known endocytic pathways and the positive impact of CD133 knockdown on cellular uptake of clathrin-endocytosed synthetic lipid nanocapsules supported that CD133 impact on endocytosis was primarily ascribed to the clathrin pathway. Also, cholesterol extraction with methyl-β-cyclodextrine up regulated Tf uptake at greater intensity in the CD133high situation than in the CD133low situation, thus suggesting a role for cholesterol in the inhibitory effect of CD133 on endocytosis. Interestingly, cell treatment with the AC133 antibody down regulated Tf uptake, thus demonstrating that direct extracellular binding to CD133 could affect endocytosis. Moreover, flow cytometry and confocal microscopy established that down regulation of CD133 improved the accessibility to the TfR from the extracellular space, providing a mechanism by which CD133 inhibited Tf uptake. As Tf is involved in supplying iron to the cell, effects of iron supplementation and deprivation on CD133/AC133 expression were investigated. Both demonstrated a dose-dependent down regulation here discussed to the light of transcriptional and post-transciptional effects. Taken

  10. Human dopamine receptor and its uses

    DOEpatents

    Civelli, Olivier; Van Tol, Hubert Henri-Marie

    1999-01-01

    The present invention is directed toward the isolation, characterization and pharmacological use of the human D4 dopamine receptor. The nucleotide sequence of the gene corresponding to this receptor and alleleic variant thereof are provided by the invention. The invention also includes recombinant eukaryotic expression constructs capable of expressing the human D4 dopamine receptor in cultures of transformed eukaryotic cells. The invention provides cultures of transformed eukaryotic cells which synthesize the human D4 dopamine receptor, and methods for characterizing novel psychotropic compounds using such cultures.

  11. Xenobiotic receptor humanized mice and their utility.

    PubMed

    Scheer, Nico; Roland Wolf, C

    2013-02-01

    The nuclear receptors pregnane X receptor, constitutive androstane receptor, and peroxisome proliferator-activated receptor alpha have important endogenous functions and are also involved in the induction of drug-metabolizing enzymes and transporters in response to exogenous xenobiotics. Though not belonging to the same protein family, the Per-Sim-ARNT domain receptor aryl hydrocarbon receptor functionally overlaps with the three nuclear receptors in many aspects and is therefore included in this review. Significant species differences in ligand affinity and biological responses as a result of activation of these receptors have been described. Several xenobiotic receptor humanized mice have been created to overcome these species differences and to provide in vivo models that are more predictive for human responses. This review provides an overview of the different xenobiotic receptor humanized mouse models described to date and will summarize how these models can be applied in basic research and improve drug discovery and development. Some of the key applications in the evaluation of drug induction, drug-drug interactions, nongenotoxic carcinogenicity, other toxicity, or efficacy studies are described. We also discuss relevant considerations in the interpretation of such data and potential future directions for the use of xenobiotic receptor humanized mice.

  12. Structural Allostery and Binding of the Transferring Receptor Complex

    SciTech Connect

    Xu,G.; Liu, R.; Zak, O.; Aisen, P.; Chance, M.

    2005-01-01

    The structural allostery and binding interface for the human serum transferrin (Tf){center_dot}transferrin receptor (TfR) complex were identified using radiolytic footprinting and mass spectrometry. We have determined previously that the transferrin C-lobe binds to the receptor helical domain. In this study we examined the binding interactions of full-length transferrin with receptor and compared these data with a model of the complex derived from cryoelectron microscopy (cryo-EM) reconstructions. The footprinting results provide the following novel conclusions. First, we report characteristic oxidations of acidic residues in the C-lobe of native Tf and basic residues in the helical domain of TfR that were suppressed as a function of complex formation; this confirms ionic interactions between these protein segments as predicted by cryo-EM data and demonstrates a novel method for detecting ion pair interactions in the formation of macromolecular complexes. Second, the specific side-chain interactions between the C-lobe and N-lobe of transferrin and the corresponding interactions sites on the transferrin receptor predicted from cryo-EM were confirmed in solution. Last, the footprinting data revealed allosteric movements of the iron binding C- and N-lobes of Tf that sequester iron as a function of complex formation; these structural changes promote tighter binding of the metal ion and facilitate efficient ion transport during endocytosis.

  13. A spectroscopic and molecular modeling study of sinomenine binding to transferrin.

    PubMed

    Du, Hongyan; Xiang, Junfeng; Zhang, Yazhou; Tang, Yalin

    2007-03-15

    Sinomenine, an herbal ingredient isolated from Sinomenium acutum, is used for the amelioration of arthritis. It has been found that this molecule could bind to human serum transferrin (Tf), the iron (III) transport protein in the blood, by using fluorescence, circular dichroism (CD) spectroscopy, and molecular modeling methods. The results provide possible usage of transferrin to transport sinomenine.

  14. Acetylcholine receptors in the human retina

    SciTech Connect

    Hutchins, J.B.; Hollyfield, J.G.

    1985-11-01

    Evidence for a population of acetylcholine (ACh) receptors in the human retina is presented. The authors have used the irreversible ligand TH-propylbenzilylcholine mustard (TH-PrBCM) to label muscarinic receptors. TH- or SVI-alpha-bungarotoxin (alpha-BTx) was used to label putative nicotinic receptors. Muscarinic receptors are apparently present in the inner plexiform layer of the retina. Autoradiographic grain densities are reduced in the presence of saturating concentrations of atropine, quinuclidinyl benzilate or scopolamine; this indicates that TH-PrBCM binding is specific for a population of muscarinic receptors in the human retina. Binding sites for radiolabeled alpha-BTx are found predominantly in the inner plexiform layer of the retina. Grain densities are reduced in the presence of d-tubocurarine, indicating that alpha-BTx may bind to a pharmacologically relevant nicotinic ACh receptor. This study provides evidence for cholinergic neurotransmission in the human retina.

  15. Determination of carbohydrate-deficient transferrin in human serum by capillary zone electrophoresis: evaluation of assay performance and quality assurance over a 10-year period in the routine arena.

    PubMed

    Joneli, Jeannine; Wanzenried, Ursula; Schiess, Jeannette; Lanz, Christian; Caslavska, Jitka; Thormann, Wolfgang

    2013-06-01

    The performance of high-resolution CZE for determination of carbohydrate-deficient transferrin (CDT) in human serum based on internal and external quality data gathered over a 10-year period is reported. The assay comprises mixing of serum with a Fe(III) ion-containing solution prior to analysis of the iron saturated mixture in a dynamically double-coated capillary using a commercial buffer at alkaline pH. CDT values obtained with a human serum of a healthy individual and commercial quality control sera are shown to vary less than 10%. Values of a control from a specific lot were found to slowly decrease as function of time (less than 10% per year). Furthermore, due to unknown reasons, gradual changes in the monitored pattern around pentasialo-transferrin were detected, which limit the use of commercial control sera of the same lot to less than 2 years. Analysis of external quality control sera revealed correct classification of the samples over the entire 10-year period. Data obtained compare well with those of HPLC and CZE assays of other laboratories. The data gathered over a 10-year period demonstrate the robustness of the high-resolution CZE assay. This is the first account of a CZE-based CDT assay with complete internal and external quality assessment over an extended time period.

  16. Induction of GST-P-positive proliferative lesions facilitating lipid peroxidation with possible involvement of transferrin receptor up-regulation and ceruloplasmin down-regulation from the early stage of liver tumor promotion in rats.

    PubMed

    Mizukami, Sayaka; Ichimura, Ryohei; Kemmochi, Sayaka; Taniai, Eriko; Shimamoto, Keisuke; Ohishi, Takumi; Takahashi, Miwa; Mitsumori, Kunitoshi; Shibutani, Makoto

    2010-04-01

    To elucidate the role of metal-related molecules in hepatocarcinogenesis, we examined immunolocalization of transferrin receptor (Tfrc), ceruloplasmin (Cp) and metallothionein (MT)-1/2 in relation to liver cell foci positive for glutathione-S-transferase placental form (GST-P) in the early stage of tumor promotion by fenbendazole (FB), phenobarbital, piperonyl butoxide or thioacetamide in a rat two-stage hepatocarcinogenesis model. To estimate the involvement of oxidative stress responses to the promotion, immunolocalization of 4-hydroxy-2-nonenal, malondialdehyde and acrolein was similarly examined. Our findings showed that MT-1/2 immunoreactivity was not associated with the cellular distribution of GST-P and proliferating cell nuclear antigen, suggesting no role of MT-1/2 in hepatocarcinogenesis. We also found enhanced expression of Tfrc after treatment with strong tumor-promoting chemicals. With regard to Cp, the population showing down-regulation was increased in the GST-P-positive foci in relation to tumor promotion. Up-regulation of Tfrc and down-regulation of Cp was maintained in GST-P-positive neoplastic lesions induced after long-term promotion with FB, suggesting the expression changes occurring downstream of the signaling pathway involved in the formation of GST-P-positive lesions. Furthermore, enhanced accumulation of lipid peroxidation end products was observed in the GST-P-positive foci by promotion. Post-initiation treatment with peroxisome proliferator-activated receptor alpha agonists did not enhance any such distribution changes in GST-P-negative foci. The results thus suggest that facilitation of lipid peroxidation is involved in the induction of GST-P-positive lesions by tumor promotion from an early stage, and up-regulation of Tfrc and down-regulation of Cp may be a signature of enhanced oxidative cellular stress in these lesions.

  17. Complex of transferrin with ruthenium for medical applications

    DOEpatents

    Richards, Powell; Srivastava, Suresh C.; Meinken, George E.

    1984-05-15

    A novel Ruthenium-transferrin complex, prepared by reacting iron-free human transferrin dissolved in a sodium acetate solution at pH 7 with ruthenium by heating at about 40.degree. C. for about 2 hours, and purifying said complex by means of gel chromotography with pH 7 sodium acetate as eluent. The mono- or di-metal complex produced can be used in nuclear medicine in the diagnosis and/or treatment of tumors and abscesses. Comparative results with Ga-67-citrate, which is the most widely used tumor-localizing agent in nuclear medicine, indicate increased sensitivity of detection and greater tumor uptake with the Ru-transferrin complex.

  18. Complex of transferrin with ruthenium for medical applications

    DOEpatents

    Richards, P.; Srivastava, S.C.; Meinken, G.E.

    1984-05-15

    A novel ruthenium-transferrin complex is disclosed which is prepared by reacting iron-free human transferrin dissolved in a sodium acetate solution at pH 7 with ruthenium by heating at about 40 C for about 2 hours. The complex is purified by means of gel chromotography with pH 7 sodium acetate as eluent. The mono- or di-metal complex produced can be used in nuclear medicine in the diagnosis and/or treatment of tumors and abscesses. Comparative results with Ga-67-citrate, which is the most widely used tumor-localizing agent in nuclear medicine, indicate increased sensitivity of detection and greater tumor uptake with the Ru-transferrin complex. No Drawings

  19. 21 CFR 866.5880 - Transferrin immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-binding and transporting serum protein) in serum, plasma, and other body fluids. Measurement of... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Transferrin immunological test system. 866.5880 Section 866.5880 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  20. 21 CFR 866.5880 - Transferrin immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Transferrin immunological test system. 866.5880 Section 866.5880 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems §...

  1. 21 CFR 866.5880 - Transferrin immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Transferrin immunological test system. 866.5880 Section 866.5880 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems §...

  2. Leukocyte chemoattractant receptors in human disease pathogenesis.

    PubMed

    Zabel, Brian A; Rott, Alena; Butcher, Eugene C

    2015-01-01

    Combinations of leukocyte attractant ligands and cognate heptahelical receptors specify the systemic recruitment of circulating cells by triggering integrin-dependent adhesion to endothelial cells, supporting extravasation, and directing specific intratissue localization via gradient-driven chemotaxis. Chemoattractant receptors also control leukocyte egress from lymphoid organs and peripheral tissues. In this article, we summarize the fundamental mechanics of leukocyte trafficking, from the evolution of multistep models of leukocyte recruitment and navigation to the regulation of chemoattractant availability and function by atypical heptahelical receptors. To provide a more complete picture of the migratory circuits involved in leukocyte trafficking, we integrate a number of nonchemokine chemoattractant receptors into our discussion. Leukocyte chemoattractant receptors play key roles in the pathogenesis of autoimmune diseases, allergy, inflammatory disorders, and cancer. We review recent advances in our understanding of chemoattractant receptors in disease pathogenesis, with a focus on genome-wide association studies in humans and the translational implications of mechanistic studies in animal disease models.

  3. Improved differential diagnosis of anemia of chronic disease and iron deficiency anemia: a prospective multicenter evaluation of soluble transferrin receptor and the sTfR/log ferritin index.

    PubMed

    Skikne, Barry S; Punnonen, Kari; Caldron, Paul H; Bennett, Michael T; Rehu, Mari; Gasior, Gail H; Chamberlin, Janna S; Sullivan, Linda A; Bray, Kurtis R; Southwick, Paula C

    2011-11-01

    Anemia of chronic disease (ACD) and iron deficiency anemia (IDA) are the most prevalent forms of anemia and often occur concurrently. Standard tests of iron status used in differential diagnosis are affected by inflammation, hindering clinical interpretation. In contrast, soluble transferrin receptor (sTfR) indicates iron deficiency and is unaffected by inflammation. Objectives of this prospective multicenter clinical trial were to evaluate and compare the diagnostic accuracy of sTfR and the sTfR/log ferritin index (sTfR Index) for differential diagnosis using the automated Access(®) sTfR assay (Beckman Coulter) and sTfR Index. We consecutively enrolled 145 anemic patients with common disorders associated with IDA and ACD. Subjects with IDA or ACD + IDA had significantly higher sTfR and sTfR Index values than subjects with ACD (P < 0.0001). ROC curves produced the following cutoffs for sTfR: 21 nmol/L (or 1.55 mg/L), and the sTfR Index: 14 (using nmol/L) (or 1.03 using mg/L). The sTfR Index was superior to sTfR (AUC 0.87 vs. 0.74, P < 0.0001). Use of all three parameters in combination more than doubled the detection of IDA, from 41% (ferritin alone) to 92% (ferritin, sTfR, sTfR Index). Use of sTfR and the sTfR Index improves detection of IDA, particularly in situations where routine markers provide equivocal results. Findings demonstrate a significant advantage in the simultaneous determination of ferritin, sTfR and sTfR Index. Obtaining a ferritin level alone may delay diagnosis of combined IDA and ACD.

  4. Applying 89Zr-Transferrin To Study the Pharmacology of Inhibitors to BET Bromodomain Containing Proteins

    PubMed Central

    2016-01-01

    Chromatin modifying proteins are attractive drug targets in oncology, given the fundamental reliance of cancer on altered transcriptional activity. Multiple transcription factors can be impacted downstream of primary target inhibition, thus making it challenging to understand the driving mechanism of action of pharmacologic inhibition of chromatin modifying proteins. This in turn makes it difficult to identify biomarkers predictive of response and pharmacodynamic tools to optimize drug dosing. In this report, we show that 89Zr-transferrin, an imaging tool we developed to measure MYC activity in cancer, can be used to identify cancer models that respond to broad spectrum inhibitors of transcription primarily due to MYC inhibition. As a proof of concept, we studied inhibitors of BET bromodomain containing proteins, as they can impart antitumor effects in a MYC dependent or independent fashion. In vitro, we show that transferrin receptor biology is inhibited in multiple MYC positive models of prostate cancer and double hit lymphoma when MYC biology is impacted. Moreover, we show that bromodomain inhibition in one lymphoma model results in transferrin receptor expression changes large enough to be quantified with 89Zr-transferrin and positron emission tomography (PET) in vivo. Collectively, these data further underscore the diagnostic utility of the relationship between MYC and transferrin in oncology, and provide the rationale to incorporate transferrin-based PET into early clinical trials with bromodomain inhibitors for the treatment of solid tumors. PMID:26725682

  5. Monocyte transferrin-iron uptake in hereditary hemochromatosis

    SciTech Connect

    Sizemore, D.J.; Bassett, M.L.

    1984-05-01

    Transferrin-iron uptake by peripheral blood monocytes was studied in vitro to test the hypothesis that the relative paucity of mononuclear phagocyte iron loading in hereditary hemochromatosis results from a defect in uptake of iron from transferrin. Monocytes from nine control subjects and 17 patients with hemochromatosis were cultured in the presence of 59Fe-labelled human transferrin. There was no difference in 59Fe uptake between monocytes from control subjects and monocytes from patients with hemochromatosis who had been treated by phlebotomy and who had normal body iron stores. However, 59Fe uptake by monocytes from iron-loaded patients with hemochromatosis was significantly reduced compared with either control subjects or treated hemochromatosis patients. It is likely that this was a secondary effect of iron loading since iron uptake by monocytes from treated hemochromatosis patients was normal. Assuming that monocytes in culture reflect mononuclear phagocyte iron metabolism in vivo, this study suggests that the relative paucity of mononuclear phagocyte iron loading in hemochromatosis is not related to an abnormality in transferrin-iron uptake by these cells.

  6. The impact of highly hydrophobic material on the structure of transferrin and its ability to bind iron.

    PubMed

    Drug, E; Fadeev, L; Gozin, M

    2011-05-30

    Transferrin is a blood-plasma glycoprotein, which is responsible for ferric-ion delivery and which functions as the most important ferric pool in the body. The reversible complexation process of Fe(3+) ions is associated with conformational changes of the three-dimensional structure of the transferrin. This conformational dynamics is attributed to a partial unfolding of the N-lobe of the protein and could be described as a transition between the holo to the apo forms of the transferrin. The aim of the present work is to demonstrate the unprecedented ability of the transferrin to solubilize various polycyclic aromatic hydrocarbons in physiological solution and to explore the impact of these materials on the structure and functionality of the transferrin. The synthesis and characterization of novel materials, consisting of complexes between human transferrin and hydrophobic high-carbon-content compounds, is reported here for the first time. Furthermore, it is shown that the preparation of these complexes from holo-transferrin leads to an irreversible loss of the ferric ions from the protein. Analytical studies of these novel complexes may shed a light on the mechanism by which transferrin could lose its ability to bind and thus to transport and store iron. These findings clearly demonstrate a possible damaging impact of various hydrophobic pollutants, which can enter an organism by inhalation or ingestion, on the functionality of the transferrin.

  7. Leukotriene receptors on human pulmonary vascular endothelium.

    PubMed

    Ortiz, J L; Gorenne, I; Cortijo, J; Seller, A; Labat, C; Sarria, B; Abram, T S; Gardiner, P J; Morcillo, E; Brink, C

    1995-08-01

    1. Cysteinyl-leukotrienes cause contractions and/or relaxations of human isolated pulmonary vascular preparations. Although, the localization and nature of the receptors through which these effects are mediated have not been fully characterized, some effects are indirect and not mediated via the well-described LT1 receptor. 2. In human pulmonary veins (HPV) with an intact endothelium, leukotriene D4 (LTD4) induced contraction above basal tone. This response was observed at lower concentrations of LTD4 in the presence of nitric oxide synthase inhibitor N omega-nitro-L-arginine (L-NOARG). Contractions (in the absence and presence of L-NOARG) were partially blocked by the LT1 antagonists (MK 571 and ICI 198615). 3. LTD4 relaxed HPV previously contracted with noradrenaline. This relaxation was potentiated by LT1 antagonists, but was abolished by removal of the endothelium. LTD4 also relaxed human pulmonary arteries (HPA) precontracted with noradrenaline but this effect was not modified by LT1 antagonists. 4. The results suggest that contraction of endothelium-intact HPV by LTD4 is partially mediated via LT1 receptors. Further, in endothelium-intact HPV, this contraction was opposed by a relaxation induced by LTD4, dependent on the release of nitric oxide, which was mediated, at least in part, via a non-LT1 receptor. In addition, LTD4 relaxation on contracted HPA was not mediated by LT1 receptors. 5. The mechanical effects of LTD4 on human pulmonary vasculature are complex and involve both direct and indirect mechanisms mediated via at least two types of cysteinyl-leukotriene receptors.

  8. Imaging dopamine receptors in the human brain by position tomography

    SciTech Connect

    Wagner, H.N. Jr.; Burns, H.D.; Dannals, R.F.; Wong, D.F.; Langstrom, B.; Duelfer, T.; Frost, J.J.; Ravert, H.T.; Links, J.M.; Rosenbloom, S.B.

    1983-01-01

    Neurotransmitter receptors may be involved in a number of neuropsychiatric disease states. The ligand 3-N-(/sup 11/C)methylspiperone, which preferentially binds to dopamine receptors in vivo, was used to image the receptors by positron emission tomography scanning in baboons and in humans. This technique holds promise for noninvasive clinical studies of dopamine receptors in humans.

  9. Conjugation of transferrin to azide-modified CdSe/ZnS core-shell quantum dots using cyclooctyne click chemistry.

    PubMed

    Schieber, Christine; Bestetti, Alessandra; Lim, Jet Phey; Ryan, Anneke D; Nguyen, Tich-Lam; Eldridge, Robert; White, Anthony R; Gleeson, Paul A; Donnelly, Paul S; Williams, Spencer J; Mulvaney, Paul

    2012-10-15

    Twinkle twinkle quantum dot: Conjugation of biomolecules to azide-modified quantum dots (QDs) through a bifunctional linker, using strain-promoted azide-alkyne cycloaddition with the QD and a squaramide linkage to the biomolecule (see scheme). Transferrin-conjugated QDs were internalized by transferrin-receptor expressing HeLa cells.

  10. Androgen receptor in human endothelial cells

    PubMed Central

    Torres-Estay, Verónica; Carreño, Daniela V; San Francisco, Ignacio F; Sotomayor, Paula; Godoy, Alejandro S; Smith, Gary J

    2015-01-01

    Androgen receptor (AR) is a ligand-inducible transcription factor, and a member of the steroid-thyroid-retinoid receptor superfamily, that mediates the biological effects of androgens in a wide range of physiological and pathological processes. AR expression was identified in vascular cells nearly 20 years ago, and recent research has shown that AR mediates a variety of actions of androgens in endothelial and vascular smooth muscle cells. In this mini-review, we review evidence indicating the importance of AR in human endothelial cell (HUVEC) homeostatic and pathogenic processes. Although a role for AR in the modulation of HUVEC biology is evident, the molecular mechanisms by which AR regulates HUVEC homeostasis and disease processes are not fully understood. Understanding these mechanisms could provide critical insights into the processes of pathogenesis of diseases ranging from cardiovascular disease to cancer that are major causes of human morbidity and mortality. PMID:25563353

  11. Adrenergic receptors in human fetal liver membranes

    SciTech Connect

    Falkay, G.; Kovacs, L. )

    1990-01-01

    The adrenergic receptor binding capacities in human fetal and adult livers were measured to investigate the mechanism of the reduced alpha-1 adrenoreceptor response of the liver associated with a reciprocal increase in beta-adrenoreceptor activity in a number of conditions. Alpha-1 and beta-adrenoreceptor density were determined using {sup 3}H-prazosin and {sup 3}H-dihydroalprenolol, respectively, as radioligand. Heterogeneous populations of beta-adrenoreceptors were found in fetal liver contrast to adult. Decreased alpha-1 and increased beta-receptor density were found which may relate to a decreased level in cellular differentiation. These findings may be important for the investigation of perinatal hypoglycemia of newborns after treatment of premature labor with beta-mimetics. This is the first demonstration of differences in the ratio of alpha-1 and beta-adrenoceptors in human fetal liver.

  12. Purification of transferrins and lactoferrin using DEAE affi-gel blue.

    PubMed

    Chung, M C; Chan, S L; Shimizu, S

    1991-01-01

    1. A simple method for purifying transferrins and lactoferrin is described. 2. The method consists of a preliminary step of dye-ligand chromatography using DEAE Affi-Gel Blue as the gel matrix at pH 7.5. In this chromatographic step, the transferrins and lactoferrin were readily separated from the bulk of the other proteins by start buffer elution. 3. Differences in the chromatographic behaviour of the various serum transferrins (monkey, human, rabbit, pig, chicken and duck) and ovotransferrin upon DEAE Affi-Gel Blue chromatography can be attributed to differences in the anionic charge of the transferrins in 0.02 M potassium phosphate buffer, pH 7.5, thus resulting in the differential retardation of these protein molecules by the gel matrix. 4. The result of DEAE Affi-Gel Blue chromatography of human lactoferrin is different from that for the transferrins. This may possibly reflect the differences in the strength of interaction between lactoferrin and transferrin with this gel matrix.

  13. Hormone Receptor Expression in Human Fascial Tissue

    PubMed Central

    Fede, C.; Albertin, G.; Petrelli, L.; Sfriso, M.M.; Biz, C.; De Caro, R.

    2016-01-01

    Many epidemiologic, clinical, and experimental findings point to sex differences in myofascial pain in view of the fact that adult women tend to have more myofascial problems with respect to men. It is possible that one of the stimuli to sensitization of fascial nociceptors could come from hormonal factors such as estrogen and relaxin, that are involved in extracellular matrix and collagen remodeling and thus contribute to functions of myofascial tissue. Immunohistochemical and molecular investigations (real-time PCR analysis) of relaxin receptor 1 (RXFP1) and estrogen receptor-alpha (ERα) localization were carried out on samples of human fascia collected from 8 volunteers patients during orthopedic surgery (all females, between 42 and 70 yrs, divided into pre- and post-menopausal groups), and in fibroblasts isolated from deep fascia, to examine both protein and RNA expression levels. We can assume that the two sex hormone receptors analyzed are expressed in all the human fascial districts examined and in fascial fibroblasts culture cells, to a lesser degree in the post-menopausal with respect to the pre-menopausal women. Hormone receptor expression was concentrated in the fibroblasts, and RXFP1 was also evident in blood vessels and nerves. Our results are the first demonstrating that the fibroblasts located within different districts of the muscular fasciae express sex hormone receptors and can help to explain the link between hormonal factors and myofascial pain. It is known, in fact, that estrogen and relaxin play a key role in extracellular matrix remodeling by inhibiting fibrosis and inflammatory activities, both important factors affecting fascial stiffness and sensitization of fascial nociceptors. PMID:28076930

  14. Enhanced blood-brain barrier transmigration using a novel transferrin embedded fluorescent magneto-liposome nanoformulation

    NASA Astrophysics Data System (ADS)

    Ding, Hong; Sagar, Vidya; Agudelo, Marisela; Pilakka-Kanthikeel, Sudheesh; Subba Rao Atluri, Venkata; Raymond, Andrea; Samikkannu, Thangavel; Nair, Madhavan P.

    2014-02-01

    The blood-brain barrier (BBB) is considered as the primary impediment barrier for most drugs. Delivering therapeutic agents to the brain is still a big challenge to date. In our study, a dual mechanism, receptor mediation combined with external non-invasive magnetic force, was incorporated into ferrous magnet-based liposomes for BBB transmigration enhancement. The homogenous magnetic nanoparticles (MNPs), with a size of ˜10 nm, were synthesized and confirmed by TEM and XRD respectively. The classical magnetism assay showed the presence of the characteristic superparamagnetic property. These MNPs encapsulated in PEGylated fluorescent liposomes as magneto-liposomes (MLs) showed mono-dispersion, ˜130 ± 10 nm diameter, by dynamic laser scattering (DLS) using the lipid-extrusion technique. Remarkably, a magnetite encapsulation efficiency of nearly 60% was achieved. Moreover, the luminescence and hydrodynamic size of the MLs was stable for over two months at 4 ° C. Additionally, the integrity of the ML structure remained unaffected through 120 rounds of circulation mimicking human blood fluid. After biocompatibility confirmation by cytotoxicity evaluation, these fluorescent MLs were further embedded with transferrin and applied to an in vitro BBB transmigration study in the presence or absence of external magnetic force. Comparing with magnetic force- or transferrin receptor-mediated transportation alone, their synergy resulted in 50-100% increased transmigration without affecting the BBB integrity. Consequently, confocal microscopy and iron concentration in BBB-composed cells further confirmed the higher cellular uptake of ML particles due to the synergic effect. Thus, our multifunctional liposomal magnetic nanocarriers possess great potential in particle transmigration across the BBB and may have a bright future in drug delivery to the brain.

  15. Enhanced blood-brain barrier transmigration using a novel transferrin embedded fluorescent magneto-liposome nanoformulation.

    PubMed

    Ding, Hong; Sagar, Vidya; Agudelo, Marisela; Pilakka-Kanthikeel, Sudheesh; Atluri, Venkata Subba Rao; Raymond, Andrea; Samikkannu, Thangavel; Nair, Madhavan P

    2014-02-07

    The blood-brain barrier (BBB) is considered as the primary impediment barrier for most drugs. Delivering therapeutic agents to the brain is still a big challenge to date. In our study, a dual mechanism, receptor mediation combined with external non-invasive magnetic force, was incorporated into ferrous magnet-based liposomes for BBB transmigration enhancement. The homogenous magnetic nanoparticles (MNPs), with a size of ∼10 nm, were synthesized and confirmed by TEM and XRD respectively. The classical magnetism assay showed the presence of the characteristic superparamagnetic property. These MNPs encapsulated in PEGylated fluorescent liposomes as magneto-liposomes (MLs) showed mono-dispersion, ∼130 ± 10 nm diameter, by dynamic laser scattering (DLS) using the lipid-extrusion technique. Remarkably, a magnetite encapsulation efficiency of nearly 60% was achieved. Moreover, the luminescence and hydrodynamic size of the MLs was stable for over two months at 4 ° C. Additionally, the integrity of the ML structure remained unaffected through 120 rounds of circulation mimicking human blood fluid. After biocompatibility confirmation by cytotoxicity evaluation, these fluorescent MLs were further embedded with transferrin and applied to an in vitro BBB transmigration study in the presence or absence of external magnetic force. Comparing with magnetic force- or transferrin receptor-mediated transportation alone, their synergy resulted in 50-100% increased transmigration without affecting the BBB integrity. Consequently, confocal microscopy and iron concentration in BBB-composed cells further confirmed the higher cellular uptake of ML particles due to the synergic effect. Thus, our multifunctional liposomal magnetic nanocarriers possess great potential in particle transmigration across the BBB and may have a bright future in drug delivery to the brain.

  16. Crystal structures of the human adiponectin receptors

    PubMed Central

    Tanabe, Hiroaki; Fujii, Yoshifumi; Hosaka, Toshiaki; Motoyama, Kanna; Ikeda, Mariko; Wakiyama, Motoaki; Terada, Takaho; Ohsawa, Noboru; Hato, Masakatsu; Ogasawara, Satoshi; Hino, Tomoya; Murata, Takeshi; Iwata, So; Hirata, Kunio; Kawano, Yoshiaki; Yamamoto, Masaki; Kimura-Someya, Tomomi; Shirouzu, Mikako; Yamauchi, Toshimasa; Kadowaki, Takashi; Yokoyama, Shigeyuki

    2015-01-01

    Adiponectin stimulation of its receptors, AdipoR1 and AdipoR2, increases AMPK and PPAR activities, respectively, thereby contributing to healthy longevity as key anti-diabetic molecules. AdipoR1 and AdipoR2 were predicted to contain seven transmembrane helices with the opposite topology to G protein-coupled receptor (GPCR)s. Here we report the crystal structures of human AdipoR1 and AdipoR2 at 2.9- and 2.4-Å resolution, respectively, which represent a novel class of receptor structure. The seven-transmembrane helices, conformationally distinct from those of GPCRs, enclose a large cavity where three conserved histidine residues coordinate a zinc ion. The zinc-binding structure may play a role in the adiponectin-stimulated AMPK phosphorylation and UCP2 upregulation. Adiponectin may broadly interact with the extracellular face, rather than the C-terminal flexible tail, of the receptors. The present information will facilitate the understanding of novel structure-function relationships and the development and optimization of AdipoR agonists for the treatment of obesity-related diseases, such as type 2 diabetes. PMID:25855295

  17. Transferrin Impacts Bacillus thuringiensis Biofilm Levels

    PubMed Central

    Brown, Elrica; Taplin, Martha; Garcia, Angel; Williams-Mapp, Baracka

    2016-01-01

    The present study examined the impact of transferrin on Bacillus thuringiensis biofilms. Three commercial strains, an environmental strain (33679), the type strain (10792), and an isolate from a diseased insect (700872), were cultured in iron restricted minimal medium. All strains produced biofilm when grown in vinyl plates at 30°C. B. thuringiensis 33679 had a biofilm biomass more than twice the concentration exhibited by the other strains. The addition of transferrin resulted in slightly increased growth yields for 2 of the 3 strains tested, including 33679. In contrast, the addition of 50 μg/mL of transferrin resulted in an 80% decrease in biofilm levels for strain 33679. When the growth temperature was increased to 37°C, the addition of 50 μg/mL of transferrin increased culture turbidity for only strain 33679. Biofilm levels were again decreased in strain 33679 at 37°C. Growth of B. thuringiensis cultures in polystyrene resulted in a decrease in overall growth yields at 30°C, with biofilm levels significantly decreased for 33679 in the presence of transferrin. These findings demonstrate that transferrin impacts biofilm formation in select strains of B. thuringiensis. Identification of these differences in biofilm regulation may be beneficial in elucidating potential virulence mechanisms among the differing strains. PMID:28025643

  18. On the evolutionary significance and metal-binding characteristics of a monolobal transferrin from Ciona intestinalis

    PubMed Central

    Tinoco, Arthur D.; Peterson, Cynthia W.; Lucchese, Baldo; Doyle, Robert P.; Valentine, Ann M.

    2008-01-01

    Transferrins are a family of proteins that bind and transport Fe(III). Modern transferrins are typically bilobal and are believed to have evolved from an ancient gene duplication of a monolobal form. A novel monolobal transferrin, nicatransferrin (nicaTf), was identified in the primitive ascidian species Ciona intestinalis that possesses the characteristic features of the proposed ancestral Tf protein. In this work, nicaTf was expressed in Pichia pastoris. Extensive solution studies were performed on nicaTf, including UV-vis, fluorescence, CD, EPR and NMR spectroscopies, and electrospray time-of-flight mass spectrometry. The expressed protein is nonglycosylated, unlike the protein isolated from the organism. This property does not affect its ability to bind Fe(III). However, Fe(III)-bound nicaTf displays important spectral differences from other Fe(III)-bound transferrins, which are likely the consequence of differences in metal coordination. Coordination differences could also account for the weaker affinity of nicaTf for Fe(III) (log K = 18.5) compared with bilobal human serum transferrin (HsTf) (log K = 22.5 and 21.4). The Fe–nicaTf complex is not labile, as indicated by slow metal removal kinetics by the high-affinity chelator tiron at pH 7.4. The protein alternatively binds up to one equivalent of Ti(IV) or V(V), which suggests that it may transport nonferric metals. These solution studies provide insight into the structure and function of the primitive monolobal transferrin of C. intestinalis for comparison with higher order bilobal transferrins. They suggest that a major advantage for the evolution of modern transferrins, dominantly of bilobal form, is stronger Fe(III) affinity because of cooperativity. PMID:18287008

  19. Human blood-brain barrier insulin receptor.

    PubMed

    Pardridge, W M; Eisenberg, J; Yang, J

    1985-06-01

    A new model system for characterizing the human brain capillary, which makes up the blood-brain barrier (BBB) in vivo, is described in these studies and is applied initially to the investigation of the human BBB insulin receptor. Autopsy brains were obtained from the pathologist between 22-36 h postmortem and were used to isolate human brain microvessels which appeared intact on both light and phase microscopy. The microvessels were positive for human factor 8 and for a BBB-specific enzyme marker, gamma-glutamyl transpeptidase. The microvessels avidly bound insulin with a high-affinity dissociation constant, KD = 1.2 +/- 0.5 nM. The human brain microvessels internalized insulin based on acid-wash assay, and 75% of insulin was internalized at 37 degrees C. The microvessels transported insulin to the medium at 37 degrees C with a t1/2 = approximately 70 min. Little of the 125I-insulin was metabolized by the microvessels under these conditions based on the elution profile of the medium extract over a Sephadex G-50 column. Plasma membranes were obtained from the human brain microvessels and these membranes were enriched in membrane markers such as gamma-glutamyl transpeptidase or alkaline phosphatase. The plasma membranes bound 125I-insulin with and ED50 = 10 ng/ml, which was identical to the 50% binding point in intact microvessels. The human BBB plasma membranes were solubilized in Triton X-100 and were adsorbed to a wheat germ agglutinin Sepharose affinity column, indicating the BBB insulin receptor is a glycoprotein. Affinity cross-linking of insulin to the plasma membranes revealed a 127K protein that specifically binds insulin.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Dopamine receptors in human gastrointestinal mucosa

    SciTech Connect

    Hernandez, D.E.; Mason, G.A.; Walker, C.H.; Valenzuela, J.E.

    1987-12-21

    Dopamine is a putative enteric neurotransmitter that has been implicated in exocrine secretory and motility functions of the gastrointestinal tract of several mammalian species including man. This study was designed to determine the presence of dopamine binding sites in human gastric and duodenal mucosa and to describe certain biochemical characteristics of these enteric receptor sites. The binding assay was performed in triplicate with tissue homogenates obtained from healthy volunteers of both sexes using /sup 3/H-dopamine as a ligand. The extent of nonspecific binding was determined in the presence of a 100-fold excess of unlabeled dopamine. Scatchard analysis performed with increasing concentrations of /sup 3/H-dopamine (20-500 nM) revealed a single class of saturable dopamine binding sites in gastric and duodenal mucosa. The results of this report demonstrate the presence of specific dopamine receptors in human gastric and duodenal mucosa. These biochemical data suggest that molecular abnormalities of these receptor sites may be operative in the pathogenesis of important gastrointestinal disorders. 33 references, 2 figures.

  1. Mosquito transferrin, an acute-phase protein that is up-regulated upon infection

    PubMed Central

    Yoshiga, Toyoshi; Hernandez, Vida P.; Fallon, Ann M.; Law, John H.

    1997-01-01

    When treated with heat-killed bacterial cells, mosquito cells in culture respond by up-regulating several proteins. Among these is a 66-kDa protein (p66) that is secreted from cells derived from both Aedes aegypti and Aedes albopictus. p66 was degraded by proteolysis and gave a virtually identical pattern of peptide products for each mosquito species. The sequence of one peptide (31 amino acids) was determined and found to have similarity to insect transferrins. By using conserved regions of insect transferrin sequences, degenerate oligonucleotide PCR primers were designed and used to isolate a cDNA clone encoding an A. aegypti transferrin. The encoded protein contained a signal sequence that, when cleaved, would yield a mature protein of 68 kDa. It contained the 31-amino acid peptide, and the 3′ end exactly matched a cDNA encoding a polypeptide that is up-regulated when A. aegypti encapsulates filarial worms [Beerntsen, B. T., Severson, D. W. & Christensen, B. M. (1994) Exp. Parasitol. 79, 312–321]. This transferrin, like those of two other insect species, has conserved iron-binding residues in the N-terminal lobe but not in the C-terminal lobe, which also has large deletions in the polypeptide chain, compared with transferrins with functional C-terminal lobes. The hypothesis is developed that this transferrin plays a role similar to vertebrate lactoferrin in sequestering iron from invading organisms and that degradation of the structure of the C-terminal lobe might be a mechanism for evading pathogens that elaborate transferrin receptors to tap sequestered iron. PMID:9356450

  2. Transferrin serves as a mediator to deliver organometallic ruthenium(II) anticancer complexes into cells.

    PubMed

    Guo, Wei; Zheng, Wei; Luo, Qun; Li, Xianchan; Zhao, Yao; Xiong, Shaoxiang; Wang, Fuyi

    2013-05-06

    We report herein a systematic study on interactions of organometallic ruthenium(II) anticancer complex [(η(6)-arene)Ru(en)Cl](+) (arene = p-cymene (1) or biphenyl (2), en = ethylenediamine) with human transferrin (hTf) and the effects of the hTf-ligation on the bioavailability of these complexes with cisplatin as a reference. Incubated with a 5-fold excess of complex 1, 2, or cisplatin, 1 mol of diferric hTf (holo-hTf) attached 0.62 mol of 1, 1.01 mol of 2, or 2.14 mol of cisplatin. Mass spectrometry revealed that both ruthenium complexes coordinated to N-donors His242, His273, His578, and His606, whereas cisplatin bound to O donors Tyr136 and Tyr317 and S-donor Met256 in addition to His273 and His578 on the surface of both apo- and holo-hTf. Moreover, cisplatin could bind to Thr457 within the C-lobe iron binding cleft of apo-hTf. Neither ruthenium nor platinum binding interfered with the recognition of holo-hTf by the transferrin receptor (TfR). The ruthenated/platinated holo-hTf complexes could be internalized via TfR-mediated endocytosis at a similar rate to that of holo-hTf itself. Moreover, the binding to holo-hTf well preserved the bioavailability of the ruthenium complexes, and the hTf-bound 1 and 2 showed a similar cytotoxicity toward the human breast cancer cell line MCF-7 to those of the complexes themselves. However, the conjugation with holo-hTf significantly reduced the cellular uptake of cisplatin and the amount of platinated DNA adducts formed intracellularly, leading to dramatic reduction of cisplatin cytotoxicity toward MCF-7. These findings suggest that hTf can serve as a mediator for the targeting delivery of Ru(arene) anticancer complexes while deactivating cisplatin.

  3. Human and rat TR4 orphan receptors specify a subclass of the steroid receptor superfamily.

    PubMed Central

    Chang, C; Da Silva, S L; Ideta, R; Lee, Y; Yeh, S; Burbach, J P

    1994-01-01

    We have identified a member of the steroid receptor superfamily and cloned it from human and rat hypothalamus, prostate, and testis cDNA libraries. The open reading frame between first ATG and terminator TGA can encode 615 (human) and 596 (rat) amino acids with calculated molecular mass of 67.3 (human) and 65.4 (rat) kDa. The amino acid sequence of this protein, called TR4 orphan receptor, is closely related to the previously identified TR2 orphan receptor. The high homology between TR2 and TR4 orphan receptor suggests that these two orphan receptors constitute a unique subfamily within the steroid receptor superfamily. These two orphan receptors are differentially expressed in rat tissues. Unlike TR2 orphan receptors, the TR4 orphan receptor appears to be predominantly located in granule cells of the hippocampus and the cerebellum, suggesting that it may play some role(s) in transcriptional regulation in these neurons. Images PMID:8016112

  4. Gene Transfer and Molecular Cloning of the Human NGF Receptor

    NASA Astrophysics Data System (ADS)

    Chao, Moses V.; Bothwell, Mark A.; Ross, Alonzo H.; Koprowski, Hilary; Lanahan, Anthony A.; Buck, C. Randall; Sehgal, Amita

    1986-04-01

    Nerve growth factor (NGF) and its receptor are important in the development of cells derived from the neural crest. Mouse L cell transformants have been generated that stably express the human NGF receptor gene transfer with total human DNA. Affinity cross-linking, metabolic labeling and immunoprecipitation, and equilibrium binding with 125I-labeled NGF revealed that this NGF receptor had the same size and binding characteristics as the receptor from human melanoma cells and rat PC12 cells. The sequences encoding the NGF receptor were molecularly cloned using the human Alu repetitive sequence as a probe. A cosmid clone that contained the human NGF receptor gene allowed efficient transfection and expression of the receptor.

  5. Bitter Taste Receptor Polymorphisms and Human Aging

    PubMed Central

    Carrai, Maura; Crocco, Paolina; Montesanto, Alberto; Canzian, Federico; Rose, Giuseppina; Rizzato, Cosmeri

    2012-01-01

    Several studies have shown that genetic factors account for 25% of the variation in human life span. On the basis of published molecular, genetic and epidemiological data, we hypothesized that genetic polymorphisms of taste receptors, which modulate food preferences but are also expressed in a number of organs and regulate food absorption processing and metabolism, could modulate the aging process. Using a tagging approach, we investigated the possible associations between longevity and the common genetic variation at the three bitter taste receptor gene clusters on chromosomes 5, 7 and 12 in a population of 941 individuals ranging in age from 20 to 106 years from the South of Italy. We found that one polymorphism, rs978739, situated 212 bp upstream of the TAS2R16 gene, shows a statistically significant association (p = 0.001) with longevity. In particular, the frequency of A/A homozygotes increases gradually from 35% in subjects aged 20 to 70 up to 55% in centenarians. These data provide suggestive evidence on the possible correlation between human longevity and taste genetics. PMID:23133589

  6. Reptilian transferrins: evolution of disulphide bridges and conservation of iron-binding center.

    PubMed

    Ciuraszkiewicz, Justyna; Biczycki, Marian; Maluta, Aleksandra; Martin, Samuel; Watorek, Wiesław; Olczak, Mariusz

    2007-07-01

    Transferrins, found in invertebrates and vertebrates, form a physiologically important family of proteins playing a major role in iron acquisition and transport, defense against microbial pathogens, growth and differentiation. These proteins are bilobal in structure and each lobe is composed of two domains divided by a cleft harboring an iron atom. Vertebrate transferrins comprise of serotransferrins, lactoferrins and ovotransferrins. In mammals serotransferrins transport iron in physiological fluids and deliver it to cells, while lactoferrins scavenge iron, limiting its availability to invading microbes. In oviparous vertebrates there is only one transferrin gene, expressed either in the liver to be delivered to physiological fluids as serotransferrin, or in the oviduct with a final localization in egg white as ovotransferrin. Being products of one gene sero- and ovotransferrin are identical at the amino-acid sequence level but with different, cell specific glycosylation patterns. Our knowledge of the mechanisms of transferrin iron binding and release is based on sequence and structural data obtained for human serotransferrin and hen and duck ovotransferrins. No sequence information about other ovotransferrins was available until our recent publication of turkey, ostrich, and red-eared turtle (TtrF) ovotransferrin mRNA sequences [Ciuraszkiewicz, J., Olczak, M., Watorek, W., 2006. Isolation, cloning and sequencing of transferrins from red-eared turtle, African ostrich and turkey. Comp. Biochem. Physiol. 143 B, 301-310]. In the present paper, ten new reptilian mRNA transferrin sequences obtained from the Nile crocodile (NtrF), bearded dragon (BtrF), Cuban brown anole (AtrF), veiled and Mediterranean chameleons (VtrF and KtrF), sand lizard (StrF), leopard gecko (LtrF), Burmese python (PtrF), African house snake (HtrF), and grass snake (GtrF) are presented and analyzed. Nile crocodile and red-eared turtle transferrins have a disulphide bridge pattern identical to

  7. Human native kappa opioid receptor functions not predicted by recombinant receptors: Implications for drug design

    PubMed Central

    Broad, John; Maurel, Damien; Kung, Victor W. S.; Hicks, Gareth A.; Schemann, Michael; Barnes, Michael R.; Kenakin, Terrence P.; Granier, Sébastien; Sanger, Gareth J.

    2016-01-01

    If activation of recombinant G protein-coupled receptors in host cells (by drugs or other ligands) has predictive value, similar data must be obtained with native receptors naturally expressed in tissues. Using mouse and human recombinant κ opioid receptors transfected into a host cell, two selectively-acting compounds (ICI204448, asimadoline) equi-effectively activated both receptors, assessed by measuring two different cell signalling pathways which were equally affected without evidence of bias. In mouse intestine, naturally expressing κ receptors within its nervous system, both compounds also equi-effectively activated the receptor, inhibiting nerve-mediated muscle contraction. However, whereas ICI204448 acted similarly in human intestine, where κ receptors are again expressed within its nervous system, asimadoline was inhibitory only at very high concentrations; instead, low concentrations of asimadoline reduced the activity of ICI204448. This demonstration of species-dependence in activation of native, not recombinant κ receptors may be explained by different mouse/human receptor structures affecting receptor expression and/or interactions with intracellular signalling pathways in native environments, to reveal differences in intrinsic efficacy between receptor agonists. These results have profound implications in drug design for κ and perhaps other receptors, in terms of recombinant-to-native receptor translation, species-dependency and possibly, a need to use human, therapeutically-relevant, not surrogate tissues. PMID:27492592

  8. Bioadhesive micelles of d-α-tocopherol polyethylene glycol succinate 1000: Synergism of chitosan and transferrin in targeted drug delivery.

    PubMed

    Agrawal, Poornima; Sonali; Singh, Rahul Pratap; Sharma, Gunjan; Mehata, Abhishesh K; Singh, Sanjay; Rajesh, Chellapa V; Pandey, Bajarangprasad L; Koch, Biplob; Muthu, Madaswamy S

    2017-04-01

    The aim of this work was to prepare targeted bioadhesive d-α- tocopheryl glycol succinate 1000 (TPGS) micelles containing docetaxel (DTX) for brain targeted cancer therapy. Considering the unique bioadhesive feature of chitosan, herein, we have developed a synergistic transferrin receptor targeted bioadhesive micelles using TPGS conjugated chitosan (TPGS-chitosan), which target the overexpressed transferrin receptors of glioma cells for brain cancer therapy. The micelles were prepared by the solvent casting method and characterized for their particle size, polydispersity, zeta-potential, surface morphology, drug encapsulation efficiency, and in-vitro release. The IC50 values demonstrated transferrin receptor targeted TPGS-chitosan micelles could be 248 folds more effective than Docel™ after 24h treatment with the C6 glioma cells. Further, time dependent bioadhesive cellular uptake study indicated that a synergistic effect was achieved with the chitosan and transferrin in targeted TPGS-chitosan micelles through the biodhesive property of chitosan as well as transferrin receptor mediated endocytosis. The in-vivo pharmacokinetic results demonstrated that relative bioavailability of non-targeted and targeted micelles were 2.89 and 4.08 times more effective than Docel™ after 48h of treatments, respectively.

  9. Prooxidant activity of transferrin and lactoferrin.

    PubMed

    Klebanoff, S J; Waltersdorph, A M

    1990-11-01

    Acceleration of the autoxidation of Fe2+ by apotransferrin or apolactoferrin at acid pH is indicated by the disappearance of Fe2+, the uptake of oxygen, and the binding of iron to transferrin or lactoferrin. The product(s) formed oxidize iodide to an iodinating species and are bactericidal to Escherichia coli. Toxicity to E. coli by FeSO4 (10(-5) M) and human apotransferrin (100 micrograms/ml) or human apolactoferrin (25 micrograms/ml) was optimal at acid pH (4.5-5.0) and with logarithmic phase organisms. Both the iodinating and bactericidal activities were inhibited by catalase and the hydroxyl radical (OH.) scavenger mannitol, whereas superoxide dismutase was ineffective. NaCl at 0.1 M inhibited bactericidal activity, but had little or no effect on iodination. Iodide increased the bactericidal activity of Fe2+ and apotransferrin or apolactoferrin. The formation of OH.was suggested by the formation of the OH.spin-trap adduct (5,5-dimethyl-1-pyroline N-oxide [DMPO]/OH)., with the spin trap DMPO and the formation of the methyl radical adduct on the further addition of dimethyl sulfoxide. (DMPO/OH).formation was inhibited by catalase, whereas superoxide dismutase had little or no effect. These findings suggest that Fe2+ and apotransferrin or apolactoferrin can generate OH.via an H2O2 intermediate with toxicity to microorganisms, and raise the possibility that such a mechanism may contribute to the microbicidal activity of phagocytes.

  10. A novel transferrin/TfR2-mediated mitochondrial iron transport system is disrupted in Parkinson's disease

    PubMed Central

    Mastroberardino, Pier Giorgio; Hoffman, Eric K.; Horowitz, Maxx P.; Betarbet, Ranjita; Taylor, Georgia; Cheng, Dongmei; Na, Hye Mee; Gutekunst, Claire-Anne; Gearing, Marla; Trojanowski, John Q.; Anderson, Marjorie; Chu, Charleen T.; Peng, Junmin; Greenamyre, J. Timothy

    2009-01-01

    More than 80 years after iron accumulation was initially described in the substantia nigra (SN) of Parkinson's disease (PD) patients, the mechanisms responsible for this phenomenon are still unknown. Similarly, how iron is delivered to its major recipients in the cell – mitochondria and the respiratory complexes – has yet to be elucidated. Here, we report a novel transferrin/transferrin receptor 2 (Tf/TfR2)-mediated iron transport pathway in mitochondria of SN dopamine neurons. We found that TfR2 has a previously uncharacterized mitochondrial targeting sequence that is sufficient to import the protein into these organelles. Importantly, the Tf/TfR2 pathway can deliver Tf bound iron to mitochondria and to the respiratory complex I as well. The pathway is redox-sensitive and oxidation of Tf thiols to disulfides induces release from Tf of highly reactive ferrous iron, which contributes to free radical production. In the rotenone model of PD, Tf accumulates in dopamine neurons, with much of it accumulating in the mitochondria. This is associated with iron deposition in SN, similar to what occurs in PD. In the human SN, TfR2 is also found in mitochondria of dopamine neurons, and in PD there is a dramatic increase of oxidized Tf in SN. Thus, we have discovered a novel mitochondrial iron transport system that goes awry in PD, and which may provide a new target for therapeutic intervention. PMID:19250966

  11. Expression of prostacyclin receptor in human megakaryocytes.

    PubMed

    Sasaki, Y; Takahashi, T; Tanaka, I; Nakamura, K; Okuno, Y; Nakagawa, O; Narumiya, S; Nakao, K

    1997-08-01

    Prostacyclin (prostaglandin I2, PGI2) is a potent vasodilator and inhibitor of platelet aggregation. Although it is well known that the specific receptor for prostacyclin (PGI2-R) is abundantly expressed on platelets, PGI2-R expression in megakaryocytes is poorly understood. In this study, we examined its expression in leukemic or normal megakaryocytes. PGI2-R mRNA was expressed in human leukemic cell lines of megakaryocytic nature as evaluated by Northern blot analysis. Phorbol 12-myristate 13-acetate (PMA), interleukin-1 (IL-1), IL-3, IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF), thrombopoietin (TPO), and tumor necrosis factor-alpha (TNF-alpha) enhanced PGI2-R mRNA expression. The enhancement of PGI2-R expression by PMA and TPO was associated with the upregulation of platelet factor 4 or glycoprotein IIb mRNA expression. Iloprost, an agonist of prostacyclin, induced significant cyclic (c)AMP synthesis in these leukemic cells indicating that interaction of PGI2-R and its ligand can induce postreceptor signal transduction. Furthermore, iloprost-induced cAMP synthesis was enhanced by the pretreatment with PMA or the cytokines that promoted PGI2-R expression. PMA and TPO also increased the specific binding of [3H]iloprost to these cells. Pooled normal megakaryocytic colonies from TPO-containing semisolid culture of purified human CD34+ cells expressed PGI2-R, which were increased as the megakaryocytes matured with the peak expression before proplatelet formation, as evaluated by semiquantitative reverse transcription-polymerase chain reaction (RT-PCR). These results indicate that PGI2-R is expressed in human megakaryocytes and is upregulated by cytokines involved in thrombopoiesis or inflammation. Also, it was indicated that megakaryocytic maturation accompanies enhancement of PGI2-R expression.

  12. Complex of transferrin with ruthenium for medical applications. [Ru 97, Ru 103

    DOEpatents

    Richards, P.; Srivastava, S.C.; Meinken, G.E.

    1980-11-03

    A novel Ruthenium-transferrin complex, prepared by reacting iron-free human transferrin dissolved in a sodium acetate solution at pH 7 with ruthenium by heating at about 40/sup 0/C for about 2 hours, and purifying said complex by means of gel chromatography with pH 7 sodium acetate as eluent. The mono- or di-metal complex produced can be used in nuclear medicine in the diagnosis and/or treatment of tumors and abscesses. Comparitive results with Ga-67-citrate, which is the most widely used tumor-localizing agent in nuclear medicine, indicate increased sensitivity of detection and greater tumor uptake with the Ru-transferrin complex.

  13. Induction of nerve growth factor receptors on cultured human melanocytes

    SciTech Connect

    Peacocke, M.; Yaar, M.; Mansur, C.P.; Chao, M.V.; Gilchrest, B.A. )

    1988-07-01

    Normal differentiation and malignant transformation of human melanocytes involve a complex series of interactions during which both genetic and environmental factors play roles. At present, the regulation of these processes is poorly understood. The authors have induced the expression of nerve growth factor (NGF) receptors on cultured human melanocytes with phorbol 12-tetradecanoate 13-acetate and have correlated this event with the appearance of a more differentiated, dendritic morphology. Criteria for NGF receptor expression included protein accumulation and cell-surface immunofluorescent staining with a monoclonal antibody directed against the human receptor and induction of the messenger RNA species as determined by blot-hybridization studies. The presence of the receptor could also be induced by UV irradiation or growth factor deprivation. The NGF receptor is inducible in cultured human melanocytes, and they suggest that NGF may modulate the behavior of this neural crest-derived cell in the skin.

  14. Glucocorticoid receptor in human respiratory epithelial cells.

    PubMed

    Pujolsa, Laura; Mullol, Joaquim; Picado, Cèsar

    2009-01-01

    Inhaled and intranasal glucocorticoids (GCs) are the most common and effective drugs for controlling symptoms and airway inflammation in respiratory diseases such as allergic rhinitis, chronic rhinosinusitis with/without nasal polyps, and asthma, and the respiratory epithelium is a primary target of GC anti-inflammatory actions. GC effects are mediated through the GC receptor (GR). In humans, one single GR gene gives rise to two main GR products, namely GRalpha and GRbeta, which are subject to translational and posttranslational modifications. GRalpha is expressed in virtually all human cells and tissues, including respiratory epithelial cells, and - at least in vitro - is downregulated by GC. GRalpha mediates the anti-inflammatory actions of GC by activating transcription of anti-inflammatory genes through binding of GRalpha to glucocorticoid response elements (GRE) located in the promoter region of target genes, repressing transcription of proinflammatory genes through direct interaction between GRalpha and proinflammatory transcription factors, such as AP-1 and NF-kappaB (transrepression), and also by destabilizing the mRNA of proinflammatory mediators. GRbeta acts as a dominant negative inhibitor of GRalpha-mediated transactivation and transrepression in certain in vitro studies with transfected cells. The GRbeta message is expressed at low levels in numerous tissues and its protein is mainly expressed in inflammatory cells, although it has also been detected in airway epithelial cells. Increased GRbeta expression has been reported in bronchial asthma and nasal polyposis, and after incubation of cells with certain proinflammatory stimuli. However, the role of GRbeta in modulating GC sensitivity in vivo has been highly debated and is as yet unclear.

  15. Engineered Polymer-Transferrin Conjugates as Self-Assembling Targeted Drug Delivery Systems.

    PubMed

    Makwana, Hiteshri; Mastrotto, Francesca; Magnusson, Johannes Pall; Sleep, Darrell; Hay, Joanna; Nicholls, Karl J; Allen, Stephanie; Alexander, Cameron

    2017-03-28

    Polymer-protein conjugates can be engineered to self-assemble into discrete and well-defined drug delivery systems which combine the advantages of receptor targeting and controlled drug release. We designed specific conjugates of the iron-binding and transport protein, transferrin (Tf), to combine the advantages of this serum-stable protein as a targeting agent for cancer cells with self-assembling polymers to act as carriers of cytotoxic drugs. Tf variants were expressed with cysteine residues at sites spanning different regions of the protein surface and the polymer conjugates grown from these variants were compared with polymer conjugates grown from non-selectively derivatised sites on native Tf. The resulting synthetic biopolymer hybrids were evaluated for self-assembly properties, size and topology, ability to carry an anti-cancer drug (paclitaxel) and cytotoxicity with and without a drug payload in a representative human colon cancer cell line. The results demonstrated that the engineered Tf variant polymer conjugates formed better-defined self-assembled nanoparticles than the non-selectively derivatised conjugates and showed greater efficacy in paclitaxel delivery. A polymer conjugate grown from a specific Tf variant, S415C was found to be taken up rapidly into cancer cells expressing the Tf-receptor, and, while tolerated well by cells in the absence of drugs, was as cytotoxic as free paclitaxel when loaded with the drug. Importantly, the S415C conjugate polymer was not the most active variant in Tf-receptor binding, suggesting that the nanoscale self-assembly of the polymer-protein hybrid is also a key factor in delivery efficacy. The data overall suggest new design rules for polymer-biopolymer hybrids and therapeutic delivery systems which include engineering specific residues for conjugation which mediate nanoscale assembly as well as control of ligand-receptor interactions to target specific cell types.

  16. Theranostic vitamin E TPGS micelles of transferrin conjugation for targeted co-delivery of docetaxel and ultra bright gold nanoclusters.

    PubMed

    Muthu, Madaswamy S; Kutty, Rajaletchumy Veloo; Luo, Zhentao; Xie, Jianping; Feng, Si-Shen

    2015-01-01

    The aim of this work was to develop an advanced theranostic micelles of D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS), which are conjugated with transferrin for targeted co-delivery of docetaxel (DTX) as a model drug and ultra bright gold clusters (AuNC) as a model imaging agent for simultaneous cancer imaging and therapy. The theranostic micelles with and without transferrin conjugation were prepared by the solvent casting method and characterized for their particle size, polydispersity, surface chemistry, drug encapsulation efficiency, drug loading and cellular uptake efficiency. Transferrin receptors expressing MDA-MB-231-luc breast cancer cells and NIH-3T3 fibroblast cells (control cells without transferrin receptor expression) were employed as an in vitro model to access cytotoxicity of the formulations. The overexpression of transferrin receptor on the surface of MDA-MB-231-luc cells was confirmed by flow cytometry. The biodistribution study and theranostic efficacy of the micelles were investigated by using the Xenogen IVIS(®) Spectrum imaging system, which includes AuNC based fluorescence imaging and luciferase induced bioluminescence imaging on MDA-MB-231-luc tumor bearing SCID mice. The IC50 values demonstrated that the non-targeted and targeted micelles could be 15.31 and 71.73 folds more effective than Taxotere(®) after 24 h treatment with the MDA-MB-231-luc cells. Transferrin receptor targeted delivery of such micelles was imaged in xenograft model and showed their great advantages for real-time tumor imaging and inhibition of tumor growth.

  17. Megalin-dependent cubilin-mediated endocytosis is a major pathway for the apical uptake of transferrin in polarized epithelia.

    PubMed

    Kozyraki, R; Fyfe, J; Verroust, P J; Jacobsen, C; Dautry-Varsat, A; Gburek, J; Willnow, T E; Christensen, E I; Moestrup, S K

    2001-10-23

    Cubilin is a 460-kDa protein functioning as an endocytic receptor for intrinsic factor vitamin B(12) complex in the intestine and as a receptor for apolipoprotein A1 and albumin reabsorption in the kidney proximal tubules and the yolk sac. In the present study, we report the identification of cubilin as a novel transferrin (Tf) receptor involved in catabolism of Tf. Consistent with a cubilin-mediated endocytosis of Tf in the kidney, lysosomes of human, dog, and mouse renal proximal tubules strongly accumulate Tf, whereas no Tf is detectable in the endocytic apparatus of the renal tubule epithelium of dogs with deficient surface expression of cubilin. As a consequence, these dogs excrete increased amounts of Tf in the urine. Mice with deficient synthesis of megalin, the putative coreceptor colocalizing with cubilin, also excrete high amounts of Tf and fail to internalize Tf in their proximal tubules. However, in contrast to the dogs with the defective cubilin expression, the megalin-deficient mice accumulate Tf on the luminal cubilin-expressing surface of the proximal tubule epithelium. This observation indicates that megalin deficiency causes failure in internalization of the cubilin-ligand complex. The megalin-dependent, cubilin-mediated endocytosis of Tf and the potential of the receptors thereby to facilitate iron uptake were further confirmed by analyzing the uptake of (125)I- and (59)Fe-labeled Tf in cultured yolk sac cells.

  18. Transferrin liposomes of docetaxel for brain-targeted cancer applications: formulation and brain theranostics.

    PubMed

    Sonali; Singh, Rahul Pratap; Singh, Nitesh; Sharma, Gunjan; Vijayakumar, Mahalingam R; Koch, Biplob; Singh, Sanjay; Singh, Usha; Dash, Debabrata; Pandey, Bajarangprasad L; Muthu, Madaswamy S

    2016-05-01

    Diagnosis and therapy of brain cancer was often limited due to low permeability of delivery materials across the blood-brain barrier (BBB) and their poor penetration into the brain tissue. This study explored the possibility of utilizing theranostic d-alpha-tocopheryl polyethylene glycol 1000 succinate mono-ester (TPGS) liposomes as nanocarriers for minimally invasive brain-targeted imaging and therapy (brain theranostics). The aim of this work was to formulate transferrin conjugated TPGS coated theranostic liposomes, which contain both docetaxel and quantum dots (QDs) for imaging and therapy of brain cancer. The theranostic liposomes with and without transferrin decoration were prepared and characterized for their particle size, polydispersity, morphology, drug encapsulation efficiency, in-vitro release study and brain theranostics. The particle sizes of the non-targeted and targeted theranostic liposomes were found below 200 nm. Nearly, 71% of drug encapsulation efficiency was achieved with liposomes. The drug release from transferrin conjugated theranostic liposomes was sustained for more than 72 h with 70% of drug release. The in-vivo results indicated that transferrin receptor-targeted theranostic liposomes could be a promising carrier for brain theranostics due to nano-sized delivery and its permeability which provided an improved and prolonged brain targeting of docetaxel and QDs in comparison to the non-targeted preparations.

  19. Cell uptake of a biosensor detected by hyperpolarized 129Xe NMR: the transferrin case.

    PubMed

    Boutin, Céline; Stopin, Antoine; Lenda, Fatimazohra; Brotin, Thierry; Dutasta, Jean-Pierre; Jamin, Nadège; Sanson, Alain; Boulard, Yves; Leteurtre, François; Huber, Gaspard; Bogaert-Buchmann, Aurore; Tassali, Nawal; Desvaux, Hervé; Carrière, Marie; Berthault, Patrick

    2011-07-01

    For detection of biological events in vitro, sensors using hyperpolarized (129)Xe NMR can become a powerful tool, provided the approach can bridge the gap in sensitivity. Here we propose constructs based on the non-selective grafting of cryptophane precursors on holo-transferrin. This biological system was chosen because there are many receptors on the cell surface, and endocytosis further increases this density. The study of these biosensors with K562 cell suspensions via fluorescence microscopy and (129)Xe NMR indicates a strong interaction, as well as interesting features such as the capacity of xenon to enter the cryptophane even when the biosensor is endocytosed, while keeping a high level of polarization. Despite a lack of specificity for transferrin receptors, undoubtedly due to the hydrophobic character of the cryptophane moiety that attracts the biosensor into the cell membrane, these biosensors allow the first in-cell probing of biological events using hyperpolarized xenon.

  20. Oligodendrocyte differentiation and signaling after transferrin internalization: a mechanism of action.

    PubMed

    Pérez, María Julia; Fernandez, Natalia; Pasquini, Juana María

    2013-10-01

    Oligodendrocytes are the cells producing the myelin membrane around the axons in the central nervous system and, although apotransferrin (aTf) is required for oligodendrocyte differentiation, the underlying mechanisms are not fully understood. Fyn tyrosine kinase, a member of the Src family of proteins, has been shown to play an important role in myelination by up-regulating the expression of myelin basic protein; however, a molecular link between aTf and Fyn kinase signaling pathway during oligodendrocytes differentiation has not been established yet. Our aim was to investigate whether Fyn kinase, MEK/ERK and PI3K/Akt signaling pathways are required for aTf-stimulation of oligodendrocyte differentiation and also to determine if the transferrin receptor is involved in these mechanisms. Treatment of primary cultures of oligodendroglial precursor cells with aTf leads to Fyn kinase activation by a mechanism that involves transferrin receptor. In turn, Fyn kinase activation promotes MEK-mediated transient phosphorylation of ERK1/2. On the other hand, transferrin receptor internalization also produces rapid and sustained activation of Akt, which involves phosphatidylinositol 3-kinase (PI3K) activation. Finally, aTf incorporated through clathrin-mediated endocytosis increases myelin basic protein, F3-contactin and β-tubulin through Fyn/MEK/ERK pathways, as well as an activation of the PI3K/Akt pathway. Our results also demonstrate that the activation of the pathways necessary for oligodendroglial precursor cell maturation is dependent on AP2 recruitment onto the plasma membrane for clathrin-mediated endocytosis of transferrin receptor.

  1. Tissue distribution and clearance kinetics of non-transferrin-bound iron in the hypotransferrinemic mouse: a rodent model for hemochromatosis

    SciTech Connect

    Craven, C.M.; Alexander, J.; Eldridge, M.; Kushner, J.P.; Bernstein, S.; Kaplan, J.

    1987-05-01

    Genetically hypotransferrinemic mice accumulate iron in the liver and pancreas. A similar pattern of tissue iron accumulation occurs in humans with hereditary hemochromatosis. In both disorders, there is a decrease plasma concentration of apotransferrin. To test the hypothesis that nontransferrin-bound iron exists and is clear by the parenchymal tissues, the tissue distribution of /sup 59/Fe was studied in animals lacking apotransferrin. Two groups of animals were used: normal rats and mice whose transferrin had been saturated by an intravenous injection of nonradiolabeled iron, and mice with congential hypotransferrinemia. In control animals, injected /sup 59/Fe was found primarily in the bone marrow and spleen. In the transferrin iron-saturated animals, injected /sup 59/Fe accumulated in the liver and pancreas. Gastrointestinally absorbed iron in hypotransferrinemic or transferrin iron-saturated mice was deposited in the liver. This indicates that newly absorbed iron is released from mucosal cells not bound to transferrin. Clearance studies demonstrated that transferrin-bound /sup 59/Fe was removed from the circulation of rats with a half-time of 50 min. In transferrin iron-saturated animals, injected /sup 59/Fe was removed with a half-time of <30 s. Analysis of the distribution of /sup 59/Fe in serum samples by polyacrylamide gel electrophoresis demonstrated the presence of /sup 59/Fe not bound to transferrin. These results demonstrate the existence of and uptake system for non-transferrin-bound iron. These observations support the hypothesis that parenchymal iron overload is consequence of reduced concentrations of apotransferrin.

  2. Accelerated degradation of 160 kDa epidermal growth factor (EGF) receptor precursor by the tyrosine kinase inhibitor herbimycin A in the endoplasmic reticulum of A431 human epidermoid carcinoma cells.

    PubMed Central

    Murakami, Y; Mizuno, S; Uehara, Y

    1994-01-01

    The effect of herbimycin A on the biosynthesis of epidermal growth factor (EGF) receptor was examined in human epidermoid carcinoma A431 cells. Cells were pulse-labelled with [35S]methionine, and EGF receptor biosynthesis was quantified by immunoprecipitation using a monoclonal anti-(EGF receptor) antibody. In the presence of herbimycin A, an immature 160 kDa EGF receptor precursor accumulated in 1 h and disappeared completely in 4 h. Pulse-labelled 160 kDa receptor precursor in the absence of herbimycin A, however, was converted normally into a 170 kDa one by chase with herbimycin A. Herbimycin A affected neither the synthesis of the secreted form of EGF receptor devoid of cytoplasmic domain, nor that of the transferrin receptor in A431 cells. The herbimycin A-induced degradation of 160 kDa EGF receptor precursor was not inhibited by an inhibitor of lysosomal enzymes, NH4Cl. Endoglycosidase H digestion of the 160 kDa precursor converted it into the deglycosylated 130 kDa precursor peptide. These results suggested that herbimycin A selectively acted on the EGF receptor precursor during the synthesis of the 160 kDa form, probably on the cytoplasmic domain, to form an aberrant molecule which was subjected to rapid degradation in the endoplasmic reticulum. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8037692

  3. A comparative, cross-species investigation of the properties and roles of transferrin- and lactoferrin-binding protein B from pathogenic bacteria.

    PubMed

    Ostan, N; Morgenthau, A; Yu, R H; Gray-Owen, S D; Schryvers, A B

    2017-02-01

    Pathogenic bacteria from the families Neisseriaeceae and Moraxellaceae acquire iron from their host using surface receptors that have the ability to hijack iron from the iron-sequestering host proteins transferrin (Tf) and lactoferrin (Lf). The process of acquiring iron from Tf has been well-characterized, including the role of the surface lipoprotein transferrin-binding protein B (TbpB). In contrast, the only well-defined role for the homologue, LbpB, is in its protection against cationic antimicrobial peptides, which is mediated by regions present in some LbpBs that are highly enriched in glutamic or aspartic acid. In this study we compare the Tf-TbpB and the Lf-LbpB interactions and examine the protective effect of LbpB against extracts from human and transgenic mouse neutrophils to gains insights into the physiological roles of LbpB. The results indicate that in contrast to the Tf-TbpB interaction, Lf-LbpB interaction is sensitive to pH and varies between species. In addition, the results with transgenic mouse neutrophils raise the question of whether there is species specificity in the cleavage of Lf to generate cationic antimicrobial peptides or differences in the potency of peptides derived from mouse and human Lf.

  4. Adenosine receptor antagonists alter the stability of human epileptic GABAA receptors

    PubMed Central

    Roseti, Cristina; Martinello, Katiuscia; Fucile, Sergio; Piccari, Vanessa; Mascia, Addolorata; Di Gennaro, Giancarlo; Quarato, Pier Paolo; Manfredi, Mario; Esposito, Vincenzo; Cantore, Gianpaolo; Arcella, Antonella; Simonato, Michele; Fredholm, Bertil B.; Limatola, Cristina; Miledi, Ricardo; Eusebi, Fabrizio

    2008-01-01

    We examined how the endogenous anticonvulsant adenosine might influence γ-aminobutyric acid type A (GABAA) receptor stability and which adenosine receptors (ARs) were involved. Upon repetitive activation (GABA 500 μM), GABAA receptors, microtransplanted into Xenopus oocytes from neurosurgically resected epileptic human nervous tissues, exhibited an obvious GABAA-current (IGABA) run-down, which was consistently and significantly reduced by treatment with the nonselective adenosine receptor antagonist CGS15943 (100 nM) or with adenosine deaminase (ADA) (1 units/ml), that inactivates adenosine. It was also found that selective antagonists of A2B (MRS1706, 10 nM) or A3 (MRS1334, 30 nM) receptors reduced IGABA run-down, whereas treatment with the specific A1 receptor antagonist DPCPX (10 nM) was ineffective. The selective A2A receptor antagonist SCH58261 (10 nM) reduced or potentiated IGABA run-down in ≈40% and ≈20% of tested oocytes, respectively. The ADA-resistant, AR agonist 2-chloroadenosine (2-CA) (10 μM) potentiated IGABA run-down but only in ≈20% of tested oocytes. CGS15943 administration again decreased IGABA run-down in patch-clamped neurons from either human or rat neocortex slices. IGABA run-down in pyramidal neurons was equivalent in A1 receptor-deficient and wt neurons but much larger in neurons from A2A receptor-deficient mice, indicating that, in mouse cortex, GABAA-receptor stability is tonically influenced by A2A but not by A1 receptors. IGABA run-down from wt mice was not affected by 2-CA, suggesting maximal ARs activity by endogenous adenosine. Our findings strongly suggest that cortical A2–A3 receptors alter the stability of GABAA receptors, which could offer therapeutic opportunities. PMID:18809912

  5. Expression of the Endocannabinoid Receptors in Human Fascial Tissue

    PubMed Central

    Fede, C.; Albertin, G.; Petrelli, L.; Sfriso, M.M.; Biz, C.; Caro, R. De; Stecco, C.

    2016-01-01

    Cannabinoid receptors have been localized in the central and peripheral nervous system as well as on cells of the immune system, but recent studies on animal tissue gave evidence for the presence of cannabinoid receptors in different types of tissues. Their presence was supposed also in myofascial tissue, suggesting that the endocannabinoid system may help resolve myofascial trigger points and relieve symptoms of fibromyalgia. However, until now the expression of CB1 (cannabinoid receptor 1) and CB2 (cannabinoid receptor 2) in fasciae has not yet been established. Small samples of fascia were collected from volunteers patients during orthopedic surgery. For each sample were done a cell isolation, immunohistochemical investigation (CB1 and CB2 antibodies) and real time RT-PCR to detect the expression of CB1 and CB2. Both cannabinoid receptors are expressed in human fascia and in human fascial fibroblasts culture cells, although to a lesser extent than the control gene. We can assume that the expression of mRNA and protein of CB1 and CB2 receptors in fascial tissue are concentrated into the fibroblasts. This is the first demonstration that the fibroblasts of the muscular fasciae express CB1 and CB2. The presence of these receptors could help to provide a description of cannabinoid receptors distribution and to better explain the role of fasciae as pain generator and the efficacy of some fascial treatments. Indeed the endocannabinoid receptors of fascial fibroblasts can contribute to modulate the fascial fibrosis and inflammation. PMID:27349320

  6. Characterization of muscarinic receptor subtypes in human tissues

    SciTech Connect

    Giraldo, E.; Martos, F.; Gomez, A.; Garcia, A.; Vigano, M.A.; Ladinsky, H.; Sanchez de La Cuesta, F.

    1988-01-01

    The affinities of selective, pirenzepine and AF-DX 116, and classical, N-methylscopolamine and atropine, muscarinic cholinergic receptor antagonists were investigated in displacement binding experiments with (/sup 3/H)Pirenzepine and (/sup 3/H)N-methylscopolamine in membranes from human autoptic tissues (forebrain, cerebellum, atria, ventricle and submaxillary salivary glands). Affinity estimates of N-methylscopolamine and atropine indicated a non-selective profile. Pirenzepine showed differentiation between the M/sub 1/ neuronal receptor of the forebrain and the receptors in other tissues while AF-DX 116 clearly discriminated between muscarinic receptors of heart and glands. The results in human tissues confirm the previously described selectivity profiles of pirenzepine and AF-DX 116 in rat tissues. These findings thus reveal the presence also in man of three distinct muscarinic receptor subtypes: the neuronal M/sub 1/, the cardiac M/sub 2/ and the glandular M/sub 3/.

  7. Effect of phorbol esters on iron uptake in human hematopoietic cell lines

    SciTech Connect

    Testa, U.; Titeux, M.; Louache, F.; Thomopoulos, P.; Rochant, H.

    1984-11-01

    We have investigated the effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) on iron uptake into human hematopoietic cell lines K562, U937, and HL-60. TPA inhibited both cell growth and iron uptake by these cell lines. This effect was rapid, which is typical of phorbol esters which are biologically active, and it occurred at very low concentrations of TPA. This effect of TPA was dependent upon an inhibition of the transferrin-binding capacity as estimated on intact cells. However, experiments with transferrin binding on cell samples dissolved in 1% Triton X-100 showed that TPA-treated cells exhibited a transferrin-binding capacity similar to that of control cells. On the basis of this result, it is suggested that TPA modified a part of transferrin receptors present in the cells; as a result of this modification, these receptors became unavailable for binding transferrin, but they remained physically present in the cell. Other compounds capable of inducing the differentiation of leukemic cells, such as dimethyl sulfoxide, butyrate, retinoic acid, and 1 alpha,25-dihydroxy-vitamin D3, did not acutely inhibit iron uptake. We also investigated the effect of TPA on transferrin receptors in a cellular system in which phorbol esters stimulate cell proliferation. At 16 X 10(-9) M, TPA markedly stimulated the proliferation of T-lymphocytes. However, in spite of this marked stimulation of cell proliferation, TPA-stimulated lymphocytes exhibited a transferrin-binding capacity much inferior to cells stimulated by other mitogens, such as phytohemagglutinin.

  8. Melanocortin MC₁ receptor in human genetics and model systems.

    PubMed

    Beaumont, Kimberley A; Wong, Shu S; Ainger, Stephen A; Liu, Yan Yan; Patel, Mira P; Millhauser, Glenn L; Smith, Jennifer J; Alewood, Paul F; Leonard, J Helen; Sturm, Richard A

    2011-06-11

    The melanocortin MC(1) receptor is a G-protein coupled receptor expressed in the melanocytes of the skin and hair and is known for its key role in the regulation of human pigmentation. Melanocortin MC(1) receptor activation after ultraviolet radiation exposure results in a switch from the red/yellow pheomelanin to the brown/black eumelanin pigment synthesis within cutaneous melanocytes; this pigment is then transferred to the surrounding keratinocytes of the skin. The increase in melanin maturation and uptake results in tanning of the skin, providing a physical protection of skin cells from ultraviolet radiation induced DNA damage. Melanocortin MC(1) receptor polymorphism is widespread within the Caucasian population and some variant alleles are associated with red hair colour, fair skin, poor tanning and increased risk of skin cancer. Here we will discuss the use of mouse coat colour models, human genetic association studies, and in vitro cell culture studies to determine the complex functions of the melanocortin MC(1) receptor and the molecular mechanisms underlying the association between melanocortin MC(1) receptor variant alleles and the red hair colour phenotype. Recent research indicates that melanocortin MC(1) receptor has many non-pigmentary functions, and that the increased risk of skin cancer conferred by melanocortin MC(1) receptor variant alleles is to some extent independent of pigmentation phenotypes. The use of new transgenic mouse models, the study of novel melanocortin MC(1) receptor response genes and the use of more advanced human skin models such as 3D skin reconstruction may provide key elements in understanding the pharmacogenetics of human melanocortin MC(1) receptor polymorphism.

  9. Evidence for Alpha Receptors in the Human Ureter

    NASA Astrophysics Data System (ADS)

    Madeb, Ralph; Knopf, Joy; Golijanin, Dragan; Bourne, Patricia; Erturk, Erdal

    2007-04-01

    An immunohistochemical and western blot expression analysis of human ureters was performed in order to characterize the alpha-1-adrenergic receptor distribution along the length of the human ureteral wall. Mapping the distribution will assist in understanding the potential role alpha -1-adrenergic receptors and their subtype density might have in the pathophysiology of ureteral colic and stone passage. Patients diagnosed with renal cancer or bladder cancer undergoing nephrectomy, nephroureterectomy, or cystectomy had ureteral specimens taken from the proximal, mid, distal and tunneled ureter. Tissues were processed for fresh frozen examination and fixed in formalin. None of the ureteral specimens were involved with cancer. Serial histologic sections and immunohistochemical studies were performed using antibodies specific for alpha-1-adrenergic receptor subtypes (alpha 1a, alpha 1b, alpha 1d). The sections were examined under a light microscope and scored as positive or negative. In order to validate and quantify the alpha receptor subtypes along the human ureter. Western blotting techniques were applied. Human ureter stained positively for alpha -1-adrenergic receptors. Immunostaining appeared red, with intense reaction in the smooth muscle of the ureter and endothelium of the neighboring blood vessels. There was differential expression between all the receptors with the highest staining for alpha-1D subtype. The highest protein expression for all three subtypes was in the renal pelvis and decreased with advancement along the ureter to the distal ureter. At the distal ureter, there was marked increase in expression as one progressed towards the ureteral orifice. The same pattern of protein expression was exhibited for all three alpha -1-adrenergic receptor subtypes. We provide preliminary evidence for the ability to detect and quantify the alpha-1-receptor subtypes along the human ureter which to the best of our knowledge has never been done with

  10. Human Receptor Activation by Aroclor 1260, a Polychlorinated Biphenyl Mixture

    PubMed Central

    Wahlang, Banrida; Falkner, K. Cameron; Clair, Heather B.; Al-Eryani, Laila; Prough, Russell A.; States, J. Christopher; Coslo, Denise M.; Omiecinski, Curtis J.; Cave, Matthew C.

    2014-01-01

    Polychlorinated biphenyls (PCBs) are persistent environmental toxicants, present in 100% of U.S. adults and dose-dependently associated with obesity and non-alcoholic fatty liver disease (NAFLD). PCBs are predicted to interact with receptors previously implicated in xenobiotic/energy metabolism and NAFLD. These receptors include the aryl hydrocarbon receptor (AhR), pregnane xenobiotic receptor (PXR), constitutive androstane receptor (CAR), peroxisome proliferator-activated receptors (PPARs), liver-X-receptor (LXRα), and farnesoid-X-receptor (FXR). This study evaluates Aroclor 1260, a PCB mixture with congener composition mimicking that of human adipose tissue, and selected congeners, as potential ligands for these receptors utilizing human hepatoma-derived (HepG2) and primate-derived (COS-1) cell lines, and primary human hepatocytes. Aroclor 1260 (20 μg/ml) activated AhR, and PCB 126, a minor component, was a potent inducer. Aroclor 1260 activated PXR in a simple concentration-dependent manner at concentrations ≥10 μg/ml. Among the congeners tested, PCBs 138, 149, 151, 174, 183, 187, and 196 activated PXR. Aroclor 1260 activated CAR2 and CAR3 variants at lower concentrations and antagonize CAR2 activation by the CAR agonist, CITCO, at higher concentrations (≥20 μg/ml). Additionally, Aroclor 1260 induced CYP2B6 in primary hepatocytes. At subtoxic doses, Aroclor 1260 did not activate LXR or FXR and had no effect on LXR- or FXR-dependent induction by the agonists T0901317 or GW4064, respectively. Aroclor 1260 (20 μg/ml) suppressed PPARα activation by the agonist nafenopin, although none of the congeners tested demonstrated significant inhibition. The results suggest that Aroclor 1260 is a human AhR, PXR and CAR3 agonist, a mixed agonist/antagonist for CAR2, and an antagonist for human PPARα. PMID:24812009

  11. Expression of glutamate receptor subunits in human cancers.

    PubMed

    Stepulak, Andrzej; Luksch, Hella; Gebhardt, Christine; Uckermann, Ortrud; Marzahn, Jenny; Sifringer, Marco; Rzeski, Wojciech; Staufner, Christian; Brocke, Katja S; Turski, Lechoslaw; Ikonomidou, Chrysanthy

    2009-10-01

    Emerging evidence suggests a role for glutamate and its receptors in the biology of cancer. This study was designed to systematically analyze the expression of ionotropic and metabotropic glutamate receptor subunits in various human cancer cell lines, compare expression levels to those in human brain tissue and, using electrophysiological techniques, explore whether cancer cells respond to glutamate receptor agonists and antagonists. Expression analysis of glutamate receptor subunits NR1-NR3B, GluR1-GluR7, KA1, KA2 and mGluR1-mGluR8 was performed by means of RT-PCR in human rhabdomyosarcoma/medulloblastoma (TE671), neuroblastoma (SK-NA-S), thyroid carcinoma (FTC 238), lung carcinoma (SK-LU-1), astrocytoma (MOGGCCM), multiple myeloma (RPMI 8226), glioma (U87-MG and U343), lung carcinoma (A549), colon adenocarcinoma (HT 29), T cell leukemia cells (Jurkat E6.1), breast carcinoma (T47D) and colon adenocarcinoma (LS180). Analysis revealed that all glutamate receptor subunits were differentially expressed in the tumor cell lines. For the majority of tumors, expression levels of NR2B, GluR4, GluR6 and KA2 were lower compared to human brain tissue. Confocal imaging revealed that selected glutamate receptor subunit proteins were expressed in tumor cells. By means of patch-clamp analysis, it was shown that A549 and TE671 cells depolarized in response to application of glutamate agonists and that this effect was reversed by glutamate receptor antagonists. This study reveals that glutamate receptor subunits are differentially expressed in human tumor cell lines at the mRNA and the protein level, and that their expression is associated with the formation of functional channels. The potential role of glutamate receptor antagonists in cancer therapy is a feasible goal to be explored in clinical trials.

  12. G protein-coupled receptor mutations and human genetic disease.

    PubMed

    Thompson, Miles D; Hendy, Geoffrey N; Percy, Maire E; Bichet, Daniel G; Cole, David E C

    2014-01-01

    Genetic variations in G protein-coupled receptor genes (GPCRs) disrupt GPCR function in a wide variety of human genetic diseases. In vitro strategies and animal models have been used to identify the molecular pathologies underlying naturally occurring GPCR mutations. Inactive, overactive, or constitutively active receptors have been identified that result in pathology. These receptor variants may alter ligand binding, G protein coupling, receptor desensitization and receptor recycling. Receptor systems discussed include rhodopsin, thyrotropin, parathyroid hormone, melanocortin, follicle-stimulating hormone (FSH), luteinizing hormone, gonadotropin-releasing hormone (GNRHR), adrenocorticotropic hormone, vasopressin, endothelin-β, purinergic, and the G protein associated with asthma (GPRA or neuropeptide S receptor 1 (NPSR1)). The role of activating and inactivating calcium-sensing receptor (CaSR) mutations is discussed in detail with respect to familial hypocalciuric hypercalcemia (FHH) and autosomal dominant hypocalemia (ADH). The CASR mutations have been associated with epilepsy. Diseases caused by the genetic disruption of GPCR functions are discussed in the context of their potential to be selectively targeted by drugs that rescue altered receptors. Examples of drugs developed as a result of targeting GPCRs mutated in disease include: calcimimetics and calcilytics, therapeutics targeting melanocortin receptors in obesity, interventions that alter GNRHR loss from the cell surface in idiopathic hypogonadotropic hypogonadism and novel drugs that might rescue the P2RY12 receptor congenital bleeding phenotype. De-orphanization projects have identified novel disease-associated receptors, such as NPSR1 and GPR35. The identification of variants in these receptors provides genetic reagents useful in drug screens. Discussion of the variety of GPCRs that are disrupted in monogenic Mendelian disorders provides the basis for examining the significance of common

  13. Mechanisms of plasma non-transferrin bound iron generation: insights from comparing transfused diamond blackfan anaemia with sickle cell and thalassaemia patients.

    PubMed

    Porter, John B; Walter, Patrick B; Neumayr, Lynne D; Evans, Patricia; Bansal, Sukhvinder; Garbowski, Maciej; Weyhmiller, Marcela G; Harmatz, Paul R; Wood, John C; Miller, Jeffery L; Byrnes, Colleen; Weiss, Guenter; Seifert, Markus; Grosse, Regine; Grabowski, Dagmar; Schmidt, Angelica; Fischer, Roland; Nielsen, Peter; Niemeyer, Charlotte; Vichinsky, Elliott

    2014-12-01

    In transfusional iron overload, extra-hepatic iron distribution differs, depending on the underlying condition. Relative mechanisms of plasma non-transferrin bound iron (NTBI) generation may account for these differences. Markers of iron metabolism (plasma NTBI, labile iron, hepcidin, transferrin, monocyte SLC40A1 [ferroportin]), erythropoiesis (growth differentiation factor 15, soluble transferrin receptor) and tissue hypoxia (erythropoietin) were compared in patients with Thalassaemia Major (TM), Sickle Cell Disease and Diamond-Blackfan Anaemia (DBA), with matched transfusion histories. The most striking differences between these conditions were relationships of NTBI to erythropoietic markers, leading us to propose three mechanisms of NTBI generation: iron overload (all), ineffective erythropoiesis (predominantly TM) and low transferrin-iron utilization (DBA).

  14. Autoimmune anti-androgen-receptor antibodies in human serum.

    PubMed Central

    Liao, S; Witte, D

    1985-01-01

    Circulating autoantibodies to human and rat androgen receptors are present at high titers in the blood sera of some patients with prostate diseases. The antibodies from some serum samples were associated with a purified IgG fraction and interacted with the 3.8S cytosolic androgen-receptor complexes of rat ventral prostate to form 9- to 12S units. Other serum samples, however, formed 14- to 19S units, suggesting that other immunoglobulins might be involved. In the presence of an anti-human immunoglobulin as a second antibody, the androgen-receptor-antibody complexes could be immunoprecipitated. The antibodies interacted with the nuclear and the cytosolic androgen-receptor complexes, either the DNA-binding or the nonbinding form, but not with receptors for estradiol, progestin, or dexamethasone from a variety of sources. Human testosterone/estradiol-binding globulin, rat epididymal androgen-binding protein, or rat prostate alpha-protein (a nonreceptor steroid-binding protein) also did not interact with the antibodies to form immunoprecipitates. About 37% of male and 3% of female serum samples screened had significant antibody titer. The chance of finding serum with a high titer is much better in males older than 66 years than in the younger males or females at all ages. The presence of the high-titer antibodies may make it possible to prepare monoclonal antibodies to androgen receptors without purification of the receptors for immunization. PMID:3866227

  15. Functional CB1 cannabinoid receptors in human vascular endothelial cells.

    PubMed Central

    Liu, J; Gao, B; Mirshahi, F; Sanyal, A J; Khanolkar, A D; Makriyannis, A; Kunos, G

    2000-01-01

    Cannabinoid CB1 receptor mRNA was detected using reverse transcription-polymerase chain reaction (RT-PCR) in endothelial cells from human aorta and hepatic artery and in the ECV304 cell line derived from human umbilical vein endothelial cells. CB1 receptor-binding sites were detected by the high-affinity antagonist radioligand [(125)I]AM-251. In ECV304 cells, both the highly potent synthetic cannabinoid agonist HU-210 and the endogenous ligand anandamide induce activation of mitogen-activated protein (MAP) kinase, and the effect of HU-210 was completely blocked, whereas the effect of anandamide was partially inhibited by SR141716A, a selective CB1 receptor antagonist. Transfection of ECV304 cells with CB1 receptor antisense, but not sense, oligonucleotides caused the same pattern of inhibition as SR141716A. This provides more definitive evidence for the involvement of CB1 receptors in MAP kinase activation and suggests that anandamide may also activate MAP kinase via an additional, CB1 receptor-independent, SR141716A-resistant mechanism. The MAP kinase activation by anandamide in ECV304 cells requires genistein-sensitive tyrosine kinases and protein kinase C (PKC), and anandamide also activates p38 kinase and c-Jun kinase. These findings indicate that CB1 receptors located in human vascular endothelium are functionally coupled to the MAP kinase cascade. Activation of protein kinase cascades by anandamide may be involved in the modulation of endothelial cell growth and proliferation. PMID:10698714

  16. Distribution of cellular HSV-1 receptor expression in human brain.

    PubMed

    Lathe, Richard; Haas, Juergen G

    2016-12-15

    Herpes simplex virus type 1 (HSV-1) is a neurotropic virus linked to a range of acute and chronic neurological disorders affecting distinct regions of the brain. Unusually, HSV-1 entry into cells requires the interaction of viral proteins glycoprotein D (gD) and glycoprotein B (gB) with distinct cellular receptor proteins. Several different gD and gB receptors have been identified, including TNFRSF14/HVEM and PVRL1/nectin 1 as gD receptors and PILRA, MAG, and MYH9 as gB receptors. We investigated the expression of these receptor molecules in different areas of the adult and developing human brain using online transcriptome databases. Whereas all HSV-1 receptors showed distinct expression patterns in different brain areas, the Allan Brain Atlas (ABA) reported increased expression of both gD and gB receptors in the hippocampus. Specifically, for PVRL1, TNFRFS14, and MYH9, the differential z scores for hippocampal expression, a measure of relative levels of increased expression, rose to 2.9, 2.9, and 2.5, respectively, comparable to the z score for the archetypical hippocampus-enriched mineralocorticoid receptor (NR3C2, z = 3.1). These data were confirmed at the Human Brain Transcriptome (HBT) database, but HBT data indicate that MAG expression is also enriched in hippocampus. The HBT database allowed the developmental pattern of expression to be investigated; we report that all HSV1 receptors markedly increase in expression levels between gestation and the postnatal/adult periods. These results suggest that differential receptor expression levels of several HSV-1 gD and gB receptors in the adult hippocampus are likely to underlie the susceptibility of this brain region to HSV-1 infection.

  17. Homology modeling of human muscarinic acetylcholine receptors.

    PubMed

    Thomas, Trayder; McLean, Kimberley C; McRobb, Fiona M; Manallack, David T; Chalmers, David K; Yuriev, Elizabeth

    2014-01-27

    We have developed homology models of the acetylcholine muscarinic receptors M₁R-M₅R, based on the β₂-adrenergic receptor crystal as the template. This is the first report of homology modeling of all five subtypes of acetylcholine muscarinic receptors with binding sites optimized for ligand binding. The models were evaluated for their ability to discriminate between muscarinic antagonists and decoy compounds using virtual screening using enrichment factors, area under the ROC curve (AUC), and an early enrichment measure, LogAUC. The models produce rational binding modes of docked ligands as well as good enrichment capacity when tested against property-matched decoy libraries, which demonstrates their unbiased predictive ability. To test the relative effects of homology model template selection and the binding site optimization procedure, we generated and evaluated a naïve M₂R model, using the M₃R crystal structure as a template. Our results confirm previous findings that binding site optimization using ligand(s) active at a particular receptor, i.e. including functional knowledge into the model building process, has a more pronounced effect on model quality than target-template sequence similarity. The optimized M₁R-M₅R homology models are made available as part of the Supporting Information to allow researchers to use these structures, compare them to their own results, and thus advance the development of better modeling approaches.

  18. Regulation of adiponectin receptor 1 in human hepatocytes by agonists of nuclear receptors

    SciTech Connect

    Neumeier, Markus; Weigert, Johanna; Schaeffler, Andreas; Weiss, Thomas; Kirchner, Stefan; Laberer, Sabine; Schoelmerich, Juergen; Buechler, Christa . E-mail: christa.buechler@klinik.uni-regensburg.de

    2005-09-02

    The adiponectin receptors AdipoR1 and AdipoR2 have been identified to mediate the insulin-sensitizing effects of adiponectin. Although AdipoR2 was suggested to be the main receptor for this adipokine in hepatocytes, AdipoR1 protein is highly abundant in primary human hepatocytes and hepatocytic cell lines. Nuclear receptors are main regulators of lipid metabolism and activation of peroxisome proliferator-activated receptor {alpha} and {gamma}, retinoid X receptor (RXR), and liver X receptor (LXR) by specific ligands may influence AdipoR1 abundance. AdipoR1 protein is neither altered by RXR or LXR agonists nor by pioglitazone. In contrast, fenofibric acid reduces AdipoR1 whereas hepatotoxic troglitazone upregulates AdipoR1 protein in HepG2 cells. Taken together this work shows for the first time that AdipoR1 protein is expressed in human hepatocytes but that it is not a direct target gene of nuclear receptors. Elevated AdipoR1 induced by hepatotoxic troglitazone may indicate a role of this receptor in adiponectin-mediated beneficial effects in liver damage.

  19. Anti-tumor activity of paclitaxel through dual-targeting carrier of cyclic RGD and transferrin conjugated hyperbranched copolymer nanoparticles.

    PubMed

    Xu, Qing; Liu, Yuexian; Su, Shishuai; Li, Wei; Chen, Chunying; Wu, Yan

    2012-02-01

    Targeted delivery strategies are becoming increasingly important. Herein, a novel hyperbranched amphiphilic poly[(amine-ester)-co-(D,L-lactide)]/1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine copolymer (HPAE-co-PLA/DPPE) with RGD peptide (cRGDfK) and transferrin (Tf) on the periphery was synthesized and used to prepare paclitaxel-loaded nanoparticles (NPs) for dual-targeting chemotherapy. These NPs show satisfactory size distribution, high encapsulated efficiency and a pH-dependent release profile. The intrinsic fluorescence of the hyperbranched copolymer renders the detection and tracking of NPs in vitro and in vivo conveniently. In vitro cytotoxicity studies proved that the presence of cRGDfK enhanced the cytotoxic efficiency by 10 folds in α(ν)β(3) integrin over-expressed human umbilical vein endothelial cells, while Tf improved cytotoxicity by 2 folds in Tf receptor over-expressed human cervical carcinoma cells. The drug-loaded NPs can be efficiently transported into the vascular endothelial cells and the target tumor cells. These results indicate that the cRGDfK and Tf decorated HPAE-co-PLA/DPPE could deliver chemotherapies specifically inside the cell via receptor-mediated endocytosis with greater efficacy. Therefore, such a fluorescent nanocarrier prepared from non-cytotoxic and biodegradable polymers is promising for drug delivery in tumor therapy.

  20. Assessment of transferrin recycling by Triplet Lifetime Imaging in living cells

    PubMed Central

    Geissbuehler, Matthias; Kadlecova, Zuzana; Klok, Harm-Anton; Lasser, Theo

    2012-01-01

    An optical method is presented that allows the measurement of the triplet lifetime of a fluorescent molecule. This is a characteristic specific to each fluorophore. Based on differences in triplet lifetimes of two fluorescent species (autofluorescence versus label), this novel approach measures relative quantities of a transmembrane receptor and associated fluorescently labeled ligand during its recycling in living cells. Similarly to fluorescence-lifetime based methods, our approach is almost insensitive to photobleaching. A simple theory for unmixing two known triplet lifetimes is presented along with validation of the method by measurements of transferrin recycling in a model system based on chinese hamster ovarian cells (CHO). Transferrin is the delivery carrier for Fe3+ to the cell. PMID:23082293

  1. Pharmacologically novel GABA receptor in human dorsal root ganglion neurons.

    PubMed

    Valeyev, A Y; Hackman, J C; Wood, P M; Davidoff, R A

    1996-11-01

    1. Whole cell voltage-clamp studies of gamma-aminobutyric acid (GABA) receptors were performed on large (> 80 microns) cultured human dorsal root ganglion (DRG) neurons. 2. GABA and pentobarbital sodium when applied in micromolar concentrations evoked inward Cl- currents in DRG neurons voltage clamped at negative membrane potentials. 3. Diazepam (10 microM) and pentobarbital (10 microM) upmodulated the GABA current by approximately 149 and 168%, respectively. 4. The GABA currents in human DRG cells were unaffected by the classical GABA antagonists picrotoxin and bicuclline (100 microM). In contrast, the GABA responses evoked in adult rat DRG cells cultured in an identical manner were inhibited by both antagonists. The glycine receptor antagonist strychnine (100 microM) did not alter GABA currents in human DRG cells. 5. Human DRG cells did not respond to glycine (10-100 microM) or taurine (10-100 microM). The GABAB agonist baclofen had no effect on the holding current when patch pipettes were filled with 130 mM KCl. The GABAB antagonists saclofen applied either alone or with GABA was without effect. 6. The differences between the GABA receptors described here and GABA receptors in other species may reflect the presence of receptor subunits unique to human DRG cells.

  2. Immunization with Recombinant Transferrin Binding Protein B Enhances Clearance of Nontypeable Haemophilus influenzae from the Rat Lung

    PubMed Central

    Webb, Dianne C.; Cripps, Allan W.

    1999-01-01

    Nontypeable Haemophilus influenzae (NTHI) is an opportunistic pathogen, and heterogeneity in the surface-exposed immunodominant domains of NTHI proteins is thought to be associated with the failure of an infection to stimulate an immune response that is cross-protective against heterologous NTHI strains. The aim of this study was to assess the vaccine potential of a surface-exposed component of the NTHI human transferrin receptor, TbpB, and to determine if the antibody response elicited was cross-reactive with heterologous strains of NTHI. The efficacy of immunization with a recombinant form of TbpB (rTbpB) was determined by assessing the pulmonary clearance of viable bacteria 4 h after a live challenge with NTHI. There was a significant reduction in the number of viable bacteria in both the bronchoalveolar lavage fluid (34% for the 20-μg dose and 58% for the 40-μg dose) and lung homogenates (26% for the 20-μg dose and 60% for the 40-μg dose) of rats immunized with rTbpB compared to the control animals. While rTbpB-specific antibodies from immunized rats were nonspecific in the recognition of TbpB from six heterologous NTHI strains on Western blots, these antibodies differed in their ability to block transferrin binding to heterologous strains and to cross-react in bactericidal assays. If bactericidal antibodies are key indicators of the efficacy of the immune response in eliminating NTHI, this data suggests that while immunization with rTbpB stimulates protective responses against the homologous isolate, variability in the recognition of TbpB from heterologous isolates may limit the potential of rTbpB as an NTHI vaccine component. PMID:10225866

  3. The cardiac glycoside-receptor system in the human heart.

    PubMed

    Erdmann, E; Brown, L

    1983-01-01

    Specific binding sites have been demonstrated to exist in the heart for several drugs and hormones such as beta-blocking agents, cardiac glycosides, catecholamines, insulin, glucagon and acetylcholine. The specific binding sites for cardiac glycosides in the human heart have certain properties which make it likely that they are the pharmacological receptors for the therapeutic and toxic actions of digitalis glycosides: they are located in the cell membrane and bind cardioactive steroids reversibly with high affinity: half-maximal receptor binding occurs at approximately 2 nM (approximately 1.5 ng/ml) for digoxin; potassium decreases receptor affinity, calcium increases it; specific binding of ouabain, digoxin or digitoxin is related to inhibition of (Na+ + K+)-ATPase activity--which is supposed to be the receptor enzyme for cardiac glycosides. Human left ventricle contains approximately 1.5 x 10(14) binding sites/g wet weight, right ventricle approximately 0.9 x 10(14). In disease the number of receptors may decrease (hypothyroid states, myocardial infarction) or increase (hyperthyroidism, chronic hypokalaemia). Certain drugs (such as phenytoin) or different temperatures or pH changes cause a change in digitalis-receptor affinity. Thus, the number of receptors and possibly their properties are subject to regulation in clinically relevant situations. Further investigations will probably reveal those pathophysiological states, which allow the explanation of toxicity or digitalis refractoriness.

  4. Endomorphins fully activate a cloned human mu opioid receptor.

    PubMed

    Gong, J; Strong, J A; Zhang, S; Yue, X; DeHaven, R N; Daubert, J D; Cassel, J A; Yu, G; Mansson, E; Yu, L

    1998-11-13

    Endomorphins were recently identified as endogenous ligands with high selectivity for mu opioid receptors. We have characterized the ability of endomorphins to bind to and functionally activate the cloned human mu opioid receptor. Both endomorphin-1 and endomorphin-2 exhibited binding selectivity for the mu opioid receptor over the delta and kappa opioid receptors. Both agonists inhibited forskolin-stimulated increase of cAMP in a dose-dependent fashion. When the mu opioid receptor was coexpressed in Xenopus oocytes with G protein-activated K+ channels, application of either endomorphin activated an inward K+ current. This activation was dose-dependent and blocked by naloxone. Both endomorphins acted as full agonists with efficacy similar to that of [D-Ala2,N-Me-Phe4,Gly-ol5]enkephalin (DAMGO). These data indicate that endomorphins act as full agonists at the human mu opioid receptor, capable of stimulating the receptor to inhibit the cAMP/adenylyl cyclase pathway and activate G-protein-activated inwardly rectifying potassium (GIRK) channels.

  5. 21 CFR 866.5880 - Transferrin immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... that consists of the reagents used to measure by immunochemical techniques the transferrin (an iron... transferrin levels aids in the diagnosis of malnutrition, acute inflammation, infection, and red blood cell disorders, such as iron deficiency anemia. (b) Classification. Class II (performance standards)....

  6. 21 CFR 866.5880 - Transferrin immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... that consists of the reagents used to measure by immunochemical techniques the transferrin (an iron... transferrin levels aids in the diagnosis of malnutrition, acute inflammation, infection, and red blood cell disorders, such as iron deficiency anemia. (b) Classification. Class II (performance standards)....

  7. Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor

    SciTech Connect

    Wu, Kailang; Li, Weikai; Peng, Guiqing; Li, Fang

    2010-03-04

    NL63 coronavirus (NL63-CoV), a prevalent human respiratory virus, is the only group I coronavirus known to use angiotensin-converting enzyme 2 (ACE2) as its receptor. Incidentally, ACE2 is also used by group II SARS coronavirus (SARS-CoV). We investigated how different groups of coronaviruses recognize the same receptor, whereas homologous group I coronaviruses recognize different receptors. We determined the crystal structure of NL63-CoV spike protein receptor-binding domain (RBD) complexed with human ACE2. NL63-CoV RBD has a novel {beta}-sandwich core structure consisting of 2 layers of {beta}-sheets, presenting 3 discontinuous receptor-binding motifs (RBMs) to bind ACE2. NL63-CoV and SARS-CoV have no structural homology in RBD cores or RBMs; yet the 2 viruses recognize common ACE2 regions, largely because of a 'virus-binding hotspot' on ACE2. Among group I coronaviruses, RBD cores are conserved but RBMs are variable, explaining how these viruses recognize different receptors. These results provide a structural basis for understanding viral evolution and virus-receptor interactions.

  8. Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor.

    PubMed

    Wu, Kailang; Li, Weikai; Peng, Guiqing; Li, Fang

    2009-11-24

    NL63 coronavirus (NL63-CoV), a prevalent human respiratory virus, is the only group I coronavirus known to use angiotensin-converting enzyme 2 (ACE2) as its receptor. Incidentally, ACE2 is also used by group II SARS coronavirus (SARS-CoV). We investigated how different groups of coronaviruses recognize the same receptor, whereas homologous group I coronaviruses recognize different receptors. We determined the crystal structure of NL63-CoV spike protein receptor-binding domain (RBD) complexed with human ACE2. NL63-CoV RBD has a novel beta-sandwich core structure consisting of 2 layers of beta-sheets, presenting 3 discontinuous receptor-binding motifs (RBMs) to bind ACE2. NL63-CoV and SARS-CoV have no structural homology in RBD cores or RBMs; yet the 2 viruses recognize common ACE2 regions, largely because of a "virus-binding hotspot" on ACE2. Among group I coronaviruses, RBD cores are conserved but RBMs are variable, explaining how these viruses recognize different receptors. These results provide a structural basis for understanding viral evolution and virus-receptor interactions.

  9. Adenosine receptors and asthma in humans.

    PubMed

    Wilson, C N

    2008-10-01

    According to an executive summary of the GINA dissemination committee report, it is now estimated that approximately 300 million people (5% of the global population or 1 in 20 persons) have asthma. Despite the scientific progress made over the past several decades toward improving our understanding of the pathophysiology of asthma, there is still a great need for improved therapies, particularly oral therapies that enhance patient compliance and that target new mechanisms of action. Adenosine is an important signalling molecule in human asthma. By acting on extracellular G-protein-coupled ARs on a number of different cell types important in the pathophysiology of human asthma, adenosine affects bronchial reactivity, inflammation and airway remodelling. Four AR subtypes (A(1), A(2a), A(2b) and A(3)) have been cloned in humans, are expressed in the lung, and are all targets for drug development for human asthma. This review summarizes what is known about these AR subtypes and their function in human asthma as well as the pros and cons of therapeutic approaches to these AR targets. A number of molecules with high affinity and high selectivity for the human AR subtypes have entered clinical trials or are poised to enter clinical trials as anti-asthma treatments. With the availability of these molecules for testing in humans, the function of ARs in human asthma, as well as the safety and efficacy of approaches to the different AR targets, can now be determined.

  10. Leptin secretion and leptin receptor in the human stomach

    PubMed Central

    Sobhani, I; Bado, A; Vissuzaine, C; Buyse, M; Kermorgant, S; Laigneau, J; Attoub, S; Lehy, T; Henin, D; Mignon, M; Lewin, M

    2000-01-01

    BACKGROUND AND AIM—The circulating peptide leptin produced by fat cells acts on central receptors to control food intake and body weight homeostasis. Contrary to initial reports, leptin expression has also been detected in the human placenta, muscles, and recently, in rat gastric chief cells. Here we investigate the possible presence of leptin and leptin receptor in the human stomach.
METHODS—Leptin and leptin receptor expression were assessed by immunohistochemistry, reverse transcriptase-polymerase chain reaction (RT-PCR), and western blot analysis on biopsy samples from 24 normal individuals. Fourteen (10 healthy volunteers and four patients with non-ulcer dyspepsia and normal gastric mucosa histology) were analysed for gastric secretions. Plasma and fundic mucosa leptin content was determined by radioimmunoassay.
RESULTS—In fundic biopsies from normal individuals, immunoreactive leptin cells were found in the lower half of the fundic glands. mRNA encoding ob protein was detected in the corpus of the human stomach. The amount of fundic leptin was 10.4 (3.7) ng leptin/g mucosa, as determined by radioimmunoassay. Intravenous infusions of pentagastrin or secretin caused an increase in circulating leptin levels and leptin release into the gastric juice. The leptin receptor was present in the basolateral membranes of fundic and antral gastric cells. mRNA encoding Ob-RL was detected in both the corpus and antrum, consistent with a protein of ~120 kDa detected by immunoblotting.
CONCLUSION—These data provide the first evidence of the presence of leptin and leptin receptor proteins in the human stomach and suggest that gastric epithelial cells may be direct targets for leptin. Therefore, we conclude that leptin may have a physiological role in the human stomach, although much work is required to establish this.


Keywords: leptin; leptin receptor; human stomach; gastrin; secretin PMID:10896907

  11. Characterization of the inhibitory prostanoid receptors on human neutrophils.

    PubMed Central

    Wheeldon, A.; Vardey, C. J.

    1993-01-01

    1. We have evaluated the effects of various prostanoid agonists on the release of leukotriene B4 (LTB4) and superoxide anions (O2-) from human neutrophils stimulated with opsonized zymosan (OZ) and formyl-methionyl-leucyl-phenylalanine (FMLP), respectively. 2. Prostaglandin E2 (PGE2) and PGD2 inhibited both OZ-induced LTB4 release (EC50 0.72 microM and 0.91 microM respectively), and FMLP-induced O2- release (EC50 0.42 microM and 0.50 microM respectively). PGF2 alpha, the TP-receptor agonist, U46619, and the IP-receptor agonist, iloprost, were also active, but were all at least an order of magnitude less potent than PGE2 and PGD2. 3. The EP2/EP3-receptor agonist, misoprostol, and the selective EP2-agonist, AH13205, were both effective inhibitors of LTB4 release, being approximately equipotent with and 16-times less potent than PGE2, respectively. In contrast, the EP1/EP3-receptor agonist, sulprostone, had no inhibitory activity at concentrations of up to 10 microM. 4. The selective DP-receptor agonist, BW245C, inhibited LTB4 release, (EC50 0.006 microM) being approximately 50 times more potent than PGD2. BW245C also inhibited O2- release, and this inhibition was antagonized competitively by the DP-receptor blocking drug, AH6809 (pA2 6.6). 5. These data indicate the presence of both inhibitory EP- and DP-receptors on the human neutrophil. The rank order of potency of EP-receptor agonists suggest that the EP-receptors are of the EP2-subtype. PMID:8387383

  12. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    SciTech Connect

    Sato, Shoko; Shirakawa, Hitoshi; Tomita, Shuhei; Tohkin, Masahiro; Gonzalez, Frank J.; Komai, Michio

    2013-11-15

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction.

  13. Transgenic silkworms expressing human insulin receptors for evaluation of therapeutically active insulin receptor agonists.

    PubMed

    Matsumoto, Yasuhiko; Ishii, Masaki; Ishii, Kenichi; Miyaguchi, Wataru; Horie, Ryo; Inagaki, Yoshinori; Hamamoto, Hiroshi; Tatematsu, Ken-ichiro; Uchino, Keiro; Tamura, Toshiki; Sezutsu, Hideki; Sekimizu, Kazuhisa

    2014-12-12

    We established a transgenic silkworm strain expressing the human insulin receptor (hIR) using the GAL4/UAS system. Administration of human insulin to transgenic silkworms expressing hIR decreased hemolymph sugar levels and facilitated Akt phosphorylation in the fat body. The decrease in hemolymph sugar levels induced by injection of human insulin in the transgenic silkworms expressing hIR was blocked by co-injection of wortmannin, a phosphoinositide 3-kinase inhibitor. Administration of bovine insulin, an hIR ligand, also effectively decreased sugar levels in the transgenic silkworms. These findings indicate that functional hIRs that respond to human insulin were successfully induced in the transgenic silkworms. We propose that the humanized silkworm expressing hIR is useful for in vivo evaluation of the therapeutic activities of insulin receptor agonists.

  14. Chemotaxis, chemokine receptors and human disease.

    PubMed

    Jin, Tian; Xu, Xuehua; Hereld, Dale

    2008-10-01

    Cell migration is involved in diverse physiological processes including embryogenesis, immunity, and diseases such as cancer and chronic inflammatory disease. The movement of many cell types is directed by extracellular gradients of diffusible chemicals. This phenomenon, referred to as "chemotaxis", was first described in 1888 by Leber who observed the movement of leukocytes toward sites of inflammation. We now know that a large family of small proteins, chemokines, serves as the extracellular signals and a family of G-protein-coupled receptors (GPCRs), chemokine receptors, detects gradients of chemokines and guides cell movement in vivo. Currently, we still know little about the molecular machineries that control chemokine gradient sensing and migration of immune cells. Fortunately, the molecular mechanisms that control these fundamental aspects of chemotaxis appear to be evolutionarily conserved, and studies in lower eukaryotic model systems have allowed us to form concepts, uncover molecular components, develop new techniques, and test models of chemotaxis. These studies have helped our current understanding of this complicated cell behavior. In this review, we wish to mention landmark discoveries in the chemotaxis research field that shaped our current understanding of this fundamental cell behavior and lay out key questions that remain to be addressed in the future.

  15. Receptor-mediated DNA-targeted photoimmunotherapy.

    PubMed

    Karagiannis, Tom C; Lobachevsky, Pavel N; Leung, Brenda K Y; White, Jonathan M; Martin, Roger F

    2006-11-01

    We show the efficacy of a therapeutic strategy that combines the potency of a DNA-binding photosensitizer, UV(A)Sens, with the tumor-targeting potential of receptor-mediated endocytosis. The photosensitizer is an iodinated bibenzimidazole, which, when bound in the minor groove of DNA and excited by UV(A) irradiation, induces cytotoxic lesions attributed to a radical species resulting from photodehalogenation. Although reminiscent of photochemotherapy using psoralens and UV(A) irradiation, an established treatment modality in dermatology particularly for the treatment of psoriasis and cutaneous T-cell lymphoma, a critical difference is the extreme photopotency of the iodinated bibenzimidazole, approximately 1,000-fold that of psoralens. This feature prompted consideration of combination with the specificity of receptor-mediated targeting. Using two in vitro model systems, we show the UV(A) cytotoxicity of iodo ligand/protein conjugates, implying binding of the conjugate to cell receptors, internalization, and degradation of the conjugate-receptor complex, with release and translocation of the ligand to nuclear DNA. For ligand-transferrin conjugates, phototoxicity was inhibited by coincubation with excess native transferrin. Receptor-mediated UV(A)-induced cytotoxicity was also shown with the iodo ligand conjugate of an anti-human epidermal growth factor receptor monoclonal antibody, exemplifying the potential application of the strategy to other cancer-specific targets to thus improve the specificity of phototherapy of superficial lesions and for extracorporeal treatments.

  16. Role of Dopamine D2 Receptors in Human Reinforcement Learning

    PubMed Central

    Eisenegger, Christoph; Naef, Michael; Linssen, Anke; Clark, Luke; Gandamaneni, Praveen K; Müller, Ulrich; Robbins, Trevor W

    2014-01-01

    Influential neurocomputational models emphasize dopamine (DA) as an electrophysiological and neurochemical correlate of reinforcement learning. However, evidence of a specific causal role of DA receptors in learning has been less forthcoming, especially in humans. Here we combine, in a between-subjects design, administration of a high dose of the selective DA D2/3-receptor antagonist sulpiride with genetic analysis of the DA D2 receptor in a behavioral study of reinforcement learning in a sample of 78 healthy male volunteers. In contrast to predictions of prevailing models emphasizing DA's pivotal role in learning via prediction errors, we found that sulpiride did not disrupt learning, but rather induced profound impairments in choice performance. The disruption was selective for stimuli indicating reward, whereas loss avoidance performance was unaffected. Effects were driven by volunteers with higher serum levels of the drug, and in those with genetically determined lower density of striatal DA D2 receptors. This is the clearest demonstration to date for a causal modulatory role of the DA D2 receptor in choice performance that might be distinct from learning. Our findings challenge current reward prediction error models of reinforcement learning, and suggest that classical animal models emphasizing a role of postsynaptic DA D2 receptors in motivational aspects of reinforcement learning may apply to humans as well. PMID:24713613

  17. Role of dopamine D2 receptors in human reinforcement learning.

    PubMed

    Eisenegger, Christoph; Naef, Michael; Linssen, Anke; Clark, Luke; Gandamaneni, Praveen K; Müller, Ulrich; Robbins, Trevor W

    2014-09-01

    Influential neurocomputational models emphasize dopamine (DA) as an electrophysiological and neurochemical correlate of reinforcement learning. However, evidence of a specific causal role of DA receptors in learning has been less forthcoming, especially in humans. Here we combine, in a between-subjects design, administration of a high dose of the selective DA D2/3-receptor antagonist sulpiride with genetic analysis of the DA D2 receptor in a behavioral study of reinforcement learning in a sample of 78 healthy male volunteers. In contrast to predictions of prevailing models emphasizing DA's pivotal role in learning via prediction errors, we found that sulpiride did not disrupt learning, but rather induced profound impairments in choice performance. The disruption was selective for stimuli indicating reward, whereas loss avoidance performance was unaffected. Effects were driven by volunteers with higher serum levels of the drug, and in those with genetically determined lower density of striatal DA D2 receptors. This is the clearest demonstration to date for a causal modulatory role of the DA D2 receptor in choice performance that might be distinct from learning. Our findings challenge current reward prediction error models of reinforcement learning, and suggest that classical animal models emphasizing a role of postsynaptic DA D2 receptors in motivational aspects of reinforcement learning may apply to humans as well.

  18. P2Y Receptors Sensitize Mouse and Human Colonic Nociceptors

    PubMed Central

    Hockley, James R. F.; Tranter, Michael M.; McGuire, Cian; Boundouki, George; Cibert-Goton, Vincent; Thaha, Mohamed A.; Blackshaw, L. Ashley; Michael, Gregory J.; Baker, Mark D.; Knowles, Charles H.; Winchester, Wendy J.

    2016-01-01

    Activation of visceral nociceptors by inflammatory mediators contributes to visceral hypersensitivity and abdominal pain associated with many gastrointestinal disorders. Purine and pyrimidine nucleotides (e.g., ATP and UTP) are strongly implicated in this process following their release from epithelial cells during mechanical stimulation of the gut, and from immune cells during inflammation. Actions of ATP are mediated through both ionotropic P2X receptors and metabotropic P2Y receptors. P2X receptor activation causes excitation of visceral afferents; however, the impact of P2Y receptor activation on visceral afferents innervating the gut is unclear. Here we investigate the effects of stimulating P2Y receptors in isolated mouse colonic sensory neurons, and visceral nociceptor fibers in mouse and human nerve-gut preparations. Additionally, we investigate the role of Nav1.9 in mediating murine responses. The application of UTP (P2Y2 and P2Y4 agonist) sensitized colonic sensory neurons by increasing action potential firing to current injection and depolarizing the membrane potential. The application of ADP (P2Y1, P2Y12, and P2Y13 agonist) also increased action potential firing, an effect blocked by the selective P2Y1 receptor antagonist MRS2500. UTP or ADP stimulated afferents, including mouse and human visceral nociceptors, in nerve-gut preparations. P2Y1 and P2Y2 transcripts were detected in 80% and 56% of retrogradely labeled colonic neurons, respectively. Nav1.9 transcripts colocalized in 86% of P2Y1-positive and 100% of P2Y2-positive colonic neurons, consistent with reduced afferent fiber responses to UTP and ADP in Nav1.9−/− mice. These data demonstrate that P2Y receptor activation stimulates mouse and human visceral nociceptors, highlighting P2Y-dependent mechanisms in the generation of visceral pain during gastrointestinal disease. SIGNIFICANCE STATEMENT Chronic visceral pain is a debilitating symptom of many gastrointestinal disorders. The activation of

  19. Increased EGF receptors on human squamous carcinoma cell lines.

    PubMed Central

    Cowley, G. P.; Smith, J. A.; Gusterson, B. A.

    1986-01-01

    Characterisation and quantitation of epidermal growth factor receptors (EGFR) have been carried out on eight human squamous carcinoma cell lines and the results compared with those from simian virus transformed keratinocytes and normal keratinocytes grown under similar conditions. All cells tested possess both high and low affinity receptors with dissociation constants ranging from 2.4 X 10(-10) M to 5.4 X 10(-9) M. When epidermal growth factor (EGF) binds to its receptor it is internalised and degraded and the receptor is down regulated. Malignant cells and virally transformed cells possess 5-50 times more EGF receptors than normal keratinocytes and one cell line LICR-LON-HN-5 possesses up to 1.4 X 10(7) receptors per cell, which is the highest number yet reported for a cell line. These results are discussed in the context of recent data that suggest that the increased expression of EGF receptors in epidermoid malignancies may be an important component of the malignant phenotype in these tumours. PMID:2420349

  20. Overview of genetic analysis of human opioid receptors.

    PubMed

    Spampinato, Santi M

    2015-01-01

    The human μ-opioid receptor gene (OPRM1), due to its genetic and structural variation, has been a target of interest in several pharmacogenetic studies. The μ-opioid receptor (MOR), encoded by OPRM1, contributes to regulate the analgesic response to pain and also controls the rewarding effects of many drugs of abuse, including opioids, nicotine, and alcohol. Genetic polymorphisms of opioid receptors are candidates for the variability of clinical opioid effects. The non-synonymous polymorphism A118G of the OPRM1 has been repeatedly associated with the efficacy of opioid treatments for pain and various types of dependence. Genetic analysis of human opioid receptors has evidenced the presence of numerous polymorphisms either in exonic or in intronic sequences as well as the presence of synonymous coding variants that may have important effects on transcription, mRNA stability, and splicing, thus affecting gene function despite not directly disrupting any specific residue. Genotyping of opioid receptors is still in its infancy and a relevant progress in this field can be achieved by using advanced gene sequencing techniques described in this review that allow the researchers to obtain vast quantities of data on human genomes and transcriptomes in a brief period of time and with affordable costs.

  1. Dysfunctional platelet membrane receptors: from humans to mice.

    PubMed

    Ware, Jerry

    2004-09-01

    Insights into hemostasis and thrombosis have historically benefited from the astute diagnosis of human bleeding and thrombotic disorders followed by decades of careful biochemical characterization. This work has set the stage for the development of a number of mouse models of hemostasis and thrombosis generated by gene targeting strategies in the mouse genome. The utility of these models is the in depth analysis that can be performed on the precise molecular interactions that support hemostasis and thrombosis along with efficacy testing of various therapeutic strategies. Already the mouse has proven to be an excellent model of the processes that support hemostasis and thrombosis in the human vasculature. A brief summary of the salient phenotypes from knockout mice missing key platelet receptors is presented, including the glycoprotein (GP) Ib-IX-V and GP IIb/IIIa (alphaIIb/beta3) receptors; the collagen receptors, GP VI and alpha2/beta1; the protease activated receptors (PARs); and the purinergic receptors, P2Y(1) and P2Y(12). A few differences exist between mouse and human platelets and where appropriate those will be highlighted in this review. Concluding remarks focus on the importance of understanding the power and limitations of various in vitro, ex vivo and in vivo models currently being used and the impact of the mouse strain on the described platelet phenotype.

  2. Pathogen receptor discovery with a microfluidic human membrane protein array.

    PubMed

    Glick, Yair; Ben-Ari, Ya'ara; Drayman, Nir; Pellach, Michal; Neveu, Gregory; Boonyaratanakornkit, Jim; Avrahami, Dorit; Einav, Shirit; Oppenheim, Ariella; Gerber, Doron

    2016-04-19

    The discovery of how a pathogen invades a cell requires one to determine which host cell receptors are exploited. This determination is a challenging problem because the receptor is invariably a membrane protein, which represents an Achilles heel in proteomics. We have developed a universal platform for high-throughput expression and interaction studies of membrane proteins by creating a microfluidic-based comprehensive human membrane protein array (MPA). The MPA is, to our knowledge, the first of its kind and offers a powerful alternative to conventional proteomics by enabling the simultaneous study of 2,100 membrane proteins. We characterized direct interactions of a whole nonenveloped virus (simian virus 40), as well as those of the hepatitis delta enveloped virus large form antigen, with candidate host receptors expressed on the MPA. Selected newly discovered membrane protein-pathogen interactions were validated by conventional methods, demonstrating that the MPA is an important tool for cellular receptor discovery and for understanding pathogen tropism.

  3. A model of the human M2 muscarinic acetylcholine receptor

    NASA Astrophysics Data System (ADS)

    Jöhren, Kirstin; Höltje, Hans-Dieter

    2002-11-01

    The M2 muscarinic acetylcholine receptor belongs to the family of rhodopsin like G-Protein Coupled Receptors. This subtype of muscarinic receptors is of special interest because it bears, aside from an orthosteric binding site, also an allosteric binding site. Based on the X-ray structure of bovine rhodopsin a complete homology model of the human M2 receptor was developed. For the orthosteric binding site point mutations and binding studies with different agonists and antagonists are available. This knowledge was utilized for an initial verification of the M2 model. Allosteric modulation of activity is mediated by structurally different ligands such as gallamine, caracurine V salts or W84 (a hexamethonium-derivative). Caracurine V derivatives with different affinities to M2 were docked using GRID-fields. Subsequent molecular dynamics simulations yielded different binding energies based on diverse electrostatic and lipophilic interactions. The calculated affinities are in good agreement to experimentally determined affinities.

  4. The structural basis for receptor recognition of human interleukin-18

    DOE PAGES

    Tsutsumi, Naotaka; Kimura, Takeshi; Arita, Kyohei; ...

    2014-12-15

    Interleukin (IL)-18 is a proinflammatory cytokine that belongs to the IL-1 family and plays an important role in inflammation. The uncontrolled release of this cytokine is associated with severe chronic inflammatory disease. IL-18 forms a signalling complex with the IL-18 receptor α (Rα) and β (Rβ) chains at the plasma membrane, which induces multiple inflammatory cytokines. Here, we present a crystal structure of human IL-18 bound to the two receptor extracellular domains. Generally, the receptors’ recognition mode for IL-18 is similar to IL-1β; however, certain notable differences were observed. The architecture of the IL-18 receptor second domain (D2) is uniquemore » among the other IL-1R family members, which presumably distinguishes them from the IL-1 receptors that exhibit a more promiscuous ligand recognition mode. The structures and associated biochemical and cellular data should aid in developing novel drugs to neutralize IL-8 activity.« less

  5. The structural basis for receptor recognition of human interleukin-18

    SciTech Connect

    Tsutsumi, Naotaka; Kimura, Takeshi; Arita, Kyohei; Ariyoshi, Mariko; Ohnishi, Hidenori; Yamamoto, Takahiro; Zuo, Xiaobing; Maenaka, Katsumi; Park, Enoch Y.; Kondo, Naomi; Shirakawa, Masahiro; Tochio, Hidehito; Kato, Zenichiro

    2014-12-15

    Interleukin (IL)-18 is a proinflammatory cytokine that belongs to the IL-1 family and plays an important role in inflammation. The uncontrolled release of this cytokine is associated with severe chronic inflammatory disease. IL-18 forms a signalling complex with the IL-18 receptor α (Rα) and β (Rβ) chains at the plasma membrane, which induces multiple inflammatory cytokines. Here, we present a crystal structure of human IL-18 bound to the two receptor extracellular domains. Generally, the receptors’ recognition mode for IL-18 is similar to IL-1β; however, certain notable differences were observed. The architecture of the IL-18 receptor second domain (D2) is unique among the other IL-1R family members, which presumably distinguishes them from the IL-1 receptors that exhibit a more promiscuous ligand recognition mode. The structures and associated biochemical and cellular data should aid in developing novel drugs to neutralize IL-8 activity.

  6. Adenovirus-receptor interaction with human lymphocytes.

    PubMed

    Mentel, R; Döpping, G; Wegner, U; Seidel, W; Liebermann, H; Döhner, L

    1997-03-01

    Lymphocytes play a key role in cell-mediated immunity and are host cells for several viral and bacterial pathogens. Their importance in adenovirus (Ad) infections is not yet fully understood. The initial event, the attachment of Ad to lymphocytes and their subsets, was examined using flow cytometry. The study included analysis of stimulated T cells in binding assays with FITC-labeled Ad fiber. The results confirm that native peripheral lymphocytes express very small amounts of Ad receptors. Stimulation with PHA and interleukin 2 induced the expression. The presence of Ad DNA as a sign of internalization in stimulated cells was demonstrated using the polymerase chain reaction. The findings suggest that lymphocytes after stimulation can turn into target cells for Ad. This is particularly important if there are indications for persistence of Ad, and in the case of immunocompromised patients severe, life-threatening diseases can develop.

  7. Structure of the human histamine H1 receptor gene.

    PubMed Central

    De Backer, M D; Loonen, I; Verhasselt, P; Neefs, J M; Luyten, W H

    1998-01-01

    Histamine H1 receptor expression has been reported to change in disorders such as allergic rhinitis, autoimmune myocarditis, rheumatoid arthritis and atherosclerosis. Here we report the isolation and characterization of genomic clones containing the 5' flanking (regulatory) region of the human histamine H1 receptor gene. An intron of approx. 5.8 kb was identified in the 5' untranslated region, which suggests that an entire subfamily of G-protein-coupled receptors may contain an intron immediately upstream of the start codon. The transcription initiation site was mapped by 5' rapid amplification of cDNA ends to a region 6.2 kb upstream of the start codon. Immediately upstream of the transcription start site a fragment of 1.85 kb was identified that showed promoter activity when placed upstream of a luciferase reporter gene and transiently transfected into cells expressing the histamine H1 receptor. The promoter sequence shares a number of characteristics with the promoter sequences of other G-protein-coupled receptor encoding genes, including binding sites for several transcription factors, and the absence of TATA and CAAT sequences at the appropriate locations. The promoter sequence described here differs from that reported previously [Fukui, Fujimoto, Mizuguchi, Sakamoto, Horio, Takai, Yamada and Ito (1994) Biochem. Biophys. Res. Commun. 201, 894-901] because the reported genomic clone was chimaeric. Furthermore our study provides evidence that the 3' untranslated region of the H1 receptor mRNA is much longer than previously accepted. Together, these findings provide a complete view of the structure of the human histamine H1 receptor gene. Both the coding region of the H1 receptor gene and its promoter region were independently mapped to chromosome 3p25. PMID:9794809

  8. Crystal structure of human interferon-γ receptor 2 reveals the structural basis for receptor specificity

    PubMed Central

    Mikulecký, Pavel; Zahradník, Jirí; Kolenko, Petr; Černý, Jiří; Charnavets, Tatsiana; Kolářová, Lucie; Nečasová, Iva; Pham, Phuong Ngoc; Schneider, Bohdan

    2016-01-01

    Interferon-γ receptor 2 is a cell-surface receptor that is required for interferon-γ signalling and therefore plays a critical immunoregulatory role in innate and adaptive immunity against viral and also bacterial and protozoal infections. A crystal structure of the extracellular part of human interferon-γ receptor 2 (IFNγR2) was solved by molecular replacement at 1.8 Å resolution. Similar to other class 2 receptors, IFNγR2 has two fibronectin type III domains. The characteristic structural features of IFNγR2 are concentrated in its N-terminal domain: an extensive π–cation motif of stacked residues KWRWRH, a NAG–W–NAG sandwich (where NAG stands for N-acetyl-d-glucosamine) and finally a helix formed by residues 78–85, which is unique among class 2 receptors. Mass spectrometry and mutational analyses showed the importance of N-linked glycosylation to the stability of the protein and confirmed the presence of two disulfide bonds. Structure-based bioinformatic analysis revealed independent evolutionary behaviour of both receptor domains and, together with multiple sequence alignment, identified putative binding sites for interferon-γ and receptor 1, the ligands of IFNγR2. PMID:27599734

  9. Production of a bioengineered G-protein coupled receptor of human formyl peptide receptor 3.

    PubMed

    Wang, Xiaoqiang; Zhang, Shuguang

    2011-01-01

    G-protein coupled receptors (GPCRs) participate in a wide range of vital regulations of our physiological actions. They are also of pharmaceutical importance and have become many therapeutic targets for a number of disorders and diseases. Purified GPCR-based approaches including structural study and novel biophysical and biochemical function analyses are increasingly being used in GPCR-directed drug discovery. Before these approaches become routine, however, several hurdles need to be overcome; they include overexpression, solubilization, and purification of large quantities of functional and stable receptors on a regular basis. Here we report milligram production of a human formyl peptide receptor 3 (FPR3). FPR3 comprises a functionally distinct GPCR subfamily that is involved in leukocyte chemotaxis and activation. The bioengineered FPR3 was overexpressed in stable tetracycline-inducible mammalian cell lines (HEK293S). After a systematic detergent screening, fos-choline-14 (FC-14) was selected for subsequent solubilization and purification processes. A two-step purification method, immunoaffinity using anti-rho-tag monoclonal antibody 1D4 and gel filtration, was used to purify the receptors to near homogeneity. Immunofluorescence analysis showed that expressed FPR3 was predominantly displayed on cellular membrane. Secondary structural analysis using circular dichroism showed that the purified FPR3 receptor was correctly folded with >50% α-helix, which is similar to other known GPCR secondary structures. Our method can readily produce milligram quantities of human FPR3, which would facilitate in developing human FPR as therapeutic drug targets.

  10. Estrogen Receptor Mutants/Variants in Human Breast Cancer.

    DTIC Science & Technology

    1997-12-01

    Recherche Louis- Charles Simard, Montreal, Canada. Four nor- mal human breast tissues from reduction mammoplasties of pre- menopausal women were obtained...to hormone resistance. Cancer Res 1990; 50: 6208-17. 22. Karnik PS, Kulkarni S, Lui XP, Budd GT, Bukowski RM. Estrogen receptor mutations in

  11. Human articular chondrocytes express functional leukotriene B4 receptors

    PubMed Central

    Hansen, Ann Kristin; Indrevik, Jill-Tove; Figenschau, Yngve; Martinez-Zubiaurre, Inigo; Sveinbjörnsson, Baldur

    2015-01-01

    Leukotriene B4 (LTB4) is a potent chemoattractant associated with the development of osteoarthritis (OA), while its receptors BLT1 and BLT2 have been found in synovium and subchondral bone. In this study, we have investigated whether these receptors are also expressed by human cartilage cells and their potential effects on cartilage cells. The expression of LTB4 receptors in native tissue and cultured cells was assessed by immunohistochemistry, immunocytochemistry, polymerase chain reaction (PCR) and electron microscopy. The functional significance of the LTB4 receptor expression was studied by Western blotting, using phospho-specific antibodies in the presence or absence of receptor antagonists. In further studies, the secretion of pro-inflammatory cytokines, growth factors and metalloproteinases by LTB4-stimulated chondrocytes was measured by multiplex protein assays. The effects of LTB4 in cartilage signature gene expression in cultured cells were assessed by quantitative PCR, whereas the LTB4-promoted matrix synthesis was determined using 3D pellet cultures. Both receptors were present in cultured chondrocytes, as was confirmed by immunolabelling and PCR. The relative quantification by PCR demonstrated a higher expression of the receptors in cells from healthy joints compared with OA cases. The stimulation of cultured chondrocytes with LTB4 resulted in a phosphorylation of downstream transcription factor Erk 1/2, which was reduced after blocking BLT1 signalling. No alteration in the secretion of cytokine and metalloproteinases was recorded after challenging cultured cells with LTB4; likewise, cartilage matrix gene expression and 3D tissue synthesis were unaffected. Chondrocytes express BLT1 and BLT2 receptors, and LTB4 activates the downstream Erk 1/2 pathway by engaging the high-affinity receptor BLT1. However, any putative role in cartilage biology could not be revealed, and remains to be clarified. PMID:25677035

  12. Desensitization of oxytocin receptors in human myometrium.

    PubMed

    Phaneuf, S; Asbóth, G; Carrasco, M P; Liñares, B R; Kimura, T; Harris, A; Bernal, A L

    1998-01-01

    In the present study, we investigated the possible mechanisms by which oxytocin might regulate oxytocin receptor (OTR) density. Exposure of cultured myometrial cells to oxytocin for a prolonged period caused desensitization: the steady-state level of oxytocin binding was 210 x 10(3) binding sites/cell, but this was time-dependently reduced to 20.1 x 10(3) sites/cell by exposing the cells to oxytocin for up to 20 h. In contrast, Western blotting data showed that the total amount of OTR protein was not affected by oxytocin treatment for up to 24 h. Flow cytometry experiments demonstrated that OTRs were not internalized during this treatment. However, RNase protection assays and Northern analysis showed that in cultured myometrial cells OTR mRNA was reduced by oxytocin treatment to reach a new low steady-state concentration. Analysis of this mRNA in myometrial biopsies from 17 patients undergoing emergency Caesarean section showed how it decreased with advancing labour. Samples obtained after 12 h of labour contained approximately 50 times less OTR mRNA than samples obtained from patients in labour for less than 12 h. We speculate that this decrease in OTR mRNA represents in-vivo OTR desensitization.

  13. Glucocorticoid receptor activation and inactivation in cultured human lymphocytes.

    PubMed

    Wheeler, R H; Leach, K L; La Forest, A C; O'Toole, T E; Wagner, R; Pratt, W B

    1981-01-10

    Although glucocorticoids are not cytolytic for and do not inhibit the growth of the IM-9 line of cultured human lymphoblasts, these cells have a high steroid-binding capacity. We have used IM-9 cells in order to examine whether unoccupied glucocorticoid receptors are inactivated and activated in intact cells. when IM-9 cells are incubated in glucose-free medium in a nitrogen atmosphere, both their ability to bind triamcinolone acetonide and their ATP levels decline and, when glucose and oxygen are reintroduced, ATP levels and receptor activity return. The specific glucocorticoid-binding activity of cytosol prepared from cells exposed to various degrees of energy limitation is directly correlated with the ATP content. Receptor activation in intact cells is rapid and independent of protein synthesis. Cytosol prepared from inactivated cells cannot be activated by addition of ATP. The inactivation of glucocorticoid receptors that occurs when cytosol from normal IM-9 cells is incubated at 25 degrees C is inhibited by molybdate, vanadate, fluoride, ATP, and several other nucleotides. The experiments with intact human lymphoblasts suggest that assays of specific glucocorticoid-binding capacity do not necessarily reflect the cellular content of receptor protein.

  14. Characterization of the human platelet Fc sub. gamma. receptor

    SciTech Connect

    King, M.

    1988-01-01

    Thrombocytopenia is often associated with immune complex disease and may in part be due to the interaction of circulating (IgG) immune complexes with an Fc{sub {gamma}} receptor on the platelet surface. Characterization of the immune complex-platelet interaction should provide for a better understanding of the pathophysiology of immune thrombocytpenia. To this end, a ligand binding assay, employing {sup 125}I-IgG trimer, was established. Receptor expression was determined by measuring the saturable binding of radiolabeled trimer to platelets at equilibrium. Normal human platelets were observed to express 8559 {plus minus} 852 binding sites for IgG trimer with a Kd of 12.5 {plus minus} 1.7 {times} 10{sup {minus}8} M. Binding of IgG trimer to human platelets was blocked following preincubation of the cells with an anti-Fc{sub {gamma}}RII monoclonal antibody. Furthermore, this binding was ionic-strength dependent but was unaffected by the presence of Mg{sup ++} or cytochalasin B. Platelet Fc{sub {gamma}} receptor modulation was examined by assessing the effects of various physiologic and pharmacologic on the ability of platelets to bind IgG trimer. Platelet Fc{sub {gamma}} receptor expression was not affected by thrombin, ADP, or {gamma}-interferon. However, in 7/12 normal donors, treatment of platelets with dexamethasone resulted in a decrease in the number of Fc{sub {gamma}} receptors expressed.

  15. The role of GABAB receptors in human reinforcement learning.

    PubMed

    Ort, Andres; Kometer, Michael; Rohde, Judith; Seifritz, Erich; Vollenweider, Franz X

    2014-10-01

    Behavioral evidence from human studies suggests that the γ-aminobutyric acid type B receptor (GABAB receptor) agonist baclofen modulates reinforcement learning and reduces craving in patients with addiction spectrum disorders. However, in contrast to the well established role of dopamine in reinforcement learning, the mechanisms by which the GABAB receptor influences reinforcement learning in humans remain completely unknown. To further elucidate this issue, a cross-over, double-blind, placebo-controlled study was performed in healthy human subjects (N=15) to test the effects of baclofen (20 and 50mg p.o.) on probabilistic reinforcement learning. Outcomes were the feedback-induced P2 component of the event-related potential, the feedback-related negativity, and the P300 component of the event-related potential. Baclofen produced a reduction of P2 amplitude over the course of the experiment, but did not modulate the feedback-related negativity. Furthermore, there was a trend towards increased learning after baclofen administration relative to placebo over the course of the experiment. The present results extend previous theories of reinforcement learning, which focus on the importance of mesolimbic dopamine signaling, and indicate that stimulation of cortical GABAB receptors in a fronto-parietal network leads to better attentional allocation in reinforcement learning. This observation is a first step in our understanding of how baclofen may improve reinforcement learning in healthy subjects. Further studies with bigger sample sizes are needed to corroborate this conclusion and furthermore, test this effect in patients with addiction spectrum disorder.

  16. Antagonistic action of pitrazepin on human and rat GABAA receptors

    PubMed Central

    Demuro, Angelo; Martinez-Torres, Ataulfo; Francesconi, Walter; Miledi, Ricardo

    1999-01-01

    Pitrazepin, 3-(piperazinyl-1)-9H-dibenz(c,f) triazolo(4,5-a)azepin is a piperazine antagonist of GABA in a variety of electrophysiological and in vitro binding studies involving GABA and glycine receptors. In the present study we have investigated the effects of pitrazepin, and the GABAA antagonist bicuculline, on membrane currents elicited by GABA in Xenopus oocytes injected with rat cerebral cortex mRNA or cDNAs encoding α1β2 or α1β2γ2S human GABAA receptor subunits.The three types of GABAA receptors expressed were reversibly antagonized by bicuculline and pitrazepin in a concentration-dependent manner. GABA dose-current response curves for the three types of receptors were shifted to the right, in a parallel manner, by increasing concentrations of pitrazepin.Schild analyses gave pA2 values of 6.42±0.62, n=4, 6.41±1.2, n=5 and 6.21±1.24, n=6, in oocytes expressing rat cerebral cortex, α1β2 or α1β2γ2S human GABAA receptors respectively (values are given as means±s.e.mean), and the Hill coefficients were all close to unity. All this is consistent with the notion that pitrazepin acts as a competitive antagonist of these GABAA receptors; and that their antagonism by pitrazepin is not strongly dependent on the subunit composition of the receptors here studied.Since pitrazepin has been reported to act also at the benzodiazepine binding site, we studied the effect of the benzodiazepine antagonist Ro 15-1788 (flumazenil) on the inhibition of α1β2γ2S receptors by pitrazepin. Co-application of Ro 15-1788 did not alter the inhibiting effect of pitrazepin. Moreover, pitrazepin did not antagonize the potentiation of GABA-currents by flunitrazepam. All this suggests that pitrazepin does not affect the GABA receptor-chloride channel by interacting with the benzodiazepine receptor site. PMID:10369456

  17. Ionotropic GABA and Glutamate Receptor Mutations and Human Neurologic Diseases

    PubMed Central

    Yuan, Hongjie; Low, Chian-Ming; Moody, Olivia A.; Jenkins, Andrew

    2015-01-01

    The advent of whole exome/genome sequencing and the technology-driven reduction in the cost of next-generation sequencing as well as the introduction of diagnostic-targeted sequencing chips have resulted in an unprecedented volume of data directly linking patient genomic variability to disorders of the brain. This information has the potential to transform our understanding of neurologic disorders by improving diagnoses, illuminating the molecular heterogeneity underlying diseases, and identifying new targets for therapeutic treatment. There is a strong history of mutations in GABA receptor genes being involved in neurologic diseases, particularly the epilepsies. In addition, a substantial number of variants and mutations have been found in GABA receptor genes in patients with autism, schizophrenia, and addiction, suggesting potential links between the GABA receptors and these conditions. A new and unexpected outcome from sequencing efforts has been the surprising number of mutations found in glutamate receptor subunits, with the GRIN2A gene encoding the GluN2A N-methyl-d-aspartate receptor subunit being most often affected. These mutations are associated with multiple neurologic conditions, for which seizure disorders comprise the largest group. The GluN2A subunit appears to be a locus for epilepsy, which holds important therapeutic implications. Virtually all α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor mutations, most of which occur within GRIA3, are from patients with intellectual disabilities, suggesting a link to this condition. Similarly, the most common phenotype for kainate receptor variants is intellectual disability. Herein, we summarize the current understanding of disease-associated mutations in ionotropic GABA and glutamate receptor families, and discuss implications regarding the identification of human mutations and treatment of neurologic diseases. PMID:25904555

  18. Cloning and expression of the human vasoactive intestinal peptide receptor.

    PubMed Central

    Sreedharan, S P; Robichon, A; Peterson, K E; Goetzl, E J

    1991-01-01

    Vasoactive intestinal peptide (VIP) is a neuroendocrine mediator found in the central and peripheral nervous system. Distinct subsets of neural, respiratory, gastrointestinal, and immune cells bear specific high-affinity receptors for VIP, which are associated with a guanine nucleotide-binding (G) protein capable of activating adenylate cyclase. A cDNA clone (GPRN1) encoding the human VIP receptor was identified in libraries prepared from the Nalm 6 line of leukemic pre-B lymphoblasts and the HT-29 line of colon carcinoma cells. The deduced 362-amino acid polypeptide sequence encoded by GPRN1 shares a seven-transmembrane-segment hydropathicity profile with other G protein-coupled receptors. Northern blot analyses identified a 2.7-kilobase transcript of the VIP receptor in Nalm 6 and HT-29 cells as well as in tissues from rat brain, colon, heart, lung, kidney, spleen, and small intestine. COS-6 cells transfected with GPRN1 bound 125I-labeled VIP specifically with a dissociation constant (Kd) of 2.5 nM. VIP--and less effectively secretin, peptide histidine isoleucine (PHI), and glucagon competitively displaced bound 125I-VIP from transfected COS-6 cells, with potencies in the order VIP greater than secretin = PHI much greater than glucagon. VIP stimulated adenylate cyclase activity in stably transfected Chinese hamster ovary K1 cells, inducing a 3-fold increase in the intracellular level of cAMP. When the antisense orientation of the VIP receptor clone was introduced into HT-29 cells, there was a 50% suppression of the specific binding of 125I-VIP and of the VIP-induced increase in cAMP level, relative to untransfected cells. The VIP receptor cloned exhibits less than or equal to 24% homology with other receptors in the same superfamily and thus represents a subset of G protein-coupled receptors for peptide ligands. Images PMID:1675791

  19. Linking Functional Domains of the Human Insulin Receptor with the Bacterial Aspartate Receptor

    NASA Astrophysics Data System (ADS)

    Ellis, Leland; Morgan, David O.; Koshland, Daniel E.; Clauser, Eric; Moe, Gregory R.; Bollag, Gideon; Roth, Richard A.; Rutter, William J.

    1986-11-01

    A hybrid receptor has been constructed that is composed of the extracellular domain of the human insulin receptor fused to the transmembrane and cytoplasmic domains of the bacterial aspartate chemoreceptor. This hybrid protein can be expressed in rodent (CHO) cells and displays several functional features comparable to wild-type insulin receptor. It is localized to the cell surface, binds insulin with high affinity, forms oligomers, and is recognized by conformation-specific monoclonal antibodies. Although most of the expressed protein accumulates as a 180-kDa proreceptor, some processed 135-kDa receptor can be detected on the cell surface by covalent cross-linking. Expression of the hybrid receptor inhibits the insulin-activated uptake of 2-deoxyglucose by CHO cells. Thus, this hybrid is partially functional and can be processed; however, it is incapable of native transmembrane signaling. The results indicate that the intact domains of different types of receptors can retain some of the native features in a hybrid molecule but specific requirements will need to be satisfied for transmembrane signaling.

  20. Human Polyomavirus Receptor Distribution in Brain Parenchyma Contrasts with Receptor Distribution in Kidney and Choroid Plexus

    PubMed Central

    Haley, Sheila A.; O'Hara, Bethany A.; Nelson, Christian D.S.; Brittingham, Frances L.P.; Henriksen, Kammi J.; Stopa, Edward G.; Atwood, Walter J.

    2016-01-01

    The human polyomavirus, JCPyV, is the causative agent of progressive multifocal leukoencephalopathy, a rare demyelinating disease that occurs in the setting of prolonged immunosuppression. After initial asymptomatic infection, the virus establishes lifelong persistence in the kidney and possibly other extraneural sites. In rare instances, the virus traffics to the central nervous system, where oligodendrocytes, astrocytes, and glial precursors are susceptible to lytic infection, resulting in progressive multifocal leukoencephalopathy. The mechanisms by which the virus traffics to the central nervous system from peripheral sites remain unknown. Lactoseries tetrasaccharide c (LSTc), a pentasaccharide containing a terminal α2,6–linked sialic acid, is the major attachment receptor for polyomavirus. In addition to LSTc, type 2 serotonin receptors are required for facilitating virus entry into susceptible cells. We studied the distribution of virus receptors in kidney and brain using lectins, antibodies, and labeled virus. The distribution of LSTc, serotonin receptors, and virus binding sites overlapped in kidney and in the choroid plexus. In brain parenchyma, serotonin receptors were expressed on oligodendrocytes and astrocytes, but these cells were negative for LSTc and did not bind virus. LSTc was instead found on microglia and vascular endothelium, to which virus bound abundantly. Receptor distribution was not changed in the brains of patients with progressive multifocal leukoencephalopathy. Virus infection of oligodendrocytes and astrocytes during disease progression is LSTc independent. PMID:26056932

  1. Human polyomavirus receptor distribution in brain parenchyma contrasts with receptor distribution in kidney and choroid plexus.

    PubMed

    Haley, Sheila A; O'Hara, Bethany A; Nelson, Christian D S; Brittingham, Frances L P; Henriksen, Kammi J; Stopa, Edward G; Atwood, Walter J

    2015-08-01

    The human polyomavirus, JCPyV, is the causative agent of progressive multifocal leukoencephalopathy, a rare demyelinating disease that occurs in the setting of prolonged immunosuppression. After initial asymptomatic infection, the virus establishes lifelong persistence in the kidney and possibly other extraneural sites. In rare instances, the virus traffics to the central nervous system, where oligodendrocytes, astrocytes, and glial precursors are susceptible to lytic infection, resulting in progressive multifocal leukoencephalopathy. The mechanisms by which the virus traffics to the central nervous system from peripheral sites remain unknown. Lactoseries tetrasaccharide c (LSTc), a pentasaccharide containing a terminal α2,6-linked sialic acid, is the major attachment receptor for polyomavirus. In addition to LSTc, type 2 serotonin receptors are required for facilitating virus entry into susceptible cells. We studied the distribution of virus receptors in kidney and brain using lectins, antibodies, and labeled virus. The distribution of LSTc, serotonin receptors, and virus binding sites overlapped in kidney and in the choroid plexus. In brain parenchyma, serotonin receptors were expressed on oligodendrocytes and astrocytes, but these cells were negative for LSTc and did not bind virus. LSTc was instead found on microglia and vascular endothelium, to which virus bound abundantly. Receptor distribution was not changed in the brains of patients with progressive multifocal leukoencephalopathy. Virus infection of oligodendrocytes and astrocytes during disease progression is LSTc independent.

  2. Clinically used selective oestrogen receptor modulators increase LDL receptor activity in primary human lymphocytes

    PubMed Central

    Cerrato, F; Fernández-Suárez, M E; Alonso, R; Alonso, M; Vázquez, C; Pastor, O; Mata, P; Lasunción, M A; Gómez-Coronado, D

    2015-01-01

    Background and Purpose Treatment with selective oestrogen receptor modulators (SERMs) reduces low-density lipoprotein (LDL) cholesterol levels. We assessed the effect of tamoxifen, raloxifene and toremifene and their combinations with lovastatin on LDL receptor activity in lymphocytes from normolipidaemic and familial hypercholesterolaemic (FH) subjects, and human HepG2 hepatocytes and MOLT-4 lymphoblasts. Experimental Approach Lymphocytes were isolated from peripheral blood, treated with different compounds, and 1,1′-dioctadecyl-3,3,3,3′-tetramethylindocarbocyanine perchlorate (DiI)-labelled LDL uptake was analysed by flow cytometry. Key Results Tamoxifen, toremifene and raloxifene, in this order, stimulated DiI-LDL uptake by lymphocytes by inhibiting LDL-derived cholesterol trafficking and subsequent down-regulation of LDL receptor expression. Differently to what occurred in HepG2 and MOLT-4 cells, only tamoxifen consistently displayed a potentiating effect with lovastatin in primary lymphocytes. The SERM-mediated increase in LDL receptor activity was not altered by the anti-oestrogen ICI 182 780 nor was it reproduced by 17β-oestradiol. However, the tamoxifen-active metabolite endoxifen was equally effective as tamoxifen. The SERMs produced similar effects on LDL receptor activity in heterozygous FH lymphocytes as in normal lymphocytes, although none of them had a potentiating effect with lovastatin in heterozygous FH lymphocytes. The SERMs had no effect in homozygous FH lymphocytes. Conclusions and Implications Clinically used SERMs up-regulate LDL receptors in primary human lymphocytes. There is a mild enhancement between SERMs and lovastatin of lymphocyte LDLR activity, the potentiation being greater in HepG2 and MOLT-4 cells. The effect of SERMs is independent of oestrogen receptors but is preserved in the tamoxifen-active metabolite endoxifen. This mechanism may contribute to the cholesterol-lowering action of SERMs. PMID:25395200

  3. Toll-like receptor sensing of human herpesvirus infection

    PubMed Central

    West, John A.; Gregory, Sean M.; Damania, Blossom

    2012-01-01

    Toll-like receptors (TLRs) are evolutionarily conserved pathogen sensors that constitute the first line of defense in the human immune system. Herpesviruses are prevalent throughout the world and cause significant disease in the human population. Sensing of herpesviruses via TLRs has only been documented in the last 10 years and our understanding of the relationship between these sentinels of the immune system and herpesvirus infection has already provided great insight into how the host cell responds to viral infection. This report will summarize the activation and modulation of TLR signaling in the context of human herpesvirus infections. PMID:23061052

  4. Human eosinophils - potential pharmacological model applied in human histamine H4 receptor research.

    PubMed

    Grosicki, Marek; Kieć-Kononowicz, Katarzyna

    2015-01-01

    Histamine and histamine receptors are well known for their immunomodulatory role in inflammation. In this review we describe the role of histamine and histamine H4 receptor on human eosinophils. In the first part of article we provide short summary of histamine and histamine receptors role in physiology and histamine related therapeutics used in clinics. We briefly describe the human histamine receptor H4 and its ligands, as well as human eosinophils. In the second part of the review we provide detailed description of known histamine effects on eosinophils including: intracellular calcium concentration flux, actin polymerization, cellular shape change, upregulation of adhesion proteins and cellular chemotaxis. We provide proofs that these effects are mainly connected with the activation of histamine H4 receptor. When examining experimental data we discuss the controversial results and limitations of the studies performed on isolated eosinophils. In conclusion we believe that studies on histamine H4 receptor on human eosinophils can provide interesting new biomarkers that can be used in clinical studies of histamine receptors, that in future might result in the development of new strategies in the treatment of chronic inflammatory conditions like asthma or allergy, in which eosinophils are involved.

  5. Sigma and opioid receptors in human brain tumors

    SciTech Connect

    Thomas, G.E.; Szuecs, M.; Mamone, J.Y.; Bem, W.T.; Rush, M.D.; Johnson, F.E.; Coscia, C.J. )

    1990-01-01

    Human brain tumors and nude mouse-borne human neuroblastomas and gliomas were analyzed for sigma and opioid receptor content. Sigma binding was assessed using ({sup 3}H) 1, 3-di-o-tolylguanidine (DTG), whereas opioid receptor subtypes were measured with tritiated forms of the following: {mu}, (D-ala{sup 2}, mePhe{sup 4}, gly-ol{sup 5}) enkephalin (DAMGE); {kappa}, ethylketocyclazocine (EKC) or U69,593; {delta}, (D-pen{sup 2}, D-pen{sup 5}) enkephalin (DPDPE) or (D-ala{sup 2}, D-leu{sup 5}) enkephalin (DADLE) with {mu} suppressor present. Binding parameters were estimated by homologous displacement assays followed by analysis using the LIGAND program. Sigma binding was detected in 15 of 16 tumors examined with very high levels found in a brain metastasis from an adenocarcinoma of lung and a human neuroblastoma (SK-N-MC) passaged in nude mice. {kappa} opioid receptor binding was detected in 4 of 4 glioblastoma multiforme specimens and 2 of 2 human astrocytoma cell lines tested but not in the other brain tumors analyzed.

  6. Human platelets express authentic CB₁ and CB₂ receptors.

    PubMed

    Catani, M V; Gasperi, V; Catanzaro, G; Baldassarri, S; Bertoni, A; Sinigaglia, F; Avigliano, L; Maccarrone, M

    2010-11-01

    In the last decade, the neurovascular effects exerted by endocannabinoids (eCBs) have attracted growing interest, because they hold the promise to open new avenues of therapeutic intervention against major causes of death in Western society. Several actions of eCBs are mediated by type-1 (CB₁) or type-2 (CB₂) cannabinoid receptors, yet there is no clear evidence of the presence of these proteins in platelets. To demonstrate that CB₁ and CB₂ are expressed in human platelets, we analyzed their protein level by Western blotting and ELISA, visualized their cellular localization by confocal microscopy, and ascertained their functionality by binding assays. We found that CB₁, and to a lesser extent CB₂, are expressed in highly purified human platelets. Both receptor subtypes were predominantly localized inside the cell, thus explaining why they might remain undetected in preparations of plasma membranes. The identification of authentic CB₁ and CB₂ in human platelets supports the potential exploitation of selective agonists or antagonists of these receptors as novel therapeutics to combat neurovascular disorders. It seems remarkable that some of these substances have been already used in humans to treat disease states.

  7. Evolutionary diversification of the vertebrate transferrin multi-gene family.

    PubMed

    Hughes, Austin L; Friedman, Robert

    2014-11-01

    In a phylogenetic analysis of vertebrate transferrins (TFs), six major clades (subfamilies) were identified: (a) S, the mammalian serotransferrins; (b) ICA, the mammalian inhibitor of carbonic anhydrase (ICA) homologs; (c) L, the mammalian lactoferrins; (d) O, the ovotransferrins of birds and reptiles; (e) M, the melanotransferrins of bony fishes, amphibians, reptiles, birds, and mammals; and (f) M-like, a newly identified TF subfamily found in bony fishes, amphibians, reptiles, and birds. A phylogenetic tree based on the joint alignment of N-lobes and C-lobes supported the hypothesis that three separate events of internal duplication occurred in vertebrate TFs: (a) in the common ancestor of the M subfamily, (b) in the common ancestor of the M-like subfamily, and (c) in the common ancestor of other vertebrate TFs. The S, ICA, and L subfamilies were found only in placental mammals, and the phylogenetic analysis supported the hypothesis that these three subfamilies arose by gene duplication after the divergence of placental mammals from marsupials. The M-like subfamily was unusual in several respects, including the presence of a uniquely high proportion of clade-specific conserved residues, including distinctive but conserved residues in the sites homologous to those functioning in carbonate binding of human serotransferrin. The M-like family also showed an unusually high proportion of cationic residues in the positively charged region corresponding to human lactoferrampin, suggesting a distinctive role of this region in the M-like subfamily, perhaps in antimicrobial defense.

  8. Evolutionary Diversification of the Vertebrate Transferrin Multi-gene Family

    PubMed Central

    Hughes, Austin L.; Friedman, Robert

    2014-01-01

    In a phylogenetic analysis of vertebrate transferrins (TFs), six major clades (subfamilies) were identified: (1) S, the mammalian serotransferrins; (2) ICA, the mammalian inhibitor of carbonic anhydrase (ICA) homologs; (3) L, the mammalian lactoferrins; (4) O, the ovotransferrins of birds and reptiles; (4) M, the melanotransferrins of bony fishes, amphibians, reptiles, birds, and mammals; and (5) M-like, a newly identified TF subfamily found in bony fishes, amphibians, reptiles, and birds. A phylogenetic tree based on the joint alignment of N-lobes and C-lobes supported the hypothesis that three separate events of internal duplication occurred in vertebrate TFs: (1) in the common ancestor of the M subfamily; (2) in the common ancestor of the M-like subfamily; and (3) in the common ancestor of other vertebrate TFs. The S, ICA, and L subfamilies were found only in placental mammals, and the phylogenetic analysis supported the hypothesis that these three subfamilies arose by gene duplication after the divergence of placental mammals from marsupials. The M-like subfamily was unusual in several respects, including the presence of a uniquely high proportion of clade-specific conserved residues, including distinctive but conserved residues in the sites homologous to those functioning in carbonate binding of human serotransferrin. The M-like family also showed a unusually high proportion of cationic residues in the positively charged region corresponding to human lactoferrampin, suggesting a distinctive role of this region in the M-like subfamily, perhaps in antimicrobial defense. PMID:25142446

  9. Homology modelling of transferrin-binding protein A from Neisseria meningitidis.

    PubMed

    Oakhill, Jonathan S; Sutton, Brian J; Gorringe, Andrew R; Evans, Robert W

    2005-05-01

    Neisseria meningitidis, a causative agent of bacterial meningitis, obtains transferrin-bound iron by expressing two outer membrane located transferrin-binding proteins, TbpA and TbpB. TbpA is thought to be an integral outer membrane pore that facilitates iron uptake. Evidence suggests that TbpA is a useful antigen for inclusion in a vaccine effective against meningococcal disease, hence the identification of regions involved in ligand binding is of paramount importance to design strategies to block uptake of iron. The protein shares sequence and functional similarities to the Escherichia coli siderophore receptors FepA and FhuA, whose structures have been determined. These receptors are composed of two domains, a 22-stranded beta-barrel and an N-terminal plug region that sits within the barrel and occludes the transmembrane pore. A three-dimensional TbpA model was constructed using FepA and FhuA structural templates, hydrophobicity analysis and homology modelling. TbpA was found to possess a similar architecture to the siderophore receptors. In addition to providing insights into the highly immunogenic nature of TbpA and allowing the prediction of potentially important ligand-binding epitopes, the model also reveals a narrow channel through its entire length. The relevance of this channel and the spatial arrangement of external loops, to the mechanism of iron translocation employed by TbpA is discussed.

  10. Differential expression of laminin receptors in human hepatocellular carcinoma

    PubMed Central

    Ozaki, I; Yamamoto, K; Mizuta, T; Kajihara, S; Fukushima, N; Setoguchi, Y; Morito, F; Sakai, T

    1998-01-01

    Background—Laminin receptors are involved in cell-extracellular matrix interactions in malignant cells that show invasion and metastasis. Hepatocellular carcinoma frequently shows early invasion into blood vessels, and intrahepatic and extrahepatic metastases. However, the role of laminin receptors in hepatocellular carcinoma is unknown. 
Aims—To examine the expression of mRNA for laminin receptors and their isoforms in hepatocellular carcinoma. 
Methods—The expression of several laminin receptors, including α1 integrin, α6 integrin and its isoforms α6A and α6B, β1 integrin and its isoforms β1A and β1B, and 32kD/67kDa laminin binding protein was examined in human hepatocellular carcinomas and non-cancerous liver tissues using the reverse transcription polymerase chain reaction. 
Results—α6 Integrin, β1 integrin, and laminin binding protein showed notably increased expression in hepatocellular carcinoma, compared with non-cancerous liver tissue, although the α1 integrin did not show a significant change. Furthermore, β1B integrin, a splicing variant of β1 integrin, was overexpressed in hepatocellular carcinoma while the β1A integrin isoform did not show significant changes between hepatocellular carcinoma and surrounding non-cancerous liver tissue. 
Conclusions—The differential upregulation of laminin receptors and their splicing isoforms was shown in hepatocellular carcinoma, suggesting that certain laminin receptors and their isoforms may be involved in the development and progression of hepatocellular carcinoma. 

 Keywords: laminin receptor; integrin α6β1; hepatocellular carcinoma PMID:9824613

  11. Purine receptor mediated actin cytoskeleton remodeling of human fibroblasts

    PubMed Central

    Goldman, Nanna; Chandler-Militello, Devin; Langevin, Helene; Nedergaard, Maiken; Takano, Takahiro

    2013-01-01

    Earlier studies have shown that activation of adenosine A1 receptors on peripheral pain fibers contributes to acupuncture-induced suppression of painful input. In addition to adenosine, acupuncture triggers the release of other purines, including ATP and ADP that may bind to purine receptors on nearby fibroblasts. We here show that purine agonists trigger increase in cytosolic Ca 2+ signaling in a cultured human fibroblasts cell line. The profile of agonist-induced Ca2+ increases indicates that the cells express functional P2yR2 and P2yR4 receptors, as well as P2yR1 and P2xR7 receptors. Unexpectedly, purine-induced Ca2+ signaling was associated with a remodeling of the actin cytoskeleton. ATP induced a transient loss in F-actin stress fiber. The changes of actin cytoskeleton occurred slowly and peaked at 10 min after agonist exposure. Inhibition of ATP-induced increases in Ca2+ by cyclopiazonic acid blocked receptor-mediated cytoskeleton remodeling. The Ca2+ ionophore failed to induce cytoskeletal remodeling despite triggering robust increases in cytosolic Ca2+. These observations indicate that purine signaling induces transient changes in fibroblast cytoarchitecture that could be related to the beneficial effects of acupuncture. PMID:23462235

  12. Molecular and cellular analysis of human histamine receptor subtypes

    PubMed Central

    Seifert, Roland; Strasser, Andrea; Schneider, Erich H.; Neumann, Detlef; Dove, Stefan; Buschauer, Armin

    2013-01-01

    The human histamine receptors hH1R and hH2R constitute important drug targets, and hH3R and hH4R have substantial potential in this area. Considering the species-specificity of pharmacology of HxR orthologs, it is important to analyze hHxRs. Here,we summarize current knowledge of hHxRs endogenously expressed in human cells and hHxRs recombinantly expressed in mammalian and insect cells. We present the advantages and disadvantages of the various systems. We also discuss problems associated with the use of hHxR antibodies, an issue of general relevance for G-protein-coupled receptors (GPCRs). There is much greater overlap in activity of ‘selective’ ligands for other hHxRs than the cognate receptor subtype than generally appreciated. Studies with native and recombinant systems support the concept of ligand-specific receptor conformations, encompassing agonists and antagonists. It is emerging that for characterization of hHxR ligands, one cannot rely on a single test system and a single parameter. Rather, multiple systems and parameters have to be studied. Although such studies are time-consuming and expensive, ultimately, they will increase drug safety and efficacy. PMID:23254267

  13. Human psychometric and taste receptor responses to steviol glycosides.

    PubMed

    Hellfritsch, Caroline; Brockhoff, Anne; Stähler, Frauke; Meyerhof, Wolfgang; Hofmann, Thomas

    2012-07-11

    Steviol glycosides, the sweet principle of Stevia Rebaudiana (Bertoni) Bertoni, have recently been approved as a food additive in the EU. The herbal non-nutritive high-potency sweeteners perfectly meet the rising consumer demand for natural food ingredients in Europe. We have characterized the organoleptic properties of the most common steviol glycosides by an experimental approach combining human sensory studies and cell-based functional taste receptor expression assays. On the basis of their potency to elicit sweet and bitter taste sensations, we identified glycone chain length, pyranose substitution, and the C16 double bond as the structural features giving distinction to the gustatory profile of steviol glycosides. A comprehensive screening of 25 human bitter taste receptors revealed that two receptors, hTAS2R4 and hTAS2R14, mediate the bitter off-taste of steviol glycosides. For some test substances, e.g., stevioside, we observed a decline in sweet intensity at supra-maximum concentrations. This effect did not arise from allosteric modulation of the hTAS1R2/R3 sweet taste receptor but might be explained by intramolecular cross-modal suppression between the sweet and bitter taste component of steviol glycosides. These results might contribute to the production of preferentially sweet and least bitter tasting Stevia extracts by an optimization of breeding and postharvest downstream processing.

  14. An examination of 5-hydroxytryptamine receptors in human saphenous vein.

    PubMed Central

    Docherty, J. R.; Hyland, L.

    1986-01-01

    We have examined the effects of antagonists on the isometric contraction of the human saphenous vein produced by 5-hydroxytryptamine (5-HT). The 5-HT2-antagonist ketanserin (1 microM) had little effect on the lower part of the concentration-response curve to 5-HT, but markedly shifted the upper part of the curve. Yohimbine caused an approximately parallel shift of the concentration-response curve to 5-HT, with a pA2 of 5.48, much lower than its pA2 against noradrenaline in the absence (6.36) or presence (7.06) of cocaine. It is concluded that there are two components to the contractile response to 5-HT in human saphenous vein: at low concentrations 5-HT activates a yohimbine-sensitive receptor, and at higher concentrations 5-HT activates a 5-HT2-receptor. PMID:3801780

  15. Palmitoylethanolamide enhances anandamide stimulation of human vanilloid VR1 receptors.

    PubMed

    De Petrocellis, L; Davis, J B; Di Marzo, V

    2001-10-12

    In human embryonic kidney cells over-expressing the human vanilloid receptor type 1 (VR1), palmitoylethanolamide (PEA, 0.5-10 microM) enhanced the effect of arachidonoylethanolamide (AEA, 50 nM) on the VR1-mediated increase of the intracellular Ca2+ concentration. PEA (5 microM) decreased the AEA half-maximal concentration for this effect from 0.44 to 0.22 microM. The PEA effect was not due to inhibition of AEA hydrolysis or adhesion to non-specific sites, since bovine serum albumin (0.01-0.25%) potently inhibited AEA activity, and PEA also enhanced the effect of low concentrations of the VR1 agonists resiniferatoxin and capsaicin. PEA (5 microM) enhanced the affinity of AEA for VR1 receptors as assessed in specific binding assays. These data suggest that PEA might be an endogenous enhancer of VR1-mediated AEA actions.

  16. Human glucagon receptor antagonists based on alkylidene hydrazides.

    PubMed

    Ling, Anthony; Plewe, Michael; Gonzalez, Javier; Madsen, Peter; Sams, Christian K; Lau, Jesper; Gregor, Vlad; Murphy, Doug; Teston, Kimberly; Kuki, Atsuo; Shi, Shenghua; Truesdale, Larry; Kiel, Dan; May, John; Lakis, James; Anderes, Kenna; Iatsimirskaia, Eugenia; Sidelmann, Ulla G; Knudsen, Lotte B; Brand, Christian L; Polinsky, Alex

    2002-02-25

    A series of alkylidene hydrazide derivatives containing an alkoxyaryl moiety was optimized. The resulting hydrazide-ethers were competitive antagonists at the human glucagon receptor. Pharmacokinetic experiments showed fast clearance of most of the compounds tested. A representative compound [4-hydroxy-3-cyanobenzoic acid (4-isopropylbenzyloxy-3,5-dimethoxymethylene)hydrazide] with an IC50 value of 20 nM was shown to reduce blood glucose levels in fasted rats.

  17. Standardisation and use of the alcohol biomarker carbohydrate-deficient transferrin (CDT).

    PubMed

    Helander, Anders; Wielders, Jos; Anton, Raymond; Arndt, Torsten; Bianchi, Vincenza; Deenmamode, Jean; Jeppsson, Jan-Olof; Whitfield, John B; Weykamp, Cas; Schellenberg, François

    2016-08-01

    Carbohydrate-deficient transferrin (CDT) is a glycoform profile of serum transferrin that increases in response to sustained high alcohol intake and over the last decades has become an important alcohol biomarker with clinical and forensic applications. However, the wide range of CDT measurement procedures has resulted in lack of uniform results and reference limits, and hampered comparison of results. In 2005, the IFCC therefore founded a special working group (WG) aiming for standardisation of CDT measurement. This review summarises the history of CDT and the actions taken by the WG-CDT. Initial steps included the definition of the measurand (serum disialotransferrin to total transferrin fraction expressed in %), and the determination of a well-defined anion-exchange HPLC procedure as the candidate reference measurement procedure (cRMP). Subsequent achievements were the establishment of a network of reference laboratories to perform the cRMP, setting a reference interval, and development of a reference material based on human serum for which the laboratory network assign values. Using a set of reference materials for calibration allowed for achieving equivalence of results of all present CDT measurement procedures. The final steps of the WG-CDT have been a full validation of the cRMP to make it an IFCC approved RMP, and providing guidance for international standardisation of all CDT measurement procedures.

  18. Reprint of Standardisation and use of the alcohol biomarker carbohydrate-deficient transferrin (CDT).

    PubMed

    Helander, Anders; Wielders, Jos; Anton, Raymond; Arndt, Torsten; Bianchi, Vincenza; Deenmamode, Jean; Jeppsson, Jan-Olof; Whitfield, John B; Weykamp, Cas; Schellenberg, François

    2017-03-18

    Carbohydrate-deficient transferrin (CDT) is a glycoform profile of serum transferrin that increases in response to sustained high alcohol intake and over the last decades has become an important alcohol biomarker with clinical and forensic applications. However, the wide range of CDT measurement procedures has resulted in lack of uniform results and reference limits, and hampered comparison of results. In 2005, the IFCC therefore founded a special working group (WG) aiming for standardisation of CDT measurement. This review summarises the history of CDT and the actions taken by the WG-CDT. Initial steps included the definition of the measurand (serum disialotransferrin to total transferrin fraction expressed in %), and the determination of a well-defined anion-exchange HPLC procedure as the candidate reference measurement procedure (cRMP). Subsequent achievements were the establishment of a network of reference laboratories to perform the cRMP, setting a reference interval, and development of a reference material based on human serum for which the laboratory network assign values. Using a set of reference materials for calibration allowed for achieving equivalence of results of all present CDT measurement procedures. The final steps of the WG-CDT have been a full validation of the cRMP to make it an IFCC approved RMP, and providing guidance for international standardisation of all CDT measurement procedures.

  19. Transferrin-modified nanostructured lipid carriers as multifunctional nanomedicine for codelivery of DNA and doxorubicin

    PubMed Central

    Han, Yiqun; Zhang, Ying; Li, Danni; Chen, Yuanyuan; Sun, Jiping; Kong, Fansheng

    2014-01-01

    Background Nanostructured lipid carriers (NLC), composed of solid and liquid lipids, and surfactants are potentially good colloidal drug carriers. The aim of this study was to develop surface-modified NLC as multifunctional nanomedicine for codelivery of enhanced green fluorescence protein plasmid (pEGFP) and doxorubicin (DOX). Methods Two different nanocarriers: pEGFP- and DOX-loaded NLC, and solid lipid nanoparticles (SLN) were prepared. Transferrin-containing ligands were used for the surface coating of the vectors. Their average size, zeta potential, and drug encapsulation capacity were evaluated. In vitro transfection efficiency of the modified vectors was evaluated in human alveolar adenocarcinoma cell line (A549 cells), and in vivo transfection efficiency of the modified vectors was evaluated in a mouse bearing A549 cells model. Results Transferrin-modified DOX and pEGFP coencapsulated NLC (T-NLC) has a particle size of 198 nm and a +19 mV surface charge. The in vitro cell viabilities of the T-NLC formulations were over 80% compared with the control. T-NLC displayed remarkably greater gene transfection efficiency and enhanced antitumor activity than DOX- and pEGFP-coencapsulated SLN in vivo. Conclusion The results demonstrate that T-NLC noticeably enhanced antitumor activity through the combination of gene therapy with chemotherapy. Also coating of active transferrin improved the lung cancer cell-targeting of the carriers. In summary, the novel gene and drug delivery system offers a promising strategy for the treatment of lung cancer. PMID:25187713

  20. Nonenzymatic glycation of transferrin: decrease of iron-binding capacity and increase of oxygen radical production.

    PubMed

    Fujimoto, S; Kawakami, N; Ohara, A

    1995-03-01

    The total iron-binding capacity (TIBC) and iron contents of diabetic rat serum, as well as the iron-binding capacity of glycated transferrin and oxygen radical production by the glycated proteins were examined. The TIBC and iron content of diabetic rat sera were found to be much lower than those of control rat sera. Incubation of human serum with glucose in vitro resulted in a significant fall of its unsaturated iron-binding capacity (UIBC) with time. When apotransferrin was incubated with glucose, its UIBC significantly decreased. The iron content of holotransferrin was markedly reduced by incubation with bathophenanthroline sulphonic acid (BPSA) in the presence of glucose, although the content was not altered by incubation with BPSA alone. The generation of superoxide radical (O2-) and hydroxyl radical (OH.) by the glycated holotransferrin was much greater than that by glycated apotransferrin. Glycated holotransferrin showed significantly accelerated hydroxyl radical production by the hypoxanthine-xanthine oxidase system, while intact holotransferrin did not. Treatment of holotransferrin with glucose caused the fragmentation of the protein, while the same treatment of apotransferrin did not. These results suggest that iron ions in the glycated transferrin molecule are bound loosely to the protein and are redox-active and the glycated holotransferrin produces oxygen radicals including O2- and OH. efficiently, and that the glycated transferrin does not function as an iron-binding protein.

  1. Desialation of transferrin by rat liver endothelium.

    PubMed Central

    Irie, S; Kishimoto, T; Tavassoli, M

    1988-01-01

    To examine the role of liver endothelium in desialation of transferrin (TF), pulse-chase studies were done by incubation of either 3H (sialic acid labeled)-, or 125I, or 59Fe (protein core labeled)-TF with fractionated liver endothelium. While 125I or 59Fe labels were externalized after initial binding and internalization, a large proportion of 3H label was internalized and remained within the cell. When the supernatant of these experiments was studied by isoelectricfocusing and Ricinus communis agglutinin (RCA120) affinity chromatography, generation of asialotransferrin was noted by both techniques. Incubation of liver endothelium with double-labeled TF (sialic acids with 3H and protein core with 125I or 59Fe) led initially to a concordant uptake of the two labels, which were then dissociated and 3H was retained by the cell. These findings indicate desialation of TF by liver endothelium. The significance of these findings in the pathogenesis of hepatic siderosis is discussed. PMID:3165384

  2. Muscarinic receptor subtypes in human and rat colon smooth muscle.

    PubMed

    Gómez, A; Martos, F; Bellido, I; Marquez, E; Garcia, A J; Pavia, J; Sanchez de la Cuesta, F

    1992-06-09

    Muscarinic receptor subtypes in human and rat colon smooth muscle homogenates were characterized with [3H]N-methylscopolamine ([3H]NMS) by ligand binding studies. [3H]NMS saturation experiments show the existence of a homogeneous population of non-interacting binding sites with similar affinity (KD values of 1.38 +/- 0.20 nM in human colon smooth muscle and 1.48 +/- 0.47 nM in rat colon smooth muscle) and with Hill slopes close to unity in both samples of tissue. However, a significant (P less than 0.01) increase in muscarinic receptor density (Bmax) is found in human colon (29.9 +/- 2.9 fmol/mg protein) compared with rat colon (17.2 +/- 1.5 fmol/mg protein). Inhibition of [3H]NMS binding by non-labelled compounds shows the following order in human colon: atropine greater than AF-DX 116 greater than pirenzepine. Whereas in rat colon the rank order obtained is atropine greater than pirenzepine greater than AF-DX 116. Atropine and pirenzepine bind to a homogeneous population of binding sites, although pirenzepine shows higher affinity to bind to the sites present in rat colon (Ki = 1.08 +/- 0.08 microM) than those in human colon (Ki = 1.74 +/- 0.02 microM) (P less than 0.05). Similarly, IC50 values obtained in AF-DX 116 competition experiments were significantly different (P less than 0.01) in human colon (IC50 = 1.69 +/- 0.37 microM) than in rat colon (IC50 = 3.78 +/- 0.75 microM). Unlike atropine and pirenzepine, the inhibition of [3H]NMS binding by AF-DX 116 did not yield a simple mass-action binding curve (nH less than 1, P less than 0.01) suggesting the presence of more than one subtype of muscarinic receptor in both species. Computer analysis of these curves with a two binding site model suggests the presence of two populations of receptor. The apparent Ki1 value for the high affinity binding site is 0.49 +/- 0.07 microM for human colon smooth muscle and 0.33 +/- 0.05 microM for rat colon smooth muscle. The apparent Ki2 for the low affinity binding site is 8

  3. Opiate receptor blockade on human granulosa cells inhibits VEGF release.

    PubMed

    Lunger, Fabian; Vehmas, Anni P; Fürnrohr, Barbara G; Sopper, Sieghart; Wildt, Ludwig; Seeber, Beata

    2016-03-01

    The objectives of this study were to determine whether the main opioid receptor (OPRM1) is present on human granulosa cells and if exogenous opiates and their antagonists can influence granulosa cell vascular endothelial growth factor (VEGF) production via OPRM1. Granulosa cells were isolated from women undergoing oocyte retrieval for IVF. Complementary to the primary cells, experiments were conducted using COV434, a well-characterized human granulosa cell line. Identification and localization of opiate receptor subtypes was carried out using Western blot and flow cytometry. The effect of opiate antagonist on granulosa cell VEGF secretion was assessed by enzyme-linked immunosorbent assay. For the first time, the presence of OPRM1 on human granulosa cells is reported. Blocking of opiate signalling using naloxone, a specific OPRM1 antagonist, significantly reduced granulosa cell-derived VEGF levels in both COV434 and granulosa-luteal cells (P < 0.01). The presence of opiate receptors and opiate signalling in granulosa cells suggest a possible role in VEGF production. Targeting this signalling pathway could prove promising as a new clinical option in the prevention and treatment of ovarian hyperstimulation syndrome.

  4. Autoradiographic visualization of muscarinic receptors in human bronchi

    SciTech Connect

    van Koppen, C.J.; Blankesteijn, W.M.; Klaassen, A.B.; Rodrigues de Miranda, J.F.; Beld, A.J.; van Ginneken, C.A.

    1988-02-01

    To visualize muscarinic receptors in human bronchi, the stripping film method was used which permits direct autoradiographic localization of tissue labeling. Cryostate sections of human bronchi were fixed in 0.5% glutaraldehyde in Krebs-Ringer buffer, pH 7.0 for 30 min at 0/sup 0/C, washed in Krebs-Ringer buffer for 20 min at 0/sup 0/C and incubated with (-)-(/sup 3/H)Quinuclidinyl benzilate ((-)-(/sup 3/H)QNB) for 90 min at 37/sup 0/C. Specific (-)-(/sup 3/H)QNB binding to tissue sections was saturable (receptor density of 0.14 +/- 0.03 fmol/tissue section) and of high affinity (Kd of 40 +/- 9 pM). For autoradiography, labeled tissue sections were covered with stripping film and exposed for 5 months. Muscarinic receptors in human bronchi were located predominantly in submucosal glands and parasympathetic ganglia. There was less labeling in smooth muscle cells and nerve bundles. Epithelium and blood vessels located within the bronchial wall were devoid of specific labeling.

  5. Expression of growth hormone receptor in the human brain.

    PubMed

    Castro, J R; Costoya, J A; Gallego, R; Prieto, A; Arce, V M; Señarís, R

    2000-03-10

    This study was designed to investigate the presence of growth hormone receptor (GHR) expression in the human brain tissue, both normal and tumoral, as well as in the human glioblastoma cell line U87MG. Reverse transcription-polymerase chain reaction revealed the presence of GHR mRNA in all brain samples investigated and in U87MG cells. GHR immunoreactivity was also detected in this cell line using both immunocytochemistry and western blotting. All together, our data demonstrate the existence of GHR expression within the central nervous system (CNS), thus supporting a possible role for GH in the CNS physiology.

  6. Human Diversity in a Cell Surface Receptor that Inhibits Autophagy.

    PubMed

    Chaudhary, Anu; Leite, Mara; Kulasekara, Bridget R; Altura, Melissa A; Ogahara, Cassandra; Weiss, Eli; Fu, Wenqing; Blanc, Marie-Pierre; O'Keeffe, Michael; Terhorst, Cox; Akey, Joshua M; Miller, Samuel I

    2016-07-25

    Mutations in genes encoding autophagy proteins have been associated with human autoimmune diseases, suggesting that diversity in autophagy responses could be associated with disease susceptibility or severity. A cellular genome-wide association study (GWAS) screen was performed to explore normal human diversity in responses to rapamycin, a microbial product that induces autophagy. Cells from several human populations demonstrated variability in expression of a cell surface receptor, CD244 (SlamF4, 2B4), that correlated with changes in rapamycin-induced autophagy. High expression of CD244 and receptor activation with its endogenous ligand CD48 inhibited starvation- and rapamycin-induced autophagy by promoting association of CD244 with the autophagy complex proteins Vps34 and Beclin-1. The association of CD244 with this complex reduced Vps34 lipid kinase activity. Lack of CD244 is associated with auto-antibody production in mice, and lower expression of human CD244 has previously been implicated in severity of human rheumatoid arthritis and systemic lupus erythematosus, indicating that increased autophagy as a result of low levels of CD244 may alter disease outcomes.

  7. Intrinsic Relative Activities of Opioid Agonists in Activating Gα proteins and Internalizing Receptor: Differences between Human and Mouse Receptors

    PubMed Central

    DiMattio, Kelly M.; Ehlert, Frederick J.; Liu-Chen, Lee-Yuan

    2015-01-01

    Several investigators recently identified biased opioid receptor (KOP receptor) agonists. However, no comprehensive study of the functional selectivity of available KOP receptor agonists at the human and mouse KOP receptors (hKOP receptor and mKOP receptor, respectively) has been published. Here we examined the ability of over 20 KOP receptor agonists to activate G proteins and to internalize the receptor. Clonal neuro-2a mouse neuroblastoma (N2a) cells stably transfected with the hKOP receptor or mKOP receptor were used. We employed agonist-induced [35S]GTPγS binding and KOP receptor internalization as measures of activation of G protein and β-arrestin pathways, respectively. The method of Ehlert and colleagues was used to quantify intrinsic relative activities at G protein activation (RAi−G) and receptor internalization (RAi−I) and the degree of functional selectivity between the two [Log RAi−G − Log RAi−I, RAi−G/RAi−I and bias factor]. The parameter, RAi, represents a relative estimate of agonist affinity for the active receptor state that elicits a given response. The endogenous ligand dynorphin A (1–17) was designated as the balanced ligand with a bias factor of 1. Interestingly, we found that there were species differences in functional selectivity. The most striking differences were for 12-epi-salvinorin A, U69,593, and ICI-199,441. 12-Epi-salvinorin A was highly internalization-biased at the mKOP receptor, but apparently G protein-biased at hKOP receptor. U69,593 was much more internalization-biased at mKOP receptor than hKOP receptor. ICI199,441 showed internalization-biased at the mKOP receptor and G protein-biased at the hKOP receptor. Possible mechanisms for the observed species differences are discussed. PMID:26057692

  8. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A.

    PubMed

    Sato, Shoko; Shirakawa, Hitoshi; Tomita, Shuhei; Tohkin, Masahiro; Gonzalez, Frank J; Komai, Michio

    2013-11-15

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein-protein interactions with GR.

  9. Functional atrial natriuretic peptide receptor in human adrenal tumor

    SciTech Connect

    Shionoiri, H.; Hirawa, N.; Takasaki, I.; Ishikawa, Y.; Oda, H.; Minamisawa, K.; Sugimoto, K.; Matsukawa, T.; Ueda, S.; Miyajima, E.

    1989-01-01

    The effects of synthetic human atrial natriuretic peptide (ANP) on the release of catecholamines, aldosterone, or cortisol were observed in human adrenal tumors obtained surgically from patients with pheochromocytoma, primary aldosteronism, or Cushing's syndrome, respectively. Each tumor tissue or adjacent normal cortical tissue was sectioned into slices, which were incubated in medium-199 in the presence or absence of adrenocorticotrophin (ACTH) and ANP. The amounts of epinephrine, norepinephrine, aldosterone, or cortisol released into the medium were measured. Existence of ANP receptors on the adrenal tissues was examined by binding assays, affinity labeling, and immunohistochemistry. Release of catecholamines from pheochromocytoma tissues was inhibited by ANP, and the presence of the ANP receptor on pheochromocytoma was further demonstrated by both binding assays and affinity labeling; Scatchard analysis revealed a single class of binding sites for ANP with a Kd of 1.0 nM and a Bmax of 0.4 pmol/mg of protein and the molecular size was estimated as 140 and a 70 kDa under nonreducing and reducing conditions, respectively. The presence of ANP receptors in pheochromocytoma was demonstrated by immunohistochemistry. ANP inhibited both basal and ACTH-stimulated aldosterone secretion in the slices of normal cortex, and localization of ANP receptors in zona glomerulosa cells was also demonstrated. However, ANP did not inhibit basal and ACTH-stimulated aldosterone and cortisol secretion in both tissue slices from aldosteronoma and Cushing's adenoma. Consistent with these observations, the absence of ANP receptors in adenoma tissues was determined by binding assays, affinity labeling, and immunohistochemistry.

  10. Expression of alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein and scavenger receptor in human atherosclerotic lesions.

    PubMed Central

    Luoma, J; Hiltunen, T; Särkioja, T; Moestrup, S K; Gliemann, J; Kodama, T; Nikkari, T; Ylä-Herttuala, S

    1994-01-01

    Macrophage- and smooth muscle cell (SMC)-derived foam cells are typical constituents of human atherosclerotic lesions. At least three receptor systems have been characterized that could be involved in the development of foam cells: alpha 2-macroglobulin receptor/LDL receptor-related protein (alpha 2 MR/LRP), scavenger receptor, and LDL receptor. We studied the expression of these receptors in human atherosclerotic lesions with in situ hybridization and immunocytochemistry. An abundant expression of alpha 2MR/LRP mRNA and protein was found in SMC and macrophages in both early and advanced lesions in human aortas. alpha 2MR/LRP was also present in SMC in normal aortas. Scavenger receptor mRNA and protein were expressed in lesion macrophages but no expression was found in lesion SMC. LDL receptor was absent from the lesion area but was expressed in some aortas in medial SMC located near the adventitial border. The results demonstrate that (a) alpha 2MR/LRP is, so far, the only lipoprotein receptor expressed in lesions SMC in vivo; (b) scavenger receptors are expressed only in lesion macrophages; and (c) both receptors may play important roles in the development of human atherosclerotic lesions. Images PMID:8182133

  11. Siderophilin metal coordination. 1. Complexation of thorium by transferrin: structure-function implications

    SciTech Connect

    Harris, Wesley R.; Carrano, Carl J.; Pecoraro, Vincent L.; Raymond, Kenneth N.

    1981-05-01

    As part of a program to develop actinide-specific sequestering agents, the coordination of actinide ions by human transferrin is being investigated. Therapeutically useful synthetic ligands must be able to compete with this iron-transport protein for the bound actinide ion. As in the Fe(III) complex of the native protein, two Th(IV) ions bind at pH 7. This coordination has been monitored at several pH values by using difference ultraviolet spectroscopy. The corresponding coordination of a phenolic ligand, ethylene-bis-(o-hydroxyphenylglycine) [EHPG], has been used to determine {Delta}{epsilon} for a tyrosyl group coordinated to Th(IV), in contrast to the common practice of assuming the {Delta}{epsilon} for protons and all metal ions is the same. This in turn is used to determine, from the observed {Delta}{epsilon} upon protein coordination, the number of transferrin tyrosine residues that coordinate. Maxima in the Th(IV) + EHPG difference UV spectra occur at 292 and 238 nm, with corresponding {Delta}{epsilon} values per phenolic group of 2330 and 8680 cm{sup -1} M{sup -1}, respectively. At pH 7.2, the Th(IV) transferrin spectrum is closely similar to the TH(IV) EHPG spectrum, with maxima at 292 and 240 nm. The {Delta}{epsilon} at 240 nm reaches a maximum of 24700 cm{sup -1} M{sup -1}, which corresponds to coordination of three tyrosine residues in the dithorium-transferrin complex; the stronger binding site (“A” or C-terminal) coordinates via two tyrosines and the weaker (“B” or N-terminal) via one. There is evidence suggesting that the N-terminal site is slightly smaller than the C-terminal site; while Th(IV) easily fits into the C-terminal site, the large ionic radius of Th(IV) makes this ion of borderline size to fit into the N-terminal site. This may be an important biological difference between Th(IV) and the slightly smaller Pu(IV), which should easily fit into both sites. At pH values below 7, the complexation of Th(IV) by transferrin decreases

  12. Characterization of interleukin-8 receptors in non-human primates

    SciTech Connect

    Alvarez, V.; Coto, E.; Gonzalez-Roces, S.; Lopez-Larrea, C.

    1996-09-01

    Interleukin-8 is a chemokine with a potent neutrophil chemoatractant activity. In humans, two different cDNAs encoding human IL8 receptors designated IL8RA and IL8RB have been cloned. IL8RA binds IL8, while IL8RB binds IL8 as well as other {alpha}-chemokines. Both human IL8Rs are encoded by two genes physically linked on chromosome 2. The IL8RA and IL8RB genes have open reading frames (ORF) lacking introns. By direct sequencing of the polymerase chain reaction products, we sequenced the IL8R genes of cell lines from four non-human primates: chimpanzee, gorilla, orangutan, and macaca. The IL8RB encodes an ORF in the four non-human primates, showing 95%-99% similarity to the human IL8RB sequence. The IL8RA homologue in gorilla and chimpanzee consisted of two ORF 98%-99% identical to the human sequence. The macaca and orangutan IL8RA homologues are pseudogenes: a 2 base pair insertion generated a sequence with several stop codons. In addition, we describe the physical linkage of these genes in the four non-human primates and discuss the evolutionary implications of these findings. 25 refs., 5 figs., 3 tabs.

  13. Transferrin-PEG-PE modified dexamethasone conjugated cationic lipid carrier mediated gene delivery system for tumor-targeted transfection

    PubMed Central

    Wang, Wei; Zhou, Fang; Ge, Linfu; Liu, Ximin; Kong, Fansheng

    2012-01-01

    Background The main barriers to non-viral gene delivery include cellular and nuclear membranes. As such, the aim of this study was to develop a type of vector that can target cells through receptor-mediated pathways and by using nuclear localization signal (NLS) to increase the nuclear uptake of genetic materials. Methods A dexamethasone (Dexa)-conjugated lipid was synthesized as the material of the solid lipid nanoparticles (SLNs), and transferrin (Tf) was linked onto polyethylene glycol-phosphatidylethanolamine (PEG-PE) to obtain Tf-PEG-PE ligands for the surface modification of the carriers. The in vitro transfection efficiency of the novel modified vectors was evaluated in human hepatoma carcinoma cell lines, and in vivo effects were observed in an animal model. Results Tf-PEG-PE modified SLNs/enhanced green fluorescence protein plasmid (pEGFP) had a particle size of 222 nm and a gene loading quantity of 90%. Tf-PEG-PE-modified SLNs/pEGFP (Tf-SLNs/pEGFP) displayed remarkably higher transfection efficiency than non-modified SLNs/pEGFP and the vectors not containing Dexa, both in vitro and in vivo. Conclusion It can be concluded that Tf and Dexa could function as an excellent active targeting ligand to improve the cell targeting and nuclear targeting ability of the carriers, and the resulting nanomedicine could be a promising active targeting drug/gene delivery system. PMID:22679364

  14. Competitive antagonism at thromboxane receptors in human platelets.

    PubMed Central

    Armstrong, R. A.; Jones, R. L.; Peesapati, V.; Will, S. G.; Wilson, N. H.

    1985-01-01

    The inhibitory effects of three prostanoid analogues, EP 045, EP 092 and pinane thromboxane A2 (PTA2), on the aggregation of human platelets in vitro have been investigated. In diluted platelet-rich plasma (PRP), EP 045 (20 microM) and EP 092 (1 microM) completely inhibited irreversible aggregation responses to thromboxane A2 (TXA2), prostaglandin H2 (PGH2) and five chemically stable thromboxane mimetics, including 11,9-epoxymethano-PGH2 and 9,11-azo-PGH2. Reversible aggregation produced by the prostanoid analogue, CTA2, was also inhibited. The block of the stable agonist action was surmountable. In plasma-free platelet suspensions EP 045 and EP 092 were more potent antagonists. Schild analysis indicated a competitive type of antagonism for EP 045 (affinity constant of 1.1 X 10(7) M-1); the nature of the EP 092 block is not clear. Primary aggregation waves induced by ADP, platelet activating factor (Paf) and adrenaline were unaffected by EP 045 and EP 092, whereas the corresponding second phases of aggregation were suppressed. Aggregation and 5-hydroxytryptamine (5-HT) release induced by either PGH2 or 11,9-epoxymethano-PGH2 were inhibited in a parallel manner by EP 045. Inhibition of thromboxane biosynthesis is not involved in these effects. EP 045 and EP 092 did not raise adenosine 3':5'-cyclic monophosphate (cyclic AMP) levels in the platelet suspensions. In plasma-free platelet suspensions PTA2 produced a shape change response which could be blocked by EP 045. PTA2, therefore, has a thromboxane-like agonist action. The block of the aggregatory action of 11,9-epoxymethano-PGH2 by PTA2 appears to be mainly due to competition at the thromboxane receptor. However, PTA2 produced a slight rise in cyclic AMP levels; this could be due to a very weak stimulant action on either PGI2 or PGD2 receptors present in the human platelet. Functional antagonism by PTA2 may therefore augment its thromboxane receptor blocking activity. The results are discussed in terms of (a) the

  15. Pathogen receptor discovery with a microfluidic human membrane protein array

    PubMed Central

    Glick, Yair; Ben-Ari, Ya’ara; Drayman, Nir; Pellach, Michal; Neveu, Gregory; Boonyaratanakornkit, Jim; Avrahami, Dorit; Einav, Shirit; Oppenheim, Ariella

    2016-01-01

    The discovery of how a pathogen invades a cell requires one to determine which host cell receptors are exploited. This determination is a challenging problem because the receptor is invariably a membrane protein, which represents an Achilles heel in proteomics. We have developed a universal platform for high-throughput expression and interaction studies of membrane proteins by creating a microfluidic-based comprehensive human membrane protein array (MPA). The MPA is, to our knowledge, the first of its kind and offers a powerful alternative to conventional proteomics by enabling the simultaneous study of 2,100 membrane proteins. We characterized direct interactions of a whole nonenveloped virus (simian virus 40), as well as those of the hepatitis delta enveloped virus large form antigen, with candidate host receptors expressed on the MPA. Selected newly discovered membrane protein–pathogen interactions were validated by conventional methods, demonstrating that the MPA is an important tool for cellular receptor discovery and for understanding pathogen tropism. PMID:27044079

  16. Immunohistochemical localization of oxytocin receptors in human brain.

    PubMed

    Boccia, M L; Petrusz, P; Suzuki, K; Marson, L; Pedersen, C A

    2013-12-03

    The neuropeptide oxytocin (OT) regulates rodent, primate and human social behaviors and stress responses. OT binding studies employing (125)I-d(CH2)5-[Tyr(Me)2,Thr4,Tyr-NH2(9)] ornithine vasotocin ((125)I-OTA), has been used to locate and quantify OT receptors (OTRs) in numerous areas of the rat brain. This ligand has also been applied to locating OTRs in the human brain. The results of the latter studies, however, have been brought into question because of subsequent evidence that (125)I-OTA is much less selective for OTR vs. vasopressin receptors in the primate brain. Previously we used a monoclonal antibody directed toward a region of the human OTR to demonstrate selective immunostaining of cell bodies and fibers in the preoptic-anterior hypothalamic area and ventral septum of a cynomolgus monkey (Boccia et al., 2001). The present study employed the same monoclonal antibody to study the location of OTRs in tissue blocks containing cortical, limbic and brainstem areas dissected from fixed adult, human female brains. OTRs were visualized in discrete cell bodies and/or fibers in the central and basolateral regions of the amygdala, medial preoptic area (MPOA), anterior and ventromedial hypothalamus, olfactory nucleus, vertical limb of the diagonal band, ventrolateral septum, anterior cingulate and hypoglossal and solitary nuclei. OTR staining was not observed in the hippocampus (including CA2 and CA3), parietal cortex, raphe nucleus, nucleus ambiguus or pons. These results suggest that there are some similarities, but also important differences, in the locations of OTRs in human and rodent brains. Immunohistochemistry (IHC) utilizing a monoclonal antibody provides specific localization of OTRs in the human brain and thereby provides opportunity to further study OTR in human development and psychiatric conditions.

  17. Crystal Structure of an LSD-Bound Human Serotonin Receptor

    SciTech Connect

    Wacker, Daniel; Wang, Sheng; McCorvy, John D.; Betz, Robin M.; Venkatakrishnan, A. J.; Levit, Anat; Lansu, Katherine; Schools, Zachary L.; Che, Tao; Nichols, David E.; Shoichet, Brian K.; Dror, Ron O.; Roth, Bryan L.

    2017-01-01

    The prototypical hallucinogen LSD acts via serotonin receptors, and here we describe the crystal structure of LSD in complex with the human serotonin receptor 5-HT2B. The complex reveals conformational rearrangements to accommodate LSD, providing a structural explanation for the conformational selectivity of LSD’s key diethylamide moiety. LSD dissociates exceptionally slow from both 5-HT2BR and 5-HT2AR—a major target for its psychoactivity. Molecular dynamics (MD) simulations suggest that LSD’s slow binding kinetics may be due to a “lid” formed by extracellular loop 2 (EL2) at the entrance to the binding pocket. A mutation predicted to increase the mobility of this lid greatly accelerates LSD’s binding kinetics and selectively dampens LSD-mediated β-arrestin2 recruitment. This study thus reveals an unexpected binding mode of LSD; illuminates key features of its kinetics, stereochemistry, and signaling; and provides a molecular explanation for LSD’s actions at human serotonin receptors.

  18. Characterization of the Olfactory Receptors Expressed in Human Spermatozoa

    PubMed Central

    Flegel, Caroline; Vogel, Felix; Hofreuter, Adrian; Schreiner, Benjamin S. P.; Osthold, Sandra; Veitinger, Sophie; Becker, Christian; Brockmeyer, Norbert H.; Muschol, Michael; Wennemuth, Gunther; Altmüller, Janine; Hatt, Hanns; Gisselmann, Günter

    2016-01-01

    The detection of external cues is fundamental for human spermatozoa to locate the oocyte in the female reproductive tract. This task requires a specific chemoreceptor repertoire that is expressed on the surface of human spermatozoa, which is not fully identified to date. Olfactory receptors (ORs) are candidate molecules and have been attributed to be involved in sperm chemotaxis and chemokinesis, indicating an important role in mammalian spermatozoa. An increasing importance has been suggested for spermatozoal RNA, which led us to investigate the expression of all 387 OR genes. This study provides the first comprehensive analysis of OR transcripts in human spermatozoa of several individuals by RNA-Seq. We detected 91 different transcripts in the spermatozoa samples that could be aligned to annotated OR genes. Using stranded mRNA-Seq, we detected a class of these putative OR transcripts in an antisense orientation, indicating a different function, rather than coding for a functional OR protein. Nevertheless, we were able to detect OR proteins in various compartments of human spermatozoa, indicating distinct functions in human sperm. A panel of various OR ligands induced Ca2+ signals in human spermatozoa, which could be inhibited by mibefradil. This study indicates that a variety of ORs are expressed at the mRNA and protein level in human spermatozoa. PMID:26779489

  19. The Human Glucocorticoid Receptor: Molecular Basis of Biologic Function

    PubMed Central

    Nicolaides, Nicolas C.; Galata, Zoi; Kino, Tomoshige; Chrousos, George P.; Charmandari, Evangelia

    2009-01-01

    The characterization of the subfamily of steroid hormone receptors has enhanced our understanding of how a set of hormonally derived lipophilic ligands controls cellular and molecular functions to influence development and help achieve homeostasis. The glucocorticopid receptor (GR), the first member of this subfamily, is a ubiquitously expressed intracellular protein, which functions as a ligand-dependent transcription factor that regulates the expression of glucocorticoid-responsive genes. The effector domains of the GR mediate transcriptional activation by recruiting coregulatory multi-subunit complexes that remodel chromatin, target initiation sites, and stabilize the RNA polymerase II machinery for repeated rounds of transcription of target genes. This review summarizes the basic aspects of the structure and of the human (h) GR, and the molecular basis of its biologic function. PMID:19818358

  20. The human glucocorticoid receptor: molecular basis of biologic function.

    PubMed

    Nicolaides, Nicolas C; Galata, Zoi; Kino, Tomoshige; Chrousos, George P; Charmandari, Evangelia

    2010-01-01

    The characterization of the subfamily of steroid hormone receptors has enhanced our understanding of how a set of hormonally derived lipophilic ligands controls cellular and molecular functions to influence development and help achieve homeostasis. The glucocorticoid receptor (GR), the first member of this subfamily, is a ubiquitously expressed intracellular protein, which functions as a ligand-dependent transcription factor that regulates the expression of glucocorticoid-responsive genes. The effector domains of the GR mediate transcriptional activation by recruiting coregulatory multi-subunit complexes that remodel chromatin, target initiation sites, and stabilize the RNA-polymerase II machinery for repeated rounds of transcription of target genes. This review summarizes the basic aspects of the structure and actions of the human (h) GR, and the molecular basis of its biologic functions.

  1. Different phenolic compounds activate distinct human bitter taste receptors.

    PubMed

    Soares, Susana; Kohl, Susann; Thalmann, Sophie; Mateus, Nuno; Meyerhof, Wolfgang; De Freitas, Victor

    2013-02-20

    Bitterness is a major sensory attribute of several common foods and beverages rich in polyphenol compounds. These compounds are reported as very important for health as chemopreventive compounds, but they are also known to taste bitter. In this work, the activation of the human bitter taste receptors, TAS2Rs, by six polyphenol compounds was analyzed. The compounds chosen are present in a wide range of plant-derived foods and beverages, namely, red wine, beer, tea, and chocolate. Pentagalloylglucose (PGG) is a hydrolyzable tannin, (-)-epicatechin is a precursor of condensed tannins, procyanidin dimer B3 and trimer C2 belong to the condensed tannins, and malvidin-3-glucoside and cyanidin-3-glucoside are anthocyanins. The results show that the different compounds activate different combinations of the ~25 TAS2Rs. (-)-Epicatechin activated three receptors, TAS2R4, TAS2R5, and TAS2R39, whereas only two receptors, TAS2R5 and TAS2R39, responded to PGG. In contrast, malvidin-3-glucoside and procyanidin trimer stimulated only one receptor, TAS2R7 and TAS2R5, respectively. Notably, tannins are the first natural agonists found for TAS2R5 that display high potency only toward this receptor. The catechol and/or galloyl groups appear to be important structural determinants that mediate the interaction of these polyphenolic compounds with TAS2R5. Overall, the EC(50) values obtained for the different compounds vary 100-fold, with the lowest values for PGG and malvidin-3-glucoside compounds, suggesting that they could be significant polyphenols responsible for the bitterness of fruits, vegetables, and derived products even if they are present in very low concentrations.

  2. Development and Evaluation of Transferrin-Stabilized Paclitaxel Nanocrystal Formulation

    PubMed Central

    Lu, Ying; Wang, Zhao-hui; Li, Tonglei; McNally, Helen; Park, Kinam; Sturek, Michael

    2014-01-01

    The aim of the present study was to prepare and evaluate a paclitaxel nanocrystal-based formulation stabilized by serum protein transferrin in a non-covalent manner. The pure paclitaxel nanocrystals were first prepared using an antisolvent precipitation method augmented by sonication. The serum protein transferrin was selected for use after evaluating the stabilizing effect of several serum proteins including albumin and immunoglobulin G. The formulation contained approximately 55~60% drug and was stable for at least 3 months at 4 °C. In vivo antitumor efficacy studies using mice inoculated with KB cells demonstrate significantly higher tumor inhibition rate of 45.1% for paclitaxel-transferrin formulation compared to 28.8% for paclitaxel nanosuspension treatment alone. Interestingly, the Taxol® formulation showed higher antitumor activity than the paclitaxel-transferrin formulation, achieving a 93.3% tumor inhibition rate 12 days post initial dosing. However, the paclitaxel-transferrin formulation showed a lower level of toxicity, which is indicated by steady increase in body weight of mice over the treatment period. In comparison, treatment with Taxol® resulted in toxicity issues as body weight decreased. These results suggest the potential benefit of using a serum protein in a non-covalent manner in conjunction with paclitaxel nanocrystals as a promising drug delivery model for anticancer therapy. PMID:24378441

  3. Lysine 419 targets human glucocorticoid receptor for proteasomal degradation.

    PubMed

    Wallace, Andrew D; Cao, Yan; Chandramouleeswaran, Sindhu; Cidlowski, John A

    2010-12-01

    Glucocorticoid receptors (GRs) are members of a highly conserved family of ligand dependent transcription factors which following hormone binding undergo homologous down-regulation reducing the levels of receptor protein. This decline in human GR (hGR) is due in part to a decrease in protein receptor stability that may limit cellular responsiveness to ligand. To examine the role of the proteasome protein degradation pathway in steroid-dependent hGR responsiveness, we utilized the proteasomal inhibitors MG-132, beta-lactone, and epoxomicin. HeLa cells and COS cells were treated with proteasome inhibitors in the presence of the GR agonist dexamethasone (Dex), or were pretreated with proteasomal inhibitor and then Dex. Dexamethasone induced glucocorticoid responsive reporter activity significantly over untreated controls, whereas cells treated with proteasomal inhibitors and Dex together showed 2-3-fold increase in activity. Protein sequence analysis of the hGR protein identified several candidate protein degradation motifs including a PEST element. Mutagenesis of this element at lysine 419 was done and mutant K419A hGR failed to undergo ligand dependent down-regulation. Mutant K419A hGR displayed 2-3-fold greater glucocorticoid responsive reporter activity in the presence of Dex than wild type hGR. These differences in transcriptional activity were not due to altered subcellular localization, since when the mutant K419A hGR was fused with the green fluorescent protein (GFP) it was found to move in and out of the nucleus similarly to wild type hGR. Together these results suggest that the proteasome and the identified PEST degradation motif limit steroid-dependent human glucocorticoid receptor signaling.

  4. Complete structural characterisation of the human aryl hydrocarbon receptor gene

    PubMed Central

    Bennett, P; Ramsden, D B; Williams, A C

    1996-01-01

    Aims—To clone and characterise the complete structural gene for the human aryl hydrocarbon receptor (AhR). This gene, located on chromosome 7, encodes a cytosolic receptor protein which, upon activation by various xenobiotic ligands, translocates to the nucleus, where it acts as a specific transcription factor. Methods—Primers, based on the AhR cDNA sequence, were used in conjunction with recently developed long range PCR techniques to amplify contiguous sections of the cognate gene. The amplicons produced were then cloned and characterised. A cDNA probe was also used to screen a human P1 library. Results—Using the cDNA primers, DNA fragments which mapped the entire coding region of the gene were amplified and cloned. All but one of these fragments were amplified directly from human genomic DNA. The remaining fragment was amplified using DNA prepared from a P1 clone as the PCR template. This P1 clone, obtained by screening a human P1 library, also contained the entire Ah locus. Characterisation of amplified and cloned DNA fragments provided sufficient information for the construction of a complete structural map of the gene. This also included 150 base pairs of nucleotide sequence data at all intronic termini. Conclusions—These data indicate that the human AhR gene is about 50 kilobases long and contains 11 exons. The overall intron/exon structure of the human gene is homologous to that of the previously characterised mouse gene; however, it is probably some 20 kilobases larger. These results demonstrate the need for further characterisation and provide the data to facilitate this. Images PMID:16696038

  5. Liver X Receptor (LXR) Regulates Human Adipocyte Lipolysis*

    PubMed Central

    Stenson, Britta M.; Rydén, Mikael; Venteclef, Nicolas; Dahlman, Ingrid; Pettersson, Annie M. L.; Mairal, Aline; Åström, Gaby; Blomqvist, Lennart; Wang, Victoria; Jocken, Johan W. E.; Clément, Karine; Langin, Dominique; Arner, Peter; Laurencikiene, Jurga

    2011-01-01

    The Liver X receptor (LXR) is an important regulator of carbohydrate and lipid metabolism in humans and mice. We have recently shown that activation of LXR regulates cellular fuel utilization in adipocytes. In contrast, the role of LXR in human adipocyte lipolysis, the major function of human white fat cells, is not clear. In the present study, we stimulated in vitro differentiated human and murine adipocytes with the LXR agonist GW3965 and observed an increase in basal lipolysis. Microarray analysis of human adipocyte mRNA following LXR activation revealed an altered gene expression of several lipolysis-regulating proteins, which was also confirmed by quantitative real-time PCR. We show that expression and intracellular localization of perilipin1 (PLIN1) and hormone-sensitive lipase (HSL) are affected by GW3965. Although LXR activation does not influence phosphorylation status of HSL, HSL activity is required for the lipolytic effect of GW3965. This effect is abolished by PLIN1 knockdown. In addition, we demonstrate that upon activation, LXR binds to the proximal regions of the PLIN1 and HSL promoters. By selective knock-down of either LXR isoform, we show that LXRα is the major isoform mediating the lipolysis-related effects of LXR. In conclusion, the present study demonstrates that activation of LXRα up-regulates basal human adipocyte lipolysis. This is at least partially mediated through LXR binding to the PLIN1 promoter and down-regulation of PLIN1 expression. PMID:21030586

  6. The human thyrotropin receptor: a heptahelical receptor capable of stimulating members of all four G protein families.

    PubMed Central

    Laugwitz, K L; Allgeier, A; Offermanns, S; Spicher, K; Van Sande, J; Dumont, J E; Schultz, G

    1996-01-01

    Thyrotropin is the primary hormone that, via one heptahelical receptor, regulates thyroid cell functions such as secretion, specific gene expression, and growth. In human thyroid, thyrotropin receptor activation leads to stimulation of the adenylyl cyclase and phospholipase C cascades. However, the G proteins involved in thyrotropin receptor action have been only partially defined. In membranes of human thyroid gland, we immunologically identified alpha subunits of the G proteins Gs short, Gs long, Gi1, Gi2, Gi3, G(o) (Go2 and another form of Go, presumably Go1), Gq, G11, G12, and G13. Activation of the thyrotropin (TSH) receptor by bovine TSH led to increased incorporation of the photoreactive GTP analogue [alpha-32P]GTP azidoanilide into immunoprecipitated alpha subunits of all G proteins detected in thyroid membranes. This effect was receptor-dependent and not due to direct G protein stimulation because it was mimicked by TSH receptor-stimulating antibodies of patients suffering from Grave disease and was abolished by a receptor-blocking antiserum from a patient with autoimmune hypothyroidism. The TSH-induced activation of individual G proteins occurred with EC50 values of 5-50 milliunits/ml, indicating that the activated TSH receptor coupled with similar potency to different G proteins. When human thyroid slices were pretreated with pertussis toxin, the TSH receptor-mediated accumulation of cAMP increased by approximately 35% with TSH at 1 milliunits/ml, indicating that the TSH receptor coupled to Gs and G(i). Taken together, these findings show that, at least in human thyroid membranes, in which the protein is expressed at its physiological levels, the TSH receptor resembles a naturally occurring example of a general G protein-activating receptor. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8552586

  7. Functional Erythropoietin Receptors Expressed by Human Prostate Cancer Cells

    DTIC Science & Technology

    2006-10-01

    carcinoma cell line (PC-3). Invest Urol, 1979. 17(1): p. 16-23. 11. Yoshimura, A., A.D. D’Andrea, and H.F. Lodish , Friend spleen focus-forming virus...receptor expression in human prostate cancer. Mod Pathol, 2004. 13. Socolovsky, M., A.E. Fallon, S. Wang, C. Brugnara, and H.F. Lodish , Fetal anemia and...Socolovsky, M., H. Nam, M.D. Fleming, V.H. Haase, C. Brugnara, and H.F. Lodish , Ineffective erythropoiesis in Stat5a(-/-)5b(-/-) mice due to decreased

  8. High polymorphism at the human melanocortin 1 receptor locus.

    PubMed Central

    Rana, B K; Hewett-Emmett, D; Jin, L; Chang, B H; Sambuughin, N; Lin, M; Watkins, S; Bamshad, M; Jorde, L B; Ramsay, M; Jenkins, T; Li, W H

    1999-01-01

    Variation in human skin/hair pigmentation is due to varied amounts of eumelanin (brown/black melanins) and phaeomelanin (red/yellow melanins) produced by the melanocytes. The melanocortin 1 receptor (MC1R) is a regulator of eu- and phaeomelanin production in the melanocytes, and MC1R mutations causing coat color changes are known in many mammals. We have sequenced the MC1R gene in 121 individuals sampled from world populations with an emphasis on Asian populations. We found variation at five nonsynonymous sites (resulting in the variants Arg67Gln, Asp84Glu, Val92Met, Arg151Cys, and Arg163Gln), but at only one synonymous site (A942G). Interestingly, the human consensus protein sequence is observed in all 25 African individuals studied, but at lower frequencies in the other populations examined, especially in East and Southeast Asians. The Arg163Gln variant is absent in the Africans studied, almost absent in Europeans, and at a low frequency (7%) in Indians, but is at an exceptionally high frequency (70%) in East and Southeast Asians. The MC1R gene in common and pygmy chimpanzees, gorilla, orangutan, and baboon was sequenced to study the evolution of MC1R. The ancestral human MC1R sequence is identical to the human consensus protein sequence, while MC1R varies considerably among higher primates. A comparison of the rates of substitution in genes in the melanocortin receptor family indicates that MC1R has evolved the fastest. In addition, the nucleotide diversity at the MC1R locus is shown to be several times higher than the average nucleotide diversity in human populations, possibly due to diversifying selection. PMID:10101176

  9. RAINBOW TROUT ANDROGEN RECEPTOR ALPHA AND THE HUMAN ANDROGEN RECEPTOR: COMPARISONS IN THE COS WHOLE CELL BINDING ASSAY

    EPA Science Inventory

    RAINBOW TROUT ANDROGEN RECEPTOR ALPHA AND HUMAN ANDROGEN RECEPTOR: COMPARISONS IN THE COS WHOLE CELL BINDING ASSAY.
    MC Cardon, PC Hartig,LE Gray, Jr. and VS Wilson.
    U.S. EPA, ORD, NHEERL, RTD, Research Triangle Park, NC, USA.
    Typically, in vitro hazard assessments for ...

  10. RAINBOW TROUT ANDROGEN RECEPTOR ALPHA AND THE HUMAN ANDROGEN RECEPTOR: COMPARISONS IN THE COS WHOLE CELL BINDING ASSAY

    EPA Science Inventory

    Rainbow Trout Androgen Receptor Alpha And Human Androgen Receptor: Comparisons in the COS Whole Cell Binding Assay
    Mary C. Cardon, L. Earl Gray, Jr. and Vickie S. Wilson
    U.S. Environmental Protection Agency, ORD, NHEERL, Reproductive Toxicology Division, Research Triangle...

  11. Dopamine Receptor Activation Increases HIV Entry into Primary Human Macrophages

    PubMed Central

    Gaskill, Peter J.; Yano, Hideaki H.; Kalpana, Ganjam V.; Javitch, Jonathan A.; Berman, Joan W.

    2014-01-01

    Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers. PMID:25268786

  12. Epidermal growth factor and its receptors in human pancreatic carcinoma

    SciTech Connect

    Chen, Y.F.; Pan, G.Z.; Hou, X.; Liu, T.H.; Chen, J.; Yanaihara, C.; Yanaihara, N. )

    1990-05-01

    The role of epidermal growth factor (EGF) in oncogenesis and progression of malignant tumors is a subject of vast interest. In this study, radioimmunoassay and radioreceptor assay of EGF were established. EGF contents in malignant and benign pancreatic tumors, in normal pancreas tissue, and in culture media of a human pancreatic carcinoma cell line were determined. EGF receptor binding studies were performed. It was shown that EGF contents in pancreatic carcinomas were significantly higher than those in normal pancreas or benign pancreatic tumors. EGF was also detected in the culture medium of a pancreatic carcinoma cell line. The binding of 125I-EGF to the pancreatic carcinoma cells was time and temperature dependent, reversible, competitive, and specific. Scatchard analysis showed that the dissociation constant of EGF receptor was 2.1 X 10(-9) M, number of binding sites was 1.3 X 10(5) cell. These results indicate that there is an over-expression of EGF/EGF receptors in pancreatic carcinomas, and that an autocrine regulatory mechanism may exist in the growth-promoting effect of EGF on tumor cells.

  13. Biological variability of transferrin saturation and unsaturated iron binding capacity

    PubMed Central

    Adams, PC; Reboussin, DM; Press, RD; Barton, JC; Acton, RT; Moses, GC; Leiendecker-Foster, C; McLaren, GD; Dawkins, FW; Gordeuk, VR; Lovato, L; Eckfeldt, JH

    2007-01-01

    Background Transferrin saturation is widely considered the preferred screening test for hemochromatosis. Unsaturated iron binding capacity has similar performance at lower cost. However, the within-person biological variability of both these tests may limit their ability at commonly used cut points to detect HFE C282Y homozygous patients. Methods The Hemochromatosis and Iron Overload Screening (HEIRS) Study screened 101,168 primary care participants for iron overload using tansferrin saturation, unsaturated iron binding capacity, ferritin and HFE C282Y and H63D genotyping. Transferrin saturation and unsaturated iron binding capacity were performed at initial screening and again when selected participants and controls returned for a clinical examination several months later. A missed case was defined as a C282Y homozygote who had transferrin saturation below cut point (45 % women, 50 % men) or unsaturated iron binding capacity above cut point (150 μmol/L women, 125 μmol/L men) at either the initial screening or clinical examination, or both, regardless of serum ferritin. Results There were 209 C282Y previously undiagnosed homozygotes with transferrin saturation and unsaturated iron binding capacity testing done at initial screening and clinical examination. Sixty-eight C282Y homozygotes (33%) would have been missed at these transferrin saturation cut points (19 men, 49 women, median SF 170 μg/L, first and third quartiles 50 and 474 μg/L), and 58 homozygotes (28 %) would have been missed at the unsaturated iron binding capacity cut points (20 men, 38 women, median SF 168 μg/L, quartiles 38 and 454 μg/L). There was no advantage to using fasting samples. Conclusions The within-person biological variability of transferrin saturation and unsaturated iron binding capacity limit their usefulness as an initial screening test for expressing C282Y homozygotes. PMID:17976429

  14. Characterization of iron uptake from transferrin by murine endothelial cells.

    PubMed

    Hallmann, R; Savigni, D L; Morgan, E H; Baker, E

    2000-01-01

    Iron is required by the brain for normal function, however, the mechanisms by which it crosses the blood-brain barrier (BBB) are poorly understood. The uptake and efflux of transferrin (Tf) and Fe by murine brain-derived (bEND3) and lymph node-derived (m1END1) endothelial cell lines was compared. The effects of iron chelators, metabolic inhibitors and the cellular activators, lipopolysaccharide (LPS) and tumour necrosis factor-alpha (TNF-alpha), on Tf and Fe uptake were investigated. Cells were incubated with 59Fe-125I-Tf; Fe uptake was shown to increase linearly over time for both cell lines, while Tf uptake reached a plateau within 2 h. Both Tf and Fe uptake were saturable. bEND3 cells were shown to have half as many Tf receptors as m1END1 cells, but the mean cycling times of a Tf molecule were the same. Tf and Fe efflux from the cells were measured over time, revealing that after 2 h only 25% of the Tf but 80% of the Fe remained associated with the cells. Of 7 iron chelators, only deferriprone (L1) markedly decreased Tf uptake. However, Fe uptake was reduced by more than 50% by L1, pyridoxal isonicotinoyl hydrazone (PIH) and desferrithiocin (DFT). The cellular activators TNF-alpha or LPS had little effect on Tf turnover, but they accelerated Fe uptake in both endothelial cell types. Phenylarsenoxide (PhAsO) and N-ethyl maleimide (NEM), inhibitors of Tf endocytosis, reduced both Tf and Fe uptake in both cell lines, while bafilomycin A1, an inhibitor of endosomal acidification, reduced Fe uptake but did not affect Tf uptake. The results suggest that Tf and Fe uptake by both bEND3 and m1END1 is via receptor-mediated endocytosis with release of Fe from Tf within the cell and recycling of apo-Tf. On the basis of Tf- and Fe-metabolism both cell lines are similar and therefore well suited for use in in vitro models for Fe transport across the BBB.

  15. Results With Accelerated Partial Breast Irradiation in Terms of Estrogen Receptor, Progesterone Receptor, and Human Growth Factor Receptor 2 Status

    SciTech Connect

    Wilder, Richard B.; Curcio, Lisa D.; Khanijou, Rajesh K.; Eisner, Martin E.; Kakkis, Jane L.; Chittenden, Lucy; Agustin, Jeffrey; Lizarde, Jessica; Mesa, Albert V.; Macedo, Jorge C.; Ravera, John; Tokita, Kenneth M.

    2010-11-01

    Purpose: To report our results with accelerated partial breast irradiation (APBI) in terms of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2/neu) status. Methods and Materials: Between February 2003 and June 2009, 209 women with early-stage breast carcinomas were treated with APBI using multicatheter, MammoSite, or Contura brachytherapy to 34 Gy in 10 fractions twice daily over 5-7 days. Three patient groups were defined by receptor status: Group 1: ER or PR (+) and HER-2/neu (-) (n = 180), Group 2: ER and PR (-) and HER-2/neu (+) (n = 10), and Group 3: ER, PR, and HER-2/neu (-) (triple negative breast cancer, n = 19). Median follow-up was 22 months. Results: Group 3 patients had significantly higher Scarff-Bloom-Richardson scores (p < 0.001). The 3-year ipsilateral breast tumor control rates for Groups 1, 2, and 3 were 99%, 100%, and 100%, respectively (p = 0.15). Group 3 patients tended to experience relapse in distant sites earlier than did non-Group 3 patients. The 3-year relapse-free survival rates for Groups 1, 2, and 3 were 100%, 100%, and 81%, respectively (p = 0.046). The 3-year cause-specific and overall survival rates for Groups 1, 2, and 3 were 100%, 100%, and 89%, respectively (p = 0.002). Conclusions: Triple negative breast cancer patients typically have high-grade tumors with significantly worse relapse-free, cause-specific, and overall survival. Longer follow-up will help to determine whether these patients also have a higher risk of ipsilateral breast tumor relapse.

  16. Expression of glucocorticoid receptors in the regenerating human skeletal muscle.

    PubMed

    Filipović, D; Pirkmajer, S; Mis, K; Mars, T; Grubic, Z

    2011-01-01

    Many stress conditions are accompanied by skeletal muscle dysfunction and regeneration, which is essentially a recapitulation of the embryonic development. However, regeneration usually occurs under conditions of hypothalamus-pituitary-adrenal gland axis activation and therefore increased glucocorticoid (GC) levels. Glucocorticoid receptor (GR), the main determinant of cellular responsiveness to GCs, exists in two isoforms (GRalpha and GRbeta) in humans. While the role of GRalpha is well characterized, GRbeta remains an elusive player in GC signalling. To elucidate basic characteristics of GC signalling in the regenerating human skeletal muscle we assessed GRalpha and GRbeta expression pattern in cultured human myoblasts and myotubes and their response to 24-hour dexamethasone (DEX) treatment. There was no difference in GRalpha mRNA and protein expression or DEX-mediated GRalpha down-regulation in myoblasts and myotubes. GRbeta mRNA level was very low in myoblasts and remained unaffected by differentiation and/or DEX. GRbeta protein could not be detected. These results indicate that response to GCs is established very early during human skeletal muscle regeneration and that it remains practically unchanged before innervation is established. Very low GRbeta mRNA expression and inability to detect GRbeta protein suggests that GRbeta is not a major player in the early stages of human skeletal muscle regeneration.

  17. Putative melatonin receptors in a human biological clock

    SciTech Connect

    Reppert, S.M.; Weaver, D.R.; Rivkees, S.A.; Stopa, E.G.

    1988-10-07

    In vitro autoradiography with /sup 125/I-labeled melatonin was used to examine melatonin binding sites in human hypothalamus. Specific /sup 125/I-labeled melatonin binding was localized to the suprachiasmatic nuclei, the site of a putative biological clock, and was not apparent in other hypothalamic regions. Specific /sup 125/I-labeled melatonin binding was consistently found in the suprachiasmatic nuclei of hypothalami from adults and fetuses. Densitometric analysis of competition experiments with varying concentrations of melatonin showed monophasic competition curves, with comparable half-maximal inhibition values for the suprachiasmatic nuclei of adults (150 picomolar) and fetuses (110 picomolar). Micromolar concentrations of the melatonin agonist 6-chloromelatonin completely inhibited specific /sup 125/I-labeled melatonin binding, whereas the same concentrations of serotonin and norepinephrine caused only a partial reduction in specific binding. The results suggest that putative melatonin receptors are located in a human biological clock.

  18. Identification of Human P2X1 Receptor-interacting Proteins Reveals a Role of the Cytoskeleton in Receptor Regulation*

    PubMed Central

    Lalo, Ulyana; Roberts, Jonathan A.; Evans, Richard J.

    2011-01-01

    P2X1 receptors are ATP-gated ion channels expressed by smooth muscle and blood cells. Carboxyl-terminally His-FLAG-tagged human P2X1 receptors were stably expressed in HEK293 cells and co-purified with cytoskeletal proteins including actin. Disruption of the actin cytoskeleton with cytochalasin D inhibited P2X1 receptor currents with no effect on the time course of the response or surface expression of the receptor. Stabilization of the cytoskeleton with jasplakinolide had no effect on P2X1 receptor currents but decreased receptor mobility. P2X2 receptor currents were unaffected by cytochalasin, and P2X1/2 receptor chimeras were used to identify the molecular basis of actin sensitivity. These studies showed that the intracellular amino terminus accounts for the inhibitory effects of cytoskeletal disruption similar to that shown for lipid raft/cholesterol sensitivity. Stabilization of the cytoskeleton with jasplakinolide abolished the inhibitory effects of cholesterol depletion on P2X1 receptor currents, suggesting that lipid rafts may regulate the receptor through stabilization of the cytoskeleton. These studies show that the cytoskeleton plays an important role in P2X1 receptor regulation. PMID:21757694

  19. Distribution of galanin receptors in the human eye.

    PubMed

    Schrödl, Falk; Kaser-Eichberger, Alexandra; Trost, Andrea; Strohmaier, Clemens; Bogner, Barbara; Runge, Christian; Bruckner, Daniela; Motloch, Karolina; Holub, Barbara; Kofler, Barbara; Reitsamer, Herbert A

    2015-09-01

    The neuropeptide galanin (GAL) is widely distributed within intrinsic and extrinsic sources supplying the eye. It is involved in regulation of the vascular tone, thus important for ocular homeostasis. Since the presence/distribution of its receptors is unknown, we here screen for the presence of the various GAL receptors in the human eye. Meeting the Helsinki-Declaration, human eyes (n = 6; 45-83 years of age, of both sex, post mortem time 10-19 h) were obtained from the cornea bank and prepared for immunohistochemistry against GAL receptors 1-3 (GALR1-GALR3). Over-expressing cell assays served as positive controls and confocal laser-scanning microscopy was used for documentation. Cell assays reliably detected immunoreactivity for GALR1-3 and cross-reactions between antibodies used were not observed. In the cornea, GALR1-3 were detected in basal layers of the epithelium, stroma, endothelium, as well as in adjacent conjunctiva. In the iris, GALR1-3 were detected in iris sphincter and dilator, while iris vessels displayed immunoreactivity for GALR1 and GALR3. In the ciliary body, GALR1 was exclusively found in the non-pigmented epithelium while GALR3 was detected in the ciliary muscle and vessels. In the retina, GALR1 was present in fibers of the IPL, OPL, NFL, many cells of the INL and few cells of the ONL. GALR2 and GALR3 were present in few neurons of the INL, while GALR2 was also found surrounding retinal vessels. RPE displayed weak immunoreactivity for GALR2 but intense immunoreactivity for GALR3. In the choroid, GALR1-3 were detectable in intrinsic choroidal neurons and nerve fibers of the choroidal stroma, and all three receptors were detected surrounding choroidal blood vessels, while the choriocapillaris was immunoreactive for GALR3 only. This is the first report of the various GALRs in the human eye. While the presence of GALRs in cornea and conjunctiva might be relevant for wound healing or inflammatory processes, the detection in iris vessels (GALR1, 2

  20. Expression profile of frizzled receptors in human medulloblastomas.

    PubMed

    Salsano, Ettore; Paterra, Rosina; Figus, Miriam; Menghi, Francesca; Maderna, Emanuela; Pollo, Bianca; Solero, Carlo Lazzaro; Massimi, Luca; Finocchiaro, Gaetano

    2012-01-01

    Secreted WNT proteins signal through ten receptors of the frizzled (FZD) family. Because of the relevance of the WNT/β-catenin (CTNNB1) signaling pathway in medulloblastomas (MBs), we investigated the expression of all ten members of the FZD gene family (FZD1-10) in 17 human MBs, four MB cell lines and in normal human cerebellum, using real-time PCR. We found that FZD2 transcript was over-expressed in all MBs and MB cell lines. Western blot analysis confirmed the expression of FZD2 at the protein level. Moreover, the levels of FZD2 transcript were found to correlate with those of ASPM transcript, a marker of mitosis essential for mitotic spindle function. Accordingly, ASPM mRNA was expressed at a very low level in the adult, post-mitotic, human cerebellum, at higher levels in fetal cerebellum and at highest levels in MB tissues and cell lines. Unlike FZD2, the other FZDs were overexpressed (e.g., FZD1, FZD3 and FZD8) or underexpressed (e.g., FZD7, FZD9 and FZD10) in a case-restricted manner. Interestingly, we did not find any nuclear immuno-reactivity to CTNNB1 in four MBs over-expressing both FZD2 and other FZD receptors, confirming the lack of nuclear CTNNB1 staining in the presence of increased FZD expression, as in other tumor types. Overall, our results indicate that altered expression of FZD2 might be associated with a proliferative status, thus playing a role in the biology of human MBs, and possibly of cerebellar progenitors from which these malignancies arise.

  1. Purification and characterization of the human interleukin-18 receptor.

    PubMed

    Torigoe, K; Ushio, S; Okura, T; Kobayashi, S; Taniai, M; Kunikata, T; Murakami, T; Sanou, O; Kojima, H; Fujii, M; Ohta, T; Ikeda, M; Ikegami, H; Kurimoto, M

    1997-10-10

    Interleukin (IL)-18 was identified as a molecule that induces IFN-gamma production and enhances NK cell cytotoxicity. In this paper, we report upon the purification and characterization of human IL-18 receptor (hIL-18R). We selected the Hodgkin's disease cell line, L428, as the most strongly hIL-18R-expressing cell line based on the results of binding assays. This binding was inhibited by IL-18 but not by IL-1beta. The dissociation constant (Kd) of 125I-IL-18 binding to L428 cells was about 18.5 nM, with 18,000 binding sites/cell. After immunizing mice with L428 cells and cloning, a single monoclonal antibody (mAb) against hIL-18R was obtained (mAb 117-10C). Sequentially, hIL-18R was purified from 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS)-extracted L428 cells by wheat germ lectin-Sepharose 4B chromatography and mAb 117-10C-Sepharose chromatography. The internal amino acid sequences of hIL-18R all matched those of human IL-1 receptor-related protein (IL-1Rrp), the ligand of which was unknown to date. When expressed in COS-1 cells, the cDNA of IL-1Rrp conferred IL-18 binding properties on the cells and the capacity for signal transduction. From these results, we conclude that a functional IL-18 receptor component is IL-1Rrp.

  2. Glucocorticoid receptor antagonism reverts docetaxel resistance in human prostate cancer.

    PubMed

    Kroon, Jan; Puhr, Martin; Buijs, Jeroen T; van der Horst, Geertje; Hemmer, Daniëlle M; Marijt, Koen A; Hwang, Ming S; Masood, Motasim; Grimm, Stefan; Storm, Gert; Metselaar, Josbert M; Meijer, Onno C; Culig, Zoran; van der Pluijm, Gabri

    2016-01-01

    Resistance to docetaxel is a major clinical problem in advanced prostate cancer (PCa). Although glucocorticoids (GCs) are frequently used in combination with docetaxel, it is unclear to what extent GCs and their receptor, the glucocorticoid receptor (GR), contribute to the chemotherapy resistance. In this study, we aim to elucidate the role of the GR in docetaxel-resistant PCa in order to improve the current PCa therapies. GR expression was analyzed in a tissue microarray of primary PCa specimens from chemonaive and docetaxel-treated patients, and in cultured PCa cell lines with an acquired docetaxel resistance (PC3-DR, DU145-DR, and 22Rv1-DR). We found a robust overexpression of the GR in primary PCa from docetaxel-treated patients and enhanced GR levels in cultured docetaxel-resistant human PCa cells, indicating a key role of the GR in docetaxel resistance. The capability of the GR antagonists (RU-486 and cyproterone acetate) to revert docetaxel resistance was investigated and revealed significant resensitization of docetaxel-resistant PCa cells for docetaxel treatment in a dose- and time-dependent manner, in which a complete restoration of docetaxel sensitivity was achieved in both androgen receptor (AR)-negative and AR-positive cell lines. Mechanistically, we demonstrated down-regulation of Bcl-xL and Bcl-2 upon GR antagonism, thereby defining potential treatment targets. In conclusion, we describe the involvement of the GR in the acquisition of docetaxel resistance in human PCa. Therapeutic targeting of the GR effectively resensitizes docetaxel-resistant PCa cells. These findings warrant further investigation of the clinical utility of the GR antagonists in the management of patients with advanced and docetaxel-resistant PCa.

  3. Characterization of muscarinic cholinergic receptor subtypes in human peripheral lung

    SciTech Connect

    Bloom, J.W.; Halonen, M.; Yamamura, H.I.

    1988-02-01

    The authors have characterized the muscarinic cholinergic receptor subtypes in human peripheral lung membranes using the selective muscarinic antagonist (/sup 3/H)pirenzepine ((/sup 3/H)PZ) and the classical muscarinic antagonist (/sup 3/H)(-)-quinuclidinyl benzilate. High-affinity binding with pharmacologic specificity was demonstrated for both radioligands. The high affinity Kd for (/sup 3/H)PZ binding determined from saturation isotherms was 5.6 nM, and the Kd for (/sup 3/H)(-)-quinuclidinyl benzilate binding was 14.3 pM. Approximately 62% of the total muscarinic binding sites in human peripheral lung bind (/sup 3/H)PZ with high affinity. There was no significant effect of the guanine nucleotide, guanyl-5'-yl imidodiphosphate, on the inhibition of (/sup 3/H)(-)-quinyclidinyl benzilate binding by the muscarinic agonist carbachol in peripheral lung membranes. If the muscarinic receptor with high affinity for PZ has an important role in bronchoconstriction, its characterization could result in the development of more selective bronchodilators.

  4. Anti-cancer activity of doxorubicin-loaded liposomes co-modified with transferrin and folic acid.

    PubMed

    Sriraman, Shravan Kumar; Salzano, Giusseppina; Sarisozen, Can; Torchilin, Vladimir

    2016-08-01

    Cancer-specific drug delivery represents an attractive approach to prevent undesirable side-effects and increase the accumulation of the drug in the tumor. Surface modification of nanoparticles such as liposomes with targeting moieties specific to the up-regulated receptors on the surface of tumor cells thus represents an effective strategy. Furthermore, since this receptor expression can be heterogeneous, using a dual-combination of targeting moieties may prove advantageous. With this in mind, the anti-cancer activity of PEGylated doxorubicin-loaded liposomes targeted with folic acid (F), transferrin (Tf) or both (F+Tf) was evaluated. The dual-targeted liposomes showed a 7-fold increase in cell association compared to either of the single-ligand targeted ones in human cervical carcinoma (HeLa) cell monolayers. The increased penetration and cell association of the dual-targeted liposomes were also demonstrated using HeLa cell spheroids. The in vitro cytotoxicity of the doxorubicin liposomes (LD) was then evaluated using HeLa and A2780-ADR ovarian carcinoma cell monolayers. In both these cell lines, the (F+Tf) LD showed significantly higher cytotoxic effects than the untargeted, or single-ligand targeted liposomes. In a HeLa xenograft model in nude mice, compared to the untreated group, though the untargeted LD showed 42% tumor growth inhibition, both the (F) LD and (F+Tf) LD showed 75% and 79% tumor growth inhibition respectively. These results thus highlight that though the dual-targeted liposomes represent an effective cytotoxic formulation in the in vitro setting, they were equally effective as the folic acid-targeted liposomes in reducing tumor burden in the more complex in vivo setting in this particular model.

  5. Muscarinic M3 receptor subtype gene expression in the human heart.

    PubMed

    Hellgren, I; Mustafa, A; Riazi, M; Suliman, I; Sylvén, C; Adem, A

    2000-01-20

    The heart is an important target organ for cholinergic function. In this study, muscarinic receptor subtype(s) in the human heart were determined using reverse transcription-polymerase chain reaction. Our results demonstrated muscarinic receptor M2 and M3 subtype RNA in left/right atria/ventricles of donor hearts. Receptor autoradiography analysis using selective muscarinic ligands indicated an absence of M1 receptor subtype in the human heart. The level of muscarinic receptor binding in atria was two to three times greater than in ventricles. Our results suggest that muscarinic receptors in the human heart are of the M2 and M3 subtypes. This is the first report of M3 receptors in the human myocardium.

  6. Human NK cells: From surface receptors to clinical applications.

    PubMed

    Moretta, Lorenzo; Pietra, Gabriella; Vacca, Paola; Pende, Daniela; Moretta, Francesca; Bertaina, Alice; Mingari, Maria Cristina; Locatelli, Franco; Moretta, Alessandro

    2016-10-01

    Natural killer (NK) cells play a major role in innate defenses against pathogens, primarily viruses, and are also thought to be part of the immunosurveillance against tumors. They express an array of surface receptors that mediate NK cell function. The human leukocytes antigen (HLA) class I-specific inhibitory receptors allow NK cells to detect and kill cells that have lost or under-express HLA class I antigens, a typical feature of tumor or virally infected cells. However, NK cell activation and induction of cytolytic activity and cytokine production depends on another important checkpoint, namely the expression on target cells of ligands recognized by activating NK receptors. Despite their potent cytolytic activity, NK cells frequently fail to eliminate tumors. This is due to mechanisms of tumor escape, determined by the tumor cells themselves or by tumor-associated cells (i.e. the tumor microenvironment) via the release of soluble suppressive factors or the induction of inhibitory loops involving induction of regulatory T cells, M2-polarized macrophages and myeloid-derived suppressor cells. The most important clinical application involving NK cells is the cure of high-risk leukemias in the haplo-identical hematopoietic stem cell transplant (HSCT) setting. NK cells originated from hematopoietic stem cells (HSC) of HLA-haploidentical donors may express Killer Immunoglobulin-like receptors (KIRs) that are mismatched with the HLA class I alleles of the recipient. This allows NK cells to kill leukemia blasts residual after the conditioning regimen, while sparing normal cells (that do not express ligands for activating NK receptors). More recent approaches based on the specific removal of TCR α/β(+) T cells and of CD19(+) B cells, allow the infusion, together with CD34(+) HSC, of mature KIR(+) NK cells and of TCR γ/δ(+) T cells, both characterized by a potent anti-leukemia activity. This greatly reduces the time interval necessary to obtain alloreactive, KIR(+) NK

  7. Developmental regulation of human truncated nerve growth factor receptor

    SciTech Connect

    DiStefano, P.S.; Clagett-Dame, M.; Chelsea, D.M.; Loy, R. )

    1991-01-01

    Monoclonal antibodies (designated XIF1 and IIIG5) recognizing distinct epitopes of the human truncated nerve growth factor receptor (NGF-Rt) were used in a two-site radiometric immunosorbent assay to monitor levels of NGF-Rt in human urine as a function of age. Urine samples were collected from 70 neurologically normal subjects ranging in age from 1 month to 68 years. By using this sensitive two-site radiometric immunosorbent assay, NGF-Rt levels were found to be highest in urine from 1-month old subjects. By 2.5 months, NGF-Rt values were half of those seen at 1 month and decreased more gradually between 0.5 and 15 years. Between 15 and 68 years, urine NGF-Rt levels were relatively constant at 5% of 1-month values. No evidence for diurnal variation of adult NGF-Rt was apparent. Pregnant women in their third trimester showed significantly elevated urine NGF-Rt values compared with age-matched normals. Affinity labeling of NGF-Rt with 125I-NGF followed by immunoprecipitation with ME20.4-IgG and gel autoradiography indicated that neonatal urine contained high amounts of truncated receptor (Mr = 50 kd); decreasingly lower amounts of NGF-Rt were observed on gel autoradiograms with development, indicating that the two-site radiometric immunosorbent assay correlated well with the affinity labeling technique for measuring NGF-Rt. NGF-Rt in urines from 1-month-old and 36-year-old subjects showed no differences in affinities for NGF or for the monoclonal antibody IIIG5. These data show that NGF-Rt is developmentally regulated in human urine, and are discussed in relation to the development and maturation of the peripheral nervous system.

  8. Elucidation of the Mechanism by Which Catecholamine Stress Hormones Liberate Iron from the Innate Immune Defense Proteins Transferrin and Lactoferrin ▿

    PubMed Central

    Sandrini, Sara M.; Shergill, Raminder; Woodward, Jonathan; Muralikuttan, Remya; Haigh, Richard D.; Lyte, Mark; Freestone, Primrose P.

    2010-01-01

    The ability of catecholamine stress hormones and inotropes to stimulate the growth of infectious bacteria is now well established. A major element of the growth induction process has been shown to involve the catecholamines binding to the high-affinity ferric-iron-binding proteins transferrin (Tf) and lactoferrin, which then enables bacterial acquisition of normally inaccessible sequestered host iron. The nature of the mechanism(s) by which the stress hormones perturb iron binding of these key innate immune defense proteins has not been fully elucidated. The present study employed electron paramagnetic resonance spectroscopy and chemical iron-binding analyses to demonstrate that catecholamine stress hormones form direct complexes with the ferric iron within transferrin and lactoferrin. Moreover, these complexes were shown to result in the reduction of Fe(III) to Fe(II) and the loss of protein-complexed iron. The use of bacterial ferric iron uptake mutants further showed that both the Fe(II) and Fe(III) released from the Tf could be directly used as bacterial nutrient sources. We also analyzed the transferrin-catecholamine interactions in human serum and found that therapeutically relevant concentrations of stress hormones and inotropes could directly affect the iron binding of serum-transferrin so that the normally highly bacteriostatic tissue fluid became significantly more supportive of the growth of bacteria. The relevance of these catecholamine-transferrin/lactoferrin interactions to the infectious disease process is considered. PMID:19820086

  9. Crystal Structure of the Human Cannabinoid Receptor CB1.

    PubMed

    Hua, Tian; Vemuri, Kiran; Pu, Mengchen; Qu, Lu; Han, Gye Won; Wu, Yiran; Zhao, Suwen; Shui, Wenqing; Li, Shanshan; Korde, Anisha; Laprairie, Robert B; Stahl, Edward L; Ho, Jo-Hao; Zvonok, Nikolai; Zhou, Han; Kufareva, Irina; Wu, Beili; Zhao, Qiang; Hanson, Michael A; Bohn, Laura M; Makriyannis, Alexandros; Stevens, Raymond C; Liu, Zhi-Jie

    2016-10-20

    Cannabinoid receptor 1 (CB1) is the principal target of Δ(9)-tetrahydrocannabinol (THC), a psychoactive chemical from Cannabis sativa with a wide range of therapeutic applications and a long history of recreational use. CB1 is activated by endocannabinoids and is a promising therapeutic target for pain management, inflammation, obesity, and substance abuse disorders. Here, we present the 2.8 Å crystal structure of human CB1 in complex with AM6538, a stabilizing antagonist, synthesized and characterized for this structural study. The structure of the CB1-AM6538 complex reveals key features of the receptor and critical interactions for antagonist binding. In combination with functional studies and molecular modeling, the structure provides insight into the binding mode of naturally occurring CB1 ligands, such as THC, and synthetic cannabinoids. This enhances our understanding of the molecular basis for the physiological functions of CB1 and provides new opportunities for the design of next-generation CB1-targeting pharmaceuticals.

  10. Distribution of beta-adrenergic receptors on human lymphocyte subpopulations.

    PubMed Central

    Pochet, R; Delespesse, G; Gausset, P W; Collet, H

    1979-01-01

    A technique is described allowing the quantification and the characterization of specific beta-adrenergic receptors in intact living human lymphocytes. 125I-Iodohydroxybenzylpindolol, a potent beta-adrenergic antagonist was used to label specific binding sites on unfractionated lymphoid cells and on purified subpopulations of T (F1 and F2) and B cells. F1 and F2 were obtained by filtration through nylon wool column as previously described (Delespesse et al., 1976), they differ in their response to mitogens, and in their interactions with adherent cells and B cells. 125I-HYP binding to unfractionated lymphocytes was a saturable, stereospecific and rapid process with a dissociation constant of 2.5 10(-10) M and a binding capacity of 400--600 sites/cell. Bindings on unfractionated lymphocytes, purified B cells and T cells of the F2 fraction were similar. No detectable binding was noted on T cells from the F1 fraction. Enriched T cells obtained by a rosetting technique displayed 200 receptors/cell. PMID:43789

  11. The genomic structure of the human UFO receptor.

    PubMed

    Schulz, A S; Schleithoff, L; Faust, M; Bartram, C R; Janssen, J W

    1993-02-01

    Using a DNA transfection-tumorigenicity assay we have recently identified the UFO oncogene. It encodes a tyrosine kinase receptor characterized by the juxtaposition of two immunoglobulin-like and two fibronectin type III repeats in its extracellular domain. Here we describe the genomic organization of the human UFO locus. The UFO receptor is encoded by 20 exons that are distributed over a region of 44 kb. Different isoforms of UFO mRNA are generated by alternative splicing of exon 10 and differential usage of two imperfect polyadenylation sites resulting in the presence or absence of 1.5-kb 3' untranslated sequences. Primer extension and S1 nuclease analyses revealed multiple transcriptional initiation sites including a major site 169 bp upstream of the translation start site. The promoter region is GC rich, lacks TATA and CAAT boxes, but contains potential recognition sites for a variety of trans-acting factors, including Sp1, AP-2 and the cyclic AMP response element-binding protein. Proto-UFO and its oncogenic counterpart exhibit identical cDNA and promoter regions sequences. Possible modes of UFO activation are discussed.

  12. Toll-like Receptor 7 Rapidly Relaxes Human Airways

    PubMed Central

    Scott, Gregory D.; Proskocil, Becky J.; Fryer, Allison D.; Jacoby, David B.; Kaufman, Elad H.

    2013-01-01

    Rationale: Toll-like receptors (TLRs) 7 and 8 detect respiratory virus single-stranded RNA and trigger an innate immune response. We recently described rapid TLR7-mediated bronchodilation in guinea pigs. Objectives: To characterize TLR7 expression and TLR7-induced airway relaxation in humans and in eosinophilic airway inflammation in guinea pigs. To evaluate the relaxant effects of other TLRs. Methods: Human airway smooth muscle strips were contracted with methacholine in vitro, and responses to TLR7 and TLR8 agonists were assessed. TLR7-mediated nitric oxide production was measured using a fluorescent indicator, and TLR7 expression was characterized using immunofluorescence. TLR7 signaling was also evaluated in ovalbumin-challenged guinea pigs. Measurements and Main Results: The TLR7 agonist imiquimod (R837) caused rapid dose-dependent relaxation of methacholine-contracted human airways in vitro. This was blocked by the TLR7 antagonist IRS661 and by inhibiting nitric oxide production but not by inhibiting prostaglandin production. TLR7 activation markedly increased fluorescence of a nitric oxide detector. TLR7 was expressed on airway nerves, but not airway smooth muscle, implicating airway nerves as the source of TLR7-induced nitric oxide production. TLR7-mediated relaxation persisted in inflamed guinea pigs airways in vivo. The TLR8 agonists polyuridylic acid and polyadenylic acid also relaxed human airways, and this was not blocked by the TLR7 antagonist or by blocking nitric oxide or prostaglandin production. No other TLRs relaxed the airways. Conclusions: TLR7 is expressed on airway nerves and mediates relaxation of human and animal airways through nitric oxide production. TLR7-mediated bronchodilation may be a new therapeutic strategy in asthma. PMID:23924358

  13. The role of glucocorticoid receptor (GR) polymorphisms in human erythropoiesis.

    PubMed

    Varricchio, Lilian; Migliaccio, Anna Rita

    2014-01-01

    Glucocorticoids are endogenous steroid hormones that regulate several biological functions including proliferation, differentiation and apoptosis in numerous cell types in response to stress. Synthetic glucocorticoids, such as dexamethasone (Dex) are used to treat a variety of diseases ranging from allergy to depression. Glucocorticoids exert their effects by passively entering into cells and binding to a specific Glucocorticoid Receptor (GR) present in the cytoplasm. Once activated by its ligand, GR may elicit cytoplasmic (mainly suppression of p53), and nuclear (regulation of transcription of GR responsive genes), responses. Human GR is highly polymorphic and may encode > 260 different isoforms. This polymorphism is emerging as the leading cause for the variability of phenotype and response to glucocorticoid therapy observed in human populations. Studies in mice and clinical observations indicate that GR controls also the response to erythroid stress. This knowledge has been exploited in-vivo by using synthetic GR agonists for treatment of the erythropoietin-refractory congenic Diamond Blackfan Anemia and in-vitro to develop culture conditions that may theoretically generate red cells in numbers sufficient for transfusion. However, the effect exerted by GR polymorphism on the variability of the phenotype of genetic and acquired erythroid disorders observed in the human population is still poorly appreciated. This review will summarize current knowledge on the biological activity of GR and of its polymorphism in non-hematopoietic diseases and discuss the implications of these observations for erythropoiesis.

  14. The role of glucocorticoid receptor (GR) polymorphisms in human erythropoiesis

    PubMed Central

    Varricchio, Lilian; Migliaccio, Anna Rita

    2014-01-01

    Glucocorticoids are endogenous steroid hormones that regulate several biological functions including proliferation, differentiation and apoptosis in numerous cell types in response to stress. Synthetic glucocorticoids, such as dexamethasone (Dex) are used to treat a variety of diseases ranging from allergy to depression. Glucocorticoids exert their effects by passively entering into cells and binding to a specific Glucocorticoid Receptor (GR) present in the cytoplasm. Once activated by its ligand, GR may elicit cytoplasmic (mainly suppression of p53), and nuclear (regulation of transcription of GR responsive genes), responses. Human GR is highly polymorphic and may encode > 260 different isoforms. This polymorphism is emerging as the leading cause for the variability of phenotype and response to glucocorticoid therapy observed in human populations. Studies in mice and clinical observations indicate that GR controls also the response to erythroid stress. This knowledge has been exploited in-vivo by using synthetic GR agonists for treatment of the erythropoietin-refractory congenic Diamond Blackfan Anemia and in-vitro to develop culture conditions that may theoretically generate red cells in numbers sufficient for transfusion. However, the effect exerted by GR polymorphism on the variability of the phenotype of genetic and acquired erythroid disorders observed in the human population is still poorly appreciated. This review will summarize current knowledge on the biological activity of GR and of its polymorphism in non-hematopoietic diseases and discuss the implications of these observations for erythropoiesis. PMID:25755906

  15. Pharmacological Characterization of Human Histamine Receptors and Histamine Receptor Mutantsin the Sf9 Cell Expression System.

    PubMed

    Schneider, Erich H; Seifert, Roland

    2017-02-24

    A large problem of histamine receptor research is data heterogeneity. Various experimental approaches, the complex signaling pathways of mammalian cells, and the use of different species orthologues render it difficult to compare and interpret the published results. Thus, the four human histamine receptor subtypes were analyzed side-by-side in the Sf9 insect cell expression system, using radioligand binding assays as well as functional readouts proximal to the receptor activation event (steady-state GTPase assays and [(35)S]GTPγS assays). The human H1R was co-expressed with the regulators of G protein signaling RGS4 or GAIP, which unmasked a productive interaction between hH1R and insect cell Gαq. By contrast, functional expression of the hH2R required the generation of an hH2R-Gsα fusion protein to ensure close proximity of G protein and receptor. Fusion of hH2R to the long (GsαL) or short (GsαS) splice variant of Gαs resulted in comparable constitutive hH2R activity, although both G protein variants show different GDP affinities. Medicinal chemistry studies revealed profound species differences between hH1R/hH2R and their guinea pig orthologues gpH1R/gpH2R. The causes for these differences were analyzed by molecular modeling in combination with mutational studies. Co-expression of the hH3R with Gαi1, Gαi2, Gαi3, and Gαi/o in Sf9 cells revealed high constitutive activity and comparable interaction efficiency with all G protein isoforms. A comparison of various cations (Li(+), Na(+), K(+)) and anions (Cl(-), Br(-), I(-)) revealed that anions with large radii most efficiently stabilize the inactive hH3R state. Potential sodium binding sites in the hH3R protein were analyzed by expressing specific hH3R mutants in Sf9 cells. In contrast to the hH3R, the hH4R preferentially couples to co-expressed Gαi2 in Sf9 cells. Its high constitutive activity is resistant to NaCl or GTPγS. The hH4R shows structural instability and adopts a G protein-independent high

  16. Pramipexole Derivatives as Potent and Selective Dopamine D3 Receptor Agonists with Improved Human Microsomal Stability

    PubMed Central

    Jiang, Cheng; Levant, Beth; Li, Xiaoqin; Zhao, Ting; Wen, Bo; Luo, Ruijuan; Sun, Duxin

    2014-01-01

    We report herein the synthesis and evaluation of a series of new pramipexole derivatives as highly potent and selective dopamine-3 (D3) receptor agonists. A number of these new compounds bind to the D3 receptor with subnanomolar affinities and show excellent selectivity (>10,000) for the D3 receptor over the D1 and D2 receptors. Compound 23 for example, binds to the D3 receptor with a Ki value of 0.53 nM and shows a selectivity of >20,000 over the D2 receptor and the D1 receptor in the binding assays using a rat brain preparation. It has excellent stability in human liver microsomes and in vitro functional assays showed it to be a full agonist for the human D3 receptor. PMID:25338762

  17. Soluble chemokine receptor CXCR4 is present in human sera.

    PubMed

    Malvoisin, Etienne; Livrozet, Jean-Michel; Makloufi, Djamila; Vincent, Nadine

    2011-07-15

    A soluble form of the chemokine receptor CXCR4 was detected in human sera by isoelectric focusing and Western blotting. Sera of patients and normal subjects were analyzed using a panel of specific antibodies. Compared with controls, high levels of serum CXCR4 were found in patients with inflammatory bowel diseases. Serum CXCR4 levels in the majority of HIV patients were similar to those in healthy controls. A sensitive polyclonal antibody was developed in rabbit immunized with a maltose binding protein (MBP) construct expressing the full-length CXCR4. Using anti-MBPCXCR4 antibody, the level of CXCR4 in sera of a majority of patients with fibrosis was very low. The potential of serum CXCR4 as a new diagnostic biomarker warrants further investigation.

  18. Androgen receptor in human health: a potential therapeutic target.

    PubMed

    Siddique, Hifzur Rahman; Nanda, Sanjeev; Parray, Aijaz; Saleem, Mohammad

    2012-12-01

    Androgen is a key for the activation of Androgen Receptor (AR) in most of the disease conditions, however androgen-independent activation of AR is also found in aggressive type human malignancies. An intense search for the inhibitors of AR is underway to cure AR-dependent diseases. In addition to targeting various components of AR signaling pathway, compounds which directly target AR are under preclinical and clinical investigation. Various In vitro and preclinical animal studies suggest that different natural compounds have potential to act against AR. Some natural compounds have been found to be pharmacologically effective against AR irrespective of varying routs of administration viz; oral, intra-peritoneal and intravenous. This mini-review summarizes the studies conducted with different natural agents in determining their pharmacological utility against AR signaling.

  19. Human insulin prepared by recombinant DNA techniques and native human insulin interact identically with insulin receptors.

    PubMed Central

    Keefer, L M; Piron, M A; De Meyts, P

    1981-01-01

    Human insulin synthesized from A and B chains separately produced in Escherichia coli from cloned synthetic genes (prepared by the Eli Lilly Research Laboratories, Indianapolis, IN) was characterized by examining its interaction with human cultured lymphocytes, human circulating erythrocytes in vitro, and isolated rat fat cells. The binding behavior of the biosynthetic insulin with human cells was indistinguishable from that of native human or porcine insulins, with respect to affinity, association and dissociation kinetics, negative cooperativity, and the down-regulation of lymphocyte receptors. Similarly, the biosynthetic insulin was as potent as the native insulins in stimulating lipogenesis in isolated rat fat cells. We also examined the receptor binding characteristics of 125I-labeled human and porcine insulins monoiodinated solely at Tyr-A14, which were obtained by means of high-performance liquid chromatography of the iodination reaction mixture (this material was prepared by B. Frank, Eli Lilly Research Laboratories). In all aspects studied, the pure [TyrA14-125I]iodoinsulins were superior as tracers to the monoiodoinsulin purified by the more conventional method of gel filtration. PMID:7015337

  20. Histamine H3 receptor-mediated inhibition of noradrenaline release in the human brain.

    PubMed

    Schlicker, E; Werthwein, S; Zentner, J

    1999-01-01

    Stimulation-evoked 3H-noradrenaline release in human cerebrocortical slices was inhibited by histamine (in a manner sensitive to clobenpropit) and by imetit, suggesting H3 receptor-mediated inhibition of noradrenaline release in human brain.

  1. A combined computational and structural model of the full-length human prolactin receptor

    NASA Astrophysics Data System (ADS)

    Bugge, Katrine; Papaleo, Elena; Haxholm, Gitte W.; Hopper, Jonathan T. S.; Robinson, Carol V.; Olsen, Johan G.; Lindorff-Larsen, Kresten; Kragelund, Birthe B.

    2016-05-01

    The prolactin receptor is an archetype member of the class I cytokine receptor family, comprising receptors with fundamental functions in biology as well as key drug targets. Structurally, each of these receptors represent an intriguing diversity, providing an exceptionally challenging target for structural biology. Here, we access the molecular architecture of the monomeric human prolactin receptor by combining experimental and computational efforts. We solve the NMR structure of its transmembrane domain in micelles and collect structural data on overlapping fragments of the receptor with small-angle X-ray scattering, native mass spectrometry and NMR spectroscopy. Along with previously published data, these are integrated by molecular modelling to generate a full receptor structure. The result provides the first full view of a class I cytokine receptor, exemplifying the architecture of more than 40 different receptor chains, and reveals that the extracellular domain is merely the tip of a molecular iceberg.

  2. A combined computational and structural model of the full-length human prolactin receptor

    PubMed Central

    Bugge, Katrine; Papaleo, Elena; Haxholm, Gitte W.; Hopper, Jonathan T. S.; Robinson, Carol V.; Olsen, Johan G.; Lindorff-Larsen, Kresten; Kragelund, Birthe B.

    2016-01-01

    The prolactin receptor is an archetype member of the class I cytokine receptor family, comprising receptors with fundamental functions in biology as well as key drug targets. Structurally, each of these receptors represent an intriguing diversity, providing an exceptionally challenging target for structural biology. Here, we access the molecular architecture of the monomeric human prolactin receptor by combining experimental and computational efforts. We solve the NMR structure of its transmembrane domain in micelles and collect structural data on overlapping fragments of the receptor with small-angle X-ray scattering, native mass spectrometry and NMR spectroscopy. Along with previously published data, these are integrated by molecular modelling to generate a full receptor structure. The result provides the first full view of a class I cytokine receptor, exemplifying the architecture of more than 40 different receptor chains, and reveals that the extracellular domain is merely the tip of a molecular iceberg. PMID:27174498

  3. Assessment of dopamine receptor densities in the human brain with carbon-11-labeled N-methylspiperone

    SciTech Connect

    Wagner, H.N. Jr.; Burns, H.D.; Dannals, R.F.; Wong, D.F.; Langstroem, B.; Duelfer, T.; Frost, J.J.; Ravert, H.T.; Links, J.M.; Rosenbloom, S.B.

    1984-01-01

    We describe the use of carbon-11-labeled 3-N-methylspiperone, a ligand that preferentially binds to dopamine receptors in vivo, to image the receptors by positron emission tomography scanning in baboons and, for the first time, in a human. The method has now been used in 58 humans for noninvasive assessment of the state of brain dopamine receptors under normal and pathological conditions.

  4. Localization of ligand-binding domains of human corticotropin-releasing factor receptor: a chimeric receptor approach.

    PubMed

    Liaw, C W; Grigoriadis, D E; Lovenberg, T W; De Souza, E B; Maki, R A

    1997-06-01

    Two CRF receptors, CRFR1 and CRFR2, have recently been cloned and characterized. CRFR1 shares 70% sequence identity with CRFR2, yet has much higher affinity for rat/human CRF (r/hCRF) than CRFR2. As a first step toward understanding the interactions between rat/human CRF and its receptor, the regions that are involved in receptor-ligand binding and/or receptor activation were determined by using chimeric receptor constructs of the two human CRFR subtypes, CRFR1 and CRFR2, followed by generating point mutations of the receptor. The EC50 values in stimulation of intracellular cAMP of the chimeric and mutant receptors for the peptide ligand were determined using a cAMP-dependent reporter system. Three regions of the receptor were found to be important for optimal binding of r/hCRF and/or receptor activation. The first region was mapped to the junction of the third extracellular domain and the fifth transmembrane domain; substitution of three amino acids of CRFR1 in this region (Val266, Tyr267, and Thr268) by the corresponding CRFR2 amino acids (Asp266, Leu267, and Val268) increased the EC50 value by approximately 10-fold. The other two regions were localized to the second extracellular domain of the CRFR1 involving amino acids 175-178 and His189 residue. Substitutions in these two regions each increased the EC50 value for r/hCRF by approximately 7- to 8-fold only in the presence of the amino acid 266-268 mutation involving the first region, suggesting that their roles in peptide ligand binding might be secondary.

  5. Transferrin Decorated Thermoresponsive Nanogels as Magnetic Trap Devices for Circulating Tumor Cells.

    PubMed

    Asadian-Birjand, Mazdak; Biglione, Catalina; Bergueiro, Julian; Cappelletti, Ariel; Rahane, Chinmay; Chate, Govind; Khandare, Jayant; Klemke, Bastian; Strumia, Miriam C; Calderón, Marcelo

    2016-03-01

    A rational design of magnetic capturing nanodevices, based on a specific interaction with circulating tumor cells (CTCs), can advance the capturing efficiency and initiate the development of modern smart nanoformulations for rapid isolation and detection of these CTCs from the bloodstream. Therefore, the development and evaluation of magnetic nanogels (MNGs) based on magnetic nanoparticles and linear thermoresponsive polyglycerol for the capturing of CTCs with overexpressed transferrin (Tf(+) ) receptors has been presented in this study. The MNGs are synthesized using a strain-promoted "click" approach which has allowed the in situ surface decoration with Tf-polyethylene glycol (PEG) ligands of three different PEG chain lengths as targeting ligands. An optimal value of around 30% of cells captures is achieved with a linker of eight ethylene glycol units. This study shows the potential of MNGs for the capture of CTCs and the necessity of precise control over the linkage of the targeting moiety to the capturing device.

  6. Oseltamivir blocks human neuronal nicotinic acetylcholine receptor-mediated currents.

    PubMed

    Muraki, Katsuhiko; Hatano, Noriyuki; Suzuki, Hiroka; Muraki, Yukiko; Iwajima, Yui; Maeda, Yasuhiro; Ono, Hideki

    2015-02-01

    The effects of oseltamivir, a neuraminidase inhibitor, were tested on the function of neuronal nicotinic acetylcholine receptors (nAChRs) in a neuroblastoma cell line IMR32 derived from human peripheral neurons and on recombinant human α3β4 nAChRs expressed in HEK cells. IMR32 cells predominately express α3β4 nAChRs. Nicotine (nic, 30 μm)-evoked currents recorded at -90 mV in IMR32 cells using the whole-cell patch clamp technique were reversibly blocked by oseltamivir in a concentration-dependent manner. In contrast, an active metabolite of oseltamivir, oseltamivir carboxylate (OC) at 30 μm had little effect on the nic-evoked currents. Oseltamivir also blocked nic-evoked currents derived from HEK cells with recombinant α3β4 nAChRs. This blockade was voltage-dependent with 10, 30 and 100 μm oseltamivir inhibiting ~50% at -100, -60 and -40 mV, respectively. Non-inactivating currents in IMR32 cells and in HEK cells with α3β4 nAChRs, which were evoked by an endogenous nicotinic agonist, ACh (5 μm), were reversibly blocked by oseltamivir. These data demonstrate that oseltamivir blocks nAChRs, presumably via binding to a site in the channel pore.

  7. Glyphosate induces human breast cancer cells growth via estrogen receptors.

    PubMed

    Thongprakaisang, Siriporn; Thiantanawat, Apinya; Rangkadilok, Nuchanart; Suriyo, Tawit; Satayavivad, Jutamaad

    2013-09-01

    Glyphosate is an active ingredient of the most widely used herbicide and it is believed to be less toxic than other pesticides. However, several recent studies showed its potential adverse health effects to humans as it may be an endocrine disruptor. This study focuses on the effects of pure glyphosate on estrogen receptors (ERs) mediated transcriptional activity and their expressions. Glyphosate exerted proliferative effects only in human hormone-dependent breast cancer, T47D cells, but not in hormone-independent breast cancer, MDA-MB231 cells, at 10⁻¹² to 10⁻⁶M in estrogen withdrawal condition. The proliferative concentrations of glyphosate that induced the activation of estrogen response element (ERE) transcription activity were 5-13 fold of control in T47D-KBluc cells and this activation was inhibited by an estrogen antagonist, ICI 182780, indicating that the estrogenic activity of glyphosate was mediated via ERs. Furthermore, glyphosate also altered both ERα and β expression. These results indicated that low and environmentally relevant concentrations of glyphosate possessed estrogenic activity. Glyphosate-based herbicides are widely used for soybean cultivation, and our results also found that there was an additive estrogenic effect between glyphosate and genistein, a phytoestrogen in soybeans. However, these additive effects of glyphosate contamination in soybeans need further animal study.

  8. Bioelectronic tongue using heterodimeric human taste receptor for the discrimination of sweeteners with human-like performance.

    PubMed

    Song, Hyun Seok; Jin, Hye Jun; Ahn, Sae Ryun; Kim, Daesan; Lee, Sang Hun; Kim, Un-Kyung; Simons, Christopher T; Hong, Seunghun; Park, Tai Hyun

    2014-10-28

    The sense of taste helps humans to obtain information and form a picture of the world by recognizing chemicals in their environments. Over the past decade, large advances have been made in understanding the mechanisms of taste detection and mimicking its capability using artificial sensor devices. However, the detection capability of previous artificial taste sensors has been far inferior to that of animal tongues, in terms of its sensitivity and selectivity. Herein, we developed a bioelectronic tongue using heterodimeric human sweet taste receptors for the detection and discrimination of sweeteners with human-like performance, where single-walled carbon nanotube field-effect transistors were functionalized with nanovesicles containing human sweet taste receptors and used to detect the binding of sweeteners to the taste receptors. The receptors are heterodimeric G-protein-coupled receptors (GPCRs) composed of human taste receptor type 1 member 2 (hTAS1R2) and human taste receptor type 1 member 3 (hTAS1R3), which have multiple binding sites and allow a human tongue-like broad selectivity for the detection of sweeteners. This nanovesicle-based bioelectronic tongue can be a powerful tool for the detection of sweeteners as an alternative to labor-intensive and time-consuming cell-based assays and the sensory evaluation panels used in the food and beverage industry. Furthermore, this study also allows the artificial sensor to exam the functional activity of dimeric GPCRs.

  9. Different methylation of oestrogen receptor DNA in human breast carcinomas with and without oestrogen receptor.

    PubMed Central

    Piva, R.; Rimondi, A. P.; Hanau, S.; Maestri, I.; Alvisi, A.; Kumar, V. L.; del Senno, L.

    1990-01-01

    The methylation of the human oestrogen receptor (ER) gene was analysed by restriction enzymes in normal and neoplastic human breast tissues and cell lines. CCGG sequences in regions inside the gene, which are methylated both in normal breast and in tissues that are not the target of the oestrogen, are hypomethylated in 30% of tumours, both ER+ and ER- carcinomas. Moreover, 5' sequences of the gene, which are hypomethylated in normal breast and not in tissues not the target of oestrogen, are methylated to a lower degree in ER+ carcinomas, whereas they are methylated to a greater degree in ER- carcinomas. However, the same region is equally hypomethylated in both ER+ and ER- cancer cell lines. Our results indicate that in breast carcinomas ER DNA methylation is deranged, and in cancer cell lines is different from that observed in primary tumours. Furthermore, the abnormal methylation in the 5' end seems to be related to abnormal expression, namely diffuse hypomethylation in carcinomas with high ER content and hypermethylation in carcinomas without ER. These findings support our previous hypothesis that DNA methylation could be involved in the control of ER gene expression and demonstrate that abnormal ER gene methylation is a typical feature of breast cancers. Images Figure 1 Figure 2 Figure 3 PMID:2155643

  10. Transforming Growth Factor-B Receptors in Human Breast Cancer.

    DTIC Science & Technology

    1998-05-01

    receptor. Nature 370:341-347,1994 60. Wang T, Donahoe P, Zervos AS: Specific interaction of type I receptors of the TGFß family with the immunophilin...Res 56: 44^48,1996 82. Kadin ME. Cavaille-Coll MW, Gertz R. Massague J, Chei- fetz S. George D: Loss of receptors for transforming growth factor ß

  11. Localization of luteinizing hormone receptor protein in the human ovary.

    PubMed

    Yung, Y; Aviel-Ronen, S; Maman, E; Rubinstein, N; Avivi, C; Orvieto, R; Hourvitz, A

    2014-09-01

    The luteinizing hormone receptor (LHR) plays a pivotal role during follicular development. Consequently, its expression pattern is of major importance for research and has clinical implications. Despite the accumulated information regarding LHR expression patterns, our understanding of its expression in the human ovary, specifically at the protein level, is incomplete. Therefore, our aim was to determine the LHR protein localization and expression pattern in the human ovary. We examined the presence of LHR by immunohistochemical staining of human ovaries and western blots of mural granulosa and cumulus cells aspirated during IVF treatments. We were not able to detect LHR protein staining in primordial or primary follicles. We observed equivocal positive staining in granulosa cells and theca cells of secondary follicles. The first appearance of a clear signal of LHR protein was observed in granulosa cells and theca cells of small antral follicles, and there was evidence of increasing LHR production as the follicles mature to the pre-ovulatory stage. After ovulation, LHR protein was ubiquitously produced in the corpus luteum. To confirm the expression pattern in granulosa cells and cumulus cells, we performed western blots and found that LHR expression was stronger in granulosa cells than in cumulus cells, with the later demonstrating low, but still significant, amounts of LHR protein. In summary, we conclude that LHR protein starts to appear on granulosa cells and theca cells of early antral follicles, and low but significant expression of LHR exists also in the cumulus cells. These results may have implications for the future design of clinical protocols and culture mediums for in vitro fertilization and especially in vitro maturation of oocytes.

  12. Photoaffinity labeling of the progesterone receptor from human endometrial carcinoma

    SciTech Connect

    Clarke, C.L.; Satyaswaroop, P.G.

    1985-11-01

    A nude mouse model for the growth of human endometrial carcinoma and hormonal modulation of the progesterone receptor (PR) was established previously. This study describes the effect of 17 beta-estradiol and tamoxifen (TAM) on growth rate and PR concentration in a hormonally responsive human endometrial tumor (EnCa 101) grown in this experimental system and presents the first characterization of human endometrial carcinoma PR. EnCa 101 was transplanted subcutaneously into ovariectomized, BALB/c, nu/nu athymic mice and grown under 17 beta-estradiol-stimulated, TAM-stimulated, and control conditions. Both 17 beta-estradiol and TAM increased the growth rate of EnCa 101 in nude mice, and a parallel increase in the cytosol PR concentration was observed. PR was partially purified by phosphocellulose and DEAE cellulose chromatography, and the DEAE eluate was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and photoaffinity labeling with (17 alpha-methyl-TH)promegestone ((TH)R5020). Two PR-negative tumors (EnCa K and EnCa V) were also examined in parallel. Photolabeling and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of EnCa 101 grown in the presence of 17 beta-estradiol or TAM revealed incorporation of (3H)R5020 into proteins of molecular weight approximately 116,000 and 85,000. Labeled proteins of molecular weight 66,000, 45,000, and 35,000 were also observed. No incorporation of (TH)R5020 was observed in EnCa 101 grown in the absence of estrogen, nor was any observed in EnCa K or EnCa V.

  13. Nicotinic receptors in non-human primates: analysis of genetic and functional conservation with humans

    PubMed Central

    Shorey-Kendrick, Lyndsey E.; Ford, Matthew M.; Allen, Daicia C.; Kuryatov, Alexander; Lindstrom, Jon; Wilhelm, Larry; Grant, Kathleen A.; Spindel, Eliot R.

    2015-01-01

    Nicotinic acetylcholine receptors (nAChRs) are highly conserved between humans and non-human primates. Conservation exists at the level of genomic structure, protein structure and epigenetics. Overall homology of nAChRs at the protein level is 98% in macaques versus 89% in mice, which is highly relevant for evaluating subtype-specific ligands that have different affinities in humans versus rodents. In addition to conservation at the protein level, there is high conservation of genomic structure in terms of intron and exon size and placement of CpG sites that play a key role in epigenetic regulation. Analysis of single nucleotide polymorphisms (SNPs) shows that while the majority of SNPs are not conserved between humans and macaques, some functional polymorphisms are. Most significantly, cynomolgus monkeys express a similar α5 nAChR Asp398Asn polymorphism to the human α5 Asp398Asn polymorphism that has been linked to greater nicotine addiction and smoking related disease. Monkeys can be trained to readily self-administer nicotine, and in an initial study we have demonstrated that cynomolgus monkeys bearing the α5 D398N polymorphism show a reduced behavioral sensitivity to oral nicotine and tend to consume it in a different pattern when compared to wild-type monkeys. Thus the combination of highly homologous nAChR, higher cortical functions and capacity for complex training makes non-human primates a unique model to study in vivo functions of nicotinic receptors. In particular, primate studies on nicotine addiction and evaluation of therapies to prevent or overcome nicotine addiction are likely to be highly predictive of treatment outcomes in humans. PMID:25661700

  14. Isolation of human beta-interferon receptor by wheat germ lectin affinity and immunosorbent column chromatographies

    SciTech Connect

    Zhang, Z.Q.; Fournier, A.; Tan, Y.H.

    1986-06-15

    Radioiodinated human beta-interferon-Ser 17 (Betaseron) was reversibly cross-linked to Daudi cells by dithiobis(succinimidylpropionate). The radioactive ligand was cross-linked to three macromolecules forming labeled complexes of apparent Mr values of 130,000, 220,000, and 320,000. Betaseron, human alpha-interferon, human interleukin 2 but not recombinant human gamma-interferon competed with the labeled ligand for binding to these putative receptor(s). Human leukocyte-produced gamma-interferon competed weakly with /sup 125/I-Betaseron for binding to Daudi cells. The Betaseron-receptor complex(es) was purified by passage through a wheat germ lectin column followed by chromatography on an anti-interferon immunosorbent column and semipreparative gel electrophoresis. The cross-linked ligand-receptor complex was shown to be highly purified by sodium dodecyl sulfate and acetic acid:urea:Triton X-100 polyacrylamide gel electrophoresis. It can be dissociated into the labeled Betaseron (Mr = 17,000) ligand and a receptor moiety which has an apparent molecular weight of 110,000. The chromatographic behavior of the ligand-receptor complex on wheat germ lectin column suggests that the receptor is a glycoprotein. The described procedure yielded about 1 microgram of Betaseron receptor from 10(10) Daudi cells, estimated to contain a maximum of about 15 micrograms of the receptor.

  15. Control of transferrin expression by β-amyloid through the CP2 transcription factor.

    PubMed

    Jang, Sang-Min; Kim, Jung-Woong; Kim, Chul-Hong; An, Joo-Hee; Kang, Eun-Jin; Kim, Chul Geun; Kim, Hyun-Jung; Choi, Kyung-Hee

    2010-10-01

    Accumulation of β-amyloid protein (Aβ) is one of the most important pathological features of Alzheimer's disease. Although Aβ induces neurodegeneration in the cortex and hippocampus through several molecular mechanisms, few studies have evaluated the modulation of transcription factors during Aβ-induced neurotoxicity. Therefore, in this study, we investigated the transcriptional activity of transcription factor CP2 in neuronal damage mediated by Aβ (Aβ(1-42) and Aβ(25-35) ). An unbiased motif search of the transferrin promoter region showed that CP2 binds to the transferrin promoter, an iron-regulating protein, and regulates transferrin transcription. Ectopic expression of CP2 led to increased transferrin expression at both the mRNA and protein levels, whereas knockdown of CP2 down-regulated transferrin mRNA and protein expression. Moreover, CP2 trans-activated transcription of a transferrin reporter gene. An electrophoretic mobility shift assay and a chromatin immunoprecipitation assay showed that CP2 binds to the transferrin promoter region. Furthermore, the binding affinity of CP2 to the transferrin promoter was regulated by Aβ, as Aβ (Aβ(1-42) and Aβ(25-35) ) markedly increased the binding affinity of CP2 for the transferrin promoter. Taken together, these results suggest that CP2 contributes to the pathogenesis of Alzheimer's disease by inducing transferrin expression via up-regulating its transcription.

  16. Activation of histamine H3 receptors in human nasal mucosa inhibits sympathetic vasoconstriction.

    PubMed

    Varty, LoriAnn M; Gustafson, Eric; Laverty, Maureen; Hey, John A

    2004-01-19

    The peripheral histamine H3 receptor is a presynaptic heterologous receptor located on postganglionic sympathetic nerve fibers innervating sympathetic effector systems such as blood vessels and the heart. An extensive body of evidence shows that activation of the histamine H3 receptor attenuates sympathetic tone by presynaptic inhibition of noradrenaline release. It is proposed that this sympathoinhibitory action, in vivo, leads to reduced vasoconstriction, thereby eliciting a vasodilatory effect. In humans, the peripheral histamine H3 receptor has also been shown to exert a sympathoinhibitory function on specific peripheral autonomic effector systems. For example, human saphenous vein and heart possess functional presynaptic histamine H3 receptors on the sympathetic nerve terminals that upon activation decrease the sympathetic tone to these respective organs. The present studies were conducted to define the role of histamine H3 receptors on neurogenic sympathetic vasoconstrictor responses in human nasal turbinate mucosa. Contractility studies were conducted to evaluate the effect of histamine H3 receptor activation on sympathetic vasoconstriction in surgically isolated human nasal turbinate mucosa. We found that the histamine H3 receptor agonist, (R)-alpha-methylhistamine (30 and 300 nM), inhibited electrical field stimulation-induced (neurogenic) sympathetic vasoconstriction in a concentration-dependent fashion. Pretreatment with the selective histamine H3 receptor antagonist, clobenpropit (100 nM), blocked the sympathoinhibitory effect of (R)-alpha-methylhistamine on the neurogenic sympathetic vasoconstriction. In addition, analysis of Taqman mRNA expression studies showed a specific, high level of distribution of the histamine H3 receptor localized in the human nasal mucosa. Taken together, these studies indicate that histamine H3 receptors modulate vascular contractile responses in human nasal mucosa most likely by inhibiting noradrenaline release from

  17. Human orexin/hypocretin receptors form constitutive homo- and heteromeric complexes with each other and with human CB{sub 1} cannabinoid receptors

    SciTech Connect

    Jäntti, Maria H.; Mandrika, Ilona; Kukkonen, Jyrki P.

    2014-03-07

    Highlights: • OX{sub 1} and OX{sub 2} orexin and CB{sub 1} cannabinoid receptor dimerization was investigated. • Bioluminescence resonance energy transfer method was used. • All receptors readily formed constitutive homo- and heteromeric complexes. - Abstract: Human OX{sub 1} orexin receptors have been shown to homodimerize and they have also been suggested to heterodimerize with CB{sub 1} cannabinoid receptors. The latter has been suggested to be important for orexin receptor responses and trafficking. In this study, we wanted to assess the ability of the other combinations of receptors to also form similar complexes. Vectors for expression of human OX{sub 1}, OX{sub 2} and CB{sub 1} receptors, C-terminally fused with either Renilla luciferase or GFP{sup 2} green fluorescent protein variant, were generated. The constructs were transiently expressed in Chinese hamster ovary cells, and constitutive dimerization between the receptors was assessed by bioluminescence energy transfer (BRET). Orexin receptor subtypes readily formed homo- and hetero(di)mers, as suggested by significant BRET signals. CB{sub 1} receptors formed homodimers, and they also heterodimerized with both orexin receptors. Interestingly, BRET efficiency was higher for homodimers than for almost all heterodimers. This is likely to be due to the geometry of the interaction; the putatively symmetric dimers may place the C-termini in a more suitable orientation in homomers. Fusion of luciferase to an orexin receptor and GFP{sup 2} to CB{sub 1} produced more effective BRET than the opposite fusions, also suggesting differences in geometry. Similar was seen for the OX{sub 1}–OX{sub 2} interaction. In conclusion, orexin receptors have a significant propensity to make homo- and heterodi-/oligomeric complexes. However, it is unclear whether this affects their signaling. As orexin receptors efficiently signal via endocannabinoid production to CB{sub 1} receptors, dimerization could be an effective way

  18. Effect of transferrin saturation on internal iron exchange

    SciTech Connect

    Bergamaschi, G.; Eng, M.J.; Huebers, H.A.; Finch, C.A.

    1986-10-01

    Radioiron was introduced into the intestinal lumen to evaluate absorption, injected as nonviable red cells to evaluate reticuloendothelial (RE) processing of iron, and injected as hemoglobin to evaluate hepatocyte iron processing. Redistribution of iron through the plasma was evaluated in control animals and animals whose transferrin was saturated by iron infusion. Radioiron introduced into the lumen of the gut as ferrous sulfate and as transferrin-bound iron was absorbed about half as well in iron-infused animals, and absorbed iron was localized in the liver. The similar absorption of transferrin-bound iron suggested that absorption of ferrous iron occurred via the mucosal cell and did not enter by diffusion. The decrease in absorption was associated with an increase in mucosal iron and ferritin content produced by the iron infusion. An inverse relationship (r = -0.895) was shown between mucosal ferritin iron and absorption. When iron was injected as nonviable red cells, it was deposited predominantly in reticuloendothelial cells of the spleen. Return of this radioiron to the plasma was only 6% of that in control animals. While there was some movement of iron from spleen to liver, this could be accounted for by intravascular hemolysis. Injected hemoglobin tagged with radioiron was for the most part taken up and held by the liver. Some 13% initially localized in the marrow in iron-infused animals was shown to be storage iron unavailable for hemoglobin synthesis. These studies demonstrate the hepatic trapping of absorbed iron and the inability of either RE cell or hepatocyte to release iron in the transferrin-saturated animal.

  19. Transferrin gene frequencies in Cádiz (southern Spain).

    PubMed

    Gamero, J J; Romero, J L; Vizcaya, M A; Arufe, I

    1990-12-01

    The genetic polymorphism of transferrin (Tf) was studied in a sample of 385 healthy unrelated subjects of both sexes resident in the province of Cádiz (southern Spain). Isoelectric focusing was carried out in polyacrylamide gels, followed by staining with Coomassie Blue R250. The gene frequencies obtained were as follows: Tf C1, 0.7922; Tf C2, 0.1883; Tf C3, 0.0195.

  20. Multiple loss-of-function variants of taste receptors in modern humans

    PubMed Central

    Fujikura, K.

    2015-01-01

    Despite recent advances in the knowledge of interindividual taste differences, the underlying genetic backgrounds have remained to be fully elucidated. Much of the taste variation among different mammalian species can be explained by pseudogenization of taste receptors. Here I investigated whether the most recent disruptions of taste receptor genes segregate with their intact forms in modern humans by analyzing 14 ethnically diverse populations. The results revealed an unprecedented prevalence of 25 segregating loss-of-function (LoF) taste receptor variants, identifying one of the most pronounced cases of functional population diversity in the human genome. LoF variant frequency in taste receptors (2.10%) was considerably higher than the overall LoF frequency in human genome (0.16%). In particular, molecular evolutionary rates of candidate sour (14.7%) and bitter (1.8%) receptors were far higher in humans than those of sweet (0.02%), salty (0.05%), and umami (0.17%) receptors compared with other carnivorous mammals, although not all of the taste receptors were identified. Many LoF variants are population-specific, some of which arose even after population differentiation, not before divergence of the modern and archaic human. I conclude that modern humans might have been losing some sour and bitter receptor genes because of high-frequency LoF variants. PMID:26307445

  1. Expression of the human muscarinic receptor gene m2 in Dictyostelium discoideum

    SciTech Connect

    Voith, G.; Dingermann, T.

    1995-11-01

    We have expressed a functional human muscarinic M2 receptor, under the control of the homologous discoidin I{gamma} promoter, in the cellular slime mold Dictyostelium discoideum. The use of a contact site A leader peptide ensured insertion of the newly synthesized receptor protein into the plasma membrane. Due to the characteristics of the discoidin I{gamma} promoter, the M2 receptor is expressed during late growth and early development. The heterologously expressed M2 receptors show binding characteristics similar to authentic receptors. Membranes as well as whole cells can be used in ligand binding assays. 36 refs., 4 figs.

  2. High-resolution kinetics of transferrin acidification in BALB/c 3T3 cells: exposure to pH 6 followed by temperature-sensitive alkalinization during recycling.

    PubMed

    Sipe, D M; Murphy, R F

    1987-10-01

    The kinetics of acidification of diferric human transferrin in BALB/c mouse 3T3 cells were determined by flow cytometry using a modification of the fluorescein-rhodamine fluorescence ratio technique. For cells labeled at 0 degrees C and warmed to 37 degrees C, the minimum pH observed was 6.1 +/- 0.2, occurring 5 min after warmup. This step was followed by a slower alkalinization to the pH of the external medium, occurring with a half-time of 5 min. Warmup to 24 degrees C or 17 degrees C resulted in slowing of the time of onset of acidification such that the minimum pH was 6.3 +/- 0.2, attained 15 and 25 min after warmup, respectively; the alkalinization step was completely blocked. The limited acidification observed for transferrin corresponds to the initial phase of acidification normally observed for other (nonrecycled) ligands. Since transferrin is not further acidified, the results confirm the existence of two phases of acidification during endocytosis. Measurements of transferrin dissociation at neutral pH after exposure to mildly acidic pH support the conclusion that the transferrin cycle may be completed without exposure of transferrin to a pH below 6. The mildly acidic pH of the endocytic compartments involved in recycling may play a role in regulating enzymatic processing of endocytosed material.

  3. (-) Arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor β.

    PubMed

    Ogungbe, Ifedayo Victor; Crouch, Rebecca A; Demeritte, Teresa

    2014-11-24

    Lignans are important biologically active dietary polyphenolic compounds. Consumption of foods that are rich in lignans is associated with positive health effects. Using modeling tools to probe the ligand-binding pockets of molecular receptors, we found that lignans have high docking affinity for the human thyroid hormone receptor β. Follow-up experimental results show that lignans (-) arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor β. The modeled complexes show key plausible interactions between the two ligands and important amino acid residues of the receptor.

  4. (−) Arctigenin and (+) Pinoresinol Are Antagonists of the Human Thyroid Hormone Receptor β

    PubMed Central

    2015-01-01

    Lignans are important biologically active dietary polyphenolic compounds. Consumption of foods that are rich in lignans is associated with positive health effects. Using modeling tools to probe the ligand-binding pockets of molecular receptors, we found that lignans have high docking affinity for the human thyroid hormone receptor β. Follow-up experimental results show that lignans (−) arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor β. The modeled complexes show key plausible interactions between the two ligands and important amino acid residues of the receptor. PMID:25383984

  5. X-ray structure of the human α4β2 nicotinic receptor

    PubMed Central

    Morales-Perez, Claudio L.; Noviello, Colleen M.; Hibbs, Ryan E.

    2016-01-01

    Nicotinic acetylcholine receptors are ligand gated ion channels that mediate fast chemical neurotransmission at the neuromuscular junction and play diverse signaling roles in the central nervous system. The nicotinic receptor has been a model system for cell surface receptors, and specifically for ligand-gated ion channels, for well over a century1,2. In addition to the receptors’ prominent roles in the development of the fields of pharmacology and neurobiology, nicotinic receptors are important therapeutic targets for neuromuscular disease, addiction, epilepsy, and for neuromuscular blocking agents used during surgery2–4. The overall architecture of the receptor was described in landmark studies of the nicotinic receptor isolated from the electric organ of Torpedo marmorata5. Structures of a soluble ligand binding domain have provided atomic-scale insights into receptor-ligand interactions6, while high-resolution structures of other members of the pentameric receptor superfamily provide touchstones for an emerging allosteric gating mechanism7. All available high-resolution structures are of homopentameric receptors. However, the vast majority of pentameric receptors (called Cys-loop receptors in eukaryotes) present physiologically are heteromeric. Here we present the X-ray crystallographic structure of the human α4β2 nicotinic receptor, the most abundant nicotinic subtype in the brain. This structure provides insights into the architectural principles governing ligand recognition, heteromer assembly, ion permeation and desensitization in this prototypical receptor class. PMID:27698419

  6. Shedding of tumor necrosis factor receptors by activated human neutrophils

    PubMed Central

    1990-01-01

    The capacity of human neutrophils (PMN) to bind tumor necrosis factor (TNF) was rapidly lost when the cells were incubated in suspension with agents that can stimulate their migratory and secretory responses. Both physiological (poly)peptides (FMLP, C5a, CSF-GM) and pharmacologic agonists (PMN, calcium ionophore A23187) induced the loss of TNF receptors (TNF-R) from the cell surface. Half-maximal loss in TNF-R ensued after only approximately 2 min with 10(-7) M FMLP at 37 degrees C, and required only 10(-9) M FMLP during a 30-min exposure. However, there were no such changes even with prolonged exposure of PMN to FMLP at 4 degrees or 16 degrees C. Scatchard analysis revealed loss of TNF- binding sites without change in their affinity (Kd approximately 0.4 nM) as measured at incompletely modulating concentrations of FMLP, C5a, PMA, or A23187. The binding of anti-TNF-R mAbs to PMN decreased in parallel, providing independent evidence for the loss of TNF-R from the cell surface. At the same time, soluble TNF-R appeared in the medium of stimulated PMN. This inference was based on the PMN- and FMLP-dependent generation of a nonsedimentable activity that could inhibit the binding of TNF to fresh human PMN or to mouse macrophages, and the ability of mAbs specific for human TNF-R to abolish inhibition by PMN-conditioned medium of binding of TNF to mouse macrophages. Soluble TNF-R activity was associated with a protein of Mr approximately 28,000 by ligand blot analysis of cell-free supernatants of FMLP-treated PMN. Thus, some portion of the FMLP-induced loss of TNF-R from human PMN is due to shedding of TNF-R. Shedding was unaffected by inhibitors of serine and thiol proteases and could not be induced with phosphatidylinositol- specific phospholipase C. Loss of TNF-R from PMN first stimulated by other agents may decrease their responsiveness to TNF. TNF-R shed by PMN may be one source of the TNF-binding proteins found in body fluids, and may blunt the actions of the

  7. Farnesoid X receptor represses hepatic human APOA gene expression

    PubMed Central

    Chennamsetty, Indumathi; Claudel, Thierry; Kostner, Karam M.; Baghdasaryan, Anna; Kratky, Dagmar; Levak-Frank, Sanja; Frank, Sasa; Gonzalez, Frank J.; Trauner, Michael; Kostner, Gert M.

    2011-01-01

    High plasma concentrations of lipoprotein(a) [Lp(a), which is encoded by the APOA gene] increase an individual’s risk of developing diseases, such as coronary artery diseases, restenosis, and stroke. Unfortunately, increased Lp(a) levels are minimally influenced by dietary changes or drug treatment. Further, the development of Lp(a)-specific medications has been hampered by limited knowledge of Lp(a) metabolism. In this study, we identified patients suffering from biliary obstructions with very low plasma Lp(a) concentrations that rise substantially after surgical intervention. Consistent with this, common bile duct ligation in mice transgenic for human APOA (tg-APOA mice) lowered plasma concentrations and hepatic expression of APOA. To test whether farnesoid X receptor (FXR), which is activated by bile acids, was responsible for the low plasma Lp(a) levels in cholestatic patients and mice, we treated tg-APOA and tg-APOA/Fxr–/– mice with cholic acid. FXR activation markedly reduced plasma concentrations and hepatic expression of human APOA in tg-APOA mice but not in tg-APOA/Fxr–/– mice. Incubation of primary hepatocytes from tg-APOA mice with bile acids dose dependently downregulated APOA expression. Further analysis determined that the direct repeat 1 element between nucleotides –826 and –814 of the APOA promoter functioned as a negative FXR response element. This motif is also bound by hepatocyte nuclear factor 4α (HNF4α), which promotes APOA transcription, and FXR was shown to compete with HNF4α for binding to this motif. These findings may have important implications in the development of Lp(a)-lowering medications. PMID:21804189

  8. Thyrotropin Receptor Epitope and Human Leukocyte Antigen in Graves’ Disease

    PubMed Central

    Inaba, Hidefumi; De Groot, Leslie J.; Akamizu, Takashi

    2016-01-01

    Graves’ disease (GD) is an organ-specific autoimmune disease, and thyrotropin (TSH) receptor (TSHR) is a major autoantigen in this condition. Since the extracellular domain of human TSHR (TSHR-ECD) is shed into the circulation, TSHR-ECD is a preferentially immunogenic portion of TSHR. Both genetic factors and environmental factors contribute to development of GD. Inheritance of human leukocyte antigen (HLA) genes, especially HLA-DR3, is associated with GD. TSHR-ECD protein is endocytosed into antigen-presenting cells (APCs), and processed to TSHR-ECD peptides. These peptide epitopes bind to HLA-class II molecules, and subsequently the complex of HLA-class II and TSHR-ECD epitope is presented to CD4+ T cells. The activated CD4+ T cells secrete cytokines/chemokines that stimulate B-cells to produce TSAb, and in turn hyperthyroidism occurs. Numerous studies have been done to identify T- and B-cell epitopes in TSHR-ECD, including (1) in silico, (2) in vitro, (3) in vivo, and (4) clinical experiments. Murine models of GD and HLA-transgenic mice have played a pivotal role in elucidating the immunological mechanisms. To date, linear or conformational epitopes of TSHR-ECD, as well as the molecular structure of the epitope-binding groove in HLA-DR, were reported to be related to the pathogenesis in GD. Dysfunction of central tolerance in the thymus, or in peripheral tolerance, such as regulatory T cells, could allow development of GD. Novel treatments using TSHR antagonists or mutated TSHR peptides have been reported to be effective. We review and update the role of immunogenic TSHR epitopes and HLA in GD, and offer perspectives on TSHR epitope specific treatments. PMID:27602020

  9. Human rhabdomyosarcoma cells express functional erythropoietin receptor: Potential therapeutic implications

    PubMed Central

    PONIEWIERSKA-BARAN, AGATA; SUSZYNSKA, MALWINA; SUN, WENYUE; ABDELBASET-ISMAIL, AHMED; SCHNEIDER, GABRIELA; BARR, FREDERIC G.; RATAJCZAK, MARIUSZ Z.

    2015-01-01

    The erythropoietin receptor (EpoR) is expressed by cells from the erythroid lineage; however, evidence has accumulated that it is also expressed by some solid tumors. This is an important observation, because recombinant erythropoietin (EPO) is employed in cancer patients to treat anemia related to chemo/radiotherapy. In our studies we employed eight rhabdomyosarcoma (RMS) cell lines (three alveolar-type RMS cell lines and five embrional-type RMS cell lines), and mRNA samples obtained from positive, PAX7-FOXO1-positive, and fusion-negative RMS patient samples. Expression of EpoR was evaluated by RT-PCR, gene array and FACS. The functionality of EpoR in RMS cell lines was evaluated by chemotaxis, adhesion, and direct cell proliferation assays. In some of the experiments, RMS cells were exposed to vincristine (VCR) in the presence or absence of EPO to test whether EPO may impair the therapeutic effect of VCR. We report for a first time that functional EpoR is expressed in human RMS cell lines as well as by primary tumors from RMS patients. Furthermore, EpoR is detectably expressed in both embryonal and alveolar RMS subtypes. At the functional level, several human RMS cell lines responded to EPO stimulation by enhanced proliferation, chemotaxis, cell adhesion, and phosphorylation of MAPKp42/44 and AKT. Moreover, RMS cells became more resistant to VCR treatment in the presence of EPO. Our findings have important potential clinical implications, indicating that EPO supplementation in RMS patients may have the unwanted side effect of tumor progression. PMID:26412593

  10. Estrogen receptor polymorphisms: significance to human physiology, disease and therapy.

    PubMed

    Figtree, Gemma A; Noonan, Jonathon E; Bhindi, Ravinay; Collins, Peter

    2009-01-01

    Other than its well-recognized effects on reproductive physiology, estrogen has important actions in a wide variety of other body systems with important examples including bone, blood vessels and the heart. These effects are seen in both females and males. Investigators have hypothesized those genetic variants in the genes coding for estrogen signaling proteins may cause variable sensitivity to the hormone and influence an individual's estrogen-sensitive phenotypes. The most obvious candidate genes are the estrogen receptors alpha and (ERalpha and beta). However, the regulation of these genes is complex and not well understood. Furthermore, their coding exons, and regulatory sequences are dispersed across large segments of the genome. A number of common polymorphisms have been identified in both ERalpha and ERbeta, with variable degrees of evidence of their direct biological significance and their association with human disease. The identification of genetic variations associated with altered estrogen response is of potential public health importance. Insights may be gained into the pathogenesis of estrogen sensitive diseases such as osteoporosis, breast cancer and cardiovascular disease contributing to the development and application of newer therapies for these disorders. Furthermore, genetic variants that alter sensitivity to estrogen may affect both therapeutic and harmful responses to exogenous estrogen administered in the form of the oral contraceptive pill or hormone replacement therapy. This clinical significance has led to the publication of a number of patents which will be reviewed.

  11. Activation of human peroxisome-activated receptor-gamma ...

    EPA Pesticide Factsheets

    Obesity in children has become an epidemic and recent research suggests a possible contribution from exposure to environmental chemicals. Several chemicals, such as phthalates, brominated flame retardants, and perfluorinated chemicals, are common in house dust on floors where children play and are suspected obesogens. Obesogens can act via a mechanism that involves activation of peroxisome proliferator-activated receptor-gamma (PPARy). A previous study found that dust collected from children’s homes binds to PPARy. Here, we investigated the ability of house dust to activate PPARy in a transiently transfected cell assay. Dust samples were collected in 2012 from carpeted and hardwood floors in children’s homes using thimbles fitted into a vacuum cleaner hose (“TEO” samples), or from homes in an adult cohort NIEHS study. Dust was extracted with 50:50 hexane:acetone, sonicated, centrifuged, and the organic layer collected. This was repeated 2X. The extracts were filtered to remove particulates, dried with purified nitrogen, and reconstituted in DMS0 at 200 ug/ul. COS-1 cells were transfected for 24 hrs with a human PPARy vector containing a luciferase reporter, and exposed for 24 hrs to negative controls water or DMSO (0.1%), positive controls Troglitazone (3 uM in water) or Rosiglitazone (100 nM in DMSO), or dust extracts serially diluted in DMEM at 50, 100, and 200 ug/ml in 0.1% DMSO. Cells were lysed and luciferase activity was measured. Data were log-tra

  12. Structural basis of transcobalamin recognition by human CD320 receptor

    PubMed Central

    Alam, Amer; Woo, Jae-Sung; Schmitz, Jennifer; Prinz, Bernadette; Root, Katharina; Chen, Fan; Bloch, Joël S.; Zenobi, Renato; Locher, Kaspar P.

    2016-01-01

    Cellular uptake of vitamin B12 (cobalamin) requires capture of transcobalamin (TC) from the plasma by CD320, a ubiquitous cell surface receptor of the LDLR family. Here we present the crystal structure of human holo-TC in complex with the extracellular domain of CD320, visualizing the structural basis of the TC-CD320 interaction. The observed interaction chemistry can rationalize the high affinity of CD320 for TC and lack of haptocorrin binding. The in vitro affinity and complex stability of TC-CD320 were quantitated using a solid-phase binding assay and thermostability analysis. Stable complexes with TC were also observed for the disease-causing CD320ΔE88 mutant and for the isolated LDLR-A2 domain. We also determined the structure of the TC-CD320ΔE88 complex, which revealed only minor changes compared with the wild-type complex. Finally, we demonstrate significantly reduced in vitro affinity of TC for CD320 at low pH, recapitulating the proposed ligand release during the endocytic pathway. PMID:27411955

  13. Physiological characterization of human muscle acetylcholine receptors from ALS patients.

    PubMed

    Palma, Eleonora; Inghilleri, Maurizio; Conti, Luca; Deflorio, Cristina; Frasca, Vittorio; Manteca, Alessia; Pichiorri, Floriana; Roseti, Cristina; Torchia, Gregorio; Limatola, Cristina; Grassi, Francesca; Miledi, Ricardo

    2011-12-13

    Amyotrophic lateral sclerosis (ALS) is characterized by progressive degeneration of motor neurons leading to muscle paralysis. Research in transgenic mice suggests that the muscle actively contributes to the disease onset, but such studies are difficult to pursue in humans and in vitro models would represent a good starting point. In this work we show that tiny amounts of muscle from ALS or from control denervated muscle, obtained by needle biopsy, are amenable to functional characterization by two different technical approaches: "microtransplantation" of muscle membranes into Xenopus oocytes and culture of myogenic satellite cells. Acetylcholine (ACh)-evoked currents and unitary events were characterized in oocytes and multinucleated myotubes. We found that ALS acetylcholine receptors (AChRs) retain their native physiological characteristics, being activated by ACh and nicotine and blocked by α-bungarotoxin (α-BuTX), d-tubocurarine (dTC), and galantamine. The reversal potential of ACh-evoked currents and the unitary channel behavior were also typical of normal muscle AChRs. Interestingly, in oocytes injected with muscle membranes derived from ALS patients, the AChRs showed a significant decrease in ACh affinity, compared with denervated controls. Finally, riluzole, the only drug currently used against ALS, reduced, in a dose-dependent manner, the ACh-evoked currents, indicating that its action remains to be fully characterized. The two methods described here will be important tools for elucidating the role of muscle in ALS pathogenesis and for developing drugs to counter the effects of this disease.

  14. Structural basis of transcobalamin recognition by human CD320 receptor

    NASA Astrophysics Data System (ADS)

    Alam, Amer; Woo, Jae-Sung; Schmitz, Jennifer; Prinz, Bernadette; Root, Katharina; Chen, Fan; Bloch, Joël S.; Zenobi, Renato; Locher, Kaspar P.

    2016-07-01

    Cellular uptake of vitamin B12 (cobalamin) requires capture of transcobalamin (TC) from the plasma by CD320, a ubiquitous cell surface receptor of the LDLR family. Here we present the crystal structure of human holo-TC in complex with the extracellular domain of CD320, visualizing the structural basis of the TC-CD320 interaction. The observed interaction chemistry can rationalize the high affinity of CD320 for TC and lack of haptocorrin binding. The in vitro affinity and complex stability of TC-CD320 were quantitated using a solid-phase binding assay and thermostability analysis. Stable complexes with TC were also observed for the disease-causing CD320ΔE88 mutant and for the isolated LDLR-A2 domain. We also determined the structure of the TC-CD320ΔE88 complex, which revealed only minor changes compared with the wild-type complex. Finally, we demonstrate significantly reduced in vitro affinity of TC for CD320 at low pH, recapitulating the proposed ligand release during the endocytic pathway.

  15. Human T-cell receptor variable gene segment families

    SciTech Connect

    Arden, B.; Kabelitz, D.; Clark, S.P.; Mak, T.W.

    1995-10-01

    Multiple DNA and protein sequence alignments have been constructed for the human T-cell receptor {alpha}/{delta}, {beta}, and {gamma} (TCRA/D, B, and G) variable (V) gene segments. The traditional classification into subfamilies was confirmed using a much larger pool of sequences. For each sequence, a name was derived which complies with the standard nomenclature. The traditional numbering of V gene segments in the order of their discovery was continued and changed when in conflict with names of other segments. By discriminating between alleles at the same locus versus genes from different loci, we were able to reduce the number of more than 150 different TCRBV sequences in the database to a repertoire of only 47 functional TCRBV gene segments. An extension of this analysis to the over 100 TCRAV sequences results in a predicted repertoire of 42 functional TCRAV gene segments. Our alignment revealed two residues that distinguish between the highly homologous V{delta} and V{alpha}, one at a site that in V{sub H} contacts the constant region, the other at the interface between immunoglobulin V{sub H} and V{sub L}. This site may be responsible for restricted pairing between certain V{delta} and V{gamma} chains. On the other hand, V{beta} and V{gamma} appear to be related by the fact that their CDR2 length is increased by four residues as compared with that of V{alpha}/{delta} peptides. 150 refs., 12 figs., 5 tabs.

  16. Quantitative synchrotron X-ray fluorescence study of the penetration of transferrin-conjugated gold nanoparticles inside model tumour tissues

    NASA Astrophysics Data System (ADS)

    Liu, Tianqing; Kempson, Ivan; de Jonge, Martin; Howard, Daryl L.; Thierry, Benjamin

    2014-07-01

    The next generation of therapeutic nanoparticles in the treatment of cancer incorporate specific targeting. There is implicit importance in understanding penetration of targeted nanomedicines within tumour tissues via accurate and quantitative temporospatial measurements. In this study we demonstrate the potential of state-of-the-art synchrotron X-ray fluorescence microscopy (XFM) to provide such insights. To this end, quantitative mapping of the distribution of transferrin-conjugated gold nanoparticles inside multicellular tumour spheroids was achieved using XFM and compared with qualitative data obtained using reflectance confocal microscopy. Gold nanoparticles conjugated with human transferrin with a narrow size-distribution and high binding affinity to tumour cells were prepared as confirmed by cellular uptake studies performed on 2D monolayers. Although the prepared 100 nm transferrin-conjugated gold nanoparticles had high targeting capability to cancer cells, penetration inside multicellular spheroids was limited even after 48 hours as shown by the quantitative XFM measurements. The rapid, quantitative and label-free nature of state-of-the-art synchrotron XFM make it an ideal technology to provide the structure-activity relationship understanding urgently required for developing the next generation of immuno-targeted nanomedicines.

  17. Human myometrial adrenergic receptors during pregnancy: identification of the alpha-adrenergic receptor by (/sup 3/H) dihydroergocryptine binding

    SciTech Connect

    Jacobs, M.M.; Hayashida, D.; Roberts, J.M.

    1985-07-15

    The radioactive alpha-adrenergic antagonist (/sup 3/H) dihydroergocryptine binds to particulate preparations of term pregnant human myometrium in a manner compatible with binding to the alpha-adrenergic receptor (alpha-receptor). (/sup 3/H) Dihydroergocryptine binds with high affinity (KD = 2 nmol/L and low capacity (receptor concentration = 100 fmol/mg of protein). Adrenergic agonists compete for (/sup 3/H) dihydroergocryptine binding sites stereo-selectively ((-)-norepinephrine is 100 times as potent as (+)-norepinephrine) and in a manner compatible with alpha-adrenergic potencies (epinephrine approximately equal to norepinephrine much greater than isoproterenol). Studies in which prazosin, an alpha 1-antagonist, and yohimbine, and alpha 2-antagonist, competed for (/sup 3/H) dihydroergocryptine binding sites in human myometrium indicated that approximately 70% are alpha 2-receptors and that 30% are alpha 1-receptors. (/sup 3/H) dihydroergocryptine binding to human myometrial membrane particulate provides an important tool with which to study the molecular mechanisms of uterine alpha-adrenergic response.

  18. Human macrophage scavenger receptors: Primary structure, expression, and localization in atherosclerotic lesions

    SciTech Connect

    Matsumoto, Akiyo; Itakura, Hiroshige; Kodama, Tatsuhiko National Inst. of Health and Nutrition, Tokyo ); Naito, Makoto; Takahashi, Kiyoshi ); Ikemoto, Shinji; Asaoka, Hitoshi; Hayakawa, Ikuho ); Kanamori, Hiroshi; Takaku, Fumimaro ); Aburatani, Hiroyuki Massachusetts Inst. of Tech., Cambridge, MA ); Suzuki, Hiroshi; Kobari, Yukage; Miyai, Tatsuya ); Cohen, E.H.; Wydro, R. ); Housman, D.E. )

    1990-12-01

    Two types of cDNAs for human macrophage scavenger receptors were cloned from a cDNA library derived from the phorbol ester-treated human monocytic cell line THP-1. The type I and type II human scavenger receptors encoded by these cDNAs are homologous (73% and 71% amino acid identity) to their previously characterized bovine counterparts and consist of six domains: cytoplasmic (I), membrane-spanning (II), spacer (III), {alpha}-helical coiled-coil (IV), collagen-like (V), and a type-specific C-terminal (VI). The receptor gene is located on human chromosome 8. The human receptors expressed in CHO-K1 cells mediated endocytosis of modified low density lipoproteins. Two mRNAs, 4.0 and 3.2 kilobases, have been detected in human liver, placenta, and brain. Immunohistochemical studies using an anti-peptide antibody which recognizes human scavenger receptors indicated the presence of the scavenger receptors in the macrophages of lipid-rich atherosclerotic lesions, suggesting the involvement of scavenger receptors in atherogenesis.

  19. Nicotinic Acid Receptor Abnormalities in Human Skin Cancer: Implications for a Role in Epidermal Differentiation

    PubMed Central

    Bermudez, Yira; Benavente, Claudia A.; Meyer, Ralph G.; Coyle, W. Russell; Jacobson, Myron K.; Jacobson, Elaine L.

    2011-01-01

    Background Chronic UV skin exposure leads to epidermal differentiation defects in humans that can be largely restored by pharmacological doses of nicotinic acid. Nicotinic acid has been identified as a ligand for the human G-protein-coupled receptors GPR109A and GPR109B that signal through Gi-mediated inhibition of adenylyl cyclase. We have examined the expression, cellular distribution, and functionality of GPR109A/B in human skin and skin derived epidermal cells. Results Nicotinic acid increases epidermal differentiation in photodamaged human skin as judged by the terminal differentiation markers caspase 14 and filaggrin. Both GPR109A and GPR109B genes are transcribed in human skin and in epidermal keratinocytes, but expression in dermal fibroblasts is below limits of detection. Receptor transcripts are greatly over-expressed in squamous cell cancers. Receptor protein in normal skin is prominent from the basal through granular layers of the epidermis, with cellular localization more dispersive in the basal layer but predominantly localized at the plasma membrane in more differentiated epidermal layers. In normal human primary and immortalized keratinocytes, nicotinic acid receptors show plasma membrane localization and functional Gi-mediated signaling. In contrast, in a squamous cell carcinoma derived cell line, receptor protein shows a more diffuse cellular localization and the receptors are nearly non-functional. Conclusions The results of these studies justify future genetic and pharmacological intervention studies to define possible specific role(s) of nicotinic acid receptors in human skin homeostasis. PMID:21655214

  20. Identification and characterization of estrogen receptor-related receptor alpha and gamma in human glioma and astrocytoma cells.

    PubMed

    Gandhari, Mukesh K; Frazier, Chester R; Hartenstein, Julia S; Cloix, Jean-Francois; Bernier, Michel; Wainer, Irving W

    2010-02-05

    The purpose of this study was to examine expression and function of estrogen receptor-related receptors (ERRs) in human glioma and astrocytoma cell lines. These estrogen receptor-negative cell lines expressed ERRalpha and ERRgamma proteins to varying degree in a cell context dependent manner, with U87MG glioma cells expressing both orphan nuclear receptors. Cell proliferation assays were performed in the presence of ERR isoform-specific agonists and antagonists, and the calculated EC(50) and IC(50) values were consistent with previous reported values determined in other types of cancer cell lines. Induction of luciferase expression under the control of ERR isoform-specific promoters was also observed in these cells. These results indicate that ERRalpha and ERRgamma are differentially expressed in these tumor cell lines and likely contribute to agonist-dependent ERR transcriptional activity.

  1. Applying the Fe(III) binding property of a chemical transferrin mimetic to Ti(IV) anticancer drug design.

    PubMed

    Parks, Timothy B; Cruz, Yahaira M; Tinoco, Arthur D

    2014-02-03

    As an endogenous serum protein binder of Ti(IV), transferrin (Tf) serves as an excellent vehicle to stabilize the hydrolysis prone metal ion and successfully transport it into cells. This transporting role is thought to be central to Ti(IV)'s anticancer function, but efforts to synthesize Ti(IV) compounds targeting transferrin have not produced a drug. Nonetheless, the Ti(IV) transferrin complex (Ti2Tf) greatly informs on a new Ti(IV)-based anticancer drug design strategy. Ti2Tf interferes with cellular uptake of Fe(III), which is particularly detrimental to cancer cells because of their higher requirement for iron. Ti(IV) compounds of chemical transferrin mimetic (cTfm) ligands were designed to facilitate Ti(IV) activity by attenuating Fe(III) intracellular levels. In having a higher affinity for Fe(III) than Ti(IV), these ligands feature the appropriate balance between stability and lability to effectively transport Ti(IV) into cancer cells, release Ti(IV) via displacement by Fe(III), and deplete the intracellular Fe(III) levels. The cTfm ligand N,N'-di(o-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED) was selected to explore the feasibility of the design strategy. Kinetic studies on the Fe(III) displacement process revealed that Ti(IV) can be transported and released into cells by HBED on a physiologically relevant time scale. Cell viability studies using A549 cancerous and MRC5 normal human lung cells and testing the cytotoxicity of HBED and its Ti(IV), Fe(III), and Ga(III) compounds demonstrate the importance of Fe(III) depletion in the proposed drug design strategy and the specificity of the strategy for Ti(IV) activity. The readily derivatized cTfm ligands demonstrate great promise for improved Ti(IV) anticancer drugs.

  2. Structures and receptor binding of hemagglutinins from human-infecting H7N9 influenza viruses.

    PubMed

    Shi, Yi; Zhang, Wei; Wang, Fei; Qi, Jianxun; Wu, Ying; Song, Hao; Gao, Feng; Bi, Yuhai; Zhang, Yanfang; Fan, Zheng; Qin, Chengfeng; Sun, Honglei; Liu, Jinhua; Haywood, Joel; Liu, Wenjun; Gong, Weimin; Wang, Dayan; Shu, Yuelong; Wang, Yu; Yan, Jinghua; Gao, George F

    2013-10-11

    An avian-origin human-infecting influenza (H7N9) virus was recently identified in China. We have evaluated the viral hemagglutinin (HA) receptor-binding properties of two human H7N9 isolates, A/Shanghai/1/2013 (SH-H7N9) (containing the avian-signature residue Gln(226)) and A/Anhui/1/2013 (AH-H7N9) (containing the mammalian-signature residue Leu(226)). We found that SH-H7N9 HA preferentially binds the avian receptor analog, whereas AH-H7N9 HA binds both avian and human receptor analogs. Furthermore, an AH-H7N9 mutant HA (Leu(226) → Gln) was found to exhibit dual receptor-binding property, indicating that other amino acid substitutions contribute to the receptor-binding switch. The structures of SH-H7N9 HA, AH-H7N9 HA, and its mutant in complex with either avian or human receptor analogs show how AH-H7N9 can bind human receptors while still retaining the avian receptor-binding property.

  3. Steroid hormone receptor gene expression in human breast cancer cells: inverse relationship between oestrogen and glucocorticoid receptor messenger RNA levels.

    PubMed

    Hall, R E; Lee, C S; Alexander, I E; Shine, J; Clarke, C L; Sutherland, R L

    1990-12-15

    The relative expression in human breast cancer cells of messenger ribonucleic acids (mRNA) encoding different steroid hormone receptors is unknown. Accordingly, mRNA levels in total RNA extracted from 13 human breast cancer cell lines were measured by Northern analysis employing complementary DNA probes for the human oestrogen (ER), progesterone (PR), androgen (AR), vitamin D3 (VDR) and glucocorticoid receptors (GR). The 7 ER+ lines expressed a single 6.4 kilobases (kb) ER mRNA. Interestingly, low concentrations of ER mRNA were detected in the ER- cell lines, MDA-MB-330 and BT 20. PR mRNA, predominantly a 13.5 kb species, was expressed in the 6 lines known to be ER+, PR+ by radioligand binding; however, one ER+ cell line, MDA-MB-134, failed to express PR mRNA. A 10.5 kb AR mRNA was expressed at significantly higher levels in ER+ than ER- cell lines. All cell lines expressed a single 4.6 kb mRNA for VDR and a single 7.4 kb mRNA for GR. ER and PR mRNA levels were positively correlated (p = 0.011) and each was positively correlated with androgen receptor (AR) mRNA levels (p less than or equal to 0.009). ER, PR and AR mRNAs were negatively associated with GR levels (p less than or equal to 0.012), while ER and AR mRNA levels were negatively correlated with mRNA for the epidermal growth factor receptor. In contrast, levels of VDR mRNA were unrelated to the concentration of any other steroid receptor mRNA. Our data demonstrate the coordinate expression of ER, PR and AR genes, and an inverse relationship between sex steroid hormone receptor and GR gene expression in human breast cancer cell lines.

  4. Wide-field lifetime-based FRET imaging for the assessment of early functional distribution of transferrin-based delivery in breast tumor-bearing small animals

    NASA Astrophysics Data System (ADS)

    Sinsuebphon, Nattawut; Rudkouskaya, Alena; Barroso, Margarida; Intes, Xavier

    2016-02-01

    Targeted drug delivery is a critical aspect of successful cancer therapy. Assessment of dynamic distribution of the drug provides relative concentration and bioavailability at the target tissue. The most common approach of the assessment is intensity-based imaging, which only provides information about anatomical distribution. Observation of biomolecular interactions can be performed using Förster resonance energy transfer (FRET). Thus, FRET-based imaging can assess functional distribution and provide potential therapeutic outcomes. In this study, we used wide-field lifetime-based FRET imaging for the study of early functional distribution of transferrin delivery in breast cancer tumor models in small animals. Transferrin is a carrier for cancer drug delivery. Its interaction with its receptor is within a few nanometers, which is suitable for FRET. Alexa Fluor® 700 and Alexa Fluor® 750 were conjugated to holo-transferrin which were then administered via tail vein injection to the mice implanted with T47D breast cancer xenografts. Images were continuously acquired for 60 minutes post-injection. The results showed that transferrin was primarily distributed to the liver, the urinary bladder, and the tumor. The cellular uptake of transferrin, which was indicated by the level of FRET, was high in the liver but very low in the urinary bladder. The results also suggested that the fluorescence intensity and FRET signals were independent. The liver showed increasing intensity and increasing FRET during the observation period, while the urinary bladder showed increasing intensity but minimal FRET. Tumors gave varied results corresponding to their FRET progression. These results were relevant to the biomolecular events that occurred in the animals.

  5. Molecular and functional characterization of human P2X(2) receptors.

    PubMed

    Lynch, K J; Touma, E; Niforatos, W; Kage, K L; Burgard, E C; van Biesen, T; Kowaluk, E A; Jarvis, M F

    1999-12-01

    P2X receptors are a family of ATP-gated ion channels. Four cDNAs with a high degree of homology to the rat P2X(2) receptor were isolated from human pituitary and pancreas RNA. Genomic sequence indicated that these cDNAs represent alternatively spliced messages. Northern analysis revealed high levels of human P2X(2) (hP2X(2)) message in the pancreas, and splice variants could be detected in a variety of tissues. Two cDNAs encoded functional ion channels when expressed in Xenopus oocytes, a receptor structurally homologous to the prototype rat P2X(2) receptor (called hP2X(2a)) and a variant containing a deletion within its cytoplasmic C terminus (called hP2X(2b)). Pharmacologically, these functional human P2X(2) receptors were virtually indistinguishable, with the P2X receptor agonists ATP, 2-methylthio-ATP, 2' and 3'-O-(4-benzoylbenzoyl)-ATP, and ATP5'-O-(3-thiotriphosphate) being approximately equipotent (EC(50) = 1 microM) in eliciting extracellular Ca(2+) influx. The P2 receptor agonists alpha,beta-methylene ATP, adenosine, adenosine 5'-O-(2-thiodiphosphate), and UTP were inactive at concentrations up to 100 microM. Both hP2X(2a) and hP2X(2b) receptors were sensitive to the P2 receptor antagonist pyridoxal-5-phosphate-6-azophenyl-2', 4'-disulfonic acid (IC(50) = 3 microM). In contrast to the analogous rat P2X(2) and P2X(2b) receptors, the desensitization rates of the hP2X(2a) and hP2X(2b) receptors were equivalent. Both functional forms of the human P2X(2) receptors formed heteromeric channels with the human P2X(3) receptor. These data demonstrate that the gene structure and mRNA heterogeneity of the P2X(2) receptor subtype are evolutionarily conserved between rat and human, but also suggest that alternative splicing serves a function other than regulating the desensitization rate of the human receptor.

  6. Heterocyclic 1,7-disubstituted indole sulfonamides are potent and selective human EP3 receptor antagonists.

    PubMed

    Hategan, Georgeta; Polozov, Alexandre M; Zeller, Wayne; Cao, Hua; Mishra, Rama K; Kiselyov, Alex S; Ramirez, Jose; Halldorsdottir, Gudrún; Andrésson, Thornorkell; Gurney, Mark E; Singh, Jasbir

    2009-12-01

    We have developed a pharmacophore model for the EP(3) receptor antagonists based on its endogenous ligand PGE(2). This ligand-based design yielded a series of novel peri-substituted [4.3.0] bicyclic aromatics featuring 1-alklyaryl 7-heterocyclic sulfonamide substituents. The synthesized molecules are potent antagonists of human EP(3) receptor in vitro and show inhibition of rat platelets aggregation. Optimized derivatives display high selectivity over IP, FP, and other EP receptor panels.

  7. Expression and characterization of erythropoietin receptors on normal human bone marrow cells

    SciTech Connect

    Hoshino, S.; Teramura, M.; Takahashi, M.; Motoji, T.; Oshimi, K.; Ueda, M.; Mizoguchi, H.

    1989-05-01

    We studied the specific binding of /sup 125/I-labeled bioactive recombinant human erythropoietin (Epo) to human bone marrow mononuclear cells (BMNC) obtained from normal subjects. The /sup 125/I-labeled Epo bound specifically to the BMNC. Scatchard analysis of the data showed two classes of binding sites; one high affinity (Kd 0.07 nM) and the other low affinity (Kd 0.38 nM). The number of Epo binding sites per BMNC was 46 +/- 16 high-affinity receptors and 91 +/- 51 low-affinity receptors. The specific binding was displaced by unlabeled Epo, but not by other growth factors. Receptor internalization was observed significantly at 37 degrees C, but was prevented by the presence of 0.2% sodium azide. These findings indicate that human BMNC possess two classes of specific Epo receptors with characteristics of a hormone-receptor association.

  8. Cortisol increases growth hormone-receptor expression in human osteoblast-like cells.

    PubMed

    Swolin-Eide, D; Nilsson, A; Ohlsson, C

    1998-01-01

    It is well known that high levels of glucocorticoids cause osteoporosis and that physiologic levels of growth hormone (GH) are required for normal bone remodeling. It has been suggested that glucocorticoids regulate GH-responses via the regulation of GH-receptor expression. The aim of the present study was to investigate whether cortisol plays a role in the regulation of GH-receptor expression in cultured human osteoblasts. The effect of serum starvation and cortisol on GH-receptor expression was tested in human osteoblast (hOB)-like cells. Serum starvation for 24 h resulted in an increase in GH-receptor mRNA levels (90 +/- 1% over control culture). Cortisol increased GH-receptor mRNA levels in a dose-dependent manner with a maximal effect at 10(-6)M. The stimulating effect of cortisol on GH-receptor mRNA levels was time-dependent, reaching a peak 12 h after the addition of cortisol (126 +/- 29% over control culture) and remaining up to 12 h later. The increase in GH-receptor mRNA levels was accompanied by an increase in 125I-GH binding which reached a maximum at 24 h (196 +/- 87% over control culture). In conclusion, glucocorticoids increase GH-receptor expression in hOB-like cells. Further studies are needed to clarify whether glucocorticoid-induced regulation of the GH-receptor is important in human bone physiology.

  9. Nongenomic signaling of the retinoid X receptor through binding and inhibiting Gq in human platelets

    PubMed Central

    Moraes, Leonardo A.; Swales, Karen E.; Wray, Jessica A.; Damazo, Amilcar; Gibbins, Jonathan M.; Warner, Timothy D.

    2007-01-01

    Retinoid X receptors (RXRs) are important transcriptional nuclear hormone receptors, acting as either homodimers or the binding partner for at least one fourth of all the known human nuclear receptors. Functional nongenomic effects of nuclear receptors are poorly understood; however, recently peroxisome proliferator-activated receptor (PPAR) γ, PPARβ, and the glucocorticoid receptor have all been found active in human platelets. Human platelets express RXRα and RXRβ. RXR ligands inhibit platelet aggregation and TXA2 release to ADP and the TXA2 receptors, but only weakly to collagen. ADP and TXA2 both signal via the G protein, Gq. RXR rapidly binds Gq but not Gi/z/o/t/gust in a ligand-dependent manner and inhibits Gq-induced Rac activation and intracellular calcium release. We propose that RXR ligands may have beneficial clinical actions through inhibition of platelet activation. Furthermore, our results demonstrate a novel nongenomic mode for nuclear receptor action and a functional cross-talk between G-protein and nuclear receptor signaling families. PMID:17213293

  10. Evaluation of Nonferrous Metals as Potential In Vivo Tracers of Transferrin-Based Therapeutics

    NASA Astrophysics Data System (ADS)

    Zhao, Hanwei; Wang, Shunhai; Nguyen, Son N.; Elci, S. Gokhan; Kaltashov, Igor A.

    2016-02-01

    Transferrin (Tf) is a promising candidate for targeted drug delivery. While development of such products is impossible without the ability to monitor biodistribution of Tf-drug conjugates in tissues and reliable measurements of their levels in blood and other biological fluids, the presence of very abundant endogenous Tf presents a significant impediment to such efforts. Several noncognate metals have been evaluated in this work as possible tracers of exogenous transferrin in complex biological matrices using inductively coupled plasma mass spectrometry (ICP MS) as a detection tool. Placing Ni(II) on a His-tag of recombinant Tf resulted in formation of a marginally stable protein-metal complex, which readily transfers the metal to ubiquitous physiological scavengers, such as serum albumin. An alternative strategy targeted iron-binding pockets of Tf, where cognate Fe(III) was replaced by metal ions known to bind this protein. Both Ga(III) and In(III) were evaluated, with the latter being vastly superior as a tracer (stronger binding to Tf unaffected by the presence of metal scavengers and the retained ability to associate with Tf receptor). Spiking serum with indium-loaded Tf followed by ICP MS detection demonstrated that protein quantities as low as 0.04 nM can be readily detected in animal blood. Combining laser ablation with ICP MS detection allows distribution of exogenous Tf to be mapped within animal tissue cross-sections with spatial resolution exceeding 100 μm. The method can be readily extended to a range of other therapeutics where metalloproteins are used as either carriers or payloads.

  11. Platelet high-density lipoprotein activates transferrin-derived phagocytosis activators, MAPPs, following thrombin digestion.

    PubMed

    Sakamoto, Haruhiko; Wu, Bin; Nagai, Yumiko; Tanaka, Sumiko; Onodera, Masayuki; Ogawa, Takafumi; Ueno, Masaki

    2011-01-01

    Macromolecular activators of phagocytosis from platelets (MAPPs), transferrin-derived phagocytosis activators released from platelets, activate leukocytic phagocytosis via Fcγ receptors. It has been found that MAPPs can be prepared using stored platelets or their lysate. Using this artificial MAPP production system, it has been found that they can be produced from precursors (tetrameric and dimeric transferrins) following reaction with a low-molecular-weight (LMW) activator of MAPPs, which is liberated from a high-molecular-weight activator of MAPP (HMW activator) by reaction with thrombin. In this study, the HMW activator in platelet lysate was characterized by assaying phagocytosis of washed neutrophils. In an ultracentrifugation study of the platelet lysate, HMW activator activity was observed in the fraction corresponding to the density of high-density lipoprotein (HDL). The activity was observed in the apolipoproteins obtained from the HDL fraction. Among the apolipoproteins tested only apolipoprotein CIII showed the activity to produce MAPP in vitro. Affinity chromatography of the apolipoproteins from the HDL fraction of the platelet lysate using an anti-apolipoprotein CIII column revealed that the substance that binds with the antibody showed MAPP-forming activity. In a gel filtration study of thrombin-treated apolipoprotein CIII, a peak of LMW activator activity was observed for fractions with a molecular size smaller than that of apolipoprotein CIII. Finally, MAPP-forming activity of HDL obtained from the plasma was examined. MAPP was formed only when delipidized HDL was used. In conclusion, it is suggested that platelet HDL is the HMW activator and that this activation is achieved via apolipoprotein CIII after thrombin reaction in platelets.

  12. Modulation of transferrin secretion by epidermal growth factor in immature rat Sertoli cells in vitro.

    PubMed

    Onoda, M; Suarez-Quian, C A

    1994-03-01

    The modulation of transferrin secretion by FSH and epidermal growth factor (EGF) was studied in highly pure, primary cultures of immature rat Sertoli cells grown on a reconstituted basement membrane (Matrigel) in bicameral chambers. Sertoli cell purity was assessed by (1) morphometry, (2) alkaline phosphatase cytochemistry (a specific marker enzyme for peritubular cells) and (3) immunocytochemistry for the alpha-isoform of smooth muscle actin in contaminating peritubular cells. Results revealed a less than 0.5% peritubular cell contamination. During initial periods of culture with EGF or FSH alone or in combination, both EGF and FSH alone maintained transferrin secretion over basal values and their effects were additive. At subsequent times, EGF alone maintained transferrin secretion, but to less extent than did FSH alone, and inhibited significantly the ability of FSH to maintain transferrin secretion. The ratio of polarized transferrin secretion in response to FSH, EGF, or in combination was also examined. FSH significantly reversed the polarity of transferrin secretion, whereas EGF, although significantly reducing the ratio of apical to basal transferrin secretion, did not lead to a preferential basal secretion of transferrin. The change in the apical:basal transferrin secretion ratio, however, was not due to a reversal of the apically secreted transferrin towards a basal direction, but rather to an increase in the total basally secreted transferrin. The effects of cell density effects on transferrin secretion were then examined. At low cell density, the relative ability of EGF and FSH together to maintain transferrin secretion was greater than at high cell density, but overall transferrin secretion was greater as cell density increased. The inhibition of FSH by EGF on transferrin secretion was also density dependent: EGF significantly inhibited FSH effects at low cell density, but failed to do so at high cell density. These results suggest that regulation of

  13. The high-affinity receptor for IgG, FcγRI, of humans and non-human primates.

    PubMed

    Chenoweth, Alicia M; Trist, Halina M; Tan, Peck-Szee; Wines, Bruce D; Hogarth, P Mark

    2015-11-01

    Non-human primate (NHP) models, especially involving macaques, are considered important models of human immunity and have been essential in preclinical testing for vaccines and therapeutics. Despite this, much less characterization of macaque Fc receptors has occurred compared to humans or mice. Much of the characterization of macaque Fc receptors so far has focused on the low-affinity Fc receptors, particularly FcγRIIIa. From these studies, it is clear that there are distinct differences between the human and macaque low-affinity receptors and their interaction with human IgG. Relatively little work has been performed on the high-affinity IgG receptor, FcγRI, especially in NHPs. This review will focus on what is currently known of how FcγRI interacts with IgG, from mutation studies and recent crystallographic studies of human FcγRI, and how amino acid sequence differences in the macaque FcγRI may affect this interaction. Additionally, this review will look at the functional consequences of differences in the amino acid sequences between humans and macaques.

  14. Dopamine D2 receptor expression in the corticotroph cells of the human normal pituitary gland.

    PubMed

    Pivonello, Rosario; Waaijers, Marlijn; Kros, Johan M; Pivonello, Claudia; de Angelis, Cristina; Cozzolino, Alessia; Colao, Annamaria; Lamberts, Steven W J; Hofland, Leo J

    2016-10-13

    The dopamine D2 receptor is the main dopamine receptor expressed in the human normal pituitary gland. The aim of the current study was to evaluate dopamine D2 receptor expression in the corticotroph cell populations of the anterior lobe and pars intermedia, as well as posterior lobe of the human normal pituitary gland by immunohistochemistry. Human normal pituitary gland samples obtained from routine autopsies were used for the study. In all cases, histology together with immunostaining for adrenocorticotropic hormone, melanocyte-stimulating hormone, prolactin, and neurofilaments were performed and compared to the immunostaining for D2 receptor. D2 receptor was heterogeneously expressed in the majority of the cell populations of the anterior and posterior lobe as well as in the area localized between the anterior and posterior lobe, and arbitrary defined as "intermediate zone". This zone, characterized by the presence of nerve fibers included the residual pars intermedia represented by the colloid-filled cysts lined by the remnant melanotroph cells strongly expressing D2 receptors, and clusters of corticotroph cells, belonging to the anterior lobe but localized within the cysts and adjacent to the posterior lobe, variably expressing D2 receptors. D2 dopamine receptor is expressed in the majority of the cell populations of the human normal pituitary gland, and particularly, in the different corticotroph cell populations localized in the anterior lobe and the intermediate zone of the pituitary gland.

  15. Distribution of somatostatin receptors in normal and neoplastic human tissues: recent advances and potential relevance.

    PubMed

    Reubi, J C; Schaer, J C; Markwalder, R; Waser, B; Horisberger, U; Laissue, J

    1997-01-01

    This short review describes the localization of somatostatin receptors with in vitro receptor autoradiography techniques in several non-classical, normal human somatostatin target tissues as well as in selected human tumors. In addition to brain, gut and neuroendocrine localizations, somatostatin receptors are expressed in most lymphatic tissues, including gut-associated lymphatic tissue, spleen and thymus; in the cortical and medullary area of the kidney; in the stroma of the prostate and in the epithelial cells of the thyroid. Among human tumors, the extremely high density of somatostatin receptors in medulloblastomas should be stressed as well as the favorable prognostic role of the presence of somatostatin receptors in neuroblastomas. Moreover, several types of mesenchymal tumors have somatostatin receptors as well. The receptor subtypes expressed by distinct tumors may vary: Whereas medulloblastomas and neuroblastomas predominantly express sst2, prostate cancers express sst1 rather than sst2. A further emerging somatostatin target is represented by the peritumoral veins, also known to express sst2 receptors. The multiple somatostatin targets in normal and pathological human tissues represents the basis for potential diagnostic and clinical applications of somatostatin analogs.

  16. Physiological characterization of human muscle acetylcholine receptors from ALS patients

    PubMed Central

    Palma, Eleonora; Inghilleri, Maurizio; Conti, Luca; Deflorio, Cristina; Frasca, Vittorio; Manteca, Alessia; Pichiorri, Floriana; Roseti, Cristina; Torchia, Gregorio; Limatola, Cristina; Grassi, Francesca; Miledi, Ricardo

    2011-01-01

    Amyotrophic lateral sclerosis (ALS) is characterized by progressive degeneration of motor neurons leading to muscle paralysis. Research in transgenic mice suggests that the muscle actively contributes to the disease onset, but such studies are difficult to pursue in humans and in vitro models would represent a good starting point. In this work we show that tiny amounts of muscle from ALS or from control denervated muscle, obtained by needle biopsy, are amenable to functional characterization by two different technical approaches: “microtransplantation” of muscle membranes into Xenopus oocytes and culture of myogenic satellite cells. Acetylcholine (ACh)-evoked currents and unitary events were characterized in oocytes and multinucleated myotubes. We found that ALS acetylcholine receptors (AChRs) retain their native physiological characteristics, being activated by ACh and nicotine and blocked by α-bungarotoxin (α-BuTX), d-tubocurarine (dTC), and galantamine. The reversal potential of ACh-evoked currents and the unitary channel behavior were also typical of normal muscle AChRs. Interestingly, in oocytes injected with muscle membranes derived from ALS patients, the AChRs showed a significant decrease in ACh affinity, compared with denervated controls. Finally, riluzole, the only drug currently used against ALS, reduced, in a dose-dependent manner, the ACh-evoked currents, indicating that its action remains to be fully characterized. The two methods described here will be important tools for elucidating the role of muscle in ALS pathogenesis and for developing drugs to counter the effects of this disease. PMID:22128328

  17. Mycobacterium tuberculosis Activates Human Macrophage Peroxisome Proliferator-Activated Receptor γ Linking Mannose Receptor Recognition to Regulation of Immune Responses

    PubMed Central

    Rajaram, Murugesan V. S.; Brooks, Michelle N.; Morris, Jessica D.; Torrelles, Jordi B.; Azad, Abul K.; Schlesinger, Larry S.

    2010-01-01

    Mycobacterium tuberculosis enhances its survival in macrophages by suppressing immune responses in part through its complex cell wall structures. Peroxisome proliferator-activated receptor γ (PPARγ), a nuclear receptor superfamily member, is a transcriptional factor that regulates inflammation and has high expression in alternatively activated alveolar macrophages and macrophage-derived foam cells, both cell types relevant to tuberculosis pathogenesis. In this study, we show that virulent M. tuberculosis and its cell wall mannose-capped lipoarabinomannan induce PPARγ expression through a macrophage mannose receptor-dependent pathway. When activated, PPARγ promotes IL-8 and cyclooxygenase 2 expression, a process modulated by a PPARγ agonist or antagonist. Upstream, MAPK-p38 mediates cytosolic phospholipase A2 activation, which is required for PPARγ ligand production. The induced IL-8 response mediated by mannose-capped lipoarabinomannan and the mannose receptor is independent of TLR2 and NF-κB activation. In contrast, the attenuated Mycobacterium bovis bacillus Calmette-Guérin induces less PPARγ and preferentially uses the NF-κB–mediated pathway to induce IL-8 production. Finally, PPARγ knockdown in human macrophages enhances TNF production and controls the intracellular growth of M. tuberculosis. These data identify a new molecular pathway that links engagement of the mannose receptor, an important pattern recognition receptor for M. tuberculosis, with PPARγ activation, which regulates the macrophage inflammatory response, thereby playing a role in tuberculosis pathogenesis. PMID:20554962

  18. Profiling of Olfactory Receptor Gene Expression in Whole Human Olfactory Mucosa

    PubMed Central

    Tarabichi, Maxime; Gregoire, Françoise; Dumont, Jacques E.; Chatelain, Pierre

    2014-01-01

    Olfactory perception is mediated by a large array of olfactory receptor genes. The human genome contains 851 olfactory receptor gene loci. More than 50% of the loci are annotated as nonfunctional due to frame-disrupting mutations. Furthermore haplotypic missense alleles can be nonfunctional resulting from substitution of key amino acids governing protein folding or interactions with signal transduction components. Beyond their role in odor recognition, functional olfactory receptors are also required for a proper targeting of olfactory neuron axons to their corresponding glomeruli in the olfactory bulb. Therefore, we anticipate that profiling of olfactory receptor gene expression in whole human olfactory mucosa and analysis in the human population of their expression should provide an opportunity to select the frequently expressed and potentially functional olfactory receptors in view of a systematic deorphanization. To address this issue, we designed a TaqMan Low Density Array (Applied Biosystems), containing probes for 356 predicted human olfactory receptor loci to investigate their expression in whole human olfactory mucosa tissues from 26 individuals (13 women, 13 men; aged from 39 to 81 years, with an average of 67±11 years for women and 63±12 years for men). Total RNA isolation, DNase treatment, RNA integrity evaluation and reverse transcription were performed for these 26 samples. Then 384 targeted genes (including endogenous control genes and reference genes specifically expressed in olfactory epithelium for normalization purpose) were analyzed using the same real-time reverse transcription PCR platform. On average, the expression of 273 human olfactory receptor genes was observed in the 26 selected whole human olfactory mucosa analyzed, of which 90 were expressed in all 26 individuals. Most of the olfactory receptors deorphanized to date on the basis of sensitivity to known odorant molecules, which are described in the literature, were found in the

  19. Characterization of a thyroid hormone receptor expressed in human kidney and other tissues

    SciTech Connect

    Nakai, A.; Seino, S.; Sakurai, A.; Szilak, I.; Bell, G.I.; DeGroot, L.J.

    1988-04-01

    A cDNA encoding a specific form of thyroid hormone receptor expressed in human liver, kidney, placenta, and brain was isolated from a human kidney library. Identical clones were found in human placenta and HepG2 cDNA libraries. The cDNA encodes a 490-amino acid protein. When expressed and translated in vitro, the protein products binds triiodothyronine with K/sub a/ of 2.3 /times/ 10/sup 9/ M/sup /minus/1/. This protein, designated human thyroid hormone receptor type ..cap alpha..2 (hTR..cap alpha..2), has the same domain structure as other members of the v-erbA-related superfamily of receptor genes. It is similar to thyroid hormone receptor type ..cap alpha.. described in chicken and rat and less similar to human thyroid hormone receptor type ..beta.. (formerly referred to as c-erbA..beta..) from placenta. However, it is distinguished from these receptors by an extension of the C-terminal hormone binding domain making it 80 amino acids longer than rat thyroid hormone receptor type ..cap alpha..1. Different sizes of mRNA found in liver and kidney suggest that there may be tissue-specific processing of the primary transcript of this gene. Identification of human thyroid hormone receptor type ..cap alpha..2 indicates that two or more forms of thyroid hormone receptor exist in human tissues and may explain the normal variation in thyroid hormone responsiveness of various organs and the selective tissue abnormalities found in the thyroid hormone resistance syndromes.

  20. Flow cytometric monitoring of hormone receptor expression in human solid tumors

    NASA Astrophysics Data System (ADS)

    Krishan, Awtar

    2002-05-01

    Hormone receptor expression in human breast and prostate tumors is of diagnostic and therapeutic importance. With the availability of anti-estrogen, androgen and progesterone antibodies, immunohistochemistry has become a standard tool for determination of receptor expression in human tumor biopsies. However, this method is dependent on examination of a small number of cells under a microscope and the data obtained in most cases is not quantitative. As most of the commercially used anti-hormone antibodies have nuclear specificity, we have developed methods for isolation and antigen unmasking of nuclei from formalin fixed/paraffin embedded archival human tumors. After immunostaining with the antibodies and propidium iodide (for DNA content and cell cycle analysis), nuclei are analyzed by multiparametric laser flow cytometry for hormone receptor expression, DNA content, aneuploidy and cell cycle determination. These multiparametric methods are especially important for retrospective studies seeking to correlate hormone receptor expression with clinical response to anti-hormonal therapy of human breast and prostate tumors.

  1. Analysis of Human Dopamine D3 Receptor Quaternary Structure*

    PubMed Central

    Marsango, Sara; Caltabiano, Gianluigi; Pou, Chantevy; Varela Liste, María José; Milligan, Graeme

    2015-01-01

    The dopamine D3 receptor is a class A, rhodopsin-like G protein-coupled receptor that can form dimers and/or higher order oligomers. However, the molecular basis for production of these complexes is not well defined. Using combinations of molecular modeling, site-directed mutagenesis, and homogenous time-resolved FRET, the interfaces that allow dopamine D3 receptor monomers to interact were defined and used to describe likely quaternary arrangements of the receptor. These were then compared with published crystal structures of dimeric β1-adrenoreceptor, μ-opioid, and CXCR4 receptors. The data indicate important contributions of residues from within each of transmembrane domains I, II, IV, V, VI, and VII as well as the intracellular helix VIII in the formation of D3-D3 receptor interfaces within homo-oligomers and are consistent with the D3 receptor adopting a β1-adrenoreceptor-like quaternary arrangement. Specifically, results suggest that D3 protomers can interact with each other via at least two distinct interfaces: the first one comprising residues from transmembrane domains I and II along with those from helix VIII and a second one involving transmembrane domains IV and V. Moreover, rather than existing only as distinct dimeric species, the results are consistent with the D3 receptor also assuming a quaternary structure in which two transmembrane domain I-II-helix VIII dimers interact to form a ”rhombic” tetramer via an interface involving residues from transmembrane domains VI and VII. In addition, the results also provide insights into the potential contribution of molecules of cholesterol to the overall organization and potential stability of the D3 receptor and possibly other GPCR quaternary structures. PMID:25931118

  2. Heterogeneity of human lymphocyte Fc receptors. I. Differential susceptibility to proteolysis

    PubMed Central

    Gormus, B. J.; Woodson, Mildred; Kaplan, M. E.

    1978-01-01

    To study the possible heterogeneity of human lymphocyte Fc receptors, isolated human peripheral blood lymphocytes (PBL) were enzymatically altered (`stripped') by exposure to pronase or papain. Pronase treatment markedly increased the percentages of PBL binding IgG-sensitized erythrocytes (EA), while simultaneously removing or inactivating their receptors for heat-aggregated IgG (aggG). Papain treatment markedly diminished the ability of PBL to bind both EA and aggG. Essentially identical results were obtained utilizing EA composed of either human Rh-positive type O erythrocytes sensitized with the human anti-Rh serum Ripley (HRBC-A Ripley) or with chicken erythrocytes sensitized with rabbit anti-CRBC IgG (CRBC-A). CRBC sensitized with Fab'2 fragments of rabbit anti-CRBC IgG were incapable of forming rosettes with normal or with pronase- or papain-stripped PBL. Pre-treatment of normal lymphocytes with aggG totally ablated their ability to rosette with EA. Incubation of pronase-stripped PBL for 18–20 hr in 5% CO2-air at 37°C resulted in diminution (to levels originally present) in the percentages of lymphocytes binding EA, but no regeneration of aggG receptors. Similar incubation of papain-stripped PBL resulted in significant reappearance of receptors binding EA, but no regeneration of aggG receptors. These results strongly suggest that: (1) lymphocyte receptors that bind EA complexes differ from those that bind aggG; (2) some lymphocytes possess cryptic receptors for EA that are expressed after proteolysis with pronase; (3) PBL having receptors for EA also have aggG receptors; and (4) there is no evidence that proteolytic stripping of PBL results in the generation of functionally different receptors for complexed IgG, since the Fc specificity of this receptor remains unchanged. PMID:737911

  3. Adenosine modulates cell growth in the human breast cancer cells via adenosine receptors.

    PubMed

    Panjehpour, Mojtaba; Karami-Tehrani, Fatemeh

    2007-01-01

    Adenosine modulates the proliferation, survival, and apoptosis of many different cell types. The present study was performed to investigate the role of adenosine receptors in the human breast cancer cell lines MCF-7 and MDA-MB468. The biological effects of adenosine on the cells were analyzed by adenylyl cyclase and cell viability assay as well as RT-PCR of adenosine receptors. RT-PCR results show the expression of the transcript of all adenosine receptors in both cell lines. By using adenosine and selective adenosine receptor agonists or antagonists, we found that A3 stimulation reduced cell viability, which was abolished by pretreatment with A3 receptor antagonist. Moreover, we demonstrated that adenosine (natural agonist) triggers a cytotoxic signal via A3 receptor activation that was not seen for other subclasses of adenosine receptors. Intracellular cAMP concentration was changed significantly only for A3 and A2B receptor-selective agonists, which indicates the functional form of these receptors on the cell surface. In conclusion, our findings revealed the role of adenosine receptors in breast cancer cell lines on growth modulation role of A3 and functional form of A2B, although its involvement in cell growth modulation was not seen. Theses findings as well as data by others may provide a possible application of adenosine receptor agonists/antagonists in breast malignancies.

  4. Preferential recognition of avian-like receptors in human influenza A H7N9 viruses.

    PubMed

    Xu, Rui; de Vries, Robert P; Zhu, Xueyong; Nycholat, Corwin M; McBride, Ryan; Yu, Wenli; Paulson, James C; Wilson, Ian A

    2013-12-06

    The 2013 outbreak of avian-origin H7N9 influenza in eastern China has raised concerns about its ability to transmit in the human population. The hemagglutinin glycoprotein of most human H7N9 viruses carries Leu(226), a residue linked to adaptation of H2N2 and H3N2 pandemic viruses to human receptors. However, glycan array analysis of the H7 hemagglutinin reveals negligible binding to humanlike α2-6-linked receptors and strong preference for a subset of avian-like α2-3-linked glycans recognized by all avian H7 viruses. Crystal structures of H7N9 hemagglutinin and six hemagglutinin-glycan complexes have elucidated the structural basis for preferential recognition of avian-like receptors. These findings suggest that the current human H7N9 viruses are poorly adapted for efficient human-to-human transmission.

  5. Autoradiographic visualization of muscarinic receptor subtypes in human and guinea pig lung

    SciTech Connect

    Mak, J.C.; Barnes, P.J. )

    1990-06-01

    Muscarinic receptor subtypes have been localized in human and guinea pig lung sections by an autoradiographic technique, using (3H)(-)quinuclidinyl benzilate (( 3H)QNB) and selective muscarinic antagonists. (3H)QNB was incubated with tissue sections for 90 min at 25 degrees C, and nonspecific binding was determined by incubating adjacent serial sections in the presence of 1 microM atropine. Binding to lung sections had the characterization expected for muscarinic receptors. Autoradiography revealed that muscarinic receptors were widely distributed in human lung, with dense labeling over submucosal glands and airway ganglia, and moderate labeling over nerves in intrapulmonary bronchi and of airway smooth muscle of large and small airways. In addition, alveolar walls were uniformly labeled. In guinea pig lung, labeling of airway smooth muscle was similar, but in contrast to human airways, epithelium was labeled but alveolar walls were not. The muscarinic receptors of human airway smooth muscle from large to small airways were entirely of the M3-subtype, whereas in guinea pig airway smooth muscle, the majority were the M3-subtype with a very small population of the M2-subtype present. In human bronchial submucosal glands, M1- and M3-subtypes appeared to coexist in the proportions of 36 and 64%, respectively. In human alveolar walls the muscarinic receptors were entirely of the M1-subtype, which is absent from the guinea pig lung. No M2-receptors were demonstrated in human lung. The localization of M1-receptors was confirmed by direct labeling with (3H)pirenzepine. With the exception of the alveolar walls in human lung, the localization of muscarinic receptor subtypes on structures in the lung is consistent with known functional studies.

  6. Sensitivity of C6 Glioma Cells Carrying the Human Poliovirus Receptor to Oncolytic Polioviruses.

    PubMed

    Sosnovtseva, A O; Lipatova, A V; Grinenko, N F; Baklaushev, V P; Chumakov, P M; Chekhonin, V P

    2016-10-01

    A humanized line of rat C6 glioma cells expressing human poliovirus receptor was obtained and tested for the sensitivity to oncolytic effects of vaccine strains of type 1, 2, and 3 polioviruses. Presentation of the poliovirus receptor on the surface of C6 glioma cells was shown to be a necessary condition for the interaction of cells with polioviruses, but insufficient for complete poliovirus oncolysis.

  7. Characterization of the human liver vasopressin receptor. Profound differences between human and rat vasopressin-receptor-mediated responses suggest only a minor role for vasopressin in regulating human hepatic function.

    PubMed Central

    Howl, J; Ismail, T; Strain, A J; Kirk, C J; Anderson, D; Wheatley, M

    1991-01-01

    The [Arg8]vasopressin (AVP) receptor expressed by human hepatocytes was characterized, and compared with the rat hepatic V1a vasopressin receptor subtype. In addition to determining the pharmacological profile of the human receptor, the cellular responses to AVP were measured in human and rat hepatocytes by assaying glycogen phosphorylase alpha activity and DNA synthesis. Marked differences were observed between human and rat hepatocytes regarding vasopressin receptors and the intracellular consequences of stimulation by AVP. Data presented in this paper demonstrate the following, (i) Vasopressin V1a receptors are present in low abundance on human hepatocytes. (ii) Species differences exist between human and rat V1a receptors with respect to the affinity of some selective antagonists. (iii) AVP-stimulated glycogen phosphorylase a activation in human hepatocytes was approx. 5% of that observed in rat cells. (iv) In contrast with rat hepatocytes, DNA synthesis in human cells in culture was not stimulated by AVP. It is concluded that vasopressin plays only a minor role in the regulation of human hepatic function. Furthermore, conclusions drawn from observations made with AVP and its analogues on rat hepatic function cannot be directly extrapolated to the human situation. PMID:2039469

  8. T4-lysozyme fusion for the production of human formyl peptide receptors for structural determination.

    PubMed

    Wang, Xiaoqiang; Cui, Ying; Wang, Jiqian

    2014-03-01

    T4-lysozyme (T4L) fusion was introduced in the intracellular loop of a G protein-coupled receptor (GPCR) of human formyl peptide receptor 3 (FPR3), and the ability of T4L fusion to be used in the production of human FPR3 for structural determination was evaluated in this work. The T4L variant of human FPR3 termed FPR3-T4L was expressed in stable tetracycline-inducible HEK293 cells. A systematic detergent screening showed that fos-choline-14 was the optimal detergent to solubilize and subsequently purify FPR3-T4L from HEK293 cells. Immunoaffinity purification in combination with gel filtration was employed to purify the T4L-fused receptor to high homogeneity. The final yield of the human FPR3-T4L monomer from 2 g of cells was 0.2 mg. Circular dichroism spectroscopy indicated that the receptor adopted a correct secondary structure after purification, while ligand binding measurement indicated that the receptor was functional. Thus, the presence of T4L fusion did not evidently disturb the expression in HEK293 cells, proper folding, and functionality of human FPR3. Our study of evaluating T4L fusion for the recombinant production of human formyl peptide receptor would facilitate ongoing efforts in the structural characterization of GPCRs.

  9. Requirements for the construction of antibody heterodimers for the direction of lysis of tumors by human T cells.

    PubMed Central

    Scott, C F; Blättler, W A; Lambert, J M; Kalish, R S; Morimoto, C; Schlossman, S F

    1988-01-01

    We constructed a series of MAb heterodimers consisting of the J5 (anti-common acute lymphoblastic leukemia antigen [CALLA]) antibody and antibodies to a variety of structures present on the surface of activated human T cells, including CD3 antigen (T cell receptor-associated glycoproteins), CD2 antigen (T11/E-rosette receptor), CD25 antigen (IL-2 receptor), and the transferrin receptor. We tested the ability of these heterodimers to direct a CD2 + CD3 + CD8 + CD4 - CD25 + transferrin receptor + MHC-restricted human cytolytic T lymphocyte (CTL) clone to lyse a CALLA + human tumor in vitro. Only heterodimers containing an anti-CD3 antibody or activating antibodies to CD2 could direct the clone to lyse these human tumor targets, even when the clone was additionally activated with anti-CD3 or anti-CD2 antibodies. Our findings may have implications in the design of strategies for the use of such reagents in the treatment of human neoplasia. Images PMID:2966815

  10. Molecular cloning, chromosomal mapping, and functional expression of human brain glutamate receptors

    SciTech Connect

    Sun, W.; Ferrer-Montiel, A.V.; Schinder, A.F.; Montal, M. ); McPherson, J.P. ); Evans, G.A. )

    1992-02-15

    A full-length cDNA clone encoding a glutamate receptor was isolated from a human brain cDNA library, and the gene product was characterized after expression in Xenopus oocytes. Degenerate PCR primers to conserved regions of published rat brain glutamate receptor sequences amplified a 1-kilobase fragment from a human brain cDNA library. This fragment was used as a probe for subsequent hybridization screening. Two clones were isolated that, based on sequence information, code for different receptors: a 3-kilobase clone, HBGR1, contains a full-length glutamate receptor cDNA highly homologous to the rat brain clone GluR1, and a second clone, HBGR2, contains approximately two-thirds of the coding region of a receptor homologous to rat brain clone GluR2. Southern and PCr analysis of a somatic cell-hybrid panel mapped HBGR1 to human chromosome 5q31.3-33.3 and mapped HBGR2 to chromosome 4q25-34.3. Xenopus oocytes injected with in vitro-synthesized HBGR1 cRNA expressed currents activated by glutamate receptor agonists. These results indicate that clone HBGR1 codes for a glutamate receptor of the kainate subtype cognate to members of the glutamate receptor family from rodent brain.

  11. Functional identification of histamine H3-receptors in the human heart.

    PubMed

    Imamura, M; Seyedi, N; Lander, H M; Levi, R

    1995-07-01

    Norepinephrine release contributes to ischemic cardiac dysfunction and arrhythmias. Because activation of histamine H3-receptors inhibits norepinephrine release, we searched for the presence of H3-receptors directly in sympathetic nerve endings (cardiac synaptosomes) isolated from surgical specimens of human atria. Norepinephrine was released by depolarization with K+. The presence of H3-receptors was ascertained because the selective H3-receptor agonists (R) alpha-methylhistamine and imetit reduced norepinephrine release, and the specific H3-receptor antagonist thioperamide blocked this effect. Norepinephrine release was exocytotic, since it was inhibited by the N-type Ca(2+)-channel blocker omega-conotoxin and the protein kinase C inhibitor Ro31-8220. Functional relevance of these H3-receptors was obtained by showing that transmural electrical stimulation of sympathetic nerve endings in human atrial tissue increased contractility, an effect blocked by propranolol and attenuated in a concentration-dependent manner by (R) alpha-methylhistamine. Also, thioperamide antagonized the effect of (R) alpha-methylhistamine. Our findings are the first demonstration that H3-receptors are present in sympathetic nerve endings in the human heart, where they modulate adrenergic responses by inhibiting norepinephrine release. Since myocardial ischemia causes intracardiac histamine release, H3-receptor-induced attenuation of sympathetic neurotransmission may be clinically relevant.

  12. Prostaglandin E₂ inhibits human lung fibroblast chemotaxis through disparate actions on different E-prostanoid receptors.

    PubMed

    Li, Ying-Ji; Wang, Xing-Qi; Sato, Tadashi; Kanaji, Nobuhiro; Nakanishi, Masanori; Kim, Miok; Michalski, Joel; Nelson, Amy J; Sun, Jian-Hong; Farid, Maha; Basma, Hesham; Patil, Amol; Toews, Myron L; Liu, Xiangde; Rennard, Stephen I

    2011-01-01

    The migration of fibroblasts is believed to play a key role in both normal wound repair and abnormal tissue remodeling. Prostaglandin E (PGE)(2), a mediator that can inhibit many fibroblast functions including chemotaxis, was reported to be mediated by the E-prostanoid (EP) receptor EP2. PGE(2), however, can act on four receptors. This study was designed to determine if EP receptors, in addition to EP2, can modulate fibroblast chemotaxis. Using human fetal lung fibroblasts, the expression of all four EP receptors was demonstrated by Western blotting. EP2-selective and EP4-selective agonists inhibited both chemotaxis toward fibronectin in the blindwell assay and migration in a wound-closure assay. In contrast, EP1-selective and EP3-selective agonists stimulated cell migration in both assay systems. These results were confirmed using EP-selective antagonists. The role of both EP2 and EP4 receptors in mediating the PGE(2) inhibition of chemotaxis was also confirmed by small interfering RNA suppression. Furthermore, the role of EP receptors was confirmed by blocking the expected signaling pathways. Taken together, these results demonstrate that PGE(2) can act on multiple EP receptors in human lung fibroblasts, to exert disparate effects. Alterations in EP receptor expression may have the potential to alter PGE(2) action. Targeting specific EP receptors may offer therapeutic opportunities in conditions characterized by abnormal tissue repair and remodeling.

  13. Subcellular localization and translocation of the receptor for N-formylmethionyl-leucyl-phenylalanine in human neutrophils.

    PubMed Central

    Sengeløv, H; Boulay, F; Kjeldsen, L; Borregaard, N

    1994-01-01

    The subcellular localization of N-formylmethionyl-leucyl-phenylalanine (fMLP) receptors in human neutrophils was investigated. The fMLP receptor was detected with a high-affinity, photoactivatable, radioiodinated derivative of N-formyl-methionyl-leucyl-phenylalanyl-lysine (fMLFK). Neutrophils were disrupted by nitrogen cavitation and fractionated on Percoll density gradients. fMLP receptors were located in the beta-band containing gelatinase and specific granules, and in the gamma-band containing plasma membrane and secretory vesicles. Plasma membranes and secretory vesicles were separated by high-voltage free-flow electrophoresis, and secretory vesicles were demonstrated to be highly enriched in fMLP receptors. The receptors found in secretory vesicles translocated fully to the plasma membrane upon stimulation with inflammatory mediators. The receptor translocation from the beta-band indicated that the receptor present there was mainly located in gelatinase granules. A 25 kDa fMLP-binding protein was found in the beta-band. Immunoprecipitation revealed that this protein was identical with NGAL (neutrophil gelatinase-associated lipocalin), a novel protein found in specific granules. In summary, we demonstrate that the compartment in human neutrophils that is mobilized most easily and fastest, the secretory vesicle, is a major reservoir of fMLP receptors. This explains the prompt and extensive upregulation of fMLP receptors on the neutrophil surface in response to inflammatory stimuli. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8172608

  14. Expression of functional receptors by the human gamma-aminobutyric acid A gamma 2 subunit.

    PubMed

    Martínez-Torres, Ataúlfo; Miledi, Ricardo

    2004-03-02

    gamma-Aminobutyric acid A (GABA(A)) receptors are heteromeric membrane proteins formed mainly by various combinations of alpha, beta, and gamma subunits; and it is commonly thought that the gamma 2 subunit alone does not form functional receptors. In contrast, we found that cDNA encoding the gamma 2L subunit of the human GABA(A) receptor, injected alone into Xenopus oocytes, expressed functional GABA receptors whose properties were investigated by using the two-microelectrode voltage-clamp technique. GABA elicited desensitizing membrane currents that recovered after a few minutes' wash. Repetitive applications of GABA induced a "run-up" of GABA currents that nearly doubled the amplitude of the first response. The GABA currents inverted direction at about -30 mV, indicating that they are carried mainly by Cl(-) ions. The homomeric gamma 2L receptors were also activated by beta-alanine > taurine > glycine, and, like some types of heteromeric GABA(A) receptors, the gamma 2L receptors were blocked by bicuculline and were potentiated by pentobarbital and flunitrazepam. These results indicate that the human gamma 2L subunit is capable of forming fully functional GABA receptors by itself in Xenopus oocytes and suggest that the roles proposed for the various subunits that make up the heteromeric GABA(A) receptors in situ require further clarification.

  15. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist.

    PubMed

    Haga, Kazuko; Kruse, Andrew C; Asada, Hidetsugu; Yurugi-Kobayashi, Takami; Shiroishi, Mitsunori; Zhang, Cheng; Weis, William I; Okada, Tetsuji; Kobilka, Brian K; Haga, Tatsuya; Kobayashi, Takuya

    2012-01-25

    The parasympathetic branch of the autonomic nervous system regulates the activity of multiple organ systems. Muscarinic receptors are G-protein-coupled receptors that mediate the response to acetylcholine released from parasympathetic nerves. Their role in the unconscious regulation of organ and central nervous system function makes them potential therapeutic targets for a broad spectrum of diseases. The M2 muscarinic acetylcholine receptor (M2 receptor) is essential for the physiological control of cardiovascular function through activation of G-protein-coupled inwardly rectifying potassium channels, and is of particular interest because of its extensive pharmacological characterization with both orthosteric and allosteric ligands. Here we report the structure of the antagonist-bound human M2 receptor, the first human acetylcholine receptor to be characterized structurally, to our knowledge. The antagonist 3-quinuclidinyl-benzilate binds in the middle of a long aqueous channel extending approximately two-thirds through the membrane. The orthosteric binding pocket is formed by amino acids that are identical in all five muscarinic receptor subtypes, and shares structural homology with other functionally unrelated acetylcholine binding proteins from different species. A layer of tyrosine residues forms an aromatic cap restricting dissociation of the bound ligand. A binding site for allosteric ligands has been mapped to residues at the entrance to the binding pocket near this aromatic cap. The structure of the M2 receptor provides insights into the challenges of developing subtype-selective ligands for muscarinic receptors and their propensity for allosteric regulation.

  16. Purification and characterization of the human interferon-. gamma. receptor from placenta

    SciTech Connect

    Calderon, J.; Sheehan, K.C.F.; Chance, C.; Thomas, M.L.; Schreiber, R.D. )

    1988-07-01

    Purification of the human interferon-{gamma} (IFN-{gamma}) receptor was facilitated by identification of human placenta as a large-scale receptor source. When analyzed in radioligand binding experiments, intact placental membranes and detergent-solubilized membrane proteins expressed 1.3 and 5.9 {times} 10{sup 12} receptors per mg of protein, respectively, values that were 13-163 times greater than that observed for U937 membranes. Two protocols were followed to purify the IFN-{gamma} receptor from octyl glucoside-solubilized membranes: (i) sequential affinity chromatography over wheat germ agglutinin- and INF-{gamma}-Sepharose and (ii) affinity chromatography over columns containing receptor-specific monoclonal antibody and wheat germ agglutinin. Both procedures resulted in fully active preparations that were 70-90% pure. Purified receptor migrated as a single molecular species of 90 kDa either when analyzed on silver-stained NaDodSO{sub 4}/polyacrylamide gels or when subjected to electrophoretic transfer blot analysis using a labeled IFN-{gamma} receptor-specific monoclonal antibody. The identity of the 90-kDa component as the receptor was confirmed by demonstrating its ability to specifically bind {sup 125}I-labeled IFN-{gamma} following NaDodSO{sub 4}/PAGE and transfer to nitrocellulose. The ligand binding site, the epitope for the receptor-specific monoclonal antibody, and all of the N-linked carbohydrate could be localized to the 55-kDa domain of the molecule.

  17. Expression of functional receptors by the human γ-aminobutyric acid A γ2 subunit

    PubMed Central

    Martínez-Torres, Ataúlfo; Miledi, Ricardo

    2004-01-01

    γ-Aminobutyric acid A (GABAA) receptors are heteromeric membrane proteins formed mainly by various combinations of α, β, and γ subunits; and it is commonly thought that the γ2 subunit alone does not form functional receptors. In contrast, we found that cDNA encoding the γ2L subunit of the human GABAA receptor, injected alone into Xenopus oocytes, expressed functional GABA receptors whose properties were investigated by using the two-microelectrode voltage-clamp technique. GABA elicited desensitizing membrane currents that recovered after a few minutes' wash. Repetitive applications of GABA induced a “run-up” of GABA currents that nearly doubled the amplitude of the first response. The GABA currents inverted direction at about -30 mV, indicating that they are carried mainly by Cl- ions. The homomeric γ2L receptors were also activated by β-alanine > taurine > glycine, and, like some types of heteromeric GABAA receptors, the γ2L receptors were blocked by bicuculline and were potentiated by pentobarbital and flunitrazepam. These results indicate that the human γ2L subunit is capable of forming fully functional GABA receptors by itself in Xenopus oocytes and suggest that the roles proposed for the various subunits that make up the heteromeric GABAA receptors in situ require further clarification. PMID:14981251

  18. Regulation of central dopamine-2 receptor sensitivity by a proportional control thermostat in humans.

    PubMed

    Schwartz, Paul J; Erk, Stanley D

    2004-06-30

    Central dopamine-2 (D2) receptors are importantly involved in the pathogenesis and treatment of schizophrenia. Central D2 receptors are also involved in thermoregulation. Recently, a type of central nervous system proportional control thermostat was described that governs the magnitude of several serotonin receptor-mediated core body thermoregulatory responses in proportion to both the amount of nocturnal melatonin secreted and the minimum level of nocturnal core body temperature (Tmin). The present study investigated whether the magnitude of D2 receptor-mediated hypothermia--a putative index of central D2 receptor sensitivity--is also regulated by this proportional control thermostat in humans. Twenty healthy subjects had their 02:00 h melatonin concentrations (MT2am) and Tmin measured during consecutive sleep episodes and their core body temperature responses (TAUC) measured the next two mornings after oral ingestion of either the D2 receptor agonist bromocriptine 3.125 mg or placebo. We found that the bromocriptine-induced TAUC was significantly and independently correlated with both Tmin and MT2am. In conclusion, D2 receptor-mediated hypothermia, an index of central D2 receptor sensitivity, is regulated by a proportional control thermostat in humans. The abnormal D2 receptor function in schizophrenia could be related to dysfunction of this thermostat.